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Abstract

Natural gas, driven by pressure, is transported through pipeline network systems. As the
gas flows through the network, energy and pressure are lost due to both friction between the
gas and the pipes’ inner wall, and heat transfer between the gas and its environment. The
lost energy of the gas is periodically restored at the compressor stations which are installed in
the network. These compressor stations typically consume about 3-5% of the transported gas.
This transportation cost is significant because the amount of gas being transported worldwide
is huge. These facts make the problem of how to optimally operate the compressors driving the
gas in a pipeline network important.

In this paper we address the problem of minimizing the fuel cost incurred by the compressor
stations driving the gas in a transmission network under steady-state assumptions. In particu-
lar, the decision variables include pressure drops at each node of the network, mass flow rate at
each pipeline leg, and the number of units to be operating within each compressor station. We
present a mathematical model of this problem and an in-depth study of the underlying mathe-
matical structure of the compressor stations. Then, based on this study, we propose two model
relaxations (one in the compressor domain and another in the fuel cost function) and derive a
lower bounding scheme. We also present empirical evidence that shows the effectiveness of the
lower bounding scheme. For the small problems, where we were able to find optimal solutions,
the proposed lower bound yields a relative optimality gap of around 15-20%. For a larger, more
complex instance, it was not possible to find optimal solutions, but we were able to compute
lower and upper bounds, finding a large relative gap between the two. We show this wide gap
is mainly due to the presence of nonconvexity in the set of feasible solutions, since the proposed
relaxations do a very good job of approximating the problem within each individual compressor
station.

We emphasize that this is, to the best of our knowledge, the first time such a procedure
(lower bound) has been proposed in over thirty years of research in the natural gas pipeline

area.
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1 Introduction

Natural gas, driven by pressure, is transported through a pipeline network system. As the gas
flows through the network, pressure (and energy) is lost due to both friction between the gas and
the pipe inner wall, and heat transfer between the gas and its environment. To overcome this
loss of energy and keep the gas moving, compressor stations are installed in the network, which
consume part of the transported gas resulting in a fuel consumption cost. Principal concerns
with both designing and operating a gas pipeline network are maximizing throughput and
minimizing fuel cost. Numerical simulations based on either steady-state or transient models of
the networks have been used to attempt to provide solutions to these problems. The problem
we address in this paper is minimizing fuel cost for steady-state gas pipeline networks.

As the gas industry has developed, gas pipeline networks have evolved over decades into
very large and complex systems. A typical network today might consist of thousands of pipes,
dozens of stations, and many other devices, such as valves and regulators. Inside each station,
there can be several groups of compressor units of various vintages that were installed as the
capacity of the system expanded. Such a network may transport thousands of MMCFD (1
MMCFD = 10° cubic feet per day) of gas, of which 3-5% is used by the compressor stations to
move the gas. It is estimated [14] that the global optimization of operations can save at least
20% of the fuel consumed by the stations. Hence, the problem of minimizing fuel cost is of
tremendous importance.

With the aid of today’s powerful digital computers, numerical simulation of gas pipeline
networks can be very accurate. This opens the door to the development of optimization algo-
rithms. Over the years many researchers have attempted this with varying degrees of success.
The difficulties of such optimization problems come from several aspects. First, compressor
stations are very sophisticated entities themselves. They might consist of a few dozen com-
pressor units with different configurations and characteristics. Each unit could be turned on or
off, and its behavior is nonlinear. Second, the set of constraints that define feasible operating
conditions in the compressors along with the constraints in the pipes constitute a very complex
system of nonlinear constraints. Surfing on such a manifold to attempt to find global optimal
solutions demands an in-depth understanding of its structure. Finally, operations of the valves
and regulators may introduce certain discontinuities to the problems as well.

The purpose of this paper is first to provide an in-depth study of the underlying mathemat-
ical structure of the compressor stations. Then, based on this study, we present a mathematical
model of the fuel cost minimization problem, and derive a lower bounding scheme based on two
model relaxations: (i) relaxation of the fuel cost objective function and (ii) relaxation of the
non-convex nonlinear compressor domain. Finally, we present empirical evidence that shows

the quality of the proposed relaxations.



The results are promising. For the small instances, where we were able to find both optimal
solutions for the original problem (upper bound), and for the relaxed problem (lower bound) by
an exhaustive approach, we found that the proposed relaxations yielded a relative optimality
gap of around 15-20%. We also tested the procedure in a larger, more complex instance. For
this instance, it was not possible to find optimal solutions, but it was still possible to calculate
lower and upper bounds. We found that the proposed relaxations were in fact doing a good job
of approximating the cost function within each individual compressor station. However, when
optimizing over the complete domain (including all compressors at once, and other system
constraints), the overall bound was not good due mainly to the non-convexity of the set of
feasible solutions and to the presence of multiple local optima in the fuel cost function g.

We would like to emphasize that, to the best of our knowledge, this is the first time such
a procedure (lower bound) has been proposed in over thirty years of research in the field of
natural gas pipelines.

The rest of the paper is organized as follows. In Section 2 we highlight the most relevant
work related to optimal operation on steady-state gas transmission networks. The compressor
unit and station models we have developed are presented in Section 3. In Section 4, we formally
introduce the fuel cost minimization problem and present several relaxations that allows us to
devise a lower bounding scheme. These procedures have been tested with a few numerical
examples in Section 5. We end the paper in Section 6 with our conclusions and directions for

future work.

2 Related Work

Numerical simulations of gas pipeline networks have been carried out through this century
and results can now be very accurate, especially with the aid of powerful digital computers.
Osiadacz book [7] stands as the best reference on this subject.

The earlier work on developing optimization algorithms for fuel cost minimization in steady-
state gas transmission networks can be traced back to Wong and Larson’s work [15] in 1968,
which made use of dynamic programming (DP) techniques to solve problems with simple “gun-
barrel” network structures. More recently, Lall and Percell [4] present a DP algorithm that
handles topologies with diverging branches, and incorporates into the model decision variables
for representing the number of units to be operated within each compressor station. More
recently, Carter [2] develops a non-sequential DP algorithm to handle looped networks when
the mass flow rate variables are fixed. The main advantages of DP are that a global optimum
is guaranteed to be found and that nonlinearity can be easily handled. Disadvantages of DP
are that its application is practically limited to the networks with simple structures, such as

“gun-barrel” or tree topologies, and that computation increases exponentially in the dimension



of the problem, commonly referred as the curse of dimensionality.

Kim et al. [3] extend Carter’s approach by proposing an approximation algorithm that itera-
tively adjusts the flow variables in a heuristic way. Percell and Ryan [11] addressed the problem
by using the generalized reduced gradient (GRG) for nonlinear optimization. Advantages of
the GRG method are that it avoids the dimensionality problem and that it may be applied to
networks with loops. However, since the GRG method was based on a gradient search method,
it is not theoretically guaranteed to find a global optimum, especially in the presence of discrete
decision variables, and it may stall at local minima.

In [17], Wu et al. present a mathematical model for the fuel cost minimization over a single
unit compressor station. Some of the properties studied in that paper have been extended here
to handle stations with multiple compressor units.

Optimization techniques have also been applied for transient (time dependent) models (e.g.,
Osiadacz [8], and Osiadacz and Swierczewski [10]), and network design (e.g., Osiadacz and
Gorecki [9]), with modest success. (See Rios-Mercado [13] for more references on optimization
techniques applied to gas pipeline problems.) It is important to mention that optimization
approaches developed to date work well under some general assumptions; however, as the
problems become more complex, the need arises for further research and effective development

of algorithms from the optimization perspective.

3 Compressor Units and Stations

In general, compressor stations in gas pipeline networks can be very complicated because they
may consist of up to dozens of compressor units of different types with various configurations.
Two main types of compressor units used in today’s gas industry are centrifugal and reciprocat-
ing compressor units. In this paper we consider only those compressor stations which consist of
several identical centrifugal compressor units in parallel. This type of station is very common
in today’s gas industry, and having an understanding of this type of station is fundamental for

modeling more complex station configurations.

3.1 Single Centrifugal Compressor Units

The primal quantities related to a centrifugal compressor unit are inlet volumetric flow rate
Q, speed S, adiabatic head H, and adiabatic efficiency 7. It has been recognized [11] that the

relationship among these quantities can be well described by the following two equations:
H/S* = Ag + Bu(Q/S) + Cu(Q/S)* + Du(Q/S)?, (1)

1= Ap + Bp(Q/S) + Cp(Q/S)* + Dr(Q/S)’, (2)



where Ap, By, Cx, D, Ag, Bg, Cg, and Dg are constants which depend on the compressor
unit and are typically estimated by applying the least squares method to a set of collected
data of the quantities @), S, H, and 7. Four other parameters are usually provided. They are
minimum speed Spin, maximum speed Spax, surge limit surge, and stonewall limit stonewall.

These give the limits to the speed S and the ratio of @ to S, i.e.,
Smin < S < SmaXa (3)

surge < Q/S < stonewall. (4)

Figures 1 and 2 show the set of data collected from a typical centrifugal unit. In Figure 1, we
plot H vs. @), showing the control lines for S (between Spmin and Smax) and Q/S (between surge
and stonewall), generated by equation (1). A plot of equation (2) is illustrated in Figure 2.
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Figure 1: Operation envelope in @), S, and H (single centrifugal unit)

3.1.1 Feasible Domain for a Single Unit

The inequalities (3) and (4) together with equation (1) actually constitute a feasible operating
domain for the unit. Figure 1 shows the feasible domain in terms of @), S, and H. Since, the
preferred variables from the network modeling perspective are mass flow rates and pressures,
we proceed to map the above operation envelope into a three-dimensional domain, denoted as
DUt consisting of the following variables: mass flow rate v, suction pressure p,, and discharge
pressure pg. The relationships between (H, Q) and (v, ps, pg) are the following:

- ()]
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Figure 2: Adiabatic efficiency as a function of /S

and
Q = ZRT,—, (6)

S
where m = %, the specific heat ratio k, the gas compressibility factor (or Z-factor) Z, and
the gas constant R, are positive parameters. The suction temperature T will be assumed to
be constant in this work.

By (3) and (4), it follows that the inlet volumetric flow rate  must satisfy

RF<Q<qQY, (7)

where QY = Spin * surge and QU = Spax * stonewall. For each  within this range, the
adiabatic head H is bounded below by either Sy, or stonewall and bounded above by either
Smax or surge, see Figure 1. Let H*(Q) and HY(Q) be the lower and upper bound functions

in Figure 1, respectively. Then
H'Q)<H<H'(Q), Q"<Q<@".

Besides, the unit should have pressure limits, say p* and p¥ for suction pressure p,. Hence,
the feasible domain D" for a single centrifugal unit is
. v v v
DUt = {(v,ps,pd) Dpy <ps <py, VES —<vY Gh (—) <Pl<gv (—)} (8)
Ps Ps
where

QL

Lo_
V' = R (9)



QU

"= 7R (10)
GHa) = |1+ HY(ZRT)| " (11)
GU(q) = {I—F%TSHU(ZRTSQ)]H. (12)

Figure 3 shows the entire domain D" where the shadowed band in the middle corresponds

to the domain’s profile for p, fixed. This two-dimensional profile can be seen in Figure 4.
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Figure 3: Feasible domain D" for a single compressor unit

Let us point out a few properties of the domain D", First of all, by its definition (8), the

domain D" is bounded. The upper surface bounding the domain D" is
{0t 2),ps(t2),palt, 2)) = (t2,,GY(@)8) : ph <t <pl, VE<z<VV. (1)

When z is fixed, the above surface gives a straight line segment, i.e.,
{(0t),p:(),pa(t) = (t2,£,G"(x) ) : pE<t<pl}. (14)

Notice that, for all z, we get (v(0),ps(0),pq(0)) = (0,0,0); that is, all these lines pass through
the origin. The same is true for the lower bounding surface.

Second, as shown in Figure 4, D" is not a convex set. Note that arcs AD and BC are
convex, while DB and AC are concave. This non-convexity property is common for centrifugal

compressor units.



pd vs v as ps=687.5 (psia)
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Figure 4: Profile of domain D" for p, fixed

3.1.2 Fuel Cost Function for a Single Unit

Basically, we will be working in the (v,ps,pq) space. To find out how to run the compressor
station so as to achieve a given feasible value (v, ps, pg), we proceed to map that point back to the
original operating space by first computing H and @ from equations (5) and (6), respectively,
and then solving for S in (1).

The fuel cost g™t is given by

unit (Ua Ds) pd) = a%a V(’U, Ps, pd) € Dunlt, (15)

[Y
where « is a positive constant, which, for simplicity, is assumed to be equal to 1 throughout

this work. Hence, function g"™*(v, ps, pg) is implicitly defined, with equations (5), (6), (1), and

(2), on domain D", Each evaluation of ¢""*(v, p,, pg) has to solve the nonlinear equations

(1)-(2). The behavior of the function ¢"" (v, ps, pg), of course, depends on the characteristics

unit

of the compressor unit. However, it is typical that the fuel cost g increases with respect to

both the compressor ratio pg/ps and the volumetric flow rate @, or v/ps, and decreases with
unit(

respect to the suction pressure p;. The surface of function g v, Ds, Pg) When pg is fixed is

plotted in Figure 5.

3.1.3 Approximations of the Fuel Cost Function

As we have seen above, each evaluation of function g™ (v, p,, pg) involves solving a nonlinear
equation (1)—(2). This is not a desirable property by any means since most of the optimization

techniques require many function evaluations within their algorithmic framework. On the other



fuel cost g vs mass flow rate v and discharge pressure pd as ps=600 (psia)
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Figure 5: Fuel cost function g™ (v, p,, pg) for p, fixed

unit

hand, the function g"™", as shown in Figure 5, is smooth and has some monotonicity properties.

Hence, many researchers have suggested a simple function approximation of ¢"™*. The most

frequently used functions are polynomials of variables (v, ps, pg) of degree 1 or 2, i.e.,

g1(v, ps, pa) = A1v+ Bips+ Cipg+ D1, (16a)
92(v, ps, pa) = Agv® + Baups + Coupg + Dap? + Eapspy (16b)
+ F2p§ + GQ’U + H2ps + 12pd + J2.

To look for functions in categories other than polynomials of variables (v, ps, pq), we first notice
that, since g can also be seen as a function of v/ps and pg/ps, it might be advantageous to use

the following functions to approximate the function g""*:

v
93(U7 Ds, pd) = Ds <A3p_ + 33& + C3> (].6(3)

S S

v 2 v 2 v
94(U> Ds, pd) = Ps <A4 <_> + B4_Zﬁ + Cy <@> +Dy— + E4[ﬁ + F4> (16d)

Ds Ds Ds Ds Ps Ps
v
95(v, ps, pa) = v <A5— +Bs2e 4 Cs) (16e)
Ps s
2 2
96(v, ps; pa) = v (AG <£> + Bs <Iﬁ> + Cﬁilﬁ + Dﬁi + Eﬁlﬁ + Fs) (16f)
Ds Ps Ds Ps Ds Ds

In preliminary testing we have compared each of these approximation functions to the fuel

unit

cost function ¢g"™". The maximum relative approximation errors for the unit shown in Figures 1

and 2 with p, ranging between 60-800 (psia) are displayed in Table 1.



Maximum relative

Function error (%)
g1 66.15
g0 57.60
93 66.15
ga 5.85
gs 10.06
g6 2.67

Table 1: Evaluation of approximation functions

As can be seen, function gg fits the fuel cost function g"Mi*

very well. Function g4 is also
good. Function g5 is good as it takes a more simple form than gs and g4. We also observed
that go fits the ¢"™* much better than g5 in most of the domain D"™* and within these part
it can be as good as gg. The large maximum relative error of g is due to its bad behavior in a
very small part of the domain, typically near the boundary. For the rest of our study, we use

function gg as an approximation to the cost function ¢g"™t.

3.2 Compressor Stations with Identical Parallel Units
3.2.1 Feasible Domain for a Station

Now, let us consider a compressor station with N parallel identical units. Let (v, ps, pq) be the
mass flow rate, suction pressure, and discharge pressure for the station, respectively. We assume
here the suction and discharge pressures of the station are the same as those of the individual
units in the station. However, the mass flow rate v through the station will be equally divided
to pass through the units which are selected to run. Hence, if only one unit is selected to run,
then the feasible domain, denoted as D', is the same as the feasible domain D" for a single
unit which is represented in (8). When r units are selected to run, 1 < r < N, then the feasible

domain, denoted by D" is

D" = {(U,ps,pd) 2 (v/r,ps,pa) € Dl}. (17)

Suppose that at least one unit in the station must be run; the whole feasible domain D of
the station is thus the union of D" N
D=|]JD" (18)
r=1
The domain D of a station with 4 identical units is shown in Figure 6, where the shadowed
area in the middle represents its profile when p; is fixed. This profile is shown in Figure 7.
Although it depends on the characteristics of the units installed in the station, as we have
seen, the domain D of the station shown in the above figures is connected. Here we shall give

a necessary condition for D to be connected.



pd vs v and ps at station with 4 units (the domain D)
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Figure 6: Feasible domain D for a station with 4 parallel units

Lemma 1 If the feasible domain D of a station with identical parallel units is connected, then

where QY and QU are the minimum and mazimum volumetric flow rate of the units, respectively.

Proof: We first note that, by the definition (8), D' = D" is connected. For any r: 1 <
r < N, by (17), D" is an affine image of D'; thus, D" is connected.

Suppose that D is connected. By (18), there is an 7 > 1, such that D! N D" is nonempty.
Hence, there exists a triple value (v,ps,pq) € D' N D". By (8), we get

vi< X<yl yl< P <y

Ps Ds
Thus, rVE < p% <VY jie.,
VU

s S W

Since r > 1 and VV/VE = QV/QL, we get
U

% >9,

and the proof is complete. [ |

It can be seen from these figures that domain D" is obtained by extending domain D' r

times in the direction of v. Hence, it has the same properties as D"t does.

10



pd vs v as ps =675 (psia)
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Figure 7: Profile of domain D for a station with 4 parallel units

3.2.2 Minimum Fuel Cost Function for a Station

For some values (v,ps,pq) € D, Figure 7 clearly indicates that one may achieve them by
selecting a different number of units to run. However, fuel costs could be different among these
selections. This is because changing the number of running units changes the inlet volumetric
flow rate, and so changes the adiabatic efficiency for each running unit. Figure 8 shows the fuel
costs for a 4-unit station obtained by running 1, 2, 3, or 4 units separately.

Let R be the set of feasible values of r for a given (v, ps,pg) € D, i.e.,
R = {r:risinteger ,1 <r <N, (v,ps,pq) € D"}.
The following result on R can be easily verified.

Proposition 1 For any (v, ps,pq) € D, if r1,72 € R, then, for any integer r with 1y < r < ro,

we have v € Ry p, pa)-

The above proposition implies that, for any (v,ps,pg) € D, the set R is an interval of
integers. When the station variables are given as (v,ps,pq) € D, and the number of units
selected to run is r € R, the suction and discharge pressures for each running unit are p; and
pd, respectively, while the mass flow rate through each unit is v/r. Hence, the fuel consumed
by each running unit is equally g™ (v/r, ps, pg). Since r units have been selected to run in the
station, the total fuel consumed by the station is 7¢"™*(v/r, ps, pg). The minimum fuel cost is
thus

9(v,ps, pa) = min {rg""" (v/r,ps, pa)} , (19)

11



fuel cost g vs mass flow rate v and discharge pressure pd as ps=600 (psia)
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Figure 8: Fuel cost by running different numbers of units for a station with 4 parallel units

where ¢""* (v /7, ps,pq) is given by (15). Hence, the value of the minimum fuel cost function
g(v,ps,pq) is the solution of the above integer program with a single integer variable r. Figure 9
plots the function g as p; is fixed for a 4-unit station.

The surface of the minimum fuel cost function g may or may not have jumps. It depends on
the characteristics of the units in the station. In this example, it is mostly continuous except
at the boundary of D? which is in D'. Compare Figure 9, which shows the minimum fuel cost
function, with Figure 8, which shows the fuel cost for different values of 7.

As we have shown in this section, the domain D of the station is non-convex and the
minimum fuel cost function g of the station is nonlinear and possibly discontinuous. These are
the attributes that make the overall optimization problem (minimizing the fuel cost function

throughout the entire system) very difficult.

4 The Fuel Cost Minimization Problem

In the previous section, we discussed in detail the mathematical model of compressor units
and stations. In this section we now focus on the fuel cost minimization problem. We first
state the modeling assumptions, and then present the mathematical model of the optimization
problem. As we have seen in Section 3, the non-convexity of domains D and the non-convexity
of function g(v,ps,pg) (both referring to compressor stations) make the problem hard to solve.
Moreover, we must also deal with pipe flow constraints (defined for every pipeline), which are
also nonlinear and define a non-convex set. Since solution methodologies for general nonlinear

and non-convex optimization problems are not tailored for this particular problem, what we

12



minimum fuel cost g vs mass flow rate v and discharge pressure pd as ps = 600 (psia)
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Figure 9: Minimum fuel cost as a function of v and p, for a station with 4 parallel units

are interested in is the special structure presented by this problem. In Section 4.2, we derive a
lower bounding procedure, in which a linear supersets D of the feasible domain D is developed
and a convex lower bounding function g of the minimum fuel cost function g is constructed.

4.1 Mathematical Model

We assume that the networks being considered consist of nodes, pipes, and compressor stations,
only.
The objective function of the problem is the sum of the fuel costs over all the compressor

stations in the network. This problem involves the following constraints:
(i) mass flow balance equation at each node;
(ii) gas flow equation through each pipe;
(iii) pressure limit constraints at each node;
(iv) operational limits in each compressor station.

The first two are also referred to as the steady-state network flow equations. We emphasize
that while the mass flow balance equations are linear, the pipe flow equations are nonlinear;
this has been well documented in [16]. For the medium and high pressure flows, when taking
into account the fact that a change in the flow direction of the gas stream may take place in

the network, the pipe flow equation takes the following form:
pi —p3 = culul®, (20)

13



where p; and po are pressures at the end nodes of the pipe, u is mass flow rate through the
pipe, « is a constant (o &~ 1), and the pipe resistance c¢ is a positive quantity depending on the
pipe physical attributes, and it is given by:

fL

c:Kd5

with K = (1.3305 x 10%)ZS,T. These parameters refer to:

gas compressibility factor

gas specific gravity

VA
Sy
T  average temperature (R), assumed constant
f  frictional factor

L length of pipe (miles)

d

inside diameter of pipe (ft)

The steady-state network flow equations can be stated in a very concise form by using
incidence matrices. Let us consider a network with n nodes, [ pipes, and m compressor stations.
Each pipe is assigned a direction which may or may not coincide with gas flow through the

pipe. Let A; be the n x [ matrix whose elements are

1, if j pipe comes out from i*" node;
a;; = —1, if j** pipe goes into i*" node;

0, otherwise.

Aj is called the node-pipe incidence matrix. Let A,, be the n X m matrix whose elements are

1, if i node is the discharge node of k* station,
A —1, if i*" node is the suction node of k" station,

0, otherwise.

A,, is thus called a node-station incidence matrix. The matrix formed by annexing A,, to the
right hand side of A; will be denoted as A, i.e., A = (4; A,,), which is an n x (I +m) matrix.
A network example with n = 10 nodes, [ = 6 pipes, and m = 3 stations is shown in Figure 10.

The nodes, pipes, and stations have been labeled separately. The matrices A; and A,, for

14
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Figure 10: An example of a simple network

this example are given by

o o o0 o0 0 O 1 0

1 0o 0 0 0 O -1 0

-1 0 0 0 0 0 0 1 1

o 1 0 0 0 O 0 -1 0

A= 0 -1 1 1 0 0 A, = 0 0 0
o 0 -1 0 0 O 0 0 O

0o 0 0 -1 0 O 0 0 0

0o 0 o0 o0 1 O 0 0 -1

0 0 0 -1 1 0 0 O

0 0 0 0 0 -1 0 0 0

These matrices have some special characteristics. To name a few, each row in matrix A;, for
example, corresponds to a node, and each column corresponds to a pipe in the network. In
addition, each column contains exactly two nonzero elements, one is 1 and the other —1, which

correspond to the two end nodes of the pipe.

Let u = (u,...,u)T and v = (v1,...,v,)" be the mass flow rate through the pipes and
stations, respectively, and w = (u”,v")?. Let p = (p1,...,pn)” be the pressure vector, where
p; is the pressure at the i-th node, and s = (s1,...,s,)" be the source vector, where s; is the

source at the i-th node. Component s; is positive if the node is a supply node, negative if it
is a delivery node, and zero otherwise. We assume, without loss of generality, the sum of the

sources to be zero,

n
Z S; = 0.
1=1
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The network flow equations can now be stated as the follows:

Aw =s
Al'p? = ¢(u)
where p? = (p?,...,p2)T ¢(u) = (¢1(u1), ..., ¢i(w))T, in which ¢;(uj) = cju;|u;|®.
Now suppose the source vector s is given satisfying the zero sum condition, and the bounds
pZ, pY of pressures at every node have been specified, the problem is to determine the pressure

vector p and the flow vector w so that the total fuel consumption is minimized. The model is

stated as follows:

Minimize F(w,p) = > gi(VksDks»Prd) (21a)
subject to Aw = I;:l (21b)
Alp? = ¢(u) (21c)

p € [p"p] (21d)

(Vk, Pks, Pkd) € Dy E=1,2,...,m (21e)

where vk, prs, and prq are the mass flow rate, suction pressure, and discharge pressure at the

k-th station. Note that:
(i) the feasible domains Dy, are non-convex;
(ii) the fuel functions g are nonlinear, non-convex and discontinuous;
(iii) the pipe flow equations (21c) define a non-convex set.

In general, a problem with these characteristics can be very difficult to solve. What we do
in this work is to exploit the structure of this problem and derive some model relaxations that
allow us to simplify the problem and to develop a lower bounding procedure. If this bound is
tight enough, it can be used to evaluate the quality of feasible solutions, i.e., how close a given
feasible solution is from a global optimal solution.

4.2 Model Relaxations

4.2.1 Relaxation of Compressor Domain

Recall from Section 3 that the domain D of a station is given by UY_; D", where

D" = {(”apmpd) : (U/T,ps,pd) € Dl};

i.e., D" is obtained by enlarging D' r times in the direction of v. Hence, by developing a

superset of D' and then enlarging it in the v direction, a superset D of the domain D can be
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obtained. Such a superset D is roughly equivalent to a relaxation of the integer constraint on
variable r.

As we have pointed out in Section 3, both the upper and lower surfaces bounding the domain
D' are formed with segments of lines originated from the origin. The contour (arc ACBD, when
ps fixed) of the boundary of domain D' is shown in Figure 4. Hence, construction of a linear
superset of D! can be carried out by first constructing a linear outer approximation of the
contour (arc ACBD) and then connecting the linear outer contour with the origin.

For sake of simplicity and to keep the model small, we have chosen this linear approximation
to consist of six hyper-planes. Our computational experience shows that this approximation
is good enough. Since we have assumed in Section 3 that arc AD is convex and arc BD is
concave, the linear outer approximation of arc ADB we have chosen is formed by three line
segments: the first one is simply the line segment AD, the second is the horizontal line passing
through the point D, and the third is the tangent line of the upper curve at point B. The
second and third lines shall intersect at some point F. The linear outer approximation of arc
ACB is similar; i.e., connect A and C first, make a horizontal line pass through C, and pick
the tangent line of the lower curve at point B, which intersects with the horizontal line at some
point E. By our convexity assumption on the contour of D', these 6 line segments AD, DF,
FB, BE, EC, and CA form a linear outer approximation of the contour. By connecting these 6
line segments with the origin, we get 6 planes. These planes together with another two planes,
Ps = psL and p; = psU, constitute a linear superset of the domain D'. The equations of these 6
planes, corresponding to the 6 line segments AD, DF, FB, AC, CE, and EB, respectively, take

the following form:
Py = aiv+ b;ps, 1=1,...,6, (22)

where a;, b;, are constants which can be calculated by the values of functions G* and GV at
points A, B, C, D, and the derivatives at point B; see equations (9)—(12) for the definition of
those functions.

For the domain D of a station with N parallel identical units, the linear superset D can
be easily constructed based on the linear superset of D!. To do this, we simply move the two
planes corresponding to line segments BE and BF in the direction of v until the new v value
of each point is exactly N times of its original v value. The other 6 planes together with these
two new planes form a linear superset D of domain D. More precisely, D consists of all the

points of (v, ps, pa), such that

Pk <ps <pY (23a)
and

pa < av +  bips (23b)
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the linear superset of the domain D

800

600

discharge pressure pd (psia)
S
o
o

x 10°

400 o

suction pressure ps (psia) mass flow rate v (Ibm/min)

Figure 11: Superset D of the feasible domain D (station with 4 parallel units)

Py < baps (23c)
pa < a3v/N  +  b3ps (23d)
Pe > aqv +  baps (23e)
pa > bsps (23f)
pa > agv/N  +  beps (23g)

where a;, b;, are the same constants as in equation (22). Note that ay = a5 = 0.

Figure 11 shows the linear superset D together with the domain D of a station with 4 units.
Its profile, with p, fixed, is given in Figure 12.

In the next section, we will investigate the properties of the minimum fuel cost function g

of a station and describe how to develop a convex lower bounding function g for g.

4.2.2 Relaxation of Cost Function

Recall from Section 3 that the minimum fuel cost function g(v, ps,pq) of the station is defined

as
9(v,ps,pa) = Igéi%{rg“““ (v/7, s, Pa), } (24)
where
R = {r:risinteger ,1 <r <N, (v,ps,pq) € D"}
v v Dd v
D" = {(v,ps,pd) cpl<p,<pl, VE<— <V GH(—) <=2 < GL(—)}.
TPs TPs Ds TPs
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profile of the linear superset as ps=640 (psia)
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Figure 12: Profile of D and D (station with 4 parallel units)

The idea we introduce to get a convex lower bound for function g is quite general. First, we

find a set of linear lower bounds of g, say,
I'(v,p5,pa) = a'v + bps + dpg+d° < g(v,ps,pa), i€,
where [ is an index set. Let
_ i
l(v,ps;pa) = I%X{l (v,ps,pd)} :
then we have

Z(U,ps,pd) < g(vapsapd)'

Classical theory of linear programming [6] shows that [ is convex. Therefore [ is a piece-wise
linear convex lower bound of ¢g. Figure 13 illustrates this idea in one dimension, in which an
arbitrary function z = f(z) of one variable = € [a, b] is plotted. To generate a set of linear lower

bounds of function z = f(x) on [a, b], the procedure is divided into the following steps:

Step 1: Grid Generation. By partitioning the interval [a,b], we generate a set of grid points

on the curve of the function z = f(x).

Step 2: Direction Selection. The second step is selecting a few directions (four directions

dy,ds,ds, and d4 have been selected in Figure 13).

Step 3: Along each direction, we minimize the function z = f(z). Since it is not always

guaranteed that the global minimization can be found for an arbitrary function, instead
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Generating linear lower bounds for function z=f(x)

44
a2

(0] a b
Figure 13: Generating linear lower bounds for an arbitrary function

of doing that we find the grid point at which the function z = f(z) achieves its minimum

along this direction among all the grid points generated in step 1.

Step 4: The line passing through the found grid point with the direction as its normal is thus
a linear (pseudo) lower bound (not exact lower bound because the minimization is taken
only over the grid points) of function z = f(z) on [a,b]. Four such linear bounds 1, l2, (3,
and [4 have been plotted in Figure 13, and their maximum [ is a convex (pseudo) lower

bound of function z = f(x) on [a, b].

A few remarks on the above procedure:

1. In the second step, the direction d; = (z;, z;) selected must have z; < 0. Otherwise, the

minimization in step 3 does not make any sense because we are generating a lower bound.

2. Without any more information (particularly about convexity) of the function, there is no
way to generate absolute but also good lower bounds. The above procedure will deliver a
piece-wise linear lower bound for any given function. Theoretically, as the number of the
grids generated in step 1 goes to infinity, this procedure could produce the best convex
lower bound, i.e., the convex envelope of the given function. The fact is, even with a
reasonable number of grid points and directions, the above procedure may also produce

a quite satisfactory result.

3. The above procedure is especially practical for functions of only a few variables. In our case
the cost function is defined over a three-dimensional space (mass flow, suction pressure,

and discharge pressure), so applying the proposed procedure is not too expensive.

20



5 Numerical Evaluation

In this section, we provide empirical evaluation of the proposed lower bounding procedure. To do
this, we construct three network examples based on network topologies commonly encountered
in practice. The data for the compressor stations is taken from some real-world instances. We
must note that at present, no data library of instances for this type of problems exists. So we
hope that this set of problem instances could become the starting point for building such a data
base, that would allow for testing other approaches and benchmarking.

In our numerical calculations, the following data are used through all the examples.

Gas: The gas is a mixture with a volumetric composition of 14% ethane, 85% methane, and 1%
nitrogen. The values of its parameters are isentropic exponent k = 1.287, compressibility
factor Z = 0.95, and gas constant R = 85.2(lbf-ft)/(Ibm-°R), and specific gravity S, =
0.6248.

Station: Stations consist of IV centrifugal compressor units. All the units used in examples are
identical. The fitted coefficients of equations (1) and (2) are given by Ay = 0.6824 x 1073,
Bp = —0.9002 x 1073, Cx = 0.5689 x 1073, Dy = —0.1247 x 1073, Ap = 134.8055,
B = —148.5468, Cp = 125.1013, D = —32.0965. The compressor limits for speed
(rpm) and volumetric flow rate (ft>/min) as defined in equations (3) and (7), respectively,
are given by Spin = 5000, Smax = 9400, Q¥ = 7000, and QY = 22000. The feasible
domain D of the stations is defined by (8), (17), and (18). The superset domain D
of D is defined by (23a)-(23g), where a = {0.0185,0,—0.0328, —0.0047,0,0.0096} and
b = {0.6778,1.4729,3.6853, 1.2332, 1.0620, 0.4921}. The fuel cost function ¢"™*(v,ps, pq)
for a compressor unit used is the approximation gg(v, ps, pg) given by (16f), where Ag =
0.0266, Bs = 38.1969, Cg = —3.4865, Dg = 2.3791, Eg = 439.7503, Fg = —460.6632. The

minimum fuel cost function g(v, ps, pg) for a compressor station is defined by (24).

Pipe Flow Equation: For the pipe flow constraint (20) we assume the average temperature
T = 459.67 + 60(°R), which gives K = 4.1040 x 10”.

For the objective function relaxation we used 27 directions, defined by (d,,d,,,d,,, —1),
where d,, d,,,d,, € {—1,0,1}, are the components in the v, pg, and p, directions, respectively.
The four (-1) components correspond to the direction in the field function g(v, ps, pq).

With the relaxations on the minimum fuel cost function ¢ (v, ps, pg) and the feasible domain

D, we consider four different problems related to the original problem (21a)-(21e), namely:
P1: the original problem itself;

P2: the original problem with relaxation of the function g(v,ps,pg) only;
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P3: the original problem with relaxation of the domain D only;

P4: the original problem with relaxations both of the domain D and the function g(v,ps,pq)-

It is clear that an optimal solution to P2, P3, or P4 renders a lower bound for the original
problem P1. The motivation for defining these four problems is to assess the performance of
the lower bound function and domain D relaxations, both jointly and individually. To achieve
this, we use three network configurations. The first two are relatively small, so we were able
to solve all P1-P4 for each example by exhaustive enumeration over a finite grid. The third
example is a larger and more complex network, so optimal solutions by exhaustive enumeration
is very impractical. We resorted to finding a solution to a relaxation of P4, which still preserves

the lower bound property.

5.1 Example 1

The first example is a 6-node, 3-pipe, 2-compressor network. The arcs form a straight path
(called a gun-barrel network in the pipeline world) as shown in Figure 14. There is a supply
node (node 1) and a delivery node (node 6) with source values s; = 4600 and sg = —600
(MMSCFD), respectively. For all other nodes s; = 0. The pressure ranges for each node is
[600,800] (psia). The set of pipes is given by {(1,2),(3,4),(5,6)}. For each pipe, length=>50
(miles), inside diameter = 3 (ft), and friction factor = 0.0085. The set of compressors is given

by {(2,3),(4,5)}. Each compressor station has 5 centrifugal units in parallel.

Cs1 Cs2
—»@—>—®-.-@ > @‘.‘@_’_@_"

Figure 14: Example 1 network

The flow rates through all pipes can be determined before hand, so only the pressure vari-
ables need to be found. Since the problem size is relatively small, problems P1, P2, P3, and
P4 can be solved by exhaustive search. We built a grid for the pressures using a discretization
size of Ap = 3 (psia), and solved problems P1-P4 using Matlab [5]. The results are presented
in Table 2.

As can be seen, the relative gap between P1 and P4 is 23.5%. We also observe that that
the gap difference between P1 and P2 is smaller than the gap difference between P1 and P3.
This implies than the relaxation of the objective function does a better job than the relaxation
of the compressor domain. Similar results are observed when we compare the gap difference

between P3 and P4 to the gap difference between P2 and P4.
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Problem  Solution (x10°)

P1 2.140172
P2 2.112003
P3 1.824072
P4 1.732357

Table 2: Example 1 results

5.2 Example 2

The second example is a simple tree network with 10 nodes, 6 pipes and 3 compressor stations,
as depicted in Figure 15. The network includes one supply node (node 1) s; = +800 and five
delivery nodes (nodes 5, 6, 7, 9 10), with s5 = s9 = —100, s = s7 = —150, and s19 = —300. The
pressure lower limits are given by plL = p% = 600, p§ = pé = p6L = p% = ng = 450, p4L = 500,
pt = ply = 400 and p} = 550. The pressure upper limit is p{’ = 700 and p{ = 800, for all i > 1.
The set of pipes is {(2,3), (4,5), (5,6),(5,7),(8,9), (9,10)} with length = 50, inside diameter =
3, and friction factor = 0.0085, for all pipes. The compressor stations {(1,2),(3,4),(3,8)} all

have five centrifugal units operating in parallel.

B+

—=-0)

cs1 O

Figure 15: Example 2 network

As in the previous example, the flow rates through all pipes and stations can be determined
during preprocessing, thus leaving us with the pressure variables only. We again set up a Matlab
program that would solve problems P1-P4 by an exhaustive method over a grid of size Ap = 3.

Table 3 displays the results.

Problem  Solution (x10°)

P1 2.699550
P2 2.515808
P3 2.580367
P4 2.350785

Table 3: Example 2 results

23



As we can see, the relative gap between P1 and P4 is 14.8%. However, note that this time the
gap difference between P3 and P1 is smaller than the gap difference between P1 and P2, which
means that the relaxation of the compressor station domain does better than the relaxation of
the objective function. This is contrary to what we had observed in Example 1. One explanation
for this is that, for both problems we are using the same number of underestimating planes
(nine) for the objective function relaxation, but for Example 1, the pressure ranges are much
narrower, which makes the function relaxation have a better fit. Note that the compressor

domain relaxation is not affected by the change in the pressure ranges.

5.3 Example 3

The third example (depicted in Figure 16) is a more complex network. There are 48 nodes, 43
pipes, and 8 stations. Moreover, it contains several loops so the flow rates cannot be determined
before hand.

Figure 16: Example 3 network

The following three tables list the sources at all the nodes, the pipe configuration, and the
station configuration. The pressure limits at all the nodes are [50,1500], except for nodes 1
([900,1300]) and 3 ([990, 1150]). The source values are given in Table 4. The pipe data, nodes,
length (L), inside diameter (d), and friction factor (f), are shown in Table 5. The compressor
station set is {(2,9), (8,10),(12,13), (20, 21), (21, 22), (20, 48), (24, 46), (48,25)}. Each station
has five centrifugal units running in parallel.

For this example, the presence of loops implies that flow rates are not uniquely determined

and thus form part of the problem decision variables, along with the pressure variables. In ad-
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7 Si 7 Si 7 Si 7 Si
1 +600 || 13 0]l 256 -B50 || 37 0
2 0| 14 0| 26 01 38 -30
3 4200 || 15 +100 || 27 -50 || 39 -30
4 +200 | 16 -50 || 28 0 | 40 -30
5 4200 || 17 01l 29 0] 41 -30
6 4200 || 18 100 || 30 -30 || 42 -40
7 4200 || 19 0] 31 -30 || 43 -40
8 0 20 +450 || 32 0| 44 -40
9 -400 || 21 01l 33 -30 || 45 -100
10 0| 22 0| 34 -30 || 46 -200
11 -100 || 23 -200 || 35 -30 || 47 -180
12 01| 24 0|l 36 -30 || 48 0

Table 4: Node source values for Example 3

dition, the size of this instance leaves the possibility of computing exact solutions by exhaustive
enumeration out of question. Since optimal solutions for problems P1-P4 were not possible to
obtain, we found some upper and lower bounds for some of these problems, as shown in Table 6.
An upper bound is computed by finding a feasible solution for the corresponding problem. For
problem P4, we computed a lower bound by using a Lagrangian relaxation technique where
the pipe leg constraints are relaxed (see Rios-Mercado [12] for details). This relaxation was
implemented in GAMS [1], an algebraic modeling software package with interfaces to several
optimization libraries.

As we can see, the relative gap between the two bounds (upper bound for P1 and lower
bound for P4) is very large (about five times larger). In order to explain this big difference
between the bounds, we first observe that the Lagrangian relaxation approach for P4 is doing
a very good job at bounding P4 providing a relative gap of less that 0.5% with respect to its
upper bound. Now, assuming that the upper bound for P3 is relatively close to the optimal
value, the solution to P3 would be about three times as big as the solution to P4. This suggests
the convex function relaxation g might not be a good approximation of the objective function
g. To investigate this further, we display in Table 7, different objective function values achieved
at the individual compressor stations. In the first column, we show the minimum value of g
within each individual compressor station domain (gmin). In the second column, we show the
value the convex under-estimator function g takes in a given compressor domain, after solving
the P4 Lagrangian relaxation. The third column, shows the value of objective function g, after
a feasible solution for P3 has been computed.

We first observe that the values in the first two columns are very similar. This implies that
the convex under-estimator g is indeed doing a good job of approximating the true g within

each individual compressor station. On the other hand, we also observe that the difference in
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Pipe L d f Pipe L d f
(1,2) 10.1015 1.5 0.0108 || (30,31) 5.0507 1.0 0.0130
(3,4) 4.5175 1.5 0.0108 || (31,32) 4.5175 1.0 0.0130
(4,7) 5.1508 1.5 0.0108 || (32,33) 4.5175 1.0 0.0130
(5,6) 5.1508 1.0 0.0130 || (33,44) 4.5175 1.0 0.0130
(6,7) 5.1508 1.5 0.0108 || (29,34) 5.0507 1.0 0.0130
(7,8) 5.1508 2.0 0.0090 || (34,35) 4.5175 1.0 0.0130

(9,11) 10.1015 1.5 0.0108 || (35,36) 4.5175 1.0 0.0130

(10,11) 5.1508 2.0 0.0090 || (36,43) 4.5175 1.0 0.0130
(11,12) 10.1015 3.0 0.0085 || (28,37) 5.0507 1.0 0.0130
(13,14) 10.1015 1.5 0.0108 || (37,38) 5.0507 1.0 0.0130
(14,19) 10.1015 1.5 0.0108 || (38,39) 5.0507 1.0 0.0130
(15,19) 10.1015 1.5 0.0108 || (39,40) 5.0507 1.0 0.0130
(19,20) 10.1015 1.5 0.0108 || (40,41) 5.0507 1.0 0.0130
(13,17)  10.1015 2.0 0.0095 || (41,42) 5.0507 1.0 0.0130
(17,16) 10.1015 1.5 0.0108 || (43,42) 45175 1.0 0.0130
(17,18) 10.1015 2.0 0.0095 || (44,43) 4.5175 1.0 0.0130
(18,20) 10.1015 2.0 0.0095 || (45,44) 83299 1.5 0.0108
(25,26) 10.1015 1.5 0.0108 || (45,47) 5.7143 2.0 0.0090
(26,27) 7.1429 1.5 0.0108 || (46,45) 11.5175 2.0 0.0090
(26,28) 10.1015 1.5 0.0108 || (22,23) 11.5175 2.0 0.0090
(28,29) 5.0507 1.0 0.0130 || (23,24) 11.4286 2.0 0.0090
(29,30) 4.5175 1.0 0.0130

Table 5: Pipe data for Example 3

the gaps between P3 and P4 is due to the difference between the values of columns 2 and 3
in this table. This stems from the fact that an individually good solution for a compressor
station is not necessarily a good solution for the overall problem, when the contributions of all
the compressors are taken into account. The non-convexity of the set defined by the pipeline

constraints obviously play a very important practical role here.

6 Conclusions

We have presented a study of the mathematical structure of compressor stations in natural

gas transmission networks. We have analyzed several important properties of both the set of

Problem Lower bound (x10°%) Upper bound (x10°)

P1 - 25.69718
P2 - -

P3 - 14.98100
P4 4.53535 4.55604

Table 6: Example 3 results
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Station  gmin g g
(2,9) 7.05 7.06 11.71
(8,10) 11.18 11.19 16.13

(12,13) 1244 1245 72.50
(20,21)  3.18  3.37 10.13
(21,22)  3.18  3.37 11.36
(20,48) 247 276  9.79
(24,46) 247 261  6.99
(48,25) 246 276 1121

Table 7: Objective function values among stations

feasible operating conditions and the associated cost function.

The fuel cost minimization model has been presented. We have highlighted why this problem
is difficult to solve (namely the nonlinearity, non-convexity, and discontinuity in the objective
function, and the non-convexity of the feasible set). We have proposed and derived two model
relaxations that allowed us to develop a lower bounding scheme. One relaxation consisted of
developing linear supersets D of the feasible domains D. The other is the derivation of piece-
wise linear under-estimator functions g of the minimum fuel cost functions g for the compressor
stations.

The proposed procedures have been tested on three test examples made from real-world
data. For the first two examples, we have found lower bounds with relative gaps of 23% and
15%, respectively. These gaps were with respect to optimal solutions of the problems. The
results for the small problems show that the proposed relaxations are in fact good. For the
third example, the relative gap was very wide. We observed that the convex under-estimator
function was indeed a very good approximation to the function within each of the compressor
stations. However, when optimizing over the complete domain, the overall bound was not good
due mainly to the non-convexity of the set of feasible solutions and to the presence of multiple
local optima in the fuel cost function g.

As is well known, techniques for finding global optimal solutions to non-convex problems,
such as branch and bound, rely heavily on the capacity of generating good lower bounds. Further
research in this area is needed for handling larger instances more effectively. A transient, or
time dependent, model is another important problem that to date has not been adequately
addressed from the optimization perspective.

We should also mention the need for having a library of data sets, that would allow more
uniform algorithm testing and benchmarking among researchers and practitioners working in

this area.
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