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Abstract

In this paper, a multiobjective scatter search procedure for a bi-objective territory design

problem is proposed. A territory design problem consist of partitioning a set of basic units

into larger groups that are suitable with respect to some specific planning criteria. These

groups must be compact, connected, and balanced with respect to the number of customers

and sales volume. The bi-objective commercial territory design problem belongs to the class

of NP-hard problems. Previous work showed that large instances of the problem addressed

in this work are practically intractable even for the single-objective version. Therefore, the

use of heuristic methods is the best alternative for obtaining approximate efficient solu-

tions for relatively large instances. The proposed scatter search-based framework contains

a diversification generation module based on a greedy randomized adaptive search proce-

dure, an improvement module based on a relinked local search strategy, and a combination

module based on a solution to an assigment problem. The proposed metaheuristic is eval-

uated over a variety of instances taken from literature. This includes a comparison with

two of the most successful multiobjective heuristics from literature such as the Scatter Tabu

Search Procedure for Multiobjective Optimization by Molina, Mart́ı, and Caballero, and the

Non-dominated Sorting Genetic Algorithm by Deb, Agrawal, Pratap, and Meyarivan. Ex-

perimental work reveals that the proposed procedure consistently outperforms both existing

heuristics from literature on all instances tested.

Keywords: Territory design; bi-objective programming; Pareto frontier; Metaheuristics;

Scatter search.



1 Introduction

Commercial territory design is a recent districting application. It consists of partitioning

a given set of basic units (BUs) into p larger groups called territories, according to some

specific planning criteria. Each basic unit is associated with a city block and has two

attributes: number of customers and product demand. The problem is represented by a

graph where each node is associated with a BU and there is an arc representing adjacency

between blocks. One important requirement is that each territory must be connected,

that is, it must be possible to travel between each pair of nodes of the territory without

leaving the territory. In addition each territory must be balanced with respect to each

node attribute, that is, each territory must have around the same number of customers and

product demand. As usual in districting problems, it is also important to have compact

territories. Territory compactness is handled by means of minimizing a dispersion objective

function.

A single objective version of this problem was introduced by Rı́os-Mercado and Fernández

(2009). Due to the complexity of the problem, they developed a reactive GRASP procedure

to solve it. Their proposed procedure outperformed the company method in both solution

quality and degree of infeasibility with respect to the balancing requirements. Different ver-

sions of this problem have been studied as well. Segura-Ramiro et al (2007) use a different

dispersion measure that is very common in facility location. It is the objective function

of the p-Median Problem (pMP). Balancing requirements are considered as constraints.

They solved the problem by an implementation of a location-allocation heuristic The re-

sults showed good heuristic performance. Caballero-Hernández et al (2007) developed a

GRASP for a commercial territory design problem with joint assignemnt constraints with

relatively good results.

Regarding multiobjective approaches to other districting problems, there are a few ap-

plications on political districting (Guo et al, 2000; Bong and Wang, 2004; Ricca and Sime-

one, 2008) school districting (Bowerman et al, 1995; Scott et al, 1996), and public service

(Tavares-Pereira et al, 2007; Ricca, 2004). These are, however, different models from the

one studied in this paper. To the best of our knowledge the only work on multiobjective

commercial territory design is the one by Salazar-Aguilar et al (2011b) and Salazar-Aguilar

et al (2011c). In the former, the bi-objective model is introduced and an improved ε-

constraint method is proposed for finding optimal Pareto frontiers. One of the limitations

of that work is of course the size of the instances that could be solved exactly. The largest

tractable instance has 150 BUs and 6 territories. In the latter, GRASP-based heuristics are

developed to attempt to tackle large scale instances to the problem with relative success.

Therefore, the motivation of the present work is to develop an better and effective method

for tackling large instances of this commercial territory design problem (TDP). For a survey
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on single-objective TDP applications, the reader is referred to the work of Kalcsics et al

(2005) and Duque et al (2007).

In this work, the well-known framework of Scatter Search (Laguna and Mart́ı, 2003)

is used to develop a heuristic that allows to obtain approximate efficient solutions to the

bi-objective commercial territory design problem. Five key components were derived and

developed within the Scatter Search (SS) framework: (i) a diversification generation module

based on a Greedy Randomized Adaptive Search Procedure (GRASP), (ii) an improvement

module based on a novel relinked search strategy, (iii) a solution combination method based

on a hybrid scheme; (iv) a reference set update method, and (v) a subset generation method.

As usual in SS, the first three modules were specifically tailored to attempt to exploit the

problem structure.

The Scatter Search Method for Multiobjective Territory Design (SSMTDP) proposed in

this work was evaluated over a set of large instances. The results indicate that the SSMTDP

is able to find good solutions that are very well distributed along the efficient frontier.

Even though the initial solutions have a poor evaluation in the objective functions, the

proposed combination method has the ability of exploring new regions in the search space

and the improvement method allows to obtain better solutions that are very far from the

initial set. When compared to state-of-the-art multi-objective methods such as the Scatter

Tabu Search Procedure for Multiobjective Optimization (SSPMO) and the Non-dominated

Sorting Genetic Algorithm (NSGA-II), it was observed that these procedures struggled in

generating feasible solutions to the problem. A few instances could be solved by these

procedures. In contrast, the SSMTDP reported non-dominated solutions for all instances

tested. Furthermore, SSMTDP reported significantly better solutions for those instances

that were solved for both SSPMO and NSGA-II.

The paper is organized as follows. Section 2 provides a description of the problem. In

Section 3, the proposed procedure is fully described. Experimental work is discussed in

Section 4 and final conclusions are drawn in Section 5.

2 Problem Description

Given a set V of city blocks (basic units, BUs), the firm wishes to partition this set into a

fixed number (p) of disjoint territories that are suitable according to some planning criteria.

The territories need to be balanced with respect to each of two different activity measures

(number of customers and sales volume). Additionally, each territory has to be connected, so

that each basic unit can be reached from any other without leaving the territory. Territory

compactness is required to guarantee that customers within a territory are relatively close

to each other. Compactness and balance with respect to the number of customers are the

most important criteria identified by the firm. Therefore in this work these criteria are
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considered as objective functions and the remaining criteria are treated as constraints.

Let G = (V,E), where E is the set of edges that represents adjacency between BUs. An

edge connecting nodes i and j exists if i and j are adjacent BUs. Multiple attributes such

as geographical coordinates (cxj , c
y
j ), number of customers and sales volume are associated

to each node j ∈ V . In particular, the firm wishes perfect balance among territories, that

is, each territory needs to have the same number of customers and sales volume. Let K

be the territory index set such that |K| = p. Let A = {1, 2} be the set of node activities,

where 1 refers to the number of customers and 2 refers to sales volume. We define the

size of territory Xk with respect to activity a as w(a)(Xk) =
∑

i∈Xk
w

(a)
i , where w

(a)
i is

the value associated to activity a ∈ A in node i ∈ V . Hence, the target value is given by

µ(a) =
∑

j∈V w
(a)
j /p. Due to the discrete nature of this problem, it is practically impossible

to have perfectly balanced territories. Thus, a tolerance parameter τ (2) is introduced to

allow a relative deviation from the average sales volume.

Let Π be the set of all possible p-partitions of V . For a particular territory Xk, c(k),

k ∈ K, is a territory center and dij is the Euclidian distance between nodes i and j; i, j ∈ Xk.

A territory center is computed as

c(k) = arg min
j∈Xk

∑

i∈Xk

dij

Under the previous assumptions, the bi-objective combinatorial model can be written as

follows.

min
X∈Π

f1(X) =
∑

k∈K

∑

i∈Xk

dic(k) (1)

min
X∈Π

f2(X) = max
k∈K

1

µ(1)

[

max
{

w(1)(Xk)− µ(1), µ(1) − w(1)(Xk)
}]

(2)

subject to :

w(2)(Xk) ≤ (1 + τ (2))µ(2), k ∈ K (3)

w(2)(Xk) ≥ (1− τ (2))µ(2), k ∈ K (4)

Gk = (Xk, E(Xk)) is connected; k ∈ K (5)

The goal is to find a p-partition X = (X1, . . . ,Xp) of V , such that both the dispersion

(1) on each territory Xk and the maximum relative deviation with respect to the number of

customers in each territory (2) are simultaneously minimized. Constraints (3)-(4) establish

that the territory size (sales volume) should be between the range allowed by the tolerance

parameter τ (2). Constraints (5) assure the connectivity of each territory, where Gk is the

graph induced in G by the set of nodes Xk.

Note that this can also be seen as partitioning G (the contiguity graph representing

the basic units) into p connected componentes (contiguous districts) under the additional
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side constraints on the product demand of each territory (that must satisfy a soft target),

and minimizing two objective functions (namely, the dispersion measure of the BUs in a

territory, and the maximum relative deviation of the number of customers of a district with

respect to a target level). The basic contiguity graph model for the representation of a

territory divided into elementary units was introduced by Simeone (1978), and has been

adopted in political districting (Nygreen, 1988; Grilli Di Cortona et al, 1999; Ricca and

Simeone, 2008).

This is an NP-hard problem (Salazar-Aguilar et al, 2011a) and previous work (Salazar-

Aguilar et al, 2011b) reveals that large instances are intractable by applying the existing

exact solution procedures. In this paper we develop a heuristic procedure for obtaining

approximate efficient solutions to large instances.

3 The SSMTDP Procedure

The evolutionary approach called Scatter Search (SS) was first introduced in Glover (1977)

as a metaheuristic for integer programming. It is based on diversifying the search through

the solution space. It operates on a set of solutions, named the reference set (PR), formed

by good and diverse solutions of the main population (P). These solutions are combined

with the aim of generating new solutions with better fitness, while maintaining diversity.

Furthermore, an improvement phase using local search is applied. As detailed in Mart́ı

et al (2006), the basic structure of SS is formed by five main modules. Figure 1 depicts a

schematic representation of the proposed SS design that shows how the modules interact.

Figure 1: Scatter Search metaheuristic.
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SS is a very flexible technique, since some modules of its structure can be defined ac-

cording to the problem at hand. For instance, the diversification, the improvement, and the

combination modules have been proposed and tailored to this specific problem attempting

to exploit its problem structure. In our design the diversification module generates a set of

initial solutions based on GRASP strategies; the improvement module attempts to improve

a given solution by using a novel relinked local search strategy for multiobjective problems;

the solution combination method transforms two given solutions into one or more child

solutions by attempting to keep good features from the parent solutions. In this specific

application, three child solutions are generated from two given territory designs. These

three problem-specific modules are fully described in the following subsection. Finally, the

remaining two modules that are not problem-dependent are the reference set update module

and the subset generation module. The former maintains a portion of the best solutions

of the reference set. In this case, the reference set is formed by non-dominated solutions

according to the Pareto sense. When a non-dominated solution is found, this enters the

reference set and those solutions that are dominated by the added solution are deleted from

the reference set. The latter operates in the reference set in such a way so as to select some

solutions to be combined. All possible pairs of solutions from the reference set are selected.

During each SSMTDP iteration, a temporal memory is used to avoid those combinations

that were done in the previous iteration. In other words, for a specific iteration, the com-

bination process is applied just to those pairs of solutions that were not combined in the

previous iteration.

3.1 Description of SSMTDP Modules

The components of the problem-specific modules of the proposed SSMTDP are described

in detail next.

Diversification generation module: It is based on the GRASP procedures developed

by Salazar-Aguilar et al (2011c). Specifically, we use the procedure called BGRASP-

I. This procedure uses a merit function based on two components: dispersion and

maximum deviation with respect to the target value in the number of customers.

This module keeps connectivity as a hard constraint. The post-processing phase of

BGRASP-I is carried out by the improvement module described below.

Improvement module: This module transforms a trial solution into one or more trial

solutions. This module is an implementation of a relinked local search (RLS) strategy

and is applied to each solution obtained by either the diversification generation or the

combination module. As mentioned in Molina et al (2007), most local search appli-

cations to multiobjective optimization use multiple runs to approximate the Pareto
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frontier. This technique is usually based on a weighted aggregation of the objective

functions where each run consists of solving the single-objective optimization problem

that results from applying a given set of weights. To obtain an approximation of the

Pareto frontier the procedure must be run as many times as the desired number of

points, using different weight values. The performance of implementations based on

multiple runs deteriorates as the need for generating more non-dominated solutions

increases, since this is directly proportional to the number of times that the proce-

dure must be executed. On the other hand, Molina et al (2007) propose the use of

a relinked local search scheme that consists of performing a local search with respect

to one objective function by taking turns in each objective function in a systematic

way. This module is based on the very well known Fritz-John optimality principle for

multiobjetive optimization (Singh, 1987) which has been empirically demonstrated to

provide a dense and diverse set of non-dominated points.

In our problem, the RLS is done in the following way. For a given p-partition

X = (X1, . . . ,Xp), our improvement module consists of optimizing the following three

objective functions (one at a time): (i) the dispersion measure

z1(X) =
∑

j∈Xk

∑

k∈K

dj,c(k), (6)

(ii) the maximum deviation with respect to the number of customers

z2(X) =
1

µ(1)
max
k∈K

{

max{w(1)(Xk)− µ(1), µ(1) − w(1)(Xk)}
}

, (7)

and (iii) total infeasibility

z3(X) =
1

µ(2)

∑

k∈K

max
{

w(2)(Xk)− (1 + τ (2))µ(2), (1 − τ (2))µ(2) −w(2)(Xk), 0
}

(8)

related to the balancing of sales volume. Note that c(k) is the center of territory Xk.

The RLS consists of applying a single-objective local search by using each of these

merit functions one at a time. That is, first local search is applied by using z1(X) as

the merit function in a single-objective manner. After a local optimum is found, the

local search is continued with z2(X) as the merit function. This is followed by a local

search by using z3(X) as the merit function. To close the cycle, a final local search

is performed by using the initial objective z1(X) as the merit function. The set of

nondominated solutions is updated at every solution in the search trajectory.

Solution combination module: This transforms the solution sets formed by the subset

generation module into one or more combined solutions. In this work, three solutions

are generated (see Function 1) from each pair of solutions. There are many ways of

combining a pair of solutions. In the proposed SSMTDP procedure, this component is
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developed by attempting to keep good features present in the current solutions. Then,

given a pair of solutions X1 and X2, these are combined by identifying the best match

between territories. An exhaustive evaluation of the possible ways of combining these

two solutions requires a high computational effort. Therefore, the module attempts to

find the best territory match based on their corresponding territory centers only. This

is done by solving an associated assignment problem. The assignment problem used

in this module minimizes the sum of distances between the territory centers identified

on these solutions.

Function 1 CombinationModule(X1, X2)

Input: (X1,X2):= Pair of parent solutions to be combined

Output: (Xz1 ,Xz2 ,Xz3) Three new solutions obtained by combining X1 and X2

Ci ← Set of territory centers of Xi, i = 1, 2;

Ē ← Edge set beween C1 and C2

M ← SolveAssignmentProblem(C1, C2, E)

{ Build partial solution }

for (k = 1, . . . , p) do

Take (ik, jk) from M

X̄k ← X1
t(ik)
∩X2

t(jk)

if (X̄k = ∅) then X̄k ← {ik}

end for

{ Assign remaining nodes }

Xzq ← X̄ for q = 1, 2, 3

for (q = 1, ..., 3) do

Xzq ← BuildSolution(Xzq , zq)

end for

return (Xz1 ,Xz2 ,Xz3)

For instance, suppose that solutions X1 and X2, with corresponding center sets C1

and C2, are to be combined. Let B = (C1, C2, Ē) be the associated complete bipartite

graph with node sets C1 and C2, and edge set Ē = {(i, j) ∈ C1×C2, where the weight

of edge (i, j) ∈ Ē is given by dij . Let yij = 1 if edge (i, j) is included in the assignment,

whereas yij = 0 otherwise. Then the following assignment problem is formulated:

(AP) Minimize h(y) =
∑

i∈C1

∑

j∈C2

dijyij

subject to
∑

j∈C2

yij = 1 i ∈ C1

∑

i∈C1

yij = 1 j ∈ C2
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yij ∈ {0, 1} i ∈ C1, j ∈ C2

The optimal solution to AP is used to determine which territories are matched. Each

matching pair (i, j) of this assignment yields a territory in the combined solution by

assigning to this territory all those nodes that are common to both territory with

center in i in X1 and territory with center in j in X2. This can be seen in Algorithm

1, where t(i) indicates the territory to which node i belongs. Let S(X1,X2) be the

partial territory design obtained this way. Figure 2 illustrates the process of generating

a partial solution by combining a pair of trial solutions X1 and X2. In this figure, the

black nodes represent the territory centers and the dotted lines represent the territories

in the left-hand side. After solving the AP and associating to each territory common

nodes from X1 and X2, the resulting partial assignment S(X1,X2) is represented by

the territories enclosed by dotted lines in the right-hand side of the figure. As can be

seen, there is a set of unassigned nodes that must be assigned. Finally, this partial

solution S(X1,X2) is used as a starting solution for generating three new solutions.

Each of these solutions is obtained by iteratively adding the unassigned nodes to

the partial territories through a call to the diversification module under a different

given merit function. Let zq(X), for q = 1, 2, 3, the merit function corresponding

to the dispersion measure (6), the maximum deviation with respect to the number

of customers (7), and total relative infeasibility with respect to the balancing of the

sales volume (8), respectively. That is, for generating the new solution Xzq , the

diversification is applied to S(X1,X2) under merit function zq, for q = 1, 2, 3. The

function BuildSolution(X̄ , zq) takes a partial solution X̄ and a merit function zq and

completes a solution by assignining the remaining nodes under a GRASP construction

and zq as merit function.

Figure 2: Combination of territories between a pair of solutions.

When all trial solutions are generated (i.e., when all pairs of solutions are combined),

this set of solutions is improved by using the improvement module previously described. At

the end, the improvement process reports a potential set of nondominated solutions that
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can be included in the current reference set. Thus, each solution from the potential set

enters the reference set if it is a non-dominated solution with respect to the current set of

solutions belonging to the reference set. Those solutions that are dominated by the new

solution are removed from the current reference set. The SSMTDP stops when there are

no new solutions included in the reference set.

Algorithm 1 shows a pseudocode of the proposed SSMTDP. The SSMTDP stops by

iteration limit or by convergence, that is, when the reference set does not change. Note

that the updating of the reference set takes place after a potential set of nondominated

solutions is obtained by applying the improvement module over all trial solutions (Xz1 , Xz2 ,

and Xz3) generated by the combination module. This strategy was adopted given that the

computational effort increases considerably when the typical strategy (i.e., updating after

each new feasible solution is generated) is performed.

Algorithm 1 General scheme of SSMTDP

Input: L:= Iteration limit

Output: RefSet := Set of nondominated solutions (reference set)

NewSolutions ← TRUE, iter ← 0

RefSet ← DiverseSolutions( ) {use GRASP to generate P solutions}

while ((NewSolutions) and (iter < L)) do

SubSet ← SubsetGeneration(RefSet) {pairs of solutions to be combined}

TrialSubSet ← ∅, NewSolutions ← FALSE

for (X1,X2) ∈ SubSet do

(Xz1 ,Xz2 ,Xz3)← CombinationModule(X1,X2)

TrialSubSet ← TrialSubSet ∪{Xz1 ,Xz2 ,Xz3}

end for

for (X ∈ TrialSubSet) do

X ← Improvement(X) {apply RLS}

end for

UpdateRefSet(RefSet, TrialSubSet)

if (RefSet has changed) then NewSolutions ← TRUE

iter ← iter+1

end while

return RefSet

4 Experimental Work

The procedure was coded in C++, and compiled with the Sun C++ compiler workshop

8.0 under the Solaris 9 operating system and run on a SunFire V440. The data sets were
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taken from the library developed by Rı́os-Mercado and Fernández (2009). These data set

contains randomly generated instances based on real-world data provided by the firm. The

SSMTDP was applied over two instance sets with (n, p) ∈ {(500,20),(1000,50)}. For each

set, 10 instances were generated and a tolerance parameter τ (2) = 0.05 was used in all of

them. Two stopping criteria were used in the SSMTDP, iteration limit and convergence.

In these experiments, the maximum number of iterations was set to 10.

4.1 Assessing the Performance of SSMTDP

During the experimental work, it was observed that SSMTDP converged without reaching

the iteration limit over all instances tested. That is, in all cases the SSMTDP stopped when

there were no new solutions to be added to the reference set. Figure 3 shows the behavior

exhibited by the instance DU500-08, this instance has 500 BUs and 20 territories.
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Figure 3: Performance of SSMTDP, instance DU500-08.

The first frontier (BGRASP-I) is the initial solution set generated by the diversification

module (BGRASP-I). The following frontiers show the solutions that belong to the reference

set on each SSMTDP iteration. Recall that SSMTDP starts with a non-dominated solution

set that is obtained by the diversification module. These solutions are assigned to the initial

reference set. After that, each pair of solutions in the reference set is combined to generate

three different solutions. The new generated solutions are improved through the RLS and

then, the updating of the reference set is done for obtaining a new reference set. When

the reference set does not change, the SSMTDP stops. In the case illustrated in Figure
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3, the SSMTDP converged in iteration 9. That is, in this iteration, the combination of

solutions from the reference set did not yield potential nondominated solutions to be added

to the reference set. Thus, SSMTDP reports as non-dominated solutions set those solutions

belonging to the reference set in the last iteration.

To illustrate the behavior of SSMTDP by using instances from (1000,50), Figure 4 shows

the SSMTDP iterations over the instance called DU1000-04 which has 1000 BUs and 50

territories. In this case the SSMTDP stopped in iteration 8. In summary, the approximate

efficient frontiers obtained by SSMTDP represent a significant improvement with respect

to the initial frontiers provided by BGRASP-I. It was observed that in all instances tested

(20 instances), the SSMTDP method stopped by convergence. These results are used in

Section 4.2 for comparing SSMTDP with another SS heuristic called SSPMO.
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Figure 4: Performance of SSMTDP, instance DU1000-04.

In the following sections, SSMTDP is compared with two other state-of-the-art heurisitcs,

NSGA-II and SSPMO. NSGA-II is selected as it is the most widely used and cited genetic

algorithm for Multiobjective Optimization and, thus, considered a standard for experi-

mental comparisons. On the other hand, SSPMO is regarded as one the most successfull

and cited non-genetic algorithms for multiobjective optimization. SSPMO is a SS based

method that uses the Relinked Local Search principle, whose efficiency has been consistently

reported in the literature. Thus, we consider these two methods as important and relevant

for benchmarking our proposed proposed heuristic.

In order to compare multiobjective metaheuristics, there are different performance mea-

sures for evaluating the quality of those non-dominated solutions obtained. In the literature
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of multiobjective optimization, the most used performance measures are the following:

1. Number of points in the non-dominated frontier: It is an important measure because

non-dominated frontiers that provide more alternatives to the decision maker are

preferred than those frontiers with few non-dominated points.

2. k-distance: This density-estimation technique used by Zitzler et al (2001) in connec-

tion with the computational testing of SPEA2 is based on the k-th nearest neighbor

method of Silverman (1986). This metric is simply the distance to the k-th nearest

non-dominated point. So, the smaller the k-distance the better in terms of the fron-

tier density. We use k=4 and calculate both the mean and the max of k-th nearest

distance values.

3. Size of space covered (SSC(X)): This metric was suggested by Zitzler and Thiele

(1999). For a given set of points X, SSC(X) is the volume of the points dominated by

X. Hence, the larger the value of SSC(X), the better X.

4. C(A,B): It is known as the coverage of two sets measure (Zitzler and Thiele, 1999).

This measure represents the proportion of points in the estimated efficient frontier B

that are dominated by the non-dominated points in the estimated frontier A. This is,

C(A,B) is the coverage of B by points in A

So, we will assume these four metrics to compare results of SSMTDP, SSPMO and

NSGA-II.

4.2 Comparison with Existing Multiobjective SS Procedure

Description of SSPMO

SSPMO is a metaheuristic introduced by Molina et al (2007) initially developed for solving

non-linear multiobjective optimization problems; however, it has been adapted for multiob-

jective combinatorial problems as well. It consists of a scatter/tabu search hybrid procedure

that includes two different phases: (i) generation of an initial set of non-dominated points

through Relinked Local (Tabu) Searches (MOAMP), and (ii) combination of solutions and

updating of the non-dominated set via scatter search.

The generation of the initial set is based on the MOAMP method proposed by Caballero

et al (2004). To build the initial set of non-dominated points, MOAMP carries out a series

of Relinked Tabu Searches where each visited point could be included in the final non-

dominated set. The second phase of MOAMP consists of an intensification search around

the initial set of non-dominated points. For more details see (Caballero et al, 2004; Molina

et al, 2007).
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The SSPMO procedure creates a reference set (E) using the non-dominated solutions

reported by MOAMP. A list of solutions that have been selected as reference points is kept

to prevent the selection of those solutions in future iterations. Then, each solution that is

added to the set E, is added to a TE (tabu set). A linear-combination method is used to

combine reference solutions. All pair of solutions in E are combined and each combination

yields four new trial solutions. Each new solution is subject to an improvement method

based on MOAMP. Solutions generated after the improvement procedure are tested for

possible inclusion in E.

Once all pairs of solutions in E are combined and the new trial solutions are improved,

SSPMO updates the reference set E and proceeds to the next iteration. The first step in the

updating process is to choose the best solutions according to each of the objective functions

taken separately. In this selection, those solutions belonging to TE are not considered.

The remaining solutions are chosen by using a metric L∞, that is a generalization of the

Euclidean distance. For each x ∈ E \ TE the minimum distance (Lmin
∞

(x)) from x to TE

is computed, and a uniform random number is generated. If it is less than (Lmin
∞

(x)), then

x is declared eligible. Let y be the maximum number of solutions to be combined. Then,

y − g solutions with largest minimum distance to TE are selected sequentially. Note that,

TE is updated after each selection in order to avoid choosing points that are too close to

each other. The updating process continues until the mean value of (Lmin
∞

(x)) for the set

of eligible solutions falls below a pre-specified threshold mean-distance. For a complete

description of SSPMO method, see Molina et al (2007).

The SSPMO method was adapted to the multiobjective commercial territory design

problem. Four objective functions are minimized: (i) dispersion (6), (ii) maximum deviation

with respect to the average number of customers (7), (iii) total infeasibility with respect to

the balancing constraints of sales volume (8), and (iv) total number of unconnected nodes.

The initial solution set fed to MOAMP is generated by choosing p seeds (configuration of

centers) and each of the remaining BUs is assigned to its closest center. The maximum

number of updates of the reference set was set to 10 (equal to the number of iterations

used in SSMTDP), the maximum number of tabu solutions was set to 55, the threshold

value was set to 0.05, and the maximum number of non-dominated solutions included in

the reference set was set to 100. The neighborhoods are the same that those defined in the

NSGA-II method (following section). For each pair of solutions, four new trial solutions are

generated.

At the end, the non-dominated solutions reported by SSPMO are filtered using only

those feasible solutions that are non-dominated with respect to the dispersion measure and

the maximum deviation with respect to the average number of customers.

13



Comparing SSPMO and SSMTDP

In this part of the computational work, the SSMTDP procedure is compared with SSPMO.

Both SS-based procedures stop by convergence or by iteration limit (10 updates of the ref-

erence set). Figure 5 shows the Pareto frontiers provided by SSPMO and SSMTDP. These

results correspond to the 10 instances with 500 BUs and 20 territories. The maximum num-

ber of allowed movements in SSMTDP was set to 800. Graphically, SSMTDP outperforms

SSPMO over all instances tested.

Tables 1 and 2 show a summary of all metrics previously described. Clearly, SSMTDP

outperforms SSPMO in all metrics for all the instances, specially when considering con-

vergence, where the SSC metric is around double the obtained by SSPMO. Additionally,

in Table 2 the superiority of SSMTDP over SSPMO is more than evident, note that the

frontiers generated by SSPMO are in average 90% covered by those frontiers obtained by

SSMTDP and the SSPMO frontiers are not able to cover any point in the frontiers provided

by SSMTDP.

Table 1: Summary of metrics for the 10 instances in the set (500, 20).

Procedure No. Points k-distance (mean) k-distance (max) SSC

min 7.00 0.16 0.30 0.38

SSPMO ave 10.82 0.31 0.56 0.42

max 17.00 0.58 0.81 0.54

min 11.00 0.09 0.22 0.93

SSMTDP aver 14.36 0.16 0.44 0.97

max 22.00 0.26 0.83 0.99

Table 2: Average value for the coverage of two sets C(A,B) computed for the 10 instances

in the set (500, 20).

C(A,B) SSPMO SSMTDP

SSPMO 0.00 0.00

SSMTDP 0.90 0.00
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Figure 5: Approximate Pareto frontiers obtained by SSPMO and SSMTDP for set (500,20).
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In addition, 10 instances with 1000 BUs and 50 territories were tested by applying

both SSPMO and SSMTDP using the same stopping criteria as in the previous cases.

SSPMO spent more than 30 days without getting convergence for the first instance tested.

Then, the stopping criteria was changed and the iteration limit was set to 2. Due that the

tremendous computational effort required by the SSPMO, the procedure was not applied

over all instances with 1000 BUs and 50 territories. Here we show the results for the instance

DU1000-05, Figure 6. Therefore the approximated frontier reported by SSPMO corresponds

to those solutions in the reference set after iteration 2. In contrast, our procedure SSMTDP

converged and reported non-dominated solutions for DU1000-05 and for the remaining

instances tested. The maximum number of moves for these cases was set to 2000.
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Figure 6: Approximate Pareto frontiers reported by SSPMO and SSMTDP, instance

DU1000-05.

4.3 Comparison with Existing Evolutionary Algorithm

Description of NSGA-II

The Nondominated Sorting Genetic Algorithm (NSGA-II) is an evolutionary algorithm that

has been successfully applied to many multiobjective combinatorial optimization problems

in the literature (Deb et al, 2000) and is the most cited method in multiobjective meta-

heuristic. Its general description can be found in Deb et al (2002).

In this work, NSGA-II was adapted to the problem. Four objective functions are min-

imized: (i) dispersion (6), (ii) maximum deviation with respect to the average number of

customers (7), (iii) total infeasibility with respect to the balancing constraints of sales vol-

ume (8), and (iv) total number of unconnected nodes. The main features present in this
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adaptation of the NSGA-II procedure are the following. The generation of solutions consists

of randomly selecting p seeds from the set of nodes (V ) and assigning the remaining n− p

nodes to the closest center. NSGA-II uses different nondomination levels (ranks). In a few

words, for each solution h two entities are calculated: (i) domination count dh which corre-

sponds to the number of solutions that dominate the solution h, and (ii) a set of solutions

Dh that solution h dominates. All solutions in the first nondominated frontier have their

domination count as zero. Then, for each solution h with dh = 0, each member (g) from

Sp is visited, and its domination count is reduced by one. In doing so, if for any member g

the domination count becomes zero, it is put in a separate list Q̄. These members belong

to the second frontier. Now, the above procedure is continued with each member of Q̄ and

the third frontier is identified. The process continues until all frontiers are identified.

In the first iteration, the population is sorted based on the nondomination. Then,

the fitness function is defined according to the nondomination level. At first, the binary

tournament selection is used to create an offspring population Q̄0 of size N . Since elitism is

introduced by comparing the current population with previously found best nondominated

solutions, the procedure is different after the initial generation. In the following iterations,

the selection is based on the crowded operator which combines the rank (nondomination

level) and crowded distance. For more details see (Deb et al, 2002).

For each pair of solutions two new solutions are obtained. Each new solution copies each

center from the one of the parent solutions with the same probability and the assignment

process is equal to that of the initial generation. For each generated solution, a random

integer number is generated in the range [0,4]. If the random number is equal to 0, then

the mutation process is not applied. Otherwise, the mutation process takes place by using

the kind of move determined by the generated number. The different neighborhoods are

defined by the following moves:

1. Select a center and change it for another randomly selected node. Do a re-assignment

of nodes using the new configuration of centers.

2. Select a node in the border of a territory and assign this node to the adjacent territory

(keeping connectivity).

3. Select a territory r and assign a randomly selected node from an adjacent territory to

r.

4. Interchange two nodes between a pair of territories by holding connectivity.

When the convergence criterion is reached, the best nondominated solutions are filtered

to obtain those feasible solutions that are non-dominated with respect to the dispersion

measure and the maximum deviation with respect to the average number of customers.
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Comparing NSGA-II, SSPMO, and SSMTDP

NSGA-II was applied over the two instance sets used in the previous section. The number

of generations and the population size was set to 500, respectively. On each generation 250

solutions were combined. NSGA-II reported non-dominated solutions only for the instance

DU500-04 (Tables 3 and 4) which has 500 BUs and 20 territories. For the other 19 instances

tested NSGA-II did not obtain feasible solutions and the SSMTDP procedure reported

non-dominated solutions over all tested instances. It was observed how NSGA-II failed on

appropriately handling the connectivity constraints. Most of the solutions generated by

NSGA-II are highly infeasible with respect to the connectivity constraints, even though the

NSGA-II considers this requirement as objective to be minimized. The selection mechanism

and the combining processes are not enough to efficiently handling these very difficult

constraints. In contrast, the proposed SSMTDP procedure is specifically designed to take

the connectivity into account over all its components. Thus, for this problem, exploiting

problem structure definitely pays off. Figure 7 shows the comparison among the SSMTDP,

SSPMO, and NSGA-II procedures.
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Figure 7: Approximate Pareto frontiers reported by NSGA-II, SSPMO, and SSMTDP,

instance DU500-04.

Note that a few non-dominated solutions from SSPMO are dominated by the non-

dominated set reported by NSGA-II. In addition, both SSPMO and SSMTDP reported

non-dominated points in a region that is not covered by the Pareto frontier obtained by

NSGA-II.

Table 3 shows again the superiority of SSMTDP that clearly outperforms both NSGA-

II and SSPMO, demonstrating the efficiency of the proposed method. We analized the
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Table 3: Summary of metrics for instance DU500-04.

Procedure No. Points k-distance (mean) k-distance (max) SSC

SSPMO 13.00 0.20 0.62 0.38

NSGA-II 4.00 - - 0.43

SSMTDP 13.00 0.13 0.32 0.97

single case (instance DU500-04) in which NSGA-II reported feasible solutions. Note that

in the k-distance (mean and max), the corresponding values for NSGA-II could not be

computed given that we used k = 4. The coverage of two sets measure C(A,B) is shown

in Table 4, in this table the set A is associated with the rows and B with the columns.

Observe that the points obtained by NSGA-II dominated some points obtained by SSPMO.

Table 4 shows that NSGA-II dominates 15% of the points reported by SSPMO. For this

metric, SSMTDP dominates the frontiers reported by NSGA-II and SSPMO (see Figure 7).

Moreover, NSGA-II reported feasible solutions just for a single instance out of 20 instances

tested, while SSMTDP reported feasible solutions for all instances tested. In summary,

SSMTDP outperforms both the NSGA-II and SSPMO procedures.

Table 4: Coverage of two sets C(A,B), instance DU500-04.

C(A,B) SSPMO NSGA-II SSMTDP

SSPMO 0.00 0.00 0.00

NSGA-II 0.15 0.00 0.00

SSMTDP 1.00 1.00 0.00

5 Conclusions and Future Work

In this paper a novel heuristic procedure based on Scatter Search is proposed. Each com-

ponent of the proposed method called SSMTDP has been designed taking advantage of

the problem structure. Empirical evaluation of the method was performed on two large in-

stance sets, consisting of 500 and 1000 BUs respectively. Solutions generated by SSMTDP

were compared against solutions obtained by SSPMO a State of the Art multiobjective

method. SSMTDP reported better solutions than SSPMO in all tested instances. In addi-

tion NSGA-II an evolutionary algorithm which is a benchmark for multiobjective problems

was adapted to the problem. Empirical work revealed that SSMTDP significantly outper-

formed NSGA-II on all tested instances. Even the generation of feasible solutions for this

highly constrained problem resulted into a hard problem to solve for NSGA-II.
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As a future work the procedure can be extended to more objectives than those presented

here, one immediate extension can be to incorporate the load balancing with respect to sales

volume. One more interesting extension is the incorporation of the routing cost of delivering

the product; this additional feature can be treated either as an objective or as a constraint.
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