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Abstract

In this paper, we address a territory design problem arising from a beverage distribution company.
We propose a bi-objective programming model where dispersion and balancing with respect to
the number of customers are used as performance criteria. Constraints such as connectivity and
balancing with respect to sales volume are considered in the model. Most of the work in territory
design has been developed for single-objective models. A very few works have addressed multi-
objective territory design problems. To the best of our knowledge, this is the first multi-objective
approach for this commercial territory design problem, and in particular, for territory design with
connectivity constraints. In this paper, we introduce a bi-objective programming model for this
problem and apply an improved e-constraint method for generating the optimal Pareto front, based
on a recent technique by Ehrgott and Ruzika to assure efficient solutions. Empirical evidence over
a variety of instances shows that the improved method is well suited for finding optimal Pareto
fronts at no extra computational effort than the traditional method. For this problem, the improved
method finds practically the same fronts than those found by the traditional e-constraint method.
In addition, we observe that when the firm reduces the tolerance in the imbalance of sales volume
the efficient fronts change and when the number of territories increases, the balance with respect

to the number of customers becomes harder to achieve.
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1 Introduction

In general, distribution firms have complex product distribution networks which are formed by
thousands of sales points. In this industry there are many interesting problems from the logistic
point of view that may appear in different stages of the decision process. For instance, when a firm
is starting, a first problem could be where to locate the warehouses and/or distribution centers.
After that, in order to provide efficient service and to reduce the total costs (i.e., production, stock,
and distribution costs) some questions such as how many products need to be produced, and how
to deliver the products to the final customer, need to be answered. This work is focused on the
study of a problem that arises in a stage previous to the product routing and is motivated by a
real-world application from a beverage distribution firm in the city of Monterrey, Mexico. The firm
wants to divide the total number of customers into a specific number of groups according to some
planning criteria. This partition has the objective of giving support to the decision maker when
she or he designs the distribution routes and when she or he makes the workload distribution. In
addition, the partition permits a more efficient management of marketing offers as it reduces the
number of unsatisfied customers by applying special offers in each territory. This means that we are
contributing to better route design during the routing process due to the compactness (minimum
dispersion) of the territories. In addition, we provide support to the decision maker for elaborating
the marketing plan and for making the best workload and resource distribution. The latter is
possible because the territories are balanced with respect to both number of customers and sales
volume.

This problem belongs to the family of districting problems. There has been a significant amount
of work in the territory design literature addressing many different kinds of applications such as
political, sales, school, services, and commercial districting, to name the most signicant. Among
the most relevant works one can find Hess et al. [9], Fleischmann and Paraschis [6], Hojati [10],
Garfinkel and Nemhauser [7], Mehrotra, Johnson, and Nemhauser [12], Bozkaya et al. [3], Kalcsics
et al. [11]. In practically all of these works, the authors consider single-objective models. Among
the very few works dealing with multi-objective districting problems we find Bowerman et al. [2],
Scott et al. [16], Guo et al. [8], Bong and Wang [1], Tavares et al. [18], and Ricca and Simeone [13].

Bowerman, Hall, and Calamai [2] present a multiobjective approach for solving a school bus
routing problem. They proposed a heuristic technique that at first it groups students into clustering
using a multiobjective districting algorithm. After that, a school bus route and the bus stops for
each cluster are generated by using a combination of a set covering procedure and a traveling sales-
man problem procedure. They report experimental results for a real-world instance in Wellington
County, Ontario. The districting algorithm considers four objectives: minimizing the number of
routes, minimizing the length of the routes, load balancing, and compactness of the routes. The

three last criteria are placed in a weighted objective function where the number of routes is the



dominant objective, i.e., a solution with fewer routes is always favored over a solution with more.
Different plans were designed using different set of weights over the optimization criteria.

Scott, Cromley, and Cromley [16] make a multiobjective analysis of school districting in a case
study from Connecticut, USA. They propose a mixed-integer goal programming model where the
goal constraints are to minimize disparities in: minority enrollments, grand-list/student ratios,
student-teacher ratios, and overall enrollment. The number of districts is not fixed and the conti-
guity criterion is not formulated in an explicit way. Experimental work using different weighting
scenarios reveals that the traditional distance-minimizing or transportation-minimizing objectives
are in conflict with all other aims of equity and quality of educational opportunities.

Guo, Trinidad, and Smith [8] propose a multi-objective zoning and aggregation tool (MOZART).
MOZART is an integration of a graph partitioning engine with a Geographic Information System
(GIS) through a graphical user interface. They illustrate the performance of MOZART by solving
two zoning problems from three government local areas in Victoria: Kingston, Bayside, and Glen
Eira. The first part of their experimental work is done by taking into account a single objective
of equality in population size. In contrast, in the second part of their experimental work, both
equity in population and compactness are treated as objective functions. They report a case with
577 census collection districts and 20 zones. The inclusion of compactness as the second zoning
objective yields zones with better shapes.

Bong and Wang [1] present a multi-objective hybrid metaheuristic approach for a GIS-based
spatial zoning model. Their heuristic procedure is a combination of tabu search and scatter search.
They show the procedure performance by solving a political districting problem with 55 basic units
and 3 districts. Equity in population, compactness, and socio-economic homogeneity are treated
as objectives.

Tavares et al. [18] study a multiobjective public service districting problem. They consider
multiple criteria such as location of the zone with respect to the network, mobility structure within
a zone, zone corresponding to administrative structures, centers of attraction in the zone, social
nature and geographical nature. They propose an evolutionary algorithm with local search and
apply it to a real-world case of the Paris region public transportation. They discuss results for
bi-objective cases considering different criteria combination.

Ricca and Simeone [13] address a multiple criteria political districting problem. Such criteria
are connectivity, population equality, compactness and conformity to administrative boundaries.
They transform the multi-objective model into a single objective model which is a convex combina-
tion of three objective functions (inequality, noncompactness and nonconformity to administrative
boundaries); connectivity is considered as a constraint. They compare the behavior of four local
search metaheuristics: descent, tabu search, simulated annealing, and old bachelor acceptance.
The application is performed over a sample of five Italian regions where old bachelor acceptance

produces the best results in most of the cases. The state of the art on territory design reveals the



following facts.

Very few works address multi-objective models and all of these are basically heuristic techniques
for obtaining approximate Pareto fronts. To the best of our knowledge our work is the first to
provide a method for obtaining efficient fronts to bi-objective territory design problems. Single-
objective versions of the commercial territory design problem addressed in this work are due to
Rios-Mercado and Fernandez [14], Caballero-Herndndez et al. [4], and Segura-Ramiro et al. [17].
In particular, our work can be seen as the bi-objective extension to the model developed in [17].

Our work comprises both the development of a bi-objective optimization model and an exact
optimization procedure for finding efficient solutions in the sense of Pareto. The solution procedure
is based on one of the most important scalarization techniques in multi-objective programming, the
e-constraint method. We implement two alternatives of this method: the traditional e-constraint
method (¢CM) which guarantees obtaining weakly efficient solutions and a modified version of the
e-constraint method (IeCM) in which we include slack variables to guarantee efficient solutions.
The last technique was recently proposed by Ehrgott and Ruzika [5] in the improved e-constraint
method. Our computational work reveals that the IeCM finds practically the same fronts than
those found by the eCM method over all instances tested at no extra computational effort.

The rest of the paper is organized as follows. Section 2 provides a detailed description of the
problem. In Section 3, the bi-objective programming model is introduced. Section 4 describes
the solution method. Experimental work is discussed in Section 5 and finally we present some

conclusions in Section 6.

2 Problem Description

Given a set V of city blocks (basic units, BUs), the firm wishes to partition this set into a fixed num-
ber (p) of disjoint territories that are suitable according to some planning criteria. The territories
need to be balanced with respect to two different activity measures, number of customers and sales
volume. Additionally, each territory has to be connected, such that the set of BUs belonging to the
same territory should induce a connected subgraph. Territory compactness is required to guarantee
that customers within a territory are relatively close to each other. Compactness and balance with
respect to the number of customers are the most important criteria identified by the firm. In our
optimization model these criteria are considered as objective functions and the remaining criteria
are treated as constraints.

Let G = (V, E), where V is the set of nodes (BUs) and E is the set of edges that represent
adjacency between BUs (city blocks). An arc connecting nodes 7 and j exists if 4 and j are adjacent
BUs. Multiple attributes like geographical coordinates (cz,c,), number of customers and sales
volume are associated with each node j € V. In particular, the firm wishes perfect balance among

territories, which means each territory needs to have the same number of customers and the same



sales volume. Due to the discrete nature of this problem, it is practically impossible to have
perfectly balanced territories. Let A = {1,2} be the set of node activities, where 1 refers to the

number of customers and 2 refers to sales volume. We define the size of territory V; with respect
(a)

; ~ 1s the value associated to activity a

w®

to activity a as w(® (V},) = diev, (wga)), where a € A and w

at node i € V. Hence, the target value is given by (@ = ZjeV JT'

There are two ways to address balancing. In this work, we treat balancing with respect to the
number of customers as an optimization criterion and balancing with respect to product demand
as a constraint. This is motivated by the fact that this criterion is directly related with the number
of stops that a vehicle makes during the product distribution and the firm pays special attention
to this.

Another important constraint is that of territory connectivity. That is, it is desired that each
individual territory be a connected subgraph of GG. Thus, a good territory design is the one in
which compactness and balancing with respect to the number of customers are optimized. In order
to obtain an optimization model that includes all considerations given by the firm, we propose a bi-
objective programming model in which two objective functions are minimized. The first objective
f1 is related to a dispersion measure, because minimizing dispersion is equivalent to maximizing
compactness. The second objective fs is associated with the maximum deviation with respect to
the target value (,u(l)) in the number of customers, minimizing the maximum deviation allows that
the number of customers be closer to the average size. In this work, we use the objective of the
p-median problem (p-MP) as a dispersion measure (f1).

In a few words, the problem consists of finding a p-partition of V' according to the specified
planning criteria of balance with respect to the sales volume and connectivity, in such a way that
both performance measures dispersion (f1) and the maximum deviation with respect to the target
number of customers in each territory (f2) are minimized. We assume all parameters are known

with certainty.

3 Bi-objective Programming Model

Indices and sets

n  number of blocks
number of territories
i,7 block indices; i,j € V ={1,2,...n}
a  activity index: a € A = {1,2}
Nt ={j€eV:(i,j) € EV(j,i) € E} setof adjacent nodes to node i; i € V



Parameters

(a)

w; value of activity a in node i; 1 € V,a € A

dj;  Euclidean distance between j and i; 7,5 € V

2)

7( relative tolerance with respect to activity 2; 73 e [0,1]

Decision variables

1 if a basic unit j is assigned to territory with center in ¢; ¢,5 € V
T —
g 0 otherwise

With this definition, x; = 1 implies that i is a territory center.

Suppose Q' = ZjeV w§l)mji — ,u(l)a:ii represents the unbalance with respect to the number of
customers in territory with center in ¢, i € V. So, the relative deviation in territory with center in

1 €V is given by '
QZ

5 (1)

This expression given as an absolute value can be decomposed into a positive AVVZ-Jr and a neg-
= AW;' + AW, where 25 = AW;" — AW, and AW;" AW, =

(2 (2 (2

ative AW.™ part as follows ‘%
0,7 € V. Based on this, we have the following bi-objective territory design problem (BOTDP)

model.

BOTDP Min fi = » > djzji (2)
JEV eV

Min fo = mea‘gc{AWf-&-AWf} 3)

Subject to:
AWFAW, = 0 ieV (4)

N CO I
. w; "Tj; — Tii
AWF AW, = el Tk iev (5)
n

ZI“‘ = D (6)

eV
Dy o= 1 Vjev (7)

eV
Yl 2 (1P iev ®

JjeEV
YowPay < (1+rP)uPan iev (9)
JEV
> wp=> x> 1-|S| ieV;

JEUyes(NV\S) Jes
ScVNN U{i})] (10)
AW AW, > 0 i€V (12)



Objective (2) represents the dispersion measure. In this sense, minimizing dispersion is equiva-
lent to maximizing compactness. The second objective (3) represents the maximum deviation with
respect to the target value of number of customers. Thus, balanced territories should have small

deviation from the average number of customers. Constraints (4) and (5) establish the relationship

of W;" and W, with the absolute value of ;(')f). Constraint (6) guarantees the creation of exactly
p territories. Constraints (7) guarantee that each node j is assigned to only one territory. Con-
straints (8)-(9) represent the territory balance with respect to sales volume as it establishes that
the size of each territory must lie within a range (measured by tolerance parameter 7'(2)) around
its average size. Constraints (10) guarantee the connectivity of the territories. Note that there is
an exponential number of such constraints.

Note that objective (3) is a piece-wise linear function. Therefore, BOTDP can be linearized by
replacing (3) by (13) and introducing constraints given by (14). In addition, it can be shown (see

Lemma 3.1) that the nonlinear constraints (4) are redundant.

Min fo =~ (13)

v > AW+ AW VeV (14)

The resulting bi-objective MILP is called LBOTDP. Model LBOTDP does not include the set
of nonlinear constraints (4). It is because, when a feasible solution to LBOTDP is obtained, those
indices [ in which both AVVZJr and AW, take value different from zero can be easily identified.
When this happens, it is always possible to get a feasible solution in which at least one of these
AI/VZJr or AW, takes a value equal to zero (see Lemma 3.1) and the new ~ value, which will be

equal or better than the actual v value, is recomputed.

Lemma 3.1. For any feasible solution (X, AW) of LBOTDP such that AWl+ >0 and AW, >0
there exists a feasible solution (X,AW) for LBOTDP such that X = X and AW;"AW,” = 0,
L€V, where f1(X) = fi(X) and f2(AW) > fo(AW).

Proof. Let (X, AW) be a feasible solution to LBOTDP with corresponding objective function
values given by (f1, f2). This will focus especially in constraints (5) and (14). For each | € L where
L={leV:AW;" >0 and AW, > 0}, there are two cases.

e Suppose AWZ+ > AW, Let AVV[F = AVV[F—AWT and AVT/Z_ = 0. Clearly, AVV;'—AVT/Z_ =
AW," — AW,". Then, the new values AW," and AW, satisfy the constraints (14) as well,
and AW, AW;" =0

e Similarly if AW;" < AW,". Let AW, = AW, —AW," and AW," = 0. Again, (AW,",AW,")

is feasible.



Since, AW." + AW, < AW; T + AW,™, Vi, it follows that X is equal to X and AW is less than
AW. It implies that, fo(AW) < fo(AW) and the proof is completed. O

From a practical point of view, it has been clearly established that both fi and fs5 are in conflict.
It has been observed empirically that when attempting to reach the best possible dispersion measure
the maximum deviation with respect to the target number of customers increases and viceversa.

This justifies the bi-objective model.

4 Solution Procedure

Multiple techniques have appeared in the literature for solving multi-objective problems. One of
the most important techniques used in multi-objective programming is the e-constraint method.
The e-constraint method seems best suited for nonconvex problems such as the problem addressed
here. In addition, current mono-objective approach [15] to this particular problem can be efficiently
exploited within an e-constraint frame. The e-constraint method is based on a scalarization where
one of the objective functions is minimized while all the other objective functions are bounded from

above by means of additional constraints [5].

4.1 The -Constraint Model

In our implementation of the e-constraint method we select the objective function given by (13) as
the function to be bounded by an € value (see LBOTPD,). We made this decision, because the firm
has precisely defined the range of variation (associated with the maximum deviation ) in which
a solution is attractive to them. In addition, the resulting model has a better structure because it
can be seen as a p-median problem with some additional constraints (capacity and connectivity).
It is well-known that p-median models have a relatively good LP relaxation and this is true for our
model as well. Finally, we tried to solve a model using fs as an objective and fi as a constraint
and found a very bad LP relaxation and considerable higher run times. In general, those solutions
with relative deviation (y) less than or equal to 5% are attractive to them. Hence, different values

around this value can be swept in an easy way. The model

LBOTDP,. Min f;
Subject to:
(5)-(12), (14)
v < € (15)

corresponds to the traditional e-constraint (¢CM) formulation for the LBOTDP model. The
objective function f is given explicitly by (2) and (15) is an upper bound of ~.



It is well known that the e-constraint method guarantees to find weakly efficient solutions that
can be efficient. However, when we have an optimal solution to LBOTDP. is not easy to verify if
this solution is an efficient solution or not. In order to eliminate this weakness, Ehrgott and Ruzika
[5] introduced a modification of the traditional formulation. They incorporate nonnegative slack
variables and with this modification the new e-constraint method guarantees obtaining efficient
solutions. Let LBPTDPZ be the modified e-constraint formulation in our problem, where A is a

nonnegative weight.

LBOTDPY  Min f; — As (16)
Subject to:

(5)-(12),  (14)
v+s< € (17)
s> 0 (18)

The slack variables introduced in LBOTDP provide information about efficiency of a solution
[5]. The main difference between LBOTDP. and LBOTDP/ is that the e-constraint in LBOTDP}

is always active at optimality.

4.2 Description of the s-Constraint Procedures

In this work, our goal is to find both weakly efficient solutions and efficient solutions. The LBOTDP,
and LBOTDP/ formulations allow us to obtain these fronts by using different ¢ values. For each
fixed value of £ we solve a single-objective problem LBOTDP. or LBOTDP,. Note that each of
these single-objective problems (LBOTDP. and LBOTDP,) is NP-hard. In addition constraints
(10) can not be written explicitly as there is an exponential number of them. There are few works
that solve the single-objective districting problem with connectivity constraints. For instance,
Garfinkel and Nemhauser [7] solve political districtig problems by implicit enumeration techniques,
they reported successful solution for instances with up to 39 BUs and 7 territories. On the other
hand, Mehrotra et al. [12] propose a column generation procedure for the political districting
problem and they report solutions for up to 46 basic units and 6 territories. The iterative cut
generation procedure for territory design problems (ICGP-TDP) [15] is an exact solution proce-
dure developed for the single-objective commercial territory design problem. Empirical work shows
that this procedure allows to solve instances with up to 200 basic units and 11 territories. The
ICGP-TDP algorithm consists of iteratively solving a relaxed MILP model (relaxing the connec-
tivity constraints), and then finding and adding violated constraints by solving an easy separation
problem. When violated cuts are identified these are added to the model and the process continues

with the next iteration. The iterative procedure continues until an optimal solution is obtained



or when the relaxed problem is proved infeasible. Full details can be found in [15]. We adapted
ICGP-TDP for both LBOTDP, and LBOTDP{ formulations and we called it e-ICGP.

There are a few multi-objective districting applications with connectivity constraints and these
have been addressed by heuristic procedures [8, 16, 13]. To the best of our knowledge there are
no references in the literature on multi-objective districting that provide exact efficient solutions.
In our case, we can find weakly efficient and efficient solutions through e-ICGP using LBOTDP,
and LBOTDP/ formulations, respectively. For each fixed value of epsilon, ICGP-TDP is called
to obtain an optimal solution to the problem if it is feasible. At the end, the e-ICGP procedure
reports a set of efficient solutions.

The iterative solution procedure is described in Algorithm 1. The parameter A, an initial ¢
value (gq), and a step length ¢ to compute different € values are the input. Note that when A\ = 0 is
passed as argument to e-ICGP, the associated solution method is the traditional eCM (see model
LBOTDP.). However, when A > 0 then the associated solution method is the IeCM (see model
LBOTDP). Algorithm e-ICGP was coded in C++ and compiled with the Sun C++ 8.0 compiler
under Solaris 9 Operating System. The ICGP-TDP procedure, that optimally solves the single-
objective model for a fixed value of epsilon, makes use of the CPLEX 11.2 callable libraries (see
[15] for more details).

While it is true that LBOTDP/ is more attractive than LBOTDP. as it guarantees efficient
solutions, we are interested on evaluating the computational effort of each model to properly assess

the trade-off between solution quality and time.

5 Experimental Work

In the experimental work, randomly generated instances based on real-world data provided by the
industrial partner were used. Each instance topology was generated by using the generator devel-
oped by Rios-Mercado and Ferndndez [14]. In this work, the authors used historical information
from the firm and obtained the data distribution associated to the number of customers and sales
volume. A tolerance 7(2) = 0.05 with respect to sales volume was considered. Three different
instance sets defined by (n,p) € {(60,4),(80,5),(100,6)} were used. For each of these sets, 10
different instances were generated. Additionally, another set with five instances for (150,6) was
generated. The time limit for e-ICGP was set to 4 hours, A was set to 3, and the step size was
6 = 0.001 for all instances. As it was mentioned before, solutions with a maximum deviation less
than or equal to 5% from the average number of customers are attractive to the firm. Therefore,
this value was used as the initial value of £ to bound the objective fo. The procedure described in
Algorithm 1 was used to optimize both the traditional and the improved formulations (LBOTDP.
and LBOTDP, respectively).

The time required for both LBOTDP, and LBOTDP, formulations is first addressed. All



Algorithm 1 Solution Procedure e-ICGP (A, €, 9)
Input:

A := Weight parameter

go := Initial ¢ value for bounding the objective given by fs
0 := Step size for computing the next ¢ value

Output:

D°ff:= Efficient solution set

D ), e —gq

while(e > 0)
1. § — ICGP-TDP(), &)

2. if (S is optimal)

Dt — Dty §
g—e—90
3. else

return D¢/f
4. end if

end while

return D¢/

instance sets were tested using both formulations. It was observed that there was not a significative
difference between these formulations with respect to the time and in most of the cases the set of
solutions found through LBOTDP, and LBOTDP, optimization was the same. In other words,
the stronger structure given by LBOTDP model takes about the same amount of computational
effort. Note that, the optimization process over all instances tested stopped by time limit (4 hours).
It is possible to find more efficient points if the time limit increases. So, when the time is relatively
large, the algorithm continues until € reaches the smallest value such that the problem has no
feasible solutions.

Figures 1-5 show instances where the fronts obtained by the traditional eCM (LBOTDP.) and
the IsCM (LBOTDP]) are practically the same.

Figure 1 goes here.
Figure 2 goes here.

Figure 3 goes here.

Ehrgott and Ruzika [5] show in their work that the traditional e-constraint method (¢CM) (in

this case LBOTDP,) does not guarantee efficient solutions while the improved e-constraint (IeCM)
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always guarantees this property. In this experimental work, the Pareto fronts reported by eCM and
IeCM methods did not present significative variation, due to the fact that the constrained function
(f2) is a maximum relative deviation measure that tends to be more robust, e.g. less sensitive
to changes, than, for instance, a function that measures unbalance as the sum of all deviations.
In conclusion, the improved method takes about the same amount of time that the traditional
method. Even though it found the same fronts than the ones found by the traditional method for

these particular instances, it should be preferred as solution method.

Figure 4 goes here.

Figure 5 goes here.

The second part of this experimental work was carried out to analyze two situations that
frequently take place in the firm. The first situation occurs when the number of vehicles in the fleet
changes. Sometimes, economical resources decrease in a dramatic way such that the firm needs
to reduce the number of vehicles (and employees) used for the distribution of the product. As a
consequence the firm needs to modify the current territory design. On the other hand, when the
firm experiments an expansion, it could make new employee contracts and introduce more vehicles
in its fleet. This in turn means that the workload distribution will be affected and a new alignment
of territories will be required. These situations were analyzed using the set of instances with 80
BUs and varying the number of territories. Figure 6 shows the set of efficient solutions obtained
for an instance with 80 BUs and the number of territories p € {5,6,7}. Obviously, the dispersion
measure (fy) decreases when the number of territories increases. However, it was observed that
when p increases, the unbalance with respect to the number of customers is higher than when p
decreases. This is because a few combinations of BUs allow to hold the connectivity constraints
satisfied on each territory. Thus, the distribution of workload has more unbalance for large values
of p. The decision maker needs to analyze these alternatives. She or he needs to determine what
kind of territory design is better for the economical interests to the company. All instances tested
with 80 BUs and p € {5,6,7} have the same behavior as the one shown in Figure 6. The results
were obtained using the LBOTDPZ model, that is, they are efficient solutions.

Figure 6 goes here.

The second part of this last experiment was carried out to analyze the change in the Pareto
front, when the tolerance (7(?)) changes. The (60, 4) instances for (72 € {0.05,0.03,0.015,0.01})
using LBOTDPZ model were tested. For instance, Figure 7 shows different Pareto fronts obtained
by optimizing the same instance using different 7(2) values with the time limit set to 4 hours. It was
observed that the Pareto front is the same for 7(2) ¢ {0.05,0.03}. In contrast, the front changes
when 7(2) = 0.015, observe that some points from the front of 7(2) = 0.05 remain in the front for

7(3) = 0.015 and additional efficient solutions are found within the time limit (4 hours).
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Figure 7 goes here.

The Pareto front for 72 = 0.01 (Figure 7) shows the largest change with respect to the Pareto

front obtained for 7(2)

= 0.05. Observe for instance, the last three solutions with smallest fo
(maximum deviation) in this front are really far from the fronts given by 7 € {0.05,0.015}. This

illustrates how the front deteriorates as 7(2) gets smaller.

6 Conclusions

In this paper we have presented a procedure for solving a bi-objective territory design problem
with connectivity and balancing constraints. The problem is motivated by a real-world problem
from a beverage distribution company. This is the first time in which the bi-objective version of
this problem is addressed, to the best of our knowledge. Our solution procedure is based on the
well known e-constraint method and a cut generation procedure.

In the implementation of the exact solution procedure, two variants of the e-constraint method
are developed, i) the traditional method which guarantees to find weakly efficient solutions, and ii)
the first modification proposed by Ehrgott and Ruzika [5] (in the improved e-constraint method)
which guarantees to find efficient solutions. In our computational work, it was observed that there
is no significative difference between the time required by both LBOTDP, and LBOTDP_ models.
Moreover, both e-constraint methods converged to practically the same Pareto fronts. The last
is due to the fact that the function fy bounded by ¢ is a robust measure that corresponds to the
relative deviation with respect to the average number of customers. Thus, even though the slack
variable s takes a value different from zero, this value is so small such that the change in the
objective value is not evident.

The performance of the proposed procedure is evaluated over a set of instances. It was observed
that instances with up to 150 BUs and 6 territories are solved in a reasonable time. This is
a significant result because in the general territory design literature exact solutions have been
reported for instances of no more than 50 BUs. Note that this result is for the single objective
case. As far as multiobjective territory design with connectivity constraints is concerned, there are
no exact methods to the best of our knowledge.
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Figure 1: Comparison of LBOTDP,. and LBOTDP, on an instance with 80 BUs and 5 territories.
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Figure 2: Comparison of LBOTDP, and LBOTDP/ on an instance with 100 BUs and 6 territories.
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Figure 3: Comparison of LBOTDP. and LBOTDP on an instance with 150 BUs and 6 territories.
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Figure 4: A) Comparison of LBOTDP. and LBOTDP/ on an instance with 60 BUs and 4 territories,

instance du60-01.
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Figure 5: B) Comparison of LBOTDP. and LBOTDP on an instance with 60 BUs and 4 territories,

instance du60-08.
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Figure 6: Changes in the efficient solutions when p changes.

17



T
2 |- .
— =@ =0.05
il
= 15F —o—7(2) = 0.015
,5 ——7(2) = 0.01
= \
3
>
S
1 |- .
B
=
=
0.5 B

L L L L
5,300 5,400 5,500 5,600
PMedian(f1)

Figure 7: Comparison among Pareto fronts for different values of 7(2).

18



