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Abstract

The problem discussed in this paper is motivated by the new recycling directive WEEE

of the EC. The core of this law is, that each company which sells electrical or electronic

equipment in a European country has the obligation to recollect and recycle an amount

of returned items which is proportional to its market share. To assign collection stations

to companies, in Germany for one product type a territory design approach is planned.

However, in contrast to classical territory design, the territories should be geographi-

cally as dispersed as possible to avoid that a company, respectively its logistics provider

responsible for the recollection, gains a monopoly in some region.

First, we identify an appropriate measure for the dispersion of a territory. Afterwards,

we present a first mathematical programming model for this new problem as well as a

solution method based on the GRASP methodology. Extensive computational results

illustrate the suitability of the model and assess the effectiveness of the heuristic.

Keywords: Heuristics, Optimization, Logistics, Recycling, Territory Design
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Introduction

In 2003, the new recycling directive WEEE of the EC came into force, see (WEEE, 2003).

WEEE stands for: waste electrical and electronic equipment. The core of this law is, that

each company which sells electrical and electronic equipment in a European country has the

obligation to recollect and recycle an amount of returned items which is proportional to the

market share of the company in that country, and that this should be made at no cost for

the last owners. To facilitate that approach, regional collection stations are set-up where the

inhabitants can return their items free of cost at the end of their lifetime. If a collection device,

usually a container or iron-barred box, at a station is full, one of the companies has to pick up

the device and provide in exchange an empty device. In the directive, electric and electronic

equipment is classified into ten categories. In 2005, this directive was transferred into German

and Spanish law. Even if the law allows the individual collection and recycling of WEEE

generated by each producer or distributor, it favors that companies engage in a common

corporation (also called collection scheme) to jointly collect an amount of WEEE equal to

the sum of their corresponding market shares. In Germany and Spain, the coordination and

supervision of the collection is done by a central registry which also determines the market

share of all companies that sell equipment in the respective country.

In the German recycling system, collection stations (which are operated by the local

municipalities) are currently assigned dynamically to corporations. That is, whenever a col-

lection device is full, the corporation that should perform the waste treatment is determined

at short notice (based on the market share of the corporation, the overall amount of returned

items, and the amount it has collected so far) and has to pick up the collection device within

48 hours. This system currently covers all product categories. However, for one group of prod-

ucts, the so-called white goods (i.e., dish-washers, dry-cleaners, washing machines, fridges,

etc.), a territory design is in preparation. Here, each collection station should be statically

assigned to a specific corporation for a given period of time. Whenever a collection device

is full, always the same corporation is responsible for the waste treatment during that time.

Essentially, the assignment of stations to corporations should be made such that the average

amount of returned items is proportional to the market share of the corporation. Moreover,

the stations assigned to a corporation should be evenly dispersed all over Germany to avoid

a monopolistic concentration. Although this is from a logistics point of view not a satis-

factory solution, another reasoning was predominant. Namely, before the implementation

of the law a lot of smaller regional institutions and logistics providers were involved in the

re-collection and recycling process. The legal authorities feared that these entities would be

pushed out of the market if the territories were to be designed in the classical sense. Because

in that way, corporations could minimize their administrative overhead by sub-contracting

only a few larger providers that cover their whole territory. With dispersed territories this

is (more) unlikely. Note that this criterion is exactly the opposite of the usual compactness

and contiguity criteria of classical territory design problems, see (Kalcsics et al., 2005).
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In this paper we will focus on the territory design collection system planned for the white

goods in Germany. To the best of our knowledge, this specific problem has not yet been

studied. Although a closely related problem has been addressed recently by (Grunow and

Gobbi, 2008), which study the problem of assigning collection stations in Denmark to collec-

tion schemes which perform the waste treatment for the producers, some of their assignment

criteria differ considerably from our problem. Within the context of the WEEE and its im-

plementation, (Queiruga et al., 2008) discuss the location of recycling plants in Spain and

present a PROMETHEE based approach to provide a selection of good alternatives for po-

tential locations. Recycling systems found in other European countries are, e.g., described in

(Hischier et al., 2005) (Switzerland) and (Turner and Callaghan, 2007) (UK). For a general

overview on territory design models and an introduction into the topic the reader is referred

to (Kalcsics et al., 2005), (Kalcsics, 2006), and references therein.

The remainder of the paper is organized as follows. In the next section we give a formal

description of the problem, discuss appropriate measures for the dispersion of territories, and

present a mathematical model. Afterwards, we introduce a GRASP framework for solving

the problem. We present three different heuristics for constructing initial solutions as well

as neighborhoods for the local search phase. In the subsequent section we give extensive

computational results illustrating the suitability of the heuristic. The paper concludes with

a summary and an outlook to further research.

Problem Description and Mathematical Model

In this section we will first describe the basic components, restrictions, and goals of the

problem before discussing different dispersion measures and the mathematical model.

White goods are further subdivided into devices that have freezing capabilities and those

that do not (denoted products of type 1 and type 2, respectively). This distinction is due to

the toxic cooling solvents contained in the former products that require a special treatment.

It is expected that for reasons of efficiency the 250 companies that currently distribute white

goods in Germany will join into a few larger corporations that will arrange and carry out the

recollection and recycling of the WEEE. The market share of each corporation is the sum of

the market shares of its companies and is given for both product types separately.

To facilitate the territory design approach, Germany is divided into approximately 450

basic areas (the division is mainly based on existing administrative districts, like cities or

counties). As there are no reliable estimates on the number of returned devices yet, the

average amount of WEEE of a basic area is assumed to be proportional to the number of

households. Moreover, based on the logistic effort to perform the recollection and recycling

(measured by means of suitable performance indicators), all basic areas are classified into

three groups: good, mediocre, and bad. A good basic area is for example one, which has

a relatively small geographic extent, contains few collection stations, and possesses a good
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infrastructure. The motivation for this classification is that the actual costs for the recol-

lection and recycling should also be (more or less) proportional to the market shares of the

corporations. As the market shares may differ for the two product types, it is allowed to split

basic areas, i.e., for some basic areas the corporation that collects products of type 1 is not

the same as the one that is responsible for the type 2 products.

The task is now to assign basic areas fully or partially to corporations such that

1. for both product types all basic areas are assigned to a corporation;

2. for each corporation, the total number of households of all basic areas assigned to the

corporation is proportional to its market share for each of the two product types;

3. the good, mediocre, and bad basic areas are evenly distributed among the corporations

relative to their market shares;

4. the number of split basic areas is not too large;

5. for each corporation, all basic areas that are fully or partially assigned to the corporation

are as dispersed as possible.

The set of all basic areas assigned to a corporation for at least one of the two product

types is called a territory. The current solution method intended by the central registry

assigns basic areas to corporations in a greedy-like fashion such that number of households is

proportional to the market share of each corporation. If and how the other criteria are taken

into account is not known.

Remark. Although not explicitly considered so far in the planning, an interesting additional

criterion would be to look at the “value” of the waste returned, as this value may vary among

regions due to different “habits” of wear and tear. Analogously to the logistics indices we

could determine for each basic area a quality index and then also consider this criterion for

the distribution of basic areas among corporations.

Before discussing appropriate measures for the dispersion of territories, we introduce some

notation. Denote V = {1, . . . , n} the set of basic areas. Let wi be the number of households

of basic area i ∈ V and W =
∑

i∈V wi. Denote by V1, V2, and V3 the set of good, mediocre,

and bad basic areas. Use q ∈ Q = {1, 2, 3} as an index for the respective sets and denote

qi ∈ Q the logistics index of basic area i. Let dij be the distance between basic areas i

and j, i, j ∈ V . We denote C = {1, . . . ,m} the set of corporations and MSp
k the market

share of corporation k ∈ C for product p = 1, 2. A solution is represented by a collection

X = {Xk}k∈C with Xk ⊂ V . Xk represents the subset of basic areas that define the territory

of corporation k and Xk = X1
k ∪ X2

k , where Xp
k denotes the subset of basic areas assigned

to k for product p = 1, 2. If basic area i ∈ V is non-split we have i ∈ X1
k ∩ X2

k , for some k;

otherwise, there exist k1, k2, k1 6= k2, with i ∈ X1
k1

∩ X2
k2

. When no splitting is allowed, we

have Xk = X1
k = X2

k , for all k ∈ C, so that X = {Xk}k∈C defines a partition of V .
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Measures for Dispersion

With respect to the desire for well dispersed territories, unfortunately there is no clear defi-

nition of dispersion. As we did not find any literature on dispersion measures for territories,

we decided to facilitate an approach from obnoxious location theory, see (Erkut and Neuman,

1991): We measure the dispersion of a territory by means of the pairwise distances of all basic

areas assigned to that corporation for at least one of the two products. The goal is then to find

a solution that maximizes the dispersion. Now, two questions arise. Firstly, as we have two-

dimensional basic areas, how do we measure distances, and secondly, how to aggregate the

pairwise distances. Concerning the first question, we decided to use the Euclidean distance

between the polygonal representations of the basic areas to determine the pairwise distances.

In that way, neighboring basic areas have distance zero. With respect to the second question,

in the literature, usually either the sum of distances or the minimal distance is considered. To

decide whether this approach yields suitable results and which of these two functions leads to

better dispersed territories, we did some computational tests comparing the solutions visually

as well as numerically. For a solution X = {X1, . . . ,Xm}, the first objective, called median

objective, is made up of the sum over all pairwise distances: f(X) =
∑

k∈C

∑
i,j∈Xk

dij . The

second objective, denoted as center objective, determines over all corporations the smallest

pairwise distance within a territory: g(X) = mink mini,j∈Xk
dij . The corresponding solutions

are called maxisum and maximin, respectively.

A visual comparison between two solutions for a problem with 100 basic areas (German

zip code areas), six corporations, no splitting allowed, and identical parameters is given in

Figure 1. On the left-hand side (right-hand side) we depict the maxisum (maximin) solution.

We observe that the maximin solution yields well dispersed territories which are also much

better than the maxisum solution which tends to build clusters of basic areas assigned to the

same corporation. For other problem instances, similar outcomes can be noticed.

[Figure 1 about here.]

We also compared the two objectives numerically. For that, we denote with X∗

sum and

X∗

min the territories of the optimal solutions obtained by maximizing f(·) and g(·), respec-

tively. We took five different problem settings: 30 and 40 basic areas, and 3, 4, and 5

territories (five instances each), and determined the corresponding optimal solutions with

respect to the two objectives. First we compare the different solutions with respect to the

median objective. For each instance, we computed the ratio f(X∗

min)/f(X∗

sum) between the

median objective value of the maximin and maxisum solutions. Then we calculated the

minimal (Min), maximal (Max), and average (Avg) ratio over all instances with the same

parameter setting. The results are given in Table 1 under the heading “Median objective”.

[Table 1 about here.]

We observe that, with respect to the median objective, the maximin solutions perform quite

well compared to the corresponding maxisum solutions. On average, their objective values
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are between six and ten percent below the optimal ones for the median objective. The reverse,

however, is not true. The right hand side of the table gives the results when we compare the

different solutions with respect to the center objective. The ratio in this case is computed

as g(X∗

sum)/g(X∗

min). In terms of the center objective, maxisum solutions perform poorly

compared to the maximin solutions. Therefore, we decided to use the smallest pairwise

distance, namely the center objective, and maximize this value to obtain well dispersed

territories. Note that a similar observation was made in (Erkut and Neuman, 1991).

Mathematical Model

Next, we will state a first mathematical model for the problem. For that we need four sets

of decision variables. For i, j ∈ V , k ∈ C, and p = 1, 2, let

xp
ik =





1 if basic area i is assigned to corporation k for product p,

0 otherwise.

yik =





1 if area i is assigned to corp. k for at least one of the two products,

0 otherwise.

zijk =





1 if i and j are both assigned to k for at least one of the two products,

0 otherwise.

ei =





1 if area i is assigned to different corporations for products 1 and 2,

0 otherwise.

As the zijk-variables are symmetric with respect to i and j, i.e., zijk = zjik, we can assume

w.l.o.g. that i < j. The mathematical model is now as follows:

max u

s.t.
∑

k∈C

xp
ik = 1 ∀i ∈ V, p = 1, 2 (1)

∑

i∈V

wi x
p
ik ≥ W (1 − τ)MSp

k ∀k ∈ C, p = 1, 2 (2)

∑

i∈V

wi x
p
ik ≤ W (1 + τ)MSp

k ∀k ∈ C, p = 1, 2 (3)

∑

i∈Vq

xp
ik ≥ |Vq| (1 − β)MSp

k ∀k ∈ C, p = 1, 2, q ∈ Q (4)

∑

i∈Vq

xp
ik ≤ |Vq| (1 + β)MSp

k ∀k ∈ C, p = 1, 2, q ∈ Q (5)
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x1
ik − x2

ik ≤ ei ∀i ∈ V, k ∈ C (6)

x2
ik − x1

ik ≤ ei ∀i ∈ V, k ∈ C (7)

∑

i∈V

ei ≤ S (8)

u ≤ dij zijk + D(1 − zijk) ∀i, j ∈ V, i < j, k ∈ C (9)

yik ≤ x1
ik + x2

ik ∀i ∈ V, k ∈ C (10)

xp
ik ≤ yik ∀i ∈ V, k ∈ C, p = 1, 2 (11)

yik + yjk ≤ 1 + zijk ∀i, j ∈ V, i < j, k ∈ C (12)

zijk ≤ yik ∀i, j ∈ V, i < j, k ∈ C (13)

zijk ≤ yjk ∀i, j ∈ V, i < j, k ∈ C (14)

xp
ik, yik, zijk ∈ {0, 1} ∀i, j ∈ V, k ∈ C

Constraints (1) enforce that each basic area is assigned to a corporation for each of the

two products. To ensure that the number of households is proportional to the market share

for both products we use Constraints (2) and (3), where τ ∈ [0, 1] has to be chosen suitably.

In an analogous fashion, the following two sets of constraints enforce a fair distribution of

good, mediocre, and bad basic areas to corporations. Although allowing split basic areas, we

bound their number from above by a predetermined value S using Constraints (6), (7), and

(8). Note that we could alternatively add this criterion to the objective function, resulting in

a bi-objective formulation. Finally, Constraints (9) through (14) together with the objective

function model the center objective, where D = maxi,j dij . (Formally we have zijk = yik · yjk

and yik = 1 iff x1
ik + x2

ik ≥ 1.) Note that, in principle, we can drop the y-variables in the

modeling of the objective function.

We call this problem the Maximum Dispersion Territory Design Problem (MaxD-TDP).

For the currently foreseen problem size (450 basic areas and 6-7 corporations) the model

contains over 600 000 binary variables as well as constraints. Note that the MaxD-TDP

is NP-hard, since we can reduce the Partition Problem to it (set C = {1, 2}, S = 0,

MSp
k = 0.5, τ = 0, β = 1, and dij = 1).

Remark. With respect to the aforementioned “value” of the waste returned, we would have

to include constraints that are analogous to the constraints to enforce a fair distribution of

good, mediocre, and bad basic areas to corporations.
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Solving the Maximum Dispersion Territory Design Problem

with GRASP

In this section we propose a GRASP heuristic for solving the MaxD-TDP. GRASP (Greedy

Randomized Adaptive Search Procedure) is a multi-start metaheuristic for combinatorial

problems, in which each iteration consists basically of two phases: construction and local

search. The construction phase builds a (feasible) solution, whose neighborhood is investi-

gated until a local minimum is found during the local search phase. The best overall solution

is kept as the result. It is a well-known metaheuristic that captures good features of both

pure greedy algorithms and random construction procedures, see (Feo and Resende, 1995).

It has been successfully used for solving many combinatorial optimization problems and, in

particular, applied to some commercial territory design problems, see (Rı́os-Mercado and

Fernández, 2009; Caballero-Hernández et al., 2007; Rı́os-Mercado, 2007).

[Figure 2 about here.]

Algorithm 2 illustrates a generic GRASP implementation in pseudocode. The algorithm takes

as an input an instance of the MDTDP, the maximum number of GRASP iterations, and

the quality parameter α for building the restricted candidate list (RCL). In the following, we

first discuss different construction heuristics before turning to the local search phase.

Construction Phase

For the construction phase of the GRASP heuristic we consider three different schemes to

build initial solutions. Two of them (Procedures 1 and 1R) try to assign basic areas that are

relatively close to each other to different corporations. The third one (Procedure 2) is based

on the complementary idea of trying to assign to the same corporation basic areas that are

relatively far away from each other. These procedures are now described in detail.

Construction Procedure 1

After sorting the pairwise distances in non-decreasing order, we go through this list step

by step, starting with the smallest non-zero value. At a given iteration, the next largest

distance dij is considered and if i and/or j are yet unassigned, we try to allocate them to

different corporations. The allocation decision is hereby based on a greedy function that

takes a distance-based measure and the sum of the relative violations of the upper balancing

constraints into account. More precisely, if X = (X1, . . . ,Xm) is the partial solution obtained

so far, for a given basic area i, a corporation k, and a product p, the relative violation of

the upper bound of the market share balancing constraints (3) and the upper bound of the

logistics quality balancing constraints (5) is given as

Gp
i (k) = max

{
w(Xk) + wi

W · MSp
k

− (1 + τ), 0

}
+ max

{
cqi(Xk) + 1

|Vqi
| · MSp

k

− (1 + β), 0

}
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where qi is the logistics index of basic area i, w(Xk) :=
∑

j∈Xk
wj , and cqi(Xk) := |Xk ∩ Vqi

|.

Note that it makes no sense to include the lower bounds, as they will always be violated

until the very end of the construction procedure. The greedy function is then defined as

φi(k) = λFi(k) − (1 − λ)Gi(k), where λ ∈ [0, 1], Gi(k) = G1
i (k) + G2

i (k) and Fi(k) =

di(Xk) := minj∈Xk
dij (in case Xk = ∅, then di(Xk) := ∞).

[Figure 3 about here.]

Figure 3 shows the pseudocode of Construction Procedure 1. DL denotes the list of all

pairwise distances ordered by non-decreasing values, with ties arbitrarily broken, and D(r)

denotes the r-th element of the list. The restricted candidate list is defined as RCL =

{k : φi(k) ≥ φmax
i − α(φmax

i − φmin
i )}, where φmin

i = mink φi(k) and φmax
i = maxk φi(k).

Construction Procedure 1R

As the upper bound constraints (3) and (5) have been taken into account only implicitly

through the greedy function in the previous procedure, we likely obtain infeasible solutions.

Therefore, in a variant of Construction Procedure 1, we will try to obtain solutions with no

or at least fewer upper bound violations. Construction Procedure 1R has two phases. In the

first one, basic areas are assigned to corporations as in Construction Procedure 1, provided

that they do not violate (3) and (5). This can be achieved easily through a modified restricted

candidate list: RCL = {k : Gi(k) = 0 ∧ φi(k) ≥ φmax
i − α(φmax

i − φmin
i )}. As some basic

areas may remain unassigned at the termination of the first phase, these areas are assigned

to corporations in a second phase in a different fashion. Throughout this phase, to reduce

the violation of (3) and (5), we use as greedy function just Gi(k). Splitting of basic areas

is allowed in the second phase when no more than |S| basic areas remain unassigned. The

procedure is shown is Figure 4.

[Figure 4 about here.]

Construction Procedure 2

Using a different rationale, we now try to assign to the same corporation basic areas that

are relatively distant from each other. The procedure consists of two phases and is shown

in Figure 5. In the first phase the iterative procedure builds m territories, one at a time,

using a farthest insertion greedy function that assigns to the territory Xk currently being

built basic areas relatively “far away” from Xk (lines 7 to 11). Since, again, no violation of

the upper bound balancing constraints is allowed, the RCL only contains unassigned basic

areas for which Gi(k) = 0, see line 8 (note that φmax = maxi φ(i) and φmin = mini φ(i)). If

some basic areas remain unassigned at the termination of this phase, we proceed to a second

phase that is exactly as in Construction Procedure 1R.

[Figure 5 about here.]
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Local Search

After the construction phase, which may yield an infeasible solution, a local search phase is

applied. In this phase we attempt to recover feasibility as well as to improve the objective

function value. Solutions are now evaluated by means of a function that weighs both infea-

sibility with respect to the balancing constraints as well as the smallest pairwise distance

among the territories. This function is similar to the greedy function φi(k) used in the con-

struction phase, however, with the addition that now the sum of relative infeasibilities Gi(k)

takes into account not only the upper bound balancing constraints, but also the violation of

the lower bound balancing constraints (2) and (4). The types of exchange moves that we

consider for the local search are the following:

Type A1: For all products, reassign a basic area i that is currently assigned to some territory

Xk of corporation k to the territory Xk′ of a different corporation k′ 6= k. The size of

the neighborhood is n × m.

Type A2: Reassign a basic area i just for product p from its current territory to a different

corporation’s territory. Splitting is allowed. The size of the neighborhood is 2n × m.

Type B: Exchange the assignment of basic areas i and j currently allocated to different

corporations for one or both products. The size of the neighborhood is 2n2.

Computational Results

For the computational tests we generated problem instances using real-world data obtained

from the GIS ArcView (www.esri.com, 2009). Basic areas correspond to German zip-code

areas with their respective number of households. The instances range from 100 up to 300

basic areas in steps of 50, and with four up to seven corporations. To generate an instance, we

extracted all zip-code areas lying within a rectangle. The instances represent rural, urban as

well as mixed regions. We generated five instances for each number of basic areas, except for

the last, where we have just four instances. In combination with the four different numbers

of corporations, this yields in total 96 instances. The tolerances for the demands and for the

logistics indices are τ = 0.05 and β = 0.2, respectively. The pairwise distances were computed

as the Euclidean distance between the polygonal representations of the zip-code areas. In that

way, neighboring basic areas have distance zero. The logistics indices were chosen randomly

such that we have approximately the same number of good, mediocre, and bad basic areas.

Unfortunately, a suitable value S is not explicitly stated anywhere. Therefore, we set the

maximal number S of split areas to 20% of the number n of basic areas. Finally, the market

shares of the companies are computed independently for the two products. A market share is

drawn uniformly from the interval [0.75
m

, 1.25
m

]. At the end, the market shares are normalized

to obtain a total sum of 1.
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The heuristic procedures were coded in C++ and compiled with the Sun C++ compiler

workshop 8.0 under the Solaris 9 operating system. They were run on a SunFire V440 with

8 GB of RAM and 4 UltraSparc III procesors at 1062 MHz.

Parameter Tuning

In the first part of the computational experiments we focus on tuning the parameters of

the GRASP heuristic, namely the RCL parameter α and the weight parameter λ of the

greedy function φ. To this end, we run the different versions of the GRASP with an iteration

limit of 500 and no local search phase, for measuring both the degree of violation of the

balancing constraints and the value of the objective function. The set of values for λ is

{0.5, 0.6, . . . , 1.0}, and for α we consider the set {0, 0.2, . . . , 1.0}. Figures 6, 7, 8, and 9, display

results for Construction Procedure 1 with λ fixed, Procedure 1 with α fixed, Procedure 1R,

and Procedure 2, respectively. In these figures, the left vertical axis measures the average (over

all instances) relative infeasibility with respect to the upper and lower balancing constraints,

whereas the right vertical axis measures the average (over all instances) percent gap between

the objective function value of the obtained solution and the best solution found with all the

values of the tested parameters.

For Construction Procedure 1, a value of α = 0.2 consistently finds the best compromise

between infeasibility and deviation from maximum dispersion for each tested value of λ.

Comparing the values of λ we can observe that λ = 0.5 yields a good compromise. Due to

their mechanism for building solutions, the λ parameter plays a minor role in Procedures 1R

and 2. Thus, only the parameter α was evaluated. We can observe that α = 0.2 and α = 0.8

yielded the best compromise between deviation from maximum dispersion and infeasibility

for each of these procedures. Comparing Figures 6 and 8 shows that the relative infeasibilities

for Procedure 1R are lower than for Procedure 1 with no distinguishable differences in the

percentage gaps, justifying the variation.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

It is worth noting that in all the above tests no feasible solutions (with respect to the

balancing constraints) were found. This reinforces the role of the local search phase in the

overall solution method.
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Local Search Strategies

Next, we investigate the behavior and effect of the local search. In the previous section we

introduced three different neighborhoods. For our tests we consider three different combi-

nations of these neighborhoods: LS1 (apply type A1 and then type A2 neighborhood), LS2

(apply type A2 and then type A1 neighborhood), and finally LS3 (apply type A2, then type

A1, and then type B neighborhood). Since the neighborhoods are polynomially bounded and

not too large, we use a best improvement strategy. For Constructive Procedure 1, we use

α = 0.2 and λ = 0.5, for Procedure 1R, we set α = 0.2 and λ = 1.0, and for Procedure 2,

α = 0.8 and λ = 1.0 was used. The iteration limit was set to 2000 GRASP iterations.

Results for Constructive Procedures 1, 1R, and 2 with LS1 and LS2 are displayed in Ta-

ble 2. Note that in this table, for a particular construction procedure, the relative dispersion

gap is computed with respect to the best known value of the dispersion objective found by

any of the local search strategies for that particular heuristic. So, in this regard, only a com-

parison between local search strategies (and not among heuristics) is valid. A comparison

among the heuristics is made in the following section.

[Table 2 about here.]

The results in Table 2 indicate that, independently of the construction procedure, both strate-

gies LS1 and LS2 were able to obtain always feasible solutions, which represents a significative

improvement with respect to the construction phase where no feasible solutions were found

(although solutions with relatively small deviations from feasibility were obtained). This

shows the effectiveness of the local search strategies for repairing the infeasibility issue. The

results also indicate that strategy LS2 outperforms strategy LS1 in terms of relative devi-

ations from the best known value for the dispersion objective. LS2 was consistently better

than LS1 for every value of n tested. In addition, LS2 uses considerably less CPU time than

LS1 (about 40% less in average). Therefore, we can conclude that it is more advantageous

to explore A2 first, and then A1.

Heuristic Comparison

Table 3 shows a comparison among the heuristics under local search strategy LS2. This time

the relative dispersion gap is computed with respect to best known value of the dispersion

objective found by any procedure under any local search strategy. We observe that, in terms

of solution quality, Construction Procedure 2 exhibits a very poor performance compared to

the other two. Procedures 1 and 1R perform very similarly with respect to both dispersion

objective and CPU time, with Procedure 1 being slightly better than 1R in terms of the

dispersion objective. In particular, for the largest problems (300 basic areas), both heuristics

find the same solution for 75% of the instances. For problem instances below 300 basic areas,

Construction Procedure 1 finds the best solution. Overall, Procedures 1 and 1R each find

76 best solutions. It is important to highlight the tremendous benefit reported by the local
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search phase in each case. Most of the solutions found in the construction phase were infeasible

(feasibility success of 5% and large deviations from feasibility in some cases). Neighborhoods

A1 and A2 helped to bring this figure up to 100.0%. This suggests further work on the local

search schemes could be worthwhile.

[Table 3 about here.]

We also tested strategy LS3 for the 300-node instances with Procedure 1. For 11 out

of 16 instances, no improvement was found. Moreover, while the overall average relative

improvement is less than 1.5%, the average CPU time for LS3 is 19778.9 seconds, which

represents, compared to the 1056.5 seconds for LS2, a very large increase that barely pays

off in terms of solution quality.

We now perform a comparison between the heuristic and the exact solutions for a set of

small instances. We generated five instances each for the parameter combinations (n,m) =

(20, 2&3) and (40, 3&4). To obtain optimal solutions, we implemented the mathematical

model using ILOG Concert and solved it with CPLEX 11.0 with a time limit of one hour on an

Intel Core2 with 1.86 GHz and 2GB Ram (www.ilog.com, 2009). For the heuristic solutions

we used a LS3 local search strategy for the three of them, and 2000 GRASP iterations. For

Procedure 1, 1R, and 2, we set α and λ to (0.2, 0.5), (0.2, 1.0), and (0.8, 1.0), respectively.

[Table 4 about here.]

In Table 4 we present the results of this comparison for each instance. For the exact

method we are displaying the best value of objective function found (Obj), the relative

optimality gap (OpGap) in %, and the CPU time (T) in seconds. It is clear that an optimality

gap of 0 means an optimal solution was found. For each of the heuristics we give the relative

gap (ReGap) in % between the solution found by the heuristics and the solution found by

the exact method. A value of “inf” in this column means that the heuristic failed to find a

feasible solution. First note that for the instances with 20 basic areas, the exact algorithm

was able to solve optimally all of them in a reasonable amount of time (less than a minute).

Nevertheless, Heuristic 2 found 9 of 10 optimal solutions in this data set. Now, for the larger

instances, the exact method begins to struggle. Only three optimal solutions were found,

and for the other 7, after 1 hr of running time, optimality gaps were extremely large. Note

that the heuristics found solutions equal or very close to those found by the exact method.

In fact, heuristic 2 matched the best exact method solution in 7 out of 10 cases. This was

done in an effort of less than a minute. Note that although the maximal relative gap is 20%,

on average this gap is 2.8% and therefore acceptable.

GRASP Convergence

Another issue regarding GRASP-based heuristics is to determine a suitable value for the

number of iterations. Figure 10 displays the number of best solutions found within a given
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range of GRASP iterations. Four ranges are plotted: [1, 500], [501, 1000], [1001, 1500], and

[1501, 2000], in all cases with LS2. For example, the bars on the 200-node instances mean that

using Construction Procedure 1 for these 20 instances, the iteration in which the best solution

was found was 15 times in the range [1, 500], 1 time in the range [501, 1000], 2 times in the

range [1001, 1500], and 2 times in the range [1501, 2000]. As can be seen, for both construction

procedures around 74% of the best solutions were found in the first 500 iterations, and 81%

were found in less than 1000 iterations. Still only 10% of the best solutions required above

1500 iterations. Table 5 summarizes the totals for the two heuristics. Values in each row

display the total frequency over all instances for each heuristic.

[Figure 10 about here.]

[Table 5 about here.]

Conclusions

In this paper we introduced the Maximum Dispersion Territory Design Problem, motivated by

the adaptation of the German system to the 2003 recycling directive WEEE of the EC for one

type of products. The problem consists of designing territories for the involved corporations

that re-collect and recycle different types of white goods at the end of their lifetime. To

avoid monopolistic concentration, the collection stations assigned to a corporation should be

evenly dispersed over Germany. Moreover, the assignment of stations to corporations should

be made such that the average amount of returned items is proportional to the market share

of the company. To the best of our knowledge, this is the first model based on maximum

dispersion in the territory design literature.

We have presented the problem and given a mathematical programming formulation

which, unfortunately, can only solve small instances using standard solvers. Therefore, we

have proposed a solution approach based on the GRASP methodology. Different criteria,

both for the construction and for the local search processing phase of the GRASP heuristic,

have been analyzed. Extensive computational experiments have been done in order to iden-

tify the best strategies and the most appropriate parameter values. The obtained results are

satisfactory, since we are able to obtain good quality results in small computation times.

There are several challenging avenues for future research. Among others, these include

the design of more sophisticated metaheuristics, as well as the study of stronger mathematical

programming formulations. Moreover, at a longer term, we want to combine the design of

the territories with the planning of the collection routes.
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Figure 1: Solutions obtained by maximizing the sum of distances (left-hand side) and by
maximizing the minimal distance (right-hand side).
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function GRASP (limit iterations, α)
Input: limit iterations := GRASP iteration limit;

α := GRASP RCL quality parameter,
Output: A feasible assigment Xbest.

0 Xbest ← ∅;
1 for (l = 1, . . ., limit iterations) do

2 X ← ConstructGreedyRandomized(α);
3 X ← LocalSearch(X);

4 if (X better than Xbest) then Xbest ← X;
5 endfor;

6 return Xbest;
end GRASP

Figure 2: GRASP pseudocode for MDTDP.
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function ConstructGreedyRandomized 1 (α)
Input: α := GRASP RCL quality parameter.
Output: An assignment X = {Xk}k∈C .

0 Xk = ∅, k ∈ C; V a = ∅ (set of assigned basic areas);
1 sort {dij}, i 6= j, and store them in DL;
2 while (|V a| < |V | AND |DL| > 0) do

3 dij ← D(1) (first element in DL); DL← DL \ {D(1)};
4 if (i ∈ V a AND j ∈ V a) go to step 2;
5 if (i 6∈ V a AND j ∈ V a) [Note: opposite case is symmetric]
6 compute greedy function φi(k), k ∈ C;

7 build RCL; k̂← rand(RCL);

8 if (k̂ = territory of j) then RCL ← RCL\{k̂}; k̂← rand(RCL); endif ;

9 assign i to corporation k̂: Xk̂ ← Xk̂ ∪ {i}; V a ← V a ∪ {i};
10 endif ;
11 if (i 6∈ V a AND j 6∈ V a)
12 compute greedy function φi(k); k ∈ C

13 build RCL; k̂← rand(RCL);

14 assign i to corporation k̂: Xk̂ ← Xk̂ ∪ {i}; V a ← V a ∪ {i};
15 compute greedy function φj(k), k ∈ C;
16 build RCL; k′ ← rand(RCL);

17 if (k′ = k̂) then RCL ← RCL \{k′}; k′ ← rand(RCL); endif ;
18 assign j to company k′: Xk′ ← Xk′ ∪ {j}; V a ← V a ∪ {j};
19 endif ;
20 endwhile;
21 return X = {X1, . . . , Xm};
end ConstructGreedyRandomized 1

Figure 3: Construction Procedure 1.
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function ConstructGreedyRandomized 1R (α)
Input: α := GRASP RCL quality parameter.
Output: A “feasible” assignment X.

0 Xk = ∅, k ∈ C; X̂
p

k = ∅, k ∈ C, p = 1, 2; V a = ∅ (set of assigned basic areas);
1 sort {dij} and store them in DL;
2-20 as in Construction Procedure 1 but with a modified RCL (see text);
21 while (|V \ V a| > S) do

22 select j′ and k′ such that Gj′(k
′) = min{Gi(k) : k ∈ C, i ∈ V \ V a};

23 Xk′ ← Xk′ ∪ {j′}; V a ← V a ∪ {j′};
24 endwhile;
25 X

p

k ← Xk,∀p ∈ P, k ∈ C;
26 while (|V a| < |V |) do

27 select j′, k′
1, k′

2 such that
G1

j′(k
′
1) + G2

j′ (k
′
2) = min{G1

i (k1) + G2
i (k2) : k1, k2 ∈ C, i ∈ V \ V a};

28 X
p

k′

p

← X
p

k′

p

∪ {j′ } and Xkp
← Xkp

∪ {j′}, p ∈ P ;

29 V a ← V a ∪ {j′};
30 endwhile;
31 return X = {Xp

k}, k ∈ C, p ∈ P ;
end ConstructGreedyRandomized 1R

Figure 4: Construction Procedure 1R.
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function ConstructGreedyRandomized 2 (α)
Input: α := GRASP RCL quality parameter.
Output: A “feasible” assignment X.

0 Xk = X
p

k = ∅, k ∈ C, p = 1, 2; V a = ∅ (assigned basic areas); k ← 1;
1 while (k ≤ |C|) do

2 if (k = 1) then Xk = {i} for i ∈ V arbitrarily chosen;
3 else choose i′ = arg mini∈V \V a d(i, X1 ∪ . . . ∪Xk−1); Xk ← Xk ∪ {i

′};
4 endif ;
5 V a ← V a ∪ {i′};
6 while ( Gi(k) = 0 for some i ) do

7 compute greedy function φ(i) = d(i, Xk), i ∈ V \ V a;
8 build RCL = {i ∈ V \ V a : Gi(k) = 0 ∧ φ(i) ≥ φmax − α(φmax − φmin)};
9 if ( RCL = ∅ ) go to step 15;
10 j ← rand(RCL);
11 assign j to company k: Xk ← Xk ∪ {j}; V a ← V a ∪ {j};
12 endwhile;
13 k ← k + 1;
14 endwhile;
15 apply second phase as in lines 21-30 of Construction Procedure 1R
16 return X = {Xp

k}, k ∈ C, p ∈ P ;
end ConstructGreedyRandomized 2

Figure 5: Construction Procedure 2.
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Figure 6: Construction Procedure 1 with λ = 0.5 as a function of GRASP quality parameter
(α).

22



0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Merit function weight parameter

A
ve

ra
g

e 
re

la
ti

ve
 in

fe
as

ib
ili

ty

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

A
ve

ra
g

e 
re

la
ti

ve
 g

ap
 f

ro
m

 b
es

t

Infeasibility

Dispersion

Figure 7: Construction Procedure 1 with α = 0.2 as a function of the merit function weight
parameter (λ).
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Figure 8: Construction Procedure 1R with λ = 1.0 as a function of the GRASP quality
parameter (α).
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Figure 9: Construction Procedure 2 with λ = 1.0 as a function of the GRASP quality
parameter (α).
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Figure 10: Convergence of Procedure 1 (left-hand side) and Procedure 1R under LS2.
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Median objective ratio Center objective ratio
f(X∗

min
)/f(X∗

sum
) g(X∗

sum
)/g(X∗

min
)

n m Avg Min Max Avg Min Max
30 3 0.91 0.88 0.94 0.40 0.06 0.54
30 4 0.93 0.89 0.97 0.32 0.13 0.50
40 3 0.90 0.83 0.93 0.22 0.15 0.33
40 4 0.92 0.88 0.94 0.25 0.10 0.50
40 5 0.94 0.85 0.99 0.29 0.14 0.42

Table 1: Numerical comparison of the maxisum and maximin solutions.
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Procedure 1 Procedure 1R Procedure 2
n Statistic LS1 LS2 LS1 LS2 LS1 LS2
100 No. of infeasible solutions 0 0 0 0 0 0

Average relative dispersion gap (%) 2.7 0.0 1.5 0.5 2.8 0.8
Worst relative dispersion gap (%) 15.9 0.0 11.8 5.2 15.3 6.3
Average CPU time (in seconds) 173 128 157 120 185 173

150 No. of infeasible solutions 0 0 0 0 0 0
Average relative dispersion gap (%) 3.5 1.4 2.3 0.0 4.3 0.9
Worst relative dispersion gap (%) 14.8 21.1 11.2 0.0 12.6 6.0
Average CPU time (in seconds) 396 265 361 257 461 440

200 No. of infeasible solutions 0 0 0 0 0 0
Average relative dispersion gap (%) 2.4 0.0 4.6 0.2 5.3 0.7
Worst relative dispersion gap (%) 15.1 0.0 25.3 3.6 20.7 7.9
Average CPU time (in seconds) 676 440 597 411 823 787

250 No. of infeasible solutions 0 0 0 0 0 0
Average relative dispersion gap (%) 8.4 0.0 5.4 0.2 3.8 1.1
Worst relative dispersion gap (%) 17.3 0.0 12.7 3.3 13.7 9.6
Average CPU time (in seconds) 1178 699 979 671 1464 1277

300 No. of infeasible solutions 0 0 0 0 0 0
Average relative dispersion gap (%) 2.6 0.0 3.2 0.0 2.8 1.6
Worst relative dispersion gap (%) 18.8 0.0 26.6 0.0 12.3 19.0
Average CPU time (in seconds) 1728 1056 1645 1067 2383 2064

Total No. of infeasible solutions 0 0 0 0 0 0
Average relative dispersion gap (%) 4.0 0.3 3.4 0.2 3.9 1.0
Worst relative dispersion gap (%) 18.8 21.1 26.6 5.2 20.7 19.0

Table 2: Effect of local search strategies in Constructive Procedure 1, 1R, and 2.
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n Statistic Proc 1 Proc 1R Proc 2
100 Avg. rel. dispersion gap (% from best known) 0.6 1.2 21.7

Worst relative dispersion gap (%) 6.4 16.6 34.4
Number of infeasible solutions 0 0 0
Number of best solutions 14 16 0
Average CPU time (in seconds) 128 120 173

150 Avg. rel. dispersion gap (% from best known) 0.4 1.3 19.4
Worst relative dispersion gap (%) 4.2 8.8 28.5
Number of infeasible solutions 0 0 0
Number of best solutions 17 15 0
Average CPU time (in seconds) 265 257 440

200 Avg. rel. dispersion gap (% from best known) 1.5 0.2 24.1
Worst relative dispersion gap (%) 13.3 3.6 44.6
Number of infeasible solutions 0 0 0
Number of best solutions 15 18 1
Average CPU time (in seconds) 440 411 787

250 Avg. rel. dispersion gap (% from best known) 0.7 0.7 28.4
Worst relative dispersion gap (%) 3.2 6.2 45.6
Number of infeasible solutions 0 0 0
Number of best solutions 14 15 0
Average CPU time (in seconds) 699 671 1277

300 Avg. rel. dispersion gap (% from best known) 0.0 0.9 30.7
Worst relative dispersion gap (%) 0.0 7.6 53.2
Number of infeasible solutions 0 0 0
Number of best solutions 16 12 0
Average CPU time (in seconds) 1056 1067 2064

Total Avg. rel. dispersion gap (% from best known) 0.7 0.9 24.6
Worst relative dispersion gap (%) 13.3 16.6 53.2
Number of infeasible solutions 0 0 0
Number of best solutions 76 76 0

Table 3: Comparison of construction procedures under LS2.
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Exact method Heuristic 1 + LS3 Heuristic 1R + LS3 Heuristic 2 + LS3
n m Obj OpGap T Obj ReGap T Obj ReGap T Obj ReGap T

20 2 0.9 0 2 0.7 22.2 7 0.7 22.2 6 0.9 0.0 7
20 2 0.8 0 1 0.7 12.5 9 0.7 12.5 5 0.8 0.0 10
20 2 0.9 0 2 0.9 0.0 10 0.9 0.0 10 0.9 0.0 7
20 2 1.8 0 1 0.9 50.0 6 1.3 27.8 10 1.8 0.0 8
20 2 0.7 0 2 0.2 71.4 8 0.7 0.0 7 0.7 0.0 10

20 3 1.7 0 27 1.7 0.0 9 1.7 0.0 8 1.7 0.0 10
20 3 2.0 0 10 2.0 0.0 11 1.8 10.0 10 2.0 0.0 11
20 3 1.9 0 30 0.9 52.6 10 1.2 36.8 9 1.9 0.0 11
20 3 2.0 0 31 inf 50.0 8 1.3 35.0 9 1.6 20.0 10
20 3 1.5 0 25 1.5 0.0 10 1.1 26.7 8 1.5 0.0 11

40 3 1.0 0 321 0.8 20.0 58 0.8 20.0 46 1.0 0.0 68
40 3 1.5 0 259 1.4 6.7 71 1.4 6.7 54 1.4 6.7 58
40 3 1.3 85 3600 1.1 15.4 52 0.9 30.8 40 1.3 0.0 55
40 3 1.2 0 500 1.2 0.0 75 1.2 0.0 62 1.2 0.0 65
40 3 1.2 483 3600 1.0 16.7 63 1.0 16.7 51 1.2 0.0 50

40 4 0.8 412 3600 0.8 0.0 54 0.8 0.0 46 0.8 0.0 70
40 4 0.4 1000 3600 0.4 0.0 53 0.4 0.0 48 0.4 0.0 59
40 4 1.7 376 3600 1.6 5.9 62 1.7 0.0 55 1.4 17.6 62
40 4 1.7 210 3600 1.6 5.9 70 1.5 11.8 42 1.5 11.8 51
40 4 1.2 408 3600 1.2 0.0 64 1.2 0.0 37 1.2 0.0 62

Table 4: Heuristic comparison on small instances; T is given in seconds and OpGap and
ReGap in %.
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Iteration range
Procedure [0, 500] [501, 1000] [1001, 1500] [1501, 2000]
Construction Procedure 1 71 7 10 8
Construction Procedure 1R 70 8 9 9

Table 5: Best solution frequency analysis of GRASP under LS2 with respect to iteration
limit.
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