
A Novel Model for Arc Territory Design:

Promoting Eulerian Districts

Gabriela Garćıa-Ayala

Tecnologico de Monterrey, Mexico

mg garcia@yahoo.com

José Luis González-Velarde

Tecnologico de Monterrey, Mexico

gonzalez.velarde@itesm.mx

Roger Z. Rı́os-Mercado

Graduate Program in Systems Engineering

Universidad Autónoma de Nuevo León (UANL), Mexico

roger.rios@uanl.edu.mx

Elena Fernández

Statistics and Operations Research Department

Universitat Politècnica de Catalunya - BcnTech

e.fernandez@upc.edu

September 2013

Revised: 16 February 2015

Revised: 17 July 2015

Revised: 21 September 2015

Abstract

The problem of district design for the implementation of arc routing activities is ad-

dressed. The aim is to partition a road network into a given number of sectors to facilitate

the organization of the operations to be implemented within the region. This problem arises

in numerous applications such as postal delivery, meter readings, winter gritting, road mainte-

nance, and municipal solid waste collection. An integer linear programming model is proposed

where a novel set of node parity constraints to favor Eulerian districts is introduced. Series of

instances were solved to assess the impact of these parity constraints on the objective func-

tion and deadhead distance. Networks with up to 401 nodes and 764 edges were successfully

solved. The model is useful at a tactical level as it can be used to promote workload balance,

compactness, deadhead distance reduction and parity in districts.

Keywords: Combinatorial optimization; Districting; Integer linear programming; Arc ser-

vices.

1 Introduction

The problem of district design for the implementation of arc routing activities is addressed.

The aim is to partition a road network into a given number of sectors to facilitate the or-

ganization of the operations to be implemented within the region. This problem arises in

numerous applications such as postal delivery, meter readings, winter gritting, road main-

tenance, and municipal solid waste collection. A proper districting plan that divides the

entire area into several balanced subregions promotes competition among contractors for arc

routing services. Allowing more contractors to bid can reduce the investment risk and make

it more attractive for companies to bid as well as prevent the domination of the service by

one large company [12].

Districting decisions are made at a strategic or tactical management level, routing de-

cisions are operational and made on a regular basis [8]. The subset of edges assigned to a

depot constitutes a district. In contrast to the clear objectives in pure location or routing

problems, it appears to be more difficult to define exact criteria for designing good districts

for arc routing [15].

A general model is proposed where the focus is on the districting decisions such that the

tactical or planning level decisions are not mixed with the operational decisions. Instead, we

use criteria that should lead to the formation of good routing. Typical criteria for districting

are (a) contiguity, (b) compactness, (c) deadhead distance and (d) work balance. A district

is contiguous if it is possible to travel between any two points within the district without

having to leave the district. A district is said to be compact if it is nearly round shaped or

square, nondistorded, without holes, and has a smooth boundary [3]. Concentrating service

activity in compact districts means shorter travel distances. Compactness is an intuitive

measure for which several measures have been proposed in the districting literature [9] but

none of these is comprehensive. Deadhead refers to the traveled distance where no service is

to be performed. Workload balance refers to the degree in which every district is required to

perform the same amount of work.

Compactness and contiguity lead to more efficient routing of vehicles [16]; however, the

literature that takes deadhead into account at a strategic level is scarce. Deadhead distance

is very hard to model at a strategic level because routing has to be done in order to take

it into consideration. The model proposed in this paper takes deadhead into account at the

strategic level by introducing the parity constraints.

Most of the work done in territory design/districting problems such as political districting,

sales territory alignment, commercial territory design, health care districting, school district

1

design, and emergency services are node-based partitioning models, that is, the interest is on

creating districts that are a partition of the set of vertices because the service is given at the

nodes. In comparison with node-based districting, the problem of districting in connection

with vehicle routing for collection or distribution services has received very little attention

(Perrier et al. [17]). It should be noted that node- and edge-base districting models have

different mathematical structure and therefore algorithms and methods developed for node-

based districting models are not quite applicable to edge-based models. For excellent surveys

on node-based districting the reader is referred to the works of Kalcsics et al. [10], Zoltners

and Sinha [23], Duque et al. [6], and Ricca et al. [19]. Here, we highlight the most relevant

work on edge/arc-based districting models.

Bodin and Levy [2] introduce the Arc Partitioning Problem, where arcs in a connected

network are broken into a set of approximately equally weighted partitions, which is imple-

mented in postal delivery. Campbel and Langevin [5, 4] develop sectorization models for

snow removal and disposal. In [5], they introduce the model of assigning sectors to disposal

sites. They develop a simple two-phase heuristic that it is applied to a real-world case in

Montreal. Then, in [4], they extend their model to allow for disposal site location decisions

as well. No solution method is given in this follow-up work. We must point out that in

both of these works, no districting decisions are made, that is, the sectors are already fixed.

Later, Perrier et al. [18] present a model and two heuristic solution approaches based on

mathematical optimization for the problem of partitioning a road network into sectors and

allocating sectors to snow disposal sites for snow disposal operations. Given a road network

and a set of planned disposal sites, the problem is to determine a set of non-overlapping sub-

networks, called sectors, according to several criteria related to the operational effectiveness

and the geographical layout, and to assign each sector to a single snow disposal site so as

to respect the capacities of the disposal sites, while minimizing relevant variable and fixed

costs. Their approach uses single street segments as the units of analysis and they consider

sector contiguity, sector balance and sector shape constraints, hourly and annual disposal

site capacities, as well as single assignment requirements. The resulting model is based on

a multi-commodity network flow structure to impose the contiguity constraints in a linear

form. The two solution approaches were tested on data from the city of Montreal in Canada.

Muyldermans et al. [15, 14] present a different approach for tackling arc districting problems.

First in Muyldermans et al. [15], they address an arc districting problem for salt spreading

operations. They present an ILP model that considers the following planning criteria: ability

to support good routing, balance in workload, compactness of the districts, and centrality of

2

the depot. They present a heuristic procedure for the districting problem and its application

to a real-world network in Antwerp. In their follow-up work [14], they present a framework for

general arc districting problems considering contiguity as well. They also analyze cases where

different objectives, such as minimizing number of vehicles may be preferred. The heart of

their approach is the transformation of the given road graph into an Eulerian graph and then

using elementary cycles as the main basic units. From this, the proposed heuristic seeks to

form the cycles simultaneously by aggregating basic units to each district. Mourão et al. [13]

address the sectoring arc routing problem, which consists of both deciding the arc partition

and the vehicle routing in each district. It is a combination of two families of classical prob-

lems: sectoring problems and arc routing problems. Contiguity is not required in this work.

The districts are built by optimizing routing costs. No compactness measure is considered in

the model. A two phase heuristic is proposed. A pre-assignment of edges to depots is made

at a first phase, and revised at a second phase along with vehicle routing. More recently,

Butsch et al. [3] propose a heuristic for districting problems arising in an arc routing con-

text. The aim is to find arc partitions that satisfy two hard criteria: complete and exclusive

assignment as well as contiguity; and several soft criteria: balance, small deadheading, local

compactness, and global compactness. To achieve this they use a weighted objective function

containing the four soft criteria. The proposed heuristic applies a construction procedure

followed by a tabu search improvement phase in which several subroutines are defined and

selected according to a roulette wheel mechanism, as in adaptive large neighborhood search.

Extensive tests conducted on instances derived from real-world street data confirm the effi-

ciency of the proposed methodology. Silva de Assis et al. [22] address an edge redistricting

problem arising in meter reading in power distribution networks They transformed their edge

districting problem into a node-districting problem and propose a GRASP metaheuristic. In

their appraoch they consider balancing and connectivity constraints and similarity with the

existing districts.

As can be seen from the literature, previous works are either application specific or do

not take into account all criteria (a) through (d), except for the work of Butsch et al. [3]

who consider these criteria from a heuristic perspective. The aim of the present work is (i)

to propose a new general model that includes all four criteria and introduces a new criterion

as well: parity, and (ii) to derive an exact algorithm for solving the problem.

Parity is not a novel concept, and it has been known to affect routing decisions ever since

the time of Euler. However, no models were found that take it into account when districting

for routing services takes place. When the routing design is to take place, a Chinese Postman

3

Tour has to be found over the arcs in each partition. Thus each subgraph in the partition is

desired to be as close to an Eulerian graph as possible. The necessary and sufficient condition

for an Euler cycle to exist is that every node be of even degree. Parity is then defined as the

criterion that penalizes arc partitions that induce odd degree of nodes in each subgraph of

the partition. Adding such a criterion to the arc districting model will lead to partitions that

are closer to an Eulerian graph, which will in turn allow for more efficient vehicle routing by

reducing deadhead.

Original graph

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

Unfavorable partition

Favorable partitions

District 1

District 2

District 3

Figure 1: Possible partitions for a node of degree 3.

To illustrate this, suppose that the nodes in Figure 1 are part of a network to be parti-

tioned into three districts. There are three arcs to be assigned. Note that since node b has

odd degree in the original graph, there is no possible partition that will allow it to have even

degree in every district. However, a constraint that favors the imparity to be maintained

in only one of the districts, resulting in a favorable partition, can be built. An unfavorable

partition would be a partition that assigns one edge to each district making then node b to

be of odd degree in each of the districts.

In a similar manner, if a node has even degree in the original graph, a partition where it

keeps its even degree among the districts should be preferred over partitions where it does not.

Assume nodes in Figure 2 are part of a network to be partitioned into three districts. Cases

of partitions where node c maintains the even degree are shown. These cases are considered

favorable over partitions where node c has odd degree in two of the three districts.

4

Original graph

a a

a a

Favorable partitions

d e d

d d

c

b

c

b

c

b

c

b

e e

Unfavorable partition
e

District 1

District 2

District 3

Figure 2: Possible partitions for a node of degree 4.

This criterion is novel and to the best of our knowledge has not been seen in any of the

reviewed literature at the district design level. Odd degree nodes in a partition translate into

deadhead time. A service vehicle will have to travel one edge of an odd degree node twice:

once where the service will be delivered, and once without service in order to get back to the

next edges. In this paper we propose this new parity criterion and a general model for arc

districting which considers all typical criteria (a) through (d).

The remainder of this paper is organized as follows. Section 2 states the addressed prob-

lem and describes the proposed integer linear programming model. Section 3 describes the

proposed algorithm for solving the problem. In order to assess the effect of the different crite-

ria in our model and their impact on the solutions, a series of instances have been generated

and solved. In Section 4 we describe this process and the obtained results. Furthermore, we

illustrate the step by step performance of the solution algorithm with one of the considered

benchmark instances. Finally, Section 5 offers concluding remarks.

2 Problem Statement and Model

An Integer Linear Programming (ILP) model is proposed where the objective function to

be minimized is a dispersion measure, consisting of the sum of the distances to and from

each edge to its assigned depot. This objective is equivalent to maximizing compactness.

5

Workload balance is modeled by setting upper and lower limits on the expected average total

workload per district. Contiguity is obtained by assuring a path of allocated edges to a depot

exists if an edge is to be assigned. Parity is enhanced by setting an upper limit on the total

number of new odd degree nodes in each district allowed in the partition.

The underlying road network is modeled by an undirected planar graph G = (V,E), where

each edge of this graph corresponds to a road or street of the underlying road network. The

node set V corresponds to street crossings or dead ends. We assumed G to be connected.

Every edge e = (i, j) ∈ E has a length, le, and a demand, de, which is assumed to be

proportional to its length. Let P ⊂ V denote a given subset of k depots. For simplicity, and

without loss of generality, it is assumed that the k depots are labeled as nodes 1, 2, . . . , k.

Therefore, in the following the district associated with depot p ∈ P is referred to as district

p. The problem is then defined as finding a valid k-partition of edges E = (E1, . . . , Ek) such

that for each p ∈ P the district Gp = (V (Ep), Ep) meets some required planning criteria.

Here V (Ep) represents the set of nodes that are incident to at least one edge of Ep.

Let σ(e) denote the set of edges adjacent to edge e ∈ E and δ(i) the set of edges incident

to node i ∈ V . For any subset S ⊂ E, σ(S) is the cut set of S, that is, the set of edges with

one end point in V (S), the set of nodes associated to edges in S, and the other end point in

V \ V (S).

The following parameters are known: bpe, minimum distance from depot p ∈ P to edge e =

(i, j) ∈ E, defined as min{fpi, fpj}, where fij is the shortest-path distance in G between nodes

i, j ∈ V relative to the length vector l; D̄ =
∑

e∈E de/|P |, average demand per district; τ1 ∈

(0, 1), tolerance for demand balance constraints; τ2 ∈ (0, 1), tolerance for parity constraints;

and M , a sufficiently large number.

The following integer decision variables are defined:

xpe, binary variable equal to 1 if edge e ∈ E is assigned to depot p ∈ P and 0 otherwise;

wpi, binary variable equal to 1 if node i ∈ V is incident to an edge assigned to depot p ∈ P

and 0 otherwise.

In addition, to model the parity of the vertices we use the following sets of variables: z0ip,

binary variable equal to 1 if degree of node i ∈ V in district p ∈ P is odd and 0 otherwise;

the auxiliary variables zip, which relate z0ip to the degree of node i, i ∈ V , p ∈ P ; and ri,

binary variable equal to 1 if node i loses parity and 0 otherwise. Let V e ⊂ V be the set of

even degree nodes in G(V,E). A node i ∈ V e is said to lose parity if there is at least one

district involving i where the degree of node i in that district is odd. In other words, node

6

i is said to keep its parity if the degree of i in each of its associated districts is even. In a

similar fashion, let V o be the set of odd degree nodes in G(V,E). A node i ∈ V e is said to

lose parity if there are at least two districts involving i where the degree of node i in those

districts is odd. In other words, node i is said to keep its parity if the degree of i in each but

one of its associated districts is even. Then, the proposed ILP is:

Min g(x) =
∑
p∈P

∑
e∈E

bpexpe (1)

subject to
∑
p∈P

xpe = 1 e ∈ E (2)

∑
s∈σ(S)

xps −
∑
s∈S

xps ≥ xpe − |S| p ∈ P, e ∈ E,S ⊂ E \ σ(e) (3)

∑
e∈E

dexpe ≤ D̄(1 + τ1) p ∈ P (4)

∑
e∈E

dexpe ≥ D̄(1− τ1) p ∈ P (5)

∑
e∈δ(i)

xpe ≤ Mwpi p ∈ P, i ∈ V (6)

wpi ≤
∑
e∈δ(i)

xpe p ∈ P, i ∈ V (7)

∑
e∈δ(i)

xpe = 2zip + z0ip p ∈ P, i ∈ V (8)

ri ≤
∑
p∈P

z0ip i ∈ V e (9)

|P |ri ≥
∑
p∈P

z0ip i ∈ V e (10)

ri ≤
∑
p∈P

z0ip − 1 i ∈ V o (11)

|P |ri ≥
∑
p∈P

z0ip − 1 i ∈ V o (12)

1

|V |
∑
i∈V

ri ≤ τ2 (13)

wpi, xpe, z
0
ip, ri ∈ {0, 1} p ∈ P, i, j ∈ V, e ∈ E (14)

zip ∈ N ∪ {0} p ∈ P, i ∈ V (15)

The objective function (1) manages the compactness of the district by measuring disper-

7

sion as the sum of distances to and from each edge to its allocated depot. It can be seen as a

p-median type of function with the particularity that in our case the location of each depot is

given and not part of the decision process. Constraints (2) force each edge to be assigned to

exactly one depot. Constraints (3) ensure district connectivity. These constraints, analogous

to the connectivity constraints used in [20] for node territory design, can be explained as

follows. Let S ⊂ E \ σ(e) be a subset whose edges are not adjacent to edge e in district p.

If edge e is not assigned to p (xpe = 0), the constraint becomes redundant. Furthermore,

if there is at least one edge s ∈ S that is not assigned to district p, then the second term

of the left-hand side becomes strictly less than |S| and the constraint becomes redundant

too. Hence, constraints (3) become non-redundant only when all edges in S are assigned to

district p. Then, the first term of the left-hand side must be greater than or equal to 1. That

is, at least one edge in the cut set of set S must be assigned to district p as well. Applying

the same rationale recursively to set S ∪ {s} results eventually in a territory connected to

edge e in district p. Note that there is an exponential number of such constraints. Con-

straints (4) and (5) give rise to balanced districts within the allowed tolerance τ1 ∈ (0, 1).

Constraints (6)-(7) identify nodes involved in each district p, where M is a sufficiently large

number. Typically M is given the value of largest node degree in the graph. In essence,

they ensure that an edge is assigned to a depot if and only of its two incident nodes are

assigned to the same depot, including depots. These constraints along with the connectivity

constraints (3) imply that a depot p belongs district p; however, if this condition were to

be relaxed the term i ∈ V would have to be replaced by i ∈ V \ P in constraints (6)-(7).

Constraints (8) set the degree of node i in district p, and assign an appropriate value to z0ip in

order to identify nodes of odd degree as well. Constraints (9)-(13), used to limit the imparity

gain, deserve further explanation. First, for each node i of even degree in G = (V,E), we can

see that ri = 0 if and only if
∑

p∈P z0ip = 0, that is, in each district involving node i its degree

must be even for the node to be considered as keeping its parity (ri = 0). This is achieved

by constraints (9)-(10). Similarly, constraints (11)-(12) set the relationship for the imparity

gain for each odd degree node. Finally, the percentage of nodes with lost imparity, given by∑
i∈V ri, is limited by parameter τ2 ∈ (0, 1), in constraint(13). Finally, constraints (14) and

(15) set the nature of the decision variables.

Note that constraints (9)-(13) are valid in any type of graph regardless its distribution

of even and odd degree nodes; however, if the number of odd degree nodes in G = (V,E) is

8

relatively large, constraints (9)-(13) may be replaced by (16)-(17) below

∑
i∈V

∑
p∈P

z0ip − l = l0 (16)

l ≤ τ2(l0 + l) (17)

where l is an integer variable that accounts for the imparity gain with the induced partition

and parameter l0 is the number of odd degree vertices in G. These new parity constraints

reduce the number of binary variables in the model since the ri variables are no longer needed.

Computational experiments are done with both sets of parity constraints.

3 Solution Algorithm

The main difficulty for solving the proposed ILP arises from the exponential number of

connectivity constraints; their explicit enumeration is practically impossible. Salazar-Aguilar

et al. [21] deal with a similar issue but in the context of node-based territory design. To

address this, they propose a solution algorithm that iteratively employs branch and bound

and cut generation. In our work, we implement a similar idea to deal with the exponential

number of connectivity constraints. To face this issue with the connectivity constraints, a

solution algorithm as in Algorithm 1 in Salazar-Aguilar et al. [21] is implemented.

The idea is fairly simple. In our implementation, a relaxed ILP model, which does not

include the connectivity constraints (3), is solved by branch and bound. The obtained solution

is checked for disconnected districts. If disconnected districts are found, cuts are generated

for violated connectivity constraints and added to the relaxed model. The relaxed model with

such cuts is solved again and this is repeated until a solution with no violations is reported.

An alternative to this approach would be to replace the exponential number of connecti-

vity constraints by a polynomial number of flow-based connectivity constraints [7]. However,

for node districting problems, this approach has shown very little value as the size of the

problem becomes very large. In addition, due to the structure of our problem, for practically

all instances tested, the proposed algorithm converges in a single iteration. It was observed

that solutions with disconnected districts were obtained on instances where the all or most of

the depots are extremely close to each other. In districting applications (e.g., snow removal

and disposal [11], salt spreading operations [15]) it is not typical to find situations where

all or most of the depots or facilities are close to each other. In fact, in practically all

of the districting literature where the locations of the depots or facilities are part of the

9

decision process, a compactness criterion, which makes the location of centers be dispersed,

is considered.

Solution Algorithm 1

Step 1 Solve the ILP given by (1)-(15), with the connectivity constraints (3)

relaxed.

Step 2 Identify if there are any disconnected districts, which would mean

violated connectivity constraints are present. This reduces to iden-

tifying the connected components induced by the solution associ-

ated with each district. It is well known that finding the connected

components in every district can be efficiently done in polynomial

time by breadth first search (BFS).

Step 3 If violated constraints are found, generate the associated cuts, add

them to the relaxed model and return to Step 1.

Step 4 If no constraints are violated, stop and return optimal solution.

The convergence of the algorithm is guaranteed due to two facts. First, the BFS algorithm

returns either a set of violated connectivity constraints, in the form of unconnected subsets

or an empty set. Second, there is a finite number of connectivity constraints. Thus the

algorithm is guaranteed to stop at an optimal solution for the original model. The number

of iterations the algorithm needs in practice to find an optimal solution is an issue to be

investigated through experimental work.

4 Computational Experiments

The proposed model and solution algorithm was implemented within the GAMS framework

(version 24.7) and solved using CPLEX 12.6 in an HP ProBook 6460b, Intel Core i5-2410M

and CPU 2.3 GHz. For our experiments we used fifteen road networks from Belenguer et

al. [1]. The authors classified their road networks in three groups, namely LPR-A, LPR-

B, and LPR-C. We took five instances from each group (labeled LPR-A-01 to LPR-A-05,

and so on). The size of the road network is the main difference among them. Now, since

these instances, which represent road networks, are used by the authors for addressing mixed

capacity arc routing problems (MCARPs) we have modified them to fit in our problem as

follows. That database consists of mixed directed graphs with demand and service and transit

costs associated to arcs. We take the same road topology ignoring the arc direction to form

10

an undirected graph. We use the distance between nodes as edge length. In addition, since we

have depots as part of the problem parameters, we have extended this database of instances

by duplicating some of these instances with different number of depots. In total, we have 20

base instances. Table 1 shows the properties and size of each of the instances in the database,

where each row displays the instance name, number of nodes, number of edges, and number

of integer variables (NIV) in the model.

Now, from these base dataset we have run many experiments varying some parameters

such as the value of balance tolerance and imparity tolerance to address the important issues.

Road networks with up to 401 nodes, 764 edges and 6 depots, resulting in 12,203 discrete

variables were solved successfully.

Table 1: Data instances
Instance |V | |E| NIV

LPR-A-01-2-* 28 52 300
LPR-A-01-3-* 28 52 436
LPR-A-02-2-* 53 92 553
LPR-A-03-2-* 146 252 1526
LPR-A-03-3-* 146 252 2216
LPR-A-03-4-* 146 252 2906
LPR-A-03-5-* 146 252 3596
LPR-A-04-4-* 195 339 3891
LPR-A-05-4-* 321 559 6409

LPR-B-01-2-* 28 47 290
LPR-B-01-3-* 28 47 421
LPR-B-02-2-* 53 90 551
LPR-B-03-4-* 163 292 3287
LPR-B-04-4-* 248 465 6293
LPR-B-05-6-* 401 764 12203

LPR-C-01-3-* 28 47 421
LPR-C-02-3-* 53 91 803
LPR-C-03-4-* 163 308 3351
LPR-C-04-3-* 277 514 4312
LPR-C-05-4-* 369 693 7569

Each instance of the extended data set and corresponding experiment is identified by the

following notation. Instance LPR-A-01-2-10-05, for example, refers to network LPR-A-01

from Belenguer et al. [1], where the suffix “-2-10-05” means p = 2, and run under τ1 = 0.10

and τ2 = 0.05. The computation time limit was set to 60,000 seconds. When the algorithm

stops due to this limit, the best feasible solution is shown. The relative optimality gap in the

solver is set to 0.001%.

In total, when considering all different parameter variations a total of 89 different runs

11

on these 20 instances were attempted and successfully solved. Individual results for each run

are displayed in the appendix. An important observation is that 86 out of these 89 runs

needed just a single iteration to converge. This means the optimal or feasible solution found

in the relaxed model has no disconnected components and therefore is optimal or feasible to

the original model. This happens because the depots are somewhat dispersed throughout the

road network and the dispersion minimization in the objective function favors connectivity

around the depots. The three instances that needed more than a single iteration were built

with the aim of getting disconnected districts in order to show the solution algorithm at work.

Now, among all these different runs we choose arbitrarily a subset with different values

of p, τ1, and τ2, trying to cover many different combinations to test the model containing the

alternative parity constraints. Optimal solutions were obtained to 50 out of 53 tested runs.

The detailed results for each run are shown in the appendix. Here we summarize the most

relevant results.

4.1 Effect of the Parity Constraints

In order to get a good estimation about the benefit of introducing the parity constraints in

the model, a Chinese Postman Problem (CPP) was solved for each district once an optimal

solution is found. This is done to get a measure of the deadhead a single vehicle would have

to travel in each district. Our hypothesis is that introducing the parity constraints will lead

to better districts for routing vehicles. This happens because there would be less deadhead

compared to a model that does not include them and was proven to be true throughout all

solved instances. Table 2 displays the results when solving a few instances with different

values of τ2 the parity tolerance parameter. Each row shows the instance name and the

valued of the corresponding deadhead when solving a Chinese Postman Problem (CPP) for

each district as a function of τ2. Note that the τ2 = 1.0 column represents the situation when

no parity constraints are present. The last column is relative improvement of the model

when τ2 = 0.01 with respect to no using the parity constraints (τ2 = 1.0). The last row show

the average relative improvements with respect to column (τ2 = 1.0) over all instances. For

example, the value of 7.99 in the last row indicates that the average relative improvement of

the deadhead when obtained under τ2 = 1.0 with respect to the absence of these constraints

(τ2 = 1.0). As we can see, the introduction of the parity constraint yields lower values of

nodes with lost parity which in turns causes a reduction in the total deadhead distance. The

relative improvement shows values of 3.9-24.7 % when compared to the model where these

constraints are absent. The average total improvement over all instances is 11.13 %. This is

12

indeed a positive impact.

Table 2: Effect of parity constraints in deadhead distances
Instance τ2 = 1.0 0.10 0.04 0.03 0.02 0.01 RI (%)

LPR-A-03-3-* 7222.31 7222.31 6393.14 6393.14 6393.14 6143.33 14.9
LPR-A-04-4-* 9560.46 9560.46 9640.95 9199.70 8978.24 8584.50 10.2
LPR-A-05-4-* 15261.36 15261.36 15073.37 14872.61 14751.84 14255.61 6.6
LPR-B-01-2-* 1416.61 1416.61 1416.61 1259.78 1259.78 1259.78 11.1
LPR-B-03-4-* 8297.09 8297.09 8186.11 8143.17 8253.71 7895.36 4.8
LPR-B-04-4-* 10120.24 10120.24 9733.93 9123.67 8622.09 8282.4 18.2
LPR-B-05-6-* 16270.15 16270.15 16281.55 16281.55 15629.88 15005.6 7.8
LPR-C-01-3-* 1966.98 1528.21 2090.34 1681.27 1681.27 1681.27 14.5
LPR-C-02-3-* 4523.47 4461.14 3956.02 3838.51 3838.51 3407.74 24.7
LPR-C-03-4-* 8354.04 8354.04 8282.36 8089.14 8023.91 7419.36 11.2
LPR-C-04-3-* 11323.84 11323.84 11437.87 10996.33 10497.89 10670.64 5.8
LPR-C-05-4-* 15655.47 15655.47 15655.47 15830.33 15073.15 15044.66 3.9

Average RI (%) 1.97 1.92 6.26 7.99 11.13

Of course, tightening the value of τ2 must also have a negative effect in the objective

function. Table 3 displays similar results as the previous table showing the value of the

objective function for the same set of instances. The last column shows the relative increment

of the objective function when τ2 = 0.01 is in effect with respect to no use of the parity

constraints (τ2 = 1.0). As we can see, the detriment of the objective function is very marginal

for practically all instances. The worst case was instance LPR-C-01-02 that observed a 3.18

% increase. The average over all instances was 0.56 %.

Table 3: Effect of parity constraints in objective function values
Instance τ2 = 1.0 0.10 0.04 0.03 0.02 0.01 RI (%)

LPR-A-03-3-* 277194.12 277194.12 277741.11 277741.11 277741.11 278068.71 0.31
LPR-A-04-4-* 291013.88 291013.88 291132.37 291255.70 291484.67 291746.50 0.25
LPR-A-05-4-* 710050.53 710050.53 710116.40 710218.53 710478.15 710921.49 0.12
LPR-B-01-2-* 28318.27 28318.27 28318.27 28527.56 28527.56 28527.56 0.73
LPR-B-03-4-* 249074.20 249074.20 249090.10 249119.28 249150.66 249227.11 0.06
LPR-B-04-4-* 380014.97 380014.97 380076.63 380221.68 380536.59 380785.88 0.20
LPR-B-05-6-* 711108.32 711108.32 711122.88 711122.88 711699.23 711990.07 0.12
LPR-C-01-3-* 17325.62 17501.45 17635.76 17894.65 17894.65 17894.65 3.18
LPR-C-02-3-* 58836.93 58847.73 59021.54 59267.68 59267.68 59583.99 1.25
LPR-C-03-4-* 263035.3 263035.3 263171.69 263321.96 263404.52 263760.4 0.27
LPR-C-04-3-* 943293.89 943293.89 943318.28 943425.82 943619.75 944016.38 0.08
LPR-C-05-4-* 853979.50 853979.50 853979.50 854018.26 854197.796 854623.55 0.08

Let us now see some graphical results. Consider the two results for example LPR-A-03

in Figure 3. This is a graph with 146 nodes, 252 edges, 3 depots whose corresponding model

13

has 2216 discrete variables. The motivation for these instances is to show how the parity

restriction works and affects the optimal solution in a graphical way.

(a) Parity tolerance = 20%

(b) Parity tolerance = 5%

Figure 3: Effect of parity tolerance on instances LPR-A-03-3-20

The network in Figure 3(a) used τ2 = 0.20, which is equivalent, in this particular case,

to relaxing the parity constraints. The network in Figure 3(b) used τ2 = 0.05. After solving

each instance, the network on Figure 3(a) has
∑

i∈V ri = 10, which means 10 nodes lost

parity, that is, either they had even degree in the original graph and have now odd degree, or

they were of odd degree in the original graph and are of odd degree in more than one district

due to the partition now. Such nodes are encircled in the figure. Its corresponding deadhead

distance is 7222.31. In contrast, the solution on Figure 3(b) has only 2 nodes that lost parity.

Its corresponding deadhead distance is 6393.14. This represents a 11.4 % improvement. This

is exactly what the model is trying to convey.

Care must be taken when setting the values of τ1 and τ2 since they are related to each

other and wrong combinations of the pair will lead to empty feasible regions. The parity

tolerance τ2 has a lower bound threshold value determined by the balance tolerance; beneath

14

this value the problem becomes infeasible. If the balance tolerance is completely relaxed

(τ1=1), parity tolerance τ2 can be as low as zero. This means that if no better partition was

found, all arcs could be assigned to a single district where no imparity would be gained. The

balance tolerance, τ1, on the other side, has a lower bound threshold value that depends not

only on the imparity tolerance but also on specific characteristics of each instance such as

the number of districts, the number of edges, and the demand for each edge.

4.2 Effect of Balance Constraints

The effect of moving the balance tolerance is now studied. Figure 4 shows results for network

LPR-B-02-2 with ten different values of τ1. The balance constraint parameter varies from

high (left-most) to low (right-most) in the figure. Parameter τ1 starts at a value of 20%,

which is equivalent to having the balance constraints relaxed and decreases to the value of

zero. Not all instances allow having zero tolerance balance, in fact most would be infeasible,

but this example can produce perfectly balanced districts.

The objective function increases as the value of τ1 is tightened as expected, but no corre-

lation was found in solution time. As far as imparity is concerned, an increase, although not

monotone, was observed.

Figure 4: Effect of balance constraints

4.3 Effect of Number and Location of Depots

We now investigate the effect of the number and location of depots on the computational

effort. To examine this effect a collection of different instances were created from network

15

LPR-A-03. This network has 146 nodes and 252 edges. Instance LPR-A-03-2, has two depots,

instance LPR-A-03-3, has three depots. Instances LPR-A-03-4, LPR-A-03-4a, LPR-A-03-4b,

LPR-A-03-4c and LPR-A-03-4d all have 4 differently located depots. Finally instance LPR-

A-03-5 has 5 depots.

Figure 5 plots the CPU time employed versus the number of discrete variables in every

instance. It can be seen how for a specific network the number of binary variables increases

linearly with the number of depots, and this is related to the time required to solve if a

solution is reached in one iteration. This suggests that the position of the depots is of great

importance as it directly affects computation time. It was observed that instances where the

depots are more dispersed tend to be solved in a single iteration of the algorithm.

Figure 5: Computation times and model size for instance LPR-A-03
.

In Figure 5 it can be seen the solution time for instance LPR-A-03-4c is three times larger

than for the rest of the instances with four depots. This is so because the algorithm had to

run three iterations in order to find a connected solution. It is the hardest instance to solve

for LPR-A-03.

Throughout the experimentation, we have focused our work on instances where the depots

are relatively dispersed in the network, which is more representative of real-world instances.

We have seen how, for these type of instances, the solution algorithm converges in a single

iteration. However, there might be other real-world cases where the depots are not necessarily

dispersed. Thus, we are also interested in investigating the performance of the model on these

type of instances.

A series of additional instances were then created in an atypical manner, with all or some

of the depots placed close to each other. This was done in order to force the relaxed model to

produce partitions with disconnected districts, so that the complete algorithm can be shown

16

at work, and observe the model behavior under these circumstances. Examples LPR-A-03-4c

and Example LPR-A-03-4d are two of such instances.

Partitions for all instances of LPR-A-03 with four depots are seen in Figure 6. LPR-A-03-

4a has the depots located on the outskirts of the network and LPR-A-03-4b has the depots

ending up at the center of their district. LPR-A-03-4c has three aligned depots neighboring

each other and finally LPR-A-03-4d has two pairs of neighboring depots. Figure 6 shows that

having close depots make the districts more dispersed. This happens because the model tries

to build each district around the depot, if two depots are close together, they compete with

each other and dispersion results.

Figure 6: Results for LPR-A-03
.

Note how partition for LPR-A-03-4c is disconnected and therefore is infeasible to the

original model. Although LPR-A-03-4d has neighboring depots also, the optimal solution

was found in a single iteration. For LPR-A-03-4c cuts were generated and the model was

solved again until no disconnected components were found in the solution. For this particular

instance, we illustrate in the following subsection how the algorithm works to find a feasible

solution.

17

4.4 Illustrative Example

We now present an example that illustrates every step of the algorithm. To this end, we use

instance LPR-A-03-4c which has three depots close together to force disconnected districts.

Figure 7 presents the result for the first iteration. To better visualize the algorithmic process,

the edge label is displayed in some edges. The depots are shown in gray diamonds. The

solution found in each iteration can be seen in Figures 8 and 9, including the optimal solution

where the districts are all connected.

Figure 7: Iteration 1 for LPR-A-03-4c-10-20
.

Solution Algorithm for instance LPR-A-03-4c-10-20.

1. Solve the model with connectivity constraints (3) relaxed.

• Solver solution: 243972.95

• CPU time (sec.): 7.083

• The resulting partition is displayed in Figure 7.

2. Solve the separation problem by identifying districts with disconnected components.

• In this example two districts are disconnected, the two on the right. The lower

district whose corresponding depot is at node 69, and the upper right district

which has its depot on node 70.

18

3. For each disconnected district, generate the appropriate cuts and add them to the

relaxed model. In the previous step two disconnected districts were identified with

three disconnected segments each.

• The lower district (depot at node 69) has the following disconnected subsets of

edges: S1 = {177}, S2 = {227}, and S3 = {242}, with corresponding cut sets

σ(S1) = {150, 175, 176, 221, 223}, σ(S2) = {202, 224, 226, 251, 252}, and σ(S3) =

{229, 231, 243, 244}, respectively. These will generate the following connectivity

cuts (3):

x69,150 + x69,175 + x69,176 + x69,221 + x69,223 − x69,177 ≥ 0

x69,202 + x69,224 + x69,226 + x69,251 + x69,252 − x69,227 ≥ 0

x69,229 + x69,231 + x69,243 + x69,244 − x69,242 ≥ 0

• The upper right district (depot at node 70) has the following disconnected subsets

of edges: S1 = {22}, S2 = {24, 58}, and S3 = {91}, with corresponding cut

sets σ(S1) = {18, 20, 21, 54, 56, 57}, σ(S2) = {20, 23, 26, 56, 59, 60}, and σ(S3) =

{57, 59, 89, 92, 93, 94, 95}, respectively. These will generate the following cuts:

x70,18 + x70,20 + x70,21 + x70,54 + x70,56 + x70,57 − x70,22 ≥ 0

x70,20 + x70,23 + x70,26 + x70,56 + x70,59 + x70,60 − (x70,24 + x70,58) ≥ −1

x70,57 + x70,59 + x70,89 + x70,92 + x70,93 + x70,94 + x70,95 − x70,91 ≥ 0

4. Iteration 2: Solve the relaxed model with added constraints.

• Solver solution: 244045.07

• CPU time (sec.): 12.449

• The resulting partition is displayed in Figure 8.

5. Solve separation problem by identifying districts with disconnected components.

• In this iteration the same districts (associated to depots 69 and 70) are found

disconnected.

6. For each disconnected district, generate the appropriate cuts and add them to the

relaxed model.

• As can be seen in Figure 8, district 69 has one disconnected component and district

19

Figure 8: Iteration 2 for LPR-A-03-3

70 has two disconnected components.

• The lower right district (depot at node 69) has one disconnected component S1 =

{227, 251} with corresponding cut set σ(S1) = {202, 224, 226, 241, 250, 252}. This

generates the following cut:

x69,202 + x69,224 + x69,226 + x69,241 + x69,250 + x69,252 − (x69,227 + x69,251) ≥ −1

• The upper right district (depot at node 70) has two disconnected components S1 =

{58} and S2 = {19, 22, 38, 54}, with corresponding cut sets σ(S1) = {24, 25, 26, 56, 59, 60}

and σ(S2) = {16, 20, 36, 52, 55, 56, 57}, respectively. These generate the following

cuts:

x70,24 + x70,25 + x70,26 + x70,56 + x70,59 + x70,60 − x70,58 ≥ −0

x70,16 + x70,20 + x70,36 + x70,52 + x70,55 + x70,56 + x70,57

−(x70,19 + x70,22 + x70,38 + x70,54) ≥ −3

7. Iteration 3: Solve relaxed model with added constraints.

• Solver solution: 244045.07

• CPU time (sec.): 12.792

20

8. Solve separation problem by identifying districts with disconnected components.

• No districts are disconnected

9. Solution is optimal.

• Solver solution: 244045.07

• TOTAL CPU time (sec.): 32.32

• Optimal solution partition is displayed in Figure 9.

Figure 9: Iteration 3 for LPR-A-03-3

4.5 Assesment of Alternative Parity Constraints

Two different sets of parity constraints are proposed for modeling districts for routing services.

In the previous section, the empirical work was based on the model with parity constraints (9)-

(13). As pointed out earlier, these constraints are always valid for any type of graph. However,

there is a class of instances where parity constraints (16)-(17) may be used instead. The

advantage is that constraints (16)-(17) are smaller in size and seem a good option. However,

the main disadvantage is that these may fail when the number of odd degree nodes is relatively

low (that is when the graph tends to be Eulerian).

In most of the cases, solving the model with either set of parity constraints rendered the

same optimal solution, although instances solved with constraints (9)-(13) found a solution

faster. Figure 10 shows the instances solved by both sets of constraints, in almost all the

21

Figure 10: Comparison between parity constraints
.

cases using constraints (9)-(13) results in shorter computation times, even though the model

has more discrete variables. The dashed line in the figure is always above the solid line of

constraints (9)-(13). Logarithmic scale is used in Figure 10 since some computations take

only a fraction of a second and some up to 60,000 seconds. Three instances, LPR-B-05-

6-20-02, LPR-B-05-6-20-01 and LPR-A-05-4-20-01, were timed out at 60,000 seconds using

constraints (16)-(17). They are the three dashed points that do not appear in the graph

due to the scale. Constraints (9)-(13) solved these instances in around a hundred seconds,

therefore they adequately favor parity in the model, and prove to be more efficient in solving

all instances. Table 6 in the appendix contains all the results for the instances that were

solved with constraints (9)-(13) replaced by constraints (16)-(17).

5 Closing Remarks

A districting model that services arc routing activities is proposed. The model produces

partitions that are contiguous, have a work load balance, acquired imparity under a given

tolerance, and have minimal dispersion around the depots.

The use of parity constraints is a novelty. Odd degree nodes in district partitions impact

22

vehicle routing since they translate into deadhead time. We introduce a set of constraints

that limits imparity and could be helpful in any other districting models that lead to vehicle

routing.

An exact solution procedure based on branch and bound with a cut generation strategy

was successfully applied to solve the model to optimality. Despite the exponential number

of connectivity constraints, the solution method can be easily implemented with any off-the-

shelve branch-and-bound solver. The algorithm solves, in a given iteration, a model with the

connectivity constraints relaxed. If an unconnected partition is produced, a valid inequality

is generated and added and the model is resolved. This is repeated iteratively until a feasible

and thus optimal solution is found. The algorithm was able to solve most of the instances

tested in a single iteration. This is due in great extent to the disperse location of the depots.

However, we provided some examples on how the method successfully solves less common

instances with closer depots generating cuts and finding the solution in a few iterations.

Compactness is favored on networks where the depots end up at the center of their district

due to the objective function of the model. If a specific problem calls for neighboring or close

depots another objective function would be recommended, for example, one that takes into

account distance between edges instead of their distance to the depot.

Series of instances were solved to determine the impact of the parity constraint on the

objective function and resulting partitions. Networks with up to 491 nodes, 763 edges whose

associated model has 12,203 discrete variables were solved successfully. By having the parity

constraints in the model, solutions with less deadhead distances are possible. This is of great

impact to the routing of vehicles.

The model is useful at a tactical level as it can be used to promote characteristics of

interest to specific applications. Parameters can be adjusted for workload balance, and

parity which traduces to deadhead distance. This generality produces solutions with different

characteristics, depending on how their tolerances are set. A sensitivity analysis between

these features has been studied and some results presented. The obtained results indicate

that the parity constraints seem useful as it leads to partitions that allow efficient vehicle

routing. Future work in developing heuristics is suggested by the impossibility of finding

feasible solutions for very large instances.

Possible extensions of this research worth pursuing involve the study of districting prob-

lems with districting-routing decisions. When both districting and routing decisions are to be

taken into account simultaneously, the way the service/traversal of an arc becomes critical.

For instance, depending on the application, it could happen that streets are not served in one

23

traversal or it is not allowed to traverse the streets in both directions. In some applications

more than one tour could be assigned to each depot. Furthermore, there are applications

where the demand is not necessarily proportional to the length of the street as assumed in

our work. For example, for meter reading a small street with some apartment blocks may

have a higher demand than a large street with some single-family houses.

In this work, we maximize the compactness and regard balance and deadheading distance

as constraints. Hence, it would be very interesting to study the problem from a multi-

objective programming approach and develop approximations to the Pareto-optimal front.

For instance, an interesting question arises when assessing the deadhead distances found when

optimizing compactness. That is, if one wanted to find the optimal deadhead distances and

treat compactness as a constraint the resulting MILP model is harder to solve.

Acknowledgements: The paper has been improved thanks to the remarks of three anony-

mous referees. This research has been partially funded by Tecnologico de Monterrey Re-

search Research Group in Industrial Engineering and Numerical Methods 0822B01006, by

the Mexican National Council for Science and Technology (CONACyT) through grant SEP-

CONACyT CB-2011-01-166397, by Universidad Autónoma de Nuevo León through grant

UANL-PAICYT CE728-11, and by the Spanish Ministry of Economia y Competitividad and

ERDF funds through grant MTM2012-36163-C06-05.

References

[1] J. M. Belenguer, E. Benavent, P. Lacomme, and C. Prins. Lower and upper bounds

for the mixed capacitated arc routing problem. Computers & Operations Research,

33(12):3363–3383, 2006.

[2] L. Bodin and L. Levy. The arc partitioning problem. European Journal of Operational

Research, 53(3):393–401, 1991.

[3] A. Butsch, J. Kalcsics, and G. Laporte. Districting for arc routing. INFORMS Journal

on Computing, 26(4):809–824, 2014.

[4] J. F. Campbell and A. Langevin. Operations management for urban snow removal and

disposal. Transportation Research, 29(5):359–370, 1995.

[5] J. F. Campbell and A. Langevin. The snow disposal assignment problem. Journal of

the Operational Research Society, 46(8):919–929, 1995.

24

[6] J. C. Duque, R. Ramos, and J. Suriñach. Supervised regionalization methods: A survey.

International Regional Science Review, 30(3):195–220, 2007.

[7] L. Gouveia, M. C. Mourão, and L. S. Pinto. Lower bounds for the mixed capacitated

arc routing problem. Computers & Operations Research, 37(4):692–699, 2010.

[8] D. Haugland, S. C. Ho, and G. Laporte. Designing delivery district for the vehicle

routing problem with stochastic demands. European Journal of Operational Research,

180(3):997–1010, 2007.

[9] D. L. Horn, C. R. Hampton, and A. J. Vandenberg. Practical application of district

compactness. Political Geography, 12(2):103–120, 1993.

[10] J. Kalcsics, S. Nickel, and M. Schröder. Towards a unified territorial design approach:

Applications, algorithms, and GIS integration. TOP, 13(1):1–56, 2005.

[11] A. Labelle, A. Langevin, and J. F. Campbell. Sector design for snow removal and disposal

in urban areas. Socio-Economic Planning Sciences, 36(3):183–200, 2002.

[12] H. Y. Lin and J. J. Kao. Subregion districting analysis for municipal solid waste collection

privatization. Journal of the Air and Waste Management Association, 58(1):104–111,

2008.

[13] M. C. Mourão, A. C. Nunes, and C. Prins. Heuristic methods for the sectoring arc

routing problem. European Journal of Operational Research, 196(3):856–868, 2009.

[14] L. Muyldermans, D. Cattrysse, and D. Van Oudheusden. District design for arc-routing

applications. Journal of the Operational Research Society, 54(11):1209–1221, 2003.

[15] L. Muyldermans, D. Cattrysse, D. Van Oudheusden, and T. Lotan. Districting for salt

spreading operations. European Journal of Operational Research, 139(3):521–532, 2002.

[16] N. Perrier, A. Langevin, and J. F. Campbell. A survey of models and algorithms for

winter road maintenance. part i: System design for spreading and plowing. Computers

& Operations Research, 33(1):209–238, 2006.

[17] N. Perrier, A. Langevin, and J. F. Campbell. A survey of models and algorithms for win-

ter road maintenance. part ii: System design for snow disposal. Computers & Operations

Research, 33(1):239–262, 2006.

25

[18] N. Perrier, A. Langevin, and J. F. Campbell. The sector design and assignment problem

for snow disposal operations. European Journal of Operational Research, 189(2):508–525,

2008.

[19] F. Ricca, A. Scozzari, and B. Simeone. Political districting: From classical models to

recent approaches. Annals of Operations Research, 204(1):271–299, 2013.

[20] R. Z. Ŕıos-Mercado and E. A. Fernández. A reactive GRASP for a commercial terri-

tory design problem with multiple balancing requirements. Computers & Operations

Research, 36(3):755–776, 2009.

[21] M. A. Salazar-Aguilar, R. Z. Rı́os-Mercado, and M. Cabrera-Ŕıos. New models for

commercial territory design. Networks and Spatial Economics, 11(3):487–507, 2011.

[22] L. Silva de Assis, P. M. Franca, and F. L. Usberti. A redistricting problem applied

to meter reading in power distribution networks. Computers & Operations Research,

41:65–75, 2014.

[23] A. A. Zoltners and P. Sinha. Sales territory design: Thirty years of modeling and

implementation. Marketing Science, 24(3):313–331, 2005.

Appendix

The results of each tested instance is shown in Table 4, Table 5, and Table 6. Table 4 contains

the results of all instances solved by the model that reached optimal solution in one iteration.

Table 6 contains instances that were solved with constraints (9)-(13) replaced by constraints

(16)-(17). Both tables have nine columns. First three columns of the tables are related with

the characteristics of the problem and state the number, the name, and the discrete variables

of each of the instances. Next three columns are related with the objective function presenting

the computation time in cpu seconds, the solver gap, if any, and the objective value. The

next two columns show the gained imparity
∑

i∈V ri and the imparity quotient 1
|V |

∑
i∈V ri,

which in the model is limited by τ2. Finally the last column is the sum all districts of the

calculated deadhead distance a single vehicle would drive in order to service a district.

26

Table 4: Results for all LPR instances solved with original model in one

iteration

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

1 LPR-A-01-2-20-20 300 0.047 0 28225.72 1 0.0357 1404.31

2 LPR-A-01-3a-20-20 436 0.265 0 19545.77 2 0.0714 1791.73

3 LPR-A-01-3b-20-20 436 0.125 0 24381.38 4 0.1429 1793.53

4 LPR-A-02-2-20-20 553 0.266 0 104262.04 2 0.0377 3382.83

5 LPR-A-02-2-10-20 553 0.265 0.0008 104279.75 2 0.0377 3535.82

6 LPR-A-02-2-05-20 553 0.140 0 104364.48 2 0.0377 3517.42

7 LPR-A-03-2-20-20 1526 0.203 0 338238.35 3 0.0205 6649.08

8 LPR-A-03-2-10-20 1526 0.655 0 338238.35 3 0.0205 6649.08

9 LPR-A-03-3-20-20 2216 0.156 0 277194.12 10 0.0685 7222.31

10 LPR-A-03-3-20-05 2216 0.432 0 277741.11 2 0.0137 6393.14

11 LPR-A-03-3-20-01 2216 0.515 0 278068.71 0 0.0000 6143.33

12 LPR-A-03-3-10-20 2216 0.655 0 278236.73 6 0.0411 7085.64

13 LPR-A-03-4-10-20 2,906 0.795 0 218692.54 6 0.0411 7949.95

14 LPR-A-03-4A-20-20 2906 0.296 0 225444.46 4 0.0274 7674.86

15 LPR-A-03-4A-10-20 2906 0.982 0 230674.05 5 0.0342 7632.82

16 LPR-A-03-4B-20-20 2906 0.390 0 205955.13 9 0.0616 7721.61

17 LPR-A-03-4B-10-20 2906 0.897 0 210081.05 10 0.0685 7942.34

18 LPR-A-03-4D-20-20 2906 0.624 0 234829.70 13 0.0890 7830.63

19 LPR-A-03-4D-10-20 2906 0.789 0.000009 235274.03 16 0.1096 8091.29

20 LPR-A-03-5-20-20 3596 0.374 0 182090.43 11 0.0753 7988.49

21 LPR-A-03-5-10-20 3596 0.733 0 184797.06 11 0.0753 7685.05

22 LPR-A-04-4-20-100 3891 0.748 0 291013.88 11 0.0564 9560.46

23 LPR-A-04-4-20-10 3891 0.748 0 291013.88 11 0.0564 9560.46

24 LPR-A-04-4-20-04 3891 0.858 0 291132.37 7 0.0360 9640.95

25 LPR-A-04-4-20-03 3891 1.357 0.000008 291255.70 5 0.0260 9199.70

26 LPR-A-04-4-20-02 3891 0.702 0.000004 291484.67 3 0.0150 8978.24

27 LPR-A-04-4-20-01 3891 0.874 0 291746.50 1 0.0050 8584.50

28 LPR-A-04-4-10-20 3891 0.390 0 294378.01 10 0.0513 9722.13

29 LPR-A-05-4-20-100 6409 0.889 0 710050.53 17 0.0530 15261.36

30 LPR-A-05-4-20-05 6409 0.593 0.000003 710071.45 14 0.0436 15105.16

31 LPR-A-05-4-20-04 6409 0.624 0.000009 710116.40 12 0.0374 15073.37

32 LPR-A-05-4-20-03 6409 0.624 0 710218.53 9 0.0280 14872.61

33 LPR-A-05-4-20-02 6409 1.435 0 710478.15 6 0.0187 14751.84

34 LPR-A-05-4-20-01 6409 0.718 0.000007 710921.49 3 0.0093 14255.61

35 LPR-B-01-2-20-100 290 0.109 0 28318.27 1 0.0357 1416.61

36 LPR-B-01-2-20-03 290 0.047 0 28527.56 0 0.0000 1259.78

37 LPR-B-02-2-20-100 551 0.234 0 94741.95 0 0.0000 3142.43

38 LPR-B-02-2-10-100 551 0.234 0 95237.12 3 0.0566 3918.10

27

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

39 LPR-B-02-2-09-100 551 0.140 0 95238.63 4 0.0755 3663.00

40 LPR-B-02-2-08-100 551 0.203 0 95325.27 3 0.0566 3466.25

41 LPR-B-02-2-06-100 551 0.218 0 95458.07 3 0.0566 3486.76

42 LPR-B-02-2-05-100 551 0.094 0 95547.84 2 0.0377 3104.21

43 LPR-B-02-2-04-100 551 0.156 0 95680.64 2 0.0377 3124.72

44 LPR-B-02-2-02-100 551 0.198 0 95908.54 2 0.0377 3045.28

45 LPR-B-02-2-01-100 551 0.156 0 95908.54 2 0.0377 3045.28

46 LPR-B-02-2-00-100 551 104.100 0 96820.48 4 0.0755 3708.30

47 LPR-B-03-4-10-100 3287 0.234 0 249796.77 7 0.0429 8086.31

48 LPR-B-03-4-20-100 3287 0.234 0 249074.20 7 0.0429 8297.09

49 LPR-B-03-4-20-04 3287 0.301 0 249090.10 6 0.0368 8186.11

50 LPR-B-03-4-20-03 3287 0.359 0 249119.28 4 0.0245 8143.17

51 LPR-B-03-4-20-02 3287 0.328 0 249150.66 3 0.0184 8253.71

52 LPR-B-03-4-20-01 3287 0.374 0 249227.11 1 0.0061 7895.36

53 LPR-B-04-4-20-100 6293 29.141 0 380014.97 14 0.0565 10120.24

54 LPR-B-04-4-20-05 6293 28.282 0.000004 380016.52 12 0.0484 9888.36

55 LPR-B-04-4-20-04 6293 26.738 0 380076.63 9 0.0363 9733.93

56 LPR-B-04-4-20-03 6293 30.311 0 380221.68 7 0.0282 9123.67

57 LPR-B-04-4-20-02 6293 27.019 0 380536.59 4 0.0161 8622.09

58 LPR-B-04-4-20-01 6293 26.739 0 380785.88 2 0.0081 8282.40

59 LPR-B-05-6-20-100 12203 122.320 0.000009 711108.32 22 0.0549 16270.15

60 LPR-B-05-6-20-05 12203 123.506 0.000009 711122.88 20 0.0499 16281.55

61 LPR-B-05-6-20-02 12203 126.221 0.00001 711699.23 8 0.0200 15629.88

62 LPR-B-05-6-20-01 12203 133.365 0.000007 711990.07 4 0.0100 15005.60

63 LPR-C-01-3-20-100 421 0.218 0 17325.62 5 0.1786 1966.98

64 LPR-C-01-3-20-10 421 0.031 0 17501.45 2 0.0714 1528.21

65 LPR-C-01-3-20-04 421 0.249 0 17635.76 1 0.0360 2090.34

66 LPR-C-01-3-20-03 421 0.234 0 17894.65 0 0.0000 1681.27

67 LPR-C-02-3-20-100 803 0.609 0 58836.93 6 0.1132 4523.47

68 LPR-C-02-3-20-10 803 0.624 0 58847.73 5 0.0943 4461.14

69 LPR-C-02-3-20-04 803 0.452 0 59021.54 2 0.0380 3956.02

70 LPR-C-02-3-20-03 803 0.483 0 59267.68 1 0.0190 3838.51

71 LPR-C-02-3-20-01 803 0.483 0 59583.99 0 0.0000 3407.74

72 LPR-C-03-4-20-100 3351 7.582 0 263035.30 10 0.0614 8354.04

73 LPR-C-03-4-20-05 3351 10.031 0 263123.05 8 0.0491 8361.60

74 LPR-C-03-4-20-04 3351 11.638 0 263171.69 6 0.0368 8282.36

75 LPR-C-03-4-20-03 3351 7.754 0 263321.96 4 0.0245 8089.14

76 LPR-C-03-4-20-02 3351 7.847 0 263404.52 3 0.0184 8023.91

77 LPR-C-03-4-20-01 3351 10.140 0 263760.40 1 0.0061 7419.36

78 LPR-C-04-3-20-100 4312 52.494 0.000009 943293.89 13 0.0469 11323.84

79 LPR-C-04-3-20-04 4312 40.404 0 943318.28 11 0.0397 11437.87

28

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

80 LPR-C-04-3-20-03 4312 102.914 0.00001 943425.82 8 0.0289 10996.33

81 LPR-C-04-3-20-02 4312 99.529 0.000009 943619.75 5 0.0181 10497.89

82 LPR-C-04-3-20-01 4312 102.103 0.000009 944016.38 2 0.0072 10670.64

83 LPR-C-05-4-20-100 7569 225.312 0.000005 853979.50 12 0.0325 15655.47

84 LPR-C-05-4-20-03 7569 94.552 0.000008 854018.26 11 0.0298 15830.33

85 LPR-C-05-4-20-02 7569 119.839 0.000008 854197.80 7 0.0190 15073.15

86 LPR-C-05-4-20-01 7569 180.743 0.000009 854623.55 3 0.0081 15044.66

Table 5: Instances that required more than one iteration

Instance NIV Time Gap Objective Iterations

87 LPR-A-03-4c-10-20 2906 32.324 0.000010 244045.1 3

88 LPR-A-01-3-20-20 436 4.380 0.000009 22276.2 36

89 LPR-B-01-3-20-20 421 2.602 0.000002 24187.8 22

Table 6: Results for model solved with constraints (9)-(13) replaced by

constraints (16)-(17)

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

90 LPR-A-01-2-20-20 272 0.11 0 28225.72 1 0.0357 1404.3

91 LPR-A-02-2-20-20 500 0.61 0 104262.04 2 0.0377 3382.8

92 LPR-A-02-2-05-20 500 0.59 0 104364.48 2 0.0377 3517.4

93 LPR-A-03-2-20-20 1,380 6.44 0 338238.35 2 0.0205 6649.1

94 LPR-A-03-3-20-20 2,070 12.31 0 277194.12 10 0.0685 7222.3

95 LPR-A-03-3-10-20 2,070 12.11 0.000009 278234.22 6 0.0411 7085.6

96 LPR-A-03-4A-20-20 2,760 10.53 0 225444.46 4 0.0274 7674.9

97 LPR-A-03-4A-10-20 2,760 10.23 0 230674.05 5 0.0342 7632.8

98 LPR-A-03-4B-20-20 2,760 10.03 0 205955.13 9 0.0616 7721.6

99 LPR-A-03-4B-10-20 2,760 8.32 0 210081.05 10 0.0685 7942.3

100 LPR-A-03-4C-20-20 2,760 8.55 0.000008 282045.70 12 0.0822 8982.5

101 LPR-A-03-4C-10-20 2,760 6.51 0.00001 283933.59 10 0.0685 8827.2

102 LPR-A-03-5-20-20 3,450 9.89 0 182132.80 10 0.0685 7679.1

103 LPR-A-03-5-10-20 3,450 5.52 0 184825.89 9 0.0616 7597.0

104 LPR-A-04-4-20-20 3,696 24.32 0 291013.88 11 0.0564 9560.5

105 LPR-A-04-4-10-20 3,696 12.17 0 294378.01 10 0.0513 9722.1

106 LPR-A-04-4-20-05 3,696 22.61 0.000009 291604.11 2 0.0103 8786.1

107 LPR-A-05-4-20-02 6,088 57.30 0 711398.03 1 0.0031 14103.1

108 LPR-A-05-4-20-01 6,088 60000.00 - - - - -

29

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

109 LPR-B-01-2-20-100 262 0.13 0 28318.27 1 0.0357 1416.6

110 LPR-B-01-2-20-03 262 0.11 0 28527.56 0 0.0000 1259.8

111 LPR-B-02-2-20-100 498 0.66 0 94741.95 0 0.0000 3142.4

112 LPR-B-02-2-10-100 498 0.77 0 95237.12 3 0.0566 3918.1

113 LPR-B-02-2-09-100 498 0-608 0 95238.63 4 0.0755 3663.0

114 LPR-B-02-2-08-100 498 0.62 0 95325.27 3 0.0566 3466.3

115 LPR-B-02-2-06-100 498 0.61 0 95458.07 3 0.0566 3486.8

116 LPR-B-02-2-05-100 498 0.72 0 95547.84 2 0.0377 3104.2

117 LPR-B-02-2-04-100 498 0.72 0 95680.64 2 0.0377 3124.7

118 LPR-B-02-2-01-100 498 0.69 0 95908.54 2 0.0377 3045.3

119 LPR-B-02-2-00-100 498 0.59 0 96820.48 4 0.0755 3708.3

120 LPR-B-03-4-10-100 3,124 8.91 0 249796.77 7 0.0429 8086.3

121 LPR-B-03-4-20-100 3,124 7.58 0 249074.20 7 0.0429 8297.1

122 LPR-B-03-4-20-04 3,124 12.93 0 249227.11 1 0.0061 7895.4

123 LPR-B-04-4-20-100 6,045 26.83 0 380014.97 14 0.0565 10120.2

124 LPR-B-04-4-20-05 6,045 27.22 0 380633.89 3 0.0121 8432.6

125 LPR-B-04-4-20-04 6,045 27.25 0 380785.88 2 0.0081 8282.4

126 LPR-B-04-4-20-03 6,045 28.74 0 380996.61 1 0.0040 8476.3

127 LPR-B-04-4-20-02 6,045 28.58 0 380996.61 1 0.0040 8476.3

128 LPR-B-04-4-20-01 6,045 32.04 0.000009 381357.10 0 0 8497.4

129 LPR-B-05-6-20-100 11,802 125.55 0 711108.32 22 0.0549 16270.2

130 LPR-B-05-6-20-05 11,802 126.58 0.00001 711990.07 10 0.0249 15005.6

131 LPR-B-05-6-20-02 11,802 60000.00 - - - - -

132 LPR-B-05-6-20-01 11,802 60000.00 - - - - -

133 LPR-C-01-3-20-100 393 0.13 0 17325.62 5 0.17857 1967.0

134 LPR-C-01-3-20-10 393 0.12 0 17894.65 0 0 1925.1

135 LPR-C-02-3-20-100 750 0.64 0 58836.93 10 0.1887 4523.5

136 LPR-C-02-3-20-10 750 0.66 0 59267.68 1 0.0189 3838.5

137 LPR-C-03-4-20-100 3,188 8.42 0 263035.30 11 0.0675 8354.0

138 LPR-C-03-4-20-05 3,188 7.63 0.000006 263527.73 3 0.0184 7994.3

139 LPR-C-03-4-20-04 3,188 11.06 0.000003 263760.40 1 0.0061 7419.4

140 LPR-C-03-4-20-03 3,188 8.16 0 263760.40 1 0.0061 7419.4

141 LPR-C-03-4-20-02 3,188 7.72 0 263883.61 0 0 7401.4

142 LPR-C-03-4-20-01 3,188 14.57 0.000009 263883.61 0 0 7389.7

Note: “-” means no feasible solution was reported.

30

