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Abstract

In this paper, a multiobjective scatter search procedure for a bi-objective territory design
problem is proposed. A territory design problem consist of partitioning a set of basic units
into larger groups that are suitable with respect to some specific planning criteria. These
groups must be compact, connected, and balanced with respect to the number of customers
and sales volume. The bi-objective commercial territory design problem belongs to the class
of NP-hard problems. Previous work showed that large instances of the problem addressed
in this work are practically intractable even for the single-objective version. Therefore, the
use of heuristic methods is the best alternative for obtaining approximate efficient solu-
tions for relatively large instances. The proposed scatter search-based framework contains
a diversification generation module based on a greedy randomized adaptive search proce-
dure, an improvement module based on a relinked local search strategy, and a combination
module based on a solution to an assigment problem. The proposed metaheuristic is eval-
uated over a variety of instances taken from literature. This includes a comparison with
two of the most successful multiobjective heuristics from literature such as the Scatter Tabu
Search Procedure for Multiobjective Optimization by Molina, Marti, and Caballero, and the
Non-dominated Sorting Genetic Algorithm by Deb, Agrawal, Pratap, and Meyarivan. Ex-
perimental work reveals that the proposed procedure consistently outperforms both existing

heuristics from literature on all instances tested.

Keywords: Territory design; bi-objective programming; Pareto frontier; Metaheuristics;

Scatter search.



1 Introduction

Commercial territory design is a recent districting application. It consists of partitioning
a given set of basic units (BUs) into p larger groups called territories, according to some
specific planning criteria. Each basic unit is associated with a city block and has two
attributes: number of customers and product demand. The problem is represented by a
graph where each node is associated with a BU and there is an arc representing adjacency
between blocks. Omne important requirement is that each territory must be connected,
that is, it must be possible to travel between each pair of nodes of the territory without
leaving the territory. In addition each territory must be balanced with respect to each
node attribute, that is, each territory must have around the same number of customers and
product demand. As usual in districting problems, it is also important to have compact
territories. Territory compactness is handled by means of minimizing a dispersion objective
function.

A single objective version of this problem was introduced by Rios-Mercado and Ferndndez
(2009). Due to the complexity of the problem, they developed a reactive GRASP procedure
to solve it. Their proposed procedure outperformed the company method in both solution
quality and degree of infeasibility with respect to the balancing requirements. Different ver-
sions of this problem have been studied as well. Segura-Ramiro et al (2007) use a different
dispersion measure that is very common in facility location. It is the objective function
of the p-Median Problem (pMP). Balancing requirements are considered as constraints.
They solved the problem by an implementation of a location-allocation heuristic The re-
sults showed good heuristic performance. Caballero-Herndndez et al (2007) developed a
GRASP for a commercial territory design problem with joint assignemnt constraints with
relatively good results.

Regarding multiobjective approaches to other districting problems, there are a few ap-
plications on political districting (Guo et al, 2000; Bong and Wang, 2004; Ricca and Sime-
one, 2008) school districting (Bowerman et al, 1995; Scott et al, 1996), and public service
(Tavares-Pereira et al, 2007; Ricca, 2004). These are, however, different models from the
one studied in this paper. To the best of our knowledge the only work on multiobjective
commercial territory design is the one by Salazar-Aguilar et al (2011b) and Salazar-Aguilar
et al (2011c). In the former, the bi-objective model is introduced and an improved e-
constraint method is proposed for finding optimal Pareto frontiers. One of the limitations
of that work is of course the size of the instances that could be solved exactly. The largest
tractable instance has 150 BUs and 6 territories. In the latter, GRASP-based heuristics are
developed to attempt to tackle large scale instances to the problem with relative success.
Therefore, the motivation of the present work is to develop an better and effective method

for tackling large instances of this commercial territory design problem (TDP). For a survey



on single-objective TDP applications, the reader is referred to the work of Kalcsics et al
(2005) and Duque et al (2007).

In this work, the well-known framework of Scatter Search (Laguna and Marti, 2003)
is used to develop a heuristic that allows to obtain approximate efficient solutions to the
bi-objective commercial territory design problem. Five key components were derived and
developed within the Scatter Search (SS) framework: (i) a diversification generation module
based on a Greedy Randomized Adaptive Search Procedure (GRASP), (ii) an improvement
module based on a novel relinked search strategy, (iii) a solution combination method based
on a hybrid scheme; (iv) a reference set update method, and (v) a subset generation method.
As usual in SS, the first three modules were specifically tailored to attempt to exploit the
problem structure.

The Scatter Search Method for Multiobjective Territory Design (SSMTDP) proposed in
this work was evaluated over a set of large instances. The results indicate that the SSMTDP
is able to find good solutions that are very well distributed along the efficient frontier.
Even though the initial solutions have a poor evaluation in the objective functions, the
proposed combination method has the ability of exploring new regions in the search space
and the improvement method allows to obtain better solutions that are very far from the
initial set. When compared to state-of-the-art multi-objective methods such as the Scatter
Tabu Search Procedure for Multiobjective Optimization (SSPMO) and the Non-dominated
Sorting Genetic Algorithm (NSGA-II), it was observed that these procedures struggled in
generating feasible solutions to the problem. A few instances could be solved by these
procedures. In contrast, the SSMTDP reported non-dominated solutions for all instances
tested. Furthermore, SSMTDP reported significantly better solutions for those instances
that were solved for both SSPMO and NSGA-II.

The paper is organized as follows. Section 2 provides a description of the problem. In
Section 3, the proposed procedure is fully described. Experimental work is discussed in

Section 4 and final conclusions are drawn in Section 5.

2 Problem Description

Given a set V of city blocks (basic units, BUs), the firm wishes to partition this set into a
fixed number (p) of disjoint territories that are suitable according to some planning criteria.
The territories need to be balanced with respect to each of two different activity measures
(number of customers and sales volume). Additionally, each territory has to be connected, so
that each basic unit can be reached from any other without leaving the territory. Territory
compactness is required to guarantee that customers within a territory are relatively close
to each other. Compactness and balance with respect to the number of customers are the

most important criteria identified by the firm. Therefore in this work these criteria are



considered as objective functions and the remaining criteria are treated as constraints.

Let G = (V, E), where F is the set of edges that represents adjacency between BUs. An
edge connecting nodes ¢ and j exists if 4 and j are adjacent BUs. Multiple attributes such
as geographical coordinates (c;-”, c?;»), number of customers and sales volume are associated
to each node j € V. In particular, the firm wishes perfect balance among territories, that
is, each territory needs to have the same number of customers and sales volume. Let K
be the territory index set such that |K| = p. Let A = {1,2} be the set of node activities,
where 1 refers to the number of customers and 2 refers to sales volume. We define the

size of territory X}, with respect to activity a as w(®(X}) = > iex, wga), where wz@)

is
the value associated to activity ¢ € A in node ¢ € V. Hence, the target value is given by
p@ =3 jev w§a) /p. Due to the discrete nature of this problem, it is practically impossible
to have perfectly balanced territories. Thus, a tolerance parameter 7@ is introduced to
allow a relative deviation from the average sales volume.

Let II be the set of all possible p-partitions of V. For a particular territory Xy, c(k),
k € K, is a territory center and d;; is the Euclidian distance between nodes 7 and j; i, j € Xj.

A territory center is computed as

Under the previous assumptions, the bi-objective combinatorial model can be written as

follows.

)Iglellﬁ H(X) = Z Z dic(k) (1)

kEK i€X),
min  fo(X) = max o [max {u® ) — 040 0O} @
Xel keK (1) ’
subject to :
w?(Xp) < A+N® kek (3)
W(X) > (1-rOu®, Kek (1)
Gr = (Xi,E(Xy)) isconnected; ke K (5)

The goal is to find a p-partition X = (X1,..., X)) of V, such that both the dispersion
(1) on each territory Xj and the maximum relative deviation with respect to the number of
customers in each territory (2) are simultaneously minimized. Constraints (3)-(4) establish
that the territory size (sales volume) should be between the range allowed by the tolerance
parameter 7(2). Constraints (5) assure the connectivity of each territory, where Gy, is the
graph induced in G by the set of nodes Xj.

Note that this can also be seen as partitioning G (the contiguity graph representing

the basic units) into p connected componentes (contiguous districts) under the additional



side constraints on the product demand of each territory (that must satisfy a soft target),
and minimizing two objective functions (namely, the dispersion measure of the BUs in a
territory, and the maximum relative deviation of the number of customers of a district with
respect to a target level). The basic contiguity graph model for the representation of a
territory divided into elementary units was introduced by Simeone (1978), and has been
adopted in political districting (Nygreen, 1988; Grilli Di Cortona et al, 1999; Ricca and
Simeone, 2008).

This is an NP-hard problem (Salazar-Aguilar et al, 2011a) and previous work (Salazar-
Aguilar et al, 2011b) reveals that large instances are intractable by applying the existing
exact solution procedures. In this paper we develop a heuristic procedure for obtaining

approximate efficient solutions to large instances.

3 The SSMTDP Procedure

The evolutionary approach called Scatter Search (SS) was first introduced in Glover (1977)
as a metaheuristic for integer programming. It is based on diversifying the search through
the solution space. It operates on a set of solutions, named the reference set (PR), formed
by good and diverse solutions of the main population (P). These solutions are combined
with the aim of generating new solutions with better fitness, while maintaining diversity.
Furthermore, an improvement phase using local search is applied. As detailed in Marti
et al (2006), the basic structure of SS is formed by five main modules. Figure 1 depicts a

schematic representation of the proposed SS design that shows how the modules interact.
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Figure 1: Scatter Search metaheuristic.
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SS is a very flexible technique, since some modules of its structure can be defined ac-
cording to the problem at hand. For instance, the diversification, the improvement, and the
combination modules have been proposed and tailored to this specific problem attempting
to exploit its problem structure. In our design the diversification module generates a set of
initial solutions based on GRASP strategies; the improvement module attempts to improve
a given solution by using a novel relinked local search strategy for multiobjective problems;
the solution combination method transforms two given solutions into one or more child
solutions by attempting to keep good features from the parent solutions. In this specific
application, three child solutions are generated from two given territory designs. These
three problem-specific modules are fully described in the following subsection. Finally, the
remaining two modules that are not problem-dependent are the reference set update module
and the subset generation module. The former maintains a portion of the best solutions
of the reference set. In this case, the reference set is formed by non-dominated solutions
according to the Pareto sense. When a non-dominated solution is found, this enters the
reference set and those solutions that are dominated by the added solution are deleted from
the reference set. The latter operates in the reference set in such a way so as to select some
solutions to be combined. All possible pairs of solutions from the reference set are selected.
During each SSMTDP iteration, a temporal memory is used to avoid those combinations
that were done in the previous iteration. In other words, for a specific iteration, the com-
bination process is applied just to those pairs of solutions that were not combined in the

previous iteration.

3.1 Description of SSMTDP Modules

The components of the problem-specific modules of the proposed SSMTDP are described

in detail next.

Diversification generation module: It is based on the GRASP procedures developed
by Salazar-Aguilar et al (2011c). Specifically, we use the procedure called BGRASP-
I. This procedure uses a merit function based on two components: dispersion and
maximum deviation with respect to the target value in the number of customers.
This module keeps connectivity as a hard constraint. The post-processing phase of

BGRASP-I is carried out by the improvement module described below.

Improvement module: This module transforms a trial solution into one or more trial
solutions. This module is an implementation of a relinked local search (RLS) strategy
and is applied to each solution obtained by either the diversification generation or the
combination module. As mentioned in Molina et al (2007), most local search appli-

cations to multiobjective optimization use multiple runs to approximate the Pareto



frontier. This technique is usually based on a weighted aggregation of the objective
functions where each run consists of solving the single-objective optimization problem
that results from applying a given set of weights. To obtain an approximation of the
Pareto frontier the procedure must be run as many times as the desired number of
points, using different weight values. The performance of implementations based on
multiple runs deteriorates as the need for generating more non-dominated solutions
increases, since this is directly proportional to the number of times that the proce-
dure must be executed. On the other hand, Molina et al (2007) propose the use of
a relinked local search scheme that consists of performing a local search with respect
to one objective function by taking turns in each objective function in a systematic
way. This module is based on the very well known Fritz-John optimality principle for
multiobjetive optimization (Singh, 1987) which has been empirically demonstrated to

provide a dense and diverse set of non-dominated points.

In our problem, the RLS is done in the following way. For a given p-partition
X = (Xy,...,X}), our improvement module consists of optimizing the following three

objective functions (one at a time): (i) the dispersion measure

= > > dicw (6)

JEXy keK

(ii) the maximum deviation with respect to the number of customers

1

2(X) = Po) fgleag{max{w (Xk) — M(l),u(l)—w(l)(Xk)}}7 (7)

and (iii) total infeasibility

= 5 3 max {u® (%) = (14 7O, (1= 7w (x).0} (9
keK
related to the balancing of sales volume. Note that ¢(k) is the center of territory Xj.
The RLS consists of applying a single-objective local search by using each of these
merit functions one at a time. That is, first local search is applied by using z1(X) as
the merit function in a single-objective manner. After a local optimum is found, the
local search is continued with z9(X) as the merit function. This is followed by a local
search by using z3(X) as the merit function. To close the cycle, a final local search
is performed by using the initial objective z1(X) as the merit function. The set of

nondominated solutions is updated at every solution in the search trajectory.

Solution combination module: This transforms the solution sets formed by the subset
generation module into one or more combined solutions. In this work, three solutions
are generated (see Function 1) from each pair of solutions. There are many ways of

combining a pair of solutions. In the proposed SSMTDP procedure, this component is



developed by attempting to keep good features present in the current solutions. Then,
given a pair of solutions X' and X2, these are combined by identifying the best match
between territories. An exhaustive evaluation of the possible ways of combining these
two solutions requires a high computational effort. Therefore, the module attempts to
find the best territory match based on their corresponding territory centers only. This
is done by solving an associated assignment problem. The assignment problem used
in this module minimizes the sum of distances between the territory centers identified

on these solutions.

Function 1 CombinationModule(X?t, X?)
Input: (X', X2):= Pair of parent solutions to be combined
Output: (X*, X?2, X*3) Three new solutions obtained by combining X! and X?

C'" + Set of territory centers of X, i =1,2;
E < Edge set beween C! and C?
M < SolveAssignmentProblem(C!, C?, E)
{ Build partial solution }
for (k=1,...,p) do

Take (i, jx) from M

Xi = Xy N XG0
if (Xk = @) then Xk — {Zk}
end for

{ Assign remaining nodes }
X% « X forq=1,2,3
for (¢ =1,...,3) do
X*a < BuildSolution(X*??, z;)
end for
return (X*, X*2 X?3)

For instance, suppose that solutions X' and X2, with corresponding center sets C*
and C2, are to be combined. Let B = (C!, C2, E) be the associated complete bipartite
graph with node sets C' and C2, and edge set £ = {(4,) € C' x C?, where the weight
of edge (i,7) € F is given by d;;. Let y;; = 1if edge (4, ) is included in the assignment,

whereas y;; = 0 otherwise. Then the following assignment problem is formulated:

(AP) Minimize h(y) = Z Zdijyij

i€Cl jeC?
subject to Z vij = 1 ieC!
jeC?
Z vij = 1 jec?
ieCl



vij € {0,1} ieCl jeC?

The optimal solution to AP is used to determine which territories are matched. Each
matching pair (i, 7) of this assignment yields a territory in the combined solution by
assigning to this territory all those nodes that are common to both territory with
center in i in X! and territory with center in j in X?2. This can be seen in Algorithm
1, where ¢(i) indicates the territory to which node i belongs. Let S(X*!, X2) be the
partial territory design obtained this way. Figure 2 illustrates the process of generating
a partial solution by combining a pair of trial solutions X! and X?2. In this figure, the
black nodes represent the territory centers and the dotted lines represent the territories
in the left-hand side. After solving the AP and associating to each territory common
nodes from X' and X?, the resulting partial assignment S(X*!, X?) is represented by
the territories enclosed by dotted lines in the right-hand side of the figure. As can be
seen, there is a set of unassigned nodes that must be assigned. Finally, this partial
solution S(X1!, X?2) is used as a starting solution for generating three new solutions.
Each of these solutions is obtained by iteratively adding the unassigned nodes to
the partial territories through a call to the diversification module under a different
given merit function. Let z,(X), for ¢ = 1,2,3, the merit function corresponding
to the dispersion measure (6), the maximum deviation with respect to the number
of customers (7), and total relative infeasibility with respect to the balancing of the
sales volume (8), respectively. That is, for generating the new solution X?¢, the
diversification is applied to S(X?!, X?) under merit function z,, for ¢ = 1,2,3. The
function BuildSolution(X, z,) takes a partial solution X and a merit function z, and
completes a solution by assignining the remaining nodes under a GRASP construction

and z, as merit function.

Partial solution after combining X7 and X2

Figure 2: Combination of territories between a pair of solutions.

When all trial solutions are generated (i.e., when all pairs of solutions are combined),
this set of solutions is improved by using the improvement module previously described. At

the end, the improvement process reports a potential set of nondominated solutions that



can be included in the current reference set. Thus, each solution from the potential set
enters the reference set if it is a non-dominated solution with respect to the current set of
solutions belonging to the reference set. Those solutions that are dominated by the new
solution are removed from the current reference set. The SSMTDP stops when there are
no new solutions included in the reference set.

Algorithm 1 shows a pseudocode of the proposed SSMTDP. The SSMTDP stops by
iteration limit or by convergence, that is, when the reference set does not change. Note
that the updating of the reference set takes place after a potential set of nondominated
solutions is obtained by applying the improvement module over all trial solutions (X, X?2
and X?*3) generated by the combination module. This strategy was adopted given that the
computational effort increases considerably when the typical strategy (i.e., updating after

each new feasible solution is generated) is performed.

Algorithm 1 General scheme of SSMTDP
Input: L:= Iteration limit

Output: RefSet:= Set of nondominated solutions (reference set)
NewSolutions <+ TRUE, iter < 0
RefSet < DiverseSolutions( ) {use GRASP to generate P solutions}
while ((NewSolutions) and (iter < L)) do
SubSet < SubsetGeneration(RefSet) {pairs of solutions to be combined}
TrialSubSet < 0, NewSolutions <+ FALSE
for (X!, X?) € SubSet do
(X*1, X*2 X*) + CombinationModule(X !, X?)
TrialSubSet < TrialSubSet U{X*, X*2 X3}
end for
for (X € TrialSubSet) do
X < Improvement(X) {apply RLS}
end for
UpdateRefSet(RefSet, TrialSubSet)
if (RefSet has changed) then NewSolutions < TRUE
wter < iter+1
end while

return RefSet

4 Experimental Work

The procedure was coded in C++, and compiled with the Sun C++ compiler workshop

8.0 under the Solaris 9 operating system and run on a SunFire V440. The data sets were



taken from the library developed by Rios-Mercado and Fernandez (2009). These data set
contains randomly generated instances based on real-world data provided by the firm. The
SSMTDP was applied over two instance sets with (n,p) € {(500,20),(1000,50)}. For each
set, 10 instances were generated and a tolerance parameter 7(2) = 0.05 was used in all of
them. Two stopping criteria were used in the SSMTDP, iteration limit and convergence.

In these experiments, the maximum number of iterations was set to 10.

4.1 Assessing the Performance of SSMTDP

During the experimental work, it was observed that SSMTDP converged without reaching
the iteration limit over all instances tested. That is, in all cases the SSMTDP stopped when
there were no new solutions to be added to the reference set. Figure 3 shows the behavior

exhibited by the instance DU500-08, this instance has 500 BUs and 20 territories.

——BGRASP-I
—e—Iter-1

—o—Iter-2 -
——Iter-3
——Iter-4
—e—Jter-5
—a—Iter-6
—o—Iter-7
—<«—Iter-8 o
—o—Iter-9

MaxDeviation( f2)

|
2.25 2.3 2.35
Dispersion( f1) -10*

Figure 3: Performance of SSMTDP, instance DU500-08.

The first frontier (BGRASP-I) is the initial solution set generated by the diversification
module (BGRASP-I). The following frontiers show the solutions that belong to the reference
set on each SSMTDP iteration. Recall that SSMTDP starts with a non-dominated solution
set that is obtained by the diversification module. These solutions are assigned to the initial
reference set. After that, each pair of solutions in the reference set is combined to generate
three different solutions. The new generated solutions are improved through the RLS and
then, the updating of the reference set is done for obtaining a new reference set. When

the reference set does not change, the SSMTDP stops. In the case illustrated in Figure

10



3, the SSMTDP converged in iteration 9. That is, in this iteration, the combination of
solutions from the reference set did not yield potential nondominated solutions to be added
to the reference set. Thus, SSMTDP reports as non-dominated solutions set those solutions
belonging to the reference set in the last iteration.

To illustrate the behavior of SSMTDP by using instances from (1000,50), Figure 4 shows
the SSMTDP iterations over the instance called DU1000-04 which has 1000 BUs and 50
territories. In this case the SSMTDP stopped in iteration 8. In summary, the approximate
efficient frontiers obtained by SSMTDP represent a significant improvement with respect
to the initial frontiers provided by BGRASP-I. It was observed that in all instances tested
(20 instances), the SSMTDP method stopped by convergence. These results are used in
Section 4.2 for comparing SSMTDP with another SS heuristic called SSPMO.

T
0.12 | i -
——BGRASP-I
3 —eo—Iter-1
< 0.10 - —e—Iter-2 B
= —k—Iter-3
o —=—Iter-4
= —e—TIter-5
S 0.08 | —@—Iter-6 u
2 —=—Iter-7
9: —e—Iter-8
[av] | |
= 0.06
0.04 + =
| | | | |

|
2.6 2.8 3 3.2 3.4 3.6
Dispersion( f1) -10*

Figure 4: Performance of SSMTDP, instance DU1000-04.

In the following sections, SSMTDP is compared with two other state-of-the-art heurisitcs,
NSGA-IT and SSPMO. NSGA-II is selected as it is the most widely used and cited genetic
algorithm for Multiobjective Optimization and, thus, considered a standard for experi-
mental comparisons. On the other hand, SSPMO is regarded as one the most successfull
and cited non-genetic algorithms for multiobjective optimization. SSPMO is a SS based
method that uses the Relinked Local Search principle, whose efficiency has been consistently
reported in the literature. Thus, we consider these two methods as important and relevant
for benchmarking our proposed proposed heuristic.

In order to compare multiobjective metaheuristics, there are different performance mea-

sures for evaluating the quality of those non-dominated solutions obtained. In the literature

11



of multiobjective optimization, the most used performance measures are the following:

1. Number of points in the non-dominated frontier: It is an important measure because
non-dominated frontiers that provide more alternatives to the decision maker are

preferred than those frontiers with few non-dominated points.

2. k-distance: This density-estimation technique used by Zitzler et al (2001) in connec-
tion with the computational testing of SPEA2 is based on the k-th nearest neighbor
method of Silverman (1986). This metric is simply the distance to the k-th nearest
non-dominated point. So, the smaller the k-distance the better in terms of the fron-
tier density. We use k=4 and calculate both the mean and the max of k-th nearest

distance values.

3. Size of space covered (SSC(X)): This metric was suggested by Zitzler and Thiele
(1999). For a given set of points X, SSC(X) is the volume of the points dominated by
X. Hence, the larger the value of SSC(X), the better X.

4. C(A,B): It is known as the coverage of two sets measure (Zitzler and Thiele, 1999).
This measure represents the proportion of points in the estimated efficient frontier B
that are dominated by the non-dominated points in the estimated frontier A. This is,

C(A,B) is the coverage of B by points in A

So, we will assume these four metrics to compare results of SSMTDP, SSPMO and
NSGA-II.

4.2 Comparison with Existing Multiobjective SS Procedure
Description of SSPMO

SSPMO is a metaheuristic introduced by Molina et al (2007) initially developed for solving
non-linear multiobjective optimization problems; however, it has been adapted for multiob-
jective combinatorial problems as well. It consists of a scatter/tabu search hybrid procedure
that includes two different phases: (i) generation of an initial set of non-dominated points
through Relinked Local (Tabu) Searches (MOAMP), and (ii) combination of solutions and
updating of the non-dominated set via scatter search.

The generation of the initial set is based on the MOAMP method proposed by Caballero
et al (2004). To build the initial set of non-dominated points, MOAMP carries out a series
of Relinked Tabu Searches where each visited point could be included in the final non-
dominated set. The second phase of MOAMP consists of an intensification search around
the initial set of non-dominated points. For more details see (Caballero et al, 2004; Molina
et al, 2007).

12



The SSPMO procedure creates a reference set (£) using the non-dominated solutions
reported by MOAMP. A list of solutions that have been selected as reference points is kept
to prevent the selection of those solutions in future iterations. Then, each solution that is
added to the set F, is added to a TE (tabu set). A linear-combination method is used to
combine reference solutions. All pair of solutions in £ are combined and each combination
yields four new trial solutions. Each new solution is subject to an improvement method
based on MOAMP. Solutions generated after the improvement procedure are tested for
possible inclusion in F.

Once all pairs of solutions in E are combined and the new trial solutions are improved,
SSPMO updates the reference set F¥ and proceeds to the next iteration. The first step in the
updating process is to choose the best solutions according to each of the objective functions
taken separately. In this selection, those solutions belonging to TE are not considered.
The remaining solutions are chosen by using a metric L, that is a generalization of the
Euclidean distance. For each x € E '\ TE the minimum distance (L™"(z)) from z to TE
is computed, and a uniform random number is generated. If it is less than (L2%(z)), then
x is declared eligible. Let y be the maximum number of solutions to be combined. Then,
y — g solutions with largest minimum distance to TE are selected sequentially. Note that,
TFE is updated after each selection in order to avoid choosing points that are too close to
each other. The updating process continues until the mean value of (L&"(z)) for the set
of eligible solutions falls below a pre-specified threshold mean-distance. For a complete
description of SSPMO method, see Molina et al (2007).

The SSPMO method was adapted to the multiobjective commercial territory design
problem. Four objective functions are minimized: (i) dispersion (6), (ii) maximum deviation
with respect to the average number of customers (7), (iii) total infeasibility with respect to
the balancing constraints of sales volume (8), and (iv) total number of unconnected nodes.
The initial solution set fed to MOAMP is generated by choosing p seeds (configuration of
centers) and each of the remaining BUs is assigned to its closest center. The maximum
number of updates of the reference set was set to 10 (equal to the number of iterations
used in SSMTDP), the maximum number of tabu solutions was set to 55, the threshold
value was set to 0.05, and the maximum number of non-dominated solutions included in
the reference set was set to 100. The neighborhoods are the same that those defined in the
NSGA-II method (following section). For each pair of solutions, four new trial solutions are
generated.

At the end, the non-dominated solutions reported by SSPMO are filtered using only
those feasible solutions that are non-dominated with respect to the dispersion measure and

the maximum deviation with respect to the average number of customers.
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Comparing SSPMO and SSMTDP

In this part of the computational work, the SSMTDP procedure is compared with SSPMO.
Both SS-based procedures stop by convergence or by iteration limit (10 updates of the ref-
erence set). Figure 5 shows the Pareto frontiers provided by SSPMO and SSMTDP. These
results correspond to the 10 instances with 500 BUs and 20 territories. The maximum num-
ber of allowed movements in SSMTDP was set to 800. Graphically, SSMTDP outperforms
SSPMO over all instances tested.

Tables 1 and 2 show a summary of all metrics previously described. Clearly, SSMTDP
outperforms SSPMO in all metrics for all the instances, specially when considering con-
vergence, where the SSC metric is around double the obtained by SSPMO. Additionally,
in Table 2 the superiority of SSMTDP over SSPMO is more than evident, note that the
frontiers generated by SSPMO are in average 90% covered by those frontiers obtained by
SSMTDP and the SSPMO frontiers are not able to cover any point in the frontiers provided
by SSMTDP.

Table 1: Summary of metrics for the 10 instances in the set (500, 20).

Procedure No. Points | k-distance (mean) | k-distance (max) | SSC
min 7.00 0.16 0.30 0.38

SSPMO ave 10.82 0.31 0.56 0.42

max 17.00 0.58 0.81 0.54

min 11.00 0.09 0.22 0.93

SSMTDP | aver 14.36 0.16 0.44 0.97
max 22.00 0.26 0.83 0.99

Table 2: Average value for the coverage of two sets C(A,B) computed for the 10 instances
in the set (500, 20).

C(A,B) | SSPMO | SSMTDP
SSPMO | 0.00 0.00
SSMTDP |  0.90 0.00

14
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Figure 5: Approximate Pareto frontiers obtained by SSPMO and SSMTDP for set (500,20).
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In addition, 10 instances with 1000 BUs and 50 territories were tested by applying
both SSPMO and SSMTDP using the same stopping criteria as in the previous cases.
SSPMO spent more than 30 days without getting convergence for the first instance tested.
Then, the stopping criteria was changed and the iteration limit was set to 2. Due that the
tremendous computational effort required by the SSPMO, the procedure was not applied
over all instances with 1000 BUs and 50 territories. Here we show the results for the instance
DU1000-05, Figure 6. Therefore the approximated frontier reported by SSPMO corresponds
to those solutions in the reference set after iteration 2. In contrast, our procedure SSMTDP
converged and reported non-dominated solutions for DU1000-05 and for the remaining

instances tested. The maximum number of moves for these cases was set to 2000.
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Figure 6: Approximate Pareto frontiers reported by SSPMO and SSMTDP, instance
DU1000-05.

4.3 Comparison with Existing Evolutionary Algorithm
Description of NSGA-II

The Nondominated Sorting Genetic Algorithm (NSGA-II) is an evolutionary algorithm that
has been successfully applied to many multiobjective combinatorial optimization problems
in the literature (Deb et al, 2000) and is the most cited method in multiobjective meta-
heuristic. Its general description can be found in Deb et al (2002).

In this work, NSGA-II was adapted to the problem. Four objective functions are min-
imized: (i) dispersion (6), (ii) maximum deviation with respect to the average number of
customers (7), (iii) total infeasibility with respect to the balancing constraints of sales vol-

ume (8), and (iv) total number of unconnected nodes. The main features present in this
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adaptation of the NSGA-II procedure are the following. The generation of solutions consists
of randomly selecting p seeds from the set of nodes (V') and assigning the remaining n — p
nodes to the closest center. NSGA-II uses different nondomination levels (ranks). In a few
words, for each solution h two entities are calculated: (i) domination count dj, which corre-
sponds to the number of solutions that dominate the solution h, and (ii) a set of solutions
D, that solution h dominates. All solutions in the first nondominated frontier have their
domination count as zero. Then, for each solution h with dj, = 0, each member (g) from
S) is visited, and its domination count is reduced by one. In doing so, if for any member g
the domination count becomes zero, it is put in a separate list . These members belong
to the second frontier. Now, the above procedure is continued with each member of Q and
the third frontier is identified. The process continues until all frontiers are identified.

In the first iteration, the population is sorted based on the nondomination. Then,
the fitness function is defined according to the nondomination level. At first, the binary
tournament selection is used to create an offspring population Qg of size N. Since elitism is
introduced by comparing the current population with previously found best nondominated
solutions, the procedure is different after the initial generation. In the following iterations,
the selection is based on the crowded operator which combines the rank (nondomination
level) and crowded distance. For more details see (Deb et al, 2002).

For each pair of solutions two new solutions are obtained. Each new solution copies each
center from the one of the parent solutions with the same probability and the assignment
process is equal to that of the initial generation. For each generated solution, a random
integer number is generated in the range [0,4]. If the random number is equal to 0, then
the mutation process is not applied. Otherwise, the mutation process takes place by using
the kind of move determined by the generated number. The different neighborhoods are
defined by the following moves:

1. Select a center and change it for another randomly selected node. Do a re-assignment

of nodes using the new configuration of centers.

2. Select a node in the border of a territory and assign this node to the adjacent territory

(keeping connectivity).

3. Select a territory r and assign a randomly selected node from an adjacent territory to

T.
4. Interchange two nodes between a pair of territories by holding connectivity.

When the convergence criterion is reached, the best nondominated solutions are filtered
to obtain those feasible solutions that are non-dominated with respect to the dispersion

measure and the maximum deviation with respect to the average number of customers.
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Comparing NSGA-II, SSPMO, and SSMTDP

NSGA-II was applied over the two instance sets used in the previous section. The number
of generations and the population size was set to 500, respectively. On each generation 250
solutions were combined. NSGA-II reported non-dominated solutions only for the instance
DU500-04 (Tables 3 and 4) which has 500 BUs and 20 territories. For the other 19 instances
tested NSGA-II did not obtain feasible solutions and the SSMTDP procedure reported
non-dominated solutions over all tested instances. It was observed how NSGA-II failed on
appropriately handling the connectivity constraints. Most of the solutions generated by
NSGA-II are highly infeasible with respect to the connectivity constraints, even though the

NSGA-II considers this requirement as objective to be minimized. The selection mechanism

and the combining processes are not enough to efficiently handling these very difficult

constraints. In contrast, the proposed SSMTDP procedure is specifically designed to take
the connectivity into account over all its components. Thus, for this problem, exploiting

problem structure definitely pays off. Figure 7 shows the comparison among the SSMTDP,
SSPMO, and NSGA-IT procedures.
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Figure 7: Approximate Pareto frontiers reported by NSGA-II, SSPMO, and SSMTDP,
instance DUb500-04.

Note that a few non-dominated solutions from SSPMO are dominated by the non-
dominated set reported by NSGA-II. In addition, both SSPMO and SSMTDP reported
non-dominated points in a region that is not covered by the Pareto frontier obtained by
NSGA-II.

Table 3 shows again the superiority of SSMTDP that clearly outperforms both NSGA-
II and SSPMO, demonstrating the efficiency of the proposed method. We analized the
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Table 3: Summary of metrics for instance DU500-04.

Procedure | No. Points | k-distance (mean) | k-distance (max) | SSC
SSPMO 13.00 0.20 0.62 0.38
NSGA-II 4.00 - - 0.43
SSMTDP 13.00 0.13 0.32 0.97

single case (instance DU500-04) in which NSGA-II reported feasible solutions. Note that
in the k-distance (mean and max), the corresponding values for NSGA-II could not be
computed given that we used k = 4. The coverage of two sets measure C(A,B) is shown
in Table 4, in this table the set A is associated with the rows and B with the columns.
Observe that the points obtained by NSGA-II dominated some points obtained by SSPMO.
Table 4 shows that NSGA-II dominates 15% of the points reported by SSPMO. For this
metric, SSMTDP dominates the frontiers reported by NSGA-II and SSPMO (see Figure 7).
Moreover, NSGA-II reported feasible solutions just for a single instance out of 20 instances
tested, while SSMTDP reported feasible solutions for all instances tested. In summary,
SSMTDP outperforms both the NSGA-IT and SSPMO procedures.

Table 4: Coverage of two sets C(A,B), instance DU500-04.

C(A,B) | SSPMO | NSGA-II | SSMTDP
SSPMO | 0.00 0.00 0.00
NSGA-II | 0.15 0.00 0.00
SSMTDP | 1.00 1.00 0.00

5 Conclusions and Future Work

In this paper a novel heuristic procedure based on Scatter Search is proposed. Each com-
ponent of the proposed method called SSMTDP has been designed taking advantage of
the problem structure. Empirical evaluation of the method was performed on two large in-
stance sets, consisting of 500 and 1000 BUs respectively. Solutions generated by SSMTDP
were compared against solutions obtained by SSPMO a State of the Art multiobjective
method. SSMTDP reported better solutions than SSPMO in all tested instances. In addi-
tion NSGA-II an evolutionary algorithm which is a benchmark for multiobjective problems
was adapted to the problem. Empirical work revealed that SSMTDP significantly outper-
formed NSGA-II on all tested instances. Even the generation of feasible solutions for this

highly constrained problem resulted into a hard problem to solve for NSGA-II.
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As a future work the procedure can be extended to more objectives than those presented
here, one immediate extension can be to incorporate the load balancing with respect to sales
volume. One more interesting extension is the incorporation of the routing cost of delivering
the product; this additional feature can be treated either as an objective or as a constraint.
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