

Regionalization of Primary Health Care Units: An Iterated Greedy Algorithm for Large-Scale Instances

Rodolfo Mendoza-Gómez ^a

Tecnológico de Monterrey

School of Engineering and Science

Eugenio Garza Sada SN, Cerro Gordo

León, Guanajuato 37190, Mexico

E-mail: *rodolfomendoza@tec.mx*

Roger Z. Ríos-Mercado

Universidad Autónoma de Nuevo León (UANL)

Graduate Program in Electrical Engineering

Av. Universidad s/n, Cd. Universitaria

San Nicolás de los Garza, Nuevo León 66455, Mexico

E-mail: *roger.rios@uanl.edu.mx*

September 2023

Revised: December 2023

^aCorresponding author

Abstract

In this paper, we study the problem of multi-institutional regionalization of primary health care units. The problem consists of deciding where to place new facilities, capacity expansions for existing facilities, and demand allocation in a multi-institutional system to minimize the total travel distance from demand points to health care units. It is known that traditional exact methods as branch-and-bound are limited to solving small- to medium-size instances of the problem. Given that real world-instances can be large, in this paper we propose an iterated greedy algorithm with variable neighborhood descent search for handling large-scale instances. Within this solution framework, several methods are developed. A greedy constructive method and two deconstruction strategies are developed. Another interesting component is the exact optimization of a demand allocation subproblem that is obtained when the location of facilities is previously fixed. An empirical assessment using real-world data from the State of Mexico’s Public Health Care System is carried out. The results demonstrate the effectiveness of the proposed metaheuristic in handling large-scale instances.

15 **Keywords:** Public health care planning; Facility location; Metaheuristics; Iterated greedy algorithm.

16 **1 Introduction**

17 Discrete facility location is an important area in operations research and computer science. There
18 are many applications in industry and the public sector for a wide range of problems that include
19 factories, warehouses, distribution centers, retailer stores, schools, police stations, health care units,
20 ambulance stations, offices, and so on. An extensive recent survey of location models is provided
21 by Laporte et al. [19], and Ahmadi-Javid et al. [3] provide an extensive survey of location models
22 applied to health care. Some contributions related to the locational planning of health care units
23 are proposed by Marianov and Taborga [22], Marianov et al. [23], Griffin et al. [16], Ndiaye and
24 Alfares [30], Smith et al. [36], Gu et al. [17], Shariff et al. [35], and de Aguiar et al. [8]. Others, such
25 as Mitropoulos et al. [28], Zhang et al. [38] and Mendoza-Gómez and Ríos-Mercado [25], address
26 multi-objective optimization problems. Furthermore, works integrating stochastic parameters are
27 explored by Taymaz et al. [37] and Ahmadi-Javid and Ramshe [2].

28 In this paper, we are dealing with the problem of regionalization of primary health care units
29 (HCUs) in a segmented public system proposed by Mendoza-Gómez and Ríos-Mercado [24]. We
30 refer to this problem as the Multi-Institution Facility Location and Upgrading Problem (MIFLUP).
31 The problem consists of determining the location of new capacity in the system. This can be done
32 by opening new facilities or adding more capacity to the existing HCUs. The allocation of demand
33 is required because the capacity of HCUs is limited. There is a set of institutions, and each
34 institution has a demand to serve at each demand point, but when the capacity is not enough to
35 fulfill the demand or there are no HCUs nearby, collaboration among institutions can be done to
36 share the services. In this case, the allocation of demand to other institutions can be done, but this
37 is constrained by a set of policies. The general objective of this problem is to minimize the total
38 weighted distance from demand points to HCUs. The main goals are to improve the population's
39 access to these facilities and to ensure a minimum quality level in the provision of primary health
40 care services.

41 This problem can be seen as a variation of the capacitated p -median problem (CPMP) with
42 additional side constraints. The objective of this problem is to find the optimal location of p
43 facilities, considering distances and capacities for the service to be given by each median. The
44 CPMP problem has been proven to be \mathcal{NP} -hard by a reduction from the p -median problem [13].
45 This means that optimal solutions can be difficult to obtain for larger instances of the problem
46 using exact algorithms. The MIFLUP includes additional features as the capacity setting and the
47 inter-institutional allocation, requiring us to design alternative solutions methods for large-scale
48 instances.

49 Among the exact approaches that have been proposed for the CPMP, a branch-and-price al-
50 gorithm that exploits column generation, heuristics, and branch-and-bound to compute optimal
51 solutions for the CPMP is proposed by Ceselli and Righini [7]. In Boccia et al. [5], a cutting plane

52 algorithm, based on Fenchel cuts, is used to reduce the integrality gap of hard CPMP instances.
53 Related to heuristic methods, one of the first metaheuristics is proposed by Osman and Christofides
54 [32]. They propose a hybrid simulated annealing and a Tabu search algorithm. Maniezzo et al.
55 [21] propose a bionic algorithm and a local search for the CPMP. Baldacci et al. [4] propose
56 an exact algorithm based on a set partitioning formulation. Díaz and Fernández [9] combine Scatter
57 Search and path relinking algorithms, using GRASP (Greedy Randomized Adaptive Search
58 Procedure) to generate the initial reference set. Ahmadi and Osman [1] propose a new solution
59 framework based on GRASP and adaptative memory programming. Then, a guided construction
60 search metaheuristics is proposed by Osman and Ahmadi [31]. Recently, Gnägi and Baumann [14]
61 propose a metaheuristic with decomposition strategies.

62 Work on facility location models on segmented health care systems has been done by Mendoza-
63 Gómez et al. [26] and Mendoza-Gómez et al. [27]. They address the problem of locating specialized
64 health care equipment in the Mexican Health Care System (MHCS). A hybrid metaheuristic based
65 on the iterated greedy algorithm is proposed. In fact, that work has similarities with the present
66 work that we attempt to exploit in the development of our solution procedure. A related model
67 for HCUs applied to the MHCS is presented by Mendoza-Gómez and Ríos-Mercado [25]. In that
68 work, one institution is considered in the system.

69 The problem addressed in this work is introduced by Mendoza-Gómez and Ríos-Mercado [24].
70 In that work, an integer programming model is proposed. Empirical evidence using branch-and-
71 bound made clear the need for heuristics to handle large-scale instances. To the best of our
72 knowledge, there are no heuristics developed for this particular problem. Since the objective is
73 to obtain a practical decision that is yearly required for hundreds of regions in the country, a
74 good quality solution obtained in a reasonable time can be used. This solution can be obtained
75 with metaheuristics that are faster but give up optimality. In a practical setting, one approach
76 is to solve smaller regional problems and then integrate this solution as a whole. However, it is
77 clear that this may lead to suboptimal solutions when considering the nation-wide problem. An
78 alternative is to consider the entire system which is intractable by exact algorithms. This motivates
79 the development of heuristic techniques as proposed in this paper.

80 The main contribution of the paper is the development of a hybrid metaheuristic framework for
81 tackling large-scale instances of this problem. Note that, to the best of our knowledge, there are no
82 other heuristic methods for this particular problem. The proposed strategies make use of several
83 components as an iterated greedy (IG) algorithm and variable neighborhood descent algorithm
84 (VND), that attempt to exploit the mathematical structure of the problem through the exploration
85 of two proposed neighborhoods. Some particular input parameters for the IG and the constructive
86 method are proposed to reduce the problem's working space during the solution construction. In
87 addition, within the solution procedures, we present an allocation subproblem that can be solved
88 with an efficient exact method as a final step using the heuristic solutions as the starting feasible

89 solution. Hence, this method represents a hybrid metaheuristic, featuring components that hold
90 relevance for other trajectory-based metaheuristics.

91 IG is a simple but powerful metaheuristic framework, introduced by Ruiz and Stützle [34] for
92 solving combinatorial optimization problems. IG is similar to GRASP proposed by Feo and Resende
93 [11], but in this case, instead of randomizing the construction of a solution, it is partially randomly
94 destroyed, and then, using a constructive strategy, the solution is rebuilt. VNS is a metaheuristic
95 proposed by Mladenović and Hansen [29] that systematically modifies the structure of a set of
96 neighborhoods in the search procedure. A specific simple strategy is to select the neighborhood in
97 a deterministic order, this strategy is named the variable neighborhood descent search (VND). An
98 implementation of this metaheuristic in a related problem is provided by Fleszar and Hindi [12] for
99 the CPMP. There many recent works where the IG framework is used to solve complex problem
100 such as Qin et al. [33], Hoffmann et al. [18], Feng et al. [10], Zou et al. [39], and Liu et al. [20]
101 applied to scheduling problems, Casado et al. [6] for finding the minimum dominating set in graphs,
102 and Gokalp [15] for the obnoxious p -median problem.

103 An empirical assessment applied to a case study of MCHS in the State of Mexico is conducted.
104 Eighteen instances with a range between five hundred to three thousand demand points are used
105 to evaluate different strategies and fine-tune parameters of the metaheuristic. The results show
106 a good performance of the metaheuristic compared with the state-of-the-art branch-and-bound
107 algorithm (B&B). While no feasible solutions were found for the largest instances by B&B with a
108 two-hour computing time limit, the metaheuristic is able to find feasible solutions in all the cases,
109 and competitive or even better solutions are found in most of the cases where B&B found feasible
110 solutions.

111 The structure of this paper is as follows. In Section 2, we present the model introduced by
112 Mendoza-Gómez and Ríos-Mercado [24] for a better understanding of the proposed heuristic com-
113 ponents. In Section 3, we describe the proposed metaheuristic and all the related components and
114 algorithmic strategies. Section 4 presents the results of the empirical assessment applied to a case
115 study. Finally, conclusions of this work are drawn in Section 5.

116 2 Problem Description

117 MIFLUP was introduced by Mendoza-Gómez and Ríos-Mercado [24] and they proved that it is
118 classified as an \mathcal{NP} -hard problem. The objective of this problem is to allocate demand points
119 to capacitated HCUs of multiple institutions minimizing the total weighted travel distance. New
120 facilities can be installed and new capacity can be added to the system if these options contribute
121 to minimizing the objective function. A percentage of capacity at each HCU can be used to allocate
122 the demand of other institutions. The capacity is based on a modular scheme named basic kernels.
123 In this scheme, a kernel is composed of a physician, a nurse, and a technician in primary health

care that can serve a limited number of inhabitants in the region. Figure 1 illustrates the problem considering three institutions, five demand points, three existing HCUs, and one candidate site to build a HCU. Each HCU has a given capacity and additional kernels can be installed on it. The candidate site (CS) can be considered a HCU but without installed capacity in the current system. A maximum number of new locations and a maximum number of new kernels are available for each institution. There is demand that belongs to each institution at each demand point. Therefore, the demand of each institution at each demand point must be assigned to a single HCU. The HCU may belong to the same institution or another if it has enough capacity available. The number of binary variables for each demand point is determined by the number of institutions and the number of total locations (HCUs and CSs) as can be seen in the variables related to demand point 1 in the figure.

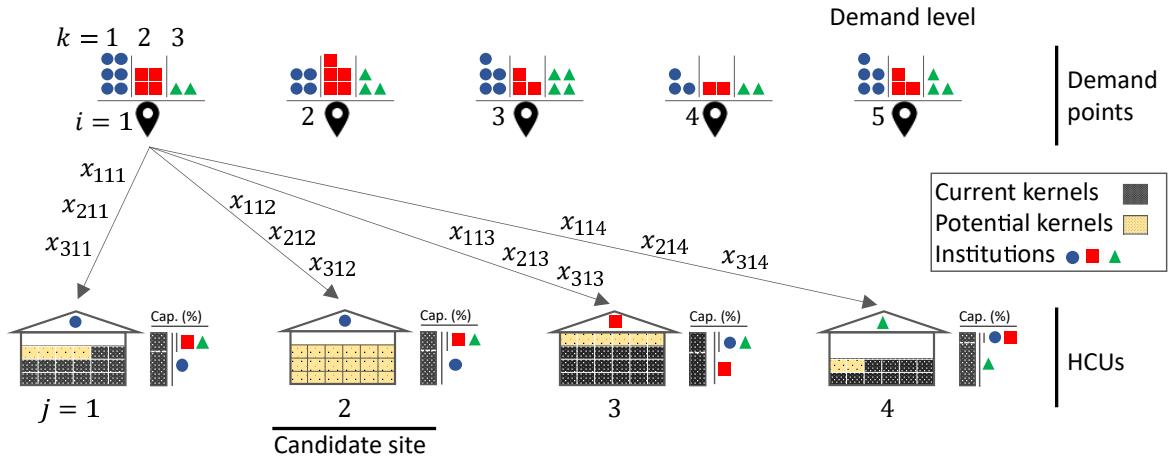


Figure 1: Graphical representation of the problem.

135 2.1 Formulation

136 For the sake of completeness and a better understanding of the proposed solution method, we
 137 present an integer linear programming formulation of the problem that was taken from the model
 138 proposed by Mendoza-Gómez and Ríos-Mercado [24]. In our specific case, we assume that there
 139 is no minimum capacity to be allocated in each HCU. Thus, constraints (5) from Mendoza-Gómez
 140 and Ríos-Mercado [24] become redundant. The notation, parameters, and variables used in the
 141 problem formulation are the following:

142 *Sets and indices:*

143 N Set of demand points ($i, l \in N$).

144 M Set of (existing and candidate) locations for HCUs ($t, j \in M$).

145 K Set of institutions ($k, r \in K$).

146 M_k Set of locations (HCUs and CSs) that belong to institution k .

147 M_A Set of locations where a HCU is already installed, $M_A \subseteq M$.

148 M_B Set of CSs for installing a HCU, $M_B \subseteq M$.

149 M_{B_k} Set of CSs that belong to institution k .

150 $k(j)$ The institution to which location j belongs to, $j \in M_r \leftrightarrow r = k(j)$.

151 *Parameters:*

152 KC Kernel capacity. Maximum number of inhabitants covered by a kernel.

153 d_{ij} Distance from demand point i to HCU location j ; $i \in N, j \in M$.

154 w_{ki} Demand of institution k in point i ; $k \in K, i \in N$.

155 a_j Number of current kernels in HCU j . A value of a_j equal to zero indicates there is no current HCU at that place; therefore, it is a CS for installing a HCU; $j \in M$.

156 V_j Maximum number of kernels that can be installed in location j ; $j \in M$.

157 H_j Minimum number of kernels that must be installed in location j if a HCU is opened; $j \in M_B$.

158 β_k Maximum proportion of capacity in a HCU of institution k that can be shared to the demand of other institutions; $k \in K$.

159 γ_k Minimum proportion of demand that institution k must be cover internally; $k \in K$.

160 G_k Maximum number of additional kernels of institution k that can be installed; $k \in K$.

161 P_k Number of new HCU to be opened by institution k ; $k \in K$.

164 *Decision variables:*

165 $x_{kij} = 1$, if demand of institution k at demand point i is allocated to HCU j ; $= 0$, otherwise;
 $k \in K, i \in N, j \in M$.

166 $y_j = 1$, if a HCU is opened at location j ; $= 0$, otherwise; $j \in M_B$.

167 v_j Integer variable equal to the number of additional kernels to be opened in HCU j ; $j \in M$.

169 The linear integer programming model of MIFLUP is then given by:

$$\text{Minimize } f(x) = \sum_{i \in N} \sum_{j \in M} \sum_{k \in K} w_{ki} d_{ij} x_{kij} \quad (1)$$

$$\text{subject to: } \sum_{j \in M} x_{kij} = 1 \quad k \in K, i \in N \quad (2)$$

$$\sum_{r \in K: r \neq k(j)} x_{rij} \leq (|K| - 1)x_{kij} \quad k \in K, i \in N, j \in M_k \quad (3)$$

$$\sum_{i \in N} \sum_{k \in K} w_{ki} x_{kij} \leq KC(a_j + v_j) \quad j \in M \quad (4)$$

$$\sum_{i \in N} \sum_{r \in K: r \neq k(j)} w_{ri} x_{rij} \leq KC(a_j + v_j) \beta_{k(j)} \quad j \in M \quad (5)$$

$$\sum_{i \in N} \sum_{j \in M_k} w_{ki} x_{kij} \geq \gamma_k \sum_{i \in N} \sum_{k \in K} w_{ki} \quad k \in K \quad (6)$$

$$\sum_{j \in M_k} v_j \leq G_k \quad k \in K \quad (7)$$

$$x_{kij} \leq y_j \quad k \in K, i \in N, j \in M_B \quad (8)$$

$$v_j \geq H_j y_j \quad j \in M_B \quad (9)$$

$$\sum_{j \in M_{B_k}} y_j \leq P_k \quad k \in K \quad (10)$$

$$v_j \leq V_j \quad j \in M_A \quad (11)$$

$$v_j \leq V_j y_j \quad j \in M_B \quad (12)$$

$$x_{kij} \in \{0, 1\} \quad k \in K, i \in N, j \in M \quad (13)$$

$$y_j \in \{0, 1\} \quad j \in M_B \quad (14)$$

$$v_j \in \mathbb{Z}^+ \quad j \in M \quad (15)$$

170 The total travel distance is minimized in the objective function (1). Constraints (2) enforce allo-
 171 cating all the demand of each institution at each demand point to a single HCU or CS. Constraints
 172 (3) avoid allocating the demand of other institutions in a given demand point to a HCU or CS if
 173 the demand of the institution to which the HCU or CS belongs is not allocated first. Constraints(4)
 174 limit the demand allocation according to the capacity of each HCU or CS determined by the number
 175 of actual kernels plus new kernels. Constraints (5) limit the demand of other institutions allocated
 176 to each HCU or CS according to $\beta_{k(j)}$. Constraints (6) are used to guarantee a minimum percentage
 177 of demand allocated internally for each institution. Constraints (7) set the maximum number of
 178 new kernels that can be installed for each institution. Constraints (8) prevent allocating demand
 179 to a CS that is not selected. Constraints (9) define a minimum number of kernels to be installed
 180 in the selected CS. Constraints (10) set the maximum number of selected CS for each institution.
 181 Constraints (11) and (12) define the maximum number of kernels that can be installed in existing
 182 HCUs and CS, respectively. Finally, the nature of decision variables is defined in constraints (13)
 183 and (15).

184 3 Proposed metaheuristic

185 In this section, we describe an IG algorithm to solve MIFLUP that was introduced in Section 2. The
 186 main procedure is shown in Pseudo-code 1. Three components are used in the multi-start procedure:
 187 the deconstruction strategy, the constructive strategy, and a local search procedure. A solution is
 188 represented by \mathcal{S} and the best feasible solution found is represented by \mathcal{S}^* . The objective function
 189 value of any feasible solution is represented by $Z(\mathcal{S})$. The procedure is iterated until a stopping
 190 criterion (*stopping_criterion*) is satisfied. This criterion can be for instance a computing time limit,
 191 a given number of iterations, or a combination of both criteria. The percentage of deconstruction is

192 determined by parameter ρ , which is fine-tuned. Four additional input parameters (Φ, D_0, D_1, D_2)
 193 are required in the construction and deconstruction phases of this problem. D_1 and D_2 are used in
 194 the constructive and deconstruction strategies to reduce the number of operations in the procedure
 195 by reducing the size of the environment affected when a solution is modified. This is a special
 196 feature for large-scale instances. All these parameters are explained in the following subsections.

197 We present in this paper a constructive method (CM), two deconstruction strategies (DS1 and
 198 DS2), two types of neighborhoods that give rise to two local search schemes (LS1 and LS2), two
 199 versions of a VND (VND12 and VND21), and a sub-problem to be optimized (ALLOP) as elements
 200 that can be included or combined within the IG. In Table 1, we proposed some heuristics methods
 201 generated with this elements that are evaluated in Section 4. In the second column, the elements
 202 of the IG are represented as follows $IG\{\text{deconstructive strategy, constructive method, local search}$
 203 $\text{strategy}\}$. In H9 and H10, there is an extra final method that consists in optimizing the allocation
 204 subproblem (ALLOP) with an exact method. Figure 2 show a representative diagram of the entire
 205 framework used for design the proposed heuristics. In the following subsections, all the components
 206 proposed are explained in detail.

Pseudocode 1 Iterated greedy algorithm

```

1: procedure IG(stopping_criterion,  $\rho$ ,  $\Phi, D_0, D_1, D_2$ )
2:    $\mathcal{S}^* \leftarrow \text{INITIALIZATION\_PROCEDURE}(D_0);$ 
3:    $\mathcal{S}^* \leftarrow \text{CM}(\mathcal{S}^*, \Phi, D_1);$ 
4:   while stop_criteria is not satisfied do
5:      $\mathcal{S} \leftarrow \mathcal{S}^*;$ 
6:      $\mathcal{S} \leftarrow \text{DM}(\mathcal{S}, \rho, D_2);$ 
7:      $\mathcal{S} \leftarrow \text{CM}(\mathcal{S}, \Phi, D_1);$ 
8:      $\mathcal{S} \leftarrow \text{LOCAL\_SEARCH}(\mathcal{S});$ 
9:     if  $(Z(\mathcal{S}) < Z(\mathcal{S}^*))$  then
10:       $\mathcal{S}^* \leftarrow \mathcal{S};$ 
11:    end if
12:   end while
13:   return  $(\mathcal{S}^*)$ 
14: end procedure

```

Table 1: Description of the proposed heuristics.

ID	Heuristic method	Description
H1	$IG\{\text{DS1, CM, -}\}$	use DS1 at each iteration.
H2	$IG\{\text{DS2, CM, -}\}$	use DS2 at each iteration.
H3	$IG\{\text{DS1+DS2, CM, -}\}$	use DS1 and DS2 sequentially at each iteration.
H4	$IG\{\text{DS2+DS1, CM, -}\}$	use DS2 and DS1 sequentially at each iteration.
H5	$IG\{\text{DS1+DS2, CM, LS1+LS2}\}$	use H3 and apply LS1 and LS2 sequentially at each iteration.
H6	$IG\{\text{DS1+DS2, CM, LS2+LS1}\}$	use H3 and apply LS1 and LS2 sequentially at each iteration.
H7	$IG\{\text{DS1+DS2, CM, VND12}\}$	use H3 and apply VND12 at each iteration.
H8	$IG\{\text{DS1+DS2, CM, VND21}\}$	use H3 and apply VND21 at each iteration.
H9	$IG\{\text{DS1+DS2, CM, VND12}\} + \text{ALLOP}$	use H7 and optimize ALLOP.
H10	$IG\{\text{DS1+DS2, CM, VND21}\} + \text{ALLOP}$	use H8 and optimize ALLOP.

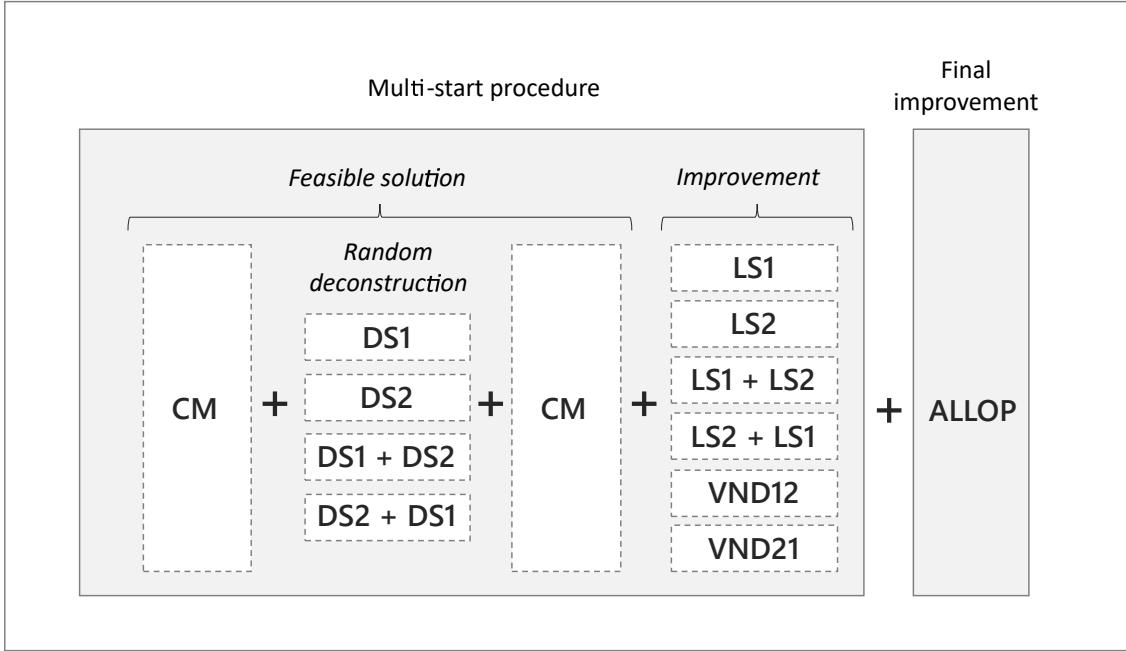


Figure 2: Framework for the heuristics design.

207 **Representation of a solution**

208 A solution \mathcal{S} is composed of three main variable types that are initialized and then modified
 209 throughout the algorithm. They are defined as follows:

210 \tilde{y}_j is a variable associated with y_j for all $j \in M_B$. It stores a value equal to 1 if a HCU is opened
 211 at CS j and 0 otherwise.

212 \tilde{v}_j is a variable associated with v_j for $j \in M$. It represents the number of additional kernels
 213 installed in j .

214 \tilde{x}_{ki} is a variable associated with x_{kij} for $k \in K$, $i \in N$, $j \in M$. This variable stores the site j such
 215 that $x_{kij} = 1$. This change helps to reduce the computing memory required to store solutions.

216 A given solution is represented by $(\tilde{y}, \tilde{v}, \tilde{x})$ or \mathcal{S} . However, there are many working parameters
 217 that are useful for identifying the residual capacity and the solution's feasibility when the procedure
 218 is running: \tilde{w}_{ki} , C_j , CI_j , O_k , \tilde{V}_j , \tilde{G}_k , \tilde{P}_k , and λ_{ki} . These working parameters can be computed
 219 from \mathcal{S} or updated every time there is a change in the solution. Their definition is available in the
 220 Appendix and they are used in all the procedures that are described below. The decision variables
 221 and the working parameters must be initialized at the beginning of the IG as is shown in Subsection
 222 3.1.

223 Figure 3 shows a small example to illustrate the terminology that is used to describe the
 224 procedures. In this example, the elements belong to institution $k = 1$. In the case of HCUs
 225 ($j \in M_{A_1}$), some of them can increase their capacity with additional kernels ($\tilde{v}_j \geq 0$). In the

case of candidate sites ($j \in M_{B_1}$), some of them may be selected to open new HCUs with new kernels ($\tilde{y}_j = 1$ and $\tilde{v}_j > 0$) and others can not be selected ($\tilde{y}_j = 0$ and $\tilde{v}_j = 0$). For the last two cases, we use the terms “selected candidate sites (SCS)” and “unselected candidate sites (UCS)”, respectively. For the case of HCUs and SCS, we refer to these elements as “active sites” because represent existing and new HCUs. In this problem, we require to identify where to install new kernels (\tilde{v}_j) and how to allocate the demand of each institution (\tilde{x}_{ki}). For the case of kernels, we use the terms “assign and unassign” kernels to a site j and for the case of demand, we use the terms “allocate and deallocate” demand to a site j .

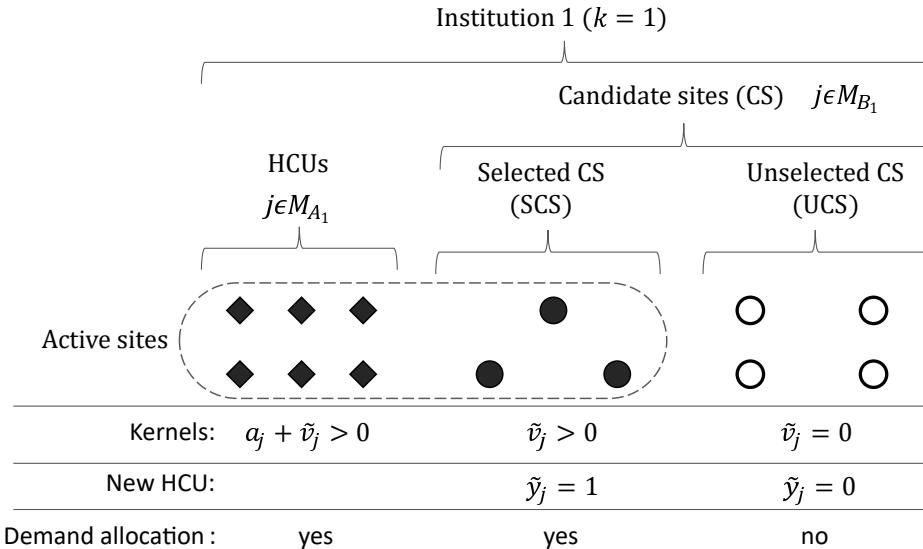


Figure 3: Example of the terminology of the elements in the solution.

3.1 Initialization procedure

Pseudo-code 2 shows the initial value for the solution ($\tilde{y}_j, \tilde{v}_j, \tilde{x}_{ki}$) and the working parameters ($\tilde{w}_{ki}, C_j, CI_j, O_k, \tilde{V}_j, \tilde{G}_k, \tilde{P}_k$, and λ_{ki}). This subroutine is required for the constructive method when there is no partial or complete solution created. The working parameters must be updated every time there is a change in the solution. In Step 2, the working parameters are initialized. In Step 3, λ_{ki} is initialized with a distance D_0 and when a demand point is allocated to an active site, the parameter is updated according to Equation 26. The purpose of this parameter is to find an active site with a better distance than D_0 . The decision variables are created with initial values in Step 4 that represents an unfeasible solution. The constructive method can be applied once this initialization is done as is shown in Pseudocode 1.

Pseudocode 2 Initialization

```
1: procedure INITIALIZATION PROCEDURE( $D_0$ )
2:   Compute the working parameters as follows:
    $\tilde{w}_{ki} = w_{ki} \forall (k \in K, i \in N)$ ,  $C_j = KC(a_j) \forall j \in M_A$ ,  $C_j = 0 \forall j \in M_B$ ,
    $CI_j = \beta_{k(j)} C_j \forall j \in M$ ,  $O_k = (1 - \gamma_k) \sum_{i \in N} w_{ki} \forall k \in K$ ,  $\tilde{V}_j = V_j \forall j \in M$ ;
    $\tilde{G}_k = G_k \forall k \in K$ ,  $\tilde{P}_k = P_k \forall k \in K$ ;
3:   Compute  $\lambda_{ki}$  according to (26) and  $D_0$ ;
4:   Compute the solution as follows:
    $\tilde{y}_j = 0 \forall j \in M_B$ ,  $\tilde{v}_j = 0 \forall j \in M$ ,  $\tilde{x}_{ki} = \infty \forall (k \in K, i \in N)$ ;
5:    $\mathcal{S} \leftarrow (\tilde{y}, \tilde{v}, \tilde{x})$ ;
6: return ( $\mathcal{S}$ )
7: end procedure
```

²⁴⁴ **3.2 Constructive method (CM)**

²⁴⁵ The main steps of CM are shown in Pseudo-code 3. In this procedure, an initial solution \mathcal{S} and
²⁴⁶ two input parameters: Φ and D_1 , are required as input. Parameter Φ defines the strategy for
²⁴⁷ determining the number of new kernels to add to each site as follows: option (i) computes the
²⁴⁸ minimum possible number of kernels, option (ii) computes the average value between the minimum
²⁴⁹ and the maximum possible number of kernels, and option (iii) computes the maximum possible
²⁵⁰ number of kernels. Parameter D_1 defines the influence area for sites whose capacity is modified in
²⁵¹ the procedure.

²⁵² In Step 2, for each institution k , the best P_k candidate sites are selected, new kernels are assigned
²⁵³ to these SCS without exceeding G_k , and demand is allocated to them according to the available
²⁵⁴ capacity. Then, in Step 3, available kernels (\tilde{G}_k) for each institution are assigned to strategic
²⁵⁵ active sites, and demand is allocated to them. In Step 4, the remaining demand is allocated to
²⁵⁶ active sites with available capacity ($C_j > 0$). If there is the case that some candidate sites can
²⁵⁷ still be selected ($\sum_{k \in K} \tilde{P}_k > 0$), this is forced in Step 6, selecting additional candidate sites and
²⁵⁸ transferring kernels to them. The output of this algorithm provides a greedy feasible solution for
²⁵⁹ the entire problem. CM can be used to complete a partial solution in the reconstruction phase of
²⁶⁰ the IG. In the following subsections, each of these procedures is detailed explained.

Pseudocode 3 Constructive algorithm

```
1: procedure CM( $\mathcal{S}, \Phi, D_1$ )
2:    $\mathcal{S} \leftarrow \text{OPEN\_NEW\_FACILITIES}(\mathcal{S}, \Phi)$ ;
3:    $\mathcal{S} \leftarrow \text{OPEN\_NEW\_KERNELS}(\mathcal{S}, \Phi)$ ;
4:    $\tilde{x} \leftarrow \text{DEMAND\_ALLOCATION}(\mathcal{S})$ ;
5:   if ( $\sum_{k \in K} \tilde{P}_k > 0$ ) then
6:      $\mathcal{S} \leftarrow \text{KERNELS\_TRANSFERS}(\mathcal{S}, D_1)$ ;
7:   end if
8: return ( $\mathcal{S}$ )
9: end procedure
```

261 **3.2.1 CM: Open new facilities**

262 Procedure OPEN_NEW_FACILITIES() is shown in Pseudo-code 4. The objective is to select can-
263 didate sites to install new HCUs for each institution according to P_k . A candidate list CL with
264 UCS of all institutions is created in Step 2. Then, in Step 4, the function (δ_j) , the potential new
265 capacity (PC_j) , and the number of new kernels $(u_j^1(\Phi))$ are computed for each element according
266 to Equations (27), (30), and (31), respectively. Parameter δ_j computes the improvement in the
267 allocation distance of each demand point to the candidate site multiplied by the demand rate. The
268 procedure ends when neither of the elements generates a benefit ($\sum \delta_j > 0$) or when CL is empty.
269 Otherwise, the element with the highest δ_j value is selected to become an active site (Step 6). The
270 working parameters associated with the residual capacity are updated in Steps 7 and 8, and the
271 solution is updated in Step 9.

272 For allocating demand is required to call a subroutine DEMAND_ASSIGNMENT() that is
273 shown in Pseudo-code 5. This subroutine allocates demand to the active site t considering the
274 incumbent solution. Firstly, a list of demand points (k, i) with specific criteria is created and
275 stored in DPL according to Steps 2–8. In this list, demand points (k, i) with a distance to site
276 t such that $d_{it} < \lambda_{ki}$ are considered. Parameter λ_{ki} represents the current allocation distance of
277 each demand point (k, i) . Therefore, only demand points such that the allocation distance can be
278 improved are considered. The demand \tilde{w}_{ki} must not exceed the available capacity of site t . In
279 the case of inter-institutional allocation ($k \neq k(t)$), the feasibility of constraints (3), (5), and (6)
280 must be also fulfilled (Step 6). This last requirement is evaluated with the following conditions:
281 $\tilde{x}_{k(t)i} = t$, $\tilde{w}_{ki} \leq CI_t$, $\tilde{w}_{ki} \leq O_k$. For each demand point in the DPL , θ_{ki} is computed to determine
282 the benefit of this demand point if this is allocated to the active site t . One by one, demand
283 points are allocated to this active site starting from the ones with the highest values. The working
284 parameters related to the residual capacity are updated in Step 12 and the solution is updated in
285 Step 13. The DPL list of demand points is updated with the same criteria as the Steps 2–8 and
286 the procedure is repeated until the DPL becomes empty. In this case, only \tilde{x} is returned as output
287 because the other variables were not modified.

288 **3.2.2 CM: Addition of new kernels**

289 Procedure OPEN_NEW KERNELS() shown in Pseudo-code 6 is called to assign kernels, according
290 to \tilde{G}_k for each institution. A candidate list CL of sites such that $\tilde{V}_j > 0$ is created. The number
291 of kernels to assign $(u_j^2(\Phi))$, PC_j , and δ_j are computed with Equations (28), (30), and (31),
292 respectively. Then, the procedure is very similar to Pseudo-code 4. In this case, $u_j^2(\Phi)$ is used to
293 compute the potential capacity to be added for each element of CL . Other changes are the working
294 parameters that are updated in Step 8 and the solution in Step 9. This process is repeated while
295 $\sum \tilde{G}_k > 0$ or $CL \neq \{\emptyset\}$. At the end of each iteration, CL is updated with the same criteria as Step

Pseudocode 4 Open new facilities

```

1: procedure OPEN_NEW_FACILITIES( $\mathcal{S}, \Phi$ )
2:    $CL \leftarrow \{j \in M_B | \tilde{y}_j = 0, \tilde{P}_{k(j)} > 0, \tilde{G}_{k(j)} \geq H_j\};$ 
3:   while ( $CL \neq \emptyset$ ) do
4:     compute  $u_j^1(\Phi)$ ,  $PC_j$ , and  $\delta_j \forall j \in CL$  according to (27), (30), and (31);
5:     if ( $\sum \delta_j \neq 0$ ) then
6:        $t \leftarrow \arg \max_{j \in CL} \{\delta_j\};$ 
7:        $C_t \leftarrow C_t + PC_t, \tilde{V}_t \leftarrow \tilde{V}_t - u_t^1(\Phi), CI_t \leftarrow CI_t + \beta_{k(t)} PC_t,$ 
8:        $\tilde{G}_{k(t)} \leftarrow \tilde{G}_{k(t)} - u_t^1(\Phi), \tilde{P}_{k(t)} \leftarrow \tilde{P}_{k(t)} - 1;$ 
9:       update solution as follows:
10:       $\tilde{y}_t = 1, \tilde{v}_t \leftarrow \tilde{v}_t + u_t^1(\Phi), \tilde{x} \leftarrow \text{DEMAND\_ASSIGNMENT}(\mathcal{S}, t);$ 
11:       $CL \leftarrow \{j \in M_B | \tilde{y}_j = 0, \tilde{P}_{k(j)} > 0, \tilde{G}_{k(j)} \geq H_j\};$ 
12:    end if
13:   end while
14:    $\mathcal{S} \leftarrow (\tilde{y}, \tilde{v}, \tilde{x});$ 
15: return ( $\mathcal{S}$ )


---



```

296 3. In this procedure \tilde{y} remains the same.

Pseudocode 6 Addition of new kernels

```

1: procedure OPEN_NEW KERNELS( $\mathcal{S}, \Phi$ )
2:   for ( $k \in K | \tilde{G}_k > 0$ ) do
3:      $CL \leftarrow \{j \in M_k | \tilde{V}_j > 0\};$ 
4:     while ( $\tilde{G}_k > 0$  and  $CL \neq \emptyset$ ) do
5:       compute  $u_j^2(\Phi)$ ,  $PC_j$  and  $\delta_j$  for each  $j \in CL$  according to (28), (30), and (31);
6:       if ( $\sum \delta_j \neq 0$ ) then
7:          $t \leftarrow \arg \max_{j \in CL} \{\delta_j\};$ 
8:          $C_t \leftarrow C_t + PC_t, \tilde{V}_t \leftarrow \tilde{V}_t - u_t^2(\Phi), CI_t \leftarrow CI_t + \beta_{k(t)} PC_t, \tilde{G}_{k(t)} \leftarrow \tilde{G}_{k(t)} - u_t^2(\Phi);$ 
9:         update solution:  $\tilde{v}_t \leftarrow \tilde{v}_t + u_t^2(\Phi), \tilde{x} \leftarrow \text{DEMAND\_ASSIGNMENT}(\mathcal{S}, t);$ 
10:         $CL \leftarrow \{j \in M_k | \tilde{V}_j > 0\};$ 
11:      end if
12:    end while
13:   end for
14:    $\mathcal{S} \leftarrow (\tilde{y}, \tilde{v}, \tilde{x});$ 
15: return ( $\mathcal{S}$ )
16: end procedure


---



```

297 3.2.3 CM: Demand allocation

298 The DEMAND_ALLOCATION() procedure is shown in Pseudo-code 7. This procedure is required
299 to allocate the demand points in a given solution. The procedure is divided into two main stages.
300 In the first stage, demand is allocated to active sites with available capacity of the same institutions
301 (Steps 2–13). Then, if there are still unallocated demand points, they are allocated to any active

Pseudocode 5 Assignment of demand

```

1: procedure DEMAND_ASSIGNMENT( $\mathcal{S}, t$ )
2:   for  $k \in K$  do
3:     if ( $k = k(t)$ ) then
4:        $DPL \leftarrow \{(k, i \in N) | d_{it} < \lambda_{ki}, \tilde{w}_{ki} \leq C_t\};$ 
5:     else
6:        $DPL \leftarrow \{(k, i \in N) | d_{it} < \lambda_{ki}, \tilde{w}_{ki} \leq C_t, \tilde{x}_{k(t)i} = t, \tilde{w}_{ki} \leq CI_t, \tilde{w}_{ki} \leq O_k\};$ 
7:     end if
8:   end for
9:   compute  $\theta_{ki}$  for each  $(k, i) \in DPL$  according to (32);
10:  while ( $DPL \neq \emptyset$ ) do
11:     $(r, l) \leftarrow \arg \max_{(k, i) \in DPL} \{\theta_{ki}\};$ 
12:    update working parameters:  $C_t \leftarrow C_t - \tilde{w}_{rl}, \quad \tilde{w}_{rl} \leftarrow 0, \quad \lambda_{rl} \leftarrow d_{lt};$ 
13:    if ( $r \neq k(t)$ ) then
14:       $CI_t \leftarrow CI_t - w_{rl}, \quad O_r \leftarrow O_r - w_{rl};$ 
15:    end if
16:    update solution as follows:  $\tilde{x}_{rl} \leftarrow t;$ 
17:    update DPL according to Steps 2–8;
18:    compute  $\theta_{ki}$  for each  $(k, i) \in DPL$  according to (32);
19:  end while
20:  return ( $\tilde{x}$ )
21: end procedure

```

302 site, no matter the institution (Steps 14–30). In the first stage, the procedure is repeated for each
 303 institution, demand points with unallocated demand are added to the candidate list CL_1 . Then,
 304 the demand point with the highest demand level is selected to be allocated to the nearest active
 305 site with enough capacity (Step 5). If there are no active sites with enough capacity of the same
 306 institution, the demand point is removed from CL_1 (Step 7), otherwise, the residual capacity and
 307 the solution are updated in Steps 9 and 10, respectively. The steps of the second stage are very
 308 similar, but in this case, demand points with unallocated demand of any institution are considered
 309 in the candidate list (CL_2). The demand point with the highest demand level is selected in Step
 310 17 and then, the nearest active site that satisfies all the requirements is selected (Step 18–22).
 311 In this step, if the demand point and the active site belong to different institutions, additional
 312 requirements must be validated ($\tilde{x}_{k(j)l} = j, \tilde{w}_{rl} \leq CI_j, \tilde{w}_{rl} \leq O_r$). If there are no feasible active
 313 sites, the demand point is removed from CL_2 in Step 24; otherwise, the working parameters and
 314 the solution are updated to allocate this demand point (r, l) to the active site t in Steps 26 and 27,
 315 respectively. Then, the demand point is removed from CL_2 and the process is repeated until CL_2
 316 becomes empty.

Pseudocode 7 Demand allocation

```

1: procedure DEMAND_ALLOCATION( $\mathcal{S}$ )
2:   for ( $k \in K$ ) do
3:      $CL_1 \leftarrow \{i \in N | \tilde{w}_{ki} > 0\}$ ;
4:     while ( $CL_1 \neq \emptyset$ ) do
5:        $t \leftarrow 0$ ;  $l \leftarrow \arg \max_{i \in CL_1} \{\tilde{w}_{ki}\}$ ;  $t \leftarrow \arg \min_{j \in M_k} \{d_{lj} | \tilde{w}_{kl} \leq C_j\}$ ;
6:       if ( $t = 0$ ) then
7:          $CL_1 \leftarrow CL_1 \setminus \{l\}$  ;
8:       else
9:         update working parameters:  $C_t \leftarrow C_t - \tilde{w}_{kl}$ ,  $\tilde{w}_{kl} \leftarrow 0$ ,  $\lambda_{kl} \leftarrow d_{lt}$ ;
10:        update solution:  $\tilde{x}_{kl} \leftarrow t$ ;
11:       end if
12:     end while
13:   end for
14:    $CL_2 \leftarrow$  all pairs  $(k, i)$  from  $i \in N$  and  $k \in K$  such that:  $\tilde{w}_{ki} > 0$ ;
15:   while ( $CL_2 \neq \emptyset$ ) do
16:      $t \leftarrow 0$ ;
17:      $(r, l) \leftarrow \arg \max_{(k, i) \in CL_2} \{\tilde{w}_{ki}\}$ ;
18:     if ( $r = k(j)$ ) then
19:        $t \leftarrow \arg \min_{j \in M} \{d_{lj} | \tilde{w}_{rl} \leq C_j\}$ ;
20:     else
21:        $t \leftarrow \arg \min_{j \in M} \{d_{lj} | \tilde{w}_{rl} \leq C_j, \tilde{x}_{k(j)l} = j, \tilde{w}_{rl} \leq CI_j, \tilde{w}_{rl} \leq O_r\}$ ;
22:     end if
23:     if ( $t = 0$ ) then
24:        $CL_2 \leftarrow CL_2 \setminus \{(r, l)\}$  ;
25:     else
26:       update working parameters:  $C_t \leftarrow C_t - \tilde{w}_{rl}$ ,  $\tilde{w}_{rl} \leftarrow 0$ ,
27:       if ( $r \neq k(t)$ ) then
28:          $CI_t \leftarrow CI_t - w_{rl}$ ,  $O_r \leftarrow O_r - w_{rl}$ ;
29:       end if
30:       update solution:  $\tilde{x}_{rl} \leftarrow j$ ;
31:        $CL_2 \leftarrow CL_2 \setminus \{(r, l)\}$  ;
32:     end if
33:   end while
34:   return ( $\tilde{x}$ )
35: end procedure

```

317 **3.2.4 CM: Force the opening of new sites**

318 In some partial solutions, for a given institution k , there is a special case when no more UCS can
 319 be selected. This special case occurs when all UCS require a greater number of kernels than the
 320 ones that are available in the institution ($\tilde{G}_k > H_j$). In this case, it is required to unassign kernels
 321 from some active sites and assign them to an UCS. This additional step is not required when CM
 322 is applied for the first time because the method prioritizes assigning kernels to CSs instead HCUs.
 323 However, when CM is applied over partial solutions that were randomly modified, this additional

324 step may be sometimes needed. The procedure KERNELS_TRANSFER() is shown in Pseudo-code
 325 8. For each institution such that $\tilde{P}_k > 0$, the candidate list CL_1 with UCSSs is created (Step 4). In
 326 Step 6, the number of kernels to be transferred ($u_j^3(\Phi)$) and PC_j , and δ_j are computed. If there is
 327 no benefit ($\sum \delta_j = 0$), another institution is selected to repeat the process. In the other case, the
 328 element with the highest benefit is selected (j_1) in Step 10. A second candidate list CL_2 is created
 329 to identify active sites such that some kernels could be released according to the criteria of Step 11.
 330 If CL_2 is empty, j_1 is removed from CL_1 and another element is chosen. Otherwise, the nearest
 331 element of CL_2 to j_1 is selected. The working parameters are updated in Step 17 and the solution
 332 is updated in Step 18. The sites with modified capacity (j_1 and j_2) are joined to a candidate list
 333 CL_3 in step 19. In Step 20, there is a subroutine that is required to deallocate demand of all the
 334 active sites that are near to j_1 and j_2 . This subroutine is explained in the following paragraph.
 335 Then, the procedure shown in Pseudo-code 7 is called to allocate all the demand to complete a new
 336 feasible solution. All this process is repeated until $\sum_{k \in K} \tilde{P}_k = 0$ or there is no possibility to select
 337 more candidate sites.

Pseudocode 8 Kernels transfer

```

1: procedure KERNELS_TRANSFER( $\mathcal{S}, D_1$ )
2:   select solution  $\mathcal{S}$ ;
3:   for (  $k \in K | \tilde{P}_k > 0$  ) do
4:      $CL_1 \leftarrow \{j \in M_{B_k} | \tilde{y}_j = 0\}$ ;
5:     while ( $\tilde{P}_k > 0$  and  $CL_1 \neq \emptyset$ ) do
6:       compute  $u_j^3(\Phi)$ ,  $PC_j$  and  $\delta_j$  for each  $j \in CL_1$  according to (29), (30) and (31);
7:       if (  $\sum \delta_j = 0$  ) then
8:         break while;
9:       end if
10:       $j_1 \leftarrow \arg \max_{j \in CL_1} \{\delta_j\}$ ;
11:       $CL_2 \leftarrow \{j \in M_k | \tilde{v}_j \geq u_{j_1}^3, \text{ if } (j \in M_{B_k}) \text{ then } (\tilde{y}_j = 1, \tilde{v}_j - H_j \geq u_{j_1}^3)\}$ ;
12:      if ( $CL_2 = \emptyset$ ) then
13:         $CL_1 \leftarrow CL_1 \setminus \{j_1\}$  ;
14:        go to Step 10;
15:      end if
16:       $j_2 \leftarrow \arg \min_{j \in CL_2} \{d_{j_1 j_2}\}$ ;
17:      update working parameters:  $\tilde{V}_{j_1} \leftarrow \tilde{V}_{j_1} - u_{j_1}^3$ ,  $\tilde{P}_k \leftarrow \tilde{P}_k - 1$ ,  $\tilde{V}_{j_2} \leftarrow \tilde{V}_{j_2} + u_{j_1}^3$ ;
18:      update solution:  $\tilde{v}_{j_1} \leftarrow \tilde{v}_{j_1} + u_{j_1}^3$ ,  $\tilde{y}_{j_1} \leftarrow 1$ ,  $\tilde{v}_{j_2} \leftarrow \tilde{v}_{j_2} - u_{j_1}^3$ ;
19:       $CL_3 \leftarrow \{j_1, j_2\}$ ;
20:       $\tilde{x} \leftarrow \text{DEMAND\_DEALLOCATION}(\mathcal{S}, CL_3, D_1)$ ;
21:       $\tilde{x} \leftarrow \text{DEMAND\_ALLOCATION}(\mathcal{S})$ ;
22:       $CL_1 \leftarrow CL_1 \setminus \{j_1\}$  ;
23:    end while
24:  end for
25:   $\mathcal{S} \leftarrow (\tilde{y}, \tilde{v}, \tilde{x})$ ;
26: return ( $\mathcal{S}$ )
27: end procedure

```

338 **Demand deallocation**

339 Procedure DEMAND_DEALLOCATION() show in Pseudo-code 9 is required every time kernels
340 are unassigned from active sites. The objective is to deallocate all demand points from active sites
341 of CL_1 , but also of other active sites that are nearby at a maximum distance D_1 . In this case, D_1
342 is used to just modify the allocation decisions over an influence area instead deallocating the entire
343 problem. This procedure is used as a step in Pseudo-code 8, in the deconstruction strategies, and
344 in the local search procedures. In Step 2, all the involved active sites are stored in CL_2 . For each j
345 of CL_2 , all demand point (k, i) such that $\tilde{x}_{ki} = j$ are deallocated, updating the associated working
346 parameters in Steps 6 and 9, and the solution in Step 7. Then, the decision variable \tilde{x} is returned.

Pseudocode 9 Deallocation of demand

```
1: procedure DEMAND_DEALLOCATION( $\mathcal{S}$ ,  $CL_1$ ,  $D_1$ )
2:    $CL_2 \leftarrow \{j \in M \mid d_{jt} \leq D_1 \text{ for some } t \in CL_1\}$ 
3:   for  $(j \in CL_2)$  do
4:      $DPL \leftarrow \{(k, i) \mid k \in K, i \in N, \tilde{x}_{ki} = j\};$ 
5:     for  $((k, i) \in DPL)$  do
6:       update working parameters:
          $\tilde{w}_{ki} \leftarrow w_{ki},$ 
         if  $(k \neq k(j))$  then
            $O_k \leftarrow O_k + w_{ki};$ 
         end if
7:       update solution as follows:  $\tilde{x}_{ki} \leftarrow \infty;$ 
8:     end for
9:     update working parameters:  $C_j \leftarrow KC(\tilde{v}_j)$ ,  $CI_j \leftarrow \beta_{k(j)}C_j;$ 
10:    end for
11:   return  $(\tilde{x})$ 
12: end procedure
```

347 **3.3 Deconstruction phase**

348 Two deconstruction strategies are proposed for this problem: DS1 and DS2. The procedures and
349 pseudo-codes are described in the following subsections.

350 **3.3.1 Deconstruction strategy 1 (DS1)**

351 In this first procedure, a random subset of SCSs is deselected in the solution and all the demand
352 points in the influence area of these sites are deallocated. The first parameter to define is the
353 number of sites to deselect in the solution according to ρ . The ceil of the multiplication between
354 ρ and the total number of selected sites is used as a deconstruction parameter as is shown in the
355 following equation:

$$n_1 = \lceil \sum_{j \in M_B} \tilde{y}_j \rho \rceil \quad (16)$$

356 The procedure is shown in Pseudo-code 10. The number of SCS to deselect is calculated with
 357 Equation 16. In Step 3, all candidate sites such that $\tilde{y}_j = 1$ are stored in CL_1 . A random subset
 358 of n_1 elements is chosen in Step 4. Then, the associated working parameters are updated in Step 5
 359 and the solution in Step 6. The subroutine DEMAND_DEALLOCATION() shown in Pseudo-code
 360 9 is called for deallocating all the involved demand points. Finally, the initial solution has been
 361 partially destroyed and is returned as output.

Pseudocode 10 Deconstruction based on new sites

```

1: procedure DS1( $\mathcal{S}, \rho, D_2$ )
2:   compute  $n_1$  according to (16) and  $\rho$ ;
3:    $CL_1 \leftarrow \{j \in M_B | \tilde{y}_j = 1\}$ ;
4:    $CL_2 \leftarrow \text{random}(CL_1, n_1)$ ;
5:   for all  $j \in CL_2$  update working parameters:  $\tilde{G}_{k(j)} \leftarrow \tilde{G}_{k(j)} + \tilde{v}_j$ ,  $\tilde{P}_{k(j)} \leftarrow \tilde{P}_{k(j)} + 1$ ,  $\tilde{V}_j \leftarrow V_j$ ;
6:   for all  $j \in CL_2$  update the solution as follows:  $\tilde{y}_j \leftarrow 0$ ,  $\tilde{v}_j \leftarrow 0$ ;
7:    $\tilde{x} \leftarrow \text{DEMAND\_DEALLOCATION}(\mathcal{S}, CL_2, D_2)$ ;
8:    $\mathcal{S} \leftarrow (\tilde{y}, \tilde{v}, \tilde{x})$ ;
9: return ( $\mathcal{S}$ )
10: end procedure

```

362 **3.3.2 Deconstruction strategy 2 (DS2)**

363 In the second deconstruction strategy, for a given number of active sites, kernels are unassigned,
 364 and the related demand is also deallocated. For each $j \in M$, an auxiliary binary parameter (η_j) is
 365 used to determine if this site has assigned kernels. The equation is the following:

$$\eta_j = \begin{cases} 1 & \text{if } \tilde{v}_j > 0 \\ 0 & \text{otherwise} \end{cases} \quad (17)$$

366 The following equation determines the number of sites to unassing kernels:

$$n_2 = \lceil \sum_{j \in M} \eta_j \rho \rceil \quad (18)$$

367 The procedure of DS2 is shown in Pseudo-code 11. The number of active sites to remove kernels
 368 is computed in Step 2 and the list is stored in CL_1 in Step 3. A random subset of these elements is
 369 chosen in Step 4. For each element of CL_2 , the working parameters associated with the capacity and
 370 the solution are updated (Steps 5–9), if some of them belong to M_B , there is a minimum number
 371 of kernels (H_j) that can not be removed to satisfy constraints (9). DEMAND_DEALLOCATION
 372 is called in Step 10 to deallocating demand of the involved sites, and the solution is returned.

Pseudocode 11 Deconstruction based on new kernels

```
1: procedure DS2( $\mathcal{S}$ ,  $\rho$ ,  $D_2$ )
2:   compute  $n_2$  according to (18) and  $\rho$ ;
3:    $CL_1 \leftarrow \{j \in M | \tilde{v}_j > 0\}$ ;
4:    $CL_2 \leftarrow \text{random}(CL_1, n_2)$ ;
5:   for ( $j \in CL_2$ ) do
6:     compute  $u$  as follows: if ( $j \in M_B$ ) then ( $u \leftarrow \tilde{v}_j - H_{j,j}$ ) else ( $u \leftarrow \tilde{v}_j$ );
7:     update working parameters:  $\tilde{V}_j \leftarrow \tilde{V}_j + u$ ,  $\tilde{G}_{k(j)} \leftarrow \tilde{G}_{k(j)} + u$ ;
8:     update solution as follows:  $\tilde{v}_j \leftarrow \tilde{v}_j - u$ ;
9:   end for
10:   $\tilde{x} \leftarrow \text{DEMAND\_DEALLOCATION}(\mathcal{S}, CL_2, D_2)$ ;
11:   $\mathcal{S} \leftarrow (\tilde{y}, \tilde{v}, \tilde{x})$ ;
12: return ( $\mathcal{S}$ )
13: end procedure
```

373 **3.4 Local search methods**

374 Two neighborhoods are proposed for this problem. Each can be used as a stand-alone strategy, or
375 within a VND scheme as described below.

376 **Neighborhood 1**

377 The move $m_1(j_1, j_2)$ is defined as transferring all the kernels of a candidate site $j_1 \in M_{B_k}$ such
378 that $\tilde{y}_{j_1} = 1$ to another candidate site $j_2 \in M_{B_k}$ such that $\tilde{y}_{j_2} = 0$, $\tilde{v}_{j_1} \geq H_{j_2}$, and $\tilde{v}_{j_1} \leq V_{j_2}$.
379 The neighborhood is the set of neighbors reachable from the solution \mathcal{S} by performing all possible
380 moves $m_1(j_1, j_2)$ for all $j_1 \in M_{B_k}$ such that $\tilde{y}_{j_1} = 1$. We propose for large instances to bound the
381 neighborhood by considering only the R nearest sites from j_1 .

382 **Neighborhood 2**

383 The move $m_2(j_1, j_2)$ is defined as transferring the largest amount of kernels from a HCU $j_1 \in M_A$
384 such that $\tilde{v}_{j_1} > 0$ to another HCU $j_2 \in M_{A_{k(j_1)}}$ such that $\tilde{V}_{j_2} > 0$. The neighborhood is the set of
385 neighbors reachable from the solution \mathcal{S} by performing all possible moves $m_2(j_1, j_2)$ for all $j_1 \in M_A$
386 such that $\tilde{v}_{j_1} > 0$. We also propose for large instances to bound the neighborhood by considering
387 only the R nearest sites from j_1 .

388 **Local search 1**

389 The LS1 procedure is shown in Pseudo-code 13 in the Appendix. In this procedure, SCSs are
390 considered to be unassigned from the solution. For each $j \in M_B | \tilde{y}_j = 1$, a list of UCS sites is
391 created (CL_2). This list is composed of the R nearest sites to j_1 of the same institution. Then,
392 the kernels are transferred to this site, and the allocation of demand must be adjusted. To this

393 end, the DEMAND DEALLOCATION() and DEMAND ALLOCATION() procedures are called
394 to solve again the allocation subproblem for the involved demand points. These steps generate a
395 feasible solution that is compared with the best solution found so far. If the objective value of
396 the current solution is better, the best solution is updated; else, the new solution is discarded and
397 another element of CL_2 is evaluated. If any site of CL_2 produces a better solution, the element j_1
398 of CL_1 is removed and another one is evaluated. The procedure ends, when all the elements of CL_1
399 were evaluated and there are no more interchanges that produce an improvement in the objective
400 function. There is also a time limit that can be used if the local optima consume a significant
401 amount of computing time.

402 Local search 2

403 The complete procedure for LS2 is shown in Pseudo-code 14 in the Appendix. In this local search,
404 only HCUs are considered for transferring kernels to other HCUs of the same institution. In
405 preliminary experiments, we found that including candidate sites does not generate a significant
406 improvement. The steps are very similar to LS1 with slight differences. A first list CL_1 composed
407 of all the HCUs with assigned kernels is created. Then, one element of this list is selected (j_1). A
408 second list (CL_2) of the R nearest HCUs to j_1 of the same institution is created. Then, the kernels
409 are transferred and all the involved demand in the area is deallocated and the allocation procedure
410 is called to complete a feasible solution. If the interchange produces a better solution, the best
411 solution is updated. The procedure ends when neither interchange produces an improvement or
412 when a computing time limit is reached.

413 Variable Neighborhood Descent

414 In the IG, the LS procedure is typically applied at each iteration. Though, a most robust method
415 such as a VND can be applied. The VND is a strategy of the variable neighborhood search procedure
416 where the local searches are performed in a systematic way. Different neighborhoods are explored
417 sequentially. Typically, one explores first the least expensive to evaluate and so on. The process
418 iterates over each neighborhood while improvements are found, applying the local search until
419 meeting a local optima at each neighborhood. Then, the final solution is a local optima of all the
420 explored neighborhoods. However, we are dealing with large instances, and finding a local optimal
421 may consume a lot of resources. Therefore, a time limit is defined at each local search procedure
422 to reduce the computing time leaving off to find the local optima in some cases. Pseudocode 12
423 shows the VND procedure.

Pseudocode 12 Variable Neighborhood Descent

```

procedure VND( $\mathcal{S}$ )
   $\mathcal{S}^* \leftarrow \mathcal{S}$ 
   $t \leftarrow 1$ ;
  while ( $t \leq t^{\max}$ ) do
     $\mathcal{S} \leftarrow \text{LS\_t}(R, \text{time\_limit})$ ;
    if ( $Z(\mathcal{S}) < Z(\mathcal{S}^*)$ ) then
       $\mathcal{S}^* \leftarrow \mathcal{S}$ ;
       $t \leftarrow 1$ ;
    else
       $t \leftarrow t + 1$ ;
    end if
  end while
  return ( $\mathcal{S}^*$ )
end procedure

```

424 **3.5 Optimization of the allocation subproblem (ALLOP)**

425 Note that when fixing the capacity decision variables as $y_j = \tilde{y}_j \forall j \in M_B$ and $v_j = \tilde{v}_j \forall j \in M$, we
 426 are left with an allocation subproblem (ALLOP) that is easier to solve because it is considerably
 427 smaller. Not only many integer variables are eliminated from this model but many constraints
 428 become redundant as well. For instance, Constraints (7)-(12), (14), and (15) of MIFLUP are not
 429 considered in this subproblem because they are already satisfied. The resulting linear binary model
 430 has a single decision variable type x_{kij} . In this subproblem, the right-hand side of constraints (22)
 431 and (23) is constant. The set M is also reduced to the subset $M^* = \{j \in M | a_j + \tilde{v}_j > 0\}$.

432 We suggest solving this problem with an exact method as a final step of a heuristic solution
 433 of MIFLUP. The solution to this subproblem will optimize the allocation of demand to HCUs.
 434 Furthermore, since we have an entirely feasible solution from MIFLUP, the heuristic values \tilde{x}_{kij}
 435 can be provided as input to an exact method.

436 The proposed ALLOP subproblem is given by:

$$\text{Minimize} \quad f(x) = \sum_{i \in N} \sum_{j \in M^*} \sum_{k \in K} w_{ki} d_{ij} x_{kij} \quad (19)$$

$$\text{subject to:} \quad \sum_{j \in M^*} x_{kij} = 1 \quad k \in K, i \in N \quad (20)$$

$$\sum_{r \in K: r \neq k(j)} x_{rij} \leq (|K| - 1)x_{kij} \quad k \in K, i \in N, j \in M_k^* \quad (21)$$

$$\sum_{i \in N} \sum_{k \in K} w_{ki} x_{kij} \leq KC(a_j + \tilde{v}_j) \quad j \in M^* \quad (22)$$

$$\sum_{i \in N} \sum_{r \in K: r \neq k(j)} w_{ri} x_{rij} \leq KC(a_j + \tilde{v}_j) \beta_{k(j)} \quad j \in M^* \quad (23)$$

$$\sum_{i \in N} \sum_{j \in M_k^*} w_{ki} x_{kij} \geq \gamma_k \sum_{i \in N} \sum_{k \in K} w_{ki} \quad k \in K \quad (24)$$

$$x_{kij} \in \{0, 1\} \quad k \in K, i \in N, j \in M^* \quad (25)$$

4 Empirical assessment

The proposed metaheuristic was evaluated using the data sets provided by Mendoza-Gómez and Ríos-Mercado [24]. This data is based on a case study applied in the State of Mexico, Mexico. This state is composed of 125 counties that are grouped into 19 jurisdictions as shown in Figure 4. Four health care institutions are evaluated, SSA and IMSS-Bienestar (I1) were considered as a single institution for the uninsured population, IMSS (I2) for private sector workers, ISSSTE (I3) for federal workers, and ISSEMyM (I4) for state-level workers. Table 2 shows a summary of the number of demand points, HCUs, and candidate sites by jurisdiction. There are in total more than eight thousand demand points and a little over a thousand and four hundred HCUs in the state. Candidate sites were selected in places where there are no HCUs and with a minimum population size of over five hundred inhabitants. The distribution of demand points, HCUs, and candidate sites can be seen in Figure 5. I1 has the higher number of HCUs in the state with 1200 HCUs, I2 and I4 are nearly one hundred HCUs, and I3 has only 37 HCUs. In Table 3, the actual capacity is compared with the demand assuming that a basic kernel can serve up to 3,000 inhabitants. As can be seen in the actual demand covered, the first three institutions have lower capacity than demand and I4 has 165% of additional capacity regarding the demand to be covered. In the problem, new basic kernels can be added to the system to increase the system's capacity and reduce the total travel distance. In the experiments, new kernels can be added to each institution by jurisdiction to allocate all demand points and to avoid infeasible solutions. In the table, we show the additional basic kernels that we are suggesting to open for each institution. This additional capacity allows to have enough capacity for institution to cover internal demand as it can be seen in the last row. However, inter-institutional allocation can help to improve the access in regions where there is not enough capacity for a given institution.

The proposed solution methods are tested in 18 instances created by grouping adjacent jurisdictions. The main characteristics of these instances are shown in Table 4. The range of demand points (DP) is between 547 to 2,940, the HCUs range is between 71 to 565, and the candidate sites range is between 103 to 461. For the results of the following subsections, we use the average values of this instance set.

All procedures were coded in C++ and compiled with Visual Studio 2019, and run on a PC with 2.30 GHz Intel Core i7-4712HQ processor, and 16GB of RAM. A C++ application with Concert Technology of ILOG CPLEX 20.1.0 was used to call the B&B algorithm.

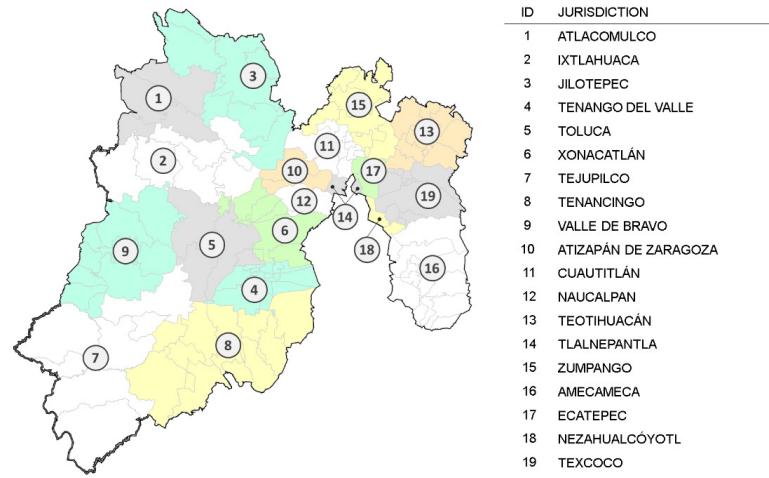


Figure 4: Identification of jurisdiction in the State of Mexico.

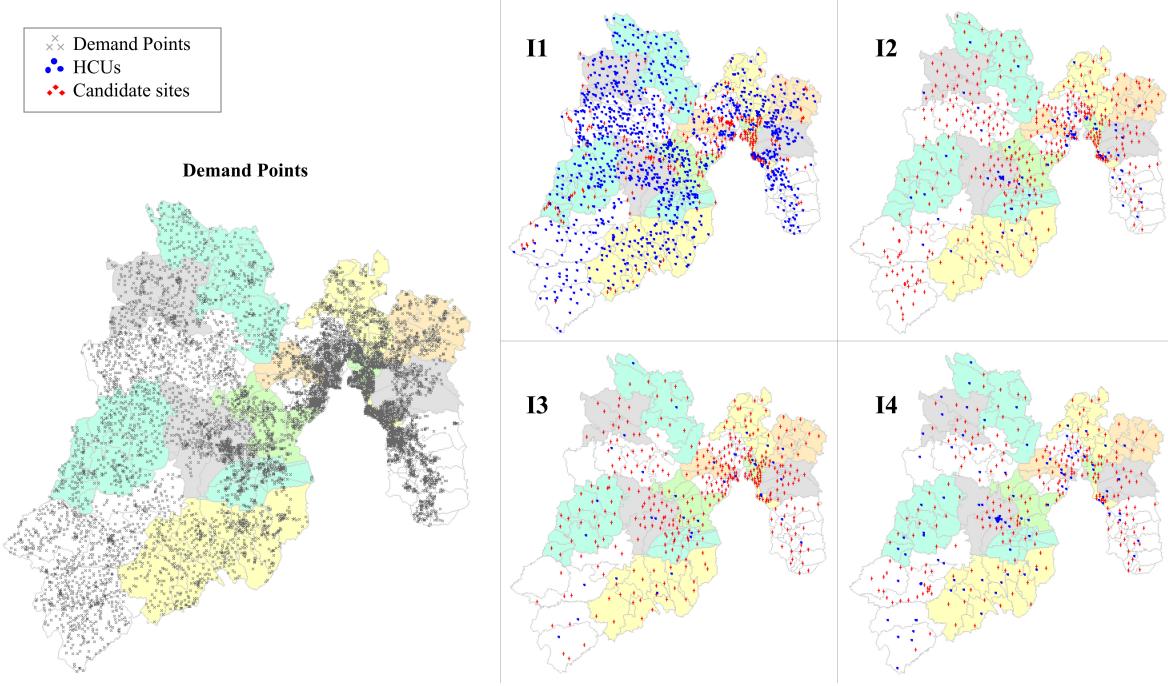


Figure 5: Location of demand points, HCUs, and candidates sites in the State of Mexico.

468 4.1 Fine-tuning of constructive method

469 The goal of this experiment is to fine tune the algorithmic parameters for the constructive method.
 470 All instances were tested with the constructive method evaluating the three strategies $\Phi = \text{(i), (ii),}$
 471 and (iii), and different distance bounds $D_1 = 5, 10, 15, 20,$ and 30 kilometers that represents the
 472 influence area for sites whose capacity is modified. The solution was initialized with $D_0 = 15$
 473 kilometers. Figure 6 shows the performance of the constructive method comparing the objective

Table 2: Instances size by jurisdiction.

Jurisdiction	Demand Points	HCUs					Candidate Sites				
		I1	I2	I3	I4	Total	I1	I2	I3	I4	Total
1	327	80	2	1	5	88	11	23	13	10	57
2	523	157	2	2	5	166	23	37	21	16	97
3	331	76	2	2	5	85	4	23	13	10	50
4	269	50	3	2	2	57	5	16	19	8	48
5	466	88	9	2	17	116	29	19	29	14	91
6	395	81	4	3	4	92	20	28	16	12	76
7	802	74	2	3	12	91	8	43	14	26	91
8	584	97	5	3	10	115	11	23	26	18	78
9	424	82	3	2	7	94	22	17	25	13	77
10	272	30	3	1	5	39	11	16	19	8	54
11	574	38	6	2	5	51	33	31	23	17	104
12	275	24	5	1	2	32	13	11	17	8	49
13	341	46	1	2	1	50	7	22	14	10	53
14	205	22	8	1	1	32	12	8	14	6	40
15	418	50	2	2	3	57	6	20	20	13	59
16	789	78	10	2	5	95	7	17	26	24	74
17	468	33	9	3	3	48	33	19	28	14	94
18	265	30	5	2	3	40	19	16	11	8	54
19	425	64	6	1	2	73	9	17	23	13	62
Total	8,153	1,200	87	37	97	1,421	283	406	371	248	1,308

Table 3: Actual and potential capacity in the system.

	I1	I2	I2	I4	Total
Demand (x1000)	9,652	4,467	717	306	15,143
Actual basic kernels	2,448	1,194	170	270	4,082
Potential basic kernels	1,130	438	136	3	1,707
Actual demand covered (%)	76	80	71	265	81
Potential demand covered (%)	111	110	128	268	115

Table 4: Instances size by jurisdiction.

n	Jurisdictions	DP	HCU					Candidate Sites				
			I1	I2	I3	I4	Total	I1	I2	I3	I4	Total
1	1,2	850	237	4	3	10	254	34	60	34	26	154
2	3,11	905	114	8	4	10	136	37	54	36	27	154
3	4,8	853	147	8	5	12	172	16	39	45	26	126
4	5,6	861	169	13	5	21	208	49	47	45	26	167
5	7,9	1,226	156	5	5	19	185	30	60	39	39	168
6	10,12	547	54	8	2	7	71	24	27	36	16	103
7	14,17	673	55	17	4	4	80	45	27	42	20	134
8	13,15	759	96	3	4	4	107	13	42	34	23	112
9	16,18,19	1,479	172	21	5	10	208	35	50	60	45	190
10	1,2,3	1,181	313	6	5	15	339	38	83	47	36	204
11	7,8	1,386	171	7	6	22	206	19	66	40	44	169
12	4,5,9	1,159	220	15	6	26	267	56	52	73	35	216
13	6,10,12	942	135	12	5	11	163	44	55	52	28	179
14	11,14,15,17	1,665	143	25	8	12	188	84	78	85	50	297
15	13,16,18,19	1,820	218	22	7	11	258	42	72	74	55	243
16	1,2,3,10,11,12	2,302	405	20	9	27	461	95	141	106	69	411
17	4,...,9	2,940	472	26	15	52	565	95	146	129	91	461
18	13,...,19	2,911	323	41	13	18	395	93	119	136	88	436

474 function value and the computing time for each set of instances combining different values of Φ
475 and D_1 . In the left-hand side plot, we can observe that the best performance was obtained with
476 a distance bound of $D_1 = 15$ kilometers. The best objective values and the shortest interquartile
477 ranges were obtained with this bound. Although strategy $\Phi =$ (iii) produced the lowest objective

478 values, the difference is not significant. The computing time increases as D_1 increases, as it is
 479 observed in the right-hand side plot. For $D_1 = 15$ km, the computing time varies between 0.2 and
 480 3.8 seconds showing a very small difference in favor with $\Phi = (i)$ with an average time of 1.003
 481 seconds. Therefore, for the following experiments $\Phi = (i)$ and $D_1 = 15$ km are used.

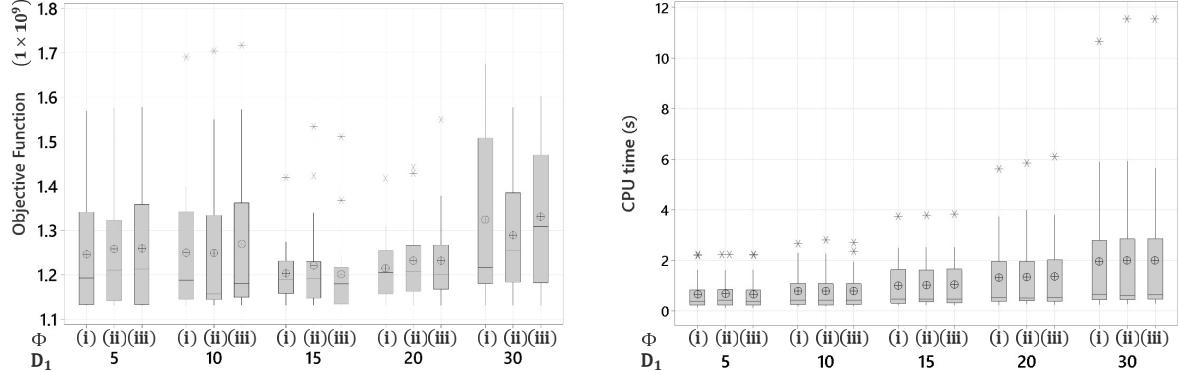


Figure 6: Result of the constructive method.

482 4.2 Iterated Greedy Algorithm with Deconstruction Strategies

483 The objective of these experiments is to fine-tune the percentage of deconstruction, the number of
 484 iterations for the IG, and the algorithmic parameter D_2 for the deconstruction procedures. To this
 485 end, the deconstruction strategies DS1 and DS2 were evaluated with the proposed methods H1 and
 486 H2 in Table 1. The ρ values were 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The number
 487 of iterations was fixed to 100 and the values of D_2 for deconstruction procedure were 2.5, 5, 7.5, and
 488 10 km. Table 5 shows the average relative improvements of the tested instances with respect to the
 489 initial solution found by the constructive method with $\Phi = (i)$, $D_0 = 15$ km, and $D_1 = 15$ km. As
 490 can be seen, the best results are found with $\rho = 0.2$ and $D_2 = 2.5$ km with an average improvement
 491 of 6.9% and 14.3% using the methods H1 and H2, respectively. The best results were found with
 492 the method H2. This can be attributed to the fact that H2 modifies the kernel assignment of HCUs
 493 and selected candidate sites, while the method H1 only takes into account candidate sites. Figure
 494 7 shows a boxplot of the iterations required to find the best solution for H1 and H2 for each value
 495 of ρ . For $\rho = 0.20$, the maximum number of iterations was lower than 40 and 20 for H1 and H2,
 496 respectively. Therefore, in the following experiment, we consider that 50 iterations of the IG are
 497 enough to get good results for the tested instances.

498 4.3 Local Search

499 In these experiments, the two neighborhoods are evaluated within a simple local search algorithm.
 500 For both heuristics, the fine-tuned algorithmic parameters are R , $time_limit$, and D_1 . For the

Table 5: Assessment of H1 and H2 in terms of relative improvement.

Method	D_2	ρ											
		0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	Global
H1 IG{DS1, CM, -}	2.5	4.5	5.6	6.9	6.1	5.5	5.2	4.9	4.4	3.7	2.7	1.6	4.6
	5.0	4.0	4.8	6.2	5.1	4.5	4.7	3.4	2.7	2.3	1.7	1.3	3.7
	7.5	4.5	5.5	6.0	4.8	5.1	3.8	3.3	2.8	2.4	1.6	1.5	3.7
	10.0	4.8	5.7	6.3	5.6	4.7	4.4	3.6	2.8	2.5	1.8	1.2	3.9
	Global	4.4	5.4	6.3	5.4	5.0	4.5	3.8	3.2	2.7	1.9	1.4	4.0
H2 IG{DS2, CM, -}	2.5	14.0	13.8	14.3	11.4	11.1	9.4	8.2	6.5	5.5	3.2	1.7	9.0
	5.0	13.2	13.3	11.2	8.9	7.2	6.6	4.9	3.9	3.2	2.9	2.3	7.1
	7.5	13.0	10.6	8.4	7.1	5.4	4.9	3.9	3.8	3.2	2.6	2.3	5.9
	10.0	11.7	10.2	8.5	5.4	5.1	4.1	3.5	3.0	3.4	2.5	2.5	5.4
	Global	7.5	8.4	10.4	6.1	4.7	4.6	5.5	3.2	2.3	3.7	1.5	5.4
		13.0	12.0	10.6	8.2	7.2	6.3	5.1	4.3	3.8	2.8	2.2	6.9

Table 6: Assessment of H1 and H2 in terms of running time (CPU seconds).

Method	D_2	ρ											
		0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	Global
H1 IG{DS1, CM, -}	2.5	24	27	32	35	39	42	45	49	53	55	60	42
	5.0	27	32	38	42	47	51	55	59	62	65	70	50
	7.5	30	35	41	46	52	56	59	63	67	70	74	54
	10.0	33	37	44	48	53	59	61	64	69	72	76	56
	Global	29	33	39	43	48	52	55	59	63	66	70	50
H2 IG{DS2, CM, -}	2.5	26	28	32	35	37	39	40	42	43	43	43	37
	5.0	29	33	37	39	41	43	44	45	45	46	46	41
	7.5	32	36	40	42	43	45	45	46	46	46	47	42
	10.0	34	38	41	44	45	46	47	49	50	51	52	45
	Global	30	34	37	40	41	43	44	45	46	47	47	41

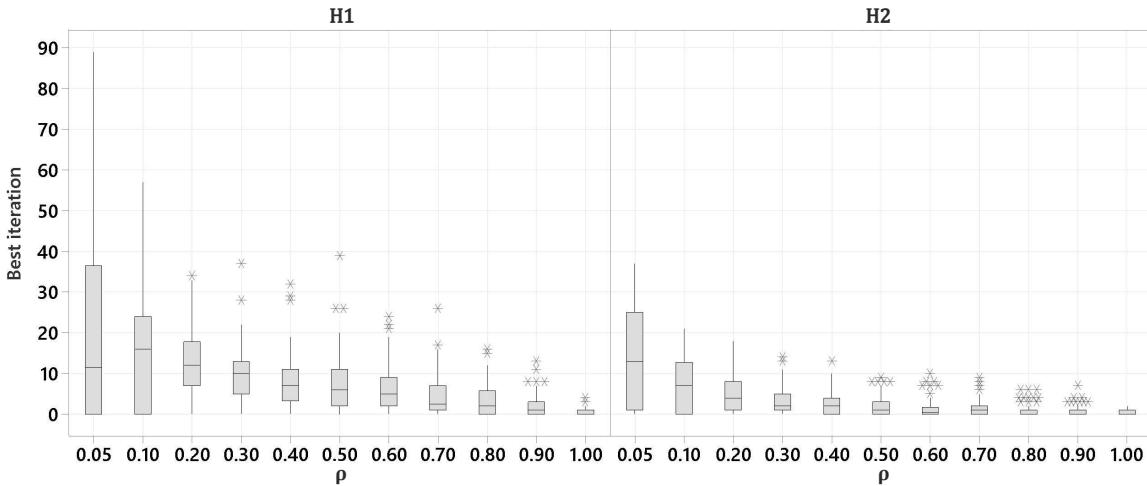


Figure 7: Assessment of H1 and H2 in terms of number of iterations required to find best solution.

first parameter, values of 1, 3, 5, and 10 sites were considered. Two contrasting time limits were evaluated: 60 seconds and 1 hour. The first time limit is proposed thinking about the algorithm being implemented in the iterative process, and the second time limit is proposed to evaluate the potential of the local search as a simple solution method. In these experiments, the initial solution

505 was obtained with CM with $\Phi = (i)$, $D_0 = 15$ km, and $D_1 = 15$ km. Table 7 shows the average
 506 percentage of improvement and the average computing time for each value of R and each time limit.
 507 In all the cases, LS2 has better performance in the solution improvement and computing time. For
 508 LS1 the cost related to the computing time is very high since 1.70% of additional improvement is
 509 reached when the time limit is changed from 60 seconds to 1 hour, with a difference in the average
 510 computing time of 472 seconds. In the case of LS2, the additional improvement is about 2.1%,
 511 but the average time changed from 17 seconds to only 119 seconds, despite the time limit being
 512 set to 3,600 seconds. This means that local optima were found in most of the cases. The best
 513 improvement for LS1 was found with $R = 5$ for a time limit of 60 seconds, and $R = 10$ for a time
 514 limit of one hour. For LS2, the best results were found with $R = 10$ in both cases. In the following
 515 experiment for LS1 and LS2, we fixed the input parameters to $R = 5$ and $R = 10$, respectively.

Table 7: Assessment of local search.

Time limit		Average improvement (%)				Average CPU time (s)			
		R				R			
		1	3	5	10	1	3	5	10
LS1	60 s	1.9	4.1	4.2	4.0	14	36	43	46
	1 h	1.9	5.0	6.3	7.7	43	281	718	994
LS2	60 s	2.0	4.6	5.2	7.9	3	17	20	28
	1 h	2.0	4.7	7.6	13.6	3	22	65	389

516 4.4 Assessment of the Iterated Greedy Algorithm

517 In this experiments, the propose heuristic methods shown in Table 1 are applied to the instance
 518 set with the fine-tuned parameters of previous experiment. For the ALLOP optimization, a MIP
 519 start strategy is used, this means that the heuristic solution of variables \tilde{x}_{ki} is used as the initial
 520 solution of x_{kij} for the optimization, reducing the computing time. All the experiments were run
 521 with 50 iterations and a computing time limit of one-hour for the IG and one hour for the solution
 522 of ALLOP (using CPLEX). The solution's performance comparing the average improvement (%)
 523 (taking as reference constructive method solution with $\Phi = (i)$, $D_0 = 15$ km, and $D_1 = 15$ km)
 524 and the average computing times are shown in Figure 8 for each method. Better results are found
 525 when DS1 and DS2 are applied in that order into the IG with an average improvement of 14.3%.
 526 The best performance when the local search is integrated in the IG is found using the VND12 with
 527 an average improvement of 24.3% requiring 3,024 seconds on average. The allocation optimization
 528 was applied to these two last methods in H9 and H10. Similar results were found using VND12
 529 and VND12; with an average improvement of 43.2% and 5,834 seconds on average for H9, and an
 530 average improvement of 42.9% in 5,835 seconds on average for H10.

531 To evaluate the algorithmic components, some experiments were carried out to show the contri-
 532 bution of each component in metaheuristic H9 which offers the best improvement. Table 8 shows
 533 the objective function values of different heuristic methods present in H9. The most basic heuristic

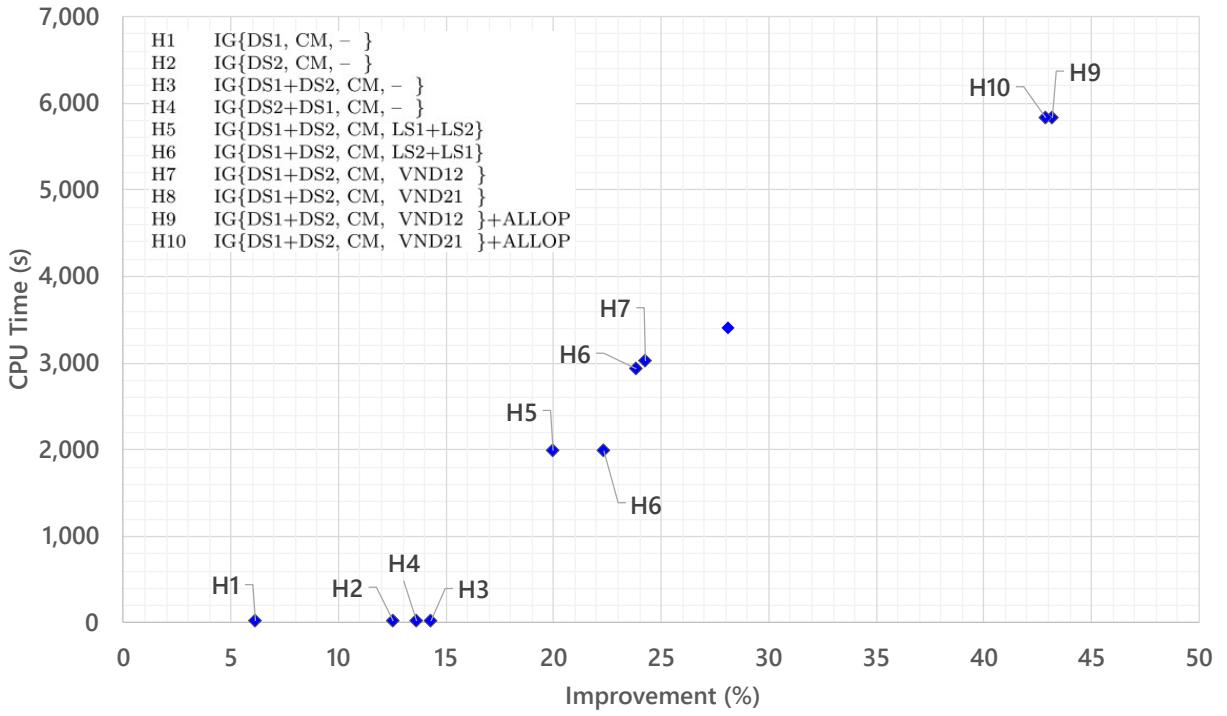


Figure 8: Average results applying different strategies.

534 is the CM in column 2, in H2, the CM was embedded in the IG, H7 includes the VND in the IG,
 535 and H9 represents the final metaheuristic that includes the ALLOP optimization. The IG reduces
 536 the solution of CM by 24.3% on average. The addition of VND12 decreases on average 12.0% the
 537 solutions obtained with the IG. The ALLOP optimization reduces 23.9% on average the solutions
 538 of the heuristic H7. In general, the most complex heuristic (H9) decreases by 43.2% on average
 539 the objective function values from the simple constructive method. The Friedman test, a non-
 540 parametric statistical test to identify differences in treatments across multiple test attempts, was
 541 applied to these experiment. The results fo this test showed that there was a significant difference
 542 in the median of the objective function values between the solutions of the heuristic methods using
 543 a 95% confidence level. Concluding with this, each component in the metaheuristic contributes
 544 to the improvement of the solutions. In the sixth column, the objective function values (OFV)
 545 obtained with the exact method under a 2-hours time limit are also provided to compare the results.
 546 NFS indicates a no feasible solution found with the exact method. The relative gap is shown in the
 547 last column as a reference of solution quality. Comparing the solutions of the exact method with
 548 the hybrid metaheuristic H9, only 6 out of 11 solved instances were better using the exact method
 549 with a very slight difference. However, the exact method was not able to find solutions in 7 out of
 550 18 instances tested, most of them the largest instances.

Table 8: Assessment of different algorithmic components (solutions 1×10^6 km).

Instances	(H2)			(H7)	(H9)	B&B(2h)	
	CM	IG{DS1+DS2,CM,-}	IG{DS1+DS2,CM,VND12}	(3)+ALLOP(1h)	OFV	Relative Gap	
1	1.38	1.23		1.16	0.85	0.83	4.58
2	6.17	5.58		4.72	3.46	28.92	89.78
3	1.68	1.58		1.43	0.94	0.96	10.36
4	10.71	8.70		6.99	4.21	NFS	—
5	1.14	1.14		1.13	0.76	0.75	0.05
6	6.62	5.79		5.34	4.11	3.82	1.15
7	13.17	12.29		12.03	10.57	10.55	2.60
8	8.50	6.29		4.91	3.46	3.13	28.34
9	16.16	11.65		8.43	7.57	NFS	—
10	2.01	1.80		1.71	1.18	3.43	68.46
11	1.73	1.60		1.60	1.06	1.04	1.58
12	6.76	6.14		4.98	3.32	14.34	100.00
13	11.59	10.92		10.32	6.34	29.42	100.00
14	30.21	21.29		18.45	17.68	NFS	—
15	19.51	13.83		9.82	8.66	NFS	—
16	15.27	13.04		11.47	10.15	NFS	—
17	11.83	10.73		9.18	7.32	NFS	—
18	43.56	30.89		28.23	25.44	NFF	—

5 Conclusions

In this paper, we proposed an algorithmic framework for solving the multi-institutional regionalization of the primary HCUs problem. With this framework, several components were developed and assessed. The best results were found by an iterated greedy algorithm with a variable neighborhood descent procedure enhanced by an exact optimization of the allocation sub-problem. This allocation subproblem is obtained by fixing some location decisions beforehand. This metaheuristic solved instances of up to 3,000 demand points that are difficult to solve with exact methods such as the B&B algorithm of commercial solvers. The IG is based on a constructive method that systematically selects new sites, adds new kernels to the systems, and solves the demand allocation heuristically. This method generates a greedy feasible solution. Two deconstructive strategies are proposed: the first one randomly removes new sites of the solution and the second one removes assigned kernels of random sites. For the VND, two neighborhoods are proposed. The first one is based on the interchange of selected and unselected candidate sites, and the other one is based on the interchange of kernels between a pair of sites. Some mechanisms are considered to reduce the computing time of the complete method since it is proposed for large-scale instances. Although the complete metaheuristic produced the best results, alternative variations are also evaluated.

After fine tuning its individual components, the metaheuristic was applied to a case study based on the State of Mexico public health care system. With this information, eight instances with a range between 547 to 2,940 demand points were solved. For the IG, 20% of deconstruction and a maximum of 50 iterations provide good performance in both deconstructive strategies. A time limit was set up for the IG iterations and another hour was set for the allocation optimization. The complete metaheuristic generated an improvement of 43.2% on average in the quality of solutions

573 regarding the CM solutions. The simple IG produced an average improvement of 14.6% regarding
574 the CM solutions. The inclusion of the VND strategy generated an additional improvement of
575 9.7% on average, and the allocation optimization generated an additional improvement of 18.8% on
576 average. The instances were also compared with an exact algorithm, CPLEX branch-and-bound
577 method under a running time limit of two hours. No optimal solutions were found and solutions
578 were only found for 11 out of 18 instances. In 6 out of 11 instances, better solutions were found
579 with CPLEX with an average improvement of 3.9% with respect to the metaheuristic, although at
580 a much higher computing time. In the other instances, the metaheuristic provided better solutions.
581 **While the algorithmic parameters have been fine-tuned for this specific case study, clearly, further
582 experiments are necessary for implementing the metaheuristic in different classes of instances.**

583 For future research, alternative metaheuristics that take advantage of the proposed constructive
584 method can be also implemented and assessed. The importance of providing good quality solutions
585 is the direct effect on the access and quality of these types of services. Additionally, the developed
586 metaheuristic can be used for other problems that share characteristics of the addressed problem
587 such as the capacitated location-allocation features in a segmented system.

588 *Acknowledgments:* The research of the first author was supported by a postdoctoral fellowship
589 from the Mexican Council of Humanities, Sciences and Technologies (CONAHCyT), and by
590 Tecnológico de Monterrey. The second author was supported by UANL (grants UANL-PAICYT
591 CE1416-20 and CE1837-21) and CONAHCyT (grants FC-2016-2/1948 and CF-2023-I-880).

592 References

- 593 [1] S. Ahmadi and I.H. Osman. Greedy random adaptive memory programming search for the
594 capacitated clustering problem. *European Journal of Operational Research*, 162(1):30–44, 2005.
- 595 [2] A. Ahmadi-Javid and N. Ramshe. A stochastic location model for designing primary healthcare
596 networks integrated with workforce cross-training. *Operations Research for Health Care*, 24:
597 100226, 2020.
- 598 [3] A. Ahmadi-Javid, P. Seyed, and S.S. Syam. A survey of healthcare facility location. *Computers
599 & Operations Research*, 79:223–263, 2017.
- 600 [4] R. Baldacci, E. Hadjiconstantinou, V. Maniezzo, and A. de Mingozi. A new method for
601 solving capacitated location problems based on a set partitioning approach. *Computers &
602 Operations Research*, 29(4):365–386, 2002.
- 603 [5] M. Boccia, A. Sforza, C. Sterle, and I. Vasilyev. A cut and branch approach for the capacitated
604 p -median problem based on fenchel cutting planes. *Journal of Mathematical Modelling and
605 Algorithms*, 7(1):43–58, 2008.

606 [6] A. Casado, S. Bermudo, A.D. López-Sánchez, and J. Sánchez-Oro. An iterated greedy al-
607 gorithm for finding the minimum dominating set in graphs. *Mathematics and Computers in*
608 *Simulation*, 207:41–58, 2023.

609 [7] A. Ceselli and G. Righini. A branch-and-price algorithm for the capacitated p -median problem.
610 *Networks*, 45(3):125–142, 2005.

611 [8] A.R. de Aguiar, V.M. Fo, and L. da Silva Mota. Optimization models in the location of
612 healthcare facilities: A real case in Brazil. *Journal of Applied Operational Research*, 4(1):
613 37–50, 2012.

614 [9] J.A. Díaz and E. Fernández. Hybrid scatter search and path relinking for the capacitated
615 p -median problem. *European Journal of Operational Research*, 169(2):570–585, 2006.

616 [10] X. Feng, F. Zhao, G. Jiang, T. Tao, and X. Mei. A tabu memory based iterated greedy
617 algorithm for the distributed heterogeneous permutation flowshop scheduling problem with
618 the total tardiness criterion. *Expert Systems with Applications*, 238:121790, 2024.

619 [11] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. *Journal of*
620 *Global Optimization*, 6(2):109–133, 1995.

621 [12] K. Fleszar and K. S. Hindi. An effective VNS for the capacitated p -median problem. *European*
622 *Journal of Operational Research*, 191(3):612–622, 2008.

623 [13] M.R. Garey and D.S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-*
624 *Completeness*. Freeman, New York, 1979.

625 [14] M. Gnägi and P. Baumann. A matheuristic for large-scale capacitated clustering. *Computers*
626 *& Operations Research*, 132:105304, 2021.

627 [15] O. Gokalp. An iterated greedy algorithm for the obnoxious p -median problem. *Engineering*
628 *Applications of Artificial Intelligence*, 92:103674, 2020.

629 [16] P.M. Griffin, C.R. Scherrer, and J.L. Swann. Optimization of community health center loca-
630 tions and service offerings with statistical need estimation. *IIE Transactions*, 40(9):880–892,
631 2008.

632 [17] W. Gu, X. Wang, and S.E. McGregor. Optimization of preventive health care facility locations.
633 *International Journal of Health Geographics*, 9(1):17, 2010.

634 [18] J. Hoffmann, J.S. Neufeld, and U. Buscher. Iterated greedy algorithms for customer order
635 scheduling with dedicated machines. *IFAC-PapersOnLine*, 55(10):1594–1599, 2022.

636 [19] G. Laporte, S. Nickel, and F. Saldanha da Gama, editors. *Location Science*. Springer, Cham,
637 Switzerland, 2nd edition, 2019.

638 [20] F. Liu, G. Li, C. Lu, L. Yin, and J. Zhou. A tri-individual iterated greedy algorithm for the
639 distributed hybrid flow shop with blocking. *Expert Systems with Applications*, 237:121667,
640 2024.

641 [21] V. Maniezzo, A. Mingozzi, and R. Baldacci. A bionic approach to the capacitated p -median
642 problem. *Journal of Heuristics*, 4(3):263–280, 1998.

643 [22] V. Marianov and P. Taborga. Optimal location of public health centres which provide free and
644 paid services. *Journal of the Operational Research Society*, 52(4):391–400, 2001.

645 [23] V. Marianov, M. Ríos, and P. Taborga. Finding locations for public service centres that
646 compete with private centres: Effects of congestion. *Papers in Regional Science*, 83(4):631–
647 648, 2004.

648 [24] R. Mendoza-Gómez and R.Z. Ríos-Mercado. Regionalization of primary health care units with
649 multi-institutional collaboration. *Socio-Economic Planning Sciences*, 83:101343, 2022.

650 [25] R. Mendoza-Gómez and R.Z. Ríos-Mercado. Location of primary health care centers for de-
651 mand coverage of complementary services. *Computers & Industrial Engineering*, 169:108237,
652 2022.

653 [26] R. Mendoza-Gómez, R.Z. Ríos-Mercado, and K.B. Valenzuela-Ocaña. An efficient decision-
654 making approach for the planning of diagnostic services in a segmented healthcare system.
655 *International Journal of Information Technology & Decision Making*, 18(5):1631–1665, 2019.

656 [27] R. Mendoza-Gómez, R.Z. Ríos-Mercado, and K.B. Valenzuela-Ocaña. An iterated greedy
657 algorithm with variable neighborhood descent for the planning of specialized diagnostic services
658 in a segmented healthcare system. *Journal of Industrial and Management Optimization*, 16
659 (2):857–885, 2020.

660 [28] P. Mitropoulos, I. Mitropoulos, I. Giannikos, and A. Sissouras. A biobjective model for the
661 locational planning of hospitals and health centers. *Health Care Management Science*, 9(2):
662 171–179, 2006.

663 [29] N. Mladenović and P. Hansen. Variable neighborhood search. *Computers & Operations Re-
664 search*, 24:1097–1100, 1997.

665 [30] M. Ndiaye and H. Alfares. Modeling health care facility location for moving population groups.
666 *Computers & Operations Research*, 35(7):2154–2161, 2008.

667 [31] I.H. Osman and S. Ahmadi. Guided construction search metaheuristics for the capacitated
668 p -median problem with single source constraint. *Journal of the Operational Research Society*,
669 58(1):100–114, 2007.

670 [32] I.H. Osman and N. Christofides. Capacitated clustering problems by hybrid simulated an-
671 nealing and tabu search. *International Transactions in Operational Research*, 1(3):317–336,
672 1994.

673 [33] H. Qin, Y. Han, B. Zhang, L. Meng, Y. Liu, Q. Pan, and D. Gong. An improved iterated
674 greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem. *Swarm
675 and Evolutionary Computation*, 69:100992, 2022.

676 [34] R. Ruiz and T. Stützle. A simple and effective iterated greedy algorithm for the permutation
677 flowshop scheduling problem. *European Journal of Operational Research*, 177(3):2033–2049,
678 2007.

679 [35] S.S.R. Shariff, N.H. Moin, and M. Omar. Location allocation modeling for healthcare facility
680 planning in Malaysia. *Computers & Industrial Engineering*, 62(4):1000–1010, 2012.

681 [36] H. K. Smith, P. R. Harper, C. N. Potts, and A. Thyle. Planning sustainable community health
682 schemes in rural areas of developing countries. *European Journal of Operational Research*, 193
683 (3):768–777, 2009.

684 [37] S. Taymaz, C. Iyigun, Z. P. Bayindir, and N. P. Dellaert. A healthcare facility location problem
685 for a multi-disease, multi-service environment under risk aversion. *Socio-Economic Planning
686 Sciences*, 71:100755, 2020.

687 [38] W. Zhang, K. Cao, S. Liu, and B. Huang. A multi-objective optimization approach for health-
688 care facility location-allocation problems in highly developed cities such as Hong Kong. *Com-
689 puters, Environment and Urban Systems*, 59:220–230, 2016.

690 [39] W. Zou, J. Zou, H. Sang, L. Meng, and Q. Pan. An effective population-based iterated greedy
691 algorithm for solving the multi-AGV scheduling problem with unloading safety detection.
692 *Information Sciences*, 657:119949, 2024.

693 **Appendix**

694 **Definition of auxiliary working parameters**

695 The auxiliary working parameter in the metaheuristic are the following:

696 d_{jl} Distance from site j to site l .
 697 \tilde{w}_{ki} Number of unallocated demand of institution k in demand point i ; $k \in K$, $i \in N$.
 698 λ_{ki} Distance from demand of institution k in origin i to the allocated site; $k \in K$, $i \in N$.
 699 C_j Residual capacity in site j ; $j \in M$.
 700 CI_j Residual capacity for the demand of other institutions in site j ; $j \in M$.
 701 \tilde{V}_j Maximum number of additional kernels that can be installed site j ; $j \in M$.
 702 O_k Maximum number of demand that can be assigned to other institutions; $k \in K$.
 703 \tilde{G}_k Number of unassigned kernels of institution k ; $k \in K$.
 704 \tilde{P}_k Maximum number of CS that can be selected for institution k ; $k \in K$.

705 The following working parameters must be calculated in the procedures of the metaheuristic.
 706 The distance for each demand point (k, i) to the allocated active site j is calculated as follows:

$$\lambda_{ki} = \begin{cases} d_{ij} & \text{if } \tilde{x}_{ki} = j \\ D_0 & \text{otherwise} \end{cases} \quad (26)$$

707 The number of kernels to add for each $j \in CL$ in Pseudo-code 4 is determined as follows:

$$u_j^1(\Phi) = \begin{cases} \max\{H_j, 1\} & \text{for strategy } \Phi = (\text{i}) \\ \min\{\tilde{V}_j, \tilde{G}_{k(j)}\} & \text{for strategy } \Phi = (\text{ii}) \\ \max\{H_j, \min\{\lceil \tilde{V}_j/2 \rceil, \tilde{G}_{k(j)}\}\} & \text{for strategy } \Phi = (\text{iii}) \end{cases} \quad (27)$$

709 The number of kernels to add for each $j \in CL$ in Pseudo-code 6 are the following:

$$u_j^2(\Phi) = \begin{cases} 1 & \text{for strategy } \Phi = (\text{i}) \\ \min\{\tilde{V}_j, \tilde{G}_{k(j)}\} & \text{for strategy } \Phi = (\text{ii}) \\ \min\{\lceil \tilde{V}_j/2 \rceil, \tilde{G}_{k(j)}\} & \text{for strategy } \Phi = (\text{iii}) \end{cases} \quad (28)$$

711 The number of kernels to add in the active site j in pseudo-code 8 is calculated as follows:

$$u_j^3 = \max\{H_j, 1\} \quad (29)$$

712 The potential capacity for each $j \in CL$ according to $u_j^p(\Phi)$ is the following:

$$PC_j = KC \times u_j^p(\Phi) \quad p = 1, 2, 3 \quad (30)$$

713 The benefit in the objective function of each element of the candidate list is calculated as follows:

$$\delta_j = \sum_{k \in K} \sum_{i \in N | PC_j \geq \tilde{w}_{ki}} \max\{\tilde{w}_{ki}(\lambda_{ki} - d_{ij}), 0\} \quad (31)$$

714 The benefit of allocating the demand (r, i) to the active site j is computed as follows:

715

$$\theta_{ki} = \max\{w_{ki}(\lambda_{ki} - d_{ij}), 0\} \quad (32)$$

716 **Pseudo-code of local search strategies**

717 The Pseudo-code of LS1 is the following:

Pseudocode 13 First-improvement local search for the interchange of sites

```
1: procedure LS1( $\mathcal{S}$ ,  $R$ ,  $time\_limit$ ,  $D_1$ )
2:    $\mathcal{S}^* \leftarrow \mathcal{S}$ ;
3:    $\mathcal{S}_0 \leftarrow \mathcal{S}$ ;
4:   while (Improvement = true and time <  $time\_limit$ ) do
5:     select solution  $\mathcal{S}$ ;
6:      $CL_1 \leftarrow \{j \in M_B | \tilde{y}_j = 1\}$ ;
7:     while ( $CL_1 \neq \emptyset$ ) do
8:       select an element  $j_1 \in CL_1$ ;
9:        $CL_2 \leftarrow \{j \in M_{B_{k(j_1)}} | \tilde{Y}_j = 0, \tilde{v}_{j_1} \geq H_j, \tilde{v}_{j_1} \leq V_j\}$ 
10:       $CL_2 \leftarrow$  the  $R$  nearest elements to  $j_1$  from  $CL_2$ .
11:      while ( $CL_2 \neq \emptyset$ ) do
12:        select an element  $j_2 \in CL_2$ ;
13:        update working parameters:  $\tilde{V}_{j_1} \leftarrow \tilde{V}_{j_1} + \tilde{v}_{j_1}$ ,  $\tilde{V}_{j_2} \leftarrow \tilde{V}_{j_2} - \tilde{v}_{j_1}$ ;
14:        update solution:  $\tilde{v}_{j_2} \leftarrow \tilde{v}_{j_1}$ ,  $\tilde{v}_{j_1} \leftarrow 0$ ,  $\tilde{y}_{j_1} \leftarrow 0$ ,  $\tilde{y}_{j_2} \leftarrow 1$ ;
15:         $CL_3 \leftarrow \{j_1, j_2\}$ 
16:         $\tilde{x} \leftarrow \text{DEMAND\_DEALLOCATION}(\mathcal{S}, CL_3, D_1)$ ;
17:         $\tilde{x} \leftarrow \text{DEMAND\_ALLOCATION}(\mathcal{S})$ ;
18:        if ( $Z(\mathcal{S}) < Z(\mathcal{S}^*)$ ) then
19:           $\mathcal{S}^* \leftarrow \mathcal{S}$ ;
20:           $\mathcal{S}^0 \leftarrow \mathcal{S}$ ;
21:          go to Step 5;
22:        else
23:           $\mathcal{S} \leftarrow \mathcal{S}_0$ ;
24:        end if
25:         $CL_2 \leftarrow CL_2 \setminus \{j_2\}$ ;
26:      end while
27:       $CL_1 \leftarrow CL_1 \setminus \{j_1\}$ ;
28:      if ( $CL_1 = \emptyset$ ) then
29:        Improvement = false;
30:      end if
31:    end while
32:  end while
33: return ( $\mathcal{S}^*$ )
34: end procedure
```

718 The Pseudo-code of LS2 is the following:

Pseudocode 14 Local search for the interchange of new capacity

```

1: procedure LS2( $\mathcal{S}$ ,  $R$ ,  $time\_limit$ ,  $D_1$ )
2:    $\mathcal{S}^* \leftarrow \mathcal{S}$ ;
3:    $\mathcal{S}_0 \leftarrow \mathcal{S}$ ;
4:   while (Improvement = true and time <  $time\_limit$ ) do
5:     select solution  $\mathcal{S}$ ;
6:      $CL_1 \leftarrow \{j \in M_A | \tilde{v}_j > 0\}$ ;
7:     while ( $CL_1 \neq \emptyset$ ) do
8:       select an element  $j_1 \in CL_1$ ;
9:        $CL_2 \leftarrow \{j \in M_{A_{k(j_1)}} | \tilde{V}_j > 0\}$ 
10:       $CL_2 \leftarrow$  the  $R$  nearest elements to  $j_1$  from  $CL_2$ .
11:      while ( $CL_2 \neq \emptyset$ ) do
12:        select an element  $j_2 \in CL_2$ ;
13:        update working parameters:
           let be  $u \leftarrow \min\{\tilde{v}_{j_1}, \tilde{V}_{j_2}\}$ ,  $\tilde{V}_{j_1} \leftarrow \tilde{V}_{j_1} + u$ ,  $\tilde{V}_{j_2} \leftarrow \tilde{V}_{j_2} - u$ ;
14:        update solution:  $\tilde{v}_{j_2} \leftarrow \tilde{v}_{j_2} + u$ ,  $\tilde{v}_{j_1} \leftarrow \tilde{v}_{j_1} - u$ ;
15:         $CL_3 \leftarrow \{j_1, j_2\}$ 
16:         $\tilde{x} \leftarrow \text{DEMAND\_DEALLOCATION}(\mathcal{S}, CL_3, D_1)$ ;
17:         $\tilde{x} \leftarrow \text{DEMAND\_ALLOCATION}(\mathcal{S})$ ;
18:        if ( $Z(\mathcal{S}) < Z(\mathcal{S}^*)$ ) then
19:           $\mathcal{S}^* \leftarrow \mathcal{S}$ ;
20:           $\mathcal{S}^0 \leftarrow \mathcal{S}$ ;
21:          go to Step 5;
22:        else
23:           $\mathcal{S} \leftarrow \mathcal{S}_0$ ;
24:        end if
25:         $CL_2 \leftarrow CL_2 \setminus \{j_2\}$ ;
26:      end while
27:       $CL_1 \leftarrow CL_1 \setminus \{j_1\}$ ;
28:      if ( $CL_1 = \emptyset$ ) then
29:        Improvement = false;
30:      end if
31:    end while
32:  end while
33: return ( $\mathcal{S}^*$ )
34: end procedure

```
