

Multiobjective Scatter Search for a Commercial Territory Design Problem

M. Angélica Salazar-Aguilar ¹

CIRRELT, HEC Montréal

Université de Montréal, Canada

e.mail: *angelica.salazar@cirrelt.ca*

Roger Z. Ríos-Mercado

Graduate Program in Systems Engineering

Universidad Autónoma de Nuevo León, Mexico

e-mail: *roger.rios@uanl.edu.mx*

José Luis González-Velarde

Center for Quality and Manufacturing

Tecnológico de Monterrey, Mexico

e.mail: *gonzalez.velarde@itesm.mx*

Julián Molina

Department of Applied Economics

Universidad de Málaga, Spain

e.mail: *julian.molina@uma.es*

Received: October 2010 / Revised: June 2011 / Accepted: date

¹Corresponding author

Abstract

In this paper, a multiobjective scatter search procedure for a bi-objective territory design problem is proposed. A territory design problem consist of partitioning a set of basic units into larger groups that are suitable with respect to some specific planning criteria. These groups must be compact, connected, and balanced with respect to the number of customers and sales volume. The bi-objective commercial territory design problem belongs to the class of NP-hard problems. Previous work showed that large instances of the problem addressed in this work are practically intractable even for the single-objective version. Therefore, the use of heuristic methods is the best alternative for obtaining approximate efficient solutions for relatively large instances. The proposed scatter search-based framework contains a diversification generation module based on a greedy randomized adaptive search procedure, an improvement module based on a relinked local search strategy, and a combination module based on a solution to an assigment problem. The proposed metaheuristic is evaluated over a variety of instances taken from literature. This includes a comparison with two of the most successful multiobjective heuristics from literature such as the Scatter Tabu Search Procedure for Multiobjective Optimization by Molina, Martí, and Caballero, and the Non-dominated Sorting Genetic Algorithm by Deb, Agrawal, Pratap, and Meyarivan. Experimental work reveals that the proposed procedure consistently outperforms both existing heuristics from literature on all instances tested.

Keywords: Territory design; bi-objective programming; Pareto frontier; Metaheuristics; Scatter search.

1 Introduction

Commercial territory design is a recent districting application. It consists of partitioning a given set of basic units (BUs) into p larger groups called territories, according to some specific planning criteria. Each basic unit is associated with a city block and has two attributes: number of customers and product demand. The problem is represented by a graph where each node is associated with a BU and there is an arc representing adjacency between blocks. One important requirement is that each territory must be connected, that is, it must be possible to travel between each pair of nodes of the territory without leaving the territory. In addition each territory must be balanced with respect to each node attribute, that is, each territory must have around the same number of customers and product demand. As usual in districting problems, it is also important to have compact territories. Territory compactness is handled by means of minimizing a dispersion objective function.

A single objective version of this problem was introduced by Ríos-Mercado and Fernández (2009). Due to the complexity of the problem, they developed a reactive GRASP procedure to solve it. Their proposed procedure outperformed the company method in both solution quality and degree of infeasibility with respect to the balancing requirements. Different versions of this problem have been studied as well. Segura-Ramiro et al (2007) use a different dispersion measure that is very common in facility location. It is the objective function of the p -Median Problem (p MP). Balancing requirements are considered as constraints. They solved the problem by an implementation of a location-allocation heuristic. The results showed good heuristic performance. Caballero-Hernández et al (2007) developed a GRASP for a commercial territory design problem with joint assignemnt constraints with relatively good results.

Regarding multiobjective approaches to other districting problems, there are a few applications on political districting (Guo et al, 2000; Bong and Wang, 2004; Ricca and Simeone, 2008) school districting (Bowerman et al, 1995; Scott et al, 1996), and public service (Tavares-Pereira et al, 2007; Ricca, 2004). These are, however, different models from the one studied in this paper. To the best of our knowledge the only work on multiobjective commercial territory design is the one by Salazar-Aguilar et al (2011b) and Salazar-Aguilar et al (2011c). In the former, the bi-objective model is introduced and an improved ε -constraint method is proposed for finding optimal Pareto frontiers. One of the limitations of that work is of course the size of the instances that could be solved exactly. The largest tractable instance has 150 BUs and 6 territories. In the latter, GRASP-based heuristics are developed to attempt to tackle large scale instances to the problem with relative success. Therefore, the motivation of the present work is to develop an better and effective method for tackling large instances of this commercial territory design problem (TDP). For a survey

on single-objective TDP applications, the reader is referred to the work of Kalcsics et al (2005) and Duque et al (2007).

In this work, the well-known framework of Scatter Search (Laguna and Martí, 2003) is used to develop a heuristic that allows to obtain approximate efficient solutions to the bi-objective commercial territory design problem. Five key components were derived and developed within the Scatter Search (SS) framework: (i) a diversification generation module based on a Greedy Randomized Adaptive Search Procedure (GRASP), (ii) an improvement module based on a novel relinked search strategy, (iii) a solution combination method based on a hybrid scheme; (iv) a reference set update method, and (v) a subset generation method. As usual in SS, the first three modules were specifically tailored to attempt to exploit the problem structure.

The Scatter Search Method for Multiobjective Territory Design (SSMTDP) proposed in this work was evaluated over a set of large instances. The results indicate that the SSMTDP is able to find good solutions that are very well distributed along the efficient frontier. Even though the initial solutions have a poor evaluation in the objective functions, the proposed combination method has the ability of exploring new regions in the search space and the improvement method allows to obtain better solutions that are very far from the initial set. When compared to state-of-the-art multi-objective methods such as the Scatter Tabu Search Procedure for Multiobjective Optimization (SSPMO) and the Non-dominated Sorting Genetic Algorithm (NSGA-II), it was observed that these procedures struggled in generating feasible solutions to the problem. A few instances could be solved by these procedures. In contrast, the SSMTDP reported non-dominated solutions for all instances tested. Furthermore, SSMTDP reported significantly better solutions for those instances that were solved for both SSPMO and NSGA-II.

The paper is organized as follows. Section 2 provides a description of the problem. In Section 3, the proposed procedure is fully described. Experimental work is discussed in Section 4 and final conclusions are drawn in Section 5.

2 Problem Description

Given a set V of city blocks (basic units, BUs), the firm wishes to partition this set into a fixed number (p) of disjoint territories that are suitable according to some planning criteria. The territories need to be balanced with respect to each of two different activity measures (number of customers and sales volume). Additionally, each territory has to be connected, so that each basic unit can be reached from any other without leaving the territory. Territory compactness is required to guarantee that customers within a territory are relatively close to each other. Compactness and balance with respect to the number of customers are the most important criteria identified by the firm. Therefore in this work these criteria are

considered as objective functions and the remaining criteria are treated as constraints.

Let $G = (V, E)$, where E is the set of edges that represents adjacency between BUs. An edge connecting nodes i and j exists if i and j are adjacent BUs. Multiple attributes such as geographical coordinates (c_j^x, c_j^y) , number of customers and sales volume are associated to each node $j \in V$. In particular, the firm wishes perfect balance among territories, that is, each territory needs to have the same number of customers and sales volume. Let K be the territory index set such that $|K| = p$. Let $A = \{1, 2\}$ be the set of node activities, where 1 refers to the number of customers and 2 refers to sales volume. We define the size of territory X_k with respect to activity a as $w^{(a)}(X_k) = \sum_{i \in X_k} w_i^{(a)}$, where $w_i^{(a)}$ is the value associated to activity $a \in A$ in node $i \in V$. Hence, the target value is given by $\mu^{(a)} = \sum_{j \in V} w_j^{(a)}/p$. Due to the discrete nature of this problem, it is practically impossible to have perfectly balanced territories. Thus, a tolerance parameter $\tau^{(2)}$ is introduced to allow a relative deviation from the average sales volume.

Let Π be the set of all possible p -partitions of V . For a particular territory X_k , $c(k)$, $k \in K$, is a territory center and d_{ij} is the Euclidian distance between nodes i and j ; $i, j \in X_k$. A territory center is computed as

$$c(k) = \arg \min_{j \in X_k} \sum_{i \in X_k} d_{ij}$$

Under the previous assumptions, the bi-objective combinatorial model can be written as follows.

$$\min_{X \in \Pi} \quad f_1(X) = \sum_{k \in K} \sum_{i \in X_k} d_{ic(k)} \quad (1)$$

$$\min_{X \in \Pi} \quad f_2(X) = \max_{k \in K} \frac{1}{\mu^{(1)}} \left[\max \left\{ w^{(1)}(X_k) - \mu^{(1)}, \mu^{(1)} - w^{(1)}(X_k) \right\} \right] \quad (2)$$

subject to :

$$w^{(2)}(X_k) \leq (1 + \tau^{(2)})\mu^{(2)}, \quad k \in K \quad (3)$$

$$w^{(2)}(X_k) \geq (1 - \tau^{(2)})\mu^{(2)}, \quad k \in K \quad (4)$$

$$G_k = (X_k, E(X_k)) \text{ is connected; } k \in K \quad (5)$$

The goal is to find a p -partition $X = (X_1, \dots, X_p)$ of V , such that both the dispersion (1) on each territory X_k and the maximum relative deviation with respect to the number of customers in each territory (2) are simultaneously minimized. Constraints (3)-(4) establish that the territory size (sales volume) should be between the range allowed by the tolerance parameter $\tau^{(2)}$. Constraints (5) assure the connectivity of each territory, where G_k is the graph induced in G by the set of nodes X_k .

Note that this can also be seen as partitioning G (the contiguity graph representing the basic units) into p connected componentes (contiguous districts) under the additional

side constraints on the product demand of each territory (that must satisfy a soft target), and minimizing two objective functions (namely, the dispersion measure of the BUs in a territory, and the maximum relative deviation of the number of customers of a district with respect to a target level). The basic contiguity graph model for the representation of a territory divided into elementary units was introduced by Simeone (1978), and has been adopted in political districting (Nygren, 1988; Grilli Di Cortona et al, 1999; Ricca and Simeone, 2008).

This is an NP-hard problem (Salazar-Aguilar et al, 2011a) and previous work (Salazar-Aguilar et al, 2011b) reveals that large instances are intractable by applying the existing exact solution procedures. In this paper we develop a heuristic procedure for obtaining approximate efficient solutions to large instances.

3 The SSMTDP Procedure

The evolutionary approach called Scatter Search (SS) was first introduced in Glover (1977) as a metaheuristic for integer programming. It is based on diversifying the search through the solution space. It operates on a set of solutions, named the reference set (PR), formed by good and diverse solutions of the main population (P). These solutions are combined with the aim of generating new solutions with better fitness, while maintaining diversity. Furthermore, an improvement phase using local search is applied. As detailed in Martí et al (2006), the basic structure of SS is formed by five main modules. Figure 1 depicts a schematic representation of the proposed SS design that shows how the modules interact.

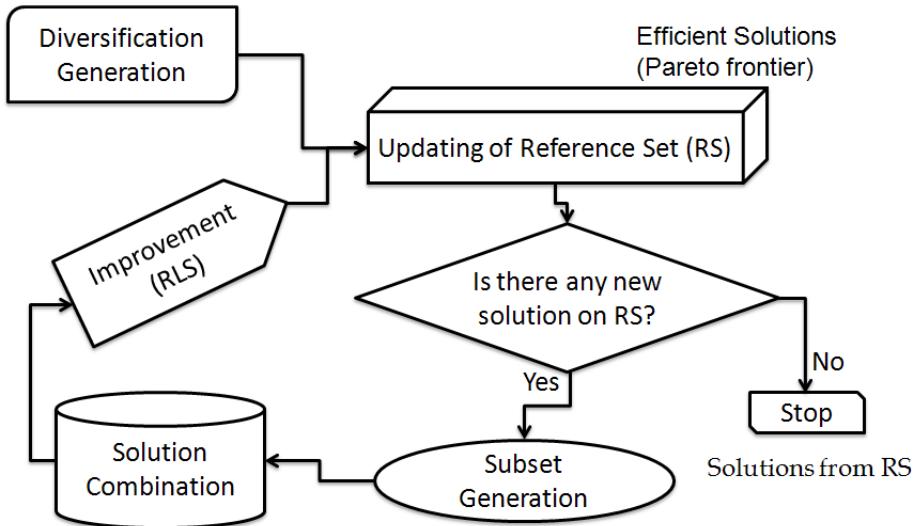


Figure 1: Scatter Search metaheuristic.

SS is a very flexible technique, since some modules of its structure can be defined according to the problem at hand. For instance, the diversification, the improvement, and the combination modules have been proposed and tailored to this specific problem attempting to exploit its problem structure. In our design the *diversification module* generates a set of initial solutions based on GRASP strategies; the *improvement module* attempts to improve a given solution by using a novel relinked local search strategy for multiobjective problems; the *solution combination method* transforms two given solutions into one or more child solutions by attempting to keep good features from the parent solutions. In this specific application, three child solutions are generated from two given territory designs. These three problem-specific modules are fully described in the following subsection. Finally, the remaining two modules that are not problem-dependent are the *reference set update module* and the *subset generation module*. The former maintains a portion of the best solutions of the reference set. In this case, the reference set is formed by non-dominated solutions according to the Pareto sense. When a non-dominated solution is found, this enters the reference set and those solutions that are dominated by the added solution are deleted from the reference set. The latter operates in the reference set in such a way so as to select some solutions to be combined. All possible pairs of solutions from the reference set are selected. During each SSMTDP iteration, a temporal memory is used to avoid those combinations that were done in the previous iteration. In other words, for a specific iteration, the combination process is applied just to those pairs of solutions that were not combined in the previous iteration.

3.1 Description of SSMTDP Modules

The components of the problem-specific modules of the proposed SSMTDP are described in detail next.

Diversification generation module: It is based on the GRASP procedures developed by Salazar-Aguilar et al (2011c). Specifically, we use the procedure called BGRASP-I. This procedure uses a merit function based on two components: dispersion and maximum deviation with respect to the target value in the number of customers. This module keeps connectivity as a hard constraint. The post-processing phase of BGRASP-I is carried out by the improvement module described below.

Improvement module: This module transforms a trial solution into one or more trial solutions. This module is an implementation of a relinked local search (RLS) strategy and is applied to each solution obtained by either the diversification generation or the combination module. As mentioned in Molina et al (2007), most local search applications to multiobjective optimization use multiple runs to approximate the Pareto

frontier. This technique is usually based on a weighted aggregation of the objective functions where each run consists of solving the single-objective optimization problem that results from applying a given set of weights. To obtain an approximation of the Pareto frontier the procedure must be run as many times as the desired number of points, using different weight values. The performance of implementations based on multiple runs deteriorates as the need for generating more non-dominated solutions increases, since this is directly proportional to the number of times that the procedure must be executed. On the other hand, Molina et al (2007) propose the use of a relinked local search scheme that consists of performing a local search with respect to one objective function by taking turns in each objective function in a systematic way. This module is based on the very well known Fritz-John optimality principle for multiobjective optimization (Singh, 1987) which has been empirically demonstrated to provide a dense and diverse set of non-dominated points.

In our problem, the RLS is done in the following way. For a given p -partition $X = (X_1, \dots, X_p)$, our improvement module consists of optimizing the following three objective functions (one at a time): (i) the dispersion measure

$$z_1(X) = \sum_{j \in X_k} \sum_{k \in K} d_{j,c(k)}, \quad (6)$$

(ii) the maximum deviation with respect to the number of customers

$$z_2(X) = \frac{1}{\mu^{(1)}} \max_{k \in K} \left\{ \max\{w^{(1)}(X_k) - \mu^{(1)}, \mu^{(1)} - w^{(1)}(X_k)\} \right\}, \quad (7)$$

and (iii) total infeasibility

$$z_3(X) = \frac{1}{\mu^{(2)}} \sum_{k \in K} \max \left\{ w^{(2)}(X_k) - (1 + \tau^{(2)})\mu^{(2)}, (1 - \tau^{(2)})\mu^{(2)} - w^{(2)}(X_k), 0 \right\} \quad (8)$$

related to the balancing of sales volume. Note that $c(k)$ is the center of territory X_k . The RLS consists of applying a single-objective local search by using each of these merit functions one at a time. That is, first local search is applied by using $z_1(X)$ as the merit function in a single-objective manner. After a local optimum is found, the local search is continued with $z_2(X)$ as the merit function. This is followed by a local search by using $z_3(X)$ as the merit function. To close the cycle, a final local search is performed by using the initial objective $z_1(X)$ as the merit function. The set of nondominated solutions is updated at every solution in the search trajectory.

Solution combination module: This transforms the solution sets formed by the subset generation module into one or more combined solutions. In this work, three solutions are generated (see Function 1) from each pair of solutions. There are many ways of combining a pair of solutions. In the proposed SSMTDP procedure, this component is

developed by attempting to keep good features present in the current solutions. Then, given a pair of solutions X^1 and X^2 , these are combined by identifying the best match between territories. An exhaustive evaluation of the possible ways of combining these two solutions requires a high computational effort. Therefore, the module attempts to find the best territory match based on their corresponding territory centers only. This is done by solving an associated assignment problem. The assignment problem used in this module minimizes the sum of distances between the territory centers identified on these solutions.

Function 1 CombinationModule(X^1, X^2)

Input: (X^1, X^2) := Pair of parent solutions to be combined

Output: $(X^{z_1}, X^{z_2}, X^{z_3})$ Three new solutions obtained by combining X^1 and X^2

$C^i \leftarrow$ Set of territory centers of X^i , $i = 1, 2$;

$\bar{E} \leftarrow$ Edge set between C^1 and C^2

$M \leftarrow$ SolveAssignmentProblem(C^1, C^2, E)

{ Build partial solution }

for ($k = 1, \dots, p$) **do**

 Take (i_k, j_k) from M

$\bar{X}_k \leftarrow X_{t(i_k)}^1 \cap X_{t(j_k)}^2$

if $(\bar{X}_k = \emptyset)$ **then** $\bar{X}_k \leftarrow \{i_k\}$

end for

{ Assign remaining nodes }

$X^{z_q} \leftarrow \bar{X}$ for $q = 1, 2, 3$

for ($q = 1, \dots, 3$) **do**

$X^{z_q} \leftarrow$ BuildSolution(X^{z_q}, z_q)

end for

return $(X^{z_1}, X^{z_2}, X^{z_3})$

For instance, suppose that solutions X^1 and X^2 , with corresponding center sets C^1 and C^2 , are to be combined. Let $B = (C^1, C^2, \bar{E})$ be the associated complete bipartite graph with node sets C^1 and C^2 , and edge set $\bar{E} = \{(i, j) \in C^1 \times C^2$, where the weight of edge $(i, j) \in \bar{E}$ is given by d_{ij} . Let $y_{ij} = 1$ if edge (i, j) is included in the assignment, whereas $y_{ij} = 0$ otherwise. Then the following assignment problem is formulated:

$$\begin{aligned}
 \text{(AP)} \quad \text{Minimize} \quad h(y) &= \sum_{i \in C^1} \sum_{j \in C^2} d_{ij} y_{ij} \\
 \text{subject to} \quad \sum_{j \in C^2} y_{ij} &= 1 \quad i \in C^1 \\
 \sum_{i \in C^1} y_{ij} &= 1 \quad j \in C^2
 \end{aligned}$$

$$y_{ij} \in \{0, 1\} \quad i \in C^1, j \in C^2$$

The optimal solution to AP is used to determine which territories are matched. Each matching pair (i, j) of this assignment yields a territory in the combined solution by assigning to this territory all those nodes that are common to both territory with center in i in X^1 and territory with center in j in X^2 . This can be seen in Algorithm 1, where $t(i)$ indicates the territory to which node i belongs. Let $S(X^1, X^2)$ be the partial territory design obtained this way. Figure 2 illustrates the process of generating a partial solution by combining a pair of trial solutions X^1 and X^2 . In this figure, the black nodes represent the territory centers and the dotted lines represent the territories in the left-hand side. After solving the AP and associating to each territory common nodes from X^1 and X^2 , the resulting partial assignment $S(X^1, X^2)$ is represented by the territories enclosed by dotted lines in the right-hand side of the figure. As can be seen, there is a set of unassigned nodes that must be assigned. Finally, this partial solution $S(X^1, X^2)$ is used as a starting solution for generating three new solutions. Each of these solutions is obtained by iteratively adding the unassigned nodes to the partial territories through a call to the diversification module under a different given merit function. Let $z_q(X)$, for $q = 1, 2, 3$, the merit function corresponding to the dispersion measure (6), the maximum deviation with respect to the number of customers (7), and total relative infeasibility with respect to the balancing of the sales volume (8), respectively. That is, for generating the new solution X^{z_q} , the diversification is applied to $S(X^1, X^2)$ under merit function z_q , for $q = 1, 2, 3$. The function $\text{BuildSolution}(\bar{X}, z_q)$ takes a partial solution \bar{X} and a merit function z_q and completes a solution by assigning the remaining nodes under a GRASP construction and z_q as merit function.



Figure 2: Combination of territories between a pair of solutions.

When all trial solutions are generated (i.e., when all pairs of solutions are combined), this set of solutions is improved by using the improvement module previously described. At the end, the improvement process reports a potential set of nondominated solutions that

can be included in the current reference set. Thus, each solution from the potential set enters the reference set if it is a non-dominated solution with respect to the current set of solutions belonging to the reference set. Those solutions that are dominated by the new solution are removed from the current reference set. The SSMTDP stops when there are no new solutions included in the reference set.

Algorithm 1 shows a pseudocode of the proposed SSMTDP. The SSMTDP stops by iteration limit or by convergence, that is, when the reference set does not change. Note that the updating of the reference set takes place after a potential set of nondominated solutions is obtained by applying the improvement module over all trial solutions (X^{z_1} , X^{z_2} , and X^{z_3}) generated by the combination module. This strategy was adopted given that the computational effort increases considerably when the typical strategy (i.e., updating after each new feasible solution is generated) is performed.

Algorithm 1 General scheme of SSMTDP

Input: L := Iteration limit

Output: $RefSet$:= Set of nondominated solutions (reference set)

```

 $NewSolutions \leftarrow \text{TRUE}$ ,  $iter \leftarrow 0$ 
 $RefSet \leftarrow \text{DiverseSolutions( )} \{use GRASP to generate } P \text{ solutions\}$ 
while (( $NewSolutions$ ) and ( $iter < L$ )) do
     $SubSet \leftarrow \text{SubsetGeneration}(RefSet) \{pairs of solutions to be combined\}$ 
     $TrialSubSet \leftarrow \emptyset$ ,  $NewSolutions \leftarrow \text{FALSE}$ 
    for ( $X^1, X^2$ )  $\in SubSet$  do
         $(X^{z_1}, X^{z_2}, X^{z_3}) \leftarrow \text{CombinationModule}(X^1, X^2)$ 
         $TrialSubSet \leftarrow TrialSubSet \cup \{X^{z_1}, X^{z_2}, X^{z_3}\}$ 
    end for
    for ( $X \in TrialSubSet$ ) do
         $X \leftarrow \text{Improvement}(X) \{apply RLS\}$ 
    end for
     $\text{UpdateRefSet}(RefSet, TrialSubSet)$ 
    if ( $RefSet$  has changed) then  $NewSolutions \leftarrow \text{TRUE}$ 
     $iter \leftarrow iter + 1$ 
end while
return  $RefSet$ 

```

4 Experimental Work

The procedure was coded in C++, and compiled with the Sun C++ compiler workshop 8.0 under the Solaris 9 operating system and run on a SunFire V440. The data sets were

taken from the library developed by Ríos-Mercado and Fernández (2009). These data set contains randomly generated instances based on real-world data provided by the firm. The SSMTDP was applied over two instance sets with $(n, p) \in \{(500,20),(1000,50)\}$. For each set, 10 instances were generated and a tolerance parameter $\tau^{(2)} = 0.05$ was used in all of them. Two stopping criteria were used in the SSMTDP, iteration limit and convergence. In these experiments, the maximum number of iterations was set to 10.

4.1 Assessing the Performance of SSMTDP

During the experimental work, it was observed that SSMTDP converged without reaching the iteration limit over all instances tested. That is, in all cases the SSMTDP stopped when there were no new solutions to be added to the reference set. Figure 3 shows the behavior exhibited by the instance DU500-08, this instance has 500 BUs and 20 territories.

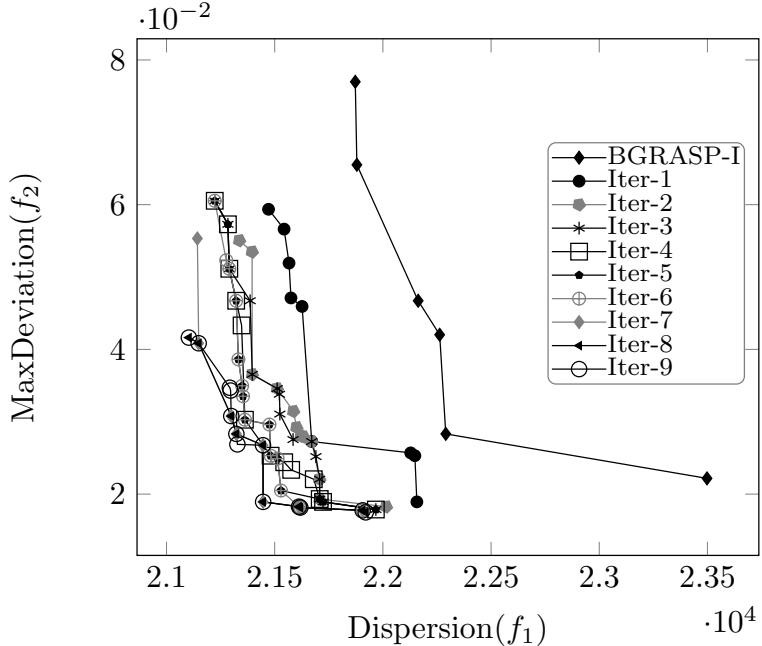


Figure 3: Performance of SSMTDP, instance DU500-08.

The first frontier (BGRASP-I) is the initial solution set generated by the diversification module (BGRASP-I). The following frontiers show the solutions that belong to the reference set on each SSMTDP iteration. Recall that SSMTDP starts with a non-dominated solution set that is obtained by the diversification module. These solutions are assigned to the initial reference set. After that, each pair of solutions in the reference set is combined to generate three different solutions. The new generated solutions are improved through the RLS and then, the updating of the reference set is done for obtaining a new reference set. When the reference set does not change, the SSMTDP stops. In the case illustrated in Figure

3, the SSMTDP converged in iteration 9. That is, in this iteration, the combination of solutions from the reference set did not yield potential nondominated solutions to be added to the reference set. Thus, SSMTDP reports as non-dominated solutions set those solutions belonging to the reference set in the last iteration.

To illustrate the behavior of SSMTDP by using instances from (1000,50), Figure 4 shows the SSMTDP iterations over the instance called DU1000-04 which has 1000 BUs and 50 territories. In this case the SSMTDP stopped in iteration 8. In summary, the approximate efficient frontiers obtained by SSMTDP represent a significant improvement with respect to the initial frontiers provided by BGRASP-I. It was observed that in all instances tested (20 instances), the SSMTDP method stopped by convergence. These results are used in Section 4.2 for comparing SSMTDP with another SS heuristic called SSPMO.

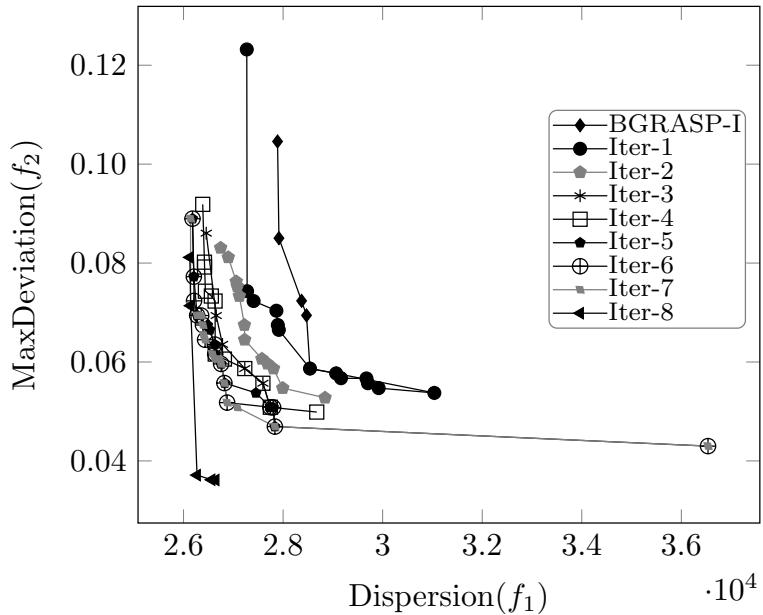


Figure 4: Performance of SSMTDP, instance DU1000-04.

In the following sections, SSMTDP is compared with two other state-of-the-art heuristics, NSGA-II and SSPMO. NSGA-II is selected as it is the most widely used and cited genetic algorithm for Multiobjective Optimization and, thus, considered a standard for experimental comparisons. On the other hand, SSPMO is regarded as one the most successfull and cited non-genetic algorithms for multiobjective optimization. SSPMO is a SS based method that uses the Relinked Local Search principle, whose efficiency has been consistently reported in the literature. Thus, we consider these two methods as important and relevant for benchmarking our proposed proposed heuristic.

In order to compare multiobjective metaheuristics, there are different performance measures for evaluating the quality of those non-dominated solutions obtained. In the literature

of multiobjective optimization, the most used performance measures are the following:

1. *Number of points in the non-dominated frontier*: It is an important measure because non-dominated frontiers that provide more alternatives to the decision maker are preferred than those frontiers with few non-dominated points.
2. *k-distance*: This density-estimation technique used by Zitzler et al (2001) in connection with the computational testing of SPEA2 is based on the k -th nearest neighbor method of Silverman (1986). This metric is simply the distance to the k -th nearest non-dominated point. So, the smaller the k -distance the better in terms of the frontier density. We use $k=4$ and calculate both the mean and the max of k -th nearest distance values.
3. *Size of space covered (SSC(X))*: This metric was suggested by Zitzler and Thiele (1999). For a given set of points X , $SSC(X)$ is the volume of the points dominated by X . Hence, the larger the value of $SSC(X)$, the better X .
4. $C(A,B)$: It is known as the coverage of two sets measure (Zitzler and Thiele, 1999). This measure represents the proportion of points in the estimated efficient frontier B that are dominated by the non-dominated points in the estimated frontier A . This is, $C(A,B)$ is the coverage of B by points in A

So, we will assume these four metrics to compare results of SSMTDP, SSPMO and NSGA-II.

4.2 Comparison with Existing Multiobjective SS Procedure

Description of SSPMO

SSPMO is a metaheuristic introduced by Molina et al (2007) initially developed for solving non-linear multiobjective optimization problems; however, it has been adapted for multiobjective combinatorial problems as well. It consists of a scatter/tabu search hybrid procedure that includes two different phases: (i) generation of an initial set of non-dominated points through Relinked Local (Tabu) Searches (MOAMP), and (ii) combination of solutions and updating of the non-dominated set via scatter search.

The generation of the initial set is based on the MOAMP method proposed by Caballero et al (2004). To build the initial set of non-dominated points, MOAMP carries out a series of Relinked Tabu Searches where each visited point could be included in the final non-dominated set. The second phase of MOAMP consists of an intensification search around the initial set of non-dominated points. For more details see (Caballero et al, 2004; Molina et al, 2007).

The SSPMO procedure creates a reference set (E) using the non-dominated solutions reported by MOAMP. A list of solutions that have been selected as reference points is kept to prevent the selection of those solutions in future iterations. Then, each solution that is added to the set E , is added to a TE (tabu set). A linear-combination method is used to combine reference solutions. All pair of solutions in E are combined and each combination yields four new trial solutions. Each new solution is subject to an improvement method based on MOAMP. Solutions generated after the improvement procedure are tested for possible inclusion in E .

Once all pairs of solutions in E are combined and the new trial solutions are improved, SSPMO updates the reference set E and proceeds to the next iteration. The first step in the updating process is to choose the best solutions according to each of the objective functions taken separately. In this selection, those solutions belonging to TE are not considered. The remaining solutions are chosen by using a metric L_∞ , that is a generalization of the Euclidean distance. For each $x \in E \setminus TE$ the minimum distance ($L_\infty^{\min}(x)$) from x to TE is computed, and a uniform random number is generated. If it is less than ($L_\infty^{\min}(x)$), then x is declared eligible. Let y be the maximum number of solutions to be combined. Then, $y - g$ solutions with largest minimum distance to TE are selected sequentially. Note that, TE is updated after each selection in order to avoid choosing points that are too close to each other. The updating process continues until the mean value of ($L_\infty^{\min}(x)$) for the set of eligible solutions falls below a pre-specified threshold mean-distance. For a complete description of SSPMO method, see Molina et al (2007).

The SSPMO method was adapted to the multiobjective commercial territory design problem. Four objective functions are minimized: (i) dispersion (6), (ii) maximum deviation with respect to the average number of customers (7), (iii) total infeasibility with respect to the balancing constraints of sales volume (8), and (iv) total number of unconnected nodes. The initial solution set fed to MOAMP is generated by choosing p seeds (configuration of centers) and each of the remaining BUs is assigned to its closest center. The maximum number of updates of the reference set was set to 10 (equal to the number of iterations used in SSMTDP), the maximum number of tabu solutions was set to 55, the threshold value was set to 0.05, and the maximum number of non-dominated solutions included in the reference set was set to 100. The neighborhoods are the same that those defined in the NSGA-II method (following section). For each pair of solutions, four new trial solutions are generated.

At the end, the non-dominated solutions reported by SSPMO are filtered using only those feasible solutions that are non-dominated with respect to the dispersion measure and the maximum deviation with respect to the average number of customers.

Comparing SSPMO and SSMTDP

In this part of the computational work, the SSMTDP procedure is compared with SSPMO. Both SS-based procedures stop by convergence or by iteration limit (10 updates of the reference set). Figure 5 shows the Pareto frontiers provided by SSPMO and SSMTDP. These results correspond to the 10 instances with 500 BUs and 20 territories. The maximum number of allowed movements in SSMTDP was set to 800. Graphically, SSMTDP outperforms SSPMO over all instances tested.

Tables 1 and 2 show a summary of all metrics previously described. Clearly, SSMTDP outperforms SSPMO in all metrics for all the instances, specially when considering convergence, where the SSC metric is around double the obtained by SSPMO. Additionally, in Table 2 the superiority of SSMTDP over SSPMO is more than evident, note that the frontiers generated by SSPMO are in average 90% covered by those frontiers obtained by SSMTDP and the SSPMO frontiers are not able to cover any point in the frontiers provided by SSMTDP.

Table 1: Summary of metrics for the 10 instances in the set (500, 20).

Procedure		No. Points	k -distance (mean)	k -distance (max)	SSC
SSPMO	min	7.00	0.16	0.30	0.38
	ave	10.82	0.31	0.56	0.42
	max	17.00	0.58	0.81	0.54
SSMTDP	min	11.00	0.09	0.22	0.93
	aver	14.36	0.16	0.44	0.97
	max	22.00	0.26	0.83	0.99

Table 2: Average value for the coverage of two sets $C(A,B)$ computed for the 10 instances in the set (500, 20).

$C(A,B)$	SSPMO	SSMTDP
SSPMO	0.00	0.00
SSMTDP	0.90	0.00

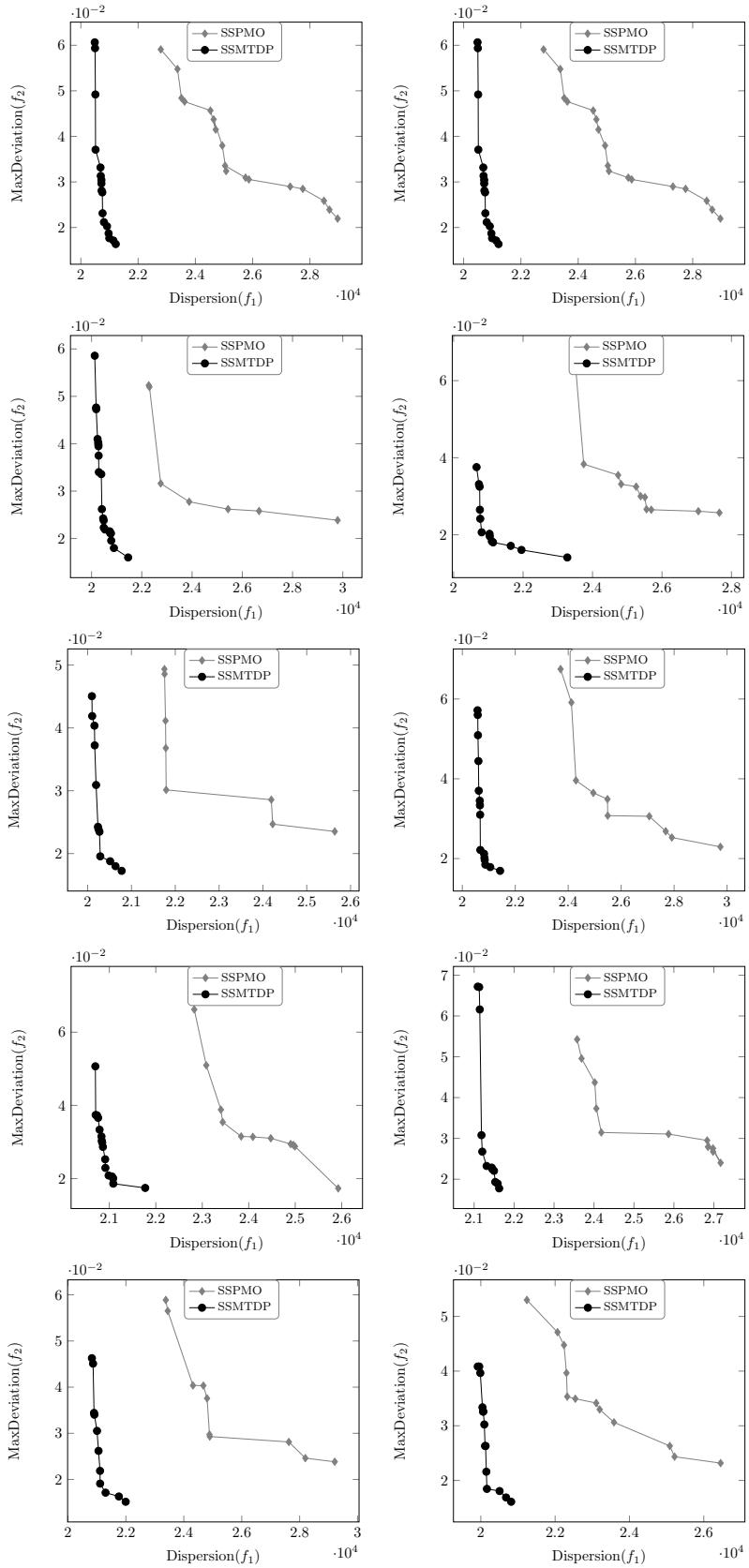


Figure 5: Approximate Pareto frontiers obtained by SSPMO and SSMTDP for set (500,20).

In addition, 10 instances with 1000 BUs and 50 territories were tested by applying both SSPMO and SSMTDP using the same stopping criteria as in the previous cases. SSPMO spent more than 30 days without getting convergence for the first instance tested. Then, the stopping criteria was changed and the iteration limit was set to 2. Due that the tremendous computational effort required by the SSPMO, the procedure was not applied over all instances with 1000 BUs and 50 territories. Here we show the results for the instance DU1000-05, Figure 6. Therefore the approximated frontier reported by SSPMO corresponds to those solutions in the reference set after iteration 2. In contrast, our procedure SSMTDP converged and reported non-dominated solutions for DU1000-05 and for the remaining instances tested. The maximum number of moves for these cases was set to 2000.

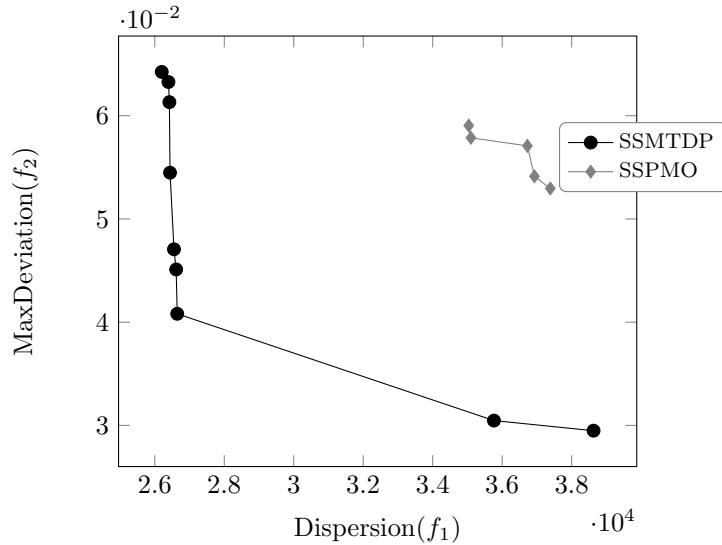


Figure 6: Approximate Pareto frontiers reported by SSPMO and SSMTDP, instance DU1000-05.

4.3 Comparison with Existing Evolutionary Algorithm

Description of NSGA-II

The Nondominated Sorting Genetic Algorithm (NSGA-II) is an evolutionary algorithm that has been successfully applied to many multiobjective combinatorial optimization problems in the literature (Deb et al, 2000) and is the most cited method in multiobjective metaheuristic. Its general description can be found in Deb et al (2002).

In this work, NSGA-II was adapted to the problem. Four objective functions are minimized: (i) dispersion (6), (ii) maximum deviation with respect to the average number of customers (7), (iii) total infeasibility with respect to the balancing constraints of sales volume (8), and (iv) total number of unconnected nodes. The main features present in this

adaptation of the NSGA-II procedure are the following. The generation of solutions consists of randomly selecting p seeds from the set of nodes (V) and assigning the remaining $n - p$ nodes to the closest center. NSGA-II uses different nondomination levels (ranks). In a few words, for each solution h two entities are calculated: (i) domination count d_h which corresponds to the number of solutions that dominate the solution h , and (ii) a set of solutions D_h that solution h dominates. All solutions in the first nondominated frontier have their domination count as zero. Then, for each solution h with $d_h = 0$, each member (g) from S_p is visited, and its domination count is reduced by one. In doing so, if for any member g the domination count becomes zero, it is put in a separate list \bar{Q} . These members belong to the second frontier. Now, the above procedure is continued with each member of \bar{Q} and the third frontier is identified. The process continues until all frontiers are identified.

In the first iteration, the population is sorted based on the nondomination. Then, the fitness function is defined according to the nondomination level. At first, the binary tournament selection is used to create an offspring population \bar{Q}_0 of size N . Since elitism is introduced by comparing the current population with previously found best nondominated solutions, the procedure is different after the initial generation. In the following iterations, the selection is based on the crowded operator which combines the rank (nondomination level) and crowded distance. For more details see (Deb et al, 2002).

For each pair of solutions two new solutions are obtained. Each new solution copies each center from the one of the parent solutions with the same probability and the assignment process is equal to that of the initial generation. For each generated solution, a random integer number is generated in the range $[0,4]$. If the random number is equal to 0, then the mutation process is not applied. Otherwise, the mutation process takes place by using the kind of move determined by the generated number. The different neighborhoods are defined by the following moves:

1. Select a center and change it for another randomly selected node. Do a re-assignment of nodes using the new configuration of centers.
2. Select a node in the border of a territory and assign this node to the adjacent territory (keeping connectivity).
3. Select a territory r and assign a randomly selected node from an adjacent territory to r .
4. Interchange two nodes between a pair of territories by holding connectivity.

When the convergence criterion is reached, the best nondominated solutions are filtered to obtain those feasible solutions that are non-dominated with respect to the dispersion measure and the maximum deviation with respect to the average number of customers.

Comparing NSGA-II, SSPMO, and SSMTDP

NSGA-II was applied over the two instance sets used in the previous section. The number of generations and the population size was set to 500, respectively. On each generation 250 solutions were combined. NSGA-II reported non-dominated solutions only for the instance DU500-04 (Tables 3 and 4) which has 500 BUs and 20 territories. For the other 19 instances tested NSGA-II did not obtain feasible solutions and the SSMTDP procedure reported non-dominated solutions over all tested instances. It was observed how NSGA-II failed on appropriately handling the connectivity constraints. Most of the solutions generated by NSGA-II are highly infeasible with respect to the connectivity constraints, even though the NSGA-II considers this requirement as objective to be minimized. The selection mechanism and the combining processes are not enough to efficiently handling these very difficult constraints. In contrast, the proposed SSMTDP procedure is specifically designed to take the connectivity into account over all its components. Thus, for this problem, exploiting problem structure definitely pays off. Figure 7 shows the comparison among the SSMTDP, SSPMO, and NSGA-II procedures.

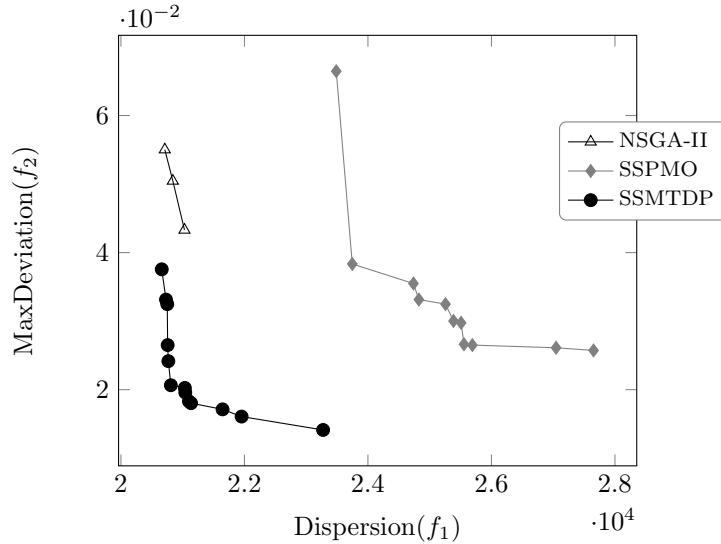


Figure 7: Approximate Pareto frontiers reported by NSGA-II, SSPMO, and SSMTDP, instance DU500-04.

Note that a few non-dominated solutions from SSPMO are dominated by the non-dominated set reported by NSGA-II. In addition, both SSPMO and SSMTDP reported non-dominated points in a region that is not covered by the Pareto frontier obtained by NSGA-II.

Table 3 shows again the superiority of SSMTDP that clearly outperforms both NSGA-II and SSPMO, demonstrating the efficiency of the proposed method. We analized the

Table 3: Summary of metrics for instance DU500-04.

Procedure	No. Points	k -distance (mean)	k -distance (max)	SSC
SSPMO	13.00	0.20	0.62	0.38
NSGA-II	4.00	-	-	0.43
SSMTDP	13.00	0.13	0.32	0.97

single case (instance DU500-04) in which NSGA-II reported feasible solutions. Note that in the k -distance (mean and max), the corresponding values for NSGA-II could not be computed given that we used $k = 4$. The coverage of two sets measure $C(A,B)$ is shown in Table 4, in this table the set A is associated with the rows and B with the columns. Observe that the points obtained by NSGA-II dominated some points obtained by SSPMO. Table 4 shows that NSGA-II dominates 15% of the points reported by SSPMO. For this metric, SSMTDP dominates the frontiers reported by NSGA-II and SSPMO (see Figure 7). Moreover, NSGA-II reported feasible solutions just for a single instance out of 20 instances tested, while SSMTDP reported feasible solutions for all instances tested. In summary, SSMTDP outperforms both the NSGA-II and SSPMO procedures.

Table 4: Coverage of two sets $C(A,B)$, instance DU500-04.

$C(A,B)$	SSPMO	NSGA-II	SSMTDP
SSPMO	0.00	0.00	0.00
NSGA-II	0.15	0.00	0.00
SSMTDP	1.00	1.00	0.00

5 Conclusions and Future Work

In this paper a novel heuristic procedure based on Scatter Search is proposed. Each component of the proposed method called SSMTDP has been designed taking advantage of the problem structure. Empirical evaluation of the method was performed on two large instance sets, consisting of 500 and 1000 BUs respectively. Solutions generated by SSMTDP were compared against solutions obtained by SSPMO a State of the Art multiobjective method. SSMTDP reported better solutions than SSPMO in all tested instances. In addition NSGA-II an evolutionary algorithm which is a benchmark for multiobjective problems was adapted to the problem. Empirical work revealed that SSMTDP significantly outperformed NSGA-II on all tested instances. Even the generation of feasible solutions for this highly constrained problem resulted into a hard problem to solve for NSGA-II.

As a future work the procedure can be extended to more objectives than those presented here, one immediate extension can be to incorporate the load balancing with respect to sales volume. One more interesting extension is the incorporation of the routing cost of delivering the product; this additional feature can be treated either as an objective or as a constraint.

Acknowledgements: This work was supported by the Mexican National Council for Science and Technology under grants SEP-CONACYT 48499-Y and SEP-CONACYT 61903, Universidad Autónoma de Nuevo León under its Scientific and Technological Research Support, grant UANL-PAICYT CE012-09, by Tecnológico de Monterrey under research grant CAT128, and by the Spanish Ministerio De Ciencia e Innovación under project TIN2009-07869. The first author gently acknowledges a doctoral fellowship from Universidad Autónoma de Nuevo León, grant NL-2006-C09-32652.

References

Bong CW, Wang YC (2004) A multiobjective hybrid metaheuristic approach for GIS-based spatial zone model. *Journal of Mathematical Modelling and Algorithms* 3(3):245–261

Bowerman R, Hall B, Calamai P (1995) A multi-objective optimization approach to urban school bus routing: Formulation and solution method. *Transportation Research Part A* 29(2):107–123

Caballero R, Gandibleux X, Molina J (2004) MOAMP: A generic multiobjective metaheuristic using an adaptive memory. Technical report, University of Valenciennes, Valenciennes, France

Caballero-Hernández SI, Ríos-Mercado RZ, López F, Schaeffer E (2007) Empirical evaluation of a metaheuristic for commercial territory design with joint assignment constraints. In: Fernandez JE, Noriega S, Mital A, Butt SE, Fredericks TK (eds) *Proceedings of the 12th Annual International Conference on Industrial Engineering Theory, Applications, and Practice (IJIE)*, Cancun, Mexico, pp 422–427, ISBN: 978-0-9654506-3-8

Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel HP (eds) *Parallel Problem Solving from Nature - PPSN VI*, Lecture Notes in Computer Science, vol 1917, Springer, Berlin, Germany, pp 849–858

Deb K, Pratap A, Agarwal S, Meyerivan T (2002) A fast elitist multiobjective genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation* 6(2):182–197

Duque JC, Ramos R, Suriñach J (2007) Supervised regionalization methods: A survey. *International Regional Science Review* 30(3):195–220

Glover F (1977) Heuristics for integer programming using surrogate constraints. *Decision Sciences* 8(1):156–166

Grilli Di Cortona P, Manzi C, Pennisi A, Ricca F, Simeone B (1999) Evaluation and Optimization of Electoral Systems. SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics, Philadelphia

Guo J, Trinidad G, Smith N (2000) MOZART: A multi-objective zoning and aggregation tool. In: Proceedings of the Philippine Computing Science Congress (PCSC), Manila, Philippines, pp 197–201

Kalcsics J, Nickel S, Schröder M (2005) Toward a unified territorial design approach: Applications, algorithms, and GIS integration. *Top* 13(1):1–56

Laguna M, Martí R (2003) Scatter Search: Methodology and Implementations in C. Kluwer, Boston

Martí R, Laguna M, Glover F (2006) Principles of scatter search. *European Journal of Operational Research* 169(2):359–372

Molina J, Martí R, Caballero R (2007) SSPMO: A scatter tabu search procedure for nonlinear multiobjective optimization. *INFORMS Journal on Computing* 19(1):91–100

Nygreen B (1988) European assembly constituencies for Wales – comparing of methods for solving a political districting problem. *Mathematical Programming* 42(1–3):159–169

Ricca F (2004) A multicriteria districting heuristic for the aggregation of zones and its use in computing origin-destination matrices. *Information Systems and Operational Research* 42(1):61–77

Ricca F, Simeone B (2008) Local search algorithms for political districting. *European Journal of Operational Research* 189(3):1409–1426

Ríos-Mercado RZ, Fernández EA (2009) A reactive GRASP for a commercial territory design problem with multiple balancing requirements. *Computers & Operations Research* 36(3):755–776

Salazar-Aguilar MA, Ríos-Mercado RZ, Cabrera-Ríos M (2011a) New models for commercial territory design. *Networks and Spatial Economics* (Forthcoming, doi: 10.1007/s11067-010-9151-6)

Salazar-Aguilar MA, Ríos-Mercado RZ, González-Velarde JL (2011b) A bi-objective programming model for designing compact and balanced territories in commercial districting. *Transportation Research Part C: Emerging Technologies* 19(5):885–895

Salazar-Aguilar MA, Ríos-Mercado RZ, González-Velarde JL (2011c) GRASP strategies for a bi-objective commercial territory design problem. *Journal of Heuristics* (Forthcoming, doi: 10.1007/s10732-011-9160-8)

Scott MN, Cromley RG, Cromley EK (1996) Multi-objective analysis of school district regionalization alternatives in Connecticut. *The Professional Geographer* 48(1):1–14

Segura-Ramiro JA, Ríos-Mercado RZ, Álvarez-Socarrás AM, de Alba Romenus K (2007) A location-allocation heuristic for a territory design problem in a beverage distribution firm. In: Fernandez JE, Noriega S, Mital A, Butt SE, Fredericks TK (eds) *Proceedings of the 12th Annual International Conference on Industrial Engineering Theory, Applications, and Practice (IJIE)*, Cancun, Mexico, pp 428–434, ISBN: 978-0-9654506-3-8

Silverman BW (1986) *Density Estimation for Statistics and Data Analysis*. Chapman and Hall, London, UK

Simeone B (1978) Optimal graph partitioning. In: *Atti delle Giornate di Lavoro AIRO*, Urbino, Italy, pp 57–73

Singh C (1987) Optimality conditions in multiobjective differentiable programming. *Journal of Optimization Theory and Applications* 53(1):115–123

Tavares-Pereira F, Figueira JR, Mousseau V, Roy B (2007) Multiple criteria districting problems: The public transportation network pricing system of the Paris region. *Annals of Operations Research* 154(1):69–92

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. *IEEE Transactions on Evolutionary Computation* 3(4):257–271

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland