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Abstract

In this paper, we address a territory design problem arising from a beverage distribution company.

We propose a bi-objective programming model where dispersion and balancing with respect to

the number of customers are used as performance criteria. Constraints such as connectivity and

balancing with respect to sales volume are considered in the model. Most of the work in territory

design has been developed for single-objective models. A very few works have addressed multi-

objective territory design problems. To the best of our knowledge, this is the first multi-objective

approach for this commercial territory design problem, and in particular, for territory design with

connectivity constraints. In this paper, we introduce a bi-objective programming model for this

problem and apply an improved ε-constraint method for generating the optimal Pareto front, based

on a recent technique by Ehrgott and Ruzika to assure efficient solutions. Empirical evidence over

a variety of instances shows that the improved method is well suited for finding optimal Pareto

fronts at no extra computational effort than the traditional method. For this problem, the improved

method finds practically the same fronts than those found by the traditional ε-constraint method.

In addition, we observe that when the firm reduces the tolerance in the imbalance of sales volume

the efficient fronts change and when the number of territories increases, the balance with respect

to the number of customers becomes harder to achieve.

Keywords: Pareto front; improved ε-constraint method; bi-objective programming; territory design.



1 Introduction

In general, distribution firms have complex product distribution networks which are formed by

thousands of sales points. In this industry there are many interesting problems from the logistic

point of view that may appear in different stages of the decision process. For instance, when a firm

is starting, a first problem could be where to locate the warehouses and/or distribution centers.

After that, in order to provide efficient service and to reduce the total costs (i.e., production, stock,

and distribution costs) some questions such as how many products need to be produced, and how

to deliver the products to the final customer, need to be answered. This work is focused on the

study of a problem that arises in a stage previous to the product routing and is motivated by a

real-world application from a beverage distribution firm in the city of Monterrey, Mexico. The firm

wants to divide the total number of customers into a specific number of groups according to some

planning criteria. This partition has the objective of giving support to the decision maker when

she or he designs the distribution routes and when she or he makes the workload distribution. In

addition, the partition permits a more efficient management of marketing offers as it reduces the

number of unsatisfied customers by applying special offers in each territory. This means that we are

contributing to better route design during the routing process due to the compactness (minimum

dispersion) of the territories. In addition, we provide support to the decision maker for elaborating

the marketing plan and for making the best workload and resource distribution. The latter is

possible because the territories are balanced with respect to both number of customers and sales

volume.

This problem belongs to the family of districting problems. There has been a significant amount

of work in the territory design literature addressing many different kinds of applications such as

political, sales, school, services, and commercial districting, to name the most signicant. Among

the most relevant works one can find Hess et al. [9], Fleischmann and Paraschis [6], Hojati [10],

Garfinkel and Nemhauser [7], Mehrotra, Johnson, and Nemhauser [12], Bozkaya et al. [3], Kalcsics

et al. [11]. In practically all of these works, the authors consider single-objective models. Among

the very few works dealing with multi-objective districting problems we find Bowerman et al. [2],

Scott et al. [16], Guo et al. [8], Bong and Wang [1], Tavares et al. [18], and Ricca and Simeone [13].

Bowerman, Hall, and Calamai [2] present a multiobjective approach for solving a school bus

routing problem. They proposed a heuristic technique that at first it groups students into clustering

using a multiobjective districting algorithm. After that, a school bus route and the bus stops for

each cluster are generated by using a combination of a set covering procedure and a traveling sales-

man problem procedure. They report experimental results for a real-world instance in Wellington

County, Ontario. The districting algorithm considers four objectives: minimizing the number of

routes, minimizing the length of the routes, load balancing, and compactness of the routes. The

three last criteria are placed in a weighted objective function where the number of routes is the
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dominant objective, i.e., a solution with fewer routes is always favored over a solution with more.

Different plans were designed using different set of weights over the optimization criteria.

Scott, Cromley, and Cromley [16] make a multiobjective analysis of school districting in a case

study from Connecticut, USA. They propose a mixed-integer goal programming model where the

goal constraints are to minimize disparities in: minority enrollments, grand-list/student ratios,

student-teacher ratios, and overall enrollment. The number of districts is not fixed and the conti-

guity criterion is not formulated in an explicit way. Experimental work using different weighting

scenarios reveals that the traditional distance-minimizing or transportation-minimizing objectives

are in conflict with all other aims of equity and quality of educational opportunities.

Guo, Trinidad, and Smith [8] propose a multi-objective zoning and aggregation tool (MOZART).

MOZART is an integration of a graph partitioning engine with a Geographic Information System

(GIS) through a graphical user interface. They illustrate the performance of MOZART by solving

two zoning problems from three government local areas in Victoria: Kingston, Bayside, and Glen

Eira. The first part of their experimental work is done by taking into account a single objective

of equality in population size. In contrast, in the second part of their experimental work, both

equity in population and compactness are treated as objective functions. They report a case with

577 census collection districts and 20 zones. The inclusion of compactness as the second zoning

objective yields zones with better shapes.

Bong and Wang [1] present a multi-objective hybrid metaheuristic approach for a GIS-based

spatial zoning model. Their heuristic procedure is a combination of tabu search and scatter search.

They show the procedure performance by solving a political districting problem with 55 basic units

and 3 districts. Equity in population, compactness, and socio-economic homogeneity are treated

as objectives.

Tavares et al. [18] study a multiobjective public service districting problem. They consider

multiple criteria such as location of the zone with respect to the network, mobility structure within

a zone, zone corresponding to administrative structures, centers of attraction in the zone, social

nature and geographical nature. They propose an evolutionary algorithm with local search and

apply it to a real-world case of the Paris region public transportation. They discuss results for

bi-objective cases considering different criteria combination.

Ricca and Simeone [13] address a multiple criteria political districting problem. Such criteria

are connectivity, population equality, compactness and conformity to administrative boundaries.

They transform the multi-objective model into a single objective model which is a convex combina-

tion of three objective functions (inequality, noncompactness and nonconformity to administrative

boundaries); connectivity is considered as a constraint. They compare the behavior of four local

search metaheuristics: descent, tabu search, simulated annealing, and old bachelor acceptance.

The application is performed over a sample of five Italian regions where old bachelor acceptance

produces the best results in most of the cases. The state of the art on territory design reveals the

2



following facts.

Very few works address multi-objective models and all of these are basically heuristic techniques

for obtaining approximate Pareto fronts. To the best of our knowledge our work is the first to

provide a method for obtaining efficient fronts to bi-objective territory design problems. Single-

objective versions of the commercial territory design problem addressed in this work are due to

Rı́os-Mercado and Fernández [14], Caballero-Hernández et al. [4], and Segura-Ramiro et al. [17].

In particular, our work can be seen as the bi-objective extension to the model developed in [17].

Our work comprises both the development of a bi-objective optimization model and an exact

optimization procedure for finding efficient solutions in the sense of Pareto. The solution procedure

is based on one of the most important scalarization techniques in multi-objective programming, the

ε-constraint method. We implement two alternatives of this method: the traditional ε-constraint

method (εCM) which guarantees obtaining weakly efficient solutions and a modified version of the

ε-constraint method (IεCM) in which we include slack variables to guarantee efficient solutions.

The last technique was recently proposed by Ehrgott and Ruzika [5] in the improved ε-constraint

method. Our computational work reveals that the IεCM finds practically the same fronts than

those found by the εCM method over all instances tested at no extra computational effort.

The rest of the paper is organized as follows. Section 2 provides a detailed description of the

problem. In Section 3, the bi-objective programming model is introduced. Section 4 describes

the solution method. Experimental work is discussed in Section 5 and finally we present some

conclusions in Section 6.

2 Problem Description

Given a set V of city blocks (basic units, BUs), the firm wishes to partition this set into a fixed num-

ber (p) of disjoint territories that are suitable according to some planning criteria. The territories

need to be balanced with respect to two different activity measures, number of customers and sales

volume. Additionally, each territory has to be connected, such that the set of BUs belonging to the

same territory should induce a connected subgraph. Territory compactness is required to guarantee

that customers within a territory are relatively close to each other. Compactness and balance with

respect to the number of customers are the most important criteria identified by the firm. In our

optimization model these criteria are considered as objective functions and the remaining criteria

are treated as constraints.

Let G = (V,E), where V is the set of nodes (BUs) and E is the set of edges that represent

adjacency between BUs (city blocks). An arc connecting nodes i and j exists if i and j are adjacent

BUs. Multiple attributes like geographical coordinates (cx, cy), number of customers and sales

volume are associated with each node j ∈ V . In particular, the firm wishes perfect balance among

territories, which means each territory needs to have the same number of customers and the same
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sales volume. Due to the discrete nature of this problem, it is practically impossible to have

perfectly balanced territories. Let A = {1, 2} be the set of node activities, where 1 refers to the

number of customers and 2 refers to sales volume. We define the size of territory Vk with respect

to activity a as w(a)(Vk) =
∑

i∈Vk
(w

(a)
i ), where a ∈ A and w

(a)
i is the value associated to activity a

at node i ∈ V . Hence, the target value is given by µ(a) =
∑

j∈V

w
(a)
j

p
.

There are two ways to address balancing. In this work, we treat balancing with respect to the

number of customers as an optimization criterion and balancing with respect to product demand

as a constraint. This is motivated by the fact that this criterion is directly related with the number

of stops that a vehicle makes during the product distribution and the firm pays special attention

to this.

Another important constraint is that of territory connectivity. That is, it is desired that each

individual territory be a connected subgraph of G. Thus, a good territory design is the one in

which compactness and balancing with respect to the number of customers are optimized. In order

to obtain an optimization model that includes all considerations given by the firm, we propose a bi-

objective programming model in which two objective functions are minimized. The first objective

f1 is related to a dispersion measure, because minimizing dispersion is equivalent to maximizing

compactness. The second objective f2 is associated with the maximum deviation with respect to

the target value (µ(1)) in the number of customers, minimizing the maximum deviation allows that

the number of customers be closer to the average size. In this work, we use the objective of the

p-median problem (p-MP) as a dispersion measure (f1).

In a few words, the problem consists of finding a p-partition of V according to the specified

planning criteria of balance with respect to the sales volume and connectivity, in such a way that

both performance measures dispersion (f1) and the maximum deviation with respect to the target

number of customers in each territory (f2) are minimized. We assume all parameters are known

with certainty.

3 Bi-objective Programming Model

Indices and sets

n number of blocks

p number of territories

i, j block indices; i, j ∈ V = {1, 2, ...n}

a activity index: a ∈ A = {1, 2}

N i = {j ∈ V : (i, j) ∈ E ∨ (j, i) ∈ E} set of adjacent nodes to node i; i ∈ V
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Parameters
w

(a)
i value of activity a in node i; i ∈ V ,a ∈ A

dji Euclidean distance between j and i; i, j ∈ V

τ (2) relative tolerance with respect to activity 2; τ (2) ∈ [0, 1]

Decision variables

xji =

{

1 if a basic unit j is assigned to territory with center in i; i, j ∈ V

0 otherwise

With this definition, xii = 1 implies that i is a territory center.

Suppose Qi =
∑

j∈V w
(1)
j xji − µ(1)xii represents the unbalance with respect to the number of

customers in territory with center in i, i ∈ V . So, the relative deviation in territory with center in

i ∈ V is given by
∣

∣

∣

∣

Qi

µ(1)

∣

∣

∣

∣

(1)

This expression given as an absolute value can be decomposed into a positive ∆W +
i and a neg-

ative ∆W−

i part as follows
∣

∣

∣

Qi

µ(1)

∣

∣

∣
= ∆W+

i + ∆W−

i where Qi

µ(1) = ∆W+
i −∆W−

i and ∆W +
i ∆W−

i =

0, i ∈ V . Based on this, we have the following bi-objective territory design problem (BOTDP)

model.

BOTDP Min f1 =
X

j∈V

X

i∈V

djixji (2)

Min f2 = max
i∈V

{∆W
+
i + ∆W

−
i } (3)

Subject to:

∆W
+
i ∆W

−
i = 0 i ∈ V (4)

∆W
+
i − ∆W

−
i =

P

j∈V
w

(1)
j xji − µ(1)xii

µ(1)
i ∈ V (5)

X

i∈V

xii = p (6)

X

i∈V

xji = 1 ∀j ∈ V (7)

X

j∈V

w
(2)
j xji ≥ (1 − τ

(2))µ(2)
xii i ∈ V (8)

X

j∈V

w
(2)
j xji ≤ (1 + τ

(2))µ(2)
xii i ∈ V (9)

X

j∈∪v∈S(Nv\S)

xji −
X

j∈S

xji ≥ 1− | S | i ∈ V ;

S ⊂ [V \ (N i ∪ {i})] (10)

xji = {0, 1} i, j ∈ V (11)

∆W
+
i , ∆W

−
i ≥ 0 i ∈ V (12)
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Objective (2) represents the dispersion measure. In this sense, minimizing dispersion is equiva-

lent to maximizing compactness. The second objective (3) represents the maximum deviation with

respect to the target value of number of customers. Thus, balanced territories should have small

deviation from the average number of customers. Constraints (4) and (5) establish the relationship

of W+
i and W−

i with the absolute value of Qi

µ(1) . Constraint (6) guarantees the creation of exactly

p territories. Constraints (7) guarantee that each node j is assigned to only one territory. Con-

straints (8)-(9) represent the territory balance with respect to sales volume as it establishes that

the size of each territory must lie within a range (measured by tolerance parameter τ (2)) around

its average size. Constraints (10) guarantee the connectivity of the territories. Note that there is

an exponential number of such constraints.

Note that objective (3) is a piece-wise linear function. Therefore, BOTDP can be linearized by

replacing (3) by (13) and introducing constraints given by (14). In addition, it can be shown (see

Lemma 3.1) that the nonlinear constraints (4) are redundant.

Min f2 = γ (13)

γ ≥ ∆W+
i + ∆W−

i ,∀i ∈ V (14)

The resulting bi-objective MILP is called LBOTDP. Model LBOTDP does not include the set

of nonlinear constraints (4). It is because, when a feasible solution to LBOTDP is obtained, those

indices l in which both ∆W +
l and ∆W−

l take value different from zero can be easily identified.

When this happens, it is always possible to get a feasible solution in which at least one of these

∆W+
l or ∆W−

l takes a value equal to zero (see Lemma 3.1) and the new γ value, which will be

equal or better than the actual γ value, is recomputed.

Lemma 3.1. For any feasible solution (X,∆W ) of LBOTDP such that ∆W +
l > 0 and ∆W−

l > 0

there exists a feasible solution (X̄,∆W̄ ) for LBOTDP such that X = X̄ and ∆W̄+
l ∆W̄−

l = 0,

l ∈ V , where f1(X) = f1(X̄) and f2(∆W ) ≥ f2(∆W̄ ).

Proof. Let (X,∆W ) be a feasible solution to LBOTDP with corresponding objective function

values given by (f1, f2). This will focus especially in constraints (5) and (14). For each l ∈ L where

L = {l ∈ V : ∆W +
l > 0 and ∆W−

l > 0}, there are two cases.

• Suppose ∆W +
l ≥ ∆W−

l . Let ∆W̄+
l = ∆W+

l −∆W−

l and ∆W̄−

l = 0. Clearly, ∆W̄+
l −∆W̄−

l =

∆W+
l − ∆W−

l . Then, the new values ∆W̄+
l and ∆W̄−

l satisfy the constraints (14) as well,

and ∆W̄−

l ∆W̄+
l = 0

• Similarly if ∆W +
l < ∆W−

l . Let ∆W̄−

l = ∆W−

l −∆W+
l and ∆W̄+

l = 0. Again, (∆W̄+
l ,∆W̄−

l )

is feasible.
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Since, ∆W̄+
i +∆W̄−

i ≤ ∆Wi
+ +∆W−

i , ∀i, it follows that X̄ is equal to X and ∆W is less than

∆W̄ . It implies that, f2(∆W ) ≤ f2(∆W̄ ) and the proof is completed.

From a practical point of view, it has been clearly established that both f1 and f2 are in conflict.

It has been observed empirically that when attempting to reach the best possible dispersion measure

the maximum deviation with respect to the target number of customers increases and viceversa.

This justifies the bi-objective model.

4 Solution Procedure

Multiple techniques have appeared in the literature for solving multi-objective problems. One of

the most important techniques used in multi-objective programming is the ε-constraint method.

The ε-constraint method seems best suited for nonconvex problems such as the problem addressed

here. In addition, current mono-objective approach [15] to this particular problem can be efficiently

exploited within an ε-constraint frame. The ε-constraint method is based on a scalarization where

one of the objective functions is minimized while all the other objective functions are bounded from

above by means of additional constraints [5].

4.1 The ε-Constraint Model

In our implementation of the ε-constraint method we select the objective function given by (13) as

the function to be bounded by an ε value (see LBOTPDε). We made this decision, because the firm

has precisely defined the range of variation (associated with the maximum deviation γ) in which

a solution is attractive to them. In addition, the resulting model has a better structure because it

can be seen as a p-median problem with some additional constraints (capacity and connectivity).

It is well-known that p-median models have a relatively good LP relaxation and this is true for our

model as well. Finally, we tried to solve a model using f2 as an objective and f1 as a constraint

and found a very bad LP relaxation and considerable higher run times. In general, those solutions

with relative deviation (γ) less than or equal to 5% are attractive to them. Hence, different values

around this value can be swept in an easy way. The model

LBOTDPε Min f1

Subject to:

(5)-(12), (14)

γ ≤ ε (15)

corresponds to the traditional ε-constraint (εCM) formulation for the LBOTDP model. The

objective function f1 is given explicitly by (2) and (15) is an upper bound of γ.
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It is well known that the ε-constraint method guarantees to find weakly efficient solutions that

can be efficient. However, when we have an optimal solution to LBOTDPε is not easy to verify if

this solution is an efficient solution or not. In order to eliminate this weakness, Ehrgott and Ruzika

[5] introduced a modification of the traditional formulation. They incorporate nonnegative slack

variables and with this modification the new ε-constraint method guarantees obtaining efficient

solutions. Let LBPTDP+
ε be the modified ε-constraint formulation in our problem, where λ is a

nonnegative weight.

LBOTDP+
ε Min f1 − λs (16)

Subject to:

(5)-(12), (14)

γ + s ≤ ε (17)

s ≥ 0 (18)

The slack variables introduced in LBOTDP+
ε provide information about efficiency of a solution

[5]. The main difference between LBOTDPε and LBOTDP+
ε is that the ε-constraint in LBOTDP+

ε

is always active at optimality.

4.2 Description of the ε-Constraint Procedures

In this work, our goal is to find both weakly efficient solutions and efficient solutions. The LBOTDPε

and LBOTDP+
ε formulations allow us to obtain these fronts by using different ε values. For each

fixed value of ε we solve a single-objective problem LBOTDPε or LBOTDP+
ε . Note that each of

these single-objective problems (LBOTDPε and LBOTDP+
ε ) is NP-hard. In addition constraints

(10) can not be written explicitly as there is an exponential number of them. There are few works

that solve the single-objective districting problem with connectivity constraints. For instance,

Garfinkel and Nemhauser [7] solve political districtig problems by implicit enumeration techniques,

they reported successful solution for instances with up to 39 BUs and 7 territories. On the other

hand, Mehrotra et al. [12] propose a column generation procedure for the political districting

problem and they report solutions for up to 46 basic units and 6 territories. The iterative cut

generation procedure for territory design problems (ICGP-TDP) [15] is an exact solution proce-

dure developed for the single-objective commercial territory design problem. Empirical work shows

that this procedure allows to solve instances with up to 200 basic units and 11 territories. The

ICGP-TDP algorithm consists of iteratively solving a relaxed MILP model (relaxing the connec-

tivity constraints), and then finding and adding violated constraints by solving an easy separation

problem. When violated cuts are identified these are added to the model and the process continues

with the next iteration. The iterative procedure continues until an optimal solution is obtained
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or when the relaxed problem is proved infeasible. Full details can be found in [15]. We adapted

ICGP-TDP for both LBOTDPε and LBOTDP+
ε formulations and we called it ε-ICGP.

There are a few multi-objective districting applications with connectivity constraints and these

have been addressed by heuristic procedures [8, 16, 13]. To the best of our knowledge there are

no references in the literature on multi-objective districting that provide exact efficient solutions.

In our case, we can find weakly efficient and efficient solutions through ε-ICGP using LBOTDPε

and LBOTDP+
ε formulations, respectively. For each fixed value of epsilon, ICGP-TDP is called

to obtain an optimal solution to the problem if it is feasible. At the end, the ε-ICGP procedure

reports a set of efficient solutions.

The iterative solution procedure is described in Algorithm 1. The parameter λ, an initial ε

value (ε0), and a step length δ to compute different ε values are the input. Note that when λ = 0 is

passed as argument to ε-ICGP, the associated solution method is the traditional εCM (see model

LBOTDPε). However, when λ > 0 then the associated solution method is the IεCM (see model

LBOTDP+
ε ). Algorithm ε-ICGP was coded in C++ and compiled with the Sun C++ 8.0 compiler

under Solaris 9 Operating System. The ICGP-TDP procedure, that optimally solves the single-

objective model for a fixed value of epsilon, makes use of the CPLEX 11.2 callable libraries (see

[15] for more details).

While it is true that LBOTDP+
ε is more attractive than LBOTDPε as it guarantees efficient

solutions, we are interested on evaluating the computational effort of each model to properly assess

the trade-off between solution quality and time.

5 Experimental Work

In the experimental work, randomly generated instances based on real-world data provided by the

industrial partner were used. Each instance topology was generated by using the generator devel-

oped by Rı́os-Mercado and Fernández [14]. In this work, the authors used historical information

from the firm and obtained the data distribution associated to the number of customers and sales

volume. A tolerance τ (2) = 0.05 with respect to sales volume was considered. Three different

instance sets defined by (n, p) ∈ {(60, 4), (80, 5), (100, 6)} were used. For each of these sets, 10

different instances were generated. Additionally, another set with five instances for (150, 6) was

generated. The time limit for ε-ICGP was set to 4 hours, λ was set to 3, and the step size was

δ = 0.001 for all instances. As it was mentioned before, solutions with a maximum deviation less

than or equal to 5% from the average number of customers are attractive to the firm. Therefore,

this value was used as the initial value of ε to bound the objective f2. The procedure described in

Algorithm 1 was used to optimize both the traditional and the improved formulations (LBOTDPε

and LBOTDP+
ε , respectively).

The time required for both LBOTDPε and LBOTDP+
ε formulations is first addressed. All
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Algorithm 1 Solution Procedure ε-ICGP(λ, ε0, δ)

Input:

λ := Weight parameter

ε0 := Initial ε value for bounding the objective given by f2

δ := Step size for computing the next ε value

Output:

Deff:= Efficient solution set

Deff ← ∅, ε← ε0

while(ε > 0)

1. S ← ICGP-TDP(λ, ε)

2. if(S is optimal)

Deff ← Deff ∪ S

ε← ε− δ

3. else

return Deff

4. end if

end while

return Deff

instance sets were tested using both formulations. It was observed that there was not a significative

difference between these formulations with respect to the time and in most of the cases the set of

solutions found through LBOTDPε and LBOTDP+
ε optimization was the same. In other words,

the stronger structure given by LBOTDP+
ε model takes about the same amount of computational

effort. Note that, the optimization process over all instances tested stopped by time limit (4 hours).

It is possible to find more efficient points if the time limit increases. So, when the time is relatively

large, the algorithm continues until ε reaches the smallest value such that the problem has no

feasible solutions.

Figures 1-5 show instances where the fronts obtained by the traditional εCM (LBOTDPε) and

the IεCM (LBOTDP+
ε ) are practically the same.

Figure 1 goes here.

Figure 2 goes here.

Figure 3 goes here.

Ehrgott and Ruzika [5] show in their work that the traditional ε-constraint method (εCM) (in

this case LBOTDPε) does not guarantee efficient solutions while the improved ε-constraint (IεCM)
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always guarantees this property. In this experimental work, the Pareto fronts reported by εCM and

IεCM methods did not present significative variation, due to the fact that the constrained function

(f2) is a maximum relative deviation measure that tends to be more robust, e.g. less sensitive

to changes, than, for instance, a function that measures unbalance as the sum of all deviations.

In conclusion, the improved method takes about the same amount of time that the traditional

method. Even though it found the same fronts than the ones found by the traditional method for

these particular instances, it should be preferred as solution method.

Figure 4 goes here.

Figure 5 goes here.

The second part of this experimental work was carried out to analyze two situations that

frequently take place in the firm. The first situation occurs when the number of vehicles in the fleet

changes. Sometimes, economical resources decrease in a dramatic way such that the firm needs

to reduce the number of vehicles (and employees) used for the distribution of the product. As a

consequence the firm needs to modify the current territory design. On the other hand, when the

firm experiments an expansion, it could make new employee contracts and introduce more vehicles

in its fleet. This in turn means that the workload distribution will be affected and a new alignment

of territories will be required. These situations were analyzed using the set of instances with 80

BUs and varying the number of territories. Figure 6 shows the set of efficient solutions obtained

for an instance with 80 BUs and the number of territories p ∈ {5, 6, 7}. Obviously, the dispersion

measure (f2) decreases when the number of territories increases. However, it was observed that

when p increases, the unbalance with respect to the number of customers is higher than when p

decreases. This is because a few combinations of BUs allow to hold the connectivity constraints

satisfied on each territory. Thus, the distribution of workload has more unbalance for large values

of p. The decision maker needs to analyze these alternatives. She or he needs to determine what

kind of territory design is better for the economical interests to the company. All instances tested

with 80 BUs and p ∈ {5, 6, 7} have the same behavior as the one shown in Figure 6. The results

were obtained using the LBOTDP+
ε model, that is, they are efficient solutions.

Figure 6 goes here.

The second part of this last experiment was carried out to analyze the change in the Pareto

front, when the tolerance (τ (2)) changes. The (60, 4) instances for (τ (2) ∈ {0.05, 0.03, 0.015, 0.01})

using LBOTDP+
ε model were tested. For instance, Figure 7 shows different Pareto fronts obtained

by optimizing the same instance using different τ (2) values with the time limit set to 4 hours. It was

observed that the Pareto front is the same for τ (2) ∈ {0.05, 0.03}. In contrast, the front changes

when τ (2) = 0.015, observe that some points from the front of τ (2) = 0.05 remain in the front for

τ (2) = 0.015 and additional efficient solutions are found within the time limit (4 hours).
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Figure 7 goes here.

The Pareto front for τ (2) = 0.01 (Figure 7) shows the largest change with respect to the Pareto

front obtained for τ (2) = 0.05. Observe for instance, the last three solutions with smallest f2

(maximum deviation) in this front are really far from the fronts given by τ (2) ∈ {0.05, 0.015}. This

illustrates how the front deteriorates as τ (2) gets smaller.

6 Conclusions

In this paper we have presented a procedure for solving a bi-objective territory design problem

with connectivity and balancing constraints. The problem is motivated by a real-world problem

from a beverage distribution company. This is the first time in which the bi-objective version of

this problem is addressed, to the best of our knowledge. Our solution procedure is based on the

well known ε-constraint method and a cut generation procedure.

In the implementation of the exact solution procedure, two variants of the ε-constraint method

are developed, i) the traditional method which guarantees to find weakly efficient solutions, and ii)

the first modification proposed by Ehrgott and Ruzika [5] (in the improved ε-constraint method)

which guarantees to find efficient solutions. In our computational work, it was observed that there

is no significative difference between the time required by both LBOTDPε and LBOTDP+
ε models.

Moreover, both ε-constraint methods converged to practically the same Pareto fronts. The last

is due to the fact that the function f2 bounded by ε is a robust measure that corresponds to the

relative deviation with respect to the average number of customers. Thus, even though the slack

variable s takes a value different from zero, this value is so small such that the change in the

objective value is not evident.

The performance of the proposed procedure is evaluated over a set of instances. It was observed

that instances with up to 150 BUs and 6 territories are solved in a reasonable time. This is

a significant result because in the general territory design literature exact solutions have been

reported for instances of no more than 50 BUs. Note that this result is for the single objective

case. As far as multiobjective territory design with connectivity constraints is concerned, there are

no exact methods to the best of our knowledge.
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Figure 1: Comparison of LBOTDPε and LBOTDP+
ε on an instance with 80 BUs and 5 territories.
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Figure 2: Comparison of LBOTDPε and LBOTDP+
ε on an instance with 100 BUs and 6 territories.
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Figure 3: Comparison of LBOTDPε and LBOTDP+
ε on an instance with 150 BUs and 6 territories.
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Figure 4: A) Comparison of LBOTDPε and LBOTDP+
ε on an instance with 60 BUs and 4 territories,

instance du60-01.

16



5,300 5,400 5,500 5,600

0.5

1

1.5

2

·10−2

PMedian(f1)

M
ax

D
ev

ia
ti
on

(f
2
) LBOTDPε

LBOTDP
+
ε

Figure 5: B) Comparison of LBOTDPε and LBOTDP+
ε on an instance with 60 BUs and 4 territories,

instance du60-08.
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Figure 6: Changes in the efficient solutions when p changes.
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Figure 7: Comparison among Pareto fronts for different values of τ (2).
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