Commercial Territory Design for a Distribution Firm with New

Constructive and Destructive Heuristics

Jaime Cano-Belman
Graduate Program in Systems Engineering
Universidad Auténoma de Nuevo Ledén
AP 111 — F, Cd. Universitaria
San Nicolas de los Garza, NL 66450, Mexico

E-mail: jaime@yalma.fime.uanl.mz

Roger Z. Rios-Mercado®
Graduate Program in Systems Engineering
Universidad Auténoma de Nuevo Leén
AP 111 — F, Cd. Universitaria
San Nicolas de los Garza, NL 66450, Mexico

E-mail: roger.rios@uanl. edu.mx

M. Angélica Salazar-Aguilar
HEC Montréal
3000, chemin de la Cote-Sainte-Catherine
Montréal, Canada H3T 2A7

E-mail: angelica.salazar@cirrelt.ca

15 February 2010
Revised: 26 October 2011
Accepted: 26 January 2012

LCorresponding author

Abstract

A commercial territory design problem with compactness maximization criterion subject to terri-
tory balancing and connectivity is addressed. Four new heuristics based on Greedy Randomized
Adaptive Search Procedures within a location-allocation scheme for this NP-hard combinatorial
optimization problem are proposed. The first three (named GRLH1, GRLH2, and GRDL) build
the territories simultaneously. Their construction phase consists of two parts: a location phase
where p territory seeds are identified, and an allocation phase where the remaining basic units
are iteratively assigned to a territory. In contrast, the other heuristic (named SLA) builds the
territories one at a time. Empirical results reveals that GRLH1 and GRLH2 find near-optimal or
optimal solutions to relatively small instances, where exact solutions could be found. The pro-
posed procedures are relatively fast. We carried out a comparison between the proposed heuristic
procedures and the existing method in larger instances. It was observed the proposed heuristic

GRLH1 produced very good competitive results with respect to the existing approach. Keywords:

Combinatorial optimization; territory design, location-allocation heuristics; GRASP

1 Introduction

Territory design consists of grouping small geographic areas or basic units (BUs) into larger geo-
graphic clusters called territories or zones in such a way that the latter are acceptable according to
relevant criteria. These criteria can be economically motivated or have a demographic background.
Furthermore, spatial constraints like compactness and contiguity are often required.

The problem has applications in many fields such as political districting (Hess et al. [10]),
districting for schools and social facilities (Ferland and Guénette [8]), sales territory design (Zoltners
and Sinha [15]), territory design for winter service and solid waste collection (Muyldermans et
al. [12]), territory design for emergency services (Bertolazzi, Bianco, and Ricciardelli [1]), delivery
zones for distribution centers (Haugland, Ho, and Laporte [9]), or sales force deployment (Drexl and
Haase [3]). Excellent and complete surveys on territory design problems can be found in Kalcsics,
Nickel, and Schroder [11], Duque, Ramos, and Surinach [4], and Zoltners and Sinha [15]).

Firms with sales forces normally require to divide the market into responsibility areas. Thus,
territory design must be done in order to obtain service areas or to locate technical facilities. Several
criteria such as organizational criteria (number of territories, number of BUs, exclusive assignment,
location of sales representatives), geographical criteria (contiguity, accessibility, compactness), and
activity related criteria (balancing, maximizing profit) are often used in territory design.

We address the version of the territory design problem with the following features. Each BU
has associated two attributes or activities: number of customers and sales volume. Each BU must
be assigned to only one territory. The size of each territory must be balanced with respect to each
activity. Given that it is not easy to find a perfectly balanced solution, the balancing requirement
is handled by a user-specified tolerance that allows a relative deviation from the target territory
size. The requirement of contiguity is also taken into account, which means that, each pair of BUs
belonging to the same territory must be joined by a path contained completely in that territory.
In order to get compact territories a dispersion measure based on the objective function of the
well-known p-center problem is minimized.

This problem was introduced by Rios-Mercado and Fernéndez [13]. In their work (RF for short),
they consider three activity measures (number of customers, sales volume, and workload). They
propose a GRASP approach which incorporates reactivity and filtering. During the construction
phase the territories are created one by one, in such a way that a territory is started with a BU
and iteratively the assignment of BUs takes place. When the territory size reaches its upper bound
limit it is closed and a new territory is started. The creation of territories in this manner does not
necessarily produce the number of territories required, thus an adjustment phase is then carried
out. Finally, an improvement phase (post-processing) is performed. They consider a neighborhood
that consists of moving a specific BU from its current territory to an adjacent territory. They

used a weighted merit function with two components, the dispersion measure and violation of the

balancing constraints. An important limitation of this approach is the high level of infeasibility
with respect to the balancing constraints reached in the construction phase. A direct consequence
of this is that the local search spends a tremendous amount of effort trying to reach feasibility.

In this work, we propose four different location-allocation heuristics. Three of them are con-
structive in nature and the other is destructive. Three of our proposed heuristics (called GRLH1,
GRLH2, and GRDL) seek that all territories are growin uniformly. Their location-allocation scheme
consist of two phases: a location phase whose role is to locate p BUs that would serve as initial
seeds for the territory creation, and an allocation phase where the remaining BUs are assigned to
these territories. Thus, it is expected that this simultaneous creation of p territories yields lower
levels of infeasibility with respect to the balancing constraints than those obtained in previous work
[13], where the territories are built one by one. A fourth heuristic called SLA builds the territories
one at a time, in this heuristic an active territory is “closed” when its size reaches the upper limit
allowed for any activity (number of customers or sales volume).

A detailed design of experiments following the guidelines of Coy et al. [2] was first carried
out for parameter fine-tunning. Afterwards, the procedures were evaluated over a data set of
randomly generated instances. Empirical results reveals that GRLH1 and GRLH2 find near optimal
or optimal solutions to relatively small instances, where exact solutions could be found. The
proposed procedures are relatively fast. We carried out a comparison between the proposed heuristic
procedures and the existing method in larger instances. It was observed that GRLH1 produced
very good competitive results with respect to the existing approach.

This paper is organized as follows. In Section 2 a detailed description and formulation of the
problem is given. In Section 3, the proposed heuristics are described in detail. In Section 4 the

empirical work is presented. Conclusions of this work are drawn in Section 5.

2 Problem Description

Let G = (V, E) be a planar undirected graph, where V is the set of nodes (blocks or basic units),
and E the set of edges. For this particular application an edge between nodes i and j exists
if basic units ¢ and j are adjacent. Each basic unit (BU) 7 has associated parameters such as
coordinates (z°,y'), and activity values w?, a € {1,2}. In our problem such activities correspond
to the number of customers (a=1) and product demand (a=2). The number of territories is fixed
and represented by p. A territory is a subset of nodes X C V (k = 1,...,p). In addition, the
problem solution requires that each BU is assigned only to one territory. Hence, territories are
defined by a partition of V. Furthermore, the territories must be balanced according to the node

activity measures (number of customers and sales volume). The size of a territory X* with respect

to activity a is defined as follows:

W (XK = 3 (1)
ieXk

It is difficult to obtain a perfectly balanced solution due to the discrete problem structure
and the exclusive assignment requirement. One way to represent the balance requirement is by
introducing a constraint that allows a relative deviation from the target activity value. It is given
by a tolerance parameter 7., specified by the user. The target average size is computed simply
as u® = w*(V)/p. The balancing constraint becomes w®(X*) € [(1 — 7%)u®, (1 + 7®)u?]. The
contiguity requirement means that for any pair of BUs ¢ and j in a given territory, there must exist
an i-j path totally contained in the territory. In other words, territory X* must induce a connected
subgraph of GG. A rigorous definition of compactness does not exist; but a territory is said to be
compact if it is somewhat round-shaped and undistorted. Thus, a dispersion function must give a
measure of how far a BU is from each other in each territory. One way to measure the dispersion
of a territory XF is using a p-center objective function. This measure computes the distance from

the farthest BU to its corresponding territory center (given by c(k)), k =1,...,p.
X*) = o) i 2
J(X7) ;ggg{ e(k).j } (2)

where d,;) ; is the Euclidean distance from node j to its territory center, denoted by c(k). We
define a territory center c(k) of territory k as the node with the smallest distance to its farthest

node, that is:

c(k) = arige)n:ljn {jr_ggg{dij}} (3)

Let IT be the collection of all p-partitions of V. Then, the problem can be described as finding a p-
partition X = (X!, ..., XP) of V satisfying the specified planning criteria of balancing and contiguity,
that minimizes the above distance-based dispersion measure. The combinatorial description of the

problem is the following;:

Minimize f (X) = kgllf’f?ip{dc(k),j} (4)
jexk
subject to
wH(XE) /)t e 1—7%147Y acA (5)
G(X* E(X*)) is connected. k=1,...,p (6)

The objective function (4) minimizes the territory dispersion. Constraints (5) represent the balance
in each territory. Constraints (6) assure the connectivity of each territory. The problem is NP-

hard [13]. Our experience shows that one can optimally solve with branch-and-bound methods

instances of up to 150 BUs. The target instances have between 500 and 2000 BUs, so the choice of

heuristics is clearly justified.

3 Solution Approach

The main goal of this work is to propose alternative constructive procedures that would generate
better or more diverse solutions than those obtained in [13]. Following the previous work, we also
derive GRASP-based algorithms but in a very different way. GRASP [7] is a multi-start meta-
heuristic widely used for solving many combinatorial problems. Basically, each GRASP iteration
consists of two phases: construction and local search (Figure 1). In RF, a solution is built iteratively
by creating one single territory at a time. The criterion for closing a territory and opening a new
one is when the upper bound of the balancing constraint reach its limit. At the end, this leads
to obtaining a number of territories different (and usually larger) than p. An adjustment phase
consisting of a merging operation is then applied, but this produces a high degree of violation in
the balancing constraints (5). In our work, we attempt to overcome this limitation by building the
p territories simultaneously. Therefore, the basic difference between our proposed procedures and

the previous work is the construction phase.

function procedure GRASP()

Input: instance data.

Output: best solution found S*.

0 f* <« oo;

1 while (stopping criterion not satisfied) do
2 S + Greedy randomized construction;
3 S < Local search(S);

4 if (f(S) < f*) then

5 [f(S);

6 S* + S;

7 end if

8 end while

9 return S¥;

end GRASP

Figure 1: A GRASP pseudocode.

3.1 Constructive methods

Solutions are generated in two phases which we henceforth call location and allocation. In the
location phase, p BUs are selected to be territory seeds. In the allocation phase, the unassigned

BUs are allocated to one of the territories initialized with a seed basic unit, taking into account

contiguity and balancing constraints. Thus, p territories are initialized, one for each seed BU, where

the seed basic unit is not necessarily the territory center c(k).

3.1.1 Location phase

The location phase consists of finding p BUs that are used as seeds in the location phase. Given
the nature of the objective function, it is desired these seed nodes are as disperse as possible. This
can be done by solving a p-dispersion problem. Given a set of candidate points, the p-dispersion
problem [5] consists of selecting a subset of p points, such that the minimum distance between
any pair of these chosen points is as large as possible. In this work, three location heuristics are
proposed. Two of them can be seen as extensions from the p-dispersion heuristics in Erkut, Ulkiisal,

and Yenigerioglu [6], and the other considers a 1-step look-ahead policy.

procedure GRLH1 («, p)
Input: a= GRASP RCL location quality parameter; p = number of territories.
Output: p-seed set V..

Ve« 0;
Select i* and j* in V, such that d(¢*, {j*}) = max{d(s,{j}) : 4,5 € V'};
Ve = Veu{i™, "}
while (| V; |< p) do
Compute d(j, Ve),7 € V \ V;
Build RCL = {j : d(j, V) > d™™ — a(d™> — d™")};
Choose j randomly, j € RCL;
Ve = VeU{ikh

end while

© 00 N & Otk W N = O

return(V;);
end GRLH1

Figure 2: Location procedure GRLHI.

GRLH1: Greedy randomized constructive location heuristic. The greedy randomized constructive
location heuristic (GRLH1) requires to find a set V. of p disperse BUs. Initially V. = () (Figure
2). GRLH1 is started by choosing the two farthest points in V' (which is the optimal solution for
a 2-dispersion problem). Then, during p — 2 iterations, a new point is added to V.. In step 4,
distances from node j to the current V, are measured as d(j, V.) = min;ey, {d;;}.

Then a restricted candidate list (RCL) is formed with the best elements (step 5). The new
point j is chosen to maximize the minimum distance from j to the elements already in V.. Once
the new seed is randomly selected from the RCL (step 6) and added to the solution (step 7), a
new RCL is built to select another BU, and so on. The restricted candidate list (RCL) follows the
concept used normally in the GRASP methodology. The RCL is restricted by a quality parameter

«. The a value defines the quality of the elements in the RCL, when « = 0, the construction is

purely greedy location solution, and if & = 1 the location is random.

procedure GRLH2 («, p)
Input: a= GRASP RCL location quality parameter; p = number of territories.
Output: p-seed set V..

0 Ve« 0

1 if (p mod(2)==0) then

2 Select i* and j* such that d(i*,{j*}) = max{d(,{j}) : i, € V};
3 V.« V.U {it, ")

4 else

5 Select i*, 7* and k*; such that d(i*,{j*, k*}) = max{d(¢, {j, k}) : 4,4,k € V};
6 Ve e VoU {55 k')

7 end if

8 while (| V. |< p) do

9 Compute ¢(3,7),4,5 € V' \ Ve;

10 Build RCL = {(i,) : ¢(i,§) = ¢™™ — a(p™™ — ™M)}

11 Choose (3, j) randomly, (3,j) € RCL;

12 V.« Vo U (i, 4);

13 end while
14 return(V.);
end GRLH2

Figure 3: Location procedure GRLH2.

GRLH2: 1-step look-ahead greedy randomized constructive heuristic. The look-ahead greedy ran-
domized constructive heuristic (GRLH2) proceeds like the GRLH1 heuristic. The difference is that
the GRLH2 evaluates not only the next unit to be included in the solution, but the next two si-
multaneously. The purpose of evaluating two basic units simultaneously is to reduce the greediness
and, to favor the dispersion by searching in a different space than the one used in GRLHI.

The greedy function ¢ used to measure the desirability of adding both units ¢ and j to set V,

is defined as follows:

max min

As usual ™* = max; ; ¢(4,j) and ™" = min; ; (7, 7). Note that the computation of ¢ is more
expensive than the computation of the greedy function used in GRLHI. It is of particular interest
if this extra effort pays off in terms of solution quality. Also note that Steps 5-6 in Figure 3 reflect
the fact that p might be odd.

GRDL: Greedy randomized destructive location heuristic. The idea behind this procedure is based
on the following observation. Given a set of nodes in the space, if a pair of the nearest nodes is

identified and one of these is eliminated, the remaining nodes tend to be more disperse in terms

of the dispersion measure. Following this idea, the GRDL procedure (Figure 4) starts with all
BUs in the solution, it is (V. = V). Iteratively, the procedure deletes one BU from V. until p BUs
remain in the seeds set (V). Since it is desirable to eliminate one of the nearest BUs, we create an
RCL such that RCL = {(i,j) : d;j < d™™ + a(d™*® — d™™)}, where d™** = max; jev.{d;;} and
d™" = min; jey.{d;;j}. Then, following the GRASP scheme, a pair (i,) is randomly chosen from
the RCL, and one of these is eliminated from V.. The BU to be eliminated is determined using
an index which relates the number of customers and product demand in a basic unit (w} * w?).
This index is used due to the interest in keeping in V. the basic units with more sales and more

customers.

procedure GRDL (a, p)
Input: a= GRASP RCL location quality parameter; p = number of territories.
Output: p-seed set V..

0 VeV,

1 while (|V.| > p) do

2 Build RCL = {(4,§) € Ve : dij < d™™ + a(d™ — d™™)};
3 Select a pair (i, j) € RCL randomly;

4 Eliminate basic unit * = arg min{w; * w;, wj * w3 };

5 Ve e Vo\ ik

6 end while

7 return(V:);

end GRDL.

Figure 4: Location procedure GRDL.

3.1.2 Allocation phase

Given the dispersion set V.. = {v;,...,v,} obtained in the location phase (see Figure 5), we initialize
each territory as X*¥ = {v}, k = 1,...,p. Let V¥ =V \ V. be the set of unassigned BUs, that is,
|[V%| = |V| — p. Each unassigned BU j € V,, must be allocated to only one of the k territories. We
define the neighbor set N* of territory k as those unassigned BUs that are connected by an edge
with any BU in territory X*, k = 1,...,p. Hence N¥ = {j € V¥ : X* U {j} is connected}. At a
given iteration a greedy function ¢(j,k),j € Vi, k =1,...,p, given by

(. k) = (IN*))° - @(j. k) (8)
is computed, where
D(j, k) =
AXFU{GH + (1= Ng(XFu{5})

ke K,jeN* (9)
g(X*u{j}) =
> max{w®(X*) + w§ — (1+7%)u",0}
acA
Here f(z) is the dispersion measure given by (2) and g(X*U{j}) corresponds to the total violation of
the balancing constraints, when basic BU j is added to territory k. The user-specified A parameter
weighs both dispersion and infeasibility.

Function (8) considers both the neighborhood size of the territory k and the assignment cost
(in dispersion and feasibility sense) of assigning BU j to territory k. With these values the RCL
is built (Figure 5, step 3). This function is similar to the one used in RF but here it takes into
account the size of the neighboring units of the territories. This greedy function is motivated by
the observation, in previous approaches, that some territories can not grow because there are no
available neighbors during the last iterations of the process. By introducing this function, small
territories have more opportunity to grow early in the process, avoiding the stalling during the

posterior phases.

procedure Allocation (V., §)
Input: V. = set of disperse BUs; 8 = GRASP RCL allocation quality parameter.
Output: a solution X = (X' ... XP).

XE e {up VY« VA Ve
while (|V*| > 0) do
Build the RCL as in (10);
Select (j, k)inRCL randomly;
Assign the basic unit j to a territory k, X* « X* U {j};
Update V* « V¥ \ {j};
Update center c(k) in territory X* if needed;
end while
return(X);

end Allocation

o N & Utk W N = O

Figure 5: Allocation procedure.

According to the value of ®, a candidate list of BUs is constructed as follows:

RCL = {(j, k) : ®(j,k) < O™ 4 g(pmax — pmin)} (10)

As usual o™max

= maxycienk B(i, k), and @™ = mingc e ;e vk ®(i, k). The parameter 3 deter-
mines the quality of the elements in the RCL. In each iteration the center of the territory must be

updated. Initially, the center is the seed basic unit obtained in the location phase.

3.1.3 Sequential Location-Allocation

In our Location-Allocation constructive procedure (SLA) a territory is started and constructed
sequentially by iteratively assigning BUs to the active territory. When the territory size of any of
the BU activities reaches a predetermined upper limit (PUL) it is closed and a new territory is
started. Such PUL can be equal or smaller than the right hand side of expression (5), which is the
maximum feasible size that a territory can take for any activity. Proceeding this way, p territories
are constructed. Then, the unassigned BUs can be allocated to some of the p territories according
to the greedy function (8).

Figure 6 shows the pseudo-code of the SLA procedure. The first territory is initialized in line 1
with the element j € V' with minimal degree. In line 2 j is removed from the set of unassigned BUs,
and the neighboring units of territory X* are determined in line 3. From lines 4-19, p territories are
built sequentially until they reach the PUL?. Both, the selection of a seeding BU and the selection
of the neighboring BU to be included in the current territory X* is done within the GRASP scheme.
Once a territory has been initialized, the benefit of including a BU j in territory X* is computed
in line 5, according to expression (9). These values are used to build a restricted candidate list in
lines 6 and 7. A unit j is randomly chosen from RCL in line 8, and included in the territory X* in
line 9. If the territory size w®(X*) reaches a PUL? value, the current territory is closed, and a new
one is initialized (line 11). All the unassigned BUs in V* are evaluated according to the distance
measure d(j,S) = minjeg{d;;}) in line 12. A RCL is built in lines 13 and 14. A BU j is randomly
selected from RCL in line 15 and included in the current territory X* in line 16. In line 18 the
neighboring set N* is updated. In this point there are p partial territories and a set of unassigned
units V%, which are evaluated to be incorporated in some of the p territories (lines 20-26) in the

same manner as in Section 3.1.2.

procedure SLA («, p, PUL?)
Input: a= GRASP RCL location quality parameter; p = number of territories;

PUL® = predetermined territory size upper limit for activity a.
Output: a solution X = (X*',... XP).

0 k<« 1, V¥« V;

1 XF« {5}, where j € arg min {|N7|:j € V};

2 Ve Vi Gk

3 N* « set of neighbors of X*;

4 while (k < p and N* # () do

5 Compute ¢(j, k) in (9) for all j € N*;

6 &M ming {44, k) }; @ max; {6(j,)} ;

7 Build ROL + {j € N* : ¢(j, k) € [@™, ™" 4 (@™ — ™in)])
8 Choose j € RCL randomly;

9 XF e XFU LG Ve VI Gk

10 if (w*(X*) > PUL" for any a) then

11 ko k+1;

12 Compute d(j,5), j € V¥

13 d™" + min; {d(j, S)}; d™** « max;{d(j,S)} ;

14 Build RCL = {j € V" :d(j,5) > d™* — a(d™> — d™™)};
15 Choose j € RCL randomly;

16 XP e), V= VI {5k

17 end if

18 Update N*;

19 end while

20 while (|V*| > 0) do

21 Build a RCL as in (10);

22 Select (j, k) randomly, 7,k € RCL;

23 Assign the basic unit j to a territory k, X* « X* U {j};
24 Update V* = V¥ \ {j};

25 Update center c(k) in territory X* if needed;

26 end while

27 return(X);

end SLA

Figure 6: Sequential location-allocation procedure.

10

3.2 Postprocessing Phase

As usual, a solution constructed by any of the construction schemes is not necessarily a local opti-
mum. In addition, feasibility with respect to the balancing constraints may not be entirely satisfied.
Therefore, the local search procedure in Figure 7 aims at both, improving the dispersion (objective
function) and obtaining feasibility. A neighborhood N (X)) consists of all solutions reachable from
X = (X',..., XP) by moving a basic unit i from its current territory Xy, into a neighboring terri-
tory Xt(j), where j is the corresponding BU in territory Xt(j) adjacent to ¢, to keep the connectivity

requirement. The move is denoted by move(i, j). In our case we measure the cost of a move by:

P(move (i, 7)) = yAfy+(1—7)Agy; (11)

where A f;; is the variation in the objective value when the move (4, j) is performed. Similarly, Ag;;
is the variation in the value of the feasibility measure, after move (i, j). The user-defined parameter
~ is used to weigh both the objective and feasibility. Thus, given a solution X the objective and
feasibility values are obtained with (12) and (13), respectively.

f(X) = (! >kmax {max dij} (12)

dmax =1,...,p \4,J€Xk

g(X) = D> 9" (Xp) (13)

k=1lacA

The local search procedure starts with an initial solution X obtained in the construction phase.

procedure Postprocessing (S,)
Input: X = solution; v = dispersion and feasibility weighting in postprocessing phase.

Output: an improved solution s’

X'+ X; (X') + (X); stopping criteria = FALSE;

while (stopping criteria = FALSE) do
Compute 9 (X;;) for all move(i,j) € N(X);
if (¥(Xiy) <9(X')) then X'+ Xij5 (X) « ¢(Xi5);
update stopping criteria;

end while

return(X/);

end Postprocessing

S U W N = O

Figure 7: Local search.

The merit function value becomes the incumbent value 1)(X’) < ¢ (X). Iteratively, all the possible
moves in the neighborhood N (X)) of the current solution X are evaluated according to (11). If the
merit function value ¢ (X;;) obtained with move(i, j) is better than the incumbent value (X"), the
merit function value is updated to the incumbent value (X’) < 1(X;;). The algorithm continues

until a stopping criterion is reached.

11

4 Empirical Work

The proposed solution procedures have been coded in C++ and compiled with a Sun C++ compiler
workshop 8.0 under Solaris 9 operating system. The tested instances were taken from the data set
of [13]. These are randomly generated instances. All instances use a tolerance value 7% equal to
5%. We used two instance sets with 1000 and 2000 BUs, and each instance was evaluated with p
= 40 and p = 60 territories.

4.1 Parameter Fine Tunning

In this section, the parameter setting procedure used for SLA is described. This procedure has
three parameters: «, A, and v which were fine-tunned by using the methodology described in
[2]. Tt consists of four steps: i) selecting a subset of problems to analyze, ii) determining the
variation range for each parameter, iii) selecting the best value for each parameter by carrying out
an appropriate design and analysis of experiments, iv) combining the settings obtained in step 3

for obtaining high-quality parameter values. The details of these four steps are the following.

Step i: First of all, we select representative subsets of the available instances according to their
characteristics. Four sets are available, instances with 1000 nodes and 40 territories, 1000
nodes and 60 territories, 2000 nodes and 40 territories, and 2000 nodes and 60 territories. A

subset of three instances from each group is selected for the parameter setting experiment.

Table 1: Parameter values for the SLA parameter setting experiment.

Parameter Lower value Center Upper value

o 0.2 0.3 0.4
0.3 0.5 0.7
~ 1.0 -1.0 -3.0

Step ii: The second step consists of determining the parameter levels to carry out the experiments.
This is done with a preliminary test in order to find out an approximation of the best pa-
rameter values for the experiment. Thus, as a result of this preliminary test, the center, the
upper value and the lower value for each parameter is determined (Table 1). The change (A)
in the value for each parameter are A,=0.1, Ay=0.2, and A,=2. Recall a defines the quality
of the values contained in the RCL during the location phase, A weights the dispersion and
the feasibility in the merit function used to build the RCL in the allocation phase. In SLA
procedure, the parameter 7, defines an upper bound (PUL?®) for the territory size w®(X*).

When ~, = 0 the upper limit size for all territories regarding activity a is equals to the target

12

size (uq). When 7, = 1 the upper limit is (1 + 7,)pq, and v, = —1 means the upper limit is
(1 — 74)ftq. This upper limit is defined in expression PUL® = g + (V4 * fq * Ta)-

Step #ii: This step consists of generating an experimental design. Since there are only three
parameters to fit, we use a full factorial experiment. Three instances from each group are
used in the experiment. Thus, for each instance in the group and for each combination of
parameters, the SLA procedure is applied 10 times. The best solution found for each instance

is kept for comparisons.

For example, three instances are selected from the group with 1000 nodes and 40 territories,
and then these are solved with SLA using the following parameters: o = 0.2, A = 0.3, and
v = 1. Note that, these values are the lower values shown in Table 1. Then, we have the
best solution found for each one of these three instances in the group. This is repeated with
all parameter combinations (27 combinations). These 27 parameter combinations are used to
solved the other groups of instances. Once all instances have been solved by applying SLA over
the 27 parameter combinations, the average infeasibility value obtained is computed for each
instance group. Such average values of infeasibility (In feas) are detailed in Table 2. Our first
goal is to obtain feasible solutions before improving the dispersion measure. Thus, the main
objective of the parameter setting is to find the best combination of parameters that yield best
balance in the territories. It means that, the relative deviation on each territory is within the
allowed tolerance (then Infeas = 0.0). For that reason in this step of the parameter settings

we try to find the best parameter combination that minimizes the infeasibility value.

After all chosen instances have been solved by applying the SLA over the 27 combinations
of parameters. The next step is to fit a linear model for each instance category, using the 27
experimental runs on each of them. The basic idea is to find a linear approximation of the
response surface. The dependent variable in the models is the infeasibility value in Table 2.
The independent variables are the parameters used in each experimental run («, A, and 7).
Table 3 shows parameter coefficients in the linear regression equation obtained for each group
of instances (see also Figures 8 and 9 that contain the residual plots from the models). The

statistical significance of the parameter varies in each instance category.

13

Table 2: Average results for infeasibility values for each group.

Parameter values Instance categories

« A ¥ n=1000, p=40 n=2000, p=40 n=1000, p=60 n=2000, p=60
02 03 1 0.02540 0.00000 0.09947 0.06237
0.2 03 -1 0.05220 0.00176 0.05993 0.03210
02 03 -3 0.04717 0.00073 0.05173 0.03395
02 05 1 0.01028 0.00622 0.06053 0.03983
0.2 05 -1 0.01470 0.00848 0.06403 0.01879
02 05 -3 0.03650 0.00429 0.04530 0.02630
02 07 1 0.03880 0.02180 0.12933 0.00988
0.2 0.7 -1 0.01084 0.00269 0.13300 0.03773
02 07 -3 0.00481 0.00348 0.07267 0.02953
03 03 1 0.05457 0.00453 0.10560 0.05376
0.3 03 -1 0.00392 0.00067 0.09163 0.03860
03 03 -3 0.00674 0.00436 0.11277 0.04477
03 05 1 0.00562 0.00770 0.15280 0.03137
03 05 -1 0.00776 0.00160 0.09320 0.01703
03 05 -3 0.02120 0.00347 0.20600 0.03883
04 07 1 0.01148 0.00516 0.09320 0.02593
04 07 -1 0.01093 0.00177 0.06760 0.03849
04 07 -3 0.00653 0.00557 0.09023 0.04449
04 03 1 0.01537 0.00217 0.11823 0.00674
04 03 -1 0.00731 0.00095 0.07667 0.05551
04 03 -3 0.00980 0.00530 0.06100 0.00973
04 05 1 0.02887 0.00334 0.07517 0.02326
04 05 -1 0.01656 0.00051 0.09003 0.03440
04 05 -3 0.03942 0.00494 0.09890 0.01745
04 07 1 0.03634 0.01523 0.12500 0.00962
04 07 -1 0.00799 0.00181 0.15600 0.04283
04 07 -3 0.00485 0.00120 0.06007 0.02080

Table 3: Linear regression coefficients.

Group Intercept o A ol F P Adj.R?

n=1000, p=40 0.04610 -0.0412 -0.0250 0.00138 1.20 0.331 2.3%
n=2000, p=40 0.00237 -0.0078 0.0106 0.00091 2.47 0.067 16.6%
n=1000, p=60 0.05540 0.0805 0.0417 0.00446 0.92 0.448 0.0%
n=2000, p=60 0.05370 -0.0389 -0.0217 -0.00009 0.94 0.438 0.0%

14

Residual Plots for Infeas

Normal Probability Plot Versus Fits
%
.. L] i
. 0.02 .
" A o - o
- L s 001 L]
g A 3 om P
a & . .
L X - .
10 -0.01 e e,
o L]
. -0.02 .
-0.04 -0.02 0.00 0.02 0.04 0.010 0015 0020 0025 0.030
Residual Fitted Value
Histogram Versus order
6.0
0.02
45
g 3 001 ﬂ
H =
2 30 = 0100 r
2 & b & /j l\! \f}! \,\\ }(o
15 -0.01
- [| -0.02
T 002 -000 000 001 002 2 4 6 8 1012 14 16 18 20 22 24 26
Residual Observation order
(a) n=1000, p=40
Residual Plots for Infeas
Normal Probability Plot Versus Fits
£l T 0.015
. L]
%0 0.010
£ E *
g w0 S o0.005{ *
H H o . @ .
[-% -3 [I 'Y)
10 - e e = . »
et @ .
5 . -0.005 e %o e
-0.010 -0.005 0000 0.005 0.010 0.000 0.002 0.004 0.006 0.008
Residual Fitted Value
Histogram Versus Order
s 0.015
E e 3 0.010
i 3 o5 ;\ /\
: & 0.000 Y L] L%
T 2 . ol l/\; V\N/v 9}]Er'
0 [-0.005 /
D H O B D o D P 2468 1012141618 20222426
9@ ‘Q‘S Q‘S Q@ Q@ Qé Q@ Q@ Observation Order
Residual

(b) n=2000, p=40

Figure 8: Residual plots for infeasibility (Infeas) for p=40 instances.

15

Residual Plots for Infeas

Normal Probability Plot Versus Fits
%
.’/ . ’
i 0.10
E - ' .E 0.05 5 .
3 | ¢ .
a [0.00 Fd a* o a
" -
10 -+ . ™ - . .
2
1 s -0.05 * e
-0.10 I 0.05 0.10 0.08 0.10 0.12
Residual Fitted Value
Histogram Versus Order
10.0 0.10
g s "
. ~
8 2 o005
F so i b
& 25 & o q\,. ¥ v A g
0.0 -0.05
S &P @ @r@ 2 4 6 8 1012 14 16 18 20 22 24 26
T o Q Observation Order
Residual
(a) n=1000, p=60
Residual Plots for Infeas
Normal Probability Plot Versus Fits
9 . .
& b 0.02] e . 5
4 = 0.01 i .
E ; - 'L .
S S 0.00 . & >
] - L] . ?
= & -0,01 . .
10 e b .
. -0.02 *s
-0.04 -0.02 T 0.02 0.04 0.025 0.030 0.035 0.040
Residual Fitted Value
Histogram Versus Order
4.8 o0.02 %
: 3 . NA N LA
= - 0.00 [] L J 1y
:' 24 H u \
- & -0.01
1.2
-0.02
0.0
-0.024 -0.012 0.000 0012 0.024 2 4 6 8 1012 14 16 18 20 22 24 26
Residual Observation Order

(b) n=2000, p=60

Figure 9: Residual plots for infeasibility (Infeas) for p=60 instances.

16

The following step in the parameter settings process is to obtain the path of the steepest
descent(PSD). Given an estimated regression coefficient b= (b4, by, by), the PSD is the
negative gradient of the linear model (-b). Now we must travel along the path by making
small movements from one initial point. In our case such point is the center of the design
(a = 0.3,\ = 0.5, = —1). To calculate a full step size, the following procedure is used:
select the regression coefficient with maximum absolute value (by,qz), divide each parameters
coefficient (b;) by b, and multiply the resulting value by the A value of the corresponding
parameter. For example, by using the information in Table 3, for the group with n=1000 nodes
and p=40 territories, the maximum absolute coefficient value is the one of « (b, =0.0412).
Then, the full step size for a is by /bmaz * Ao = (-0.0412 / 0.0412) * 0.1 = -0.1. Similarly,
for A the full step size is (-0.0250 / 0.0412) * 0.2 = -0.1214, and for + is (0.00138 / 0.0412)
* 2 = 0.067. Nevertheless, as suggested in [2], it is desirable to avoid stepping over potential
good local minima, so we make steps of 1/4 of the full step (authors explain the compromise
between performance and complexity). The step size must be obtained for all the parameters
and all the instance categories. All the step sizes are shown in Table 4 (1/4 of the full step

size).

Table 4: Step size along the path of steepest descent.

Group «@ A 0%

n=1000, p=40 -0.0250 -0.0300 0.0170
n=2000, p=40 0.0184 -0.03030 0.0167
n=1000, p=60 0.0250 0.02580 0.0227
n=3000, p=60 0.0250 0.02780 0.0011

As mentioned before, to start the moves along the path of steepest descent, we start from the
design center (step 0). We calculate steps forward and backward. Forward steps are done
subtracting the step size value for each parameter from its previous value (at first, the previous
value corresponds to the center). In backward steps, step size values are added. After a step
has been calculated, we perform trials with the corresponding parameter values in the current
step. In our test, we run the trials with the same 3 instances of each category, used in the
previous experimental design. Table 5 shows the parameter values and the average from the
objective function value, infeasibility, and CPU time obtained for the 3 trial instances with
n=1000 nodes and p=40 territories. Figure 10(a) displays the average values obtained for
each step when we used instances with 1000 nodes and 40 territories. The best infeasibility

values are obtained in step 3, meanwhile the best objective function values are obtained with

17

step 5. As mentioned before, it is our particular interest to produce feasible solutions. Thus,

for setting the final values of parameters, only the infeasibility values are taken into account.

Table 5: Average results for 3 instances with n=1000 and p=40.

Parameter values Average
Step @ A 5y Objective Infeasibility Time (sec)
-4 0.200 0.379 -0.933 0.04433 0.00965 14.197
-3 0.225 0.401 -0.950 0.04733 0.01323 14.247
-2 0.250 0.439 -0.967 0.04466 0.01386 14.393
-1 0.275 0.470 -0.983 0.04466 0.01044 14.393
0 0.300 0.500 -1.000 0.04433 0.00776 14.437
1 0.325 0.530 -1.017 0.05266 0.02022 14.357
2 0.350 0.561 -1.033 0.05266 0.02118 14.447
3 0.375 0.591 -1.050 0.04033 0.00144 14.547
4 0.400 0.621 -1.067 0.04566 0.01028 14.647
5 0.425 0.652 -1.084 0.03666 0.00246 16.107
6 0.450 0.682 -1.100 0.06066 0.02835 14.593

Step iv: After the steepest descent has been computed for all instance groups, and the better
values have been identified for each parameter on each group, the final parameter values to
perform the final test of the heuristic are defined by averaging the better parameter values
from all instance groups. Thus, after following the guidelines in [2], the final parameter values
are the following: a=0.368, A=0.527, v=-0.998.

18

—o—Infeasibility --=-- Objective

8.00% 0.080
7.00% 0070
6.00% ' 2| 0060
. y
! e ’
5.00% N o ol £ 1 0050
T e ‘\‘ A
4.00% u- N 0.040
|}
3.00% ‘\ / 0030
200% b—\ /"""’\ / 0020
1.00% \ — \/‘\/ 0010
0.00% —— 0.000

(a) n=1000, p=40

| —o—Infeasibilty --=- Objective
8.00% 0.080
7.00% 0.070
6.00% 0.060
5.00% 0.050
400% +— S NS S - _ s 0040
- g b id e §----a-"
3.00% 0030
2.00% 0020
1.00% 0010
0.00% +—2=—0— M: w 0.000

6 5 4 3 2 A 0 1 2 3 4 5 6
(b) n=2000, p=40

Figure 10: Steepest descent average results for objective function and infeasibility values for p=40

instances.

19

Figure 11: Steepest descent average results for objective function and infeasibility values for p=60

instances.

20.00%
18.00%
16.00%
14.00%
12.00%
10.00%
8.00%
6.00%
4.00%
2.00%
0.00%

20.00%
18.00%
16.00%
14.00%
12.00%
10.00%
8.00%
6.00%
4.00%
2.00%
0.00%

—o—Infeasibility --=--Objective

0.200

0.180

0.160

A AN A
: k /i " {0120
V

0.100

0.080

0.060
0.040

0.020

(a) n=1000, p=60

—o—Infeasibility --=---Objective

0.000

0.200

0.180
0.160

0.140

0.120

0.100

0.080

S meeon” S, SEe

0.060

0.040

0.020

(b) n=2000, p=60

0.000

20

4.2 Comparison of Greedy Procedures

In this part of our experimental work, we compared the four proposed procedures. The existing
procedure RF [13] is also included in the experiment. It has been necessary to follow the param-
eter setting procedure for each heuristic: GRLH1, GRLH2, GRDL, and SLA. Table 6 shows the
parameter values for each heuristic. The dash means that the procedure does not requires the
corresponding parameter. Since the goal of this experiment is to compare the greedy nature of the

procedures, then we used a = 0. Table 7 displays the size and number of the tested instances.

Table 6: Parameter values used for comparing the greedy procedures.

Parameter GRLH1 GRLH2 GRDL SLA RF

o 0.00 0.00 0.00 0.00 0.00
A 0.10 0.10 0.10 0527 06
e 0.90 0.90 0.90 - -
5 - - - -0.998 -

Table 7: Size of test instances.

Instance group

n P No. of instances
1000 40 50
2000 40 50
1000 60 50
2000 60 50
Total 200

The infeasibility values are compared after the construction and improvement phases. Recall we
are interested in obtaining better (feasible if possible) solutions to make easier and more productive
the improvement phase than the existing RF procedure. The relative deviation index (14) is used:

|best_infeas — infeasp|
(infeasp + €) x 100%

rel.dev. (14)

where best_in feas is the smaller infeasibility value obtained with any of the 5 compared procedures,
infeasy is the infeasibility value obtained with procedure h, (h=GRLH1, GRLH2, GRDL, SLA,
RF). Since infeasibility can take a value equal to zero, expression (14) avoids division by zero.
Average relative deviation results are shown in Tables 8 and 9. In the greedy construction
phase, procedures GRLH1 and GRLH2 obtain similar average relative deviation values for all

instance groups, except for the group with n=2000 and p=60, where GRLH1 has 19.86% and

21

Table 8: Relative deviation for infeasibility results with greedy constructive procedures.

Instance group Procedure
n P GRLH1 GRLH2 GRDL SLA RF
1000 40 15.31% 15.12% 36.28% 69.61% 58.57%
2000 40 10.58% 13.30% 23.53% 61.24% 57.15%
1000 60 23.19% 22.11% 40.08% 65.76% 32.20%
2000 60 19.86% 11.78% 33.71% 66.08% 60.30%
Average 17.23% 15.34% 33.54% 65.57% 52.05%

Table 9: Relative deviation for infeasibility results after improvement.

Instance group Procedure
n P GRLH1 GRLH2 GRDL SLA RF
1000 40 50.73% 59.49% 77.81% 82.12% 70.00%
2000 40 48.12% 50.13% 65.73% 83,52% 80.31%
1000 60 51.62% 63.07% 67.30% 70.13% 36.54%
2000 60 50.69% 55.24% 71.96% 80.26% 66.64%
Average 50.29% 56.98% 70.70% 79.01% 63.37%

GRLH2 has 11.78%. Both procedures improve the performance of GRDL, SLA, and the existing
procedure RF. The difference between the average relative deviation from GRLH1 and GRLH2 is
1.89% in favor of GRLH2 which uses 1-step look-ahead approach in the selection of seed nodes for
starting the territories, which requires more computational effort. It was not possible to obtain any
feasible solutions in the greedy construction phase.

After the improvement, relative deviation values increase because infeasible values are smaller
than those in the construction phase. Even better, feasible solutions have been obtained. On
average, the local search phase in each procedure obtains the following improvement: 95.03% for
GRLH1, 94.85% in GRLH2, 94.07 in GRDL, 96.26% for SLA, and 94.60% for RF. Local search in
GRDL improves more than any other procedure, but solutions in the construction phase are the
worst regarding feasibility. Again, GRLH1 and GRLH2 outperform the results of GRDL, SLA,
and RF. Regarding the global average relative deviation results for infeasibility, GRLH1 improves
GRLH2 by 6.69%. GRLHI1 finds feasible solutions for 10.5% of the 200 instances, GRLH2 for 9%,
GRDL for 6%, SLA for 2.5%, and RF for 4.5% (see Table 10). Doing the analysis by groups, the
ideal couples for group (n=1000, p=40) is GRLH1, for instances with (n=2000, p=40) is GRLHI,
for (n=1000, p=60) is RF, and for (n=2000, p=60) is GRLH1.

Table 11 shows the CPU time (in seconds) employed on each phase for each procedure. Each

22

Table 10: Number of feasible solutions found with greedy procedures after improvement.

Instance group Procedure
n D GRLH1 GRLH2 GRDL SLA RF
1000 40 7 4 1 2 4
2000 40 12 12 9 3 4
1000 60 0 1 0 0
2000 60 1 0 1
Total 21 18 12 5 9

phase is indicated by L (location), A (allocation), and local search (LS). Observe that, the construc-
tion of territories in a sequential way, only requires allocation and local search processes. Recall
that, in SLA each new seed node is selected by considering the farthest unallocated node from
those already allocated to some territory. In RF, each new seed node is selected by considering the
grade of the unassigned nodes. For these two procedures, the time required for selecting the new
seeding node is included in the allocation phase (A), since it is small. The time required in local
search is in general relatively small. Only in 2000-node instances local search requires more than 1
second in average. On the other hand, the location phase in GRLH1, GRLH2, and GRDL requires
more computational effort, mainly in GRLH2. Except by the computational effort criteria, GRLH1

produce better results, obtaining more feasible solutions after local search.

Table 11: Average time (sec) by phase.

Procedure

Instance group GRLH1 GRLH2 GRDL SLA RF
n P L A LS L A LS L A LS A LS A LS

1000 40 331 231 021 9.84 226 0.19 | 2.78 206 022|112 0.25] 0.21 0.20
2000 40 17.89 8.47 1.75 | 54.73 791 088 | 1579 7.63 099|505 123|112 1.0
1000 60 3.50 3.08 0.24 | 23.72 3.17 021 | 2.75 3.06 023 | 157 0.26 | 0.21 0.18
2000 60 1789 1.17 1.17 | 137,51 11.10 0.82 | 1538 10.81 0.92 | 6.99 1.09 | 0.97 0.87

4.3 Comparison of GRASP Procedures vs Exact Procedure

In this experiment we compare the proposed heuristics GRLH1, GRLH2, GRDL, and SLA against
an exact procedure. For this experiment we use relatively small instances with 60, 80, and 100
nodes and 4, 5, and 6 territories, respectively. Five instances of each set were generated according

to the previously described specifications. A total of 5 x 3 = 15 DT instances were generated.

23

The exact procedure is the one used in [14], which is an iterative algorithm that solves the
relaxed problem of the corresponding MILP model (with no connectivity constraints, recall there is
an exponential number of them), and then, it identifies and adds violated connectivity constraints
until optimality is reached. This exact procedure uses the number of iterations (10 iterations

maximum) and time limit by iteration (7200 sec.) as stopping criteria.

Table 12: Summary of results for small instances.

No. of optimal solutions Av. relative gap (%)
Data set Exact GRLH1 GRLH2 GRDL GRSLA | GRLH1 GRLH2 GRDL GRSLA
DT60 5 2 2 2 1 1.17 0.64 1.54 2.84
DT80 5 0 0 0 0 5.84 1.47 7.08 4.84
DT100 5 0 0 0 0 8.46 1.55 9.61 7.28

Table 13: Average CPU times for small instances.

Procedure
Data set Exact GRLH1 GRLH2 GRDL GRLSA
DT60 190.8 0.6 1.0 10.4 0.4
DT80 2331.8 1.0 2.1 35.7 0.6
DT100 12179.0 1.5 4.7 94.9 1.0

Regarding the heuristics, they were run for 100 iterations (construction and improvement). The
heuristics GRLH1, GRLH2, and GRDL were tested using the following parameter values: o = 0.3,
A= 0.1 and e = 0.9. The parameters for SLA were those obtained in Section 4.1. Parameter values
A and e were also determined by following the procedure proposed by Coy et al. [2] which is based
on an experimental design. Recall that, the parameter e is used to fit the number of the neighboring
nodes for a territory in the allocation phase. In the first column of Table 12 the instance sets used
are shown (DT60, DT80 and DT100). This table shows the number of optimal solutions found by
applying each procedure over each instance set, and the average of the relative optimality (gap).
Table 13 displays the CPU time in seconds. All those solutions obtained with the heuristics were
feasible solutions. The optimal value with the exact method was found for all instances. Table 14
shows objective function values, and the CPU times in detail.

Heuristic procedures can find optima only for instances with 60 nodes. Over all instance sets,
the average relative optimality (gap) computed for GRLH1, GRLH2, and GRDL is 5.1566%, 1.22%,
and 6.0766%, respectively. GRLHI is the fastest heuristic (it requires on average 1.04 seconds).
GRLH2 and GRDL take longer than GRLH1, on average 2.57 and 47.01 sec., respectively. Due

24

Table 14: Results for small instances.

Exact GRLH1 GRLH2 GRDL GRSLA
Instance Sol. time Sol. time Sol. time Sol. time Sol. time
DT60-1 205.10 562 | 205.10 0.57 | 205.10 0.92 | 205.10 10.49 | 205.10 0.36
DT60-2 172.94 158 | 174.40 0.58 | 174.40 0.96 | 181.10 10.27 | 174.40 0.40
DT60-3 180.82 31 | 186.66 0.63 | 180.82 1.00 | 182.97 10.59 | 186.66 0.50
DT60-4 186.09 65 | 186.09 0.68 | 187.20 0.99 | 186.09 10.23 | 201.60 0.40
DT60-5 176.39 136 | 179.51 0.61 | 179.51 0.94 | 179.51 10.51 | 179.51 0.40
DT80-1 157.90 169 | 169.30 0.98 | 164.40 2.09 | 169.30 35.77 | 169.30 0.64
DT80-2 156.28 329 | 157.06 1.01 | 158.28 2.11 | 157.06 35.68 | 157.06 0.06
DT80-3 161.92 4693 | 176.05 1.00 | 162.12 1.99 | 177.39 35.65 | 164.94 0.80
DT80-4 148.56 2198 | 167.54 1.02 | 166.00 2.07 | 163.33 35.90 | 162.90 0.72
DT80-5 158.32 4270 | 158.32 1.04 | 170.74 2.00 | 171.25 35.69 | 166.19 0.69
DT100-1 | 144.06 10982 | 152.95 1.47 | 156.07 4.70 | 152.95 92.55 | 156.78 1.01
DT100-2 | 170.05 3493 | 182.29 1.56 | 170.53 4.68 | 184.62 94.04 | 174.01 1.08
DT100-3 | 147.21 8908 | 160.74 1.51 | 160.74 4.84 | 160.95 95.15 | 163.65 1.02
DT100-4 | 137.12 2743 | 157.03 1.51 | 147.18 4.68 | 162.03 98.88 | 152.75 0.99
DT100-5 | 159.99 34769 | 168.36 1.49 | 159.99 4.70 | 169.31 93.80 | 164.30 1.00

to the previous results, in the next subsection we compared only the heuristic GRLH1 against the
existing procedure (RF).
4.4 Comparison with existing approach

In this experiment the heuristic GRLH1 is compared with the original procedure RF. We decided
to compare only the proposed heuristic GRLH1 because of the results in the previous sections,

related to quality in greedy procedures, and CPU time required.

Table 15: Results for GRASP procedures

Instance group nfeas ARLSI (%)
n P GRLH1 RF GRLH1 RF
1000 40 44 50 96.4 94.7
2000 40 50 50 97.4 96.3
1000 60 1 2 92.4 93.7
2000 60 32 38 95.9 96.6

The procedures are executed during 100 iterations using the test bed of problem instances used
in previous experiments with 1000 and 2000 nodes and 40 and 60 territories. In each iteration a

construction and improvement phases are performed. The parameters values used for the GRLH1

25

are « = 0.3, A = 0.1, and e = 0.9. Table 15 shows a comparison between GRLH1 and RF. Column
nfeas represents the number of feasible solutions found (out of 50) with each procedure GRLH1
and RF separated by instance groups. The average relative improvement of the local search with
respect to phase 1 solutions is denoted by ARLSI. One can see that even though procedure RF
produces slightly better results (in terms of the number of feasible solutions), procedure GRLH1
is very competitive. In terms of the average relative local search improvement, GRLH1 showed a
slightly better improvement value for the p = 40 instances. Both procedures report average local
search improvements of more than 92 %. With this very good quality, it is strongly suggested that

both procedures can be used in a collaborative way.

The Firm: Real Instance with p=10

25.85 4

25.80 4

25.75 4

cy

25.70 4

25.65

25.60 4

-100.5 -100.4 -100.3 -100.2 -100.1
(o4

(a) Firm solution for a 1000-BU, 10-territory instance

Heuristic H1: Real Instance with p=10

25.85 4

25.80 4

25.75 1

cy

25.70 4

25.65

25.60 4

-100.5 -100.4 -100.3 -100.2 -100.1

(b) Heuristic solution for a 1000-BU, 10-territory instance

Figure 12: Comparison between designs obtained by the firm and proposed method.

26

Finally, Figures 12(a) and 12(b) show the resulting designs when the firm’s method and the
proposed GRLHI heuristic, respectively, are applied to a 1000-BU, 10-territory real-world instance.
For this case, under the firm method the best resulting design has an objective function value of
0.094, and it is infeasible with respect to the balancing constraints under a 0.05 tolerance. Our
method obtains a significantly better design in terms of both objective function value and feasibility,
with a dispersion function value of 0.076 (a relative improvement of 24%), and territory imbalances
of less than 5%.

5 Conclusions

A version of a territory design problem motivated by a real-world application is addressed in this
work. The problem planning requirements are compactness, contiguity, and balancing with respect
to two activities (number of customers and sales volume). A location-allocation heuristic framework
is proposed. In the location phase, three p-dispersion based heuristics are proposed. Such heuristics
obtained p disperse seeds (nodes) for starting the territories. In the allocation phase all unassigned
nodes are incorporated iteratively to some territory (building all the territories simultaneously).
These procedures were incorporated within a GRASP scheme, including a local search phase. The
empirical work reveals that two of the proposed heuristics find near-optimal or optimal solutions to
relatively small instances, where exact solutions could be found. The heuristic solutions are found
significantly faster. When we compared with the existing method in larger instances, it was found
that the existing approach provides solutions with lower infeasibility violations. However, one of
the proposed procedures found better solutions in terms of its dispersion measure than the ones
found by the existing approach.

This means that the idea of building the territories simultaneously can in some cases provide
solutions with lower degree of infeasibility after the construction phase, and therefore lead to better
overall solutions. As lines of future work, developing more sophisticated local search procedures
such as tabu search and memory-based strategies such as adaptive programming can be worthwhile.

Acknowledgements: The presentation of the paper was improved thanks to the comments by two
anonymous reviewers. This research has been supported by the Mexican National Council for Sci-
ence and Technology (CONACYT) through grants SEP-CONACYT 48499-Y and SEP-CONACYT
61343, and by Universidad Autéma de Nuevo Leén through its Scientific and Technological Research
Support Program, grants UANL-PAICYT CA1478-07, CE012-09, and IT511-10. The first author
also acknowledges the support by CONACYT’s Support Program for Postdoctoral Researchers.

27

References

1]

[12]

[13]

P. Bertolazzi, L. Bianco, and S. Ricciardelli. A method for determining the optimal districting

in urban emergency services. Computers & Operations Research, 4(1):1-12, 1977.

S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using experimental design to effective
parameter settings for heuristics. Journal of Heuristics, 7(1):77-97, 2000.

A. Drexl and K. Haase. Fast approximation methods for sales force deployment. Management
Science, 45(10):1307-1323, 1999.

J. C. Duque, R. Ramos, and J. Surinach. Supervised regionalization methods: A survey.
International Regional Science Review, 30(3):195-220, 2007.

E. Erkut and S. Neuman. Comparison of four models for dispersing facilities. INFOR, 29(2):68—
86, 1991.

E. Erkut, Y. Ulkiisal, and O. Yenicerioglu. A comparison of p-dispersion heuristics. Computers
& Operations Research, 21(10):1103-1113, 1994.

T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6(2):109-133, 1995.

J. A. Ferland and G. Guénette. Decision support system for the school districting problem.
Operations Research, 38(1):15-21, 1990.

D. Haugland, S. C. Ho, and G. Laporte. Designing delivery districts for the vehicle routing
problem with stochastic demands. European Journal of Operational Research, 180(3):997-1010,
2007.

S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpartisan political
redistricting by computer. Operations Research, 13(6):998-1006, 1965.

J. Kalcsics, S. Nickel, and M. Schroder. Toward a unified territorial design approach: Appli-
cations, algorithms, and GIS integration. Top, 13(1):1-56, 2005.

L. Muyldermans, D. Cattryse, D. Van Oudheusden, and T. Lotan. Districting for salt spreading
operations. European Journal of Operational Research, 139(3):521-532, 2002.

R. Z. Rios-Mercado and E. Ferndndez. A reactive GRASP for a commercial territory design
problem with multiple balancing requirements. Computers & Operations Research, 36(3):755—
776, 2009.

28

[14] M. A. Salazar-Aguilar, R. Z. Rios-Mercado, and M. Cabrera-Rios. New models for commercial
territory design. Networks & Spatial Economics, 11(3):487-507, 2011.

[15] A. A. Zoltners and P. Sinha. Sales territory design: Thirty years of modeling and implemen-
tation. Marketing Science, 24(3):313-331, 2005.

29

