
Regionalization of Primary Health Care Units: An Iterated Greedy

Algorithm for Large-Scale Instances

Rodolfo Mendoza-Gómez a

Tecnológico de Monterrey

School of Engineering and Science

Eugenio Garza Sada SN, Cerro Gordo

León, Guanajuato 37190, Mexico

E-mail: rodolfomendoza@tec.mx

Roger Z. Ŕıos-Mercado

Universidad Autónoma de Nuevo León (UANL)

Graduate Program in Electrical Engineering

Av. Universidad s/n, Cd. Universitaria

San Nicolás de los Garza, Nuevo León 66455, Mexico

E-mail: roger.rios@uanl.edu.mx

September 2023

Revised: December 2023

aCorresponding author

Abstract1

In this paper, we study the problem of multi-institutional regionalization of primary health2

care units. The problem consists of deciding where to place new facilities, capacity expansions3

for existing facilities, and demand allocation in a multi-institutional system to minimize the total4

travel distance from demand points to health care units. It is known that traditional exact meth-5

ods as branch-and-bound are limited to solving small- to medium-size instances of the problem.6

Given that real world-instances can be large, in this paper we propose an iterated greedy algorithm7

with variable neighborhood descent search for handling large-scale instances. Within this solution8

framework, several methods are developed. A greedy constructive method and two deconstruction9

strategies are developed. Another interesting component is the exact optimization of a demand10

allocation subproblem that is obtained when the location of facilities is previously fixed. An em-11

pirical assessment using real-world data from the State of Mexico’s Public Health Care System is12

carried out. The results demonstrate the effectiveness of the proposed metaheuristic in handling13

large-scale instances.14

Keywords: Public health care planning; Facility location; Metaheuristics; Iterated greedy algorithm.15

1 Introduction16

Discrete facility location is an important area in operations research and computer science. There17

are many applications in industry and the public sector for a wide range of problems that include18

factories, warehouses, distribution centers, retailer stores, schools, police stations, health care units,19

ambulance stations, offices, and so on. An extensive recent survey of location models is provided20

by Laporte et al. [19], and Ahmadi-Javid et al. [3] provide an extensive survey of location models21

applied to health care. Some contributions related to the locational planning of health care units22

are proposed by Marianov and Taborga [22], Marianov et al. [23], Griffin et al. [16], Ndiaye and23

Alfares [30] , Smith et al. [36], Gu et al. [17], Shariff et al. [35], and de Aguiar et al. [8]. Others, such24

as Mitropoulos et al. [28], Zhang et al. [38] and Mendoza-Gómez and Ŕıos-Mercado [25], address25

multi-objective optimization problems. Furthermore, works integrating stochastic parameters are26

explored by Taymaz et al. [37] and Ahmadi-Javid and Ramshe [2].27

In this paper, we are dealing with the problem of regionalization of primary health care units28

(HCUs) in a segmented public system proposed by Mendoza-Gómez and Ŕıos-Mercado [24]. We29

refer to this problem as the Multi-Institution Facility Location and Upgrading Problem (MIFLUP).30

The problem consists of determining the location of new capacity in the system. This can be done31

by opening new facilities or adding more capacity to the existing HCUs. The allocation of demand32

is required because the capacity of HCUs is limited. There is a set of institutions, and each33

institution has a demand to serve at each demand point, but when the capacity is not enough to34

fulfill the demand or there are no HCUs nearby, collaboration among institutions can be done to35

share the services. In this case, the allocation of demand to other institutions can be done, but this36

is constrained by a set of policies. The general objective of this problem is to minimize the total37

weighted distance from demand points to HCUs. The main goals are to improve the population’s38

access to these facilities and to ensure a minimum quality level in the provision of primary health39

care services.40

This problem can be seen as a variation of the capacitated 𝑝-median problem (CPMP) with41

additional side constraints. The objective of this problem is to find the optimal location of 𝑝42

facilities, considering distances and capacities for the service to be given by each median. The43

CPMP problem has been proven to be 𝒩𝒫-hard by a reduction from the 𝑝-median problem [13].44

This means that optimal solutions can be difficult to obtain for larger instances of the problem45

using exact algorithms. The MIFLUP includes additional features as the capacity setting and the46

inter-institutional allocation, requiring us to design alternative solutions methods for large-scale47

instances.48

Among the exact approaches that have been proposed for the CPMP, a branch-and-price al-49

gorithm that exploits column generation, heuristics, and branch-and-bound to compute optimal50

solutions for the CPMP is proposed by Ceselli and Righini [7]. In Boccia et al. [5], a cutting plane51

1

algorithm, based on Fenchel cuts, is used to reduce the integrality gap of hard CPMP instances.52

Related to heuristic methods, one of the first metaheuristics is proposed by Osman and Christofides53

[32]. They propose a hybrid simulated annealing and a Tabu search algorithm. Maniezzo et al.54

[21] propose a bionomic algorithm and a local search for the CPMP. Baldacci et al. [4] propose55

an exact algorithm based on a set partitioning formulation. Dı́az and Fernández [9] combine Scat-56

ter Search and path relinking algorithms, using GRASP (Greedy Randomized Adaptive Search57

Procedure) to generate the initial reference set. Ahmadi and Osman [1] propose a new solution58

framework based on GRASP and adaptative memory programming. Then, a guided construction59

search metaheuristics is proposed by Osman and Ahmadi [31]. Recently, Gnägi and Baumann [14]60

propose a metaheuristic with decomposition strategies.61

Work on facility location models on segmented health care systems has been done by Mendoza-62

Gómez et al. [26] and Mendoza-Gómez et al. [27]. They address the problem of locating specialized63

health care equipment in the Mexican Health Care System (MHCS). A hybrid metaheuristic based64

on the iterated greedy algorithm is proposed. In fact, that work has similarities with the present65

work that we attempt to exploit in the development of our solution procedure. A related model66

for HCUs applied to the MHCS is presented by Mendoza-Gómez and Ŕıos-Mercado [25]. In that67

work, one institution is considered in the system.68

The problem addressed in this work is introduced by Mendoza-Gómez and Ŕıos-Mercado [24].69

In that work, an integer programming model is proposed. Empirical evidence using branch-and-70

bound made clear the need for heuristics to handle large-scale instances. To the best of our71

knowledge, there are no heuristics developed for this particular problem. Since the objective is72

to obtain a practical decision that is yearly required for hundreds of regions in the country, a73

good quality solution obtained in a reasonable time can be used. This solution can be obtained74

with metaheuristics that are faster but give up optimality. In a practical setting, one approach75

is to solve smaller regional problems and then integrate this solution as a whole. However, it is76

clear that this may lead to suboptimal solutions when considering the nation-wide problem. An77

alternative is to consider the entire system which is intractable by exact algorithms. This motivates78

the development of heuristic techniques as proposed in this paper.79

The main contribution of the paper is the development of a hybrid metaheuristic framework for80

tackling large-scale instances of this problem. Note that, to the best of our knowledge, there are no81

other heuristic methods for this particular problem. The proposed strategies make use of several82

components as an iterated greedy (IG) algorithm and variable neighborhood descent algorithm83

(VND), that attempt to exploit the mathematical structure of the problem through the exploration84

of two proposed neighborhoods. Some particular input parameters for the IG and the constructive85

method are proposed to reduce the problem’s working space during the solution construction. In86

addition, within the solution procedures, we present an allocation subproblem that can be solved87

with an efficient exact method as a final step using the heuristic solutions as the starting feasible88

2

solution. Hence, this method represents a hybrid metaheuristic, featuring components that hold89

relevance for other trajectory-based metaheuristics.90

IG is a simple but powerful metaheuristic framework, introduced by Ruiz and Stützle [34] for91

solving combinatorial optimization problems. IG is similar to GRASP proposed by Feo and Resende92

[11], but in this case, instead of randomizing the construction of a solution, it is partially randomly93

destroyed, and then, using a constructive strategy, the solution is rebuilt. VNS is a metaheuristic94

proposed by Mladenović and Hansen [29] that systematically modifies the structure of a set of95

neighborhoods in the search procedure. A specific simple strategy is to select the neighborhood in96

a deterministic order, this strategy is named the variable neighborhood descent search (VND). An97

implementation of this metaheuristic in a related problem is provided by Fleszar and Hindi [12] for98

the CPMP. There many recent works where the IG framework is used to solve complex problem99

such as Qin et al. [33], Hoffmann et al. [18], Feng et al. [10], Zou et al. [39], and Liu et al. [20]100

applied to scheduling problems, Casado et al. [6] for finding the minimum dominating set in graphs,101

and Gokalp [15] for the obnoxious 𝑝-median problem.102

An empirical assessment applied to a case study of MCHS in the State of Mexico is conducted.103

Eighteen instances with a range between five hundred to three thousand demand points are used104

to evaluate different strategies and fine-tune parameters of the metaheuristic. The results show105

a good performance of the metaheuristic compared with the state-of-the-art branch-and-bound106

algorithm (B&B). While no feasible solutions were found for the largest instances by B&B with a107

two-hour computing time limit, the metaheuristic is able to find feasible solutions in all the cases,108

and competitive or even better solutions are found in most of the cases where B&B found feasible109

solutions.110

The structure of this paper is as follows. In Section 2, we present the model introduced by111

Mendoza-Gómez and Ŕıos-Mercado [24] for a better understanding of the proposed heuristic com-112

ponents. In Section 3, we describe the proposed metaheuristic and all the related components and113

algorithmic strategies. Section 4 presents the results of the empirical assessment applied to a case114

study. Finally, conclusions of this work are drawn in Section 5.115

2 Problem Description116

MIFLUP was introduced by Mendoza-Gómez and Ŕıos-Mercado [24] and they proved that it is117

classified as an 𝒩𝒫-hard problem. The objective of this problem is to allocate demand points118

to capacitated HCUs of multiple institutions minimizing the total weighted travel distance. New119

facilities can be installed and new capacity can be added to the system if these options contribute120

to minimizing the objective function. A percentage of capacity at each HCU can be used to allocate121

the demand of other institutions. The capacity is based on a modular scheme named basic kernels.122

In this scheme, a kernel is composed of a physician, a nurse, and a technician in primary health123

3

care that can serve a limited number of inhabitants in the region. Figure 1 illustrates the problem124

considering three institutions, five demand points, three existing HCUs, and one candidate site to125

build a HCU. Each HCU has a given capacity and additional kernels can be installed on it. The126

candidate site (CS) can be considered a HCU but without installed capacity in the current system.127

A maximum number of new locations and a maximum number of new kernels are available for each128

institution. There is demand that belongs to each institution at each demand point. Therefore,129

the demand of each institution at each demand point must be assigned to a single HCU. The HCU130

may belong to the same institution or another if it has enough capacity available. The number of131

binary variables for each demand point is determined by the number of institutions and the number132

of total locations (HCUs and CSs) as can be seen in the variables related to demand point 1 in the133

figure.134

Poten�al kernels

Current kernels

HCUs

Demand

points

� 1 2 3

� =

= 2 3 4

2 3 4 5

�

�
�

�
�

�

�

�

�

�
�

�

Demand level

Ins�tu�ons

Candidate site

Cap. (%) Cap. (%) Cap. (%)Cap. (%)

Figure 1: Graphical representation of the problem.

2.1 Formulation135

For the sake of completeness and a better understanding of the proposed solution method, we136

present an integer linear programming formulation of the problem that was taken from the model137

proposed by Mendoza-Gómez and Ŕıos-Mercado [24]. In our specific case, we assume that there138

is no minimum capacity to be allocated in each HCU. Thus, constraints (5) from Mendoza-Gómez139

and Ŕıos-Mercado [24] become redundant. The notation, parameters, and variables used in the140

problem formulation are the following:141

Sets and indices:142

𝑁 Set of demand points (𝑖, 𝑙 ∈ 𝑁).143

𝑀 Set of (existing and candidate) locations for HCUs (𝑡, 𝑗 ∈𝑀).144

4

𝐾 Set of institutions (𝑘, 𝑟 ∈ 𝐾).145

𝑀𝑘 Set of locations (HCUs and CSs) that belong to institution 𝑘.146

𝑀𝐴 Set of locations where a HCU is already installed, 𝑀𝐴 ⊆𝑀 .147

𝑀𝐵 Set of CSs for installing a HCU, 𝑀𝐵 ⊆𝑀 .148

𝑀𝐵𝑘
Set of CSs that belong to institution 𝑘.149

𝑘(𝑗) The institution to which location 𝑗 belongs to, 𝑗 ∈𝑀𝑟 ↔ 𝑟 = 𝑘(𝑗).150

Parameters:151

𝐾𝐶 Kernel capacity. Maximum number of inhabitants covered by a kernel.152

𝑑𝑖𝑗 Distance from demand point 𝑖 to HCU location 𝑗; 𝑖 ∈ 𝑁 , 𝑗 ∈𝑀 .153

𝑤𝑘𝑖 Demand of institution 𝑘 in point 𝑖; 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 .154

𝑎𝑗 Number of current kernels in HCU 𝑗. A value of 𝑎𝑗 equal to zero indicates there is no current155

HCU at that place; therefore, it is a CS for installing a HCU; 𝑗 ∈𝑀 .156

𝑉𝑗 Maximum number of kernels that can be installed in location 𝑗; 𝑗 ∈𝑀 .157

𝐻𝑗 Minimum number of kernels that must be installed in location 𝑗 if a HCU is opened; 𝑗 ∈𝑀𝐵.158

𝛽𝑘 Maximum proportion of capacity in a HCU of institution 𝑘 that can be shared to the demand159

of other institutions; 𝑘 ∈ 𝐾.160

𝛾𝑘 Minimum proportion of demand that institution 𝑘 must be cover internally; 𝑘 ∈ 𝐾.161

𝐺𝑘 Maximum number of additional kernels of institution 𝑘 that can be installed; 𝑘 ∈ 𝐾.162

𝑃𝑘 Number of new HCU to be opened by institution 𝑘; 𝑘 ∈ 𝐾.163

Decision variables:164

𝑥𝑘𝑖𝑗 = 1, if demand of institution 𝑘 at demand point 𝑖 is allocated to HCU 𝑗; = 0, otherwise;165

𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 , 𝑗 ∈𝑀 .166

𝑦𝑗 = 1, if a HCU is opened at location 𝑗; = 0, otherwise; 𝑗 ∈𝑀𝐵.167

𝑣𝑗 Integer variable equal to the number of additional kernels to be opened in HCU 𝑗; 𝑗 ∈𝑀 .168

The linear integer programming model of MIFLUP is then given by:169

Minimize 𝑓(𝑥) =
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀

∑︁
𝑘∈𝐾

𝑤𝑘𝑖𝑑𝑖𝑗𝑥𝑘𝑖𝑗 (1)

subject to:
∑︁
𝑗∈𝑀

𝑥𝑘𝑖𝑗 = 1 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 (2)

∑︁
𝑟∈𝐾:𝑟 ̸=𝑘(𝑗)

𝑥𝑟𝑖𝑗 ≤ (|𝐾| − 1)𝑥𝑘𝑖𝑗 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁, 𝑗 ∈𝑀𝑘 (3)

∑︁
𝑖∈𝑁

∑︁
𝑘∈𝐾

𝑤𝑘𝑖𝑥𝑘𝑖𝑗 ≤ 𝐾𝐶(𝑎𝑗 + 𝑣𝑗) 𝑗 ∈𝑀 (4)

∑︁
𝑖∈𝑁

∑︁
𝑟∈𝐾:𝑟 ̸=𝑘(𝑗)

𝑤𝑟𝑖𝑥𝑟𝑖𝑗 ≤ 𝐾𝐶(𝑎𝑗 + 𝑣𝑗)𝛽𝑘(𝑗) 𝑗 ∈𝑀 (5)

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀𝑘

𝑤𝑘𝑖𝑥𝑘𝑖𝑗 ≥ 𝛾𝑘
∑︁
𝑖∈𝑁

∑︁
𝑘∈𝐾

𝑤𝑘𝑖 𝑘 ∈ 𝐾 (6)

5

∑︁
𝑗∈𝑀𝑘

𝑣𝑗 ≤ 𝐺𝑘 𝑘 ∈ 𝐾 (7)

𝑥𝑘𝑖𝑗 ≤ 𝑦𝑗 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁, 𝑗 ∈𝑀𝐵 (8)

𝑣𝑗 ≥ 𝐻𝑗𝑦𝑗 𝑗 ∈𝑀𝐵 (9)∑︁
𝑗∈𝑀𝐵𝑘

𝑦𝑗 ≤ 𝑃𝑘 𝑘 ∈ 𝐾 (10)

𝑣𝑗 ≤ 𝑉𝑗 𝑗 ∈𝑀𝐴 (11)

𝑣𝑗 ≤ 𝑉𝑗𝑦𝑗 𝑗 ∈𝑀𝐵 (12)

𝑥𝑘𝑖𝑗 ∈ {0, 1} 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁, 𝑗 ∈𝑀 (13)

𝑦𝑗 ∈ {0, 1} 𝑗 ∈𝑀𝐵 (14)

𝑣𝑗 ∈ Z+ 𝑗 ∈𝑀 (15)

The total travel distance is minimized in the objective function (1). Constraints (2) enforce allo-170

cating all the demand of each institution at each demand point to a single HCU or CS. Constraints171

(3) avoid allocating the demand of other institutions in a given demand point to a HCU or CS if172

the demand of the institution to which the HCU or CS belongs is not allocated first. Constraints(4)173

limit the demand allocation according to the capacity of each HCU or CS determined by the number174

of actual kernels plus new kernels. Constraints (5) limit the demand of other institutions allocated175

to each HCU or CS according to 𝛽𝑘(𝑗). Constraints (6) are used to guarantee a minimum percentage176

of demand allocated internally for each institution. Constraints (7) set the maximum number of177

new kernels that can be installed for each institution. Constraints (8) prevent allocating demand178

to a CS that is not selected. Constraints (9) define a minimum number of kernels to be installed179

in the selected CS. Constraints (10) set the maximum number of selected CS for each institution.180

Constraints (11) and (12) define the maximum number of kernels that can be installed in existing181

HCUs and CS, respectively. Finally, the nature of decision variables is defined in constraints (13)182

and (15).183

3 Proposed metaheuristic184

In this section, we describe an IG algorithm to solve MIFLUP that was introduced in Section 2. The185

main procedure is shown in Pseudo-code 1. Three components are used in the multi-start procedure:186

the deconstruction strategy, the constructive strategy, and a local search procedure. A solution is187

represented by 𝒮 and the best feasible solution found is represented by 𝒮*. The objective function188

value of any feasible solution is represented by 𝑍(𝒮). The procedure is iterated until a stopping189

criterion (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛) is satisfied. This criterion can be for instance a computing time limit,190

a given number of iterations, or a combination of both criteria. The percentage of deconstruction is191

6

determined by parameter 𝜌, which is fine-tuned. Four additional input parameters (Φ, 𝐷0, 𝐷1, 𝐷2)192

are required in the construction and deconstruction phases of this problem. 𝐷1 and 𝐷2 are used in193

the constructive and deconstruction strategies to reduce the number of operations in the procedure194

by reducing the size of the environment affected when a solution is modified. This is a special195

feature for large-scale instances. All these parameters are explained in the following subsections.196

We present in this paper a constructive method (CM), two deconstruction strategies (DS1 and197

DS2), two types of neighborhoods that give rise to two local search schemes (LS1 and LS2), two198

versions of a VND (VND12 and VND21), and a sub-problem to be optimized (ALLOP) as elements199

that can be included or combined within the IG. In Table 1, we proposed some heuristics methods200

generated with this elements that are evaluated in Section 4. In the second column, the elements201

of the IG are represented as follows IG{deconstructive strategy, constructive method, local search202

strategy}. In H9 and H10, there is an extra final method that consists in optimizing the allocation203

subproblem (ALLOP) with an exact method. Figure 2 show a representative diagram of the entire204

framework used for design the proposed heuristics. In the following subsections, all the components205

proposed are explained in detail.206

Pseudocode 1 Iterated greedy algorithm

1: procedure IG(𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛, 𝜌, Φ, 𝐷0, 𝐷1, 𝐷2)
2: 𝒮* ← INITIALIZATION PROCEDURE(𝐷0);
3: 𝒮* ← CM(𝒮*, Φ, 𝐷1);
4: while 𝑠𝑡𝑜𝑝 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 is not satisfied do
5: 𝒮 ← 𝒮*;
6: 𝒮 ← DM(𝒮, 𝜌, 𝐷2);
7: 𝒮 ← CM(𝒮, Φ, 𝐷1);
8: 𝒮 ← LOCAL SEARCH(𝒮);
9: if (𝑍(𝒮) < 𝑍(𝒮*)) then

10: 𝒮* ← 𝒮;
11: end if
12: end while
13: return (𝒮*)
14: end procedure

Table 1: Description of the proposed heuristics.

ID Heuristic method Description
H1 IG{DS1, CM, – } use DS1 at each iteration.
H2 IG{DS2, CM, – } use DS2 at each iteration.
H3 IG{DS1+DS2, CM, – } use DS1 and DS2 sequentially at each iteration.
H4 IG{DS2+DS1, CM, – } use DS2 and DS1 sequentially at each iteration.
H5 IG{DS1+DS2, CM, LS1+LS2} use H3 and apply LS1 and LS2 sequentially at each iteration.
H6 IG{DS1+DS2, CM, LS2+LS1} use H3 and apply LS1 and LS2 sequentially at each iteration.
H7 IG{DS1+DS2, CM, VND12 } use H3 and apply VND12 at each iteration.
H8 IG{DS1+DS2, CM, VND21 } use H3 and apply VND21 at each iteration.
H9 IG{DS1+DS2, CM, VND12 }+ALLOP use H7 and optimize ALLOP.
H10 IG{DS1+DS2, CM, VND21 }+ALLOP use H8 and optimize ALLOP.

7

CM

DS1

DS2

DS1 + DS2

DS2 + DS1

+ +

LS1

LS2

LS1 + LS2

LS2 + LS1

VND12

VND21

+ CM + ALLOP

Random

deconstruc on

Mul�-start procedure

ImprovementFeasible solu on

Final

improvement

Figure 2: Framework for the heuristics design.

Representation of a solution207

A solution 𝒮 is composed of three main variable types that are initialized and then modified208

throughout the algorithm. They are defined as follows:209

𝑦𝑗 is a variable associated with 𝑦𝑗 for all 𝑗 ∈𝑀𝐵. It stores a value equal to 1 if a HCU is opened210

at CS 𝑗 and 0 otherwise.211

𝑣𝑗 is a variable associated with 𝑣𝑗 for 𝑗 ∈ 𝑀 . It represents the number of additional kernels212

installed in 𝑗.213

𝑥̃𝑘𝑖 is a variable associated with 𝑥𝑘𝑖𝑗 for 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁, 𝑗 ∈𝑀 . This variable stores the site 𝑗 such214

that 𝑥𝑘𝑖𝑗 = 1. This change helps to reduce the computing memory required to store solutions.215

A given solution is represented by (𝑦, 𝑣, 𝑥̃) or 𝒮. However, there are many working parameters216

that are useful for identifying the residual capacity and the solution’s feasibility when the procedure217

is running: 𝑤̃𝑘𝑖, 𝐶𝑗 , 𝐶𝐼𝑗 , 𝑂𝑘, 𝑉𝑗 , 𝐺̃𝑘, 𝑃𝑘, and 𝜆𝑘𝑖. These working parameters can be computed218

from 𝒮 or updated every time there is a change in the solution. Their definition is available in the219

Appendix and they are used in all the procedures that are described below. The decision variables220

and the working parameters must be initialized at the beginning of the IG as is shown in Subsection221

3.1.222

Figure 3 shows a small example to illustrate the terminology that is used to describe the223

procedures. In this example, the elements belong to institution 𝑘 = 1. In the case of HCUs224

(𝑗 ∈ 𝑀𝐴1), some of them can increase their capacity with additional kernels (𝑣𝑗 ≥ 0). In the225

8

case of candidate sites (𝑗 ∈ 𝑀𝐵1), some of them may be selected to open new HCUs with new226

kernels (𝑦𝑗 = 1 and 𝑣𝑗 > 0) and others can not be selected (𝑦𝑗 = 0 and 𝑣𝑗 = 0). For the last two227

cases, we use the terms “selected candidate sites (SCS)” and “unselected candidate sites (UCS)”,228

respectively. For the case of HCUs and SCS, we refer to these elements as “active sites” because229

represent existing and new HCUs. In this problem, we require to identify where to install new230

kernels (𝑣𝑗) and how to allocate the demand of each institution (𝑥̃𝑘𝑖). For the case of kernels, we231

use the terms “assign and unassign” kernels to a site 𝑗 and for the case of demand, we use the232

terms “allocate and deallocate” demand to a site 𝑗.233

Institution 1 (= 1)

Kernels:

1

1

= 1 = 0

+ > 0 > 0 = 0

New HCU:

HCUs

Candidate sites (CS)

Selected CS

(SCS)

Unselected CS

(UCS)

yes yes no

Active sites

Demand alloca�on :

Figure 3: Example of the terminology of the elements in the solution.

3.1 Initialization procedure234

Pseudo-code 2 shows the initial value for the solution (𝑦𝑗 , 𝑣𝑗 , 𝑥̃𝑘𝑖) and the working parameters (𝑤̃𝑘𝑖,235

𝐶𝑗 , 𝐶𝐼𝑗 , 𝑂𝑘, 𝑉𝑗 , 𝐺̃𝑘, 𝑃𝑘, and 𝜆𝑘𝑖). This subroutine is required for the constructive method when236

there is no partial or complete solution created. The working parameters must be updated every237

time there is a change in the solution. In Step 2, the working parameters are initialized. In Step238

3, 𝜆𝑘𝑖 is initialized with a distance 𝐷0 and when a demand point is allocated to an active site,239

the parameter is updated according to Equation 26. The purpose of this parameter is to find an240

active site with a better distance than 𝐷0. The decision variables are created with initial values in241

Step 4 that represents an unfeasible solution. The constructive method can be applied once this242

initialization is done as is shown in Pseudocode 1.243

9

Pseudocode 2 Initialization

1: procedure INITIALIZATION PROCEDURE(𝐷0)
2: Compute the working parameters as follows:

𝑤̃𝑘𝑖 = 𝑤𝑘𝑖 ∀(𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁), 𝐶𝑗 = 𝐾𝐶(𝑎𝑗) ∀𝑗 ∈𝑀𝐴, 𝐶𝑗 = 0 ∀𝑗 ∈𝑀𝐵,
𝐶𝐼𝑗 = 𝛽𝑘(𝑗)𝐶𝑗 ∀𝑗 ∈𝑀 , 𝑂𝑘 = (1− 𝛾𝑘)

∑︀
𝑖∈𝑁 𝑤𝑘𝑖 ∀𝑘 ∈ 𝐾, 𝑉𝑗 = 𝑉𝑗 ∀𝑗 ∈𝑀 ;

𝐺̃𝑘 = 𝐺𝑘 ∀𝑘 ∈ 𝐾, 𝑃𝑘 = 𝑃𝑘 ∀𝑘 ∈ 𝐾;
3: Compute 𝜆𝑘𝑖 according to (26) and 𝐷0;
4: Compute the solution as follows:

𝑦𝑗 = 0 ∀𝑗 ∈𝑀𝐵, 𝑣𝑗 = 0 ∀𝑗 ∈𝑀 , 𝑥̃𝑘𝑖 =∞ ∀(𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁);
5: 𝒮 ← (𝑦, 𝑣, 𝑥̃);
6: return (𝒮)
7: end procedure

3.2 Constructive method (CM)244

The main steps of CM are shown in Pseudo-code 3. In this procedure, an initial solution 𝒮 and245

two input parameters: Φ and 𝐷1, are required as input. Parameter Φ defines the strategy for246

determining the number of new kernels to add to each site as follows: option (i) computes the247

minimum possible number of kernels, option (ii) computes the average value between the minimum248

and the maximum possible number of kernels, and option (iii) computes the maximum possible249

number of kernels. Parameter 𝐷1 defines the influence area for sites whose capacity is modified in250

the procedure.251

In Step 2, for each institution 𝑘, the best 𝑃𝑘 candidate sites are selected, new kernels are assigned252

to these SCS without exceeding 𝐺𝑘, and demand is allocated to them according to the available253

capacity. Then, in Step 3, available kernels (𝐺̃𝑘) for each institution are assigned to strategic254

active sites, and demand is allocated to them. In Step 4, the remaining demand is allocated to255

active sites with available capacity (𝐶𝑗 > 0). If there is the case that some candidate sites can256

still be selected (
∑︀

𝑘∈𝐾 𝑃𝑘 > 0), this is forced in Step 6, selecting additional candidate sites and257

transferring kernels to them. The output of this algorithm provides a greedy feasible solution for258

the entire problem. CM can be used to complete a partial solution in the reconstruction phase of259

the IG. In the following subsections, each of these procedures is detailed explained.260

Pseudocode 3 Constructive algorithm

1: procedure CM(𝒮, Φ, 𝐷1)
2: 𝒮 ← OPEN NEW FACILITIES(𝒮, Φ);
3: 𝒮 ← OPEN NEW KERNELS(𝒮, Φ);
4: 𝑥̃← DEMAND ALLOCATION(𝒮);
5: if (

∑︀
𝑘∈𝐾 𝑃𝑘 > 0) then

6: 𝒮 ← KERNELS TRANSFERS(𝒮, 𝐷1);
7: end if
8: return (𝒮)
9: end procedure

10

3.2.1 CM: Open new facilities261

Procedure OPEN NEW FACILITIES() is shown in Pseudo-code 4. The objective is to select can-262

didate sites to install new HCUs for each institution according to 𝑃𝑘. A candidate list 𝐶𝐿 with263

UCS of all institutions is created in Step 2. Then, in Step 4, the function (𝛿𝑗), the potential new264

capacity (𝑃𝐶𝑗), and the number of new kernels (𝑢1𝑗 (Φ)) are computed for each element according265

to Equations (27), (30), and (31), respectively. Parameter 𝛿𝑗 computes the improvement in the266

allocation distance of each demand point to the candidate site multiplied by the demand rate. The267

procedure ends when neither of the elements generates a benefit (
∑︀

𝛿𝑗 > 0) or when 𝐶𝐿 is empty.268

Otherwise, the element with the highest 𝛿𝑗 value is selected to become an active site (Step 6). The269

working parameters associated with the residual capacity are updated in Steps 7 and 8, and the270

solution is updated in Step 9.271

For allocating demand is required to call a subroutine DEMAND ASSIGNMENT() that is272

shown in Pseudo-code 5. This subroutine allocates demand to the active site 𝑡 considering the273

incumbent solution. Firstly, a list of demand points (𝑘, 𝑖) with specific criteria is created and274

stored in 𝐷𝑃𝐿 according to Steps 2–8. In this list, demand points (𝑘, 𝑖) with a distance to site275

𝑡 such that 𝑑𝑖𝑡 < 𝜆𝑘𝑖 are considered. Parameter 𝜆𝑘𝑖 represents the current allocation distance of276

each demand point (𝑘, 𝑖). Therefore, only demand points such that the allocation distance can be277

improved are considered. The demand 𝑤̃𝑘𝑖 must not exceed the available capacity of site 𝑡. In278

the case of inter-institutional allocation (𝑘 ̸= 𝑘(𝑡)), the feasibility of constraints (3), (5), and (6)279

must be also fulfilled (Step 6). This last requirement is evaluated with the following conditions:280

𝑥̃𝑘(𝑡)𝑖 = 𝑡, 𝑤̃𝑘𝑖 ≤ 𝐶𝐼𝑡, 𝑤̃𝑘𝑖 ≤ 𝑂𝑘. For each demand point in the 𝐷𝑃𝐿, 𝜃𝑘𝑖 is computed to determine281

the benefit of this demand point if this is allocated to the active site 𝑡. One by one, demand282

points are allocated to this active site starting from the ones with the highest values. The working283

parameters related to the residual capacity are updated in Step 12 and the solution is updated in284

Step 13. The 𝐷𝑃𝐿 list of demand points is updated with the same criteria as the Steps 2–8 and285

the procedure is repeated until the 𝐷𝑃𝐿 becomes empty. In this case, only 𝑥̃ is returned as output286

because the other variables were not modified.287

3.2.2 CM: Addition of new kernels288

Procedure OPEN NEW KERNELS() shown in Pseudo-code 6 is called to assign kernels, according289

to 𝐺̃𝑘 for each institution. A candidate list 𝐶𝐿 of sites such that 𝑉𝑗 > 0 is created. The number290

of kernels to assign (𝑢2𝑗 (Φ)), 𝑃𝐶𝑗 , and 𝛿𝑗 are computed with Equations (28), (30), and (31),291

respectively. Then, the procedure is very similar to Pseudo-code 4. In this case, 𝑢2𝑗 (Φ) is used to292

compute the potential capacity to be added for each element of 𝐶𝐿. Other changes are the working293

parameters that are updated in Step 8 and the solution in Step 9. This process is repeated while294 ∑︀
𝐺̃𝑘 > 0 or 𝐶𝐿 ̸= {∅}. At the end of each iteration, 𝐶𝐿 is updated with the same criteria as Step295

11

Pseudocode 4 Open new facilities

1: procedure Open New Facilities(𝒮, Φ)
2: 𝐶𝐿 ← {𝑗 ∈𝑀𝐵|𝑦𝑗 = 0, 𝑃𝑘(𝑗) > 0, 𝐺̃𝑘(𝑗) ≥ 𝐻𝑗};
3: while (𝐶𝐿 ̸= ∅) do
4: compute 𝑢1𝑗 (Φ), 𝑃𝐶𝑗 , and 𝛿𝑗 ∀𝑗 ∈ 𝐶𝐿 according to (27), (30), and (31);
5: if (

∑︀
𝛿𝑗 ̸= 0) then

6: 𝑡 ← arg max𝑗∈𝐶𝐿{𝛿𝑗};
7: 𝐶𝑡 ← 𝐶𝑡 + 𝑃𝐶𝑡, 𝑉𝑡 ← 𝑉𝑡 − 𝑢1𝑡 (Φ), 𝐶𝐼𝑡 ← 𝐶𝐼𝑡 + 𝛽𝑘(𝑡)𝑃𝐶𝑡,

8: 𝐺̃𝑘(𝑡) ← 𝐺̃𝑘(𝑡) − 𝑢1𝑡 (Φ), 𝑃𝑘(𝑡) ← 𝑃𝑘(𝑡) − 1;
9: update solution as follows:

𝑦𝑡 = 1, 𝑣𝑡 ← 𝑣𝑡 + 𝑢1𝑡 (Φ), 𝑥̃← DEMAND ASSIGNMENT(𝒮, 𝑡);
10: 𝐶𝐿 ← {𝑗 ∈𝑀𝐵|𝑦𝑗 = 0, 𝑃𝑘(𝑗) > 0, 𝐺̃𝑘(𝑗) ≥ 𝐻𝑗};
11: end if
12: end while
13: 𝒮 ← (𝑦, 𝑣, 𝑥̃);
14: return (𝒮)
15: end procedure

3. In this procedure 𝑦 remains the same.296

Pseudocode 6 Addition of new kernels

1: procedure Open New Kernels(𝒮, Φ)
2: for (𝑘 ∈ 𝐾|𝐺̃𝑘 > 0) do
3: 𝐶𝐿 ← {𝑗 ∈𝑀𝑘|𝑉𝑗 > 0};
4: while (𝐺̃𝑘 > 0 and 𝐶𝐿 ̸= ∅) do
5: compute 𝑢2𝑗 (Φ), 𝑃𝐶𝑗 and 𝛿𝑗 for each 𝑗 ∈ 𝐶𝐿 according to (28), (30), and (31);
6: if (

∑︀
𝛿𝑗 ̸= 0) then

7: 𝑡 ← arg max𝑗∈𝐶𝐿{𝛿𝑗};
8: 𝐶𝑡 ← 𝐶𝑡 + 𝑃𝐶𝑡, 𝑉𝑡 ← 𝑉𝑡 − 𝑢2𝑡 (Φ), 𝐶𝐼𝑡 ← 𝐶𝐼𝑡 + 𝛽𝑘(𝑡)𝑃𝐶𝑡, 𝐺̃𝑘(𝑡) ← 𝐺̃𝑘(𝑡) − 𝑢2𝑡 (Φ);
9: update solution: 𝑣𝑡 ← 𝑣𝑡 + 𝑢2𝑡 (Φ), 𝑥̃← DEMAND ASSIGNMENT(𝒮, 𝑡);

10: 𝐶𝐿 ← {𝑗 ∈𝑀𝑘|𝑉𝑗 > 0};
11: end if
12: end while
13: end for
14: 𝒮 ← (𝑦, 𝑣, 𝑥̃);
15: return (𝒮)
16: end procedure

3.2.3 CM: Demand allocation297

The DEMAND ALLOCATION() procedure is shown in Pseudo-code 7. This procedure is required298

to allocate the demand points in a given solution. The procedure is divided into two main stages.299

In the first stage, demand is allocated to active sites with available capacity of the same institutions300

(Steps 2–13). Then, if there are still unallocated demand points, they are allocated to any active301

12

Pseudocode 5 Assignment of demand

1: procedure Demand Assignment(𝒮, 𝑡)
2: for 𝑘 ∈ 𝐾 do
3: if (𝑘 = 𝑘(𝑡)) then
4: 𝐷𝑃𝐿← {(𝑘, 𝑖 ∈ 𝑁)|𝑑𝑖𝑡 < 𝜆𝑘𝑖, 𝑤̃𝑘𝑖 ≤ 𝐶𝑡};
5: else
6: 𝐷𝑃𝐿← {(𝑘, 𝑖 ∈ 𝑁)|𝑑𝑖𝑡 < 𝜆𝑘𝑖, 𝑤̃𝑘𝑖 ≤ 𝐶𝑡, 𝑥̃𝑘(𝑡)𝑖 = 𝑡, 𝑤̃𝑘𝑖 ≤ 𝐶𝐼𝑡, 𝑤̃𝑘𝑖 ≤ 𝑂𝑘};
7: end if
8: end for
9: compute 𝜃𝑘𝑖 for each (𝑘, 𝑖) ∈ 𝐷𝑃𝐿 according to (32);

10: while (𝐷𝑃𝐿 ̸= ∅) do
11: (𝑟, 𝑙) ← arg max(𝑘,𝑖)∈𝐷𝑃𝐿{𝜃𝑘𝑖};
12: update working parameters: 𝐶𝑡 ← 𝐶𝑡 − 𝑤̃𝑟𝑙, 𝑤̃𝑟𝑙 ← 0, 𝜆𝑟𝑙 ← 𝑑𝑙𝑡;

if (𝑟 ̸= 𝑘(𝑡)) then
𝐶𝐼𝑡 ← 𝐶𝐼𝑡 − 𝑤𝑟𝑙, 𝑂𝑟 ← 𝑂𝑟 − 𝑤𝑟𝑙;

end if
13: update solution as follows: 𝑥̃𝑟𝑙 ← 𝑡;
14: update DPL according to Steps 2–8;
15: compute 𝜃𝑘𝑖 for each (𝑘, 𝑖) ∈ 𝐷𝑃𝐿 according to (32);
16: end while
17: return (𝑥̃)
18: end procedure

site, no matter the institution (Steps 14–30). In the first stage, the procedure is repeated for each302

institution, demand points with unallocated demand are added to the candidate list 𝐶𝐿1. Then,303

the demand point with the highest demand level is selected to be allocated to the nearest active304

site with enough capacity (Step 5). If there are no active sites with enough capacity of the same305

institution, the demand point is removed from 𝐶𝐿1 (Step 7), otherwise, the residual capacity and306

the solution are updated in Steps 9 and 10, respectively. The steps of the second stage are very307

similar, but in this case, demand points with unallocated demand of any institution are considered308

in the candidate list (𝐶𝐿2). The demand point with the highest demand level is selected in Step309

17 and then, the nearest active site that satisfies all the requirements is selected (Step 18–22).310

In this step, if the demand point and the active site belong to different institutions, additional311

requirements must be validated (𝑥̃𝑘(𝑗)𝑙 = 𝑗, 𝑤̃𝑟𝑙 ≤ 𝐶𝐼𝑗 , 𝑤̃𝑟𝑙 ≤ 𝑂𝑟). If there are no feasible active312

sites, the demand point is removed from 𝐶𝐿2 in Step 24; otherwise, the working parameters and313

the solution are updated to allocate this demand point (𝑟, 𝑙) to the active site 𝑡 in Steps 26 and 27,314

respectively. Then, the demand point is removed from 𝐶𝐿2 and the process is repeated until 𝐶𝐿2315

becomes empty.316

13

Pseudocode 7 Demand allocation

1: procedure Demand allocation(𝒮)
2: for (𝑘 ∈ 𝐾) do
3: 𝐶𝐿1 ← {𝑖 ∈ 𝑁 |𝑤̃𝑘𝑖 > 0};
4: while (𝐶𝐿1 ̸= ∅) do
5: 𝑡 ← 0; 𝑙 ← arg max𝑖∈𝐶𝐿{𝑤̃𝑘𝑖}; 𝑡 ← arg min𝑗∈𝑀𝑘

{𝑑𝑙𝑗 |𝑤̃𝑘𝑙 ≤ 𝐶𝑗};
6: if (𝑡 = 0) then
7: 𝐶𝐿1 ← 𝐶𝐿1∖{𝑙} ;
8: else
9: update working parameters: 𝐶𝑡 ← 𝐶𝑡 − 𝑤̃𝑘𝑙, 𝑤̃𝑘𝑙 ← 0, 𝜆𝑘𝑙 ← 𝑑𝑙𝑡;

10: update solution: 𝑥̃𝑘𝑙 ← 𝑡;
11: end if
12: end while
13: end for
14: 𝐶𝐿2 ← all pairs (𝑘, 𝑖) from 𝑖 ∈ 𝑁 and 𝑘 ∈ 𝐾 such that: 𝑤̃𝑘𝑖 > 0;
15: while (𝐶𝐿2 ̸= ∅) do
16: 𝑡 ← 0;
17: (𝑟, 𝑙) ← arg max(𝑘,𝑖)∈𝐶𝐿2

{𝑤̃𝑘𝑖};
18: if (𝑟 = 𝑘(𝑗)) then
19: 𝑡 ← arg min𝑗∈𝑀{𝑑𝑙𝑗 |𝑤̃𝑟𝑙 ≤ 𝐶𝑗};
20: else
21: 𝑡 ← arg min𝑗∈𝑀{𝑑𝑙𝑗 |𝑤̃𝑟𝑙 ≤ 𝐶𝑗 , 𝑥̃𝑘(𝑗)𝑙 = 𝑗, 𝑤̃𝑟𝑙 ≤ 𝐶𝐼𝑗 , 𝑤̃𝑟𝑙 ≤ 𝑂𝑟};
22: end if
23: if (𝑡 = 0) then
24: 𝐶𝐿2 ← 𝐶𝐿2∖{(𝑟, 𝑙)} ;
25: else
26: update working parameters: 𝐶𝑡 ← 𝐶𝑡 − 𝑤̃𝑟𝑙, 𝑤̃𝑟𝑙 ← 0,

if (𝑟 ̸= 𝑘(𝑡)) then
𝐶𝐼𝑡 ← 𝐶𝐼𝑡 − 𝑤𝑟𝑙, 𝑂𝑟 ← 𝑂𝑟 − 𝑤𝑟𝑙;

end if
27: update solution: 𝑥̃𝑟𝑙 ← 𝑗;
28: 𝐶𝐿2 ← 𝐶𝐿2∖{(𝑟, 𝑙)} ;
29: end if
30: end while
31: return (𝑥̃)
32: end procedure

3.2.4 CM: Force the opening of new sites317

In some partial solutions, for a given institution 𝑘, there is a special case when no more UCS can318

be selected. This special case occurs when all UCS require a greater number of kernels than the319

ones that are available in the institution (𝐺̃𝑘 > 𝐻𝑗). In this case, it is required to unassign kernels320

from some active sites and assign them to an UCS. This additional step is not required when CM321

is applied for the first time because the method prioritizes assigning kernels to CSs instead HCUs.322

However, when CM is applied over partial solutions that were randomly modified, this additional323

14

step may be sometimes needed. The procedure KERNELS TRANSFER() is shown in Pseudo-code324

8. For each institution such that 𝑃𝑘 > 0, the candidate list 𝐶𝐿1 with UCSs is created (Step 4). In325

Step 6, the number of kernels to be transferred (𝑢3𝑗 (Φ)) and 𝑃𝐶𝑗 , and 𝛿𝑗 are computed. If there is326

no benefit (
∑︀

𝛿𝑗 = 0), another institution is selected to repeat the process. In the other case, the327

element with the highest benefit is selected (𝑗1) in Step 10. A second candidate list 𝐶𝐿2 is created328

to identify active sites such that some kernels could be released according to the criteria of Step 11.329

If 𝐶𝐿2 is empty, 𝑗1 is removed from 𝐶𝐿1 and another element is chosen. Otherwise, the nearest330

element of 𝐶𝐿2 to 𝑗1 is selected. The working parameters are updated in Step 17 and the solution331

is updated in Step 18. The sites with modified capacity (𝑗1 and 𝑗2) are joined to a candidate list332

𝐶𝐿3 in step 19. In Step 20, there is a subroutine that is required to deallocate demand of all the333

active sites that are near to 𝑗1 and 𝑗2. This subroutine is explained in the following paragraph.334

Then, the procedure shown in Pseudo-code 7 is called to allocate all the demand to complete a new335

feasible solution. All this process is repeated until
∑︀

𝑘∈𝐾 𝑃𝑘 = 0 or there is no possibility to select336

more candidate sites.337

Pseudocode 8 Kernels transfer

1: procedure Kernels transfer(𝒮, 𝐷1)
2: select solution 𝒮;
3: for (𝑘 ∈ 𝐾|𝑃𝑘 > 0) do
4: 𝐶𝐿1 ← {𝑗 ∈𝑀𝐵𝑘

|𝑦𝑗 = 0};
5: while (𝑃𝑘 > 0 and 𝐶𝐿1 ̸= ∅) do
6: compute 𝑢3𝑗 (Φ), 𝑃𝐶𝑗 and 𝛿𝑗 for each 𝑗 ∈ 𝐶𝐿1 according to (29), (30) and (31);
7: if (

∑︀
𝛿𝑗 = 0) then

8: break while;
9: end if

10: 𝑗1 ← arg max𝑗∈𝐶𝐿1
{𝛿𝑗};

11: 𝐶𝐿2 ← {𝑗 ∈𝑀𝑘|𝑣𝑗 ≥ 𝑢3𝑗1 , if (𝑗 ∈𝑀𝐵𝑘
) then (𝑦𝑗 = 1, 𝑣𝑗 −𝐻𝑗 ≥ 𝑢3𝑗1)};

12: if (𝐶𝐿2 = {∅}) then
13: 𝐶𝐿1 ← 𝐶𝐿1∖{𝑗1} ;
14: go to Step 10;
15: end if
16: 𝑗2 ← arg min𝑗∈𝐶𝐿2

{𝑑𝑗1𝑗2};
17: update working parameters: 𝑉𝑗1 ← 𝑉𝑗1 − 𝑢3𝑗1 , 𝑃𝑘 ← 𝑃𝑘 − 1, 𝑉𝑗2 ← 𝑉𝑗2 + 𝑢3𝑗1 ;

18: update solution: 𝑣𝑗1 ← 𝑣𝑗1 + 𝑢3𝑗1 , 𝑦𝑗1 ← 1, 𝑣𝑗2 ← 𝑣𝑗2 − 𝑢3𝑗1 ;
19: 𝐶𝐿3 ← {𝑗1, 𝑗2};
20: 𝑥̃← DEMAND DEALLOCATION(𝒮, 𝐶𝐿3, 𝐷1);
21: 𝑥̃← DEMAND ALLOCATION(𝒮);
22: 𝐶𝐿1 ← 𝐶𝐿1∖{𝑗1} ;
23: end while
24: end for
25: 𝒮 ← (𝑦, 𝑣, 𝑥̃);
26: return (𝒮)
27: end procedure

15

Demand deallocation338

Procedure DEMAND DEALLOCATION() show in Pseudo-code 9 is required every time kernels339

are unassigned from active sites. The objective is to deallocate all demand points from active sites340

of 𝐶𝐿1, but also of other active sites that are nearby at a maximum distance 𝐷1. In this case, 𝐷1341

is used to just modify the allocation decisions over an influence area instead deallocating the entire342

problem. This procedure is used as a step in Pseudo-code 8, in the deconstruction strategies, and343

in the local search procedures. In Step 2, all the involved active sites are stored in 𝐶𝐿2. For each 𝑗344

of 𝐶𝐿2, all demand point (𝑘, 𝑖) such that 𝑥̃𝑘𝑖 = 𝑗 are deallocated, updating the associated working345

parameters in Steps 6 and 9, and the solution in Step 7. Then, the decision variable 𝑥̃ is returned.346

Pseudocode 9 Deallocation of demand

1: procedure Demand Deallocation(𝒮, 𝐶𝐿1, 𝐷1)
2: 𝐶𝐿2 ← {𝑗 ∈𝑀 |𝑑𝑗𝑡 ≤ 𝐷1 for some 𝑡 ∈ 𝐶𝐿1}
3: for (𝑗 ∈ 𝐶𝐿2) do
4: 𝐷𝑃𝐿← {(𝑘, 𝑖)|𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁, 𝑥̃𝑘𝑖 = 𝑗};
5: for ((𝑘, 𝑖) ∈ 𝐷𝑃𝐿) do
6: update working parameters:

𝑤̃𝑘𝑖 ← 𝑤𝑘𝑖,
if (𝑘 ̸= 𝑘(𝑗)) then
𝑂𝑘 ← 𝑂𝑘 + 𝑤𝑘𝑖;

end if
7: update solution as follows: 𝑥̃𝑘𝑖 ←∞;
8: end for
9: update working parameters: 𝐶𝑗 ← 𝐾𝐶(𝑣𝑗), 𝐶𝐼𝑗 ← 𝛽𝑘(𝑗)𝐶𝑗 ;

10: end for
11: return (𝑥̃)
12: end procedure

3.3 Deconstruction phase347

Two deconstruction strategies are proposed for this problem: DS1 and DS2. The procedures and348

pseudo-codes are described in the following subsections.349

3.3.1 Deconstruction strategy 1 (DS1)350

In this first procedure, a random subset of SCSs is deselected in the solution and all the demand351

points in the influence area of these sites are deallocated. The first parameter to define is the352

number of sites to deselect in the solution according to 𝜌. The ceil of the multiplication between353

𝜌 and the total number of selected sites is used as a deconstruction parameter as is shown in the354

following equation:355

16

𝑛1 = ⌈
∑︁

𝑗∈𝑀𝐵

𝑦𝑗𝜌⌉ (16)

The procedure is shown in Pseudo-code 10. The number of SCS to deselect is calculated with356

Equation 16. In Step 3, all candidate sites such that 𝑦𝑗 = 1 are stored in 𝐶𝐿1. A random subset357

of 𝑛1 elements is chosen in Step 4. Then, the associated working parameters are updated in Step 5358

and the solution in Step 6. The subroutine DEMAND DEALLOCATION() shown in Pseudo-code359

9 is called for deallocating all the involved demand points. Finally, the initial solution has been360

partially destroyed and is returned as output.361

Pseudocode 10 Deconstruction based on new sites

1: procedure DS1(𝒮, 𝜌, 𝐷2)
2: compute 𝑛1 according to (16) and 𝜌;
3: 𝐶𝐿1 ← {𝑗 ∈𝑀𝐵|𝑦𝑗 = 1};
4: 𝐶𝐿2 ← random(𝐶𝐿1, 𝑛1);
5: for all 𝑗 ∈ 𝐶𝐿2 update working parameters: 𝐺̃𝑘(𝑗) ← 𝐺̃𝑘(𝑗)+𝑣𝑗 , 𝑃𝑘(𝑗) ← 𝑃𝑘(𝑗)+1, 𝑉𝑗 ← 𝑉𝑗 ;
6: for all 𝑗 ∈ 𝐶𝐿2 update the solution as follows: 𝑦𝑗 ← 0, 𝑣𝑗 ← 0;
7: 𝑥̃← DEMAND DEALLOCATION(𝒮, 𝐶𝐿2, 𝐷2);
8: 𝒮 ← (𝑦, 𝑣, 𝑥̃);
9: return (𝒮)

10: end procedure

3.3.2 Deconstruction strategy 2 (DS2)362

In the second deconstruction strategy, for a given number of active sites, kernels are unassigned,363

and the related demand is also deallocated. For each 𝑗 ∈𝑀 , an auxiliary binary parameter (𝜂𝑗) is364

used to determine if this site has assigned kernels. The equation is the following:365

𝜂𝑗 =

⎧⎨⎩1 if 𝑣𝑗 > 0

0 otherwise
(17)

The following equation determines the number of sites to unassing kernels:366

𝑛2 = |
∑︁
𝑗∈𝑀

𝜂𝑗𝜌| (18)

The procedure of DS2 is shown in Pseudo-code 11. The number of active sites to remove kernels367

is computed in Step 2 and the list is stored in 𝐶𝐿1 in Step 3. A random subset of these elements is368

chosen in Step 4. For each element of 𝐶𝐿2, the working parameters associated with the capacity and369

the solution are updated (Steps 5–9), if some of them belong to 𝑀𝐵, there is a minimum number370

of kernels (𝐻𝑗) that can not be removed to satisfy constraints (9). DEMAND DEALLOCATION371

is called in Step 10 to deallocating demand of the involved sites, and the solution is returned.372

17

Pseudocode 11 Deconstruction based on new kernels

1: procedure DS2(𝒮, 𝜌, 𝐷2)
2: compute 𝑛2 according to (18) and 𝜌;
3: 𝐶𝐿1 ← {𝑗 ∈𝑀 |𝑣𝑗 > 0};
4: 𝐶𝐿2 ← random(𝐶𝐿1, 𝑛2);
5: for (𝑗 ∈ 𝐶𝐿2) do
6: compute 𝑢 as follows: if (𝑗 ∈𝑀𝐵) then (𝑢← 𝑣𝑗 −𝐻𝑗) else (𝑢← 𝑣𝑗);
7: update working parameters: 𝑉𝑗 ← 𝑉𝑗 + 𝑢, 𝐺̃𝑘(𝑗) ← 𝐺̃𝑘(𝑗) + 𝑢;
8: update solution as follows: 𝑣𝑗 ← 𝑣𝑗 − 𝑢;
9: end for

10: 𝑥̃← DEMAND DEALLOCATION(𝒮, 𝐶𝐿2, 𝐷2);
11: 𝒮 ← (𝑦, 𝑣, 𝑥̃);
12: return (𝒮)
13: end procedure

3.4 Local search methods373

Two neighborhoods are proposed for this problem. Each can be used as a stand-alone strategy, or374

within a VND scheme as described below.375

Neighborhood 1376

The move 𝑚1(𝑗1, 𝑗2) is defined as transferring all the kernels of a candidate site 𝑗1 ∈ 𝑀𝐵𝑘
such377

that 𝑦𝑗1 = 1 to another candidate site 𝑗2 ∈ 𝑀𝐵𝑘
such that 𝑦𝑗2 = 0, 𝑣𝑗1 ≥ 𝐻𝑗2 , and 𝑣𝑗1 ≤ 𝑉𝑗2 .378

The neighborhood is the set of neighbors reachable from the solution 𝒮 by performing all possible379

moves 𝑚1(𝑗1, 𝑗2) for all 𝑗1 ∈ 𝑀𝐵𝑘
such that 𝑦𝑗1 = 1. We propose for large instances to bound the380

neighborhood by considering only the 𝑅 nearest sites from 𝑗1.381

Neighborhood 2382

The move 𝑚2(𝑗1, 𝑗2) is defined as transferring the largest amount of kernels from a HCU 𝑗1 ∈𝑀𝐴383

such that 𝑣𝑗1 > 0 to another HCU 𝑗2 ∈ 𝑀𝐴𝑘(𝑗1)
such that 𝑉𝑗2 > 0. The neighborhood is the set of384

neighbors reachable from the solution 𝒮 by performing all possible moves 𝑚2(𝑗1, 𝑗2) for all 𝑗1 ∈𝑀𝐴385

such that 𝑣𝑗1 > 0. We also propose for large instances to bound the neighborhood by considering386

only the 𝑅 nearest sites from 𝑗1.387

Local search 1388

The LS1 procedure is shown in Pseudo-code 13 in the Appendix. In this procedure, SCSs are389

considered to be unassigned from the solution. For each 𝑗 ∈ 𝑀𝐵|𝑦𝑗 = 1, a list of UCS sites is390

created (𝐶𝐿2). This list is composed of the 𝑅 nearest sites to 𝑗1 of the same institution. Then,391

the kernels are transferred to this site, and the allocation of demand must be adjusted. To this392

18

end, the DEMAND DEALLOCATION() and DEMAND ALLOCATION() procedures are called393

to solve again the allocation subproblem for the involved demand points. These steps generate a394

feasible solution that is compared with the best solution found so far. If the objective value of395

the current solution is better, the best solution is updated; else, the new solution is discarded and396

another element of 𝐶𝐿2 is evaluated. If any site of 𝐶𝐿2 produces a better solution, the element 𝑗1397

of 𝐶𝐿1 is removed and another one is evaluated. The procedure ends, when all the elements of 𝐶𝐿1398

were evaluated and there are no more interchanges that produce an improvement in the objective399

function. There is also a time limit that can be used if the local optima consume a significant400

amount of computing time.401

Local search 2402

The complete procedure for LS2 is shown in Pseudo-code 14 in the Appendix. In this local search,403

only HCUs are considered for transferring kernels to other HCUs of the same institution. In404

preliminary experiments, we found that including candidate sites does not generate a significant405

improvement. The steps are very similar to LS1 with slight differences. A first list 𝐶𝐿1 composed406

of all the HCUs with assigned kernels is created. Then, one element of this list is selected (𝑗1). A407

second list (𝐶𝐿2) of the 𝑅 nearest HCUs to 𝑗1 of the same institution is created. Then, the kernels408

are transferred and all the involved demand in the area is deallocated and the allocation procedure409

is called to complete a feasible solution. If the interchange produces a better solution, the best410

solution is updated. The procedure ends when neither interchange produces an improvement or411

when a computing time limit is reached.412

Variable Neighborhood Descent413

In the IG, the LS procedure is typically applied at each iteration. Though, a most robust method414

such as a VND can be applied. The VND is a strategy of the variable neighborhood search procedure415

where the local searches are performed in a systematic way. Different neighborhoods are explored416

sequentially. Typically, one explores first the least expensive to evaluate and so on. The process417

iterates over each neighborhood while improvements are found, applying the local search until418

meeting a local optima at each neighborhood. Then, the final solution is a local optima of all the419

explored neighborhoods. However, we are dealing with large instances, and finding a local optimal420

may consume a lot of resources. Therefore, a time limit is defined at each local search procedure421

to reduce the computing time leaving off to find the local optima in some cases. Pseudocode 12422

shows the VND procedure.423

19

Pseudocode 12 Variable Neighborhood Descent

procedure VND(𝒮)
𝒮* ← 𝒮
𝑡← 1;
while (𝑡 ≤ 𝑡max) do
𝒮 ← LS 𝑡(𝑅, 𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡);
if (𝑍(𝒮) < 𝑍(𝒮*)) then
𝒮* ← 𝒮;
𝑡← 1;

else
𝑡← 𝑡+ 1;

end if
end while

return (𝒮*)
end procedure

3.5 Optimization of the allocation subproblem (ALLOP)424

Note that when fixing the capacity decision variables as 𝑦𝑗 = 𝑦𝑗 ∀𝑗 ∈𝑀𝐵 and 𝑣𝑗 = 𝑣𝑗 ∀𝑗 ∈𝑀 , we425

are left with an allocation subproblem (ALLOP) that is easier to solve because it is considerable426

smaller. Not only many integer variables are eliminated from this model but many constraints427

become redundant as well. For instance, Constraints (7)-(12), (14), and (15) of MIFLUP are not428

considered in this subproblem because they are already satisfied. The resulting linear binary model429

has a single decision variable type 𝑥𝑘𝑖𝑗 . In this supbroblem, the right-hand side of constraints (22)430

and (23) is constant. The set 𝑀 is also reduced to the subset 𝑀* = {𝑗 ∈𝑀 |𝑎𝑗 + 𝑣𝑗 > 0}.431

We suggest solving this problem with an exact method as a final step of a heuristic solution432

of MIFLUP. The solution to this subproblem will optimize the allocation of demand to HCUs.433

Furthermore, since we have an entirely feasible solution from MIFLUP, the heuristic values 𝑥̃𝑘𝑖𝑗434

can be provided as input to an exact method.435

The proposed ALLOP subproblem is given by:436

Minimize 𝑓(𝑥) =
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀*

∑︁
𝑘∈𝐾

𝑤𝑘𝑖𝑑𝑖𝑗𝑥𝑘𝑖𝑗 (19)

subject to:
∑︁
𝑗∈𝑀*

𝑥𝑘𝑖𝑗 = 1 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 (20)

∑︁
𝑟∈𝐾:𝑟 ̸=𝑘(𝑗)

𝑥𝑟𝑖𝑗 ≤ (|𝐾| − 1)𝑥𝑘𝑖𝑗 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁, 𝑗 ∈𝑀*
𝑘 (21)

∑︁
𝑖∈𝑁

∑︁
𝑘∈𝐾

𝑤𝑘𝑖𝑥𝑘𝑖𝑗 ≤ 𝐾𝐶(𝑎𝑗 + 𝑣𝑗) 𝑗 ∈𝑀* (22)

∑︁
𝑖∈𝑁

∑︁
𝑟∈𝐾:𝑟 ̸=𝑘(𝑗)

𝑤𝑟𝑖𝑥𝑟𝑖𝑗 ≤ 𝐾𝐶(𝑎𝑗 + 𝑣𝑗)𝛽𝑘(𝑗) 𝑗 ∈𝑀* (23)

20

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀*

𝑘

𝑤𝑘𝑖𝑥𝑘𝑖𝑗 ≥ 𝛾𝑘
∑︁
𝑖∈𝑁

∑︁
𝑘∈𝐾

𝑤𝑘𝑖 𝑘 ∈ 𝐾 (24)

𝑥𝑘𝑖𝑗 ∈ {0, 1} 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁, 𝑗 ∈𝑀* (25)

4 Empirical assessment437

The proposed metaheuristic was evaluated using the data sets provided by Mendoza-Gómez and438

Ŕıos-Mercado [24]. This data is based on a case study applied in the State of Mexico, Mexico.439

This state is composed of 125 counties that are grouped into 19 jurisdictions as shown in Figure440

4. Four health care institutions are evaluated, SSA and IMSS-Bienestar (I1) were considered as a441

single institution for the uninsured population, IMSS (I2) for private sector workers, ISSSTE (I3)442

for federal workers, and ISSEMyM (I4) for state-level workers. Table 2 shows a summary of the443

number of demand points, HCUs, and candidate sites by jurisdiction. There are in total more than444

eight thousand demand points and a little over a thousand and four hundred HCUs in the state.445

Candidate sites were selected in places where there are no HCUs and with a minimum population446

size of over five hundred inhabitants. The distribution of demand points, HCUs, and candidate447

sites can be seen in Figure 5. I1 has the higher number of HCUs in the state with 1200 HCUs, I2448

and I4 are nearly one hundred HCUs, and I3 has only 37 HCUs. In Table 3, the actual capacity is449

compared with the demand assuming that a basic kernel can serve up to 3,000 inhabitants. As can450

be seen in the actual demand covered, the first three institutions have lower capacity than demand451

and I4 has 165% of additional capacity regarding the demand to be covered. In the problem, new452

basic kernels can be added to the system to increase the system’s capacity and reduce the total453

travel distance. In the experiments, new kernels can be added to each institution by jurisdiction to454

allocate all demand points and to avoid infeasible solutions. In the table, we show the additional455

basic kernels that we are suggesting to open for each institution. This additional capacity allows456

to have enough capacity for institution to cover internal demand as it can be seen in the last row.457

However, inter-institutional allocation can help to improve the access in regions where there is not458

enough capacity for a given institution.459

The proposed solution methods are tested in 18 instances created by grouping adjacent juris-460

dictions. The main characteristics of these instances are shown in Table 4. The range of demand461

points (DP) is between 547 to 2,940, the HCUs range is between 71 to 565, and the candidate sites462

range is between 103 to 461. For the results of the following subsections, we use the average values463

of this instance set.464

All procedures were coded in C++ and compiled with Visual Studio 2019, and run on a PC with465

2.30 GHz Intel Core i7-4712HQ processor, and 16GB of RAM. A C++ application with Concert466

Technology of ILOG CPLEX 20.1.0 was used to call the B&B algorithm.467

21

Figure 4: Identification of jurisdiction in the State of Mexico.

Figure 5: Location of demand points, HCUs, and candidates sites in the State of Mexico.

4.1 Fine-tuning of constructive method468

The goal of this experiment is to fine tune the algorithmic parameters for the constructive method.469

All instances were tested with the constructive method evaluating the three strategies Φ =(i), (ii),470

and (iii), and different distance bounds 𝐷1 = 5, 10, 15, 20, and 30 kilometers that represents the471

influence area for sites whose capacity is modified. The solution was initialized with 𝐷0 = 15472

kilometers. Figure 6 shows the performance of the constructive method comparing the objective473

22

Table 2: Instances size by jurisdiction.

HCUs Candidate Sites
Jurisdiction Demand Points I1 I2 I3 I4 Total I1 I2 I3 I4 Total

1 327 80 2 1 5 88 11 23 13 10 57
2 523 157 2 2 5 166 23 37 21 16 97
3 331 76 2 2 5 85 4 23 13 10 50
4 269 50 3 2 2 57 5 16 19 8 48
5 466 88 9 2 17 116 29 19 29 14 91
6 395 81 4 3 4 92 20 28 16 12 76
7 802 74 2 3 12 91 8 43 14 26 91
8 584 97 5 3 10 115 11 23 26 18 78
9 424 82 3 2 7 94 22 17 25 13 77
10 272 30 3 1 5 39 11 16 19 8 54
11 574 38 6 2 5 51 33 31 23 17 104
12 275 24 5 1 2 32 13 11 17 8 49
13 341 46 1 2 1 50 7 22 14 10 53
14 205 22 8 1 1 32 12 8 14 6 40
15 418 50 2 2 3 57 6 20 20 13 59
16 789 78 10 2 5 95 7 17 26 24 74
17 468 33 9 3 3 48 33 19 28 14 94
18 265 30 5 2 3 40 19 16 11 8 54
19 425 64 6 1 2 73 9 17 23 13 62

Total 8,153 1,200 87 37 97 1,421 283 406 371 248 1,308

Table 3: Actual and potential capacity in the system.

I1 I2 I2 I4 Total
Demand (x1000) 9,652 4,467 717 306 15,143

Actual basic kernels 2,448 1,194 170 270 4,082
Potential basic kernels 1,130 438 136 3 1,707

Actual demand covered (%) 76 80 71 265 81
Potential demand covered (%) 111 110 128 268 115

Table 4: Instances size by jurisdiction.

HCU Candidate Sites
n Jurisdictions DP I1 I2 I3 I4 Total I1 I2 I3 I4 Total
1 1,2 850 237 4 3 10 254 34 60 34 26 154
2 3,11 905 114 8 4 10 136 37 54 36 27 154
3 4,8 853 147 8 5 12 172 16 39 45 26 126
4 5,6 861 169 13 5 21 208 49 47 45 26 167
5 7,9 1,226 156 5 5 19 185 30 60 39 39 168
6 10,12 547 54 8 2 7 71 24 27 36 16 103
7 14,17 673 55 17 4 4 80 45 27 42 20 134
8 13,15 759 96 3 4 4 107 13 42 34 23 112
9 16,18,19 1,479 172 21 5 10 208 35 50 60 45 190
10 1,2,3 1,181 313 6 5 15 339 38 83 47 36 204
11 7,8 1,386 171 7 6 22 206 19 66 40 44 169
12 4,5,9 1,159 220 15 6 26 267 56 52 73 35 216
13 6,10,12 942 135 12 5 11 163 44 55 52 28 179
14 11,14,15,17 1,665 143 25 8 12 188 84 78 85 50 297
15 13,16,18,19 1,820 218 22 7 11 258 42 72 74 55 243
16 1,2,3,10,11,12 2,302 405 20 9 27 461 95 141 106 69 411
17 4,...,9 2,940 472 26 15 52 565 95 146 129 91 461
18 13,...,19 2,911 323 41 13 18 395 93 119 136 88 436

function value and the computing time for each set of instances combining different values of Φ474

and 𝐷1. In the left-hand side plot, we can observe that the best performance was obtained with475

a distance bound of 𝐷1 = 15 kilometers. The best objective values and the shortest interquartile476

ranges were obtained with this bound. Although strategy Φ =(iii) produced the lowest objective477

23

values, the difference is not significant. The computing time increases as 𝐷1 increases, as it is478

observed in the right-hand side plot. For 𝐷1 = 15 km, the computing time varies between 0.2 and479

3.8 seconds showing a very small difference in favor with Φ =(i) with an average time of 1.003480

seconds. Therefore, for the following experiments Φ =(i) and 𝐷1 = 15 km are used.481

D�

i) ii) iii) i) ii) iii) i) ii) iii) i) ii) iii) i) ii) iii) i) ii) iii) i) ii) iii) i) ii) iii) i) ii) iii) i) ii) iii)

D�

�
×

�

Figure 6: Result of the constructive method.

4.2 Iterated Greedy Algorithm with Deconstruction Strategies482

The objective of these experiments is to fine-tune the percentage of deconstruction, the number of483

iterations for the IG, and the algorithmic parameter 𝐷2 for the deconstruction procedures. To this484

end, the deconstruction strategies DS1 and DS2 were evaluated with the proposed methods H1 and485

H2 in Table 1. The 𝜌 values were 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The number486

of iterations was fixed to 100 and the values of 𝐷2 for deconstruction procedure were 2.5, 5, 7.5, and487

10 km. Table 5 shows the average relative improvements of the tested instances with respect to the488

initial solution found by the constructive method with Φ =(i), 𝐷0 = 15 km, and 𝐷1 = 15 km. As489

can be seen, the best results are found with 𝜌 = 0.2 and 𝐷2 = 2.5 km with an average improvement490

of 6.9% and 14.3% using the methods H1 and H2, respectively. The best results were found with491

the method H2. This can be attributed to the fact that H2 modifies the kernel assignment of HCUs492

and selected candidate sites, while the method H1 only takes into account candidate sites. Figure493

7 shows a boxplot of the iterations required to find the best solution for H1 and H2 for each value494

of 𝜌. For 𝜌 = 0.20, the maximum number of iterations was lower than 40 and 20 for H1 and H2,495

respectively. Therefore, in the following experiment, we consider that 50 iterations of the IG are496

enough to get good results for the tested instances.497

4.3 Local Search498

In these experiments, the two neighborhoods are evaluated within a simple local search algorithm.499

For both heuristics, the fine-tuned algorithmic parameters are 𝑅, 𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡, and 𝐷1. For the500

24

Table 5: Assessment of H1 and H2 in terms of relative improvement.

𝜌
Method 𝐷2 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Global

H1
IG{DS1, CM,–} 2.5 4.5 5.6 6.9 6.1 5.5 5.2 4.9 4.4 3.7 2.7 1.6 4.6

5.0 4.0 4.8 6.2 5.1 4.5 4.7 3.4 2.7 2.3 1.7 1.3 3.7
7.5 4.5 5.5 6.0 4.8 5.1 3.8 3.3 2.8 2.4 1.6 1.5 3.7
10.0 4.8 5.7 6.3 5.6 4.7 4.4 3.6 2.8 2.5 1.8 1.2 3.9

Global 4.4 5.4 6.3 5.4 5.0 4.5 3.8 3.2 2.7 1.9 1.4 4.0
H2

IG{DS2, CM,–} 2.5 14.0 13.8 14.3 11.4 11.1 9.4 8.2 6.5 5.5 3.2 1.7 9.0
5.0 13.2 13.3 11.2 8.9 7.2 6.6 4.9 3.9 3.2 2.9 2.3 7.1
7.5 13.0 10.6 8.4 7.1 5.4 4.9 3.9 3.8 3.2 2.6 2.3 5.9
10.0 11.7 10.2 8.5 5.4 5.1 4.1 3.5 3.0 3.4 2.5 2.5 5.4

Global 7.5 8.4 10.4 6.1 4.7 4.6 5.5 3.2 2.3 3.7 1.5 5.4
13.0 12.0 10.6 8.2 7.2 6.3 5.1 4.3 3.8 2.8 2.2 6.9

Table 6: Assessment of H1 and H2 in terms of running time (CPU seconds).

𝜌
Method 𝐷2 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Global

H1
IG{DS1, CM,–} 2.5 24 27 32 35 39 42 45 49 53 55 60 42

5.0 27 32 38 42 47 51 55 59 62 65 70 50
7.5 30 35 41 46 52 56 59 63 67 70 74 54
10.0 33 37 44 48 53 59 61 64 69 72 76 56

Global 29 33 39 43 48 52 55 59 63 66 70 50
H2

IG{DS2, CM,–} 2.5 26 28 32 35 37 39 40 42 43 43 43 37
5.0 29 33 37 39 41 43 44 45 45 46 46 41
7.5 32 36 40 42 43 45 45 46 46 46 47 42
10.0 34 38 41 44 45 46 47 49 50 51 52 45

Global 30 34 37 40 41 43 44 45 46 47 47 41

H1 H2

� �

Figure 7: Assessment of H1 and H2 in terms of number of iterations required to find best solution.

first parameter, values of 1, 3, 5, and 10 sites were considered. Two contrasting time limits were501

evaluated: 60 seconds and 1 hour. The first time limit is proposed thinking about the algorithm502

being implemented in the iterative process, and the second time limit is proposed to evaluate the503

potential of the local search as a simple solution method. In these experiments, the initial solution504

25

was obtained with CM with Φ =(i), 𝐷0 = 15 km, and 𝐷1 = 15 km. Table 7 shows the average505

percentage of improvement and the average computing time for each value of 𝑅 and each time limit.506

In all the cases, LS2 has better performance in the solution improvement and computing time. For507

LS1 the cost related to the computing time is very high since 1.70% of additional improvement is508

reached when the time limit is changed from 60 seconds to 1 hour, with a difference in the average509

computing time of 472 seconds. In the case of LS2, the additional improvement is about 2.1%,510

but the average time changed from 17 seconds to only 119 seconds, despite the time limit being511

set to 3,600 seconds. This means that local optima were found in most of the cases. The best512

improvement for LS1 was found with 𝑅 = 5 for a time limit of 60 seconds, and 𝑅 = 10 for a time513

limit of one hour. For LS2, the best results were found with 𝑅 = 10 in both cases. In the following514

experiment for LS1 and LS2, we fixed the input parameters to 𝑅 = 5 and 𝑅 = 10, respectively.515

Table 7: Assessment of local search.

Average improvement (%) Average CPU time (s)
𝑅 𝑅

Time limit 1 3 5 10 1 3 5 10
LS1 60 s 1.9 4.1 4.2 4.0 14 36 43 46

1 h 1.9 5.0 6.3 7.7 43 281 718 994

LS2 60 s 2.0 4.6 5.2 7.9 3 17 20 28
1 h 2.0 4.7 7.6 13.6 3 22 65 389

4.4 Assessment of the Iterated Greedy Algorithm516

In this experiments, the propose heuristic methods shown in Table 1 are applied to the instance517

set with the fine-tuned parameters of previous experiment. For the ALLOP optimization, a MIP518

start strategy is used, this means that the heuristic solution of variables 𝑥̃𝑘𝑖 is used as the initial519

solution of 𝑥𝑘𝑖𝑗for the optimization, reducing the computing time. All the experiments were run520

with 50 iterations and a computing time limit of one-hour for the IG and one hour for the solution521

of ALLOP (using CPLEX). The solution’s performance comparing the average improvement (%)522

(taking as reference constructive method solution with Φ =(i), 𝐷0 = 15 km, and 𝐷1 = 15 km)523

and the average computing times are shown in Figure 8 for each method. Better results are found524

when DS1 and DS2 are applied in that order into the IG with an average improvement of 14.3%.525

The best performance when the local search is integrated in the IG is found using the VND12 with526

an average improvement of 24.3% requiring 3,024 seconds on average. The allocation optimization527

was applied to these two last methods in H9 and H10. Similar results were found using VND12528

and VND12; with an average improvement of 43.2% and 5,834 seconds on average for H9, and an529

average improvement of 42.9% in 5,835 seconds on average for H10.530

To evaluate the algorithmic components, some experiments were carried out to show the contri-531

bution of each component in metaheuristic H9 which offers the best improvement. Table 8 shows532

the objective function values of different heuristic methods present in H9. The most basic heuristic533

26

H3H2H1
H4

H6

H7

H5

H6

H9
H10

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 5 10 15 20 25 30 35 40 45 50

C
P

U
 T

im
e
 (

s)

Improvement (%)

Figure 8: Average results applying different strategies.

is the CM in column 2, in H2, the CM was embedded in the IG, H7 includes the VND in the IG,534

and H9 represents the final metaheuristic that includes the ALLOP optimization. The IG reduces535

the solution of CM by 24.3% on average. The addition of VND12 decreases on average 12.0% the536

solutions obtained with the IG. The ALLOP optimization reduces 23.9% on average the solutions537

of the heuristic 𝐻7. In general, the most complex heuristic (𝐻9) decreases by 43.2% on average538

the objective function values from the simple constructive method. The Friedman test, a non-539

parametric statistical test to identify differences in treatments across multiple test attempts, was540

applied to these experiment. The results fo this test showed that there was a significant difference541

in the median of the objective function values between the solutions of the heuristic methods using542

a 95% confidence level. Concluding with this, each component in the metaheuristic contributes543

to the improvement of the solutions. In the sixth column, the objective function values (OFV)544

obtained with the exact method under a 2-hours time limit are also provided to compare the results.545

NFS indicates a no feasible solution found with the exact method. The relative gap is shown in the546

last column as a reference of solution quality. Comparing the solutions of the exact method with547

the hybrid metaheuristic 𝐻9, only 6 out of 11 solved instances were better using the exact method548

with a very slight difference. However, the exact method was not able to find solutions in 7 out of549

18 instances tested, most of them the largest instances.550

27

Table 8: Assessment of different algorithmic components (solutions 1× 106 km).

(H2) (H7) (H9) B&B(2h)
Instances CM IG{DS1+DS2,CM,–} IG{DS1+DS2,CM,VND12} (3)+ALLOP(1h) OFV Relative Gap

1 1.38 1.23 1.16 0.85 0.83 4.58
2 6.17 5.58 4.72 3.46 28.92 89.78
3 1.68 1.58 1.43 0.94 0.96 10.36
4 10.71 8.70 6.99 4.21 NFS –
5 1.14 1.14 1.13 0.76 0.75 0.05
6 6.62 5.79 5.34 4.11 3.82 1.15
7 13.17 12.29 12.03 10.57 10.55 2.60
8 8.50 6.29 4.91 3.46 3.13 28.34
9 16.16 11.65 8.43 7.57 NFS –
10 2.01 1.80 1.71 1.18 3.43 68.46
11 1.73 1.60 1.60 1.06 1.04 1.58
12 6.76 6.14 4.98 3.32 14.34 100.00
13 11.59 10.92 10.32 6.34 29.42 100.00
14 30.21 21.29 18.45 17.68 NFS –
15 19.51 13.83 9.82 8.66 NFS –
16 15.27 13.04 11.47 10.15 NFS –
17 11.83 10.73 9.18 7.32 NFS –
18 43.56 30.89 28.23 25.44 NFF –

5 Conclusions551

In this paper, we proposed an algorithmic framework for solving the multi-institutional regional-552

ization of the primary HCUs problem. With this framework, several components were developed553

and assessed. The best results were found by an iterated greedy algorithm with a variable neigh-554

borhood descent procedure enhanced by an exact optimization of the allocation sub-problem. This555

allocation subproblem is obtained by fixing some location decisions beforehand. This metaheuris-556

tic solved instances of up to 3,000 demand points that are difficult to solve with exact methods557

such as the B&B algorithm of commercial solvers. The IG is based on a constructive method that558

systematically selects new sites, adds new kernels to the systems, and solves the demand allocation559

heuristically. This method generates a greedy feasible solution. Two deconstructive strategies are560

proposed: the first one randomly removes new sites of the solution and the second one removes561

assigned kernels of random sites. For the VND, two neighborhoods are proposed. The first one is562

based on the interchange of selected and unselected candidate sites, and the other one is based on563

the interchange of kernels between a pair of sites. Some mechanisms are considered to reduce the564

computing time of the complete method since it is proposed for large-scale instances. Although the565

complete metaheuristic produced the best results, alternative variations are also evaluated.566

After fine tuning its individual components, the metaheuristic was applied to a case study based567

on the State of Mexico public health care system. With this information, eight instances with a568

range between 547 to 2,940 demand points were solved. For the IG, 20% of deconstruction and a569

maximum of 50 iterations provide good performance in both deconstrutive strategies. A time limit570

was set up for the IG iterations and another hour was set for the allocation optimization. The571

complete metaheuristic generated an improvement of 43.2% on average in the quality of solutions572

28

regarding the CM solutions. The simple IG produced an average improvement of 14.6% regarding573

the CM solutions. The inclusion of the VND strategy generated an additional improvement of574

9.7% on average, and the allocation optimization generated an additional improvement of 18.8% on575

average. The instances were also compared with an exact algorithm, CPLEX branch-and-bound576

method under a running time limit of two hours. No optimal solutions were found and solutions577

were only found for 11 out of 18 instances. In 6 out of 11 instances, better solutions were found578

with CPLEX with an average improvement of 3.9% with respect to the metaheuristic, although at579

a much higher computing time. In the other instances, the metaheuristic provided better solutions.580

While the algorithmic parameters have been fine-tuned for this specific case study, clearly, further581

experiments are necessary for implementing the metaheuristic in different classes of instances.582

For future research, alternative metaheuristics that take advantage of the proposed constructive583

method can be also implemented and assessed. The importance of providing good quality solutions584

is the direct effect on the access and quality of these types of services. Additionally, the developed585

metaheuristic can be used for other problems that share characteristics of the addressed problem586

such as the capacitated location-allocation features in a segmented system.587

Acknowledgments: The research of the first author was supported by a postdoctoral fellow-588

ship from the Mexican Council of Humanities, Sciences and Technologies (CONAHCyT), and by589

Tecnológico de Monterrey. The second author was supported by UANL (grants UANL-PAICYT590

CE1416–20 and CE1837-21) and CONAHCyT (grants FC-2016-2/1948 and CF-2023-I-880).591

References592

[1] S. Ahmadi and I.H. Osman. Greedy random adaptive memory programming search for the593

capacitated clustering problem. European Journal of Operational Research, 162(1):30–44, 2005.594

[2] A. Ahmadi-Javid and N. Ramshe. A stochastic location model for designing primary healthcare595

networks integrated with workforce cross-training. Operations Research for Health Care, 24:596

100226, 2020.597

[3] A. Ahmadi-Javid, P. Seyedi, and S.S. Syam. A survey of healthcare facility location. Computers598

& Operations Research, 79:223–263, 2017.599

[4] R. Baldacci, E. Hadjiconstantinou, V. Maniezzo, and A. de Mingozzi. A new method for600

solving capacitated location problems based on a set partitioning approach. Computers &601

Operations Research, 29(4):365–386, 2002.602

[5] M. Boccia, A. Sforza, C. Sterle, and I. Vasilyev. A cut and branch approach for the capacitated603

𝑝-median problem based on fenchel cutting planes. Journal of Mathematical Modelling and604

Algorithms, 7(1):43–58, 2008.605

29

[6] A. Casado, S. Bermudo, A.D. López-Sánchez, and J. Sánchez-Oro. An iterated greedy al-606

gorithm for finding the minimum dominating set in graphs. Mathematics and Computers in607

Simulation, 207:41–58, 2023.608

[7] A. Ceselli and G. Righini. A branch-and-price algorithm for the capacitated 𝑝-median problem.609

Networks, 45(3):125–142, 2005.610

[8] A.R. de Aguiar, V.M. Fo, and L. da Silva Mota. Optimization models in the location of611

healthcare facilities: A real case in Brazil. Journal of Applied Operational Research, 4(1):612

37–50, 2012.613

[9] J.A. Dı́az and E. Fernández. Hybrid scatter search and path relinking for the capacitated614

𝑝-median problem. European Journal of Operational Research, 169(2):570–585, 2006.615

[10] X. Feng, F. Zhao, G. Jiang, T. Tao, and X. Mei. A tabu memory based iterated greedy616

algorithm for the distributed heterogeneous permutation flowshop scheduling problem with617

the total tardiness criterion. Expert Systems with Applications, 238:121790, 2024.618

[11] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of619

Global Optimization, 6(2):109–133, 1995.620

[12] K. Fleszar and K. S. Hindi. An effective VNS for the capacitated 𝑝-median problem. European621

Journal of Operational Research, 191(3):612–622, 2008.622

[13] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-623

Completeness. Freeman, New York, 1979.624

[14] M. Gnägi and P. Baumann. A matheuristic for large-scale capacitated clustering. Computers625

& Operations Research, 132:105304, 2021.626

[15] O. Gokalp. An iterated greedy algorithm for the obnoxious 𝑝-median problem. Engineering627

Applications of Artificial Intelligence, 92:103674, 2020.628

[16] P.M. Griffin, C.R. Scherrer, and J.L. Swann. Optimization of community health center loca-629

tions and service offerings with statistical need estimation. IIE Transactions, 40(9):880–892,630

2008.631

[17] W. Gu, X. Wang, and S.E. McGregor. Optimization of preventive health care facility locations.632

International Journal of Health Geographics, 9(1):17, 2010.633

[18] J. Hoffmann, J.S. Neufeld, and U. Buscher. Iterated greedy algorithms for customer order634

scheduling with dedicated machines. IFAC-PapersOnLine, 55(10):1594–1599, 2022.635

30

[19] G. Laporte, S. Nickel, and F. Saldanha da Gama, editors. Location Science. Springer, Cham,636

Switzerland, 2nd edition, 2019.637

[20] F. Liu, G. Li, C. Lu, L. Yin, and J. Zhou. A tri-individual iterated greedy algorithm for the638

distributed hybrid flow shop with blocking. Expert Systems with Applications, 237:121667,639

2024.640

[21] V. Maniezzo, A. Mingozzi, and R. Baldacci. A bionomic approach to the capacitated 𝑝-median641

problem. Journal of Heuristics, 4(3):263–280, 1998.642

[22] V. Marianov and P. Taborga. Optimal location of public health centres which provide free and643

paid services. Journal of the Operational Research Society, 52(4):391–400, 2001.644

[23] V. Marianov, M. Ŕıos, and P. Taborga. Finding locations for public service centres that645

compete with private centres: Effects of congestion. Papers in Regional Science, 83(4):631–646

648, 2004.647

[24] R. Mendoza-Gómez and R.Z. Ŕıos-Mercado. Regionalization of primary health care units with648

multi-institutional collaboration. Socio-Economic Planning Sciences, 83:101343, 2022.649

[25] R. Mendoza-Gómez and R.Z. Ŕıos-Mercado. Location of primary health care centers for de-650

mand coverage of complementary services. Computers & Industrial Engineering, 169:108237,651

2022.652

[26] R. Mendoza-Gómez, R.Z. Ŕıos-Mercado, and K.B. Valenzuela-Ocaña. An efficient decision-653

making approach for the planning of diagnostic services in a segmented healthcare system.654

International Journal of Information Technology & Decision Making, 18(5):1631–1665, 2019.655

[27] R. Mendoza-Gómez, R.Z. Ŕıos-Mercado, and K.B. Valenzuela-Ocaña. An iterated greedy656

algorithm with variable neighborhood descent for the planning of specialized diagnostic services657

in a segmented healthcare system. Journal of Industrial and Management Optimization, 16658

(2):857–885, 2020.659

[28] P. Mitropoulos, I. Mitropoulos, I. Giannikos, and A. Sissouras. A biobjective model for the660

locational planning of hospitals and health centers. Health Care Management Science, 9(2):661

171–179, 2006.662

[29] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations Re-663

search, 24:1097–1100, 1997.664

[30] M. Ndiaye and H. Alfares. Modeling health care facility location for moving population groups.665

Computers & Operations Research, 35(7):2154–2161, 2008.666

31

[31] I.H. Osman and S. Ahmadi. Guided construction search metaheuristics for the capacitated667

𝑝-median problem with single source constraint. Journal of the Operational Research Society,668

58(1):100–114, 2007.669

[32] I.H. Osman and N. Christofides. Capacitated clustering problems by hybrid simulated an-670

nealing and tabu search. International Transactions in Operational Research, 1(3):317–336,671

1994.672

[33] H. Qin, Y. Han, B. Zhang, L. Meng, Y. Liu, Q. Pan, and D. Gong. An improved iterated673

greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem. Swarm674

and Evolutionary Computation, 69:100992, 2022.675

[34] R. Ruiz and T. Stützle. A simple and effective iterated greedy algorithm for the permutation676

flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049,677

2007.678

[35] S.S.R. Shariff, N.H. Moin, and M. Omar. Location allocation modeling for healthcare facility679

planning in Malaysia. Computers & Industrial Engineering, 62(4):1000–1010, 2012.680

[36] H. K. Smith, P. R. Harper, C. N. Potts, and A. Thyle. Planning sustainable community health681

schemes in rural areas of developing countries. European Journal of Operational Research, 193682

(3):768–777, 2009.683

[37] S. Taymaz, C. Iyigun, Z. P. Bayindir, and N. P. Dellaert. A healthcare facility location problem684

for a multi-disease, multi-service environment under risk aversion. Socio-Economic Planning685

Sciences, 71:100755, 2020.686

[38] W. Zhang, K. Cao, S. Liu, and B. Huang. A multi-objective optimization approach for health-687

care facility location-allocation problems in highly developed cities such as Hong Kong. Com-688

puters, Environment and Urban Systems, 59:220–230, 2016.689

[39] W. Zou, J. Zou, H. Sang, L. Meng, and Q. Pan. An effective population-based iterated greedy690

algorithm for solving the multi-AGV scheduling problem with unloading safety detection.691

Information Sciences, 657:119949, 2024.692

Appendix693

Definition of auxiliary working parameters694

The auxiliary working parameter in the metaheuristic are the following:695

32

𝑑𝑗𝑙 Distance from site 𝑗 to site 𝑙.696

𝑤̃𝑘𝑖 Number of unallocated demand of institution 𝑘 in demand point 𝑖; 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 .697

𝜆𝑘𝑖 Distance from demand of institution 𝑘 in origin 𝑖 to the allocated site; 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 .698

𝐶𝑗 Residual capacity in site 𝑗; 𝑗 ∈𝑀 .699

𝐶𝐼𝑗 Residual capacity for the demand of other institutions in site 𝑗; 𝑗 ∈𝑀 .700

𝑉𝑗 Maximum number of additional kernels that can be installed site 𝑗; 𝑗 ∈𝑀 .701

𝑂𝑘 Maximum number of demand that can be assigned to other institutions; 𝑘 ∈ 𝐾.702

𝐺̃𝑘 Number of unassigned kernels of institution 𝑘; 𝑘 ∈ 𝐾.703

𝑃𝑘 Maximum number of CS that can be selected for institution 𝑘; 𝑘 ∈ 𝐾.704

The following working parameters must be calculated in the procedures of the metaheuristic.705

The distance for each demand point (𝑘, 𝑖) to the allocated active site 𝑗 is calculated as follows:706

𝜆𝑘𝑖 =

⎧⎨⎩𝑑𝑖𝑗 if 𝑥̃𝑘𝑖 = 𝑗

𝐷0 otherwise
(26)

The number of kernels to add for each 𝑗 ∈ 𝐶𝐿 in Pseudo-code 4 is determined as follows:707

708

𝑢1𝑗 (Φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max{𝐻𝑗 , 1} for strategy Φ = (i)

min{𝑉𝑗 , 𝐺̃𝑘(𝑗)} for strategy Φ = (ii)

max{𝐻𝑗 ,min{⌈𝑉𝑗/2⌉, 𝐺̃𝑘(𝑗)}} for strategy Φ = (iii)

(27)

The number of kernels to add for each 𝑗 ∈ 𝐶𝐿 in Pseudo-code 6 are the following:709

710

𝑢2𝑗 (Φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for strategy Φ = (i)

min{𝑉𝑗 , 𝐺̃𝑘(𝑗)} for strategy Φ = (ii)

min{⌈𝑉𝑗/2⌉, 𝐺̃𝑘(𝑗)} for strategy Φ = (iii)

(28)

The number of kernels to add in the active site 𝑗 in pseudo-code 8 is calculated as follows:711

𝑢3𝑗 = max{𝐻𝑗 , 1} (29)

The potential capacity for each 𝑗 ∈ 𝐶𝐿 according to 𝑢𝑝𝑗 (Φ) is the following:712

𝑃𝐶𝑗 = 𝐾𝐶 × 𝑢𝑝𝑗 (Φ) 𝑝 = 1, 2, 3 (30)

The benefit in the objective function of each element of the candidate list is calculated as follows:713

𝛿𝑗 =
∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑁 |𝑃𝐶𝑗⩾𝑤̃𝑘𝑖

max{𝑤̃𝑘𝑖(𝜆𝑘𝑖 − 𝑑𝑖𝑗), 0} (31)

33

The benefit of allocating the demand (𝑟, 𝑖) to the active site 𝑗 is computed as follows:714

715

𝜃𝑘𝑖 = max{𝑤𝑘𝑖(𝜆𝑘𝑖 − 𝑑𝑖𝑗), 0} (32)

Pseudo-code of local search strategies716

The Pseudo-code of LS1 is the following:717

Pseudocode 13 First-improvement local search for the interchange of sites

1: procedure LS1(𝒮, 𝑅, 𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡, 𝐷1)
2: 𝒮* ← 𝒮;
3: 𝒮0 ← 𝒮;
4: while (Improvement = true and time < 𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡) do
5: select solution 𝒮;
6: 𝐶𝐿1 ← {𝑗 ∈𝑀𝐵|𝑦𝑗 = 1};
7: while (𝐶𝐿1 ̸= ∅) do
8: select an element 𝑗1 ∈ 𝐶𝐿1;
9: 𝐶𝐿2 ← {𝑗 ∈𝑀𝐵𝑘(𝑗1)

|𝑌𝑗 = 0, 𝑣𝑗1 ≥ 𝐻𝑗 , 𝑣𝑗1 ≤ 𝑉𝑗}
10: 𝐶𝐿2 ← the 𝑅 nearest elements to 𝑗1 from 𝐶𝐿2.
11: while (𝐶𝐿2 ̸= ∅) do
12: select an element 𝑗2 ∈ 𝐶𝐿2;
13: update working parameters: 𝑉𝑗1 ← 𝑉𝑗1 + 𝑣𝑗1 , 𝑉𝑗2 ← 𝑉𝑗2 − 𝑣𝑗1 ;
14: update solution: 𝑣𝑗2 ← 𝑣𝑗1 , 𝑣𝑗1 ← 0, 𝑦𝑗1 ← 0, 𝑦𝑗2 ← 1;
15: 𝐶𝐿3 ← {𝑗1, 𝑗2}
16: 𝑥̃← DEMAND DEALLOCATION(𝒮, 𝐶𝐿3, 𝐷1);
17: 𝑥̃← DEMAND ALLOCATION(𝒮);
18: if (𝑍(𝒮) < 𝑍(𝒮*)) then
19: 𝒮* ← 𝒮;
20: 𝒮0 ← 𝒮;
21: go to Step 5;
22: else
23: 𝒮 ← 𝒮0;
24: end if
25: 𝐶𝐿2 ← 𝐶𝐿2∖{𝑗2};
26: end while
27: 𝐶𝐿1 ← 𝐶𝐿1∖{𝑗1};
28: if (𝐶𝐿1 = ∅) then
29: Improvement = false;
30: end if
31: end while
32: end while
33: return (𝒮*)
34: end procedure

The Pseudo-code of LS2 is the following:718

34

Pseudocode 14 Local search for the interchange of new capacity

1: procedure LS2(𝒮, 𝑅, 𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡, 𝐷1)
2: 𝒮* ← 𝒮;
3: 𝒮0 ← 𝒮;
4: while (Improvement = true and time < 𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡) do
5: select solution 𝒮;
6: 𝐶𝐿1 ← {𝑗 ∈𝑀𝐴|𝑣𝑗 > 0};
7: while (𝐶𝐿1 ̸= ∅) do
8: select an element 𝑗1 ∈ 𝐶𝐿1;
9: 𝐶𝐿2 ← {𝑗 ∈𝑀𝐴𝑘(𝑗1)

|𝑉𝑗 > 0}
10: 𝐶𝐿2 ← the 𝑅 nearest elements to 𝑗1 from 𝐶𝐿2.
11: while (𝐶𝐿2 ̸= ∅) do
12: select an element 𝑗2 ∈ 𝐶𝐿2;
13: update working parameters:

let be 𝑢← min{𝑣𝑗1 , 𝑉𝑗2}, 𝑉𝑗1 ← 𝑉𝑗1 + 𝑢, 𝑉𝑗2 ← 𝑉𝑗2 − 𝑢;
14: update solution: 𝑣𝑗2 ← 𝑣𝑗2 + 𝑢, 𝑣𝑗1 ← 𝑣𝑗1 − 𝑢;
15: 𝐶𝐿3 ← {𝑗1, 𝑗2}
16: 𝑥̃← DEMAND DEALLOCATION(𝒮, 𝐶𝐿3, 𝐷1);
17: 𝑥̃← DEMAND ALLOCATION(𝒮);
18: if (𝑍(𝒮) < 𝑍(𝒮*)) then
19: 𝒮* ← 𝒮;
20: 𝒮0 ← 𝒮;
21: go to Step 5;
22: else
23: 𝒮 ← 𝒮0;
24: end if
25: 𝐶𝐿2 ← 𝐶𝐿2∖{𝑗2};
26: end while
27: 𝐶𝐿1 ← 𝐶𝐿1∖{𝑗1};
28: if (𝐶𝐿1 = ∅) then
29: Improvement = false;
30: end if
31: end while
32: end while
33: return (𝒮*)
34: end procedure

35

	Introduction
	Problem Description
	Formulation

	Proposed metaheuristic
	Initialization procedure
	Constructive method (CM)
	CM: Open new facilities
	CM: Addition of new kernels
	CM: Demand allocation
	CM: Force the opening of new sites

	Deconstruction phase
	Deconstruction strategy 1 (DS1)
	Deconstruction strategy 2 (DS2)

	Local search methods
	Optimization of the allocation subproblem (ALLOP)

	Empirical assessment
	Fine-tuning of constructive method
	Iterated Greedy Algorithm with Deconstruction Strategies
	Local Search
	Assessment of the Iterated Greedy Algorithm

	Conclusions

