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Abstract

Natural gas, driven by pressure, is transported through pipeline network systems. As the

gas 
ows through the network, energy and pressure are lost due to both friction between the

gas and the pipes' inner wall, and heat transfer between the gas and its environment. The

lost energy of the gas is periodically restored at the compressor stations which are installed in

the network. These compressor stations typically consume about 3{5% of the transported gas.

This transportation cost is signi�cant because the amount of gas being transported worldwide

is huge. These facts make the problem of how to optimally operate the compressors driving the

gas in a pipeline network important.

In this paper we address the problem of minimizing the fuel cost incurred by the compressor

stations driving the gas in a transmission network under steady-state assumptions. In particu-

lar, the decision variables include pressure drops at each node of the network, mass 
ow rate at

each pipeline leg, and the number of units to be operating within each compressor station. We

present a mathematical model of this problem and an in-depth study of the underlying mathe-

matical structure of the compressor stations. Then, based on this study, we propose two model

relaxations (one in the compressor domain and another in the fuel cost function) and derive a

lower bounding scheme. We also present empirical evidence that shows the e�ectiveness of the

lower bounding scheme. For the small problems, where we were able to �nd optimal solutions,

the proposed lower bound yields a relative optimality gap of around 15{20%. For a larger, more

complex instance, it was not possible to �nd optimal solutions, but we were able to compute

lower and upper bounds, �nding a large relative gap between the two. We show this wide gap

is mainly due to the presence of nonconvexity in the set of feasible solutions, since the proposed

relaxations do a very good job of approximating the problem within each individual compressor

station.

We emphasize that this is, to the best of our knowledge, the �rst time such a procedure

(lower bound) has been proposed in over thirty years of research in the natural gas pipeline

area.

Keywords: natural gas, pipelines, transmission networks, compressor stations, steady state,

lower bounds, nonconvex objective



1 Introduction

Natural gas, driven by pressure, is transported through a pipeline network system. As the gas


ows through the network, pressure (and energy) is lost due to both friction between the gas and

the pipe inner wall, and heat transfer between the gas and its environment. To overcome this

loss of energy and keep the gas moving, compressor stations are installed in the network, which

consume part of the transported gas resulting in a fuel consumption cost. Principal concerns

with both designing and operating a gas pipeline network are maximizing throughput and

minimizing fuel cost. Numerical simulations based on either steady-state or transient models of

the networks have been used to attempt to provide solutions to these problems. The problem

we address in this paper is minimizing fuel cost for steady-state gas pipeline networks.

As the gas industry has developed, gas pipeline networks have evolved over decades into

very large and complex systems. A typical network today might consist of thousands of pipes,

dozens of stations, and many other devices, such as valves and regulators. Inside each station,

there can be several groups of compressor units of various vintages that were installed as the

capacity of the system expanded. Such a network may transport thousands of MMCFD (1

MMCFD = 106 cubic feet per day) of gas, of which 3{5% is used by the compressor stations to

move the gas. It is estimated [14] that the global optimization of operations can save at least

20% of the fuel consumed by the stations. Hence, the problem of minimizing fuel cost is of

tremendous importance.

With the aid of today's powerful digital computers, numerical simulation of gas pipeline

networks can be very accurate. This opens the door to the development of optimization algo-

rithms. Over the years many researchers have attempted this with varying degrees of success.

The di�culties of such optimization problems come from several aspects. First, compressor

stations are very sophisticated entities themselves. They might consist of a few dozen com-

pressor units with di�erent con�gurations and characteristics. Each unit could be turned on or

o�, and its behavior is nonlinear. Second, the set of constraints that de�ne feasible operating

conditions in the compressors along with the constraints in the pipes constitute a very complex

system of nonlinear constraints. Sur�ng on such a manifold to attempt to �nd global optimal

solutions demands an in-depth understanding of its structure. Finally, operations of the valves

and regulators may introduce certain discontinuities to the problems as well.

The purpose of this paper is �rst to provide an in-depth study of the underlying mathemat-

ical structure of the compressor stations. Then, based on this study, we present a mathematical

model of the fuel cost minimization problem, and derive a lower bounding scheme based on two

model relaxations: (i) relaxation of the fuel cost objective function and (ii) relaxation of the

non-convex nonlinear compressor domain. Finally, we present empirical evidence that shows

the quality of the proposed relaxations.
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The results are promising. For the small instances, where we were able to �nd both optimal

solutions for the original problem (upper bound), and for the relaxed problem (lower bound) by

an exhaustive approach, we found that the proposed relaxations yielded a relative optimality

gap of around 15{20%. We also tested the procedure in a larger, more complex instance. For

this instance, it was not possible to �nd optimal solutions, but it was still possible to calculate

lower and upper bounds. We found that the proposed relaxations were in fact doing a good job

of approximating the cost function within each individual compressor station. However, when

optimizing over the complete domain (including all compressors at once, and other system

constraints), the overall bound was not good due mainly to the non-convexity of the set of

feasible solutions and to the presence of multiple local optima in the fuel cost function g.

We would like to emphasize that, to the best of our knowledge, this is the �rst time such

a procedure (lower bound) has been proposed in over thirty years of research in the �eld of

natural gas pipelines.

The rest of the paper is organized as follows. In Section 2 we highlight the most relevant

work related to optimal operation on steady-state gas transmission networks. The compressor

unit and station models we have developed are presented in Section 3. In Section 4, we formally

introduce the fuel cost minimization problem and present several relaxations that allows us to

devise a lower bounding scheme. These procedures have been tested with a few numerical

examples in Section 5. We end the paper in Section 6 with our conclusions and directions for

future work.

2 Related Work

Numerical simulations of gas pipeline networks have been carried out through this century

and results can now be very accurate, especially with the aid of powerful digital computers.

Osiadacz book [7] stands as the best reference on this subject.

The earlier work on developing optimization algorithms for fuel cost minimization in steady-

state gas transmission networks can be traced back to Wong and Larson's work [15] in 1968,

which made use of dynamic programming (DP) techniques to solve problems with simple \gun-

barrel" network structures. More recently, Lall and Percell [4] present a DP algorithm that

handles topologies with diverging branches, and incorporates into the model decision variables

for representing the number of units to be operated within each compressor station. More

recently, Carter [2] develops a non-sequential DP algorithm to handle looped networks when

the mass 
ow rate variables are �xed. The main advantages of DP are that a global optimum

is guaranteed to be found and that nonlinearity can be easily handled. Disadvantages of DP

are that its application is practically limited to the networks with simple structures, such as

\gun-barrel" or tree topologies, and that computation increases exponentially in the dimension
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of the problem, commonly referred as the curse of dimensionality.

Kim et al. [3] extend Carter's approach by proposing an approximation algorithm that itera-

tively adjusts the 
ow variables in a heuristic way. Percell and Ryan [11] addressed the problem

by using the generalized reduced gradient (GRG) for nonlinear optimization. Advantages of

the GRG method are that it avoids the dimensionality problem and that it may be applied to

networks with loops. However, since the GRG method was based on a gradient search method,

it is not theoretically guaranteed to �nd a global optimum, especially in the presence of discrete

decision variables, and it may stall at local minima.

In [17], Wu et al. present a mathematical model for the fuel cost minimization over a single

unit compressor station. Some of the properties studied in that paper have been extended here

to handle stations with multiple compressor units.

Optimization techniques have also been applied for transient (time dependent) models (e.g.,

Osiadacz [8], and Osiadacz and Swierczewski [10]), and network design (e.g., Osiadacz and

G�orecki [9]), with modest success. (See R��os-Mercado [13] for more references on optimization

techniques applied to gas pipeline problems.) It is important to mention that optimization

approaches developed to date work well under some general assumptions; however, as the

problems become more complex, the need arises for further research and e�ective development

of algorithms from the optimization perspective.

3 Compressor Units and Stations

In general, compressor stations in gas pipeline networks can be very complicated because they

may consist of up to dozens of compressor units of di�erent types with various con�gurations.

Two main types of compressor units used in today's gas industry are centrifugal and reciprocat-

ing compressor units. In this paper we consider only those compressor stations which consist of

several identical centrifugal compressor units in parallel. This type of station is very common

in today's gas industry, and having an understanding of this type of station is fundamental for

modeling more complex station con�gurations.

3.1 Single Centrifugal Compressor Units

The primal quantities related to a centrifugal compressor unit are inlet volumetric 
ow rate

Q, speed S, adiabatic head H, and adiabatic e�ciency �. It has been recognized [11] that the

relationship among these quantities can be well described by the following two equations:

H=S2 = AH +BH(Q=S) + CH(Q=S)
2 +DH(Q=S)

3; (1)

� = AE +BE(Q=S) + CE(Q=S)
2 +DE(Q=S)

3; (2)
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where AH , BH , CH , DH , AE , BE , CE , and DE are constants which depend on the compressor

unit and are typically estimated by applying the least squares method to a set of collected

data of the quantities Q, S, H, and �. Four other parameters are usually provided. They are

minimum speed Smin, maximum speed Smax, surge limit surge, and stonewall limit stonewall.

These give the limits to the speed S and the ratio of Q to S, i.e.,

Smin � S � Smax; (3)

surge � Q=S � stonewall: (4)

Figures 1 and 2 show the set of data collected from a typical centrifugal unit. In Figure 1, we

plot H vs. Q, showing the control lines for S (between Smin and Smax) and Q=S (between surge

and stonewall), generated by equation (1). A plot of equation (2) is illustrated in Figure 2.
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Adiabatic Head vs Q and S

Figure 1: Operation envelope in Q, S, and H (single centrifugal unit)

3.1.1 Feasible Domain for a Single Unit

The inequalities (3) and (4) together with equation (1) actually constitute a feasible operating

domain for the unit. Figure 1 shows the feasible domain in terms of Q, S, and H. Since, the

preferred variables from the network modeling perspective are mass 
ow rates and pressures,

we proceed to map the above operation envelope into a three-dimensional domain, denoted as

Dunit, consisting of the following variables: mass 
ow rate v, suction pressure ps, and discharge

pressure pd. The relationships between (H;Q) and (v; ps; pd) are the following:

H =
ZRTs
m

��
pd
ps

�m
� 1

�
; (5)
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and

Q = ZRTs
v

ps
; (6)

where m = k�1
k
, the speci�c heat ratio k, the gas compressibility factor (or Z-factor) Z, and

the gas constant R, are positive parameters. The suction temperature Ts will be assumed to

be constant in this work.

By (3) and (4), it follows that the inlet volumetric 
ow rate Q must satisfy

QL � Q � QU ; (7)

where QL = Smin � surge and QU = Smax � stonewall. For each Q within this range, the

adiabatic head H is bounded below by either Smin or stonewall and bounded above by either

Smax or surge, see Figure 1. Let HL(Q) and HU (Q) be the lower and upper bound functions

in Figure 1, respectively. Then

HL(Q) � H � HU (Q); QL � Q � QU :

Besides, the unit should have pressure limits, say pLs and pUs for suction pressure ps. Hence,

the feasible domain Dunit for a single centrifugal unit is

Dunit =

�
(v; ps; pd) : pLs � ps � pUs ; V

L �
v

ps
� V U ; GL

�
v

ps

�
�

pd
ps

� GU

�
v

ps

��
; (8)

where

V L =
QL

ZRTs
; (9)
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V U =
QU

ZRTs
; (10)

GL(q) =

�
1 +

m

ZRTs
HL(ZRTsq)

� 1

m

; (11)

GU(q) =

�
1 +

m

ZRTs
HU (ZRTsq)

� 1

m

: (12)

Figure 3 shows the entire domainDunit, where the shadowed band in the middle corresponds

to the domain's pro�le for ps �xed. This two-dimensional pro�le can be seen in Figure 4.
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Figure 3: Feasible domain Dunit for a single compressor unit

Let us point out a few properties of the domain Dunit. First of all, by its de�nition (8), the

domain Dunit is bounded. The upper surface bounding the domain Dunit is

n
(v(t; x); ps(t; x); pd(t; x)) =

�
t x; t;GU (x) t

�
: pLs � t � pUs ; V

L � x � V U
o
: (13)

When x is �xed, the above surface gives a straight line segment, i.e.,

n
(v(t); ps(t); pd(t)) =

�
t x; t;GU (x) t

�
: pLs � t � pUs

o
: (14)

Notice that, for all x, we get (v(0); ps(0); pd(0)) = (0; 0; 0); that is, all these lines pass through

the origin. The same is true for the lower bounding surface.

Second, as shown in Figure 4, Dunit is not a convex set. Note that arcs AD and BC are

convex, while DB and AC are concave. This non-convexity property is common for centrifugal

compressor units.
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3.1.2 Fuel Cost Function for a Single Unit

Basically, we will be working in the (v; ps; pd) space. To �nd out how to run the compressor

station so as to achieve a given feasible value (v; ps; pd), we proceed to map that point back to the

original operating space by �rst computing H and Q from equations (5) and (6), respectively,

and then solving for S in (1).

The fuel cost gunit is given by

gunit(v; ps; pd) = �
vH

�
; 8(v; ps; pd) 2 Dunit; (15)

where � is a positive constant, which, for simplicity, is assumed to be equal to 1 throughout

this work. Hence, function gunit(v; ps; pd) is implicitly de�ned, with equations (5), (6), (1), and

(2), on domain Dunit. Each evaluation of gunit(v; ps; pd) has to solve the nonlinear equations

(1)-(2). The behavior of the function gunit(v; ps; pd), of course, depends on the characteristics

of the compressor unit. However, it is typical that the fuel cost gunit increases with respect to

both the compressor ratio pd=ps and the volumetric 
ow rate Q, or v=ps, and decreases with

respect to the suction pressure ps. The surface of function gunit(v; ps; pd) when ps is �xed is

plotted in Figure 5.

3.1.3 Approximations of the Fuel Cost Function

As we have seen above, each evaluation of function gunit(v; ps; pd) involves solving a nonlinear

equation (1){(2). This is not a desirable property by any means since most of the optimization

techniques require many function evaluations within their algorithmic framework. On the other
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Figure 5: Fuel cost function gunit(v; ps; pd) for ps �xed

hand, the function gunit, as shown in Figure 5, is smooth and has some monotonicity properties.

Hence, many researchers have suggested a simple function approximation of gunit. The most

frequently used functions are polynomials of variables (v; ps; pd) of degree 1 or 2, i.e.,

g1(v; ps; pd) = A1v +B1ps + C1pd +D1; (16a)

g2(v; ps; pd) = A2v
2 +B2vps +C2vpd +D2p

2
s +E2pspd (16b)

+ F2p
2
d +G2v +H2ps + I2pd + J2:

To look for functions in categories other than polynomials of variables (v; ps; pd), we �rst notice

that, since g can also be seen as a function of v=ps and pd=ps, it might be advantageous to use

the following functions to approximate the function gunit:

g3(v; ps; pd) = ps

�
A3

v

ps
+B3

pd
ps

+ C3

�
(16c)

g4(v; ps; pd) = ps

 
A4

�
v

ps

�2
+B4

v

ps

pd
ps

+ C4

�
pd
ps

�2
+D4

v

ps
+E4

pd
ps

+ F4

!
(16d)

g5(v; ps; pd) = v

�
A5

v

ps
+B5

pd
ps

+ C5

�
(16e)

g6(v; ps; pd) = v

 
A6

�
v

ps

�2
+B6

�
pd
ps

�2
+ C6

v

ps

pd
ps

+D6
v

ps
+E6

pd
ps

+ F6

!
(16f)

In preliminary testing we have compared each of these approximation functions to the fuel

cost function gunit. The maximum relative approximation errors for the unit shown in Figures 1

and 2 with ps ranging between 60{800 (psia) are displayed in Table 1.
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Maximum relative

Function error (%)

g1 66.15

g2 57.60

g3 66.15

g4 5.85

g5 10.06

g6 2.67

Table 1: Evaluation of approximation functions

As can be seen, function g6 �ts the fuel cost function gunit very well. Function g4 is also

good. Function g5 is good as it takes a more simple form than g6 and g4. We also observed

that g2 �ts the gunit much better than g5 in most of the domain Dunit, and within these part

it can be as good as g6. The large maximum relative error of g2 is due to its bad behavior in a

very small part of the domain, typically near the boundary. For the rest of our study, we use

function g6 as an approximation to the cost function gunit.

3.2 Compressor Stations with Identical Parallel Units

3.2.1 Feasible Domain for a Station

Now, let us consider a compressor station with N parallel identical units. Let (v; ps; pd) be the

mass 
ow rate, suction pressure, and discharge pressure for the station, respectively. We assume

here the suction and discharge pressures of the station are the same as those of the individual

units in the station. However, the mass 
ow rate v through the station will be equally divided

to pass through the units which are selected to run. Hence, if only one unit is selected to run,

then the feasible domain, denoted as D1, is the same as the feasible domain Dunit for a single

unit which is represented in (8). When r units are selected to run, 1 � r � N , then the feasible

domain, denoted by Dr is

Dr =
n
(v; ps; pd) : (v=r; ps; pd) 2 D1

o
: (17)

Suppose that at least one unit in the station must be run; the whole feasible domain D of

the station is thus the union of Dr

D =
N[
r=1

Dr: (18)

The domain D of a station with 4 identical units is shown in Figure 6, where the shadowed

area in the middle represents its pro�le when ps is �xed. This pro�le is shown in Figure 7.

Although it depends on the characteristics of the units installed in the station, as we have

seen, the domain D of the station shown in the above �gures is connected. Here we shall give

a necessary condition for D to be connected.
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Lemma 1 If the feasible domain D of a station with identical parallel units is connected, then

QU

QL
� 2;

where QL and QU are the minimum and maximum volumetric 
ow rate of the units, respectively.

Proof: We �rst note that, by the de�nition (8), D1 = Dunit is connected. For any r : 1 �

r � N , by (17), Dr is an a�ne image of D1; thus, Dr is connected.

Suppose that D is connected. By (18), there is an r > 1, such that D1 \Dr is nonempty.

Hence, there exists a triple value (v; ps; pd) 2 D1 \Dr. By (8), we get

V L �
v

ps
� V U ; V L �

v

rps
� V U :

Thus, rV L � v
ps
� V U , i.e.,

r �
V U

V L
:

Since r > 1 and V U=V L = QU=QL, we get

QU

QL
� 2;

and the proof is complete.

It can be seen from these �gures that domain Dr is obtained by extending domain D1 r

times in the direction of v. Hence, it has the same properties as Dunit does.
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3.2.2 Minimum Fuel Cost Function for a Station

For some values (v; ps; pd) 2 D, Figure 7 clearly indicates that one may achieve them by

selecting a di�erent number of units to run. However, fuel costs could be di�erent among these

selections. This is because changing the number of running units changes the inlet volumetric


ow rate, and so changes the adiabatic e�ciency for each running unit. Figure 8 shows the fuel

costs for a 4-unit station obtained by running 1, 2, 3, or 4 units separately.

Let R be the set of feasible values of r for a given (v; ps; pd) 2 D, i.e.,

R = fr : r is integer ; 1 � r � N; (v; ps; pd) 2 Drg:

The following result on R can be easily veri�ed.

Proposition 1 For any (v; ps; pd) 2 D, if r1; r2 2 R, then, for any integer r with r1 � r � r2,

we have r 2 R(v;ps;pd).

The above proposition implies that, for any (v; ps; pd) 2 D, the set R is an interval of

integers. When the station variables are given as (v; ps; pd) 2 D, and the number of units

selected to run is r 2 R, the suction and discharge pressures for each running unit are ps and

pd, respectively, while the mass 
ow rate through each unit is v=r. Hence, the fuel consumed

by each running unit is equally gunit(v=r; ps; pd). Since r units have been selected to run in the

station, the total fuel consumed by the station is rgunit(v=r; ps; pd). The minimum fuel cost is

thus

g(v; ps; pd) = min
r2R

�
rgunit(v=r; ps; pd)

	
; (19)
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Figure 8: Fuel cost by running di�erent numbers of units for a station with 4 parallel units

where gunit(v=r; ps; pd) is given by (15). Hence, the value of the minimum fuel cost function

g(v; ps; pd) is the solution of the above integer program with a single integer variable r. Figure 9

plots the function g as ps is �xed for a 4-unit station.

The surface of the minimum fuel cost function g may or may not have jumps. It depends on

the characteristics of the units in the station. In this example, it is mostly continuous except

at the boundary of D2 which is in D1. Compare Figure 9, which shows the minimum fuel cost

function, with Figure 8, which shows the fuel cost for di�erent values of r.

As we have shown in this section, the domain D of the station is non-convex and the

minimum fuel cost function g of the station is nonlinear and possibly discontinuous. These are

the attributes that make the overall optimization problem (minimizing the fuel cost function

throughout the entire system) very di�cult.

4 The Fuel Cost Minimization Problem

In the previous section, we discussed in detail the mathematical model of compressor units

and stations. In this section we now focus on the fuel cost minimization problem. We �rst

state the modeling assumptions, and then present the mathematical model of the optimization

problem. As we have seen in Section 3, the non-convexity of domains D and the non-convexity

of function g(v; ps; pd) (both referring to compressor stations) make the problem hard to solve.

Moreover, we must also deal with pipe 
ow constraints (de�ned for every pipeline), which are

also nonlinear and de�ne a non-convex set. Since solution methodologies for general nonlinear

and non-convex optimization problems are not tailored for this particular problem, what we
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Figure 9: Minimum fuel cost as a function of v and pd for a station with 4 parallel units

are interested in is the special structure presented by this problem. In Section 4.2, we derive a

lower bounding procedure, in which a linear supersets �D of the feasible domain D is developed

and a convex lower bounding function �g of the minimum fuel cost function g is constructed.

4.1 Mathematical Model

We assume that the networks being considered consist of nodes, pipes, and compressor stations,

only.

The objective function of the problem is the sum of the fuel costs over all the compressor

stations in the network. This problem involves the following constraints:

(i) mass 
ow balance equation at each node;

(ii) gas 
ow equation through each pipe;

(iii) pressure limit constraints at each node;

(iv) operational limits in each compressor station.

The �rst two are also referred to as the steady-state network 
ow equations. We emphasize

that while the mass 
ow balance equations are linear, the pipe 
ow equations are nonlinear;

this has been well documented in [16]. For the medium and high pressure 
ows, when taking

into account the fact that a change in the 
ow direction of the gas stream may take place in

the network, the pipe 
ow equation takes the following form:

p21 � p22 = cujuj�; (20)
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where p1 and p2 are pressures at the end nodes of the pipe, u is mass 
ow rate through the

pipe, � is a constant (� � 1), and the pipe resistance c is a positive quantity depending on the

pipe physical attributes, and it is given by:

c = K
fL

d5

with K = (1:3305 � 105)ZSgT . These parameters refer to:

Z gas compressibility factor

Sg gas speci�c gravity

T average temperature (R), assumed constant

f frictional factor

L length of pipe (miles)

d inside diameter of pipe (ft)

The steady-state network 
ow equations can be stated in a very concise form by using

incidence matrices. Let us consider a network with n nodes, l pipes, andm compressor stations.

Each pipe is assigned a direction which may or may not coincide with gas 
ow through the

pipe. Let Al be the n� l matrix whose elements are

alij =

8>>><
>>>:

1; if jth pipe comes out from ith node;

�1; if jth pipe goes into ith node;

0; otherwise:

Al is called the node-pipe incidence matrix. Let Am be the n�m matrix whose elements are

amik =

8>>><
>>>:

1; if ith node is the discharge node of kth station;

�1; if ith node is the suction node of kth station;

0; otherwise:

Am is thus called a node-station incidence matrix. The matrix formed by annexing Am to the

right hand side of Al will be denoted as A, i.e., A = (AlAm), which is an n� (l +m) matrix.

A network example with n = 10 nodes, l = 6 pipes, and m = 3 stations is shown in Figure 10.

The nodes, pipes, and stations have been labeled separately. The matrices Al and Am for

14
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Figure 10: An example of a simple network

this example are given by

Al =

0
BBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0

1 0 0 0 0 0

�1 0 0 0 0 0

0 1 0 0 0 0

0 �1 1 1 0 0

0 0 �1 0 0 0

0 0 0 �1 0 0

0 0 0 0 1 0

0 0 0 0 �1 1

0 0 0 0 0 �1

1
CCCCCCCCCCCCCCCCCCCCCCCA

Am =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0

�1 0 0

0 1 1

0 �1 0

0 0 0

0 0 0

0 0 0

0 0 �1

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCA

These matrices have some special characteristics. To name a few, each row in matrix Al, for

example, corresponds to a node, and each column corresponds to a pipe in the network. In

addition, each column contains exactly two nonzero elements, one is 1 and the other �1, which

correspond to the two end nodes of the pipe.

Let u = (u1; : : : ; ul)
T and v = (v1; : : : ; vm)

T be the mass 
ow rate through the pipes and

stations, respectively, and w = (uT ;vT )T . Let p = (p1; : : : ; pn)
T be the pressure vector, where

pi is the pressure at the i-th node, and s = (s1; : : : ; sn)
T be the source vector, where si is the

source at the i-th node. Component si is positive if the node is a supply node, negative if it

is a delivery node, and zero otherwise. We assume, without loss of generality, the sum of the

sources to be zero,

nX
i=1

si = 0:

15



The network 
ow equations can now be stated as the follows:8<
: Aw = s

AT
l p

2 = �(u)

where p2 = (p21; : : : ; p
2
n)

T �(u) = (�1(u1); : : : ; �l(ul))
T , in which �j(uj) = cjujjuj j

�.

Now suppose the source vector s is given satisfying the zero sum condition, and the bounds

pL;pU of pressures at every node have been speci�ed, the problem is to determine the pressure

vector p and the 
ow vector w so that the total fuel consumption is minimized. The model is

stated as follows:

Minimize F (w;p) =
mX
k=1

gk(vk; pks; pkd) (21a)

subject to Aw = s (21b)

AT
l p

2 = �(u) (21c)

p 2 [pL;pU ] (21d)

(vk; pks; pkd) 2 Dk k = 1; 2; : : : ;m (21e)

where vk, pks, and pkd are the mass 
ow rate, suction pressure, and discharge pressure at the

k-th station. Note that:

(i) the feasible domains Dk are non-convex;

(ii) the fuel functions gk are nonlinear, non-convex and discontinuous;

(iii) the pipe 
ow equations (21c) de�ne a non-convex set.

In general, a problem with these characteristics can be very di�cult to solve. What we do

in this work is to exploit the structure of this problem and derive some model relaxations that

allow us to simplify the problem and to develop a lower bounding procedure. If this bound is

tight enough, it can be used to evaluate the quality of feasible solutions, i.e., how close a given

feasible solution is from a global optimal solution.

4.2 Model Relaxations

4.2.1 Relaxation of Compressor Domain

Recall from Section 3 that the domain D of a station is given by [Nr=1D
r, where

Dr = f(v; ps; pd) : (v=r; ps; pd) 2 D1g;

i.e., Dr is obtained by enlarging D1 r times in the direction of v. Hence, by developing a

superset of D1 and then enlarging it in the v direction, a superset �D of the domain D can be

16



obtained. Such a superset �D is roughly equivalent to a relaxation of the integer constraint on

variable r.

As we have pointed out in Section 3, both the upper and lower surfaces bounding the domain

D1 are formed with segments of lines originated from the origin. The contour (arc ACBD, when

ps �xed) of the boundary of domain D1 is shown in Figure 4. Hence, construction of a linear

superset of D1 can be carried out by �rst constructing a linear outer approximation of the

contour (arc ACBD) and then connecting the linear outer contour with the origin.

For sake of simplicity and to keep the model small, we have chosen this linear approximation

to consist of six hyper-planes. Our computational experience shows that this approximation

is good enough. Since we have assumed in Section 3 that arc AD is convex and arc BD is

concave, the linear outer approximation of arc ADB we have chosen is formed by three line

segments: the �rst one is simply the line segment AD, the second is the horizontal line passing

through the point D, and the third is the tangent line of the upper curve at point B. The

second and third lines shall intersect at some point F. The linear outer approximation of arc

ACB is similar; i.e., connect A and C �rst, make a horizontal line pass through C, and pick

the tangent line of the lower curve at point B, which intersects with the horizontal line at some

point E. By our convexity assumption on the contour of D1, these 6 line segments AD, DF,

FB, BE, EC, and CA form a linear outer approximation of the contour. By connecting these 6

line segments with the origin, we get 6 planes. These planes together with another two planes,

ps = pLs and ps = pUs , constitute a linear superset of the domain D1. The equations of these 6

planes, corresponding to the 6 line segments AD, DF, FB, AC, CE, and EB, respectively, take

the following form:

pd = aiv + bips; i = 1; : : : ; 6; (22)

where ai, bi, are constants which can be calculated by the values of functions GL and GU at

points A, B, C, D, and the derivatives at point B; see equations (9){(12) for the de�nition of

those functions.

For the domain D of a station with N parallel identical units, the linear superset �D can

be easily constructed based on the linear superset of D1. To do this, we simply move the two

planes corresponding to line segments BE and BF in the direction of v until the new v value

of each point is exactly N times of its original v value. The other 6 planes together with these

two new planes form a linear superset �D of domain D. More precisely, �D consists of all the

points of (v; ps; pd), such that

pLs � ps � pUs (23a)

and

pd � a1v + b1ps (23b)
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Figure 11: Superset �D of the feasible domain D (station with 4 parallel units)

pd � b2ps (23c)

pd � a3v=N + b3ps (23d)

pd � a4v + b4ps (23e)

pd � b5ps (23f)

pd � a6v=N + b6ps (23g)

where ai, bi, are the same constants as in equation (22). Note that a2 = a5 = 0.

Figure 11 shows the linear superset �D together with the domain D of a station with 4 units.

Its pro�le, with ps �xed, is given in Figure 12.

In the next section, we will investigate the properties of the minimum fuel cost function g

of a station and describe how to develop a convex lower bounding function �g for g.

4.2.2 Relaxation of Cost Function

Recall from Section 3 that the minimum fuel cost function g(v; ps; pd) of the station is de�ned

as

g(v; ps; pd) = min
r2R

�
rgunit(v=r; ps; pd);

	
(24)

where

R = fr : r is integer ; 1 � r � N; (v; ps; pd) 2 Drg

Dr =

�
(v; ps; pd) : pLs � ps � pUs ; V

L �
v

rps
� V U ; GL(

v

rps
) �

pd
ps

� GL(
v

rps
)

�
:
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Figure 12: Pro�le of �D and D (station with 4 parallel units)

The idea we introduce to get a convex lower bound for function g is quite general. First, we

�nd a set of linear lower bounds of �g, say,

li(v; ps; pd) = aiv + bips + cipd + di � g(v; ps; pd); i 2 I;

where I is an index set. Let

l(v; ps; pd) = max
i2I

n
li(v; ps; pd)

o
;

then we have

l(v; ps; pd) � g(v; ps; pd):

Classical theory of linear programming [6] shows that l is convex. Therefore l is a piece-wise

linear convex lower bound of g. Figure 13 illustrates this idea in one dimension, in which an

arbitrary function z = f(x) of one variable x 2 [a; b] is plotted. To generate a set of linear lower

bounds of function z = f(x) on [a; b], the procedure is divided into the following steps:

Step 1: Grid Generation. By partitioning the interval [a; b], we generate a set of grid points

on the curve of the function z = f(x).

Step 2: Direction Selection. The second step is selecting a few directions (four directions

d1; d2; d3, and d4 have been selected in Figure 13).

Step 3: Along each direction, we minimize the function z = f(x). Since it is not always

guaranteed that the global minimization can be found for an arbitrary function, instead
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Figure 13: Generating linear lower bounds for an arbitrary function

of doing that we �nd the grid point at which the function z = f(x) achieves its minimum

along this direction among all the grid points generated in step 1.

Step 4: The line passing through the found grid point with the direction as its normal is thus

a linear (pseudo) lower bound (not exact lower bound because the minimization is taken

only over the grid points) of function z = f(x) on [a; b]. Four such linear bounds l1; l2; l3,

and l4 have been plotted in Figure 13, and their maximum l is a convex (pseudo) lower

bound of function z = f(x) on [a; b].

A few remarks on the above procedure:

1. In the second step, the direction di = (xi; zi) selected must have zi < 0. Otherwise, the

minimization in step 3 does not make any sense because we are generating a lower bound.

2. Without any more information (particularly about convexity) of the function, there is no

way to generate absolute but also good lower bounds. The above procedure will deliver a

piece-wise linear lower bound for any given function. Theoretically, as the number of the

grids generated in step 1 goes to in�nity, this procedure could produce the best convex

lower bound, i.e., the convex envelope of the given function. The fact is, even with a

reasonable number of grid points and directions, the above procedure may also produce

a quite satisfactory result.

3. The above procedure is especially practical for functions of only a few variables. In our case

the cost function is de�ned over a three-dimensional space (mass 
ow, suction pressure,

and discharge pressure), so applying the proposed procedure is not too expensive.
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5 Numerical Evaluation

In this section, we provide empirical evaluation of the proposed lower bounding procedure. To do

this, we construct three network examples based on network topologies commonly encountered

in practice. The data for the compressor stations is taken from some real-world instances. We

must note that at present, no data library of instances for this type of problems exists. So we

hope that this set of problem instances could become the starting point for building such a data

base, that would allow for testing other approaches and benchmarking.

In our numerical calculations, the following data are used through all the examples.

Gas: The gas is a mixture with a volumetric composition of 14% ethane, 85% methane, and 1%

nitrogen. The values of its parameters are isentropic exponent k = 1:287, compressibility

factor Z = 0:95, and gas constant R = 85:2(lbf-ft)/(lbm-�R), and speci�c gravity Sg =

0:6248.

Station: Stations consist of N centrifugal compressor units. All the units used in examples are

identical. The �tted coe�cients of equations (1) and (2) are given by AH = 0:6824�10�3,

BH = �0:9002 � 10�3, CH = 0:5689 � 10�3, DH = �0:1247 � 10�3, AE = 134:8055,

BE = �148:5468, CE = 125:1013, DE = �32:0965. The compressor limits for speed

(rpm) and volumetric 
ow rate (ft3=min) as de�ned in equations (3) and (7), respectively,

are given by Smin = 5000, Smax = 9400, QL = 7000, and QU = 22000. The feasible

domain D of the stations is de�ned by (8), (17), and (18). The superset domain �D

of D is de�ned by (23a){(23g), where a = f0:0185; 0;�0:0328;�0:0047; 0; 0:0096g and

b = f0:6778; 1:4729; 3:6853; 1:2332; 1:0620; 0:4921g. The fuel cost function gunit(v; ps; pd)

for a compressor unit used is the approximation g6(v; ps; pd) given by (16f), where A6 =

0:0266, B6 = 38:1969, C6 = �3:4865, D6 = 2:3791, E6 = 439:7503, F6 = �460:6632. The

minimum fuel cost function g(v; ps; pd) for a compressor station is de�ned by (24).

Pipe Flow Equation: For the pipe 
ow constraint (20) we assume the average temperature

T = 459:67 + 60(�R), which gives K = 4:1040 � 107.

For the objective function relaxation we used 27 directions, de�ned by (dv ; dps ; dpd ;�1),

where dv; dps ; dpd 2 f�1; 0; 1g, are the components in the v, pd, and pd directions, respectively.

The four (-1) components correspond to the direction in the �eld function g(v; ps; pd).

With the relaxations on the minimum fuel cost function g(v; ps; pd) and the feasible domain

D, we consider four di�erent problems related to the original problem (21a)-(21e), namely:

P1: the original problem itself;

P2: the original problem with relaxation of the function g(v; ps; pd) only;
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P3: the original problem with relaxation of the domain D only;

P4: the original problem with relaxations both of the domain D and the function g(v; ps; pd).

It is clear that an optimal solution to P2, P3, or P4 renders a lower bound for the original

problem P1. The motivation for de�ning these four problems is to assess the performance of

the lower bound function and domain D relaxations, both jointly and individually. To achieve

this, we use three network con�gurations. The �rst two are relatively small, so we were able

to solve all P1{P4 for each example by exhaustive enumeration over a �nite grid. The third

example is a larger and more complex network, so optimal solutions by exhaustive enumeration

is very impractical. We resorted to �nding a solution to a relaxation of P4, which still preserves

the lower bound property.

5.1 Example 1

The �rst example is a 6-node, 3-pipe, 2-compressor network. The arcs form a straight path

(called a gun-barrel network in the pipeline world) as shown in Figure 14. There is a supply

node (node 1) and a delivery node (node 6) with source values s1 = +600 and s6 = �600

(MMSCFD), respectively. For all other nodes si = 0. The pressure ranges for each node is

[600; 800] (psia). The set of pipes is given by f(1; 2); (3; 4); (5; 6)g. For each pipe, length=50

(miles), inside diameter = 3 (ft), and friction factor = 0.0085. The set of compressors is given

by f(2; 3); (4; 5)g. Each compressor station has 5 centrifugal units in parallel.
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Figure 14: Example 1 network

The 
ow rates through all pipes can be determined before hand, so only the pressure vari-

ables need to be found. Since the problem size is relatively small, problems P1, P2, P3, and

P4 can be solved by exhaustive search. We built a grid for the pressures using a discretization

size of �p = 3 (psia), and solved problems P1{P4 using Matlab [5]. The results are presented

in Table 2.

As can be seen, the relative gap between P1 and P4 is 23.5%. We also observe that that

the gap di�erence between P1 and P2 is smaller than the gap di�erence between P1 and P3.

This implies than the relaxation of the objective function does a better job than the relaxation

of the compressor domain. Similar results are observed when we compare the gap di�erence

between P3 and P4 to the gap di�erence between P2 and P4.
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Problem Solution (�106)

P1 2.140172

P2 2.112003

P3 1.824072

P4 1.732357

Table 2: Example 1 results

5.2 Example 2

The second example is a simple tree network with 10 nodes, 6 pipes and 3 compressor stations,

as depicted in Figure 15. The network includes one supply node (node 1) s1 = +800 and �ve

delivery nodes (nodes 5, 6, 7, 9 10), with s5 = s9 = �100, s6 = s7 = �150, and s10 = �300. The

pressure lower limits are given by pL1 = pL2 = 600, pL3 = pL5 = pL6 = pL7 = pL9 = 450, pL4 = 500,

pL5 = pL10 = 400 and pL8 = 550. The pressure upper limit is pU1 = 700 and pUi = 800, for all i > 1.

The set of pipes is f(2; 3); (4; 5); (5; 6); (5; 7); (8; 9); (9; 10)g with length = 50, inside diameter =

3, and friction factor = 0.0085, for all pipes. The compressor stations f(1; 2); (3; 4); (3; 8)g all

have �ve centrifugal units operating in parallel.
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Figure 15: Example 2 network

As in the previous example, the 
ow rates through all pipes and stations can be determined

during preprocessing, thus leaving us with the pressure variables only. We again set up a Matlab

program that would solve problems P1{P4 by an exhaustive method over a grid of size �p = 3.

Table 3 displays the results.

Problem Solution (�106)

P1 2.699550

P2 2.515808

P3 2.580367

P4 2.350785

Table 3: Example 2 results
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As we can see, the relative gap between P1 and P4 is 14.8%. However, note that this time the

gap di�erence between P3 and P1 is smaller than the gap di�erence between P1 and P2, which

means that the relaxation of the compressor station domain does better than the relaxation of

the objective function. This is contrary to what we had observed in Example 1. One explanation

for this is that, for both problems we are using the same number of underestimating planes

(nine) for the objective function relaxation, but for Example 1, the pressure ranges are much

narrower, which makes the function relaxation have a better �t. Note that the compressor

domain relaxation is not a�ected by the change in the pressure ranges.

5.3 Example 3

The third example (depicted in Figure 16) is a more complex network. There are 48 nodes, 43

pipes, and 8 stations. Moreover, it contains several loops so the 
ow rates cannot be determined

before hand.
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Figure 16: Example 3 network

The following three tables list the sources at all the nodes, the pipe con�guration, and the

station con�guration. The pressure limits at all the nodes are [50,1500], except for nodes 1

([900,1300]) and 3 ([990, 1150]). The source values are given in Table 4. The pipe data, nodes,

length (L), inside diameter (d), and friction factor (f), are shown in Table 5. The compressor

station set is f(2; 9); (8; 10); (12; 13); (20; 21); (21; 22); (20; 48); (24; 46); (48; 25)g. Each station

has �ve centrifugal units running in parallel.

For this example, the presence of loops implies that 
ow rates are not uniquely determined

and thus form part of the problem decision variables, along with the pressure variables. In ad-
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i si i si i si i si

1 +600 13 0 25 -550 37 0

2 0 14 0 26 0 38 -30

3 +200 15 +100 27 -50 39 -30

4 +200 16 -50 28 0 40 -30

5 +200 17 0 29 0 41 -30

6 +200 18 100 30 -30 42 -40

7 +200 19 0 31 -30 43 -40

8 0 20 +450 32 0 44 -40

9 -400 21 0 33 -30 45 -100

10 0 22 0 34 -30 46 -200

11 -100 23 -200 35 -30 47 -180

12 0 24 0 36 -30 48 0

Table 4: Node source values for Example 3

dition, the size of this instance leaves the possibility of computing exact solutions by exhaustive

enumeration out of question. Since optimal solutions for problems P1{P4 were not possible to

obtain, we found some upper and lower bounds for some of these problems, as shown in Table 6.

An upper bound is computed by �nding a feasible solution for the corresponding problem. For

problem P4, we computed a lower bound by using a Lagrangian relaxation technique where

the pipe leg constraints are relaxed (see R��os-Mercado [12] for details). This relaxation was

implemented in GAMS [1], an algebraic modeling software package with interfaces to several

optimization libraries.

As we can see, the relative gap between the two bounds (upper bound for P1 and lower

bound for P4) is very large (about �ve times larger). In order to explain this big di�erence

between the bounds, we �rst observe that the Lagrangian relaxation approach for P4 is doing

a very good job at bounding P4 providing a relative gap of less that 0.5% with respect to its

upper bound. Now, assuming that the upper bound for P3 is relatively close to the optimal

value, the solution to P3 would be about three times as big as the solution to P4. This suggests

the convex function relaxation �g might not be a good approximation of the objective function

g. To investigate this further, we display in Table 7, di�erent objective function values achieved

at the individual compressor stations. In the �rst column, we show the minimum value of g

within each individual compressor station domain (gmin). In the second column, we show the

value the convex under-estimator function �g takes in a given compressor domain, after solving

the P4 Lagrangian relaxation. The third column, shows the value of objective function g, after

a feasible solution for P3 has been computed.

We �rst observe that the values in the �rst two columns are very similar. This implies that

the convex under-estimator �g is indeed doing a good job of approximating the true g within

each individual compressor station. On the other hand, we also observe that the di�erence in
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Pipe L d f Pipe L d f

(1,2) 10.1015 1.5 0.0108 (30,31) 5.0507 1.0 0.0130

(3,4) 4.5175 1.5 0.0108 (31,32) 4.5175 1.0 0.0130

(4,7) 5.1508 1.5 0.0108 (32,33) 4.5175 1.0 0.0130

(5,6) 5.1508 1.0 0.0130 (33,44) 4.5175 1.0 0.0130

(6,7) 5.1508 1.5 0.0108 (29,34) 5.0507 1.0 0.0130

(7,8) 5.1508 2.0 0.0090 (34,35) 4.5175 1.0 0.0130

(9,11) 10.1015 1.5 0.0108 (35,36) 4.5175 1.0 0.0130

(10,11) 5.1508 2.0 0.0090 (36,43) 4.5175 1.0 0.0130

(11,12) 10.1015 3.0 0.0085 (28,37) 5.0507 1.0 0.0130

(13,14) 10.1015 1.5 0.0108 (37,38) 5.0507 1.0 0.0130

(14,19) 10.1015 1.5 0.0108 (38,39) 5.0507 1.0 0.0130

(15,19) 10.1015 1.5 0.0108 (39,40) 5.0507 1.0 0.0130

(19,20) 10.1015 1.5 0.0108 (40,41) 5.0507 1.0 0.0130

(13,17) 10.1015 2.0 0.0095 (41,42) 5.0507 1.0 0.0130

(17,16) 10.1015 1.5 0.0108 (43,42) 4.5175 1.0 0.0130

(17,18) 10.1015 2.0 0.0095 (44,43) 4.5175 1.0 0.0130

(18,20) 10.1015 2.0 0.0095 (45,44) 8.3299 1.5 0.0108

(25,26) 10.1015 1.5 0.0108 (45,47) 5.7143 2.0 0.0090

(26,27) 7.1429 1.5 0.0108 (46,45) 11.5175 2.0 0.0090

(26,28) 10.1015 1.5 0.0108 (22,23) 11.5175 2.0 0.0090

(28,29) 5.0507 1.0 0.0130 (23,24) 11.4286 2.0 0.0090

(29,30) 4.5175 1.0 0.0130

Table 5: Pipe data for Example 3

the gaps between P3 and P4 is due to the di�erence between the values of columns 2 and 3

in this table. This stems from the fact that an individually good solution for a compressor

station is not necessarily a good solution for the overall problem, when the contributions of all

the compressors are taken into account. The non-convexity of the set de�ned by the pipeline

constraints obviously play a very important practical role here.

6 Conclusions

We have presented a study of the mathematical structure of compressor stations in natural

gas transmission networks. We have analyzed several important properties of both the set of

Problem Lower bound (�106) Upper bound (�106)

P1 { 25.69718

P2 { {

P3 { 14.98100

P4 4.53535 4.55604

Table 6: Example 3 results
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Station gmin �g g

(2,9) 7.05 7.06 11.71

(8,10) 11.18 11.19 16.13

(12,13) 12.44 12.45 72.50

(20,21) 3.18 3.37 10.13

(21,22) 3.18 3.37 11.36

(20,48) 2.47 2.76 9.79

(24,46) 2.47 2.61 6.99

(48,25) 2.46 2.76 11.21

Table 7: Objective function values among stations

feasible operating conditions and the associated cost function.

The fuel cost minimizationmodel has been presented. We have highlighted why this problem

is di�cult to solve (namely the nonlinearity, non-convexity, and discontinuity in the objective

function, and the non-convexity of the feasible set). We have proposed and derived two model

relaxations that allowed us to develop a lower bounding scheme. One relaxation consisted of

developing linear supersets �D of the feasible domains D. The other is the derivation of piece-

wise linear under-estimator functions �g of the minimum fuel cost functions g for the compressor

stations.

The proposed procedures have been tested on three test examples made from real-world

data. For the �rst two examples, we have found lower bounds with relative gaps of 23% and

15%, respectively. These gaps were with respect to optimal solutions of the problems. The

results for the small problems show that the proposed relaxations are in fact good. For the

third example, the relative gap was very wide. We observed that the convex under-estimator

function was indeed a very good approximation to the function within each of the compressor

stations. However, when optimizing over the complete domain, the overall bound was not good

due mainly to the non-convexity of the set of feasible solutions and to the presence of multiple

local optima in the fuel cost function g.

As is well known, techniques for �nding global optimal solutions to non-convex problems,

such as branch and bound, rely heavily on the capacity of generating good lower bounds. Further

research in this area is needed for handling larger instances more e�ectively. A transient, or

time dependent, model is another important problem that to date has not been adequately

addressed from the optimization perspective.

We should also mention the need for having a library of data sets, that would allow more

uniform algorithm testing and benchmarking among researchers and practitioners working in

this area.
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