

Maximal Covering Location with Partial Coverage for Second-Level Specialized Health Care Services

Rodolfo Mendoza-Gómez
Tecnológico de Monterrey
School of Engineering and Sciences
Eugenio Garza Sada SN, Cerro Gordo
León, Guanajuato 37190, Mexico
E-mail: *rodolfomendoza@tec.mx*

Roger Z. Ríos-Mercado
Universidad Autónoma de Nuevo León (UANL)
Graduate Program in Electrical Engineering
Av. Universidad s/n, Cd. Universitaria
San Nicolás de los Garza, NL 66455, Mexico
E-mail: *roger.rios@uanl.edu.mx*

January 2023
Revised: August 2023, January 2024, April 2024

Abstract

2 The lack of access to Second-level Health Care Services (SHCS) in developing countries is
3 primarily due to the scarcity of facilities and the limited investment of resources in the public
4 sector. Access to these services directly relates to the distance the population travels to these
5 facilities. In that sense, a maximal covering location problem can be helpful to maximize the
6 impact of decisions related to the location of new SHCS. In this paper, we propose a model to
7 guide the location of additional sites where second-level services can be installed in a network of
8 public hospitals. The partial coverage and variable radius are considered in the problem to assess
9 a large territory with different characteristics and population densities. The system is composed
10 of multiple institutions that supply differentiated varying levels of coverage concerning their own
11 demand and external demand. The objective of the problem is to improve the demand coverage
12 in the system by locating new sites, since there are already sites offering different services. A
13 case study in the Mexican public health system is conducted to assess four specialized SHCS. The
14 obtained results evidence for the benefit of using optimization tools in the resource planning of
15 SHCS.

Keywords: Health care planning; facility location; maximal covering location; partial coverage; integer programming.

18 **1 Introduction**

19 Second-level Health Care Services (SHCS) such as gynecology and pediatrics are essential in society.
20 A large part of the population will require these services at various moments of their lives, and the
21 demand for these services grows yearly [17]. In rural areas, the main problem is access to facilities
22 that offer these services. In contrast, the problem is more related to capacity issues in urban areas.
23 However, distance and time are critical to survival in emergencies in both cases.

24 The lack of access to SHCS in public hospitals is critical in developing countries such as Mexico.
25 The investment in the health care infrastructure is limited and insufficient to ensure the total
26 coverage of demand. However, there it is priority objective by the government to reach for universal
27 access to SHCS, while avoiding inequality and discrimination in the decision-making process. Hence,
28 each decision to invest new resources in the public sector must be taken, maximizing its impact on
29 society. Mexico has a segmented health care system [31]. This type of system avoids making global
30 decisions, and efforts are made individually by federal states or institutions. Recently, a change
31 has been promoted to take federal decisions to invest resources to improve SHCS in Mexico [52].
32 This change aims to develop tools for the infrastructure planning as a whole system.

33 SHCS are available in most public hospitals under two schemes: Outpatient (ambulatory) and
34 inpatient care. The former is any service patients receive without being admitted to a hospital
35 or for a stay shorter than 24 hours. The latter is for patients admitted to a hospital to receive
36 medical care. A distant hospital discourages patients from timely getting to their appointment with
37 a health care specialist. On the other hand, inpatient services are frequently related to medical
38 emergencies originating elsewhere. For instance, a woman may need to consult a gynecologist due
39 to sudden complications during pregnancy.

40 Along with the capacity of these services, access is the main factor in the decision to select new
41 locations. However, the capacity level can be adjusted according to the demand characteristics,
42 but the location is permanent. Therefore, the location of services can be analyzed as a strategic
43 first-level decision and capacity planning can be done based on the specific characteristic of the
44 covered region after the location decision is taken. However, this decision can be made in single-
45 stage planning based on the needs and context of the situation. Therefore, we propose this problem
46 as a decision making tool that provides initial insight about the location of SHCS sites taking into
47 account the global impact in the country from the coverage and access perspective. As a second-
48 stage, a capacity planning model that includes the neighborhood environment and more specific
49 demand patterns can be done once the general location of SHCS is determined in this problem.

50 Like many other developing countries, the main problem in Mexico is the geographic distribution
51 of specialists [34]. For instance, 54.2% of them are located in 3 out of the 32 federal states of the
52 country. In Mexico City, there are 505.7 specialists per 100,000 inhabitants, while the federal state
53 with the lowest rate has 35.9 specialists per 100,000 inhabitants. This difference is because most

54 second and third-level hospitals are located in the country's biggest cities. However, gynecology and
55 pediatrics services have become more widely needed because the demand is distributed throughout
56 the territory at different levels. Therefore, these services should be available not only in urban
57 areas, but also in rural areas, through their installation in community hospitals.

58 In the Operations Research (OR) field, the maximal covering location problem (MCLP) is
59 typically used in the health care area to locate emergency services such as ambulance stations or
60 emergency centers [29]. However, recent works have extended its use to many other applications,
61 such as the location of primary health care centers or hospitals [1]. In this case, we address
62 the location of SHCS. Karasakal and Karasakal [36] consider the MCLP in the presence of partial
63 coverage. In our work, we extended the model proposed by Karasakal and Karasakal [36] to a health
64 care system with multiple institutions, in which each institution may provide (partial) demand
65 coverage not only to its own beneficiaries but also for the beneficiaries of other institutions. Partial
66 coverage is supposed to avoid an abrupt ending of coverage. Each candidate site has a different
67 coverage critical distance due to the extensively evaluated territory composed of rural and urban
68 areas with varying population densities. Since the system is already operating with existing sites
69 providing the service, the coverage rate of each candidate site must be adjusted considering the
70 interaction with these facilities. In this sense, the model's objective is to maximize the demand
71 covered by the existing facilities and to improve the coverage of demand partially covered if a new
72 site enhances the coverage.

73 The case study to be presented is based on the Mexican Health Care System (MHCS) for
74 four services: Gynecology, pediatric care, internal medicine, and trauma care/orthopedics. The
75 coverage distance for each candidate site is based on the population density of the place where is
76 located. We evaluated the effect on the demand coverage, according to the collaboration level of the
77 institutions. The impact on the demand coverage is evaluated on two cases: (i) a set of candidate
78 hospitals that do not provide service, and (ii) in a set of candidate locations where no hospitals are
79 currently operating. Then, we evaluate the benefit of centralizing this planning decision to solve
80 the model in a single global instance instead of multiple federal or regional instances. Finally, we
81 intend to find out the location of a new service in the existing network of hospitals, evaluating the
82 impact on the demand coverage according to the number of new sites opened. The results of these
83 experiments encourage using these types of models as part of the decision-making process in the
84 location of public SHCS to optimize the impact of limited resources on society.

85 As a first contribution of our paper, we extend a maximal covering location problem with
86 partial coverage to handle SHCS with multiple institutions. This is motivated by a real-world case
87 from the Mexican health care system. Another contribution is the proposal of a gradual coverage
88 function for the multi-institutional system. We also present a detailed case study from the MHCS
89 that allows us to assess the benefit of making decisions using the solutions of the proposed model.
90 We also suggest estimating the coverage rates with the interaction of existing facilities in a multi-

91 institutional scheme. To solve these models, we used CPLEX's branch-and-bound (B&B) solver.
92 All instances were optimally solved, managing to solve large instances up to 47,549 demand points,
93 3,583 candidate sites, and 1500 selected sites.

94 The remainder of the paper is organized as follows. Section 2 reviews the relevant literature
95 on location models in related problems. This is followed by Section 3 presenting the formal defini-
96 tion and mathematical formulation of the problem. Then, Section 4 presents our empirical work,
97 including the case study. Finally, the conclusion and future directions are discussed in Section 5.

98 2 Related literature review

99 The literature on facility location models and methods applied in health care management has been
100 quite active over the past few years. Our problem is focused on the location of public health care
101 services. A survey in the context of the public sector is presented by Marianov and Serra [41].
102 Significant efforts have been made in the application to health care problems. Some important
103 surveys are proposed by Güneş et al. [32], Ahmadi-Javid et al. [1], Rais and Viana [50], Li et al.
104 [39], Daskin and Dean [18], Brotcorne et al. [11], and Rahman and Smith [49].

105 The maximal covering location problem (MCLP) was proposed by Church and ReVelle [14] and
106 White and Case [57]. The MCLP is a classic problem in the literature on facility location. This
107 problem is designed for finite resources that cannot cover all the demand. The objective is to find
108 the best subset of p locations that maximizes the covered demand. A demand point is covered if the
109 distance to a facility is equal to or lower than a critical value. One feature of MCLP is that it can be
110 structured as a p -median problem [15]. Therefore, solution procedures for the p -median problem,
111 even heuristics, can be applied to solve MCLP. There is a number of heuristic and exact method to
112 solve this problem, specially, for large instances. For instance, a simulated annealing was proposed
113 by Murray and Church [46]. An approach based on an heuristic concentration was proposed by
114 Rosing and ReVelle [53]. A Lagrangean relaxation and a dual-based heuristics with branch and
115 bound were proposed by Galvão and ReVelle [30] and Downs and Camm [20], respectively. A
116 greedy randomized adaptative search procedure is proposed by Resende [51]. Genetic algorithms
117 are proposed by Arakaki and Lorena [3] and Tong et al. [55].

118 In particular, the survey presented by Ahmadi-Javid et al. [1] reviews facility location works
119 related to health care from 2000 to 2016. Among these, 54% of the problems were related to
120 emergency facilities such as ambulance stations, trauma centers, or emergency off-site public access
121 devices, while the rest were related to non-emergency facilities such as primary health centers.
122 Location problems based on the MCLP represent 35% of works with 48 papers, and partial coverage
123 is a characteristic only used in 10% of the works, all of them in emergency applications [54, 2, 40,
124 47, 12].

125 The model addressed in this research is based on the MCLP with partial coverage. In this

126 problem, the classical binary coverage is replaced by a continuous parameter between zero and one
127 calculated by a particular decay function. The greater the distance between a demand point and
128 the facility, the more the value of this parameter approaches zero. A partial covering model can be
129 seen as a particular application of the MCLP [57]. The first work that introduced the concept of
130 gradual covering was Church and Roberts [16]. Later, Drezner et al. [24] applied this concept for a
131 single facility MCLP, and Pirkul and Schilling [48] used a decay function in a capacitated version
132 of the MCLP. The general idea of using a decay function in the MCLP was introduced in Berman
133 and Krass [7], employing a step-wise function in a network version of the problem, providing a
134 formulation and an effective heuristic procedure. In Berman et al. [8], the decay function was
135 named the non-ascending general decay function with two pre-specified threshold distances. They
136 showed how this problem could be transformed into the uncapacitated facility location problem
137 when the set of potential facilities was discrete. An overview of gradual covering location models
138 can be found in Berman et al. [9].

139 Gradual coverage has also been used in continuous facility location. For instance, a related work
140 with a linear function in a planar space is found in Drezner et al. [25] for a single facility location.
141 The authors proposed a B&B algorithm that produced an efficient performance for instances up to
142 10,000 demand points. In Karasakal and Karasakal [36], the term “partial coverage” was introduced
143 for the MCLP taking the same considerations of previous works for multiple facility locations. A
144 solution procedure for large instances (up to 1,000 nodes, 40 potential sites) was proposed using
145 lagrangian relaxation.

146 Recently, some extensions of the gradual covering location problem have been proposed. Tavakoli
147 and Lightner [54] proposed an MCLP-based model for allocating vehicles and the location of facil-
148 ities for emergency medical services (EMS), minimizing the amount of population not covered. A
149 goal programming problem to locate EMS stations and find the minimum number of vehicles satis-
150 fying the performance levels was proposed in Alsalloum and Rand [2]. The probability of covering
151 a demand within the target time was minimized in the first objective, and the second objective en-
152 sured that any demand arising within the target time would find at least one ambulance available.
153 In Eiselt and Marianov [26], the gradual covering was applied to the set covering location model,
154 including the quality of service as a decision criterion. Lim et al. [40] proposed an extension of the
155 MCLP that includes a minimum level of covered demand on the system and a flexible number of
156 locations to be opened for the ambulance location problem. In Naoum-Sawaya and Elhedhli [47],
157 a two-stage stochastic optimization model for the ambulance redeployment problem was proposed
158 to minimize the number of relocations over a planning horizon while maintaining an acceptable
159 service level. Drezner and Drezner [21] proposed an alternative objective function of maximizing
160 the minimum cover of every demand point, ensuring that every demand point was covered as much
161 as possible and there were no demand points with low cover. An ascent algorithm and tabu search
162 were evaluated for instances up to 900 demand points. Chan et al. [12] proposed a multi-responder

and gradual covering problem for automated external defibrillators in a probabilistic extension of the MCLP. The main contribution lies in developing mixed-integer linear formulation equivalents or tight and easily computable bounds. Bagherinejad et al. [5] included the joint partial coverage when a demand point was covered by multiple facilities, developing multiple heuristics for networks up to 900 demand points. They included the gradual covering concept and the cooperative coverage in a single problem. A simulated annealing and tabu search were used to solve instances of up to 150 demand nodes. In Drezner et al. [23], the gradual covering competitive facility location problem is proposed, which captures the market share by new facilities in a continuous space. Other recent applications using a gradual function are presented by Küçükaydin and Aras [38] for the location of multi-type facilities that include customer preference, by Erkut et al. [27] for ambulance location problems that include a survival function, by Dogan et al. [19] for a multi-objective location of preventing health care facilities, and by Yücel et al. [58] for the location of mobile medical sites.

The variation of the coverage radius in a gradual covering location problem has been proposed by Drezner et al. [22] for a single facility and by Bashiri et al. [6] for multiple facilities. Eydi and Mohebi [28] introduced the MCLP with gradual coverage and variable radius over multiple periods. In their work, they assumed facilities with finite capacity and variable costs directly impacting the coverage radius. They proposed a simulated annealing algorithm to solve the problem.

Table 1: Characteristics of related works with partial coverage.

Paper	Partial coverage	Variable radius	Existing facilities	Facility types	Multi-objective	Coverage types/levels	Stochastic considerations	Allocation decisions	Consider costs/profits	Joint/cooperative coverage	Limited resources	Multiple periods	Co-location	Multiple institutions
Berman and Krass [7]	✓	✓				✓								
Karasakal and Karasakal [36]	✓													
Tavakoli and Lightner [54]	✓		✓						✓					
Araz et al. [4]	✓				✓	✓	✓	✓						
Meltem and Bahar [42]	✓	✓							✓					
Chan et al. [12]	✓	✓	✓											
Wang et al. [56]	✓	✓	✓	✓		✓			✓					
Bagherinejad et al. [5]	✓	✓	✓	✓					✓					
Eydi and Mohebi [28]	✓	DV			✓				✓					
Berman et al. [10]	✓	✓							✓					
Küçükaydin and Aras [38]	✓	✓	✓			✓			✓					
Chanta and Sangsawang [13]	✓	✓							✓					
SLP	✓	✓	✓											✓

DV: Decision Variable

A review of gradual coverage location problems can be found in Karatas and Eriskin [37], including features such as number of facilities, feasible space, type of model (binary/gradual), coverage type (individual/cooperative) and objective type. In our work, we include two tables. Table 1 shows the features of the most related papers with partial coverage and Table 2 shows

Table 2: Solution methods and instances sizes of related works with partial coverage.

Paper	Method	Software/Solver	Demand nodes	Candidate sites	Selected sites
Berman and Krass [7]	B&B and Greedy heuristic / LP-Relaxation	Cplex	400	400	80
Karasakal and Karasakal [36]	Heuristic: Lagrangian relaxation based solution procedure		1,000	40	24
Araz et al. [4]	Lexicographic optimization and different versions of the Fuzzy goal programming	Cplex 8.0	50	50	8
Meltem and Bahar [42]	B&B	Cplex 12.4 / Gurobi 5.0.2	81	22	20
Chan et al. [12]	B&B	Cplex 12.1	11,701	5,000	200
Wang et al. [56]	B&B	GAMS/BARON	420	17	6
Bagherinejad et al. [5]	Cooperative covering and location-allocation features	Heuristic: Simulated annealing and Tabu search	150	150	20
Eydi and Mohebi [28]	Heuristic: Simulated annealing	Cplex	100	100	5
Berman et al. [10]	B&B and Heuristics: greedy heuristic, ascent heuristic, and Tabu search.		400	400	133
Küçükaydin and Aras [38]	B&B / Lagrangian relaxation / Local search	Cplex 12.8	1,000	250	Variable
Chanta and Sangsawang [13]	B&B	OPL	104	104	15
Karatas and Eriskin [37]	B&B	Cplex 12.5.0.1	4000	2000	3-10
Haghi et al. [33]	B&C / Adaptive large neighborhood	Cplex 12.1.0	30	5	1-4
SLP	B&B	Cplex 20.1.0	47,549	3,583	1500

184 some information related to the solution method and the problem sizes in the case studies. The
 185 last row in both tables corresponds to the model addressed in this paper, the MCLP for a segmented
 186 system with partial coverage (SLP). Variable coverage radius, interaction with existing facilities,
 187 and multiple institutions are features considered in this problem. The proposed model in this paper
 188 is a particular application of the MCLP with gradual covering that incorporates the handling of
 189 multiple institutions where the coverage of demand points can be expanded through collaboration
 190 among institutions. A function to determine the benefit of new facilities in the demand coverage is
 191 proposed. As far as we know, the MCLP with multiple institutions (organizations) has not studied
 192 in previous works. However, other works related to health care planning problems that incorporate
 193 a segmented system are proposed by Mendoza-Gómez et al. [45] and Mendoza-Gómez et al. [44]
 194 for the planning of highly specialized health care services, and Mendoza-Gómez and Ríos-Mercado
 195 [43] for location-allocation of primary health care units.

196 As far of solution methods is concerned (depicted in Table 2), some of the previous models
 197 were solved by commercial solvers, indicated in the third column, and others by heuristic methods
 198 such as greedy heuristics, tabu search, and simulated annealing. The instance sizes of case studies
 199 are indicated by the number of demand points, candidate sites, and selected sites in the last

200 three columns. The instances used in our case study are the largest concerning the number of
 201 demand points and selected sites, but they occupy second place in the number of candidate sites.
 202 However, all instances tested were optimally solved by the B&B algorithm of CPLEX. Many recent
 203 improvements have been made in the performance of exact methods to solve integer programming
 204 problems, optimize computational resources, and develop new technologies. These advances avoided
 205 the need to develop alternative heuristic methods for solving the problem addressed and the size
 206 of the instances considered in our work.

207 3 Formulation of the problem

208 3.1 Problem description

209 The goal of this problem is to locate new sites for installing SHCS in a system with multiple
 210 institutions maximizing the covered demand. The coverage is based on partial coverage using a
 211 decay function. Each institution operates a set of Health Care Units (HCUs) that, in addition to
 212 covering the demand of its own beneficiaries, also cover beneficiaries of other institutions with a
 213 different coverage level. The number of new sites to be installed is defined by each institution.
 214 At each demand point, there are beneficiaries from each institution. There is a network of HCUs
 215 that is already operating with the service for each institution and they cover some demand points.
 216 However, with the new sites, additional demand points can be covered and the demand coverage
 217 of some demand points can be improved. Figure 1 shows an small example of a health care system
 218 with partial coverage and three institutions: A, B and C.

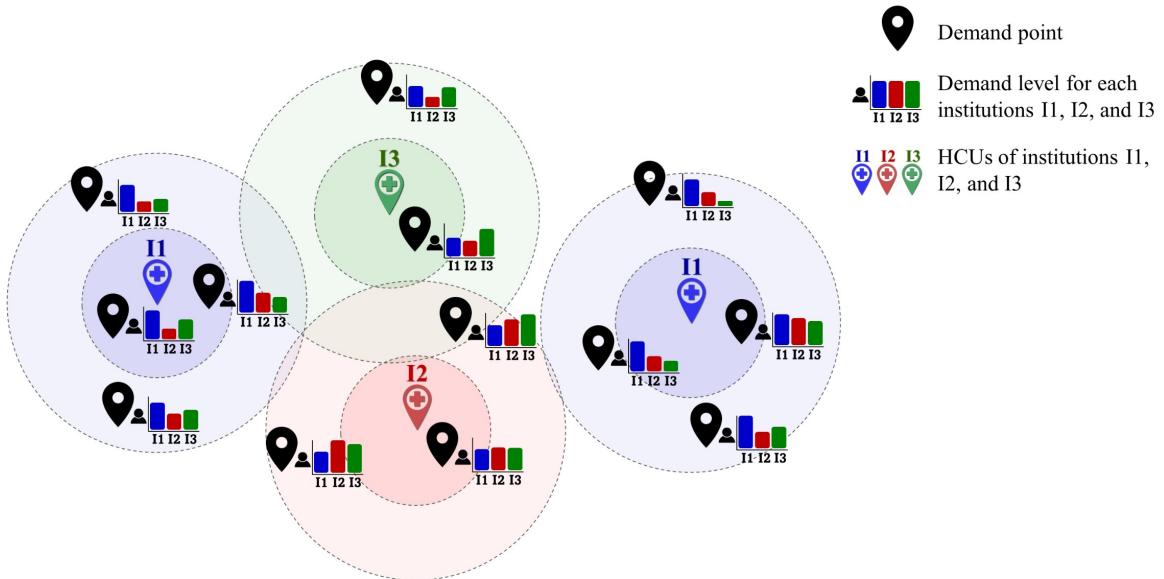


Figure 1: Example of a health care system with multiple institutions.

219 **3.2 Mathematical model**

220 The sets, parameters, and variables of the problem are described below:

221 *Sets:*

222 M Set of demand points; $i \in M$.

223 K Set of institutions in the system; $q, k \in K$.

224 G Set of HCUs with the service installed; $j \in G$.

225 N Set of candidate sites where the service can be installed; $j \in N$. The candidate sites for institution k is given by N^k . Clearly, $\cup_{k \in K} N^k = N$.

227 N_i Subset of N such that the demand point $i \in M$ is at least partially covered ($a_{ij} > 0$); $j \in N_i$.

229 N_i^k Subset of N_i that belongs to institution $k \in K$; $j \in N_i^k$.

230 G_i^k Set of HCUs with the service installed that belongs to institution $k \in K$ and cover the demand point $i \in M$ ($a_{ij} > 0$); $j \in G_i^k$.

232 *Parameters:*

233 h_i^k Demand in number of beneficiaries in demand point i of institution k ; $i \in M, k \in K$.

234 l_j is the primary coverage radius of the candidate site j ; $j \in G \cup N$.

235 u_j is the secondary coverage radius of the candidate site j ; $j \in G \cup N$.

236 d_{ij} is the distance between the demand point i and the site j ; $i \in M, j \in G \cup N$.

237 a_{ij} Coverage rate of the site j for the demand point i such that $0 \leq a_{ij} \leq 1$; $i \in M, j \in G \cup N$.

238 b_i^k Current coverage rate of demand point i for beneficiaries of institution k ; $i \in M, k \in K$.

239 Φ_{ij}^k Benefit in the coverage level of beneficiaries of institution k at demand point i if the service is installed in site j ; $k \in K, i \in M, j \in N_i$.

241 P^k Maximum sites number of institution k where the service can be installed; $k \in K$.

242 λ^q Percentage of collaboration of institution q for beneficiaries of other institutions; $q \in K$.

243 *Decision variables:*

244 Y_j Binary variable equal to 1 if the service is installed in site j ; 0, otherwise; $j \in N$.

245 X_{ij}^k Binary variable equal to 1 if the beneficiaries of institution k at demand point i are covered (partially or fully) by the candidate site j , and this site has the highest benefit in the coverage rate (Φ_{ij}^k) for demand point i among all other selected sites; 0, otherwise; $k \in K, i \in M, j \in N_i$.

249 Note that for X_{ij}^k , the beneficiaries of institution k at demand point i could be allocated to any candidate $j \in N_i$, including other institutions.

251 The formulation of the problem is the following:

$$\max \sum_{k \in K} \sum_{i \in M} \sum_{j \in N_i} h_i^k \Phi_{ij}^k X_{ij}^k \quad (1)$$

$$\text{s.t.} \quad \sum_{j \in N^k} Y_j \leq P^k \quad k \in K \quad (2)$$

$$\sum_{j \in N_i} X_{ij}^k \leq 1 \quad k \in K, i \in M \quad (3)$$

$$X_{ij}^k \leq Y_j \quad k \in K, i \in M, j \in N_i \quad (4)$$

$$Y_j \in \{0, 1\} \quad j \in N \quad (5)$$

$$X_{ij}^k \in \{0, 1\} \quad k \in K, i \in M, j \in N_i \quad (6)$$

252 Objective function (1) maximizes the benefit in the demand coverage of all institutions in
 253 all demand points. Constraints (2) impose a limit on the maximum number of new sites where
 254 the service can be installed for each institution. The beneficiaries of each institution at each
 255 demand point can be covered by one facility, either of the same institution or another, according to
 256 constraints (3). The binary variable X_{ij}^k determines the highest benefit in the objective function for
 257 the demand of each institution at each demand point. In case of a tie, one active site is randomly
 258 chosen. According to constraints (4), if the candidate site j is not selected in the solution, all the
 259 associated X_{ij}^k are equal to zero. Binary conditions regarding the decision variables are imposed
 260 by constraints (5) and (6).

261 Note that the maximum number of binary variables (assuming that $N_i = N, \forall i \in M$) is given
 262 by $|N|(|K| \times |M| + 1)$, and the maximum number of constraints is $|K|(1 + |M|(1 + |N|))$.

263 **3.3 Determining Φ_{ij}^k**

264 A typical coverage binary function is defined by a critical distance around each candidate site.
 265 However, this function type considers an abrupt ending coverage which may not represent a real
 266 situation. A non-increasing function is used to enlarge the coverage of a facility to a second critical
 267 distance avoiding the abrupt coverage ending [8]. In this case, the coverage level gradually decreases
 268 in the gap between these two critical distances l_{ij} and u_{ij} . The non-increasing function is given by:

$$a_{ij} = \begin{cases} 1 & \text{if } d_{ij} \leq l_j \\ \frac{u_j - d_{ij}}{u_j - l_j} & \text{if } l_j < d_{ij} < u_j \\ 0 & \text{if } d_{ij} \geq u_j. \end{cases} \quad (7)$$

269 In Equation (7), if the distance between a demand point i and a candidate site j is less than
 270 or equal to the primary coverage radius, this point is fully covered ($a_{ij} = 1$). The demand point is
 271 not covered if the distance is equal to or greater than the secondary coverage radius ($a_{ij} = 0$). The

272 demand point is partially covered if the distance is between these two critical bounds ($0 < a_{ij} < 1$).
 273 In this problem, the values of the primary and secondary coverage radius are different for each
 274 site according to the population density of the place where they are located. This consideration is
 275 done because population densities vary widely from region to region and we are assuming that the
 276 coverage distance must be related to population density.

277 The primary coverage radius l_j can be determined by a function that considers the population
 278 density behavior as proposed in the case study in Section 4.2. For the secondary coverage radius,
 279 we propose a proportional increase of l_j (Δ) according to Equation (8). However, there are many
 280 ways in which these bounds can be determined.

$$u_j = (1 + \Delta)l_j \quad (8)$$

281 The set of HCUs where service is installed (G) is required to calculate the additional benefit
 282 in demand coverage (Φ_{ij}^k) of demand points that fall inside the secondary coverage radius of a
 283 candidate site. For demand points not currently covered, there is a logical benefit if the service is
 284 installed in a nearby site, but, for some demand points that are already covered, a nearer HCU
 285 with the service installed can improve the coverage level. Demand points whose coverage cannot be
 286 improved by any candidate site (i.e. $\Phi_{ij}^k = 0$) are not considered in the formulation because there is
 287 no impact on the objective function. For determining Φ_{ij}^k it is required to first compute the current
 288 coverage level of each demand point (b_i^k). This parameter indicates the current coverage for the
 289 beneficiaries of each institution at each demand point. This value takes into consideration HCU
 290 with the service installed of the same institutions ($j \in G_i^k$) and other institutions ($j \in G_i^q | q \neq k$),
 291 but these last ones are multiplied by λ^q because the collaboration percentage applies for all the
 292 HCUs that supply the service.

293 The proportion of collaboration is considered because each institution must prioritize its own
 294 demand; therefore, there must be a distinction between coverage of internal and external demand.
 295 This parameter must be fixed between $0 < \lambda^q < 1$. As the value of λ^q increases, the coverage
 296 level to other institutions also increases. In our work, we assume this value as a function of q
 297 only; however, there might be situations where this parameter can be defined for each site and the
 298 collaboration agreement between each pair of institutions (i.e., λ_{ij}^{qk}).

$$b_i^k = \max\{\max_{j \in G_i^k}\{a_{ij}\}, \max_{j \in G_i^q | q \neq k}\{\lambda^q a_{ij}\}\} \quad k \in K, i \in M \quad (9)$$

299 The benefit of the coverage rate is calculated by subtracting b_i^k from a_{ij} . If this value is negative,
 300 the benefit is equal to zero. Demand points such that $\sum_{k \in K} \sum_{j \in N_i} \Phi_{ij}^k = 0$ are not considered in
 301 the formulation. The equation to calculate Φ_{ij}^k is the following:

$$\Phi_{ij}^k = \begin{cases} \max \{a_{ij} - b_i^k, 0\} & \text{if } j \in N_i^k \\ \max \{\lambda^q a_{ij} - b_i^k, 0\} & \text{if } j \in N_i^q | q \neq k. \end{cases} \quad (10)$$

302

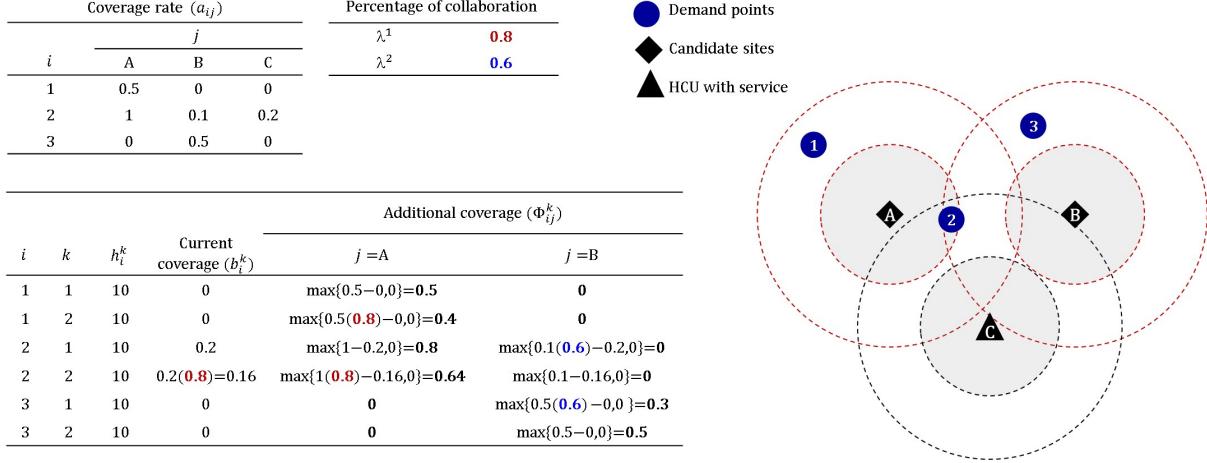


Figure 2: Determination of additional demand coverage in Example 1.

303 We now present a small example illustrating the model settings and how λ^q influences the
 304 objective function when there are multiple institutions. This example is displayed in Figure 2.

305 **Example 1** Let $M = \{1, 2, 3\}$, $K = \{1, 2\}$ $N = \{A, B\}$, and $G = \{C\}$.

306 In this example, there are three demand points ($i = 1, 2$, and 3), two institutions ($k = 1$ and 2),
 307 two candidate sites ($j = A$ and B), and one HCU that supplies the service ($j = C$). A and C belongs
 308 to institution 1, and B to institution 2. The subsets are defined as follows:

- 309 • The sets of candidate sites that cover each demand point are: $N_1 = \{A\}$, $N_2 = \{A, B\}$, and
 310 $N_3 = \{B\}$.
- 311 • The sets of candidates sites of each institution that cover each demand point are: $N_1^1 = \{A\}$,
 312 $N_1^2 = \{\emptyset\}$, $N_2^1 = \{A\}$, $N_2^2 = \{B\}$, $N_3^1 = \{\emptyset\}$, and $N_3^2 = \{B\}$.
- 313 • The sets of HCUs that provide the service and cover each demand point are: $G_2^1 = \{C\}$, and
 314 all other sets are empty.

315 Let us suppose that the number of beneficiaries of each institution is the same at each demand
 316 point ($h_i^k = 10$). In Figure 2, the left-hand side figure represents the physical locations of demand
 317 points and sites with their coverage radius. The two tables at the top right of the figure show the
 318 coverage rate for each site and the percentage of collaboration between institutions, respectively. The
 319 bottom-right table shows how parameters b_i^k and Φ_{ij}^k are computed. For example, if the candidate

320 site A is selected, the additional demand covered will be equal to 23.4 obtained from $0.5(10) +$
 321 $0.4(10) + 0.8(10) + 0.64(10)$. And, if the candidate site B is selected, the additional demand covered
 322 will be equal to 8 obtained from $0.3(10) + 0.5(10)$. In conclusion, candidate site A is a better option
 323 than B .

324 **3.4 Special case: The MCLP with partial coverage**

325 The following problem (NSLP) is a special case of SLP considering a single institution. This case
 326 could be applied in many countries with a centralized public institution or a segmented system with
 327 no collaboration between institutions ($\lambda^q = 0, \forall q \in K$), solving this model for each institution. In
 328 this problem, the coverage of HCUs with the service already installed is also considered.

329 The following parameters and the decision variables must be redefined as follows:

330 *Parameters:*

331 h_i Number of beneficiaries in demand point $i; i \in M$.
 332 p Maximum number of candidate sites where the service will be installed.
 333 a'_{ij} Benefit in the coverage level at demand point i if the candidate site j is selected; $i \in M,$
 334 $j \in N_i$.

335 *Decision variables:*

336 X_{ij} Binary variable equal to 1 if the candidate site j is selected and it has the highest benefit
 337 in the coverage rate (a'_{ij}) for demand point i among all other selected sites; 0, otherwise;
 338 $i \in M, j \in N_i$.

339 The increase in the coverage level of beneficiaries at each demand point for each candidate site
 340 is calculated as follows:

$$a'_{ij} = \max\{a_{ij} - \max_{l \in G_i}\{a_{il}\}, 0\} \quad i \in M, j \in N_i. \quad (11)$$

341 The formulation of the problem is the following:

$$\max \quad \sum_{i \in M} \sum_{j \in N_i} h_i a'_{ij} X_{ij} \quad (12)$$

$$\text{subject to} \quad \sum_{j \in N} Y_j \leq p \quad (13)$$

$$\sum_{j \in N_i} X_{ij} \leq 1 \quad i \in M \quad (14)$$

$$X_{ij} \leq Y_j \quad i \in M, j \in N_i \quad (15)$$

$$Y_j \in \{0, 1\} \quad j \in N \quad (16)$$

$$X_{ij} \in \{0, 1\} \quad i \in M, j \in N_i \quad (17)$$

342 In the case of new services in the system, the previous model can be used to replace a'_{ij} for the
343 original coverage rate a_{ij} . A computational study with an application of this model is introduced
344 in Section 4.8.

345 4 Case Study

346 4.1 Experimental settings

347 In this section, the problem is applied separately to four second-level services in the MHCS: gyn-
348 eology (S1), pediatric care (S2), internal medicine (S3), trauma care and orthopedics (S4). For each
349 service, the four leading public institutions in Mexico are considered to evaluate the model: (I1)
350 The Ministry of Health (SSA) and IMSS-Bienestar, (I2) IMSS, and (I3) ISSSTE. The first two insti-
351 tutions are unified as a single one because both of them attend to uninsured populations. The main
352 difference is that IMSS-Bienestar is located in regions with extreme poverty. I2 is an institution
353 that provides services to formal workers in the private sector, and I3 offers services to public sector
354 workers. There are many other institutions in the health care system, but their affiliated members
355 represent about 4.7% of the population. According to INEGI [35], the population of Mexico was
356 126,014,024 inhabitants in 2020, distributed among 189,280 demand points. For each service, the
357 demand was determined based on the number of each institution's beneficiaries obtained from the
358 Census 2020. Demand is determined by multiplying the number of beneficiaries and the proportion
359 of the population to which each service is intended. For gynecology, the proportion of women
360 from 12 years old at each demand point was considered, and for pediatrics, the proportion of the
361 population up to 18 years old. All the population was considered for internal medicine, trauma
362 care, and orthopedic services. Table 3 shows the demand (beneficiaries) and demand points with
363 affiliated members of each institution for each service. The sum of demand by row is lower than the
364 total population (126,014,024) because we only consider the people that are affiliated with these
365 institutions. In the case of S3 and S4, the demand is the same because these services are aimed
366 at all the affiliated members of each institution. For each institution, demand points where there
367 are no beneficiaries were discarded, for instance, I3 for S1 has 45,315 demand points with affiliated
368 members out of 189,280 demand points of Mexico. Universal Transverse Mercator coordinates were
369 used for demand points, current locations, and candidate sites to calculate the Euclidean distances.
370 This metric was used as an approach to the actual distances that were out-of-reach due to the high
371 number of calls and its high costs in web mapping platforms.

372 The data set is available at: <https://data.mendeley.com/datasets/s8x7nsjrgx>.

373 For determining sets G and N , we consider hospitals but also advanced primary HCUs where
374 service can be installed; therefore, we refer to both sites types just as "HCUs". Table 4 shows the
375 number of the existing HCUs of each institution that supply each service (G); they were obtained

Table 3: Demand and demand points for each service by institution.

Service	Total demand (No. beneficiaries)			Total demand points		
	I1	I2	I3	I1	I2	I3
S1	26,767,059	19,732,411	3,063,010	106,972	74,418	45,315
S2	21,036,798	13,715,433	2,060,414	104,726	73,348	45,044
S3	65,555,276	47,168,735	7,159,057	107,137	74,522	45,326
S4	65,555,276	47,168,735	7,159,057	107,137	74,522	45,326

376 from an official data-base of the Ministry of Health. For the case of set N , we consider that this
 377 problem can be applied to two different cases: to open a new HCU in a candidate location (N_A)
 378 and to install the service in an existing HCU (N_B). For N_A , existing HCUs of each institution were
 379 analyzed to evaluate if the service can be installed. For N_B , demand points with no HCUs and
 380 with a population density greater than or equal to 10,000 inhabitants were considered. As can be
 381 seen in the table, institutions I2 and I3 supply all services in nearly all of their HCUs. On the other
 382 hand, S1 and S2 are available in almost the same subset of HCUs for I1, S3 is available in a lower
 383 number of HCUs, and S4 is the one with the lowest number of sites where service is available.

Table 4: Number of available HCUs and candidate locations.

Service	Existing HCUs (G)				Candidate locations (N_A)				Candidate HCUs (N_B)			
	I1	I2	I3	Total	I1	I2	I3	Total	I1	I2	I3	Total
S1	634	198	89	921	650	913	1,004	2,567	120	48	17	185
S2	613	200	90	903	647	913	1,004	2,564	160	46	16	222
S3	437	205	88	730	667	913	1,004	2,584	260	30	18	308
S4	263	172	89	524	667	913	1,004	2,584	434	63	17	514

384 For determining set M for each service, we identify demand points such that $\sum_{j \in N_i} \Phi_{ij}^k > 0$
 385 using Equations (9) and (10). Table 5 shows the number of demand points to be considered in the
 386 problem by institution once all demand points such that $\sum_{j \in N_i} \Phi_{ij}^k = 0$ are discarded. In this case,
 387 the largest instance was the one for S3 with 47,549 demand points as shown in Table 2.

Table 5: Demand points considered in the problem.

Service	Demand points			
	I1	I2	I3	Total
S1	8,847	6,214	3,399	18,460
S2	12,361	10,629	4,802	27,792
S3	22,878	15,414	9,257	47,549
S4	19,864	14,246	8,979	43,089

388 **Solution method.** The branch-and-bound algorithm from the CPLEX callable library, version
 389 20.1.0, with a C++ API was used to find the optimal solution for each instance. The experiments
 390 were carried out in an Intel Core i7-5600U at 2.60GHz with 16GB of RAM under Windows 10
 391 operating system.

392 4.2 The variable coverage radius for the Mexico case

393 We propose a function that calculates the coverage radius according to the population density of
 394 each municipality where a candidate site is located. To the best of our knowledge, this particular
 395 type of function has not been employed in this kind of problem. The population density distri-
 396 bution of the 2,469 municipalities (counties) of Mexico in 2020 obtained from the INEGI website
 397 (<http://www.inegi.org.mx>), is shown in Figure 3. The demand points are grouped by munici-
 398 palities in Mexico, and this is the lowest level with data on population density. The municipalities
 399 on the horizontal axis are sorted by population density, and the cumulative population is shown on
 400 the vertical axis. We can note that half of the population lives in areas with a population density
 401 lower than 400 inhabitants per square kilometer (inh/km²). Three-quarters of the population lives
 402 in a territory with a population density lower than 2,000 inh/km², and the remaining population
 403 (25%) lives in a territory between 2,000 to 17,624 inh/km². In this context, we designed a logarith-
 404 mic function with high sensitivity to low population density rates (e.g. 1-2000 inh/km²), but that
 405 includes the entire threshold values of the population density rates. The coverage radius decreases
 406 as the population density increases, but in a logarithmic decrease.

407 The function to estimate a variable coverage radius is presented in Equation (20). The graphical
 408 representation of the coverage radius function applied to the municipalities of Mexico is shown in
 409 Figure 4. The function is adjusted based on a minimum and a maximum coverage radius. These
 410 limits are adjusted in a range of population density rates ($\delta_{\min}, \delta_{\max}$). Two coefficients that depend
 411 on the previous parameters must be determined to adjust the function.

412 The notation in the equations is the following:

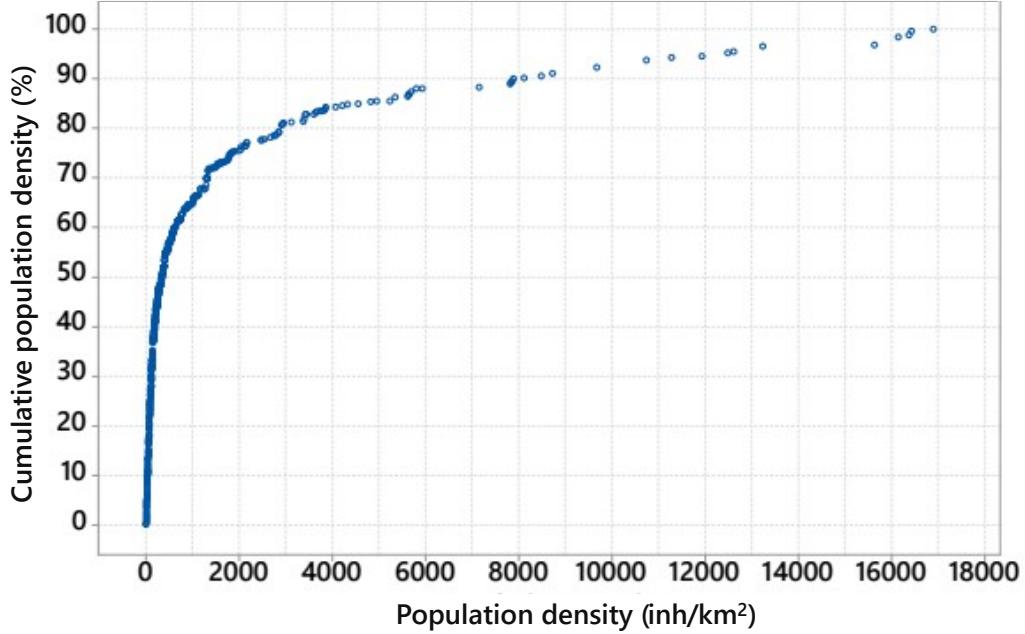


Figure 3: Classification of municipalities according to the population density.

⁴¹³ r_j Variable coverage radius of location j .
⁴¹⁴ r_{\max} Maximum coverage radius.
⁴¹⁵ r_{\min} Minimum coverage radius.
⁴¹⁶ δ_j Population density of location j .
⁴¹⁷ δ_{\max} Maximum population density.
⁴¹⁸ δ_{\min} Minimum population density.
⁴¹⁹ α Exponent value of the logarithm calculated by Equation (18).
⁴²⁰ β Adjustment coefficient calculated by Equation (19).

$$\alpha = \frac{r_{\max} - r_{\min}}{\log_{10}(\delta_{\max}) - \log_{10}(\delta_{\min})} \quad (18)$$

$$\beta = \log_{10}(\delta_{\max})^{\alpha} + r_{\min} \quad (19)$$

$$r_j = \beta - \log_{10}(\delta_j)^{\alpha} \quad (20)$$

⁴²¹ For experimental purposes, the values of some parameters were fixed. The minimum and max-
⁴²² imum population densities were based on the population density of Mexico (2020). The minimum
⁴²³ coverage radius was taken from the average distance of HCUs in Mexico City because it is the
⁴²⁴ most populated city with the largest number of HCUs. The maximum coverage radius was set to

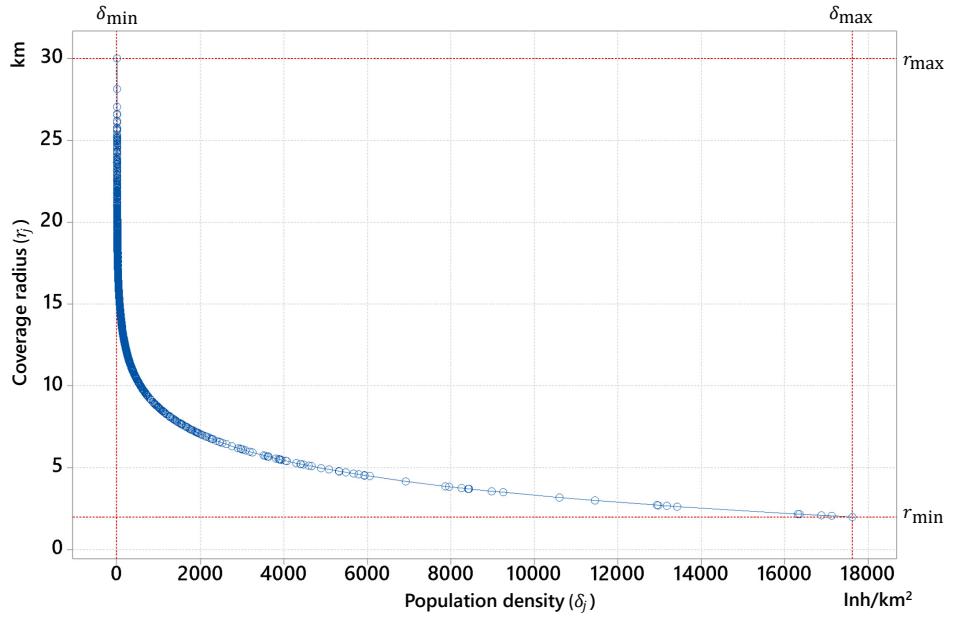


Figure 4: Graphical representation of the coverage radius.

425 30 km because this distance is reachable in rural areas of Mexico. The parameters α and β were
 426 calculated with Equations (18) and (19), respectively. The values of all these parameters are the
 427 following:

$$\begin{aligned}
 r_{\min} &= 2 \text{ km}; & \delta_{\min} &= 0.11 \text{ inh./km}^2; \\
 r_{\max} &= 30 \text{ km}; & \delta_{\max} &= 17,624 \text{ inh./km}^2; \\
 \alpha &= 5.36; & \beta &= 24.76.
 \end{aligned}$$

428 In the case of partial coverage, the coverage radius must be extended to a secondary coverage
 429 radius. In this case, limits were set as follows:

$$\begin{aligned}
 l_j &= r_j \\
 u_j &= 2l_j.
 \end{aligned}$$

430 The secondary coverage radius of a HCU for the most populated areas is nearly 4 km, and for
 431 the least populated areas is 60 km.

432 4.3 The effect of the collaboration among institutions

433 Parameter λ^q is critical because it determines the coverage degree of a given site of institution q
 434 for the beneficiaries of other institutions. For instance, $\lambda^q = 0$ means that HCUs cannot cover

435 beneficiaries of other institutions, $\lambda^q = 0.5$ means that only half of the beneficiaries of other
 436 institutions can be covered, and $\lambda^q = 1$ means that all the beneficiaries of other institutions are
 437 covered. In the following experiment, we calculated the coverage level of the existing HCUs using
 438 different values of λ^q . In this case, we fixed the same value for all the institutions. Table 6 shows
 439 these coverage levels using λ^q equal to 0, 0.25, 0.5, 0.75, and 1 for each institution. For each
 440 value of λ^q , there is a column (Gb) that represents the global demand coverage in the system. The
 441 covered demand includes all the beneficiaries of the fully covered demand points and the proportion
 442 of beneficiaries in the partially covered demand points. As we can see, the percentage of demand
 443 covered increases in all the services as the value of λ^q increases. If we compare the difference in
 444 the global demand coverage between $\lambda^q = 0$ and $\lambda^q = 1$, the coverage increase is 13%, 12%, 12%,
 445 and 13% for each service, respectively. These values represent the maximum effect on the coverage
 446 when collaboration between institutions is done. The most benefited institution is I3, with an
 447 increase of up to 46% in demand coverage for S2. Table 7 is similar to Table 6, but instead of
 448 showing the demand level, this table shows the percentage of demand points (fully or partially)
 449 covered for each value of λ^q . The percentage of additional demand points covered from $\lambda^q = 0$ to
 450 $\lambda^q = 1$ is 31%, 31%, 27%, and 20% for each service, respectively. The coverage increase is more
 451 significant in the number of demand points than the percentage of demand covered. This happens
 452 because many demand points with low demand levels are currently not covered by the own HCUs
 453 of each institution. Another observation is that, for instances with $\lambda^q = 0$, the problem to solve
 454 could be split into multiple problems equivalent to NSLP because there is no interaction between
 455 institutions. If $\lambda^q = 1$, one single problem using NSLP could be used because there is no distinction
 456 between the institution to which each HCU belongs and the others. In the case of the experiments
 457 in the following sections, we fixed $\lambda^q = 0.5$ for all the institutions.

Table 6: Percentage of demand covered with different levels of λ^q by institution.

Service	$\lambda^q = 0$				$\lambda^q = 0.25$				$\lambda^q = 0.5$				$\lambda^q = 0.75$				$\lambda^q = 1$			
	I1	I2	I3	Gb	I1	I2	I3	Gb	I1	I2	I3	Gb	I1	I2	I3	Gb	I1	I2	I3	Gb
S1	80	71	46	74	80	75	56	76	81	79	67	79	82	84	79	83	83	91	91	87
S2	75	70	45	71	76	73	55	74	76	78	66	76	77	83	78	79	78	90	91	83
S3	67	73	46	68	68	75	56	70	69	78	66	73	71	82	76	76	74	87	88	80
S4	53	68	48	59	55	70	55	61	57	74	63	64	60	78	72	68	63	83	81	72

Table 7: Percentage of demand points covered with different levels of λ^q by institution.

Service	$\lambda^q = 0$				$\lambda^q = 0.25$				$\lambda^q = 0.5$				$\lambda^q = 0.75$				$\lambda^q = 1$			
	I1	I2	I3	Gb.	I1	I2	I3	Gb.	I1	I2	I3	Gb	I1	I2	I3	Gb	I1	I2	I3	Gb
S1	78	31	17	51	80	83	85	82	80	83	85	82	80	83	85	82	80	83	85	82
S2	73	28	18	47	75	80	82	78	75	80	82	78	75	80	82	78	75	80	82	78
S3	64	30	16	43	67	73	74	70	67	73	74	70	67	73	74	70	67	73	74	70
S4	43	26	16	32	48	55	56	52	48	55	56	52	48	55	56	52	48	55	56	52

458 **4.4 Evaluating different levels of collaboration (λ^q)**

459 The objective of this experiment is to assess the impact of collaboration among institutions on the
 460 benefit in the demand coverage. This benefit is obtained from the objective function value of the
 461 introduced problem. In the mathematical model, collaboration is defined by parameters λ^1 , λ^2 ,
 462 and λ^3 for institutions I1, I2, and I3, respectively. We evaluate the benefit in the demand coverage
 463 for different values of λ^1 , λ^2 , and λ^3 . In this case, we use 0.0, 0.5, and 1.0 for each institution
 464 resulting in 27 distinct solutions. The service S1 was used for this analysis with a fixed number
 465 of new sites set at one hundred for each institution. Table 8 shows the results that correspond to
 466 the benefit in the demand covered in the system (in millions of people) for each solution. Notably,
 467 the highest benefit is observed when all parameters are set to one, representing full collaboration
 468 between institutions. In the other hand, the lowest benefit is observed when all parameters are set
 469 zero, representing no collaboration. The average of the solution for each value of λ^1 are shown in
 470 the last column, for λ^3 are shown in the last row, and for λ^2 are 20.7, 20.5, and 23.9 for 0.0, 0.5,
 471 and 1.0, respectively. Comparing these averages, we note higher benefit when λ^2 and λ^3 are close
 472 to 1.0, while the least favorable outcomes occur when these parameters are set to 0.5, particularly
 473 when λ^1 is also 0.5 or 1.0. With this experiments, we observe a clear relation between collaboration
 474 levels and the benefit in the demand coverage obtained from the model solution.

Table 8: Benefit in demand coverage for different levels of λ^q .

λ^1	λ^2	λ^3			Average
		0.0	0.5	1.0	
0.0	0.0	19.2	20.1	22.9	
	0.5	19.5	20.4	23.1	21.5
	1.0	21.6	22.5	24.2	
0.5	0.0	19.5	20.5	23.2	
	0.5	19.9	16.0	23.5	21.3
	1.0	22.0	22.8	24.5	
1.0	0.0	20.6	21.7	23.9	
	0.5	21.1	16.5	24.2	22.2
	1.0	22.9	23.7	25.1	
Average		20.7	20.5	23.9	

475 As a subsequent analysis, we explored whether the contribution of each institution to the benefit
 476 in demand coverage obtained with the solutions are influenced by the collaboration level of the
 477 institutions and the interaction between them. Utilizing a factorial analysis of 3^3 , we systematically
 478 investigated the effects of λ^1 , λ^2 , and λ^3 on the contribution (as a percentage) of each institution
 479 to the benefit in demand coverage. For example, in a given solution I1 contributes in 44% in the
 480 total value of the objective function, I2 to 42% and I3 contributes in the remaining 14%. We
 481 used the results of the previously tested instances to evaluate three factorial models, one for each
 482 institution. The factors considered were the values of λ^1 , λ^2 , and λ^3 , while the response variable
 483 was the contribution made to the objective function by each institution. With a confidence level

484 of 95%, our findings revealed that changes in the values of λ^1 , λ^2 , and λ^3 significantly impacted
 485 the contribution of I1 and I3 to the benefit in demand coverage, with similar results observed.
 486 However, changes in the values of λ^3 did not yield a significant change in the contribution of I2
 487 to the benefit in demand coverage. Moreover, no significant interactions between factors were
 488 observed. Importantly, the analysis adhered to normality assumptions, ensuring the reliability of
 489 our conclusions. Figure 5 illustrates the effect of collaboration levels on the contribution of each
 490 institution, excluding λ^3 for I2 due to its lack of significant effect. Notably, for all the institutions,
 491 the contribution decreases as its associated λ^q increases, while the contribution increases with higher
 492 values of other institutions. We conclude that the collaboration level of each institution affects the
 493 contribution to the benefit of demand coverage in the system. However, these results should be
 494 considered with reservation since they are specific to these proven instances.

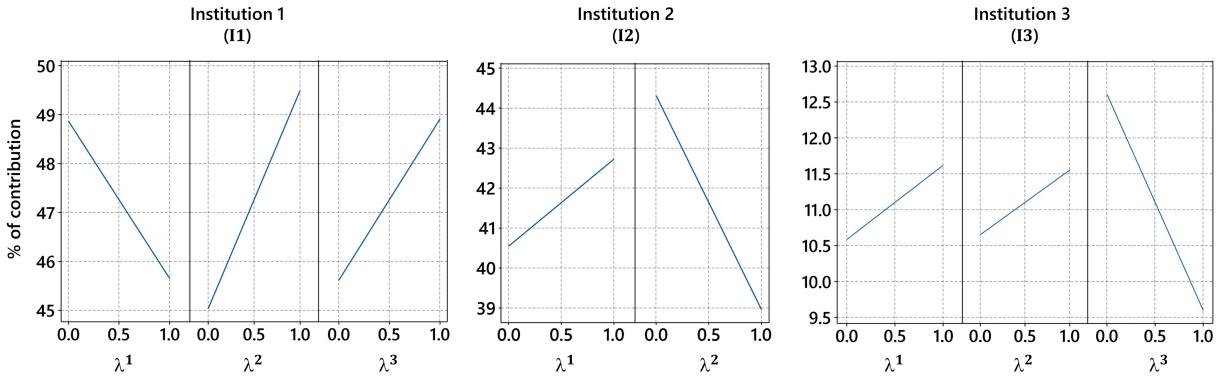


Figure 5: Average effect of λ^1 , λ^2 , and λ^3 in the percentages of contribution to the objective function for each institution.

495 4.5 Evaluating different types of candidate sites

496 The SLP can be used in two cases. The first case is to select between candidate locations (N_A)
 497 where new HCUs will be installed. For instance, in the case of pediatrics and gynecology, it is
 498 very frequent to build specialized HCUs where only one type of service is provided. In the other
 499 case, the service can be installed in HCUs that currently do not provide service. In this case, the
 500 candidate sites only include a set of potential HCUs (N_B) where the service can be installed. In
 501 this experiment, we evaluate these two cases for the selected services. The aim is to compare the
 502 impact on the demand covered in each case. In all the instances, the problem was optimally solved
 503 in less than one hour with an average computing time of 1,075 seconds when N_A was used and 50
 504 seconds when N_B was used.

505 Table 9 shows the additional covered demand for each institution, the additional total demand
 506 covered, and its percentage of the total demand for each case. The second column shows the
 507 number of new sites selected for each institution. For instance, $P^k = 1$ means that one new site

Table 9: Additional demand coverage in thousand of inhabitants evaluating two types of candidate sites with $\lambda^q = 0.5$.

Services	P^k	With candidate locations (N_A)					With candidate HCUs (N_B)				
		I1	I2	I3	Total	(%)	I1	I2	I3	Total	(%)
S1	1	186	344	11	541	1.1	5	154	0	159	0.3
	2	233	532	50	815	1.6	65	211	2	279	0.6
	3	291	687	77	1,055	2.1	66	287	2	355	0.7
	4	351	829	104	1,284	2.6	74	327	12	413	0.8
	5	402	974	110	1,485	3.0	98	348	14	460	0.9
S2	1	159	293	9	461	1.3	56	53	2	111	0.3
	2	251	397	10	658	1.8	134	57	3	195	0.5
	3	325	498	12	835	2.3	178	68	7	252	0.7
	4	364	600	34	998	2.7	231	69	8	307	0.8
	5	414	679	36	1,129	3.1	276	69	8	353	1.0
S3	1	590	1,007	33	1,631	1.4	167	159	5	331	0.3
	2	975	1,585	66	2,627	2.2	359	238	17	614	0.5
	3	1,230	1,981	155	3,367	2.8	586	283	18	888	0.7
	4	1,455	2,271	200	3,927	3.3	788	314	22	1,124	0.9
	5	1,661	2,572	218	4,451	3.7	967	314	22	1,304	1.1
S4	1	613	1,180	35	1,829	1.5	37	312	1	350	0.3
	2	1,031	1,784	70	2,885	2.4	88	592	5	686	0.6
	3	1,518	2,118	96	3,732	3.1	256	751	11	1,018	0.8
	4	1,910	2,416	107	4,433	3.7	459	835	23	1,317	1.1
	5	2,157	2,718	174	5,049	4.2	689	885	27	1,601	1.3

508 was opened for each institution. As can be seen, there is a higher impact on the demand coverage
509 when the service is installed on new locations (N_A). On average, the covered demand when the
510 service is installed in new locations is 3.5 times greater than considering existing HCUs to install
511 the service. These results are intuitive because most of these HCUs are installed in urban areas
512 where other HCUs already cover the region. On the other hand, the set of candidate sites considers
513 places where no other HCUs are already installed.

514 Tables 10 and 11 show detailed results about the demand covered and demand points inside
515 the secondary coverage radius for the instances with $P^k = 5$ for each service, considering the set
516 of candidate sites N_A . In Table 10, the second column shows the percentage of demand currently
517 covered by the existing HCUs that supply the service. The third column shows the percentage
518 of demand covered with the new sites. The fourth column shows demand that was not covered,
519 but is in the secondary coverage radius of a candidate site that was not selected. Finally, the last
520 column gives the demand that cannot be covered because there are no candidate sites near them.
521 This demand is scattered in areas with low infrastructure requirements to build new sites. Table
522 11 has the same data, but refers to the number of partially or fully covered demand points. As we
523 can see in the results, with the new sites, the percentage of demand covered ranges between 3.0%

524 and 4.2% for the analyzed services. The number of new demand points covered was lower, between
 525 0.4% and 1.8%. However, there are many demand points that an existing HCU already covers, but
 526 the new ones help to improve the coverage level. More candidate sites can be considered in the
 527 problem to reduce the demand and demand points out of reach, but this increase the complexity
 528 of the problem. This is analyzed in Section 4.7.

Table 10: Classification of demand for solutions with $P^k = 5$ and $\lambda^q = 0.5$.

Service	Currently covered (%)	Newly covered (%)	Not covered (%)	Out of reach (%)
S1	79.2	3.0	9.8	8.0
S2	76.3	3.1	10.6	10.0
S3	72.7	3.7	12.5	11.2
S4	63.9	4.2	13.0	18.8

Table 11: Classification of demand points for solutions with $P^k = 5$ and $\lambda^q = 0.5$.

Service	Currently covered (%)	Newly covered (%)	Not covered (%)	Out of reach (%)
S1	82.1	0.4	11.7	5.9
S2	78.1	1.4	12.0	8.5
S3	70.4	1.1	15.4	13.1
S4	52.0	1.8	32.3	13.9

529 4.6 Solving the problem at different clustering levels

530 In the case of Mexico, the government is divided into three hierarchical levels: federal, state, and
 531 municipal authorities. Although health care institutions have federal jurisdiction, some planning
 532 decisions are just analyzed considering only local impact because some resources come from local
 533 governments. In this experiment, we evaluate the effects on the demand coverage when federal
 534 states independently do the location of new sites. In the other case, the same number of new sites
 535 is selected, but as a single territory composed of all federal states. In both cases, demand points
 536 are partially or fully covered without considering if they belong to the federal state where the site is
 537 located. In the first case, additional constraints to ensure that each institution selects one new site
 538 in each of the 32 federal states are considered, and in the second case, 32 new sites were selected
 539 by each institution, considering all the federal states. Then, another experiment was also done by
 540 dividing the country into eight regions, as shown in Figure 6. Each institution can select a new
 541 site by region in the first case, and in the second one, eight new sites can be selected as a whole by
 542 institution.

543 In these experiments, all instances were optimally solved in less than one hour of computing
 544 time with an average of 1,016 seconds. In Table 12, we can see the percentage of demand and
 545 demand points covered by each service in each case, considering the existing HCUs that supply the

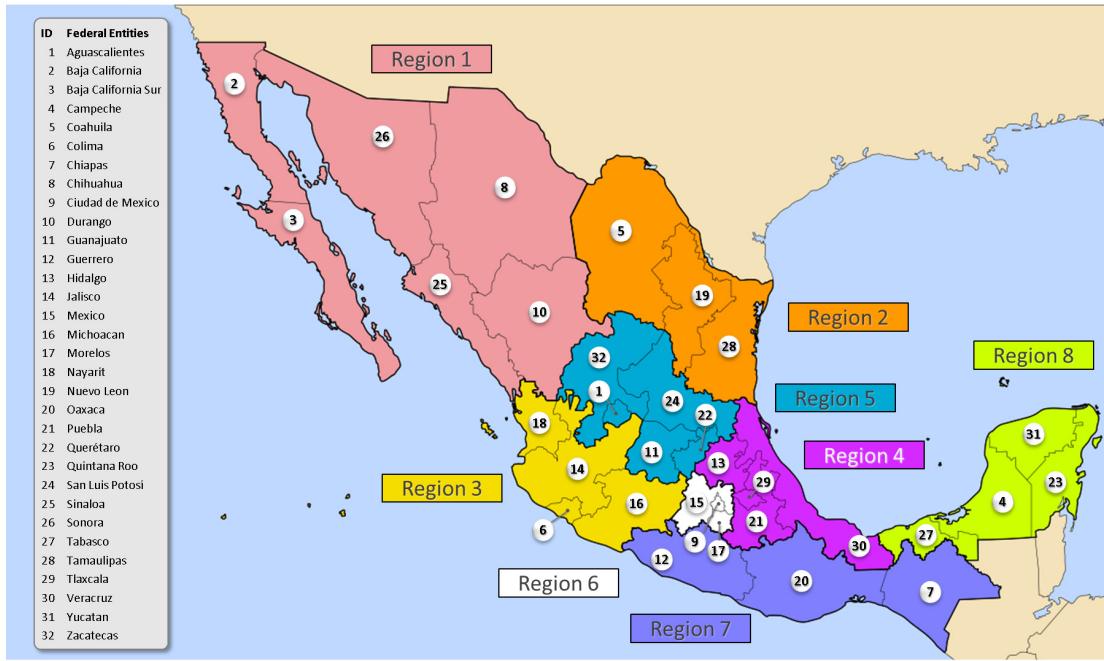


Figure 6: Map of Mexico divided into 8 regions and 32 federal states.

546 service. We can observe that more demand was covered in both instances where the problem was
 547 solved as a whole system. In the case of the federal states, the percentage of additional demand
 548 covered is 2.3%, 2.4%, 2.7%, and 3.4% for each service, respectively. In the case of the regions, the
 549 percentages are 0.9%, 0.8%, 1.1%, and 1.3% for each service, respectively. This consistency was
 550 not found in the number of additional demand points covered. In the case of the federal states,
 551 the number of additional demand points covered was also increased, but in the case of the regions,
 552 the number of demand points was reduced. Finally, in the case of federal states, we detected that
 553 in the second case there were no chosen sites in 9 out of 32 federal states, and 22% of the selected
 554 sites were concentrated in a single federal state. In the case of regions, 4 out of 8 regions have a
 555 selected site installed in the second case, and 42% of new sites were concentrated in a single region.

Table 12: Demand coverage for different clustering levels.

	Demand covered (%)				Demand points covered (%)			
	S1	S2	S3	S4	S1	S2	S3	S4
By federal states								
1 site by state (32 states)	84.2	81.3	78.8	70.8	85.3	82.4	76.3	58.9
32 new sites as whole	86.4	83.7	81.5	74.3	85.4	83.3	76.6	61.0
Difference	2.3	2.4	2.7	3.4	0.0	0.9	0.3	2.1
By regions								
1 site by region (8 regions)	82.3	79.4	76.4	68.2	83.2	80.3	73.4	55.1
8 new sites as whole	83.2	80.2	77.5	69.5	82.8	80.1	73.0	54.9
Difference	0.9	0.8	1.1	1.3	-0.3	-0.2	-0.4	-0.2

556 **4.7 Handling larger problem instances**

557 The goal of this experiment is find out the size of the instances that can be solved with the present
 558 model by using off-the-shelf branch and bound methods. To this end, we tested instances of larger
 559 size by increasing the number of candidate sites and the number of these sites that are selected for
 560 installing the service. We evaluate the performance of the branch-and-bound algorithm of CPLEX
 561 in one hour of CPU time. In Table 13, we consider three types of candidate sites for each service.
 562 The candidate sites were chosen based on the population size of each demand point. For type A,
 563 the candidate sites are demand points with 10 thousand inhabitants or higher, for type B, demand
 564 points with at least 7.5 thousand inhabitants or higher; and for type C, demand points with more
 565 than 5 thousand inhabitants. The specific number of candidate sites for each service of each type
 566 is shown in the third column. For the three types, the number of candidate sites to be selected
 567 ($\sum_{k \in K} P^k$), including all institutions, was ranged between 150 to 1500 sites, as seen in the table.
 568 The same number of site to be selected was fixed for each institution. This table shows the CPU
 569 time in hours and the optimality gap where ϵ denotes a very small value. The CPU time is lower
 570 than one hour when the optimal solution is found, and the optimality gap is higher than zero when
 571 the time limit is reached. We can observe that all instances of type A were optimally solved, 4 out
 572 of 24 instances of type B were not optimally solved, two of them with very bad solutions, and none
 573 of the instances of type C were optimally solved having very high bad solutions. In general, more
 574 candidate sites improve the demand coverage, but this leads to larger models that cannot be solved
 575 efficiently. Table 14 shows the number of demand points, decision variables, and constraints of the
 576 tested instances of type A, B, and C of each service to compare each type of instance. Clearly, our
 577 model is still useful for solving type A and mostly type B instances. For the remaining, heuristic
 578 procedures must be developed.

Table 13: Optimal solutions and relative gaps for different instance sizes.

Service	Type	Candidate Sites (N)	CPU time (h)					Optimality gap (%)				
			Selected sites					Selected sites				
			150	300	600	900	1200	1500	150	300	600	900
S1	A	2,567	0.2	0.2	0.3	0.2	0.2	0.2	0	0	0	0
S2	A	2,564	0.2	0.2	0.3	0.3	0.3	0.2	0	0	0	0
S3	A	2,584	0.5	0.6	0.5	0.5	0.5	0.4	0	0	0	0
S4	A	1,948	0.4	0.4	0.4	0.4	0.3	0.0	0	0	0	0
S1	B	3,566	0.7	0.7	0.6	0.6	0.7	0.6	0	0	0	0
S2	B	3,563	0.8	0.7	0.7	0.8	0.7	0.7	0	0	0	0
S3	B	3,583	0.9	0.9	1.0	1.0	1.0	1.0	0	0	0	0
S4	B	2,865	1.0	1.0	1.0	1.0	1.0	0.9	94	22	90	9
S1	C	5,628	1.0	1.0	1.0	1.0	1.0	1.0	94	93	91	93
S2	C	5,625	1.0	1.0	1.0	1.0	1.0	1.0	97	97	95	94
S3	C	5,645	1.0	1.0	1.0	1.0	1.0	1.0	98	97	95	94
S4	C	4,823	1.0	1.0	1.0	1.0	1.0	1.0	98	97	97	95

Table 14: Number of decision variables and constraints.

Set type	Service	Demand points	Variables X_{ij}^k	Variables Y_j	Constraints
A	S1	66,101	1,001,927	2,584	1,135,074
	S2	39,294	916,046	2,564	1,030,551
	S3	26,266	909,109	2,567	1,015,888
	S4	112,736	824,292	1,948	972,697
B	S1	66,101	1,480,171	3,583	1,623,672
	S2	39,294	1,354,615	3,563	1,481,030
	S3	26,266	1,344,892	3,566	1,464,878
	S4	112,736	1,278,091	2,865	1,436,020
C	S1	66,101	2,528,672	5,645	2,686,454
	S2	39,294	2,334,235	5,625	2,476,849
	S3	26,266	2,314,642	5,628	2,452,506
	S4	112,736	2,325,933	4,823	2,498,808

579 4.8 Evaluating new services in existing HCUs

580 In some cases, temporary services must be activated in the HCUs networks to face sanitary emer-
 581 gencies, as with the Covid-19 pandemic. In this experiment, we consider only the HCUs that belong
 582 to the Ministry of Health to identify which HCUs to install a new service to maximize the demand
 583 coverage solving NSLP with CPLEX. There are, in total, 774 candidate sites to install the service.
 584 The population at each demand point was used as the demand. There are, in total, 189,280 demand
 585 points, but only 150,357 can be entirely or partially covered. Figure 7 shows the percentages of
 586 demand and demand points covered with each solution varying the number of new sites (p). These
 587 percentages were calculated based on the total population and total demand points in Mexico. For
 588 instance, with five new sites, only 9% of the population was covered, and with 100 new sites, 56%
 589 of the population was covered. If the service is installed on every candidate site, the maximum
 590 percentage of demand covered is nearly 86% of the total population. As we can see in the plot, the
 591 portion of demand covered has a logarithmic behavior. It becomes more challenging to cover the
 592 remaining demand because the best sites to improve the coverage were already selected. The set of
 593 candidate sites can cover fully or partially a maximum of 41% of demand points and the behavior of
 594 demand points covered is more linear in the range between 5 to 550 new sites. Finally, a graphical
 595 representation of the solution for $P = 100$ new sites is shown in Figure 8. In this solution, 56% of
 596 demand was covered, and 7.6% of demand points were inside the secondary coverage radius of a
 597 selected site. Figure 9 shows a detailed visualization of the central region in the left-hand side plot
 598 where most of the population is concentrated and 66 out of 100 candidate site was selected in this
 599 region. The northeast region of Mexico is shown in the right-hand side figure where only thirteen
 600 candidate sites were selected.

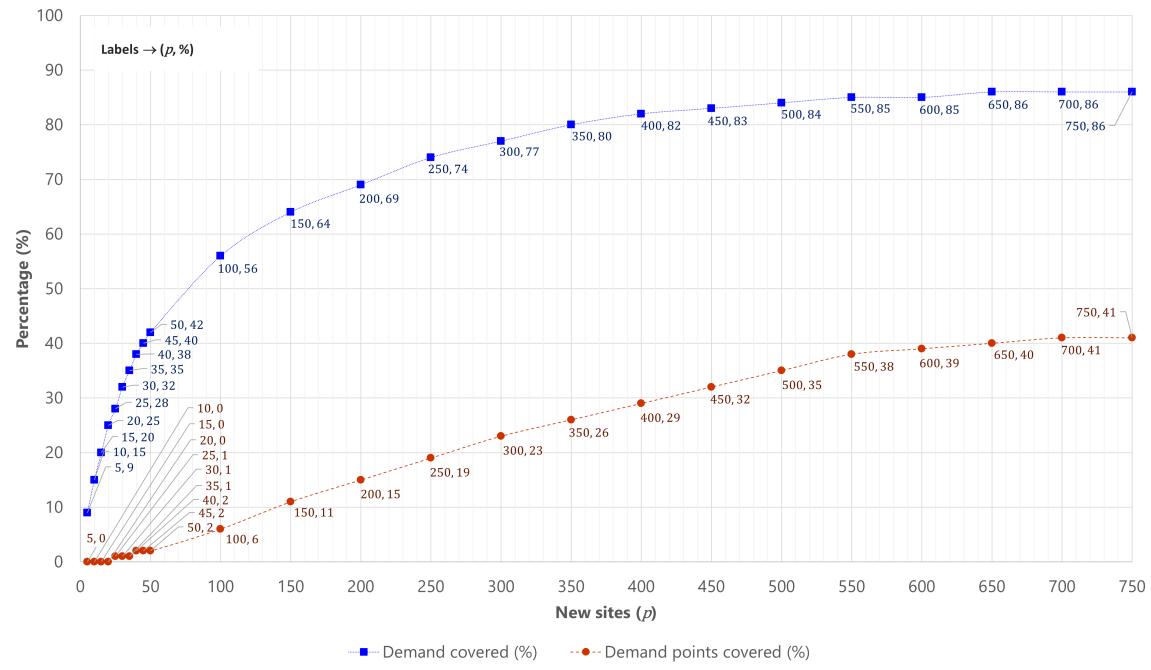


Figure 7: Demand covered according to the number of new sites.

5 Conclusions

In this paper, we revisited the MCLP with partial coverage and proposed an extension to solve the problem of locating SHCS in a multi-institutional network. This model is motivated by the need to improve access to these services in developing countries. A decay function based on two critical coverage bounds for partial coverage is employed. A logarithmic function is proposed to determine the coverage radius of each candidate site based on the population density of the area where the new facilities can be installed. Since many sites are currently operating the services, the problem is improving the demand coverage. Therefore, for each demand point, the additional benefit in the coverage must be determined before solving the problem.

The case study, based on real-world data from the Mexican Health Care System, revealed interesting results. Four second-level services were evaluated with the model to locate additional sites to improve the current coverage. One contribution is the integration of multiple institutions in the demand coverage. If the collaboration between institutions is done, the additional covered demand could be increased between 12% and 13% for the analyzed services. As the percentage of collaboration decreases, this percentage is also reduced, but it still significantly impacts the coverage and access to these services.

Two choices for installing new services were evaluated: installing services in existing HCUs that currently do not supply the service and building new facilities. We found that the additional demand covered increased to 3.5 times the demand covered when new sites were considered. Even

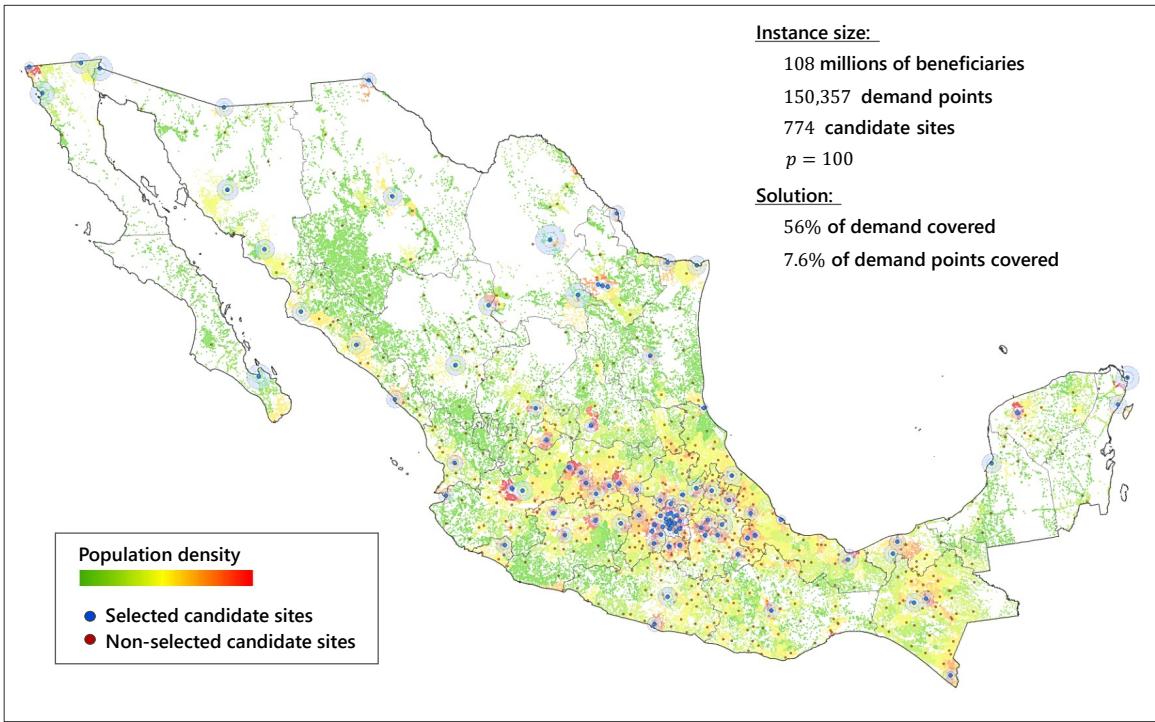


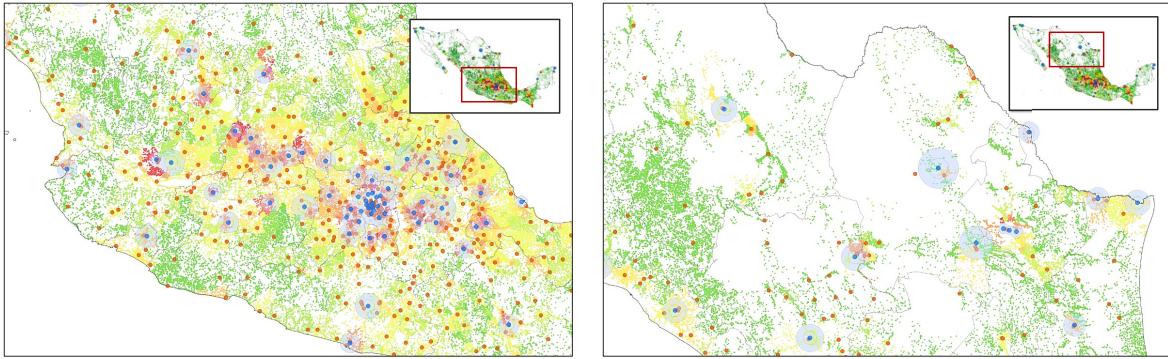
Figure 8: Map with the solution for $p = 100$.

620 though it is cheaper and easier to install the service in existing HCUs, there is no significant
 621 contribution from the access point of view since these HCUs are located in cities where other HCUs
 622 are already operating. Therefore, new sites are required to improve access to these services.

623 In the case of Mexico, this type of planning is done locally on some occasions; even the insti-
 624 tutions have federal jurisdiction. Therefore, we evaluate the effect on the coverage when the new
 625 locations are selected by each federal state and then as a whole system. We found that the addi-
 626 tional demand coverage is between 2.7% and 4% when the planning is done as an entire system. In
 627 a second analysis, comprehensive planning was compared against regional planning. In this case,
 628 comprehensive planning was found better, showing improvements between 1.0% and 1.9%.

629 The models developed in this paper can also be used to face emergency issues. For instance,
 630 opening temporary modules to deal with health emergencies or vaccination campaigns in which
 631 access is one of the most important factors for planning. In this experiment, it was observed
 632 that installing some new services in existing HCUs was advantageous. The impact on the demand
 633 coverage is higher for the first new sites chosen because the remaining uncovered demand points
 634 have lower demand levels and are scattered on the territory.

635 There are various possibilities for future research on this problem. As part of upcoming in-
 636 vestigations, including capacity constraints in service provision and addressing congestion using
 637 queuing theory can significantly help in dealing with the evolving challenges in public health care
 638 service delivery. Another aspect to consider is integrating multiple second-level services into one



(a) Zoom on the central region.

(b) Zoom on the north region.

Figure 9: Zoom on the solution for $p = 100$.

639 single location problem. Incorporating hierarchical structures into the model is essential because
 640 primary HCUs serve as the primary contact point for a substantial portion of the demand directed
 641 toward second and third-level specialized hospitals. Financial limitations in the public sector can be
 642 considered by introducing a budget constraint to the problem. Considering joint coverage among
 643 HCUs can help expand service coverage. For instance, hospitals without operating rooms may
 644 still offer specialized outpatient services. Integrating all these features into a single problem and
 645 exploring alternative solution methods like metaheuristic algorithms could be a valuable avenue for
 646 future exploration.

647 *Acknowledgments:* We are very grateful to the three anonymous reviewers whose criticism
 648 helped improve the presentation of this work. The research of the first author was supported
 649 by a PRODEP postdoctoral fellowship (No. 511-6/2019-15111), by a postdoctoral fellowship from
 650 the Mexican Council for Science and Technology (CONACyT), and by Tecnológico de Monterrey.
 651 The second author was supported by UANL (grants UANL-PAICYT CE1416-20, CE1837-21, and
 652 241-CE-2022) and CONACYT (grants FC-2016-2/1948 and CF-2023-I-880).

653 References

654 [1] A. Ahmadi-Javid, P. Seyed, and S. S. Syam. A survey of healthcare facility location. *Computers & Operations Research*, 79:223–263, 2017.

655

656 [2] O. I. Alsalloum and G. K. Rand. Extensions to emergency vehicle location models. *Computers & Operations Research*, 33(9):2725–2743, 2006.

657

658 [3] R. G. I. Arakaki and L. A. N. Lorena. A constructive genetic algorithm for the maximal
 659 covering location problem. In *Proceedings of the 4th Metaheuristics International Conference*,
 660 pages 13–17, Porto, Portugal, July 2001.

661 [4] C. Araz, H. Selim, and I. Ozkarahan. A fuzzy multi-objective covering-based vehicle location
662 model for emergency services. *Computers & Operations Research*, 34(3):705–726, 2007.

663 [5] J. Bagherinejad, M. Bashiri, and H. Nikzad. General form of a cooperative gradual maximal
664 covering location problem. *Journal of Industrial Engineering International*, 14(2):241–253,
665 2018.

666 [6] M. Bashiri, E. Chehrepak, and S. Gomari. Gradual covering location problem with stochastic
667 radius. In T. Blecker, W. Kersten, and C. M. Ringle, editors, *Innovative Methods in Logistics
668 and Supply Chain Management: Current Issues and Emerging Practices*, pages 165–186. Epubli
669 GmbH, Berlin, Germany, August 2014.

670 [7] O. Berman and D. Krass. The generalized maximal covering location problem. *Computers &
671 Operations Research*, 29(6):563–581, 2002.

672 [8] O. Berman, D. Krass, and Z. Drezner. The gradual covering decay location problem on a
673 network. *European Journal of Operational Research*, 151(3):474–480, 2003.

674 [9] O. Berman, Z. Drezner, and D. Krass. Generalized coverage: New developments in covering
675 location models. *Computers & Operations Research*, 37(10):1675–1687, 2010.

676 [10] O. Berman, Z. Drezner, and D. Krass. The multiple gradual cover location problem. *Journal
677 of the Operational Research Society*, 70(6):931–940, 2019.

678 [11] L. Brotcorne, G. Laporte, and F. Semet. Ambulance location and relocation models. *European
679 Journal of Operational Research*, 147(3):451–463, 2003.

680 [12] T. C. Y. Chan, D. Demirtas, and R. H. Kwon. Optimizing the deployment of public access
681 defibrillators. *Management Science*, 62(12):3617–3635, 2016.

682 [13] S. Chanta and O. Sangsawang. Optimal railway station locations for high-speed trains based
683 on partial coverage and passenger cost savings. *International Journal of Rail Transportation*,
684 9(1):39–60, 2021.

685 [14] R. Church and C. ReVelle. The maximal covering location problem. *Papers of the Regional
686 Science Association*, 3(1):101–118, 1974.

687 [15] R. L. Church. *Synthesis of a Class of Public Facility Location Models*. Ph.D. dissertation,
688 Johns Hopkins University, Baltimore, 1974.

689 [16] R. L. Church and K. L. Roberts. Generalized coverage models and public facility location.
690 *Papers of the Regional Science Association*, 53(1):117–135, 1983.

691 [17] T. M. Dall, R. Chakrabarti, M. V. Storm, E. C. Elwell, and W. F. Rayburn. Estimated demand
692 for women's health services by 2020. *Journal of Women's Health*, 22(7):643–648, 2013.

693 [18] M. S. Daskin and L. K. Dean. Location of health care facilities. In M. L. Brandeau, F. Sainfort,
694 and W. P. Pierskalla, editors, *Operations Research and Health Care: A Handbook of Methods
695 and Applications*, volume 70 of *International Series in Operations Research & Management
696 Science*, chapter 3, pages 43–76. Springer, Boston, 2005.

697 [19] K. Dogan, M. Karatas, and E. Yakici. A model for locating preventive health care facilities.
698 *Central European Journal of Operations Research*, 28(3):1091–1121, 2020.

699 [20] B. T. Downs and J. D. Camm. An exact algorithm for the maximal covering problem. *Naval
700 Research Logistics*, 43(3):435–461, 1996.

701 [21] T. Drezner and Z. Drezner. The maximin gradual cover location problem. *OR Spectrum*, 36
702 (4):903–921, 2014.

703 [22] T. Drezner, Z. Drezner, and Z. Goldstein. A stochastic gradual cover location problem. *Naval
704 Research Logistics*, 57(4):367–372, 2010.

705 [23] T. Drezner, Z. Drezner, and P. Kalczynski. Gradual cover competitive facility location. *OR
706 Spectrum*, 42(2):333–354, 2020.

707 [24] Z. Drezner, A. Mehrez, and G. O. Wesolowsky. The facility location problem with limited
708 distances. *Transportation Science*, 25(3):183–187, 1991.

709 [25] Z. Drezner, G. O. Wesolowsky, and T. Drezner. The gradual covering problem. *Naval Research
710 Logistics*, 51(6):841–855, 2004.

711 [26] H.A. Eiselt and V. Marianov. Gradual location set covering with service quality. *Socio-
712 Economic Planning Sciences*, 43(2):121–130, 2009.

713 [27] E. Erkut, A. Ingolfsson, and G. Erdoan. Ambulance location for maximum survival. *Naval
714 Research Logistics*, 55(1):42–58, 2008.

715 [28] A. Eydi and J. Mohebi. Modeling and solution of maximal covering problem considering
716 gradual coverage with variable radius over multi-periods. *RAIRO – Operations Research*, 52
717 (4–5):1245–1260, 2018.

718 [29] R. Z. Farahani, N. A. and N. Heidari, M. Hosseiniinia, and M. Goh. Covering problems in facility
719 location: A review. *Computers & Industrial Engineering*, 62(1):368–407, 2012.

720 [30] R. D. Galvao and C. ReVelle. A Lagrangean heuristic for the maximal covering location
721 problem. *European Journal of Operational Research*, 88(1):114–123, 1996.

722 [31] O. Gómez, S. Sesma, V. M. Becerril, F. M. Knaul, H. Arreola, and J. Frenk. Sistema de salud
 723 de México. *Salud Pública de México*, 53:s220–s232, 2011. In Spanish.

724 [32] E. D. Güneş, T. Melo, and S. Nickel. Location problems in healthcare. In G. Laporte,
 725 S. Nickel, and F. Saldanha da Gama, editors, *Location Science*, chapter 23, pages 657–686.
 726 Springer, Cham, Switzerland, 2nd edition, 2019.

727 [33] M. Haghi, O. Arslan, and G. Laporte. A location-or-routing problem with partial and decaying
 728 coverage. *Computers & Operations Research*, 149:106041, 2023.

729 [34] G. Heinze-Martin, V.H. Olmedo-Canchola, G. Bazán-Miranda, and D. P. Guízar-Sánchez N. A.
 730 Bernard-Fuentes. Los médicos especialistas en México. *Gaceta Médica de México*, 154(3):342–
 731 351, 2018. In Spanish.

732 [35] INEGI. 2020 Census of population and housing units. WebSite, 2020. URL <https://en.ww.inegi.org.mx/programas/ccpv/2010/>. 2020-01-20.

734 [36] O. Karasakal and E. Karasakal. A maximal covering location model in the presence of partial
 735 coverage. *Computers & Operations Research*, 31(9):1515–1526, 2004.

736 [37] M. Karatas and L. Eriskin. The minimal covering location and sizing problem in the presence
 737 of gradual cooperative coverage. *European Journal of Operational Research*, 295(3):838–856,
 738 2021.

739 [38] H. Küçükaydın and N. Aras. Gradual covering location problem with multi-type facilities
 740 considering customer preferences. *Computers & Industrial Engineering*, 147:106577, 2020.

741 [39] X. Li, Z. Zhao, X. Zhu, and T. Wyatt. Covering models and optimization techniques for emer-
 742 gency response facility location and planning: a review. *Mathematical Methods of Operations
 743 Research*, 74(3):281–310, 2011.

744 [40] C. S. Lim, R. Mamat, and T. Braunl. Impact of ambulance dispatch policies on performance
 745 of emergency medical services. *IEEE Transactions on Intelligent Transportation Systems*, 12
 746 (2):624–632, 2011.

747 [41] V. Marianov and D. Serra. New trends in public facility location modeling. Working paper,
 748 Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Spain, May
 749 2004.

750 [42] P. Meltem and Y. K. Bahar. The P-hub maximal covering problem and extensions for gradual
 751 decay functions. *Omega*, 54:158–172, 2015.

752 [43] R. Mendoza-Gómez and R. Z. Ríos-Mercado. Regionalization of primary health care units
753 with multi-institutional collaboration. *Socio-Economic Planning Sciences*, 83:101343, 2022.
754 ISSN 0038-0121.

755 [44] R. Mendoza-Gómez, R. Z. Ríos-Mercado, and K. B. Valenzuela-Ocaña. An efficient decision-
756 making approach for the planning of diagnostic services in a segmented healthcare system.
757 *International Journal of Information Technology & Decision Making*, 18(5):1631–1665, 2019.

758 [45] R. Mendoza-Gómez, R. Z. Ríos-Mercado, and K. B. Valenzuela-Ocaña. An iterated greedy
759 algorithm with variable neighborhood descent for the planning of specialized diagnostic services
760 in a segmented healthcare system. *Journal of Industrial and Management Optimization*, 16
761 (2):857–885, 2020.

762 [46] A.T. Murray and R.L. Church. Applying simulated annealing to location-planning models.
763 *Journal of Heuristics*, 2(1):31–53, 1996. ISSN 1572-9397.

764 [47] J. Naoum-Sawaya and S. Elhedhli. A stochastic optimization model for real-time ambulance
765 redeployment. *Computers & Operations Research*, 40(8):1972–1978, 2013.

766 [48] H. Pirkul and D. A. Schilling. The maximal covering location problem with capacities on total
767 workload. *Management Science*, 37(2):233–248, 1991.

768 [49] S. Rahman and D. K. Smith. Use of location-allocation models in health service development
769 planning in developing nations. *European Journal of Operational Research*, 123(3):437–452,
770 2000.

771 [50] A. Rais and A. Viana. Operations research in healthcare: A survey. *International Transactions
772 in Operational Research*, 18(1):1–31, 2011.

773 [51] M. G. Resende. Computing approximate solutions of the maximum covering problem with
774 GRASP. *Journal of Heuristics*, 4(2):161–177, 1998.

775 [52] H. Reyes-Morales, A. Dreser-Mansilla, A. Arredondo-López, S. Bautista-Arredondo, and
776 L. Ávila-Burgos. Análisis y reflexiones sobre la iniciativa de reforma a la ley general de salud
777 de México 2019. *Salud Pública de México*, 61(5):685–691, 2019. In Spanish.

778 [53] K.E. Rosing and C.S. ReVelle. Heuristic concentration: Two stage solution construction.
779 *European Journal of Operational Research*, 97(1):75–86, 1997.

780 [54] A. Tavakoli and C. Lightner. Implementing a mathematical model for locating EMS vehicles
781 in Fayetteville, NC. *Computers & Operations Research*, 31:1549–1563, 2004.

782 [55] D. Tong, A. Murray, and N. Xiao. Heuristics in spatial analysis: A genetic algorithm for
783 coverage maximization. *Annals of the Association of American Geographers*, 99(4):698–711,
784 2009.

785 [56] J. Wang, H. Liu, S. An, and N. Cui. A new partial coverage locating model for cooperative
786 fire services. *Information Sciences*, 373:527–538, 2016.

787 [57] J. A. White and K. E. Case. On covering problems and the central facilities location problem.
788 *Geographical Analysis*, 6(3):281–293, 1974.

789 [58] E. Yücel, F. S. Salman, B. Bozkaya, and C. Gökalp. A data-driven optimization framework
790 for routing mobile medical facilities. *Annals of Operations Research*, 291(1):1077–1102, 2020.