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Abstract

This paper addresses a supply chain design problem based on a two-echelon single-product
system. In the first echelon the plants transport the product to distribution centers. In the
second echelon the distribution centers transport the product to the customers. Several
transportation channels are available between nodes in each echelon, with different
transportation costs and times. The decision variables are the opening of distribution centers
from a discrete set, the selection of the transportation channels, and the flow between
facilities. The problem is modeled as a bi-objective mixed-integer program. The cost
objective aggregates the opening costs and the transportation costs. The time objective
considers the longest transportation time from the plants to the customers. An implementation
of the classic epsilon-constraint method was used to generate true efficient sets for small
instances of the problem, and approximate efficient sets for larger instances. A metaheuristic
algorithm was developed to solve the problem, as the major contribution of this work. The
metaheuristic algorithm combines principles of greedy functions, Scatter Search, Path
Relinking and Mathematical Programming. The large instances were solved with the
metaheuristic algorithm and a comparison was made in time and quality with the epsilon-
constraint based algorithm. The results were favorable to the metaheuristic algorithm for large
instances of the problem.
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1. Introduction

In recent years Supply Chain Design has been addressed by many authors, and several
reviews have been published (Aikens, 1985; Thomas and Griffin, 1996; Vidal and
Goetschalckx, 1997; Beamon, 1998; Klose and Drexel, 2005; Sahin and Sural, 2007; Melo et
al., 2009). The decisions imply strategic aspects related with location, capacities and
technology selection, and tactical aspects like product allocation and transportation flows,
among others.

In this paper we address a previous work by the authors (Olivares-Benitez et al., 2012) where
a supply chain design problem, based on a two-echelon single-product system was introduced.
The problem considers the location of facilities, the selection of transportation channels, the
calculation of the flows between facilities, and the time-cost tradeoff. In particular, the
selection of transportation channels produces a bi-objective optimization problem where cost
and lead time must be minimized. The transportation channels can be seen as transportation
modes (rail, truck, ship, airplane, etc.), shipping services (express, normal, overnight, etc.) or
as transportations offers from different companies. Each option has a cost and time associated,
and one must be selected to transport the product between nodes in each echelon. The
problem was solved in an a posteriori approach, obtaining the non-dominated solutions set to
be presented to the decision maker.

The objective in this new research was to develop a metaheuristic algorithm to solve the
problem introduced by Olivares-Benitez et al. (2012). It was demonstrated that the problem
belongs to the NP-Hard type. Hence it is necessary to use a heuristic method to solve large



instances of the problem. The metaheuristic algorithm proposed here hybridizes elements
from greedy functions, Scatter Search, Path Relinking, and Mathematical Programming. This
type of hybrids, also named matheuristics, is being used in recent research but there are not
applications in supply chain design yet.

The review in Section 2 describes works that connect the cost-time tradeoff in supply chain
design, and in the most recent studies, the consideration of time tied to transportation
decisions in multiobjective problems. According to the analysis, the use of matheuristic
algorithms and transportation channel selection in the context of supply chain design
represent major contributions of this paper.

The problem addressed along with the mathematical model is described in detail in Section 3.
The methods used to solve the problem are detailed in Section 4. For small instances the
epsilon-constraint based algorithm proposed by Olivares-Benitez et al. (2012) was used to
obtain the true efficient sets. The largest instance solved with the epsilon-constraint based
algorithm to obtain its true efficient set has 5 plants, 5 potential distribution centers, and 20
customers. To construct approximate efficient sets for larger instances the same method was
used with a time limit of 3600 seconds per point. Given the complexity of the problem, a
metaheuristic algorithm was developed in this work to obtain approximate efficient sets for
large instances. The largest instance where an approximate efficient set was obtained has 50
plants, 50 potential distribution centers, and 100 customers. The generation of instances and
the computational evaluation are described in Section 5. Finally, Section 6 presents the
conclusions of this work.

2. Literature Review

One characteristic that differentiates the problem introduced by Olivares-Benitez et al. (2012)
from previous works in the literature is the study of the tradeoff between lead time and cost in
the supply chain design, related to transportation choices. The review by Current et al. (1990)
makes evident that the balance of these criteria had not been studied extensively. After that,
Arntzen et al. (1995) addressed the supply chain design problem for a company that handled
the cost-time tradeoff as a weighted combination in the objective function. The decision
variable was the quantity of product to be sent through each transportation mode available.
Transportation time was variable with respect to the quantity shipped. The problem was
solved using elastic penalties for violating constraints, and a row-factorization technique.
Zeng (1998) emphasized the importance of the lead time-cost tradeoff, associated to the
transportation modes available between pairs of nodes in the network. A mixed-integer
programming model was proposed to design the supply chain optimizing both objectives. In
this work facility location was not addressed. The method proposed was a dynamic
programming algorithm to construct the efficient frontier assuming the discretization of time.
In the model proposed by Graves and Willems (2005) cost and time were combined in the
objective function. The supply chain was configured selecting alternatives at each stage of the
production and distribution network. A dynamic programming algorithm was used to solve
this problem.



In recent years multiobjective problems in supply chain design have been treated with more
emphasis taking advantage of increased computational resources and new methods. Chan et
al. (2006) presented a multi-objective model that optimized a combined objective function
with weights. Some of the criteria included cost and time functions, and one of the
components of time was transportation time. Transportation time varied linearly with the
quantity transported. The model included stochastic components, but facility location was not
considered. A genetic algorithm was the base of an iterative method where scenarios with
changing weights were solved. Altiparmak et al. (2006) proposed a model with three objective
functions: to minimize total cost, to maximize total customer demand satisfied, and to
minimize the unused capacity of distribution centers. Here, transportation time was handled as
a constraint that determined a set of feasible distribution centers able to deliver the product to
the customer before a due date. They proposed a procedure based on a genetic algorithm to
obtain a set of non-dominated solutions. In the work by ElMaraghy and Majety (2008) a
model was proposed to optimize cost, including the cost of late delivery. The model
considered the dynamic nature of the decisions. They used commercial optimization software
to solve the model, analyzing different scenarios. The review by Farahani et al. (2010) about
multi-criteria models for facility location problems describes some works where metrics of
cost and service level are considered. The metaheuristic methods mentioned include
multiobjective versions of Scatter Search, Tabu Search, Simulated Annealing, Ant Colony
Optimization (ACO), and Particle Swarm Optimization (PSO). However, some other
metaheuristics that were created for multiobjective applications were also mentioned, like
Simple Evolutionary Algorithm for Multi-Objective Optimization (SEAMO), Strength Pareto
Evolutionary Algorithm version 2 (SPEA2), Pareto Envelop based Selection Algorithm
(PESA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Vector Evaluated Genetic
Algorithm (VEGA), and the Multi-Objective Genetic Algorithm (MOGA).

More recently, several works have appeared for multiobjective supply chain design. Pishvaee
et al. (2010) studied a model for a forward/reverse logistics network design from a bi-
objective optimization perspective. The objectives to optimize were the total cost of the
system and the fulfillment of the demand and return rates. Although they considered lead time
into their model, similar to Altiparmak et al. (2006) it was a considered in the meeting of a
due date, and not related to transportation alternatives. They developed a memetic algorithm
to solve this NP-hard problem. Moncayo-Martinez and Zhang (2011) proposed a model
similar to that of Graves and Willems (2005) where activities must be selected to design the
supply chain. This was a bi-objective model that optimized cost and lead time in a multi-
echelon network. The decision variable is the selection of the resource for a certain activity in
the supply chain. They used a Pareto Ant Colony Optimization metaheuristic to obtain the
Pareto Optimal Set. Liao et al. (2011) also studied a multiobjective problem for supply chain
design. In this case they integrated location and inventory decisions. The objectives were the
minimization of cost, the maximization of the fill rate, and the maximization of demand
fulfilled within a coverage distance. The lead time was implied in the cost of the safety stock,
but it was not related to transportation decisions. The method proposed was a hybrid of
NSGA-II and an assignment heuristic. Pinto-Varela et al. (2011) presented a bi-objective
optimization model for the design of supply chains considering economic and environmental
criteria. In their model, time was considered since the point of view of a multi-period
approach. Different transportation modes may exist, but they are not associated to the time.



They solved three small examples with mathematical programming commercial software. The
review by Mansouri et al. (2012) emphasized the importance of multiobjective optimization
techniques as decision support tool in supply chain management. Although order promising
decisions and network design decisions were identified as important criteria, none of the
works reviewed integrated them in a multiobjective approach. Chaabane et al. (2012)
presented a multi-period multiobjective optimization problem where cost and environmental
objectives were optimized. In their mixed-integer programming model, the selection of
transportation modes was considered as a decision variable but it was not connected with
time. They used mathematical programming commercial software to solve small instances of
the problem. Sadjady and Davoudpour (2012) studied a problem for supply chain design
where cost and time were tied to transportation alternatives. The approach, however, was to
optimize a single objective function where lead time from the transportation alternative was
transformed into a cost function. The cost objective function is optimized using a Lagrangian
relaxation method. As proposed by Olivares-Benitez et al. (2012), the cost and time criteria
may not be comparable and should be treated in separate objectives.

It is important to highlight some works that solve real cases for supply chain design.
Altiparmak et al. (2006) applied their genetic algorithm for a supply chain design for plastic
products in Turkey. Pati et al. (2008) solved a case for the Indian paper recycling industry.
Sousa et al. (2008) applied their models for the design of an agrochemicals supply chain.
Gumus et al. (2009) solved the case for a company in the alcohol free beverage sector.
Moncayo-Martinez and Zhang (2011) applied a Pareto Ant Colony Optimization
metaheuristic to design a supply chain for Bulldozer production. Pinto-Varela et al. (2011)
presented a bi-objective model for designing supply chains in Portugal. Chaabane et al. (2012)
solved a case for aluminum production. Funaki (2012) proposed a very complete model and a
dynamic programming algorithm to design a supply chain for a machinery product. Marvin et
al. (2012) formulated a mixed integer linear programming problem to design a supply chain
for ethanol biorefining. Paksoy et al. (2012) applied fuzzy optimization for the design of a
vegetable oil supply chain. These works illustrate an increasing interest in the application of
supply chain design models in industry.

Finally, it is interesting to note the review by Griffis et al. (2012) where they presented the use
of metaheuristics in logistics and supply chain management from year 1991 to 2012. Near
15% of the applications were in the area of supply chain design. They highlight the use of
Simulated Annealing and Tabu Search among local search metaheuristics, with minor
attention in the literature to greedy randomized adaptive search procedure (GRASP), variable
neighborhood search (VNS) and others. In terms of population search techniques, the most
popular have been Genetic Algorithms and Ant Colony Optimization, with fewer mentions for
Scatter Search, Particle Swarm Optimization, and others. However in this review it is evident
the few applications of multiobjective metaheuristics, especially for supply chain design
problems.

The research described above shows that few works considered the cost—time tradeoff derived
from the transportation channel selection in the supply chain design. Other differences with
the problem addressed in this research are explained in the following lines. First, in some
works the transportation time is a linear function of the quantity transported. In the model



presented here, a single time is used for each arc between nodes, which represents more real
conditions in the operation of transportation. Second, in many studies the time-cost tradeoff
has been addressed from a single objective perspective transforming the time in a cost
function. Here, the time and cost are treated as separate criteria allowing for the construction
of sets of non-dominated solutions. This approach may be a good choice when the preference
of the decision maker for one of the objectives is not known, or when the criteria cannot be
compared easily. Third, in many multiobjective problems for supply chain design, the cost-
time tradeoff was not associated to the selection of the transportation channel. In the problem
addressed here, the selection of transportation from several alternatives has a direct impact in
the lead time objective. The combination of these elements and traditional supply chain
design decisions makes relevant the problem addressed, and the necessity to solve it.

In terms of the algorithm developed here, what we propose is a hybridization of greedy
functions with Scatter Search, Path Relinking and mathematical programming software,
which produces high quality solutions for a complex problem. In the literature, the techniques
preferred to solve these multiobjective problems with the a posteriori approach are variations
of evolutionary algorithms. The type of hybrids presented in this work, also named
matheuristics, has not been used before in the context of supply chain design problems.
However other applications can be seen in the book edited by Maniezzo et al. (2010).

3. Problem description and mathematical model

The problem introduced by Olivares-Benitez et al. (2012) was a two-echelon distribution
system for one product in a single time period. A set of manufacturing plants produce and
send the product to distribution centers in the first stage. Later, the distribution centers
transport the product to the customers. The number and location of plants and customers,
along with demands and capacities respectively, are known. The distribution centers must be
selected from a discrete set of potential locations with fixed opening costs and limited
capacities. A single sourcing policy was assumed for the transportation from the distribution
centers to the customers. Figure 1 depicts the structure of the supply chain.

[Figure 1 goes about here]

The transportation of the product from one facility to the other in each echelon of the network
is done selecting one of several alternatives available. Each transportation channel represents
a type of service with associated cost and time parameters. These alternatives can be obtained
from offers of different companies, the availability of different types of service for each
company (e.g. express and regular), or the use of different modes of transportation (e.g. truck,
rail, airplane, ship or inter-modal). It was assumed that a faster service is usually more
expensive. The capacity of the transportation channel was assumed as unlimited, considering
that any capacity can be contracted.

A bi-objective mixed-integer programming model was proposed to solve the problem
described previously, as follows.

Sets:



: set of plants i

: set of potential distribution centers j

: set of customers k

LP; :setofarcs/betweennodesiandj; i€l jEJ
LWy :setofarcs/betweennodesjand k;j€J, k€K

N~

Parameters:

CP;; : cost of transporting one unit of product from plant i to distribution center j using arc
LieljeJ leLP;

CWiju : cost of sending one unit of product from distribution center j to customer k using arc
LieJ, keK, € LWy

TPy : time for transporting any quantity of product from plant i to distribution center j
usingarc ;i €1, jE€J, € LP;

TWj : time for transporting any quantity of product from distribution center j to customer k
usingarc ;jEJ, kEK, | € LW

MP; : capacity of planti; i € 1

MW, : capacity of distribution center j; j € J

Dy : demand of customer k; k € K

F; : fixed cost for opening distribution center j; j € J

Decision variables:

Xij : quantity transported from plant i to distribution center j using arc ;i €L j € J, | €
LP;

Yiu  :quantity transported from distribution center j to customer & using arc /; j € J,
keK,le LWy

Z : binary variable equal to 1 if distribution center j is open and equal to 0 otherwise; j €
J

A : binary variable equal to 1 if arc / is used to transport product from plant i to
distribution center j and equal to 0 otherwise; i € 1,j € J, [ € LP;

By : binary variable equal to 1 if arc / is used to transport product from distribution center

Jj to customer k and equal to 0 otherwise; j €EJ, kEK, [ € LW

Auxiliary variables:
T : longest time that takes sending product from any plant to any customer

E/1 : longest time in the first echelon of the supply chain for active distribution center j,
ic. £} =max(TP, 4, i€ Lj€J1€LP;

ijl < il
E jz : longest time in the second echelon of the supply chain for active distribution center j,
ie. £} =max(TW,B,, }j €L kEK, IELIW

MODEL 1:

min(f;, /3 )



Sfi= ;,Zn UCPileijl + ;/;l;fWilejkz + ;F;Z.f 1

£ =T )
subject to
T-E,-E; =0 JEJ )
E\-TP,4, =20 i€1, jEJ,IELP; (4)
EX-TW B, =0 JEJ, kEK,IE LWy (5)
> E;ij, =D, keK (6)
JES IELW
X, <MP, i€l (7)
JESIELE;
MW,Z, -/;;Yﬂd =0 JjEJ (8)
I ik
2;)@, -z Y, =0  jEJ 9
€l IELP; 1ELW
B, =1 kEK (10)
JeJ 1 ik
4, =1 i€ELjEJ (11)
(S
;Bﬂd <1 JEJKEK (12)
I ik
X, -4, =0 i€l jEJ IELP; (13)
Y, -B, =0 JEJ, kEK, IE LWy (14)
MPA4, -X, =0 i€1 jEJIELP; (15)
MW,B,, ~Y, =0 JEJ, kEK,IELWy (16)
Z’;Aﬂ-z}. =0 JEJ (17)
icl IETP;
T,E\E2, XY, =0 i€L jEJLKEK, IELP;IELWy  (18)
Z,.4,.B, €01} i€ jEJkEK IELP) IELW;  (19)

In this model, objective function (1) minimizes the sum of the transportation cost and the cost
for opening distribution centers. Objective function (2) minimizes the longest transportation
time from the plants to the customers through each distribution center. Constraints (3)-(5)
calculate the longest transportation time in each echelon for each distribution center.
Constraints (6) force the demand satisfaction for each customer. Constraints (7) imply that the
capacities of the plants are not exceeded. Constraints (8) meet two conditions: that the flow
going out from a distribution center must not exceed its capacity, and that the flow of product
is done only through open distribution centers. Constraints (9) keep the flow balance at each
distribution center. Constraints (10) force the single source policy from distribution centers to
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customers. The selection of only one transportation channel between facilities is required in
constraints (11) and (12). Constraints (13)-(17) establish links between the sets of variables
Ajji, Bjn, Xiji, Yy and Z; to avoid incoherent solutions. Constraints (18) and (19) are for
declaration of variables.

About the computational complexity of the problem, it has been demonstrated that the well-
known UFLP (Uncapacitated Fixed-Charge Facility Location Problem) is polynimially
reducible to the model described above (Olivares-Benitez et al., 2012). Since the UFLP is NP-
hard (Cornuejols et al., 1990), the model above is NP-hard too.

4. Exact and metaheuristic methods

4.1 Exact method

The method selected for generating true efficient sets was the epsilon-constraint method. In a
multiobjective optimization problem, this method optimizes a series of single objective sub-
problems. One of the objective functions is selected to be optimized and the other objective
functions are transformed into constraints and added to the set of constraints, as follows.

min{fk(x):fi(x)s £ 0= k,xEX}

Where ' = (fi,....f,) is the set of p real-valued objective functions, x is a solution to the
problem and X is the set of feasible solutions. The values of vectors ¢ are changed
systematically to obtain the efficient frontier for the problem. Further details can be seen in
Steuer (1989) and Ehrgott (2005) as references.

Olivares-Benitez et al. (2012) developed an implementation of the epsilon-constraint method
that uses the solutions generated during the process to accelerate the construction of the true
efficient set. This version of the epsilon-constraint method, named “Backward epsilon-
constraint method with estimated lower limit for £,” (ReC), was used to construct the true
efficient sets for several small instances generated artificially. The procedure was coded in
ANSI C. The single-objective subproblems of the epsilon-constraint based algorithm were
solved using the CPLEX 11.1 callable library (ILOG, 2008).

4.2 Metaheuristic method

Because of the computational complexity of the problem, relatively large instances may no
longer be tractable from an exact optimization perspective. Thus the development of a
heuristic method is suitable to find an approximate set of efficient solutions. In this work we
propose a metaheuristic algorithm to approximate efficient sets of the problem for large
instances. This is a population-based metaheuristic that uses some principles of Scatter
Search, Path Relinking (Laguna and Marti, 2003), greedy functions and mathematical
programming. Historically, greedy functions have been used in the design of heuristics to
solve hard combinatorial optimization problems. In the framework of metaheuristics, greedy
functions are used to construct initial solutions in the GRASP (Resende and Ribeiro, 2003;



Talbi, 2009) and are used for a good approximation in other local search heuristics. Several
metaheuristic implementations have combined effectively GRASP and Scatter Search or
GRASP and Path Relinking to tackle difficult combinatorial optimization problems, and
recently this hybridization has been proposed for multiobjective combinatorial optimization
problems (Marti et al., 2011). In the metaheuristic proposed in this work we wanted to keep
the good approximation achieved by greedy functions with the population-based approach
given by Scatter Search to construct approximate efficient sets. Additionally, the use of Path
Relinking was added to improve the quality of the solutions obtained in a final combination
stage. This hybrid also uses mathematical programming software embedded into the
metaheuristic algorithm. This idea is being studied in recent works (Maniezzo et al. 2010) to
increase the power of metaheuristic algorithms.

The metaheuristic algorithm proposed in this work is composed of three main methods. These
are a constructive method, an improvement method, and a combination method. These
methods use a basic procedure to construct a solution based on a decomposition of the
problem. It is important to explain this hierarchical construction procedure before going to the
details of the methods.

4.2.1 Hierarchical construction procedure

A solution is constructed hierarchically starting with the selection of the distribution centers to
be opened. Each method uses a specific strategy to perform this selection as will be described
below. The next decision in the hierarchy is the selection of the transportation channel
between each pair of facilities. The selection of the transportation channel is done using a
weighted greedy function. This greedy function has a component based on the transportation
cost and the other component based on the transportation time as shown in equations (20) and
(21). These functions are normalized to avoid the scaling problem. A higher value of the
greedy function implies a worse selection considering that both criteria, time and cost, are
minimized:

CP, 1P,

dlarc, )= 4, - i (20)
g H’?elfg%(c t:/l) t ia’%%fagj(T t_‘/’l)
Cw. ™.
dlarc )= 2. L @1)
MU max ewy) T max (W)

The weights A, and A, for the greedy functions are systematically changed each iteration of the
constructive method and inherited through the rest of the algorithm. The aim of weights
variation is to obtain solutions well distributed along the efficient frontier instead of a
concentration of solutions in the extremes of the frontier. More details about the procedure to
calculate these weights are given below in the explanation of the constructive method.

Once the transportation channel with the best value is selected, the problem can be

decomposed by echelon. First, the flow of product from distribution centers to the customers
can be obtained solving a generalized assignment problem (GAP) as depicted in Figure 2. The
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solution to the GAP assigns customers to distribution centers, and all the demand of the
customer is satisfied by the distribution center assigned. The costs used in the formulation of
the GAP correspond to the values of the greedy functions ¢(arcj,d ) Later, the flow of product

from the plants to the distribution centers is obtained solving a transportation problem (TP) as
shown in Figure 2. The demand at the open distribution centers is the sum of the demands of
the customers assigned to them previously. In this step the costs in the TP are the values of the
greedy functions ¢(arciﬂ ) This basic procedure is called to construct a solution in each

method. The GAP and the TP are solved using mathematical programming commercial
software.

[Figure 2 goes about here]

4.2.2 General algorithm

The scheme of the algorithm proposed is presented in Figure 3. A strategy of elitism is used to
avoid losing solutions after each method and then converging toward the true efficient set.
The solutions from the constructive and improvement methods are used to update the
approximate efficient set NDS (Non-dominated Solutions) using the dominance relation of the
new solutions with respect to those already in NDS. After the execution of each method a
reference set (RS) is constructed combining the solutions in the updated set NDS and the
“diverse” solutions obtained from the method. The diverse solutions are selected among those
close to the current set NDS in the objective functions space. The dotted lines in Figure 4
represent calls and updates to the NDS set. Finally, in the post-processing stage the last set RS
is used in the combination method. The solutions obtained in this method are used to update
the approximate efficient set NDS. The final result of the algorithm is the approximate
efficient set in the last NDS set.

[Figure 3 goes about here]

The constructive method generates a fixed number of solutions. For each solution, the
selection of the distribution centers to be opened is done randomly. The weights (A., A,) for
the greedy functions in equations (20) and (21) are generated systematically for each solution
in a linear combination between (1-4, 0) and (0, 1-A4y), considering the total number of
solutions to be generated. These weights A, and A, are used to select the transportation
channels in each solution, and their values are inherited through the rest of the algorithm.
Although the distributions centers are selected randomly in the constructive method, they
conserve assigned values of A. and A, for their application in the rest of the algorithm. The
parameter A represents the relative frequency of selection of a certain arc or distribution
center with respect to the total number of constructed solutions along the iterations. The
parameter A, is updated each iteration of the constructive method. This long term memory
promotes the selection of new elements each iteration of the constructive method. Once the
distribution centers are selected for each generated solution, the hierarchical construction
procedure is called to complete the construction of that solution. The algorithm for the
constructive method is shown in Figure 4.

10



[Figure 4 goes about here]

The solutions obtained in the constructive method create and update a set of non-dominated
solutions called NDS. The solutions in NDS are included in a reference set named RS. To
provide variety to the reference set some dominated solutions are included. These dominated
solutions are taken from the points closest to the current efficient frontier in NDS.

To guide movements in the improvement and combination methods, a greedy function for the
distributions centers was formulated, similar to that of the arcs, as shown in equations (22 -
24).

F, +EMPmaX CP 20 max CWk, /MW

g (de, )= (22)
max(Fj + Y MP max(CPlﬂ)+ D, max Csz /MW )
i€ 4 IELP; IELW

#'(de,)- )" o ) (23)
Q}gx(ieﬂ}eipeﬂ(TR.J )+ man (T W i ))

pldc, )= 2.9 \de, )+ 29 (dec ) 4)

The improvement method uses local search and explores three types of neighborhoods for
each solution in the reference set. These correspond to movements of opening, closing and
exchange of distribution centers. For each neighborhood a sorted list is created according to
the value of the aggregated greedy function ¢(dcj) in equation (24). Each element in the list

1s taken at a time in that order as described below:

* Closing of facilities CN (s). The open distribution centers are sorted in descending
order by ¢(dcj ) value, i.e. from worst to best.

*  Opening of facilities ON (s). The closed distribution centers are sorted in ascending
order by ¢(dcj ) value, i.e. from best to worst.

* Exchange of facilities EN (s). The previous two lists are created. One open facility is
closed and one closed facility is opened. The lists are explored taking as pivot the list
for opening.

To accept one movement the dominance of the new solution is considered. If an infeasible or
dominated solution is created by the movement, it is rejected. Figure 5 shows the acceptance
criterion and direction of improvement where weakly and strongly non-dominated solutions
are accepted. A short term memory is conserved to avoid cycling during the improvement
method. After a movement is done, the dashed areas in Figure 5 indicate the direction of
improvement allowed for a new movement. The algorithm for the improvement method is
shown in Figure 6.
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[Figure 5 goes about here]
[Figure 6 goes about here]

After a number of iterations applying the constructive and improvement methods, the
combination method is used as a post-processing stage. It is based on Path Relinking (Laguna
and Marti, 2003) to obtain a set of solutions for each pair of solutions from a reference set RS.
One of the solutions is selected as “initiating solution” and the other is selected as “guiding
solution”. The combination makes movements in the vector of values Z; of the distribution
centers and completes a solution calling to the hierarchical construction procedure. The path
is constructed giving priority to closing movements until infeasibility is found. Then, a
distribution center that was closed with respect to the guiding solution is now opened. The
construction of the path follows giving preference to closing movements. The criterion shown
in Figure 5 is used to accept these movements and the new solutions are used to update the set
of no-dominated solutions NDS. Figure 7 shows the algorithm for the combination method.

[Figure 7 goes about here]
5. Computational Evaluation

The specific goals accomplished by the experiments are as follows. Firstly, to solve relative
small size instances with the exact method to have a reference to compare with the
metaheuristic algorithm. Also, a variation of the exact method was used to obtain approximate
efficient sets for the comparison in larger instances. The variation consisted in running the
optimization software for each point of the epsilon-constraint algorithm with a time limit of
3600 seconds. These approximate efficient sets were compared with those obtained with the
metaheuristic algorithm to determine their quality, and the computational run times were
compared to evaluate the efficiency of the metaheuristic algorithm.

To perform the computational study, instances of different sizes were randomly generated as
described in Olivares-Benitez et al. (2012). The reader is invited to consult that work to have
the details of the parameters generation. The sizes generated are shown in Table 1, where the
group code indicates: [number of plants - number of potential distribution centers - number of
customers - number of arcs between nodes].

[Table 1 goes about here]

5.1 True efficient sets

The “Backward epsilon-constraint method with estimated lower limit for £, (ReC) algorithm
was used to solve the generated instances (Olivares-Benitez et al., 2012). The procedure was
coded in C and compiled with Visual Studio 6.0. The CPLEX 11.1 callable library (ILOG SA,
2008) was used to solve optimally the sub-problems involved in the epsilon-constraint based
algorithm. These routines were run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The true
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efficient sets of the small instances of groups 5-5-5-2, 5-5-5-5, and 5-5-20-2 were obtained.
The run times were recorded for comparison with the metaheuristic algorithm.

Figure 8 shows the efficient frontier for the instance number 2 of the group 5-5-5-5. The
efficient frontier for the rest of the mentioned instances is similar. The points are not
connected because of the discretization of time units. It is evident the tradeoff between cost

(f1) and time (f2).

[Figure 8 goes about here]
5.2 Approximate efficient sets using the epsilon-constraint based algorithm

To have a comparison for large instances, the ReC algorithm was used with a time limit of
3600 seconds per each value of . The CPLEX 9.1 callable library (ILOG SA, 2005) was used
to solve optimally the sub-problems involved in the epsilon-constraint based algorithm. These
routines were run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The approximate efficient
sets and the run times were recorded for comparison with the metaheuristic algorithm.

5.3 Approximate efficient sets using the metaheuristic algorithm

The metaheuristic algorithm was coded in C. The CPLEX 9.1 callable library (ILOG SA,
2005) was used to solve the GAP and TP sub-problems generated within the algorithm. The
algorithm was run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The number of
constructed solutions NCS in the metaheuristic algorithm was set to 100 solutions. The
number of iterations before the execution of the combination method was set to 10.

5.4 Comparisons

To make comparisons of the efficient frontiers obtained with the algorithms several metrics
were used. The computing time and the number of non-dominated points |S;| are reported. The
ratio Rpos (S;) (Altiparmak et al., 20006) is calculated also. This ratio is able to compare more
than two efficient sets. To make the computations, a reference efficient set P must be
constructed with the union of the efficient solutions of all the r sets, and the dominated
solutions are eliminated. This metric indicates the ratio of points from the set S; that belong to
the reference efficient set P. A higher value of this metric is better, indicating the quality of
the approximate efficient set obtained.

Additionally, based on the features of the problem treated in this work, a special metric was
designed, although the principle may be adapted to other bi-objective combinatorial
optimization problems. The discretization of objective f, and the number of objectives allows
proceeding as follows for a pair of sets S; and S,. A set of values 7 is constructed with each
value of objective f, where values for objective f; exist in both sets:

T ={(s)v A(s)sE€S,. s €8,3(5)a T () £(5) = 4(5")
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Then an average deviation D, is calculated with the ratios of objective f; for each value of f;
in the set 7, as shown in equation (25).

Si(s): fls)=1

D, = ETfl(S,):sz(S’)=t Vses,s'€S (25)

The idea is very simple. For a fixed value of objective f, the ratio f; (s) / f1 (s’) is calculated
only if the values of objective f; are available in both sets. Then the average of these ratios is
calculated. The minimum D,,;, of these ratios is calculated with equation (26).

: =t

D,. =min fl(S,) fz(s? VsES),s €S, (26)
T i(s): () =1

For these metrics D, and D, the true efficient sets and the approximate efficient sets

obtained with the ReC algorithm take place in the computations as >, and the approximate

efficient sets obtained with the metaheuristic algorithm are considered as .

Table 2 and Table 3 show the results for five instances of each size. The results of the epsilon-
constraint based algorithm are identified with the code [ReC] and the results of the
metaheuristic algorithm are identified with the code [MH]. Table 2 presents the comparison
between the exact method and the metaheuristic method, i.e. the true efficient sets and the
approximate efficient sets respectively. The results in Table 3 compare the performance of the
exact method with time limit and the metaheuristic method, i.e. approximate efficient sets in
both cases.

The comparison of results for each metric must be made as follows. A greater value for |S)|
and Rpos (S;) is better. These values indicate the size and quality of the efficient frontier. A
lower value, less than or equal to 1.0, for metrics Dy, and D, indicates that the metaheuristic
algorithm achieves lower cost (f;) compared to the epsilon-constraint based algorithm, for the
same transportation time (f).

[Table 2 goes about here]
[Table 3 goes about here]

A visual comparison of the efficient frontiers is shown in Figures 9 and 10 for a small
instance and a very large instance respectively. It is evident the trade-off between the cost and
time objectives, with best times for worse costs. It can be observed in Figure 9 that for small
instances, the metaheuristic algorithm got very close to the efficient frontier and in some
points achieved the true efficient solution. For large instances, like in the case of Figure 10,
the metaheuristic algorithm obtained a better efficient frontier than the epsilon-constraint
based algorithm. It was observed in several experiments that obtaining a solution for middle
values of f; (time objective) was more difficult, which explains the form of the frontier
obtained with the epsilon-constraint based algorithm. Both algorithms achieved good
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solutions when the problem approaches to the single-objective case in the extremes of the
efficient frontier.

[Figure 9 goes about here]
[Figure 10 goes about here]

In particular, for the instances of group 5-5-5-2 the total run time for the metaheuristic
algorithm was greater than the time for the epsilon-constraint based algorithm. In this case the
instances are very small and the exact method can obtain true efficient sets easily. However,
the metaheuristic algorithm spent more time in useless exploration of the solutions space
without achieving good approximate frontiers.

For the instances of groups 50-50-50-2 and 50-50-100-2 the time of the metaheuristic
algorithm was greater than the time for the epsilon-constraint based algorithm. The
explanation here is different. In this case the epsilon-constraint based algorithm ran with a
time limit per each value of ¢. In all the instances of Table 3 this time limit was reached in
almost all the values of ¢. The total time is very similar for these groups of instances because
the number of points for ¢ values to be explored was also similar. This characteristic of the
parameters come from the instance generation procedure described in Olivares-Benitez et al.
(2012). In the case of the metaheuristic algorithm, the run time depends on the size of the
instance and then the time is expected to grow for larger instances. The total run time in both
algorithms was not controlled.

6 Conclusions

The process of supply chain design involves decisions over several aspects. The most treated
decisions in the literature are facility location, transportation flows, production levels, supplier
selection, and inventory levels. Nevertheless only the most recent works include
transportation channel selection. The supply chain design problem addressed here
incorporates the selection of the transportation channel that produces a cost-time tradeoff.
Hence as a bi-objective problem, the solution is not unique and a set of efficient solutions
must be obtained. The construction of a set of efficient solutions follows an a posteriori
approach where the decision maker will take the final decision considering other criteria to
select one among the different solutions obtained. As noted in the literature review section,
this approach has not been addressed before in supply chain design although some works have
considered it partially.

In this work we designed a metaheuristic algorithm ad-hoc to solve the problem treated. This
metaheuristic incorporates elements from greedy functions, Scatter Search, Path Relinking
and Mathematical Programming. It decomposes the construction of a solution in a hierarchy
of decisions. Some of the steps require the use of mathematical programming software to
solve a generalized assignment problem and a transportation problem. This approach has been
formalized recently as “Matheuristics”, which combine metaheuristics and mathematical
programming techniques (Maniezzo et al., 2010). The literature review showed that
traditional metaheuristics like Genetic Algorithms and Tabu Search have been used frequently
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for single objective versions of supply chain design problems. Recently multiobjective
versions of these metaheuristics and more sophisticated methods have been used for
multiobjective supply chain design problems. However the matheuristic hybrid presented here
is a novelty in the field of supply chain design. The use of this type of metaheuristic
algorithms and the transportation channel selection in the context of multiobjective supply
chain design represent major contributions of this paper.

The comparison in Table 2 showed that the metaheuristic algorithm becomes competitive in
terms of computing time with the exact method for small instances, although the efficient
frontiers have lower cardinality and quality. However the approximate efficient sets obtained
with the metaheuristic algorithm are not too far from those obtained with the exact method as
was observed in the example of Figure 9.

For large instances, the results in Table 3 proved that the metaheuristic algorithm becomes
competitive in the three metrics of comparison: computing time, cardinality and quality of the
efficient sets obtained. We believe that a great benefit comes from integrating mathematical
programming commercial software into the algorithm to solve the transportation and
generalized assignment sub-problems. At the same time, the population-based approach of the
metaheuristic makes a good exploration of the solutions space achieving well distributed
efficient frontiers.

The model presented here may be used for the design of supply chains of products with low
complexity or products with few components. The application may be in short supply chains
where lead time may be a competitive advantage or a requisite. These characteristics apply
well to perishable or seasonal products. Examples of these products can be found in the food
industry, pharmaceutical industry, chemical industry, and apparel industry. The metaheuristic
algorithm developed in this work delivers several alternatives in the efficient frontier for the
decision maker. It also obtains solutions relatively fast, considering that the problem involves
strategic decisions with impact in the mid-to long term. Therefore several scenarios can be
analyzed easily with changing parameters of demand or costs considering uncertainty, before
taking a final decision.

The following are limitations and consequently possible extensions to the model. The model
may be extended to include multiple commodities, direct flows from plants to customers, and
intra-echelon flows. Also routing decisions, technology selection, capacity levels and
international supply chain aspects may be considered. The transportation time has an effect in
the size of pipeline inventory and safety stock inventory that may be considered into the cost
objective function. Recent works in multiobjective supply chain design include environmental
and risk criteria in parallel to economic objectives. The explicit modeling of uncertainty of the
demand and other parameters or a multi-period approach may also be addressed.
Nevertheless, these elements change the structure of the problem and a major modification of
the metaheuristic algorithm should be done.

The results of the metaheuristic algorithm were compared favorably to the results of an

epsilon-constraint based algorithm. However it may be interesting the comparison of the
metaheuristic algorithm with other methods. The natural candidates for this additional
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comparison are evolutionary algorithms like SPEA 2 (Zitzler et al., 2001) and NSGA-II (Deb
et al., 2002). Moreover, considering the structure of the epsilon-constrained model, methods
like decomposition schemes, Lagrangian relaxation, and single-objective metaheuristics may
be implemented in a sequential algorithm to obtain the approximate efficient frontier.
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Figure 1 Single product, single period, and two-echelon distribution system. Each
transportation channel has a time (7Pj;, TWj;) and a unitary cost (CP;;;, CWjy) associated.
Source: Olivares-Benitez et al. (2012).
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Figure 2 Generalized Assignment Problem (GAP) and Transportation Problem (TP) in the
hierarchical construction procedure.
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Figure 3 Scheme of the metaheuristic algorithm.
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Method Constructive

Input: Instance data; Number of Constructed Solutions (NCS).

Output: Set of Constructed Solutions, CS = {s" | r = 1,..., NCS} or general infeasibility
message.

BEGIN

01. Check general feasibility of the instance under the following conditions:
Y MP, = /;KDk > N MW, = ;Dk
= =l

02. If the instance is infeasible:

03. Return message of infeasibility.
04. Else:
05S. CS=0.
06. Forr=1, ..., NCS:
07. Initialize Z;=0,4;=0,Bu=0,i €ELjEJ, kEK, | E LP;, | € LW).
08. Initialize s” is incomplete.
09. Calculate the vector [ 1/, A’ ] for solution s.
10. Calculate the aggregated greedy function for each element ¢(‘””Cijz ), ¢(a”cjkz ) using
equations (20) — (21).
11. While solution s” is incomplete and the instance is feasible:
12. While Eszwj <2Dk:
et S
13. Select randomly a distribution center j' € J, Z;= 1.
14. End While.
15. Set of open distribution centers J' = {j € J | Z;=1}.
16. s" = Hierarchical construction procedure (J°).
17. If 5" is infeasible:
18. If|J|<|J]
19. Go To Step 13 to open another distribution center.
20. Else:
21. Return a message of infeasibility for the instance.
22. End If.
23. Else:
24. CS = CS U {s"} and the associated vector [ A/, A'] is stored in the structure of the
solution s”.
25. End If.
26. End While.
27. End For.
28. Return the set CS in the output file.
29. End If
END

Figure 4 Algorithm for the constructive method.
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Figure 5 Scheme of the acceptance criterion and direction of improvement.
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Method Improvement

Input:
Output:
BEGIN

Instance data; Reference set of solutions RS; Approximate efficient set NDS.
Approximate efficient set NDS updated.

01. For each s € RS:

02. Current solution s’ = s.

03. Exit local search=0.

04. While Exit local search = 0:

05. Initialize the set of improved solutions IS = .

06. Obtain solution s or infeasibility message exploring the closing neighborhood CN
(s).

07. NDS = Update NDS set (s°, NDS).

08. If s° meets the acceptance criterion and direction of improvement, /S =IS U {s°}.

09. Obtain solution s” or infeasibility message exploring the opening neighborhood ON
(s)).

10. NDS = Update NDS set (s°, NDS).

11. If s” meets the acceptance criterion and direction of improvement, /S = IS U {s°}.

12. Obtain solution s° or infeasibility message exploring the exchange neighborhood EN
(s).

13. NDS = Update NDS set (s°, NDS).

14. If s° meets the acceptance criterion and direction of improvement, /S = IS U {s°}.

15. If IS # &

16. Select randomly a solution § € IS

17. New current solution s’ = §.

18. Else:

19. Exit local search=1.

20. End If.

21. End While.

22. End For.

END

Figure 6 Algorithm for the improvement method.
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Method Combination

Input: Instance data; Reference set of solutions RS; Approximate efficient set NDS.
Output: Approximate efficient set NDS updated.
BEGIN

01. For V (initiating solution) s € RS:
02.  For V (guiding solution) r € RS:

03. If s # r and Zj¢Z;VjEJ:

04. Create sets FC and FO; Sort sets FC = {j1, ja,... | ¢(dcj’ )= ¢(dc/_”1 )i and FO = {ji, jo,... |
¢(dcj, )5 ¢(d Jin )}'

05. Create intermediate solution ¢, Z;’ = Z; Ve, AZ = ﬂz, ﬂ.? = ﬂ:.

06. If partial solution ¢ is feasible (based on accumulated capacity):

07. Use the Hierarchical construction procedure to complete solution g.

08. If complete solution ¢ is feasible:

09. NDS = Update NDS set (¢, NDS).

10. End If.

11. End If.

12. n=1,p=1.

13. While n < |[FC):

14. Modify intermediate solution ¢ making Z;.’ =0,j,EFC.

15. If partial solution ¢ is feasible (based on accumulated capacity):

16. Use the Hierarchical construction procedure to complete solution g.

17. If complete solution ¢ is feasible:

18. NDS = Update NDS set (¢, NDS); n=n+ 1; Go To Step 13.

19. Else:

20. n=n+1; Go To Step 26.

21. End If.

22. Else:

23. n=n+1; Go To Step 26.

24, End If.

25. End While.

26. While p < |FO|:

27. Modify intermediate solution ¢ making Z ;’p =0,j,EFO.

28. If partial solution ¢ is feasible (based on accumulated capacity):

29. Use the Hierarchical construction procedure to complete solution g.

30. If complete solution ¢ is feasible:

31. NDS = Update NDS set (¢, NDS); p=p + 1; Go To Step 13.

32. Else:

33. p=p+1;Go To Step 26.

34. End If

35. Else:

36. p=p+1;Go To Step 26.

37. End If.

38. End While.

39. End If.

40. End For.

41. End For.

END

Figure 7 Algorithm for the combination method.
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Figure 8 Set of non-dominated points for instance number 2 of group 5-5-5-5. Source:
Olivares-Benitez et al. (2012).
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Figure 9 Comparison of the efficient frontiers for instance number 1 of group 5-5-5-2.
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Figure 10 Comparison of the approximate efficient frontiers for instance number 1 of group
50-50-100-2.

Table 1 Generated instances.

Group code Number of Number of Number of
instances  binary variables  constraints

5-5-5-2 5 105 385
5-5-5-5 5 255 835
5-5-20-2 5 255 940
5-20-20-2 5 1020 3625
20-20-20-2 5 1620 5740
20-20-20-5 5 4020 12940
20-20-50-5 5 7020 22600
50-50-50-2 5 10050 35350
50-50-100-2 5 15050 52950

Group code indicates: [number of plants - number of potential distribution centers -
number of customers - number of arcs between nodes]
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Table 2 Comparison of results from the metaheuristic algorithm [MH] and the epsilon-
constraint based algorithm [ReC] for small instances.

Total time | Total time
Group code | Instance (sec) [MH] | (sec) [ReC] ISkec] Rpos(ReC) ISunl | Rpos(MH) D D,in

5-5-20-2 1 29 236 31 1.000 20 0.050 1.042  1.000
5-5-20-2 2 33 269 33 1.000 20 0.050 1.031  1.000
5-5-20-2 3 71 452 33 1.000 22 0.045 1.045  1.000
5-5-20-2 4 54 324 32 1.000 20 0.050 1.052  1.000
5-5-20-2 5 74 491 33 1.000 27 0.037 1.028  1.000
5-5-5-5 1 92 134 38 1.000 32 0.125 1.020  1.000
5-5-5-5 2 64 159 40 1.000 25 0.160 1.027  1.000
5-5-5-5 3 63 219 39 1.000 27 0.259 1.014  1.000
5-5-5-5 4 147 180 39 1.000 31 0.194 1.022  1.000
5-5-5-5 5 64 111 39 1.000 28 0.179 1.018  1.000
5-5-5-2 1 75 7 32 1.000 22 0.364 1.028  1.000
5-5-5-2 2 36 11 29 1.000 21 0.095 1.024  1.000
5-5-5-2 3 43 12 28 1.000 22 0.364 1.019  1.000
5-5-5-2 4 37 24 31 1.000 17 0.412 1.021  1.000
5-5-5-2 5 41 10 25 1.000 18 0.389 1.017  1.000

Group code indicates: [number of plants - number of potential distribution centers - number of customers - number of arcs between nodes]
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Table 3 Comparison of results from the metaheuristic algorithm [AMH] and the epsilon-

constraint based algorithm with time limit [ReC] for large instances.

Group code Instance 2:;?)1 [ ;/}113]6 2:;?)1 [ Reg]me ISkec] Rpos(ReC) |Sunl | Rpos(MH) D D ,in
50-50-100-2 1 53715 24022 31 0.032 38 0.974 0.831  0.646
50-50-100-2 2 59076 24022 30 0.000 37 1.000 0.798  0.645
50-50-100-2 3 55026 24026 37 0.081 37 1.000 0.816  0.602
50-50-100-2 4 57049 24604 33 0.091 37 0.946 0.859  0.681
50-50-100-2 5 45386 24020 37 0.027 38 0.974 0.810  0.643
50-50-50-2 1 32901 24604 39 0.051 37 0.973 0.903 0.813
50-50-50-2 2 34144 24604 39 0.077 40 0.950 0.888  0.795
50-50-50-2 3 41621 24010 37 0.027 36 0.972 0.850  0.698
50-50-50-2 4 27755 24010 39 0.026 39 0.974 0.874  0.780
50-50-50-2 5 30655 24008 36 0.028 40 0.975 0.909 0.843
20-20-50-5 1 17756 24603 37 0.054 39 0.949 0.912  0.800
20-20-50-5 2 20145 24603 41 0.024 41 0.976 0.899  0.793
20-20-50-5 3 21887 24007 39 0.026 37 0.973 0.898  0.799
20-20-50-5 4 18764 24603 40 0.025 38 0.974 0.908 0.816
20-20-50-5 5 18001 24010 40 0.100 37 0.973 0.908  0.835
20-20-20-5 1 5029 24270 41 0.049 41 0.951 0.927  0.842
20-20-20-5 2 5426 24487 40 0.050 40 0.975 0.929  0.860
20-20-20-5 3 3597 24009 39 0.077 39 0.949 0.930 0.844
20-20-20-5 4 2764 24007 41 0.049 40 0.975 0.924  0.867
20-20-20-5 5 5209 24605 38 0.053 41 0.951 0.936  0.859
20-20-20-2 1 4680 22937 40 0.125 38 0.921 0.967  0.900
20-20-20-2 2 4100 23405 39 0.128 39 0.872 0.965 0.906
20-20-20-2 3 2847 23022 40 0.200 38 0.842 0.962  0.888
20-20-20-2 4 4238 23407 40 0.150 39 0.872 0.973  0.878
20-20-20-2 5 4612 23446 39 0.205 39 0.821 0.979 00915

5-20-20-2 1 3615 22257 38 0.289 37 0.703 0.973  0.900

5-20-20-2 2 3097 22257 38 0.289 39 0.718 0.977  0.905

5-20-20-2 3 2346 22231 38 0.368 37 0.649 0.983 00914

5-20-20-2 4 2403 21709 39 0.282 39 0.718 0.981 0.899

5-20-20-2 5 4425 21669 39 0.282 39 0.718 0.977 0.920

Group code indicates: [number of plants - number of potential distribution centers - number of customers - number of arcs between nodes]
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