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Abstract

This paper presents a branch-and-bound enumeration scheme for the makespan minimization of

the permutation 
ow shop scheduling problem with sequence-dependent setup times. The algo-

rithm includes the implementation of both lower and upper bounding procedures, a dominance

elimination criterion, and special features such as a partial enumeration strategy. A computa-

tional evaluation of the overall scheme demonstrates the e�ectiveness of each component. Test

results are provided for a wide range of problem instances.

Keywords: 
ow shop scheduling, sequence-dependent setup times, branch and bound, lower

bounds, upper bounds, dominance rules



1 Introduction

In this paper, we address the problem of �nding a permutation schedule of n jobs in an m-

machine 
ow shop environment that minimizes the maximum completion time Cmax of all

jobs, also known as the makespan. The jobs are available at time zero and have sequence-

dependent setup times on each machine. All parameters, such as processing and setup times,

are assumed to be known with certainty. This problem is regarded in the scheduling literature

as the sequence-dependent setup time 
ow shop (SDST 
ow shop) and is evidently NP-hard

since the case where m = 1 is simply a traveling salesman problem (TSP).

Applications of sequence-dependent scheduling are commonly found in most manufactur-

ing environments. In the printing industry, for example, presses must be cleaned and settings

changed when ink color, paper size or receiving medium di�er from one job to the next. Setup

times are strongly dependent on the job order. In the container manufacturing industry ma-

chines must be adjusted whenever the dimensions of the containers are changed, while in printed

circuit board assembly, rearranging and restocking component inventories on the magazine rack

is required between batches. In each of these situations, sequence-dependent setup times play

a major role and must be considered explicitly when modeling the problem.

In [17], we approached this problem from a polyhedral perspective; that is, we formulated

the problem as a mathematical program using two di�erent models and studied the convex hull

of the set of feasible solutions. The motivation for that work was to attempt to exploit the

underlying traveling salesman polytope. We developed several classes of valid inequalities and

in [18], implemented them in a branch-and-cut (B&C) framework with limited success. The

main di�culty was the weakness of the lower bound obtained from the linear programming

(LP) relaxation. Despite e�orts to improve the polyhedral representation of the SDST 
ow

shop, the quality of the LP lower bound remained poor.

This motivated the investigation of a series of non-LP-based lower bounding procedures

reported in this paper. By relaxing some machine requirements rather than the integrality

conditions on the mixed-integer programming (MIP) formulations, alternate lower bounding

procedures were devised. The �rst was a generalized lower bound (GLB) obtained by reducing

the originalm-machine problem to a 2-machine problem; the second was a machine-based lower

bound (MBLB) obtained by reducing the original problem to a single machine problem. Both

procedures were found to produce results that were tangibly better than the LP-relaxation lower

bound, with the MBLB being more e�ective than the GLB. Extending these lower bounding

procedures to handle partial schedules as well, enabled us to develop an e�ective branch-and-

bound scheme.

The objective of this paper is to present and evaluate our enumeration algorithm for the

SDST 
ow shop. This includes the development of lower bounding schemes, a dominance
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elimination rule, and upper bounding procedures. Our results indicate the e�ectiveness of the

proposed algorithm when tested on a wide variety of randomly generated instances. We were

able to �nd optimal solutions in about 50% of the instances tested, and near-optimal solutions

in the others.

The rest of the paper is organized as follows. The most relevant work in the 
ow shop

scheduling area is presented in Section 2. In Section 3, we introduce notation and formally

de�ne the problem. In Section 4, we give a full description of the branch-and-bound algorithm,

followed in Section 5 by the presentation and evaluation of our computational experience. We

conclude with a discussion of the results.

2 Related Work

In [1], Allahverdi et al. present an extensive review of machine scheduling research involving

setup considerations. Another general review of 
ow shop scheduling (with and without setups),

including computational complexity results, is given in [16].

2.1 Minimizing Makespan in Regular Flow Shops

The 
ow shop scheduling problem with no setups (denoted by F jjCmax) has been studied

extensively over the past 25 years. Several exact optimization procedures, mostly based on

branch and bound, have been proposed for this problem, including those of Lageweg et al. [10],

Potts [15] and Carlier and Rebai [3]. The 3-machine case is considered by Ignall and Schrage [8]

and Lomnicki [11], and the 2-machine case by Della Croce et al. [4].

2.2 Sequence-Dependent Setup Times

To the best of our knowledge, no e�ective methods to solve the SDST 
ow shop optimally

have been developed to date. E�orts to solve this problem have been made by Srikar and

Ghosh [22], and by Sta�ord and Tseng [23] in terms of solving MIP formulations. Srikar and

Ghosh introduced a formulation that requires only half the number of binary variables as does

the traditional TSP-based formulation. They used this model and the SCICONIC/VM mixed-

integer programming solver (based on branch and bound) to solve several randomly generated

instances of the SDST 
ow shop. The largest solved was a 6-machine, 6-job problem in about

22 minutes of CPU time on a Prime 550.

Subsequently, Sta�ord and Tseng corrected an error in the Srikar-Ghosh formulation, and

using LINDO, solved a 5�7 instance in about 6 CPU hours on a PC. They also proposed three

new MIP formulations of related 
ow shop problems based on the Srikar-Ghosh model.

In [17], we studied the polyhedral structure of the set of feasible solutions based on those
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models. We developed several classes of valid inequalities, and showed that some of them

are indeed facets of the SDST 
ow shop polyhedral. In [18], a branch-and-cut scheme was

implemented to test the e�ectiveness of the cuts. Even though we found B&C to provide better

solutions than the previously published work which was based on straight branch and bound,

we were still unable to solve (or provide a good assessment of the quality of the solutions in

terms of the optimality gap) moderate to large size instances. The largest instance solved to

optimality was a 6-machine, 8-job problem in about 60 minutes of CPU on a Sun Sparcstation

10. Other approaches have focused on heuristics [19, 20, 21], variations of the SDST 
ow shop,

and work restricted to the 1- and 2-machine case (see [1] for an extensive review).

3 Statement of Problem

In the 
ow shop environment, a set of n jobs must be scheduled on a set of m machines,

where each job has the same routing. Therefore, without loss of generality, we assume that the

machines are ordered according to how they are visited by each job. Although for a general 
ow

shop the job sequence may not be the same for every machine, here we assume a permutation

schedule; i.e., a subset of the feasible schedules that requires the same job sequence on every

machine. We suppose that each job is available at time zero and has no due date. We also

assume that there is a setup time which is sequence dependent so that for every machine i there

is a setup time that must precede the start of a given task that depends on both the job to

be processed (k) and the job that immediately precedes it (j). The setup time on machine i

is denoted by sijk and is assumed to be asymmetric; i.e., sijk 6= sikj, in general, for all indices.

After the last job has been processed on a given machine, the machine is brought back to an

acceptable \ending" state. We assume that this last operation can be done instantaneously

because we are interested in job completion time rather than machine completion time. Our

objective is to minimize the time at which the last job in the sequence �nishes processing on the

last machine. In the literature [14], this problem is denoted by Fmjsijk; prmujCmax or SDST


ow shop.

Example 1 Consider the following instance of F2jsijk; prmujCmax with four jobs.

pij 1 2 3 4 s1jk 1 2 3 4 s2jk 1 2 3 4

1 6 3 2 1 0 3 4 1 7 0 2 3 1 6

2 2 2 4 2 1 - 5 3 2 1 - 1 3 5

2 5 - 3 1 2 4 - 3 1

3 2 1 - 5 3 3 4 - 1

4 3 2 5 - 4 7 8 4 -
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Here, j = 0 is a dummy job representing the initial state, so si0k is the time it takes to

setup machine i when job k is scheduled �rst. A schedule S = (3; 1; 2; 4) is shown in Figure 1.

The corresponding makespan is 24, which is optimal. 2

Setup time Processing time

25

M1

M2

15 205 10

3

Time

42

421

13

Figure 1: Example of a 2� 4 SDST 
ow shop

3.1 Notation

In the reminder of the paper, when we refer to the SDST 
ow shop we make use of the following

notation.

Indices and sets

m number of machines

n number of jobs

i machine index; i 2 I = f1; 2; : : : ;mg

j; k; l job indices; j; k; l 2 J = f1; 2; : : : ; ng

J0 = J [ f0g extended set of jobs, including a dummy job denoted by 0

Input data

pij processing time of job j on machine i; i 2 I, j 2 J

sijk setup time on machine i when job j is scheduled right before job k; i 2 I , j 2 J0, k 2 J

A job j (without brackets) refers to the job j itself, whereas job [j] (with brackets) refers

to the index of the job scheduled in the j-th position. In Section 4, indices i; j; k; l are used to

represent entities of the search tree (subproblems, nodes).

4 Branch and Bound

The feasible set of solutions of the SDST 
ow shop problem from a combinatorial standpoint can

be represented as X = fset of all possible n-job schedulesg. This is a �nite set so an optimal
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solution can be obtained by a straightforward method that enumerates all feasible solutions in

X and then outputs the one with the minimum objective value. However, complete enumeration

is hardly practical because the number of cases to be considered is usually enormous. Thus any

e�ective method must be able to detect dominated solutions so that they can be excluded from

explicit consideration.

A branch-and-bound (B&B) algorithm for a minimization problem has the following general

characteristics:

� a branching rule that de�nes partitions of the set of feasible solutions into subsets

� a lower bounding rule that provides a lower bound on the value of each solution in a

subset generated by the branching rule

� a search strategy that selects a node from which to branch

Additional features such as dominance rules and upper bounding procedures may also be present,

and if fully exploited, could lead to substantial improvements in algorithmic performance.

A diagram representing this process is called an enumeration or search tree. In this tree,

each node represents a subproblem Pi. The number of edges in the path to Pi is called the

depth or level of Pi. The original problem P0 is represented by the node at the top of the tree

(root). In our case, the schedule S0 associated with P0 is the empty schedule.

The fundamentals of B&B can be found in Ibaraki [6, 7]. In this paper we limit the discussion

to our proposed algorithm, BABAS (Branch-and-Bound Algorithm for Scheduling).

4.1 Branching Rule

The following branching rule is used in BABAS. Nodes at level k of the search tree correspond

to initial partial sequences in which jobs in the �rst k positions have been �xed. More formally,

each node (subproblem) of the search tree can be represented by Pj , with associated schedule

Sj, where Sj = ([1]; : : : ; [k]) is an initial partial sequence of k jobs. Let Uj denote the set of

unscheduled jobs. Then, for Uj 6= ;, an immediate successor of Pj has an associated schedule

of the form ([1]; : : : ; [k]; l), where l 2 Uj . Figure 2 illustrates this rule for a 4-job instance.

Node P1 represents a problem at level 1 of the enumeration tree; where only one job has been

scheduled; i.e., S1 = (3).

4.2 Lower Bounds

We now develop two lower bounding procedures that turned out to be more e�ective than the

linear programming relaxation lower bound. These procedures are based on machine completion

times of partial schedules.
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P
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1

11

2

2

3

3

4

4

Figure 2: Illustration of the branching rule for a 4-job instance

Given a partial schedule Si, let �Si denote a schedule formed by all unscheduled jobs. We

shall now derive lower bounds on the value of the makespan of all possible completions Si �Si

of Si, where Si �Si represents the concatenation of jobs in Si and �Si. We shall be particularly

concerned with the trade-o� between the sharpness of a lower bound and its computational

requirements. A stronger bound eliminates relatively more nodes of the search tree, but if its

computational requirements become excessive, it may become advantageous to search through

larger portions of the tree using a weaker bound that can be computed quickly.

Generalized Lower Bounds: The basic idea here is to obtain lower bounds by relaxing the

capacity constraints on some machines, i.e., by assuming a subset of the machines to have

in�nite capacity. We know the only solvable case among 
ow shop problems is the 2-machine

regular (no setups) 
ow shop (Johnson [9]). We also know that any problem involving three or

more machines is likely to be NP-hard. We therefore attempt to exploit this by reducing the

m-machine problem to a 2-machine case. To pursue this, we arbitrarily choose two machines

u and v, 1 � u < v � m, and develop a lower bound guv by relaxing the capacity constraints

on all machines except u and v. The development below shows how this lower bound can be

reduced to the 2-machine case. This lower bound is similar to the one developed by Lageweg

et al. [10] for F jjCmax.

Let the sequence of the �rst k jobs be Sk = ([1]; [2]; : : : ; [k]) and the set of remaining

n � k (unscheduled) jobs be Uk. Given Sk, the problem of determining an optimal sequence

for the remaining jobs is called a subproblem of depth k and is represented by FS(Sk). Let

�Sk = ([k+1]; [k+2]; : : : ; [n]) be an arbitrary sequence of jobs in Uk, and let pi(Uk) =
P

h2Uk
pih.

Let Ci[j] denote the completion time of job [j] on machine i; j 2 J , i 2 I. Subproblem FS(Sk)

is to determine the sequence �Sk that minimizes Cmax(Sk �Sk) � Cm[n], the makespan of schedule

Sk �Sk.

6



1[n]

m
[n]

m
[k]

i[k]

m
[1]

i[n]

1[k]
1[1]

i[1]

[1]
[n]

[k]

1im

jobs

machines

F
igu

re
3:

D
irected

grap
h
G

for
S
D
S
T


ow

sh
op
s

T
o
h
elp

u
n
d
erstan

d
th
e
d
erivation

of
th
e
low

er
b
ou
n
d
con

sid
er

th
e
follow

in
g
d
irected

grap
h

G
(d
ep
icted

in
F
igu

re
3)

w
h
ich

is
con

stru
cted

as
follow

s:
for

each
op
eration

,
say

th
e
p
ro
cessin

g

of
job

[j]
on

m
ach

in
e
i,
th
ere

is
a
n
o
d
e
(i[j])

w
ith

a
w
eigh

t
th
at

is
eq
u
al

to
p
i[j] .

T
h
e
setu

p

tim
es
s
i[j][j+

1
]
are

rep
resen

ted
b
y
an

arc
goin

g
from

n
o
d
e
(i[j])

to
n
o
d
e
(i[j

+
1])

w
ith

a
w
eigh

t

th
at

is
eq
u
al
to

s
i[j][j+

1
] ,
for

i
2
I
,
j
=
1;:::;n

�
1.

N
o
d
e
(i[j]),

i
=
1;:::;m

�
1,
j
=
1;:::;n

,

also
h
as

an
arc

goin
g
to

n
o
d
e
(i
+
1;[j])

w
ith

zero
w
eigh

t.
N
ote

th
at

n
o
d
es

corresp
on
d
in
g
to

m
ach

in
e
m

h
ave

on
ly
on
e
ou
tgoin

g
arc,

an
d
th
at

n
o
d
e
(m

[n
])
h
as

n
o
ou
tgoin

g
arcs.

T
h
is
grap

h

is
a
gen

eralization
of

th
e
grap

h
m
o
d
el
k
n
ow

n
for

th
e
classical



ow

sh
op

p
rob

lem
[13

].

G
iven

a
p
air

of
m
ach

in
es

(u
;v
),
u
<
v
,
an
d
a
su
b
seq

u
en
ce

of
job

s
S
=
([j];[j

+
1];:::;[l]),

let
T
u
v (S

)
b
e
th
e
elap

sed
tim

e
from

th
e
start

of
job

[j]
on

m
ach

in
e
u
u
n
til

th
e
�
n
ish

of
job

l

on
m
ach

in
e
v
.
It

can
b
e
sh
ow

n
[16

]
th
at

T
u
v (S

)
is
eq
u
ivalen

t
to

th
e
m
ax
im
u
m

len
gth

p
ath

from
n
o
d
e
(u
[j])

to
n
o
d
e
(v
[l])

in
G
.
N
ow

let
R
i[k

]
d
en
ote

th
e
lon

gest
p
ath

(rep
resen

ted
b
y
a

seq
u
en
ce

of
n
o
d
es)

from
n
o
d
e
1[1]

to
n
o
d
e
i[k

]
in

G
,
1
�
i
�
u
,
an
d
let

r
i[k

]
d
en
ote

th
e
len

gth

of
th
is
p
ath

.

F
or

a
given

p
air

of
m
ach

in
es

(u
;v
),
u
<
v
,
con

sid
er

th
e
follow

in
g
p
ath

s:

(R
i[k

] ;i[k
+
1];:::;u

[k
+
1];:::;u

[t];:::;v
[t];:::;v

[n
];:::;m

[n
])

for
1
�
i
�
u
an
d
k
+
1
�
t
�
n
in
G

(see
F
igu

re
4).

It
is
easy

to
see

th
at

C
m
[n
] (
�S
k )

�
m
ax

1
�
i�

u 8<:
r
i[k

] +
s
i[k

][k
+
1
] +

u
�
1

Xq
=
i

p
q
[k
+
1
] 9=;

+
m
ax

k
+
1
�
t�

n 8<:
t�

1
Xj=
k
+
1 (p

u
[j] +

s
u
[j][j+

1
] )
+

v
Xi=

u

p
i[t] +

n
Xj=
t+

1 (p
v
[j] +

s
v
[j
�
1
][j] ) 9=;

+
mXi=
v
+
1

p
i[n

]

7



i[k]

u[k+1] u[t]

v[t] v[n]

m[n]

1[1]

Ri[k]

i[k+1]

[1]

i

u

v

m

1

[k] [n][t][k+1]

jobs

m
ac

hi
ne

s

Figure 4: Critical path illustration for developing GLB

� max
1�i�u

8<
:ri[k] + min

h2Uk

8<
:si[k]h +

u�1X
q=i

pqh

9=
;
9=
;

+ max
k+1�t�n

8<
:

t�1X
j=k+1

pu[j] +
vX

i=u

pi[t] +
nX

j=t+1

pv[j]

9=
;

+
nX

j=k+2

min
n
su[j�1][j]; sv[j�1][j]

o
+ min

h2Uk

mX
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pih (1)

Note that inequality (1) is valid for an arbitrary subsequence �Sk, but in fact, the main

problem is to �nd the subsequence �S�k in Uk that minimizes the left-hand side Cmn( �Sk) in (1).

As can be seen, minimizing the right-hand side (RHS) of (1) yields a lower bound on Cm[n]( �S
�
k).

Now let us take a closer look at the minimization of the RHS of (1). The �rst and fourth

terms do not depend on a particular subsequence, thus they can just be precomputed with no

optimization involved. In the second term of the RHS of (1), we note that

t�1X
j=k+1

pu[j] +
vX

i=u

pi[t] +
nX

j=t+1

pv[j] =
tX

j=k+1

v�1X
i=u

pi[j] +
nX
j=t

vX
i=u+1

pi[j] �
v�1X

i=u+1

pi( �Sk):

Let

Zuv( �Sk) = max
k+1�t�n

(
tX

j=k+1

 
v�1X
i=u

pi[j]

!
+

nX
j=t

 
vX

i=u+1

pi[j]

!)

The problem of minimizing Zuv( �Sk) is reduced to a solvable 2-machine 
ow shop (using John-
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son's algorithm) with processing times

p01j =
v�1X
i=u

pij p02j =
vX

i=u+1

pij

Let Z�
uv(

�Sk) denote its minimum value.

For the third term of the RHS of (1), let suv[j�1][j] = minfsu[j�1][j]; sv[j�1][j]g. It can be seen

that the problem of minimizing
Pn

j=k+2 s
uv
[j�1][j] corresponds to �nding a shortest tour of an

ATSP on n� k vertices. Let S�uv(
�Sk) denote the length of this optimal tour.

We can thus establish the following generalized lower bound guv( �Sk) on Cm[n]( �S
�
k)

guv( �Sk) = max
1�i�u

8<
:ri[k] + min

h2Uk

8<
:si[k]h +

u�1X
q=i

pqh

9=
;
9=
;�

v�1X
i=u+1

pi( �Sk) + min
h2Uk

mX
i=v+1

pih

+ Z�
uv( �Sk) + S�uv( �Sk)

for any 1 � u < v � m. Note that the optimal sequence of the jobs in the embedded 2-machine


ow shop (for given u; v) has to be determined only once for FS(;), the original problem, since

it does not change if some jobs are removed nor it is in
uenced by the fact that machine v is

not available until Cv[k].

In summary, for a given pair of machines (u; v), we have derived a generalized lower bound

guv which may be computed for any two{machine combination. If W = f(u1; v1); : : : ; (uw; vw)g

is a set of machine pairs, then the corresponding overall lower bound GLB(W ) is de�ned by

GLB(W ) = max fgu1;v1 ; : : : ; guw ;vwg :

Note that there arem(m�1)=2 possible pairs (u; v); however, the load for computing GLB based

on all pairs is too heavy. Therefore, we only consider the following subsets of machine pairs

W0 = f(1; 2); (2; 3); : : : ; (m�1;m)g, W1 = f(1;m); (2;m); : : : ; (m�1;m)g, and W2 =W0[W1,

which contains O(m) pairs. Our empirical work (Section 5) has shown that GLB(W1) provides

better results than GLB(W0) and is faster to compute than GLB(W2).

Machine-Based Lower Bounds: Above, we have developed a family of lower bounds guv for

1 � u < v � m. Consider now the case u = v; that is, there is only one bottleneck machine

and the capacity of all other machines is relaxed. Thus it is possible to �nd m additional lower

bounds gu, 1 � u � m.

Again, let the sequence of the �rst k jobs �xed be Sk = ([1]; [2]; : : : ; [k]) and the set of

remaining n�k (unscheduled) jobs be Uk. Let �Sk = ([k+1]; [k+2]; : : : ; [n]) denote an arbitrary

sequence of jobs in Uk. Then by proceeding in a similar fashion as we did in deriving GLB,

we consider the paths: (Ri[k]; i[k + 1]; : : : ; u[k + 1]; : : : ; u[n]; : : : ;m[n]) for 1 � i � u in G (see

Figure 5). Thus we have

9



C
m
[n
] (
�S
k )

�
m
ax

1
�
i�

u 8<:
r
i[k

] +
s
i[k

][k
+
1
] +

u
�
1

Xq
=
i

p
q
[k
+
1
] 9=;

+
p
u
[k
+
1
] +

n
Xj=
k
+
2 (p

u
[j] +

s
u
[j
�
1
][j] )

+
mXi=
u
+
1

p
i[n

]

�
m
ax

1
�
i�

u 8<:
r
i[k

] +
m
in

h
2
U
k 8<:

s
i[k

]h
+

u
�
1

Xq
=
i

p
q
h 9=; 9=;

+
p
u (
�S
k )
+

n
Xj=
k
+
2

s
u
[j
�
1
][j] +

m
in

h
2
U
k

mXi=
u
+
1

p
ih

(2)

i[k+
1]

i[k]

u[k+
1]

1[1]

R
i[k]

u[n]

m
[n]

[1]

m 1iu

[k]
[n]

[k+
1]

jobs

machines

F
igu

re
5:

C
ritical

p
ath

illu
stration

for
d
eriv

in
g
M
B
L
B

S
in
ce

p
u (
�S
k )

is
con

stan
t
for

an
y
seq

u
en
ce

(ju
st

like
th
e
�
rst

an
d
fou

rth
term

s
in

th
e
R
H
S

of
(2)),

th
e
p
rob

lem
of

m
in
im

izin
g
th
e
R
H
S
corresp

on
d
s
to

�
n
d
in
g
a
seq

u
en
ce

th
at

m
in
im

izes
P

nj=
k
+
2
s
u
[j
�
1
][j] ,

w
h
ich

is
eq
u
ivalen

t
to

�
n
d
in
g
th
e
sh
ortest

tou
r
in

an
A
T
S
P
on

n
�
k
vertices.

L
et
S
�u (
�S
k )

b
e
th
e
op
tim

al
tou

r
len

gth
for

th
is
A
T
S
P
.
T
h
en

g
u
(
�S
k )

=
m
ax

1
�
i�

u 8<:
r
i[k

] +
m
in

h
2
U
k 8<:

s
i[k

]h
+

u
�
1

Xq
=
i

p
q
h 9=; 9=;

+
p
u (
�S
k )
+
S
�u (
�S
k )
+
m
in

h
2
U
k

mXi=
u
+
1

p
ih

(3)

for
1
�
u
�
m

is
a
valid

low
er

b
ou
n
d
on

C
m
a
x .

T
h
e
fact

th
at

th
e
setu

p
tim

e
b
etw

een
job

s
[k
]
an
d
[k
+
1],

s
u
[k
][k

+
1
] ,
is
n
ot

con
sid

ered
in

th
e

com
p
u
tation

of
g
u (
�S
k )

allow
s
u
s
to

u
se

th
e
�
rst

term
on

th
e
R
H
S
of

(3)
as

a
low

er
b
ou
n
d
for

th
e
startin

g
tim

e
of

job
[k
+
1]

on
m
ach

in
e
u
.
It

m
igh

t
b
e
ad
van

tageou
s,
h
ow

ever,
to

in
clu

d
e

10



this setup time (su[k][k+1]) in the computations to improve the lower bound S�u of the related

ATSP. The trade-o� is that by doing so, we no longer can use the �rst term on the RHS of (3).

This alternate bound is expressed as

g0u( �Sk) = Cu[k] + pu( �Sk) + L�u( �Sk) + min
h2Uk

mX
i=u+1

pih

where L�u is the optimal tour length
Pn

j=k+1 su[j�1][j].

ATSP Lower Bounds: In deriving the GLB and MBLB, we have to deal with solving an ATSP

at some point. The ATSP itself is an NP-hard problem; however, since we are only interested

in a lower bound, any valid lower bound for the ATSP will su�ce.

In our work, we used the assignment problem (AP) lower bound, which is obtained by re-

laxing the connectivity (subtour elimination) constraints for the ATSP. It has been documented

(Balas and Toth [2]) that the AP bound is very sharp for the ATSP. (This is not necessarily

true for the symmetric TSP.)

4.3 Search Strategy

The search strategy we use selects the subproblem with the best bound; e.g., the smallest lower

bound in the case of a minimization problem. This approach is motivated by the observations

that the subproblem with the best lower bound has to be evaluated anyway and that it is more

likely to contain the optimal solution than any other node. As shown in [6], this strategy has

the characteristic that, if other parts of a branch-and-bound algorithm are not changed, the

number of partial problems decomposed before termination is minimized.

Another well known strategy is depth-�rst search, which is mostly used in situations where

it is important to �nd feasible solutions quickly. However, we do not consider it since feasibility

is not an issue.

4.4 Dominance Rule

We now establish some conditions under which all completions of a partial schedule Sk (associ-

ated with subproblem Pk) can be eliminated because a schedule at least as good exists among

the completions of another partial schedule Sj (corresponding to subproblem Pj). Let J(Sj)

and J(Sk) denote the index sets of jobs corresponding to Sj and Sk, respectively; l(S) denote

the index of the last scheduled job in schedule S; and Ci(S) denote the completion time of the

last scheduled job in S on machine i. Then Pj dominates Pk if for any completion Sk �Sk of

Sk there exists a completion Sj �Sj of Sj such that Cmax(Sj �Sj) � Cmax(Sk �Sk). This is stated

formally in the following theorem.
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Theorem 1 If J(Sj) = J(Sk), l(Sj) = l(Sk), and Ci(Sj) � Ci(Sk) for all i 2 I, then Pj

dominates Pk.

The proof can be found in [16] along with a number of other dominance rules for special cases.

In terms of computational e�ort, determining whether a given subproblem Pk is dominated

implies: (a) searching for another subproblem (at the same level), and (b) checking conditions

of Theorem 1. Step (a) can be done in O(log T ) time, where T = O(2d) is the size of search

tree up to depth d (if done e�ciently, there is no need to search the whole tree). Operation (b)

takes O(m) time. At level d, there are potentially O(2d) nodes, thus the worst-case complexity

to determine whether a given subproblem (at depth d) is dominated is O(md2d).

Despite this worst-case complexity, the implementation of this dominance rule has had a

strong positive impact in the performance of BABAS. Computational results are provided in

Section 5.

4.5 Upper Bounds

It is well known that branch-and-bound computations can be reduced by using a heuristic

to �nd a good solution to act as an upper bound prior to the application of the enumeration

algorithm, as well as at certain nodes of the search tree. With this in mind we have adapted the

GRASP developed in [19] and the hybrid heuristic described in [20] to handle partial schedules.

In our basic algorithm, we apply both heuristics with extensive local search at the root node

to obtain a high quality feasible solution. Once the algorithm is started, an attempt is made to

�nd a better feasible solution every time UB FREQ nodes are generated, where UB FREQ is

a user-speci�ed parameter. In our experiments, we set this parameter to 50, which means that

the heuristic will be applied once every 50 nodes. Note that setting UB FREQ = 1 implies that

the heuristic is applied to every node in the enumeration tree. At the intermediate stages, we

do not do a full local search but try to balance the computational load. Once BABAS satis�es

the stopping criteria, if the best feasible solution is not optimal, we apply an extensive local

search to ensure that a local minimum has been obtained.

4.6 Partial Enumeration

Partial enumeration is a truncated branch-and-bound procedure similar to what is called beam

search [12]. Instead of waiting to discard a portion of the tree that is guaranteed not to contain

the optimum, we may discard parts of the tree that are not likely to contain the optimum. One

essential is to have a good measure of what \likely" means.

The way we handle the partial enumeration is as follows. During the branching process,

every potential child is evaluated with respect to a valuation function h. Those potential sub-

problems whose valuation function do not meet a certain pre-established criterion are discarded.
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We implemented this idea by ranking the potential children by increasing value of h and then

discarding the worst �n nodes, where � 2 [0; 1] is a user-speci�ed parameter. The larger the

value of �, the more nodes that will be eliminated from consideration. The case � = 0 coincides

with regular branch and bound.

4.6.1 A Valuation Function

To develop a valuation function h we make use of the following cost function Cjk for each pair

of jobs j; k 2 J :

Cjk = �Rjk + (1� �)Sjk

where � 2 [0; 1] is a weight factor, Rjk is a term that penalizes a \bad" �t from the 
ow

shop perspective, and Sjk is a term that penalizes large setup times. This cost measure was

introduced in [20] where it was used to develop a TSP-based hybrid heuristic for the SDST 
ow

shop with very good results. A detailed description on how to estimate Rjk and Sjk is given in

that work.

Let Pj be the node from which branching is being considered with corresponding partial

schedule Sj. Let l(Sj) be the index of the last scheduled job in Sj. Then, for every k 2 Uj ,

we compute h(k) = Cl(Sj);k and then discard the worst �n potential subproblems (in terms of

h(k)).

Although it is likely that the nodes excluded by this procedure will not be in an optimal

solution, no theoretical guarantee can be established. We should also point out the trade-o�

between higher con�dence in the quality of the solution and smaller computational e�ort when

� is set to smaller and larger values, respectively.

5 Computational Experience

All routines were written in C++ and run on a Sun Sparcstation 10 using the CC compiler

version 2.0.1, with the optimization 
ag set to -O. CPU times were obtained through the C

function clock(). To conduct our experiments we used randomly generated data. It has

been documented [5] that the main feature in real-world data for this type of problem is the

relationship between processing and setup times. In practice, setup times are about 20-40% of

the processing times. Because the experiments are expensive, we generated one class of random

data sets as follows: pij 2 [20; 100] and sijk 2 [20; 40].

5.1 Experiment 1: Lower Bounds

The lower bounding procedures developed in Section 4.2 were compared within the branch-and-

bound enumeration framework. In our �rst experiment, the generalized lower bound (GLB)
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was evaluated for three di�erent subsets of machine pairs.

W0 = f(1; 2); (2; 3); : : : ; (m� 1;m)g

W1 = f(1;m); (2;m); : : : ; (m� 1;m)g

W2 = W0 [W1

It is evident that GLB(W2) will dominate the other two; however, it requires more computa-

tional e�ort.

m = 4 m = 6

W0 W1 W2 W0 W1 W2

Average relative gap (%) 0.8 0.3 0.3 1.3 0.3 0.4

Average number of evaluated nodes (1000) 10.1 9.2 8.7 11.0 9.3 9.0

Average CPU time (min) 10.8 9.2 9.3 15.0 11.8 12.1

Optimal solutions found (%) 60 60 60 20 70 60

Table 1: Evaluation of GLB for 10-job instances

Table 1 shows the average results for 10-job problems with machine parameter m = 4; 6.

Note that when m = 2, W0 = W1 = W2 = f(1; 2)g. The averages are taken over 10 instances

with a stopping limit of 15 CPU minutes. The dominance rule is in e�ect as well. Each column

shows the statistics for GLB based on W0, W1, and W2, respectively. The relative gap is

computed as

best upper bound � best lower bound
best lower bound � 100%

As can be seen, the quality of GLB(W0) is inferior to the other two since a larger number

of nodes has to be evaluated, resulting in larger execution times. In addition, under GLB(W0),

fewer optimal solutions are found in the allotted time (only 20% in the 6-machine instances

as opposed to 60% using W1 and W2). When comparing GLB(W1) and GLB(W2), similar

performance is observed in almost every statistic. In fact, GLB(W1) was found to be slightly

better than GLB(W2). This implies that the extra e�ort used by GLB(W2) (the dominant

bound) is not paying o�.

We now compare GLB(W1) with the machine-based lower bound (MBLB). A stopping limit

of 15 CPU minutes was similarly imposed. Table 2 shows the results of this comparison for

15-job instances. It can be seen from the table that the GLB is actually better at the root

node; however, as branching takes place, the MBLB makes more progress providing, in almost

all cases, a tighter bound. There were even some instances that were solved to optimality under

the MBLB alone.

One possible explanation for this result is that the MBLB, for a given machine, takes into

account all the involved setup times, whereas the GLB, in its attempt to reduce the problem
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m = 2 m = 4 m = 6

GLB(W1) MBLB GLB(W1) MBLB GLB(W1) MBLB

Average relative gap at root (%) 2.7 6.6 6.4 12.1 8.8 14.8

Average relative gap at termination (%) 2.2 3.1 4.1 2.9 5.3 3.1

Times best bound found (%) 40 60 30 80 0 100

Optimal solutions found (%) 30 60 0 50 0 10

Table 2: Lower bound comparison for 15-job instances

to a 2-machine case, loses valuable setup time information (recall that for a given machine pair

(u; v), GLB uses minfsujk; svjkg to represent the setup time between jobs j and k). Because

the MBLB procedure was uniformly better than the GLB scheme, we use it in the remainder

of the experiments.

5.2 Experiment 2: Dominance Elimination Criterion

We now evaluate the e�ectiveness of the dominance rule. Table 3 shows the average statistics

over 10 instances for number of machines m = 2; 4; 6. Each instance was run with a CPU

time limit of 30 minutes and optimality gap tolerance of 0.0. The results for the algorithm

with and without the dominance rule in e�ect are indicated by DR and NDR, respectively. As

we can see, the implementation of the dominance rule has a signi�cant impact on the overall

algorithmic performance resulting in a considerably smaller number of nodes to be evaluated,

and a factor of 2 reduction in CPU time. In fact, when the dominance rule was in e�ect, the

algorithm found optimal solutions to all instances, as opposed to only 80% when the rule was

not in e�ect.

m = 2 m = 4 m = 6

NDR DR NDR DR NDR DR

Average relative gap (%) 0.7 0.0 0.0 0.0 0.1 0.0

Average number of evaluated nodes 16063 8529 5074 2985 10879 7924

Average CPU time (min) 18.3 5.8 4.8 2.3 14.2 8.4

Optimal solutions found (%) 50 100 100 100 90 100

Table 3: Evaluation of dominance rule for 10-job instances

5.3 Experiment 3: Partial Enumeration

In this experiment, we illustrate the e�ect of doing partial versus complete enumeration. We

ran the partial search strategy for � = 0 (normal enumeration), � = 0:5 (truncating 50% of

the potential children), and � = 0:8 (truncating 80% of the potential children) for 10, 6 � 20

instances, with a stopping criterion of 30 minutes and relative gap fathoming tolerance of 1.0%.
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The overall results are displayed in Table 4. Results for a particular instance are by row.

For each value of � we tabulate upper bound (UB), relative gap percentage (Gap) and CPU

time (Time) rounded to the nearest minute. It should be noted that the relative gap for the

truncated versions (� 2 f0:5; 0:8g) shown in the table do not correspond to a true optimality

gap of the original problem, but to the best lower bound of the restricted problem (i.e., the

one not considering the truncated nodes). As can be seen, increasing the value of � results in

a larger number of truncated nodes, hence a quicker execution of the procedure. We can also

observe that the quality of the solution decreases with the size of �. A good compromise seems

to be around � = 0:5, but one must keep in mind that once � assumes a value greater than

zero, the algorithm can no longer be guaranteed to provide an optimal solution to the original

problem.

� = 0 � = 0:5 � = 0:8

Instance UB Gap Time UB Gap Time UB Gap Time

fs6x20.1 2022 2.8 30 2020 1.8 30 2029 1.0 1

fs6x20.2 2108 4.4 30 2111 3.2 30 2114 1.0 1

fs6x20.3 2100 5.3 30 2093 4.1 30 2106 1.0 1

fs6x20.4 1967 5.5 30 1966 3.5 30 1972 1.0 1

fs6x20.5 2095 1.5 30 2094 1.0 10 2096 1.0 1

fs6x20.6 2058 6.5 30 2057 5.3 30 2070 1.0 2

fs6x20.7 2088 5.6 30 2082 3.9 30 2088 1.0 2

fs6x20.8 2129 8.1 30 2129 6.8 30 2124 1.0 8

fs6x20.9 2106 3.7 30 2106 2.3 30 2109 1.0 1

fs6x20.10 2142 6.1 30 2130 4.2 30 2144 1.0 2

Table 4: Partial enumeration evaluation for 6-machine, 20-job instances

5.4 Experiment 4: BABAS Overall Performance

Here we show the results when the full algorithm is applied to instances of the SDST 
ow

shop. We use the MBLB procedure, dominance elimination rule, and a relative gap fathoming

tolerance of 1%. Maximum CPU time is set at 30 minutes.

Table 5 displays the summary statistics which were calculated from 10 problem instances

for each m � n combination. As can be seen, all 10-job instances were solved (within 1%) in

an average time of less than 5 minutes, a notable improvement when compared to previous

published research on this problem, where the size of the largest instances solved optimally was

a 6-machine, 8-job problem. In fact, BABAS was able to solve 43% of the 15-job instances,

and 23% of the 20-job instances. Most of the instances solved corresponded to the 2-machine

case. This is to be expected since the fathoming rules (lower bound and dominance) become

less powerful as the number of machines increases.

16



Size Optimality gap (%) Time (sec) Instances

m� n best average worst best average worst solved (%)

2 � 10 0.3 0.9 1.0 1 235 560 100

4 0.8 0.9 1.0 2 68 222 100

6 0.9 1.0 1.0 29 265 450 100

2 � 15 0.0 1.0 2.6 3 725 1800 70

4 0.9 2.2 4.5 7 1074 1800 50

6 1.0 2.9 4.5 38 1624 1800 10

2 � 20 0.5 1.0 1.6 7 1298 1800 70

4 2.4 4.2 5.1 1800 1800 1800 0

6 1.5 5.0 8.1 1800 1800 1800 0

Table 5: BABAS evaluation

Finally, Table 6 shows the algorithmic performance when BABAS is applied to 100-job

instances. Thirty percent of the 2-machine instances were solved and 70% �nished with a

relative gap of 1.3% or better. In general, the average relative gap from the start to the end

of the algorithm improved by 2.0%, 0.9%, and 1.6% for the 2-, 4-, and 6-machine instances,

respectively. We also observed that the lower bound and the dominance test was less powerful

than the 20 or fewer job cases.

Size Optimality gap at root (%) Optimality gap at end (%) Average Instances

m� n best average worst best average worst time (min) solved (%)

2 � 100 1.2 3.4 8.4 0.6 1.4 2.1 28.1 30

4 3.3 5.1 6.5 2.3 4.2 5.7 30.0 0

6 5.0 7.6 9.4 4.3 6.0 7.2 30.0 0

Table 6: BABAS evaluation on 100-job instances

6 Summary

We have presented and evaluated a branch-and-bound scheme for the SDST 
ow shop scheduling

problem. Our implementation includes both lower and upper bounding procedures, and a

dominance elimination criterion. The empirical results demonstrate the relative e�ectiveness

of the machine-based lower bound procedure and the dominance rule. Signi�cantly better

performance over previously published work (LP-based methods) was also obtained. We were

able to solve (within 1% optimality gap) 100%, 43%, and 23% of the 10-, 15-, and 20-job

instances tested. In addition, for the 100-job instances, our algorithm delivered average relative

gaps of 1.4%, 4.2%, and 6.0% when applied to the 2-, 4-, and 6-machine cases, respectively.

A salient feature of our algorithm is that it permits partial enumeration search, which can be

used to obtain approximate solutions with reasonable computational e�ort.
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