Regionalization of Primary Health Care Units: An Iterated Greedy

Algorithm for Large-Scale Instances

Rodolfo Mendoza-Goémez *
Tecnolégico de Monterrey
School of Engineering and Science
Eugenio Garza Sada SN, Cerro Gordo
Ledén, Guanajuato 37190, Mexico

E-mail: rodolfomendoza@tec.mx

Roger Z. Rios-Mercado
Universidad Auténoma de Nuevo Leén (UANL)
Graduate Program in Electrical Engineering
Av. Universidad s/n, Cd. Universitaria
San Nicolas de los Garza, Nuevo Leén 66455, Mexico

E-mail: roger.rios@Quanl. edu.mx

September 2023
Revised: December 2023

aCorresponding author

10

11

12

13

14

15

Abstract

In this paper, we study the problem of multi-institutional regionalization of primary health
care units. The problem consists of deciding where to place new facilities, capacity expansions
for existing facilities, and demand allocation in a multi-institutional system to minimize the total
travel distance from demand points to health care units. It is known that traditional exact meth-
ods as branch-and-bound are limited to solving small- to medium-size instances of the problem.
Given that real world-instances can be large, in this paper we propose an iterated greedy algorithm
with variable neighborhood descent search for handling large-scale instances. Within this solution
framework, several methods are developed. A greedy constructive method and two deconstruction
strategies are developed. Another interesting component is the exact optimization of a demand
allocation subproblem that is obtained when the location of facilities is previously fixed. An em-
pirical assessment using real-world data from the State of Mexico’s Public Health Care System is
carried out. The results demonstrate the effectiveness of the proposed metaheuristic in handling

large-scale instances.

Keywords: Public health care planning; Facility location; Metaheuristics; Iterated greedy algorithm.

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

1 Introduction

Discrete facility location is an important area in operations research and computer science. There
are many applications in industry and the public sector for a wide range of problems that include
factories, warehouses, distribution centers, retailer stores, schools, police stations, health care units,
ambulance stations, offices, and so on. An extensive recent survey of location models is provided
by Laporte et al. [19], and Ahmadi-Javid et al. [3] provide an extensive survey of location models
applied to health care. Some contributions related to the locational planning of health care units
are proposed by Marianov and Taborga [22], Marianov et al. [23], Griffin et al. [16], Ndiaye and
Alfares [30] , Smith et al. [36], Gu et al. [17], Shariff et al. [35], and de Aguiar et al. [8]. Others, such
as Mitropoulos et al. [28], Zhang et al. [38] and Mendoza-Gémez and Rios-Mercado [25], address
multi-objective optimization problems. Furthermore, works integrating stochastic parameters are
explored by Taymaz et al. [37] and Ahmadi-Javid and Ramshe [2].

In this paper, we are dealing with the problem of regionalization of primary health care units
(HCUs) in a segmented public system proposed by Mendoza-Gémez and Rios-Mercado [24]. We
refer to this problem as the Multi-Institution Facility Location and Upgrading Problem (MIFLUP).
The problem consists of determining the location of new capacity in the system. This can be done
by opening new facilities or adding more capacity to the existing HCUs. The allocation of demand
is required because the capacity of HCUs is limited. There is a set of institutions, and each
institution has a demand to serve at each demand point, but when the capacity is not enough to
fulfill the demand or there are no HCUs nearby, collaboration among institutions can be done to
share the services. In this case, the allocation of demand to other institutions can be done, but this
is constrained by a set of policies. The general objective of this problem is to minimize the total
weighted distance from demand points to HCUs. The main goals are to improve the population’s
access to these facilities and to ensure a minimum quality level in the provision of primary health
care services.

This problem can be seen as a variation of the capacitated p-median problem (CPMP) with
additional side constraints. The objective of this problem is to find the optimal location of p
facilities, considering distances and capacities for the service to be given by each median. The
CPMP problem has been proven to be N'P-hard by a reduction from the p-median problem [13].
This means that optimal solutions can be difficult to obtain for larger instances of the problem
using exact algorithms. The MIFLUP includes additional features as the capacity setting and the
inter-institutional allocation, requiring us to design alternative solutions methods for large-scale
instances.

Among the exact approaches that have been proposed for the CPMP, a branch-and-price al-
gorithm that exploits column generation, heuristics, and branch-and-bound to compute optimal

solutions for the CPMP is proposed by Ceselli and Righini [7]. In Boccia et al. [5], a cutting plane

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

algorithm, based on Fenchel cuts, is used to reduce the integrality gap of hard CPMP instances.
Related to heuristic methods, one of the first metaheuristics is proposed by Osman and Christofides
[32]. They propose a hybrid simulated annealing and a Tabu search algorithm. Maniezzo et al.
[21] propose a bionomic algorithm and a local search for the CPMP. Baldacci et al. [4] propose
an exact algorithm based on a set partitioning formulation. Diaz and Ferndndez [9] combine Scat-
ter Search and path relinking algorithms, using GRASP (Greedy Randomized Adaptive Search
Procedure) to generate the initial reference set. Ahmadi and Osman [1] propose a new solution
framework based on GRASP and adaptative memory programming. Then, a guided construction
search metaheuristics is proposed by Osman and Ahmadi [31]. Recently, Gnégi and Baumann [14]
propose a metaheuristic with decomposition strategies.

Work on facility location models on segmented health care systems has been done by Mendoza-
Goémez et al. [26] and Mendoza-Gémez et al. [27]. They address the problem of locating specialized
health care equipment in the Mexican Health Care System (MHCS). A hybrid metaheuristic based
on the iterated greedy algorithm is proposed. In fact, that work has similarities with the present
work that we attempt to exploit in the development of our solution procedure. A related model
for HCUs applied to the MHCS is presented by Mendoza-Gémez and Rios-Mercado [25]. In that
work, one institution is considered in the system.

The problem addressed in this work is introduced by Mendoza-Gémez and Rios-Mercado [24].
In that work, an integer programming model is proposed. Empirical evidence using branch-and-
bound made clear the need for heuristics to handle large-scale instances. To the best of our
knowledge, there are no heuristics developed for this particular problem. Since the objective is
to obtain a practical decision that is yearly required for hundreds of regions in the country, a
good quality solution obtained in a reasonable time can be used. This solution can be obtained
with metaheuristics that are faster but give up optimality. In a practical setting, one approach
is to solve smaller regional problems and then integrate this solution as a whole. However, it is
clear that this may lead to suboptimal solutions when considering the nation-wide problem. An
alternative is to consider the entire system which is intractable by exact algorithms. This motivates
the development of heuristic techniques as proposed in this paper.

The main contribution of the paper is the development of a hybrid metaheuristic framework for
tackling large-scale instances of this problem. Note that, to the best of our knowledge, there are no
other heuristic methods for this particular problem. The proposed strategies make use of several
components as an iterated greedy (IG) algorithm and variable neighborhood descent algorithm
(VND), that attempt to exploit the mathematical structure of the problem through the exploration
of two proposed neighborhoods. Some particular input parameters for the IG and the constructive
method are proposed to reduce the problem’s working space during the solution construction. In
addition, within the solution procedures, we present an allocation subproblem that can be solved

with an efficient exact method as a final step using the heuristic solutions as the starting feasible

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

solution. Hence, this method represents a hybrid metaheuristic, featuring components that hold
relevance for other trajectory-based metaheuristics.

IG is a simple but powerful metaheuristic framework, introduced by Ruiz and Stiitzle [34] for
solving combinatorial optimization problems. IG is similar to GRASP proposed by Feo and Resende
[11], but in this case, instead of randomizing the construction of a solution, it is partially randomly
destroyed, and then, using a constructive strategy, the solution is rebuilt. VNS is a metaheuristic
proposed by Mladenovié¢ and Hansen [29] that systematically modifies the structure of a set of
neighborhoods in the search procedure. A specific simple strategy is to select the neighborhood in
a deterministic order, this strategy is named the variable neighborhood descent search (VND). An
implementation of this metaheuristic in a related problem is provided by Fleszar and Hindi [12] for
the CPMP. There many recent works where the IG framework is used to solve complex problem
such as Qin et al. [33], Hoffmann et al. [18], Feng et al. [10], Zou et al. [39], and Liu et al. [20]
applied to scheduling problems, Casado et al. [6] for finding the minimum dominating set in graphs,
and Gokalp [15] for the obnoxious p-median problem.

An empirical assessment applied to a case study of MCHS in the State of Mexico is conducted.
Eighteen instances with a range between five hundred to three thousand demand points are used
to evaluate different strategies and fine-tune parameters of the metaheuristic. The results show
a good performance of the metaheuristic compared with the state-of-the-art branch-and-bound
algorithm (B&B). While no feasible solutions were found for the largest instances by B&B with a
two-hour computing time limit, the metaheuristic is able to find feasible solutions in all the cases,
and competitive or even better solutions are found in most of the cases where B&B found feasible
solutions.

The structure of this paper is as follows. In Section 2, we present the model introduced by
Mendoza-Gémez and Rios-Mercado [24] for a better understanding of the proposed heuristic com-
ponents. In Section 3, we describe the proposed metaheuristic and all the related components and
algorithmic strategies. Section 4 presents the results of the empirical assessment applied to a case

study. Finally, conclusions of this work are drawn in Section 5.

2 Problem Description

MIFLUP was introduced by Mendoza-Gémez and Rios-Mercado [24] and they proved that it is
classified as an N'P-hard problem. The objective of this problem is to allocate demand points
to capacitated HCUs of multiple institutions minimizing the total weighted travel distance. New
facilities can be installed and new capacity can be added to the system if these options contribute
to minimizing the objective function. A percentage of capacity at each HCU can be used to allocate
the demand of other institutions. The capacity is based on a modular scheme named basic kernels.

In this scheme, a kernel is composed of a physician, a nurse, and a technician in primary health

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142
143

144

care that can serve a limited number of inhabitants in the region. Figure 1 illustrates the problem
considering three institutions, five demand points, three existing HCUs, and one candidate site to
build a HCU. Each HCU has a given capacity and additional kernels can be installed on it. The
candidate site (CS) can be considered a HCU but without installed capacity in the current system.
A maximum number of new locations and a maximum number of new kernels are available for each
institution. There is demand that belongs to each institution at each demand point. Therefore,
the demand of each institution at each demand point must be assigned to a single HCU. The HCU
may belong to the same institution or another if it has enough capacity available. The number of
binary variables for each demand point is determined by the number of institutions and the number
of total locations (HCUs and CSs) as can be seen in the variables related to demand point 1 in the

figure.

Demand level
HA R ° HAFEN
..‘II‘AA QO‘II‘AA OQ‘II‘AA Demand

3 9 49 5 9 points

Current kernels [

. xﬂg\\\?\fyi Xg1a Potgntl.al kernels [
X213 X T X3 Institutions e m 4
— X313 *
Cab- (4. A~ Grd
|mA]]
E ° A HCUs

Candidate site

Figure 1: Graphical representation of the problem.

2.1 Formulation

For the sake of completeness and a better understanding of the proposed solution method, we
present an integer linear programming formulation of the problem that was taken from the model
proposed by Mendoza-Gémez and Rios-Mercado [24]. In our specific case, we assume that there
is no minimum capacity to be allocated in each HCU. Thus, constraints (5) from Mendoza-Gdémez
and Rios-Mercado [24] become redundant. The notation, parameters, and variables used in the

problem formulation are the following:

Sets and indices:
N Set of demand points (i,] € N).

M Set of (existing and candidate) locations for HCUs (t,7 € M).

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

161

162

163

164

166

167

168

169

K Set of institutions (k,r € K).

M}, Set of locations (HCUs and CSs) that belong to institution k.

My Set of locations where a HCU is already installed, M4 C M.

Mp Set of CSs for installing a HCU, Mp C M.

Mp, Set of CSs that belong to institution k.

k(j) The institution to which location j belongs to, j € M, < r = k().

Parameters:

KC Kernel capacity. Maximum number of inhabitants covered by a kernel.

d;; Distance from demand point ¢ to HCU location j; 1 € N, j € M.

wy; Demand of institution & in point 7; kK € K, 1 € N.

a; Number of current kernels in HCU j. A value of a; equal to zero indicates there is no current
HCU at that place; therefore, it is a CS for installing a HCU; j € M.

Maximum number of kernels that can be installed in location j; j € M.

=S

Minimum number of kernels that must be installed in location j if a HCU is opened; j € Mp.

B Maximum proportion of capacity in a HCU of institution k that can be shared to the demand
of other institutions; k € K.

vt Minimum proportion of demand that institution & must be cover internally; k € K.

G Maximum number of additional kernels of institution & that can be installed; k € K.

P, Number of new HCU to be opened by institution k; k € K.

Decision variables:

Trij = 1, if demand of institution £ at demand point ¢ is allocated to HCU j; = 0, otherwise;
ke K,ie N,jeM.
y; = 1,if a HCU is opened at location j; = 0, otherwise; j € Mp.

v; Integer variable equal to the number of additional kernels to be opened in HCU j; j € M.

The linear integer programming model of MIFLUP is then given by:

Minimize f(z) = Z Z Z Wi jThi (1)

iEN jEM keK
subject to: Z Tpij = 1 ke K, ie N (2)
JjeEM
Y ey < (K| = Dy k€K, i€ N, je M (3)
reK:r#k(j)
Z Z Wi Tkij < KC(CL]‘ + Uj) jeEM (4)
iEN keK
Y. Y wnmg SKC(aj+v)fy €M (5)

1€EN re K:ir#k(j)

Z Z WkiThij = Vk Z Z Wi ke K (6)

iEN jEM;, iEN keK

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

191

> v <Gy keK (7)

JEMy

Trij < Yj ke K,ie N, je Mg (8)

v; > Hjy, J€Mp (9)
Z yj < Py ke K (10)

jEMp,,

v; <V JE Mgy (11)

v; < Vy; Jj€Mp (12)

xri; € {0,1} keK,ieN, jeM (13)

yj €{0,1} j € Mp (14)

v; €T jeEM (15)

The total travel distance is minimized in the objective function (1). Constraints (2) enforce allo-
cating all the demand of each institution at each demand point to a single HCU or CS. Constraints
(3) avoid allocating the demand of other institutions in a given demand point to a HCU or CS if
the demand of the institution to which the HCU or CS belongs is not allocated first. Constraints(4)
limit the demand allocation according to the capacity of each HCU or CS determined by the number
of actual kernels plus new kernels. Constraints (5) limit the demand of other institutions allocated
to each HCU or CS according to ;). Constraints (6) are used to guarantee a minimum percentage
of demand allocated internally for each institution. Constraints (7) set the maximum number of
new kernels that can be installed for each institution. Constraints (8) prevent allocating demand
to a CS that is not selected. Constraints (9) define a minimum number of kernels to be installed
in the selected CS. Constraints (10) set the maximum number of selected CS for each institution.
Constraints (11) and (12) define the maximum number of kernels that can be installed in existing
HCUs and CS, respectively. Finally, the nature of decision variables is defined in constraints (13)
and (15).

3 Proposed metaheuristic

In this section, we describe an IG algorithm to solve MIFLUP that was introduced in Section 2. The
main procedure is shown in Pseudo-code 1. Three components are used in the multi-start procedure:
the deconstruction strategy, the constructive strategy, and a local search procedure. A solution is
represented by S and the best feasible solution found is represented by S*. The objective function
value of any feasible solution is represented by Z(S). The procedure is iterated until a stopping
criterion (stopping_criterion) is satisfied. This criterion can be for instance a computing time limit,

a given number of iterations, or a combination of both criteria. The percentage of deconstruction is

192

193

194

195

197

198

199

200

201

202

203

204

205

206

determined by parameter p, which is fine-tuned. Four additional input parameters (®, Dy, D1, D2)
are required in the construction and deconstruction phases of this problem. D and D5 are used in
the constructive and deconstruction strategies to reduce the number of operations in the procedure
by reducing the size of the environment affected when a solution is modified. This is a special
feature for large-scale instances. All these parameters are explained in the following subsections.
We present in this paper a constructive method (CM), two deconstruction strategies (DS1 and
DS2), two types of neighborhoods that give rise to two local search schemes (LS1 and LS2), two
versions of a VND (VND12 and VND21), and a sub-problem to be optimized (ALLOP) as elements
that can be included or combined within the IG. In Table 1, we proposed some heuristics methods
generated with this elements that are evaluated in Section 4. In the second column, the elements
of the IG are represented as follows 1G{deconstructive strategy, constructive method, local search
strategy }. In H9 and H10, there is an extra final method that consists in optimizing the allocation
subproblem (ALLOP) with an exact method. Figure 2 show a representative diagram of the entire
framework used for design the proposed heuristics. In the following subsections, all the components

proposed are explained in detail.

Pseudocode 1 Iterated greedy algorithm

1: procedure 1G(stopping_criterion, p, ®, Dy, D1, D3)
2: §* < INITIALIZATION _PROCEDURE(Dy);

3: S* «+ CM(S*, @, Dy);

4: while stop_criteria is not satisfied do
5: S+ &%

6: S < DM(S, p, Do);

7: S + CM(S, @, Dy);

8: S < LOCAL_SEARCH(S);

9: if (Z(S)< Z(S*)) then

10: S* « S;

11: end if

12: end while

13: return (S*)
14: end procedure

Table 1: Description of the proposed heuristics.

D Heuristic method Description

H1 IG{DS1, CM, - } use DS1 at each iteration.

H2 IG{DS2, CM, - } use DS2 at each iteration.

H3 IG{DS1+DS2, CM, - } use DS1 and DS2 sequentially at each iteration.

H4 IG{DS2+DS1, CM, — } use DS2 and DS1 sequentially at each iteration.

H5 IG{DS1+DS2, CM, LS1+LS2} use H3 and apply LS1 and LS2 sequentially at each iteration.
H6 IG{DS1+DS2, CM, LS2+LS1} use H3 and apply LS1 and LS2 sequentially at each iteration.
H7 IG{DS1+DS2, CM, VNDI12 } use H3 and apply VNDI12 at each iteration.

H8 IG{DS1+DS2, CM, VND21 } use H3 and apply VND21 at each iteration.

H9 IG{DS1+DS2, CM, VND12 }4+ALLOP use H7 and optimize ALLOP.

H10 IG{DS1+DS2, CM, VND21 }+ALLOP use H8 and optimize ALLOP.

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

. Final
Multi-start procedure improvement
Feasible solution Improvement
f :)T : \
Random e
deconstruction | LS1 ,,,,,,,,,,,,,
ot B2
i " s B L LST+LS2
oM i Poe i+ am + e + | ALLOP
§ |DS1+DS2 | WvieBioed
| LTI . VND12
} i i DS2 + DS1 i i STttt
N S @ VND21

Figure 2: Framework for the heuristics design.

Representation of a solution

A solution § is composed of three main variable types that are initialized and then modified

throughout the algorithm. They are defined as follows:

y; is a variable associated with y; for all j € Mp. It stores a value equal to 1 if a HCU is opened
at CS j and 0 otherwise.

¥; is a variable associated with v; for j € M. It represents the number of additional kernels
installed in j.

Ty; is a variable associated with xy;; for k € K, i € N, j € M. This variable stores the site j such

that xy;; = 1. This change helps to reduce the computing memory required to store solutions.

A given solution is represented by (y,v,Z) or S. However, there are many working parameters
that are useful for identifying the residual capacity and the solution’s feasibility when the procedure
is running: wy;, Cj, Cl;, Oy, f/j, G, P, and \;. These working parameters can be computed
from S or updated every time there is a change in the solution. Their definition is available in the
Appendix and they are used in all the procedures that are described below. The decision variables
and the working parameters must be initialized at the beginning of the IG as is shown in Subsection
3.1.

Figure 3 shows a small example to illustrate the terminology that is used to describe the
procedures. In this example, the elements belong to institution & = 1. In the case of HCUs

(j € Mya,), some of them can increase their capacity with additional kernels (0; > 0). In the

226

227

228

229

231

232

233

234

235

237

238

239

240

241

242

243

case of candidate sites (j € Mp,), some of them may be selected to open new HCUs with new
kernels (g; = 1 and 9; > 0) and others can not be selected (y; = 0 and 9; = 0). For the last two
cases, we use the terms “selected candidate sites (SCS)” and “unselected candidate sites (UCS)”,
respectively. For the case of HCUs and SCS, we refer to these elements as “active sites” because
represent existing and new HCUs. In this problem, we require to identify where to install new
kernels (v;) and how to allocate the demand of each institution (Zx;). For the case of kernels, we
use the terms “assign and unassign” kernels to a site 7 and for the case of demand, we use the

terms “allocate and deallocate” demand to a site j.

Institution 1 (k = 1)

|
(
Candidate sites (CS) jeMp,
)\
HCUs (Selected CS Unselected CS \
jeMy, (SCS) (UCS)

P

Active sites | |

Kernels: @ +7; >0 7 >0 =0
New HCU: ¥ =1 yi=0
Demand allocation : yes yes no

Figure 3: Example of the terminology of the elements in the solution.

3.1 Initialization procedure

Pseudo-code 2 shows the initial value for the solution (g;, 0, Z;) and the working parameters (g,
Cj, Cl;, O, 17j, Gy, Ps, and Aki)- This subroutine is required for the constructive method when
there is no partial or complete solution created. The working parameters must be updated every
time there is a change in the solution. In Step 2, the working parameters are initialized. In Step
3, Ag; is initialized with a distance Dy and when a demand point is allocated to an active site,
the parameter is updated according to Equation 26. The purpose of this parameter is to find an
active site with a better distance than Dy. The decision variables are created with initial values in
Step 4 that represents an unfeasible solution. The constructive method can be applied once this

initialization is done as is shown in Pseudocode 1.

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Pseudocode 2 Initialization

1. procedure INITIALIZATION_PROCEDURE(D)

2: Compute the working parameters as follows:
W = Wi V(k) eK,ie N), Cj = KC’(aj) Vi € My, Cj ZQV' € Mp,
qu = ﬁk(])C] Vj e {W, O = (1 _’Yk)Zierki Vk € K, V} = V] Vj e M;
GkZGkaEK, P, =P, Vk € K;

Compute \g; according to (26) and Dy;

Compute the solution as follows:
gy=0VjeMp, ©0;,=0VjeM, I =o0c0V(keK,icN),

5: S« (7,0,2);

6: return (S)

7: end procedure

3.2 Constructive method (CM)

The main steps of CM are shown in Pseudo-code 3. In this procedure, an initial solution S and
two input parameters: ® and Dj, are required as input. Parameter ® defines the strategy for
determining the number of new kernels to add to each site as follows: option (i) computes the
minimum possible number of kernels, option (ii) computes the average value between the minimum
and the maximum possible number of kernels, and option (iii) computes the maximum possible
number of kernels. Parameter D; defines the influence area for sites whose capacity is modified in
the procedure.

In Step 2, for each institution &, the best Py candidate sites are selected, new kernels are assigned
to these SCS without exceeding G, and demand is allocated to them according to the available
capacity. Then, in Step 3, available kernels (Gk) for each institution are assigned to strategic
active sites, and demand is allocated to them. In Step 4, the remaining demand is allocated to
active sites with available capacity (C; > 0). If there is the case that some candidate sites can
still be selected (3 ,cx Pr > 0), this is forced in Step 6, selecting additional candidate sites and
transferring kernels to them. The output of this algorithm provides a greedy feasible solution for
the entire problem. CM can be used to complete a partial solution in the reconstruction phase of

the IG. In the following subsections, each of these procedures is detailed explained.

Pseudocode 3 Constructive algorithm

1: procedure CM(S, ®, D))

2: S + OPEN_NEW _FACILITIES(S, ®);

3: S + OPEN_NEW_KERNELS(S, ®);

4: Z + DEMAND_ALLOCATION(S);

5. if (Xpex Pr > 0) then

6 S + KERNELS_TRANSFERS(S, D;);
7 end if

8: return (S)

9: end procedure

10

261

262

263

264

265

266

267

269

270

271

272

273

274

275

276

277

278

279

280

281

282

286

287

288

289

290

291

292

293

204

295

3.2.1 CM: Open new facilities

Procedure OPEN_NEW_FACILITIES() is shown in Pseudo-code 4. The objective is to select can-
didate sites to install new HCUs for each institution according to Pyx. A candidate list C'L with
UCS of all institutions is created in Step 2. Then, in Step 4, the function (;), the potential new
capacity (PCj), and the number of new kernels (u}(@)) are computed for each element according
to Equations (27), (30), and (31), respectively. Parameter §; computes the improvement in the
allocation distance of each demand point to the candidate site multiplied by the demand rate. The
procedure ends when neither of the elements generates a benefit (3 d; > 0) or when C'L is empty.
Otherwise, the element with the highest §; value is selected to become an active site (Step 6). The
working parameters associated with the residual capacity are updated in Steps 7 and 8, and the
solution is updated in Step 9.

For allocating demand is required to call a subroutine DEMAND_ASSIGNMENT() that is
shown in Pseudo-code 5. This subroutine allocates demand to the active site ¢ considering the
incumbent solution. Firstly, a list of demand points (k,i) with specific criteria is created and
stored in DPL according to Steps 2-8. In this list, demand points (k,i) with a distance to site
t such that d;; < Ap; are considered. Parameter \j; represents the current allocation distance of
each demand point (k,i). Therefore, only demand points such that the allocation distance can be
improved are considered. The demand w; must not exceed the available capacity of site t. In
the case of inter-institutional allocation (k # k(t)), the feasibility of constraints (3), (5), and (6)
must be also fulfilled (Step 6). This last requirement is evaluated with the following conditions:
Typyi = U, Wgy < Cly, wg; < O. For each demand point in the DPL, 0; is computed to determine
the benefit of this demand point if this is allocated to the active site t. One by one, demand
points are allocated to this active site starting from the ones with the highest values. The working
parameters related to the residual capacity are updated in Step 12 and the solution is updated in
Step 13. The DPL list of demand points is updated with the same criteria as the Steps 2-8 and
the procedure is repeated until the DPL becomes empty. In this case, only 7 is returned as output

because the other variables were not modified.

3.2.2 CM: Addition of new kernels

Procedure OPEN_NEW_KERNELS() shown in Pseudo-code 6 is called to assign kernels, according
to Gy, for each institution. A candidate list CL of sites such that ‘7] > 0 is created. The number
of kernels to assign (u?(fb)), PCj, and §; are computed with Equations (28), (30), and (31),
respectively. Then, the procedure is very similar to Pseudo-code 4. In this case, u?(@) is used to
compute the potential capacity to be added for each element of C'L. Other changes are the working
parameters that are updated in Step 8 and the solution in Step 9. This process is repeated while

ST G > 0or CL # {0}. At the end of each iteration, C'L is updated with the same criteria as Step

11

296

297

298

299

300

301

Pseudocode 4 Open new facilities

1: procedure OPEN_NEW_FACILITIES(S, ®)
2: CL + {j € Mgly; =0, Pr;) >0, Gk(j) > H;};
3 while (CL#0) do
4 compute u}((l)), PCj, and §; Vj € C'L according to (27), (30), and (31);
5 if (>°6; #0) then
6: t < arg max;cor{0;};
7 Cy+ Ci+ PCy, ViV, —ul(®), CI « CIL + By PCy,
8 Gty < Gy — i (®), Py < Pogy — 15
9 update solution as follows:
gt =1, U< U +ui(®), <+ DEMAND_ASSIGNMENT(S, t);

10: CL «+ {j € Mgly; =0, Pk(j) > 0, Gk(j) > H;};
11: end if
12: end while

13: S« (9,0,2);
14: return (S)
15: end procedure

3. In this procedure § remains the same.

Pseudocode 6 Addition of new kernels

1. procedure OPEN_NEW_KERNELS(S, ®)
2. for (ke K|G)>0)do

3 CL + {j € My|V; > 0};

4 while (G >0 and CL # () do

5: compute u?(q)), PCj and 6; for each j € C'L according to (28), (30), and (31);

6: if(Zéj;éO) then

7: t < arg max;cor{0;};

8 Cy + Cy + PCy, ‘7;5 — f/t — U%((I)), Cl; + CI; + Bk,’(t)PCt7 ék(t) — ék(t) — u%(CD);
9: update solution: ¥y < ¥y + u?(®), ¥ + DEMAND_ASSIGNMENT(S, t);

10: CL + {j € My|V; > 0};

11: end if
12: end while
13: end for

14: S+ (9,7,7);
15: return (S)
16: end procedure

3.2.3 CM: Demand allocation

The DEMAND_ALLOCATION() procedure is shown in Pseudo-code 7. This procedure is required
to allocate the demand points in a given solution. The procedure is divided into two main stages.
In the first stage, demand is allocated to active sites with available capacity of the same institutions

(Steps 2-13). Then, if there are still unallocated demand points, they are allocated to any active

12

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

Pseudocode 5 Assignment of demand

1. procedure DEMAND_ASSIGNMENT(S, t)
2: for k € K do

3: if (k= k(t)) then

4: DPL + {(k,l S N)|dlt < Ay Wi < Ct};

5: else

6: DPL + {(k,l S N)‘d,t < Ay Wiy < Ctyi’k(t)i =t Wy < Cft,ﬁ)ki < Ok},
T: end if

8: end for

9: compute 0; for each (k,i) € DPL according to (32);

10: while (DPL # () do

11: (r,l) « arg max, yeppr{Oki};

12: update working parameters: Cp < Cy — Wy, Wy < 0, Ay < dy;

if (r # k(t)) then
CIt < CIt — Wy, Or — Or — Wr;

end if
13: update solution as follows: ZT,; < t;
14: update DPL according to Steps 2-8;
15: compute 0y; for each (k,i) € DPL according to (32);
16: end while

17: return (7)
18: end procedure

site, no matter the institution (Steps 14-30). In the first stage, the procedure is repeated for each
institution, demand points with unallocated demand are added to the candidate list C'L;. Then,
the demand point with the highest demand level is selected to be allocated to the nearest active
site with enough capacity (Step 5). If there are no active sites with enough capacity of the same
institution, the demand point is removed from C'L; (Step 7), otherwise, the residual capacity and
the solution are updated in Steps 9 and 10, respectively. The steps of the second stage are very
similar, but in this case, demand points with unallocated demand of any institution are considered
in the candidate list (C'Ly). The demand point with the highest demand level is selected in Step
17 and then, the nearest active site that satisfies all the requirements is selected (Step 18-22).
In this step, if the demand point and the active site belong to different institutions, additional
requirements must be validated (Zj(jy = j, Wy < Clj, Wy < Oy). If there are no feasible active
sites, the demand point is removed from CLy in Step 24; otherwise, the working parameters and
the solution are updated to allocate this demand point (r,[) to the active site ¢ in Steps 26 and 27,
respectively. Then, the demand point is removed from C' Lo and the process is repeated until C'Lo

becomes empty.

13

317

318

319

320

321

322

323

Pseudocode 7 Demand allocation

1: procedure DEMAND_ALLOCATION(S)
2: for (ke K)do

3: CLy + {Z S N"JJ}CZ > 0},

4: while (CLl 75 @) do

5: t < 0;1 + arg max;ecp {Wri}; t < arg minepy, {dij|og < Cj);
6: if (t =0) then

7 CL1 — CLl\{l} ;

8: else

9: update working parameters: C; < Cp — Wy, Wi < 0, Mgy < dyg;
10: update solution: Ty + t;

11: end if

12: end while

13: end for

14: CLy < all pairs (k,i) from ¢ € N and k € K such that: @wy; > 0;
15: while (CLQ ?é @) do

16: t < 0

17: (r,1) « arg max, jeor,{Wki}s

18: if (r=k(j)) then

19: t < arg minjeM{dlj‘ﬂ)rl < Cj};

20: else

21: t < arg min;ep {di |0 < Cy, Ty = J, W < Oy, Wy < Oy}
22: end if

23: if (t=0) then

24: CLy CLQ\{(T’, l)} ;

25: else

26: update working parameters: C; < C; — Wy, Wy < 0,

if (r # k(t)) then
Cli < Cly — wypy, Op <= Op — wyy;

end if
27: update solution: Z,; < 7j;
28: CLy OLQ\{(Ta l)})
29: end if
30: end while

31: return ()
32: end procedure

3.2.4 CM: Force the opening of new sites

In some partial solutions, for a given institution k, there is a special case when no more UCS can
be selected. This special case occurs when all UCS require a greater number of kernels than the
ones that are available in the institution (ék > Hj). In this case, it is required to unassign kernels
from some active sites and assign them to an UCS. This additional step is not required when CM
is applied for the first time because the method prioritizes assigning kernels to CSs instead HCUs.

However, when CM is applied over partial solutions that were randomly modified, this additional

14

324

325

326

327

328

329

330

331

332

333

334

335

336

337

step may be sometimes needed. The procedure KERNELS_TRANSFER() is shown in Pseudo-code
8. For each institution such that P, > 0, the candidate list CL; with UCSs is created (Step 4). In
Step 6, the number of kernels to be transferred (ui’(@)) and PCj, and d; are computed. If there is
no benefit (> d; = 0), another institution is selected to repeat the process. In the other case, the
element with the highest benefit is selected (j1) in Step 10. A second candidate list C'Ly is created
to identify active sites such that some kernels could be released according to the criteria of Step 11.
If CLs is empty, ji is removed from C'L; and another element is chosen. Otherwise, the nearest
element of C'Ls to ji is selected. The working parameters are updated in Step 17 and the solution
is updated in Step 18. The sites with modified capacity (j; and j2) are joined to a candidate list
CLs in step 19. In Step 20, there is a subroutine that is required to deallocate demand of all the
active sites that are near to j; and js. This subroutine is explained in the following paragraph.
Then, the procedure shown in Pseudo-code 7 is called to allocate all the demand to complete a new
feasible solution. All this process is repeated until), ;- P, = 0 or there is no possibility to select

more candidate sites.

Pseudocode 8 Kernels transfer

1. procedure KERNELS_TRANSFER(S, D)
2: select solution S;

3 for (ke K|P,>0)do

4: CLy + {~j S MBk‘gj = 0};

5: while (P, > 0 and CL; # ()) do

6: compute u?(i)), PCj and ¢; for each j € C'L; according to (29), (30) and (31);
7: if (> 6;=0) then

8: break while;

9: end if

10: J1 ¢ arg max;eop, {65}

11: CLy < {j € My|v; > w3, if (j € Mp,) then (y; =1,0; — H; > u})};
12: if (CLy ={0}) then

13: CLy + CL1\{j1} 3

14: go to Step 10;

15: end if

16: jo ¢« arg minj€CL2{dj1j2};

17: update working parameters: f/jl — f/jl — u?l, P+ P, — 1, f/j2 — \7j2 + u?l;
18: update solution: v, < v;, + u?l, Yjp < 1, 0j, < Uj, — ug?l;

19: CLs + {j1,J2};

20: Z <~ DEMAND_DEALLOCATION(S, CLs, D1);

21: Z < DEMAND_ALLOCATION(S);

22: CLi + CLl\{jl} ;

23: end while

24: end for

25: S« (7,0,2);
26: return (S)
27: end procedure

15

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

Demand deallocation

Procedure DEMAND_DEALLOCATION() show in Pseudo-code 9 is required every time kernels
are unassigned from active sites. The objective is to deallocate all demand points from active sites
of C'Ly, but also of other active sites that are nearby at a maximum distance D;. In this case, D;
is used to just modify the allocation decisions over an influence area instead deallocating the entire
problem. This procedure is used as a step in Pseudo-code 8, in the deconstruction strategies, and
in the local search procedures. In Step 2, all the involved active sites are stored in C'L2. For each j
of C'L2, all demand point (k, i) such that Z; = j are deallocated, updating the associated working

parameters in Steps 6 and 9, and the solution in Step 7. Then, the decision variable Z is returned.

Pseudocode 9 Deallocation of demand
1: procedure DEMAND_DEALLOCATION(S, C'L1, Dy)
2: CLy + {j € M|dj; < D; for some t € CLy}
3 for (j € CLy) do
4: DPL + {(k,i)lk e K, i € N, Zy; = j};
5
6

for ((k,i) € DPL) do
update working parameters:

Wi < Wy,
if (k # k(j)) then
Oy, < Oy + wiy;

end if
7: update solution as follows: ZTp; < o0o;
8: end for
9: update working parameters: Cj; < KC(9;), CI; < By;)Cy;
10: end for

11: return (Z)
12: end procedure

3.3 Deconstruction phase

Two deconstruction strategies are proposed for this problem: DS1 and DS2. The procedures and

pseudo-codes are described in the following subsections.

3.3.1 Deconstruction strategy 1 (DS1)

In this first procedure, a random subset of SCSs is deselected in the solution and all the demand
points in the influence area of these sites are deallocated. The first parameter to define is the
number of sites to deselect in the solution according to p. The ceil of the multiplication between
p and the total number of selected sites is used as a deconstruction parameter as is shown in the

following equation:

16

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

ni=1[Y_ §pl (16)

JEMB
The procedure is shown in Pseudo-code 10. The number of SCS to deselect is calculated with
Equation 16. In Step 3, all candidate sites such that y; = 1 are stored in C'L;. A random subset
of ny elements is chosen in Step 4. Then, the associated working parameters are updated in Step 5
and the solution in Step 6. The subroutine DEMAND _DEALLOCATION() shown in Pseudo-code
9 is called for deallocating all the involved demand points. Finally, the initial solution has been

partially destroyed and is returned as output.

Pseudocode 10 Deconstruction based on new sites

1. procedure DS1(S, p, D3)

2: compute nj according to (16) and p;

CLy < {j € MBly; = 1};

CLg < random(CLy,n1);

for all j € C'Ly update working parameters: Gk(j) — ék(j) + 0, Pk(j) —]sk(j) +1, f/j — Vi
for all j € C'Ly update the solution as follows: g; <— 0, v; < 0;

Z + DEMAND DEALLOCATION(S, C'Ls, D3);

8: S (7,0,2);

9: return (S)

10: end procedure

3.3.2 Deconstruction strategy 2 (DS2)

In the second deconstruction strategy, for a given number of active sites, kernels are unassigned,
and the related demand is also deallocated. For each j € M, an auxiliary binary parameter (7;) is

used to determine if this site has assigned kernels. The equation is the following:

1 if {Ij >0
nj = (17)
0 otherwise

The following equation determines the number of sites to unassing kernels:

ne =Y npl (18)

JjeEM
The procedure of DS2 is shown in Pseudo-code 11. The number of active sites to remove kernels
is computed in Step 2 and the list is stored in C'L1 in Step 3. A random subset of these elements is
chosen in Step 4. For each element of C' Lo, the working parameters associated with the capacity and
the solution are updated (Steps 5-9), if some of them belong to Mp, there is a minimum number
of kernels (H;) that can not be removed to satisfy constraints (9). DEMAND_DEALLOCATION

is called in Step 10 to deallocating demand of the involved sites, and the solution is returned.

17

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Pseudocode 11 Deconstruction based on new kernels

1. procedure DS2(S, p, Ds)

2: compute ngy according to (18) and p;

CLy + {j € M|v; > 0};

CLy < random(CL1, ny);

for (j € CLy) do
compute u as follows: if (j € Mp) then (u < 0; — H;) else (u < 0;);
update working parameters: f/] — f/] + u, ék(j) — G’k(j) + u;
update solution as follows: ¥; < v; — u;

end for

10: Z < DEMAND_DEALLOCATION(S, CLa, D3);

11: S« (7,0,2);

12: return (S)

13: end procedure

3.4 Local search methods

Two neighborhoods are proposed for this problem. Each can be used as a stand-alone strategy, or

within a VND scheme as described below.

Neighborhood 1

The move mq(j1,72) is defined as transferring all the kernels of a candidate site j; € Mp, such
that y; = 1 to another candidate site jo € Mp, such that y;, = 0, v;, > Hj,, and v;, < Vj,.
The neighborhood is the set of neighbors reachable from the solution S by performing all possible
moves my(ji1,j2) for all j; € Mp, such that §; = 1. We propose for large instances to bound the

neighborhood by considering only the R nearest sites from ji.

Neighborhood 2

The move ma(j1,j2) is defined as transferring the largest amount of kernels from a HCU j; € My
such that v;, > 0 to another HCU j; € My, , such that f/jQ > 0. The neighborhood is the set of
neighbors reachable from the solution S by performing all possible moves ma(j1, j2) for all j; € My
such that ©;, > 0. We also propose for large instances to bound the neighborhood by considering

only the R nearest sites from j;.

Local search 1

The LS1 procedure is shown in Pseudo-code 13 in the Appendix. In this procedure, SCSs are
considered to be unassigned from the solution. For each j € Mp|g; = 1, a list of UCS sites is
created (C'Lg). This list is composed of the R nearest sites to j; of the same institution. Then,

the kernels are transferred to this site, and the allocation of demand must be adjusted. To this

18

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

end, the DEMAND_DEALLOCATION() and DEMAND_ALLOCATION() procedures are called
to solve again the allocation subproblem for the involved demand points. These steps generate a
feasible solution that is compared with the best solution found so far. If the objective value of
the current solution is better, the best solution is updated; else, the new solution is discarded and
another element of C'Ls is evaluated. If any site of C' L2 produces a better solution, the element j;
of C'Ly is removed and another one is evaluated. The procedure ends, when all the elements of C'Ly
were evaluated and there are no more interchanges that produce an improvement in the objective
function. There is also a time limit that can be used if the local optima consume a significant

amount of computing time.

Local search 2

The complete procedure for LS2 is shown in Pseudo-code 14 in the Appendix. In this local search,
only HCUs are considered for transferring kernels to other HCUs of the same institution. In
preliminary experiments, we found that including candidate sites does not generate a significant
improvement. The steps are very similar to LS1 with slight differences. A first list C'L; composed
of all the HCUs with assigned kernels is created. Then, one element of this list is selected (ji). A
second list (C'Lg) of the R nearest HCUs to j; of the same institution is created. Then, the kernels
are transferred and all the involved demand in the area is deallocated and the allocation procedure
is called to complete a feasible solution. If the interchange produces a better solution, the best
solution is updated. The procedure ends when neither interchange produces an improvement or

when a computing time limit is reached.

Variable Neighborhood Descent

In the IG, the LS procedure is typically applied at each iteration. Though, a most robust method
such as a VND can be applied. The VND is a strategy of the variable neighborhood search procedure
where the local searches are performed in a systematic way. Different neighborhoods are explored
sequentially. Typically, one explores first the least expensive to evaluate and so on. The process
iterates over each neighborhood while improvements are found, applying the local search until
meeting a local optima at each neighborhood. Then, the final solution is a local optima of all the
explored neighborhoods. However, we are dealing with large instances, and finding a local optimal
may consume a lot of resources. Therefore, a time limit is defined at each local search procedure
to reduce the computing time leaving off to find the local optima in some cases. Pseudocode 12

shows the VND procedure.

19

424

425

426

427

428

429

430

431

432

433

434

435

436

Pseudocode 12 Variable Neighborhood Descent

procedure VND(S)
S S
t+ 1
while (¢t < t™*) do
S < LS_t(R, time_limit);
if (Z(S)< Z(S*)) then
S+ S;
t<+1;
else
t—t+1;
end if
end while
return (S%)
end procedure

3.5 Optimization of the allocation subproblem (ALLOP)

Note that when fixing the capacity decision variables as y; = §; Vj € Mp and v; = v; Vj € M, we
are left with an allocation subproblem (ALLOP) that is easier to solve because it is considerable
smaller. Not only many integer variables are eliminated from this model but many constraints
become redundant as well. For instance, Constraints (7)-(12), (14), and (15) of MIFLUP are not
considered in this subproblem because they are already satisfied. The resulting linear binary model
has a single decision variable type xy;;. In this supbroblem, the right-hand side of constraints (22)
and (23) is constant. The set M is also reduced to the subset M* = {j € M|a; + v; > 0}.

We suggest solving this problem with an exact method as a final step of a heuristic solution
of MIFLUP. The solution to this subproblem will optimize the allocation of demand to HCUs.
Furthermore, since we have an entirely feasible solution from MIFLUP, the heuristic values Zy;;
can be provided as input to an exact method.

The proposed ALLOP subproblem is given by:

Minimize f(x) = Z Z Z Wi i Thij (19)

ieN jeM* ke K

subject to: Z Tpij =1 ke K,ie N (20)
jeM~
> iy < (IK| = gy keK,ieN, jeM; (21)
reK:r#k(j)
SN wpiwky < KC(aj + ;) jeM* (22)
ieN ke K
ST wemey; < KC(aj+0)Brgy J €M (23)

1EN re K:r#£k(j)

20

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

460

461

462

464

465

466

467

Z Z Wi Tkij > Yk Z Z Wi ke K (24)

teEN jEM: 1€EN keK

kij € {0,1} ke K,i€N, je M* (25)

4 Empirical assessment

The proposed metaheuristic was evaluated using the data sets provided by Mendoza-Gémez and
Rios-Mercado [24]. This data is based on a case study applied in the State of Mexico, Mexico.
This state is composed of 125 counties that are grouped into 19 jurisdictions as shown in Figure
4. Four health care institutions are evaluated, SSA and IMSS-Bienestar (I1) were considered as a
single institution for the uninsured population, IMSS (I2) for private sector workers, ISSSTE (I3)
for federal workers, and ISSEMyM (I4) for state-level workers. Table 2 shows a summary of the
number of demand points, HCUs, and candidate sites by jurisdiction. There are in total more than
eight thousand demand points and a little over a thousand and four hundred HCUs in the state.
Candidate sites were selected in places where there are no HCUs and with a minimum population
size of over five hundred inhabitants. The distribution of demand points, HCUs, and candidate
sites can be seen in Figure 5. 11 has the higher number of HCUs in the state with 1200 HCUs, 12
and 14 are nearly one hundred HCUs, and I3 has only 37 HCUs. In Table 3, the actual capacity is
compared with the demand assuming that a basic kernel can serve up to 3,000 inhabitants. As can
be seen in the actual demand covered, the first three institutions have lower capacity than demand
and 14 has 165% of additional capacity regarding the demand to be covered. In the problem, new
basic kernels can be added to the system to increase the system’s capacity and reduce the total
travel distance. In the experiments, new kernels can be added to each institution by jurisdiction to
allocate all demand points and to avoid infeasible solutions. In the table, we show the additional
basic kernels that we are suggesting to open for each institution. This additional capacity allows
to have enough capacity for institution to cover internal demand as it can be seen in the last row.
However, inter-institutional allocation can help to improve the access in regions where there is not
enough capacity for a given institution.

The proposed solution methods are tested in 18 instances created by grouping adjacent juris-
dictions. The main characteristics of these instances are shown in Table 4. The range of demand
points (DP) is between 547 to 2,940, the HCUs range is between 71 to 565, and the candidate sites
range is between 103 to 461. For the results of the following subsections, we use the average values
of this instance set.

All procedures were coded in C++ and compiled with Visual Studio 2019, and run on a PC with
2.30 GHz Intel Core i7-4712HQ processor, and 16GB of RAM. A C++ application with Concert
Technology of ILOG CPLEX 20.1.0 was used to call the B&B algorithm.

21

ID JURISDICTION
1 ATLACOMULCO

2 IXTLAHUACA

3 JILOTEPEC

4 TENANGO DEL VALLE
5 TOLUCA
6

7

8

9

XONACATLAN
TEJUPILCO
TENANCINGO
VALLE DE BRAVO

10 ATIZAPAN DE ZARAGOZA

11 CUAUTITLAN

12 NAUCALPAN

13 TEOTIHUACAN

14 TLALNEPANTLA

15 ZUMPANGO

16 AMECAMECA

17 ECATEPEC

18 NEZAHUALCOYOTL

19 TEXCOCO

Demand Points
o’ HCUs
+*+ Candidate sites

Demand Points

Figure 5: Location of demand points, HCUs, and candidates sites in the State of Mexico.

4.1 Fine-tuning of constructive method

The goal of this experiment is to fine tune the algorithmic parameters for the constructive method.
All instances were tested with the constructive method evaluating the three strategies ® =(i), (ii),
and (iii), and different distance bounds D; = 5, 10, 15, 20, and 30 kilometers that represents the
influence area for sites whose capacity is modified. The solution was initialized with Dy = 15

kilometers. Figure 6 shows the performance of the constructive method comparing the objective

22

474

476

477

Table 2: Instances size by jurisdiction.

HCUs Candidate Sites
Jurisdiction | Demand Points 11 12 13 14 Total 11 12 13 14 Total
1 327 80 2 1 5 88 11 23 13 10 57
2 523 157 2 2 5 166 23 37 21 16 97
3 331 76 2 2 5 85 4 23 13 10 50
4 269 50 3 2 2 57 5 16 19 8 48
5 466 88 9 2 17 116 29 19 29 14 91
6 395 81 4 3 4 92 20 28 16 12 76
7 802 74 2 3 12 91 8 43 14 26 91
8 584 97 5 3 10 115 11 23 26 18 78
9 424 82 3 2 7 94 22 17 25 13 7
10 272 30 3 1 5 39 11 16 19 8 54
11 574 38 6 2 5 51 33 31 23 17 104
12 275 24 5 1 2 32 13 11 17 8 49
13 341 46 1 2 1 50 7 22 14 10 53
14 205 22 8 1 1 32 12 8 14 6 40
15 418 50 2 2 3 57 6 20 20 13 59
16 789 78 10 2 5 95 7 17 26 24 74
17 468 33 9 3 3 48 33 19 28 14 94
18 265 30 5 2 3 40 19 16 11 8 54
19 425 64 6 1 2 73 9 17 23 13 62
Total 8,153 1,200 87 37 97 1,421 | 283 406 371 248 1,308

Table 3: Actual and potential capacity in the system.

I1 12 12 14 Total

Demand (x1000) 9,652 4,467 717 306 15,143

Actual basic kernels 2,448 1,194 170 270 4,082

Potential basic kernels 1,130 438 136 3 1,707
Actual demand covered (%) 76 80 71 265 81
Potential demand covered (%) 111 110 128 268 115

Table 4: Instances size by jurisdiction.

HCU Candidate Sites
n Jurisdictions DP 11 12 13 14 Total | I1 12 13 14 Total
1 1,2 850 237 4 3 10 254 34 60 34 26 154
2 3,11 905 114 8 4 10 136 37 54 36 27 154
3 4.8 853 147 8 5 12 172 16 39 45 26 126
4 5,6 861 169 13 5 21 208 49 47 45 26 167
5 7,9 1,226 | 156 5 5 19 185 30 60 39 39 168
6 10,12 547 54 8 2 7 71 24 27 36 16 103
7 14,17 673 55 17 4 4 80 45 27 42 20 134
8 13,15 759 96 3 4 4 107 13 42 34 23 112
9 16,18,19 1,479 | 172 21 5 10 208 35 50 60 45 190
10 1,2,3 1,181 | 313 6 5 15 339 38 83 47 36 204
11 7,8 1,386 | 171 7 6 22 206 19 66 40 44 169
12 4,5,9 1,159 | 220 15 6 26 267 56 52 73 35 216
13 6,10,12 942 135 12 5 11 163 44 55 52 28 179
14 11,14,15,17 1,665 | 143 25 8 12 188 84 78 85 50 297
15 13,16,18,19 1,820 | 218 22 7 11 258 42 72 74 55 243
16 1,2,3,10,11,12 | 2,302 | 405 20 9 27 461 95 141 106 69 411
17 4,...,9 2,940 | 472 26 15 52 565 95 146 129 91 461
18 13,...,19 2911 | 323 41 13 18 395 93 119 136 &8 436

function value and the computing time for each set of instances combining different values of ®
and Dq. In the left-hand side plot, we can observe that the best performance was obtained with
a distance bound of D; = 15 kilometers. The best objective values and the shortest interquartile

ranges were obtained with this bound. Although strategy ® =(iii) produced the lowest objective

23

478

479

481

482

486

487

488

489

490

491

492

493

494

495

496

497

499

500

values, the difference is not significant. The computing time increases as D; increases, as it is
observed in the right-hand side plot. For D; = 15 km, the computing time varies between 0.2 and
3.8 seconds showing a very small difference in favor with ® =(i) with an average time of 1.003

seconds. Therefore, for the following experiments ® =(i) and D; = 15 km are used.

218 " -
; x
= 17 o
S 16 |
§ 15 i \3
. t .
£ 14)
% | ¢ £ © 4 %
O 13 | J ® 4 ’ “]
o 8 |& o |o L L L .
- i L N e e PR 9 E
12- L ® o
0 I8 HEE u*\ o%é%ééﬂ@ u
11
o (D))3 @) @a) @ Gdi) @) Gdi) () [o ()33) @aD @) GHan @ (A () (i)
. ’ 1 s 20 20 Dy 5 10 15 20 30

Figure 6: Result of the constructive method.

4.2 Iterated Greedy Algorithm with Deconstruction Strategies

The objective of these experiments is to fine-tune the percentage of deconstruction, the number of
iterations for the IG, and the algorithmic parameter Do for the deconstruction procedures. To this
end, the deconstruction strategies DS1 and DS2 were evaluated with the proposed methods H1 and
H2 in Table 1. The p values were 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The number
of iterations was fixed to 100 and the values of Dy for deconstruction procedure were 2.5, 5, 7.5, and
10 km. Table 5 shows the average relative improvements of the tested instances with respect to the
initial solution found by the constructive method with ® =(i), Dy = 15 km, and D; = 15 km. As
can be seen, the best results are found with p = 0.2 and Dy = 2.5 km with an average improvement
of 6.9% and 14.3% using the methods H1 and H2, respectively. The best results were found with
the method H2. This can be attributed to the fact that H2 modifies the kernel assignment of HCUs
and selected candidate sites, while the method H1 only takes into account candidate sites. Figure
7 shows a boxplot of the iterations required to find the best solution for H1 and H2 for each value
of p. For p = 0.20, the maximum number of iterations was lower than 40 and 20 for H1 and H2,
respectively. Therefore, in the following experiment, we consider that 50 iterations of the IG are

enough to get good results for the tested instances.

4.3 Local Search

In these experiments, the two neighborhoods are evaluated within a simple local search algorithm.

For both heuristics, the fine-tuned algorithmic parameters are R, time_limit, and D,. For the

24

501

502

503

504

Table 5: Assessment of H1 and H2 in terms of relative improvement.

p
Method Do 0.05 0.1 0.2 0.3 04 05 06 07 08 09 1 Global

H1
IG{DsS1, CM,-} 2.5 4.5 5.6 6.9 6.1 5.5 52 49 44 37 27 16 4.6
5.0 4.0 4.8 6.2 5.1 45 47 34 27 23 17 13 3.7
7.5 4.5 5.5 6.0 4.8 5.1 3.8 33 28 24 16 1.5 3.7
10.0 4.8 5.7 6.3 5.6 47 44 36 28 25 1.8 1.2 3.9
Global 4.4 5.4 6.3 5.4 50 45 38 32 27 19 14 4.0

H2
IG{DS2, CM,—-} 2.5 14.0 138 143 114 111 94 82 6.5 55 32 17 9.0
5.0 13.2 133 11.2 8.9 7.2 66 49 39 32 29 23 7.1
7.5 13.0 106 84 7.1 54 49 39 38 32 26 23 5.9
10.0 11.7 10.2 8.5 5.4 5.1 41 35 3.0 34 25 25 5.4
Global 7.5 8.4 104 6.1 47 46 55 32 23 37 15 5.4
13.0 12.0 10.6 8.2 7.2 6.3 51 43 38 28 22 6.9

Table 6: Assessment of H1 and H2 in terms of running time (CPU seconds).

p
Method Do 005 01 02 03 04 05 06 07 08 09 1 Global
H1
IG{DS1, CM,-} 2.5 24 27 32 35 39 42 45 49 53 55 60 42
5.0 27 32 38 42 47 51 55 59 62 65 70 50
7.5 30 35 41 46 52 56 59 63 67 70 74 54
10.0 33 37 44 48 53 59 61 64 69 72 76 56
Global 29 33 39 43 48 52 55 59 63 66 70 50
H2
IG{DS2, CM,-} 2.5 26 28 32 35 37 39 40 42 43 43 43 37
5.0 29 33 37 39 41 43 44 45 45 46 46 41
7.5 32 36 40 42 43 45 45 46 46 46 47 42
10.0 34 38 41 44 45 46 47 49 50 51 52 45
Global 30 34 37 40 41 43 44 45 46 4T 47 41

H1 H2
90

80
70
60

50

40 s S

Best iteration

30 M .
20

oo bbbl 0Rblizey

T T X T T T T
0.05 010 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
P P

Figure 7: Assessment of H1 and H2 in terms of number of iterations required to find best solution.

first parameter, values of 1, 3, 5, and 10 sites were considered. Two contrasting time limits were
evaluated: 60 seconds and 1 hour. The first time limit is proposed thinking about the algorithm
being implemented in the iterative process, and the second time limit is proposed to evaluate the

potential of the local search as a simple solution method. In these experiments, the initial solution

25

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

532

533

was obtained with CM with ® =(i), Do = 15 km, and D; = 15 km. Table 7 shows the average
percentage of improvement and the average computing time for each value of R and each time limit.
In all the cases, LLS2 has better performance in the solution improvement and computing time. For
LS1 the cost related to the computing time is very high since 1.70% of additional improvement is
reached when the time limit is changed from 60 seconds to 1 hour, with a difference in the average
computing time of 472 seconds. In the case of LS2, the additional improvement is about 2.1%,
but the average time changed from 17 seconds to only 119 seconds, despite the time limit being
set to 3,600 seconds. This means that local optima were found in most of the cases. The best
improvement for LS1 was found with R = 5 for a time limit of 60 seconds, and R = 10 for a time
limit of one hour. For LS2, the best results were found with R = 10 in both cases. In the following

experiment for LS1 and LS2, we fixed the input parameters to R = 5 and R = 10, respectively.

Table 7: Assessment of local search.

Average improvement (%) | Average CPU time (s)

R R
Time limit 1 3 5 10 1 3 5 10
LS1 60 s 1.9 41 4.2 4.0 14 36 43 46
1h 1.9 50 6.3 7.7 43 281 718 994
LS2 60 s 20 46 5.2 7.9 3 17 20 28
1h 20 47 76 13.6 3 22 65 389

4.4 Assessment of the Iterated Greedy Algorithm

In this experiments, the propose heuristic methods shown in Table 1 are applied to the instance
set with the fine-tuned parameters of previous experiment. For the ALLOP optimization, a MIP
start strategy is used, this means that the heuristic solution of variables Zp; is used as the initial
solution of xy;;for the optimization, reducing the computing time. All the experiments were run
with 50 iterations and a computing time limit of one-hour for the IG and one hour for the solution
of ALLOP (using CPLEX). The solution’s performance comparing the average improvement (%)
(taking as reference constructive method solution with ® =(i), Dy = 15 km, and D; = 15 km)
and the average computing times are shown in Figure 8 for each method. Better results are found
when DS1 and DS2 are applied in that order into the IG with an average improvement of 14.3%.
The best performance when the local search is integrated in the IG is found using the VND12 with
an average improvement of 24.3% requiring 3,024 seconds on average. The allocation optimization
was applied to these two last methods in H9 and H10. Similar results were found using VND12
and VND12; with an average improvement of 43.2% and 5,834 seconds on average for H9, and an
average improvement of 42.9% in 5,835 seconds on average for H10.

To evaluate the algorithmic components, some experiments were carried out to show the contri-
bution of each component in metaheuristic H9 which offers the best improvement. Table 8 shows

the objective function values of different heuristic methods present in H9. The most basic heuristic

26

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

7,000
Hl IG{DSI, CM, - }
H2 IG{DS2, CM, - } H9
H3 IG{DS1+DS2, CM, — } H10

6,000 H4 IG{DS2+DS1, CM, — }

H5 IG{DS1+DS2, CM, LS1+LS2} *
H6 IG{DS1+DS2, CM, LS2+LS1}
H7 IG{DS1+DS2, CM, VND12 }
5,000 H8 IG{DS1+DS2, CM, VND21 }
H9 IG{DS1+DS2, CM, VND12 }+ALLOP
. H10 IG{DS1+DS2, CM, VND21 }+ALLOP
)
> 4,000
£ H7
[*
2 3,000 HE o
(]
H5
2,000 ¢ o
H6
1,000
H4
H1 H2 H3
0 ° PR
0 5 10 15 20 25 30 35 40 45 50

Improvement (%)

Figure 8: Average results applying different strategies.

is the CM in column 2, in H2, the CM was embedded in the IG, H7 includes the VND in the IG,
and H9 represents the final metaheuristic that includes the ALLOP optimization. The IG reduces
the solution of CM by 24.3% on average. The addition of VND12 decreases on average 12.0% the
solutions obtained with the IG. The ALLOP optimization reduces 23.9% on average the solutions
of the heuristic H7. In general, the most complex heuristic (H9) decreases by 43.2% on average
the objective function values from the simple constructive method. The Friedman test, a non-
parametric statistical test to identify differences in treatments across multiple test attempts, was
applied to these experiment. The results fo this test showed that there was a significant difference
in the median of the objective function values between the solutions of the heuristic methods using
a 95% confidence level. Concluding with this, each component in the metaheuristic contributes
to the improvement of the solutions. In the sixth column, the objective function values (OFV)
obtained with the exact method under a 2-hours time limit are also provided to compare the results.
NFS indicates a no feasible solution found with the exact method. The relative gap is shown in the
last column as a reference of solution quality. Comparing the solutions of the exact method with
the hybrid metaheuristic H9, only 6 out of 11 solved instances were better using the exact method
with a very slight difference. However, the exact method was not able to find solutions in 7 out of

18 instances tested, most of them the largest instances.

27

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Table 8: Assessment of different algorithmic components (solutions 1 x 10° km).

(H2) (H7) (H9) B&B(2h)
Instances | CM IG{DS1+DS2,CM,-} IG{DS1+DS2,CM,VND12} (3)+ALLOP(1h) | OFV Relative Gap

1 1.38 1.23 1.16 0.85 0.83 4.58
2 6.17 5.58 4.72 3.46 28.92 89.78
3 1.68 1.58 1.43 0.94 0.96 10.36
4 10.71 8.70 6.99 4.21 NFS -
5 1.14 1.14 1.13 0.76 0.75 0.05
6 6.62 5.79 5.34 4.11 3.82 1.15
7 13.17 12.29 12.03 10.57 10.55 2.60
8 8.50 6.29 4.91 3.46 3.13 28.34
9 16.16 11.65 8.43 7.57 NFS -
10 2.01 1.80 1.71 1.18 3.43 68.46
11 1.73 1.60 1.60 1.06 1.04 1.58
12 6.76 6.14 4.98 3.32 14.34 100.00
13 11.59 10.92 10.32 6.34 29.42 100.00
14 30.21 21.29 18.45 17.68 NFS
15 19.51 13.83 9.82 8.66 NFS
16 15.27 13.04 11.47 10.15 NFS
17 11.83 10.73 9.18 7.32 NFS
18 43.56 30.89 28.23 25.44 NFF

5 Conclusions

In this paper, we proposed an algorithmic framework for solving the multi-institutional regional-
ization of the primary HCUs problem. With this framework, several components were developed
and assessed. The best results were found by an iterated greedy algorithm with a variable neigh-
borhood descent procedure enhanced by an exact optimization of the allocation sub-problem. This
allocation subproblem is obtained by fixing some location decisions beforehand. This metaheuris-
tic solved instances of up to 3,000 demand points that are difficult to solve with exact methods
such as the B&B algorithm of commercial solvers. The IG is based on a constructive method that
systematically selects new sites, adds new kernels to the systems, and solves the demand allocation
heuristically. This method generates a greedy feasible solution. Two deconstructive strategies are
proposed: the first one randomly removes new sites of the solution and the second one removes
assigned kernels of random sites. For the VND, two neighborhoods are proposed. The first one is
based on the interchange of selected and unselected candidate sites, and the other one is based on
the interchange of kernels between a pair of sites. Some mechanisms are considered to reduce the
computing time of the complete method since it is proposed for large-scale instances. Although the
complete metaheuristic produced the best results, alternative variations are also evaluated.

After fine tuning its individual components, the metaheuristic was applied to a case study based
on the State of Mexico public health care system. With this information, eight instances with a
range between 547 to 2,940 demand points were solved. For the IG, 20% of deconstruction and a
maximum of 50 iterations provide good performance in both deconstrutive strategies. A time limit
was set up for the IG iterations and another hour was set for the allocation optimization. The

complete metaheuristic generated an improvement of 43.2% on average in the quality of solutions

28

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

605

regarding the CM solutions. The simple IG produced an average improvement of 14.6% regarding
the CM solutions. The inclusion of the VND strategy generated an additional improvement of
9.7% on average, and the allocation optimization generated an additional improvement of 18.8% on
average. The instances were also compared with an exact algorithm, CPLEX branch-and-bound
method under a running time limit of two hours. No optimal solutions were found and solutions
were only found for 11 out of 18 instances. In 6 out of 11 instances, better solutions were found
with CPLEX with an average improvement of 3.9% with respect to the metaheuristic, although at
a much higher computing time. In the other instances, the metaheuristic provided better solutions.
While the algorithmic parameters have been fine-tuned for this specific case study, clearly, further
experiments are necessary for implementing the metaheuristic in different classes of instances.

For future research, alternative metaheuristics that take advantage of the proposed constructive
method can be also implemented and assessed. The importance of providing good quality solutions
is the direct effect on the access and quality of these types of services. Additionally, the developed
metaheuristic can be used for other problems that share characteristics of the addressed problem
such as the capacitated location-allocation features in a segmented system.

Acknowledgments: The research of the first author was supported by a postdoctoral fellow-
ship from the Mexican Council of Humanities, Sciences and Technologies (CONAHCyT), and by
Tecnol6gico de Monterrey. The second author was supported by UANL (grants UANL-PAICYT
CE1416-20 and CE1837-21) and CONAHCyT (grants FC-2016-2/1948 and CF-2023-1-880).

References

[1] S. Ahmadi and I.H. Osman. Greedy random adaptive memory programming search for the

capacitated clustering problem. Furopean Journal of Operational Research, 162(1):30-44, 2005.

[2] A. Ahmadi-Javid and N. Ramshe. A stochastic location model for designing primary healthcare
networks integrated with workforce cross-training. Operations Research for Health Care, 24:
100226, 2020.

[3] A. Ahmadi-Javid, P. Seyedi, and S.S. Syam. A survey of healthcare facility location. Computers
& Operations Research, 79:223-263, 2017.

[4] R. Baldacci, E. Hadjiconstantinou, V. Maniezzo, and A. de Mingozzi. A new method for
solving capacitated location problems based on a set partitioning approach. Computers &
Operations Research, 29(4):365-386, 2002.

[5] M. Boccia, A. Sforza, C. Sterle, and I. Vasilyev. A cut and branch approach for the capacitated
p-median problem based on fenchel cutting planes. Journal of Mathematical Modelling and
Algorithms, 7(1):43-58, 2008.

29

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

[6]

[10]

[11]

[12]

A. Casado, S. Bermudo, A.D. Lépez-Sanchez, and J. Sanchez-Oro. An iterated greedy al-
gorithm for finding the minimum dominating set in graphs. Mathematics and Computers in

Simulation, 207:41-58, 2023.

A. Ceselli and G. Righini. A branch-and-price algorithm for the capacitated p-median problem.
Networks, 45(3):125-142, 2005.

A.R. de Aguiar, V.M. Fo, and L. da Silva Mota. Optimization models in the location of
healthcare facilities: A real case in Brazil. Journal of Applied Operational Research, 4(1):
37-50, 2012.

J.A. Diaz and E. Ferndndez. Hybrid scatter search and path relinking for the capacitated
p-median problem. Furopean Journal of Operational Research, 169(2):570-585, 2006.

X. Feng, F. Zhao, G. Jiang, T. Tao, and X. Mei. A tabu memory based iterated greedy
algorithm for the distributed heterogeneous permutation flowshop scheduling problem with

the total tardiness criterion. Fxpert Systems with Applications, 238:121790, 2024.

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6(2):109-133, 1995.

K. Fleszar and K. S. Hindi. An effective VNS for the capacitated p-median problem. Furopean
Journal of Operational Research, 191(3):612-622, 2008.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York, 1979.

M. Gnégi and P. Baumann. A matheuristic for large-scale capacitated clustering. Computers
& Operations Research, 132:105304, 2021.

O. Gokalp. An iterated greedy algorithm for the obnoxious p-median problem. FEngineering
Applications of Artificial Intelligence, 92:103674, 2020.

P.M. Griffin, C.R. Scherrer, and J.L.. Swann. Optimization of community health center loca-
tions and service offerings with statistical need estimation. IIE Transactions, 40(9):880-892,
2008.

W. Gu, X. Wang, and S.E. McGregor. Optimization of preventive health care facility locations.
International Journal of Health Geographics, 9(1):17, 2010.

J. Hoffmann, J.S. Neufeld, and U. Buscher. Iterated greedy algorithms for customer order
scheduling with dedicated machines. IFAC-PapersOnLine, 55(10):1594-1599, 2022.

30

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

[19]

[20]

[21]

[22]

[23]

[28]

G. Laporte, S. Nickel, and F. Saldanha da Gama, editors. Location Science. Springer, Cham,
Switzerland, 2nd edition, 2019.

F. Liu, G. Li, C. Lu, L. Yin, and J. Zhou. A tri-individual iterated greedy algorithm for the
distributed hybrid flow shop with blocking. FExpert Systems with Applications, 237:121667,
2024.

V. Maniezzo, A. Mingozzi, and R. Baldacci. A bionomic approach to the capacitated p-median
problem. Journal of Heuristics, 4(3):263-280, 1998.

V. Marianov and P. Taborga. Optimal location of public health centres which provide free and
paid services. Journal of the Operational Research Society, 52(4):391-400, 2001.

V. Marianov, M. Rios, and P. Taborga. Finding locations for public service centres that
compete with private centres: Effects of congestion. Papers in Regional Science, 83(4):631—
648, 2004.

R. Mendoza-Goémez and R.Z. Rios-Mercado. Regionalization of primary health care units with

multi-institutional collaboration. Socio-Economic Planning Sciences, 83:101343, 2022.

R. Mendoza-Gémez and R.Z. Rios-Mercado. Location of primary health care centers for de-
mand coverage of complementary services. Computers & Industrial Engineering, 169:108237,
2022.

R. Mendoza-Gémez, R.Z. Rios-Mercado, and K.B. Valenzuela-Ocana. An efficient decision-
making approach for the planning of diagnostic services in a segmented healthcare system.
International Journal of Information Technology € Decision Making, 18(5):1631-1665, 2019.

R. Mendoza-Goémez, R.Z. Rios-Mercado, and K.B. Valenzuela-Ocana. An iterated greedy
algorithm with variable neighborhood descent for the planning of specialized diagnostic services

in a segmented healthcare system. Journal of Industrial and Management Optimization, 16
(2):857-885, 2020.

P. Mitropoulos, I. Mitropoulos, I. Giannikos, and A. Sissouras. A biobjective model for the
locational planning of hospitals and health centers. Health Care Management Science, 9(2):
171-179, 2006.

N. Mladenovi¢ and P. Hansen. Variable neighborhood search. Computers € Operations Re-
search, 24:1097-1100, 1997.

M. Ndiaye and H. Alfares. Modeling health care facility location for moving population groups.
Computers € Operations Research, 35(7):2154-2161, 2008.

31

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

[31]

[33]

[34]

[37]

[38]

I[LH. Osman and S. Ahmadi. Guided construction search metaheuristics for the capacitated
p-median problem with single source constraint. Journal of the Operational Research Society,

58(1):100-114, 2007.

I.LH. Osman and N. Christofides. Capacitated clustering problems by hybrid simulated an-
nealing and tabu search. International Transactions in Operational Research, 1(3):317-336,
1994.

H. Qin, Y. Han, B. Zhang, L. Meng, Y. Liu, Q. Pan, and D. Gong. An improved iterated
greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem. Swarm
and Evolutionary Computation, 69:100992, 2022.

R. Ruiz and T. Stiitzle. A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, 177(3):2033-2049,
2007.

S.S.R. Shariff, N.H. Moin, and M. Omar. Location allocation modeling for healthcare facility
planning in Malaysia. Computers € Industrial Engineering, 62(4):1000-1010, 2012.

H. K. Smith, P. R. Harper, C. N. Potts, and A. Thyle. Planning sustainable community health
schemes in rural areas of developing countries. Furopean Journal of Operational Research, 193
(3):768-777, 2000.

S. Taymaz, C. Iyigun, Z. P. Bayindir, and N. P. Dellaert. A healthcare facility location problem
for a multi-disease, multi-service environment under risk aversion. Socio-Fconomic Planning

Sciences, 71:100755, 2020.

W. Zhang, K. Cao, S. Liu, and B. Huang. A multi-objective optimization approach for health-
care facility location-allocation problems in highly developed cities such as Hong Kong. Com-
puters, Environment and Urban Systems, 59:220-230, 2016.

W. Zou, J. Zou, H. Sang, L. Meng, and Q. Pan. An effective population-based iterated greedy
algorithm for solving the multi-AGV scheduling problem with unloading safety detection.
Information Sciences, 657:119949, 2024.

Appendix

Definition of auxiliary working parameters

The auxiliary working parameter in the metaheuristic are the following:

32

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

Aki

Distance from site j to site I.

; Number of unallocated demand of institution k in demand point 7; k£ € K, i € N.

Distance from demand of institution k in origin ¢ to the allocated site; k € K, i € N.

Residual capacity in site j; 7 € M.

i Residual capacity for the demand of other institutions in site j; j € M.

Maximum number of additional kernels that can be installed site j; j € M.
Maximum number of demand that can be assigned to other institutions; k € K.
Number of unassigned kernels of institution k; k € K.

Maximum number of CS that can be selected for institution k; k € K.

The following working parameters must be calculated in the procedures of the metaheuristic.

The distance for each demand point (k,7) to the allocated active site j is calculated as follows:

dii if Ty =17
Aei=13 i (26)
Dy otherwise

The number of kernels to add for each j € C'L in Pseudo-code 4 is determined as follows:

max{H;,1} for strategy ® = (i)
UJI(CI)) = min{f/j, ék(j)} for strategy ® = (ii) (27)
max{H;, min{ [V /2], ék(]—)}} for strategy ® = (iii)

The number of kernels to add for each j € C'L in Pseudo-code 6 are the following:

1 for strategy ® = (i)

u?(@) = 4 min{V}, @k(j)} for strategy ® = (ii) (28)

min{[V;/2],Gy(;)} for strategy ® = (i)

The number of kernels to add in the active site j in pseudo-code 8 is calculated as follows:

u? = max{H;, 1} (29)

The potential capacity for each j € C'L according to u? (®) is the following:
PC; :KC’xuf(@) p=1,2,3 (30)
The benefit in the objective function of each element of the candidate list is calculated as follows:

5]‘ = Z Z max{u?ki(/\ki — dij), 0} (31)

keK ’LENIPC]Z’J)]”

33

714

715

716

717

718

The benefit of allocating the demand (r,4) to the active site j is computed as follows:

Ori = max{wg;(Ak; — dij), 0}

Pseudo-code of local search strategies

The Pseudo-code of LS1 is the following:

Pseudocode 13 First-improvement local search for the interchange of sites

1: procedure LS1(S, R, time_limit, D)

2 S* + S;

3 Sop «+ S;

4 while (Improvement = true and time < time_limit) do

5: select solution S;

6 CLy +{j € Mply; =1}

7 while (CL; # 0) do

8 select an element j; € CLq;

9: CLQ%{jEMBk(h)D/j:O, lNle ZHJ', ’Djl §V3}
10: CLy < the R nearest elements to j; from C'Lo.
11: while (CLs # 0) do
12: select an element jo € CLo;

13: update working parameters: ‘7}1 — ‘N/jl + U5, IN/J-Q — f/jQ — Vjy;
14: update solution: vj, < 0j,, vj, <= 0, yj, < 0, yj, < 1;

15: CL3 + {jl,jg}

16: Z < DEMAND_DEALLOCATION(S, CLs, Dy);

17: Z + DEMAND_ALLOCATION(S);

18: if (Z(S) < Z(S*)) then
19: St §;

20 S0« S;

21: go to Step b;
22: else

23: S+ So;

24: end if

25: CLy + CLQ\{jQ};
26: end while

27: CLi + CLl\{jl};

28: if (CL; =0) then
29: Improvement = false;
30: end if

31: end while

32: end while

33: return (S%)
34: end procedure

The Pseudo-code of LS2 is the following:

34

Pseudocode 14 Local search for the interchange of new capacity

1: procedure LS2(S, R, time_limit, D)

2: S* + S;
3: So « S;
4: while (Improvement = true and time < time_limit) do
5: select solution S;
6: CL1<—{j€MA‘1~)j >0};
7 while (CL; # 0) do
8: select an element j; € CLq;
9: CLy = {j € My, |V; > 0}
10: CLy < the R nearest elements to j; from C'Lo.
11: while (CL2 # () do
12: select an element jo € CLo;
13: update working parameters:
let be u < min{;,,Vj,}, Vi, < Vi, +u, Vi, ¢ Vi, —u;
14: update solution: vj, < v, + u, U5, < U, — U;
15: CLj3 + {jl,jg}
16: Z + DEMAND_DEALLOCATION(S, CLs, D;);
17: Z + DEMAND_ALLOCATION(S);
18: if (Z(S) < Z(S8*)) then
19: S*+ S;
20: SV S:;
21: go to Step 5;
22: else
23: S + Sp;
24: end if
25: CLy + CLQ\{jQ};
26: end while
27: CLq %CLl\{jl};
28: if (CL1 = @) then
29: Improvement = false;
30: end if
31: end while
32: end while

33: return (S%)
34: end procedure

35

	Introduction
	Problem Description
	Formulation

	Proposed metaheuristic
	Initialization procedure
	Constructive method (CM)
	CM: Open new facilities
	CM: Addition of new kernels
	CM: Demand allocation
	CM: Force the opening of new sites

	Deconstruction phase
	Deconstruction strategy 1 (DS1)
	Deconstruction strategy 2 (DS2)

	Local search methods
	Optimization of the allocation subproblem (ALLOP)

	Empirical assessment
	Fine-tuning of constructive method
	Iterated Greedy Algorithm with Deconstruction Strategies
	Local Search
	Assessment of the Iterated Greedy Algorithm

	Conclusions

