Networks and Spatial Economics manuscript No.
(will be inserted by the editor)

New Models for Commercial Territory Design

M. Angélica Salazar-Aguilar - Roger Z.

Rios-Mercado - Mauricio Cabrera-Rios

Received: February 2010 / Accepted: date

Abstract In this work, a series of novel formulations for a commercial territory design
problem motivated by a real-world case are proposed. The problem consists on deter-
mining a partition of a set of units located in a territory that meets multiple criteria
such as compactness, connectivity, and balance in terms of customers and product de-

mand. Thus far, different versions of this problem have been approached with heuristics
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due to its NP-completeness. The proposed formulations are integer quadratic program-
ming models that involve a smaller number of variables than heretofore required. These
models have also enabled the development of an exact solution framework, the first ever
derived for this problem, that is based on branch and bound and a cut generation strat-
egy. This is the first exact method developed for this problem. The proposed method
is empirically evaluated using several instances of the new quadratic models as well as
of the existing linear models. The results show that the quadratic models allow solving
larger instances than the linear counterparts. The former were also observed to require
fewer iterations of the exact method to converge. Based on these results the combina-
tion of the quadratic formulation and the exact method are recommended to approach

problem instances associated with medium-sized cities.

Keywords Mixed-integer linear programming - Integer quadratic programming -

Territory design - Location - Valid inequalities

1 Introduction

Territory design or districting consists of dividing a set of basic units into subsets or
groups according to specific planning criteria. In most applications, these basic units
are city blocks, zip codes or individual customers and the resulting groups are known
as territories or districts. A survey on general territory design problems (TDPs) can
be found in Kalcsics et al (2005). Two important applications of territory design are
political districting (Bozkaya et al 2003; Fleischmann and Paraschis 1988; Garfinkel
and Nemhauser 1970; Hess et al 1965; Hojati 1996; Mehrotra et al 1998; Ricca and
Simeone 2008; Shirabe 2009)and sales territory design (Drexl and Haase 1999; Hess

and Samuels 1971; Marlin 1981; Zoltners and Sinha 2005). The characteristics of the



problem addressed in this paper as detailed later, make it different to those studied in
the work listed previously however.

In land use or site search problems, a set of compact territories is sought subject to
connectivity constraints. The main difference with our problem is that the territories
do not necessarily form a partition of the basic units. For recent models and methods
on this type of problems, the reader is referred to the work of Aerts et al (2003) and
Xiao (2006).

The problem addressed in this work was motivated by the challenge faced by a local
distribution company for bottled beverages where the objective was to create a specific
number of territories given a set of city blocks (basic units). The territories were re-
quired to be compact, contiguous, and balanced in terms of number of customers and
sales volume. Rios-Mercado and Ferndndez (2009) introduced this problem initially
with an initial solution approach based on a reactive GRASP (Greedy Randomized
Adaptive Search Procedure), a metaheuristic procedure. Compactness in their initial
work was modeled through the objective function of the p-center problem (pCP), which
represents dispersion. Additionally, balanced territories in terms number of customers,
sales volume, and workload were seeked out. With this set up, results were reported
as better than those previously generated by the company hosting the study in terms
of dispersion and balance requirements. Different versions of the problem have been
studied by Segura-Ramiro et al (2007) and Caballero-Hernéndez et al (2007). In each
of these, heuristic approaches were developed for large-sized instances that would be
intractable for exact optimization purposes. Indeed, to the best of our knowledge, no
exact scheme has been developed for neither of these models in the literature, only
heuristic approaches can be found. Small and medium-sized instances, however, are

also frequent enough in real life and therefore, their solutions are deemed important.



The development of an exact optimization method that effectively handles the expo-
nential number of connectivity constraints in small and medium-sized instances of the
commercial territory design problem is, then, one of the key contributions of the work

presented here.

On the other hand, in territory design problems, models dealing with connectivity
constraints are usually approached through heuristics, as reviewed in Kalcsics et al
(2005), although a few works do provide optimal solutions, for example Garfinkel and
Nembhauser (1970) and Shirabe (2009). The former studied a districting problem with
39 BUs and 7 territories, while the latter proposed a solution method to a similar
problem using 48 basic units to a variable number of territories. The method proposed

in Shirabe (2009) was proved tractable only for a small number of territories.

Our work presents contribution in two directions regarding the commercial territory
design problem. The first direction consists of an exact optimization procedure. The
proposed algorithm is geared towards the solution of up to medium-sized instances
of around 200 basic units to form up to around 10 territories. The algorithm con-
sists on the iterative solution of a mixed integer linear programming problem (MILP)
through the relaxation of the connectivity constraints. The violated constraints are
then identified through the solution of a simple separation problem. After that, these
constraints are introduced as cuts to the model. The procedure continues until opti-

mality is reached.

In the second direction, a new integer quadratic programming (IQP) formulation
is proposed. This formulation greatly reduces the number of binary variables allowing
the solution of larger instances than those allowed by the MILP counterpart. The exact

optimization procedure is tested here with both, the MILP and the IQP formulations.



An empirical study on territory compactness over a wide range of instances is also
presented to elucidate which kinds of measure have the potential to provide the best
solutions for the commercial territory design problem. In general territory design, there
is not a standard measure for compactness. One can find different kind of measures
depending on the specific application. In the context of political districting, for instance,
there have been some studies on compactness measures in Altman (1998). This criterion
is discussed by Kalcsics et al (2005) as well from a more general perspective, considering
a median-based measure and a function based on convex hulls specifically tailored for
their geometric approach. These works conclude that there is not a rigorous definition of
this concept. In the absence of a standard measure for the case of commercial territory
design, we carried out experimental work over a wide range of instances in order to

analyze the performance of center- and median-based models.

The paper is organized as follows. Section 2 contains the description and mathemat-
ical formulations for this problem. Section 3 describes the proposed solution procedure.

Experimental work is included in Section 4. Finally, conclusions are drawn in Section 5.

2 Problem Description

Let G = (V, E), be a graph where V is the set of basic units (BUs) -blocks in this case-
and F is the set of edges representing adjacency between blocks. Each node j in set V
has a series of parameters such as geographical coordinates (c}, c?), and two attributes
or activities: number of customers and sales volume. An Euclidean distance, d;; can be
computed between each pair of BUs ¢ and j. The set of BUs is to be partitioned into p

territories, and it is required that each node is assigned to only one territory (exclusive



assignment). The company seeks balanced territories with respect to the number of

customers and product demand.

Let the size of territory V}, C V with respect to activity a be defined as w® (Vi) =

(a)

Zievk (wga)), where k is a territory index, a € A = {1,2} and w; ' is the value as-
sociated to activity a in node ¢ € V. Due to the discrete structure of the problem
and to the unique assignment constraints, it is practically impossible to have perfectly
balanced territories, i.e., territories of exactly the same size, with respect to each ac-
tivity. Thus, in order to model balancing, a tolerance parameter (@) for activity a is
introduced. This parameter measures the relative deviation from the average territory
size with respect to activity a € A. This target average is given by ,u(a) = w(a)(V)/p.
Another important constraint is connectivity, i.e., for each ¢ and j assigned to the same
territory there must exist in G a path between them totally contained in the territory.
In addition, in order to pursue compactness, BUs of the same territory must be as
close as possible to each other. One way to achieve this requirement is to minimize a
dispersion measure. Several measures have been used in the literature. In this work we
study two different measures, one based on the p-Center Problem (pCP) objective and

the other based on the p-Median Problem (pMP) objective. This leads to two different

models. Both are described next.

Formally, the problem consists in finding a p-partition of V' according to the spec-
ified planning requirements of balancing and connectivity, that minimizes a given dis-

persion measure.



2.1 Mixed Integer Linear Models

For the mathematical model MTDP (Median-Based TDP), the following set and deci-

sion variables are defined.

Set

N®  set of nodes adjacent to node 7, where

Ni={jeV,(i,j)eEV(jieE}iecV.
Decision variables

1 if basic unit j is assigned to territory with center in ;3,5 € V
Iij =
0 otherwise.

Note that x;; = 1 implies ¢ is a territory center.

(MTDP) minimizez = Z Z dijaij

jeviev
subject to:
S =
eV
inj =1 jeV
eV
Z wj(-a)xij >(1- T(a)),u(a)xii 1€Viace A
Jjev
Z w§a)xij <( —|—T(a))u(a)1’“‘ 1€V,ac A
JjeEV
Z mij_zxij21_|sl eV,
JEUves(NV\S) Jjes

SCV\ (N U{i})]

Tij € {0,1} i,5€V



Objective (1) represents a dispersion measure based on the pMP objective. In this
sense minimizing dispersion is equivalent to maximizing compactness. Constraint (2)
assures the creation of exactly p territories. Constraints (3) assure that each node is
assigned to only one territory. Constraints (4)-(5) represent the territory balance with
respect to each activity measure as they establish that the size of each territory must
lie within a range (measured by tolerance parameter T(a)) around its average size.
Constraints (6) guarantee territory connectivity. They assure that for any given subset
S of nodes assigned to center ¢ not containing node i there must be an arc between
S and the set containing i. They are similar to the subtour elimination constraints in
the Traveling Salesman Problem. Note that there are an exponential number of such
constraints so they cannot be explicitly written out. The proposed solution procedure
generates only those that are needed in an iterative way. This model was used by
Segura-Ramiro et al (2007), and it can be viewed as a pMP problem with multiple
capacity constraints, and with additional side constraints (4)-(6), respectively. Note
that, when the pCP objective is used as dispersion measure the objective (1) is replaced
by (8). The resulting model is called CTDP (Center-Based TDP) and it was introduced

by Rios-Mercado and Ferndndez (2009).

z = 11,?2}\(/ {dijmij} (8)

The NP-completeness of both MTDP and CTDP is well established (Segura-Ramiro
et al 2007; Rios-Mercado and Ferndndez 2009). NP-completeness proof for similar mod-

els can be found in Altman (1997, 1998) in the context of political districting. For



instance, he proved, among others, that the problem of creating equal population/size
territories and the problem of redistricting are both NP-complete.

Rios-Mercado and Ferndndez (2009) proposed a reactive GRASP for CTDP. Segura-
Ramiro et al (2007) proposed a location-allocation heuristic for MTDP. However, to
the best of our knowledge, no exact methods have been developed so far. Although, in
theory, the connectivity constraints could be written out explicitly, this would not make
any practical sense due to their exponential number. In this work an exact solution
procedure to solve both MTDP and CTDP is proposed. In the modeling stage these
constraints are not explicitly written and these are generated in an iterative manner
within the proposed algorithm. Therefore, the procedure is easily implemented under
any algebraic modeler system and it can be solved by any off-the-shelf MILP solver.

Let R_.MTDP denote the relaxed model obtained by relaxing (6) from MTDP. In
a similar way the relaxed model R_CTDP is defined as the resulting model obtained
by relaxing (6) in CTDP. A summary of different MILP relaxed models is displayed in

Table 1.

Table 1 goes here.

2.2 Integer Quadratic Programming Models

The Integer Quadratic Programming (IQP) model introduced in this work reduces the
number of binary variables from n? to 2np. This model is obtained by applying the
same technique already used in Dominguez and Muifioz (2008) for a pMP problem and
this is the first quadratic formulation for the commercial TDP addressed in this paper.
In order to describe the model, a set Q = {1,2,...,p} of territory indices is introduced

and binary decision variables y;, to indicate the territory centers and z;4 to represent
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the assigning of BUs to territories are defined. The parameters are the same as those

used in the linear model.

Decision variables for the IQP model

1 if unit j is assigned to territory ¢; j € V,q € Q

0 otherwise

1 if unit ¢ is the center of territory ¢q; i € V,q € Q
Yig =
0 otherwise

According to this definition, the equivalence between the variables in the linear

model and the variables in the quadratic model is given by

Tij = E :quyiq-

q€Q

The resulting IQP model is the following.

(QMTDP) minimize z = » > > dij2jquiq

qeEQ JEV i€V
subject to:
Zyiq =1 q€Q
eV
Z zjg =1 jEV
q€Q
Zjq 2 Yiq q€Q,jeV

Sz, > (10— 7@ geQaca
JeEV
S wzjy < 1+ geQuaea

JEV

Z Z ZjqYiq

9€Q jEUves(NV\S)

(1)
(12)
(13)
(14)

(15)
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0N g = 1-18| i€V,

qeQ jES
SCV\(N U} (16)
zjq € {0,1} q€Q,jeVv (17)
Yiq € {0,1} geEQ,ieV (18)

The QMTDP (quadratic median-based territory design problem) model uses an
equivalent dispersion measure as that of MTDP. Constraints (11) are to guarantee the
location of only one center for each territory. Constraints (12) are for exclusive node
assignment. The set of constraints (14)-(15) assure territory balance. Constraints (13)
establish that BU j can not be the center of ¢ if j is not assigned to ¢. According to
Proposition 2 in Dominguez and Munoz (2008), constraints (11)-(12) guarantee the
assignment, and constraints (13) are not needed. However, these are shown here for
model completeness. The last set of quadratic constraints (16) guarantees connectivity.
Again there is an exponential number of these constraints.

Under this quadratic formulation, a dispersion measure based on the pCP objective
is given by (19). Let QCTDP (quadratic center-based territory design problem) be the
resulting model when the objective function (10) is replaced by the dispersion measure

given by (19).

min z = ir)rjlg}f/ dij Z ZjqYiq (19)
q€@

Note that these IQP formulations are new in the literature for commercial terri-
tory design. QMTDP is hard to solve due to the quadratic objective and quadratic
connectivity constraints. Additionally, it is not possible to write these explicitly due to
its exponential number. If the connectivity constraints are relaxed, the model may be

solved using any MINLP method. Let R.QMTDP be the relaxation of QMTDP with
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respect to the connectivity constraints (16). Clearly, a solution to R-QMTDP provides
a lower bound to QMTDP.

There are some special cases for which the model can be strengthened, for example,
when there are not feasible solutions containing territories of size 1. In other words,
when each feasible solution has territories having at least two basic units associated to

it then the following is a valid inequality for R_QMTDP:

Zziqzzjq qEQ;jEV (20)
1ENJ

This condition is true if and only if w} < (1 —7%)u® for each j € V, a € A. For
our particular case, our data instances always satisfy this condition, and therefore the
model can make use of these valid inequalities. These inequalities can be interpreted
as follows. If j is assigned to territory ¢ at least one of its neighbors (i € N J ) must be
assigned to the same territory. In this sense, these constraints avoid the unconnected
subsets S with |S| = 1. The motivation for this stems from the fact that empirical
work showed that a very large proportion of (unconnected) optimal solutions to the
relaxed models R_.MTDP, R_.CTDP, R.QMTDP, or R.QCTDP come from subsets of
cardinality equal to 1. Given that there is a polynomial number of these kind of subsets
their related connectivity constraints can be easily incorporated into the model.

Note that, for MILP formulations the equivalent valid inequalities are given by:

dowuzay i€V, jeV\{FUN) (21)
leNI

In contrast with valid inequalities (20) that are valid only when the condition of
no singleton territories hold, constraints (21) are valid for any instance.
Let R1_.QMTDP be the relaxation defined by R_.QMTDP plus the additional con-

straints (20). In a similar way we can define the relaxed models for the QCTDP model.
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These are called R_QCTDP and R1_QCTDP, respectively. Similarly, for both MTDP
and CTDP models, new relaxed models are obtained by adding (21) in the relaxed mod-
els R.MTDP and R_CTDP, respectively. We called these R1_MTDP and R1_.CTDP,
respectively. For better definition of these relaxed models see Table 1.

In the following section we outline a solution framework that can be used to solve
any of these models. This procedure can be used to solve the problem using both MILP
and IQP formulations. This procedure guarantees a global optimal solution for MILP
models and local or global optimal solutions for IQPs, depending on what method is

used for solving the relaxed subproblem.

3 Solution Procedure

One of the main difficulties for obtaining exact solutions for any of these models arise
from the exponential number of connectivity constraints. The explicit enumeration
of these constraints results practically impossible. Thus, to get optimal solutions we
devise an iterative procedure that uses branch and bound (B&B) and a cut generation
scheme.

The idea is relatively simple. By relaxing the connectivity constraints, we are left
with a relaxed problem that is solved by B&B. Then, the solution to this relaxed prob-
lem is checked for connectivity. The connectivity test is done by solving a separation
problem (Algorithm 2) that is polynomially solvable throught the breadth first search
(BFS) algorithm. The corresponding identified violated valid inequalities (if any) are
then added to the relaxed model as cuts and the procedure continues until no more vio-
lated inequalities are found. The Iterative Cut Generation Procedure for solving TDPs

(ICGP-TDP) is outlined in Algorithm 1. For solving the MILP relaxed models, the
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SolveMILP method in ICGP-TDP uses any branch-and-bound method. In contrast,
the SolvelQP method may call either an exact or an approximate method. In our case,
we are attempting to come up with a way to find faster solutions, so we make use of
a local optimum method for finding attractive feasible solutions for the IQP relaxed
models. An issue to be investigated is precisely the trade-off between time and solution
quality. Assuming a finite algorithm is used for solving the integer relaxed models (in
SolveMILP() or SolvelQP()), the convergence of the algorithm is guaranteed due to
the fact that the separation problem is solved exactly (in polynomial time) returning
either a set of violated connectivity constraints or an empty set. Because there is a fi-
nite set of connectivity constraints the algorithm is guaranteed to stop. When it stops,
the last solution is feasible with respect to the connectivity constraints, and therefore,

an optimal solution to the problem.

3.1 The Separation Problem

Suppose we have a graph G(V,E) and a p-partition X = (X, Xa,...,Xp), where
each of these sets X, k = 1,...p induces a subgraph Gy = (X, E(X}y)) of G and
a center ¢, € Xj. The separation problem consists of first identifying all connected
components of Gy. This can be done very efficiently by breadth-first-search (BFS) in
O(|E|) as follows. Starting from any node ¢ BFS (Cormen et al (1990)) is applied
to find a node j adjacent or reachable from . This is repeated until no more nodes
can be reached from the previously formed node set. At this point, this node set is
one connected component of G and we proceed iteratively starting from any other
non-visited node. The procedure stops when all nodes have been visited. BFS assures

that this is accomplished in O(|E|). Then, for each k = 1, ..., p, each of the connected
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Algorithm 1 ICGP-TDP(P, DispMeasure, ModelType)
Input:

P:=Instance of the TDP problem

DispMeasure:= pCP or pMP objective function

ModelType:= MILP or IQP

Output: X = (X1, Xo,...,Xp):= A feasible p-partition of V
Cuts — 0 {Cut set}

Model «— GenerateRelaxedModel(P, DispM easure, ModelType)

While(Cuts # 0)

If (M odelType = MILP)
X « SolveMILP(Model)
Else
X « SolvelQP(Model)
EndIf
Cuts « SolveSeparationProblem(P,X)

AddCuts(Model, Cuts)

EndWhile

Return X

components of (G, that does not contains the center ¢ is used to generate a violated
connectivity constraint in our problem. In other words, each component S; of G,
plays the role of set S in constraints (6). Algorithm 2 describes the steps to solve the
separation problem. Note that in our implementation, the BFS algorithm is used for

obtaining the connected components. This algorithm runs in polynomial time.

Figure 1 goes here.

In order to illustrate the IGCP-TDP algorithm consider an example with n = 11

nodes and p = 2 territories (see the graph in Figure 1). Suppose that the solution to the
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Algorithm 2 SolveSeparationProblem (P, X)
Input:

P:= Instance of the TDP problem

X =(X1,X2,...,Xp) := A p-partition of V

Output: Cuts := Set of violated connectivity constraints
Cuts «—

For (k=1,...,p)

Obtain connected components Si, So, ..., St of G(Xg, E(Xg))

For each S; such that ¢, € S¢ generate the violated cut and add it to Cuts

EndFor

Return (Cuts)

relaxed problem (without connectivity constraints) after applying branch and bound is
depicted in Figure 1,where the dotted lines collect BUs belonging to the same territory
and the nodes 4 and 5 are the territory centers. This solution corresponds to the 2-
partition given by X; = {1,4,6,7,11} with center in ¢; =4 and X9 = {2,3,5,8,9,10}

with center in cg = 5, then the variables have the following values:

T4l = T44 = T46 = T47 = T411 = 1,
T42 = T43 = T45 = T48 = T49 = T410 = 0,
T2 = T53 = Tss = Tsg = Thy = T510 = 1,
T51 = Ts4 = Tpe = Ts7 = T511 = 0;

Tij = 0,Vi,j e V,i# {4, 5}.

Given this solution, the separation problem (Algorithm 2) is solved to identify
those connectivity constraints (6) that are violated by this solution. Applying the BFS

algorithm, the connected components Sy, ..., St are identified on each territory. As can
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be seen from X; the connected component S; = {6, 7} is unconnected from c¢; then it

induces a violated constraint which is generated as

T42 + T43 + T45 + T49 — T4 — 47 > —1

Similarity, in X2 the connected component S; = {2} is unconnected from co and

the violated constraint is given by

x51 +x56 — T52 > 0

Following the ICGP-TDP procedure, we add the cuts (violated constraints) to the
relaxed model and it is solved again. We proceed iteratively until the final solution
gives us a connected territory design or a feasible solution is not found. The latter
means that the original problem is infeasible.

Note that, in each iteration, the number of aggregated cuts is equal to the total
number of unconnected subsets identified from the given solution. Within a given it-
eration this number of identified unconnected subsets is bounded by n; however, in
the worst case the total number of these identified subsets during the execution of the
algorithm could be exponential. Nonetheless, in practice this number is found to be

relatively low as it will be seen in the following section.

4 Computational Results

The proposed ICGP-TDP method was coded in C++ and compiled with the Sun C++
8.0 compiler. The MILP relaxations are solved through CPLEX 11.2 and the IQP relax-
ations are solved by DICOPT, one of the most popular methods for solving non-linear

mixed-integer programs developed by J. Viswanathan and Ignacio E. Grossmann at the
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Engineering Design Research Center (EDRC) at Carnegie Mellon University (see Kocis
and Grossmann (1989) and Viswanathan and Grossmann (1990) for more details). Two
stopping criteria were used: by optimality gap (gap < 5 x 107%) and by time (7200
seconds). In order to speed up convergence, priorities were used on the binary variables
to ensure that x;; are branched before than x;;,i # j, i,j € V. Randomly generated
instances based on real-world data provided by the industrial partner were used. Each
instance topology was generated by using the generator developed by Rios-Mercado
and Ferndndez (2009). In this work, the authors used historical information from the
firm and obtained the data distribution associated to the number of customers and
sales volume. The firm uses Euclidean distances between basic units as computed from
their GIS. We considered a tolerance (%) = 0.05,a € A, and generated three different
instance sets as (n,p) € {(60,4), (80,5), (100,6)}. For each of these sets, 20 different
instances were generated. Additionally, 10 different instances of two larger sets were

generated for (n,p) € {(150,8),(200,11)}. The codes and data sets are available at

http://yalma.fime.uanl.mz/ roger/ftp /tdp/.

4.1 Evaluation of MILP models

We first evaluate linear models CTDP and MTDP when the relaxed models R_.CTDP
and R_MTDP, respectively, are used within the ICGP-TDP procedure.

Tables 2 and 3 show the results for CTDP and MTDP, respectively. The first
column indicates the instance size tested. The second column shows the percentage of
instances that were solved at the first iteration (out of 20 except for the set (150, 8)),
that is, the percentage of instances for which a connected partition was found at the

first iteration. The third column contains the average and the maximum number of
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iterations per instance required by the algorithm to find the optimal solution. The
fourth column displays the percentage of instances solved within the specified time
limit. The fifth column shows the average and the maximum number of cuts added
per instance solved. Finally, the last column displays information about the CPU time

(average and maximum) used per instance.

Table 2 goes here.

For model CTDP, Table 2 indicates that a very small proportion of the instances
were solved at the first iteration. As many as 26 iterations and 82 cuts were needed in
the worst case to solve the problems of size (60,4). At the end of the procedure, all in-
stances of the (60,4) were solved optimally. 90% of the (80,5) set were solved optimally.
However, the procedure struggled with the larger sets. For the two smaller sets, around
5 iterations and 12 cuts were needed on average. Note that, for a specific iteration the
separation problem has the property to identify more than one unconnected subset
and it generates all violated connectivity constraints at the same iteration. Note that
for the (150,8) set, the procedure was unable to terminate a single iteration within the

time limit.

Table 3 goes here.

These statistics improve significantly for the MTDP model (Table 2). Except for
a very few cases in the largest set, all other instances were solved optimally. A large
proportion of these were solved at the very first iteration. On average, this required less
than 2 iterations and a very few cuts for obtaining optimal solutions. This suggests
not only that the LP relaxation of the median-based model is tighter that the one
of the center-based model, but also that solutions to the R_-MTDP relaxation yield

near-connected solutions. This has a positive impact on the overall solution time.
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Another issue to investigate is to whether or not the introduction of constraints
(21) has a positive effect on strengthening the model. Recall that constraints (21)
eliminate unconnected subsets of size 1. Thus, in this experiment we solved the very
first relaxation only for every instance and tallied the cardinality of all unconnected
subsets for both CTDP and MTDP. A summary of this experiment is shown in Tables
4 and 5. As we can see in Table 4, most of the identified cuts for CTDP correspond
to unconnected subsets of cardinality equal to 1. For the (60,4), (80,5), and (100,6)
sets, the proportion of unconnected subsets of cardinality 1 is 72.7, 58.5, and 67.0%,
respectively. This proportion is even more dramatic for MTDP (see Table 5). One can
see that the number of total unconnected subsets is considerable smaller than that of
the R_.CTDP relaxation. This confirms that the MTDP model not only has a better LP
relaxation, but it also favors connectivity, which is a very important issue. Hence, these
results clearly justify and motivates the introduction of the valid inequalities given by

(21) into the relaxed models.

Table 4 goes here.

Table 5 goes here.

The following experiment clearly illustrates this issue. We now solve model MTDP
under two different relaxations: R.MTDP and R1_MTDP (incorporating the valid in-
equalities). We identify these as R and R1, respectively. Table 6 displays the results.
The second and third columns show the number of instances (out of 20) that were
solved optimally at the very first iteration, that is, by solving the first relaxed models
for R.MTDP and R1_MTDP, respectively. The fourth and fifth columns display the
total number of cuts added during the execution of the algorithm. The last two columns

show the percentage of instances that were optimally solved. As can bee seen, relax-
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ation R1 provides a more attractive choice in all senses. Therefore, the introduction of
constraints (21) into the relaxed model provides a stronger LP representation of model

MTDP. This has indeed a positive impact in solution times.

Table 6 goes here.

4.2 Evaluation of IQP Models

We now consider the IQP formulations QCTDP and QMTDP under the R_.QCTDP
and R_.QMTDP relaxations, respectively. In a similar fashion as carried out with the
linear models, we investigate the distribution of the cardinality of the unconnected
subsets when only the very first relaxation is solved. Tables 7 and 8 display the results
for QCTDP and QMTDP, respectively. The description is similar to that of Table 4.
It can be seen that most of the unconnected subsets have cardinality 1, which is a
behavior also observed in the linear models. Another observation is that the relaxation
of the median-based model provides solutions with a higher degree of connectivity
that the one provided by the center-based model. Hence a considerable less amount
of effort will be needed to eventually solved a median-based model with connectivity
constraints. These results clearly motivate the introduction of valid inequalities (20)

into the relaxed models.

Table 7 goes here.

Table 8 goes here.

We now evaluate the effect of incorporating constraints (20) into the relaxed R1_.QMTDP

model. Table 9 shows the results when QMTDP is solved under the corresponding

R1_QMTDP relaxation. The second column shows the percentage of instances that
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were solved at the very first iteration. The third column displays the total average
number of cuts added. Columns 4 through 6 gives information on the number of iter-
ations needed to reach optimality. As it can be seen, the addition of constraints (20)
gives very competitive results as little additional effort was needed for cut generation,

with a small number of iterations.

Table 9 goes here.

When attempting to carry out a similar experiment for the QCTDP model under
the corresponding R1 relaxation, it was observed that the LP relaxation was still ex-
tremely weak. The procedure could not terminate a single iteration within the specified
time limit. The effect of adding the cuts resulted in even higher running times. Thus,

clearly effort did not result in a satisfactory payoff.

4.3 Comparing MILP and IQP

Clearly, we have seen that solving the quadratic models is faster than solving the
linear models. However, solving the quadratic model with local-optimum methods no
longer assures global optimality. Therefore, an important issue to be investigated is
precisely the trade-off between solution quality and computational effort. We apply the
solution procedure to models MTDP and QMTDP on 20 instances of data sets {(60,4),
(80,5),(100,6)} and 10 instances of data set (150,8). Detailed results for instances of
(60,4) and (150,8) are shown in Table 10 and 11, respectively. The fourth column shows
the relative optimality gap of the solution found under the quadratic model (that is,
with respect to the optimal solution found by the linear model). For the instances
marked with a star, the MILP could not find an optimal solution within the specified

time limit so a best integer solution is used instead.
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As can be seen from Table 10, for 19 out of 20 instances the solution found with
the quadratic model falls within 10% of the optimal solution, and 60% of the solutions
lay within 1% of optimality. Time is not an issue in these sets as can be seen in the last
two columns. However, for the larger instances (displayed in Table 11), time becomes
important. We can see how time significantly increases for the MILP model. There are
two instances where time limit was reached when using the MILP model. When using
the quadratic model, all instances were solved within 1 minute of CPU time, delivering
optimality gaps of less than 5% in 90% of the instances. Thus, this makes the quadratic

model a very attractive choice for relatively large instances.

Table 10 goes here.

Table 11 goes here.

A summary of the comparison between MTDP and QMTDP models are displayed
in Tables 12 and 13. The computational effort is shown in Table 12 and the solution
quality over four different data sets is shown in Table 13. As we can see from these
tables, CPU time employed for solving the quadratic model is relatively low compared
with the time used by the linear model. Furthermore, the average relative optimality
gaps for the quadratic model are less than 4%. In many cases the solution to the

quadratic model was less than 1%.

Table 12 goes here

Table 13 goes here.

In addition, we attempted to solve 10 instances of size (200,11) by using both
MTDP and QMTDP models. The ICGP-TDP procedure was able to produce the

optimal solution for 4 instances (using the MTDP model). In contrast, by using the
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QMTDP model, the ICGP-TDP procedure reported locally optimal solutions for 9 out
of 10 instances within the specified time limit (7200 sec). Table 14 displays each one
of these large instances, where mark (*) is used to identify those cases in which the
optimization stopped by time limit. For those cases, the best integer solution found
is used to make the comparison. Observe that the percentage of relative optimality
between the MTDP and QMTDP solutions is in the worst case equal to 10.56% and
in the best case it is equal to 1.15%. That means, the IQP formulation proposed in
this paper allows to solve larger instances than the MILP formulation by using shorter

optimization time.

Table 14 goes here.

Additionally, an instance with @) = 0.05,a € A; n = 280 and p = 9 was
generated. This instance was tested using the MTDP formulation and in the first
relaxed model (R-MTDP), the branch and bound reported a percentage of relative
optimality equal to 14.68%, after 2 hours. This percentage of gap is computed by
[(BestInt(R-.MTDP) — BestLB(R_MTDP))/BestInt(R-MTDP)] x 100). The same
instance was tested by using R1_QMTDP and ICGP-TDP reported a connected solu-
tion in less than 4 minutes. Comparing the objective value for QMTDP with the best
lower bound found by branch and bound, we computed a relative optimality of 7.15%.
The percentage of gap (relative optimality) was computed by [(Best(QMTDP) —
BestLB(MTDP))/Best(QMTDP)] x 100.

Finally, even the ICGP-TDP procedure (with QMTDP model) was tested for an
instance with n = 500 and p = 12 resulting in a locally optimal solution for QMTDP
without reaching the time limit of 2 hours (7200 seconds). The objective value asso-

ciated to this connected solution is equal to 27113.42. In contrast, using the MTDP
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formulation within the ICGP-TDP procedure we observed that it stopped by time dur-
ing the optimization of the first relaxed model (R-MTDP). The best integer solution
reported by B&B has an objective value equal to 38905.19 with a gap equal to 42.90%.
Note that this solution is the best found solution for the problem without connectivity
constraints.

We conclude that the QMTDP model is a fast and attractive alternative to find
relatively good solutions also for large instances because it offers a good compromise

between time and quality.

5 Conclusions

In this work we have proposed new IQP models for the commercial territory design
problem with connectivity and multiple balancing constraints. These IQP formulations
use a significantly smaller number of binary variables. In addition, we have developed an
exact solution procedure (ICGP-TDP) based on branch and bound and a cut generation
strategy. The method can be applied to both MILP and IQP models. This is the first
exact algorithm developed to date for this problem. The models were strengthen by the
introduction of valid inequalities that eliminate unconnected subsets of size 1. We have
observed empirically that most of the unconnected subsets found in the relaxed models
(relaxing the connectivity constraints) have cardinality equal to 1, so this motivates
the introduction of these valid inequalities. We empirically proved that the cut did in
fact helped to find connected territories faster.

When the solution method was applied to solve instances under the linear and
quadratic models, the proposed IQP models showed a balanced performance between

quality and effort. For the larger instances, execution times under the quadratic models
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were significantly lower that those observed under the linear models. The solution
quality of those obtained by the quadratic model over all instances was in the range of
0.0 to 14.8%, and in most cases, less than 5%.

We observed that the pMP objective is more LP-friendly than the pCP objective.
During the branch and bound process the linear relaxation for pMP objective showed
better performance than the linear relaxation for the pCP objective. Furthermore, it
was also observed that solutions obtained from the relaxation of the median-based
models had a very high degree of connectivity. This had a very good impact on compu-
tational efficiency since very few iterations were needed to find connected solutions as
opposed to the center-based models. Therefore, in the absence of a standard dispersion
measure, the pMP objective may be a good choice for other territory design problems
that have compactness as performance measure.

In this work, we efficiently solved instances with up to 150 BUs and 8 territories us-
ing MILP models. Literature review in territory design shows that the largest instance
with connectivity constraints solved optimally had no more than 50 BUs (Garfinkel
and Nemhauser 1970). As far as this particular commercial TDP is concerned, our
proposed method is the first exact optimization scheme developed for the problem. For
IQPs models, we obtained locally optimal solutions for instances with up to 500 BUs
and 12 territories. This instance size is intractable under MILP formulations. One of
the advantages of the proposed approach is that it can be implemented relatively easy
with off-the-shelf MILP and IQP solvers.

There are several extensions to this problem that deserve attention. For instance,
this work is based on using Euclidean distances to represent distances between cities.
While it is true that in location problems replacing Euclidean by network or shortest

path distances can be done without loss of generality, this cannot be done in this type
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of territory design problems due to the presence of the connectivity constraints. It
turns out that shortest path distances between units are solution dependent because
this shortest path must belong entirely to the same territory. This makes the problem
a lot more difficult to solve. As seen in literature, the compactness measures based on
Fuclidean distances provide a relatively good choice in the design stage. It is clear, how-
ever, that using network distances would become more relevant in a posterior routing

stage.
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Table 1 Summary of relaxed models used for solving the MILP and IQP formula-

tions,respectively.

Model Objective Constraints
R_MTDP (1) (2)-(5)
R1.MTDP (1) (2)-(5) and (21)
R.CTDP (8) (2)-(5)
R1.CTDP (8) (2)-(5) and (21)
R.QMTDP (10) (11)-(13)
R1.QMTDP (10) (11)-(13) and (20)
R_QCTDP (19) (11)-(13)
R1.QCTDP (19) (11)-(13) and (20)
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Table 2 Results of ICGP-TDP when applied to CTDP under the R_CTDP relaxation.

size Solved at Iterations Solved Cuts/inst Time (sec)
(n,p) 1st iter (%) | Ave Max (%) Ave Max | Ave Max
(60,4) 20 5.3 26 100 12.1 82 381 1446
(80,5) 10 5.4 14 90 12.4 43 2682 7200
(100,6) 10 2.3 11 40 3.5 32 5812 7200
(150,8) 0 ; ; 0 ; - | 7200 7200
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Table 3 Results of ICGP-TDP when applied to MTDP under the R.IMTDP relaxation.

size Solved at Iterations Solved Cuts/inst Time (sec)

(n,p) 1st iter (%) | Ave Max (%) Ave Max | Ave Max

(60,4) 80% 14 6 100 | 05 5 7 33
(80,5) 70% 14 4 100 | 05 4 53 235
(100,6) 75% 14 4 100 | 05 4 95 438

(150,8) 5% 1.8 5 80 1.6 6 1900 7200
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Table 4 Size of unconnected subsets for the R_.CTDP relaxation.

(150,8)

size Cuts % cuts with

(n,p) identified | |S|=1 |[S|=2 |[S|=3 |S|>4
(60,4) 44 72.7 18.3 45 45
(80,5) 65 58.5 20 7.7 13.8
(100,6) 103 67 11.6 7.8 13.6
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Table 5 Size of unconnected subsets for the R_MTDP relaxation.

size Cuts % cuts with

(n,p) identified | |S|=1 |[S|=2 |S|>3
(60,4) 4 100 0 0
(80,5) 6 83 17 0
(100,6) 5 80 20 0
(150,8) 6 83 17 0
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Table 6 Comparison of relaxations R.MTDP and R1_MTDP.

size Solved at 1st Cuts solved
(n,p) | iteration (%) | added (%)
R R1 R R1| R RI1
(60,4) | 80 100 9 0 20 100
(80,5) | 70 95 9 1 20 100
(100,6) | 75 90 9 2 20 100
(150,8) | 5 45 6 3 80 90
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Table 7 Size of unconnected subsets for the R_QCTDP relaxation.

size Cuts % cuts with

(n,p) | identified | |S|=1 |S|=2 |S|=3 |S|>4
(60,4) 662 68 21 6 5
(80,5) 956 73 17 6 4
(100,6) | 1340 77 17 4 2
(150,8) | 1088 82 14 3 1
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Table 8 Size of unconnected subsets for the R.QMTDP relaxation.

size Cuts % cuts with

(n,p) | identified | |S|=1 |S|=2 |S|>3
(60,4) 3 100 0 0
(80,5) 5 40 20 40
(100,6) 6 67 33 0
(150,8) 5 60 40 0
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Table 9 Solution of QMTDP under the R1_QMTDP relaxation.

size Solved at Cuts Iterations
(n,p) 1st iter (%) | added | Min Ave Max
(60,4) 95 1 1 1.1 2
(80,5) 85 4 1 1.2 2
(100,6) 95 1 1 1.1 2
(150,8) 100 0 1 1.0 1
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Table 10 Comparison of MTDP and QMTDP models for instances in the set (60, 4).

Objective value Gap (%) Time (sec)

Inst | MTDP QMTDP MTDP QMTDP
1 5305.57 5306.00 0.01 4 2
2 5451.68 5463.00 0.21 4 2
3 5507.88 5553.00 0.82 10 2
4 5935.67 6114.00 3.00 4 6
5 5303.20 5303.20 0.00 3 2
6 5253.94 5280.00 0.50 33 3
7 5460.18 5855.00 7.23 4 3
8 5309.96 5314.00 0.08 4 2
9 5224.51 5225.00 0.01 2 3
10 5350.15 6140.00 14.76 3 2
11 5150.91 5152.00 0.02 3 2
12 5597.50 5705.00 1.92 6 2
13 5731.99 5732.00 0.00 3 3
14 5462.96 5869.00 7.43 5 2
15 5332.77 5759.00 7.99 6 2
16 5399.54 5499.00 1.84 14 2
17 5602.86 5603.00 0.00 3 2
18 5773.96 6299.00 9.09 4 4
19 5543.45 5544.00 0.01 17 2
20 5767.54 5768.00 0.01 4 2
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Table 11 Comparison of MTDP and QMTDP models for instances in the set (150, 8).

Objective value Gap (%) Time (sec)

Inst MTDP QMTDP MTDP QMTDP
1 9511.76 9979 4.91 1137 9
2 (*) 9404.60 9509 1.11 7200 29
3 9125.61 9130 0.05 90 32
4 9359.00 9646 3.07 147 30
5 9506.58 10494 10.39 455 42
6 9039.06 9088 0.54 78 25
7 9819.18 10017 2.02 1842 29
8 (*) 9202.13 9550 3.78 7200 34
9 9670.90 9972 3.11 730 28
10 9570.58 9794 2.33 125 26
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Table 12 Time comparison for QMTDP and MTDP models.

size

MTDP time (sec)

QMTDP time (sec)

(n,p) Min Ave Max | Min Ave Max
(60,4) | 2 6.8 33 | 2 25 6
(805 | 8 532 235 | 4 56 12
(100,6) 18 94.8 438 7 8.8 23
(150,8) 78 1900.4 7200 9 28.4 42
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Table 13 Solution quality for QMTDP.

size Gap (%)

(n,p) Min Average Max
(60,4) | 0.00 275  14.80
(80,5) | 0.01  2.61 8.15
(100,6) | 0.06 3.14 7.56
(150,8) | 0.05  3.13  10.39
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Table 14 Comparison of MTDP and QMTDP models for instance set (200, 11).

Objective value Gap (%) Time (sec)
Inst MTDP QMTDP MTDP QMTDP
1 10422.01 11523 10.56 1116 28
2 (*) 10646.14 11425 7.32 7200 966
3 10846.77 11443 5.50 1468 7200
4 (*) 11122.03 11443 2.89 7200 3618
5 (*) 10878.12 11097 2.01 7200 1193
6 (*) 10499.29 10746 2.35 7200 1871
7 (*) 11061.00 11686 5.65 7200 1088
8 10659.51 11205 5.12 2641 592
9 (*)11470.29 11648 1.55 7200 1263
10 11043.82 11780 6.67 1211 2349
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Fig. 1 Example of an unconnected territory design for p=2 and n=11.



