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Abstract

The lack of access to Second-level Health Care Services (SHCS) in developing countries is
primarily due to the scarcity of facilities and the limited investment of resources in the public
sector. Access to these services directly relates to the distance the population travels to these
facilities. In that sense, a maximal covering location problem can be helpful to maximize the
impact of decisions related to the location of new SHCS. In this paper, we propose a model to
guide the location of additional sites where second-level services can be installed in a network of
public hospitals. The partial coverage and variable radius are considered in the problem to assess
a large territory with different characteristics and population densities. The system is composed
of multiple institutions that supply differentiated varying levels of coverage concerning their own
demand and external demand. The objective of the problem is to improve the demand coverage
in the system by locating new sites, since there are already sites offering different services. A
case study in the Mexican public health system is conducted to assess four specialized SHCS. The

obtained results evidence for the benefit of using optimization tools in the resource planning of
SHCS.

Keywords: Health care planning; facility location; maximal covering location; partial coverage;

integer programming.
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1 Introduction

Second-level Health Care Services (SHCS) such as gynecology and pediatrics are essential in society.
A large part of the population will require these services at various moments of their lives, and the
demand for these services grows yearly [17]. In rural areas, the main problem is access to facilities
that offer these services. In contrast, the problem is more related to capacity issues in urban areas.
However, distance and time are critical to survival in emergencies in both cases.

The lack of access to SHCS in public hospitals is critical in developing countries such as Mexico.
The investment in the health care infrastructure is limited and insufficient to ensure the total
coverage of demand. However, there it is priority objective by the government to reach for universal
access to SHCS, while avoiding inequality and discrimination in the decision-making process. Hence,
each decision to invest new resources in the public sector must be taken, maximizing its impact on
society. Mexico has a segmented health care system [31]. This type of system avoids making global
decisions, and efforts are made individually by federal states or institutions. Recently, a change
has been promoted to take federal decisions to invest resources to improve SHCS in Mexico [52].
This change aims to develop tools for the infrastructure planning as a whole system.

SHCS are available in most public hospitals under two schemes: Outpatient (ambulatory) and
inpatient care. The former is any service patients receive without being admitted to a hospital
or for a stay shorter than 24 hours. The latter is for patients admitted to a hospital to receive
medical care. A distant hospital discourages patients from timely getting to their appointment with
a health care specialist. On the other hand, inpatient services are frequently related to medical
emergencies originating elsewhere. For instance, a woman may need to consult a gynecologist due
to sudden complications during pregnancy.

Along with the capacity of these services, access is the main factor in the decision to select new
locations. However, the capacity level can be adjusted according to the demand characteristics,
but the location is permanent. Therefore, the location of services can be analyzed as a strategic
first-level decision and capacity planning can be done based on the specific characteristic of the
covered region after the location decision is taken. However, this decision can be made in single-
stage planning based on the needs and context of the situation. Therefore, we propose this problem
as a decision making tool that provides initial insight about the location of SHCS sites taking into
account the global impact in the country from the coverage and access perspective. As a second-
stage, a capacity planning model that includes the neighborhood environment and more specific
demand patterns can be done once the general location of SHCS is determined in this problem.

Like many other developing countries, the main problem in Mexico is the geographic distribution
of specialists [34]. For instance, 54.2% of them are located in 3 out of the 32 federal states of the
country. In Mexico City, there are 505.7 specialists per 100,000 inhabitants, while the federal state

with the lowest rate has 35.9 specialists per 100,000 inhabitants. This difference is because most
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second and third-level hospitals are located in the country’s biggest cities. However, gynecology and
pediatrics services have become more widely needed because the demand is distributed throughout
the territory at different levels. Therefore, these services should be available not only in urban
areas, but also in rural areas, through their installation in community hospitals.

In the Operations Research (OR) field, the maximal covering location problem (MCLP) is
typically used in the health care area to locate emergency services such as ambulance stations or
emergency centers [29]. However, recent works have extended its use to many other applications,
such as the location of primary health care centers or hospitals [1]. In this case, we address
the location of SHCS. Karasakal and Karasakal [36] consider the MCLP in the presence of partial
coverage. In our work, we extended the model proposed by Karasakal and Karasakal [36] to a health
care system with multiple institutions, in which each institution may provide (partial) demand
coverage not only to its own beneficiaries but also for the beneficiaries of other institutions. Partial
coverage is supposed to avoid an abrupt ending of coverage. Each candidate site has a different
coverage critical distance due to the extensively evaluated territory composed of rural and urban
areas with varying population densities. Since the system is already operating with existing sites
providing the service, the coverage rate of each candidate site must be adjusted considering the
interaction with these facilities. In this sense, the model’s objective is to maximize the demand
covered by the existing facilities and to improve the coverage of demand partially covered if a new
site enhances the coverage.

The case study to be presented is based on the Mexican Health Care System (MHCS) for
four services: Gynecology, pediatric care, internal medicine, and trauma care/orthopedics. The
coverage distance for each candidate site is based on the population density of the place where is
located. We evaluated the effect on the demand coverage, according to the collaboration level of the
institutions. The impact on the demand coverage is evaluated on two cases: (i) a set of candidate
hospitals that do not provide service, and (ii) in a set of candidate locations where no hospitals are
currently operating. Then, we evaluate the benefit of centralizing this planning decision to solve
the model in a single global instance instead of multiple federal or regional instances. Finally, we
intend to find out the location of a new service in the existing network of hospitals, evaluating the
impact on the demand coverage according to the number of new sites opened. The results of these
experiments encourage using these types of models as part of the decision-making process in the
location of public SHCS to optimize the impact of limited resources on society.

As a first contribution of our paper, we extend a maximal covering location problem with
partial coverage to handle SHCS with multiple institutions. This is motivated by a real-world case
from the Mexican health care system. Another contribution is the proposal of a gradual coverage
function for the multi-institutional system. We also present a detailed case study from the MHCS
that allows us to assess the benefit of making decisions using the solutions of the proposed model.

We also suggest estimating the coverage rates with the interaction of existing facilities in a multi-
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institutional scheme. To solve these models, we used CPLEX’s branch-and-bound (B&B) solver.
All instances were optimally solved, managing to solve large instances up to 47,549 demand points,
3,583 candidate sites, and 1500 selected sites.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature
on location models in related problems. This is followed by Section 3 presenting the formal defini-
tion and mathematical formulation of the problem. Then, Section 4 presents our empirical work,

including the case study. Finally, the conclusion and future directions are discussed in Section 5.

2 Related literature review

The literature on facility location models and methods applied in health care management has been
quite active over the past few years. Our problem is focused on the location of public health care
services. A survey in the context of the public sector is presented by Marianov and Serra [41].
Significant efforts have been made in the application to health care problems. Some important
surveys are proposed by Giines et al. [32], Ahmadi-Javid et al. [1], Rais and Viana [50], Li et al.
[39], Daskin and Dean [18], Brotcorne et al. [11], and Rahman and Smith [49].

The maximal covering location problem (MCLP) was proposed by Church and ReVelle [14] and
White and Case [57]. The MCLP is a classic problem in the literature on facility location. This
problem is designed for finite resources that cannot cover all the demand. The objective is to find
the best subset of p locations that maximizes the covered demand. A demand point is covered if the
distance to a facility is equal to or lower than a critical value. One feature of MCLP is that it can be
structured as a p-median problem [15]. Therefore, solution procedures for the p-median problem,
even heuristics, can be applied to solve MCLP. There is a number of heuristic and exact method to
solve this problem, specially, for large instances. For instance, a simulated annealing was proposed
by Murray and Church [46]. An approach based on an heuristic concentration was proposed by
Rosing and ReVelle [53]. A Lagrangean relaxation and a dual-based heuristics with branch and
bound were proposed by Galvao and ReVelle [30] and Downs and Camm [20], respectively. A
greedy randomized adaptative search procedure is proposed by Resende [51].Genetic algorithms
are proposed by Arakaki and Lorena [3] and Tong et al. [55].

In particular, the survey presented by Ahmadi-Javid et al. [1] reviews facility location works
related to health care from 2000 to 2016. Among these, 54% of the problems were related to
emergency facilities such as ambulance stations, trauma centers, or emergency off-site public access
devices, while the rest were related to non-emergency facilities such as primary health centers.
Location problems based on the MCLP represent 35% of works with 48 papers, and partial coverage
is a characteristic only used in 10% of the works, all of them in emergency applications [54, 2, 40,
47, 12].

The model addressed in this research is based on the MCLP with partial coverage. In this
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problem, the classical binary coverage is replaced by a continuous parameter between zero and one
calculated by a particular decay function. The greater the distance between a demand point and
the facility, the more the value of this parameter approaches zero. A partial covering model can be
seen as a particular application of the MCLP [57]. The first work that introduced the concept of
gradual covering was Church and Roberts [16]. Later, Drezner et al. [24] applied this concept for a
single facility MCLP, and Pirkul and Schilling [48] used a decay function in a capacitated version
of the MCLP. The general idea of using a decay function in the MCLP was introduced in Berman
and Krass [7], employing a step-wise function in a network version of the problem, providing a
formulation and an effective heuristic procedure. In Berman et al. [8], the decay function was
named the non-ascending general decay function with two pre-specified threshold distances. They
showed how this problem could be transformed into the uncapacitated facility location problem
when the set of potential facilities was discrete. An overview of gradual covering location models
can be found in Berman et al. [9].

Gradual coverage has also been used in continuous facility location. For instance, a related work
with a linear function in a planar space is found in Drezner et al. [25] for a single facility location.
The authors proposed a B&B algorithm that produced an efficient performance for instances up to
10,000 demand points. In Karasakal and Karasakal [36], the term “partial coverage” was introduced
for the MCLP taking the same considerations of previous works for multiple facility locations. A
solution procedure for large instances (up to 1,000 nodes, 40 potential sites) was proposed using
lagrangian relaxation.

Recently, some extensions of the gradual covering location problem have been proposed. Tavakoli
and Lightner [54] proposed an MCLP-based model for allocating vehicles and the location of facil-
ities for emergency medical services (EMS), minimizing the amount of population not covered. A
goal programming problem to locate EMS stations and find the minimum number of vehicles satis-
fying the performance levels was proposed in Alsalloum and Rand [2]. The probability of covering
a demand within the target time was minimized in the first objective, and the second objective en-
sured that any demand arising within the target time would find at least one ambulance available.
In Eiselt and Marianov [26], the gradual covering was applied to the set covering location model,
including the quality of service as a decision criterion. Lim et al. [40] proposed an extension of the
MCLP that includes a minimum level of covered demand on the system and a flexible number of
locations to be opened for the ambulance location problem. In Naoum-Sawaya and Elhedhli [47],
a two-stage stochastic optimization model for the ambulance redeployment problem was proposed
to minimize the number of relocations over a planning horizon while maintaining an acceptable
service level. Drezner and Drezner [21] proposed an alternative objective function of maximizing
the minimum cover of every demand point, ensuring that every demand point was covered as much
as possible and there were no demand points with low cover. An ascent algorithm and tabu search

were evaluated for instances up to 900 demand points. Chan et al. [12] proposed a multi-responder
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and gradual covering problem for automated external defibrillators in a probabilistic extension of
the MCLP. The main contribution lies in developing mixed-integer linear formulation equivalents
or tight and easily computable bounds. Bagherinejad et al. [5] included the joint partial coverage
when a demand point was covered by multiple facilities, developing multiple heuristics for networks
up to 900 demand points. They included the gradual covering concept and the cooperative coverage
in a single problem. A simulated annealing and tabu search were used to solve instances of up to
150 demand nodes. In Drezner et al. [23], the gradual covering competitive facility location problem
is proposed, which captures the market share by new facilities in a continuous space. Other recent
applications using a gradual function are presented by Kii¢iikaydin and Aras [38] for the location
of multi-type facilities that include customer preference, by Erkut et al. [27] for ambulance location
problems that include a survival function, by Dogan et al. [19] for a multi-objective location of
preventing health care facilities, and by Yiicel et al. [58] for the location of mobile medical sites.
The variation of the coverage radius in a gradual covering location problem has been proposed
by Drezner et al. [22] for a single facility and by Bashiri et al. [6] for multiple facilities. Eydi and
Mohebi [28] introduced the MCLP with gradual coverage and variable radius over multiple periods.
In their work, they assumed facilities with finite capacity and variable costs directly impacting the

coverage radius. They proposed a simulated annealing algorithm to solve the problem.

Table 1: Characteristics of related works with partial coverage.

g)o
g g
.- 2z
: oz 5 ¢ g
8 S 2 £ E F B 4 2
) == 2
s T T s+ g% 5 8 < % 5 8 % . %
g & & 2 & T g g ° & £ & 5 £
3 2 2 8
2 2 3 % £z 5 £ § % z & £ &8 £
3 5 4 & B 3z & &£ § & £ 3 T =
3 3 Koo 5 8 = 3 3 & o)
Paper [al > M = O &» < U = 4 =2 O =
Berman and Krass [7] v v v
Karasakal and Karasakal [36] v
Tavakoli and Lightner [54] v v v v
Araz et al. [4] v v v v v
Meltem and Bahar [42] v v v
Chan et al. [12] v v v v
Wang et al. [56] v v v v v v v
Bagherinejad et al. [5] v v v v
Eydi and Mohebi [28] v DV v v v v
Berman et al. [10] v v v v
Kiiglikaydin and Aras [38] v v v v v
Chanta and Sangsawang [13] v v v v
SLP v v oV v

DV: Decision Variable

A review of gradual coverage location problems can be found in Karatas and Eriskin [37],
including features such as number of facilities, feasible space, type of model (binary/gradual),
coverage type (individual/cooperative) and objective type. In our work, we include two tables.

Table 1 shows the features of the most related papers with partial coverage and Table 2 shows
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Table 2: Solution methods and instances sizes of related works with partial coverage.

Paper Method Software/Solver Demand Qandldate S.elected
nodes sites sites
B&B and Greedy
Berman and Krass [7] heuristic / LP- Cplex 400 400 80
Relaxation
Karasakal and Karasakal Heuristic: Lagrangian
relaxation based solu- 1,000 40 24
[36] tion procedure
Lexicographic opti-
Araz et al. [4] T e o Cplex 8.0 50 50 8
goal programming
Cplex 12.4 /
Meltem and Bahar [42] B&B Gurobi 5.0.2 81 22 20
Chan et al. [12] B&B Cplex 12.1 11,701 5,000 200
Wang et al. [56] B&B GAMS/BARON 420 17 6
Cooperative covering Heuristic: Sim-
Bagherinejad et al. [5] and location-allocation  ulated anneling 150 150 20
features and Tabu search
Eydi and Mohebi [28] Heuristic: Simulated ¢y 100 100 5
anneling
B&B and Heuristics:
Berman et al. [10] greedy heuristic, as- 400 400 133
cent heuristic, and
Tabu search.
B&B / Lagrangian
Kiigiikaydin and Aras [38] relaxation / Local Cplex 12.8 1,000 250 Variable
search
[Cl];]*mta and Sangsawang B&B OPL 104 104 15
Karatas and Eriskin [37] B&B Cplex 12.5.0.1 4000 2000 3-10
Haghi et al. [33] Ejfglgoﬁiﬁfwe large o lex 12.1.0 30 5 1-4
SLP B&B Cplex 20.1.0 47,549 3,583 1500

some information related to the solution method and the problem sizes in the case studies. The
last row in both tables corresponds to the model addressed in this paper, the MCLP for a segmented
system with partial coverage (SLP). Variable coverage radius, interaction with existing facilities,
and multiple institutions are features considered in this problem. The proposed model in this paper
is a particular application of the MCLP with gradual covering that incorporates the handling of
multiple institutions where the coverage of demand points can be expanded through collaboration
among institutions. A function to determine the benefit of new facilities in the demand coverage is
proposed. As far as we know, the MCLP with multiple institutions (organizations) has not studied
in previous works. However, other works related to health care planning problems that incorporate
a segmented system are proposed by Mendoza-Gémez et al. [45] and Mendoza-Gdémez et al. [44]
for the planning of highly specialized health care services, and Mendoza-Gémez and Rios-Mercado
[43] for location-allocation of primary health care units.

As far of solution methods is concerned (depicted in Table 2), some of the previous models
were solved by commercial solvers, indicated in the third column, and others by heuristic methods
such as greedy heuristics, tabu search, and simulated annealing. The instance sizes of case studies

are indicated by the number of demand points, candidate sites, and selected sites in the last
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three columns. The instances used in our case study are the largest concerning the number of
demand points and selected sites, but they occupy second place in the number of candidate sites.
However, all instances tested were optimally solved by the B&B algorithm of CPLEX. Many recent
improvements have been made in the performance of exact methods to solve integer programming
problems, optimize computational resources, and develop new technologies. These advances avoided
the need to develop alternative heuristic methods for solving the problem addressed and the size

of the instances considered in our work.

3 Formulation of the problem

3.1 Problem description

The goal of this problem is to locate new sites for installing SHCS in a system with multiple
institutions maximizing the covered demand. The coverage is based on partial coverage using a
decay function. Each institution operates a set of Health Care Units (HCUs) that, in addition to
covering the demand of its own beneficiaries, also cover beneficiaries of other institutions with a
different coverage level. The number of new sites to be installed is defined by each institution.
At each demand point, there are beneficiaries from each institution. There is a network of HCUs
that is already operating with the service for each institution and they cover some demand points.
However, with the new sites, additional demand points can be covered and the demand coverage
of some demand points can be improved. Figure 1 shows an small example of a health care system

with partial coverage and three institutions: A, B and C.

9 Demand point

9 Demand level for each
A
8.8 ‘!Eﬂ institutions 11, 12, and I3

—— 13 111@21@3 HCUs of institutions 11,
) 12, and I3
nRBE ‘ 9 .

e Il
@ 9&%.5 e | @

°m 9h 9_

Q;L @ L e 4

ll lZ 13

Figure 1: Example of a health care system with multiple institutions.
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3.2 Mathematical model

The sets, parameters, and variables of the problem are described below:

Sets:

M Set of demand points; ¢ € M.

K Set of institutions in the system; ¢,k € K.

G Set of HCUs with the service installed; j € G.

N Set of candidate sites where the service can be installed; j € N. The candidate sites for
institution k is given by N*. Clearly, Upcxg N* = N.

N; Subset of N such that the demand point ¢ € M is at least partially covered (a;; > 0);

j € N;.

NF Subset of N; that belongs to institution k € K; j € Nik.

GF Set of HCUs with the service installed that belongs to institution £ € K and cover the
demand point i € M (a;; > 0); j € G¥.

Parameters:

hf Demand in number of beneficiaries in demand point 7 of institution k; i € M, k € K.
l; is the primary coverage radius of the candidate site j; j € GU N.

uj is the secondary coverage radius of the candidate site j; j € G U N.

d;j is the distance between the demand point ¢ and the site j; 1 € M, j € GUN.

a;j Coverage rate of the site j for the demand point i such that 0 < a;; <1;i€ M, j € GUN.

b Current coverage rate of demand point ¢ for beneficiaries of institution k; i € M, k € K.

Pk, Benefit in the coverage level of beneficiaries of institution k at demand point ¢ if the service
is installed in site j; k€ K,i € M, 5 € N;.

pF Maximum sites number of institution k where the service can be installed; k € K.

by Percentage of collaboration of institution ¢ for beneficiaries of other institutions; ¢ € K.

Decision variables:

Y; Binary variable equal to 1 if the service is installed in site j; 0, otherwise; j € N.

ij Binary variable equal to 1 if the beneficiaries of institution k at demand point ¢ are covered
(partially or fully) by the candidate site j, and this site has the highest benefit in the
coverage rate (@f]) for demand point ¢ among all other selected sites; 0, otherwise; k € K,
1€ M, j€N;.

Note that for Xikj, the beneficiaries of institution k at demand point ¢ could be allocated to any
candidate j € INV;, including other institutions.

The formulation of the problem is the following:
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max Z Z Z hf@ijfj (1)

keK ieM jeEN;

st. Y V< PR keK 2)
jJENE
Y xk<1 keKicM (3)
JEN;
Xk <y, ke K,icMjeN (4)
Y; € {0,1} jEN (5)
XE € {0,1} keK,ieMjeN, (6)

Objective function (1) maximizes the benefit in the demand coverage of all institutions in
all demand points. Constraints (2) impose a limit on the maximum number of new sites where
the service can be installed for each institution. The beneficiaries of each institution at each
demand point can be covered by one facility, either of the same institution or another, according to
constraints (3). The binary variable X Z]’; determines the highest benefit in the objective function for
the demand of each institution at each demand point. In case of a tie, one active site is randomly
chosen. According to constraints (4), if the candidate site j is not selected in the solution, all the
associated ij are equal to zero. Binary conditions regarding the decision variables are imposed
by constraints (5) and (6).

Note that the maximum number of binary variables (assuming that N; = N, Vi € M) is given
by |N|(|K| x |M]+ 1), and the maximum number of constraints is |K|(1 + |M|(1 + |N])).

3.3 Determining CI>fj

A typical coverage binary function is defined by a critical distance around each candidate site.
However, this function type considers an abrupt ending coverage which may not represent a real
situation. A non-increasing function is used to enlarge the coverage of a facility to a second critical
distance avoiding the abrupt coverage ending [8]. In this case, the coverage level gradually decreases

in the gap between these two critical distances /;; and wu;;. The non-increasing function is given by:

1 if dy <l
A5 = % it 1 <dij <uy (7)

In Equation (7), if the distance between a demand point ¢ and a candidate site j is less than
or equal to the primary coverage radius, this point is fully covered (a;; = 1). The demand point is

not covered if the distance is equal to or greater than the secondary coverage radius (a;; = 0). The
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demand point is partially covered if the distance is between these two critical bounds (0 < a;; < 1).
In this problem, the values of the primary and secondary coverage radius are different for each
site according to the population density of the place where they are located. This consideration is
done because population densities vary widely from region to region and we are assuming that the
coverage distance must be related to population density.

The primary coverage radius [; can be determined by a function that considers the population
density behavior as proposed in the case study in Section 4.2. For the secondary coverage radius,
we propose a proportional increase of I; (A) according to Equation (8). However, there are many

ways in which these bounds can be determined.

w = (1L+4) (®)

The set of HCUs where service is installed (G) is required to calculate the additional benefit
in demand coverage (@Z) of demand points that fall inside the secondary coverage radius of a
candidate site. For demand points not currently covered, there is a logical benefit if the service is
installed in a nearby site, but, for some demand points that are already covered, a nearer HCU
with the service installed can improve the coverage level. Demand points whose coverage cannot be
improved by any candidate site (i.e. @fj = 0) are not considered in the formulation because there is
no impact on the objective function. For determining <I>,’fj it is required to first compute the current
coverage level of each demand point (bf) This parameter indicates the current coverage for the
beneficiaries of each institution at each demand point. This value takes into consideration HCU
with the service installed of the same institutions (j € G¥) and other institutions (j € GY|q # k),
but these last ones are multiplied by A? because the collaboration percentage applies for all the
HCUs that supply the service.

The proportion of collaboration is considered because each institution must prioritize its own
demand; therefore, there must be a distinction between coverage of internal and external demand.
This parameter must be fixed between 0 < A4 < 1. As the value of A? increases, the coverage
level to other institutions also increases. In our work, we assume this value as a function of ¢
only; however, there might be situations where this parameter can be defined for each site and the
collaboration agreement between each pair of institutions (i.e., )\gf ).

bl = max{?elg?{aij},jegﬁ;;k{)\qa@'j}} keK,iecM (9)

The benefit of the coverage rate is calculated by subtracting bf from a;;. If this value is negative,
the benefit is equal to zero. Demand points such that ), . > JEN; @fj = 0 are not considered in
the formulation. The equation to calculate (Pfj is the following:

10
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2]
max {Aa;; — bF,0} if je Nijqg#k.
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Figure 2: Determination of additional demand coverage in Example 1.

We now present a small example illustrating the model settings and how A? influences the

objective function when there are multiple institutions. This example is displayed in Figure 2.

Example 1 Let M = {1,2,3}, K ={1,2} N ={A, B}, and G = {C}.
In this example, there are three demand points (i =1, 2, and 3), two institutions (k =1 and 2),
two candidate sites (j =A and B), and one HCU that supplies the service (j =C). A and C belongs

to institution 1, and C to institution 2. The subsets are defined as follows:

e The sets of candidate sites that cover each demand point are: Ny = {A}, No = {A, B}, and
N3 = {B}.

o The sets of candidates sites of each institution that cover each demand point are: Ni = {A},

N12 = {@}, ]\721 = {A}, N22 = {B}, N?} = {®}¢ and N?? = {B}

e The sets of HCUs that provide the service and cover each demand point are: G3 = {C}, and

all other sets are empty.

Let us suppose that the number of beneficiaries of each institution is the same at each demand
point (hiC = 10). In Figure 2, the left-hand side figure represents the physical locations of demand
points and sites with their coverage radius. The two tables at the top right of the figure show the
coverage rate for each site and the percentage of collaboration between institutions, respectively. The

bottom-right table shows how parameters bf and q)fj are computed. For example, if the candidate
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site A is selected, the additional demand covered will be equal to 23.4 obtained from 0.5(10) +
0.4(10) 4+ 0.8(10) + 0.64(10). And, if the candidate site B is selected, the additional demand covered
will be equal to 8 obtained from 0.3(10) 4 0.5(10). In conclusion, candidate site A is a better option
than B.

3.4 Special case: The MCLP with partial coverage

The following problem (NSLP) is a special case of SLP considering a single institution. This case
could be applied in many countries with a centralized public institution or a segmented system with
no collaboration between institutions (A = 0, Vg € K), solving this model for each institution. In
this problem, the coverage of HCUs with the service already installed is also considered.

The following parameters and the decision variables must be redefined as follows:

Parameters:

hi Number of beneficiaries in demand point i; ¢ € M.

P Maximum number of candidate sites where the service will be installed.

a;j Benefit in the coverage level at demand point ¢ if the candidate site j is selected; i € M,
j € N;.

Decision variables:

Xi; Binary variable equal to 1 if the candidate site j is selected and it has the highest benefit
in the coverage rate (agj) for demand point ¢ among all other selected sites; 0, otherwise;
i1eM,jeN;.

The increase in the coverage level of beneficiaries at each demand point for each candidate site

is calculated as follows:

a;; = max{a;; — ?%X{ail},o} i€ M,j€N,;. (11)
€l

The formulation of the problem is the following:

max Z Z hia;-inj (12)

iEM]'ENZ‘

subject to Z Y; <p (13)
JEN
> X <1 i€ M (14)
JEN;
XUSY} 1eM,jeN; (15)
Y; € {0,1} jEN (16)
Xij E{O,l} 1eM,j€N; (17)
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In the case of new services in the system, the previous model can be used to replace agj for the
original coverage rate a;;. A computational study with an application of this model is introduced

in Section 4.8.

4 Case Study

4.1 Experimental settings

In this section, the problem is applied separately to four second-level services in the MHCS: gyne-
cology (S1), pediatric care (S2), internal medicine (S3), trauma care and orthopedics (S4). For each
service, the four leading public institutions in Mexico are considered to evaluate the model: (I1)
The Ministry of Health (SSA) and IMSS-Bienestar, (I12) IMSS, and (I3) ISSSTE. The first two insti-
tutions are unified as a single one because both of them attend to uninsured populations. The main
difference is that IMSS-Bienestar is located in regions with extreme poverty. 12 is an institution
that provides services to formal workers in the private sector, and I3 offers services to public sector
workers. There are many other institutions in the health care system, but their affiliated members
represent about 4.7% of the population. According to INEGI [35], the population of Mexico was
126,014,024 inhabitants in 2020, distributed among 189,280 demand points. For each service, the
demand was determined based on the number of each institution’s beneficiaries obtained from the
Census 2020. Demand is determined by multiplying the number of beneficiaries and the proportion
of the population to which each service is intended. For gynecology, the proportion of women
from 12 years old at each demand point was considered, and for pediatrics, the proportion of the
population up to 18 years old. All the population was considered for internal medicine, trauma
care, and orthopedic services. Table 3 shows the demand (beneficiaries) and demand points with
affiliated members of each institution for each service. The sum of demand by row is lower than the
total population (126,014,024) because we only consider the people that are affiliated with these
institutions. In the case of S3 and S4, the demand is the same because these services are aimed
at all the affiliated members of each institution. For each institution, demand points where there
are no beneficiaries were discarded, for instance, 13 for S1 has 45,315 demand points with affiliated
members out of 189,280 demand points of Mexico. Universal Transverse Mercator coordinates were
used for demand points, current locations, and candidate sites to calculate the Euclidean distances.
This metric was used as an approach to the actual distances that were out-of-reach due to the high
number of calls and its high costs in web mapping platforms.

The data set is available at: https://data.mendeley.com/datasets/s8x7nsjrgx.

For determining sets G and N, we consider hospitals but also advanced primary HCUs where
service can be installed; therefore, we refer to both sites types just as “HCUs”. Table 4 shows the

number of the existing HCUs of each institution that supply each service (G); they were obtained
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Table 3: Demand and demand points for each service by institution.

Total demand (No. beneficiaries) Total demand points

Service I1 12 13 I1 12 13
S1 26,767,009 19,732,411 3,063,010 | 106,972 74,418 45,315
S2 | 21,036,798 13,715.433 2,060,414 | 104,726 73,348 45,044
S3 | 65,555,276 47,168,735 7,159,057 | 107,137 74,522 45,326
S4 65,555,276 47,168,735 7,159,057 | 107,137 74,522 45,326

from an official data-base of the Ministry of Health. For the case of set N, we consider that this
problem can be applied to two different cases: to open a new HCU in a candidate location (N4)
and to install the service in an existing HCU (Np). For N4, existing HCUs of each institution were
analyzed to evaluate if the service can be installed. For Npg, demand points with no HCUs and
with a population density greater than or equal to 10,000 inhabitants were considered. As can be
seen in the table, institutions 12 and I3 supply all services in nearly all of their HCUs. On the other
hand, S1 and S2 are available in almost the same subset of HCUs for 11, S3 is available in a lower

number of HCUs, and S4 is the one with the lowest number of sites where service is available.

Table 4: Number of available HCUs and candidate locations.

Existing HCUs Candidate locations Candidate HCUs
(@) (N) (Np)

Service | I1 12 I3 Total | 11 12 I3 Total | I1 12 I3 Total
S1 634 198 89 921 | 650 913 1,004 2,567 | 120 48 17 185
52 613 200 90 903 | 647 913 1,004 2,564 | 160 46 16 222
S3 437 205 88 730 | 667 913 1,004 2,584 | 260 30 18 308
S4 263 172 89 524 | 667 913 1,004 2,584 | 434 63 17 514
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For determining set M for each service, we identify demand points such that Zje N, @fj >0
using Equations (9) and (10). Table 5 shows the number of demand points to be considered in the
problem by institution once all demand points such that JEN; @fj = 0 are discarded. In this case,

the largest instance was the one for S3 with 47,549 demand points as shown in Table 2.

Table 5: Demand points considered in the problem.

Demand points

Service 1 12 I3 Total
S1 8,847 6,214 3,399 18,460
S2 12,361 10,629 4,802 27,792
S3 22878 15,414 9,257 47,549
S4 19,864 14,246 8,979 43,089

Solution method. The branch-and-bound algorithm from the CPLEX callable library, version
20.1.0, with a C++ API was used to find the optimal solution for each instance. The experiments
were carried out in an Intel Core i7-5600U at 2.60GHz with 16GB of RAM under Windows 10

operating system.

4.2 The variable coverage radius for the Mexico case

We propose a function that calculates the coverage radius according to the population density of
each municipality where a candidate site is located. To the best of our knowledge, this particular
type of function has not been employed in this kind of problem. The population density distri-
bution of the 2,469 municipalities (counties) of Mexico in 2020 obtained from the INEGI website
(http://www.inegi.org.mx), is shown in Figure 3. The demand points are grouped by munici-
palities in Mexico, and this is the lowest level with data on population density. The municipalities
on the horizontal axis are sorted by population density, and the cumulative population is shown on
the vertical axis. We can note that half of the population lives in areas with a population density
lower than 400 inhabitants per square kilometer (inh/km?). Three-quarters of the population lives
in a territory with a population density lower than 2,000 inh/km?, and the remaining population
(25%) lives in a territory between 2,000 to 17,624 inh/km?. In this context, we designed a logarith-
mic function with high sensitivity to low population density rates (e.g. 1-2000 inh/km?), but that
includes the entire threshold values of the population density rates. The coverage radius decreases
as the population density increases, but in a logarithmic decrease.

The function to estimate a variable coverage radius is presented in Equation (20). The graphical
representation of the coverage radius function applied to the municipalities of Mexico is shown in
Figure 4. The function is adjusted based on a minimum and a maximum coverage radius. These
limits are adjusted in a range of population density rates (dmin, Omax). Two coefficients that depend
on the previous parameters must be determined to adjust the function.

The notation in the equations is the following:
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Figure 3: Classification of municipalities according to the population density.

rj Variable coverage radius of location j.
Tmax Maximum coverage radius.

Tmin  Minimum coverage radius.

0 Population density of location j.

Omax Maximum population density.

Omin  Minimum population density.

o Exponent value of the logarithm calculated by Equation (18).
IS Adjustment coefficient calculated by Equation (19).
Tmax — Tmin
a = 18
10810 (dmax) — 10810 (dmin) (18)
ﬁ = logl[)((sma.x)a + Tmin (19)
rj = B —logy(d;)" (20)

For experimental purposes, the values of some parameters were fixed. The minimum and max-
imum population densities were based on the population density of Mexico (2020). The minimum
coverage radius was taken from the average distance of HCUs in Mexico City because it is the

most populated city with the largest number of HCUs. The maximum coverage radius was set to
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Figure 4: Graphical representation of the coverage radius.

30 km because this distance is reachable in rural areas of Mexico. The parameters o and S were

a6 calculated with Equations (18) and (19), respectively. The values of all these parameters are the
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following;:

Tmin = 2 km;
Tmax = 30 km;

a = 5.36;

Smin = 0.11 inh. /km?;
Omax = 17,624 inh./ka;
B = 24.76.

In the case of partial coverage, the coverage radius must be extended to a secondary coverage

radius. In this case, limits were set as follows
Lj
U;

The secondary coverage radius of a HCU

the least populated areas is 60 km.

T

2.

for the most populated areas is nearly 4 km, and for

4.3 The effect of the collaboration among institutions

Parameter A? is critical because it determines the coverage degree of a given site of institution ¢

for the beneficiaries of other institutions. For instance, A9 = 0 means that HCUs cannot cover
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beneficiaries of other institutions, A? = 0.5 means that only half of the beneficiaries of other
institutions can be covered, and A\? = 1 means that all the beneficiaries of other institutions are
covered. In the following experiment, we calculated the coverage level of the existing HCUs using
different values of A?. In this case, we fixed the same value for all the institutions. Table 6 shows
these coverage levels using A7 equal to 0, 0.25, 0.5, 0.75, and 1 for each institution. For each
value of A%, there is a column (Gb) that represents the global demand coverage in the system. The
covered demand includes all the beneficiaries of the fully covered demand points and the proportion
of beneficiaries in the partially covered demand points. As we can see, the percentage of demand
covered increases in all the services as the value of A\? increases. If we compare the difference in
the global demand coverage between A\? = 0 and A? = 1, the coverage increase is 13%, 12%, 12%,
and 13% for each service, respectively. These values represent the maximum effect on the coverage
when collaboration between institutions is done. The most benefited institution is I3, with an
increase of up to 46% in demand coverage for S2. Table 7 is similar to Table 6, but instead of
showing the demand level, this table shows the percentage of demand points (fully or partially)
covered for each value of \?. The percentage of additional demand points covered from A? = 0 to
A =1 1s 31%, 31%, 27%, and 20% for each service, respectively. The coverage increase is more
significant in the number of demand points than the percentage of demand covered. This happens
because many demand points with low demand levels are currently not covered by the own HCUs
of each institution. Another observation is that, for instances with A? = 0, the problem to solve
could be split into multiple problems equivalent to NSLP because there is no interaction between
institutions. If A = 1, one single problem using NSLP could be used because there is no distinction
between the institution to which each HCU belongs and the others. In the case of the experiments

in the following sections, we fixed A? = 0.5 for all the institutions.

Table 6: Percentage of demand covered with different levels of A? by institution.

A =0 A1 =0.25 A1 =0.5 A4 =0.75 A =1
Service | I1 12 I3 Gb | Il 12 I3 Gb | I1 12 I3 Gb | Il 12 I3 Gb | I1 12 I3 Gb

S1 80 71 46 74 | 8 75 56 76 |8 79 67 79 |82 8 79 8 |8 91 91 87
S2 7 T0 45 71 |76 73 55 T4 |76 78 66 76 | 77 8 78 79 | 78 90 91 83
S3 67 73 46 68 | 68 75 56 70 |69 T8 66 T3 |71 8 76 76 | 74 87 83 80
S4 53 68 48 59 |55 70 55 61 |57 74 63 64 | 60 78 72 68 | 63 83 81 72

Table 7: Percentage of demand points covered with different levels of A? by institution.

A =0 A4 =0.25 A4 =0.5 A4 =0.75 A =1

Service | I1 12 I3 Gb. | I1 I2 I3 Gb. | I1 12 I3 Gb | I1 12 I3 Gb | I1 12 I3 Gb
S1 78 31 17 51 80 83 85 82 80 83 8 82 | 8 8 8 82 |8 8 8 82
S2 73 28 18 47 75 80 82 78 75 8 82 78 | 75 8 82 78 | 75 80 82 78
S3 64 30 16 43 67 73 T4 70 67 73 T4 70 | 67 73 T4 70 | 67 73 T4 70
S4 43 26 16 32 48 55 56 52 48 55 56 52 | 48 55 56 52 | 48 55 56 52
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4.4 Evaluating different levels of collaboration (\?)

The objective of this experiment is to assess the impact of collaboration among institutions on the
benefit in the demand coverage. This benefit is obtained from the objective function value of the
introduced problem. In the mathematical model, collaboration is defined by parameters A', A2,
and A3 for institutions I1, 12, and I3, respectively. We evaluate the benefit in the demand coverage
for different values of A\', A2, and A3. In this case, we use 0.0, 0.5, and 1.0 for each institution
resulting in 27 distinct solutions. The service S1 was used for this analysis with a fixed number
of new sites set at one hundred for each institution. Table 8 shows the results that correspond to
the benefit in the demand covered in the system (in millions of people) for each solution. Notably,
the highest benefit is observed when all parameters are set to one, representing full collaboration
between institutions. In the other hand, the lowest benefit is observed when all parameters are set
zero, representing no collaboration. The average of the solution for each value of A! are shown in
the last column, for A are shown in the last row, and for A\? are 20.7, 20.5, and 23.9 for 0.0, 0.5,
and 1.0, respectively. Comparing these averages, we note higher benefit when A\? and A3 are close
to 1.0, while the least favorable outcomes occur when these parameters are set to 0.5, particularly
when Al is also 0.5 or 1.0. With this experiments, we observe a clear relation between collaboration

levels and the benefit in the demand coverage obtained from the model solution.

Table 8: Benefit in demand coverage for different levels of \9.

)\3
Al A2 00 05 1.0 Average
0.0 19.2  20.1 229
0.0 0.5 19.5 204 23.1 21.5
1.0 21.6 225 24.2
0.0 19.5  20.5 232
0.5 0.5 19.9 16.0 23.5 21.3
1.0 22.0 228 245
0.0 20.6 21.7 239
1.0 0.5 21.1 165 24.2 22.2
1.0 22.9 237 251
Average 20.7 20.5 239

As a subsequent analysis, we explored whether the contribution of each institution to the benefit
in demand coverage obtained with the solutions are influenced by the collaboration level of the
institutions and the interaction between them. Utilizing a factorial analysis of 33, we systematically
investigated the effects of A!, A2, and A% on the contribution (as a percentage) of each institution
to the benefit in demand coverage. For example, in a given solution I1 contributes in 44% in the
total value of the objective function, 12 to 42% and I3 contributes in the remaining 14%. We
used the results of the previously tested instances to evaluate three factorial models, one for each
institution. The factors considered were the values of A', A\?, and A3, while the response variable

was the contribution made to the objective function by each institution. With a confidence level
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of 95%, our findings revealed that changes in the values of A!, A2, and A3 significantly impacted
the contribution of 11 and I3 to the benefit in demand coverage, with similar results observed.
However, changes in the values of A3 did not yield a significant change in the contribution of 12
to the benefit in demand coverage. Moreover, no significant interactions between factors were
observed. Importantly, the analysis adhered to normality assumptions, ensuring the reliability of
our conclusions. Figure 5 illustrates the effect of collaboration levels on the contribution of each
institution, excluding A3 for 12 due to its lack of significant effect. Notably, for all the institutions,
the contribution decreases as its associated A? increases, while the contribution increases with higher
values of other institutions. We conclude that the collaboration level of each institution affects the
contribution to the benefit of demand coverage in the system. However, these results should be

considered with reservation since they are specific to these proven instances.

Institution 1 Institution 2 Institution 3
(11) (12) (13)
50 45 13.0
125
44
g 49
g 43 120
rg 48 15
£ 42
S 47 101"
‘s M
° 10.5
X
< 46 40
10.0
45 39 9.5
00 05 10 00 05 10 00 05 10 00 05 10 00 05 10 00 05 10 00 05 10 00 05 10
AL A2 23 At A2 AL 12 23

Figure 5: Average effect of A\, A2, and \? in the percentages of contribution to the objective
function for each institution.

4.5 Evaluating different types of candidate sites

The SLP can be used in two cases. The first case is to select between candidate locations (Ng4)
where new HCUs will be installed. For instance, in the case of pediatrics and gynecology, it is
very frequent to build specialized HCUs where only one type of service is provided. In the other
case, the service can be installed in HCUs that currently do not provide service. In this case, the
candidate sites only include a set of potential HCUs (Np) where the service can be installed. In
this experiment, we evaluate these two cases for the selected services. The aim is to compare the
impact on the demand covered in each case. In all the instances, the problem was optimally solved
in less than one hour with an average computing time of 1,075 seconds when N4 was used and 50
seconds when Np was used.

Table 9 shows the additional covered demand for each institution, the additional total demand
covered, and its percentage of the total demand for each case. The second column shows the

number of new sites selected for each institution. For instance, P* = 1 means that one new site
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Table 9: Additional demand coverage in thousand of inhabitants evaluating two types of candidate
sites with A9 = 0.5.

With candidate locations (N4) With candidate HCUs (Np)
Services PF 11 12 I3 Total (%) 11 12 13 Total (%)
S1 1 186 344 11 541 1.1 ) 154 0 159 0.3

2 233 532 50 815 1.6 65 211 2 279 0.6
3 291 687 77 1,066 21 66 287 2 356 0.7
4 351 829 104 1,284 2.6 74 327 12 413 08
3 402 974 110 1485 3.0 98 348 14 460 0.9
52 1 159 293 9 461 1.3 56 53 2 111 0.3
2 251 397 10 658 1.8 134 57 3 195 0.5
3 325 498 12 835 23 178 68 7 252 0.7
4 364 600 34 998 2.7 231 69 8 307 0.8
3 414 679 36 1,129 31 276 69 8 353 1.0
S3 1 590 1,007 33 1,631 1.4 167 159 5 331 0.3
2 975 1,585 66 2,627 2.2 359 238 17 614 0.5
3 1,230 1,981 155 3,367 2.8 586 283 18 888 0.7
4 1,455 2271 200 3,927 33 788 314 22 1,124 0.9
5 1,661 2,572 218 4,451 3.7 967 314 22 1,304 1.1
S4 1 613 1,180 35 1,829 15 37 312 1 350 0.3
2 1,031 1,784 70 2,885 24 88 592 5 686 0.6
3 1,518 2,118 96 3,732 3.1 256 751 11 1,018 0.8
4 1,910 2,416 107 4433 3.7 459 835 23 1,317 1.1
5 2,167 2,718 174 5,049 42 689 88 27 1,601 1.3

was opened for each institution. As can be seen, there is a higher impact on the demand coverage
when the service is installed on new locations (N4). On average, the covered demand when the
service is installed in new locations is 3.5 times greater than considering existing HCUs to install
the service. These results are intuitive because most of these HCUs are installed in urban areas
where other HCUs already cover the region. On the other hand, the set of candidate sites considers
places where no other HCUs are already installed.

Tables 10 and 11 show detailed results about the demand covered and demand points inside
the secondary coverage radius for the instances with P¥ = 5 for each service, considering the set
of candidate sites V4. In Table 10, the second column shows the percentage of demand currently
covered by the existing HCUs that supply the service. The third column shows the percentage
of demand covered with the new sites. The fourth column shows demand that was not covered,
but is in the secondary coverage radius of a candidate site that was not selected. Finally, the last
column gives the demand that cannot be covered because there are no candidate sites near them.
This demand is scattered in areas with low infrastructure requirements to build new sites. Table
11 has the same data, but refers to the number of partially or fully covered demand points. As we

can see in the results, with the new sites, the percentage of demand covered ranges between 3.0%
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and 4.2% for the analyzed services. The number of new demand points covered was lower, between
0.4% and 1.8%. However, there are many demand points that an existing HCU already covers, but
the new ones help to improve the coverage level. More candidate sites can be considered in the
problem to reduce the demand and demand points out of reach, but this increase the complexity

of the problem. This is analyzed in Section 4.7.

Table 10: Classification of demand for solutions with P¥ = 5 and \? = 0.5.

Service Currently covered Newly covered Not covered Out of reach

(%) (%) (%) (%)
S1 79.2 3.0 9.8 8.0
S2 76.3 3.1 10.6 10.0
S3 72.7 3.7 12.5 11.2
S4 63.9 4.2 13.0 18.8

Table 11: Classification of demand points for solutions with P¥ =5 and A = 0.5.

Service Currently covered Newly covered Not covered Out of reach

(%) (%) (%) (%)
S1 82.1 0.4 11.7 5.9
s2 78.1 1.4 12.0 8.5
S3 70.4 1.1 15.4 13.1
S4 52.0 1.8 32.3 13.9

4.6 Solving the problem at different clustering levels

In the case of Mexico, the government is divided into three hierarchical levels: federal, state, and
municipal authorities. Although health care institutions have federal jurisdiction, some planning
decisions are just analyzed considering only local impact because some resources come from local
governments. In this experiment, we evaluate the effects on the demand coverage when federal
states independently do the location of new sites. In the other case, the same number of new sites
is selected, but as a single territory composed of all federal states. In both cases, demand points
are partially or fully covered without considering if they belong to the federal state where the site is
located. In the first case, additional constraints to ensure that each institution selects one new site
in each of the 32 federal states are considered, and in the second case, 32 new sites were selected
by each institution, considering all the federal states. Then, another experiment was also done by
dividing the country into eight regions, as shown in Figure 6. Each institution can select a new
site by region in the first case, and in the second one, eight new sites can be selected as a whole by
institution.

In these experiments, all instances were optimally solved in less than one hour of computing
time with an average of 1,016 seconds. In Table 12, we can see the percentage of demand and

demand points covered by each service in each case, considering the existing HCUs that supply the
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Figure 6: Map of Mexico divided into 8 regions and 32 federal states.

service. We can observe that more demand was covered in both instances where the problem was
solved as a whole system. In the case of the federal states, the percentage of additional demand
covered is 2.3%, 2.4%, 2.7%, and 3.4% for each service, respectively. In the case of the regions, the
percentages are 0.9%, 0.8%, 1.1%, and 1.3% for each service, respectively. This consistency was
not found in the number of additional demand points covered. In the case of the federal states,
the number of additional demand points covered was also increased, but in the case of the regions,
the number of demand points was reduced. Finally, in the case of federal states, we detected that
in the second case there were no chosen sites in 9 out of 32 federal states, and 22% of the selected
sites were concentrated in a single federal state. In the case of regions, 4 out of 8 regions have a

selected site installed in the second case, and 42% of new sites were concentrated in a single region.

Table 12: Demand coverage for different clustering levels.

Demand covered (%) Demand points covered (%)
S1 S2 S3 S4 S1 S2 S3 S4

By federal states

1 site by state (32 states) | 84.2 81.3 788 70.8 | 8.3 824 76.3 58.9
32 new sites as whole 86.4 83.7 815 743 | 8.4 833 76.6 61.0
Difference 2.3 2.4 2.7 3.4 0.0 0.9 0.3 2.1

By regions

1 site by region (8 regions) | 82.3 794 764 682 | 83.2 80.3 734 55.1
8 new sites as whole 83.2 80.2 775 695 | 82.8 80.1 73.0 54.9
Difference 0.9 0.8 1.1 1.3 -0.3 -02 -04 -0.2
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4.7 Handling larger problem instances

The goal of this experiment is find out the size of the instances that can be solved with the present
model by using off-the-shelf branch and bound methods. To this end, we tested instances of larger
size by increasing the number of candidate sites and the number of these sites that are selected for
installing the service. We evaluate the performance of the branch-and-bound algorithm of CPLEX
in one hour of CPU time. In Table 13, we consider three types of candidate sites for each service.
The candidate sites were chosen based on the population size of each demand point. For type A,
the candidate sites are demand points with 10 thousand inhabitants or higher, for type B, demand
points with at least 7.5 thousand inhabitants or higher; and for type C, demand points with more
than 5 thousand inhabitants. The specific number of candidate sites for each service of each type
is shown in the third column. For the three types, the number of candidate sites to be selected
(3 jer PPF), including all institutions, was ranged between 150 to 1500 sites, as seen in the table.
The same number of site to be selected was fixed for each institution. This table shows the CPU
time in hours and the optimality gap where € denotes a very small value. The CPU time is lower
than one hour when the optimal solution is found, and the optimality gap is higher than zero when
the time limit is reached. We can observe that all instances of type A were optimally solved, 4 out
of 24 instances of type B were not optimally solved, two of them with very bad solutions, and none
of the instances of type C were optimally solved having very high bad solutions. In general, more
candidate sites improve the demand coverage, but this leads to larger models that cannot be solved
efficiently. Table 14 shows the number of demand points, decision variables, and constraints of the
tested instances of type A, B, and C of each service to compare each type of instance. Clearly, our
model is still useful for solving type A and mostly type B instances. For the remaining, heuristic

procedures must be developed.

Table 13: Optimal solutions and relative gaps for different instance sizes.

CPU time (h) Optimality gap (%)
Service | Type Selected sites Selected sites
Candidate Sites (N) | 150 300 600 900 1200 1500 | 150 300 600 900 1200 1500
S1 A 2,567 02 02 03 02 0.2 0.2 0 0 0 0 0 0
S2 A 2,564 0.2 0.2 0.3 0.3 0.3 0.2 0 0 0 0 0 0
S3 A 2,584 05 06 05 05 0.5 0.4 0 0 0 0 0 0
S4 A 1,948 04 04 04 04 0.3 0.0 0 0 0 0 0 0
S1 B 3,566 0.7 07 06 06 0.7 0.6 0 0 0 0 0 0
S2 B 3,563 0.8 0.7 0.7 08 0.7 0.7 0 0 0 0 0 0
S3 B 3,583 09 09 1.0 1.0 1.0 1.0 0 0 0 0 € 0
S4 B 2,865 1.0 1.0 1.0 1.0 1.0 0.9 94 22 90 9 0 0
S1 (@] 5,628 1.0 1.0 1.0 1.0 1.0 1.0 94 93 91 93 93 92
S2 C 5,625 1.0 1.0 1.0 1.0 1.0 1.0 97 97 95 94 93 91
S3 C 5,645 1.0 10 1.0 1.0 1.0 1.0 98 97 95 94 94 92
S4 C 4,823 1.0 1.0 1.0 1.0 1.0 1.0 98 97 97 95 94 93
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Table 14: Number of decision variables and constraints.

Set type Service Demand points Variables Xikj Variables Y;  Constraints

A S1 66,101 1,001,027 2,584 1,135,074
S2 39,294 916,046 2,564 1,030,551
S3 26,266 909,109 2,567 1,015,888
S4 112,736 824,292 1,948 972,697

B S1 66,101 1,480,171 3,583 1,623,672
S2 39,294 1,354,615 3,563 1,481,030
S3 26,266 1,344,892 3,566 1,464,878
S4 112,736 1,278,001 2,865 1,436,020

C S1 66,101 2,528,672 5,645 2,686,454
S2 39,294 2,334,235 5,625 2,476,849
S3 26,266 2,314,642 5,628 2,452,506
sS4 112,736 2,325,933 4,823 2,498,808

4.8 Evaluating new services in existing HCUs

In some cases, temporary services must be activated in the HCUs networks to face sanitary emer-
gencies, as with the Covid-19 pandemic. In this experiment, we consider only the HCUs that belong
to the Ministry of Health to identify which HCUs to install a new service to maximize the demand
coverage solving NSLP with CPLEX. There are, in total, 774 candidate sites to install the service.
The population at each demand point was used as the demand. There are, in total, 189,280 demand
points, but only 150,357 can be entirely or partially covered. Figure 7 shows the percentages of
demand and demand points covered with each solution varying the number of new sites (p). These
percentages were calculated based on the total population and total demand points in Mexico. For
instance, with five new sites, only 9% of the population was covered, and with 100 new sites, 56%
of the population was covered. If the service is installed on every candidate site, the maximum
percentage of demand covered is nearly 86% of the total population. As we can see in the plot, the
portion of demand covered has a logarithmic behavior. It becomes more challenging to cover the
remaining demand because the best sites to improve the coverage were already selected. The set of
candidate sites can cover fully or partially a maximum of 41% of demand points and the behavior of
demand points covered is more linear in the range between 5 to 550 new sites. Finally, a graphical
representation of the solution for P = 100 new sites is shown in Figure 8. In this solution, 56% of
demand was covered, and 7.6% of demand points were inside the secondary coverage radius of a
selected site. Figure 9 shows a detailed visualization of the central region in the left-hand side plot
where most of the population is concentrated and 66 out of 100 candidate site was selected in this
region. The northeast region of Mexico is shown in the right-hand side figure where only thirteen

candidate sites were selected.
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Figure 7: Demand covered according to the number of new sites.

5 Conclusions

In this paper, we revisited the MCLP with partial coverage and proposed an extension to solve the
problem of locating SHCS in a multi-institutional network. This model is motivated by the need
to improve access to these services in developing countries. A decay function based on two critical
coverage bounds for partial coverage is employed. A logarithmic function is proposed to determine
the coverage radius of each candidate site based on the population density of the area where the
new facilities can be installed. Since many sites are currently operating the services, the problem
is improving the demand coverage. Therefore, for each demand point, the additional benefit in the
coverage must be determined before solving the problem.

The case study, based on real-world data from the Mexican Health Care System, revealed
interesting results. Four second-level services were evaluated with the model to locate additional
sites to improve the current coverage. One contribution is the integration of multiple institutions
in the demand coverage. If the collaboration between institutions is done, the additional covered
demand could be increased between 12% and 13% for the analyzed services. As the percentage
of collaboration decreases, this percentage is also reduced, but it still significantly impacts the
coverage and access to these services.

Two choices for installing new services were evaluated: installing services in existing HCUs
that currently do not supply the service and building new facilities. We found that the additional

demand covered increased to 3.5 times the demand covered when new sites were considered. Even
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Figure 8: Map with the solution for p = 100.

though it is cheaper and easier to install the service in existing HCUs, there is no significant
contribution from the access point of view since these HCUs are located in cities where other HCUs
are already operating. Therefore, new sites are required to improve access to these services.

In the case of Mexico, this type of planning is done locally on some occasions; even the insti-
tutions have federal jurisdiction. Therefore, we evaluate the effect on the coverage when the new
locations are selected by each federal state and then as a whole system. We found that the addi-
tional demand coverage is between 2.7% and 4% when the planning is done as an entire system. In
a second analysis, comprehensive planning was compared against regional planning. In this case,
comprehensive planning was found better, showing improvements between 1.0% and 1.9%.

The models developed in this paper can also be used to face emergency issues. For instance,
opening temporary modules to deal with health emergencies or vaccination campaigns in which
access is one of the most important factors for planning. In this experiment, it was observed
that installing some new services in existing HCUs was advantageous. The impact on the demand
coverage is higher for the first new sites chosen because the remaining uncovered demand points
have lower demand levels and are scattered on the territory.

There are various possibilities for future research on this problem. As part of upcoming in-
vestigations, including capacity constraints in service provision and addressing congestion using
queuing theory can significantly help in dealing with the evolving challenges in public health care

service delivery. Another aspect to consider is integrating multiple second-level services into one
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Figure 9: Zoom on the solution for p = 100.

single location problem. Incorporating hierarchical structures into the model is essential because
primary HCUs serve as the primary contact point for a substantial portion of the demand directed
toward second and third-level specialized hospitals. Financial limitations in the public sector can be
considered by introducing a budget constraint to the problem. Considering joint coverage among
HCUs can help expand service coverage. For instance, hospitals without operating rooms may
still offer specialized outpatient services. Integrating all these features into a single problem and
exploring alternative solution methods like metaheuristic algorithms could be a valuable avenue for
future exploration.
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