
An Exact Algorithm for Designing Optimal Districts in the

Collection of Waste Electric and Electronic Equipment through an

Improved Reformulation

Roger Z. Ŕıos-Mercado1

Universidad Autónoma de Nuevo León (UANL)

Graduate Program in Systems Engineering

San Nicolás de los Garza, NL 66450, Mexico

roger.rios@uanl.edu.mx

Jonathan F. Bard

The University of Texas at Austin

Graduate Program in Operations Research and Industrial Engineering

Austin, TX 78712

jbard@utexas.edu

April 2018

Revised August 2018

Revised December 2018

1Corresponding author

Abstract

In this paper, a maximum dispersion districting problem is considered that arises in the col-

lection of waste electric and electronic equipment. For a given geographic region, the problem is

to partition a set of collection or basic units such that each district in the region is assigned to

a different company in a way that maximizes a dispersion function subject to a set of planning

requirements. Starting with the traditional mixed-integer programming model, a covering-type

model is proposed that is shown to be much more effective. In addition, a new upper bound for

the maximum dispersion partitioning problem – a relaxation of the problem studied – is developed.

Next, an exact algorithm based on the reformulated model is presented along with the newly de-

rived upper bound. The algorithm intelligently exploits properties of the problem in a manner that

allows for a large number of binary variables to be fixed and eliminated in a pre-processing step.

Extensive testing indicates that the new bound yields speed-ups with respect to the best existing

bound of up to 23%. The computations also show that the new covering-type model has a tighter

linear programming relaxation, and thus is faster to solve than the standard model. The proposed

exact algorithm is able to find optimal solutions to instances with up to 800 basic units and 12

companies, and to instances with up to 1400 basic units and 8 companies. Previously, the largest

instances solved optimally had between 40 to 100 basic units and 4 companies.

Keywords: Large scale optimization; Integer programming; WEEE Collection; Districting; Maxi-

mum dispersion

1 Introduction

In 2003, the European Commission approved Directive 2002/96/EC that regulates the disposal,

reuse, recycling, and other forms of recovery of waste electric and electronic equipment (WEEE). A

revision in 2003 led to WEEE II Directive (2012/19/EU), which seeks to improve the environmental

performance of all parties involved in the lifecycle of such products. As a result, many interesting

strategic, tactical and operational problems have arisen in the last few years.

One such problem is concerned with assigning a given set of collection units or basic units (BUs)

to the companies responsible for the collection of WEEE. This is a design problem that occurs prior

to the actual routing and physical collection of the discarded items and products.

Specifically, the design problem consists of assigning a given set of BUs to a given set of com-

panies in such a way that certain planning and legal requirements are met. In practice, each BU

handles two different types of products: (i) those with toxic emissions and (ii) those without, and

it is assumed that the market share for each product type and company is known. Also, each BU is

classified into one of three categories according to its infrastructure capability; that is, the extent

to which items can actually be recycled in its facilities. Among the requirements are that (a) the

average number of items collected by each company for each product type be proportional to its

market share, (b) a minimum number of collection stations must exist based on their infrastructure

capability, (c) the number of split BUs is bounded, where a split BU is one that is assigned to

different companies for each of its two product types, and (d) the BUs assigned to each company

should be as geographically dispersed as possible. This last requirement is imposed by the WEEE

Directive to avoid regional monopolies and is achieved by maximizing a dispersion function. The

resultant problem is referred to as the maximum dispersion territory design problem (MaxD-TDP.)

Comprehensive reviews on districting and territory design, in general, are given by Kalcsics

(2015), Duque et al. (2007), Ricca et al. (2013), and Zoltners and Sinha (2005). One important

feature that makes the MaxD-TDP unique with respect to other districting and territory design

problems is the nature of its objective function. While in practically every application of these

problems the goal is to obtain compact territories (by minimizing a dispersion measure), in the

problem addressed here the anti-monopolistic nature of the law leads to the opposite goal.

An examination of the literature on analytic approaches to WEEE recycling and collection

indicates that most of the work has focused on issues such as routing, recollection, and treatment

plant location. Very little has been done in terms of assigning BUs to waste management companies.

To the best of our knowledge, this territory design problem has only been addressed by Fernández

1

et al. (2010) and Ŕıos-Mercado et al. (2017). In the former, the authors introduce the problem,

present a mixed-integer linear programming (MILP) model, prove its NP-completeness, and develop

a greedy randomized adaptive search procedure (GRASP) that is able to efficiently handle instances

with up to 400 BUs and 7 companies. In the latter, the authors present an enhanced tabu search

metaheuristic.

Also related to our research is the study by Fernández et al. (2013) of a maximum dispersion

partition problem called MaxDP. In that paper, the authors present an exact optimization method-

ology that relies heavily on an upper bounding scheme for a relaxation of MaxDP that provides

very good results. Although we are not solving MaxDP in this paper due to the presence of split

BUs, if we relax some of the constraints in our problem what results is precisely the unrestricted

max-dispersion problem (called UMaxDP). This means that the previously developed bound is

indeed valid for our problem, i.e., MaxD-TDP.

The contributions of this paper are several fold.

• First, a new and improved upper bound to the (related) maximum dispersion problem

(UMaxDP), which in turn is also a bound for our problem, is presented along with a for-

mal proof. This new bound can be efficiently computed and is empirically shown to be much

tighter than the best current bound. In fact, our results indicate that the proposed bound

yields average speed-ups of up to 23% with respect to the existing bound.

• The introduction of a new and improved reformulation of the MaxD-TDP, including several

properties that allows for fixing some of the binary variables. The new model is motivated

by the fact that problem reformulation has proven successful for other location problems

(Church, 2008; Elloumi et al., 2004; Fernández et al., 2013; Maŕın et al., 2009).

• An exact optimization algorithm based on a biased binary search scheme. The methodology

effectively exploits the tightness of the new upper bound and the new properties associated

with the reformulated model.

• An extensive computational study to assess each component of the proposed methodology,

including tests with very large instances (up to 1400 BUs) not tested previously. Our empirical

work includes a comparison between the two MILPs mentioned. The results indicate that

our algorithm can find optimal solutions to instances with up to 800 BUs and 12 companies

and up to 1400 BUs and 8 companies. To date, the largest instances solved optimally had

between 30 to 100 BUs and 4 companies. Previous to this work, only heuristics existed for

the MaxD-TDP, so our algorithm is the first exact method.

2

The rest of the paper is organized as follows. In Section 2, we survey related work. In Section 3,

we formally state the maximum dispersion problem, give its standard MILP formulation, and

present our proposed reformulation. The derivation of our new upper bound is given in Section 4

followed in Section 5 by a full description of the optimization algorithm. Computational results are

provided in Section 6 and concluding remarks are given in Section 7.

2 Related Work

Territory design or districting is a field that has been active since the mid-1960s, with the early

work mostly focusing on political districting and the partitioning of sales regions. Over the past

15-20 years, its scope has been extended to a wide range of applications. One factor that makes

our work unique with respect to the literature is the absence of a compactness criterion. While

practically all existing research on districting is concerned with generating compact territories, our

goal is to maximize dispersion (due to the anti-monopoly clause of the law). Thus, former models

and methods developed for districting problems are not generally applicable to our work. For a

broader view on districting research, the reader is referred to the survey papers by Zoltners and

Sinha (2005), Duque et al. (2007), Pukelsheim et al. (2012), Ricca et al. (2013), and Kalcsics (2015).

With respect to WEEE decision-making problems, much of the modeling effort has centered on

routing, recollection and treatment plant location, rather than system design (e.g., see Georgiadis

and Besiou (2010); Grunow and Gobbi (2009); Hammond and Beullens (2007); Lee and Shih (2012);

Mar-Ortiz et al. (2011, 2013); Tsai and Hung (2009); Queiruga et al. (2008); Rudăreanu (2013)).

Nevertheless, there has been some research addressing partitioning-type problems with disper-

sion objectives. The maximally diverse grouping problem, for example, is aimed at maximizing

the sum of pairwise distances within groups. Fan et al. (2011) and Gallego et al. (2013) present

heuristics for this problem. The maximum diversity problem in which a subset of elements must

be chosen from a larger set so as to maximize the sum of distances between the chosen elements

also falls in this category. Mart́ı et al. (2010) present a recent overview on this problem and a

branch-and-bound algorithm for its solution. Kuo et al. (1993) studied the same problem but

with a different objective function. They introduced a model where the minimal pairwise distance

instead of the sum of distances is maximized.

The maximum dispersion problem was introduced by Fernández et al. (2013) who present an

integer programming model, develop several properties, and present an upper bounding scheme

and an exact algorithm. Some of the results included in the above-mentioned papers will be further

3

discussed in subsequent sections.

With respect to the location literature, a common problem known as the p-dispersion problem

(Erkut, 1990; Erkut and Neuman, 1991), involves placing p points on a plane as far away from each

other as possible. Although this is not a partitioning problem, maximum dispersion functions are

typically used.

To the best of our knowledge, the only other work on WEEE districting is due to Fernández

et al. (2010), who introduced the problem and proposed a GRASP that was successful in finding

high quality solutions, and Ŕıos-Mercado et al. (2017) who presented an enhanced tabu search

algorithm. These two approaches are heuristics. Our contribution centers on the development of

an exact optimization scheme for the same problem. Although the problem we address possesses

features similar to those in the maximum dispersion problem, it is important to note that we are

not solving a partitioning problem due to the presence of additional constraints and the fact that

BUs can be split.

3 Problem Description and Formulations

What makes the MaxD-TDP different and interesting is that the partitioning plan must also satisfy

the WEEE Directive, which asserts that regional monopolies must be avoided; that is, BUs allocated

in smaller subregions should be assigned to different companies to the greatest extent possible. As

shown by Fernández et al. (2010), this is accomplished by maximizing a dispersion measure, in

contrast to previous work where a dispersion measure is commonly minimized to achieve territory

compactness.

Fernández et al. (2010) studied two dispersion functions, one based on maximizing the sum

of inter-cluster distances and the other based on maximizing the minimum inter-cluster distance.

Their results indicated that the latter was a more robust measure yielding more representative

designs in terms of avoiding regional monopolies. Accordingly, this objective function will be used

here.

In the remainder of this section we provide a summary of the main assumptions and planning

requirements that underpin MaxD-TDP. We then present two MILPs: the first is from Fernández

et al. (2010) called MDTDP, and the second is a new reformulation that makes use of covering-type

variables, which we call MDTDP-CF.

4

3.1 Problem Statement

Let V = {1, . . . , n} be the set of BUs, where a BU corresponds to a collection point. Let hi be the

number of households associated with BU i ∈ V and let H =
∑

i∈V hi be the sum of all households.

It is assumed that the number of items to be collected is proportional to the number of households.

Each BU is further classified according to the nature or quality of its infrastructure. Denote by V1,

V2 and V3 the set of BUs of good, medium and low quality, respectively. We use q ∈ Q = {1, 2, 3}

as an index for the quality set and qi ∈ Q as the quality index of BU i. Accordingly, we have

Vq = {i ∈ V : qi = q} for all q ∈ Q.

Electric and electronic appliances and equipment are further subdivided into items that have

freezing capabilities and those that do not (referred to as type 1 and type 2 products, respectively).

This distinction is necessary due to the toxic cooling solvents contained in type 1 products which

require special treatment. Let dij be the Euclidean distance between BUs i and j, i, j ∈ V . We

denote by C = {1, . . . ,m} the set of companies or territories and Mp
k the market share of company

k ∈ C for product type p ∈ P = {1, 2}. It is also assumed that m < n. In fact, for most practical

instances m << n. As market shares may differ for the two product types, it is permissible to split

BUs, i.e., for some BUs the company that collects type 1 products may not be the same as the

one that is responsible for the type 2 products. A BU that is assigned to different companies for

the two product types is called a split unit. Let cq(V̄) = |V̄ ∩ Vq| denote the cardinality of subset

V̄ ⊂ V with respect to quality index q ∈ Q.

The problem consists of assigning BUs and product types to companies in a way that avoids

regional monopolies in accordance with law. This is achieved by maximizing a dispersion function.

The following requirements partially define the problem.

• For each product type p ∈ P , a BU must be assigned to a company; in particular, for each p

the assignment forms an m-partition of V .

• The number of split units is bounded by a user-specfied parameter σ.

• BUs should be assigned to companies in such a way that the total items to be collected by

each company is proportional to its market share for each product type. This is handled by

assuming that the amount of items is proportional to the number of households associated to

a collection unit.

• The number of BUs with a specific quality index should be proportionally assigned to com-

panies based on their market share for each product type.

5

• It is assumed that each company is assigned at least two BUs, that is, there are no (trivial)

singleton territories. Note that this assumption does not restrict the generality of our results

for the following reason. A feasible singleton territory solution exists if there is a unit i and

a territory k such that

hi ∈ [(1− τ)HMp
k , (1 + τ)HMp

k] for p ∈ P

and

1 ∈ [(1− β)|Vqi |M
p
k , (1 + β)|Vqi |M

p
k] for p ∈ P

where τ and β are parameters (see constraints (4)–(7) below). Since these conditions can be

easily checked beforehand, if such a unit exists we can simply remove it and the corresponding

company. This would leave us with a problem where each territory has at least two units

assigned to it.

• Connectivity among BUs is not considered because the WEEE II Directive does not require

it.

For modeling the last two requirements, we introduce parameters 0 ≤ τ, β ≤ 1, respectively,

that are used for setting a limit in the maximum deviation allowed from a known target value. See

Eqs. (4)–(7) below.

Let D be a sufficiently large number representing an upper bound on the objective function

value. A trivial bound would be D = maxi,j∈V {dij}, which is valid under the assumptions that

m < n and that there are no trivial singleton territories; that is, each territory is formed by two or

more BUs.

3.2 MDTDP Model

In the specification of the first MILP, we make use of the the following binary decision variables.

For i, j ∈ V , k ∈ C, and p = 1, 2, let

ypik =

1 if BU i is assigned to company k for product type p

0 otherwise

xik =

1 if BU i is assigned to company k for at least one of the two product types

0 otherwise

6

zijk =

1 if BUs i and j are both assigned to company k for at least one of the two product types

0 otherwise

wi =

1 if BU i is assigned to different companies for product types 1 and 2

0 otherwise

Noting that the zijk-variables are symmetric with respect to i and j, i.e., zijk = zjik, we only

need to consider the case i < j. Accordingly, we define E = {(i, j) : i, j ∈ V, i < j}. The MILP is

given as follows.

MDTDP Model

Maximize u (1)

subject to u ≤ dijzijk +D(1− zijk) (i, j) ∈ E, k ∈ C (2)∑
k∈C

ypik = 1 i ∈ V, p ∈ P (3)

∑
i∈V

hiy
p
ik ≤ (1 + τ) ·H ·Mp

k k ∈ C, p ∈ P (4)

∑
i∈V

hiy
p
ik ≥ (1− τ) ·H ·Mp

k k ∈ C, p ∈ P (5)

∑
i∈Vq

ypik ≤ (1 + β) · |Vq| ·Mp
k k ∈ C, p ∈ P, q ∈ Q (6)

∑
i∈Vq

ypik ≥ (1− β) · |Vq| ·Mp
k k ∈ C, p ∈ P, q ∈ Q (7)

∑
i∈V

wi ≤ σ (8)

y1ik − y2ik ≤ wi i ∈ V, k ∈ C (9)

y2ik − y1ik ≤ wi i ∈ V, k ∈ C (10)

xik ≤ y1ik + y2ik i ∈ V, k ∈ C (11)

ypik ≤ xik i ∈ V, k ∈ C, p ∈P (12)

7

xik + xjk ≤ 1 + zijk (i, j) ∈ E, k ∈ C (13)

zijk ≤ xik (i, j) ∈ E, k ∈ C (14)

zijk ≤ xjk (i, j) ∈ E, k ∈ C (15)

wi, xik, y
p
ik, zijk ∈ {0, 1} (i, j) ∈ E, k ∈ C, p ∈ P (16)

The linearized dispersion objective is modeled by (1)-(2). Constraints (3) ensure that each BU

is assigned to a company for each product type. Constraints (4)-(5) ensure that the number of

households is fairly distributed to companies based on their market share. Due to the discrete

nature of the problem, it is practically impossible to obtain a perfect balance. To get around this

issue, we introduce a tolerance parameter τ ∈ (0, 1) that measures the deviation from a perfect

measure given by H ·Mp
k . Similarly, constraints (6)-(7) ensure that the good, medium and low

quality BUs are fairly allocated to companies based on their market share. To this end, a user-

specified tolerance parameter β ∈ (0, 1) is introduced. These two sets of constraints are referred to

as the household and infrastructure quality balancing constraints, respectively. Note that tolerance

values of τ = β = 0 correspond to a perfect balance.

Constraint (8) places a limit on the number of split BUs allowed. In practice this is around 20%

of the total number. Constraints (9)-(10) establish the relationship between the w- and y-variables,

constraints (11)-(12) establish the relationship between the x- and y-variables, and constraints

(13)-(15) establish the relationship between the x- and z-variables. Note that constraints (14) and

(15) are not really needed due to the maximization objective defined by (1)-(2). To obtain the

maximum value of u we would like to set zijk = 0 whenever possible. Thus, zijk > 0 only when

the right-hand side of (13) is required to be 2 to achieve feasibility. Accordingly, we drop (14) and

(15) from the formulation.

It should be mentioned that although we consider an index set Q with three elements, the model

is valid for a general set Q. In terms of the number of products, the model is valid for only two

product types; however, it can easily be extended to allow a general set P by replacing constraints

(9)-(10) with the following.

ypik − y
t
ik ≤ wi i ∈ V, k ∈ C, p, t ∈ P (p 6= t)

In this case, a split BU is defined as a unit whose different product types are not all assigned to

the same company.

8

Fernández et al. (2010) showed that the MaxD-TDP is NP-hard. The state of the art says that

tractable instances of the maximum dispersion problem, i.e., those that can be solved exactly, have

on the order of 20-30 BUs and 3-4 companies. Our target instances have 300-800 BUs and 5-10

companies.

3.3 A Covering-Based Formulation

The following reformulation of the problem is motivated by the success evidenced by using covering-

type models to represent other location problems such as the p-center problem (Elloumi et al.,

2004), the p-median problem (Church, 2008), and the maximum dispersion territory design problem

(Fernández et al., 2013), to name a few. The idea is as follows. Let {d1, d2, . . . , dr̃} be the set of

r̃ different distance values between BUs sorted in increasing order. That is, 0 < d1 < d2 < . . . <

dr̃ = D, where R = {1, . . . , r̃} represent the index set. In the worst case, when all distances are

unique, we have r̃ = n(n− 1)/2. In practice, r̃ is smaller than this value.

Now, defining the following binary variables for r ∈ R,

vr =

1 if the overall smallest pairwise distance is at most dr

0 otherwise

the MILP covering formulation is given by

MDTDP-CF Model

Maximize dr̃ +
r̃−1∑
r=1

(dr − dr+1)vr (17)

subject to xik + xjk ≤ 1 + vr i, j ∈ V, i < j, k ∈ C, r ∈ R : dij = dr (18)

vr−1 ≤ vr r ∈ R \ {1} (19)∑
k∈C

ypik = 1 i ∈ V, p ∈ P (20)

∑
i∈V

hiy
p
ik ≤ (1 + τ) ·H ·Mp

k k ∈ C, p ∈ P (21)

∑
i∈V

hiy
p
ik ≥ (1− τ) ·H ·Mp

k k ∈ C, p ∈ P (22)

9

∑
i∈Vq

ypik ≤ (1 + β) · |Vq| ·Mp
k k ∈ C, p ∈ P, q ∈ Q (23)

∑
i∈Vq

ypik ≥ (1− β) · |Vq| ·Mp
k k ∈ C, p ∈ P, q ∈ Q (24)

∑
i∈V

wi ≤ σ (25)

y1ik − y2ik ≤ wi i ∈ V, k ∈ C (26)

y2ik − y1ik ≤ wi i ∈ V, k ∈ C (27)

xik ≤ y1ik + y2ik i ∈ V, k ∈ C (28)

ypik ≤ xik i ∈ V, k ∈ C, p ∈P (29)

vr, wi, xik, y
p
ik ∈ {0, 1} i, j ∈ V, i < j, k ∈ C, p ∈ P, r ∈ R (30)

Basically, the objective function and the z-variables from the previous model are dropped along

with all constraints in which they appear. A new objective function (17) and set of constraints

(18)-(19) are then introduced in their place. For any feasible solution yielding the objective function

value ds, we have vr = 0 for r ≤ s − 1 and vr = 1 for r ≥ s. This reduces the number of binary

variables from O(mn2) in MDTDP down to O(n2) in MDTDP-CF.

Both models MDTDP and MDTDP-CF are equivalent as they yield the same objective function

value at optimality. Moreover, the optimal values of the decision variables that define how the

territory is partitioned are also the same. This type of reformulation has proven successful for similar

problems and is a consequence of the model structure rather than a reduction in problem size. In

fact, the reformulated model may be larger or smaller than MDTDP depending on the cardinality

of R. However, by eliminating constraints (2) MDTDP-CF has a tighter linear programming (LP)

relaxation than MDTDP. This is not surprising as it is well known that integer programming models

based on big-M type constraints tend to have bad LP relaxations.

3.4 Model Properties

Given the nature of the objective function, the following properties for what Fernández et al. (2013)

called the unrestricted maximum dispersion design problem (UMaxDP), also hold for the MDTDP

model.

• Property 1: Let L be a lower (primal) bound on the optimal objective function value u∗ in

10

(1). Then, in any optimal solution we must have zijk = 0 for all (i, j) ∈ E and k ∈ C such

that dij < L.

• Property 2: Let U be an upper (dual) bound on u∗. Then we can fix zijk = 1 and eliminate

constraints (13) for all (i, j) ∈ E and k ∈ C with dij > U .

• Property 3: If U is a valid upper bound on u∗, then the MILP can be strengthened by

replacing D by U in constraints (2).

These properties have been successfully exploited in solution algorithms for problems with

similar structure such as the maximum dispersion partition problem (MaxDP). Going a step farther,

for the MDTDP-CF model, properties 1 and 2 can be extended to

• Property 4: Let L be a lower (primal) bound on the optimal objective value u∗ such that

L = ds for some s ∈ R. If L does not match any ds, that is, ds−1 < L < ds for some

s ∈ R ∪ {0}, then L can be replaced by ds. Therefore, in any optimal solution we must have

vr = 0 for r ≤ s− 1.

• Property 5: Let U be an upper (dual) bound on u∗ such that U = ds for some s ∈ R. Again,

if U does not match any ds, that is ds < U < ds+1 for some s ∈ R, then U can be replaced

with ds. Therefore, in any optimal solution we can fix vr = 1 for r ≥ s.

4 Upper Bounding Scheme

We begin the derivation of upper bounds for MDTDP by removing the binary variables ypik and

wi and the constraints in which they appear, (3)-(12), to obtain UMaxDP. Although this problem

remains NP-hard (Fernández et al., 2013), in practice, it is relatively straightforward to solve and

any upper bound for UMaxDP is a valid upper bound for MDTDP. The relaxed model is given by:

(UMaxDP) Maximize u (31)

subject to u ≤ dijzijk +D(1− zijk) (i, j) ∈ E, k ∈ C (32)∑
k∈C

xik = 1 i ∈ V (33)

xik + xjk ≤ 1 + zijk (i, j) ∈ E, k ∈ C (34)

11

zijk ≤ xik (i, j) ∈ E, k ∈ C (35)

zijk ≤ xjk (i, j) ∈ E, k ∈ C (36)

xik, zijk ∈ {0, 1} (i, j) ∈ E, k ∈ C (37)

The following upper bounds are known for UMaxDP (Fernández et al., 2013). Their validity is

based on the assumption that each company is assigned at least two BUs, which is precisely one of

the assumptions made in Section 3.1.

• A simple greedy upper bound is given by

U1 = min
i∈V

max
j∈V

dij . (38)

• The authors developed an upper bound based on subsets of size m+ 1 (see next subsection).

They empirically showed that this bound is significantly better than any other known bound.

We call this bound U (m+1) or UFKN.

4.1 New Upper Bound

The proposed upper bound is an extension of UFKN. In their work, Fernández et al. (2013) proved

that for any given subset S of size m + 1, the term maxi,j∈S{dij} gives an upper bound on the

optimal value u∗ of UMaxDP. This result is valid under the assumption that there are no trivial

singleton territories; that is, there are at least two BUs assigned to each territory. Then, by

considering all possible families of subsets of size m+ 1, they set

UFKN = min
S⊂V (m+1)

max
i,j∈S
{dij},

where V (k) = {S ⊂ V : |S| = k} is the collection of all subsets of V of cardinality k. Clearly,

V (m+1) grows exponentially with m; therefore, the authors suggest using a heuristic to compute

this bound for a partial collection of subsets of V (m+1).

The main idea of our approach is to consider subsets of V of size m+2. This of course increases

the number of combinations of the different cases, but the total number of cases is still tractable

for realistic instances. The argument is as follows.

Let S be an arbitrary subset of V such that |S| = m + 2. The idea is to consider different

disjoint cases that may occur when distributing these m + 2 BUs among m territories. Consider

12

case t consisting of all possible combinations of m + 2 BUs among the m territories such that

the largest subset has cardinality t. The smallest possible value for t is 2 (it is impossible to

accommodate m+2 BUs in m territories by placing just one unit in each territory), and the largest

possible value for t is 3 (this is the case when 3 units belong to the same territory and each of

remaining m − 1 units belongs to one of the remaining m − 1 territories, one unit per territory).

Thus, we have two disjoint cases as a function of t ∈ {2, 3}. Considering all disjoint cases, a valid

upper bound for UMaxDP is given by max{B3(S), B2(S)}. Let us now focusing on computing

B3(S) and B2(S).

Bound computation

Computing B3(S): This is the case where m+ 2 units in set S are distributed in such a way that

the largest subset of S has 3 BUs. This can occur only when there is a partition of S such

that there is subset of cardinality 3 and each of the remaining subsets in the partition has

cardinality 1. Because each of the latter is irrelevant to the bound computation, it suffices to

compute the bound for each possible subest of S of size 3. Now, for an arbitrary subset H of

S of size 3, a valid bound is given by mini,j∈H{dij}. If we consider the worst possible value

over all subsets of size 3, B3(S) can be found as follows:

B3(S) = max
H⊂S
|H|=3

min
i,j∈H

{dij}

Computing this value can be done efficiently. The number of subsets of S of size 3 is given

by
(
m+2
3

)
, so the computational effort is proportional to O(m3). Recall that m is a relatively

small number in practice.

Computing B2(S): This is the case where the m+ 2 units of set S are distributed in such a way

that the largest subset of S has two BUs. That is, there are two subsets with two BUs and

the remaining m − 2 subsets have just one unit each. Let us refer to these two subsets of

cardinality 2 as S1 and S2. Because each of the remaining subsets has only one unit, they are

irrelevant for computing the bound. If we think of S as a complete subgraph where each edge

(i, j) ∈ S × S (i 6= j) has length dij , or alternatively, edge a ∈ S × S has length da, then the

worst case scenario for computing a valid upper bound is given by finding two disjoint edges

a and b such that min{da, db} is maximized. This is valid because each of the disjoint edges,

comprised of two nodes, corresponds to one of the two subsets of cardinality 2 considered in

this case. Since the minimum of the two is an upper bound on the objective function, when

13

considering all possible combinations, the largest of these will be a valid upper bound for the

problem. Letting T (S) be the collection of all pairs of disjoint edges for a given S, the bound

is then given by:

B2(S) = max
(a,b)∈T (S)

min{da, db} (39)

Computing this value can be done efficiently. In the worst case, we have only to search for

all edges in S, which can done in O((m+ 2)2) time.

Accordingly, by considering all possible subsets of size m+ 2 we can compute an upper bound

on the optimal value u∗ of UMaxDP as follows.

URB ≡ U (m+2) = min
S⊂V (m+2)

max{B3(S), B2(S)} (40)

The following theorem that states the dominance of upper bound U (m+2) over U (m+1).

Theorem 1. For any m, U (m+2) ≤ U (m+1).

Proof. Let U (m+1) be the best upper bound under subsets of size m + 1 as described above. Fur-

thermore, let Ŝ be the subset achieving this bound, that is,

Ŝ = argmin
S⊂V (m+1)

max
i,j∈S
{dij}.

Without loss of generality, let Ŝ = {v1, v2, . . . , vm+1}, where the first two BUs are the ones achieving

this bound, that is,

(v1, v2) = argmax
(i,j)∈Ŝ×Ŝ

{dij}. (41)

Hence, we know U (m+1) = dv1,v2 and P = ({v1, v2}, {v3}, . . . , vm+1}) is the m-partition of Ŝ yielding

this bound. Now, let us consider an arbitrary BU k ∈ V \ Ŝ and the set S = Ŝ ∪ {k}, such that

|S| = m+ 2. Our goal at this point is to compute a bound based on this subset of size m+ 2 and

compare it with U (m+1). From partition P , there are two possible disjoint cases when attempting

to compute the bound based on S. The bound is given by either B3(S) or B2(S). In the former

case we must compute all possible subsets of size 3 and carefully analyze the different cases to

determine whether or not k is part of a particular subset of size 3. In the latter case, joining k to a

singleton subset in Ŝ would mean having two disjoint subsets of size 2, namely {v1, v2} and {k, vq}

for some q = 3, 4, . . . ,m+ 1, and thus a computation of B2(Ŝ ∪ {k}) would be required.

Now let us consider these two disjoint cases.

14

• Case (A): Computing B3(S). To compute B3(S), let H = argmax
H⊂S
|H|=3

min
i,j∈H

{dij} such that H is

the subset of S giving this bound. There are three possible disjoint sub-cases:

– Sub-case (A.1): k 6∈ H. Now, if k 6∈ H, then B3(S) ≤ dv1,v2 because k 6∈ Ŝ and by

construction (v1, v2) is the largest edge in Ŝ.

– Sub-case (A.2) k ∈ H and the smallest edge in H does not contain k. Letting (i, j) be

the smallest edge, we have B3(S) = dij ≤ dv1,v2 = U (m+1) by definition of U (m+1) given

by (41) and because i, j ∈ Ŝ. Thus B3(S) ≤ U (m+1).

– Sub-case (A.3): k ∈ H and the smallest edge in H does contain k. Letting (i, k) be

the smallest edge in H = {i, j, k}, we have dik ≤ dij by construction. However, because

i, j ∈ Ŝ and by definition of U (m+1) given by (41), we have dij ≤ dv1,v2 = U (m+1)

Thus, all three sub-cases imply B3(S) ≤ U (m+1).

• Case (B): Computing B2(S). Recall that from the computation of (39) above, the length of

the second largest edge in Ŝ is a valid upper bound. By adding the new BU k, there are

(m+ 1) additional edges in the subgraph, namely (k, j) for each j ∈ Ŝ. Therefore, depending

on the length of these new edges, three disjoint cases may occur as shown in Figure 1.

– Sub-case (B.1): Largest edge is (k, j) for some j ∈ Ŝ such that j 6= v1 and j 6= v2.

That is, the largest edge is incident to the new BU k but not incident to either v1 or v2.

In this case, (v1, v2) turns out to be the second largest edge in S (disjoint from (k, j)).

Therefore, the bound B2(S), given by the second largest edge, is B2(S) = dv1,v2 . For

this sub-case then, U (m+1) = B2(S) so the bound remains the same.

– Sub-case (B.2): Largest edge is (k, j) for some j ∈ {v1, v2}, that is, the largest edge is

incident to k and to one of the BUs v1 or v2. Without loss of generality, assume it is

incident to v1. Then, the second largest edge taken from the set Ŝ \ {v1} cannot by

definition be larger than dv1,v2 . Therefore, B2(S) ≤ U (m+1).

– Sub-case (B.3): Largest edge is still (v1, v2). Thus the second largest edge must be less

than or equal to dv1,v2 , and therefore, B2(S) ≤ U (m+1).

Thus, for all three sub-cases we have B2(S) ≤ U (m+1).

Taken together, we can conclude max{B3(S), B2(S)} is equal or less than the U (m+1). In

contrast, set S may not be the optimal set giving the best value of U (m+2), that is U (m+2) ≤

max{B3(S), B2(S)} ≤ U (m+1), and this completes the proof. �

15

v

k

k

k

v
2

1
v

Case (B.1)

Case (B.3)

Case (B.2)

second largest
largest

S
^

1
v

2
v

1

2
v

v

2
v

1

Figure 1: Different sub-cases in proof of Theorem 1 for case (B).

Remark. Empirically, B2(S) was always observed to be greater than or equal to B3(S); however,

one can construct an example to show that this may not always be the case.

4.2 Description of the Upper Bounding Scheme

Now, when attempting to compute bound U (m+2) according to (40), |V (m+2)| grows exponentially

with m, so evaluating all possible subsets could be overwhelming. However, a good approximation

can be heuristically computed using the following idea. First, it should be evident that all subsets

of V (m+2) whose BUs are located relatively far from each other will not play any role in the bound

computation. In fact, the best upper bound will come from the subset yielding the lowest possible

value. Therefore, rather than evaluating each possible subset of V (m+2), we focus on intelligently

selecting only a fraction of subsets that are potentially good candidates for this computation. In

other words, we want to select a collection of subsets of V (m+2) in which the BUs are relatively

close to each other because these will be more likely to produce smaller values of B2(S) and B3(S).

Algorithm 1 outlines a proposed heuristic for computing URB. The basic idea is to iteratively

include each BU in the computation of the bound. In the main loop, a BU i is chosen, then a

set of size m + 2 is formed by adding m + 1 units to i in such a way that these are relatively

16

close to each other. In all, the procedure computes n possible bounds and outputs the best, all in

O(n(n + m2)) time. Furthermore, the quality of the bound found is significantly better than the

previously developed bounds, as we will see in Section 6.

Algorithm 1 UB-RB((dij))

Input: (dij) ≡ distance matrix of dimension n× n

Output: An upper bound for UMaxDP

1: best bound←∞

2: for (i = 1, . . . , n) do

3: Obtain S(i), m+ 1 BUs “near” to i

4: S ← {i} ∪ S(i)

5: bound← Compute min{B2(S), B3(S)}

6: if bound < best bound then

7: best bound← bound

8: end if

9: end for

10: return best bound

Obtaining set S(i) in Step 3 can be done under different strategies. In our case, we proceed

as follows: For a given BU i we choose the remaining m + 1 BUs by iteratively choosing j∗ =

arg minj∈V \S d(j, S) as the element to be added to S until |S| = m+ 2, where the distance between

j and set S is given by d(j, S) = maxk∈S{dij}. A different strategy might be to simply include the

m+ 1 closest BUs to i, as was done by Fernández et al. (2013) in the computation of UFKN. This

approach, however, does not take into account the distances between the BUs added and has been

shown empirically to yield a worse bound than the proposed approach.

The example depicted in Figure 2 illustrates these two approaches. Suppose that we are forming

a subset of size 3 (m = 2) and that the iterating unit is node a. We have a partial subset denoted

by S = {a, c} as indicated in the figure. The numbers on the edges represent the distance between

BUs. Thus, under the strategy from Fernández et al. (2013), the closest node to node a is node

b. Accordingly, this node would be chosen to enter S and the corresponding bound would be

maxi,j∈S{dij} = 9. Now, under our proposed strategy we first compute d(b, S) = 9 and d(e, S) = 7.

Because node e gives the minimum value among these, it is chosen to enter S with corresponding

bound equal to 7 – clearly better than the previous bound. In any case, each remaining node in

V must be examined and d(j, S) must be computed so Step 3 takes O(nm2) time. Step 5 takes

17

O(m2) time.

b

c

a

e

5

6

7

9

6

S

Figure 2: Example of strategies for forming subset S of size 3.

Remark. Applying the same ideas, we developed a family of bounds, call them U (m+h), based on

subsets of size m + h for different values of h > 2. To determine their quality, we did extensive

testing and observed that there was practically no benefit for values of h > 2. As expected, runtimes

increased; however, the solution quality remained virtually the same. This comes from the fact that

the U (m+2) bound is very tight so very little is gained when h > 2.

5 Exact Optimization Algorithm

We wish to solve MDTDP-CF. The main idea of our algorithm is to perform a search for the optimal

d∗ over the set {d1, d2, . . . , dr̃} by taking advantage of Properties 3 - 5 given in Section 3.4. To

this end, let MDTDP-CF(L, U) be a parameterized version of model (17)-(30) with corresponding

objective function value z(L,U), under the additional condition that the optimal value (of this

related problem) must lie between L and U . Now, if it turns out that these fixed values of L and

U are indeed valid bounds on d∗ for the original problem, then we have z(L,U) = d∗. However,

during the search process, it could be that one of these bounds is fixed at a value that makes

MDTDP-CF(L, U) infeasible. This situation can be intelligently used to reduce the search space.

Given L and U , Properties 3 - 5 can be used in a pre-processing step to fix and thus eliminate

many binary variables.

To make the notation simpler, note that we can refer to each of the different distance values

in {d1, d2, . . . , dr̃} by their corresponding one-to-one mapped index set {1, 2, . . . , r̃}. Let rmin and

rmax be the indices corresponding to the distance values matching a known lower and upper bound,

respectively, that is, LB = dr
min

and UB = dr
max

. At the start of the algorithm, if these values

are not known, they can simply be set to 1 and r̃, respectively. In our case, Algorithm 1 is applied

18

to obtain an initial value for UB. Let α ∈ (0, 1) be the biased binary search parameter used to

calculate an intermediate point r̄ between rmin and rmax. Thus, the search algorithm is equivalent

to finding the optimal index r∗ such that d∗ = dr
∗
.

Algorithm 2 depicts our proposed exact optimization scheme. It can be viewed as a biased binary

search parameterized on α. Typically, in a binary search algorithm α is set to 1/2. However, here

we exploit the observation that the proposed upper bound is very tight, implying that the optimal

solution is more likely to be closer to the upper bound than to the lower bound. Therefore, setting

a high value of α, say, to 0.9, significantly improves the convergence of the algorithm. This is shown

in the next section.

Algorithm 2 EXACT(rmin, rmax, α)

Input: (rmin, rmax, α)

Output: r∗ ≡ index corresponding to optimal solution d∗ = dr
∗

1: while (rmin < rmax) do

2: r̄ ← drmin + α(rmax − rmin)e

3: status ← Solve MDTDP-CF(r̄, rmax)

4: if (status = Infeasible) then

5: rmax ← r̄ − 1

6: else if (status = Optimal) then

7: r∗ ← argr{dr = d∗}

8: break

9: else { status = Feasible (non-optimal)}

10: rmin ← r̄

11: end if

12: end while

13: return r∗

In Step 3, status stores one of the three solver status values. Any code for solving an integer

program can be used. In our case, we used CPLEX with its default settings. If the modified

problem is infeasible then status = Infeasible, which means that the index corresponding to the

optimal solution does not fall in the interval [r̄, rmax]. Otherwise, the modified problem is feasible

and two possible cases can occur. Either the solution is proven optimal (status = Optimal) or just

feasible (status = Feasible (non-optimal)). In the former case, the algorithm stops and this solution

is returned as the optimal solution to the original MDTDP-CF. The latter case may occur when

19

the algorithm solving MDTDP-CF(L, U) stops before reaching optimality. This could be due to a

time limit being reached, for example, or when a feasible solution is obtained. Given a new feasible

solution, the lower bound is updated and the algorithm goes on to the next iteration. Note that in

Step 10, if a feasible (non-optimal) solution is found it means that r̄ improves (is larger than) rmin

by at least one unit given the way r̄ was updated in the previous iteration (Step 2).

6 Computational Experiments

All procedures were coded in C++ and compiled with the C++ command line compiler (g++)

from Xcode 8.3.3 and run on an iMac with a 3.33 GHz Intel Core 2 Duo processor and 8 GB of

RAM. For solving the MILPs, we used the CPLEX Studio 12.7.1 callable library from IBM with

its default settings.

For the empirical evaluations, we used two sets of problem instances denoted by R and F. For

set R, we generated random instances as follows. BU coordinates were uniformly located in the

[0, 10]× [0, 10] square and pairwise distances were calculated as Euclidean distances between points.

Then, we followed the same procedure used by Fernández et al. (2010). That is, the infrastructure

quality indices were uniformly chosen to ensure that we have approximately the same number of

good, medium, and low quality BUs. The maximum number of split units allowed was set to

σ = b0.2nc while the market shares were determined independently for the two types of products.

First, a market share is drawn uniformly from the interval [0.75/m, 1.25/m], and then normalized

to ensure a total sum of 1. For our experiments, we divided all generated instances from set R into

three main groups whose size we classified as medium, large, and very large. For the medium-size

group, we used tolerance values of β = 0.2 and τ = 0.05, for the other two groups we used β = 0.05

and τ = 0.05.

Set F was derived from real-world data by Fernández et al. (2010) and corresponds to German

zip-code areas with a proportional number of households. To generate an instance, they extracted

all zip-code areas lying within a rectangle. The instances represent rural, urban as well as mixed

regions. They generated five instances for each number of BUs, except for the last, where they

have just four instances. For our experiments, we used only the largest instances, that is, instances

with 200, 250, and 300 basic units. The tolerance values were β = 0.2 and τ = 0.05. All instances

from set R used in the study are available from the authors.

Table 1 identifies the size of the data sets in terms of n and m for each group. For set R, a total

of 10 instances were generated for each n×m combination. For set F, there are 5 instances for each

20

Table 1: Data set size

Group Instance size (n×m)
Set R 40× 3 40× 4 40× 5
Medium 60× 3 60× 4 60× 5
Total = 120 80× 3 80× 4 80× 5

100× 4 100× 5 100× 6
Set R 200× 4 200× 5 200× 6
Large 250× 4 250× 5 250× 6
Total = 150 300× 4 300× 5 300× 6

350× 4 350× 5 350× 6
400× 4 400× 5 400× 6

Set R 500× 5 500× 8 500× 10 500× 12
Very large 600× 5 600× 8 600× 10 600× 12
Total = 150 700× 5 700× 8 700× 10 700× 12

800× 5 800× 8 800× 10 800× 12
Set R 1000× 8
Extra large 1200× 8
Total = 30 1400× 8
Set F 200× 4 200× 5 200× 6 200× 7
Large 250× 4 250× 5 250× 6 250× 7
Total = 56 300× 4 300× 5 300× 6 300× 7

n ×m combination except for the 300-unit instances which contain 4 instances per combination,

for a total of 56 instances.

6.1 Comparing the Upper Bounds

In this set of experiments our goal was to compare the upper bounds UFKN and URB when used

to solve model MDTDP (1) - (16). A 60-minute time limit was placed on the computations.

In our first test we solve model MDTDP using each bound separately for the medium-size

instances. Results are shown in Table 2. The first column displays the instance size, the following

two columns show the average and maximum, respectively, relative improvement of upper bound

URB over UFKN computed as 100×(UFKN−URB)/UFKN. This statistic represents the direct quality

comparison between the bounds. It is important to mention that, in the computation of UFKN,

Fernández et al. (2013) added an improvement step by performing an additional local search. We

have included this step in our work when computing their bound, UFKN. For computing our bound

this step is omitted.

The next two columns show the average and maximum, respectively, relative speed-up achieved

when using bound URB for solving MDTDP compared to using bound UFKN. This is calculated

as 100× [time(UFKN)− time(URB)]/time(UFKN), where time(B) is the runtime for solving model

MDTDP under bound B. The average speed-up is based on the individual speed-ups for each

21

instance. The last two columns show the direct average runtimes for solving model MDTDP under

UFKN and ULB, respectively.

Table 2: Comparison between UFKN and URB for medium-size instances of model MDTDP

Relative bound Solution Average solution
Instance improvement (%) speed-up (%) time (sec)

size Avg Max Avg Max UFKN URB

40× 3 0.0 0.0 0.0 0 0.1 0.1
40× 4 2.0 11.5 13.2 82.2 1.5 1.0
40× 5 0.0 0.0 0.0 0.0 94.1 92.7
60× 3 0.0 0.0 0.0 0.0 0.2 0.2
60× 4 0.6 5.5 8.1 61.2 0.5 0.4
60× 5 0.0 0.0 0.0 0.0 5.1 5.1
80× 3 0.0 0.0 0.0 0.0 0.2 0.2
80× 4 0.0 0.0 0.0 0.0 0.6 0.6
80× 5 0.8 7.9 2.4 17.0 1.8 1.7
100× 4 0.6 5.3 3.5 72.8 0.8 0.6
100× 5 1.4 8.9 23.1 89.0 4.1 1.4
100× 6 0.4 4.2 11.1 97.8 14.3 3.9

The first observation is that the value of the proposed bound was always the same or better

than the previous bound. For most of the instances, the value of both bounds was the same before

optimization. For those instances where this was not the case, the new bound was always better,

showing relative improvements of up to 11.5% in the best case, and yielding speed-ups of up to

97.8% after optimization. In terms of achieving optimality, all 120 instances were solved optimally

using either bound. The best results for the new bound were obtained for the largest subset of

instances (n = 100) where the average time speed-up ranged from 3.5 to 23.1% for the new bound

compared to the previous bound .

In our next experiment, we performed the same tests but for the large-size instances. The

results are presented in Table 3. Again, it was observed that for most of the instances both bounds

were the same. Nevertheless, as we can see, URB still outperforms UFKN. In terms of achieving

optimality, all but one optimal solution was found under either bound. The average running time

was lower under the new bound achieving average speed-ups of up to 24.3% and a maximum speed-

up of 96.9%. This can be attributed to the number of binary variables that can be fixed and thus

eliminated from the model during pre-processing. The more the number of variables that can be

fixed the better the quality of the bound. For the remaining experiments bound URB will be used

in all computations.

22

Table 3: Comparison between UFKN and URB for large-size instances of model MDTDP

Relative bound Solution Average solution
Instance improvement (%) speed-up (%) time (sec)

size Avg Max Avg Max UFKN URB

200× 4 0.0 0.0 0.0 0.0 1.8 1.7
200× 5 1.8 18.0 5.7 43.4 7.3 7.0
200× 6 1.2 9.3 18.2 96.9 62.0 14.4
250× 5 1.0 6.0 9.9 60.6 4.9 4.3
250× 6 0.5 4.9 11.4 91.2 30.2 10.8
250× 7 0.5 4.7 10.9 90.9 76.9 56.8
300× 5 0.4 3.7 6.0 50.5 4.5 4.0
300× 6 0.7 3.8 21.9 94.4 39.2 13.4
300× 7 0.0 0.0 0.0 0.0 451.0 451.0
350× 5 1.4 9.1 9.4 95.1 22.4 4.9
350× 6 0.2 1.7 10.2 93.1 33.8 16.6
350× 7 1.6 10.4 24.3 93.3 254.6 131.6
400× 5 0.9 8.9 5.4 51.5 6.0 5.4
400× 6 0.2 1.8 3.2 46.3 26.6 23.3
400× 7 0.0 0.0 0.0 0.0 121.2 117.9

6.2 Comparing the MILP formulations

The purpose of this experiment is to evaluate the relative performance of models MDTDP and

MDTDP-CF. Again, a time limit of 60 minutes was set for CPLEX Tables 4 and 5 show the results

for the large-size and very large-size instances, respectively. In Table 4, the first two columns

indicate instance size and number of instances tried per size. The next two columns show the

number of optimal solutions found and CPU runtime (seconds), for model MDTDP. Columns 5

and 6 show the same statistics for model MDTDP-CF. The last column gives the average time

speed-up achieved by model MDTDP-CF when compared to MDTDP. Table 5 displays the same

statistics with the addition of a Gap column that reports the average relative optimality gap. Note

that this gap, computed as before, is taken only over those unsolvable instances. Thus, when all

instances were solved for a particular size, a hyphen (-) is displayed. This is also true for the Gap

columns in Tables 6 - 8.

For the large-size data set, the first observation is that it was possible to obtain optimal solutions

to practically all instances tested. Model MDTDP failed in just one out of 150 instances whereas

model MDTDP-CF found optimal solutions for all cases. Nevertheless, model MDTDP-CF outper-

formed MDTDP with respect to runtimes, demonstrating significant speed-ups. For the 200-unit

instances the difference between the models is small; however, for the 250- to 400-unit instances

the runtimes under MDTDP-CF were 8 to 45% faster.

For the very large-size instances presented in Table 5, the first observation is that obtaining

23

Table 4: Comparison of models on large-size instances

Instance MDTDP MDTDP-CF Time
size Rep Opt Time (sec) Opt Time (sec) speed-up (%)

200× 4 10 10 1.74 10 1.68 11
200× 5 10 10 6.98 10 10.31 -10
200× 6 10 10 14.39 10 11.13 1
250× 5 10 10 4.32 10 2.65 33
250× 6 10 10 10.75 10 7.91 21
250× 7 10 10 56.75 10 44.64 20
300× 5 10 10 4.04 10 2.85 25
300× 6 10 10 13.35 10 11.76 8
300× 7 10 9 451.02 10 196.87 45
350× 5 10 10 4.93 10 3.88 19
350× 6 10 10 16.60 10 9.32 28
350× 7 10 10 131.58 10 64.14 40
400× 5 10 10 5.43 10 3.86 28
400× 6 10 10 23.28 10 12.12 37
400× 7 10 10 121.16 10 60.03 39
Totals 150 149 150 23

optimal solutions for either model becomes a bit harder but the covering formulation still out-

performs the traditional formulation. For the 5-territory instances, both models obtained optimal

solutions to all instances tested; however, under model MDTDP-CF, we observed average speed-ups

between 11 and 32%. For the 8-territory instances, 39 out of 40 and 40 out of 40 optimal solutions

were found under models MDTDP and MDTDP-CF, respectively. Moreover, model MDTDP-

CF demonstrated average speed-ups ranging form 35 to 54% with respect to model MDTDP. For

the 10-territory instances, model MDTDP obtained 30 out of 40 optimal solutions whereas model

MDTDP-CF obtained 38 out of 40. Finally, for the 12-territory instances, model MDTDP obtained

just 2 out of 40 optimal solutions whereas model MDTDP-CF obtained 10 out of 40.

For those instances that were not solved, huge optimality gaps were observed. This was due to

the fact that the best feasible solution found within the allotted time limit of 1 hour was relatively

close to zero. Therefore, when computing the relative gaps a very high ratio is obtained. This

behavior was primarily observed for the instances with m = 12.

For the last group, the time speed-ups reported in the last column in Table 5 have to be taken

with care. Given that most of the instances were not solved (taking all 3600 seconds allotted) these

speed-ups may not be representative. The total average speed-up for all instances was 33%, whereas

the average increased to 40% when the 12-territory instances were not taken into account. In total,

model MDTDP optimally solved 111 out of 160 instances while model MDTDP-CF optimally solved

128 out of 160, most in significantly less time. The comparative advantage of model MDTDP-CF

24

Table 5: Comparison of models on very large-size instances

Instance MDTDP MDTDP-CF Time
size Rep Opt Gap Time (sec) Opt Gap Time (sec) speed-up (%)

500× 5 10 10 - 7.99 10 - 5.86 26
600× 5 10 10 - 9.04 10 - 7.97 11
700× 5 10 10 - 11.91 10 - 8.25 32
800× 5 10 10 - 11.49 10 - 9.12 20
500× 8 10 10 - 348.46 10 - 123.27 35
600× 8 10 10 - 327.26 10 - 138.61 43
700× 8 10 10 - 425.61 10 - 156.29 46
800× 8 10 9 1.9 720.66 10 - 290.24 54
500× 10 10 9 23.5 2026.96 10 - 854.15 58
600× 10 10 7 2570.0 1796.64 9 2.6 995.42 49
700× 10 10 7 795.0 1969.10 10 - 784.19 56
800× 10 10 7 190.0 2197.55 9 7.4 1192.55 48
500× 12 10 0 6210.0 3600.00 2 1050.0 3296.68 8
600× 12 10 0 6250.0 3600.00 1 2170.0 3316.83 8
700× 12 10 1 3190.0 3329.01 5 814.0 2784.35 19
800× 12 10 1 4150.0 3529.18 2 599.0 3164.54 12
Totals 160 111 128 33*

*When the 12-territory instances are ignored, the average time speed-up is 40%

can be directly attributed to the sharp reduction in the number of binary variables achieved during

pre-processing.

6.3 Evaluation of the Exact Method

In this experiment, the goal was to assess the relative performance of the proposed exact optimiza-

tion algorithm when compared to solving model MDTDP-CF with CPLEX. For the very large-size

instances, the exact algorithm was applied with the binary search parameter α = 0.95. The results

are displayed in Table 6. Again, the first two columns give the instance size and the number of

replicates, respectively. The next three columns show the following statistics for CPLEX applied

directly to model MDTDP-CF: number of optimal solutions found, the average relative optimality

gap for the unsolved instances, and runtime (in seconds). The next four columns report the number

of optimal solutions found, the average relative optimality for the unsolved instances, runtime (in

seconds), and the average number of iterations it took to converge for the exact algorithm. The

last column indicates the average percent speed-up achieved by the exact algorithm with respect

to solving MDTDP-CF with CPLEX.

The results demonstrate both the efficiency of the exact method and the quality of the solutions

it provides. All of the first 120 instances were solved with speed-ups ranging from 26 to 76 % with

respect to CPLEX. For the 5- and 8-territory instances, both methods solved all 80 instances

25

Table 6: Assessment of exact method on very large-size instances.

Instance MDTDP-CF Exact Algorithm Time
size Rep Opt Gap Time (sec) Opt Gap Time (sec) Iter speed-up (%)

500× 5 10 10 - 5.86 10 - 3.30 1.0 41
600× 5 10 10 - 7.97 10 - 5.72 1.0 26
700× 5 10 10 - 8.25 10 - 5.75 1.0 29
800× 5 10 10 - 9.12 10 - 5.93 1.0 33
500× 8 10 10 - 123.27 10 - 33.39 1.0 46
600× 8 10 10 - 138.61 10 - 49.33 1.3 51
700× 8 10 10 - 156.29 10 - 63.75 1.5 38
800× 8 10 10 - 290.24 10 - 177.49 1.3 32
500× 10 10 10 - 854.15 10 - 138.34 1.3 76
600× 10 10 9 2.6 995.42 10 - 154.35 1.0 62
700× 10 10 10 - 784.19 10 - 188.22 1.0 65
800× 10 10 9 7.4 1192.55 10 - 280.22 1.2 61
500× 12 10 2 1050.0 3296.68 10 - 1026.14 1.6 70
600× 12 10 1 2170.0 3316.83 7 1332.5 2163.95 1.7 38
700× 12 10 5 814.0 2784.35 9 51.0 1143.58 1.1 60
800× 12 10 2 599.0 3164.54 7 1130.0 1885.82 2.2 43
Totals 160 128 153

relatively fast. Once more districts are considered, however, a difference between the two emerges.

For the 10-territory instances, the exact method solved all instances, whereas CPLEX failed on

two. The speed-up achieved by the exact method was between 61 and 76%. For the 12-territory

instances, the exact algorithm solved all but 7 instances, whereas CPLEX solved only 10 out of 40.

For these instances, the speed-up achieved by the exact method ranged from 38 and 70%.

As in the previous experiment, for those instances that were not solved, huge optimality gaps

were observed. Again, this was due to the fact that the best feasible solution found within the

allotted time limit of 1 hour was relatively close to zero. As a consequence, a very high ratio was

obtained when computing the relative gaps. This behavior was notably evident for the instances

with m = 12. To gain more insight into relative performance of the two approaches, we conducted

several additional experiments in which the time limit was set to more than 24 hours. The results

are reported below.

Our last observation is based on the statistics in the second-to-last column of Table 6, which

shows that the average number of iterations needed by the exact algorithm is negligibly low. On

average, it took less than 2.2 iterations to converge. This was due to the biased design of the

binary search coupled with the fact that our upper bounding scheme provides tight results. Setting

α to a high value means that a considerably greater number of binary variables can be fixed and

eliminated in advance.

Finally, it is important to note that in the real world, instances have anywhere from 5 to 10

26

territories. The exact method performed exceedingly well on instances of this size, which should

make it an attractive option for practitioners. For the more difficult 12-territory instances the exact

algorithm showed its limitations. It was only able to solve 33 of the 40 instances.

Nevertheless, to get a clearer picture of algorithmic performance, we reran the 12-territory

instances, but now with a 24-hour time limit. Again we compared models MDTDP, MDTDP-CF,

and the exact method displaying the results in Table 7. Recall that the Gap column shows the

relative optimality gap only over those unsolvable instances. Thus, when all instances were solved

for a particular size, a dash (-) is displayed.

Table 7: Assessment of exact method on instances with m = 12 and time limit of 24 h.

Instance MDTDP MDTDP-CF Exact Algorithm
size Rep Opt Gap Time (h) Opt Gap Time (h) Opt Gap Time (h) Iter

500× 12 10 9 20.7 9.41 9 6.1 4.38 10 - 3.05 1.0
600× 12 10 7 69.6 14.64 7 12.8 9.99 7 3.76 7.78 1.0
700× 12 10 9 11.0 5.65 10 - 1.86 10 - 0.88 1.0
800× 12 10 4 16.0 15.33 10 - 4.84 10 - 3.85 1.0
Totals 40 29 36 37

The most striking observation is that for the 1-hour time limit in the previous experiments,

only 2, 10 and 33 instances (with m = 12) out of 40 were optimally solved respectively by MDTDP,

MDTDP-CF, and the exact method. By allowing runtimes up to 24 hours, 29, 36 and 37 op-

timal solutions were found by MDTDP, MDTDP-CF and the exact method, respectively. As a

consequence, the relative optimality gaps were dramatically reduced. Again, the exact algorithm

significantly outperformed CPLEX on the other two models. When comparing the results for

MDTDP and MDTDP-CF, the statistics are consistent with the previous experiments; that is,

the latter produces a significantly larger number of optimal solutions and provides a significant

reduction in optimality gaps for those unsolved instances.

Now, when comparing MDTDP-CF with the exact method, we see that the latter is clearly

better. Not only does it find an additional optimal solution but it also delivers solutions with

measurably smaller optimality gaps for those few unsolved instances. This is also reflected in the

runtimes, where the exact method takes significantly less time to converge – one iteration only for

the solved instances.

In the last experiment in this subsection, we assessed both the MDTDP-CF model and the

exact algorithm on instances with larger values of n. In particular, we tested instances with

n ∈ {1000, 1200, 1400} and m = 8 setting the time limit to 24 hours. The results are highlighted

in Table 8

27

Table 8: Assessment of exact method on instances with n ∈ {1000, 1200, 1400}.
Instance MDTDP-CF Exact Algorithm Time

size Rep Opt Gap Time (sec) Opt Gap Time (sec) Iter speed-up (%)
1000× 8 10 10 - 186.61 10 - 146.89 1.0 10.8
1200× 8 10 10 - 248.62 10 - 253.72 1.0 6.6
1400× 8 10 10 - 508.23 10 - 350.59 1.0 18.1
Totals 30 30 30

The first observation is that all 30 instances were optimally solved with either approach so all

optimality gaps are zero. Again, the exact method was faster showing average speed-ups from

6.6 to 18.1% with respect to the MDTDP-CF model. An additional observation is that problem

difficulty is more affected by an increase in the number of companies m than by an increase in the

number of basic units n.

6.4 Assessing the Models and Methods on Real-World Instances

In our last experiment, we assess the models and methods using data set F of real-world instances.

To this end, we used both CPLEX and our exact method to solve models MDTDP and MDTDP-CF

(under bound URB). The results are displayed in Table 9.

Table 9: Assessment of models and methods on real-world instances

MDTDP MDTDP-CF Exact algorithm
Instance Time Time Speed-up Time Speed-up

size Rep Opt (sec) Opt (sec) (%) Opt (sec) Iter (%)
200× 4 5 5 1.16 5 0.87 24.9 5 0.44 1.0 49.0
200× 5 5 5 2.66 5 1.68 36.9 5 0.91 1.0 45.3
200× 6 5 5 36.09 5 27.92 22.7 5 20.16 2.6 46.4
200× 7 5 5 74.81 5 29.03 61.2 5 17.84 3.6 42.8
250× 4 5 5 3.71 5 3.23 13.0 5 9.12 5.2 -99.6
250× 5 5 5 4.66 5 2.63 43.6 5 1.93 1.0 28.4
250× 6 5 5 45.26 5 51.67 -14.2 5 52.88 17.8 -15.9
250× 7 5 5 41.03 5 25.28 38.4 5 7.23 1.0 54.9
300× 4 4 4 1.21 4 1.16 4.7 4 0.62 1.0 46.3
300× 5 4 4 2.63 4 2.37 9.8 4 0.90 1.0 62.9
300× 6 4 4 14.02 4 10.40 25.8 4 3.43 1.2 52.2
300× 7 4 4 36.75 4 29.11 20.8 4 8.52 1.5 54.9
Totals 56 56 56 56

The first two columns indicate instance size and number of instances tested for each combination.

The next four columns give the number of proven optimal solutions found and average runtime when

CPLEX was used for solving MDTDP (under bounds URB) and MDTDP-CF, respectively. The

seventh column reports the relative speed-up obtained from MDTDP-CF with respect to MDTDP.

A negative value means MDTDP-CF was slower. The following three columns display the results for

28

the number of optimal solutions found, the average runtime, and the average number of iterations

required, all for the exact algorithm. The last column gives the relative speed-up obtained from

the exact algorithm with respect to MDTDP-CF.

The first observation is that all 56 instances were optimally solved by all approaches. When

comparing the two models, we see that MDTDF-CF runs faster then MDTDP for practically every

size combination showing speed-ups of up to 61.2% (for the 200× 7 instances). The only exception

occurred for the 250× 6 instances, where the average time taken by MDTDP-CF was 14% higher.

A closer look reveals that this result was due to one difficult instance in the (250 × 6) data set,

so MDTDP-CF was faster in 4 out of 5 of those instances. Again, this is consistent with previous

results.

Finally, the exact method showed even lower average runtimes than MDTDP-CF for almost all

instances tested, except for the 250 × 4 and 250 × 6 cases. This was in fact due to two particular

instances taking an unusually large number of iterations to converge. While the exact method

reliably converged in less than 4 iterations, 14 and 74 iterations were respectively required for the

two instances, which led to higher average runtimes. Nevertheless, for the remaining 54 (out of

56 instances), the exact method was significantly faster showing speed-ups of up to 72% (for the

300×7 instances). For the most part, these results are also consistent with those from the previous

experiments.

7 Summary and Conclusions

In this paper, we addressed a maximum dispersion territory design problem arising in WEEE

collection. To begin, we introduced a new problem reformulation based on covering-type variables

that provides a tighter linear programming relaxation than the standard formulation. Next, we

developed a new upper bound that was seen to offer a considerable improvement over the best

existing bound. Computational testing showed that the new model is faster to solve than the

existing model when commercial software is used.

The most important contribution, though, has been the development of an exact optimization

algorithm based on the integration of the new upper bound and the covering-based reformulation.

The exact algorithm uses a biased binary search as it iterates towards optimality. Testing confirms

that it can find optimal solutions to problem instances with up to 800 basic units and 12 companies,

and problem instances with up to 1400 basic units and 8 companies. Previous to this research,

the largest instances solved optimally had between 40 to 100 basic units and 4 companies. This

29

represents a significant advance in the state of the art.

With respect to future research, several promising paths exist for tackling an expanded version

of MaxD-TDP. In this paper, we basically studied a district design problem absent its routing and

collection components. At present, the design and operational problems are handled separately.

A more comprehensive approach would be to combine the two in an integrated model where both

the design and routing decisions were taken simultaneously. Of course, this new problem would be

more complex but the procedures developed here should prove useful when attempting to develop,

say, decomposition-based algorithms to solve it.

Acknowledgments: We are grateful to three anonymous referees and the associate editor whose

remarks helped improve the quality of the paper. The work of the first author was supported by

the Mexican Council for Science and Technology (CONACyT) through grant CB11-1-166397 and

by Universidad Autónoma de Nuevo Leoón through grant UANL-PAICYT CE331-15.

References

Church, R. L., 2008. BEAMR: An exact and approximate model for the p-median problem. Com-

puters & Operations Research 35 (2), 417–426.

Duque, J. C., Ramos, R., Suriñach, J., 2007. Supervised regionalization methods: A survey. Inter-

national Regional Science Review 30 (3), 195–220.

Elloumi, S., Labbé, M., Pochet, Y., 2004. A new formulation and resolution method for the p-center

problem. INFORMS Journal on Computing 16 (1), 84–94.

Erkut, E., 1990. The discrete p-dispersion problem. European Journal of Operational Research

46 (1), 48–60.

Erkut, E., Neuman, S., 1991. Comparison of four models for dispersing facilities. INFOR 29 (2),

68–86.

Fan, Z. P., Chen, Y., Ma, J., Zeng, S., 2011. A hybrid genetic algorithmic approach to the maximally

diverse grouping problem. Journal of the Operational Research Society 62 (1), 92–99.

Fernández, E., Kalcsics, J., Nickel, S., 2013. The maximum dispersion problem. Omega 41 (4),

721–730.

30

Fernández, E., Kalcsics, J., Nickel, S., Ŕıos-Mercado, R. Z., 2010. A novel maximum dispersion

territory design model arising in the implementation of the WEEE-directive. Journal of the

Operational Research Society 61 (3), 503–514.

Gallego, M., Laguna, M., Mart́ı, R., Duarte, A., 2013. Tabu search with strategic oscillation for

the maximally diverse grouping problem. Journal of the Operational Research Society 64 (5),

724–734.

Georgiadis, P., Besiou, M., 2010. Environmental and economical sustainability of WEEE closed-loop

supply chains with recycling: A system dynamics analysis. International Journal of Advanced

Manufacturing Technology 47 (5–8), 475–493.

Grunow, M., Gobbi, C., 2009. Designing the reverse network for WEEE in Denmark. CIRP Annals

58 (1), 391–394.

Hammond, D., Beullens, P., 2007. Closed-loop supply chain network equilibrium under legislation.

European Journal of Operational Research 183 (2), 895–908.

Kalcsics, J., 2015. Districting problems. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (Eds.),

Location Science. Springer, Cham, Switzerland, Ch. 23, pp. 595–622.

Kuo, C.-C., Glover, F., Dhir, K. S., 1993. Analyzing and modeling the maximum diversity problem

by zero-one programming. Decision Sciences 24 (6), 1171–1185.

Lee, S. C., Shih, L. H., 2012. A novel heuristic approach to determine compromise management for

end-of-life electronic products. Journal of the Operational Research Society 63 (5), 606–619.

Mar-Ortiz, J., Adenso-Diaz, B., González-Velarde, J. L., 2011. Design of a recovery network for

WEEE collection: The case of Galicia, Spain. Journal of the Operational Research Society 62 (8),

1471–1484.

Mar-Ortiz, J., González-Velarde, J. L., Adenso-Dı́az, B. J., 2013. Designing routes for WEEE

collection: The vehicle routing problem with split loads and date windows. Journal of Heuristics

19 (2), 103–127.

Maŕın, A., Nickel, S., Puerto, J., Velten, S., 2009. A flexible model and efficient solution strategies

for discrete location problems. Discrete Applied Mathematics 157 (5), 1128–1145.

Mart́ı, R., Gallego, M., Duarte, A., 2010. A branch and bound algorithm for the maximum diversity

problem. European Journal of Operational Research 200 (1), 36–44.

31

Pukelsheim, F., Ricca, F., Simeone, B., Scozzari, A., Serafini, P., 2012. Network flow methods for

electoral systems. Networks 59 (1), 73–88.

Queiruga, D., Walther, G., González-Benito, J., Spengler, T., 2008. Evaluation of sites for the

location of WEEE recycling plants in Spain. Waste Management 28 (1), 181–190.

Ricca, F., Scozzari, A., Simeone, B., 2013. Political districting: From classical models to recent

approaches. Annals of Operations Research 204 (1), 271–299.

Ŕıos-Mercado, R. Z., Maldonado-Flores, J. R., González-Velarde, J. L., 2017. Tabu search with

strategic oscillation for improving recollection assignment plans of waste electric and electronic

equipment. Technical Report PISIS–2017–01, Graduate Program in Systems Engineering, Uni-

versidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.

Rudăreanu, C., 2013. Waste electrical and electronic equipment (WEEE) management in Europe.

Economics, Management, and Financial Markets 8 (3), 119–125.

Tsai, W.-H., Hung, S.-J., 2009. Treatment and recycling system optimisation with activity-based

costing in WEEE reverse logistics management: An environmental supply chain perspective.

International Journal of Production Research 47 (19), 5391–5420.

Zoltners, A. A., Sinha, P., 2005. Sales territory design: Thirty years of modeling and implementa-

tion. Marketing Science 24 (3), 313–331.

32

	Introduction
	Related Work
	Problem Description and Formulations
	Problem Statement
	MDTDP Model
	A Covering-Based Formulation
	Model Properties

	Upper Bounding Scheme
	New Upper Bound
	Description of the Upper Bounding Scheme

	Exact Optimization Algorithm
	Computational Experiments
	Comparing the Upper Bounds
	Comparing the MILP formulations
	Evaluation of the Exact Method
	Assessing the Models and Methods on Real-World Instances

	Summary and Conclusions

