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Abstract1

The lack of access to Second-level Health Care Services (SHCS) in developing countries is2

primarily due to the scarcity of facilities and the limited investment of resources in the public3

sector. Access to these services directly relates to the distance the population travels to these4

facilities. In that sense, a maximal covering location problem can be helpful to maximize the5

impact of decisions related to the location of new SHCS. In this paper, we propose a model to6

guide the location of additional sites where second-level services can be installed in a network of7

public hospitals. The partial coverage and variable radius are considered in the problem to assess8

a large territory with different characteristics and population densities. The system is composed9

of multiple institutions that supply differentiated varying levels of coverage concerning their own10

demand and external demand. The objective of the problem is to improve the demand coverage11

in the system by locating new sites, since there are already sites offering different services. A12

case study in the Mexican public health system is conducted to assess four specialized SHCS. The13

obtained results evidence for the benefit of using optimization tools in the resource planning of14

SHCS.15

Keywords: Health care planning; facility location; maximal covering location; partial coverage;16

integer programming.17



1 Introduction18

Second-level Health Care Services (SHCS) such as gynecology and pediatrics are essential in society.19

A large part of the population will require these services at various moments of their lives, and the20

demand for these services grows yearly [17]. In rural areas, the main problem is access to facilities21

that offer these services. In contrast, the problem is more related to capacity issues in urban areas.22

However, distance and time are critical to survival in emergencies in both cases.23

The lack of access to SHCS in public hospitals is critical in developing countries such as Mexico.24

The investment in the health care infrastructure is limited and insufficient to ensure the total25

coverage of demand. However, there it is priority objective by the government to reach for universal26

access to SHCS, while avoiding inequality and discrimination in the decision-making process. Hence,27

each decision to invest new resources in the public sector must be taken, maximizing its impact on28

society. Mexico has a segmented health care system [31]. This type of system avoids making global29

decisions, and efforts are made individually by federal states or institutions. Recently, a change30

has been promoted to take federal decisions to invest resources to improve SHCS in Mexico [52].31

This change aims to develop tools for the infrastructure planning as a whole system.32

SHCS are available in most public hospitals under two schemes: Outpatient (ambulatory) and33

inpatient care. The former is any service patients receive without being admitted to a hospital34

or for a stay shorter than 24 hours. The latter is for patients admitted to a hospital to receive35

medical care. A distant hospital discourages patients from timely getting to their appointment with36

a health care specialist. On the other hand, inpatient services are frequently related to medical37

emergencies originating elsewhere. For instance, a woman may need to consult a gynecologist due38

to sudden complications during pregnancy.39

Along with the capacity of these services, access is the main factor in the decision to select new40

locations. However, the capacity level can be adjusted according to the demand characteristics,41

but the location is permanent. Therefore, the location of services can be analyzed as a strategic42

first-level decision and capacity planning can be done based on the specific characteristic of the43

covered region after the location decision is taken. However, this decision can be made in single-44

stage planning based on the needs and context of the situation. Therefore, we propose this problem45

as a decision making tool that provides initial insight about the location of SHCS sites taking into46

account the global impact in the country from the coverage and access perspective. As a second-47

stage, a capacity planning model that includes the neighborhood environment and more specific48

demand patterns can be done once the general location of SHCS is determined in this problem.49

Like many other developing countries, the main problem in Mexico is the geographic distribution50

of specialists [34]. For instance, 54.2% of them are located in 3 out of the 32 federal states of the51

country. In Mexico City, there are 505.7 specialists per 100,000 inhabitants, while the federal state52

with the lowest rate has 35.9 specialists per 100,000 inhabitants. This difference is because most53
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second and third-level hospitals are located in the country’s biggest cities. However, gynecology and54

pediatrics services have become more widely needed because the demand is distributed throughout55

the territory at different levels. Therefore, these services should be available not only in urban56

areas, but also in rural areas, through their installation in community hospitals.57

In the Operations Research (OR) field, the maximal covering location problem (MCLP) is58

typically used in the health care area to locate emergency services such as ambulance stations or59

emergency centers [29]. However, recent works have extended its use to many other applications,60

such as the location of primary health care centers or hospitals [1]. In this case, we address61

the location of SHCS. Karasakal and Karasakal [36] consider the MCLP in the presence of partial62

coverage. In our work, we extended the model proposed by Karasakal and Karasakal [36] to a health63

care system with multiple institutions, in which each institution may provide (partial) demand64

coverage not only to its own beneficiaries but also for the beneficiaries of other institutions. Partial65

coverage is supposed to avoid an abrupt ending of coverage. Each candidate site has a different66

coverage critical distance due to the extensively evaluated territory composed of rural and urban67

areas with varying population densities. Since the system is already operating with existing sites68

providing the service, the coverage rate of each candidate site must be adjusted considering the69

interaction with these facilities. In this sense, the model’s objective is to maximize the demand70

covered by the existing facilities and to improve the coverage of demand partially covered if a new71

site enhances the coverage.72

The case study to be presented is based on the Mexican Health Care System (MHCS) for73

four services: Gynecology, pediatric care, internal medicine, and trauma care/orthopedics. The74

coverage distance for each candidate site is based on the population density of the place where is75

located. We evaluated the effect on the demand coverage, according to the collaboration level of the76

institutions. The impact on the demand coverage is evaluated on two cases: (i) a set of candidate77

hospitals that do not provide service, and (ii) in a set of candidate locations where no hospitals are78

currently operating. Then, we evaluate the benefit of centralizing this planning decision to solve79

the model in a single global instance instead of multiple federal or regional instances. Finally, we80

intend to find out the location of a new service in the existing network of hospitals, evaluating the81

impact on the demand coverage according to the number of new sites opened. The results of these82

experiments encourage using these types of models as part of the decision-making process in the83

location of public SHCS to optimize the impact of limited resources on society.84

As a first contribution of our paper, we extend a maximal covering location problem with85

partial coverage to handle SHCS with multiple institutions. This is motivated by a real-world case86

from the Mexican health care system. Another contribution is the proposal of a gradual coverage87

function for the multi-institutional system. We also present a detailed case study from the MHCS88

that allows us to assess the benefit of making decisions using the solutions of the proposed model.89

We also suggest estimating the coverage rates with the interaction of existing facilities in a multi-90
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institutional scheme. To solve these models, we used CPLEX’s branch-and-bound (B&B) solver.91

All instances were optimally solved, managing to solve large instances up to 47,549 demand points,92

3,583 candidate sites, and 1500 selected sites.93

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature94

on location models in related problems. This is followed by Section 3 presenting the formal defini-95

tion and mathematical formulation of the problem. Then, Section 4 presents our empirical work,96

including the case study. Finally, the conclusion and future directions are discussed in Section 5.97

2 Related literature review98

The literature on facility location models and methods applied in health care management has been99

quite active over the past few years. Our problem is focused on the location of public health care100

services. A survey in the context of the public sector is presented by Marianov and Serra [41].101

Significant efforts have been made in the application to health care problems. Some important102

surveys are proposed by Güneş et al. [32], Ahmadi-Javid et al. [1], Rais and Viana [50], Li et al.103

[39], Daskin and Dean [18], Brotcorne et al. [11], and Rahman and Smith [49].104

The maximal covering location problem (MCLP) was proposed by Church and ReVelle [14] and105

White and Case [57]. The MCLP is a classic problem in the literature on facility location. This106

problem is designed for finite resources that cannot cover all the demand. The objective is to find107

the best subset of p locations that maximizes the covered demand. A demand point is covered if the108

distance to a facility is equal to or lower than a critical value. One feature of MCLP is that it can be109

structured as a p-median problem [15]. Therefore, solution procedures for the p-median problem,110

even heuristics, can be applied to solve MCLP. There is a number of heuristic and exact method to111

solve this problem, specially, for large instances. For instance, a simulated annealing was proposed112

by Murray and Church [46]. An approach based on an heuristic concentration was proposed by113

Rosing and ReVelle [53]. A Lagrangean relaxation and a dual-based heuristics with branch and114

bound were proposed by Galvão and ReVelle [30] and Downs and Camm [20], respectively. A115

greedy randomized adaptative search procedure is proposed by Resende [51].Genetic algorithms116

are proposed by Arakaki and Lorena [3] and Tong et al. [55].117

In particular, the survey presented by Ahmadi-Javid et al. [1] reviews facility location works118

related to health care from 2000 to 2016. Among these, 54% of the problems were related to119

emergency facilities such as ambulance stations, trauma centers, or emergency off-site public access120

devices, while the rest were related to non-emergency facilities such as primary health centers.121

Location problems based on the MCLP represent 35% of works with 48 papers, and partial coverage122

is a characteristic only used in 10% of the works, all of them in emergency applications [54, 2, 40,123

47, 12].124

The model addressed in this research is based on the MCLP with partial coverage. In this125
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problem, the classical binary coverage is replaced by a continuous parameter between zero and one126

calculated by a particular decay function. The greater the distance between a demand point and127

the facility, the more the value of this parameter approaches zero. A partial covering model can be128

seen as a particular application of the MCLP [57]. The first work that introduced the concept of129

gradual covering was Church and Roberts [16]. Later, Drezner et al. [24] applied this concept for a130

single facility MCLP, and Pirkul and Schilling [48] used a decay function in a capacitated version131

of the MCLP. The general idea of using a decay function in the MCLP was introduced in Berman132

and Krass [7], employing a step-wise function in a network version of the problem, providing a133

formulation and an effective heuristic procedure. In Berman et al. [8], the decay function was134

named the non-ascending general decay function with two pre-specified threshold distances. They135

showed how this problem could be transformed into the uncapacitated facility location problem136

when the set of potential facilities was discrete. An overview of gradual covering location models137

can be found in Berman et al. [9].138

Gradual coverage has also been used in continuous facility location. For instance, a related work139

with a linear function in a planar space is found in Drezner et al. [25] for a single facility location.140

The authors proposed a B&B algorithm that produced an efficient performance for instances up to141

10,000 demand points. In Karasakal and Karasakal [36], the term “partial coverage” was introduced142

for the MCLP taking the same considerations of previous works for multiple facility locations. A143

solution procedure for large instances (up to 1,000 nodes, 40 potential sites) was proposed using144

lagrangian relaxation.145

Recently, some extensions of the gradual covering location problem have been proposed. Tavakoli146

and Lightner [54] proposed an MCLP-based model for allocating vehicles and the location of facil-147

ities for emergency medical services (EMS), minimizing the amount of population not covered. A148

goal programming problem to locate EMS stations and find the minimum number of vehicles satis-149

fying the performance levels was proposed in Alsalloum and Rand [2]. The probability of covering150

a demand within the target time was minimized in the first objective, and the second objective en-151

sured that any demand arising within the target time would find at least one ambulance available.152

In Eiselt and Marianov [26], the gradual covering was applied to the set covering location model,153

including the quality of service as a decision criterion. Lim et al. [40] proposed an extension of the154

MCLP that includes a minimum level of covered demand on the system and a flexible number of155

locations to be opened for the ambulance location problem. In Naoum-Sawaya and Elhedhli [47],156

a two-stage stochastic optimization model for the ambulance redeployment problem was proposed157

to minimize the number of relocations over a planning horizon while maintaining an acceptable158

service level. Drezner and Drezner [21] proposed an alternative objective function of maximizing159

the minimum cover of every demand point, ensuring that every demand point was covered as much160

as possible and there were no demand points with low cover. An ascent algorithm and tabu search161

were evaluated for instances up to 900 demand points. Chan et al. [12] proposed a multi-responder162
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and gradual covering problem for automated external defibrillators in a probabilistic extension of163

the MCLP. The main contribution lies in developing mixed-integer linear formulation equivalents164

or tight and easily computable bounds. Bagherinejad et al. [5] included the joint partial coverage165

when a demand point was covered by multiple facilities, developing multiple heuristics for networks166

up to 900 demand points. They included the gradual covering concept and the cooperative coverage167

in a single problem. A simulated annealing and tabu search were used to solve instances of up to168

150 demand nodes. In Drezner et al. [23], the gradual covering competitive facility location problem169

is proposed, which captures the market share by new facilities in a continuous space. Other recent170

applications using a gradual function are presented by Küçükaydın and Aras [38] for the location171

of multi-type facilities that include customer preference, by Erkut et al. [27] for ambulance location172

problems that include a survival function, by Dogan et al. [19] for a multi-objective location of173

preventing health care facilities, and by Yücel et al. [58] for the location of mobile medical sites.174

The variation of the coverage radius in a gradual covering location problem has been proposed175

by Drezner et al. [22] for a single facility and by Bashiri et al. [6] for multiple facilities. Eydi and176

Mohebi [28] introduced the MCLP with gradual coverage and variable radius over multiple periods.177

In their work, they assumed facilities with finite capacity and variable costs directly impacting the178

coverage radius. They proposed a simulated annealing algorithm to solve the problem.179

Table 1: Characteristics of related works with partial coverage.
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Berman and Krass [7] ✓ ✓ ✓
Karasakal and Karasakal [36] ✓
Tavakoli and Lightner [54] ✓ ✓ ✓ ✓
Araz et al. [4] ✓ ✓ ✓ ✓ ✓
Meltem and Bahar [42] ✓ ✓ ✓
Chan et al. [12] ✓ ✓ ✓ ✓
Wang et al. [56] ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bagherinejad et al. [5] ✓ ✓ ✓ ✓
Eydi and Mohebi [28] ✓ DV ✓ ✓ ✓ ✓
Berman et al. [10] ✓ ✓ ✓ ✓
Küçükaydın and Aras [38] ✓ ✓ ✓ ✓ ✓
Chanta and Sangsawang [13] ✓ ✓ ✓ ✓
SLP ✓ ✓ ✓ ✓
DV: Decision Variable

A review of gradual coverage location problems can be found in Karatas and Eriskin [37],180

including features such as number of facilities, feasible space, type of model (binary/gradual),181

coverage type (individual/cooperative) and objective type. In our work, we include two tables.182

Table 1 shows the features of the most related papers with partial coverage and Table 2 shows183
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Table 2: Solution methods and instances sizes of related works with partial coverage.

Paper Method Software/Solver
Demand
nodes

Candidate
sites

Selected
sites

Berman and Krass [7]
B&B and Greedy
heuristic / LP-
Relaxation

Cplex 400 400 80

Karasakal and Karasakal
[36]

Heuristic: Lagrangian
relaxation based solu-
tion procedure

1,000 40 24

Araz et al. [4]

Lexicographic opti-
mization and different
versions of the Fuzzy
goal programming

Cplex 8.0 50 50 8

Meltem and Bahar [42] B&B
Cplex 12.4 /
Gurobi 5.0.2

81 22 20

Chan et al. [12] B&B Cplex 12.1 11,701 5,000 200
Wang et al. [56] B&B GAMS/BARON 420 17 6

Bagherinejad et al. [5]
Cooperative covering
and location-allocation
features

Heuristic: Sim-
ulated anneling
and Tabu search

150 150 20

Eydi and Mohebi [28]
Heuristic: Simulated
anneling

Cplex 100 100 5

Berman et al. [10]

B&B and Heuristics:
greedy heuristic, as-
cent heuristic, and
Tabu search.

400 400 133

Küçükaydın and Aras [38]
B&B / Lagrangian
relaxation / Local
search

Cplex 12.8 1,000 250 Variable

Chanta and Sangsawang
[13]

B&B OPL 104 104 15

Karatas and Eriskin [37] B&B Cplex 12.5.0.1 4000 2000 3-10

Haghi et al. [33]
B&C / Adaptive large
neighborhood

Cplex 12.1.0 30 5 1-4

SLP B&B Cplex 20.1.0 47,549 3,583 1500

some information related to the solution method and the problem sizes in the case studies. The184

last row in both tables corresponds to the model addressed in this paper, the MCLP for a segmented185

system with partial coverage (SLP). Variable coverage radius, interaction with existing facilities,186

and multiple institutions are features considered in this problem. The proposed model in this paper187

is a particular application of the MCLP with gradual covering that incorporates the handling of188

multiple institutions where the coverage of demand points can be expanded through collaboration189

among institutions. A function to determine the benefit of new facilities in the demand coverage is190

proposed. As far as we know, the MCLP with multiple institutions (organizations) has not studied191

in previous works. However, other works related to health care planning problems that incorporate192

a segmented system are proposed by Mendoza-Gómez et al. [45] and Mendoza-Gómez et al. [44]193

for the planning of highly specialized health care services, and Mendoza-Gómez and Ŕıos-Mercado194

[43] for location-allocation of primary health care units.195

As far of solution methods is concerned (depicted in Table 2), some of the previous models196

were solved by commercial solvers, indicated in the third column, and others by heuristic methods197

such as greedy heuristics, tabu search, and simulated annealing. The instance sizes of case studies198

are indicated by the number of demand points, candidate sites, and selected sites in the last199
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three columns. The instances used in our case study are the largest concerning the number of200

demand points and selected sites, but they occupy second place in the number of candidate sites.201

However, all instances tested were optimally solved by the B&B algorithm of CPLEX. Many recent202

improvements have been made in the performance of exact methods to solve integer programming203

problems, optimize computational resources, and develop new technologies. These advances avoided204

the need to develop alternative heuristic methods for solving the problem addressed and the size205

of the instances considered in our work.206

3 Formulation of the problem207

3.1 Problem description208

The goal of this problem is to locate new sites for installing SHCS in a system with multiple209

institutions maximizing the covered demand. The coverage is based on partial coverage using a210

decay function. Each institution operates a set of Health Care Units (HCUs) that, in addition to211

covering the demand of its own beneficiaries, also cover beneficiaries of other institutions with a212

different coverage level. The number of new sites to be installed is defined by each institution.213

At each demand point, there are beneficiaries from each institution. There is a network of HCUs214

that is already operating with the service for each institution and they cover some demand points.215

However, with the new sites, additional demand points can be covered and the demand coverage216

of some demand points can be improved. Figure 1 shows an small example of a health care system217

with partial coverage and three institutions: A, B and C.218

Figure 1: Example of a health care system with multiple institutions.
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3.2 Mathematical model219

The sets, parameters, and variables of the problem are described below:220

Sets:221

M Set of demand points; i ∈ M .222

K Set of institutions in the system; q, k ∈ K.223

G Set of HCUs with the service installed; j ∈ G.224

N Set of candidate sites where the service can be installed; j ∈ N . The candidate sites for225

institution k is given by Nk. Clearly, ∪k∈KNk = N .226

Ni Subset of N such that the demand point i ∈ M is at least partially covered (aij > 0);227

j ∈ Ni.228

Nk
i Subset of Ni that belongs to institution k ∈ K; j ∈ Nk

i .229

Gk
i Set of HCUs with the service installed that belongs to institution k ∈ K and cover the230

demand point i ∈ M (aij > 0); j ∈ Gk
i .231

Parameters:232

hki Demand in number of beneficiaries in demand point i of institution k; i ∈ M , k ∈ K.233

lj is the primary coverage radius of the candidate site j; j ∈ G ∪N .234

uj is the secondary coverage radius of the candidate site j; j ∈ G ∪N .235

dij is the distance between the demand point i and the site j; i ∈ M , j ∈ G ∪N .236

aij Coverage rate of the site j for the demand point i such that 0 ≤ aij ≤ 1; i ∈ M , j ∈ G ∪N .237

bki Current coverage rate of demand point i for beneficiaries of institution k; i ∈ M , k ∈ K.238

Φk
ij Benefit in the coverage level of beneficiaries of institution k at demand point i if the service239

is installed in site j; k ∈ K, i ∈ M , j ∈ Ni.240

P k Maximum sites number of institution k where the service can be installed; k ∈ K.241

λq Percentage of collaboration of institution q for beneficiaries of other institutions; q ∈ K.242

Decision variables:243

Yj Binary variable equal to 1 if the service is installed in site j; 0, otherwise; j ∈ N .244

Xk
ij Binary variable equal to 1 if the beneficiaries of institution k at demand point i are covered245

(partially or fully) by the candidate site j, and this site has the highest benefit in the246

coverage rate (Φk
ij) for demand point i among all other selected sites; 0, otherwise; k ∈ K,247

i ∈ M , j ∈ Ni.248

Note that for Xk
ij , the beneficiaries of institution k at demand point i could be allocated to any249

candidate j ∈ Ni, including other institutions.250

The formulation of the problem is the following:251
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max
∑
k∈K

∑
i∈M

∑
j∈Ni

hkiΦ
k
ijX

k
ij (1)

s.t.
∑
j∈Nk

Yj ≤ P k k ∈ K (2)

∑
j∈Ni

Xk
ij ≤ 1 k ∈ K, i ∈ M (3)

Xk
ij ≤ Yj k ∈ K, i ∈ M, j ∈ Ni (4)

Yj ∈ {0, 1} j ∈ N (5)

Xk
ij ∈ {0, 1} k ∈ K, i ∈ M, j ∈ Ni (6)

Objective function (1) maximizes the benefit in the demand coverage of all institutions in252

all demand points. Constraints (2) impose a limit on the maximum number of new sites where253

the service can be installed for each institution. The beneficiaries of each institution at each254

demand point can be covered by one facility, either of the same institution or another, according to255

constraints (3). The binary variable Xk
ij determines the highest benefit in the objective function for256

the demand of each institution at each demand point. In case of a tie, one active site is randomly257

chosen. According to constraints (4), if the candidate site j is not selected in the solution, all the258

associated Xk
ij are equal to zero. Binary conditions regarding the decision variables are imposed259

by constraints (5) and (6).260

Note that the maximum number of binary variables (assuming that Ni = N , ∀i ∈ M) is given261

by |N |(|K| × |M |+ 1), and the maximum number of constraints is |K|(1 + |M |(1 + |N |)).262

3.3 Determining Φk
ij263

A typical coverage binary function is defined by a critical distance around each candidate site.264

However, this function type considers an abrupt ending coverage which may not represent a real265

situation. A non-increasing function is used to enlarge the coverage of a facility to a second critical266

distance avoiding the abrupt coverage ending [8]. In this case, the coverage level gradually decreases267

in the gap between these two critical distances lij and uij . The non-increasing function is given by:268

aij =


1 if dij ≤ lj

uj−dij
uj−lj

if lj < dij < uj

0 if dij ≥ uj .

(7)

In Equation (7), if the distance between a demand point i and a candidate site j is less than269

or equal to the primary coverage radius, this point is fully covered (aij = 1). The demand point is270

not covered if the distance is equal to or greater than the secondary coverage radius (aij = 0). The271
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demand point is partially covered if the distance is between these two critical bounds (0 < aij < 1).272

In this problem, the values of the primary and secondary coverage radius are different for each273

site according to the population density of the place where they are located. This consideration is274

done because population densities vary widely from region to region and we are assuming that the275

coverage distance must be related to population density.276

The primary coverage radius lj can be determined by a function that considers the population277

density behavior as proposed in the case study in Section 4.2. For the secondary coverage radius,278

we propose a proportional increase of lj (∆) according to Equation (8). However, there are many279

ways in which these bounds can be determined.280

uj = (1 +∆)lj (8)

The set of HCUs where service is installed (G) is required to calculate the additional benefit281

in demand coverage (Φk
ij) of demand points that fall inside the secondary coverage radius of a282

candidate site. For demand points not currently covered, there is a logical benefit if the service is283

installed in a nearby site, but, for some demand points that are already covered, a nearer HCU284

with the service installed can improve the coverage level. Demand points whose coverage cannot be285

improved by any candidate site (i.e. Φk
ij = 0) are not considered in the formulation because there is286

no impact on the objective function. For determining Φk
ij it is required to first compute the current287

coverage level of each demand point (bki ). This parameter indicates the current coverage for the288

beneficiaries of each institution at each demand point. This value takes into consideration HCU289

with the service installed of the same institutions (j ∈ Gk
i ) and other institutions (j ∈ Gq

i |q ̸= k),290

but these last ones are multiplied by λq because the collaboration percentage applies for all the291

HCUs that supply the service.292

The proportion of collaboration is considered because each institution must prioritize its own293

demand; therefore, there must be a distinction between coverage of internal and external demand.294

This parameter must be fixed between 0 < λq < 1. As the value of λq increases, the coverage295

level to other institutions also increases. In our work, we assume this value as a function of q296

only; however, there might be situations where this parameter can be defined for each site and the297

collaboration agreement between each pair of institutions (i.e., λqk
ij ).298

bki = max{max
j∈Gk

i

{aij}, max
j∈Gq

i |q ̸=k
{λqaij}} k ∈ K, i ∈ M (9)

The benefit of the coverage rate is calculated by subtracting bki from aij . If this value is negative,299

the benefit is equal to zero. Demand points such that
∑

k∈K
∑

j∈Ni
Φk
ij = 0 are not considered in300

the formulation. The equation to calculate Φk
ij is the following:301
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Φk
ij =

max
{
aij − bki , 0

}
if j ∈ Nk

i

max
{
λqaij − bki , 0

}
if j ∈ N q

i |q ̸= k.
(10)

302

Figure 2: Determination of additional demand coverage in Example 1.

We now present a small example illustrating the model settings and how λq influences the303

objective function when there are multiple institutions. This example is displayed in Figure 2.304

Example 1 Let M = {1, 2, 3}, K = {1, 2} N = {A,B}, and G = {C}.305

In this example, there are three demand points (i =1, 2, and 3), two institutions (k =1 and 2),306

two candidate sites (j =A and B), and one HCU that supplies the service (j =C). A and C belongs307

to institution 1, and C to institution 2. The subsets are defined as follows:308

� The sets of candidate sites that cover each demand point are: N1 = {A}, N2 = {A,B}, and309

N3 = {B}.310

� The sets of candidates sites of each institution that cover each demand point are: N1
1 = {A},311

N2
1 = {∅}, N1

2 = {A}, N2
2 = {B}, N1

3 = {∅}, and N2
3 = {B}.312

� The sets of HCUs that provide the service and cover each demand point are: G1
2 = {C}, and313

all other sets are empty.314

Let us suppose that the number of beneficiaries of each institution is the same at each demand315

point (hki = 10). In Figure 2, the left-hand side figure represents the physical locations of demand316

points and sites with their coverage radius. The two tables at the top right of the figure show the317

coverage rate for each site and the percentage of collaboration between institutions, respectively. The318

bottom-right table shows how parameters bki and Φk
ij are computed. For example, if the candidate319
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site A is selected, the additional demand covered will be equal to 23.4 obtained from 0.5(10) +320

0.4(10)+0.8(10)+0.64(10). And, if the candidate site B is selected, the additional demand covered321

will be equal to 8 obtained from 0.3(10)+0.5(10). In conclusion, candidate site A is a better option322

than B.323

3.4 Special case: The MCLP with partial coverage324

The following problem (NSLP) is a special case of SLP considering a single institution. This case325

could be applied in many countries with a centralized public institution or a segmented system with326

no collaboration between institutions (λq = 0, ∀q ∈ K), solving this model for each institution. In327

this problem, the coverage of HCUs with the service already installed is also considered.328

The following parameters and the decision variables must be redefined as follows:329

Parameters:330

hi Number of beneficiaries in demand point i; i ∈ M .331

p Maximum number of candidate sites where the service will be installed.332

a′ij Benefit in the coverage level at demand point i if the candidate site j is selected; i ∈ M ,333

j ∈ Ni.334

Decision variables:335

Xij Binary variable equal to 1 if the candidate site j is selected and it has the highest benefit336

in the coverage rate (a′ij) for demand point i among all other selected sites; 0, otherwise;337

i ∈ M , j ∈ Ni.338

The increase in the coverage level of beneficiaries at each demand point for each candidate site339

is calculated as follows:340

a′ij = max{aij −max
l∈Gi

{ail}, 0} i ∈ M, j ∈ Ni. (11)

The formulation of the problem is the following:341

max
∑
i∈M

∑
j∈Ni

hia
′
ijXij (12)

subject to
∑
j∈N

Yj ≤ p (13)

∑
j∈Ni

Xij ≤ 1 i ∈ M (14)

Xij ≤ Yj i ∈ M, j ∈ Ni (15)

Yj ∈ {0, 1} j ∈ N (16)

Xij ∈ {0, 1} i ∈ M, j ∈ Ni (17)
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In the case of new services in the system, the previous model can be used to replace a′ij for the342

original coverage rate aij . A computational study with an application of this model is introduced343

in Section 4.8.344

4 Case Study345

4.1 Experimental settings346

In this section, the problem is applied separately to four second-level services in the MHCS: gyne-347

cology (S1), pediatric care (S2), internal medicine (S3), trauma care and orthopedics (S4). For each348

service, the four leading public institutions in Mexico are considered to evaluate the model: (I1)349

The Ministry of Health (SSA) and IMSS-Bienestar, (I2) IMSS, and (I3) ISSSTE. The first two insti-350

tutions are unified as a single one because both of them attend to uninsured populations. The main351

difference is that IMSS-Bienestar is located in regions with extreme poverty. I2 is an institution352

that provides services to formal workers in the private sector, and I3 offers services to public sector353

workers. There are many other institutions in the health care system, but their affiliated members354

represent about 4.7% of the population. According to INEGI [35], the population of Mexico was355

126,014,024 inhabitants in 2020, distributed among 189,280 demand points. For each service, the356

demand was determined based on the number of each institution’s beneficiaries obtained from the357

Census 2020. Demand is determined by multiplying the number of beneficiaries and the proportion358

of the population to which each service is intended. For gynecology, the proportion of women359

from 12 years old at each demand point was considered, and for pediatrics, the proportion of the360

population up to 18 years old. All the population was considered for internal medicine, trauma361

care, and orthopedic services. Table 3 shows the demand (beneficiaries) and demand points with362

affiliated members of each institution for each service. The sum of demand by row is lower than the363

total population (126,014,024) because we only consider the people that are affiliated with these364

institutions. In the case of S3 and S4, the demand is the same because these services are aimed365

at all the affiliated members of each institution. For each institution, demand points where there366

are no beneficiaries were discarded, for instance, I3 for S1 has 45,315 demand points with affiliated367

members out of 189,280 demand points of Mexico. Universal Transverse Mercator coordinates were368

used for demand points, current locations, and candidate sites to calculate the Euclidean distances.369

This metric was used as an approach to the actual distances that were out-of-reach due to the high370

number of calls and its high costs in web mapping platforms.371

The data set is available at: https://data.mendeley.com/datasets/s8x7nsjrgx.372

For determining sets G and N , we consider hospitals but also advanced primary HCUs where373

service can be installed; therefore, we refer to both sites types just as “HCUs”. Table 4 shows the374

number of the existing HCUs of each institution that supply each service (G); they were obtained375
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Table 3: Demand and demand points for each service by institution.

Total demand (No. beneficiaries) Total demand points
Service I1 I2 I3 I1 I2 I3

S1 26,767,059 19,732,411 3,063,010 106,972 74,418 45,315
S2 21,036,798 13,715,433 2,060,414 104,726 73,348 45,044
S3 65,555,276 47,168,735 7,159,057 107,137 74,522 45,326
S4 65,555,276 47,168,735 7,159,057 107,137 74,522 45,326

from an official data-base of the Ministry of Health. For the case of set N , we consider that this376

problem can be applied to two different cases: to open a new HCU in a candidate location (NA)377

and to install the service in an existing HCU (NB). For NA, existing HCUs of each institution were378

analyzed to evaluate if the service can be installed. For NB, demand points with no HCUs and379

with a population density greater than or equal to 10,000 inhabitants were considered. As can be380

seen in the table, institutions I2 and I3 supply all services in nearly all of their HCUs. On the other381

hand, S1 and S2 are available in almost the same subset of HCUs for I1, S3 is available in a lower382

number of HCUs, and S4 is the one with the lowest number of sites where service is available.383

Table 4: Number of available HCUs and candidate locations.

Existing HCUs Candidate locations Candidate HCUs
(G) (NA) (NB)

Service I1 I2 I3 Total I1 I2 I3 Total I1 I2 I3 Total
S1 634 198 89 921 650 913 1,004 2,567 120 48 17 185
S2 613 200 90 903 647 913 1,004 2,564 160 46 16 222
S3 437 205 88 730 667 913 1,004 2,584 260 30 18 308
S4 263 172 89 524 667 913 1,004 2,584 434 63 17 514
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For determining set M for each service, we identify demand points such that
∑

j∈Ni
Φk
ij > 0384

using Equations (9) and (10). Table 5 shows the number of demand points to be considered in the385

problem by institution once all demand points such that
∑

j∈Ni
Φk
ij = 0 are discarded. In this case,386

the largest instance was the one for S3 with 47,549 demand points as shown in Table 2.387

Table 5: Demand points considered in the problem.

Demand points
Service I1 I2 I3 Total

S1 8,847 6,214 3,399 18,460
S2 12,361 10,629 4,802 27,792
S3 22,878 15,414 9,257 47,549
S4 19,864 14,246 8,979 43,089

Solution method. The branch-and-bound algorithm from the CPLEX callable library, version388

20.1.0, with a C++ API was used to find the optimal solution for each instance. The experiments389

were carried out in an Intel Core i7-5600U at 2.60GHz with 16GB of RAM under Windows 10390

operating system.391

4.2 The variable coverage radius for the Mexico case392

We propose a function that calculates the coverage radius according to the population density of393

each municipality where a candidate site is located. To the best of our knowledge, this particular394

type of function has not been employed in this kind of problem. The population density distri-395

bution of the 2,469 municipalities (counties) of Mexico in 2020 obtained from the INEGI website396

(http://www.inegi.org.mx), is shown in Figure 3. The demand points are grouped by munici-397

palities in Mexico, and this is the lowest level with data on population density. The municipalities398

on the horizontal axis are sorted by population density, and the cumulative population is shown on399

the vertical axis. We can note that half of the population lives in areas with a population density400

lower than 400 inhabitants per square kilometer (inh/km2). Three-quarters of the population lives401

in a territory with a population density lower than 2,000 inh/km2, and the remaining population402

(25%) lives in a territory between 2,000 to 17,624 inh/km2. In this context, we designed a logarith-403

mic function with high sensitivity to low population density rates (e.g. 1-2000 inh/km2), but that404

includes the entire threshold values of the population density rates. The coverage radius decreases405

as the population density increases, but in a logarithmic decrease.406

The function to estimate a variable coverage radius is presented in Equation (20). The graphical407

representation of the coverage radius function applied to the municipalities of Mexico is shown in408

Figure 4. The function is adjusted based on a minimum and a maximum coverage radius. These409

limits are adjusted in a range of population density rates (δmin, δmax). Two coefficients that depend410

on the previous parameters must be determined to adjust the function.411

The notation in the equations is the following:412
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Figure 3: Classification of municipalities according to the population density.

rj Variable coverage radius of location j.413

rmax Maximum coverage radius.414

rmin Minimum coverage radius.415

δj Population density of location j.416

δmax Maximum population density.417

δmin Minimum population density.418

α Exponent value of the logarithm calculated by Equation (18).419

β Adjustment coefficient calculated by Equation (19).420

α =
rmax − rmin

log10(δmax)− log10(δmin)
(18)

β = log10(δmax)
α + rmin (19)

rj = β − log10(δj)
α (20)

For experimental purposes, the values of some parameters were fixed. The minimum and max-421

imum population densities were based on the population density of Mexico (2020). The minimum422

coverage radius was taken from the average distance of HCUs in Mexico City because it is the423

most populated city with the largest number of HCUs. The maximum coverage radius was set to424
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Figure 4: Graphical representation of the coverage radius.

30 km because this distance is reachable in rural areas of Mexico. The parameters α and β were425

calculated with Equations (18) and (19), respectively. The values of all these parameters are the426

following:427

rmin = 2km; δmin = 0.11 inh./km2;

rmax = 30 km; δmax = 17, 624 inh./km2;

α = 5.36; β = 24.76.

In the case of partial coverage, the coverage radius must be extended to a secondary coverage428

radius. In this case, limits were set as follows:429

lj = rj

uj = 2lj .

The secondary coverage radius of a HCU for the most populated areas is nearly 4 km, and for430

the least populated areas is 60 km.431

4.3 The effect of the collaboration among institutions432

Parameter λq is critical because it determines the coverage degree of a given site of institution q433

for the beneficiaries of other institutions. For instance, λq = 0 means that HCUs cannot cover434
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beneficiaries of other institutions, λq = 0.5 means that only half of the beneficiaries of other435

institutions can be covered, and λq = 1 means that all the beneficiaries of other institutions are436

covered. In the following experiment, we calculated the coverage level of the existing HCUs using437

different values of λq. In this case, we fixed the same value for all the institutions. Table 6 shows438

these coverage levels using λq equal to 0, 0.25, 0.5, 0.75, and 1 for each institution. For each439

value of λq, there is a column (Gb) that represents the global demand coverage in the system. The440

covered demand includes all the beneficiaries of the fully covered demand points and the proportion441

of beneficiaries in the partially covered demand points. As we can see, the percentage of demand442

covered increases in all the services as the value of λq increases. If we compare the difference in443

the global demand coverage between λq = 0 and λq = 1, the coverage increase is 13%, 12%, 12%,444

and 13% for each service, respectively. These values represent the maximum effect on the coverage445

when collaboration between institutions is done. The most benefited institution is I3, with an446

increase of up to 46% in demand coverage for S2. Table 7 is similar to Table 6, but instead of447

showing the demand level, this table shows the percentage of demand points (fully or partially)448

covered for each value of λq. The percentage of additional demand points covered from λq = 0 to449

λq = 1 is 31%, 31%, 27%, and 20% for each service, respectively. The coverage increase is more450

significant in the number of demand points than the percentage of demand covered. This happens451

because many demand points with low demand levels are currently not covered by the own HCUs452

of each institution. Another observation is that, for instances with λq = 0, the problem to solve453

could be split into multiple problems equivalent to NSLP because there is no interaction between454

institutions. If λq = 1, one single problem using NSLP could be used because there is no distinction455

between the institution to which each HCU belongs and the others. In the case of the experiments456

in the following sections, we fixed λq = 0.5 for all the institutions.457

Table 6: Percentage of demand covered with different levels of λq by institution.

λq = 0 λq = 0.25 λq = 0.5 λq = 0.75 λq = 1
Service I1 I2 I3 Gb I1 I2 I3 Gb I1 I2 I3 Gb I1 I2 I3 Gb I1 I2 I3 Gb

S1 80 71 46 74 80 75 56 76 81 79 67 79 82 84 79 83 83 91 91 87
S2 75 70 45 71 76 73 55 74 76 78 66 76 77 83 78 79 78 90 91 83
S3 67 73 46 68 68 75 56 70 69 78 66 73 71 82 76 76 74 87 88 80
S4 53 68 48 59 55 70 55 61 57 74 63 64 60 78 72 68 63 83 81 72

Table 7: Percentage of demand points covered with different levels of λq by institution.

λq = 0 λq = 0.25 λq = 0.5 λq = 0.75 λq = 1
Service I1 I2 I3 Gb. I1 I2 I3 Gb. I1 I2 I3 Gb I1 I2 I3 Gb I1 I2 I3 Gb

S1 78 31 17 51 80 83 85 82 80 83 85 82 80 83 85 82 80 83 85 82
S2 73 28 18 47 75 80 82 78 75 80 82 78 75 80 82 78 75 80 82 78
S3 64 30 16 43 67 73 74 70 67 73 74 70 67 73 74 70 67 73 74 70
S4 43 26 16 32 48 55 56 52 48 55 56 52 48 55 56 52 48 55 56 52

18



4.4 Evaluating different levels of collaboration (λq)458

The objective of this experiment is to assess the impact of collaboration among institutions on the459

benefit in the demand coverage. This benefit is obtained from the objective function value of the460

introduced problem. In the mathematical model, collaboration is defined by parameters λ1, λ2,461

and λ3 for institutions I1, I2, and I3, respectively. We evaluate the benefit in the demand coverage462

for different values of λ1, λ2, and λ3. In this case, we use 0.0, 0.5, and 1.0 for each institution463

resulting in 27 distinct solutions. The service S1 was used for this analysis with a fixed number464

of new sites set at one hundred for each institution. Table 8 shows the results that correspond to465

the benefit in the demand covered in the system (in millions of people) for each solution. Notably,466

the highest benefit is observed when all parameters are set to one, representing full collaboration467

between institutions. In the other hand, the lowest benefit is observed when all parameters are set468

zero, representing no collaboration. The average of the solution for each value of λ1 are shown in469

the last column, for λ3 are shown in the last row, and for λ2 are 20.7, 20.5, and 23.9 for 0.0, 0.5,470

and 1.0, respectively. Comparing these averages, we note higher benefit when λ2 and λ3 are close471

to 1.0, while the least favorable outcomes occur when these parameters are set to 0.5, particularly472

when λ1 is also 0.5 or 1.0. With this experiments, we observe a clear relation between collaboration473

levels and the benefit in the demand coverage obtained from the model solution.474

Table 8: Benefit in demand coverage for different levels of λq.

λ3

λ1 λ2 0.0 0.5 1.0 Average
0.0 19.2 20.1 22.9

0.0 0.5 19.5 20.4 23.1 21.5
1.0 21.6 22.5 24.2
0.0 19.5 20.5 23.2

0.5 0.5 19.9 16.0 23.5 21.3
1.0 22.0 22.8 24.5
0.0 20.6 21.7 23.9

1.0 0.5 21.1 16.5 24.2 22.2
1.0 22.9 23.7 25.1

Average 20.7 20.5 23.9

As a subsequent analysis, we explored whether the contribution of each institution to the benefit475

in demand coverage obtained with the solutions are influenced by the collaboration level of the476

institutions and the interaction between them. Utilizing a factorial analysis of 33, we systematically477

investigated the effects of λ1, λ2, and λ3 on the contribution (as a percentage) of each institution478

to the benefit in demand coverage. For example, in a given solution I1 contributes in 44% in the479

total value of the objective function, I2 to 42% and I3 contributes in the remaining 14%. We480

used the results of the previously tested instances to evaluate three factorial models, one for each481

institution. The factors considered were the values of λ1, λ2, and λ3, while the response variable482

was the contribution made to the objective function by each institution. With a confidence level483
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of 95%, our findings revealed that changes in the values of λ1, λ2, and λ3 significantly impacted484

the contribution of I1 and I3 to the benefit in demand coverage, with similar results observed.485

However, changes in the values of λ3 did not yield a significant change in the contribution of I2486

to the benefit in demand coverage. Moreover, no significant interactions between factors were487

observed. Importantly, the analysis adhered to normality assumptions, ensuring the reliability of488

our conclusions. Figure 5 illustrates the effect of collaboration levels on the contribution of each489

institution, excluding λ3 for I2 due to its lack of significant effect. Notably, for all the institutions,490

the contribution decreases as its associated λq increases, while the contribution increases with higher491

values of other institutions. We conclude that the collaboration level of each institution affects the492

contribution to the benefit of demand coverage in the system. However, these results should be493

considered with reservation since they are specific to these proven instances.494

Figure 5: Average effect of λ1, λ2, and λ3 in the percentages of contribution to the objective
function for each institution.

4.5 Evaluating different types of candidate sites495

The SLP can be used in two cases. The first case is to select between candidate locations (NA)496

where new HCUs will be installed. For instance, in the case of pediatrics and gynecology, it is497

very frequent to build specialized HCUs where only one type of service is provided. In the other498

case, the service can be installed in HCUs that currently do not provide service. In this case, the499

candidate sites only include a set of potential HCUs (NB) where the service can be installed. In500

this experiment, we evaluate these two cases for the selected services. The aim is to compare the501

impact on the demand covered in each case. In all the instances, the problem was optimally solved502

in less than one hour with an average computing time of 1,075 seconds when NA was used and 50503

seconds when NB was used.504

Table 9 shows the additional covered demand for each institution, the additional total demand505

covered, and its percentage of the total demand for each case. The second column shows the506

number of new sites selected for each institution. For instance, P k = 1 means that one new site507
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Table 9: Additional demand coverage in thousand of inhabitants evaluating two types of candidate
sites with λq = 0.5.

With candidate locations (NA) With candidate HCUs (NB)
Services P k I1 I2 I3 Total (%) I1 I2 I3 Total (%)

S1 1 186 344 11 541 1.1 5 154 0 159 0.3
2 233 532 50 815 1.6 65 211 2 279 0.6
3 291 687 77 1,055 2.1 66 287 2 355 0.7
4 351 829 104 1,284 2.6 74 327 12 413 0.8
5 402 974 110 1,485 3.0 98 348 14 460 0.9

S2 1 159 293 9 461 1.3 56 53 2 111 0.3
2 251 397 10 658 1.8 134 57 3 195 0.5
3 325 498 12 835 2.3 178 68 7 252 0.7
4 364 600 34 998 2.7 231 69 8 307 0.8
5 414 679 36 1,129 3.1 276 69 8 353 1.0

S3 1 590 1,007 33 1,631 1.4 167 159 5 331 0.3
2 975 1,585 66 2,627 2.2 359 238 17 614 0.5
3 1,230 1,981 155 3,367 2.8 586 283 18 888 0.7
4 1,455 2,271 200 3,927 3.3 788 314 22 1,124 0.9
5 1,661 2,572 218 4,451 3.7 967 314 22 1,304 1.1

S4 1 613 1,180 35 1,829 1.5 37 312 1 350 0.3
2 1,031 1,784 70 2,885 2.4 88 592 5 686 0.6
3 1,518 2,118 96 3,732 3.1 256 751 11 1,018 0.8
4 1,910 2,416 107 4,433 3.7 459 835 23 1,317 1.1
5 2,157 2,718 174 5,049 4.2 689 885 27 1,601 1.3

was opened for each institution. As can be seen, there is a higher impact on the demand coverage508

when the service is installed on new locations (NA). On average, the covered demand when the509

service is installed in new locations is 3.5 times greater than considering existing HCUs to install510

the service. These results are intuitive because most of these HCUs are installed in urban areas511

where other HCUs already cover the region. On the other hand, the set of candidate sites considers512

places where no other HCUs are already installed.513

Tables 10 and 11 show detailed results about the demand covered and demand points inside514

the secondary coverage radius for the instances with P k = 5 for each service, considering the set515

of candidate sites NA. In Table 10, the second column shows the percentage of demand currently516

covered by the existing HCUs that supply the service. The third column shows the percentage517

of demand covered with the new sites. The fourth column shows demand that was not covered,518

but is in the secondary coverage radius of a candidate site that was not selected. Finally, the last519

column gives the demand that cannot be covered because there are no candidate sites near them.520

This demand is scattered in areas with low infrastructure requirements to build new sites. Table521

11 has the same data, but refers to the number of partially or fully covered demand points. As we522

can see in the results, with the new sites, the percentage of demand covered ranges between 3.0%523
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and 4.2% for the analyzed services. The number of new demand points covered was lower, between524

0.4% and 1.8%. However, there are many demand points that an existing HCU already covers, but525

the new ones help to improve the coverage level. More candidate sites can be considered in the526

problem to reduce the demand and demand points out of reach, but this increase the complexity527

of the problem. This is analyzed in Section 4.7.528

Table 10: Classification of demand for solutions with P k = 5 and λq = 0.5.

Service Currently covered Newly covered Not covered Out of reach
(%) (%) (%) (%)

S1 79.2 3.0 9.8 8.0
S2 76.3 3.1 10.6 10.0
S3 72.7 3.7 12.5 11.2
S4 63.9 4.2 13.0 18.8

Table 11: Classification of demand points for solutions with P k = 5 and λq = 0.5.

Service Currently covered Newly covered Not covered Out of reach
(%) (%) (%) (%)

S1 82.1 0.4 11.7 5.9
S2 78.1 1.4 12.0 8.5
S3 70.4 1.1 15.4 13.1
S4 52.0 1.8 32.3 13.9

4.6 Solving the problem at different clustering levels529

In the case of Mexico, the government is divided into three hierarchical levels: federal, state, and530

municipal authorities. Although health care institutions have federal jurisdiction, some planning531

decisions are just analyzed considering only local impact because some resources come from local532

governments. In this experiment, we evaluate the effects on the demand coverage when federal533

states independently do the location of new sites. In the other case, the same number of new sites534

is selected, but as a single territory composed of all federal states. In both cases, demand points535

are partially or fully covered without considering if they belong to the federal state where the site is536

located. In the first case, additional constraints to ensure that each institution selects one new site537

in each of the 32 federal states are considered, and in the second case, 32 new sites were selected538

by each institution, considering all the federal states. Then, another experiment was also done by539

dividing the country into eight regions, as shown in Figure 6. Each institution can select a new540

site by region in the first case, and in the second one, eight new sites can be selected as a whole by541

institution.542

In these experiments, all instances were optimally solved in less than one hour of computing543

time with an average of 1,016 seconds. In Table 12, we can see the percentage of demand and544

demand points covered by each service in each case, considering the existing HCUs that supply the545
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Figure 6: Map of Mexico divided into 8 regions and 32 federal states.

service. We can observe that more demand was covered in both instances where the problem was546

solved as a whole system. In the case of the federal states, the percentage of additional demand547

covered is 2.3%, 2.4%, 2.7%, and 3.4% for each service, respectively. In the case of the regions, the548

percentages are 0.9%, 0.8%, 1.1%, and 1.3% for each service, respectively. This consistency was549

not found in the number of additional demand points covered. In the case of the federal states,550

the number of additional demand points covered was also increased, but in the case of the regions,551

the number of demand points was reduced. Finally, in the case of federal states, we detected that552

in the second case there were no chosen sites in 9 out of 32 federal states, and 22% of the selected553

sites were concentrated in a single federal state. In the case of regions, 4 out of 8 regions have a554

selected site installed in the second case, and 42% of new sites were concentrated in a single region.555

Table 12: Demand coverage for different clustering levels.

Demand covered (%) Demand points covered (%)
S1 S2 S3 S4 S1 S2 S3 S4

By federal states
1 site by state (32 states) 84.2 81.3 78.8 70.8 85.3 82.4 76.3 58.9
32 new sites as whole 86.4 83.7 81.5 74.3 85.4 83.3 76.6 61.0

Difference 2.3 2.4 2.7 3.4 0.0 0.9 0.3 2.1

By regions
1 site by region (8 regions) 82.3 79.4 76.4 68.2 83.2 80.3 73.4 55.1

8 new sites as whole 83.2 80.2 77.5 69.5 82.8 80.1 73.0 54.9
Difference 0.9 0.8 1.1 1.3 -0.3 -0.2 -0.4 -0.2
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4.7 Handling larger problem instances556

The goal of this experiment is find out the size of the instances that can be solved with the present557

model by using off-the-shelf branch and bound methods. To this end, we tested instances of larger558

size by increasing the number of candidate sites and the number of these sites that are selected for559

installing the service. We evaluate the performance of the branch-and-bound algorithm of CPLEX560

in one hour of CPU time. In Table 13, we consider three types of candidate sites for each service.561

The candidate sites were chosen based on the population size of each demand point. For type A,562

the candidate sites are demand points with 10 thousand inhabitants or higher, for type B, demand563

points with at least 7.5 thousand inhabitants or higher; and for type C, demand points with more564

than 5 thousand inhabitants. The specific number of candidate sites for each service of each type565

is shown in the third column. For the three types, the number of candidate sites to be selected566

(
∑

k∈K P k), including all institutions, was ranged between 150 to 1500 sites, as seen in the table.567

The same number of site to be selected was fixed for each institution. This table shows the CPU568

time in hours and the optimality gap where ϵ denotes a very small value. The CPU time is lower569

than one hour when the optimal solution is found, and the optimality gap is higher than zero when570

the time limit is reached. We can observe that all instances of type A were optimally solved, 4 out571

of 24 instances of type B were not optimally solved, two of them with very bad solutions, and none572

of the instances of type C were optimally solved having very high bad solutions. In general, more573

candidate sites improve the demand coverage, but this leads to larger models that cannot be solved574

efficiently. Table 14 shows the number of demand points, decision variables, and constraints of the575

tested instances of type A, B, and C of each service to compare each type of instance. Clearly, our576

model is still useful for solving type A and mostly type B instances. For the remaining, heuristic577

procedures must be developed.578

Table 13: Optimal solutions and relative gaps for different instance sizes.

CPU time (h) Optimality gap (%)
Service Type Selected sites Selected sites

Candidate Sites (N) 150 300 600 900 1200 1500 150 300 600 900 1200 1500
S1 A 2,567 0.2 0.2 0.3 0.2 0.2 0.2 0 0 0 0 0 0
S2 A 2,564 0.2 0.2 0.3 0.3 0.3 0.2 0 0 0 0 0 0
S3 A 2,584 0.5 0.6 0.5 0.5 0.5 0.4 0 0 0 0 0 0
S4 A 1,948 0.4 0.4 0.4 0.4 0.3 0.0 0 0 0 0 0 0

S1 B 3,566 0.7 0.7 0.6 0.6 0.7 0.6 0 0 0 0 0 0
S2 B 3,563 0.8 0.7 0.7 0.8 0.7 0.7 0 0 0 0 0 0
S3 B 3,583 0.9 0.9 1.0 1.0 1.0 1.0 0 0 0 0 ϵ 0
S4 B 2,865 1.0 1.0 1.0 1.0 1.0 0.9 94 22 90 9 0 0

S1 C 5,628 1.0 1.0 1.0 1.0 1.0 1.0 94 93 91 93 93 92
S2 C 5,625 1.0 1.0 1.0 1.0 1.0 1.0 97 97 95 94 93 91
S3 C 5,645 1.0 1.0 1.0 1.0 1.0 1.0 98 97 95 94 94 92
S4 C 4,823 1.0 1.0 1.0 1.0 1.0 1.0 98 97 97 95 94 93
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Table 14: Number of decision variables and constraints.

Set type Service Demand points Variables Xk
ij Variables Yj Constraints

A S1 66,101 1,001,927 2,584 1,135,074
S2 39,294 916,046 2,564 1,030,551
S3 26,266 909,109 2,567 1,015,888
S4 112,736 824,292 1,948 972,697

B S1 66,101 1,480,171 3,583 1,623,672
S2 39,294 1,354,615 3,563 1,481,030
S3 26,266 1,344,892 3,566 1,464,878
S4 112,736 1,278,091 2,865 1,436,020

C S1 66,101 2,528,672 5,645 2,686,454
S2 39,294 2,334,235 5,625 2,476,849
S3 26,266 2,314,642 5,628 2,452,506
S4 112,736 2,325,933 4,823 2,498,808

4.8 Evaluating new services in existing HCUs579

In some cases, temporary services must be activated in the HCUs networks to face sanitary emer-580

gencies, as with the Covid-19 pandemic. In this experiment, we consider only the HCUs that belong581

to the Ministry of Health to identify which HCUs to install a new service to maximize the demand582

coverage solving NSLP with CPLEX. There are, in total, 774 candidate sites to install the service.583

The population at each demand point was used as the demand. There are, in total, 189,280 demand584

points, but only 150,357 can be entirely or partially covered. Figure 7 shows the percentages of585

demand and demand points covered with each solution varying the number of new sites (p). These586

percentages were calculated based on the total population and total demand points in Mexico. For587

instance, with five new sites, only 9% of the population was covered, and with 100 new sites, 56%588

of the population was covered. If the service is installed on every candidate site, the maximum589

percentage of demand covered is nearly 86% of the total population. As we can see in the plot, the590

portion of demand covered has a logarithmic behavior. It becomes more challenging to cover the591

remaining demand because the best sites to improve the coverage were already selected. The set of592

candidate sites can cover fully or partially a maximum of 41% of demand points and the behavior of593

demand points covered is more linear in the range between 5 to 550 new sites. Finally, a graphical594

representation of the solution for P = 100 new sites is shown in Figure 8. In this solution, 56% of595

demand was covered, and 7.6% of demand points were inside the secondary coverage radius of a596

selected site. Figure 9 shows a detailed visualization of the central region in the left-hand side plot597

where most of the population is concentrated and 66 out of 100 candidate site was selected in this598

region. The northeast region of Mexico is shown in the right-hand side figure where only thirteen599

candidate sites were selected.600
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Figure 7: Demand covered according to the number of new sites.

5 Conclusions601

In this paper, we revisited the MCLP with partial coverage and proposed an extension to solve the602

problem of locating SHCS in a multi-institutional network. This model is motivated by the need603

to improve access to these services in developing countries. A decay function based on two critical604

coverage bounds for partial coverage is employed. A logarithmic function is proposed to determine605

the coverage radius of each candidate site based on the population density of the area where the606

new facilities can be installed. Since many sites are currently operating the services, the problem607

is improving the demand coverage. Therefore, for each demand point, the additional benefit in the608

coverage must be determined before solving the problem.609

The case study, based on real-world data from the Mexican Health Care System, revealed610

interesting results. Four second-level services were evaluated with the model to locate additional611

sites to improve the current coverage. One contribution is the integration of multiple institutions612

in the demand coverage. If the collaboration between institutions is done, the additional covered613

demand could be increased between 12% and 13% for the analyzed services. As the percentage614

of collaboration decreases, this percentage is also reduced, but it still significantly impacts the615

coverage and access to these services.616

Two choices for installing new services were evaluated: installing services in existing HCUs617

that currently do not supply the service and building new facilities. We found that the additional618

demand covered increased to 3.5 times the demand covered when new sites were considered. Even619
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108 millions of beneficiaries

Figure 8: Map with the solution for p = 100.

though it is cheaper and easier to install the service in existing HCUs, there is no significant620

contribution from the access point of view since these HCUs are located in cities where other HCUs621

are already operating. Therefore, new sites are required to improve access to these services.622

In the case of Mexico, this type of planning is done locally on some occasions; even the insti-623

tutions have federal jurisdiction. Therefore, we evaluate the effect on the coverage when the new624

locations are selected by each federal state and then as a whole system. We found that the addi-625

tional demand coverage is between 2.7% and 4% when the planning is done as an entire system. In626

a second analysis, comprehensive planning was compared against regional planning. In this case,627

comprehensive planning was found better, showing improvements between 1.0% and 1.9%.628

The models developed in this paper can also be used to face emergency issues. For instance,629

opening temporary modules to deal with health emergencies or vaccination campaigns in which630

access is one of the most important factors for planning. In this experiment, it was observed631

that installing some new services in existing HCUs was advantageous. The impact on the demand632

coverage is higher for the first new sites chosen because the remaining uncovered demand points633

have lower demand levels and are scattered on the territory.634

There are various possibilities for future research on this problem. As part of upcoming in-635

vestigations, including capacity constraints in service provision and addressing congestion using636

queuing theory can significantly help in dealing with the evolving challenges in public health care637

service delivery. Another aspect to consider is integrating multiple second-level services into one638
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(a) Zoom on the central region. (b) Zoom on the north region.

Figure 9: Zoom on the solution for p = 100.

single location problem. Incorporating hierarchical structures into the model is essential because639

primary HCUs serve as the primary contact point for a substantial portion of the demand directed640

toward second and third-level specialized hospitals. Financial limitations in the public sector can be641

considered by introducing a budget constraint to the problem. Considering joint coverage among642

HCUs can help expand service coverage. For instance, hospitals without operating rooms may643

still offer specialized outpatient services. Integrating all these features into a single problem and644

exploring alternative solution methods like metaheuristic algorithms could be a valuable avenue for645

future exploration.646
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L. Ávila-Burgos. Análisis y reflexiones sobre la iniciativa de reforma a la ley general de salud776
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