
Tabu Search with Strategic Oscillation for Improving Recollection

Assignment Plans of Waste Electric and Electronic Equipment

Roger Z. Ŕıos-Mercado

Universidad Autónoma de Nuevo León

Graduate Program in Systems Engineering

E-mail: roger.rios@uanl.edu.mx

José L. González-Velarde

Tecnológico de Monterrey

Center for Quality and Manufacturing

E-mail: gonzalez.velarde@itesm.mx

Jabneel R. Maldonado-Flores

E-mail: jabneelmf@gmail.com

Technical Report PISIS–2017–01

Graduate Program in Systems Engineering

Department of Mechanical and Electrical Engineering

Universidad Autónoma de Nuevo León

San Nicolás de los Garza, NL, Mexico

30 May 2017

Abstract

This paper studies a districting problem arising in the recollection of waste of electrical and

electronic equipment (WEEE). Given a set of recollection bins, where users return end-of-life elec-

tronic goods, located across a region or country, the design problem consists of assigning these bins

to the companies who will be responsible for the recollection at a later stage. This assignment must

meet certain planning and legal requirements such as a fair household distribution according to

the market share of each company and a fair assignment based on the bin’s infrastructure quality.

According the the current WEEE II Directive, this assignment must be done in a such a way so

as to avoid, to the best possible extent, regional monopolies. This is achieved by maximizing a

dispersion function. A tabu search metaheuristic with advanced feature of strategic oscillation is

proposed for this NP-hard combinatorial optimization problem. In addition, a few upper bounding

schemes are developed and tested. The empirical work shows the effectiveness of the tabu search

and each of its components over a wide set of instances from the literature.

Keywords: Combinatorial optimization; Districting; WEEE Recollection; Metaheuristics; Tabu

search; Strategic oscillation.

1 Introduction

The production of electrical and electronic equipment is one of the markets of larger growth at

world-wide level. This entails that the number of equipment of this type that falls in disuse will

continue growing during the next decades. Rough estimates indicate that in the European Union

the amount of waste of electrical and electronic equipment (WEEE) will increase from 3% to 5%

per year.

Since 2003, given the WEEE directive, in the European Union recycling of electric home ap-

pliances is mandatory. Originally, the management of waste of electric and electronic equipment

was regulated by the WEEE Directive (Directive 2002/96/EC). In August 2012, the European

Union issued a revision of the WEEE Directive (Directive 2012/19/EU or, simply, the WEEE II

Directive.) Within this scheme of recycling, a diversity of problems that can be tackled by means

of operational research techniques has arisen; in particular this paper focuses in the design of the

recollection territories that will be assigned to each company. The European law establishes that

the original equipment manufacturers are responsible for WEEE recollection in a percentage that

is proportional to the volume of its sales in the market. The authorities have established harvesting

points where the users deposit the electric home appliances at the end of their useful life. The

problem at hand consists of finding the best possible way to group the harvesting points. Each

group, also called a territory, is in particular associated to a 3PL company that will be responsible

for the recycling of the equipment there collected.

As well, each point of harvesting has associated a certain number of potential users and a quality

level of infrastructure that can be good, mediocre or bad. In order to realize a right distribution

of the collecting points, it is important that the defined territories approximately contain the same

number of inhabitants and the same number of harvesting points of each quality level, that is to

say, it is desirable to obtain territories balanced with respect to these criteria.

Another important characteristic of the problem is the need for classifying the disposed equip-

ment into two different categories. The high toxicity of the freezing agents present in some electric

home appliances forces them to be transported separately; this entails a subdivision of the equip-

ment in each collection point. The assignment of a harvesting point to a territory is independent for

each category, so that, it may be the case that a collection point is assigned to different territories

for each category. Nevertheless, for reasons of efficiency the number of these cases is allowed only

to certain limits.

In some countries such as Germany and Spain the normative is applied in a way to prevent

monopolistic practices, this characteristic has motivated the use of a mathematical model that seeks

to maximize a dispersion measurement. Therefore, the problem consists of creating territories that

fulfill the different criteria of planning, and such that they are as disperse as possible.

Territorial design is already one of the classic problems within the field of operations research

that, although widely studied for more than thirty years, has not been exhausted due to its ver-

satility and capacity of adaptation to a rich variety of real situations. The nature of the problem

just described locates it within the area of territorial design, but at the same time it displays char-

1

acteristics that make it relevant. The desire to obtain territories balanced with respect to diverse

planning criteria turns it into a non-trivial problem. On the other hand, the need to maximize a

dispersion measurement, gives it a special place as a unique problem within the field of territory

design.

It is important to note that, in the review of specialized literature, except for the work carried

out by Fernández et al. [4], there are no articles that approach a problem of maximum dispersion

for territory design. This emphasizes the scientific contribution of this research. It is important to

mention that the motivation of the work developed here, is indeed the investigation of these authors.

In that work, the authors propose a constructive heuristic based on GRASP which contains a simple

local search phase. The idea is to contribute with a more sophisticated local search.

In this paper we present a Tabu Search (TS) metaheuristic for this combinatorial optimization

problem. The TS is further enhanced by a strategic oscillation component. Several neighborhoods

and search strategies are developed as well. In addition, we implement an upper bounding scheme

based on different relaxation strategies. Our experimental work fully assesses all different strategies

and components of the proposed TS. The trade-offs between the different local search strategies are

exposed. It was also observed the positive impact that strategic oscillation implementation has over

all instances tested in terms of solution quality and number of proven optimal solutions found. The

results indicated the overall efficiency of the algorithm, including significant improvements over the

best solutions reported by a previously presented heuristic based on GRASP.

The rest of the paper is organized as follows. The problem is described in Section 2, including a

combinatorial optimization formulation. Relevant work on this area is surveyed in Section 3. The

proposed TS metaheuristic is fully described in Section 4. Section 5 presents the empirical work,

assessing each of the algorithmic strategies and components. We wrap up in Section 6 with closing

remarks and conclusions.

2 Problem Description

This problem was formally introduced by Fernández et al. [4]. In that work, the problem and

modeling assumptions are fairly well described and motivated. In this work, we provide a summary

of the main assumptions and planning requirements and present a combinatorial optimization model

that will be used in the proposed solution procedure.

Let V = {1, . . . , n} be the set of basic units (BUs). In this case, a BU corresponds to a

recollection point. Let wi be the number of households of basic unit i ∈ V and W =
∑

i∈V wi the

sum of all households. Each BU is further classified according to the quality of its infrastructure.

Denote by V1, V2, and V3 the set of BUs of good, medium, and low quality, respectively. We use

q ∈ Q = {1, 2, 3} as an index for the respective quality sets and denote qi ∈ Q the quality logistics

index of basic unit i. Under this definition, it is clear that Vq = {i ∈ V : qi = q}, for q ∈ Q.

White goods are further subdivided into devices that have freezing capabilities and those that do

not (denoted as products of type 1 and type 2, respectively). This distinction is due to the toxic

cooling solvents contained in the former products that require a special treatment. Let dij be the

2

distance between BUs i and j, i, j ∈ V . We denote by C = {1, . . . ,m} the set of corporations and

Mp
k the market share of corporation k ∈ C for product p = 1, 2. As the market shares may differ

for the two product types, it is allowed to split basic areas, i.e., for some basic areas the corporation

that collects products of type 1 may not be the same as the one that is responsible for the type

2 products. A BU whose company assignemnt is different for both product types is called a split

unit.

A solution is represented by a collection X = {Xk}k∈C with Xk ⊂ V . Xk represents the subset

of basic areas that define the territory of corporation k and Xk = X1
k ∪ X2

k , where Xp
k denotes

the subset of basic areas assigned to k for product p = 1, 2. If basic area i ∈ V is non-split we

have i ∈ X1
k ∩ X2

k , for some k; otherwise, there exist k1, k2, k1 6= k2, with i ∈ X1
k1
∩ X2

k2
. When

no splitting is allowed, we have Xk = X1
k = X2

k , for all k ∈ C, so that X = {Xk}k∈C defines a

partition of V .

The following planning requirements are sought:

• For each type of product p ∈ P , a BUs must be asigned to a company, that is for each product

p the assignment forms a p-partition of V .

• The numbre of split units is bounded by a user-specfied parameter σ.

• The total number of households should be fairly assigned to companies based on their market

share for each product type.

• The number of recollection points of a specific quality index should be fairly assigned to

companies based on their market share for each product type.

What makes the problem different and interesting is that the plan must also satisfy the WEEE

Directive that establishes that regional monopolies must be avoided, that is, units allocated in

smaller subregions should be assigned to different companies. As shown by Fernández et al. [4],

this is accomplished by maximizing a dispersion measure (described below). This contrasts with

previous work on territory design and districting where usually territory compactness is desired,

that is, a dispersion measure is minimized.

Under the above assumptions, we present the following combinatorial optimization model ver-

sion of the MILP model introduced by Fernández et al. [4]. This is called the Maximun Dispersion

Territory Design Problem (MDTDP).

Sets

V = {1, . . . , n} Basic Units (BUs)

C = {1, . . . ,m} Territories

P = {1, 2} Product types

Q = {1, 2, 3} Quality index (1=good, 2=medium, 3=low)

V q Set of BUs with quality q ∈ Q; V = V 1 ∪ V 2 ∪ V 3

3

Parameters

dij Euclidean Distance between BUs i and j; i, j ∈ V

wi Number of households in BU i; i ∈ V

Spk Market share of territoy k for product p; k ∈ C, p ∈ P

τ Tolerance parameter with respect the number of households balance; τ ∈ (0, 1)

β Tolerance parameter respect to BU quality; β ∈ (0, 1)

σ Maximum number of split BUs allowed

Computed Parameters

w(V̄) (=
∑
i∈V̄

wi) Number of households in V̄ ⊂ V

W (= w(V)) Total of households in V

cq(V̄) (= |V̄ ∩ V q|) Cardinality of V̄ for quality index q; V̄ ⊂ V , q ∈ Q

Decision Sets

Xp
k Set of BUs assigned to territory k for product p; k ∈ C, p ∈ P

Xk (=
⋃
p∈P

Xp
k) Set of UBs assigned to territory k for at least one product; k ∈ C

Xp (= {Xp
1 , . . . , X

p
m}) m-partitions of V for product p; p ∈ P

Xsplit Set of split BUs, i ∈ Xsplit ⇔ ∃k1, k2 ∈ C, k1 6= k2, such that i ∈ X1
k1
∧ i ∈ X2

k2

Π Set of all possible m-partition of the form X = (X1, X2) for V

MDTDP Model

Find |P | m-partitions of the form X = (X1, X2) ∈ Π, such that X optimize the model:

4

max
X∈Π

min
k∈C

min
i,j∈Xk

{dij} (1)

subject to:
1

W
w(Xp

k) ≤ (1 + τ)Spk k ∈ C, p ∈ P (2)

1

W
w(Xp

k) ≥ (1− τ)Spk k ∈ C, p ∈ P (3)

1

|V q|
cq(Xp

k) ≤ (1 + β)Spk q ∈ Q, k ∈ C, p ∈ P (4)

1

|V q|
cq(Xp

k) ≥ (1− β)Spk q ∈ Q, k ∈ C, p ∈ P (5)

|Xsplit| ≤ σ (6)

As stated before and shown in [4], the objective function (1) that seeks to maximize territory

dispersion is compatible with avoiding regional monopolies. Constraints (2)-(3) assure that the

number of households is fairly distributed to companies based on their market share. Due to the

discrete nature of the problem, it is practically impossible to obtain a perfect balance. Therefore,

this balance is achieved by introducing a tolerance parameter τ ∈ (0, 1) that measures the deviation

from a perfect measure given by WSpk . Similarly, constraints (4)-(5) assure that the good, medium

and low quality BUs are fairly allocated to companies based on their market share too. To this end,

a user-specified tolerance parameter β ∈ (0, 1) is introduced for achieving this balance. These two

set of balancing constraints are referred to as the household and infrastructure quality balancing

constraints. Note that tolerance values of τ = β = 0 corresponds to a perfect blance. Finally,

constraints (6) sets a limit on the number of split BUs allowed. In practice this is around 20 % of

the total number of BUs.

Computational complexity: The MDTDP is NP-hard [4]. By making C = {1, 2}, σ = 0, Spk =

0.5, τ = 0, β = 1, and dij = 1, the Set Partiononiing Problem is polinomially reducible to the

MDTDP. The state of the art says that tractable instances of this problem, that is, instances that

can be solved exactly, have in the order of 20-30 BUS and 3-4 companies. Our target instances

have 100-300 BUs and 3-7 companies.

We now provide an example to illustrate a typical solution or design for the MDTDP.

Example: Figure 1 shows a graphical representation of a solution to MDTDP, where the left-

and right-half of each BU represents the assignment of product type 1 and 2, respectively. For

instance, we can see that BU 2 has been assigned to company/territory 3 and 1 for products 1 and

2, respectively. BUs 4, 8, and 9 are split too, that is, Xsplit = {2, 4, 8, 9}. The solution sets are

given by: for product 1, X1
1 = {5, 7, 9}, X1

2 = {3, 4, 8, 10}, and X1
3 = {1, 2, 6}; and for product 2,

X2
1 = {2, 4, 5, 7}, X2

2 = {3, 10}, and X2
3 = {1, 6, 8, 9}. From the company perspective, we have:

5

5

Company 2

Company 3

1

9

10

7

2 3

8

4

6

Company 1
P2P1

Figure 1: Graphical representation of a feasible solution to an MDTDP instance with 10 BUs, 3
territories, and 2 products.

X1 = {2, 4, 5, 7, 9}, X2 = {3, 4, 8, 10}, and X3 = {1, 2, 6, 8, 9}

3 Related Work

As far as general districting and territory design problems are concerned, we refer the reader to

the excellent surveys by Duque, Ramos, and Suriñach [2], Kalcsics [11], and Ricca, Scozzari, and

Simeone [16]. In this section we review relevant works on WEEE recollection, and OR-related

studies.

Although there are several articles referring to WEEE collection, most of them are of a qual-

itative nature. Walther and Spengler [20], for example conduct an analysis aiming at predicting

what might be the impacts of new legal and economic developments on the treatment of discarded

electronic products. Some articles center on technological issues. He et al. [9] review the implemen-

tation of strategies of WEEE treatment and the recovery technologies of WEEE in China, focusing

on the attenuation of deteriorating effects of WEEE on the environment and the recovery of materi-

als that can be reused in them. On the managerial aspects, Georgiadis and Besiou [5] provide some

insight to the management of Closed Loop Supply Chains in order to attain either environmental

and economical sustainability. Tsai and Hung [19] propose a two-stage multi-objective decision

system, the first one involves the treatment of the collected material, in which a set of suppliers is

selected, the second phase refers to recycling the recovered material. A study examining the two

Swiss take-back and recycling systems one for computers, consumer electronics and telecommuni-

cation equipment, and one for household appliances in order to assess the environmental impact

of recycling is presented by Hischier, Wäger, and Gauglhofer [10]. Their approach is based on

material flow analysis and life cycle assessment, they conclude that WEEE recycling proves to

be clearly advantageous from an environmental perspective when compared to incineration of all

6

WEEE and primary production of the raw materials Rudăreanu [17] explores the relationships

among the agents that constitute waste management systems, the potential adverse health and

environmental consequences of incorrect handling and treatment of WEEE, and the logistics of

setting up and running a national WEEE management system. He discusses how his study impacts

the development of the WEEE management system in Spain, the benefits of EEE to the society,

and the potential effects of WEEE on health and environment. In a follow-up work, Rudăreanu [18]

present a study on how the regulation of the WEEE II Directive impacts the WEEE management

system in Romania.

There have been some technical papers from the OR perspective, Hammond and Beullens [8]

model a network consisting of manufacturers and consumer markets engaged in a Cournot pricing

game with perfect information, trying to attain equilibrium on volumes shipped and prices charged.

Queiruga et al. [15] present a methodology based on PROMETHEE, an outranking method devel-

oped to solve problems of decision making under several objectives. The purpose of the decision

is to select the most appropriate sites to locate WEEE recycling plants, and this methodology is

applied to the case of locating recycling plants in Spain.

Mar-Ortiz, Adenso-Diaz, and González-Velarde [13] present a case study based on the design of

a network for WEEE collection in the northern autonomic community of Galicia, Spain, although

it is a case study they present methodological aspects of the design of reverse logistic networks

including the vehicle routing problems that arise when such networks are configurated. In a second

paper Mar-Ortiz, González-Velarde, and Adenso-Diaz [14] expand the afore mentioned VRP and

introduce a new problem: vehicle routing with split loads and date windows, a characteristic that

seems to be typical in reverse logistics problems. Lee and Shih [12] present a study that attempts

to optimize end-of-life processes for electronic products based on a three-stage heuristic approach,

which simultaneously minimizes cost and environmental impact. The proposed heuristic approach

then assesses the most common disassembly and recycling processes by using the characteristics

of electronic product recycling. Next, the best process for this bi-criteria optimization problem is

identified by using the compromise programming method.

Fernández et al. [4] present a territory design where the territories should be as dispersed as

possible, since each will be assigned to a logistics provider, and monopolies in the service are to

be avoided. This seems to be the first and only article, to the best of our knowledge, in territory

design motivated by the WEEE European directive. Our work is a follow-up of this work.

4 Proposed Tabu Search with Strategic Oscillation

Tabu search [7] is an iterative local search-based metaheuristic most commonly used in combina-

torial optimization. Since its early inception Tabu Search (TS) has been successfully applied to

a number of very hard combinatorial optimization problems in many fields, including districting

problems [1]. Starting from an initial solution X0, TS moves at each iteration t from a solution

Xt−1 to the best solution in its neighborhood N(Xt−1), even if this causes a deterioration in the

value of the objective function. To prevent cycling, some solutions possessing particular attributes

7

are declared forbiden, or tabu for a given number of iterations. This number of iterations is refereed

to as tabu tenure. The search stops whenever a stopping criterion is satisfied. The method can be

improved through the incorporation of several features, some of which exploit the mathematical

structure of the specific problem. We now describe in detail each component of the proposed TS

for the MDTDP.

4.1 Neighborhoods and search strategies

The following three moves give rise to three different neigborhood structures.

• moveA1(i, k): Reassign BU i from its current territory (denoted by k(i)) to a different territory

k, with k 6= k(i), for all the products.

• moveA2(i, k, p): Reassign BU i from its current territory for product p (denoted by k(i, p))

to a different territory k, with k(i, p) 6= k.

• moveB(i, j, p): Swap BUs i and j for product p, that is assign BU i for product p to territory

k(j, p) and assign BU j for product p to territory k(i, p).

Let NA1(X), NA2(X), and NB(X), be the corresponding neighborhoods of design X formed by all

solutions reachable from X by performing a move of type A1, A2, and B, respectively.

In the proposed method we explore two different search strategies made up of these neigh-

borhoods. Neighborhood NC1(·) or strategy C1 explores these neighborhoods sequentially as

NA1 → NA2 → NB. That is, the search is done over NA1(·) for a given number of iterations,

then NA2(·) for a given number of iterations, and then NB(·). A second strategy C2 is to consider

a neighborhood made up of the union of the three, that is NC2(·) = NA1(·)∪NA2(·)∪NB(·), which

is explored through a given number of iterations. The stopping criteria is either local optimality

or a fixed maximum number of iterations reached. In addition, a global optimality criterion that

consists of a comparison with a previously computed dual bound is performed. In this last case,

the algorithm stops with a proven global optimal solution. More about these dual bounds will be

discussed in Section 4.7.

4.2 Recency-based memory and tabu tenure

Given the neighborhhods have polinomial size, a best found strategy is adopted, that is, the neigh-

boorhood is entirely explored and the best non-tabu move is taken. To prevent cycling, whenever

a move moveA1(i, k) is performed we make BU i tabu so any move involving BU i is forbidden

for θ iterations. Similarly, whenever a move moveA2(i, k, p) is performed, BU i and territory k are

declared tabu, and whenever a move moveB(i, j, p) is performed, BUs i and j are declared tabu.

A dynamic tabu tenure strategy is used, where every time θ is randomly drawn from the interval

[θmin, θmax]. This idea practically removes the probability of cycling provided θmin and θmax are

large enough. Fine-tuning of these limits is carrried out.

8

4.3 Merit function

It is common tu use a merit function to guide the search towards better solutions. In this case,

since some of the constraints are being relaxed, the merit function is composed by the original

objective function and some penalized terms in the objective function that measure the degree of

insatisfaction of the relaxed constraints. The merit function maximized throughout the search is

given by:

F (X) = f̂(X)− δτfτ (X)− δβfβ(X)− δσfσ(X), (7)

where f̂(X) is the normalized objective function (1). The terms fr(X), with r ∈ {τ, β, σ} are

functions that measure the degree of relative violation of the balancing constraints with respect to

the number of households (2)-(3), balancing constraints with respect to the infrastructure quality

(4)-(5), and maximum number of split units allowed (6), respectively. The parameters δr are

self-adjusted multipliers. These multipliers are initially set to 1 and allowed to vary during the

search to account for the fact that any given solution X may be infeasible with respect to any of

these constraints. This is based in the concept of strategic oscillation and are further explained in

Section 4.4.

4.4 Strategic oscillation

The idea behind strategic oscillation [6] is to guide the search through both the feasible and infeasi-

ble space to gain more flexibility and reach portions of the solution space that would be impossible

to explore otherwise. To this end, some of the constraints are relaxed and moved into the objective

function with a self-adjustable penalty parameter. It is the self-adjustment mechanism of these

penalty parameters what allows to guide the search between the feasible and infeasible space. This

technique has proven successful in many combinatorial optimization problems, particularly in some

territory design applications. For instance, Bozkaya, Erkut, and Laporte [1] make use of this idea

for successfully handling some difficult constraints in a political districting problem. In our case,

the parameters λr in the merit function are initially set to δ̄r, and adjusted every µr iterations

according to the following rule: If all previous µ̄r solutions were infeasible then δr = γ δr; if all

of them were feasible then δr = 1
γ δr; else δr remains unchanged. The parameters µr, and µ̄r are

positive integers and γ > 1.0 is a real number. These are user-controlled fixed parameters.

4.5 Aspiration criterion

The following aspiration criterion is incorporated into the TS procedure. If the objective function

value of the best neighbor found is better than the objective function value of the best solution

found so far, then the move is taken even if it is a tabu move.

9

4.6 Summary of the Proposed Tabu Search Algorithm

The proposed Tabu Search for the MDTDP (called TS MDTDP) is depicted in Pseudocode 1.

Xbestrepresents the best solution found so far and t is the iteration counter. T (t) is the set of tabu

moves associated to iteration t and A is the set of solutions that satisfy the aspiration criterion

for the incumbent solution. The initial solution X̂0 can be obtained by any of the construction

procedures described in Fernández et al. [4]. In this case, we use construction procedure H1. In the

process of choosing the best neighbor, ℵ(·) represents any of the previously described neighborhoods,

whereas X̃ satisfies F (X̃) > F (Y) for all Y ∈ {ℵ(X̂t) \ T (t)} ∪A.

A solution Xi is considered to improve Xbestin any of the following cases:

• If feasibility has not been reached, Xi improves Xbest, if Xi decreases its value of total relative

infeasibility.

• Once feasibility has been achieved, Xi improves Xbest, if f(Xi) > f(Xbest) and Xi is feasible.

The local search continues until any of the following stopping criteria is met: (i) maximum

relative optimality gap with respect to a dual (upper) bound; (ii) maximum number of iterations;

(iii) maximum time limit. When stopping, the algorithm returns Xbest, the best solution found.

Note that, if the maximum relative optimality gap in (i) is set to zero, and this criterion is met

when stopping, Xbestis a global optimum.

10

Procedure 1 TS MDTDP()

Input: An instance to the MDTDP

Output: : Xbest, A solution for the MDTDP

1: t← 0

2: T (0)← ∅
3: δr ← δr, r ∈ {τ, β, σ}
4: Obtain initial solution X̂0

5: Xbest ← X̂0

6: while (stopping criteria not met) do

7: t← t+ 1

8: if (t mod µr = 0) then

9: Update δr

10: end if

11: Choose the best neighbor X̃ ∈ {ℵ(X̂t) \ T (t)} ∪A
12: X̂t ← X̃

13: Randomly choose θ ∈ [θmin, θmax]

14: Update T (t)

15: if (X̂t is better than Xbest) then

16: Xbest ← X̂t

17: end if

18: end while

19: return Xbest

4.7 Upper Bounding Schemes

The importance of dual bounds for optimization problems is well established. Among the benefits

of having a dual bound we have:

• It allows to compute relative optimality gaps of feasible solutions so we can measure the

quality of heuristic or primal solutions.

• As a consequence, global optimality can be proven if both primal and dual bounds are equal.

• A dual bound can sometimes be further improved by embbeding it within enumeration

schemes such as branch and bound or dynamic programming.

For this problem, it is possible to compute upper (dual) bounds with a relatively short com-

putational effort. Note first that if we relax constraints (6), the remaining (relaxed) problem is

simply a partitioning problem consisting of finding a node partition such that the given measure

for dispersion is maximized. We refer to this problem as the Unconstrained Maximum Dispersion

11

Problem (UMDP). Clearly, any valid relaxation or upper bound for UMDP is also valid for our

MDTDP.

In [3], Fernandez et al. developed an upper bound for the UMDP. This is roughly based on

the following idea. For any arbitrary subset of cardinality m + 1 BUs, at least two of the BUs

must belong to the same territory. Let i and j be these two BUs from set X belonging to the

same territory. Clearly, among all possible combinations, the worst case occurs when i and j are as

far away from each other as possible. Therefore, UB(X) = maxi,j∈X{dij} is a valid upper bound

for the optimal solution to UMDP. Now, there exists
(

n
m+1

)
= n!

(m+1)!(n−(m+1))! different ways of

chosing subsets of size m+ 1 from a set of size n. The main issue in computing the upper bound is

to choose a subset X of m+ 1 BUs in such a way that X gives the best (lowest) possible value of

the upper bound. Since it is not practical to generate all possible subsets X of size m+ 1, the idea

is just to obtain an approximation by a smart choice of a few of those subsets. It can be easily seen

that if X is a collection of subsets of V of cardinality m + 1 each, then maxX∈X {UB(X)} is the

best possible upper bound on the optimal value of UMDP among the sets of this collection. The

authors propose a simple heuristic to obtain an attractive collection of subsets, by iterating over

each BU i and then form its associated subset of size m + 1 by choosing the m nearest BUs to i.

By iterating over each BU i, a collection of n subsets is formed and an upper bound is computed.

See Pseudocode 2.

Procedure 2 UB FKN()

Input: An instance to the MDTDP

Output: UBbest: A valid upper bound for the MDTDP problem

1: UBbest ←∞
2: for (i = 1, . . . , n) do

3: X ← {i}
4: X ← X ∪ {m closests nodes to i}
5: bound← maxj,k∈X {djk}
6: if (bound < UBbest) then

7: UBbest ← bound

8: end if

9: end for

10: return UBbest

Now, based on this idea and recognizing the fact that there might be different ways of choosing

BUs “close to” BU i (Step 4 in Pseudocode 2), we propose three different strategies, each yieding

a different collection, and therefore a different bound.

UB1: First, rather that using the complete distance matrixD, we use a truncated matrix consisting

of the 2m closest units to each node, that is, D̄ij is a matriz of dimension (n× 2m+ 1) where

each row i contains the 2m lowest values of dij for all j = 1, . . . , n. Let Ai the set of these

12

2m BUs closest to i. The other important difference with respect to Pseudocode 2 is the

computation of Step 4. Rather than choosing the m closest units, we perform this procedure

iteratively, one unit at a time, taking into account not only node i but the nodes that have

already been added to set X as follows. Suppose that for a fixed unit i and a partial set

X being formed in Step 4, we compute the “distance” of each unit q ∈ Ai \ X to set X as

d(X, q) = maxj,k∈X∪{q} {djk}. This distance estimates the value of the upper bound if unit

q were to be added to set X. Then, unit q∗ = arg minq∈Ai\X {d(X, q)} is chosen and added

to X. We proceed this way until a set X of size m+ 1 is formed. The rest of the procedure

remains the same.

Figures 2 illustrate the selection process. In this example X = {i, j} and Ai \X = {k, r}. Ac-

cording to the distances shown in the figures, d(X, k) = max{dij , dik, djk} = max{1.9, 1.7, 4.2} =

4.2 and d(X, r) = max{dij , dir, djr} = max{1.9, 2.0, 2.3} = 2.3. Therefore unit r is chosen

and added to X.

i j

k r

1 . 9

1 . 7

4 . 2

i j

k r

1 . 9

2 . 0 2 . 3

Figure 2: Computation of d(X, k) and d(X, r).

UB2: This is exactly the same procedure as UB1 with the exception than the original distance

matrix D is used instead of the truncated matrix D̄.

UB3: The idea behind UB3 is to attempt to avoid repetition of subsets that may occur when UB2

is applied. For instance, at iteration j, we fixed unit j in set X and then its first unit to be

added to set X is unit i. However, if it turns out that i < j and in a previous iteration j was

the first unit added to set X = {i}, the rest of the procedure will choose the same subset. To

avoid this, we design UB3 that it is basically UB2, but restricting the choosing of the first

element to be added to set X = {j}, by a lexicographic rule, to only k > j. The rest of the

procedure remains the same.

Now, each of these three procedures runs in O(n) and produces a different bound. Thus, to have

the best possible bound, we basically apply all three procedures to build potentially 3n subsets and

then take the best bound among all 3n subsets. This is done very quickly.

13

Upper Bound Computations

We now provide some preliminar computational testing on the upper bounding schemes. For this

purpose we use the 96-instance database (fully described in Section 5).

Table 1: Comparison of upper bounding schemes.

Gap
n UB1 UB2 UB3

100 0.36 0.35 0.36
150 0.40 0.40 0.41
200 0.37 0.37 0.37
250 0.15 0.16 0.16
300 0.07 0.07 0.07

Average 0.27 0.27 0.27

Table 1 shows the relative optimality obtained by each upper bounding scheme as a function of

the number of BUs. This optimality gap is computed by using the best known upper bound at this

point (the one obtained by the GRASP of Fernández et al. [4]). As can be seen, the best results are

obtained for the larger instances, obtaining average gaps of around 16% and 7% for the 250 and

300/BU instances, respectively. the results for the 100- to 200-BU instances. A typical behavior of

GRASP is that many times the best results are reached for larger size instances, thus this might

explain the behavior in the smaller instances.

Table 2: Running times for the upper bounding schemes.

Average time (sec.)
n UB1 UB2 UB3

100 0.01 0.01 0.01
150 0.01 0.02 0.02
200 0.02 0.03 0.02
250 0.03 0.04 0.04
300 0.04 0.04 0.06

Minimim 0.01 0.01 0.01
Average 0.02 0.02 0.03

Maximum 0.05 0.06 0.08

Table 2 display the average running times for each upper bounding scheme. As can be seen,

the procedures run rather quickly even for the largest instances. These are average times, but it

was found that no instance required more than 0.08 seconds of running time.

Non-parametric tests (Wilcoxon and Mann-Whitney) were applied confirming no statistical

difference exists among the behavior of the upper bounding schemes in terms of their quality. Due

to this and to their relatively low computational cost, it was decided that the best strategy for

14

obtaining the best possible bound was to apply all three procedures, and take the best out all of

these, that is, UB = min { UB1, UB2, UB3 }. This is computed only once as a pre-processing

phase prior to the Tabu Search, and is used as stopping criterion, in addition to the number of

iterations.

Finally, Figure 3 shows a comparison between the UB computed this was and the best known

solution at this point (obtained by GRASP) for the 250- and 300-BU instances.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

2
5

0
_

4
_

1

2
5

0
_

4
_

2

2
5

0
_

4
_

3

2
5

0
_

4
_

4

2
5

0
_

4
_

5

2
5

0
_

5
_

1

2
5

0
_

5
_

2

2
5

0
_

5
_

3

2
5

0
_

5
_

4

2
5

0
_

5
_

5

2
5

0
_

6
_

1

2
5

0
_

6
_

2

2
5

0
_

6
_

3

2
5

0
_

6
_

4

2
5

0
_

6
_

5

2
5

0
_

7
_

1

2
5

0
_

7
_

2

2
5

0
_

7
_

3

2
5

0
_

7
_

4

2
5

0
_

7
_

5

3
0

0
_

4
_

1

3
0

0
_

4
_

2

3
0

0
_

4
_

3

3
0

0
_

4
_

4

3
0

0
_

5
_

1

3
0

0
_

5
_

2

3
0

0
_

5
_

3

3
0

0
_

5
_

4

3
0

0
_

6
_

1

3
0

0
_

6
_

2

3
0

0
_

6
_

3

3
0

0
_

6
_

4

3
0

0
_

7
_

1

3
0

0
_

7
_

2

3
0

0
_

7
_

3

3
0

0
_

7
_

4

F
u

n
ci

ó
n

 O
b

je
tiv

o

Instancias

mejor cota superior
mejor solución conocida

 Best UB
Best known LB

Obj fn

Instances

Figure 3: Comparison between best UB and LB obtained by GRASP [4] for 250- and 300-BU
instances.

5 Computational experiments

For the experiments, we used the data instances taken from Fernández et al. [4]. We build initial

solutions by using heuristic H1 from that work with parameters α = 0.2 and λ = 0.5. The size of

these instances range from 100 to 300 BUs and 4 to 7 territories. For each of the 100- to 250-BU

instances there are 5 instances per size and for the 300-BU instances there 4 instances per size, for

a total of 96 tests instances.

The following notation is used to identify each instance: n p x, where n, p and x denote number

of BUs, number of territories, and instance ID number. For example, sufix 150 4 3 represents the

third instance with 150 BUs and 4 territories. Symbol (†) indicates that the best reported solution

did not reach feasibility, while symbol (*) denotes an optimal solution.

The relative optimality gap, or just gap, is computed as:

gap = (UB− LB)/LB,

where UB is the best found upper bound computed by the upper bounding schemes described in

Section 4.7, and LB is the heuristic solution by the corresponding heuristic.

Unless otherwise noticed, all experiments were carried out using τ = 0.05, β = 0.20 and

15

σ = 0.20n. The following Tabu Search algorithmic parameters were found to give the best results

in preliminary testing and are therefore used throughout the experimentation: θmax =15, θmin =5,

γ = 1.5, µr = 10, µr = 3, 3000 move iteration limit for neighborhood ℵC2, 1000 move iteration

limit for ℵC1 (for each of (ℵA1, ℵA2, and ℵB), that are sequentially explored.)

All procedures and methods of the Tabu Search were coded in C++ and compiled with the

GNU C++ compiler (g++) under Ubunto 9.05 OS. A Gateway workstation with Intel Core 2 Duo

T6400 processor at 2.0 GHz with 4 GB of memory was used.

5.1 Experiment A: Neighborhood Assessment

The goal of this experiment is to compare the performance of neighborhoods ℵC1 y ℵC2, decribed

in Section 4.1, within the TS scheme. It is important to note that for each of the neighborhoods

the TS found feasible instances in 100% of the instances tested. In each of the figures, ℵC1 and

ℵC2 are identified by C1 and C2, respectively.

Table 3: Comparison between ℵC1 and ℵC2.

ℵC1 ℵC2

Gap (average) 0.30 0.23

Time - average (sec.) 326.15 648.34
Time - minimum (sec.) 4.26 35.92
Time - maximum (sec.) 1830.63 2413.51

Number of optimal solutions found 7 7

Table 3 presents a summary of the average results for 96 instances tested. Figures 4 and 5 show

the behavior of objective function and running time, respectively, for all instances with 100 and

150 BUs. Figures 6 and 7 show the behavior of objective function and running time, respectively,

for the larger instances (200 to 300 BUs.)

As can be seen, the average running time for ℵC2 is almost twice as much that the one employed

by ℵC1. The lowest average relative optimality gap was obtained under ℵC1, though. Given the

overall running times are not too high (around 10 minutes per instance), one could afford to use

ℵC2 in future experiments.

16

 1

 2

 3

 4

 5

 6

 7

 8

 9

1
0

0
_

4
_

1

1
0

0
_

4
_

2

1
0

0
_

4
_

3

1
0

0
_

4
_

4

1
0

0
_

4
_

5

1
0

0
_

5
_

1

1
0

0
_

5
_

2

1
0

0
_

5
_

3

1
0

0
_

5
_

4

1
0

0
_

5
_

5

1
0

0
_

6
_

1

1
0

0
_

6
_

2

1
0

0
_

6
_

3

1
0

0
_

6
_

4

1
0

0
_

6
_

5

1
0

0
_

7
_

1

1
0

0
_

7
_

2

1
0

0
_

7
_

3

1
0

0
_

7
_

4

1
0

0
_

7
_

5

1
5

0
_

4
_

1

1
5

0
_

4
_

2

1
5

0
_

4
_

3

1
5

0
_

4
_

4

1
5

0
_

4
_

5

1
5

0
_

5
_

1

1
5

0
_

5
_

2

1
5

0
_

5
_

3

1
5

0
_

5
_

4

1
5

0
_

5
_

5

1
5

0
_

6
_

1

1
5

0
_

6
_

2

1
5

0
_

6
_

3

1
5

0
_

6
_

4

1
5

0
_

6
_

5

1
5

0
_

7
_

1

1
5

0
_

7
_

2

1
5

0
_

7
_

3

1
5

0
_

7
_

4

1
5

0
_

7
_

5

F
u

n
ci

ó
n

 O
b

je
tiv

o

Instancias

C1
C2Obj Fn

Instances

Figure 4: Objective function comparison between ℵC1 and ℵC2 on 100- and 150-BU instances.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1
0

0
_

4
_

1

1
0

0
_

4
_

2

1
0

0
_

4
_

3

1
0

0
_

4
_

4

1
0

0
_

4
_

5

1
0

0
_

5
_

1

1
0

0
_

5
_

2

1
0

0
_

5
_

3

1
0

0
_

5
_

4

1
0

0
_

5
_

5

1
0

0
_

6
_

1

1
0

0
_

6
_

2

1
0

0
_

6
_

3

1
0

0
_

6
_

4

1
0

0
_

6
_

5

1
0

0
_

7
_

1

1
0

0
_

7
_

2

1
0

0
_

7
_

3

1
0

0
_

7
_

4

1
0

0
_

7
_

5

1
5

0
_

4
_

1

1
5

0
_

4
_

2

1
5

0
_

4
_

3

1
5

0
_

4
_

4

1
5

0
_

4
_

5

1
5

0
_

5
_

1

1
5

0
_

5
_

2

1
5

0
_

5
_

3

1
5

0
_

5
_

4

1
5

0
_

5
_

5

1
5

0
_

6
_

1

1
5

0
_

6
_

2

1
5

0
_

6
_

3

1
5

0
_

6
_

4

1
5

0
_

6
_

5

1
5

0
_

7
_

1

1
5

0
_

7
_

2

1
5

0
_

7
_

3

1
5

0
_

7
_

4

1
5

0
_

7
_

5

T
ie

m
p

o
s

d
e

 E
je

cu
ci

ó
n

 (
se

g
.)

Instancias

C1
C2

Instances

Time
(sec)

Figure 5: Running time comparison between ℵC1 and ℵC2 on 100- and 150-BU instances.

17

 0

 1

 2

 3

 4

 5

 6

 7

 8

2
0

0
_

4
_

1
2

0
0

_
4

_
2

2
0

0
_

4
_

3
2

0
0

_
4

_
4

2
0

0
_

4
_

5
2

0
0

_
5

_
1

2
0

0
_

5
_

2
2

0
0

_
5

_
3

2
0

0
_

5
_

4
2

0
0

_
5

_
5

2
0

0
_

6
_

1
2

0
0

_
6

_
2

2
0

0
_

6
_

3
2

0
0

_
6

_
4

2
0

0
_

6
_

5
2

0
0

_
7

_
1

2
0

0
_

7
_

2
2

0
0

_
7

_
3

2
0

0
_

7
_

4
2

0
0

_
7

_
5

2
5

0
_

4
_

1
2

5
0

_
4

_
2

2
5

0
_

4
_

3
2

5
0

_
4

_
4

2
5

0
_

4
_

5
2

5
0

_
5

_
1

2
5

0
_

5
_

2
2

5
0

_
5

_
3

2
5

0
_

5
_

4
2

5
0

_
5

_
5

2
5

0
_

6
_

1
2

5
0

_
6

_
2

2
5

0
_

6
_

3
2

5
0

_
6

_
4

2
5

0
_

6
_

5
2

5
0

_
7

_
1

2
5

0
_

7
_

2
2

5
0

_
7

_
3

2
5

0
_

7
_

4
2

5
0

_
7

_
5

3
0

0
_

4
_

1
3

0
0

_
4

_
2

3
0

0
_

4
_

3
3

0
0

_
4

_
4

3
0

0
_

5
_

1
3

0
0

_
5

_
2

3
0

0
_

5
_

3
3

0
0

_
5

_
4

3
0

0
_

6
_

1
3

0
0

_
6

_
2

3
0

0
_

6
_

3
3

0
0

_
6

_
4

3
0

0
_

7
_

1
3

0
0

_
7

_
2

3
0

0
_

7
_

3
3

0
0

_
7

_
4

F
u

n
ci

ó
n

 O
b

je
tiv

o

Instancias

C1
C2

Instances

Obj Fn

Figure 6: Objective function comparison between ℵC1 and ℵC2 on 200- to 300-BU instances.

 0

 500

 1000

 1500

 2000

 2500

2
0
0
_
4
_
1

2
0
0
_
4
_
2

2
0
0
_
4
_
3

2
0
0
_
4
_
4

2
0
0
_
4
_
5

2
0
0
_
5
_
1

2
0
0
_
5
_
2

2
0
0
_
5
_
3

2
0
0
_
5
_
4

2
0
0
_
5
_
5

2
0
0
_
6
_
1

2
0
0
_
6
_
2

2
0
0
_
6
_
3

2
0
0
_
6
_
4

2
0
0
_
6
_
5

2
0
0
_
7
_
1

2
0
0
_
7
_
2

2
0
0
_
7
_
3

2
0
0
_
7
_
4

2
0
0
_
7
_
5

2
5
0
_
4
_
1

2
5
0
_
4
_
2

2
5
0
_
4
_
3

2
5
0
_
4
_
4

2
5
0
_
4
_
5

2
5
0
_
5
_
1

2
5
0
_
5
_
2

2
5
0
_
5
_
3

2
5
0
_
5
_
4

2
5
0
_
5
_
5

2
5
0
_
6
_
1

2
5
0
_
6
_
2

2
5
0
_
6
_
3

2
5
0
_
6
_
4

2
5
0
_
6
_
5

2
5
0
_
7
_
1

2
5
0
_
7
_
2

2
5
0
_
7
_
3

2
5
0
_
7
_
4

2
5
0
_
7
_
5

3
0
0
_
4
_
1

3
0
0
_
4
_
2

3
0
0
_
4
_
3

3
0
0
_
4
_
4

3
0
0
_
5
_
1

3
0
0
_
5
_
2

3
0
0
_
5
_
3

3
0
0
_
5
_
4

3
0
0
_
6
_
1

3
0
0
_
6
_
2

3
0
0
_
6
_
3

3
0
0
_
6
_
4

3
0
0
_
7
_
1

3
0
0
_
7
_
2

3
0
0
_
7
_
3

3
0
0
_
7
_
4

T
ie

m
p
o
s

d
e
 E

je
cu

ci
ó
n
 (

se
g
.)

Instancias

C1
C2

Instances

Time
(sec)

Figure 7: Running time comparison between ℵC1 and ℵC2 on 200- to 300-BU instances.

18

5.2 Experiment B: Assessment of Strategic Oscillation

As stated before, one of the advanced features implemented in our algorithm is that of strategic

oscillation. The goal of this experiment is to assess the benefit if this component within a TS

algorithmic framework. To this end, we applied the TS to all instances under two different strategies

following the neighborhood ℵ(·) = ℵC1. We run TS without the strategic oscillation component

(denoted by index NSO) and then run the TS with the strategic oscillation component (denoted

by subindex SO).

Tables 4-8 display all the results for each individual instance. The value of the objective function

is shown in columns XNSO and XSO. The relative optimality gap is shown in the “gap” columns.

The term “na” indicates no gap was found because no feasible solution (lower bound) was found.

Time (time) is shown in CPU seconds. Table 9 summarized these results over all 96 instances in

terms of average relative optimality gap, running time, number of infeasible solutions delivered,

and number of optimal solutions found.

Table 4: Assessment of strategic oscillation for 100-BU instances.

Instance XNSO gap time XSO gap time

100 4 1 1.99 0.56 41.64 3.39 0.25 40.78
100 4 2 3.12 0.20 43.67 3.26 0.17 43.81
100 4 3 5.64∗ 0.00 2.14 5.64∗ 0.00 37.63
100 4 4 4.33 0.47 49.53 4.81 0.41 50.76
100 4 5 3.87 0.39 33.24 5.04 0.20 36.04
100 5 1 2.99 0.47 38.92 3.39 0.40 37.49
100 5 2 2.40 0.45 43.08 3.71 0.15 44.07
100 5 3 5.09 0.11 39.02 5.09 0.11 36.71
100 5 4 4.12 0.57 47.83 5.30 0.45 49.42
100 5 5 2.30 0.67 35.31 2.22 0.68 33.90
100 6 1 4.13 0.38 41.01 4.11 0.39 39.39
100 6 2 2.07 0.57 47.18 2.70 0.45 45.61
100 6 3 4.73 0.34 39.65 4.66 0.35 43.64
100 6 4 5.76 0.47 49.91 6.22 0.43 51.62
100 6 5 5.83 0.26 33.83 5.83 0.26 35.44
100 7 1 2.87 0.61 38.77 2.83 0.62 41.66
100 7 2 4.44† na 48.22 4.99 0.15 48.37
100 7 3 6.61 0.08 40.85 5.85 0.19 41.86
100 7 4 5.57 0.53 50.99 6.64 0.44 53.68
100 7 5 2.07† na 33.00 5.04 0.48 36.59

19

Table 5: Assessment of strategic oscillation for 150-BU instances.

Instance XNSO gap time XSO gap time

150 4 1 3.49 0.49 113.37 5.12 0.25 106.86
150 4 2 1.56 0.07 115.71 1.67∗ 0.00 6.93
150 4 3 1.94 0.21 112.01 1.94 0.21 111.58
150 4 4 2.85 0.13 102.9 3.29∗ 0.00 101.22
150 4 5 5.32 0.26 110.49 5.51 0.24 108.91
150 5 1 4.55 0.51 104.70 6.38 0.31 110.78
150 5 2 1.64 0.22 116.62 1.94 0.08 123.89
150 5 3 2.65 0.15 112.81 2.51 0.19 113.51
150 5 4 3.70 0.15 101.25 3.43 0.21 106.16
150 5 5 5.65 0.30 108.41 5.76 0.29 107.66
150 6 1 3.89 0.65 104.03 4.50 0.60 103.27
150 6 2 1.5 0.32 117.36 2.19∗ 0.00 119.75
150 6 3 2.22 0.34 106.04 2.13 0.36 107.97
150 6 4 3.43 0.30 90.12 3.82 0.22 101.16
150 6 5 4.52 0.53 102.86 6.15 0.36 110.41
150 7 1 5.35 0.55 100.37 6.86 0.43 101.90
150 7 2 2.47 0.26 112.62 2.47 0.26 106.57
150 7 3 1.74 0.55 102.88 2.19 0.44 112.40
150 7 4 3.54 0.40 95.12 3.78 0.35 96.43
150 7 5 4.34 0.63 110.54 6.45 0.45 107.04

Table 6: Assessment of strategic oscillation for 200-BU instances.

Instance XNSO gap time XSO gap time

200 4 1 2.15 0.21 240.62 2.15 0.21 247.30
200 4 2 1.05 0.22 227.04 1.05 0.22 214.59
200 4 3 2.23 0.53 211.21 3.24 0.31 222.22
200 4 4 3.02 0.36 222.42 3.24 0.31 203.92
200 4 5 3.26 0.13 203.13 3.36 0.10 209.54
200 5 1 2.12 0.31 241.47 2.72 0.11 242.91
200 5 2 1.23 0.28 210.85 1.14 0.34 221.11
200 5 3 4.63 0.12 198.16 5.28∗ 0.00 193.45
200 5 4 5.28∗ 0.00 127.84 4.80 0.09 188.66
200 5 5 3.73 0.17 204.59 3.73 0.17 201.81
200 6 1 2.17 0.42 242.38 2.86 0.23 225.82
200 6 2 1.32 0.35 195.71 1.32 0.35 191.37
200 6 3 5.28 0.12 192.85 5.93 0.01 191.55
200 6 4 5.93 0.01 192.06 5.93 0.01 189.37
200 6 5 2.72 0.46 215.06 3.91 0.23 198.82
200 7 1 2.72 0.36 237.97 2.72 0.36 239.35
200 7 2 1.24 0.42 206.59 1.27 0.41 205.36
200 7 3 6.13∗ 0.00 10.26 6.13∗ 0.00 206.16
200 7 4 6.13∗ 0.00 10.10 6.13∗ 0.00 10.16
200 7 5 4.33 0.24 197.88 3.75 0.34 189.50

20

Table 7: Assessment of strategic oscillation for 250-BU instances.

Instance XNSO gap time XSO gap time

250 4 1 1.33 0.22 434.28 1.38 0.19 394.01
250 4 2 3.22 0.30 365.25 3.80 0.17 358.56
250 4 3 3.79 0.36 453.12 4.25 0.28 478.03
250 4 4 4.14 0.18 355.40 4.28 0.15 357.42
250 4 5 4.40 0.37 368.60 6.06 0.13 375.46
250 5 1 1.45 0.27 407.72 1.70 0.14 343.95
250 5 2 3.40 0.36 338.03 3.26 0.39 334.76
250 5 3 4.99 0.17 447.32 4.99 0.17 431.55
250 5 4 3.38 0.44 327.83 4.08 0.32 340.29
250 5 5 6.19 0.17 369.10 6.19 0.17 352.66
250 6 1 1.10 0.50 378.45 1.51 0.31 364.99
250 6 2 3.05 0.54 312.04 3.11 0.53 317.46
250 6 3 4.36 0.41 403.25 4.81 0.35 411.79
250 6 4 4.90 0.38 319.47 5.27 0.33 322.72
250 6 5 6.91 0.27 327.66 6.91 0.27 319.48
250 7 1 1.89 0.27 337.03 1.89 0.27 342.87
250 7 2 5.74 0.22 297.54 5.43 0.27 293.90
250 7 3 4.40 0.47 377.00 5.45 0.35 396.10
250 7 4 5.55 0.35 327.08 6.20 0.28 312.16
250 7 5 5.71 0.44 342.11 7.04 0.31 333.55

Table 8: Assessment of strategic oscillation for 300-BU instances.

Instance XNSO gap time XSO gap time

300 4 1 3.43 0.32 762.94 4.09 0.19 764.95
300 4 2 4.3 0.01 645.65 4.36∗ 0.00 660.01
300 4 3 2.01 0.10 696.44 2.01 0.10 695.31
300 4 4 3.34 0.09 645.40 3.13 0.15 659.67
300 5 1 5.06 0.13 746.41 5.07 0.12 741.49
300 5 2 3.88 0.26 623.45 5.01 0.04 628.96
300 5 3 1.61 0.37 700.35 2.08 0.19 711.23
300 5 4 3.49 0.07 596.42 3.56 0.05 619.00
300 6 1 4.46 0.35 624.03 4.32 0.37 745.56
300 6 2 5.42 0.21 589.07 5.42 0.21 583.54
300 6 3 2.23 0.26 610.36 2.57 0.15 647.34
300 6 4 4.25 0.19 573.51 4.25 0.19 579.05
300 7 1 4.68 0.40 582.63 4.50 0.43 567.60
300 7 2 4.10 0.41 553.07 6.27 0.10 571.73
300 7 3 2.90 0.09 594.38 2.94 0.08 632.68
300 7 4 4.69 0.19 583.93 5.26 0.10 598.92

21

An important observation is that, under SO, all solutions found were feasible, while under NSO,

the TS failed in achieving feasibility in two instances. It can also be seen that the running times of

either stragey are around the same. One could expect that SO would take longer to run; however,

most of the runs stopped by iteration limit, so this explains the similarity on running times.

Table 9: Summary of strategic oscillation assessment.

gap time

n XNSO XSO XNSO XSO

100 0.40 0.33 39.89 42.42
150 0.35 0.26 107.01 103.22
200 0.24 0.19 189.41 199.65
250 0.33 0.27 364.41 359.09
300 0.22 0.15 633.00 650.44

Average 0.31 0.24 251.48 255.15

Number of optimal solutions found 4 8
Number of infeasible solutions 2 0

As can be seen the use of SO yields a significant benefit in terms of solution quality. For

each groups of instances, the SO produced significant improvements in relative optimality gap. In

addition to this, under SO more proven optimal solutions were found (twice as much). This clearly

demonstrates the tremendous benefit of SO in this particular problem.

5.3 Experiment C: Impact of Tabu Search over Simple Local Search

One should expect that TS performs better than a simple local search. The purpose of this experi-

ment is to measure how much is gained by employing TS in terms of solution quality and feasibility

concerns. In other words, what is the impact that TS brings to the table.

Table 10: Asessment of benefit of TS over LS.
gap

n LS TS

100 0.38 0.26
150 0.45 0.26
200 0.32 0.19
250 0.39 0.29
300 0.40 0.17

Average gap 0.39 0.23

Number of optimal solutions found 3 7
Number of infeasible solutions 5 0

To this end, we apply the TS (using the SO strategy) and a simple local search, that is, applying

the same neighborhood in a hill-climbing manner, stopping when no better neighbor is found. The

22

results are displayed in Table 10, where LS and TS indicate the average relative optimality gaps

found under the Local Search scheme and Tabu Search, respectively.

As we can see, the benefit of using TS is clear in all aspects. The quality of the solutions was

significantly better when TS was employed achieving an average relative improvement of over 40%.

This difference is even more dramatic for the largest set of instances. It was also observed that

regular LS could not find feasible solutions to five instances, wheras TS was able to find feasibe

solutions for all instances tested. Finally, TS was able to find more proven optimal solutions that

the ones found by LS.

5.4 Experiment D: Tabu Search Performance

For this last experiment, the goal is to asesss the benefit of the proposed TS when compared to the

best heuristic from literature, the GRASP of Fernández et al. [4]. Now, it is important to notice

that GRASP is in essence a construction heuristic that builds a solution from scratch, whereas

TS is a local search heuristic that takes a built solution as an input. Thus, the issue we want

to investigate is the degree of improvement (if any) of the TS local search heuristic over the best

solution built by GRASP. To this end, we first apply the GRASP with parameters α = 0.2, λ = 0.5,

2000 iterations, heuristic H1 as constructive mechanism and local search LS2. We register the best

solution found by GRASP in every instance. It was first observed that GRASP obtained proven

optimal solutions to 9 of the 96 instances. Then, for the remaining 87 instances, we apply the TS

taking the best GRASP solution as input. It was observed that in 47 instances out of 87, TS was

able to improve the solution quality.

Figures 8 and 9 show a comparison between the initial solution (X ini) fed to the TS, and the

final solution found by TS (Xbest) for 100- to 150-BU and 200- to 300-BU instances, respectively.

Table 11: Assessment of TS.

gap Improvement
n X ini Xbest (%)

100 0.81 0.41 30
150 0.94 0.46 33
200 0.96 0.33 49
250 0.20 0.20 < 1
300 0.10 0.10 < 1

Average 0.64 0.31 24

Table 11 presents a summary of the results, where the second and third columns show the

average relative optimality gaps computed at the start and end of the TS algorithm. The last

column, displays the average relative improvement (%) obtained by TS, computed as: ARI =

(Xbest −X ini)/X ini.

23

 1

 2

 3

 4

 5

 6

 7

 8

 9

1
0

0
_

4
_

1

1
0

0
_

4
_

2

1
0

0
_

4
_

4

1
0

0
_

4
_

5

1
0

0
_

5
_

1

1
0

0
_

5
_

2

1
0

0
_

5
_

3

1
0

0
_

5
_

4

1
0

0
_

5
_

5

1
0

0
_

6
_

1

1
0

0
_

6
_

2

1
0

0
_

6
_

3

1
0

0
_

6
_

4

1
0

0
_

6
_

5

1
0

0
_

7
_

1

1
0

0
_

7
_

2

1
0

0
_

7
_

3

1
0

0
_

7
_

4

1
0

0
_

7
_

5

1
5

0
_

4
_

1

1
5

0
_

4
_

2

1
5

0
_

4
_

3

1
5

0
_

4
_

4

1
5

0
_

4
_

5

1
5

0
_

5
_

1

1
5

0
_

5
_

2

1
5

0
_

5
_

3

1
5

0
_

5
_

4

1
5

0
_

5
_

5

1
5

0
_

6
_

1

1
5

0
_

6
_

3

1
5

0
_

6
_

4

1
5

0
_

6
_

5

1
5

0
_

7
_

1

1
5

0
_

7
_

2

1
5

0
_

7
_

3

1
5

0
_

7
_

4

1
5

0
_

7
_

5

F
u

n
ci

ó
n

 O
b

je
tiv

o

Instancias

Xbest
Xini

Instances

Obj Fn

Figure 8: Comparison betweek the initial solution (X ini) and the TS solution Xbest for 100- to
150-BU instances.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

2
0
0
_
4
_
1

2
0
0
_
4
_
2

2
0
0
_
4
_
3

2
0
0
_
4
_
4

2
0
0
_
4
_
5

2
0
0
_
5
_
1

2
0
0
_
5
_
2

2
0
0
_
5
_
3

2
0
0
_
5
_
5

2
0
0
_
6
_
1

2
0
0
_
6
_
2

2
0
0
_
6
_
3

2
0
0
_
6
_
4

2
0
0
_
6
_
5

2
0
0
_
7
_
1

2
0
0
_
7
_
2

2
0
0
_
7
_
4

2
0
0
_
7
_
5

2
5
0
_
4
_
1

2
5
0
_
4
_
2

2
5
0
_
4
_
3

2
5
0
_
4
_
4

2
5
0
_
4
_
5

2
5
0
_
5
_
1

2
5
0
_
5
_
3

2
5
0
_
5
_
4

2
5
0
_
5
_
5

2
5
0
_
6
_
1

2
5
0
_
6
_
2

2
5
0
_
6
_
3

2
5
0
_
6
_
4

2
5
0
_
6
_
5

2
5
0
_
7
_
1

2
5
0
_
7
_
2

2
5
0
_
7
_
3

2
5
0
_
7
_
4

2
5
0
_
7
_
5

3
0
0
_
4
_
1

3
0
0
_
4
_
3

3
0
0
_
5
_
1

3
0
0
_
5
_
2

3
0
0
_
5
_
3

3
0
0
_
6
_
1

3
0
0
_
6
_
2

3
0
0
_
6
_
3

3
0
0
_
7
_
1

3
0
0
_
7
_
2

3
0
0
_
7
_
3

3
0
0
_
7
_
4

F
u
n
ci

ó
n
 O

b
je

tiv
o

Instancias

Xbest
Xini

Instances

Obj Fn

Figure 9: Comparison between the initial solution (X ini) and the TS solution Xbest for 200- to
300-BU instances.

It was clear from the start that a decrease in the relative optimality gap after applying TS

was expected; however, it can be observed that this improvemente was substantial, particularly

for the 100- to 200-BU instances. An explanation of this is that it is well known that in many

combinatorial optimization problems, GRASP tends to perform better as the size of the instance

grows. In these cases, the capacity of the TS to further improve the initial solution is more limited.

Finally, Figure 10 shows the behavior of the TS and its strategic oscillation component in a

single instance of size 300 BUs and 4 territories. Objective function value versus move iteration

within the TS is plotted. A circle denotes a feasible solution and a triangle denotes an infeasible

solution. As we can see, the TS starts with an infeasible solution and objective function value of

24

around 2.83. Then, as the search goes on, a move to a worst objective (and still infeasible solution)

is made in iteration 2. Through iteration 11 the solution remains infeasible. Then, a feasible

solution is found (for the first time) in iteration 12 (with objective function value of around 2.79.)

Then the trajectory moves at iteration 15 to a worst solution (value of around 2.22) and remains

the same until iteration 27. At iteration 28, a better solution is found (but no better than 2.79), it

keeps going up and down for 6 more iterations. At iteration 35, a solution with a better objective

function value is found (at around 2.89); however, this is infeasible. Then the process finds a better

infeasible solution and then recovers feasibility at iteration 37 with an objective of around 2.96 (the

best solution so far). Thus, the plot beautifully illustrates both the typical TS behavior of going to

a worse solution before improving again, and the strategic oscillation of moving between infeasible

and feasible solutions. At the end, the best solution was found at iteration 70 with a value of 2.99.

Figure 10: Behavior of TS in a single 300 × 4 instance.

6 Conclusions

In this paper we have presented an improved tabu search algorithm for a maximum dispersion

territory design problem arising in the recollection of waste electric and electronic equipment. The

proposed metaheuristic is enhanced with several algorithmic features. All components and strate-

gies were empirically evaluated obtaining excellent results. Particularly, the strategic oscillation

component proved extremely useful for further improving the quality of the solutions. The results

indicated the overall efficiency of the algorithm, including significant improvements over the best

solutions reported by a previously presented heuristic based on GRASP.

25

Acknowledgments: The first author was supported by the Mexican National Council for Science

and Technology (CONACYT grants CB05-1-48499Y and CB11-1-166397) and by UANL through its

Scientific and Technological Research Support Program (grants UANL-PAICYT CE012-09, IT511-

10, CE728-11, and CE331-15.) The research of the second author was supported by the Tecnológico

de Monterrey Research Group in Industrial Engineering and Numerical Methods 0822B01006. The

third author was supported by a scholarship for graduate studies from CONACyT and UANL.

References

[1] B. Bozkaya, E. Erkut, and G. Laporte. A tabu search heuristic and adaptive memory procedure

for political districting. European Journal of Operational Research, 144(1):12–26, 2003.

[2] J. C. Duque, R. Ramos, and J. Suriñach. Supervised regionalization methods: A survey.

International Regional Science Review, 30(3):195–220, 2007.

[3] E. Fernández, J. Kalcsics, and S. Nickel. The maximum dispersion problem. Omega, 41(4):721–

730, 2013.

[4] E. Fernández, J. Kalcsics, S. Nickel, and R. Z. Ŕıos-Mercado. A novel maximum dispersion

territory design model arising in the implementation of the WEEE-directive. Journal of the

Operational Research Society, 61(3):503–514, 2010.

[5] P. Georgiadis and M. Besiou. Environmental and economical sustainability of WEEE closed-

loop supply chains with recycling: A system dynamics analysis. International Journal of

Advanced Manufacturing Technology, 47(5–8):475–493, 2010.

[6] F. Glover and J.-K. Hao. The case for strategic oscillation. Annals of Operations Research,

183(1):163–173, 2011.

[7] F. Glover and M. Laguna. Tabu Search. Kluwer, Boston, 1997.

[8] D. Hammond and P. Beullens. Closed-loop supply chain network equilibrium under legislation.

European Journal of Operational Research, 183(2):895–908, 2007.

[9] W. He, G. Li, X. Ma, H. Wang, J. Huang, M. Xu, and C. Huang. WEEE recovery strategies

and the WEEE treatment status in China. Journal of Hazardous Materials, 136(3):502–512,

2006.

[10] R. Hischier, P. Wäger, and J. Gauglhofer. Does WEEE recycling make sense from an environ-

mental perspective?: The environmental impacts of the Swiss take-back and recycling systems

for waste electrical and electronic equipment (WEEE). Environmental Impact Assessment

Review, 25(5):525–539, 2005.

26

[11] J. Kalcsics. Districting problems. In G. Laporte, S. Nickel, and F. Saldanha da Gama, editors,

Location Science, chapter 23, pages 595–622. Springer, Cham, Switzerland, 2015. ISBN: 978-

3-319-13110-8.

[12] S. C. Lee and L. H. Shih. A novel heuristic approach to determine compromise management

for end-of-life electronic products. Journal of the Operational Research Society, 63(5):606–619,

2012.

[13] J. Mar-Ortiz, B. Adenso-Diaz, and J. L. González-Velarde. Design of a recovery network for

WEEE collection: The case of Galicia, Spain. Journal of the Operational Research Society,

62(8):1471–1484, 2011.

[14] J. Mar-Ortiz, J. L. González-Velarde, and B. J. Adenso-Dı́az. Designing routes for WEEE col-

lection: The vehicle routing problem with split loads and date windows. Journal of Heuristics,

19(2):103–127, 2013.

[15] D. Queiruga, G. Walther, J. González-Benito, and T. Spengler. Evaluation of sites for the

location of WEEE recycling plants in Spain. Waste Management, 28(1):181–190, 2008.

[16] F. Ricca, A. Scozzari, and B. Simeone. Political districting: From classical models to recent

approaches. Annals of Operations Research, 204(1):271–299, 2013.

[17] C. Rudăreanu. Waste electrical and electronic equipment (WEEE) management in Europe.

Economics, Management, and Financial Markets, 8(3):119–125, 2013.

[18] C. Rudăreanu. New challenges for the WEEE management system in Romania as a result

of the recast of the WEEE directive. Contemporary Readings in Law and Social Justice,

6(1):119–125, 2014.

[19] W.-H. Tsai and S.-J. Hung. Treatment and recycling system optimisation with activity-based

costing in WEEE reverse logistics management: An environmental supply chain perspective.

International Journal of Production Research, 47(19):5391–5420, 2009.

[20] G. Walther and T. Spengler. Impact of WEEE-directive on reverse logistics in Germany.

International Journal of Physical Distribution and Logistics Management, 35(5):337–361, 2005.

27

