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Abstract

In this work, we present a dual bounding scheme for a commercial territory design problem. This
problem consists of finding a p-partition of a set of geographic units that minimizes a measure
of territory dispersion, subject to multiple balance constraints. Dual bounds are obtained using a
binary search over a range of coverage distances. For each coverage distance a Lagrangian relaxation
of a maximal covering model can be used effectively. Moreover, empirical evidence show that the
bounding scheme provides tigher lower bounds than those obtained by the linear programming
relaxation. To the best of our knowledge, this is the first study about dual bounds ever derived for

a commercial territory design problem.

Keywords: Commercial territory design; Discrete location; Lagrangian relaxation; Dual bounding

scheme.



1 Introduction

Territory design can be viewed as the problem of grouping small geographical areas, called basic
areas, into larger geographic clusters called territories according to specific planning criteria. These
problems arise in different applications such as political districting (Garfinkel and Nemhauser [16],
Hess et al. [22], Hojati [23], Ricca and Simeone [35], Mehrotra et al. [30], Bozkaya et al. [2]) and sales
territory design (Shanker et al. [43], Zoltners and Sinha [45, 46], Fleischmann and Paraschis [13],
Drex] and Haase [8], Hess and Samuels [21]) to name the most relevant. An extensive survey on
general territory design problems and their approaches can be found in Kalcsics et al. [25] and
Duque et al. [9].

The problem addressed in this paper is motivated by a concrete practical application from
a local beverage firm. To improve customer supply, the company needs to divide the set of city
blocks (or basic units) in the city area into a specific number of disjoint territories. In particular, the
planning requirements considered in this problem are territory compactness and territory balancing
with respect to two activity measures present at every basic unit. The former criterion means that
customers within a territory are relatively close to each other while the latter requirement refers
to creating territories of about equal size in terms of both number of customers and product
demand. This problem can be classified as a comercial territory design problem (TDP) for which
related versions under different requirements have been adressed in literature from both exact and
heuristic approaches.

Typically, the problem is modeled as minimizing a dispersion measure subject to satisfy some
planning requirements such as connectivity and territory balancing. The connectivity requirement
implies that basic units (BUs) that are assigned to the same territory must reach each other by
travelling within the territory. Depending on how the dispersion measure objective is chosen, we
can further clasify these TDP models as p-median TDPs (PMTDP) and p-center TDPs (PCTDP).
The former uses a minisum objective function while the latter uses a minimax objective function.
Heuristics methods have been developed for both different versions PCTDPs and PMTDPs.

Rios-Mercado and Ferndndez [36] introduced the PCTDP subject to connectivity and multiple
balancing constraints. They propose a Reactive GRASP to solve the problem. Their proposed
approach obtained solutions of much better quality (in terms of dispersion measure and the balancing
requirements) than those found by the company method in relatively fast computation times.

Later, Caballero-Hernéndez et al. [3] study other version of the commercial PCTDP model that
includes additional joint assignment constraints which means that some units are required to belong
to the same territory. In that work, the authors develop a metaheuristic solution approach based
on GRASP. Experimental results show the effectiveness of their method in finding good-quality
solutions for instances up to 500 BUs and 10 territories in reasonably short computation times.

Particulary, a very good performance is observed within the local search procedure, which produces



an improvement of about 90 percent in solution quality. Rios-Mercado and Salazar-Acosta [38]
address an extension of the TDP that considers requirements about design and routing in territories.
In contrast to the TDP variations above described, the authors use network-based distances between
basic units (instead Euclidean distances) and a diameter-based function to measure territory
dispersion. To solve this problem, the authors proposed a GRASP that incorporates advanced
features such as adaptive memory and strategic oscillation. Empirical evidence show that the
incorporation of these two components into the procedure had a very positive impact on both
obtaining feasible solutions and improving solution quality.

Salazar-Aguilar et al. [39] present an exact optimization framework based on branch and bound
and cut generation for tackling relatively small instances of several TDP models. Particulary, they
studied both, the PCTDP and PMTDP models. They can successfully solve instances of up to 100
BUs for the PCTDP and up to 150 BUs for the PMTDP. The authors also propose new integer
quadratic programming TDP models that allowed to eficiently solve larger instances by commercial
MINLP solvers such as DICOPT [27]. For IQPs models, they obtained locally optimal solutions
for instances with up to 500 BUs and 12 territories. Rios-Mercado and Lépez-Pérez [37] and
Lépez-Pérez and Rios-Mercado [28] address a commercial TDP with additional side constraints
such as disjoint assignment requirements and similarity with existing plan. In their work, they
assume a fixed set of centers, and present several heuristic algorithmic strategies for solving the
allocation phase.

Recently, a bi-objective TDP model was introduced by Salazar-Aguilar et al. [40], where an
e-constraint method is developed for tackling small- to medium- scale instances from an exact
optimization perspective. In that work, two different measures of dispersion are studied, one based
on the p-center problem objective and the other based on the p-median objective model. It had
shown how the latter has a tighter LP relaxation that allowed to solve larger instances. The
proposed method was successful for finding optimal Pareto frontiers on instances from 60 up to
150 BUs and 6 territories. It was also clear that larger instances were indeed intractable, thus
justifying the use of heuristic approaches proposed by Salazar-Aguilar et al. in [41] and [42]. In
these works, the authors address the development of GRASP and Scatter Search (SS) strategies
to handle considerably large instances. These proposed heuristic procedures outperformed two
of the well-known and most successful multiobjective algorithms in the field, the Non-dominated
Sorting Genetic Algorithm (NSGA-II) by Deb et al. [7] and the Scatter Tabu Search Procedure for
Multiobjective Optimization (SSPMO) by Molina et al. [32].

As it can be seen, from literature, practically all of the work on commercial territorial design has
focused on developing heuristics for finding good feasible solutions to large instances in reasonable
times due the well established NP-completness of both PCTDP and PMTDP [36, 39]. However,
thus far, the quality of the solutions obtained by these heuristic methods has not been properly

evaluated since the quality of the lower bound provided by the linear programming relaxation



of TDP models is very poor. Furthermore, there is no other quality reference to acomplish this
issue. To the best of our knowledge, no dual bounding schemes have been developed for any of
the comercial TDP models found in the literature. It is worth mentioning that besides being
usefull in evaluating the quality of heuristic solutions, dual bounds are also the foundations in the
development of exact solution methods.

Therefore, the main contribution of this work is the introduction and development of the first
dual bounding scheme for a comercial territory design problem. The TDP addressed here considers
balance and compactness requirements. This scheme is motivated by exact solution methodologies
already found in literature for related location problems, where the main idea is to generate and
solve a set of auxiliary problems. Particulary, Albareda-Sambola et al. [1] propose a successful
exact solution method for the capacitated p-center problem (CpCP) that involves a procedure for
obtaining lower bounds for this problem. The bounding procedure developed in [1] is not quite
applicable for our problem; however, given the strong similarities, one of the goals of this paper is
to extend this bounding procedure to handle multiple balancing constraints.

The proposed algorithm performs a binary search over a specific set of covering radii extracted
from the distances matrix and solves for each of them a Lagrangian dual problem based on a
maximal demand covering problem. The evaluation of this dual problem for a given radious J can
determinate, under certain conditions, whenever such covering radious is a dual bound for TDP. An
empirical study was carried out on a collection of data instances. The results show the effectiveness
of the developed scheme as it considerably outperforms the linear programming relaxation dual
bound.

The paper is structured as follows. Section 2 defines the problem formally and describes the
mathematical formulation. Section 3 presents the dual bounding scheme and each of its components.
Experimental work is included in Section 4. Finally, conclusions and some final remarks are drawn

in Section 5.

2 Problem description

Let V be a set of nodes or basic units (BUs) representing city blocks. Let w{ be the measure
of activity a in block i, a € A = {1,2} where a = 1 denotes number of customers and a = 2
denotes product demand. Let d;; be the Euclidean distance between each pair of basic units ¢ and
j. The number of territories is given by p. A territory design configuration is a p-partition of the
set V. Let w(Vy) = ;e wi the size of territory V3, € V with respect to activity a. A solution
to this problem must have balanced territories with respect to each activity. Due to the discrete
nature of the problem and to the unique assignment constraints, it is practically impossible to get
perfectly balanced territories. Thus, in order to address this issue, a tolerance parameter 7% for

each activity a is introduced. This tolerance parameter is user specified and it represents a limit



on the maximum deviation allowed from an ideal target allowed. This target value is given by the
average size u® = w*(V)/p. Finally, in each of the territories, basic units must be relatively close
to each other. To account for this, in this work we use a dispersion function based on the p-center
problem objective.

All parameters are assumed to be known with certainty. Therefore the problem can be formally
described as finding a p-partition of a set V' of basic units that meets multiple balance constraints

and minimizes a dispersion measure.

2.1 Integer programming formulation

To state the model mathematically, we define the following notation.

Indices and sets
V= set of BUs,
A := set of BUs activities,

i,7 = BUsindices; i,j € V ={1,2,...,n},

a := activity index; a € A = {1,2}.
Parameters
n  := number of BUs,
p := number of territories,
w{ := value of activity a in node 7; i € V, a € A,
d;; := Euclidean distance between ¢ and j; 7,5 € V,
7% := relative tolerance with respect to activity a; a € A, 7@ € [0, 1].
p® = w*(V)/p, average (target) value of activity a; a € A.

Although the practical decision does not require to place facilities on centers as it is done in
locations problems, we used binary decision variables based on centers because they allowed to

model territory dispersion appropiately.

Decision variables

1 if BU j is assigned to territory with center in BU i,
Ty =
N 0 otherwise.



With this notation our commercial TDP can be formulated as the following MILP:

(TDP)  Minimize flz) = inj}zeué{dijxij} (1)
subject to inj = 1 jev, (2)
2%
Z Ty = D, (3)
2%
Z wizg > (1=7"pzy i€ Via€A, (4)
jev
Z wizg < (1+7%uzy i€ Via€A, (5)
jev
Tij; € {O, 1} 1,5 € V. (6)

Objective (1) measures territory dispersion. Constraints (2) guarantee that each basic unit
Jj is assigned to only one territory. Constraint (3) assures the creation of exactly p territories.
Constraints (4)-(5) represent the territory balance with respect to each activity measure as they
ensablish that the size of each territory must lie within a range (measured by a tolerance parameter
7%) around its average size (u®). Moreover, the upper bound balancing constraints (5) also ensure
that if no center is placed at 7, no customer can be assigned to it (i.e., z;; = 0= x;; =0, Vi,j € V).
Finally, constraints (6) define the binary nature of the decision variables.

The model can be viewed in terms of integer programming as a vertex p-center problem
with multiple capacity constraints (5) and with additional constraints (4). Given that even the
uncapacitated vertex p-center problem is NP-hard [26], it follows that our commercial TDP is also
NP-hard. Our model is derived from the model introduced by Rios-Mercado and Ferndndez [36]

that includes additional planning requirements.

3 Dual bound framework

The bounding framework proposed in this work follows the methodology that underlies a wide range
of successful exact and approximate solution approaches for p-center problems. These problems
are most often solved through generation and solution of a sequence of auxiliary problems that
keep a strong structural relation with the p-center problem and assure an optimal solution to the
original problem. In this case, the use of an auxiliary problem allows achieve the same goal through
simplest equivalent formulations. Different auxiliary problems have been proposed, mostly related
to coverage problems such as the set covering problem (Toregas et al. [44]) and the mazimal covering
problem (Church and ReVelle [4]). Then, successful techniques for p-center problem use a common
principle, to perform an iterative search over a range of coverage distances seeking for the smallest

radius such that the optimal solution of the associated auxiliary problem provides a feasible solution



to the p-center problem. Representative works for uncapacitated p-center problem can be found
in Minieka [31], Daskin [5, 6] and Elloumi et al. [10]. For the capacitated version (CpCP), which
has been less studied, Ozsoy and Pinar [34] and Albareda-Sambola et al. [1] propose exact solution
algorithms where the latter presents the best results so far. In [1], they addressed two auxiliary
problems (arising from both set and maximal covering problems) and analize two different strategies
for solving exactly CpCP, based on binary search and sequential search, respectively. Given that
the CpCP is a substructure of the TDP model, this paper exploits the knowledge generated in [1]
for deriving dual bounds for the TDP.

In order to introduce the proposed scheme, we highlight the following remarks from the TDP

formulation discused in the previous section.

Remarks

o Let D = {do,dy,...,dy,, } be the set of the ky.x different values of the distance matrix D =
(d;j) sorted by non-decreasing values (dy < di < ... <dy,.. ), and let K ={0,1,...,knax} be
the corresponding index set in D. Given the nature of the objective function, which minimizes
the maximum distance between a basic unit and the territorial center to which it is assigned,

it can be seen that the optimal value of TDP is an element of D.

o If dj- is the optimal value of TDP for some index k* € K, note that any dj, € D with k < k*
(k > k*) is a lower (upper) bound of the optimal value djx.

Therefore, the algorithm relies on an iterative search procedure that attempts to find the best
lower (dual) bound by exploring the set of distances in D. At each iteration, it sets a threshold
distance which is used as the coverage radius of an associated covering problem. This auxiliary
problem allows to determine when it is not possible to assign all basic units into p or less territories
within such radius, yielding therefore a valid dual bound on the optimal value of TDP. In this

section we detail the components of this dual bounding procedure.

3.1 The maximum demand covering problem

From the TDP, we derive an auxiliary problem which gives an answer as to whether we can assign
all basic units within a certain radius § into at most p territories, the mazrimum demand covering
problem (MDCPygs). This problem operates with a fixed maximal distance 0 known as covering
radius and considers the objective of maximizing the total amount of covered demand when at
most p territorial centers are located. This auxiliary problem can be seen as an extension of a
well-known problem from location optimization literature, the maximal covering location problem

(MCLP) [4], as we consider additional capacity constraints (4)-(5).



To formulate the model we will use the following additional notation:

L;(j) = {’L'GVZdijgé},
Js(i) = {jeV:dy <6},

59— e, 3 s
J€Js(9)

where I5(j) denotes the set of territory centers whose distance to basic unit j does not exceed the
radius 0. Similary, for a given territory center i, Js(i) denotes the set of basic units whose distance

) has the purpose of strengthening

to i does not exceed the radius §. Additionally, the parameter bz(;’a
the model since it fits the upper limit of activity measures for territory balance constraints (5). The

maximum demand covering problem henceforth denoted as MDCP4 can be formulated as follows:

(MDCPs) W (6) = Maximize flz) = Z Z wjl-xij (7)
i€V jeds(i)
subject to Z xzy; <1 jev, (8)
i€ls(5)
Z Tii <P, 9)
eV
Z wiry > (1—=1"pry i€ Via€A, (10)
JE€J5(4)
4mm) Z wizy < bz(~5’a):17ii ieViac€A, (11)
JE€J5(1)
Ti; € {0,1} ieVije Js(i). (12)

The objective function (7) maximizes the total amount of demand or product demand (i.e.,
activity measure a = 1) that can be covered. By contraints (8) each customer is assigned to at most
one territory. As in TDP model, constraints (10)-(11) conform the terrritory balance constraints,
which are referred to as constraints of minimal and mazximal territorial capacity, respectively. In
particular, constraints (11) also guarantee that if no center is placed at i, no customer can be
assigned to it. Finally, constraint (9) assure the creation of at most p territories. Then, the
maximum demand covering problem consists in maximizing the total demand of basic units that
can be satisfied whit at most p territories within a given maximal assignment distance 9.

We investigate now the relation between TDP and MDCPg. Let Wit = Z wjl» be the sum of
jev
demand corresponding to activity measure a = 1 (i.e., product demand) over all basic units. When

solving MDCPs we have the following cases.

Case 1: If for some k € K, the total demand that can be satisfied within a radius dj € D is

at least Wiyt and p territory centers are selected, then all BUs have been assigned



and moreover, the assignment obtained from MDCP; is a fasible solution for TDP.

Therefore, the radius dj, is a valid upper bound on the optimal value of TDP.

Case 2: The optimal solution to TDP can be obtained by finding the smallest index k € K
such that W (dy) = Wiot. Note that for this case, the number of territories that are
generated is allways p as the number of territories required to cover the maximal

amount of demand increases when the coverage radius decreases.

Case 3: If for some k € K, W(dg) < Wiet, it can be seen that it is not possible to assign all
BUs within such covering radius and therefore the radius di is a valid lower bound

on the optimal value of TDP.

An advantage of MDCPy, is that its objective funcion W (4), provides either a bound (dual
or primal) or the optimal value for the TDP, depending on the number of basic units that were
assigned in the MDCP; optimal solution. Also note that, without loss of generality, activity 2 can

be alternatively used instead of activity 1 in the objective function W (§) and by using W2, = Z wjz»
JjeEV
the just described cases still apply.

Given that MCLP is NP-hard [29], it follows that MDCPj is also NP-hard. Exact solution
methods developed for MCLP are not applicable to MDCPgs unless they are adapted to handle its
specific features. Moreover, even medium size instances of the problem addressed in this work are
practically intractable by such solution techniques. Therefore, instead of solving MDCPy exactly,
a Lagrangian relaxation is considered to obtain a valid upper bound for MDCPgs from which the

following statement can be validated:

Proposition 3.1. Let W () be an upper bound for MDCPs, if W(§) < Wiy, then the coverage

radius § is a valid lower bound on the optimal value of TDP.

Proof. Let X5 be the optimal solution to MDCPy with corresponding optimal objective function
value given by W (d). It is easy to check that W(dy) < W(dy)... < W(dy,,,,), where d € D,
k € K. Now we make more precise relation between the optimal solutions of problems MDCPs and
TDP.

Let k* be the smallest index & € K such that W(dy+) = Wiet, then the MDCPy,, optimal
solution Xy, , is also the optimal solution for the TDP with optimal value dy«. Note that territory
balance constraints are also present in the MDCPy4 formulation. On the other hand, constraints (8)
and (9) in MDCP; ensure that each BU is assigned to at most one territory center and the creation
of at most p territories, respectively. However, for the optimal solution Xg4,, = <:Ef]) constraints (2)
are satisfied since:

w]xl‘] — wj xw — WtOt

i€V jedq,, (i) JjeVv i€lq,, ()



S IS ol

jEV i€ly, . (7) jEV
ie]dk* (J)

Notice that z;; = 0, Vi ¢ I, (j), then we have that:

doah= ), =1

eV iEIdk* (j)

:Za:szl

eV

Therefore, TDP constraint of unique assignment (2) is satisfied by Xg,. and all BUs have been
assigned. On the other hand, it is easy to see that constraint (3) is also satisfied by Xg,. since
the number of territories required to cover all BUs demand tends to increase when the coverage
radius decreases. Since dj« is the smallest coverage radius in D for which all TDP constraints can
be satisfied, it follows that dy+ is the optimal value of TDP and Xy, its optimal solution.

Finally, it can be noticed that for all £ € K such that k < k*, the radius dg+ is a valid lower
bound for TDP and further, W(dy) < Wiot, Vb < k*,k € K. Notice that in the general case, as
W (6) is an upper bound on the optimal value of MDCPy, if W (8) < Wit implies that W () < Wi
and case 3 holds for any TDP relaxation. O

Next, we detail the relaxation of MDCPs used in order to obtain the upper bound W (§), for a

given coverage radius 9.

3.2 Lagrangian relaxation of MDCP;

In this section we propose a relaxation of MDCPs which consists of relaxing the assignment
constraints (8) in a Lagrangian fashion, i.e., incorporating them to the objective function with
the additional multipliers A € ]RL:/‘. For surveys of Lagrangian relaxation, the reader is refered to
Guignard [18], Geoffrion [17] and Fisher [11, 12]. Then, the resulting model is:

(Ls(N\)) Maximize Zrr(\) = Z Z w}l*ajij
i€V jeJ(s)

+Z )\j 1— a:,-j
jev i€1(9)

- Z)\j

jev



-+ max Z Z (w;* —)\j)l‘ij

i€V jeJ(6)
subject to Zx“ < p,
%
Z wizy > (1 =7z 1€Via€ A,
J€J5(4)
Z w;xij < bgé’a)x“ 1€Via€ A,
J€J5(4)
zy; € {0,1} ieV;je Js(i).

Then, the Lagrangian problem Ls(\) consists of maximizing a weighted sum over the variables
x;5,1,7 € V, under constraints of minimal and maximal territory capacity and the selection of
p territorial centers. Notice that the model Ls(\) can be decomposed into |V| independient

subproblems, one for each i € V, as follows:

(TSKP;)  Maximize vil\,z) = Z (wj* — Aj)wij (13)
J€Js(i)
subject to Z wizy > (=1 acA, (14)
J€Js(i)
Z w;”:z:ij < bgé’a):nm a€ A, (15)
JeJs(i)
Tijj € {O, 1} j € J5(i). (16)

Each of these subproblems can be seen as a knapsack problem with double constraints of minimal
and maximal capacity, or as a bidimensional knapsack problem with additional constraints (14).
We denote this subproblem as Two-Sided Knapsack Problem (TSKP). Hence, to solve Lg(\), for
each i € V its corresponding subproblem TSKP; is solved. Then, in order to meet constraint (9),

the indices in the set V are sorted in non-increasing values of TSKP;, that is,
Vi, (A, ) = v (A ) > > v (A 7).

Then, the first p* indices are choosen as territorial centers, where p* is given as follows,
p" = min {p, max{r : v; (A, z) > 0}}.

The idea behind this is to choose the indices with the best evaluation of its corresponding subproblem
TSKP;(A). Therefore, the optimal solution of Ls(\) consists of the territories with center in
{i1,42,...,ip=} and the assignments of the BUs to these territories given by the solution of the
p* associated subproblems TSKP; ().

10



Thus, for a given vector of multipliers \ € ]R‘V‘, an upper bound for MDCPy is computed by
means of the procedure described above. As it is well known, the best Lagrangian bound is obtained

by solving the Lagrangian dual problem,

(LDs) W () = min Ls()).

v
AeR!)

which is solved using subgradient optimization.

Algorithm 1 Subgradient optimization procedure
Input: P:= A TDP instance;
d:= Covering radius;
T:= Stopping criteria;
t:= Number of iterations without improvement after which the parameter « is halved;
Output: W(§):= Best upper bound for MDCPy;
Mip < —00 T < +00;
)\? + random[0,10]; j €V,
k « 0;
count < 0;
Terminate < false;
while (not T'erminate) do
Solve Lg(A\F);
if (Ls(\*) < mx) then
M 4 Ls(AF);
else
count < count + 1;
if (count =t) then
a5
count < 0;
end if
end if
Apply the primal heuristic to obtain a lower bound [b;
if (1b > nyp) then
my < 1b;
end if
8§?<—(1— Z J:Z), jev;
i€l5(5)

Oy sl

)\?H + max{0, )\5? - Gksé?}; jev;
k+—k+1;
if (Stopping criteria T is not satisfied) then
Terminate < true;
end if
end while
W(8) < 1(k—1);
return W (J);

11



3.3 Subgradient optimization algorithm

In this phase a classical subgradient optimization is performed [19, 20]. Given an initial vector A,

a sequence {\*} is generated by the rule
)\;-H'l = maX{O,)\;? — 9ksf}, ji=1,...,n.

where s* is a subgradient at A = \* and 6;, > 0 is the step size, calculated through the commonly

used formula N
6, — 2601 — )

ls¥12
with ay being a scalar satisfying 0 < «j < 2. In practice, this parameter is initialized to oy = 2 and
its value is halved if the upper bound fails to improve after a determinated number of consecutive
iterations; n* is the upper bound at iteration k; 7y is the lower bound available at iteration k
usually obtained by applying a primal heuristic for MDCPs.

The subgradient vector at iteration k is given by s* = [sﬂ, with

si=1- ) aj; jeV,

i€ls(5)
*
ij
In practice [14, 15, 33|, the multipliers vector A\ € ]RLY‘ is commonly initialized with random

where . is the solution of Lagrangian problem Lg(\).

values in the range [0,10], while the stopping criteria are the following:

e /< 0.00001

a < 0.00001

o —mp <1

If [ny] fails to improve after m consecutive iterations.
e Maximum number of iterations.

A summary of the subgradient procedure implemented is depicted in Algoritm 1.

3.3.1 Primal heuristic

Note that, given a vector of multpliers \ € R‘r‘, the solution of Ls(A) may not be feasible for

MDCPys. Since single assignment constraints are relaxed, an Lg(\) solution may present multiple
assignments of the basic units to the territories whereas other basic units could not been assigned
to any territory. Therefore, at the inner iterations of subgradient optimization, primal bounds to

MDCPy are heuristically built from Lgs(\) by repairing infeasibility through the following steps.

12



Algorithm 2 Primal Heuristic

Input: P:= A TDP instance;
d:= Covering radius;

L =iy, ig,... ,ip+ p:= Set of territory centers selected in the Lagrangian solution;
XL — {Xc(il),Xc(iQ), .
U:= Set of unassigned BUs in the solution of Ls(\);

Output: X7/:= Feasible solution (lower bound) for MDCPy;
XT = ¢;
X(iy:= Territory with center in ¢ € V;
for all j € V do
I]-I’<—{i€V1:Eij:1};
if (‘Iﬂ > 1) then
for all i € I; do
fi = min {w" (X)) — wf — (1= 72)
end for
if (min{f;} > 0) then
i€lf

XC(Z-;)}:: Solution of Lagrangian problem Lg(\);

i* « argmin { f; };
iell
for all i € IL such that ¢ # i* do
Xc(z A X \{]}
end for
else
i* + argmax {f; : f; < 0};
ielk
for all i IL such that i # i* do
c(z A X \{]}
end for
end if
end if
end for
for all j € U do
for allz € I do
T; < max {bw 9 _ w“(Xc(i))};

acA
end for o~
i earggg&lzx{n w§ < 0,7 —w(Xyp) Adij <6, aeA};
Xy yU{iih
end for

for all i € I* do
if (w*(Xep) = (1 —714)p, a€ A) then
X X7 U X
end if
end for
return X/:

13



1. This stage eliminates the multiple assignments of BUs (if they exist) by considering the
unbalances (with respect to each activity measure) that produces the removal of BUs from
the territories. Let X = (Xe(ir)s Xegin) - - - ,Xc(i;)) be the optimal solution of Ls(\), A € ]RLY‘,
where X;) represents the set of BUs that belong to territory with center in i € V' and let

IF = (iy, 9, . .. ;1) be the set of territorial centers selected in the Lagrangian solution.
For each j € V, the set [ JL denotes the territory centers associated to basic unit j, i.e.,
[]L:{ZGILl'Uzl} If

1 ]L ‘ > 1, which means that basic unit j has been assigned to more
than one territory, a function f; is evaluated for each ¢ € I ]L . This function quantifies the

impact on the feasibility with respect to constraints (10), when the basic unit j is subtracted

from the territory ¢ and is calculated as follows:

fi = min {w" (X) = wf — (1= 7)p"} a7

where w*(X,(;)) = Z wj is the size of the territory X, ;) with respect to the activity a € A,
JEX ()
while w}, 7% and p* are parameters of TDP model described in Section 2. The territory that

keeps the basic unit j is selected under the following criteria:

o If mlILl{ fi} >0, it means that each territory is feasible when BU j € V is eliminated from
i€l

X (i) and therefore, the territory with the lowest evaluation in function (17) is selected

to keep the basic unit j, i.e., i* = arg miln{fi}.
el

o If mng{ fi + fi <0}, it means that at least one territory becomes infeasible with respect to
i€l;

J
the minimal activity size (1 —7%)u® for some activity a € A. Notice that when assigning

the basic unit j to a single territory center from I JL , those territories that do not satisfiy
balancing constraints (10) are not considered in the primal solution of MDCPjs since
they become infeasibles when j is removed from them. Then, is convenient to select the
territory that provides the greatest covered demand among those territories for which

fi > 0 to keep the basic unit j, i.e., i* = arg mag{fi : fi <0}
iEIj

2. Once that multiple assignment have been eliminated, we have a feasible solution for MDCPj
by considering only those territories that meet balance contraints (10). It can be noticed that
by subtracting the basic units from territories in the previous phase, it may be that some
of them are unbalanced with respect to some activity measure, that is, its size could be less
than (1 —7%)u® for some activity a € A and therefore, such territories could not be included
in a feasible solution for MDCPs. Additionaly, there may be basic units unassigned from the

Lagrangian problem resolution. Hence, a second phase improves the actual feasible solution
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and tries to recover feasibility of those territories that do not satisfy balance constraint (10)

by assigning the maximum possible number of basic units to them as follows.

e Let U be the set of unassigned basic units in the Lagrangian solution. The idea at each
iteration of this stage is to assign each j € U to that territory with the highest residual

capacity among both activity measures. This is performed through the next steps:

— Territories X, ..., Xc+) are ranked by non-increasing order according to their
residual capacity denoted as r;, which is calculated as follows:

r; = max {bl(;’a) - wa(Xc(i))} 5

acA

being {Xc(i,), Xe(ip) - - - ,Xc(ip*)} the ordered set in such a way that r,) > rg,) >

— Basic unit j is assigned to the territory in the ordered set with the lowest index ¢*
that satisfy:

wj < bf.f’“) —w*(Xeuwy), a€ A (18)

Relationship (18) assures the compliance of constraints (11). If there is no territory

with these characteristics, the basic unit j is not assigned.

At the end of the primal heuristic, we have a feasible solution and therefore, a primal bound to the
MDCPys, which may sometimes be feasible even for the TDP in the case that all BUs are assigned
to exactly p territories which satisfy balance constraints (10). Algorithm 2 summarizes the primal

heuristic above described.

3.4 The dual bounding scheme

In this section we present the bounding scheme for the TDP. The idea underlying this procedure is
to carry out a search among the elements of the set D associated with the distance matrix in order
to find the best lower (dual) bound on the optimal value of TDP. The procedure solves a series of
Lagrangian duals W (d},) and seeks for the maximal coverage radious dy, that statisfy the conditions
of Proposition 3.1, thus obtaining the best dual bound from the covering radii candidates.

The proposed LB scheme is based on binary search over the set D. As a preprocesing step, this

set D can be further reduce by following test.

e Elimination by lower bound: If LB is a valid lower bound for TDP, then the set {do, d1, ..., dy, },
where k; € K is the largest index such that dy, < LB, can be discarded.

e Elimination by upper bound: If UB is a valid upper bound for TDP, then the set
{di,, diy+1, - - -, diy, }, Where k, € K is the smallest index such that dy, > UB can be
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discarded.

Algorithm 3 summarizes the dual bounding scheme for TDP, which is referred to as DBS.

Algorithm 3 Dual bounding scheme (DBS)
Input: P:= A TDP instance;
D = {dy,di,...,dy,,, }:= Ordered set of covering radii;
Output: LB:= Lower (dual) bound on the optimal value of TDP;
a<+1;
b <_ kmax;
while (a < b) do
a+b) | .
k <+ {—( 3 )J7 i
Solve LDy, and evaluate W (dy);

if (W(dy) < Wiet) then

a+k+1;
else
b+ k—1;
end if
end while
LB« dg;

return LB;

3.5 Pre-processing for DBS

In this section, a pre-processing phase which significantly reduces the computational effort of the
binary search by obtaining both initial lower and upper bounds is developed. In addition to this,
a relative tolerance e for the size of the exploring interval is used.

To obtain an initial lower bound, a sequential search among the set D is performed which solves,

at each iteration, the following relaxation of MDCPy,

(MDCPs-R) ¢(6,2) = Maximizef(z) = » Y  wjmzy, (19)
i€V jeJs5(3)
subject to Zx” < p, (20)
eV
Tij S {0, 1}’i eVije J(;(Z) (21)

Once again, it can be noticed that MDCPs-R is separable in the set V' and it can be easily

solved by calculating for each i € V' the maximum demand ¢;(6) that can be covered from 4 within

ci(9) = Z wjl».
)

jEJ(;(’i

a radius 0 as follows,

Finally, to satisfy constraint (20), the indices in V are sorted by non-decreasing order of the values

¢;(9) and the first p indices are choosen to calculate the amount of effective demand C,¢(9) that
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can be covered by p territories within a maximum distance ¢, this is:

p
Cer(0) = ci,.
r=0

Therefore, the optimal value of MDCP;s-R is given by C.¢(d) which, at the same time, is an
upper bound for MDCPg. Then, using Proposition 3.1 we determine if § is a valid lower bound
for the TDP. The purpose of the sequential search is therefore to find the best initial lower bound
(i.e., the largest covering radius for wich Cef(d) < Wie). The procedure for solving MDCPs-R is
outlined in Algorithm 4.

Algorithm 4 pre_processing (P, D)
Input: P:= A TDP instance;

D = {do,dy,...,dy,. }:= Ordered set of covering radii;
Output: k;:= Index of the initial upper bound dy,;

t <+ 0;

6+ dt;

Cef(a) <~ 0

¢i(0) < 0; YieV;

while (Cef(6) < Wipt) do

for all: € V do
ci(9) + Z w;;

J€Js(1)

end for
Order the indices in V' in such a way that ¢;, (§) > ... > ¢, (0);

Cor(6) Y i, (6);
=0

bt 1

0+ dy;
end while
ki< t—1;
return kq;

A valid initial upper bound for TDP is obtained from a known heuristic [36]. As it was described
in Section 1, the authors propose a reactive GRASP (R-GRASP) for a similar model (TDP-C) with
the only difference that they consider additional conectivity constraints. Hence, TDP model can be
seen as a relaxation of TDP-C as the first model relaxes the conectivity constraints and therefore
an upper bound for TDP-C is also an upper bound for TDP (i.e., z*(TDP) < z*(TDP-C) < ub,
where z*(Y) is the optimal value of problem Y).

Algorithm 5 states the dual bounding scheme DBS_P, which incorporates the above mentioned

components in order to speed up the DBS procedure.
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Algorithm 5 DBS_P(P, D)
Input: P:= A TDP instance;
D = {doy,dy,...,dy,,. }:= Ordered set of covering radii;
Output: LB:= Lower (dual) bound on the optimal value of TDP;
k1:= pre_processing(); { Compute initial lower bound dy, }
ko:= R-GRASP(); {Compute initial upper bound dy, }
a <— k‘l;
b+ kg;
while (%7 > ) do
B [952];
Solve LD, and evaluate W (dy);
if (W(dk) < Wtot) then
a+—k+1;
else
b+ k;
end if
end while
LB« dg;

return LB;

4 Computational evaluation

In this section, we provide computational results for the dual bounding scheme we developed for
the TDP. Our overall objective is to assess if DBS is a promising methodology for TDP. More

specifically, the following issues are studied:
(1) The effect of the pre-processing stage (providing both dual and primal bounds).
(2) A comparison of the proposed bounding scheme with the LP relaxation.

(3) Optimal solutions are known for medium size instances. The quality of the DBS_P bounds is

then assessed for these instances.

All the procedures have been coded in C++ and compiled with the Sun C++ 8.0 compiler. The
experimental work was carried out on a SunFire V440 computer under Solaris 9 operating system.
CPLEX 11.2 callable libraries [24] were used to solve subproblems TSKP;.

Randomly generated instances based on real-world data on planar graphs provided by the
industrial partner were used. This data set is taken from [36]. In that work, full details on how the
instances are generated can be found. A tolerance 7* = 0.05,a € A, with respect to each activity
measure was considered. The particular characteristics of the instances used are described in each
experiment.

In regard to the subgradient procedure for solving Ls(A), the algorithmic rules that were

considered are the following:
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e Start with a = 2 and halve its value if the dual bound fails to improve after 15 consecutive

iterations.
e Stopping criteria:

— Maximum iteration number (600 iterations).

— If the current absolute value of the currrent difference between the upper and lower
bounds is less than one unit (i.e., ub — Ib < 1). As MDCPy is an integer programming
problem, a difference less than one indicates that optimality has been achieved since the
decision variables coefficients in the objective function are integer-valued. The optimal

solution for the problem is given by the current lower bound.

If \; =0,¥i € V. An optimal solution for LDs has been obtained, but a duality gap

may exist. The best available solution is given by the current lower bound.

— If Ib = Wit The total assignment of BUs has been achieved by a primal solution of
MDCPys then, a feasible solution or upper bound for TDP has been found.

If ub < Wit. Preposition 3.1 is met and a valid lower bound for TDP has been found.

If |ub]| fails to improve after 30 consecutive iterations.

If & < 0.00001. A duality gap exists and the best available solution is given by the

current lower bound wich is provided by the primal heuristic.

4.1 Comparing DBS and DBS_P

The improvement produced when a pre-processing is applied to DBS is first addressed. As stated in
Section 3.5, initial upper and lower bounds are easily generated to reduce the initial set of coverage
radii to be explored. In addition, the binary search procedure is executed until a relative gap e
(i.e. percentage difference) between the lowest and greatest values in the set of candidate radii is
reached. In order to balance the tradeoff between solution time and quality we set € = 0.001 (i.e.,
0.1%) in our computational study.

Three instance sets defined by (n,p) € {(60,4), (100,6), (500,10)} were generated. For each
of these sets, 15 different instances were generated and tested using both binary search schemes.
Table 1 compares DBS and DBS_P. The first column indicates the instance size tested. The second
and third column display the average CPU time required per instance under each scheme (time
required for obtaining initial (lower and upper) bounds for TDP is also included). The fourth
column shows the percentage reduction by DBS_P on the total execution time. Similary, the last
three columns show the information about the number of radii that were tested.

Results in Table 1 indicate that modified binary search DBS_P has a signicant impact in the

execution times, which are reduced up to 74.1%. It can be noticed, that this improvement relies
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on the number of explored radii, which reaches a decrease of over 50% using pre-processing on
tested instances. Although the relative deviation € used in DBS_P can be seen as a pay off for this
time improvement, this parameter was fixed considering the order of magnitude of the elements
in D, in such a way that the deterioration of the DBS bound was not significant. It can be
concluded that providing initial upper and lower bounds as a preprocessing strategy pays off as
a considerable less amount of computational effort is needed. Therefore, is really worthwhile to

include the preprocessing procedure within the bounding scheme.

Size Time (sec) Explored radii
(n,p) DBS DBS_P  Improvement (%) | DBS DBS_P Improvement (%)
(60, 4) 1306.39  513.67 60.7 12 6 50.0
(100, 6) | 2812.29  694.75 63.3 12 6 50.0
(500, 10) | 11811.97 3058.41 74.1 17 6 64.7

Table 1: Performance of DBS and DBS_P procedures.

4.2 Evaluation of DBS_P bounds

This part of the work is focused on the study of the quality of the obtained bounds. As it
was mentioned before, this dual bounding scheme is the first known to date for commercial
territory design. For this reason, we make a comparison with bounds based on the LP relaxation.
Additionally, the DBS_P bounds are compared with respect to optimal solutions for medium size

instances (60 and 100 BUs instances).

4.2.1 Comparison with the LP relaxation

A comparison between DBS_P and the LP relaxation (LPR) lower bounds for TDP is carried out.
A set of 30 instances of each size (n,p) € {(500,10), (1000, 20), (2000,20)} was tested. First, for
solving the LP relaxation, there are several methods available through CPLEX, the most commonly
used is the Primal Simplex algorithm, however, we also tested Barrier, Sifting, Dual Simplex and
Network Simplex algorithms on 20 500-nodes instances to investigate the computational effort.
As Figure 1 indicates, the most efficient method was the Sifting Algorithm (SA). This method
was developed to exploit the characteristics of models with large aspect ratios (that is, a large
ratio of the number of columns with respect to the number of rows). In particular, the method is
well suited to large aspect ratio models where an optimal solution can be expected to place most
variables at their lower bounds. Sifting solves a sequence of LP subproblems where the results
from one subproblem are used to select columns from the original model for inclusion in the next
subproblem. It starts by solving a subproblem (known as the working problem) consisting of all
rows but only a small subset of the full set of columns, by assuming an arbitrary value (such as its

lower bound) for the solution value of each of the remaining columns. This solution is then used to

20



2000

g
§ 1500
[%]
]
=
= 1000
(=]
o
g
< 500

. . .

Sarig,  Stting  Olay g,

/Vet Pr;
Wo T X ’ha/ .
lex “si Moley, Sy ey

Figure 1: Performance of LP methods for solving the TDP linear relaxation.

re-evaluate the reduced costs of the remaining columns. Any columns whose reduced costs violate
the optimality criterion become candidates to be added to the working problem for the next major
sifting iteration. When no candidates are present, the solution of the working problem is optimal
for the full problem, and sifting terminates (see [24]). Thus, for remainder we use the SA for solving

the LP relaxation on this TDP.

Size RD Time (sec)
(n,p) (%) | LPR DBS.P

(500,10) | 252.46 | 148.9 23524
(1000,20) | 259.03 | 1028.1  5719.8
(2000,20) | 346.16 | 6728.1 13548.3

Table 2: Comparison of LPR and DBS_P bounding schemes.

Results of the empirical comparison are summarized in Table 2 where the first column indicates
the instance size, the second column displays the average relative deviation (RD) between the
DBS_P and LPR bounds, and the third and fourth columns show the average running times for
both LPR and DBS_P bounding schemes respectively. This gap represents the relative improvement
of the bound provided by the dual bounding scheme (Ib(DBS_P)) with respect to the bound obtained
by the linear programming relaxation (Ib(LPR)). It is computed as:

D — 100 <lb(DBS_P) - lb(LPR))

Ib(LPR)

As it can be observed, the average computation times of DBS_P are significantly larger than
those reported by the resolution of the linear problem. However, it is notable that this effort invested
by DBS yields a significant improvement over the LPR bound as it provides a considerably better
quality than those reported by the LP relaxation. The average RD ranges from 252.46% to 346.16%
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Figure 2: Comparison of LPR and DBS_P lower bounds.
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which is remarkably high. This superiority in the quality of the bounds generated by LPR and
DBS_P is better apreciated in Figure 2 where the values of both bounds per instance and size

configuration are shown.

4.2.2 Comparison with an improved LP bound

From the previous experiment, it was clear that the better quality of the DBS_P bound came at
a cost of a higher computational effort. Therefore, we investigate the improvement of the LPR
bound when cast in a branch-and-bound (B&B) framework. As it is known, the B&B method
iteratively improves its dual and primal bounds until optimality is reached. The main idea behind
this experiment is to allow the B&B as much time as the computation of the DBS_P bound task,
and make a comparison of the DBS_P and the improved LPR bound (ILPR) under the same

computational effort.

Size RD
(n,p) (%)
(500,10) | 255.13
(1000, 20) | 255.30
(2000,20) | 342.91

Table 3: Relative improvement of DBS_P with respect to ILPR.

This experiment was carried out on 15 instances of each size configuration (n,p) € {(500, 10),
(1000, 20), (2000,20)}. Table 3 indicates the relative deviation (computed as in the previous test)
between both ILPR and DBS_P bounds. The most important result in this experiment is that for
all tested instances, the B&B method did not improve significantly the dual bound obtained at the
root node, that is, the LPR bound. In other words, considering the same execution times for both
strategies, the exact solution procedure failed to improve the linear relaxation while the proposed
scheme is still better than the ILPR bound showing average relative deviations from 255.13% to
342.91%. Figure 3 shows the individual bounds values, per instance and size configuration, for each

bounding scheme.
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4.2.3 Comparison with optimal solutions

Finally, the quality of the proposed DBS_P bound is assessed by comparing it with optimal solutions.
To this end, we solved 60- and 100-node instances by B&B (20 instances on each set). This is the

largest size that can be optimally solved in reasonable times.

Size ROG (%)
(n,p) DBS_P LPR
Best 0.10 59.94

(60,4)  Average | 5.66  66.59
Worst 13.15 71.46
Best 234  60.84
(100,6) Average | 10.50  67.62
Worst 16.58  72.83

Table 4: Comparison of DBS_P and LPR bounds vs. optimal solutions.
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Figure 4: Comparison of DBS_P bounds and optimal solutions.
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Results are summarized in Table 4. For each bounding procedure a relative optimality gap
is computed. This gap gives the relative deviation on how far is the lower bound (Ib) from the
optimal solution (opt) and is defined as ROG = 100 (%). As it can be seen from the table, the
DBS_P scheme provides a more attractive choice that its LPR counterpart, confirming the results
from previous experiments. In particular, it was observed that 90% of the 60-node instances had
optimality gaps of less than 10% under the DBS_P scheme Figure 4 displays the LPR and DBS_P

lower bound values as well as the optimal solution values of the different instances in each set (n, p).

5 Conclusions

In this paper we have presented a dual bounding scheme for a territory design problem. This
problem includes compactness and balancing among territories as planning criteria. In particular,
the problem addressed has been intractable through exact solution methods for real-world intance
sizes, therefore different heuristic approaches have been proposed for this problem. However, to
the best of our knowledge, there are no previous work on generating dual bounds for the territory
design problem. As it is well known, the computation of dual bounds is important for assessing the
quality of primal solutions, and moreover, dual bounds can be useful in the design of exact solution
methods.

The proposed bounding procedure exploits the similarities of methodologies for solving the
well known capacitated p-center problem. In this paper we extended the ideas underlying such
methodologies and proposed an adaptation to handle multiple balancing constraints. Lower bounds
for TDP are obtained by performing a binary search on the elements on the matrix of distances
between basic units. In each iteration of the procedure, the resolution of a Lagrangian dual from
a coverage location problem is considered. This allows to evaluate, for a given coverage radius,
if it is possible to assign all the basic units in a feasible way into p territories. When this is not
met, the explored radius becomes a lower bound for the territory design problem. In addition, a
pre-processing technique to speed up the convergence of the procedure was developed by computing
initial upper and lower bounds for TDP.

In the computational work, it was observed the positive impact of this simplification reducing up
to 64.7% the number of explored radii during the binary search procedure which yields a significantly
decrease in computation times. Furthermore, empirical evaluation showed that the proposed dual
bound for TDP was of considerably higer quality than those provided by the linear programming
relaxation of the model.

There are several extensions to this work that deserve attention. For instance, it was observed
that the bottleneck in the overal execution time of the procedure is found at solving the TSKP
subproblems derived from de Lagrangian relaxation of the maximum demand covering problem.

Therefore, the derivation of efficient solution techniques for TSKP could greatly improve the
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efficiency of the proposed dual bounding scheme. To the best of our knowledge, this is a variation
of the Knapsack Problem that has not been addressed before.

The study of other related location problems that can be used as auxiliary problems in the
bounding scheme may also be worthwhile as they could provide different dual bounds for TDP.
For instance, the Minimum Set Covering Problem (MSCPy), which seeks to minimize the number
of territories to create in order to assign all the basic units within a maximal assignation distance
0. Hence, similary to MDCPys, it can be determined if a covering radius ¢ is a valid dual (primal)
bound for TDP depending on the optimal value of MSCPy, that is, the number of territories created
in the optimal solution. In this way, a radius § € D is a valid lower (upper) bound for TDP if the
optimal value of its corresponding MSCP; is greater (smaller) than p.

A natural extension is to exploit the proposed bounding scheme for developing exact solution
methods for TDP. Lagrangian heuristics form a wide family of methods that work well in finding
effcient solutions for many integer programming problems. As the DBS_P procedure, these methods
uses a Lagrangian relaxation of the problem at hand to obtain easily solved subproblems and
approximately solves the Lagrangian dual through an iterative optimization scheme. In this
process, some Lagrangian (dual) information is used as an input to guide the construction of feasible
solutions. Solutions thus obtained are then submitted to local improvement in an overall procedure
that is repeated for every algorithm iteration. The Lagrangian heuristic is then embedded into a
branch-and-bound scheme that yields further primal improvements. This B&B scheme can either
be an exact method that guarantees the optimal solution of the problem or be a fast heuristic.
Although our bounding scheme relaxes an auxiliary problem instead the TDP, the DBS procedure
can be extended to a Lagrangian heuristic framework to improve the primal solutions obtained
during the subgradient optimization.
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