
An Enhanced TSP-Based Heuristic for Makespan Minimization

in a Flow Shop with Setup Times

Roger Z. R��os-Mercado

Department of Industrial Engineering

Texas A&M University

College Station, Texas 77843{3131

roger@habanero.tamu.edu

Jonathan F. Bard

Graduate Program in Operations Research

University of Texas

Austin, Texas 78712{1063

jbard@mail.utexas.edu

December 1997

Revised August 1998

Accepted September 1998

Abstract

This paper presents an enhanced heuristic for minimizing the makespan of the
ow shop schedul-

ing problem with sequence-dependent setup times. The procedure transforms an instance of the

problem into an instance of the traveling salesman problem by introducing a cost function that

penalizes for both large setup times and bad �tness of schedule. This hybrid cost function is an

improvement over earlier approaches that penalized for setup times only, ignoring the
ow shop

aspect of the problem. To establish good parameter values, each component of the heuristic

was evaluated computationally over a wide range of problem instances. In the testing stage,

an experimental comparison with a greedy randomized adaptive search procedure revealed the

conditions and data attributes where the proposed procedure works best.

Keywords:
ow shop scheduling, sequence-dependent setup times, heuristics, traveling sales-

man problem

1 Introduction

In this paper, we address the problem of �nding a permutation schedule of n jobs in an m-

machine
ow shop environment that minimizes the maximum completion time Cmax (makespan)

of all jobs. The jobs are available at time zero and have sequence-dependent setup times on

each machine. All parameters, such as processing and setup times, are assumed to be known

with certainty. This problem is regarded in the scheduling literature as the sequence-dependent

setup time
ow shop (SDST
ow shop) and is evidently NP-hard since the case where m = 1

is simply a traveling salesman problem (TSP).

Applications of sequence-dependent setup time scheduling are commonly found in most

manufacturing environments. In the printing industry, for example, presses must be cleaned and

settings changed when ink color, paper size or type di�er from one job to the next. Setup times

are strongly dependent on the job order. In the container manufacturing industry machines

must be adjusted whenever the dimensions of the containers are changed, while in printed

circuit board assembly, rearranging and restocking component inventories on the magazine

rack is required between batches. In each of these situations, sequence-dependent setup times

play a major role and must be considered explicitly when modeling the problem.

In [10], we proposed a greedy randomized adaptive search procedure (GRASP()) for this

problem and compared it to Simons' heuristics [11] SETUP() and TOTAL(). GRASP() is an

insertion-based heuristic. SETUP() and TOTAL() are fundamentally based on transforming the

SDST instance into a related instance of the asymmetric traveling salesman problem (ATSP).

Our empirical evaluation indicated that GRASP() found better schedules when the setup to

processing time ratio was small (about 0.1). However, when the setup times were allowed larger

variations (average ratio 1.0), SETUP() proved superior. We also observed that it produced

better results when the number of machines was small. This stemmed from the fact that the

larger the setups and the smaller the number of machines, the more the problem resembles

a TSP so a TSP-based heuristic such as SETUP() should do better than an insertion-based

heuristic such as GRASP().

Despite the attractiveness of the former, some shortcomings exist in Simons' work. The �rst

is that the cost function (for scheduling two jobs together) includes a penalty term for setup

times only, ignoring the
ow shop aspect of the problem. In particular, there might be pairs of

jobs that cause signi�cant blocking and/or machine idle time when they are scheduled together

even though their setup times are small. In addition, Simons made no e�ort to improve the

solution through local search. As such, the objective of this paper is to present and evaluate

an improved TSP-based heuristic (HYBRID()) for the SDST
ow shop. The �rst aspect of this

work involved the development of the hybrid cost function to capture the dual nature of the

problem. This was followed by the implementation of local search procedures for obtaining

1

local minima. Also included in the algorithm is a parameter variation step that allows us to

diversify the search and explore more of the feasible region.

The proposed heuristic HYBRID() clearly dominates SETUP() since SETUP() is in fact a

special case of the former. In the computational testing, HYBRID() is also seen, in general, to

outperform GRASP() over a wide variety of randomly generated instances, especially on those

where the similarities with the TSP are greater.

The rest of the paper is organized as follows. The most relevant work on
ow shop scheduling

is presented in Section 2. In Section 3, we introduce notation and formally de�ne the problem.

In Section 4, we give a full description of the heuristic, followed in Section 5 by the presentation

and evaluation of our computational experience. We conclude with a discussion of the results.

2 Related Work

For a comprehensive review of the diversity of problems on machine scheduling research in-

volving setup times, see Allahverdi et al. [1]. Here we review the research most relevant to our

work.

2.1 Heuristics

In addressing the makespan minimization of the SDST
ow shop, Simons [11] described four

heuristics and compared them with three benchmarks that represent generally practiced ap-

proaches to scheduling in this environment. Experimental results for problems with up to 15

machines and 15 jobs were presented. His �ndings indicated that two of the proposed heuristics

{ SETUP() and TOTAL() { produced substantially better results than the other methods tested.

In [10], we proposed a GRASP for this problem and compared it to Simons' heuristics

SETUP() and TOTAL(). In this paper, we provide an enhanced version of Simons' heuristics by

correcting some of their shortcomings and by adding a local search phase. A full description is

given in Section 4.

2.2 Exact Optimization

Other approaches to the m-machine problem have focused on exact optimization schemes based

on branch and bound [8, 12, 13] and branch and cut [7, 9]. All other work has been restricted to

the 1- and 2-machine case. In general, the largest instances addressed successfully are reported

in [8] where several 6-machine, 20-job problems were solved to optimality within 30 minutes

using branch and bound. This approach was seen to outperform branch and cut on problems

with 2 to 6 machines and up to 20 jobs.

2

3 Statement of Problem

In the
ow shop environment, a set of n jobs must be scheduled on a set of m machines,

where each job has the same routing. Therefore, without loss of generality, we assume that the

machines are ordered according to how they are visited by each job. Although for a general
ow

shop the job sequence may not be the same for every machine, here we assume a permutation

schedule; i.e., a subset of the feasible schedules that requires the same job sequence on every

machine. We suppose that each job is available at time zero and has no due date. We also

assume that there is a setup time which is sequence dependent so that for every machine i there

is a setup time that must precede the start of a given task that depends on both the job to

be processed (k) and the job that immediately precedes it (j). The setup time on machine i is

denoted by sijk and is assumed to be asymmetric; i.e., sijk 6= sikj. After the last job has been

processed on a given machine, the machine is brought back to an acceptable \ending" state. We

assume that this last operation can be done instantaneously because we are interested in job

completion time rather than machine completion time. Our objective is to minimize the time at

which the last job in the sequence �nishes processing on the last machine. In the literature [6]

this problem is denoted by Fmjsijk; prmujCmax or SDST
ow shop.

Example 1 Consider the following instance of F2jsijk; prmujCmax with four jobs.

pij 1 2 3 4 s1jk 1 2 3 4 s2jk 1 2 3 4

1 30 20 10 5 0 2 4 5 3 0 2 6 1 3

2 15 25 20 25 1 { 10 7 3 1 { 2 7 11

2 6 { 12 8 2 9 { 3 7

3 7 11 { 6 3 8 5 { 10

4 5 7 2 { 4 8 4 10 {

A schedule S = (4; 2; 1; 3) is shown in Figure 1. The corresponding makespan is 109, which

is optimal. 2

M1

M2

10 20 30 40 50 60 70 80 90 100 110

Setup time Processing time

4 2 3 1

4 2 3 1

Time

Figure 1: Example of a 2� 4 SDST
owshop

3

3.1 Notation

In the reminder of the paper, when we refer to the SDST
ow shop we make use of the following

notation.

Indices and sets

m number of machines

n number of jobs

i machine index; i 2 I = f1; 2; : : : ;mg

j; k; l job indices; j; k; l 2 J = f1; 2; : : : ; ng

J0 = J [f0g extended set of jobs, including a dummy job denoted by 0

Input data

pij processing time of job j on machine i; i 2 I, j 2 J

sijk setup time on machine i when job j is scheduled right before job k; i 2 I , j 2 J0, k 2 J

A job j (without brackets) refers to the job j itself, whereas job [j] (with brackets) refers

to the index of the job scheduled in the j-th position.

4 Description of Heuristic

Simons' [11] main idea was �rst to transform an instance of the SDST
ow shop into an instance

of the ATSP by computing an appropriate cost matrix, and then to solve the latter by applying

a well-known heuristic for the ATSP. In the �rst of two phases of his heuristics, an instance

of the ATSP is built as follows. Every job is identi�ed with a \city." Procedure TOTAL()

computes the entries in the distance (cost) matrix as the sum of both the processing and setup

times over all the machines. Procedure SETUP() considers the sum of setup times only. In the

second phase, a feasible tour is obtained by invoking a heuristic for the ATSP. This heuristic

uses the well-known Vogel's approximation method (VAM) for obtaining good initial solutions

to transportation problems with a slight modi�cation to eliminate the possibility of subtours.

The ATSP solution maps back into a feasible schedule for the SDST
ow shop.

Although this approach seems suitable, given the strong similarities between the SDST
ow

shop and the ATSP, Simons' work was limited in two respects, as mentioned above. First, the

cost function ignores completely the
ow shop aspect of the problem, and second, no attempt

was made to achieve local optimality.

4

4.1 Construction Phase

Our HYBRID() heuristic is based on Simons' [11] idea of exploiting the embedded ATSP structure

to derive good schedules. We attempt to improve on his approach by introducing a cost function

that balances setup times and schedule �tness for each pair of jobs. Let Cjk be the cost of

scheduling job j right before job k. We express this measure as

Cjk = �Rjk + (1� �)Sjk

where � 2 [0; 1], and Rjk and Sjk are the costs of scheduling jobs j and k together, from the

ow shop and the setup time perspective, respectively. The setup cost component is simply

Sjk =
X

i2I

sijk

such that when � = 0, the cost measure is reduced to Simons' measure for his SETUP() heuristic.

We now develop the cost Rjk following an idea similar to the one used by Stinson and

Smith [14] for F jprmujCmax. Let tij denote the completion of job j on machine i. Assume that

job k immediately succeeds job j. The completion time of job k on any machine can then be

recursively determined as follows:

tik = maxftij + sijk; ti�1;kg+ pik

The relationship between tij + sijk and ti�1;k plays a key role here. If tij + sijk > ti�1;k, then

job k will arrive at machine i before job j has been released from machine i; hence job k will

be blocked in the queue at machine i for tij + sijk � ti�1;k time units. On the other hand, if

tij + sijk < ti�1;k, then machine i will be idle for ti�1;k� (tij+ sijk) time units while waiting for

job k to arrive. The ideal situation occurs when tij + sijk = ti�1;k, in which case neither job k

is blocked nor does machine i experience any idleness.

Now, let us take this rationale a step further by considering the set of circumstances which

would have to take place if tij+sijk were to equal ti�1;k for the entire period where both j and k

are scheduled together. This will occur only when pij+ sijk = si�1;jk+pi�1;k for every machine

i = 2; : : : ;m. Although we would seldom, if ever, expect such an ideal set of circumstances

to arise in practice, the closer the values of pij + sijk and si�1;jk + pi�1;k are matched for all

machines, the tighter jobs j and k will tend to �t together within the schedule. With this in

mind, we now de�ne a residual factor, rijk, as

rijk = pij + sijk � (si�1;jk + pi�1;k) i 2 I n f1g; j; k 2 J0

where pi0 = 0 for i 2 I. For any pair (j; k), j 6= k, we may compute m � 1 such residuals

which are then combined in several di�erent ways to yield the overall cost, Rjk. The choices

considered are listed in Table 1.

5

Function Description

R1
jk =
Pm

i=2 jrijkj Sum of the absolute residuals

R2
jk =
Pm

i=2[rijk]
+ Sum of positive residuals only, where [rijk]

+ =

rijk if rijk > 0; 0 otherwise

R3
jk =
Pm

i=2[rijk]
� Sum of negative residuals only, where [rijk]

� =

�rijk if rijk < 0; 0 otherwise

R4
jk =
Pm

i=2 2[rijk]
+ + [rijk]

� Sum of absolute residuals with positive residuals

weighted double

R5
jk =
Pm

i=2[rijk]
+ + 2[rijk]

� Sum of absolute residuals with negative residu-

als weighted double

Table 1: Residual functions investigated

With R1 each residual, regardless of its direction of error, is equally weighted. Rules R2 and

R4 penalize more for positive residuals (blocking) whereas R3 and R5 penalize more for negative

residuals (idle time). It is important to note that the sign of each rijk value is signi�cant. A

positive rijk implies that a degree of blocking for job k at machine i is likely to occur. On the

other hand, a negative rijk implies idleness at machine i. This motivates the choices of rules

R2 through R5. In fact, preliminary computational experience showed that all of these rules

were very helpful; however, for some instances it was observed that rules R2 and R4 (which

assess a greater penalty for positive residuals) were uniformly dominated by the others (see

Section 5.1). This indicates that machine idleness is of greater concern than job blocking when

constructing a schedule. One explanation for this is that a negative residual at some machine i

has a carryover e�ect on the remaining downstream machines.

In general, for a given value of � 2 [0; 1] and a given residual cost rule, there is an associated

cost matrix C. To devise a heuristic based on these parameters, let � = f�1; : : : ; �pg be a (�nite)

discretization of [0; 1], where p is the size of the discretization, and let R = fR1; R2; R3; R4; R5g

be the set of cost functions (as de�ned in Table 1). The construction phase of procedure

HYBRID() is shown in Figure 2. A local search phase is then applied to this schedule in an

attempt to �nd a local optimum with respect to neighborhood arguments. This is discussed in

Section 4.2.

Computational complexity: The computation of the cost matrix performed in Step 3 takes

O(mn2) time. The application of Vogel's modi�ed method to a (n+1)-city problem is O(n2) so

the overall procedure has worst-case complexity of O(jRjj�jmn2). When jRj = O(1) this brings

the complexity down to O(j�jmn2). In this regard, preliminary testing has shown that any

discretization with j�j > 10 provides no better solutions than a discretization with j�j = 10.

6

Procedure HYBRID phase1()

Input: An instance of the SDST
owshop, a discretization

� of the weight range, and a set R of residual cost functions.

Output: A feasible schedule S.

0: Initialize best schedule Sbest = ;, Cmax(Sbest) =1

1: for each Rl 2 R do

2: for each � 2 � do

3: Compute (n+ 1)� (n+ 1) cost matrix as

Cjk = �Ri
jk + (1� �)Sjk

4: Apply modi�ed VAM to (Cjk) to obtain a tour S

5: If Cmax(S) < Cmax(Sbest) then Sbest S

6: Output Sbest

7: Stop

Figure 2: Pseudocode of HYBRID() phase 1

Hence, we take � = f0:0; 0:1; : : : ; 1:0g giving a time complexity of O(mn2).

4.2 Local Search

Neighborhoods can be de�ned in a number of di�erent ways, each having di�erent computational

implications. Consider, for instance, a 2-opt neighborhood de�nition that consists of exchanging

two edges in a given tour or sequence of jobs. For this neighborhood, a move in a TSP takes O(1)

time to evaluate whereas a move in the SDST
ow shop takes O(mn2). One of the most common

neighborhoods for scheduling problems is the 2-job exchange which has been used by Widmer

and Hertz [16] and by Taillard [15] for F jprmujCmax. We considered the 2-job exchange as well.

In addition, in [7] we generalized the 1-job reinsertion neighborhood proposed by Taillard [15]

for F jprmujCmax to develop an L-job string reinsertion procedure (that is, remove a string of L

jobs and reinsert it in a di�erent place in the schedule). This was motivated by the presence of

the sequence-dependent setup times, which suggest that subsets (or strings) of consecutive jobs

might �t together in a given schedule. We tried both procedures for our problem and found

that the string reinsertion uniformly outperformed the 2-job exchange, just as Taillard found

the 1-job reinsertion performed better than the 2-job exchange for the regular
ow shop.

In general the neighborhood de�nition is di�erent for each value of the string size L; that

is, a local optima with respect to L = 1, for instance, may not be local optima with respect to

L = 2. Thus in practice, one can apply or combine several of these neighborhoods for di�erent

7

values of L, depending on the particular trade-o� value between quality of solution desired and

time available. For instance, HYBRID() is a deterministic heuristic that runs very quickly. This

makes a local search e�ort more a�ordable.

5 Experimental Evaluation

All procedures were written in C++ and run on a Sun Sparcstation 10 using the CC compiler

version 2.0.1, with the optimization
ag set to {O. CPU times were obtained through the C

function clock().

pij sijk

Class A [10,100] [1,10]

Class D [20,100] [20,40]

Class C [50,100] [1,50]

Table 2: Data class attributes

To conduct our experiments we used randomly generated data drawn from classes A, D, and

C, where both processing and setup times are generated according to a uniform distribution in

the intervals shown in Table 2. Class D is most representative of real world instances, having a

setup/processing time ratio between 20% and 40%. Classes A and C, account for a smaller (1{

10%) and a larger (1{50%) ratio variation, respectively, and are intended to assess algorithmic

performance in best- and worst-case scenarios.

For a given combination of (m� n) 2 f2; 4; 6; 8; 10g � f20; 50; 100g and for each data class

we generated 20 random instances. In total then, each of the experiments described below was

tested on 5 machine settings� 3 job settings� 3 data classes� 20 replications = 900 instances.

5.1 Experiment 1: Evaluation of Cost Function

The purpose of this preliminary experiment was to evaluate the impact of the cost function

Cjk = �Rjk + (1� �)Sjk (1)

as the parameter � 2 [0; 1] and the residual cost component Rjk varied. Recall from Section 4

that �ve residual functions were proposed. Therefore, by taking all combinations of a particular

residual cost function and an element of a partition for �, we formed \di�erent" algorithms.

The �rst issue addressed involved the determination of acceptable ranges for the weight

parameter �. For this purpose we ran the algorithm using residual cost function R1 for � 2

f0:0; 0:2; : : : ; 1:0g. For each run, we tallied the number of times a given choice of � found the

best (or tied for best) solution. Tables 3, 4, and 5 display the results for data sets A, D, and

C, respectively.

8

Values of �

m� n 0.0 0.2 0.4 0.6 0.8 1.0 F Best range for �

2� 20 3 9 3 3 1 2 (�) 5.92 [0.0,0.6]

50 3 10 7 0 0 0 (�) 30.08 [0.0,0.4]

100 11 6 3 0 0 0 (�) 57.97 [0.0,0.4]

6� 20 2 6 2 7 6 7 (�) 3.27 [0.2,1.0]

50 0 6 2 2 6 4 (�) 9.66 [0.2,1.0]

100 0 7 5 4 1 3 (�) 7.58 [0.2,1.0]

10� 20 2 8 7 7 3 4 (�) 6.47 [0.2,1.0]

50 1 3 10 3 2 4 (�) 7.41 [0.2,1.0]

100 0 3 5 4 4 4 (�) 5.91 [0.2,1.0]

(�) F test signi�cant at � = 99%

Table 3: E�ect of parameter � on class A instances

Values of �

m� n 0.0 0.2 0.4 0.6 0.8 1.0 F Best range for �

2� 20 7 5 5 3 1 0 (�) 17.78 [0.0,0.6]

50 13 3 2 2 0 0 (�) 55.30 [0.0,0.4]

100 14 6 0 0 0 0 (�) 263.27 [0.0,0.2]

6� 20 2 5 3 6 2 5 2.35 [0.0,1.0]

50 4 1 3 5 3 4 0.80 [0.0,1.0]

100 7 8 4 0 1 0 (�) 7.78 [0.0,0.4]

10� 20 3 4 5 4 4 5 1.73 [0.0,1.0]

50 2 5 4 2 3 4 2.29 [0.0,1.0]

100 0 6 7 4 3 0 (�) 3.28 [0.2,0.8]

(�) F test signi�cant at � = 99%

Table 4: E�ect of parameter � on class D instances

In these tables, each row shows, for a particular m � n combination, the number of times

a given choice of � found the best, or tied for best, solution. In addition, the Friedman test

(non-parametric statistical test equivalent to classical ANOVA [2]) was applied to determine

whether there is a signi�cant di�erence among the values of � used. The observed F value

is shown in the second to last column. If the test was signi�cant at � = 99% (greater than

F0:99;5;95 = 3:241), it is indicated with an asterisk (�). The last column shows the best range

for � obtained from the experiments

The following observations were made:

� For data set A, the range [0.2,1.0] provided the best results, except for the 2-machine

instances. This �nding can be explained by noting that in data class A, the setup time

variation is small, which lessens the importance of the setup time contribution Sjk in the

cost function (1). However, for the 2-machine instances, ranges starting from 0.0 should

be considered because strong similarities with the ATSP still exist despite the small setup

9

Values of �

m� n 0.0 0.2 0.4 0.6 0.8 1.0 F Best range for �

2� 20 13 5 1 1 0 0 (�) 74.82 [0.0,0.2]

50 15 6 0 0 0 0 (�) 229.48 [0.0,0.2]

100 17 3 0 0 0 0 (�) 315.17 [0.0,0.2]

6� 20 1 9 10 4 0 0 (�) 12.99 [0.2,0.6]

50 9 8 3 0 0 0 (�) 53.99 [0.0,0.4]

100 13 7 0 0 0 0 (�) 241.78 [0.0,0.2]

10� 20 4 4 6 5 1 0 (�) 3.80 [0.0,0.6]

50 6 6 6 2 0 0 (�) 29.64 [0.0,0.4]

100 9 10 1 0 0 0 (�) 103.69 [0.0,0.2]

(�) F test signi�cant at � = 99%

Table 5: E�ect of parameter � on class C instances

times.

� For data set D, practically the complete [0,1] range for � yielded good results, except

again for the 2-machine instances (same explanation as before) and the large 100-job

instances. Looking at the 100-job instances, the acceptable ranges for � shift towards

1.0 as the number of machines becomes large. This behavior is expected since increasing

the number of machines makes the setup time contribution less representative and the

residual cost component more important.

� For data set C, ranges less than 0.4 or 0.6 worked best for all instances. This is an

intuitive result since this is the data set with the largest setup time variations. Therefore,

one would expect the setup time component of the cost function to play a more decisive

role.

� A �nal remark about these results is that by allowing parameter � to vary in the [0,1]

range, we were able to obtain a wide variety of schedules. In almost all cases, these

schedules were better than those obtained when � was �xed at zero. Recall that the

special case of � = 0 represents Simons' SETUP() heuristic.

The second component of this experiment involved the evaluation of algorithmic perfor-

mance for di�erent values of the residual cost function Rl, l = 1; : : : ; 5. To make the assessment,

we re-ran the algorithm �xing � at 0.2, 0.6, and 1.0. Note that this was only done for machine

and job size combinations that were found acceptable for a speci�c � value in the �rst round of

the experiments. For example, because a value � = 1 was found unacceptable for all 2-machine

class D instances in the �rst round of experiments (Table 4), we did not run the 2-machine

instances for � = 1 for data set D. Tables 6 and 7 show the results for data sets D and C,

respectively. Results for data set A (not included) were similar to those for D.

10

Residual cost functions

� m� n R1 R2 R3 R4 R5 F

0.2 2� 20 5 7 6 1 3 2.56

50 5
2 6 3 4 (�) 5.33

100 (?) 12 3 4 1 0 (�) 9.56

6� 20 2 3 4 5 6 1.16

50 3 5 7 2 3 0.60

100 6 7 5 1 1 3.19

10� 20 3 1 4 3 9 1.12

50 5 3 9 0 3 3.33

100 4 7 5 3 1 1.84

0.6 2� 20 5 4 7 2 4 1.89

6� 20 6 5 4 1 4 1.25

50 6 3 4 3 4 0.86

10� 20 4 3 4 4 5 2.93

50 3 7 4 5 2 0.72

100 5 5 4 2 4 0.38

1.0 6� 20 4
1 5 4 7 (�) 3.67

50 6 4 1 3 6 0.52

10� 20 5 3 1 5 6 1.96

50 7 1 3 6 3 0.57

100 6 1 4 3 6 1.56

(�) F test signi�cant at � = 99%

Table 6: E�ect of residual cost functions on class D instances

In essence, the information displayed is the same as before. The di�erence is that this time,

the Friedman test is signi�cant at � = 99% if F > F0:99;4;76 = 3:604. For those cases where this

test was signi�cant (which supports the alternate hypothesis that not all choices of Rl perform

equally well) a Wilcoxon test (non-parametric pairwise test [2]) was done between all possible

pairs to determine which of the choices were dominant (marked with a star (?)) or dominated

(marked with an
) in the statistical sense. The main observation is that in practically all cases

tested, there was no statistical evidence that any speci�c rule performed better or worse than

the others. Consequently, it would be advantageous to use all of these functions in the overall

procedure since each accounts for approximately 20% of the best schedules found. Results for

data set A were similar.

For data set C, the results were a bit di�erent. As can be seen from Table 7, most of the

tests were signi�cant. R1 and R3 were the best choices for half the instances and R1 was the

best choice for the other half. What this result says is that when setup time variations are large

(data set C), penalizing equally for positive and negative deviations (rule R1) su�ces since now

the setup time component Sjk in eq. (1) plays a more signi�cant role. The cases were R3 was

also found to be a good choice means that having machine idle time (negative residuals) causes

11

Residual cost functions

� m� n R1 R2 R3 R4 R5 F

0.2 2� 20 (?) 9 2 (?) 5 1 4 (�) 4.24

50 (?) 16 1 2 0 1 (�) 12.44

100 (?) 20 0 0 0 0 (�) 21.43

6� 20 6 4 7 0 3 2.79

50 (?) 10 0 (?) 8 2 0 (�) 4.91

100 (?) 13 4 2 1 0 (�) 13.79

10� 20 4 6 7 2 2 1.75

50 7 3 6
1 3 (�) 4.71

100 (?) 9 2 (?) 9 0 0 (�) 13.53

(�) F test signi�cant at � = 99%

Table 7: E�ect of residual cost functions on class C instances

a larger disruption in the schedule than having a blocked machine (positive residuals). This can

be explained by noting that when idle time is incurred at a machine, there is a carryover e�ect

on the downstream machines. This becomes an important issue when setup time variations are

relatively large.

5.2 Experiment 2: Evaluation of Discretization Size and Local Search

In the second set of experiments, the computational burden in HYBRID() was increased in an

attempt to uncover better solutions. This allowed us to evaluate the trade-o� between solution

quality and resource usage as measured by CPU time.

In the �rst phase, we ran HYBRID() for three di�erent discretizations of the weight interval:

�1 = f0:0; 0:5; 1:0g, �2 = f0:0; 0:2; 0:4; : : : ; 1:0g, and �3 = f0:0; 0:1; 0:2; : : : ; 1:0g. Note that

j�1j = 3, j�2j = 6, and j�3j = 11. No local search was performed.

Results for data set D are shown in Table 8. For each category of problem sizes de�ned by

n�m, we give the number of best solutions (or tied for best) found under each discretization

and the average CPU time (sec). It can be seen that the �ner discretization (�3 compared to

�2) produces nearly twice as many superior solutions. This came at the expense of about a

50% increase in CPU time. Nevertheless, the largest instances (10 � 100) took on average less

than four minutes under discretization �3, which is still quite reasonable. Results for data sets

A and C (not included) were similar.

The purpose of the second component of experiment 2 was to determine which local search

strategy worked best within the HYBRID() framework. We used the L-job string reinsertion

procedure (denoted by LS) and de�ned four di�erent implementation strategies, namely

S1: Apply LS(L = 1)

S2: Apply LS(L = 1) then LS(L = 2) and stop

12

Discretization

m� n Statistic �1 �2 �3

2� 20 Number of best 8 8 20

Average time (sec) 1 1 2

6� 20 Number of best 6 12 20

Average time (sec) 1 2 3

10� 20 Number of best 4 12 20

Average time (sec) 1 2 4

2� 50 Number of best 7 11 20

Average time (sec) 5 12 22

6� 50 Number of best 3 9 20

Average time (sec) 6 14 27

10� 50 Number of best 3 8 20

Average time (sec) 7 16 31

2� 100 Number of best 14 16 20

Average time (sec) 38 89 175

6� 100 Number of best 7 11 20

Average time (sec) 41 98 196

10� 100 Number of best 1 12 20

Average time (sec) 45 109 220

Table 8: Evaluation of di�erent discretization sizes on class D instances

S3: Apply LS(L = 1) then LS(L = 2) then LS(L = 3) and stop

S4: Apply S3 as many times as necessary until no improvement is possible

Strategy k, k = 1; 2; 3, will deliver a local optimum with respect to its respective neighborhood.

Strategy 4 delivers a local optimum with respect to all three neighborhoods. The strategies are

listed in increasing order of computational e�ort. The question of interest is whether or not

the extra e�ort pays o� in terms of solution quality. Note that in this experiment the local

search phase was applied only to the most promising schedule obtained from the construction

phase. Of course, it is possible to apply local search to each schedule constructed but this

would signi�cantly increase the computational burden. Empirical evidence suggests that such

a strategy is rarely justi�ed (see [3, 4]).

Results of this experiment for data set D are shown in Table 9. In each cell we give the

number of times a given strategy found the best solution (Nbest), the average relative percentage

gap with respect to a lower bound (described in [8]), and the average CPU time. The �rst thing

to notice is that in most cases strategy S4 found solutions that were about 50% better than

those found by the other strategies. In 85 out of 180 instances, for example, S4 proved superior

to S3. The performance of S4 was even better for the larger instances (in terms of the number

of jobs). In terms of relative gap, strategy S4 gives a relative average improvement of 2{10%

over S3. This improvement comes at a cost of about a 50% increase in CPU time. The largest

13

Strategy

m� n Statistic S1 S2 S3 S4

2� 20 Nbest 6 10 13 20

Average gap (%) 2.7 2.5 2.4 2.2

Average time (sec) 1 1 1 2

6� 20 Nbest 6 9 13 20

Average gap (%) 10.0 9.8 9.7 9.5

Average time (sec) 2 2 2 3

10 � 20 Nbest 12 17 17 20

Average gap (%) 12.8 12.5 12.5 12.5

Average time (sec) 3 3 3 3

2� 50 Nbest 1 3 5 20

Average gap (%) 2.5 2.2 2.1 1.9

Average time (sec) 12 13 14 16

6� 50 Nbest 4 6 12 20

Average gap (%) 8.0 7.8 7.6 7.4

Average time (sec) 17 19 20 23

10 � 50 Nbest 8 11 12 20

Average gap (%) 10.9 10.8 10.7 10.5

Average time (sec) 23 25 27 31

2� 100 Nbest 1 4 6 20

Average gap (%) 1.9 1.8 1.7 1.6

Average time (sec) 88 93 96 107

6� 100 Nbest 2 5 5 20

Average gap (%) 6.6 6.3 6.2 6.0

Average time (sec) 115 126 134 161

10� 100 Nbest 7 10 12 20

Average gap (%) 9.4 9.3 9.2 9.0

Average time (sec) 156 165 173 206

Table 9: Evaluation of local search strategies on class D instances

average CPU time was associated with the 10 � 100 instances, as expected, and was less than

4 minutes. The same performance was observed for problem instances from data sets A and C

(results not shown).

5.3 Experiment 3: HYBRID() vs. GRASP()

The purpose of the third experiment was to compare HYBRID() with GRASP(). GRASP is a

heuristic methodology that has proven e�ective in �nding high quality solutions to di�cult com-

binatorial optimization problems, including those involving single- and multi-machine schedul-

ing [3, 5]. A general description of the GRASP methodology is given by Feo and Resende [4];

for a narrower description with respect to the SDST
ow shop, see [10].

When comparing two algorithms, it is important to provide a level playing �eld. GRASP()

14

Set A Set D Set C

HYBRID() � f0:0; 0:5; 1:0g f0:0; 0:5; 1:0g f0:0; 0:2; 0:4g

R R1; R2; R3 R1; R2; R3 R1; R3

GRASP() N 7 7 5

K 1 1 1

� 2 2 2

Table 10: Parameter values used for HYBRID() and GRASP()

is a randomized heuristic that requires the user to specify the maximum number of iterations.

The higher this value is set, the more (and probably better) schedules that may be found. In

contrast, HYBRID() is a deterministic heuristic, where the degree of diversi�cation determines

the maximum number of schedules uncovered. In an attempt to make the comparison as fair as

possible, the local search strategy was set to S3 for both heuristics. Table 10 shows the settings

used for the analysis. The GRASP() parameters are: N (maximum number of iterations) K

(iterations between invoking the post-processor), and � (restricted candidate list size). Under

these settings, both heuristics will construct the same number of schedules in phase 1 and will

apply local search to each. Recall that for a �xed size of � and R in HYBRID(), and a �xed size

of N in GRASP() the computational complexity of the construction phase is the same for both

heuristics (O(mn2)). We have observed that in practice both procedures use about the same

amount of CPU time, with HYBRID() taking about 15{20% more time than GRASP() on class

A, D instances and GRASP() taking about 15{20% more time on class C instances.

Data Set A n = 20 n = 50 n = 100

m Statistic H vs. G H vs. G H vs. G

2 Nbest 14 13 13 13 13 7

Average gap (%) 1.4 1.4 0.9 0.9 0.5 0.7

Wilcoxon test H best

4 Nbest 13 8 8 14 5 16

Average gap (%) 4.1 4.1 2.4 2.4 1.8 1.7

Wilcoxon test

6 Nbest 11 12 7 14 4 16

Average gap (%) 5.6 5.6 4.8 4.6 3.0 2.8

Wilcoxon test G best

8 Nbest 14 7 9 11 2 18

Average gap (%) 9.2 9.4 6.4 6.2 4.8 4.3

Wilcoxon test G best

10 Nbest 2 18 5 15 3 17

Average gap (%) 11.1 10.7 7.2 6.7 6.1 5.6

Wilcoxon test G best G best G best

Table 11: Heuristic evaluation for data class A

Tables 11, 12, and 13 display the results for data sets A, D, and C, respectively, in terms of

15

Data Set D n = 20 n = 50 n = 100

m Statistic H vs. G H vs. G H vs. G

2 Nbest 14 7 17 3 19 1

Average gap (%) 1.8 1.9 1.8 2.0 1.6 2.1

Wilcoxon test H best H best

4 Nbest 8 13 13 7 13 7

Average gap (%) 6.0 5.9 4.1 4.1 4.1 4.2

Wilcoxon test

6 Nbest 8 12 11 9 9 11

Average gap (%) 8.8 8.6 7.0 6.9 5.9 5.9

Wilcoxon test

8 Nbest 10 11 7 13 5 15

Average gap (%) 10.2 10.2 7.5 7.4 7.3 7.2

Wilcoxon test G best

10 Nbest 13 9 5 16 4 16

Average gap (%) 11.9 11.9 10.2 9.9 8.6 8.4

Wilcoxon test G best G best

Table 12: Heuristic evaluation for data class D

the number of times a given heuristic found the best solution (Nbest) and the average relative

gap (Average gap). The third line in each cell indicates which of either of the heuristics was

found to be statistically superior after performing the Wilcoxon test at a 99% level of con�dence.

When the test was not signi�cant (i.e., no heuristic was found to be better than the other) the

table entry is blank. For a �xed value of n, it can be observed that HYBRID() tends to do better

when the number of machines is small. As m gets larger, GRASP() generally dominates. For

example, for data set D with n = 50 andm = 2, HYBRID() was found to be statistically superior

to GRASP(). When m took on the values 4, 6, the Wilcoxon test did not �nd any signi�cant

di�erence between the heuristics. When m = 8, 10, GRASP() dominated. Similar behavior was

observed for data sets A and C.

When comparing performance among the di�erent data classes, it was observed that

GRASP() tended to do better when setup time
uctuations were small. For the problem in-

stances in class A, for example, GRASP() was found to be statistically superior in 5 cases, and

HYBRID() in 1 case. When we examined class D, GRASP() proved superior in only 3 cases, and

HYBRID() in 2 cases. Finally, for data set C, HYBRID() was found to be superior in 10 cases,

clearly dominating GRASP().

6 Discussion and Conclusions

The �rst observation that can be made from the computational results is that HYBRID() gen-

erally outperforms GRASP() when the number of machines is small. Another favorable scenario

16

Data Set C n = 20 n = 50 n = 100

m Statistic H vs. G H vs. G H vs. G

2 Nbest 15 5 20 0 20 0

Average gap (%) 6.9 7.4 6.0 7.2 4.9 7.0

Wilcoxon test H best H best

4 Nbest 11 9 20 0 20 0

Average gap (%) 12.3 12.5 13.3 14.5 12.0 14.0

Wilcoxon test H best H best

6 Nbest 12 8 19 1 20 0

Average gap (%) 16.2 16.5 16.0 17.0 15.8 17.5

Wilcoxon test H best H best

8 Nbest 11 9 18 2 20 0

Average gap (%) 17.4 17.3 19.1 19.8 18.3 20.1

Wilcoxon test H best H best

10 Nbest 14 6 16 4 20 0

Average gap (%) 18.8 19.1 20.9 21.5 20.7 21.9

Wilcoxon test H best H best

Table 13: Heuristic evaluation for data class C

for HYBRID() is when setup time
uctuations are large (data set C). This stems from the fact

that the fewer the number of machines and/or the larger the magnitude of the setup times, the

more the problem resembles an ATSP so a TSP-based procedure should do well. Recall that in

HYBRID() the distance between jobs has a setup time cost component which is computed as the

sum of the setup times between jobs over all machines. In the extreme case where there is only

one machine, the problem reduces to an instance of the ATSP. As more machines are added,

the weighted cost function becomes less representative of the \distance" between the jobs.

The maximum number of machines in the problem for HYBRID() to do better than GRASP()

depends not only on the number of jobs, but on the magnitude of the setup times as well.

For data class D, a threshold value of m = 4 was observed for the 50- and 100-job instances.

However, for data class C (larger setup times), HYBRID() was found to outperform GRASP()

with respect to both makespan (especially for the 50- and 100-job data sets) and CPU time.

This implies a threshold value of m > 10.

Another way to explain the better performance of HYBRID() on the larger instances is as

follows. An insertion-based heuristic like GRASP() includes a makespan estimation routine

that has setup costs as part of its performance measure; this is the only explicit treatment of

setups in the heuristic. Because the job insertion decision is made one job at a time, while

the sequence-dependent setup time is dictated by the interrelationships of an entire sequence

of jobs, a TSP-based heuristic should to do better when the number of machines is small. In

such cases, the similarities between the SDST
ow shop and the ATSP are strongest.

In terms of solution quality, HYBRID() delivered average optimality gaps of 1.6% for the

17

2-machine, 100-job instances in data set D. As the number of machines increases, the average

gap increased as well up to around 8.6% for the 10-machine instances. Consequently, looking at

data class A (C), smaller (larger) setup time variations resulted in smaller (larger) optimality

gaps.

An advantage of GRASP(), of course, is that by increasing the iteration counter, more and

perhaps better solutions can be found. The scheduler must make this trade-o� in light of the

speci�c time constraints he or she faces. When the ultimate goal is to develop exact optimization

methods, however, both procedures can be combined to yield better upper bounds. This is

critical in speeding convergence. In [8], both heuristics are used within a branch-and-bound

scheme with notable success.

In summary, the hybrid heuristic did a good job in exploiting the similarities between the

SDST
ow shop and the TSP. The overall results are promising. In terms of future work, it

would be worthwhile to investigate alternate cost functions and to develop other non-TSP-

based algorithms. In fact, the proposed cost function can be used for developing an e�ective

diversi�cation strategy within memory-based meta-heuristic schemes such as tabu search.

7 Acknowledgments

The research of Roger R��os-Mercado was supported by the Mexican National Council of Sci-

ence and Technology (CONACYT) and by an E. D. Farmer Fellowship and a David Bruton

Fellowship, both from The University of Texas at Austin. Jonathan Bard was supported by

a grant from the Texas Higher Education Coordinating Board under the Advanced Research

Program.

We would also like to thank two anonymous referees for their suggestions, which helped

improve the presentation of this work.

References

[1] A. Allahverdi, J. N. D. Gupta, and T. Aldowaisan. A review of scheduling research involving

setup considerations. Omega, 1998. Forthcoming.

[2] W. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York, 1980.

[3] T. A. Feo, J. F. Bard, and K. Venkatraman. A GRASP for a di�cult single machine

scheduling problem. Computers & Operations Research, 18(8):635{643, 1991.

[4] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal

of Global Optimization, 6:109{133, 1995.

18

[5] M. Laguna and J. L. Gonz�alez-Velarde. A search heuristic for just-in-time scheduling in

parallel machines. Journal of Intelligent Manufacturing, 2:253{260, 1991.

[6] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cli�s,

New Jersey, 1995.

[7] R. Z. R��os-Mercado. Optimization of the Flowshop Scheduling Problem with Setup Times.

PhD thesis, University of Texas, Austin, August 1997.

[8] R. Z. R��os-Mercado and J. F. Bard. A branch-and-bound algorithm for the permutation

ow shop scheduling problem with sequence-dependent setup times. IIE Transactions,

1998. Forthcoming.

[9] R. Z. R��os-Mercado and J. F. Bard. Computational experience with a branch-and-cut algo-

rithm for
owshop scheduling with setups. Computers & Operations Research, 25(5):351{

366, 1998.

[10] R. Z. R��os-Mercado and J. F. Bard. Heuristics for the
ow line problem with setup costs.

European Journal of Operational Research, 110(1):76{98, 1998.

[11] J. V. Simons Jr. Heuristics in
ow shop scheduling with sequence dependent setup times.

Omega, 20(2):215{225, 1992.

[12] B. N. Srikar and S. Ghosh. A MILP model for the n-job, m-stage
owshop with sequence

dependent set-up times. International Journal of Production Research, 24(6):1459{1474,

1986.

[13] E. F. Sta�ord and F. T. Tseng. On the Srikar-Ghosh MILP model for the N �M SDST

owshop problem. International Journal of Production Research, 28(10):1817{1830, 1990.

[14] J. P. Stinson and A. W. Smith. A heuristic programming procedure for sequencing the

static
owshop. International Journal of Production Research, 20(6):753{764, 1982.

[15] E. Taillard. Some e�cient heuristic methods for the
ow shop sequencing problem. Euro-

pean Journal of Operational Research, 47(1):65{74, 1990.

[16] M. Widmer and A. Hertz. A new heuristic method for the
ow shop sequencing problem.

European Journal of Operational Research, 41(2):186{193, 1989.

19

