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Abstract 
 
This paper addresses a supply chain design problem based on a two-echelon single-product 
system. In the first echelon the plants transport the product to distribution centers. In the 
second echelon the distribution centers transport the product to the customers. Several 
transportation channels are available between nodes in each echelon, with different 
transportation costs and times. The decision variables are the opening of distribution centers 
from a discrete set, the selection of the transportation channels, and the flow between 
facilities. The problem is modeled as a bi-objective mixed-integer program. The cost 
objective aggregates the opening costs and the transportation costs. The time objective 
considers the longest transportation time from the plants to the customers. An implementation 
of the classic epsilon-constraint method was used to generate true efficient sets for small 
instances of the problem, and approximate efficient sets for larger instances. A metaheuristic 
algorithm was developed to solve the problem, as the major contribution of this work. The 
metaheuristic algorithm combines principles of greedy functions, Scatter Search, Path 
Relinking and Mathematical Programming. The large instances were solved with the 
metaheuristic algorithm and a comparison was made in time and quality with the epsilon-
constraint based algorithm. The results were favorable to the metaheuristic algorithm for large 
instances of the problem. 
 
Keywords: metaheuristic; multiobjective; supply chain design; location; transportation. 
 
1.   Introduction 
 
In recent years Supply Chain Design has been addressed by many authors, and several 
reviews have been published (Aikens, 1985; Thomas and Griffin, 1996; Vidal and 
Goetschalckx, 1997; Beamon, 1998; Klose and Drexel, 2005; Sahin and Sural, 2007; Melo et 
al., 2009). The decisions imply strategic aspects related with location, capacities and 
technology selection, and tactical aspects like product allocation and transportation flows, 
among others. 
 
In this paper we address a previous work by the authors (Olivares-Benitez et al., 2012) where 
a supply chain design problem, based on a two-echelon single-product system was introduced. 
The problem considers the location of facilities, the selection of transportation channels, the 
calculation of the flows between facilities, and the time-cost tradeoff. In particular, the 
selection of transportation channels produces a bi-objective optimization problem where cost 
and lead time must be minimized. The transportation channels can be seen as transportation 
modes (rail, truck, ship, airplane, etc.), shipping services (express, normal, overnight, etc.) or 
as transportations offers from different companies. Each option has a cost and time associated, 
and one must be selected to transport the product between nodes in each echelon. The 
problem was solved in an a posteriori approach, obtaining the non-dominated solutions set to 
be presented to the decision maker. 
 
The objective in this new research was to develop a metaheuristic algorithm to solve the 
problem introduced by Olivares-Benitez et al. (2012). It was demonstrated that the problem 
belongs to the NP-Hard type. Hence it is necessary to use a heuristic method to solve large 



2 
 

instances of the problem. The metaheuristic algorithm proposed here hybridizes elements 
from greedy functions, Scatter Search, Path Relinking, and Mathematical Programming. This 
type of hybrids, also named matheuristics, is being used in recent research but there are not 
applications in supply chain design yet. 
 
The review in Section 2 describes works that connect the cost-time tradeoff in supply chain 
design, and in the most recent studies, the consideration of time tied to transportation 
decisions in multiobjective problems. According to the analysis, the use of matheuristic 
algorithms and transportation channel selection in the context of supply chain design 
represent major contributions of this paper. 
 
The problem addressed along with the mathematical model is described in detail in Section 3. 
The methods used to solve the problem are detailed in Section 4. For small instances the 
epsilon-constraint based algorithm proposed by Olivares-Benitez et al. (2012) was used to 
obtain the true efficient sets. The largest instance solved with the epsilon-constraint based 
algorithm to obtain its true efficient set has 5 plants, 5 potential distribution centers, and 20 
customers. To construct approximate efficient sets for larger instances the same method was 
used with a time limit of 3600 seconds per point. Given the complexity of the problem, a 
metaheuristic algorithm was developed in this work to obtain approximate efficient sets for 
large instances. The largest instance where an approximate efficient set was obtained has 50 
plants, 50 potential distribution centers, and 100 customers. The generation of instances and 
the computational evaluation are described in Section 5. Finally, Section 6 presents the 
conclusions of this work. 
 
2.   Literature Review 
 
One characteristic that differentiates the problem introduced by Olivares-Benitez et al. (2012) 
from previous works in the literature is the study of the tradeoff between lead time and cost in 
the supply chain design, related to transportation choices. The review by Current et al. (1990) 
makes evident that the balance of these criteria had not been studied extensively. After that, 
Arntzen et al. (1995) addressed the supply chain design problem for a company that handled 
the cost-time tradeoff as a weighted combination in the objective function. The decision 
variable was the quantity of product to be sent through each transportation mode available. 
Transportation time was variable with respect to the quantity shipped. The problem was 
solved using elastic penalties for violating constraints, and a row-factorization technique. 
Zeng (1998) emphasized the importance of the lead time-cost tradeoff, associated to the 
transportation modes available between pairs of nodes in the network. A mixed-integer 
programming model was proposed to design the supply chain optimizing both objectives. In 
this work facility location was not addressed. The method proposed was a dynamic 
programming algorithm to construct the efficient frontier assuming the discretization of time. 
In the model proposed by Graves and Willems (2005) cost and time were combined in the 
objective function. The supply chain was configured selecting alternatives at each stage of the 
production and distribution network. A dynamic programming algorithm was used to solve 
this problem. 
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In recent years multiobjective problems in supply chain design have been treated with more 
emphasis taking advantage of increased computational resources and new methods. Chan et 
al. (2006) presented a multi-objective model that optimized a combined objective function 
with weights. Some of the criteria included cost and time functions, and one of the 
components of time was transportation time. Transportation time varied linearly with the 
quantity transported. The model included stochastic components, but facility location was not 
considered. A genetic algorithm was the base of an iterative method where scenarios with 
changing weights were solved. Altiparmak et al. (2006) proposed a model with three objective 
functions: to minimize total cost, to maximize total customer demand satisfied, and to 
minimize the unused capacity of distribution centers. Here, transportation time was handled as 
a constraint that determined a set of feasible distribution centers able to deliver the product to 
the customer before a due date. They proposed a procedure based on a genetic algorithm to 
obtain a set of non-dominated solutions. In the work by ElMaraghy and Majety (2008) a 
model was proposed to optimize cost, including the cost of late delivery. The model 
considered the dynamic nature of the decisions. They used commercial optimization software 
to solve the model, analyzing different scenarios. The review by Farahani et al. (2010) about 
multi-criteria models for facility location problems describes some works where metrics of 
cost and service level are considered. The metaheuristic methods mentioned include 
multiobjective versions of Scatter Search, Tabu Search, Simulated Annealing, Ant Colony 
Optimization (ACO), and Particle Swarm Optimization (PSO). However, some other 
metaheuristics that were created for multiobjective applications were also mentioned, like 
Simple Evolutionary Algorithm for Multi-Objective Optimization (SEAMO), Strength Pareto 
Evolutionary Algorithm version 2 (SPEA2), Pareto Envelop based Selection Algorithm 
(PESA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Vector Evaluated Genetic 
Algorithm (VEGA), and the Multi-Objective Genetic Algorithm (MOGA). 
 
More recently, several works have appeared for multiobjective supply chain design. Pishvaee 
et al. (2010) studied a model for a forward/reverse logistics network design from a bi-
objective optimization perspective. The objectives to optimize were the total cost of the 
system and the fulfillment of the demand and return rates. Although they considered lead time 
into their model, similar to Altiparmak et al. (2006) it was a considered in the meeting of a 
due date, and not related to transportation alternatives. They developed a memetic algorithm 
to solve this NP-hard problem. Moncayo-Martinez and Zhang (2011) proposed a model 
similar to that of Graves and Willems (2005) where activities must be selected to design the 
supply chain. This was a bi-objective model that optimized cost and lead time in a multi-
echelon network. The decision variable is the selection of the resource for a certain activity in 
the supply chain. They used a Pareto Ant Colony Optimization metaheuristic to obtain the 
Pareto Optimal Set. Liao et al. (2011) also studied a multiobjective problem for supply chain 
design. In this case they integrated location and inventory decisions. The objectives were the 
minimization of cost, the maximization of the fill rate, and the maximization of demand 
fulfilled within a coverage distance. The lead time was implied in the cost of the safety stock, 
but it was not related to transportation decisions. The method proposed was a hybrid of 
NSGA-II and an assignment heuristic. Pinto-Varela et al. (2011) presented a bi-objective 
optimization model for the design of supply chains considering economic and environmental 
criteria. In their model, time was considered since the point of view of a multi-period 
approach. Different transportation modes may exist, but they are not associated to the time. 
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They solved three small examples with mathematical programming commercial software. The 
review by Mansouri et al. (2012) emphasized the importance of multiobjective optimization 
techniques as decision support tool in supply chain management. Although order promising 
decisions and network design decisions were identified as important criteria, none of the 
works reviewed integrated them in a multiobjective approach. Chaabane et al. (2012) 
presented a multi-period multiobjective optimization problem where cost and environmental 
objectives were optimized. In their mixed-integer programming model, the selection of 
transportation modes was considered as a decision variable but it was not connected with 
time. They used mathematical programming commercial software to solve small instances of 
the problem. Sadjady and Davoudpour (2012) studied a problem for supply chain design 
where cost and time were tied to transportation alternatives. The approach, however, was to 
optimize a single objective function where lead time from the transportation alternative was 
transformed into a cost function. The cost objective function is optimized using a Lagrangian 
relaxation method. As proposed by Olivares-Benitez et al. (2012), the cost and time criteria 
may not be comparable and should be treated in separate objectives. 
 
It is important to highlight some works that solve real cases for supply chain design. 
Altiparmak et al. (2006) applied their genetic algorithm for a supply chain design for plastic 
products in Turkey. Pati et al. (2008) solved a case for the Indian paper recycling industry. 
Sousa et al. (2008) applied their models for the design of an agrochemicals supply chain. 
Gumus et al. (2009) solved the case for a company in the alcohol free beverage sector. 
Moncayo-Martinez and Zhang (2011) applied a Pareto Ant Colony Optimization 
metaheuristic to design a supply chain for Bulldozer production. Pinto-Varela et al. (2011) 
presented a bi-objective model for designing supply chains in Portugal. Chaabane et al. (2012) 
solved a case for aluminum production. Funaki (2012) proposed a very complete model and a 
dynamic programming algorithm to design a supply chain for a machinery product. Marvin et 
al. (2012) formulated a mixed integer linear programming problem to design a supply chain 
for ethanol biorefining. Paksoy et al. (2012) applied fuzzy optimization for the design of a 
vegetable oil supply chain. These works illustrate an increasing interest in the application of 
supply chain design models in industry. 
 
Finally, it is interesting to note the review by Griffis et al. (2012) where they presented the use 
of metaheuristics in logistics and supply chain management from year 1991 to 2012. Near 
15% of the applications were in the area of supply chain design.  They highlight the use of 
Simulated Annealing and Tabu Search among local search metaheuristics, with minor 
attention in the literature to greedy randomized adaptive search procedure (GRASP), variable 
neighborhood search (VNS) and others. In terms of population search techniques, the most 
popular have been Genetic Algorithms and Ant Colony Optimization, with fewer mentions for 
Scatter Search, Particle Swarm Optimization, and others. However in this review it is evident 
the few applications of multiobjective metaheuristics, especially for supply chain design 
problems. 
 
The research described above shows that few works considered the cost–time tradeoff derived 
from the transportation channel selection in the supply chain design. Other differences with 
the problem addressed in this research are explained in the following lines. First, in some 
works the transportation time is a linear function of the quantity transported. In the model 
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presented here, a single time is used for each arc between nodes, which represents more real 
conditions in the operation of transportation. Second, in many studies the time-cost tradeoff 
has been addressed from a single objective perspective transforming the time in a cost 
function. Here, the time and cost are treated as separate criteria allowing for the construction 
of sets of non-dominated solutions. This approach may be a good choice when the preference 
of the decision maker for one of the objectives is not known, or when the criteria cannot be 
compared easily. Third, in many multiobjective problems for supply chain design, the cost-
time tradeoff was not associated to the selection of the transportation channel. In the problem 
addressed here, the selection of transportation from several alternatives has a direct impact in 
the lead time objective. The combination of these elements and traditional supply chain 
design decisions makes relevant the problem addressed, and the necessity to solve it. 
 
In terms of the algorithm developed here, what we propose is a hybridization of greedy 
functions with Scatter Search, Path Relinking and mathematical programming software, 
which produces high quality solutions for a complex problem. In the literature, the techniques 
preferred to solve these multiobjective problems with the a posteriori approach are variations 
of evolutionary algorithms. The type of hybrids presented in this work, also named 
matheuristics, has not been used before in the context of supply chain design problems. 
However other applications can be seen in the book edited by Maniezzo et al. (2010). 
 
3.   Problem description and mathematical model 
 
The problem introduced by Olivares-Benítez et al. (2012) was a two-echelon distribution 
system for one product in a single time period. A set of manufacturing plants produce and 
send the product to distribution centers in the first stage. Later, the distribution centers 
transport the product to the customers. The number and location of plants and customers, 
along with demands and capacities respectively, are known. The distribution centers must be 
selected from a discrete set of potential locations with fixed opening costs and limited 
capacities. A single sourcing policy was assumed for the transportation from the distribution 
centers to the customers. Figure 1 depicts the structure of the supply chain. 
 

[Figure 1 goes about here] 
 
The transportation of the product from one facility to the other in each echelon of the network 
is done selecting one of several alternatives available. Each transportation channel represents 
a type of service with associated cost and time parameters. These alternatives can be obtained 
from offers of different companies, the availability of different types of service for each 
company (e.g. express and regular), or the use of different modes of transportation (e.g. truck, 
rail, airplane, ship or inter-modal). It was assumed that a faster service is usually more 
expensive. The capacity of the transportation channel was assumed as unlimited, considering 
that any capacity can be contracted. 
 
A bi-objective mixed-integer programming model was proposed to solve the problem 
described previously, as follows. 
 
Sets: 
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I : set of plants i 
J : set of potential distribution centers j 
K : set of customers k 
LPij : set of arcs l between nodes i and j; i ∈ I, j ∈ J 
LWjk : set of arcs l between nodes j and k; j ∈ J, k ∈ K 
 
Parameters: 
CPijl : cost of transporting one unit of product from plant i to distribution center j using arc 

l; i ∈ I, j ∈ J, l ∈ LPij 
CWjkl : cost of sending one unit of product from distribution center j to customer k using arc 

l; j ∈ J, k ∈ K, l ∈ LWjk 
TPijl : time for transporting any quantity of product from plant i to distribution center j 

using arc l; i ∈ I, j ∈ J, l ∈ LPij 
TWjkl : time for transporting any quantity of product from distribution center j to customer k 

using arc l; j ∈ J, k ∈ K, l ∈ LWjk 
MPi : capacity of plant i; i ∈ I 
MWj : capacity of distribution center j; j ∈ J 
Dk : demand of customer k; k ∈ K 
Fj : fixed cost for opening distribution center j; j ∈ J 
 
Decision variables: 
Xijl : quantity transported from plant i to distribution center j using arc l; i ∈ I, j ∈ J, l ∈ 

LPij 
Yjkl : quantity transported from distribution center j to customer k using arc l;  j ∈ J,  

k ∈ K, l ∈ LWjk 
Zj : binary variable equal to 1 if distribution center j is open and equal to 0 otherwise; j ∈ 

J 
Aijl : binary variable equal to 1 if arc l is used to transport product from plant i to 

distribution center j and equal to 0 otherwise; i ∈ I, j ∈ J, l ∈ LPij 
Bjkl : binary variable equal to 1 if arc l is used to transport product from distribution center 

j to customer k and equal to 0 otherwise; j ∈ J, k ∈ K, l ∈ LWjk 
 
Auxiliary variables: 
T : longest time that takes sending product from any plant to any customer 
1
jE  : longest time in the first echelon of the supply chain for active distribution center j, 

i.e. ( )ijlijllij ATPE
,

1 max= ; i ∈ I, j ∈ J, l ∈ LPij 
2
jE  : longest time in the second echelon of the supply chain for active distribution center j, 

i.e. ( )jkljkllkj BTWE
,

2 max= ; j ∈ J, k ∈ K, l ∈ LWjk 

 
MODEL 1: 
 
 ( )21,min ff  
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 021 ≥−− jj EET  j ∈ J (3) 
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B  k ∈ K (10) 

 1≤∑
∈ ijLPl

ijlA  i ∈ I,  j ∈ J (11) 

 1≤∑
∈ jkLWl

jklB  j ∈ J, k ∈ K (12) 

 0≥− ijlijl AX  i ∈ I,  j ∈ J, l ∈ LPij (13) 
 0≥− jkljkl BY  j ∈ J,  k ∈ K, l ∈ LWjk (14) 
 0≥− ijlijli XAMP  i ∈ I,  j ∈ J, l ∈ LPij (15) 
 0≥− jkljklj YBMW  j ∈ J,  k ∈ K, l ∈ LWjk (16) 

 0≥−∑ ∑
∈ ∈

j
Ii LPl

ijl ZA
ij

 j ∈ J (17) 

 0,,,, 21 ≥jklijljj YXEET  i ∈ I,  j ∈ J, k ∈ K, l ∈ LPij, l ∈ LWjk (18) 
 { }1,0,, ∈jklijlj BAZ  i ∈ I,  j ∈ J, k ∈ K, l ∈ LPij, l ∈ LWjk (19) 
 
In this model, objective function (1) minimizes the sum of the transportation cost and the cost 
for opening distribution centers. Objective function (2) minimizes the longest transportation 
time from the plants to the customers through each distribution center. Constraints (3)-(5) 
calculate the longest transportation time in each echelon for each distribution center. 
Constraints (6) force the demand satisfaction for each customer. Constraints (7) imply that the 
capacities of the plants are not exceeded. Constraints (8) meet two conditions: that the flow 
going out from a distribution center must not exceed its capacity, and that the flow of product 
is done only through open distribution centers. Constraints (9) keep the flow balance at each 
distribution center. Constraints (10) force the single source policy from distribution centers to 
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customers. The selection of only one transportation channel between facilities is required in 
constraints (11) and (12). Constraints (13)-(17) establish links between the sets of variables 
Aijl, Bjkl, Xijl, Yjkl and Zj to avoid incoherent solutions. Constraints (18) and (19) are for 
declaration of variables. 
 
About the computational complexity of the problem, it has been demonstrated that the well-
known UFLP (Uncapacitated Fixed-Charge Facility Location Problem) is polynimially 
reducible to the model described above (Olivares-Benitez et al., 2012). Since the UFLP is NP-
hard (Cornuejols et al., 1990), the model above is NP-hard too. 
 
4.   Exact and metaheuristic methods 
 
4.1   Exact method 
 
The method selected for generating true efficient sets was the epsilon-constraint method. In a 
multiobjective optimization problem, this method optimizes a series of single objective sub-
problems. One of the objective functions is selected to be optimized and the other objective 
functions are transformed into constraints and added to the set of constraints, as follows. 
 
 ( ) ( ){ }Xxkixfxf iik ∈≠≤ ,,:min ε  
 
Where f = (f1,…,fp) is the set of p real-valued objective functions, x is a solution to the 
problem and X is the set of feasible solutions. The values of vectors εi are changed 
systematically to obtain the efficient frontier for the problem. Further details can be seen in 
Steuer (1989) and Ehrgott (2005) as references.  
 
Olivares-Benitez et al. (2012) developed an implementation of the epsilon-constraint method 
that uses the solutions generated during the process to accelerate the construction of the true 
efficient set. This version of the epsilon-constraint method, named “Backward epsilon-
constraint method with estimated lower limit for f2” (ReC), was used to construct the true 
efficient sets for several small instances generated artificially. The procedure was coded in 
ANSI C. The single-objective subproblems of the epsilon-constraint based algorithm were 
solved using the CPLEX 11.1 callable library (ILOG, 2008). 
 
4.2   Metaheuristic method 
 
Because of the computational complexity of the problem, relatively large instances may no 
longer be tractable from an exact optimization perspective. Thus the development of a 
heuristic method is suitable to find an approximate set of efficient solutions. In this work we 
propose a metaheuristic algorithm to approximate efficient sets of the problem for large 
instances. This is a population-based metaheuristic that uses some principles of Scatter 
Search, Path Relinking (Laguna and Marti, 2003), greedy functions and mathematical 
programming. Historically, greedy functions have been used in the design of heuristics to 
solve hard combinatorial optimization problems. In the framework of metaheuristics, greedy 
functions are used to construct initial solutions in the GRASP (Resende and Ribeiro, 2003; 
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Talbi, 2009) and are used for a good approximation in other local search heuristics. Several 
metaheuristic implementations have combined effectively GRASP and Scatter Search or 
GRASP and Path Relinking to tackle difficult combinatorial optimization problems, and 
recently this hybridization has been proposed for multiobjective combinatorial optimization 
problems (Marti et al., 2011). In the metaheuristic proposed in this work we wanted to keep 
the good approximation achieved by greedy functions with the population-based approach 
given by Scatter Search to construct approximate efficient sets. Additionally, the use of Path 
Relinking was added to improve the quality of the solutions obtained in a final combination 
stage. This hybrid also uses mathematical programming software embedded into the 
metaheuristic algorithm. This idea is being studied in recent works (Maniezzo et al. 2010) to 
increase the power of metaheuristic algorithms.  
 
The metaheuristic algorithm proposed in this work is composed of three main methods. These 
are a constructive method, an improvement method, and a combination method. These 
methods use a basic procedure to construct a solution based on a decomposition of the 
problem. It is important to explain this hierarchical construction procedure before going to the 
details of the methods. 
 
4.2.1   Hierarchical construction procedure 
 
A solution is constructed hierarchically starting with the selection of the distribution centers to 
be opened. Each method uses a specific strategy to perform this selection as will be described 
below. The next decision in the hierarchy is the selection of the transportation channel 
between each pair of facilities. The selection of the transportation channel is done using a 
weighted greedy function. This greedy function has a component based on the transportation 
cost and the other component based on the transportation time as shown in equations (20) and 
(21). These functions are normalized to avoid the scaling problem. A higher value of the 
greedy function implies a worse selection considering that both criteria, time and cost, are 
minimized: 
 

( ) ( ) ( )ijlLPlJjIi

ijl
t

ijlLPlJjIi

ijl
cijl TP

TP
CP

CP
arc

ijij ∈∈∈∈∈∈

+=
,,,,

maxmax
λλφ      (20) 

( ) ( ) ( )jklLWlKkJj

ijl
t

jklLWlKkJj

jkl
cjkl TW

TW
CW

CW
arc

jkjk ∈∈∈∈∈∈

+=
,,,,

maxmax
λλφ     (21) 

 
The weights λc and λt for the greedy functions are systematically changed each iteration of the 
constructive method and inherited through the rest of the algorithm. The aim of weights 
variation is to obtain solutions well distributed along the efficient frontier instead of a 
concentration of solutions in the extremes of the frontier. More details about the procedure to 
calculate these weights are given below in the explanation of the constructive method. 
 
Once the transportation channel with the best value is selected, the problem can be 
decomposed by echelon. First, the flow of product from distribution centers to the customers 
can be obtained solving a generalized assignment problem (GAP) as depicted in Figure 2. The 
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solution to the GAP assigns customers to distribution centers, and all the demand of the 
customer is satisfied by the distribution center assigned. The costs used in the formulation of 
the GAP correspond to the values of the greedy functions ( )jklarcφ . Later, the flow of product 
from the plants to the distribution centers is obtained solving a transportation problem (TP) as 
shown in Figure 2. The demand at the open distribution centers is the sum of the demands of 
the customers assigned to them previously. In this step the costs in the TP are the values of the 
greedy functions ( )ijlarcφ . This basic procedure is called to construct a solution in each 
method. The GAP and the TP are solved using mathematical programming commercial 
software. 
 

[Figure 2 goes about here] 
 
4.2.2   General algorithm 
 
The scheme of the algorithm proposed is presented in Figure 3. A strategy of elitism is used to 
avoid losing solutions after each method and then converging toward the true efficient set. 
The solutions from the constructive and improvement methods are used to update the 
approximate efficient set NDS (Non-dominated Solutions) using the dominance relation of the 
new solutions with respect to those already in NDS. After the execution of each method a 
reference set (RS) is constructed combining the solutions in the updated set NDS and the 
“diverse” solutions obtained from the method. The diverse solutions are selected among those 
close to the current set NDS in the objective functions space. The dotted lines in Figure 4 
represent calls and updates to the NDS set. Finally, in the post-processing stage the last set RS 
is used in the combination method. The solutions obtained in this method are used to update 
the approximate efficient set NDS. The final result of the algorithm is the approximate 
efficient set in the last NDS set. 
 

[Figure 3 goes about here] 
 
The constructive method generates a fixed number of solutions. For each solution, the 
selection of the distribution centers to be opened is done randomly. The weights (λc, λt) for 
the greedy functions in equations (20) and (21) are generated systematically for each solution 
in a linear combination between (1-λf, 0) and (0, 1-λf), considering the total number of 
solutions to be generated. These weights λc and λt are used to select the transportation 
channels in each solution, and their values are inherited through the rest of the algorithm. 
Although the distributions centers are selected randomly in the constructive method, they 
conserve assigned values of λc and λt for their application in the rest of the algorithm. The 
parameter λf represents the relative frequency of selection of a certain arc or distribution 
center with respect to the total number of constructed solutions along the iterations. The 
parameter λf is updated each iteration of the constructive method. This long term memory 
promotes the selection of new elements each iteration of the constructive method. Once the 
distribution centers are selected for each generated solution, the hierarchical construction 
procedure is called to complete the construction of that solution. The algorithm for the 
constructive method is shown in Figure 4. 
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[Figure 4 goes about here] 
 
The solutions obtained in the constructive method create and update a set of non-dominated 
solutions called NDS. The solutions in NDS are included in a reference set named RS. To 
provide variety to the reference set some dominated solutions are included. These dominated 
solutions are taken from the points closest to the current efficient frontier in NDS. 
 
To guide movements in the improvement and combination methods, a greedy function for the 
distributions centers was formulated, similar to that of the arcs, as shown in equations (22 - 
24). 
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The improvement method uses local search and explores three types of neighborhoods for 
each solution in the reference set. These correspond to movements of opening, closing and 
exchange of distribution centers. For each neighborhood a sorted list is created according to 
the value of the aggregated greedy function ( )jdcφ  in equation (24). Each element in the list 
is taken at a time in that order as described below: 
 

• Closing of facilities CN (s). The open distribution centers are sorted in descending 
order by ( )jdcφ  value, i.e. from worst to best. 

• Opening of facilities ON (s). The closed distribution centers are sorted in ascending 
order by ( )jdcφ  value, i.e. from best to worst. 

• Exchange of facilities EN (s). The previous two lists are created. One open facility is 
closed and one closed facility is opened. The lists are explored taking as pivot the list 
for opening. 

 
To accept one movement the dominance of the new solution is considered. If an infeasible or 
dominated solution is created by the movement, it is rejected. Figure 5 shows the acceptance 
criterion and direction of improvement where weakly and strongly non-dominated solutions 
are accepted. A short term memory is conserved to avoid cycling during the improvement 
method. After a movement is done, the dashed areas in Figure 5 indicate the direction of 
improvement allowed for a new movement. The algorithm for the improvement method is 
shown in Figure 6. 
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[Figure 5 goes about here] 

 
[Figure 6 goes about here] 

 
After a number of iterations applying the constructive and improvement methods, the 
combination method is used as a post-processing stage. It is based on Path Relinking (Laguna 
and Marti, 2003) to obtain a set of solutions for each pair of solutions from a reference set RS. 
One of the solutions is selected as “initiating solution” and the other is selected as “guiding 
solution”. The combination makes movements in the vector of values Zj of the distribution 
centers and completes a solution calling to the hierarchical construction procedure. The path 
is constructed giving priority to closing movements until infeasibility is found. Then, a 
distribution center that was closed with respect to the guiding solution is now opened. The 
construction of the path follows giving preference to closing movements. The criterion shown 
in Figure 5 is used to accept these movements and the new solutions are used to update the set 
of no-dominated solutions NDS. Figure 7 shows the algorithm for the combination method. 
 

[Figure 7 goes about here] 
 
5.   Computational Evaluation 
 
The specific goals accomplished by the experiments are as follows.  Firstly, to solve relative 
small size instances with the exact method to have a reference to compare with the 
metaheuristic algorithm. Also, a variation of the exact method was used to obtain approximate 
efficient sets for the comparison in larger instances. The variation consisted in running the 
optimization software for each point of the epsilon-constraint algorithm with a time limit of 
3600 seconds. These approximate efficient sets were compared with those obtained with the 
metaheuristic algorithm to determine their quality, and the computational run times were 
compared to evaluate the efficiency of the metaheuristic algorithm. 
 
To perform the computational study, instances of different sizes were randomly generated as 
described in Olivares-Benitez et al. (2012). The reader is invited to consult that work to have 
the details of the parameters generation. The sizes generated are shown in Table 1, where the 
group code indicates: [number of plants - number of potential distribution centers - number of 
customers - number of arcs between nodes]. 
 

[Table 1 goes about here] 
 
5.1   True efficient sets 
 
The “Backward epsilon-constraint method with estimated lower limit for f2” (ReC) algorithm 
was used to solve the generated instances (Olivares-Benitez et al., 2012). The procedure was 
coded in C and compiled with Visual Studio 6.0. The CPLEX 11.1 callable library (ILOG SA, 
2008) was used to solve optimally the sub-problems involved in the epsilon-constraint based 
algorithm. These routines were run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The true 
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efficient sets of the small instances of groups 5-5-5-2, 5-5-5-5, and 5-5-20-2 were obtained. 
The run times were recorded for comparison with the metaheuristic algorithm. 
 
Figure 8 shows the efficient frontier for the instance number 2 of the group 5-5-5-5. The 
efficient frontier for the rest of the mentioned instances is similar. The points are not 
connected because of the discretization of time units. It is evident the tradeoff between cost 
(f1) and time (f2).  
 

[Figure 8 goes about here] 
 
5.2   Approximate efficient sets using the epsilon-constraint based algorithm 
 
To have a comparison for large instances, the ReC algorithm was used with a time limit of 
3600 seconds per each value of ε. The CPLEX 9.1 callable library (ILOG SA, 2005) was used 
to solve optimally the sub-problems involved in the epsilon-constraint based algorithm. These 
routines were run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The approximate efficient 
sets and the run times were recorded for comparison with the metaheuristic algorithm. 
 
5.3   Approximate efficient sets using the metaheuristic algorithm 
 
The metaheuristic algorithm was coded in C. The CPLEX 9.1 callable library (ILOG SA, 
2005) was used to solve the GAP and TP sub-problems generated within the algorithm. The 
algorithm was run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The number of 
constructed solutions NCS in the metaheuristic algorithm was set to 100 solutions. The 
number of iterations before the execution of the combination method was set to 10. 
 
5.4   Comparisons 
 
To make comparisons of the efficient frontiers obtained with the algorithms several metrics 
were used. The computing time and the number of non-dominated points |Si| are reported. The 
ratio RPOS (Si) (Altiparmak et al., 2006) is calculated also. This ratio is able to compare more 
than two efficient sets. To make the computations, a reference efficient set P must be 
constructed with the union of the efficient solutions of all the r sets, and the dominated 
solutions are eliminated. This metric indicates the ratio of points from the set Si that belong to 
the reference efficient set P. A higher value of this metric is better, indicating the quality of 
the approximate efficient set obtained. 
 
Additionally, based on the features of the problem treated in this work, a special metric was 
designed, although the principle may be adapted to other bi-objective combinatorial 
optimization problems. The discretization of objective f2 and the number of objectives allows 
proceeding as follows for a pair of sets S1 and S2. A set of values T is constructed with each 
value of objective f2 where values for objective f1 exist in both sets: 

 
( ) ( ) ( ) ( ) ( ) ( ){ }sfsfsfsfSsSssfsfT ʹ′=∧ʹ′∃∧∃∈ʹ′∈∨= 22112122 ,,'  
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Then an average deviation Dave is calculated with the ratios of objective f1 for each value of f2 
in the set T, as shown in equation (25). 
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=

= 21

21

:
:

  ∀ s ∈ S1, s’ ∈ S2   (25) 

 
The idea is very simple. For a fixed value of objective f2 the ratio f1 (s) / f1 (s’) is calculated 
only if the values of objective f1 are available in both sets. Then the average of these ratios is 
calculated. The minimum Dmin of these ratios is calculated with equation (26). 
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For these metrics Dave and Dmin, the true efficient sets and the approximate efficient sets 
obtained with the ReC algorithm take place in the computations as S2, and the approximate 
efficient sets obtained with the metaheuristic algorithm are considered as S1. 
 
Table 2 and Table 3 show the results for five instances of each size. The results of the epsilon-
constraint based algorithm are identified with the code [ReC] and the results of the 
metaheuristic algorithm are identified with the code [MH]. Table 2 presents the comparison 
between the exact method and the metaheuristic method, i.e. the true efficient sets and the 
approximate efficient sets respectively. The results in Table 3 compare the performance of the 
exact method with time limit and the metaheuristic method, i.e. approximate efficient sets in 
both cases. 
 
The comparison of results for each metric must be made as follows. A greater value for |Si| 
and RPOS (Si) is better. These values indicate the size and quality of the efficient frontier. A 
lower value, less than or equal to 1.0, for metrics Dmin and Dave indicates that the metaheuristic 
algorithm achieves lower cost (f1) compared to the epsilon-constraint based algorithm, for the 
same transportation time (f2).  
 

[Table 2 goes about here] 
 

[Table 3 goes about here] 
 
A visual comparison of the efficient frontiers is shown in Figures 9 and 10 for a small 
instance and a very large instance respectively. It is evident the trade-off between the cost and 
time objectives, with best times for worse costs. It can be observed in Figure 9 that for small 
instances, the metaheuristic algorithm got very close to the efficient frontier and in some 
points achieved the true efficient solution. For large instances, like in the case of Figure 10, 
the metaheuristic algorithm obtained a better efficient frontier than the epsilon-constraint 
based algorithm. It was observed in several experiments that obtaining a solution for middle 
values of f2 (time objective) was more difficult, which explains the form of the frontier 
obtained with the epsilon-constraint based algorithm. Both algorithms achieved good 
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solutions when the problem approaches to the single-objective case in the extremes of the 
efficient frontier. 
 

[Figure 9 goes about here] 
 

[Figure 10 goes about here] 
 
In particular, for the instances of group 5-5-5-2 the total run time for the metaheuristic 
algorithm was greater than the time for the epsilon-constraint based algorithm. In this case the 
instances are very small and the exact method can obtain true efficient sets easily. However, 
the metaheuristic algorithm spent more time in useless exploration of the solutions space 
without achieving good approximate frontiers. 
 
For the instances of groups 50-50-50-2 and 50-50-100-2 the time of the metaheuristic 
algorithm was greater than the time for the epsilon-constraint based algorithm. The 
explanation here is different. In this case the epsilon-constraint based algorithm ran with a 
time limit per each value of ε. In all the instances of Table 3 this time limit was reached in 
almost all the values of ε. The total time is very similar for these groups of instances because 
the number of points for ε values to be explored was also similar. This characteristic of the 
parameters come from the instance generation procedure described in Olivares-Benitez et al. 
(2012). In the case of the metaheuristic algorithm, the run time depends on the size of the 
instance and then the time is expected to grow for larger instances. The total run time in both 
algorithms was not controlled. 
 
6   Conclusions 
 
The process of supply chain design involves decisions over several aspects. The most treated 
decisions in the literature are facility location, transportation flows, production levels, supplier 
selection, and inventory levels. Nevertheless only the most recent works include 
transportation channel selection. The supply chain design problem addressed here 
incorporates the selection of the transportation channel that produces a cost-time tradeoff. 
Hence as a bi-objective problem, the solution is not unique and a set of efficient solutions 
must be obtained. The construction of a set of efficient solutions follows an a posteriori 
approach where the decision maker will take the final decision considering other criteria to 
select one among the different solutions obtained. As noted in the literature review section, 
this approach has not been addressed before in supply chain design although some works have 
considered it partially. 
 
In this work we designed a metaheuristic algorithm ad-hoc to solve the problem treated. This 
metaheuristic incorporates elements from greedy functions, Scatter Search, Path Relinking 
and Mathematical Programming. It decomposes the construction of a solution in a hierarchy 
of decisions. Some of the steps require the use of mathematical programming software to 
solve a generalized assignment problem and a transportation problem. This approach has been 
formalized recently as “Matheuristics”, which combine metaheuristics and mathematical 
programming techniques (Maniezzo et al., 2010). The literature review showed that 
traditional metaheuristics like Genetic Algorithms and Tabu Search have been used frequently 
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for single objective versions of supply chain design problems. Recently multiobjective 
versions of these metaheuristics and more sophisticated methods have been used for 
multiobjective supply chain design problems. However the matheuristic hybrid presented here 
is a novelty in the field of supply chain design. The use of this type of metaheuristic 
algorithms and the transportation channel selection in the context of multiobjective supply 
chain design represent major contributions of this paper. 
 
The comparison in Table 2 showed that the metaheuristic algorithm becomes competitive in 
terms of computing time with the exact method for small instances, although the efficient 
frontiers have lower cardinality and quality. However the approximate efficient sets obtained 
with the metaheuristic algorithm are not too far from those obtained with the exact method as 
was observed in the example of Figure 9.  
 
For large instances, the results in Table 3 proved that the metaheuristic algorithm becomes 
competitive in the three metrics of comparison: computing time, cardinality and quality of the 
efficient sets obtained. We believe that a great benefit comes from integrating mathematical 
programming commercial software into the algorithm to solve the transportation and 
generalized assignment sub-problems. At the same time, the population-based approach of the 
metaheuristic makes a good exploration of the solutions space achieving well distributed 
efficient frontiers. 
 
The model presented here may be used for the design of supply chains of products with low 
complexity or products with few components. The application may be in short supply chains 
where lead time may be a competitive advantage or a requisite. These characteristics apply 
well to perishable or seasonal products. Examples of these products can be found in the food 
industry, pharmaceutical industry, chemical industry, and apparel industry. The metaheuristic 
algorithm developed in this work delivers several alternatives in the efficient frontier for the 
decision maker. It also obtains solutions relatively fast, considering that the problem involves 
strategic decisions with impact in the mid-to long term. Therefore several scenarios can be 
analyzed easily with changing parameters of demand or costs considering uncertainty, before 
taking a final decision. 
 
The following are limitations and consequently possible extensions to the model. The model 
may be extended to include multiple commodities, direct flows from plants to customers, and 
intra-echelon flows. Also routing decisions, technology selection, capacity levels and 
international supply chain aspects may be considered. The transportation time has an effect in 
the size of pipeline inventory and safety stock inventory that may be considered into the cost 
objective function. Recent works in multiobjective supply chain design include environmental 
and risk criteria in parallel to economic objectives. The explicit modeling of uncertainty of the 
demand and other parameters or a multi-period approach may also be addressed. 
Nevertheless, these elements change the structure of the problem and a major modification of 
the metaheuristic algorithm should be done. 
 
The results of the metaheuristic algorithm were compared favorably to the results of an 
epsilon-constraint based algorithm. However it may be interesting the comparison of the 
metaheuristic algorithm with other methods. The natural candidates for this additional 
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comparison are evolutionary algorithms like SPEA 2 (Zitzler et al., 2001) and NSGA-II (Deb 
et al., 2002). Moreover, considering the structure of the epsilon-constrained model, methods 
like decomposition schemes, Lagrangian relaxation, and single-objective metaheuristics may 
be implemented in a sequential algorithm to obtain the approximate efficient frontier. 
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Figure 1 Single product, single period, and two-echelon distribution system. Each 
transportation channel has a time (TPijl, TWjkl) and a unitary cost (CPijl, CWjkl) associated. 

Source: Olivares-Benitez et al. (2012). 
 

 
 

Figure 2 Generalized Assignment Problem (GAP) and Transportation Problem (TP) in the 
hierarchical construction procedure. 
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Figure 3 Scheme of the metaheuristic algorithm. 
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Figure 4 Algorithm for the constructive method. 
 
 

Method Constructive 
Input:  Instance data; Number of Constructed Solutions (NCS). 
Output:  Set of Constructed Solutions, CS = {sr | r = 1,…, NCS} or general infeasibility 

message. 
BEGIN 
01. Check general feasibility of the instance under the following conditions: 

∑ ∑
∈ ∈

≥
Ii Kk

ki DMP , ∑∑
∈∈

≥
Kk

k
Jj

j DMW  

02. If the instance is infeasible: 
03. Return message of infeasibility. 
04. Else: 
05. CS = ∅. 
06. For r = 1, …, NCS: 
07. Initialize Zj = 0, Aijl = 0, Bjkl = 0, i ∈ I, j ∈ J, k ∈ K, l ∈ LPij, l ∈ LWjk. 
08. Initialize sr is incomplete. 
09. Calculate the vector [ r

t
r
c λλ , ] for solution sr. 

10. Calculate the aggregated greedy function for each element ( ) ( )jklijl arcarc φφ ,  using 
equations (20) – (21). 

11. While solution sr is incomplete and the instance is feasible: 
12. While ∑∑

∈∈

<
Kk

k
Jj

jj DMWZ : 

13. Select randomly a distribution center j’ ∈ J, Zj’ = 1. 
14. End While. 
15. Set of open distribution centers J’ = {j ∈ J | Zj = 1}. 
16. sr = Hierarchical construction procedure (J’). 
17. If sr is infeasible: 
18. If | J’ | < | J |: 
19. Go To Step 13 to open another distribution center. 
20. Else: 
21. Return a message of infeasibility for the instance. 
22. End If. 
23. Else: 
24. CS = CS ∪ {sr} and the associated vector [ r

t
r
c λλ , ] is stored in the structure of the 

solution sr. 
25. End If. 
26. End While. 
27. End For. 
28. Return the set CS in the output file. 
29. End If 
END 
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Figure 5 Scheme of the acceptance criterion and direction of improvement. 
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Figure 6 Algorithm for the improvement method. 

Method Improvement 
Input:  Instance data; Reference set of solutions RS; Approximate efficient set NDS. 
Output:  Approximate efficient set NDS updated. 
BEGIN 
01. For each s ∈ RS: 
02. Current solution s’ = s. 
03. Exit_local_search = 0. 
04. While Exit_local_search = 0: 
05. Initialize the set of improved solutions IS = ∅. 
06. Obtain solution sc or infeasibility message exploring the closing neighborhood CN 

(s’). 
07. NDS = Update NDS set (sc, NDS). 
08. If sc meets the acceptance criterion and direction of improvement, IS = IS ∪ {sc}. 
09. Obtain solution so or infeasibility message exploring the opening neighborhood ON 

(s’). 
10. NDS = Update NDS set (so, NDS). 
11. If so meets the acceptance criterion and direction of improvement, IS = IS ∪ {so}. 
12. Obtain solution se or infeasibility message exploring the exchange neighborhood EN 

(s’). 
13. NDS = Update NDS set (se, NDS). 
14. If se meets the acceptance criterion and direction of improvement, IS = IS ∪ {se}. 
15. If IS ≠ ∅: 
16. Select randomly a solution ŝ ∈ IS  
17. New current solution s’ = ŝ. 
18. Else: 
19. Exit_local_search = 1. 
20. End If. 
21. End While. 
22. End For. 
END 
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Figure 7 Algorithm for the combination method. 

Method Combination 
Input:  Instance data; Reference set of solutions RS; Approximate efficient set NDS. 
Output:  Approximate efficient set NDS updated. 
BEGIN 
01. For ∀ (initiating solution) s ∈ RS: 
02. For ∀ (guiding solution) r ∈ RS: 
03. If s ≠ r and r

j
s
j ZZ ≠  ∀ j ∈ J: 

04. Create sets FC and FO; Sort sets FC = {j1, j2,… | ( ) ( )
1+

≥
ii jj dcdc φφ } and FO = {j1, j2,… | 

( ) ( )
1+

≤
ii jj dcdc φφ }. 

05. Create intermediate solution q, s
j

q
j ZZ =  ∀ j ∈ J, r

c
q
c λλ = , r

t
q
t λλ = . 

06. If partial solution q is feasible (based on accumulated capacity): 
07. Use the Hierarchical construction procedure to complete solution q. 
08. If complete solution q is feasible: 
09. NDS = Update NDS set (q, NDS). 
10. End If. 
11. End If. 
12. n = 1, p = 1. 
13. While n ≤ |FC|: 
14. Modify intermediate solution q making 0=q

jn
Z , jn ∈ FC.  

15. If partial solution q is feasible (based on accumulated capacity): 
16. Use the Hierarchical construction procedure to complete solution q. 
17. If complete solution q is feasible: 
18. NDS = Update NDS set (q, NDS); n = n + 1; Go To Step 13. 
19. Else: 
20. n = n + 1; Go To Step 26. 
21. End If. 
22. Else: 
23. n = n + 1; Go To Step 26. 
24. End If. 
25. End While. 
26. While p ≤ |FO|: 
27. Modify intermediate solution q making 0=q

j p
Z , jp ∈ FO.  

28. If partial solution q is feasible (based on accumulated capacity): 
29. Use the Hierarchical construction procedure to complete solution q. 
30. If complete solution q is feasible: 
31. NDS = Update NDS set (q, NDS); p = p + 1; Go To Step 13. 
32. Else: 
33. p = p + 1; Go To Step 26. 
34. End If 
35. Else: 
36. p = p + 1; Go To Step 26. 
37. End If. 
38. End While. 
39. End If. 
40. End For. 
41. End For. 
END 
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Figure 8 Set of non-dominated points for instance number 2 of group 5-5-5-5. Source: 
Olivares-Benitez et al. (2012). 
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Figure 9 Comparison of the efficient frontiers for instance number 1 of group 5-5-5-2. 
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Figure 10 Comparison of the approximate efficient frontiers for instance number 1 of group 
50-50-100-2. 

 
 

Table 1   Generated instances. 
 

Group code Number of 
instances 

Number of 
binary variables 

Number of 
constraints 

5-5-5-2 5 105 385 
5-5-5-5 5 255 835 

5-5-20-2 5 255 940 
5-20-20-2 5 1020 3625 

20-20-20-2 5 1620 5740 
20-20-20-5 5 4020 12940 
20-20-50-5 5 7020 22600 
50-50-50-2 5 10050 35350 

50-50-100-2 5 15050 52950 
Group code indicates: [number of plants - number of potential distribution centers - 
number of customers - number of arcs between nodes] 
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Table 2   Comparison of results from the metaheuristic algorithm [MH] and the epsilon-
constraint based algorithm [ReC] for small instances. 

 

Group code Instance Total time 
(sec) [MH] 

Total time 
(sec) [ReC] |SReC| RPOS(ReC) |SMH| RPOS(MH) Dave Dmin 

5-5-20-2 1 29 236 31 1.000 20 0.050 1.042 1.000 
5-5-20-2 2 33 269 33 1.000 20 0.050 1.031 1.000 
5-5-20-2 3 71 452 33 1.000 22 0.045 1.045 1.000 
5-5-20-2 4 54 324 32 1.000 20 0.050 1.052 1.000 
5-5-20-2 5 74 491 33 1.000 27 0.037 1.028 1.000 
5-5-5-5 1 92 134 38 1.000 32 0.125 1.020 1.000 
5-5-5-5 2 64 159 40 1.000 25 0.160 1.027 1.000 
5-5-5-5 3 63 219 39 1.000 27 0.259 1.014 1.000 
5-5-5-5 4 147 180 39 1.000 31 0.194 1.022 1.000 
5-5-5-5 5 64 111 39 1.000 28 0.179 1.018 1.000 
5-5-5-2 1 75 7 32 1.000 22 0.364 1.028 1.000 
5-5-5-2 2 36 11 29 1.000 21 0.095 1.024 1.000 
5-5-5-2 3 43 12 28 1.000 22 0.364 1.019 1.000 
5-5-5-2 4 37 24 31 1.000 17 0.412 1.021 1.000 
5-5-5-2 5 41 10 25 1.000 18 0.389 1.017 1.000 

Group code indicates: [number of plants - number of potential distribution centers - number of customers - number of arcs between nodes] 
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Table 3   Comparison of results from the metaheuristic algorithm [MH] and the epsilon-
constraint based algorithm with time limit [ReC] for large instances. 

 

Group code Instance Total time 
(sec) [MH] 

Total time 
(sec) [ReC] |SReC| RPOS(ReC) |SMH| RPOS(MH) Dave Dmin 

50-50-100-2 1 53715 24022 31 0.032 38 0.974 0.831 0.646 
50-50-100-2 2 59076 24022 30 0.000 37 1.000 0.798 0.645 
50-50-100-2 3 55026  24026 37 0.081 37 1.000 0.816 0.602 
50-50-100-2 4 57049 24604 33 0.091 37 0.946 0.859 0.681 
50-50-100-2 5 45386 24020 37 0.027 38 0.974 0.810 0.643 
50-50-50-2 1 32901 24604 39 0.051 37 0.973 0.903 0.813 
50-50-50-2 2 34144 24604 39 0.077 40 0.950 0.888 0.795 
50-50-50-2 3 41621 24010 37 0.027 36 0.972 0.850 0.698 
50-50-50-2 4 27755 24010 39 0.026 39 0.974 0.874 0.780 
50-50-50-2 5 30655 24008 36  0.028  40  0.975  0.909  0.843  
20-20-50-5 1 17756 24603 37 0.054 39 0.949 0.912 0.800 
20-20-50-5 2 20145 24603 41 0.024 41 0.976 0.899 0.793 
20-20-50-5 3 21887 24007 39 0.026 37 0.973 0.898 0.799 
20-20-50-5 4 18764 24603 40 0.025 38 0.974 0.908 0.816 
20-20-50-5 5 18001 24010 40 0.100  37 0.973  0.908 0.835 
20-20-20-5 1 5029 24270 41 0.049 41 0.951 0.927 0.842 
20-20-20-5 2 5426 24487 40 0.050 40 0.975 0.929 0.860 
20-20-20-5 3 3597 24009 39 0.077 39 0.949 0.930 0.844 
20-20-20-5 4 2764 24007 41 0.049 40 0.975 0.924 0.867 
20-20-20-5 5 5209 24605 38 0.053 41 0.951 0.936 0.859 
20-20-20-2 1 4680 22937 40 0.125 38 0.921 0.967 0.900 
20-20-20-2 2 4100 23405 39 0.128 39 0.872 0.965 0.906 
20-20-20-2 3 2847 23022 40 0.200 38 0.842 0.962 0.888 
20-20-20-2 4 4238 23407 40 0.150 39 0.872 0.973 0.878 
20-20-20-2 5 4612 23446 39 0.205 39 0.821 0.979 0.915 
5-20-20-2 1 3615 22257 38 0.289 37 0.703 0.973 0.900 
5-20-20-2 2 3097 22257 38 0.289 39 0.718 0.977 0.905 
5-20-20-2 3 2346 22231 38 0.368 37 0.649 0.983 0.914 
5-20-20-2 4 2403 21709 39 0.282 39 0.718 0.981 0.899 
5-20-20-2 5 4425 21669 39 0.282 39 0.718 0.977 0.920 

Group code indicates: [number of plants - number of potential distribution centers - number of customers - number of arcs between nodes] 
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