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Abstract

This paper presents a branch-and-bound enumeration scheme for the makespan minimization of
the permutation flow shop scheduling problem with sequence-dependent setup times. The algo-
rithm includes the implementation of both lower and upper bounding procedures, a dominance
elimination criterion, and special features such as a partial enumeration strategy. A computa-
tional evaluation of the overall scheme demonstrates the effectiveness of each component. Test

results are provided for a wide range of problem instances.

Keywords: flow shop scheduling, sequence-dependent setup times, branch and bound, lower

bounds, upper bounds, dominance rules



1 Introduction

In this paper, we address the problem of finding a permutation schedule of n jobs in an m-
machine flow shop environment that minimizes the maximum completion time C,,x of all
jobs, also known as the makespan. The jobs are available at time zero and have sequence-
dependent setup times on each machine. All parameters, such as processing and setup times,
are assumed to be known with certainty. This problem is regarded in the scheduling literature
as the sequence-dependent setup time flow shop (SDST flow shop) and is evidently AP-hard
since the case where m = 1 is simply a traveling salesman problem (TSP).

Applications of sequence-dependent scheduling are commonly found in most manufactur-
ing environments. In the printing industry, for example, presses must be cleaned and settings
changed when ink color, paper size or receiving medium differ from one job to the next. Setup
times are strongly dependent on the job order. In the container manufacturing industry ma-
chines must be adjusted whenever the dimensions of the containers are changed, while in printed
circuit board assembly, rearranging and restocking component inventories on the magazine rack
is required between batches. In each of these situations, sequence-dependent setup times play
a major role and must be considered explicitly when modeling the problem.

In [17], we approached this problem from a polyhedral perspective; that is, we formulated
the problem as a mathematical program using two different models and studied the convex hull
of the set of feasible solutions. The motivation for that work was to attempt to exploit the
underlying traveling salesman polytope. We developed several classes of valid inequalities and
in [18], implemented them in a branch-and-cut (B&C) framework with limited success. The
main difficulty was the weakness of the lower bound obtained from the linear programming
(LP) relaxation. Despite efforts to improve the polyhedral representation of the SDST flow
shop, the quality of the LP lower bound remained poor.

This motivated the investigation of a series of non-LP-based lower bounding procedures
reported in this paper. By relaxing some machine requirements rather than the integrality
conditions on the mixed-integer programming (MIP) formulations, alternate lower bounding
procedures were devised. The first was a generalized lower bound (GLB) obtained by reducing
the original m-machine problem to a 2-machine problem; the second was a machine-based lower
bound (MBLB) obtained by reducing the original problem to a single machine problem. Both
procedures were found to produce results that were tangibly better than the LP-relaxation lower
bound, with the MBLB being more effective than the GLB. Extending these lower bounding
procedures to handle partial schedules as well, enabled us to develop an effective branch-and-
bound scheme.

The objective of this paper is to present and evaluate our enumeration algorithm for the

SDST flow shop. This includes the development of lower bounding schemes, a dominance



elimination rule, and upper bounding procedures. Our results indicate the effectiveness of the
proposed algorithm when tested on a wide variety of randomly generated instances. We were
able to find optimal solutions in about 50% of the instances tested, and near-optimal solutions
in the others.

The rest of the paper is organized as follows. The most relevant work in the flow shop
scheduling area is presented in Section 2. In Section 3, we introduce notation and formally
define the problem. In Section 4, we give a full description of the branch-and-bound algorithm,
followed in Section 5 by the presentation and evaluation of our computational experience. We

conclude with a discussion of the results.

2 Related Work

In [1], Allahverdi et al. present an extensive review of machine scheduling research involving
setup considerations. Another general review of flow shop scheduling (with and without setups),

including computational complexity results, is given in [16].

2.1 Minimizing Makespan in Regular Flow Shops

The flow shop scheduling problem with no setups (denoted by F||Cpax) has been studied
extensively over the past 25 years. Several exact optimization procedures, mostly based on
branch and bound, have been proposed for this problem, including those of Lageweg et al. [10],
Potts [15] and Carlier and Rebai [3]. The 3-machine case is considered by Ignall and Schrage [8]
and Lomnicki [11], and the 2-machine case by Della Croce et al. [4].

2.2 Sequence-Dependent Setup Times

To the best of our knowledge, no effective methods to solve the SDST flow shop optimally
have been developed to date. Efforts to solve this problem have been made by Srikar and
Ghosh [22], and by Stafford and Tseng [23] in terms of solving MIP formulations. Srikar and
Ghosh introduced a formulation that requires only half the number of binary variables as does
the traditional TSP-based formulation. They used this model and the SCICONIC/VM mixed-
integer programming solver (based on branch and bound) to solve several randomly generated
instances of the SDST flow shop. The largest solved was a 6-machine, 6-job problem in about
22 minutes of CPU time on a Prime 550.

Subsequently, Stafford and Tseng corrected an error in the Srikar-Ghosh formulation, and
using LINDOQ, solved a 5 x 7 instance in about 6 CPU hours on a PC. They also proposed three
new MIP formulations of related flow shop problems based on the Srikar-Ghosh model.

In [17], we studied the polyhedral structure of the set of feasible solutions based on those



models. We developed several classes of valid inequalities, and showed that some of them
are indeed facets of the SDST flow shop polyhedral. In [18], a branch-and-cut scheme was
implemented to test the effectiveness of the cuts. Even though we found B&C to provide better
solutions than the previously published work which was based on straight branch and bound,
we were still unable to solve (or provide a good assessment of the quality of the solutions in
terms of the optimality gap) moderate to large size instances. The largest instance solved to
optimality was a 6-machine, 8-job problem in about 60 minutes of CPU on a Sun Sparcstation
10. Other approaches have focused on heuristics [19, 20, 21], variations of the SDST flow shop,

and work restricted to the 1- and 2-machine case (see [1] for an extensive review).

3 Statement of Problem

In the flow shop environment, a set of n jobs must be scheduled on a set of m machines,
where each job has the same routing. Therefore, without loss of generality, we assume that the
machines are ordered according to how they are visited by each job. Although for a general flow
shop the job sequence may not be the same for every machine, here we assume a permutation
schedule; i.e., a subset of the feasible schedules that requires the same job sequence on every
machine. We suppose that each job is available at time zero and has no due date. We also
assume that there is a setup time which is sequence dependent so that for every machine ¢ there
is a setup time that must precede the start of a given task that depends on both the job to
be processed (k) and the job that immediately precedes it (7). The setup time on machine i
is denoted by s;;; and is assumed to be asymmetric; i.e., s;j; # sik;, in general, for all indices.
After the last job has been processed on a given machine, the machine is brought back to an
acceptable “ending” state. We assume that this last operation can be done instantaneously
because we are interested in job completion time rather than machine completion time. Our
objective is to minimize the time at which the last job in the sequence finishes processing on the
last machine. In the literature [14], this problem is denoted by F'm/|s;ji, prmu|Cmax or SDST
flow shop.

Example 1 Consider the following instance of F2|s;ji, prmu|Cmax with four jobs.

pij |1 2 3 4 sk | 1 3 4 sojk |1 2 3 4
116 3 2 1 0 |3 4 1 7 0 [2 3 1 6
2 4 2 1] - 3 2 1 |- 1 3 5
2 |5 - 3 1 2 |4 - 3 1
3 |2 1 - 5 3 |3 -1
4 |3 2 5 - 4 |7 4 -




Here, 7 = 0 is a dummy job representing the initial state, so s;or is the time it takes to

setup machine 7 when job k is scheduled first. A schedule S = (3,1,2,4) is shown in Figure 1.

The corresponding makespan is 24, which is optimal. O
[ Setup time ] Processing time
mof | s | 1 | [ 2 [ ]4

vel] [ = [ [ 2 [ 4]

Time

Figure 1: Example of a 2 x 4 SDST flow shop

3.1 Notation

In the reminder of the paper, when we refer to the SDST flow shop we make use of the following

notation.

Indices and sets

m number of machines
n number of jobs
i machine index; i € I = {1,2,...,m}

J,k,0l job indices; j,k,l € J ={1,2,...,n}

Jo = J U {0} extended set of jobs, including a dummy job denoted by 0
Input data

pij  processing time of job j on machines; i €1, 5 € J

sijk setup time on machine 7 when job j is scheduled right before job k;i € I, 5 € Jo, k € J

A job j (without brackets) refers to the job j itself, whereas job [j] (with brackets) refers
to the index of the job scheduled in the j-th position. In Section 4, indices i, j, k,[ are used to

represent entities of the search tree (subproblems, nodes).

4 Branch and Bound

The feasible set of solutions of the SDST flow shop problem from a combinatorial standpoint can

be represented as X = {set of all possible n-job schedules}. This is a finite set so an optimal



solution can be obtained by a straightforward method that enumerates all feasible solutions in
X and then outputs the one with the minimum objective value. However, complete enumeration
is hardly practical because the number of cases to be considered is usually enormous. Thus any
effective method must be able to detect dominated solutions so that they can be excluded from
explicit consideration.

A branch-and-bound (B&B) algorithm for a minimization problem has the following general

characteristics:
e a branching rule that defines partitions of the set of feasible solutions into subsets

e a lower bounding rule that provides a lower bound on the value of each solution in a

subset generated by the branching rule
e a search strategy that selects a node from which to branch

Additional features such as dominance rules and upper bounding procedures may also be present,
and if fully exploited, could lead to substantial improvements in algorithmic performance.

A diagram representing this process is called an enumeration or search tree. In this tree,
each node represents a subproblem P;. The number of edges in the path to P; is called the
depth or level of P;. The original problem P is represented by the node at the top of the tree
(root). In our case, the schedule Sy associated with Py is the empty schedule.

The fundamentals of B&B can be found in Ibaraki [6, 7]. In this paper we limit the discussion
to our proposed algorithm, BABAS (Branch-and-Bound Algorithm for Scheduling).

4.1 Branching Rule

The following branching rule is used in BABAS. Nodes at level k of the search tree correspond
to initial partial sequences in which jobs in the first k& positions have been fixed. More formally,
each node (subproblem) of the search tree can be represented by P;, with associated schedule
Sj, where S; = ([1],...,[k]) is an initial partial sequence of k jobs. Let U; denote the set of
unscheduled jobs. Then, for U; # 0, an immediate successor of P; has an associated schedule
of the form ([1],...,[k],l), where | € U;. Figure 2 illustrates this rule for a 4-job instance.
Node P; represents a problem at level 1 of the enumeration tree; where only one job has been
scheduled; i.e., S; = (3).

4.2 Lower Bounds

We now develop two lower bounding procedures that turned out to be more effective than the
linear programming relaxation lower bound. These procedures are based on machine completion

times of partial schedules.



Up=1{1,3,2,4}
So=(9

P

$1=03 U1={1, 2,4

S,=(3,1) S3=(3,2) S,=(3,4)

Figure 2: Illustration of the branching rule for a 4-job instance

Given a partial schedule S;, let S; denote a schedule formed by all unscheduled jobs. We
shall now derive lower bounds on the value of the makespan of all possible completions S;S;
of S;, where S;S5; represents the concatenation of jobs in S; and S;. We shall be particularly
concerned with the trade-off between the sharpness of a lower bound and its computational
requirements. A stronger bound eliminates relatively more nodes of the search tree, but if its
computational requirements become excessive, it may become advantageous to search through

larger portions of the tree using a weaker bound that can be computed quickly.

Generalized Lower Bounds: The basic idea here is to obtain lower bounds by relaxing the
capacity constraints on some machines, i.e., by assuming a subset of the machines to have
infinite capacity. We know the only solvable case among flow shop problems is the 2-machine
regular (no setups) flow shop (Johnson [9]). We also know that any problem involving three or
more machines is likely to be N'P-hard. We therefore attempt to exploit this by reducing the
m-machine problem to a 2-machine case. To pursue this, we arbitrarily choose two machines
u and v, 1 < u < v < m, and develop a lower bound g,, by relaxing the capacity constraints
on all machines except v and v. The development below shows how this lower bound can be
reduced to the 2-machine case. This lower bound is similar to the one developed by Lageweg
et al. [10] for F||Cnax-

Let the sequence of the first k£ jobs be Sp = ([1],[2],...,[k]) and the set of remaining
n — k (unscheduled) jobs be Ug. Given Si, the problem of determining an optimal sequence
for the remaining jobs is called a subproblem of depth k and is represented by FS(S;). Let
Sk = ([k+1],[k+2],...,[n]) be an arbitrary sequence of jobs in Uy, and let p;(Uy) = Y e, Pin-
Let Cjj;) denote the completion time of job [j] on machine 7; j € J, i € I. Subproblem FS(Sk)
is to determine the sequence S, that minimizes Cpax (S1Sk) = Cnjn)> the makespan of schedule
Sk Sk
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Figure 3: Directed graph G for SDST flow shops

To help understand the derivation of the lower bound consider the following directed graph
G (depicted in Figure 3) which is constructed as follows: for each operation, say the processing
of job [j] on machine i, there is a node (i[j]) with a weight that is equal to p;;;. The setup
times s;[j;j41) are represented by an arc going from node (i[4]) to node (i[j + 1]) with a weight
that is equal to s;[jjj4q), fori €I, 5 =1,...,n—1. Node (i[j]), i =1,...,m —1,j=1,...,n,
also has an arc going to node (i + 1,[j]) with zero weight. Note that nodes corresponding to
machine m have only one outgoing arc, and that node (m[n]) has no outgoing arcs. This graph
is a generalization of the graph model known for the classical flow shop problem [13].

Given a pair of machines (u,v), u < v, and a subsequence of jobs S = ([j],[7 + 1],...,[]),
let T, (S) be the elapsed time from the start of job [j] on machine u until the finish of job [
on machine v. It can be shown [16] that T,,(S) is equivalent to the maximum length path
from node (u[j]) to node (v[l]) in G. Now let R, denote the longest path (represented by a
sequence of nodes) from node 1[1] to node i[k] in G, 1 < i < u, and let r;;) denote the length
of this path.

For a given pair of machines (u,v), u < v, consider the following paths:
(Ripgps ik + 1], .. ulk + 1], ..y ut], .. o[t oy v[n), ..o ymn])

forl1<i<wand k+1<t<mnin G (see Figure 4). It is easy to see that

u—1
Crin](Sk) > [0ax o i)+ Sifk]e4] + > Pylk1]
<i< =
t—1 v n
+ max 6 > (ug) +sugiiey) ¥ P T D (Po) + Sugi- 1)
SUS j=k+1 i=u Jj=t+1

+ D Dl

i=v+1



1 [K] [k+1] [t [nl

machines

m 8

Figure 4: Critical path illustration for developing GLB

> lrgif%{z[ﬁr]{relln{ h+Zth}}

+k+r{1§§(<n{ Z Pufj "‘ZZ% + Z va}

j=k+1 j=t+1

+ Z mln{sub 1)[5]> Sv[j—1 }—i-f{relgl Z Din (1)
j=k+2 =v+1

Note that inequality (1) is valid for an arbitrary subsequence Sy, but in fact, the main
problem is to find the subsequence S} in Uy that minimizes the left-hand side Cyp(Sk) in (1).
As can be seen, minimizing the right-hand side (RHS) of (1) yields a lower bound on Cy,p,;(S)-

Now let us take a closer look at the minimization of the RHS of (1). The first and fourth
terms do not depend on a particular subsequence, thus they can just be precomputed with no

optimization involved. In the second term of the RHS of (1), we note that

t v—1 n v v—1
Z Puj +sz + Z Pl = D Pty D pi— Y pilSk

j=k+1 Jj=t+1 j=k+1i=u Jj=ti=u+1 i=u+1

Let

t v—1 n v
Zun(Sr) = Hr{lgggn{ > (Zpi[j]> +Z< > pim)}

The problem of minimizing Z,,(Sy) is reduced to a solvable 2-machine flow shop (using John-



son’s algorithm) with processing times

v—1 v
Pl = > pij Py = Y. Pij
=u i=u+1
Let Z*,(Sk) denote its minimum value.
For the third term of the RHS of (1), let s’[‘j’ilm = min{s,[j_1)j], Su[j—1][j]}- [t can be seen
that the problem of minimizing E?:k 19 s’ff_l}[ i corresponds to finding a shortest tour of an
ATSP on n — k vertices. Let S, (Sy) denote the length of this optimal tour.

We can thus establish the following generalized lower bound g,,(S)) on Crnn) (Sk)

i=u+1 i=v+1

u—1 v—1 m
Juv(Sk) = 112%52 {Ti[k] + i?elg;lc {Si[k]h + ;pqh}} - Z pi(Sk) + i?elg,lc Z Dih,

for any 1 < u < v < m. Note that the optimal sequence of the jobs in the embedded 2-machine
flow shop (for given u,v) has to be determined only once for FS(()), the original problem, since
it does not change if some jobs are removed nor it is influenced by the fact that machine v is
not available until C.

In summary, for a given pair of machines (u,v), we have derived a generalized lower bound
guv Which may be computed for any two—machine combination. If W = {(u1,v1),..., (uy,vy)}

is a set of machine pairs, then the corresponding overall lower bound GLB(W) is defined by
GLB(W) = max {gu1,’l}17 M 7guwavw} .

Note that there are m(m—1)/2 possible pairs (u, v); however, the load for computing GLB based
on all pairs is too heavy. Therefore, we only consider the following subsets of machine pairs
Wo ={(1,2),(2,3),...,(m—1,m)}, Wi ={(1,m), (2,m),...,(m—1,m)}, and Wy = Wy U W1,
which contains O(m) pairs. Our empirical work (Section 5) has shown that GLB(W}) provides
better results than GLB(W})) and is faster to compute than GLB(W2).

Machine-Based Lower Bounds: Above, we have developed a family of lower bounds gy, for
1 <u < v < m. Consider now the case u = v; that is, there is only one bottleneck machine
and the capacity of all other machines is relaxed. Thus it is possible to find m additional lower
bounds g,, 1 < u < m.

Again, let the sequence of the first k jobs fixed be S = ([1],[2],...,[k]) and the set of
remaining n —k (unscheduled) jobs be U. Let Sy = ([k+1],[k+2],...,[n]) denote an arbitrary
sequence of jobs in Ug. Then by proceeding in a similar fashion as we did in deriving GLB,
we consider the paths: (R, ik +1],...,ulk +1],...,uln],...,m[n]) for 1 <7 < wuin G (see
Figure 5). Thus we have



u—1

Crmn)(Sk) > max ¢ 7y + sipjera] + D Palht1

1<i<u ‘
<i< =
n m
Puprr) + O Pug] + Supjonp) DL Pim
j=k+2 i=u+1
> HM_Wxg Tilk] + %m_%a Sifk)h T MU.@%
+ pu(Sk) + MU Suj—1)}j] + min MU Pin (2)
Jj=k+2 € ws\§+H
jobs
[1] [K] [k+1] [n]

machines

Figure 5: Critical path illustration for deriving MBLB

Since py(Sk) is constant for any sequence (just like the first and fourth terms in the RHS

of Aw; the problem of minimizing the RHS corresponds to finding a sequence that minimizes

i—k+2 Su[j—1)[j]» Which is equivalent to finding the shortest tour in an ATSP on n — k vertices.
Let S (Sk) be the optimal tour length for this ATSP. Then

9u(Sk) = [0ax ik + %m_%q Sifk]h + M\U.@% +pu(Sk) + Sy (Sk) + %m_%q TQMUt@S

for 1 < u < m is a valid lower bound on Cy,x.
The fact that the setup time between jobs [k] and [k + 1], sykj[x+1], is not considered in the
computation of g, (Sk) allows us to use the first term on the RHS of (3) as a lower bound for

the starting time of job [k 4+ 1] on machine uw. It might be advantageous, however, to include

10



this setup time (Sy[x)x+1]) in the computations to improve the lower bound S; of the related
ATSP. The trade-off is that by doing so, we no longer can use the first term on the RHS of (3).
This alternate bound is expressed as
m
9u(8k) = Cup+pu(Sk) + L (Sk) + min >~ pyp

heUy, i=u+1

where Ly, is the optimal tour length 77 1 ) sy[j—1)5)-

ATSP Lower Bounds: In deriving the GLB and MBLB, we have to deal with solving an ATSP
at some point. The ATSP itself is an NP-hard problem; however, since we are only interested
in a lower bound, any valid lower bound for the ATSP will suffice.

In our work, we used the assignment problem (AP) lower bound, which is obtained by re-
laxing the connectivity (subtour elimination) constraints for the ATSP. It has been documented
(Balas and Toth [2]) that the AP bound is very sharp for the ATSP. (This is not necessarily
true for the symmetric TSP.)

4.3 Search Strategy

The search strategy we use selects the subproblem with the best bound; e.g., the smallest lower
bound in the case of a minimization problem. This approach is motivated by the observations
that the subproblem with the best lower bound has to be evaluated anyway and that it is more
likely to contain the optimal solution than any other node. As shown in [6], this strategy has
the characteristic that, if other parts of a branch-and-bound algorithm are not changed, the
number of partial problems decomposed before termination is minimized.

Another well known strategy is depth-first search, which is mostly used in situations where
it is important to find feasible solutions quickly. However, we do not consider it since feasibility

is not an issue.

4.4 Dominance Rule

We now establish some conditions under which all completions of a partial schedule S (associ-
ated with subproblem Pj) can be eliminated because a schedule at least as good exists among
the completions of another partial schedule S; (corresponding to subproblem P;). Let J(S;)
and J(Sj) denote the index sets of jobs corresponding to Sj and Sy, respectively; [(S) denote
the index of the last scheduled job in schedule S; and C;(S) denote the completion time of the
last scheduled job in S on machine 7. Then P; dominates P if for any completion S, Sy of
S) there exists a completion SjS’j of S; such that CmaX(SjS’j) < Ciax(SkSk). This is stated

formally in the following theorem.

11



Theorem 1 If J(S;) = J(Sk), I(Sj) = I(Sk), and C;(S;) < Ci(Sk) for all i € I, then P;

dominates Py.

The proof can be found in [16] along with a number of other dominance rules for special cases.
In terms of computational effort, determining whether a given subproblem P, is dominated
implies: (a) searching for another subproblem (at the same level), and (b) checking conditions
of Theorem 1. Step (a) can be done in O(logT) time, where T = O(2%) is the size of search
tree up to depth d (if done efficiently, there is no need to search the whole tree). Operation (b)
takes O(m) time. At level d, there are potentially O(2%) nodes, thus the worst-case complexity
to determine whether a given subproblem (at depth d) is dominated is O(md2?).

Despite this worst-case complexity, the implementation of this dominance rule has had a
strong positive impact in the performance of BABAS. Computational results are provided in

Section 5.

4.5 Upper Bounds

It is well known that branch-and-bound computations can be reduced by using a heuristic
to find a good solution to act as an upper bound prior to the application of the enumeration
algorithm, as well as at certain nodes of the search tree. With this in mind we have adapted the
GRASP developed in [19] and the hybrid heuristic described in [20] to handle partial schedules.

In our basic algorithm, we apply both heuristics with extensive local search at the root node
to obtain a high quality feasible solution. Once the algorithm is started, an attempt is made to
find a better feasible solution every time UB_FREQ nodes are generated, where UB_FREQ is
a user-specified parameter. In our experiments, we set this parameter to 50, which means that
the heuristic will be applied once every 50 nodes. Note that setting UB_.FREQ = 1 implies that
the heuristic is applied to every node in the enumeration tree. At the intermediate stages, we
do not do a full local search but try to balance the computational load. Once BABAS satisfies
the stopping criteria, if the best feasible solution is not optimal, we apply an extensive local

search to ensure that a local minimum has been obtained.

4.6 Partial Enumeration

Partial enumeration is a truncated branch-and-bound procedure similar to what is called beam
search [12]. Instead of waiting to discard a portion of the tree that is guaranteed not to contain
the optimum, we may discard parts of the tree that are not likely to contain the optimum. One
essential is to have a good measure of what “likely” means.

The way we handle the partial enumeration is as follows. During the branching process,
every potential child is evaluated with respect to a valuation function h. Those potential sub-

problems whose valuation function do not meet a certain pre-established criterion are discarded.

12



We implemented this idea by ranking the potential children by increasing value of - and then
discarding the worst pn nodes, where p € [0,1] is a user-specified parameter. The larger the
value of p, the more nodes that will be eliminated from consideration. The case p = 0 coincides

with regular branch and bound.

4.6.1 A Valuation Function

To develop a valuation function h we make use of the following cost function C}; for each pair
of jobs j,k € J:

Cjk = ORj+(1—0)Sj

where 6§ € [0,1] is a weight factor, Rj; is a term that penalizes a “bad” fit from the flow
shop perspective, and S is a term that penalizes large setup times. This cost measure was
introduced in [20] where it was used to develop a TSP-based hybrid heuristic for the SDST flow
shop with very good results. A detailed description on how to estimate Rj; and Sj is given in
that work.

Let P; be the node from which branching is being considered with corresponding partial
schedule S;. Let I(S;) be the index of the last scheduled job in S;. Then, for every k € Uj,
we compute h(k) = Ci s;),k and then discard the worst pn potential subproblems (in terms of

Although it is likely that the nodes excluded by this procedure will not be in an optimal
solution, no theoretical guarantee can be established. We should also point out the trade-off
between higher confidence in the quality of the solution and smaller computational effort when

p is set to smaller and larger values, respectively.

5 Computational Experience

All routines were written in C++ and run on a Sun Sparcstation 10 using the CC compiler
version 2.0.1, with the optimization flag set to -O. CPU times were obtained through the C
function clock(). To conduct our experiments we used randomly generated data. It has
been documented [5] that the main feature in real-world data for this type of problem is the
relationship between processing and setup times. In practice, setup times are about 20-40% of
the processing times. Because the experiments are expensive, we generated one class of random

data sets as follows: p;; € [20,100] and s;; € [20,40].

5.1 Experiment 1: Lower Bounds

The lower bounding procedures developed in Section 4.2 were compared within the branch-and-

bound enumeration framework. In our first experiment, the generalized lower bound (GLB)

13



was evaluated for three different subsets of machine pairs.
Wy = {(1,2),(2,3),...,(m—1,m)}
Wy = {(1,m),(2,m),...,(m—1,m)}
Wy = WouW;

It is evident that GLB(W5) will dominate the other two; however, it requires more computa-

tional effort.

m=4 m =26
Wo Wi Wo | Wo Wi Ws
Average relative gap (%) 08 03 03] 1.3 03 04
Average number of evaluated nodes (1000) | 10.1 9.2 87 | 11.0 93 9.0
Average CPU time (min) 108 92 93| 150 11.8 121
Optimal solutions found (%) 60 60 60 20 70 60

Table 1: Evaluation of GLB for 10-job instances

Table 1 shows the average results for 10-job problems with machine parameter m = 4,6.
Note that when m =2, Wy = W, = Wy = {(1,2)}. The averages are taken over 10 instances
with a stopping limit of 15 CPU minutes. The dominance rule is in effect as well. Each column
shows the statistics for GLB based on Wy, Wy, and Ws, respectively. The relative gap is

computed as

best upper bound — best lower bound
best Tower bound x 100%

As can be seen, the quality of GLB(W)) is inferior to the other two since a larger number
of nodes has to be evaluated, resulting in larger execution times. In addition, under GLB(Wj),
fewer optimal solutions are found in the allotted time (only 20% in the 6-machine instances
as opposed to 60% using W, and W3). When comparing GLB(WW;) and GLB(W3), similar
performance is observed in almost every statistic. In fact, GLB(W;) was found to be slightly
better than GLB(W3). This implies that the extra effort used by GLB(W3) (the dominant
bound) is not paying off.

We now compare GLB(W;) with the machine-based lower bound (MBLB). A stopping limit
of 15 CPU minutes was similarly imposed. Table 2 shows the results of this comparison for
15-job instances. It can be seen from the table that the GLB is actually better at the root
node; however, as branching takes place, the MBLB makes more progress providing, in almost
all cases, a tighter bound. There were even some instances that were solved to optimality under
the MBLB alone.

One possible explanation for this result is that the MBLB, for a given machine, takes into

account all the involved setup times, whereas the GLB, in its attempt to reduce the problem
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m=2 m =4 m==6
GLB(W:) MBLB | GLB(W:) MBLB | GLB(W)) MBLB
Average relative gap at root (%) 2.7 6.6 6.4 12.1 8.8 14.8
Average relative gap at termination (%) 2.2 3.1 4.1 2.9 5.3 3.1
Times best bound found (%) 40 60 30 80 0 100
Optimal solutions found (%) 30 60 0 50 0 10

Table 2: Lower bound comparison for 15-job instances

to a 2-machine case, loses valuable setup time information (recall that for a given machine pair
(u,v), GLB uses min{sy;k, Syji} to represent the setup time between jobs j and k). Because
the MBLB procedure was uniformly better than the GLB scheme, we use it in the remainder

of the experiments.

5.2 Experiment 2: Dominance Elimination Criterion

We now evaluate the effectiveness of the dominance rule. Table 3 shows the average statistics
over 10 instances for number of machines m = 2,4,6. Each instance was run with a CPU
time limit of 30 minutes and optimality gap tolerance of 0.0. The results for the algorithm
with and without the dominance rule in effect are indicated by DR and NDR, respectively. As
we can see, the implementation of the dominance rule has a significant impact on the overall
algorithmic performance resulting in a considerably smaller number of nodes to be evaluated,
and a factor of 2 reduction in CPU time. In fact, when the dominance rule was in effect, the
algorithm found optimal solutions to all instances, as opposed to only 80% when the rule was

not in effect.

m=2 m=4 m==6
NDR DR | NDR DR | NDR DR
Average relative gap (%) 0.7 0.0 0.0 0.0 0.1 0.0
Average number of evaluated nodes | 16063 8529 | 5074 2985 | 10879 7924
Average CPU time (min) 18.3 5.8 4.8 2.3 14.2 8.4
Optimal solutions found (%) 50 100 100 100 90 100

Table 3: Evaluation of dominance rule for 10-job instances

5.3 Experiment 3: Partial Enumeration

In this experiment, we illustrate the effect of doing partial versus complete enumeration. We
ran the partial search strategy for p = 0 (normal enumeration), p = 0.5 (truncating 50% of
the potential children), and p = 0.8 (truncating 80% of the potential children) for 10, 6 x 20

instances, with a stopping criterion of 30 minutes and relative gap fathoming tolerance of 1.0%.
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The overall results are displayed in Table 4. Results for a particular instance are by row.
For each value of p we tabulate upper bound (UB), relative gap percentage (Gap) and CPU
time (Time) rounded to the nearest minute. It should be noted that the relative gap for the
truncated versions (p € {0.5,0.8}) shown in the table do not correspond to a true optimality
gap of the original problem, but to the best lower bound of the restricted problem (i.e., the
one not considering the truncated nodes). As can be seen, increasing the value of p results in
a larger number of truncated nodes, hence a quicker execution of the procedure. We can also
observe that the quality of the solution decreases with the size of p. A good compromise seems
to be around p = 0.5, but one must keep in mind that once p assumes a value greater than
zero, the algorithm can no longer be guaranteed to provide an optimal solution to the original

problem.

p=0 p=20.5 p=038
Instance UB Gap Time | UB Gap Time | UB Gap Time
fs6x20.1 2022 2.8 30 2020 1.8 30 2029 1.0
fs6x20.2 2108 4.4 30 2111 3.2 30 2114 1.0
fs6x20.3 2100 5.3 30 2093 4.1 30 2106 1.0
fs6x20.4 1967 5.5 30 1966 3.5 30 1972 1.0
£s6x20.5 2095 1.5 30 2094 1.0 10 2096 1.0
fs6x20.6 2058 6.5 30 2057 5.3 30 2070 1.0
fs6x20.7 2088 5.6 30 2082 3.9 30 2088 1.0
fs6x20.8 2129 8.1 30 2129 6.8 30 2124 1.0
fs6x20.9 2106 3.7 30 2106 2.3 30 2109 1.0
fs6x20.10 | 2142 6.1 30 2130 4.2 30 2144 1.0

N R 00 NN R e

Table 4: Partial enumeration evaluation for 6-machine, 20-job instances

5.4 Experiment 4: BABAS Overall Performance

Here we show the results when the full algorithm is applied to instances of the SDST flow
shop. We use the MBLB procedure, dominance elimination rule, and a relative gap fathoming
tolerance of 1%. Maximum CPU time is set at 30 minutes.

Table 5 displays the summary statistics which were calculated from 10 problem instances
for each m x n combination. As can be seen, all 10-job instances were solved (within 1%) in
an average time of less than 5 minutes, a notable improvement when compared to previous
published research on this problem, where the size of the largest instances solved optimally was
a 6-machine, 8-job problem. In fact, BABAS was able to solve 43% of the 15-job instances,
and 23% of the 20-job instances. Most of the instances solved corresponded to the 2-machine
case. This is to be expected since the fathoming rules (lower bound and dominance) become

less powerful as the number of machines increases.

16



Size Optimality gap (%) Time (sec) Instances
m X n | best average worst | best average worst | solved (%)
2 x 10 0.3 0.9 1.0 1 235 560 100

4 0.8 0.9 1.0 2 68 222 100

6 0.9 1.0 1.0 29 265 450 100

2 x 15 0.0 1.0 2.6 3 725 1800 70

4 0.9 2.2 4.5 7 1074 1800 50

6 1.0 2.9 4.5 38 1624 1800 10

2 x 20 0.5 1.0 1.6 7 1298 1800 70

4 2.4 4.2 5.1 | 1800 1800 1800

6 1.5 5.0 8.1 | 1800 1800 1800

Table 5: BABAS evaluation

Finally, Table 6 shows the algorithmic performance when BABAS is applied to 100-job
instances. Thirty percent of the 2-machine instances were solved and 70% finished with a
relative gap of 1.3% or better. In general, the average relative gap from the start to the end
of the algorithm improved by 2.0%, 0.9%, and 1.6% for the 2-, 4-, and 6-machine instances,
respectively. We also observed that the lower bound and the dominance test was less powerful

than the 20 or fewer job cases.

Size Optimality gap at root (%) | Optimality gap at end (%) Average Instances
mxn | best average worst best average worst time (min) | solved (%)
2 x 100 1.2 3.4 8.4 0.6 14 2.1 28.1 30

4 3.3 5.1 6.5 2.3 4.2 5.7 30.0

6 5.0 7.6 9.4 4.3 6.0 7.2 30.0

Table 6: BABAS evaluation on 100-job instances

6 Summary

We have presented and evaluated a branch-and-bound scheme for the SDST flow shop scheduling
problem. Our implementation includes both lower and upper bounding procedures, and a
dominance elimination criterion. The empirical results demonstrate the relative effectiveness
of the machine-based lower bound procedure and the dominance rule. Significantly better
performance over previously published work (LP-based methods) was also obtained. We were
able to solve (within 1% optimality gap) 100%, 43%, and 23% of the 10-, 15-, and 20-job
instances tested. In addition, for the 100-job instances, our algorithm delivered average relative
gaps of 1.4%, 4.2%, and 6.0% when applied to the 2-, 4-, and 6-machine cases, respectively.
A salient feature of our algorithm is that it permits partial enumeration search, which can be

used to obtain approximate solutions with reasonable computational effort.
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