An Enhanced TSP-Based Heuristic for Makespan Minimization
in a Flow Shop with Setup Times

Roger Z. Rios-Mercado Jonathan F. Bard
Department of Industrial Engineering Graduate Program in Operations Research
Texas A&M University University of Texas
College Station, Texas 77843-3131 Austin, Texas 78712-1063
roger@habanero.tamu.edu jbard@masl. utezxas. edu

December 1997
Revised August 1998
Accepted September 1998

Abstract

This paper presents an enhanced heuristic for minimizing the makespan of the flow shop schedul-
ing problem with sequence-dependent setup times. The procedure transforms an instance of the
problem into an instance of the traveling salesman problem by introducing a cost function that
penalizes for both large setup times and bad fitness of schedule. This hybrid cost function is an
improvement over earlier approaches that penalized for setup times only, ignoring the flow shop
aspect of the problem. To establish good parameter values, each component of the heuristic
was evaluated computationally over a wide range of problem instances. In the testing stage,
an experimental comparison with a greedy randomized adaptive search procedure revealed the

conditions and data attributes where the proposed procedure works best.

Keywords: flow shop scheduling, sequence-dependent setup times, heuristics, traveling sales-

man problem

1 Introduction

In this paper, we address the problem of finding a permutation schedule of n jobs in an m-
machine flow shop environment that minimizes the maximum completion time Cy,,x (makespan)
of all jobs. The jobs are available at time zero and have sequence-dependent setup times on
each machine. All parameters, such as processing and setup times, are assumed to be known
with certainty. This problem is regarded in the scheduling literature as the sequence-dependent
setup time flow shop (SDST flow shop) and is evidently NP-hard since the case where m = 1
is simply a traveling salesman problem (TSP).

Applications of sequence-dependent setup time scheduling are commonly found in most
manufacturing environments. In the printing industry, for example, presses must be cleaned and
settings changed when ink color, paper size or type differ from one job to the next. Setup times
are strongly dependent on the job order. In the container manufacturing industry machines
must be adjusted whenever the dimensions of the containers are changed, while in printed
circuit board assembly, rearranging and restocking component inventories on the magazine
rack is required between batches. In each of these situations, sequence-dependent setup times
play a major role and must be considered explicitly when modeling the problem.

In [10], we proposed a greedy randomized adaptive search procedure (GRASP()) for this
problem and compared it to Simons’ heuristics [11] SETUP() and TOTAL(). GRASP() is an
insertion-based heuristic. SETUP() and TOTAL() are fundamentally based on transforming the
SDST instance into a related instance of the asymmetric traveling salesman problem (ATSP).
Our empirical evaluation indicated that GRASP() found better schedules when the setup to
processing time ratio was small (about 0.1). However, when the setup times were allowed larger
variations (average ratio 1.0), SETUP() proved superior. We also observed that it produced
better results when the number of machines was small. This stemmed from the fact that the
larger the setups and the smaller the number of machines, the more the problem resembles
a TSP so a TSP-based heuristic such as SETUP() should do better than an insertion-based
heuristic such as GRASP().

Despite the attractiveness of the former, some shortcomings exist in Simons’ work. The first
is that the cost function (for scheduling two jobs together) includes a penalty term for setup
times only, ignoring the flow shop aspect of the problem. In particular, there might be pairs of
jobs that cause significant blocking and/or machine idle time when they are scheduled together
even though their setup times are small. In addition, Simons made no effort to improve the
solution through local search. As such, the objective of this paper is to present and evaluate
an improved TSP-based heuristic (HYBRID()) for the SDST flow shop. The first aspect of this
work involved the development of the hybrid cost function to capture the dual nature of the

problem. This was followed by the implementation of local search procedures for obtaining

local minima. Also included in the algorithm is a parameter variation step that allows us to
diversify the search and explore more of the feasible region.

The proposed heuristic HYBRID() clearly dominates SETUP() since SETUP() is in fact a
special case of the former. In the computational testing, HYBRID() is also seen, in general, to
outperform GRASP() over a wide variety of randomly generated instances, especially on those
where the similarities with the TSP are greater.

The rest of the paper is organized as follows. The most relevant work on flow shop scheduling
is presented in Section 2. In Section 3, we introduce notation and formally define the problem.
In Section 4, we give a full description of the heuristic, followed in Section 5 by the presentation

and evaluation of our computational experience. We conclude with a discussion of the results.

2 Related Work

For a comprehensive review of the diversity of problems on machine scheduling research in-
volving setup times, see Allahverdi et al. [1]. Here we review the research most relevant to our

work.

2.1 Heuristics

In addressing the makespan minimization of the SDST flow shop, Simons [11] described four
heuristics and compared them with three benchmarks that represent generally practiced ap-
proaches to scheduling in this environment. Experimental results for problems with up to 15
machines and 15 jobs were presented. His findings indicated that two of the proposed heuristics
— SETUP () and TOTAL() — produced substantially better results than the other methods tested.

In [10], we proposed a GRASP for this problem and compared it to Simons’ heuristics
SETUP() and TOTAL(). In this paper, we provide an enhanced version of Simons’ heuristics by
correcting some of their shortcomings and by adding a local search phase. A full description is

given in Section 4.

2.2 Exact Optimization

Other approaches to the m-machine problem have focused on exact optimization schemes based
on branch and bound [8, 12, 13] and branch and cut [7, 9]. All other work has been restricted to
the 1- and 2-machine case. In general, the largest instances addressed successfully are reported
in [8] where several 6-machine, 20-job problems were solved to optimality within 30 minutes
using branch and bound. This approach was seen to outperform branch and cut on problems

with 2 to 6 machines and up to 20 jobs.

3 Statement of Problem

In the flow shop environment, a set of n jobs must be scheduled on a set of m machines,
where each job has the same routing. Therefore, without loss of generality, we assume that the
machines are ordered according to how they are visited by each job. Although for a general flow
shop the job sequence may not be the same for every machine, here we assume a permutation
schedule; i.e., a subset of the feasible schedules that requires the same job sequence on every
machine. We suppose that each job is available at time zero and has no due date. We also
assume that there is a setup time which is sequence dependent so that for every machine i there
is a setup time that must precede the start of a given task that depends on both the job to
be processed (k) and the job that immediately precedes it (7). The setup time on machine 4 is
denoted by s;j;, and is assumed to be asymmetric; i.e., s;ji # sik;. After the last job has been
processed on a given machine, the machine is brought back to an acceptable “ending” state. We
assume that this last operation can be done instantaneously because we are interested in job
completion time rather than machine completion time. Our objective is to minimize the time at
which the last job in the sequence finishes processing on the last machine. In the literature [6]

this problem is denoted by F'm/|s;;, prmu|Cmax or SDST flow shop.

Example 1 Consider the following instance of F2|s;ji, prmu|Cmax with four jobs.

pj | 1 2 3 4 sk |12 3 4 sy |12 3

113 20 10 5 0 |2 4 5 3 0 |2 1

2 |15 25 20 25 1 |- 10 7 3 1| - 7 11
2 |6 - 12 8 2 |9 - 3 71
3 |7 11 - 6 3 |8 - 10
4 |5 7T 2 - 4 |8 0 -

A schedule S = (4,2, 1,3) is shown in Figure 1. The corresponding makespan is 109, which

is optimal. O
[] Setup time] Processing time
moffaf] 2 [] s | 1 |
mz |]| a | 2 [s [l 1 |
| | | | | | | | | | |

10 20 30 40 50 60 70 80 90 100 110
Time

Figure 1: Ezample of a 2 x 4 SDST flowshop

3.1 Notation

In the reminder of the paper, when we refer to the SDST flow shop we make use of the following

notation.

Indices and sets

m number of machines
n number of jobs
i machine index; i € I = {1,2,...,m}

Jyk,l job indices; j, k,l € J ={1,2,...,n}

Jo = J U {0} extended set of jobs, including a dummy job denoted by 0

Input data

p;j processing time of job j on machines; ¢ €1, 5 € J

sijk setup time on machine i when job j is scheduled right before job k;i € I, j € Jo, k € J

A job j (without brackets) refers to the job j itself, whereas job [j] (with brackets) refers
to the index of the job scheduled in the j-th position.

4 Description of Heuristic

Simons’ [11] main idea was first to transform an instance of the SDST flow shop into an instance
of the ATSP by computing an appropriate cost matrix, and then to solve the latter by applying
a well-known heuristic for the ATSP. In the first of two phases of his heuristics, an instance
of the ATSP is built as follows. Every job is identified with a “city.” Procedure TOTAL ()
computes the entries in the distance (cost) matrix as the sum of both the processing and setup
times over all the machines. Procedure SETUP () considers the sum of setup times only. In the
second phase, a feasible tour is obtained by invoking a heuristic for the ATSP. This heuristic
uses the well-known Vogel’s approximation method (VAM) for obtaining good initial solutions
to transportation problems with a slight modification to eliminate the possibility of subtours.
The ATSP solution maps back into a feasible schedule for the SDST flow shop.

Although this approach seems suitable, given the strong similarities between the SDST flow
shop and the ATSP, Simons’ work was limited in two respects, as mentioned above. First, the
cost function ignores completely the flow shop aspect of the problem, and second, no attempt

was made to achieve local optimality.

4.1 Construction Phase

Our HYBRID() heuristic is based on Simons’ [11] idea of exploiting the embedded ATSP structure
to derive good schedules. We attempt to improve on his approach by introducing a cost function
that balances setup times and schedule fitness for each pair of jobs. Let Cji be the cost of

scheduling job j right before job k. We express this measure as
Cir = ORj;+ (1-— 9)5]'

where 6 € [0,1], and Rj; and Sj;. are the costs of scheduling jobs j and k together, from the
flow shop and the setup time perspective, respectively. The setup cost component is simply
Sik = Y Sijk
el

such that when 8 = 0, the cost measure is reduced to Simons’ measure for his SETUP () heuristic.

We now develop the cost Rj; following an idea similar to the one used by Stinson and
Smith [14] for F|prmu|Cpax. Let t;; denote the completion of job j on machine 7. Assume that
job k immediately succeeds job j. The completion time of job k£ on any machine can then be

recursively determined as follows:
ti, = max{tij + sijk, ti—1,k} + Dik

The relationship between #;; + s;;; and #;,_; ; plays a key role here. If #;; + s;j1 > t;_1 4, then
job k will arrive at machine 7 before job j has been released from machine 7; hence job k will
be blocked in the queue at machine 4 for ¢;; + s;jp — ;1 time units. On the other hand, if
tij + Sijk < ti—1k, then machine ¢ will be idle for ¢;_; j, — (¢;; + s;5%) time units while waiting for
job k to arrive. The ideal situation occurs when #;; + s;;x = t; 1, in which case neither job k
is blocked nor does machine ¢ experience any idleness.

Now, let us take this rationale a step further by considering the set of circumstances which
would have to take place if ¢;; +s;;, were to equal ¢;_1 ;. for the entire period where both j and k
are scheduled together. This will occur only when p;; + s;;x = s;—1 jx +pi—1 k for every machine
1 = 2,...,m. Although we would seldom, if ever, expect such an ideal set of circumstances
to arise in practice, the closer the values of p;; + s;j and s;_y jr + pi—1 are matched for all
machines, the tighter jobs 7 and k will tend to fit together within the schedule. With this in

mind, we now define a residual factor, r;;z, as
Tijk = DPij + Sijk — (Si—1,jk + Pi—1,k) i€ I\{1}, j,k € Jo

where pjg = 0 for i € I. For any pair (j,k), j # k, we may compute m — 1 such residuals
which are then combined in several different ways to yield the overall cost, Rj;. The choices

considered are listed in Table 1.

Function Description

le.k = >y Tijk] Sum of the absolute residuals
R?k =Y olrijelt Sum of positive residuals only, where [r;;;]T =

rijk if ik > 0; 0 otherwise
R?k = Yitalrijr]” Sum of negative residuals only, where [r;;x]|~ =
—ryjk if 5, < 0; 0 otherwise
R?k = > 2[rijk]T + [rijk)” Sum of absolute residuals with positive residuals
weighted double
R?k = > [rijk]t + 2[rije]” Sum of absolute residuals with negative residu-

als weighted double

Table 1: Residual functions investigated

With R! each residual, regardless of its direction of error, is equally weighted. Rules R? and
R* penalize more for positive residuals (blocking) whereas R? and R® penalize more for negative
residuals (idle time). It is important to note that the sign of each r;;, value is significant. A
positive r;;; implies that a degree of blocking for job k at machine ¢ is likely to occur. On the
other hand, a negative r;;, implies idleness at machine i. This motivates the choices of rules
R? through R®. In fact, preliminary computational experience showed that all of these rules
were very helpful; however, for some instances it was observed that rules R? and R* (which
assess a greater penalty for positive residuals) were uniformly dominated by the others (see
Section 5.1). This indicates that machine idleness is of greater concern than job blocking when
constructing a schedule. One explanation for this is that a negative residual at some machine &
has a carryover effect on the remaining downstream machines.

In general, for a given value of # € [0,1] and a given residual cost rule, there is an associated
cost matrix C. To devise a heuristic based on these parameters, let © = {01, ...,6,} be a (finite)
discretization of [0, 1], where p is the size of the discretization, and let R = {R', R?, R?, R*, R®}
be the set of cost functions (as defined in Table 1). The construction phase of procedure
HYBRID() is shown in Figure 2. A local search phase is then applied to this schedule in an
attempt to find a local optimum with respect to neighborhood arguments. This is discussed in
Section 4.2.

Computational complexity: The computation of the cost matrix performed in Step 3 takes
O(mn?) time. The application of Vogel’s modified method to a (n+ 1)-city problem is O(n?) so
the overall procedure has worst-case complexity of O(|R||©|mn?). When |R| = O(1) this brings
the complexity down to O(|©mn?). In this regard, preliminary testing has shown that any

discretization with |©] > 10 provides no better solutions than a discretization with |©| = 10.

Procedure HYBRID phasel()
Input: An instance of the SDST flowshop, a discretization

O of the weight range, and a set R of residual cost functions.
Output: A feasible schedule S.

0: Initialize best schedule Spes; = 0, Crnax(Shest) = 00

1: for each R € R do

2: for each 6 € © do

3 Compute (n + 1) x (n 4+ 1) cost matrix as
Cjr = 9R§~k +(1-0)S;
Apply modified VAM to (Cj;) to obtain a tour S
If Crmax(S) < Crmax(Sbest) then Speq < S

Output Spest

Stop

Figure 2: Pseudocode of HYBRID() phase 1
Hence, we take © = {0.0,0.1,...,1.0} giving a time complexity of O(mn?).

4.2 Local Search

Neighborhoods can be defined in a number of different ways, each having different computational
implications. Consider, for instance, a 2-opt neighborhood definition that consists of exchanging
two edges in a given tour or sequence of jobs. For this neighborhood, a move in a TSP takes O(1)
time to evaluate whereas a move in the SDST flow shop takes O(mn?). One of the most common
neighborhoods for scheduling problems is the 2-job exchange which has been used by Widmer
and Hertz [16] and by Taillard [15] for F'|prmu|Cmax. We considered the 2-job exchange as well.
In addition, in [7] we generalized the 1-job reinsertion neighborhood proposed by Taillard [15]
for F|prmu|Chmax to develop an L-job string reinsertion procedure (that is, remove a string of L
jobs and reinsert it in a different place in the schedule). This was motivated by the presence of
the sequence-dependent setup times, which suggest that subsets (or strings) of consecutive jobs
might fit together in a given schedule. We tried both procedures for our problem and found
that the string reinsertion uniformly outperformed the 2-job exchange, just as Taillard found
the 1-job reinsertion performed better than the 2-job exchange for the regular flow shop.

In general the neighborhood definition is different for each value of the string size L; that
is, a local optima with respect to L = 1, for instance, may not be local optima with respect to

L = 2. Thus in practice, one can apply or combine several of these neighborhoods for different

values of L, depending on the particular trade-off value between quality of solution desired and
time available. For instance, HYBRID() is a deterministic heuristic that runs very quickly. This

makes a local search effort more affordable.

5 Experimental Evaluation

All procedures were written in C++ and run on a Sun Sparcstation 10 using the CC compiler
version 2.0.1, with the optimization flag set to —O. CPU times were obtained through the C

function clock().

Dij Sijk
Class A [10,100] [1,10]
Class D [20,100] [20,40]
Class C [50,100] [1,50]

Table 2: Data class attributes

To conduct our experiments we used randomly generated data drawn from classes A, D, and
C, where both processing and setup times are generated according to a uniform distribution in
the intervals shown in Table 2. Class D is most representative of real world instances, having a
setup/processing time ratio between 20% and 40%. Classes A and C, account for a smaller (1-
10%) and a larger (1-50%) ratio variation, respectively, and are intended to assess algorithmic
performance in best- and worst-case scenarios.

For a given combination of (m x n) € {2,4,6,8,10} x {20,50,100} and for each data class
we generated 20 random instances. In total then, each of the experiments described below was

tested on 5 machine settings x 3 job settings x 3 data classes x 20 replications = 900 instances.

5.1 Experiment 1: Evaluation of Cost Function

The purpose of this preliminary experiment was to evaluate the impact of the cost function
Cit = ORj+(1-0)S; (1)

as the parameter 6 € [0, 1] and the residual cost component Rj; varied. Recall from Section 4
that five residual functions were proposed. Therefore, by taking all combinations of a particular
residual cost function and an element of a partition for 6, we formed “different” algorithms.

The first issue addressed involved the determination of acceptable ranges for the weight
parameter #. For this purpose we ran the algorithm using residual cost function R' for 6§ €
{0.0,0.2,...,1.0}. For each run, we tallied the number of times a given choice of # found the
best (or tied for best) solution. Tables 3, 4, and 5 display the results for data sets A, D, and
C, respectively.

Values of 6

mxn 00 02 04 06 08 1.0 F Best range for 6
2x20 3 9 3 3 1 2 (%5092 [0.0,0.6]

50 3 10 7 0 0 0 (*)30.08 [0.0,0.4]

100 11 6 3 0 0 0 (%) 5797 [0.0,0.4]
6x20 2 6 2 7 6 T (x) 327 [0.2,1.0]

50 0 6 2 2 6 4 (*) 9.66 [0.2,1.0]

100 0 7 5 4 1 3 () 7.58 [0.2,1.0]
10x20 2 8 7 7T 3 4 (%) 647 [0.2,1.0]

50 1 3 10 3 2 4 () 741 [0.2,1.0]

100 0 3 5 4 4 4 (x501 [0.2,1.0]

() F test significant at o = 99%

Table 3: Effect of parameter € on class A instances

Values of 0

mxn 00 02 04 06 08 1.0 F Best range for 6
2 %20 7 5 5 3 1 0 (%) 17.78 [0.0,0.6]
50 13 3 2 2 0 0 (x)55.30 [0.0,0.4]
100 14 6 0 0 0 0 (%) 263.27 [0.0,0.2]
6 x 20 2 5 3 6 2 5 2.35 [0.0,1.0]
50 4 1 3 5 3 4 0.80 [0.0,1.0]
100 7 8 4 0 1 0 () 7.78 [0.0,0.4]
10 x 20 3 4 5 4 4 5 1.73 [0.0,1.0]
50 2 5 4 2 3 4 2.29 0.0,1.0]
100 0 6 7 4 3 0 (x) 3.28 [0.2,0.8]

() F test significant at o = 99%

Table 4: Effect of parameter 6 on class D instances

In these tables, each row shows, for a particular m x n combination, the number of times
a given choice of @ found the best, or tied for best, solution. In addition, the Friedman test
(non-parametric statistical test equivalent to classical ANOVA [2]) was applied to determine
whether there is a significant difference among the values of € used. The observed F' value
is shown in the second to last column. If the test was significant at o = 99% (greater than
Fy 99595 = 3.241), it is indicated with an asterisk (x). The last column shows the best range
for @ obtained from the experiments

The following observations were made:

e For data set A, the range [0.2,1.0] provided the best results, except for the 2-machine
instances. This finding can be explained by noting that in data class A, the setup time
variation is small, which lessens the importance of the setup time contribution Sj;, in the
cost function (1). However, for the 2-machine instances, ranges starting from 0.0 should

be considered because strong similarities with the ATSP still exist despite the small setup

Values of 6

mxn 00 02 04 06 08 1.0 F Best range for 6
2x20 13 5 1 1 0 0 () 7482 0.0,0.2]

50 15 6 0 0 0 0 (%) 229.48 [0.0,0.2]

100 17 3 0 0 0 0 (%) 315.17 [0.0,0.2]
6x20 1 9 10 4 0 0 (%) 12.99 0.2,0.6]

50 9 8 3 0 0 0 (%) 53.99 [0.0,0.4]

100 13 7 0 0 0 0 (%) 241.78 [0.0,0.2]
10 x 20 4 4 6 5 1 0 (*) 3.80 [0.0,0.6]

50 6 6 6 2 0 0 () 29.64 0.0,0.4]

100 9 10 1 0 0 0 (x) 103.69 [0.0,0.2]

() F test significant at o = 99%

Table 5: Effect of parameter 6 on class C instances

times.

For data set D, practically the complete [0,1] range for 6 yielded good results, except
again for the 2-machine instances (same explanation as before) and the large 100-job
instances. Looking at the 100-job instances, the acceptable ranges for 8 shift towards
1.0 as the number of machines becomes large. This behavior is expected since increasing
the number of machines makes the setup time contribution less representative and the

residual cost component more important.

For data set C, ranges less than 0.4 or 0.6 worked best for all instances. This is an
intuitive result since this is the data set with the largest setup time variations. Therefore,
one would expect the setup time component of the cost function to play a more decisive

role.

A final remark about these results is that by allowing parameter 6 to vary in the [0,1]
range, we were able to obtain a wide variety of schedules. In almost all cases, these
schedules were better than those obtained when 0 was fixed at zero. Recall that the

special case of # = 0 represents Simons’ SETUP () heuristic.

The second component of this experiment involved the evaluation of algorithmic perfor-

mance for different values of the residual cost function R, 1 = 1,...,5. To make the assessment,

we re-ran the algorithm fixing € at 0.2, 0.6, and 1.0. Note that this was only done for machine

and job size combinations that were found acceptable for a specific 6 value in the first round of

the experiments. For example, because a value § = 1 was found unacceptable for all 2-machine

class D instances in the first round of experiments (Table 4), we did not run the 2-machine

instances for § = 1 for data set D. Tables 6 and 7 show the results for data sets D and C,

respectively. Results for data set A (not included) were similar to those for D.

10

Residual cost functions

6 mxn R* R*> R* R* R F
02 2x20 5 7 6 1 3 2.56
50 5 ®2 6 3 4 (x)5.33
100 (x)12 3 4 1 0 (%956
6 x 20 2 3 4 5 6 1.16
50 3 5 7T 2 3 0.60
100 6 7 5 1 1 3.19
10 x 20 3 1 4 3 9 1.12
50 5 3 9 0 3 3.33
100 4 7 5 3 1 1.84
06 2x20 5 4 7 2 4 1.89
6 x 20 6 5 4 1 4 1.25
50 6 3 4 3 4 0.86
10 x 20 4 3 4 4 5 2.93
50 3 7 4 5 2 0.72
100 5 5 4 2 4 0.38
1.0 6x20 4 ® 5 4 T (%) 367
50 6 4 1 3 6 0.52
10 x 20 5 3 1 5 6 1.96
50 7 1 3 6 3 0.57
100 6 1 4 3 6 1.56

() F test significant at o = 99%

Table 6: Effect of residual cost functions on class D instances

In essence, the information displayed is the same as before. The difference is that this time,
the Friedman test is significant at a = 99% if F' > Fy 99 4,76 = 3.604. For those cases where this
test was significant (which supports the alternate hypothesis that not all choices of R! perform
equally well) a Wilcoxon test (non-parametric pairwise test [2]) was done between all possible
pairs to determine which of the choices were dominant (marked with a star (x)) or dominated
(marked with an ®) in the statistical sense. The main observation is that in practically all cases
tested, there was no statistical evidence that any specific rule performed better or worse than
the others. Consequently, it would be advantageous to use all of these functions in the overall
procedure since each accounts for approximately 20% of the best schedules found. Results for
data set A were similar.

For data set C, the results were a bit different. As can be seen from Table 7, most of the
tests were significant. R! and R? were the best choices for half the instances and R' was the
best choice for the other half. What this result says is that when setup time variations are large
(data set C), penalizing equally for positive and negative deviations (rule R') suffices since now
the setup time component Sj; in eq. (1) plays a more significant role. The cases were R? was

also found to be a good choice means that having machine idle time (negative residuals) causes

11

Residual cost functions

6 mxn R' R? R* R'* R° F
02 2x20 (*9 2 (®5 1 4 (¥)424
50 (x)16 1 20 1 (x)12.44
100 (x)20 0 0 0 0 (%)21.43
6 x 20 6 4 7 0 3 2.79
50 (x)10 0 (¥)8 2 0 () 491
100 ()13 4 2 1 0 (%)13.79
10 x 20 4 6 702 2 1.75
50 7 3 6 ®1 3 (%) 471
100 ()9 2 (®x9 0 0 (%) 13.53

(%) F test significant at o = 99%

Table 7: Effect of residual cost functions on class C instances

a larger disruption in the schedule than having a blocked machine (positive residuals). This can
be explained by noting that when idle time is incurred at a machine, there is a carryover effect
on the downstream machines. This becomes an important issue when setup time variations are

relatively large.

5.2 Experiment 2: Evaluation of Discretization Size and Local Search

In the second set of experiments, the computational burden in HYBRID() was increased in an
attempt to uncover better solutions. This allowed us to evaluate the trade-off between solution
quality and resource usage as measured by CPU time.

In the first phase, we ran HYBRID() for three different discretizations of the weight interval:
e! = {0.0,0.5,1.0}, ©2 = {0.0,0.2,0.4,...,1.0}, and ©3 = {0.0,0.1,0.2,...,1.0}. Note that
|0t = 3, |©?%| = 6, and |©?| = 11. No local search was performed.

Results for data set D are shown in Table 8. For each category of problem sizes defined by
n X m, we give the number of best solutions (or tied for best) found under each discretization
and the average CPU time (sec). It can be seen that the finer discretization (0% compared to
©?) produces nearly twice as many superior solutions. This came at the expense of about a
50% increase in CPU time. Nevertheless, the largest instances (10 x 100) took on average less
than four minutes under discretization ©3, which is still quite reasonable. Results for data sets
A and C (not included) were similar.

The purpose of the second component of experiment 2 was to determine which local search
strategy worked best within the HYBRID() framework. We used the L-job string reinsertion

procedure (denoted by LS) and defined four different implementation strategies, namely

S1: Apply LS(L =1)
S2: Apply LS(L = 1) then LS(L = 2) and stop

12

Discretization
m X n Statistic oe! e? e

2 x 20 Number of best 8 8 20
Average time (sec) 1 1 2

6 x 20 Number of best 6 12 20
Average time (sec) 1 2 3

10 x 20 Number of best 4 12 20
Average time (sec) 1 2 4

2 x 50 Number of best 7 11 20
Average time (sec) 5 12 22

6 x 50 Number of best 3 9 20
Average time (sec) 6 14 27

10 x 50 Number of best 3 8 20
Average time (sec) 7 16 31

2x 100 Number of best 14 16 20
Average time (sec) 38 89 175

6 x 100 Number of best 7 11 20
Average time (sec) 41 98 196

10 x 100 Number of best 1 12 20

Average time (sec) 45 109 220

Table 8: Evaluation of different discretization sizes on class D instances

S3: Apply LS(L = 1) then LS(L = 2) then LS(L = 3) and stop

S4: Apply S3 as many times as necessary until no improvement is possible

Strategy k, k = 1,2, 3, will deliver a local optimum with respect to its respective neighborhood.
Strategy 4 delivers a local optimum with respect to all three neighborhoods. The strategies are
listed in increasing order of computational effort. The question of interest is whether or not
the extra effort pays off in terms of solution quality. Note that in this experiment the local
search phase was applied only to the most promising schedule obtained from the construction
phase. Of course, it is possible to apply local search to each schedule constructed but this
would significantly increase the computational burden. Empirical evidence suggests that such
a strategy is rarely justified (see [3, 4]).

Results of this experiment for data set D are shown in Table 9. In each cell we give the
number of times a given strategy found the best solution (Nbest), the average relative percentage
gap with respect to a lower bound (described in [8]), and the average CPU time. The first thing
to notice is that in most cases strategy S4 found solutions that were about 50% better than
those found by the other strategies. In 85 out of 180 instances, for example, S4 proved superior
to S3. The performance of S4 was even better for the larger instances (in terms of the number
of jobs). In terms of relative gap, strategy S4 gives a relative average improvement of 2-10%

over S3. This improvement comes at a cost of about a 50% increase in CPU time. The largest

13

Strategy

m X n Statistic S1 S2 S3 S4
2x 20 Nbest 6 10 13 20
Average gap (%) 27 25 24 22

Average time (sec) 1 1 1 2

6 x 20 Nbest 6 9 13 20
Average gap (%) 100 98 9.7 95

Average time (sec) 2 2 2 3

10 x 20 Nbest 12 17 17 20
Average gap (%) 128 125 125 125

Average time (sec) 3 3 3 3

2 x 50 Nbest 1 3 5 20
Average gap (%) 25 22 21 19

Average time (sec) 12 13 14 16

6 x 50 Nbest 4 6 12 20
Average gap (%) 80 78 76 74

Average time (sec) 17 19 20 23

10 x 50 Nbest 8 11 12 20

Average gap (%) 10.9 108 10.7 10.5
Average time (sec) 23 25 27 31

2x 100 Nbest 1 4 6 20

Average gap (%) 1.9 1.8 1.7 1.6

Average time (sec) 88 93 96 107

6 x 100 Nbest 2 5 5 20

Average gap (%) 66 63 62 6.0

Average time (sec) 115 126 134 161

10 x 100 Nbest 7 10 12 20
Average gap (%) 94 93 92 9.0

Average time (sec) 156 165 173 206

Table 9: Evaluation of local search strategies on class D instances

average CPU time was associated with the 10 x 100 instances, as expected, and was less than
4 minutes. The same performance was observed for problem instances from data sets A and C

(results not shown).

5.3 Experiment 3: HYBRID() vs. GRASP()

The purpose of the third experiment was to compare HYBRID() with GRASP(). GRASP is a
heuristic methodology that has proven effective in finding high quality solutions to difficult com-
binatorial optimization problems, including those involving single- and multi-machine schedul-
ing [3, 5]. A general description of the GRASP methodology is given by Feo and Resende [4];
for a narrower description with respect to the SDST flow shop, see [10].

When comparing two algorithms, it is important to provide a level playing field. GRASP ()

14

Set A Set D Set C

HYBRID() © {0.0,0.5,1.0} {0.0,0.5,1.0} {0.0,0.2,0.4}
R RYRR® R'R* R? R' R?
GRASP () N 7 7 5
K 1 1 1
A 2 2 2

Table 10: Parameter values used for HYBRID() and GRASP ()

is a randomized heuristic that requires the user to specify the maximum number of iterations.
The higher this value is set, the more (and probably better) schedules that may be found. In
contrast, HYBRID() is a deterministic heuristic, where the degree of diversification determines
the maximum number of schedules uncovered. In an attempt to make the comparison as fair as
possible, the local search strategy was set to S3 for both heuristics. Table 10 shows the settings
used for the analysis. The GRASP() parameters are: N (maximum number of iterations) K
(iterations between invoking the post-processor), and A (restricted candidate list size). Under
these settings, both heuristics will construct the same number of schedules in phase 1 and will
apply local search to each. Recall that for a fixed size of © and R in HYBRID(), and a fixed size
of N in GRASP() the computational complexity of the construction phase is the same for both
heuristics (O(mn?)). We have observed that in practice both procedures use about the same
amount of CPU time, with HYBRID() taking about 15-20% more time than GRASP() on class

A, D instances and GRASP () taking about 15-20% more time on class C instances.

Data Set A n =20 n =50 n = 100
m Statistic Hvs. G Hvs. G Hvs. G
2 Nbest 14 13 13 13 13 7

Average gap (%) 14 14 |09 0905 0.7

Wilcoxon test H best
4 Nbest 13 8 8 14 5 16

Average gap (%) | 4.1 41 |24 24|18 1.7

Wilcoxon test

6 Nbest 11 12 7 14 4 16
Average gap (%) | 5.6 56 |48 46| 3.0 238
Wilcoxon test G best

8 Nbest 14 7 9 11 2 18
Average gap (%) | 9.2 94 |64 6.2 |48 43
Wilcoxon test G best

10 Nbest 2 18 5 15 3 17
Average gap (%) | 11.1 10.7 | 7.2 6.7 | 6.1 5.6
Wilcoxon test G best G best G best

Table 11: Heuristic evaluation for data class A

Tables 11, 12, and 13 display the results for data sets A, D, and C, respectively, in terms of

15

Data Set D n =20 n =50 n = 100

m Statistic Hvs. G Hvs. G Hvs. G
2 Nbest 14 7 17 3 19 1
Average gap (%) 1.8 1.9 1.8 20|16 21
Wilcoxon test H best H best
4 Nbest 8 13 13 7 13 7

Average gap (%) | 6.0 5.9 41 41|41 42
Wilcoxon test
6 Nbest 8 12 1 9 9 11
Average gap (%) | 8.8 8.6 70 69|59 59

Wilcoxon test

8 Nbest 10 11 7 13 5 15
Average gap (%) | 102 102 | 75 74|73 7.2
Wilcoxon test G best

10 Nbest 13 9 5 16 4 16
Average gap (%) | 11.9 119 | 10.2 9.9 | 8.6 8.4
Wilcoxon test G best G best

Table 12: Heuristic evaluation for data class D

the number of times a given heuristic found the best solution (Nbest) and the average relative
gap (Average gap). The third line in each cell indicates which of either of the heuristics was
found to be statistically superior after performing the Wilcoxon test at a 99% level of confidence.
When the test was not significant (i.e., no heuristic was found to be better than the other) the
table entry is blank. For a fixed value of n, it can be observed that HYBRID() tends to do better
when the number of machines is small. As m gets larger, GRASP() generally dominates. For
example, for data set D with n = 50 and m = 2, HYBRID () was found to be statistically superior
to GRASP(). When m took on the values 4, 6, the Wilcoxon test did not find any significant
difference between the heuristics. When m = 8, 10, GRASP() dominated. Similar behavior was
observed for data sets A and C.

When comparing performance among the different data classes, it was observed that
GRASP() tended to do better when setup time fluctuations were small. For the problem in-
stances in class A, for example, GRASP () was found to be statistically superior in 5 cases, and
HYBRID() in 1 case. When we examined class D, GRASP () proved superior in only 3 cases, and
HYBRID() in 2 cases. Finally, for data set C, HYBRID() was found to be superior in 10 cases,
clearly dominating GRASP().

6 Discussion and Conclusions

The first observation that can be made from the computational results is that HYBRID() gen-

erally outperforms GRASP () when the number of machines is small. Another favorable scenario

16

Data Set C n =20 n =50 n =100
m Statistic Hvs. G Hvs. G Hvs. G
2 Nbest 15 5 20 0 20 0
Average gap (%) | 6.9 7.4 6.0 7.2 49 7.0
Wilcoxon test H best H best
4 Nbest 1 9 20 0 20 0
Average gap (%) | 12.3 12,5 | 13.3 14,5 | 12.0 14.0
Wilcoxon test H best H best
6 Nbest 12 8 19 1 20 0
Average gap (%) | 16.2 16.5 | 16.0 17.0 | 15.8 17.5
Wilcoxon test H best H best
8 Nbest 1 9 18 2 20 0
Average gap (%) | 174 173 | 19.1 198 | 183 20.1
Wilcoxon test H best H best
10 Nbest 14 6 16 4 20 0
Average gap (%) | 188 19.1 | 20.9 21.5 | 20.7 219
Wilcoxon test H best H best

Table 13: Heuristic evaluation for data class C

for HYBRID() is when setup time fluctuations are large (data set C). This stems from the fact
that the fewer the number of machines and/or the larger the magnitude of the setup times, the
more the problem resembles an ATSP so a TSP-based procedure should do well. Recall that in
HYBRID() the distance between jobs has a setup time cost component which is computed as the
sum of the setup times between jobs over all machines. In the extreme case where there is only
one machine, the problem reduces to an instance of the ATSP. As more machines are added,
the weighted cost function becomes less representative of the “distance” between the jobs.

The maximum number of machines in the problem for HYBRID () to do better than GRASP ()
depends not only on the number of jobs, but on the magnitude of the setup times as well.
For data class D, a threshold value of m = 4 was observed for the 50- and 100-job instances.
However, for data class C (larger setup times), HYBRID() was found to outperform GRASP ()
with respect to both makespan (especially for the 50- and 100-job data sets) and CPU time.
This implies a threshold value of m > 10.

Another way to explain the better performance of HYBRID() on the larger instances is as
follows. An insertion-based heuristic like GRASP() includes a makespan estimation routine
that has setup costs as part of its performance measure; this is the only explicit treatment of
setups in the heuristic. Because the job insertion decision is made one job at a time, while
the sequence-dependent setup time is dictated by the interrelationships of an entire sequence
of jobs, a TSP-based heuristic should to do better when the number of machines is small. In
such cases, the similarities between the SDST flow shop and the ATSP are strongest.

In terms of solution quality, HYBRID() delivered average optimality gaps of 1.6% for the

17

2-machine, 100-job instances in data set D. As the number of machines increases, the average
gap increased as well up to around 8.6% for the 10-machine instances. Consequently, looking at
data class A (C), smaller (larger) setup time variations resulted in smaller (larger) optimality
gaps.

An advantage of GRASP (), of course, is that by increasing the iteration counter, more and
perhaps better solutions can be found. The scheduler must make this trade-off in light of the
specific time constraints he or she faces. When the ultimate goal is to develop exact optimization
methods, however, both procedures can be combined to yield better upper bounds. This is
critical in speeding convergence. In [8], both heuristics are used within a branch-and-bound
scheme with notable success.

In summary, the hybrid heuristic did a good job in exploiting the similarities between the
SDST flow shop and the T'SP. The overall results are promising. In terms of future work, it
would be worthwhile to investigate alternate cost functions and to develop other non-TSP-
based algorithms. In fact, the proposed cost function can be used for developing an effective

diversification strategy within memory-based meta-heuristic schemes such as tabu search.

7 Acknowledgments

The research of Roger Rios-Mercado was supported by the Mexican National Council of Sci-
ence and Technology (CONACYT) and by an E. D. Farmer Fellowship and a David Bruton
Fellowship, both from The University of Texas at Austin. Jonathan Bard was supported by
a grant from the Texas Higher Education Coordinating Board under the Advanced Research
Program.

We would also like to thank two anonymous referees for their suggestions, which helped

improve the presentation of this work.

References

[1] A. Allahverdi, J. N. D. Gupta, and T. Aldowaisan. A review of scheduling research involving

setup considerations. Omega, 1998. Forthcoming.
[2] W. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York, 1980.

[3] T. A. Feo, J. F. Bard, and K. Venkatraman. A GRASP for a difficult single machine
scheduling problem. Computers & Operations Research, 18(8):635-643, 1991.

[4] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal
of Global Optimization, 6:109-133, 1995.

18

[5]

M. Laguna and J. L. Gonzalez-Velarde. A search heuristic for just-in-time scheduling in

parallel machines. Journal of Intelligent Manufacturing, 2:253-260, 1991.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cliffs,
New Jersey, 1995.

R. Z. Rios-Mercado. Optimization of the Flowshop Scheduling Problem with Setup Times.
PhD thesis, University of Texas, Austin, August 1997.

R. Z. Rios-Mercado and J. F. Bard. A branch-and-bound algorithm for the permutation
flow shop scheduling problem with sequence-dependent setup times. IIE Transactions,
1998. Forthcoming.

R. Z. Rios-Mercado and J. F. Bard. Computational experience with a branch-and-cut algo-
rithm for flowshop scheduling with setups. Computers € Operations Research, 25(5):351—
366, 1998.

R. Z. Rios-Mercado and J. F. Bard. Heuristics for the flow line problem with setup costs.
European Journal of Operational Research, 110(1):76-98, 1998.

J. V. Simons Jr. Heuristics in flow shop scheduling with sequence dependent setup times.
Omega, 20(2):215-225, 1992.

B. N. Srikar and S. Ghosh. A MILP model for the n-job, m-stage flowshop with sequence
dependent set-up times. International Journal of Production Research, 24(6):1459-1474,
1986.

E. F. Stafford and F. T. Tseng. On the Srikar-Ghosh MILP model for the N x M SDST
flowshop problem. International Journal of Production Research, 28(10):1817-1830, 1990.

J. P. Stinson and A. W. Smith. A heuristic programming procedure for sequencing the
static flowshop. International Journal of Production Research, 20(6):753-764, 1982.

E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem. Euro-
pean Journal of Operational Research, 47(1):65-74, 1990.

M. Widmer and A. Hertz. A new heuristic method for the flow shop sequencing problem.
European Journal of Operational Research, 41(2):186-193, 1989.

19

