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Abstract In this work, a series of novel formulations for a commercial territory design

problem motivated by a real-world case are proposed. The problem consists on deter-

mining a partition of a set of units located in a territory that meets multiple criteria

such as compactness, connectivity, and balance in terms of customers and product de-

mand. Thus far, different versions of this problem have been approached with heuristics
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due to its NP-completeness. The proposed formulations are integer quadratic program-

ming models that involve a smaller number of variables than heretofore required. These

models have also enabled the development of an exact solution framework, the first ever

derived for this problem, that is based on branch and bound and a cut generation strat-

egy. This is the first exact method developed for this problem. The proposed method

is empirically evaluated using several instances of the new quadratic models as well as

of the existing linear models. The results show that the quadratic models allow solving

larger instances than the linear counterparts. The former were also observed to require

fewer iterations of the exact method to converge. Based on these results the combina-

tion of the quadratic formulation and the exact method are recommended to approach

problem instances associated with medium-sized cities.

Keywords Mixed-integer linear programming · Integer quadratic programming ·

Territory design · Location · Valid inequalities

1 Introduction

Territory design or districting consists of dividing a set of basic units into subsets or

groups according to specific planning criteria. In most applications, these basic units

are city blocks, zip codes or individual customers and the resulting groups are known

as territories or districts. A survey on general territory design problems (TDPs) can

be found in Kalcsics et al (2005). Two important applications of territory design are

political districting (Bozkaya et al 2003; Fleischmann and Paraschis 1988; Garfinkel

and Nemhauser 1970; Hess et al 1965; Hojati 1996; Mehrotra et al 1998; Ricca and

Simeone 2008; Shirabe 2009)and sales territory design (Drexl and Haase 1999; Hess

and Samuels 1971; Marlin 1981; Zoltners and Sinha 2005). The characteristics of the
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problem addressed in this paper as detailed later, make it different to those studied in

the work listed previously however.

In land use or site search problems, a set of compact territories is sought subject to

connectivity constraints. The main difference with our problem is that the territories

do not necessarily form a partition of the basic units. For recent models and methods

on this type of problems, the reader is referred to the work of Aerts et al (2003) and

Xiao (2006).

The problem addressed in this work was motivated by the challenge faced by a local

distribution company for bottled beverages where the objective was to create a specific

number of territories given a set of city blocks (basic units). The territories were re-

quired to be compact, contiguous, and balanced in terms of number of customers and

sales volume. Ŕıos-Mercado and Fernández (2009) introduced this problem initially

with an initial solution approach based on a reactive GRASP (Greedy Randomized

Adaptive Search Procedure), a metaheuristic procedure. Compactness in their initial

work was modeled through the objective function of the p-center problem (pCP), which

represents dispersion. Additionally, balanced territories in terms number of customers,

sales volume, and workload were seeked out. With this set up, results were reported

as better than those previously generated by the company hosting the study in terms

of dispersion and balance requirements. Different versions of the problem have been

studied by Segura-Ramiro et al (2007) and Caballero-Hernández et al (2007). In each

of these, heuristic approaches were developed for large-sized instances that would be

intractable for exact optimization purposes. Indeed, to the best of our knowledge, no

exact scheme has been developed for neither of these models in the literature, only

heuristic approaches can be found. Small and medium-sized instances, however, are

also frequent enough in real life and therefore, their solutions are deemed important.
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The development of an exact optimization method that effectively handles the expo-

nential number of connectivity constraints in small and medium-sized instances of the

commercial territory design problem is, then, one of the key contributions of the work

presented here.

On the other hand, in territory design problems, models dealing with connectivity

constraints are usually approached through heuristics, as reviewed in Kalcsics et al

(2005), although a few works do provide optimal solutions, for example Garfinkel and

Nemhauser (1970) and Shirabe (2009). The former studied a districting problem with

39 BUs and 7 territories, while the latter proposed a solution method to a similar

problem using 48 basic units to a variable number of territories. The method proposed

in Shirabe (2009) was proved tractable only for a small number of territories.

Our work presents contribution in two directions regarding the commercial territory

design problem. The first direction consists of an exact optimization procedure. The

proposed algorithm is geared towards the solution of up to medium-sized instances

of around 200 basic units to form up to around 10 territories. The algorithm con-

sists on the iterative solution of a mixed integer linear programming problem (MILP)

through the relaxation of the connectivity constraints. The violated constraints are

then identified through the solution of a simple separation problem. After that, these

constraints are introduced as cuts to the model. The procedure continues until opti-

mality is reached.

In the second direction, a new integer quadratic programming (IQP) formulation

is proposed. This formulation greatly reduces the number of binary variables allowing

the solution of larger instances than those allowed by the MILP counterpart. The exact

optimization procedure is tested here with both, the MILP and the IQP formulations.
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An empirical study on territory compactness over a wide range of instances is also

presented to elucidate which kinds of measure have the potential to provide the best

solutions for the commercial territory design problem. In general territory design, there

is not a standard measure for compactness. One can find different kind of measures

depending on the specific application. In the context of political districting, for instance,

there have been some studies on compactness measures in Altman (1998). This criterion

is discussed by Kalcsics et al (2005) as well from a more general perspective, considering

a median-based measure and a function based on convex hulls specifically tailored for

their geometric approach. These works conclude that there is not a rigorous definition of

this concept. In the absence of a standard measure for the case of commercial territory

design, we carried out experimental work over a wide range of instances in order to

analyze the performance of center- and median-based models.

The paper is organized as follows. Section 2 contains the description and mathemat-

ical formulations for this problem. Section 3 describes the proposed solution procedure.

Experimental work is included in Section 4. Finally, conclusions are drawn in Section 5.

2 Problem Description

Let G = (V, E), be a graph where V is the set of basic units (BUs) -blocks in this case-

and E is the set of edges representing adjacency between blocks. Each node j in set V

has a series of parameters such as geographical coordinates (c1
j , c2j ), and two attributes

or activities: number of customers and sales volume. An Euclidean distance, dij can be

computed between each pair of BUs i and j. The set of BUs is to be partitioned into p

territories, and it is required that each node is assigned to only one territory (exclusive



6

assignment). The company seeks balanced territories with respect to the number of

customers and product demand.

Let the size of territory Vk ⊂ V with respect to activity a be defined as w(a)(Vk) =

∑

i∈Vk
(w

(a)
i ), where k is a territory index, a ∈ A = {1, 2} and w

(a)
i is the value as-

sociated to activity a in node i ∈ V . Due to the discrete structure of the problem

and to the unique assignment constraints, it is practically impossible to have perfectly

balanced territories, i.e., territories of exactly the same size, with respect to each ac-

tivity. Thus, in order to model balancing, a tolerance parameter τ (a) for activity a is

introduced. This parameter measures the relative deviation from the average territory

size with respect to activity a ∈ A. This target average is given by µ(a) = w(a)(V )/p.

Another important constraint is connectivity, i.e., for each i and j assigned to the same

territory there must exist in G a path between them totally contained in the territory.

In addition, in order to pursue compactness, BUs of the same territory must be as

close as possible to each other. One way to achieve this requirement is to minimize a

dispersion measure. Several measures have been used in the literature. In this work we

study two different measures, one based on the p-Center Problem (pCP) objective and

the other based on the p-Median Problem (pMP) objective. This leads to two different

models. Both are described next.

Formally, the problem consists in finding a p-partition of V according to the spec-

ified planning requirements of balancing and connectivity, that minimizes a given dis-

persion measure.
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2.1 Mixed Integer Linear Models

For the mathematical model MTDP (Median-Based TDP), the following set and deci-

sion variables are defined.

Set

N i set of nodes adjacent to node i, where

N i = {j ∈ V, (i, j) ∈ E ∨ (j, i) ∈ E}, i ∈ V .

Decision variables

xij =











1 if basic unit j is assigned to territory with center in i; i, j ∈ V

0 otherwise.

Note that xii = 1 implies i is a territory center.

(MTDP) minimizez =
∑

j∈V

∑

i∈V

dijxij (1)

subject to:

∑

i∈V

xii = p (2)

∑

i∈V

xij = 1 j ∈ V (3)

∑

j∈V

w
(a)
j xij ≥ (1 − τ (a))µ(a)xii i ∈ V ; a ∈ A (4)

∑

j∈V

w
(a)
j xij ≤ (1 + τ (a))µ(a)xii i ∈ V ; a ∈ A (5)

∑

j∈∪v∈S(Nv\S)

xij −
∑

j∈S

xij ≥ 1− | S | i ∈ V,

S ⊂ [V \ (N i ∪ {i})] (6)

xij ∈ {0, 1} i, j ∈ V (7)
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Objective (1) represents a dispersion measure based on the pMP objective. In this

sense minimizing dispersion is equivalent to maximizing compactness. Constraint (2)

assures the creation of exactly p territories. Constraints (3) assure that each node is

assigned to only one territory. Constraints (4)-(5) represent the territory balance with

respect to each activity measure as they establish that the size of each territory must

lie within a range (measured by tolerance parameter τ (a)) around its average size.

Constraints (6) guarantee territory connectivity. They assure that for any given subset

S of nodes assigned to center i not containing node i there must be an arc between

S and the set containing i. They are similar to the subtour elimination constraints in

the Traveling Salesman Problem. Note that there are an exponential number of such

constraints so they cannot be explicitly written out. The proposed solution procedure

generates only those that are needed in an iterative way. This model was used by

Segura-Ramiro et al (2007), and it can be viewed as a pMP problem with multiple

capacity constraints, and with additional side constraints (4)-(6), respectively. Note

that, when the pCP objective is used as dispersion measure the objective (1) is replaced

by (8). The resulting model is called CTDP (Center-Based TDP) and it was introduced

by Ŕıos-Mercado and Fernández (2009).

z = max
i,j∈V

{

dijxij

}

(8)

The NP-completeness of both MTDP and CTDP is well established (Segura-Ramiro

et al 2007; Ŕıos-Mercado and Fernández 2009). NP-completeness proof for similar mod-

els can be found in Altman (1997, 1998) in the context of political districting. For
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instance, he proved, among others, that the problem of creating equal population/size

territories and the problem of redistricting are both NP-complete.

Ŕıos-Mercado and Fernández (2009) proposed a reactive GRASP for CTDP. Segura-

Ramiro et al (2007) proposed a location-allocation heuristic for MTDP. However, to

the best of our knowledge, no exact methods have been developed so far. Although, in

theory, the connectivity constraints could be written out explicitly, this would not make

any practical sense due to their exponential number. In this work an exact solution

procedure to solve both MTDP and CTDP is proposed. In the modeling stage these

constraints are not explicitly written and these are generated in an iterative manner

within the proposed algorithm. Therefore, the procedure is easily implemented under

any algebraic modeler system and it can be solved by any off-the-shelf MILP solver.

Let R MTDP denote the relaxed model obtained by relaxing (6) from MTDP. In

a similar way the relaxed model R CTDP is defined as the resulting model obtained

by relaxing (6) in CTDP. A summary of different MILP relaxed models is displayed in

Table 1.

Table 1 goes here.

2.2 Integer Quadratic Programming Models

The Integer Quadratic Programming (IQP) model introduced in this work reduces the

number of binary variables from n2 to 2np. This model is obtained by applying the

same technique already used in Domı́nguez and Muñoz (2008) for a pMP problem and

this is the first quadratic formulation for the commercial TDP addressed in this paper.

In order to describe the model, a set Q = {1, 2, . . . , p} of territory indices is introduced

and binary decision variables yiq to indicate the territory centers and zjq to represent
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the assigning of BUs to territories are defined. The parameters are the same as those

used in the linear model.

Decision variables for the IQP model

zjq =











1 if unit j is assigned to territory q; j ∈ V, q ∈ Q

0 otherwise

yiq =











1 if unit i is the center of territory q; i ∈ V, q ∈ Q

0 otherwise

According to this definition, the equivalence between the variables in the linear

model and the variables in the quadratic model is given by

xij =
∑

q∈Q

zjqyiq . (9)

The resulting IQP model is the following.

(QMTDP) minimize z =
∑

q∈Q

∑

j∈V

∑

i∈V

dijzjqyiq (10)

subject to:

∑

i∈V

yiq = 1 q ∈ Q (11)

∑

q∈Q

zjq = 1 j ∈ V (12)

zjq ≥ yjq q ∈ Q, j ∈ V (13)

∑

j∈V

w
(a)
j zjq ≥ (1 − τ (a))µ(a) q ∈ Q, a ∈ A (14)

∑

j∈V

w
(a)
j zjq ≤ (1 + τ (a))µ(a) q ∈ Q, a ∈ A (15)

∑

q∈Q

∑

j∈∪v∈S(Nv\S)

zjqyiq
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−
∑

q∈Q

∑

j∈S

zjqyiq ≥ 1− | S | i ∈ V,

S ⊂ [V \ (N i ∪ {i})] (16)

zjq ∈ {0, 1} q ∈ Q, j ∈ V (17)

yiq ∈ {0, 1} q ∈ Q, i ∈ V (18)

The QMTDP (quadratic median-based territory design problem) model uses an

equivalent dispersion measure as that of MTDP. Constraints (11) are to guarantee the

location of only one center for each territory. Constraints (12) are for exclusive node

assignment. The set of constraints (14)-(15) assure territory balance. Constraints (13)

establish that BU j can not be the center of q if j is not assigned to q. According to

Proposition 2 in Domı́nguez and Muñoz (2008), constraints (11)-(12) guarantee the

assignment, and constraints (13) are not needed. However, these are shown here for

model completeness. The last set of quadratic constraints (16) guarantees connectivity.

Again there is an exponential number of these constraints.

Under this quadratic formulation, a dispersion measure based on the pCP objective

is given by (19). Let QCTDP (quadratic center-based territory design problem) be the

resulting model when the objective function (10) is replaced by the dispersion measure

given by (19).

min z = max
i,j∈V







dij

∑

q∈Q

zjqyiq







(19)

Note that these IQP formulations are new in the literature for commercial terri-

tory design. QMTDP is hard to solve due to the quadratic objective and quadratic

connectivity constraints. Additionally, it is not possible to write these explicitly due to

its exponential number. If the connectivity constraints are relaxed, the model may be

solved using any MINLP method. Let R QMTDP be the relaxation of QMTDP with
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respect to the connectivity constraints (16). Clearly, a solution to R QMTDP provides

a lower bound to QMTDP.

There are some special cases for which the model can be strengthened, for example,

when there are not feasible solutions containing territories of size 1. In other words,

when each feasible solution has territories having at least two basic units associated to

it then the following is a valid inequality for R QMTDP:

∑

i∈Nj

ziq ≥ zjq q ∈ Q; j ∈ V (20)

This condition is true if and only if wa
j < (1 − τa)µa for each j ∈ V , a ∈ A. For

our particular case, our data instances always satisfy this condition, and therefore the

model can make use of these valid inequalities. These inequalities can be interpreted

as follows. If j is assigned to territory q at least one of its neighbors (i ∈ N j ) must be

assigned to the same territory. In this sense, these constraints avoid the unconnected

subsets S with |S| = 1. The motivation for this stems from the fact that empirical

work showed that a very large proportion of (unconnected) optimal solutions to the

relaxed models R MTDP, R CTDP, R QMTDP, or R QCTDP come from subsets of

cardinality equal to 1. Given that there is a polynomial number of these kind of subsets

their related connectivity constraints can be easily incorporated into the model.

Note that, for MILP formulations the equivalent valid inequalities are given by:

∑

l∈Nj

xil ≥ xij i ∈ V, j ∈ V \ ({i} ∪ N i) (21)

In contrast with valid inequalities (20) that are valid only when the condition of

no singleton territories hold, constraints (21) are valid for any instance.

Let R1 QMTDP be the relaxation defined by R QMTDP plus the additional con-

straints (20). In a similar way we can define the relaxed models for the QCTDP model.
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These are called R QCTDP and R1 QCTDP, respectively. Similarly, for both MTDP

and CTDP models, new relaxed models are obtained by adding (21) in the relaxed mod-

els R MTDP and R CTDP, respectively. We called these R1 MTDP and R1 CTDP,

respectively. For better definition of these relaxed models see Table 1.

In the following section we outline a solution framework that can be used to solve

any of these models. This procedure can be used to solve the problem using both MILP

and IQP formulations. This procedure guarantees a global optimal solution for MILP

models and local or global optimal solutions for IQPs, depending on what method is

used for solving the relaxed subproblem.

3 Solution Procedure

One of the main difficulties for obtaining exact solutions for any of these models arise

from the exponential number of connectivity constraints. The explicit enumeration

of these constraints results practically impossible. Thus, to get optimal solutions we

devise an iterative procedure that uses branch and bound (B&B) and a cut generation

scheme.

The idea is relatively simple. By relaxing the connectivity constraints, we are left

with a relaxed problem that is solved by B&B. Then, the solution to this relaxed prob-

lem is checked for connectivity. The connectivity test is done by solving a separation

problem (Algorithm 2) that is polynomially solvable throught the breadth first search

(BFS) algorithm. The corresponding identified violated valid inequalities (if any) are

then added to the relaxed model as cuts and the procedure continues until no more vio-

lated inequalities are found. The Iterative Cut Generation Procedure for solving TDPs

(ICGP-TDP) is outlined in Algorithm 1. For solving the MILP relaxed models, the
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SolveMILP method in ICGP-TDP uses any branch-and-bound method. In contrast,

the SolveIQP method may call either an exact or an approximate method. In our case,

we are attempting to come up with a way to find faster solutions, so we make use of

a local optimum method for finding attractive feasible solutions for the IQP relaxed

models. An issue to be investigated is precisely the trade-off between time and solution

quality. Assuming a finite algorithm is used for solving the integer relaxed models (in

SolveMILP() or SolveIQP()), the convergence of the algorithm is guaranteed due to

the fact that the separation problem is solved exactly (in polynomial time) returning

either a set of violated connectivity constraints or an empty set. Because there is a fi-

nite set of connectivity constraints the algorithm is guaranteed to stop. When it stops,

the last solution is feasible with respect to the connectivity constraints, and therefore,

an optimal solution to the problem.

3.1 The Separation Problem

Suppose we have a graph G(V, E) and a p-partition X = (X1, X2, . . . , Xp), where

each of these sets Xk, k = 1, ...p induces a subgraph Gk = (Xk, E(Xk)) of G and

a center ck ∈ Xk. The separation problem consists of first identifying all connected

components of Gk. This can be done very efficiently by breadth-first-search (BFS) in

O(|E|) as follows. Starting from any node i BFS (Cormen et al (1990)) is applied

to find a node j adjacent or reachable from i. This is repeated until no more nodes

can be reached from the previously formed node set. At this point, this node set is

one connected component of G and we proceed iteratively starting from any other

non-visited node. The procedure stops when all nodes have been visited. BFS assures

that this is accomplished in O(|E|). Then, for each k = 1, ..., p, each of the connected
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Algorithm 1 ICGP-TDP(P, DispMeasure,ModelType)

Input:

P :=Instance of the TDP problem

DispMeasure:= pCP or pMP objective function

ModelType:= MILP or IQP

Output: X = (X1 ,X2, . . . ,Xp):= A feasible p-partition of V

Cuts← ∅ {Cut set}

Model← GenerateRelaxedModel(P, DispMeasure,ModelType)

While(Cuts 6= ∅)

If(ModelType = MILP)

X ← SolveMILP(Model)

Else

X ← SolveIQP(Model)

EndIf

Cuts← SolveSeparationProblem(P ,X)

AddCuts(Model, Cuts)

EndWhile

Return X

components of Gk that does not contains the center ck is used to generate a violated

connectivity constraint in our problem. In other words, each component St of Gk

plays the role of set S in constraints (6). Algorithm 2 describes the steps to solve the

separation problem. Note that in our implementation, the BFS algorithm is used for

obtaining the connected components. This algorithm runs in polynomial time.

Figure 1 goes here.

In order to illustrate the IGCP-TDP algorithm consider an example with n = 11

nodes and p = 2 territories (see the graph in Figure 1). Suppose that the solution to the
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Algorithm 2 SolveSeparationProblem(P, X)

Input:

P := Instance of the TDP problem

X = (X1, X2, . . . ,Xp) := A p-partition of V

Output: Cuts := Set of violated connectivity constraints

Cuts← ∅

For (k = 1, . . . , p)

Obtain connected components S1, S2, . . . , St of G(Xk , E(Xk))

For each St such that ck 6∈ St generate the violated cut and add it to Cuts

EndFor

Return (Cuts)

relaxed problem (without connectivity constraints) after applying branch and bound is

depicted in Figure 1,where the dotted lines collect BUs belonging to the same territory

and the nodes 4 and 5 are the territory centers. This solution corresponds to the 2-

partition given by X1 = {1, 4, 6, 7, 11} with center in c1 = 4 and X2 = {2, 3, 5, 8, 9, 10}

with center in c2 = 5, then the variables have the following values:

x41 = x44 = x46 = x47 = x411 = 1,

x42 = x43 = x45 = x48 = x49 = x410 = 0,

x52 = x53 = x55 = x58 = x59 = x510 = 1,

x51 = x54 = x56 = x57 = x511 = 0;

xij = 0, ∀i, j ∈ V, i 6= {4, 5}.

Given this solution, the separation problem (Algorithm 2) is solved to identify

those connectivity constraints (6) that are violated by this solution. Applying the BFS

algorithm, the connected components S1, . . . , St are identified on each territory. As can
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be seen from X1 the connected component S1 = {6, 7} is unconnected from c1 then it

induces a violated constraint which is generated as

x42 + x43 + x45 + x49 − x46 − x47 ≥ −1

Similarity, in X2 the connected component S1 = {2} is unconnected from c2 and

the violated constraint is given by

x51 + x56 − x52 ≥ 0

Following the ICGP-TDP procedure, we add the cuts (violated constraints) to the

relaxed model and it is solved again. We proceed iteratively until the final solution

gives us a connected territory design or a feasible solution is not found. The latter

means that the original problem is infeasible.

Note that, in each iteration, the number of aggregated cuts is equal to the total

number of unconnected subsets identified from the given solution. Within a given it-

eration this number of identified unconnected subsets is bounded by n; however, in

the worst case the total number of these identified subsets during the execution of the

algorithm could be exponential. Nonetheless, in practice this number is found to be

relatively low as it will be seen in the following section.

4 Computational Results

The proposed ICGP-TDP method was coded in C++ and compiled with the Sun C++

8.0 compiler. The MILP relaxations are solved through CPLEX 11.2 and the IQP relax-

ations are solved by DICOPT, one of the most popular methods for solving non-linear

mixed-integer programs developed by J. Viswanathan and Ignacio E. Grossmann at the
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Engineering Design Research Center (EDRC) at Carnegie Mellon University (see Kocis

and Grossmann (1989) and Viswanathan and Grossmann (1990) for more details). Two

stopping criteria were used: by optimality gap (gap ≤ 5 × 10−6) and by time (7200

seconds). In order to speed up convergence, priorities were used on the binary variables

to ensure that xii are branched before than xij , i 6= j, i, j ∈ V . Randomly generated

instances based on real-world data provided by the industrial partner were used. Each

instance topology was generated by using the generator developed by Ŕıos-Mercado

and Fernández (2009). In this work, the authors used historical information from the

firm and obtained the data distribution associated to the number of customers and

sales volume. The firm uses Euclidean distances between basic units as computed from

their GIS. We considered a tolerance τ (a) = 0.05, a ∈ A, and generated three different

instance sets as (n, p) ∈ {(60, 4), (80, 5), (100, 6)}. For each of these sets, 20 different

instances were generated. Additionally, 10 different instances of two larger sets were

generated for (n, p) ∈ {(150, 8), (200, 11)}. The codes and data sets are available at

http://yalma.fime.uanl.mx/˜roger/ftp/tdp/.

4.1 Evaluation of MILP models

We first evaluate linear models CTDP and MTDP when the relaxed models R CTDP

and R MTDP, respectively, are used within the ICGP-TDP procedure.

Tables 2 and 3 show the results for CTDP and MTDP, respectively. The first

column indicates the instance size tested. The second column shows the percentage of

instances that were solved at the first iteration (out of 20 except for the set (150, 8)),

that is, the percentage of instances for which a connected partition was found at the

first iteration. The third column contains the average and the maximum number of



19

iterations per instance required by the algorithm to find the optimal solution. The

fourth column displays the percentage of instances solved within the specified time

limit. The fifth column shows the average and the maximum number of cuts added

per instance solved. Finally, the last column displays information about the CPU time

(average and maximum) used per instance.

Table 2 goes here.

For model CTDP, Table 2 indicates that a very small proportion of the instances

were solved at the first iteration. As many as 26 iterations and 82 cuts were needed in

the worst case to solve the problems of size (60,4). At the end of the procedure, all in-

stances of the (60,4) were solved optimally. 90% of the (80,5) set were solved optimally.

However, the procedure struggled with the larger sets. For the two smaller sets, around

5 iterations and 12 cuts were needed on average. Note that, for a specific iteration the

separation problem has the property to identify more than one unconnected subset

and it generates all violated connectivity constraints at the same iteration. Note that

for the (150,8) set, the procedure was unable to terminate a single iteration within the

time limit.

Table 3 goes here.

These statistics improve significantly for the MTDP model (Table 2). Except for

a very few cases in the largest set, all other instances were solved optimally. A large

proportion of these were solved at the very first iteration. On average, this required less

than 2 iterations and a very few cuts for obtaining optimal solutions. This suggests

not only that the LP relaxation of the median-based model is tighter that the one

of the center-based model, but also that solutions to the R MTDP relaxation yield

near-connected solutions. This has a positive impact on the overall solution time.
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Another issue to investigate is to whether or not the introduction of constraints

(21) has a positive effect on strengthening the model. Recall that constraints (21)

eliminate unconnected subsets of size 1. Thus, in this experiment we solved the very

first relaxation only for every instance and tallied the cardinality of all unconnected

subsets for both CTDP and MTDP. A summary of this experiment is shown in Tables

4 and 5. As we can see in Table 4, most of the identified cuts for CTDP correspond

to unconnected subsets of cardinality equal to 1. For the (60,4), (80,5), and (100,6)

sets, the proportion of unconnected subsets of cardinality 1 is 72.7, 58.5, and 67.0%,

respectively. This proportion is even more dramatic for MTDP (see Table 5). One can

see that the number of total unconnected subsets is considerable smaller than that of

the R CTDP relaxation. This confirms that the MTDP model not only has a better LP

relaxation, but it also favors connectivity, which is a very important issue. Hence, these

results clearly justify and motivates the introduction of the valid inequalities given by

(21) into the relaxed models.

Table 4 goes here.

Table 5 goes here.

The following experiment clearly illustrates this issue. We now solve model MTDP

under two different relaxations: R MTDP and R1 MTDP (incorporating the valid in-

equalities). We identify these as R and R1, respectively. Table 6 displays the results.

The second and third columns show the number of instances (out of 20) that were

solved optimally at the very first iteration, that is, by solving the first relaxed models

for R MTDP and R1 MTDP, respectively. The fourth and fifth columns display the

total number of cuts added during the execution of the algorithm. The last two columns

show the percentage of instances that were optimally solved. As can bee seen, relax-
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ation R1 provides a more attractive choice in all senses. Therefore, the introduction of

constraints (21) into the relaxed model provides a stronger LP representation of model

MTDP. This has indeed a positive impact in solution times.

Table 6 goes here.

4.2 Evaluation of IQP Models

We now consider the IQP formulations QCTDP and QMTDP under the R QCTDP

and R QMTDP relaxations, respectively. In a similar fashion as carried out with the

linear models, we investigate the distribution of the cardinality of the unconnected

subsets when only the very first relaxation is solved. Tables 7 and 8 display the results

for QCTDP and QMTDP, respectively. The description is similar to that of Table 4.

It can be seen that most of the unconnected subsets have cardinality 1, which is a

behavior also observed in the linear models. Another observation is that the relaxation

of the median-based model provides solutions with a higher degree of connectivity

that the one provided by the center-based model. Hence a considerable less amount

of effort will be needed to eventually solved a median-based model with connectivity

constraints. These results clearly motivate the introduction of valid inequalities (20)

into the relaxed models.

Table 7 goes here.

Table 8 goes here.

We now evaluate the effect of incorporating constraints (20) into the relaxed R1 QMTDP

model. Table 9 shows the results when QMTDP is solved under the corresponding

R1 QMTDP relaxation. The second column shows the percentage of instances that
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were solved at the very first iteration. The third column displays the total average

number of cuts added. Columns 4 through 6 gives information on the number of iter-

ations needed to reach optimality. As it can be seen, the addition of constraints (20)

gives very competitive results as little additional effort was needed for cut generation,

with a small number of iterations.

Table 9 goes here.

When attempting to carry out a similar experiment for the QCTDP model under

the corresponding R1 relaxation, it was observed that the LP relaxation was still ex-

tremely weak. The procedure could not terminate a single iteration within the specified

time limit. The effect of adding the cuts resulted in even higher running times. Thus,

clearly effort did not result in a satisfactory payoff.

4.3 Comparing MILP and IQP

Clearly, we have seen that solving the quadratic models is faster than solving the

linear models. However, solving the quadratic model with local-optimum methods no

longer assures global optimality. Therefore, an important issue to be investigated is

precisely the trade-off between solution quality and computational effort. We apply the

solution procedure to models MTDP and QMTDP on 20 instances of data sets {(60,4),

(80,5),(100,6)} and 10 instances of data set (150,8). Detailed results for instances of

(60,4) and (150,8) are shown in Table 10 and 11, respectively. The fourth column shows

the relative optimality gap of the solution found under the quadratic model (that is,

with respect to the optimal solution found by the linear model). For the instances

marked with a star, the MILP could not find an optimal solution within the specified

time limit so a best integer solution is used instead.
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As can be seen from Table 10, for 19 out of 20 instances the solution found with

the quadratic model falls within 10% of the optimal solution, and 60% of the solutions

lay within 1% of optimality. Time is not an issue in these sets as can be seen in the last

two columns. However, for the larger instances (displayed in Table 11), time becomes

important. We can see how time significantly increases for the MILP model. There are

two instances where time limit was reached when using the MILP model. When using

the quadratic model, all instances were solved within 1 minute of CPU time, delivering

optimality gaps of less than 5% in 90% of the instances. Thus, this makes the quadratic

model a very attractive choice for relatively large instances.

Table 10 goes here.

Table 11 goes here.

A summary of the comparison between MTDP and QMTDP models are displayed

in Tables 12 and 13. The computational effort is shown in Table 12 and the solution

quality over four different data sets is shown in Table 13. As we can see from these

tables, CPU time employed for solving the quadratic model is relatively low compared

with the time used by the linear model. Furthermore, the average relative optimality

gaps for the quadratic model are less than 4%. In many cases the solution to the

quadratic model was less than 1%.

Table 12 goes here

Table 13 goes here.

In addition, we attempted to solve 10 instances of size (200,11) by using both

MTDP and QMTDP models. The ICGP-TDP procedure was able to produce the

optimal solution for 4 instances (using the MTDP model). In contrast, by using the
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QMTDP model, the ICGP-TDP procedure reported locally optimal solutions for 9 out

of 10 instances within the specified time limit (7200 sec). Table 14 displays each one

of these large instances, where mark (*) is used to identify those cases in which the

optimization stopped by time limit. For those cases, the best integer solution found

is used to make the comparison. Observe that the percentage of relative optimality

between the MTDP and QMTDP solutions is in the worst case equal to 10.56% and

in the best case it is equal to 1.15%. That means, the IQP formulation proposed in

this paper allows to solve larger instances than the MILP formulation by using shorter

optimization time.

Table 14 goes here.

Additionally, an instance with τ (a) = 0.05, a ∈ A; n = 280 and p = 9 was

generated. This instance was tested using the MTDP formulation and in the first

relaxed model (R MTDP), the branch and bound reported a percentage of relative

optimality equal to 14.68%, after 2 hours. This percentage of gap is computed by

[(BestInt(R MTDP )−BestLB(R MTDP ))/BestInt(R MTDP )]× 100). The same

instance was tested by using R1 QMTDP and ICGP-TDP reported a connected solu-

tion in less than 4 minutes. Comparing the objective value for QMTDP with the best

lower bound found by branch and bound, we computed a relative optimality of 7.15%.

The percentage of gap (relative optimality) was computed by [(Best(QMTDP ) −

BestLB(MTDP ))/Best(QMTDP )]× 100.

Finally, even the ICGP-TDP procedure (with QMTDP model) was tested for an

instance with n = 500 and p = 12 resulting in a locally optimal solution for QMTDP

without reaching the time limit of 2 hours (7200 seconds). The objective value asso-

ciated to this connected solution is equal to 27113.42. In contrast, using the MTDP
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formulation within the ICGP-TDP procedure we observed that it stopped by time dur-

ing the optimization of the first relaxed model (R MTDP). The best integer solution

reported by B&B has an objective value equal to 38905.19 with a gap equal to 42.90%.

Note that this solution is the best found solution for the problem without connectivity

constraints.

We conclude that the QMTDP model is a fast and attractive alternative to find

relatively good solutions also for large instances because it offers a good compromise

between time and quality.

5 Conclusions

In this work we have proposed new IQP models for the commercial territory design

problem with connectivity and multiple balancing constraints. These IQP formulations

use a significantly smaller number of binary variables. In addition, we have developed an

exact solution procedure (ICGP-TDP) based on branch and bound and a cut generation

strategy. The method can be applied to both MILP and IQP models. This is the first

exact algorithm developed to date for this problem. The models were strengthen by the

introduction of valid inequalities that eliminate unconnected subsets of size 1. We have

observed empirically that most of the unconnected subsets found in the relaxed models

(relaxing the connectivity constraints) have cardinality equal to 1, so this motivates

the introduction of these valid inequalities. We empirically proved that the cut did in

fact helped to find connected territories faster.

When the solution method was applied to solve instances under the linear and

quadratic models, the proposed IQP models showed a balanced performance between

quality and effort. For the larger instances, execution times under the quadratic models
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were significantly lower that those observed under the linear models. The solution

quality of those obtained by the quadratic model over all instances was in the range of

0.0 to 14.8%, and in most cases, less than 5%.

We observed that the pMP objective is more LP-friendly than the pCP objective.

During the branch and bound process the linear relaxation for pMP objective showed

better performance than the linear relaxation for the pCP objective. Furthermore, it

was also observed that solutions obtained from the relaxation of the median-based

models had a very high degree of connectivity. This had a very good impact on compu-

tational efficiency since very few iterations were needed to find connected solutions as

opposed to the center-based models. Therefore, in the absence of a standard dispersion

measure, the pMP objective may be a good choice for other territory design problems

that have compactness as performance measure.

In this work, we efficiently solved instances with up to 150 BUs and 8 territories us-

ing MILP models. Literature review in territory design shows that the largest instance

with connectivity constraints solved optimally had no more than 50 BUs (Garfinkel

and Nemhauser 1970). As far as this particular commercial TDP is concerned, our

proposed method is the first exact optimization scheme developed for the problem. For

IQPs models, we obtained locally optimal solutions for instances with up to 500 BUs

and 12 territories. This instance size is intractable under MILP formulations. One of

the advantages of the proposed approach is that it can be implemented relatively easy

with off-the-shelf MILP and IQP solvers.

There are several extensions to this problem that deserve attention. For instance,

this work is based on using Euclidean distances to represent distances between cities.

While it is true that in location problems replacing Euclidean by network or shortest

path distances can be done without loss of generality, this cannot be done in this type
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of territory design problems due to the presence of the connectivity constraints. It

turns out that shortest path distances between units are solution dependent because

this shortest path must belong entirely to the same territory. This makes the problem

a lot more difficult to solve. As seen in literature, the compactness measures based on

Euclidean distances provide a relatively good choice in the design stage. It is clear, how-

ever, that using network distances would become more relevant in a posterior routing

stage.
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Table 1 Summary of relaxed models used for solving the MILP and IQP formula-

tions,respectively.

Model Objective Constraints

R MTDP (1) (2)-(5)

R1 MTDP (1) (2)-(5) and (21)

R CTDP (8) (2)-(5)

R1 CTDP (8) (2)-(5) and (21)

R QMTDP (10) (11)-(13)

R1 QMTDP (10) (11)-(13) and (20)

R QCTDP (19) (11)-(13)

R1 QCTDP (19) (11)-(13) and (20)
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Table 2 Results of ICGP-TDP when applied to CTDP under the R CTDP relaxation.

size Solved at Iterations Solved Cuts/inst Time (sec)

(n, p) 1st iter (%) Ave Max (%) Ave Max Ave Max

(60,4) 20 5.3 26 100 12.1 82 381 1446

(80,5) 10 5.4 14 90 12.4 43 2682 7200

(100,6) 10 2.3 11 40 3.5 32 5812 7200

(150,8) 0 - - 0 - - 7200 7200
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Table 3 Results of ICGP-TDP when applied to MTDP under the R MTDP relaxation.

size Solved at Iterations Solved Cuts/inst Time (sec)

(n, p) 1st iter (%) Ave Max (%) Ave Max Ave Max

(60,4) 80% 1.4 6 100 0.5 5 7 33

(80,5) 70% 1.4 4 100 0.5 4 53 235

(100,6) 75% 1.4 4 100 0.5 4 95 438

(150,8) 75% 1.8 5 80 1.6 6 1900 7200
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Table 4 Size of unconnected subsets for the R CTDP relaxation.

size Cuts % cuts with

(n,p) identified |S| = 1 |S| = 2 |S| = 3 |S| ≥ 4

(60,4) 44 72.7 18.3 4.5 4.5

(80,5) 65 58.5 20 7.7 13.8

(100,6) 103 67 11.6 7.8 13.6

(150,8) - - - - -
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Table 5 Size of unconnected subsets for the R MTDP relaxation.

size Cuts % cuts with

(n,p) identified |S| = 1 |S| = 2 |S| ≥ 3

(60,4) 4 100 0 0

(80,5) 6 83 17 0

(100,6) 5 80 20 0

(150,8) 6 83 17 0
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Table 6 Comparison of relaxations R MTDP and R1 MTDP.

size Solved at 1st Cuts solved

(n, p) iteration (%) added (%)

R R1 R R1 R R1

(60,4) 80 100 9 0 20 100

(80,5) 70 95 9 1 20 100

(100,6) 75 90 9 2 20 100

(150,8) 5 45 6 3 80 90
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Table 7 Size of unconnected subsets for the R QCTDP relaxation.

size Cuts % cuts with

(n, p) identified |S| = 1 |S| = 2 |S| = 3 |S| ≥ 4

(60,4) 662 68 21 6 5

(80,5) 956 73 17 6 4

(100,6) 1340 77 17 4 2

(150,8) 1088 82 14 3 1
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Table 8 Size of unconnected subsets for the R QMTDP relaxation.

size Cuts % cuts with

(n, p) identified |S| = 1 |S| = 2 |S| ≥ 3

(60,4) 3 100 0 0

(80,5) 5 40 20 40

(100,6) 6 67 33 0

(150,8) 5 60 40 0
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Table 9 Solution of QMTDP under the R1 QMTDP relaxation.

size Solved at Cuts Iterations

(n, p) 1st iter (%) added Min Ave Max

(60,4) 95 1 1 1.1 2

(80,5) 85 4 1 1.2 2

(100,6) 95 1 1 1.1 2

(150,8) 100 0 1 1.0 1
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Table 10 Comparison of MTDP and QMTDP models for instances in the set (60, 4).

Objective value Gap (%) Time (sec)

Inst MTDP QMTDP MTDP QMTDP

1 5305.57 5306.00 0.01 4 2

2 5451.68 5463.00 0.21 4 2

3 5507.88 5553.00 0.82 10 2

4 5935.67 6114.00 3.00 4 6

5 5303.20 5303.20 0.00 3 2

6 5253.94 5280.00 0.50 33 3

7 5460.18 5855.00 7.23 4 3

8 5309.96 5314.00 0.08 4 2

9 5224.51 5225.00 0.01 2 3

10 5350.15 6140.00 14.76 3 2

11 5150.91 5152.00 0.02 3 2

12 5597.50 5705.00 1.92 6 2

13 5731.99 5732.00 0.00 3 3

14 5462.96 5869.00 7.43 5 2

15 5332.77 5759.00 7.99 6 2

16 5399.54 5499.00 1.84 14 2

17 5602.86 5603.00 0.00 3 2

18 5773.96 6299.00 9.09 4 4

19 5543.45 5544.00 0.01 17 2

20 5767.54 5768.00 0.01 4 2
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Table 11 Comparison of MTDP and QMTDP models for instances in the set (150, 8).

Objective value Gap (%) Time (sec)

Inst MTDP QMTDP MTDP QMTDP

1 9511.76 9979 4.91 1137 9

2 (*) 9404.60 9509 1.11 7200 29

3 9125.61 9130 0.05 90 32

4 9359.00 9646 3.07 147 30

5 9506.58 10494 10.39 455 42

6 9039.06 9088 0.54 78 25

7 9819.18 10017 2.02 1842 29

8 (*) 9202.13 9550 3.78 7200 34

9 9670.90 9972 3.11 730 28

10 9570.58 9794 2.33 125 26
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Table 12 Time comparison for QMTDP and MTDP models.

size MTDP time (sec) QMTDP time (sec)

(n, p) Min Ave Max Min Ave Max

(60,4) 2 6.8 33 2 2.5 6

(80,5) 8 53.2 235 4 5.6 12

(100,6) 18 94.8 438 7 8.8 23

(150,8) 78 1900.4 7200 9 28.4 42
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Table 13 Solution quality for QMTDP.

size Gap (%)

(n, p) Min Average Max

(60,4) 0.00 2.75 14.80

(80,5) 0.01 2.61 8.15

(100,6) 0.06 3.14 7.56

(150,8) 0.05 3.13 10.39
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Table 14 Comparison of MTDP and QMTDP models for instance set (200, 11).

Objective value Gap (%) Time (sec)

Inst MTDP QMTDP MTDP QMTDP

1 10422.01 11523 10.56 1116 28

2 (*) 10646.14 11425 7.32 7200 966

3 10846.77 11443 5.50 1468 7200

4 (*) 11122.03 11443 2.89 7200 3618

5 (*) 10878.12 11097 2.01 7200 1193

6 (*) 10499.29 10746 2.35 7200 1871

7 (*) 11061.00 11686 5.65 7200 1088

8 10659.51 11205 5.12 2641 592

9 (*)11470.29 11648 1.55 7200 1263

10 11043.82 11780 6.67 1211 2349
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Fig. 1 Example of an unconnected territory design for p=2 and n=11.


