
Commercial Territory Design for a Distribution Firm with New

Constructive and Destructive Heuristics

Jaime Cano-Belmán

Graduate Program in Systems Engineering

Universidad Autónoma de Nuevo León

AP 111 – F, Cd. Universitaria

San Nicolás de los Garza, NL 66450, Mexico

E-mail: jaime@yalma.fime.uanl.mx

Roger Z. Rı́os-Mercado1

Graduate Program in Systems Engineering

Universidad Autónoma de Nuevo León

AP 111 – F, Cd. Universitaria

San Nicolás de los Garza, NL 66450, Mexico

E-mail: roger.rios@uanl.edu.mx

M. Angélica Salazar-Aguilar

HEC Montréal

3000, chemin de la Côte-Sainte-Catherine

Montréal, Canada H3T 2A7

E-mail: angelica.salazar@cirrelt.ca

15 February 2010

Revised: 26 October 2011

Accepted: 26 January 2012

1Corresponding author

Abstract

A commercial territory design problem with compactness maximization criterion subject to terri-

tory balancing and connectivity is addressed. Four new heuristics based on Greedy Randomized

Adaptive Search Procedures within a location-allocation scheme for this NP-hard combinatorial

optimization problem are proposed. The first three (named GRLH1, GRLH2, and GRDL) build

the territories simultaneously. Their construction phase consists of two parts: a location phase

where p territory seeds are identified, and an allocation phase where the remaining basic units

are iteratively assigned to a territory. In contrast, the other heuristic (named SLA) builds the

territories one at a time. Empirical results reveals that GRLH1 and GRLH2 find near-optimal or

optimal solutions to relatively small instances, where exact solutions could be found. The pro-

posed procedures are relatively fast. We carried out a comparison between the proposed heuristic

procedures and the existing method in larger instances. It was observed the proposed heuristic

GRLH1 produced very good competitive results with respect to the existing approach. Keywords:

Combinatorial optimization; territory design, location-allocation heuristics; GRASP

1 Introduction

Territory design consists of grouping small geographic areas or basic units (BUs) into larger geo-

graphic clusters called territories or zones in such a way that the latter are acceptable according to

relevant criteria. These criteria can be economically motivated or have a demographic background.

Furthermore, spatial constraints like compactness and contiguity are often required.

The problem has applications in many fields such as political districting (Hess et al. [10]),

districting for schools and social facilities (Ferland and Guénette [8]), sales territory design (Zoltners

and Sinha [15]), territory design for winter service and solid waste collection (Muyldermans et

al. [12]), territory design for emergency services (Bertolazzi, Bianco, and Ricciardelli [1]), delivery

zones for distribution centers (Haugland, Ho, and Laporte [9]), or sales force deployment (Drexl and

Haase [3]). Excellent and complete surveys on territory design problems can be found in Kalcsics,

Nickel, and Schröder [11], Duque, Ramos, and Suriñach [4], and Zoltners and Sinha [15]).

Firms with sales forces normally require to divide the market into responsibility areas. Thus,

territory design must be done in order to obtain service areas or to locate technical facilities. Several

criteria such as organizational criteria (number of territories, number of BUs, exclusive assignment,

location of sales representatives), geographical criteria (contiguity, accessibility, compactness), and

activity related criteria (balancing, maximizing profit) are often used in territory design.

We address the version of the territory design problem with the following features. Each BU

has associated two attributes or activities: number of customers and sales volume. Each BU must

be assigned to only one territory. The size of each territory must be balanced with respect to each

activity. Given that it is not easy to find a perfectly balanced solution, the balancing requirement

is handled by a user-specified tolerance that allows a relative deviation from the target territory

size. The requirement of contiguity is also taken into account, which means that, each pair of BUs

belonging to the same territory must be joined by a path contained completely in that territory.

In order to get compact territories a dispersion measure based on the objective function of the

well-known p-center problem is minimized.

This problem was introduced by Rı́os-Mercado and Fernández [13]. In their work (RF for short),

they consider three activity measures (number of customers, sales volume, and workload). They

propose a GRASP approach which incorporates reactivity and filtering. During the construction

phase the territories are created one by one, in such a way that a territory is started with a BU

and iteratively the assignment of BUs takes place. When the territory size reaches its upper bound

limit it is closed and a new territory is started. The creation of territories in this manner does not

necessarily produce the number of territories required, thus an adjustment phase is then carried

out. Finally, an improvement phase (post-processing) is performed. They consider a neighborhood

that consists of moving a specific BU from its current territory to an adjacent territory. They

used a weighted merit function with two components, the dispersion measure and violation of the

1

balancing constraints. An important limitation of this approach is the high level of infeasibility

with respect to the balancing constraints reached in the construction phase. A direct consequence

of this is that the local search spends a tremendous amount of effort trying to reach feasibility.

In this work, we propose four different location-allocation heuristics. Three of them are con-

structive in nature and the other is destructive. Three of our proposed heuristics (called GRLH1,

GRLH2, and GRDL) seek that all territories are growin uniformly. Their location-allocation scheme

consist of two phases: a location phase whose role is to locate p BUs that would serve as initial

seeds for the territory creation, and an allocation phase where the remaining BUs are assigned to

these territories. Thus, it is expected that this simultaneous creation of p territories yields lower

levels of infeasibility with respect to the balancing constraints than those obtained in previous work

[13], where the territories are built one by one. A fourth heuristic called SLA builds the territories

one at a time, in this heuristic an active territory is “closed” when its size reaches the upper limit

allowed for any activity (number of customers or sales volume).

A detailed design of experiments following the guidelines of Coy et al. [2] was first carried

out for parameter fine-tunning. Afterwards, the procedures were evaluated over a data set of

randomly generated instances. Empirical results reveals that GRLH1 and GRLH2 find near optimal

or optimal solutions to relatively small instances, where exact solutions could be found. The

proposed procedures are relatively fast. We carried out a comparison between the proposed heuristic

procedures and the existing method in larger instances. It was observed that GRLH1 produced

very good competitive results with respect to the existing approach.

This paper is organized as follows. In Section 2 a detailed description and formulation of the

problem is given. In Section 3, the proposed heuristics are described in detail. In Section 4 the

empirical work is presented. Conclusions of this work are drawn in Section 5.

2 Problem Description

Let G = (V,E) be a planar undirected graph, where V is the set of nodes (blocks or basic units),

and E the set of edges. For this particular application an edge between nodes i and j exists

if basic units i and j are adjacent. Each basic unit (BU) i has associated parameters such as

coordinates (xi, yi), and activity values wa
i , a ∈ {1, 2}. In our problem such activities correspond

to the number of customers (a=1) and product demand (a=2). The number of territories is fixed

and represented by p. A territory is a subset of nodes Xk ⊂ V (k = 1, . . . , p). In addition, the

problem solution requires that each BU is assigned only to one territory. Hence, territories are

defined by a partition of V . Furthermore, the territories must be balanced according to the node

activity measures (number of customers and sales volume). The size of a territory Xk with respect

2

to activity a is defined as follows:

wa(Xk) =
∑

i∈Xk

wa
i (1)

It is difficult to obtain a perfectly balanced solution due to the discrete problem structure

and the exclusive assignment requirement. One way to represent the balance requirement is by

introducing a constraint that allows a relative deviation from the target activity value. It is given

by a tolerance parameter τa, specified by the user. The target average size is computed simply

as µa = wa(V)/p. The balancing constraint becomes wa(Xk) ∈ [(1 − τa)µa, (1 + τa)µa]. The

contiguity requirement means that for any pair of BUs i and j in a given territory, there must exist

an i-j path totally contained in the territory. In other words, territory Xk must induce a connected

subgraph of G. A rigorous definition of compactness does not exist; but a territory is said to be

compact if it is somewhat round-shaped and undistorted. Thus, a dispersion function must give a

measure of how far a BU is from each other in each territory. One way to measure the dispersion

of a territory Xk is using a p-center objective function. This measure computes the distance from

the farthest BU to its corresponding territory center (given by c(k)), k = 1, . . . , p.

f(Xk) = max
j∈Xk
{dc(k),j} (2)

where dc(k),j is the Euclidean distance from node j to its territory center, denoted by c(k). We

define a territory center c(k) of territory k as the node with the smallest distance to its farthest

node, that is:

c(k) = arg min
i∈Xk

{max
j∈Xk
{dij}} (3)

Let Π be the collection of all p-partitions of V . Then, the problem can be described as finding a p-

partitionX = (X1, ...,Xp) of V satisfying the specified planning criteria of balancing and contiguity,

that minimizes the above distance-based dispersion measure. The combinatorial description of the

problem is the following:

Minimize
X∈Π

f(X) = max
k=1,...,p

j∈Xk

{dc(k),j} (4)

subject to

wa(Xk)/µa ∈ [1− τa, 1 + τa] a ∈ A (5)

G(Xk, E(Xk)) is connected. k = 1, . . . , p (6)

The objective function (4) minimizes the territory dispersion. Constraints (5) represent the balance

in each territory. Constraints (6) assure the connectivity of each territory. The problem is NP-

hard [13]. Our experience shows that one can optimally solve with branch-and-bound methods

3

instances of up to 150 BUs. The target instances have between 500 and 2000 BUs, so the choice of

heuristics is clearly justified.

3 Solution Approach

The main goal of this work is to propose alternative constructive procedures that would generate

better or more diverse solutions than those obtained in [13]. Following the previous work, we also

derive GRASP-based algorithms but in a very different way. GRASP [7] is a multi-start meta-

heuristic widely used for solving many combinatorial problems. Basically, each GRASP iteration

consists of two phases: construction and local search (Figure 1). In RF, a solution is built iteratively

by creating one single territory at a time. The criterion for closing a territory and opening a new

one is when the upper bound of the balancing constraint reach its limit. At the end, this leads

to obtaining a number of territories different (and usually larger) than p. An adjustment phase

consisting of a merging operation is then applied, but this produces a high degree of violation in

the balancing constraints (5). In our work, we attempt to overcome this limitation by building the

p territories simultaneously. Therefore, the basic difference between our proposed procedures and

the previous work is the construction phase.

function procedure GRASP()

Input: instance data.

Output: best solution found S∗.

0 f∗ ←∞;

1 while (stopping criterion not satisfied) do

2 S ← Greedy randomized construction;

3 S ← Local search(S);

4 if (f(S) < f∗) then

5 f∗ ← f(S);

6 S∗ ← S;

7 end if

8 end while

9 return S∗;

end GRASP

Figure 1: A GRASP pseudocode.

3.1 Constructive methods

Solutions are generated in two phases which we henceforth call location and allocation. In the

location phase, p BUs are selected to be territory seeds. In the allocation phase, the unassigned

BUs are allocated to one of the territories initialized with a seed basic unit, taking into account

4

contiguity and balancing constraints. Thus, p territories are initialized, one for each seed BU, where

the seed basic unit is not necessarily the territory center c(k).

3.1.1 Location phase

The location phase consists of finding p BUs that are used as seeds in the location phase. Given

the nature of the objective function, it is desired these seed nodes are as disperse as possible. This

can be done by solving a p-dispersion problem. Given a set of candidate points, the p-dispersion

problem [5] consists of selecting a subset of p points, such that the minimum distance between

any pair of these chosen points is as large as possible. In this work, three location heuristics are

proposed. Two of them can be seen as extensions from the p-dispersion heuristics in Erkut, Ülküsal,

and Yeniçerioğlu [6], and the other considers a 1-step look-ahead policy.

procedure GRLH1 (α, p)

Input : α= GRASP RCL location quality parameter; p = number of territories.

Output : p-seed set Vc.

0 Vc ← ∅;

1 Select i∗ and j∗ in V , such that d(i∗, {j∗}) = max{d(i, {j}) : i, j ∈ V };

2 Vc ← Vc ∪ {i
∗, j∗};

3 while (| Vc |< p) do

4 Compute d(j, Vc), j ∈ V \ Vc;

5 Build RCL = {j : d(j, Vc) ≥ d
max − α(dmax − dmin)};

6 Choose j randomly, j ∈ RCL;

7 Vc ← Vc ∪ {j};

8 end while

9 return(Vc);

end GRLH1

Figure 2: Location procedure GRLH1.

GRLH1: Greedy randomized constructive location heuristic. The greedy randomized constructive

location heuristic (GRLH1) requires to find a set Vc of p disperse BUs. Initially Vc = ∅ (Figure

2). GRLH1 is started by choosing the two farthest points in V (which is the optimal solution for

a 2-dispersion problem). Then, during p − 2 iterations, a new point is added to Vc. In step 4,

distances from node j to the current Vc are measured as d(j, Vc) = mini∈Vc{dij}.

Then a restricted candidate list (RCL) is formed with the best elements (step 5). The new

point j is chosen to maximize the minimum distance from j to the elements already in Vc. Once

the new seed is randomly selected from the RCL (step 6) and added to the solution (step 7), a

new RCL is built to select another BU, and so on. The restricted candidate list (RCL) follows the

concept used normally in the GRASP methodology. The RCL is restricted by a quality parameter

5

α. The α value defines the quality of the elements in the RCL, when α = 0, the construction is

purely greedy location solution, and if α = 1 the location is random.

procedure GRLH2 (α, p)

Input : α= GRASP RCL location quality parameter; p = number of territories.

Output : p-seed set Vc.

0 Vc ← ∅;

1 if (p mod(2)==0) then

2 Select i∗ and j∗ such that d(i∗, {j∗}) = max{d(i, {j}) : i, j ∈ V };

3 Vc ← Vc ∪ {i
∗, j∗};

4 else

5 Select i∗, j∗ and k∗; such that d(i∗, {j∗, k∗}) = max{d(i, {j, k}) : i, j, k ∈ V };

6 Vc ← Vc ∪ {i
∗, j∗, k∗};

7 end if

8 while (| Vc |< p) do

9 Compute ϕ(i, j), i, j ∈ V \ Vc;

10 Build RCL = {(i, j) : ϕ(i, j) ≥ ϕmax − α(ϕmax − ϕmin)};

11 Choose (i, j) randomly, (i, j) ∈ RCL;

12 Vc ← Vc ∪ (i, j);

13 end while

14 return(Vc);

end GRLH2

Figure 3: Location procedure GRLH2.

GRLH2: 1-step look-ahead greedy randomized constructive heuristic. The look-ahead greedy ran-

domized constructive heuristic (GRLH2) proceeds like the GRLH1 heuristic. The difference is that

the GRLH2 evaluates not only the next unit to be included in the solution, but the next two si-

multaneously. The purpose of evaluating two basic units simultaneously is to reduce the greediness

and, to favor the dispersion by searching in a different space than the one used in GRLH1.

The greedy function ϕ used to measure the desirability of adding both units i and j to set Vc

is defined as follows:

ϕ(i, j) = min{d(i, Vc), d(j, Vc), dij} (7)

As usual ϕmax = maxi,j ϕ(i, j) and ϕmin = mini,j ϕ(i, j). Note that the computation of ϕ is more

expensive than the computation of the greedy function used in GRLH1. It is of particular interest

if this extra effort pays off in terms of solution quality. Also note that Steps 5-6 in Figure 3 reflect

the fact that p might be odd.

GRDL: Greedy randomized destructive location heuristic. The idea behind this procedure is based

on the following observation. Given a set of nodes in the space, if a pair of the nearest nodes is

identified and one of these is eliminated, the remaining nodes tend to be more disperse in terms

6

of the dispersion measure. Following this idea, the GRDL procedure (Figure 4) starts with all

BUs in the solution, it is (Vc = V). Iteratively, the procedure deletes one BU from Vc until p BUs

remain in the seeds set (Vc). Since it is desirable to eliminate one of the nearest BUs, we create an

RCL such that RCL = {(i, j) : dij ≤ dmin + α(dmax − dmin)}, where dmax = maxi,j∈V c{dij} and

dmin = mini,j∈V c{dij}. Then, following the GRASP scheme, a pair (i, j) is randomly chosen from

the RCL, and one of these is eliminated from Vc. The BU to be eliminated is determined using

an index which relates the number of customers and product demand in a basic unit (w1
i ∗ w

2
i).

This index is used due to the interest in keeping in Vc the basic units with more sales and more

customers.

procedure GRDL (α, p)

Input : α= GRASP RCL location quality parameter; p = number of territories.

Output : p-seed set Vc.

0 Vc ← V ;

1 while (|Vc| > p) do

2 Build RCL = {(i, j) ∈ Vc : dij ≤ d
min + α(dmax − dmin)};

3 Select a pair (i, j) ∈ RCL randomly;

4 Eliminate basic unit i∗ = arg min{w1
i ∗ w

2
i , w

1
j ∗ w

2
j };

5 Vc ← Vc \ {i
∗};

6 end while

7 return(Vc);

end GRDL.

Figure 4: Location procedure GRDL.

3.1.2 Allocation phase

Given the dispersion set Vc = {v1, . . . , vp} obtained in the location phase (see Figure 5), we initialize

each territory as Xk = {vk}, k = 1, . . . , p. Let V u = V \ Vc be the set of unassigned BUs, that is,

|V u| = |V | − p. Each unassigned BU j ∈ Vu must be allocated to only one of the k territories. We

define the neighbor set Nk of territory k as those unassigned BUs that are connected by an edge

with any BU in territory Xk, k = 1, . . . , p. Hence Nk = {j ∈ V u : Xk ∪ {j} is connected}. At a

given iteration a greedy function φ(j, k), j ∈ Vu, k = 1, . . . , p, given by

φ(j, k) = (|Nk|)e · Φ(j, k) (8)

is computed, where

Φ(j, k) =

λf(Xk ∪ {j}) + (1− λ)g(Xk ∪ {j})

7

k ∈ K, j ∈ Nk (9)

g(Xk ∪ {j}) =
∑

a∈A

max{wa(Xk) + wa
j − (1 + τa)µa, 0}

Here f(x) is the dispersion measure given by (2) and g(Xk∪{j}) corresponds to the total violation of

the balancing constraints, when basic BU j is added to territory k. The user-specified λ parameter

weighs both dispersion and infeasibility.

Function (8) considers both the neighborhood size of the territory k and the assignment cost

(in dispersion and feasibility sense) of assigning BU j to territory k. With these values the RCL

is built (Figure 5, step 3). This function is similar to the one used in RF but here it takes into

account the size of the neighboring units of the territories. This greedy function is motivated by

the observation, in previous approaches, that some territories can not grow because there are no

available neighbors during the last iterations of the process. By introducing this function, small

territories have more opportunity to grow early in the process, avoiding the stalling during the

posterior phases.

procedure Allocation (Vc, β)

Input : Vc = set of disperse BUs; β = GRASP RCL allocation quality parameter.

Output : a solution X = (X1, . . . , Xp).

0 Xk ← {vk}; V
u ← V \ Vc;

1 while (|V u| > 0) do

2 Build the RCL as in (10);

3 Select (j, k)inRCL randomly;

4 Assign the basic unit j to a territory k, Xk ← Xk ∪ {j};

5 Update V u ← V u \ {j};

6 Update center c(k) in territory Xk if needed;

7 end while

8 return(X);

end Allocation

Figure 5: Allocation procedure.

According to the value of Φ, a candidate list of BUs is constructed as follows:

RCL = {(j, k) : Φ(j, k) ≤ Φmin + β(Φmax − Φmin)} (10)

As usual Φmax = maxk∈K,i∈Nk Φ(i, k), and Φmin = mink∈K,i∈Nk Φ(i, k). The parameter β deter-

mines the quality of the elements in the RCL. In each iteration the center of the territory must be

updated. Initially, the center is the seed basic unit obtained in the location phase.

8

3.1.3 Sequential Location-Allocation

In our Location-Allocation constructive procedure (SLA) a territory is started and constructed

sequentially by iteratively assigning BUs to the active territory. When the territory size of any of

the BU activities reaches a predetermined upper limit (PUL) it is closed and a new territory is

started. Such PUL can be equal or smaller than the right hand side of expression (5), which is the

maximum feasible size that a territory can take for any activity. Proceeding this way, p territories

are constructed. Then, the unassigned BUs can be allocated to some of the p territories according

to the greedy function (8).

Figure 6 shows the pseudo-code of the SLA procedure. The first territory is initialized in line 1

with the element j ∈ V with minimal degree. In line 2 j is removed from the set of unassigned BUs,

and the neighboring units of territory Xk are determined in line 3. From lines 4-19, p territories are

built sequentially until they reach the PULa. Both, the selection of a seeding BU and the selection

of the neighboring BU to be included in the current territory Xk is done within the GRASP scheme.

Once a territory has been initialized, the benefit of including a BU j in territory Xk is computed

in line 5, according to expression (9). These values are used to build a restricted candidate list in

lines 6 and 7. A unit j is randomly chosen from RCL in line 8, and included in the territory Xk in

line 9. If the territory size wa(Xk) reaches a PULa value, the current territory is closed, and a new

one is initialized (line 11). All the unassigned BUs in V u are evaluated according to the distance

measure d(j, S) = mini∈S{dij}) in line 12. A RCL is built in lines 13 and 14. A BU j is randomly

selected from RCL in line 15 and included in the current territory Xk in line 16. In line 18 the

neighboring set Nk is updated. In this point there are p partial territories and a set of unassigned

units V u, which are evaluated to be incorporated in some of the p territories (lines 20-26) in the

same manner as in Section 3.1.2.

9

procedure SLA (α, p, PULa)

Input: α= GRASP RCL location quality parameter; p = number of territories;

PULa = predetermined territory size upper limit for activity a.

Output: a solution X = (X1, . . . , Xp).

0 k ← 1, V u ← V ;

1 Xk ← {j}, where j ∈ arg min {|N j | : j ∈ V };

2 V u ← V u \ {j};

3 Nk ← set of neighbors of Xk;

4 while (k ≤ p and Nk 6= ∅) do

5 Compute φ(j, k) in (9) for all j ∈ Nk;

6 Φmin ← minj{φ(j, k)}; Φ
max ← maxj{φ(j, k)} ;

7 Build RCL← {j ∈ Nk : φ(j, k) ∈ [Φmin,Φmin + α(Φmax − Φmin)]};

8 Choose j ∈ RCL randomly;

9 Xk ← Xk ∪ {j}; V u ← V u \ {j};

10 if (wa(Xk) > PULa for any a) then

11 k ← k + 1;

12 Compute d(j, S), j ∈ V u;

13 dmin ← minj{d(j, S)}; d
max ← maxj{d(j, S)} ;

14 Build RCL = {j ∈ V u : d(j, S) ≥ dmax − α(dmax − dmin)};

15 Choose j ∈ RCL randomly;

16 Xk ← {j}, V u ← V u \ {j};

17 end if

18 Update Nk;

19 end while

20 while (|V u| > 0) do

21 Build a RCL as in (10);

22 Select (j, k) randomly, j, k ∈ RCL;

23 Assign the basic unit j to a territory k, Xk ← Xk ∪ {j};

24 Update V u = V u \ {j};

25 Update center c(k) in territory Xk if needed;

26 end while

27 return(X);

end SLA

Figure 6: Sequential location-allocation procedure.

10

3.2 Postprocessing Phase

As usual, a solution constructed by any of the construction schemes is not necessarily a local opti-

mum. In addition, feasibility with respect to the balancing constraints may not be entirely satisfied.

Therefore, the local search procedure in Figure 7 aims at both, improving the dispersion (objective

function) and obtaining feasibility. A neighborhood N(X) consists of all solutions reachable from

X = (X1, . . . ,Xp) by moving a basic unit i from its current territory Xt(i) into a neighboring terri-

tory Xt(j) , where j is the corresponding BU in territory Xt(j) adjacent to i, to keep the connectivity

requirement. The move is denoted by move(i, j). In our case we measure the cost of a move by:

ψ(move (i, j)) = γ∆fij + (1− γ)∆gij (11)

where ∆fij is the variation in the objective value when the move (i, j) is performed. Similarly, ∆gij

is the variation in the value of the feasibility measure, after move (i, j). The user-defined parameter

γ is used to weigh both the objective and feasibility. Thus, given a solution X the objective and

feasibility values are obtained with (12) and (13), respectively.

f(X) =

(

1

dmax

)

max
k=1,...,p

{

max
i,j∈Xk

dij

}

(12)

g(X) =
p

∑

k=1

∑

a∈A

ga(Xk) (13)

The local search procedure starts with an initial solution X obtained in the construction phase.

procedure Postprocessing (S, γ)

Input : X = solution; γ = dispersion and feasibility weighting in postprocessing phase.

Output : an improved solution S
′

.

0 X ′ ← X; ψ(X ′)← ψ(X); stopping criteria = FALSE;

1 while (stopping criteria = FALSE) do

2 Compute ψ(Xij) for all move(i, j) ∈ N(X);

3 if (ψ(Xij) < ψ(X ′)) then X ′ ← Xij ; ψ(X
′)← ψ(Xij);

4 update stopping criteria;

5 end while

6 return(X
′

);

end Postprocessing

Figure 7: Local search.

The merit function value becomes the incumbent value ψ(X ′)← ψ(X). Iteratively, all the possible

moves in the neighborhood N(X) of the current solution X are evaluated according to (11). If the

merit function value ψ(Xij) obtained with move(i, j) is better than the incumbent value ψ(X ′), the

merit function value is updated to the incumbent value ψ(X ′)← ψ(Xij). The algorithm continues

until a stopping criterion is reached.

11

4 Empirical Work

The proposed solution procedures have been coded in C++ and compiled with a Sun C++ compiler

workshop 8.0 under Solaris 9 operating system. The tested instances were taken from the data set

of [13]. These are randomly generated instances. All instances use a tolerance value τa equal to

5%. We used two instance sets with 1000 and 2000 BUs, and each instance was evaluated with p

= 40 and p = 60 territories.

4.1 Parameter Fine Tunning

In this section, the parameter setting procedure used for SLA is described. This procedure has

three parameters: α, λ, and γ which were fine-tunned by using the methodology described in

[2]. It consists of four steps: i) selecting a subset of problems to analyze, ii) determining the

variation range for each parameter, iii) selecting the best value for each parameter by carrying out

an appropriate design and analysis of experiments, iv) combining the settings obtained in step 3

for obtaining high-quality parameter values. The details of these four steps are the following.

Step i: First of all, we select representative subsets of the available instances according to their

characteristics. Four sets are available, instances with 1000 nodes and 40 territories, 1000

nodes and 60 territories, 2000 nodes and 40 territories, and 2000 nodes and 60 territories. A

subset of three instances from each group is selected for the parameter setting experiment.

Table 1: Parameter values for the SLA parameter setting experiment.

Parameter Lower value Center Upper value

α 0.2 0.3 0.4

λ 0.3 0.5 0.7

γ 1.0 -1.0 -3.0

Step ii: The second step consists of determining the parameter levels to carry out the experiments.

This is done with a preliminary test in order to find out an approximation of the best pa-

rameter values for the experiment. Thus, as a result of this preliminary test, the center, the

upper value and the lower value for each parameter is determined (Table 1). The change (∆)

in the value for each parameter are ∆α=0.1, ∆λ=0.2, and ∆γ=2. Recall α defines the quality

of the values contained in the RCL during the location phase, λ weights the dispersion and

the feasibility in the merit function used to build the RCL in the allocation phase. In SLA

procedure, the parameter γa defines an upper bound (PULa) for the territory size wa(Xk).

When γa = 0 the upper limit size for all territories regarding activity a is equals to the target

12

size (µa). When γa = 1 the upper limit is (1 + τa)µa, and γa = −1 means the upper limit is

(1− τa)µa. This upper limit is defined in expression PULa = µa + (γa ∗ µa ∗ τa).

Step iii: This step consists of generating an experimental design. Since there are only three

parameters to fit, we use a full factorial experiment. Three instances from each group are

used in the experiment. Thus, for each instance in the group and for each combination of

parameters, the SLA procedure is applied 10 times. The best solution found for each instance

is kept for comparisons.

For example, three instances are selected from the group with 1000 nodes and 40 territories,

and then these are solved with SLA using the following parameters: α = 0.2, λ = 0.3, and

γ = 1. Note that, these values are the lower values shown in Table 1. Then, we have the

best solution found for each one of these three instances in the group. This is repeated with

all parameter combinations (27 combinations). These 27 parameter combinations are used to

solved the other groups of instances. Once all instances have been solved by applying SLA over

the 27 parameter combinations, the average infeasibility value obtained is computed for each

instance group. Such average values of infeasibility (Infeas) are detailed in Table 2. Our first

goal is to obtain feasible solutions before improving the dispersion measure. Thus, the main

objective of the parameter setting is to find the best combination of parameters that yield best

balance in the territories. It means that, the relative deviation on each territory is within the

allowed tolerance (then Infeas = 0.0). For that reason in this step of the parameter settings

we try to find the best parameter combination that minimizes the infeasibility value.

After all chosen instances have been solved by applying the SLA over the 27 combinations

of parameters. The next step is to fit a linear model for each instance category, using the 27

experimental runs on each of them. The basic idea is to find a linear approximation of the

response surface. The dependent variable in the models is the infeasibility value in Table 2.

The independent variables are the parameters used in each experimental run (α, λ, and γ).

Table 3 shows parameter coefficients in the linear regression equation obtained for each group

of instances (see also Figures 8 and 9 that contain the residual plots from the models). The

statistical significance of the parameter varies in each instance category.

13

Table 2: Average results for infeasibility values for each group.

Parameter values Instance categories

α λ γ n=1000, p=40 n=2000, p=40 n=1000, p=60 n=2000, p=60

0.2 0.3 1 0.02540 0.00000 0.09947 0.06237

0.2 0.3 -1 0.05220 0.00176 0.05993 0.03210

0.2 0.3 -3 0.04717 0.00073 0.05173 0.03395

0.2 0.5 1 0.01028 0.00622 0.06053 0.03983

0.2 0.5 -1 0.01470 0.00848 0.06403 0.01879

0.2 0.5 -3 0.03650 0.00429 0.04530 0.02630

0.2 0.7 1 0.03880 0.02180 0.12933 0.00988

0.2 0.7 -1 0.01084 0.00269 0.13300 0.03773

0.2 0.7 -3 0.00481 0.00348 0.07267 0.02953

0.3 0.3 1 0.05457 0.00453 0.10560 0.05376

0.3 0.3 -1 0.00392 0.00067 0.09163 0.03860

0.3 0.3 -3 0.00674 0.00436 0.11277 0.04477

0.3 0.5 1 0.00562 0.00770 0.15280 0.03137

0.3 0.5 -1 0.00776 0.00160 0.09320 0.01703

0.3 0.5 -3 0.02120 0.00347 0.20600 0.03883

0.4 0.7 1 0.01148 0.00516 0.09320 0.02593

0.4 0.7 -1 0.01093 0.00177 0.06760 0.03849

0.4 0.7 -3 0.00653 0.00557 0.09023 0.04449

0.4 0.3 1 0.01537 0.00217 0.11823 0.00674

0.4 0.3 -1 0.00731 0.00095 0.07667 0.05551

0.4 0.3 -3 0.00980 0.00530 0.06100 0.00973

0.4 0.5 1 0.02887 0.00334 0.07517 0.02326

0.4 0.5 -1 0.01656 0.00051 0.09003 0.03440

0.4 0.5 -3 0.03942 0.00494 0.09890 0.01745

0.4 0.7 1 0.03634 0.01523 0.12500 0.00962

0.4 0.7 -1 0.00799 0.00181 0.15600 0.04283

0.4 0.7 -3 0.00485 0.00120 0.06007 0.02080

Table 3: Linear regression coefficients.

Group Intercept α λ γ F P Adj.R2

n=1000, p=40 0.04610 -0.0412 -0.0250 0.00138 1.20 0.331 2.3%

n=2000, p=40 0.00237 -0.0078 0.0106 0.00091 2.47 0.067 16.6%

n=1000, p=60 0.05540 0.0805 0.0417 0.00446 0.92 0.448 0.0%

n=2000, p=60 0.05370 -0.0389 -0.0217 -0.00009 0.94 0.438 0.0%

14

(a) n=1000, p=40

(b) n=2000, p=40

Figure 8: Residual plots for infeasibility (Infeas) for p=40 instances.

15

(a) n=1000, p=60

(b) n=2000, p=60

Figure 9: Residual plots for infeasibility (Infeas) for p=60 instances.

16

The following step in the parameter settings process is to obtain the path of the steepest

descent(PSD). Given an estimated regression coefficient b= (bα, bλ, bγ), the PSD is the

negative gradient of the linear model (-b). Now we must travel along the path by making

small movements from one initial point. In our case such point is the center of the design

(α = 0.3, λ = 0.5, γ = −1). To calculate a full step size, the following procedure is used:

select the regression coefficient with maximum absolute value (bmax), divide each parameters

coefficient (bj) by bmax, and multiply the resulting value by the ∆ value of the corresponding

parameter. For example, by using the information in Table 3, for the group with n=1000 nodes

and p=40 territories, the maximum absolute coefficient value is the one of α (bmax=0.0412).

Then, the full step size for α is bα/bmax ∗∆α = (-0.0412 / 0.0412) * 0.1 = -0.1. Similarly,

for λ the full step size is (-0.0250 / 0.0412) * 0.2 = -0.1214, and for γ is (0.00138 / 0.0412)

* 2 = 0.067. Nevertheless, as suggested in [2], it is desirable to avoid stepping over potential

good local minima, so we make steps of 1/4 of the full step (authors explain the compromise

between performance and complexity). The step size must be obtained for all the parameters

and all the instance categories. All the step sizes are shown in Table 4 (1/4 of the full step

size).

Table 4: Step size along the path of steepest descent.

Group α λ γ

n=1000, p=40 -0.0250 -0.0300 0.0170

n=2000, p=40 0.0184 -0.03030 0.0167

n=1000, p=60 0.0250 0.02580 0.0227

n=3000, p=60 0.0250 0.02780 0.0011

As mentioned before, to start the moves along the path of steepest descent, we start from the

design center (step 0). We calculate steps forward and backward. Forward steps are done

subtracting the step size value for each parameter from its previous value (at first, the previous

value corresponds to the center). In backward steps, step size values are added. After a step

has been calculated, we perform trials with the corresponding parameter values in the current

step. In our test, we run the trials with the same 3 instances of each category, used in the

previous experimental design. Table 5 shows the parameter values and the average from the

objective function value, infeasibility, and CPU time obtained for the 3 trial instances with

n=1000 nodes and p=40 territories. Figure 10(a) displays the average values obtained for

each step when we used instances with 1000 nodes and 40 territories. The best infeasibility

values are obtained in step 3, meanwhile the best objective function values are obtained with

17

step 5. As mentioned before, it is our particular interest to produce feasible solutions. Thus,

for setting the final values of parameters, only the infeasibility values are taken into account.

Table 5: Average results for 3 instances with n=1000 and p=40.

Parameter values Average

Step α λ γ Objective Infeasibility Time (sec)

-4 0.200 0.379 -0.933 0.04433 0.00965 14.197

-3 0.225 0.401 -0.950 0.04733 0.01323 14.247

-2 0.250 0.439 -0.967 0.04466 0.01386 14.393

-1 0.275 0.470 -0.983 0.04466 0.01044 14.393

0 0.300 0.500 -1.000 0.04433 0.00776 14.437

1 0.325 0.530 -1.017 0.05266 0.02022 14.357

2 0.350 0.561 -1.033 0.05266 0.02118 14.447

3 0.375 0.591 -1.050 0.04033 0.00144 14.547

4 0.400 0.621 -1.067 0.04566 0.01028 14.647

5 0.425 0.652 -1.084 0.03666 0.00246 16.107

6 0.450 0.682 -1.100 0.06066 0.02835 14.593

Step iv: After the steepest descent has been computed for all instance groups, and the better

values have been identified for each parameter on each group, the final parameter values to

perform the final test of the heuristic are defined by averaging the better parameter values

from all instance groups. Thus, after following the guidelines in [2], the final parameter values

are the following: α=0.368, λ=0.527, γ=-0.998.

18

(a) n=1000, p=40

(b) n=2000, p=40

Figure 10: Steepest descent average results for objective function and infeasibility values for p=40

instances.

19

(a) n=1000, p=60

(b) n=2000, p=60

Figure 11: Steepest descent average results for objective function and infeasibility values for p=60

instances.

20

4.2 Comparison of Greedy Procedures

In this part of our experimental work, we compared the four proposed procedures. The existing

procedure RF [13] is also included in the experiment. It has been necessary to follow the param-

eter setting procedure for each heuristic: GRLH1, GRLH2, GRDL, and SLA. Table 6 shows the

parameter values for each heuristic. The dash means that the procedure does not requires the

corresponding parameter. Since the goal of this experiment is to compare the greedy nature of the

procedures, then we used α = 0. Table 7 displays the size and number of the tested instances.

Table 6: Parameter values used for comparing the greedy procedures.

Parameter GRLH1 GRLH2 GRDL SLA RF

α 0.00 0.00 0.00 0.00 0.00

λ 0.10 0.10 0.10 0.527 0.6

e 0.90 0.90 0.90 - -

γ - - - -0.998 -

Table 7: Size of test instances.

Instance group

n p No. of instances

1000 40 50

2000 40 50

1000 60 50

2000 60 50

Total 200

The infeasibility values are compared after the construction and improvement phases. Recall we

are interested in obtaining better (feasible if possible) solutions to make easier and more productive

the improvement phase than the existing RF procedure. The relative deviation index (14) is used:

rel.dev. =
|best infeas− infeash|

(infeash + ǫ) ∗ 100%
(14)

where best infeas is the smaller infeasibility value obtained with any of the 5 compared procedures,

infeash is the infeasibility value obtained with procedure h, (h=GRLH1, GRLH2, GRDL, SLA,

RF). Since infeasibility can take a value equal to zero, expression (14) avoids division by zero.

Average relative deviation results are shown in Tables 8 and 9. In the greedy construction

phase, procedures GRLH1 and GRLH2 obtain similar average relative deviation values for all

instance groups, except for the group with n=2000 and p=60, where GRLH1 has 19.86% and

21

Table 8: Relative deviation for infeasibility results with greedy constructive procedures.

Instance group Procedure

n p GRLH1 GRLH2 GRDL SLA RF

1000 40 15.31% 15.12% 36.28% 69.61% 58.57%

2000 40 10.58% 13.30% 23.53% 61.24% 57.15%

1000 60 23.19% 22.11% 40.08% 65.76% 32.20%

2000 60 19.86% 11.78% 33.71% 66.08% 60.30%

Average 17.23% 15.34% 33.54% 65.57% 52.05%

Table 9: Relative deviation for infeasibility results after improvement.

Instance group Procedure

n p GRLH1 GRLH2 GRDL SLA RF

1000 40 50.73% 59.49% 77.81% 82.12% 70.00%

2000 40 48.12% 50.13% 65.73% 83,52% 80.31%

1000 60 51.62% 63.07% 67.30% 70.13% 36.54%

2000 60 50.69% 55.24% 71.96% 80.26% 66.64%

Average 50.29% 56.98% 70.70% 79.01% 63.37%

GRLH2 has 11.78%. Both procedures improve the performance of GRDL, SLA, and the existing

procedure RF. The difference between the average relative deviation from GRLH1 and GRLH2 is

1.89% in favor of GRLH2 which uses 1-step look-ahead approach in the selection of seed nodes for

starting the territories, which requires more computational effort. It was not possible to obtain any

feasible solutions in the greedy construction phase.

After the improvement, relative deviation values increase because infeasible values are smaller

than those in the construction phase. Even better, feasible solutions have been obtained. On

average, the local search phase in each procedure obtains the following improvement: 95.03% for

GRLH1, 94.85% in GRLH2, 94.07 in GRDL, 96.26% for SLA, and 94.60% for RF. Local search in

GRDL improves more than any other procedure, but solutions in the construction phase are the

worst regarding feasibility. Again, GRLH1 and GRLH2 outperform the results of GRDL, SLA,

and RF. Regarding the global average relative deviation results for infeasibility, GRLH1 improves

GRLH2 by 6.69%. GRLH1 finds feasible solutions for 10.5% of the 200 instances, GRLH2 for 9%,

GRDL for 6%, SLA for 2.5%, and RF for 4.5% (see Table 10). Doing the analysis by groups, the

ideal couples for group (n=1000, p=40) is GRLH1, for instances with (n=2000, p=40) is GRLH1,

for (n=1000, p=60) is RF, and for (n=2000, p=60) is GRLH1.

Table 11 shows the CPU time (in seconds) employed on each phase for each procedure. Each

22

Table 10: Number of feasible solutions found with greedy procedures after improvement.

Instance group Procedure

n p GRLH1 GRLH2 GRDL SLA RF

1000 40 7 4 1 2 4

2000 40 12 12 9 3 4

1000 60 0 0 1 0 0

2000 60 2 2 1 0 1

Total 21 18 12 5 9

phase is indicated by L (location), A (allocation), and local search (LS). Observe that, the construc-

tion of territories in a sequential way, only requires allocation and local search processes. Recall

that, in SLA each new seed node is selected by considering the farthest unallocated node from

those already allocated to some territory. In RF, each new seed node is selected by considering the

grade of the unassigned nodes. For these two procedures, the time required for selecting the new

seeding node is included in the allocation phase (A), since it is small. The time required in local

search is in general relatively small. Only in 2000-node instances local search requires more than 1

second in average. On the other hand, the location phase in GRLH1, GRLH2, and GRDL requires

more computational effort, mainly in GRLH2. Except by the computational effort criteria, GRLH1

produce better results, obtaining more feasible solutions after local search.

Table 11: Average time (sec) by phase.

Procedure

Instance group GRLH1 GRLH2 GRDL SLA RF

n p L A LS L A LS L A LS A LS A LS

1000 40 3.31 2.31 0.21 9.84 2.26 0.19 2.78 2.06 0.22 1.12 0.25 0.21 0.20

2000 40 17.89 8.47 1.75 54.73 7.91 0.88 15.79 7.63 0.99 5.05 1.23 1.12 1.0

1000 60 3.50 3.08 0.24 23.72 3.17 0.21 2.75 3.06 0.23 1.57 0.26 0.21 0.18

2000 60 17.89 1.17 1.17 137.51 11.10 0.82 15.38 10.81 0.92 6.99 1.09 0.97 0.87

4.3 Comparison of GRASP Procedures vs Exact Procedure

In this experiment we compare the proposed heuristics GRLH1, GRLH2, GRDL, and SLA against

an exact procedure. For this experiment we use relatively small instances with 60, 80, and 100

nodes and 4, 5, and 6 territories, respectively. Five instances of each set were generated according

to the previously described specifications. A total of 5 x 3 = 15 DT instances were generated.

23

The exact procedure is the one used in [14], which is an iterative algorithm that solves the

relaxed problem of the corresponding MILP model (with no connectivity constraints, recall there is

an exponential number of them), and then, it identifies and adds violated connectivity constraints

until optimality is reached. This exact procedure uses the number of iterations (10 iterations

maximum) and time limit by iteration (7200 sec.) as stopping criteria.

Table 12: Summary of results for small instances.

No. of optimal solutions Av. relative gap (%)

Data set Exact GRLH1 GRLH2 GRDL GRSLA GRLH1 GRLH2 GRDL GRSLA

DT60 5 2 2 2 1 1.17 0.64 1.54 2.84

DT80 5 0 0 0 0 5.84 1.47 7.08 4.84

DT100 5 0 0 0 0 8.46 1.55 9.61 7.28

Table 13: Average CPU times for small instances.

Procedure

Data set Exact GRLH1 GRLH2 GRDL GRLSA

DT60 190.8 0.6 1.0 10.4 0.4

DT80 2331.8 1.0 2.1 35.7 0.6

DT100 12179.0 1.5 4.7 94.9 1.0

Regarding the heuristics, they were run for 100 iterations (construction and improvement). The

heuristics GRLH1, GRLH2, and GRDL were tested using the following parameter values: α = 0.3,

λ = 0.1 and e = 0.9. The parameters for SLA were those obtained in Section 4.1. Parameter values

λ and e were also determined by following the procedure proposed by Coy et al. [2] which is based

on an experimental design. Recall that, the parameter e is used to fit the number of the neighboring

nodes for a territory in the allocation phase. In the first column of Table 12 the instance sets used

are shown (DT60, DT80 and DT100). This table shows the number of optimal solutions found by

applying each procedure over each instance set, and the average of the relative optimality (gap).

Table 13 displays the CPU time in seconds. All those solutions obtained with the heuristics were

feasible solutions. The optimal value with the exact method was found for all instances. Table 14

shows objective function values, and the CPU times in detail.

Heuristic procedures can find optima only for instances with 60 nodes. Over all instance sets,

the average relative optimality (gap) computed for GRLH1, GRLH2, and GRDL is 5.1566%, 1.22%,

and 6.0766%, respectively. GRLH1 is the fastest heuristic (it requires on average 1.04 seconds).

GRLH2 and GRDL take longer than GRLH1, on average 2.57 and 47.01 sec., respectively. Due

24

Table 14: Results for small instances.

Exact GRLH1 GRLH2 GRDL GRSLA

Instance Sol. time Sol. time Sol. time Sol. time Sol. time

DT60-1 205.10 562 205.10 0.57 205.10 0.92 205.10 10.49 205.10 0.36

DT60-2 172.94 158 174.40 0.58 174.40 0.96 181.10 10.27 174.40 0.40

DT60-3 180.82 31 186.66 0.63 180.82 1.00 182.97 10.59 186.66 0.50

DT60-4 186.09 65 186.09 0.68 187.20 0.99 186.09 10.23 201.60 0.40

DT60-5 176.39 136 179.51 0.61 179.51 0.94 179.51 10.51 179.51 0.40

DT80-1 157.90 169 169.30 0.98 164.40 2.09 169.30 35.77 169.30 0.64

DT80-2 156.28 329 157.06 1.01 158.28 2.11 157.06 35.68 157.06 0.06

DT80-3 161.92 4693 176.05 1.00 162.12 1.99 177.39 35.65 164.94 0.80

DT80-4 148.56 2198 167.54 1.02 166.00 2.07 163.33 35.90 162.90 0.72

DT80-5 158.32 4270 158.32 1.04 170.74 2.00 171.25 35.69 166.19 0.69

DT100-1 144.06 10982 152.95 1.47 156.07 4.70 152.95 92.55 156.78 1.01

DT100-2 170.05 3493 182.29 1.56 170.53 4.68 184.62 94.04 174.01 1.08

DT100-3 147.21 8908 160.74 1.51 160.74 4.84 160.95 95.15 163.65 1.02

DT100-4 137.12 2743 157.03 1.51 147.18 4.68 162.03 98.88 152.75 0.99

DT100-5 159.99 34769 168.36 1.49 159.99 4.70 169.31 93.80 164.30 1.00

to the previous results, in the next subsection we compared only the heuristic GRLH1 against the

existing procedure (RF).

4.4 Comparison with existing approach

In this experiment the heuristic GRLH1 is compared with the original procedure RF. We decided

to compare only the proposed heuristic GRLH1 because of the results in the previous sections,

related to quality in greedy procedures, and CPU time required.

Table 15: Results for GRASP procedures

Instance group nfeas ARLSI (%)

n p GRLH1 RF GRLH1 RF

1000 40 44 50 96.4 94.7

2000 40 50 50 97.4 96.3

1000 60 1 2 92.4 93.7

2000 60 32 38 95.9 96.6

The procedures are executed during 100 iterations using the test bed of problem instances used

in previous experiments with 1000 and 2000 nodes and 40 and 60 territories. In each iteration a

construction and improvement phases are performed. The parameters values used for the GRLH1

25

are α = 0.3, λ = 0.1, and e = 0.9. Table 15 shows a comparison between GRLH1 and RF. Column

nfeas represents the number of feasible solutions found (out of 50) with each procedure GRLH1

and RF separated by instance groups. The average relative improvement of the local search with

respect to phase 1 solutions is denoted by ARLSI. One can see that even though procedure RF

produces slightly better results (in terms of the number of feasible solutions), procedure GRLH1

is very competitive. In terms of the average relative local search improvement, GRLH1 showed a

slightly better improvement value for the p = 40 instances. Both procedures report average local

search improvements of more than 92 %. With this very good quality, it is strongly suggested that

both procedures can be used in a collaborative way.

(a) Firm solution for a 1000-BU, 10-territory instance

(b) Heuristic solution for a 1000-BU, 10-territory instance

Figure 12: Comparison between designs obtained by the firm and proposed method.

26

Finally, Figures 12(a) and 12(b) show the resulting designs when the firm’s method and the

proposed GRLH1 heuristic, respectively, are applied to a 1000-BU, 10-territory real-world instance.

For this case, under the firm method the best resulting design has an objective function value of

0.094, and it is infeasible with respect to the balancing constraints under a 0.05 tolerance. Our

method obtains a significantly better design in terms of both objective function value and feasibility,

with a dispersion function value of 0.076 (a relative improvement of 24%), and territory imbalances

of less than 5%.

5 Conclusions

A version of a territory design problem motivated by a real-world application is addressed in this

work. The problem planning requirements are compactness, contiguity, and balancing with respect

to two activities (number of customers and sales volume). A location-allocation heuristic framework

is proposed. In the location phase, three p-dispersion based heuristics are proposed. Such heuristics

obtained p disperse seeds (nodes) for starting the territories. In the allocation phase all unassigned

nodes are incorporated iteratively to some territory (building all the territories simultaneously).

These procedures were incorporated within a GRASP scheme, including a local search phase. The

empirical work reveals that two of the proposed heuristics find near-optimal or optimal solutions to

relatively small instances, where exact solutions could be found. The heuristic solutions are found

significantly faster. When we compared with the existing method in larger instances, it was found

that the existing approach provides solutions with lower infeasibility violations. However, one of

the proposed procedures found better solutions in terms of its dispersion measure than the ones

found by the existing approach.

This means that the idea of building the territories simultaneously can in some cases provide

solutions with lower degree of infeasibility after the construction phase, and therefore lead to better

overall solutions. As lines of future work, developing more sophisticated local search procedures

such as tabu search and memory-based strategies such as adaptive programming can be worthwhile.

Acknowledgements: The presentation of the paper was improved thanks to the comments by two

anonymous reviewers. This research has been supported by the Mexican National Council for Sci-

ence and Technology (CONACYT) through grants SEP-CONACYT 48499-Y and SEP-CONACYT

61343, and by Universidad Autóma de Nuevo León through its Scientific and Technological Research

Support Program, grants UANL-PAICYT CA1478-07, CE012-09, and IT511-10. The first author

also acknowledges the support by CONACYT’s Support Program for Postdoctoral Researchers.

27

References

[1] P. Bertolazzi, L. Bianco, and S. Ricciardelli. A method for determining the optimal districting

in urban emergency services. Computers & Operations Research, 4(1):1–12, 1977.

[2] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using experimental design to effective

parameter settings for heuristics. Journal of Heuristics, 7(1):77–97, 2000.

[3] A. Drexl and K. Haase. Fast approximation methods for sales force deployment. Management

Science, 45(10):1307–1323, 1999.

[4] J. C. Duque, R. Ramos, and J. Suriñach. Supervised regionalization methods: A survey.

International Regional Science Review, 30(3):195–220, 2007.

[5] E. Erkut and S. Neuman. Comparison of four models for dispersing facilities. INFOR, 29(2):68–

86, 1991.

[6] E. Erkut, Y. Ülküsal, and O. Yeniçerioğlu. A comparison of p-dispersion heuristics. Computers

& Operations Research, 21(10):1103–1113, 1994.

[7] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6(2):109–133, 1995.

[8] J. A. Ferland and G. Guénette. Decision support system for the school districting problem.

Operations Research, 38(1):15–21, 1990.

[9] D. Haugland, S. C. Ho, and G. Laporte. Designing delivery districts for the vehicle routing

problem with stochastic demands. European Journal of Operational Research, 180(3):997–1010,

2007.

[10] S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpartisan political

redistricting by computer. Operations Research, 13(6):998–1006, 1965.

[11] J. Kalcsics, S. Nickel, and M. Schröder. Toward a unified territorial design approach: Appli-

cations, algorithms, and GIS integration. Top, 13(1):1–56, 2005.

[12] L. Muyldermans, D. Cattryse, D. Van Oudheusden, and T. Lotan. Districting for salt spreading

operations. European Journal of Operational Research, 139(3):521–532, 2002.

[13] R. Z. Rı́os-Mercado and E. Fernández. A reactive GRASP for a commercial territory design

problem with multiple balancing requirements. Computers & Operations Research, 36(3):755–

776, 2009.

28

[14] M. A. Salazar-Aguilar, R. Z. Rı́os-Mercado, and M. Cabrera-Rı́os. New models for commercial

territory design. Networks & Spatial Economics, 11(3):487–507, 2011.

[15] A. A. Zoltners and P. Sinha. Sales territory design: Thirty years of modeling and implemen-

tation. Marketing Science, 24(3):313–331, 2005.

29

