
Heuristics for the Flow Line Problem

with Setup Costs1

Roger Z. R��os-Mercado

Graduate Program in Operations Research

University of Texas at Austin

Austin, TX 78712{1063

roger@bajor.me.utexas.edu

Jonathan F. Bard

Graduate Program in Operations Research

University of Texas at Austin

Austin, TX 78712{1063

jbard@mail.utexas.edu

June 1996

Revised April 1997

Accepted May 1997

1
Submitted to European Journal of Operational Research

Abstract

This paper presents two new heuristics for the owshop scheduling problem with sequence-

dependent setup times and makespan minimization objective. The �rst is an extension of a pro-

cedure that has been very successful for the general owshop scheduling problem. The other is

a greedy randomized adaptive search procedure (GRASP) which is a technique that has achieved

good results on a variety of combinatorial optimization problems. Both heuristics are compared to

a previously proposed algorithm based on the traveling salesman problem (TSP). In addition, local

search procedures are developed and adapted to each of the heuristics. A two-phase lower bounding

scheme is presented as well. The �rst phase �nds a lower bound based on the assignment relaxation

for the asymmetric TSP. In phase two, attempts are made to improve the bound by inserting idle

time. All procedures are compared for two di�erent classes of randomly generated instances. In the

�rst case where setup times are an order of magnitude smaller than the processing times, the new

approaches prove superior to the TSP-based heuristic; for the case where both processing and setup

times are identically distributed, the TSP-based heuristic outperforms the proposed procedures.

Keywords: Heuristics, owshop scheduling, setup times, makespan

1 Introduction

In this paper, we address the problem of �nding a permutation schedule of n jobs in an m-machine

owshop environment that minimizes the maximum completion time Cmax of all jobs, also known

as the makespan. The jobs are available at time zero and have sequence-dependent setup times on

each machine. All problem parameters, such as processing times and setup times, are assumed to

be known with certainty. This problem is regarded in the scheduling literature as the sequence-

dependent setup time owshop (SDST owshop). Another way to represent scheduling problems

is by using the standard �j�j notation (Pinedo [17]). In this regard, our problem is written as

F jsijk ; prmujCmax, where the �rst �eld describes the machine environment (F stands for an m-

machine owshop), the second �eld provides details of processing characteristics and constraints

(sijk stands for sequence-dependent setup times and prmu means that the order or permutation

in which the jobs go through the �rst machine is maintained throughout the system; that is, the

queues in front of each machine operate according to the FIFO discipline), and the third �eld

contains the objective to be minimized. The SDST owshop is NP-hard. We can see this by

noting that the one machine version of the problem with zero processing times corresponds to an

instance of the well-known asymmetric traveling salesman problem (ATSP).

The SDST owshop is encountered in many manufacturing environments such as those arising

in the chemical and pharmaceutical industries. For example, the use of a single system to produce

di�erent chemical compounds may require some cleansing between process runs, while the time to

set up a facility for the next task may be strongly dependent on its immediate predecessor. Thus

it is not always acceptable to assume that the time required to perform any task is independent of

its position in the sequence.

Sequence-dependent properties are relevant in other �elds as well. For example, the scheduling

of aircraft approaching or leaving a terminal area can be modeled as a single-machine scheduling

problem. Because the time separations between successive aircraft belonging to di�erent eets vary

according to their respective position, sequence-dependent processing times must be allowed for a

more realistic description of the problem.

Our work includes the development of two new heuristics and a local search phase. One of the

proposed heuristics is based in an idea due to Nawaz et al. [15] that has been very successful for the

general owshop scheduling problem with no setup times. We extend their approach to handle this

feature. The other algorithm we develop is called a greedy randomized adaptive search procedure

(GRASP), which is a heuristic approach to combinatorial optimization problems that combines

greedy heuristics, randomization, and local search techniques. GRASP has been applied successfully

to set covering problems (Feo and Resende [6]), airline ight scheduling and maintenance base

planning (Feo and Bard [5]), scheduling on parallel machines (Laguna and Gonz�alez-Velarde [13]),

and vehicle routing problems with time windows (Kontoravdis and Bard [12]). The proposed

1

procedures are compared to a previously developed algorithm due to Simons [22]. His algorithm

attempts to exploit the strong relationship between the SDST owshop and the ATSP.

Another contribution of this work is the development of a lower bounding scheme for the SDST

owshop. The proposed scheme consists of two phases: in phase one, a lower bound based on the

assignment (AP) relaxation of the ATSP is computed. In phase two, we attempt to improve this

bound by inserting idle time. All the procedures are evaluated for two di�erent classes of randomly

generated instances. For the case where the setup times are an order of magnitude smaller that the

processing times, the proposed algorithms prove superior to Simons' heuristic (SETUP()). For the

case where both processing and setup times are identically distributed, SETUP() outperforms the

proposed heuristics. We also found that the latter type of instances were more \di�cult" to solve

in the sense that the relative gap between the heuristic solution and the lower bound is signi�cantly

larger than the gap found for the former type of instances. In many of those cases near-optimal

solutions were obtained.

The rest of the paper is organized as follows. A brief literature review is presented in Section 2.

In Section 3 we formally describe and formulate the problem as a mixed-integer program. Heuristics

and local search procedures are described in Sections 4 and 5, respectively. The lower bounding

scheme is presented in Section 6. We then highlight our computational experience in Section 7 and

conclude with a discussion of the results.

2 Related Work

For an excellent review of owshop scheduling in general, including computational complexity

results, see [20]. For a more general overview on complexity results and optimization and approxi-

mation algorithms involving single-machine, parallel machines, open shops, job shops, and owshop

scheduling problems, the reader is referred to Lawler et al. [14].

2.1 Minimizing Makespan on Regular Flowshops

The owshop scheduling problem (with no setups) has been an intense subject of study over the

past 25 years. Several exact optimization schemes, mostly based on branch-and-bound, have been

proposed for F jjCmax including those of Potts [18] and Carlier and Rebai [3].

Heuristic approaches for F jjCmax can be divided into (a) quick procedures [15, 21] and (b)

extensive search procedures [26, 16] (including techniques such as tabu search). Several studies

have shown (e.g., [25]) that the most e�ective quick procedure is the heuristic due to Nawaz et

al. [15]. In our work, we attempt to take advantage of this result and extend their algorithm to

the case where setup times are included. Our implementation, NEHT-RB(), is further described in

Section 4.2.

2

2.2 Sequence-Dependent Setup Times

Heuristics: The most relevant work on heuristics for F jsijk ; prmujCmax is due to Simons [22].

He describes four heuristics and compares them with three benchmarks that represent generally

practiced approaches to scheduling in this environment. Experimental results for problems with up

to 15 machines and 15 jobs are presented. His �ndings indicate that two of the proposed heuristics

(SETUP() and TOTAL()) produce substantially better results than the other methods tested. This

is the procedure we use as a benchmark to test our algorithms.

Exact optimization: To the best of our knowledge, no exact methods have been proposed for the

SDST owshop. However, Gupta [11] presents a branch-and-bound algorithm for the case where

the objective is to minimize the total machine setup time. No computational results are reported.

All other work is restricted to the 1- and 2-machine case.

2-machine case: Work on F2jsijk; prmujCmax includes Corwin and Esogbue [4], who consider a

subclass of this problem that arises when one of the machines has no setup times. After estab-

lishing the optimality of permutation schedules, they develop an e�cient dynamic programming

formulation which they show is comparable, from a computational standpoint, to the corresponding

formulation of the traveling salesman problem. No algorithm is developed.

Gupta and Darrow [10] establish the NP-hardness of the problem and show that permutation

schedules do not always minimize makespan. They derive su�cient conditions for a permutation

schedule to be optimal, and propose and evaluate empirically four heuristics. They observe that the

procedures perform quite well for problems where setup times are an order of magnitude smaller

than the processing times. However, when the magnitude of the setup times was in the same range

as the processing times, the performance of the �rst two proposed algorithms decreased sharply.

Szwarc and Gupta [23] develop a polynomially bounded approximate method for the special

case where the sequence-dependent setup times are additive. Their computational experiments

show optimal results for the 2-machine case. Work on the 1-machine case is reviewed in [20].

3 Mathematical Formulation

In the owshop environment, a set of n jobs must be scheduled through a set of m machines, where

each job has the same routing. Therefore, without loss of generality, we assume that the machines

are ordered according to how they are visited by each job. Although for a general owshop the job

sequence may not be the same for every machine, here we assume a permutation schedule; i.e., a

subset of the feasible schedules that requires the same job sequence on every machine. We suppose

that each job is available at time zero and has no due date (i.e., for job j ready time rj = 0 and

due date dj = 1). We also assume that there is a setup time which is sequence-dependent so

that for every machine i there is a setup time that must precede the start of a given task that

3

depends on both the job to be processed (k) and the job that immediately precedes it (j). The

setup time on machine i is denoted by sijk and is assumed to be asymmetric; i.e., sijk 6= sikj . After

the last job has been processed on a given machine, the machine is brought back to an acceptable

\ending" state. We assume that this last operation takes zero time because we are interested in job

completion time rather than machine completion time. Our objective is to minimize the time at

which the last job in the sequence �nishes processing on the last machine, also known as makespan.

As pointed out in Section 1, this problem is denoted by F jsijk ; prmujCmax or SDST owshop.

Example 3.1 Consider the following instance of F2jsijk ; prmujCmax with four jobs.

pij 1 2 3 4 s1jk 1 2 3 4 s2jk 1 2 3 4

1 6 3 2 1 0 3 4 1 7 0 2 3 1 6

2 2 2 4 2 1 - 5 3 2 1 - 1 3 5

2 5 - 3 1 2 4 - 3 1

3 2 1 - 5 3 3 4 - 1

4 3 2 5 - 4 7 8 4 -

A schedule S = (3; 1; 2; 4) is shown in Figure 1. The corresponding makespan is 24, which is

optimal. 2

Setup time Processing time

25

M1

M2

15 205 10

3

Time

42

421

13

Figure 1: Example of a 2� 4 SDST owshop

3.1 Notation

In the development of the mathematical model, we make use of the following notation.

� Indices and sets

m number of machines

n number of jobs

i machine index; i 2 I = f1; 2; : : : ; mg

j; k job indices; j 2 J = f1; 2; : : : ; ng

J0 = J [f0g extended set of jobs, including a dummy job denoted by 0

4

� Input data

pij processing time of job j on machine i; i 2 I , j 2 J

sijk setup time on machine i when job j is scheduled right before job k; i 2 I , j 2 J0, k 2 J

� Computed parameters

Ai upper bound on the time at which machine i �nishes processing its last job; i 2 I ,

Ai = Ai�1 +
X
j2J

pij + min

8<
:
X
j2J0

max
k2J
fsijkg;

X
k2J

max
j2J0
fsijkg

9=
;

where A0 = 0

Bi upper bound on the initial setup time for machine i; i 2 I ,

Bi = max
j2J
fsi0jg

3.2 Formulation

We de�ne the decision variables as follows:

xjk =

8<
: 1 if job j is the immediate predecessor of job k; j; k 2 J0

0 otherwise

yij = starting time of job j on machine i; i 2 I; j 2 J

Cmax = completion times of all jobs (makespan)

In the de�nition of xjk, notice that x0j = 1 (xj0 = 1) implies that job j is the �rst (last) job in

the sequence for j 2 J . Also notice that si0k denotes the initial setup time on machine i when job k

has no predecessor; that is, when job k is scheduled �rst, for all k 2 J . This variable de�nition

yields what we call a TSP-based formulation.

(FS) Minimize Cmax (1.1)

subject to X
j2J0
j 6=k

xjk = 1 k 2 J0 (1.2)

X
k2J0
k 6=j

xjk = 1 j 2 J0 (1.3)

yij + pij + sijk � yik + Ai(1� xjk) i 2 I; j; k 2 J; j 6= k (1.4)

si0k � yik + Bi(1� x0k) i 2 I; k 2 J (1.5)

ymj + pmj � Cmax j 2 J (1.6)

yij + pij � yi+1;j i 2 I n fmg; j 2 J (1.7)

xjk 2 f0; 1g j; k 2 J0; j 6= k (1.8)

5

yij � 0 i 2 I; j 2 J (1.9)

Equations (1.2) and (1.3) state that every job must have a predecessor and successor, respec-

tively. Subtour elimination constraints are given by eqs. (1.4) and (1.5). The former establishes

that if job j precedes job k, then the starting time of job k on machine i must not exceed the

completion time of job j on machine i (yij + pij) plus the corresponding setup time. The latter

says that if job k is the �rst job scheduled on machine i, then it must start after the initial setup

time si0k . Constraint (1.6) assures that the makespan is greater than or equal to the completion

time of the last machine, while (1.7) states that a job cannot start processing on one machine if it

has not �nished processing on the previous one.

In formulation (1.1)-(1.9), we assume that sij0, the time required to bring machine i to an

acceptable end state when job j is processed last, is zero for all i 2 I . Thus the makespan is

governed by the completion times of the jobs only. Note that it is possible to combine pij + sijk

in (1.4) into a single term tijk = pij + sijk , but that we still need to handle the processing times

pij separately in constraints (1.6) and (1.7).

4 Heuristics

We study the following heuristics for F jsijk ; prmujCmax.

� SETUP(): This is the only previously existing procedure of which we are aware for the SDST

owshop [22].

� NEHT-RB(): This is a modi�ed version of a heuristic (NEH) proposed by Nawaz, Enscore and

Ham [15] for F jjCmax. We extend the NEH heuristic to handle setup times.

� GRASP(): Our proposed greedy randomized adaptive search procedure.

4.1 Simons' SETUP() Heuristic

In the �rst of two phases of Simons' heuristics, an instance of the ATSP is built as follows. Every

job is identi�ed with a \city." Procedure TOTAL() computes the entries in the distance (cost)

matrix as the sum of both the processing and setup times over all the machines. Procedure SETUP()

considers the sum of setup times only. In the second phase, a feasible tour is obtained by invoking a

heuristic for the ATSP. This heuristic uses the well-known Vogel's approximation method (VAM) for

obtaining good initial solutions to transportation problems with a slight modi�cation to eliminate

the possibility of subtours.

It should be noted that Simons does not include a setup time for the �rst job to be processed.

However, when initial setups are present and sequence-dependent, these must be handled explicitly.

6

In our formulation, this initial setup is considered so modi�cations were necessary to account for

it. In addition, we also improved SETUP() by adding a local search phase. This is discussed in

Section 5.

Procedure TOTAL()

Input: Instance of the SDST owshop.

Output: Feasible schedule S.

Step 1. Compute (n+ 1)� (n+ 1) cost matrix as ajk =
P

i
sijk +

P
i
pik

Step 2. Apply VAM to (ajk) to obtain a tour S

Step 3. Output S

Step 4. Stop

Figure 2: Pseudocode of Simons' TOTAL() heuristic

Figure 2 shows the pseudo-code for the TOTAL() heuristic. The SETUP() heuristic is given by

the same pseudo-code, except for a modi�cation in Step 1 that excludes the sum of processing

times,
P

i pik.

Computational complexity: The computation of the cost matrix performed in Step 1 takes O(mn2)

time. The application of Voguel's method to a (n+ 1)-city problem is O(n2) and hence the overall

procedures TOTAL() and SETUP() have worst-case complexity of O(mn2).

4.2 NEHT-RB() Heuristic

The best known heuristic for the general owshop scheduling problem with makespan minimization

is NEH, due to Nawaz et al. [15]. This procedure consists of inserting a job into the best available

position of a set of partially scheduled jobs; that is, in the position that would cause the smallest

increment to the value of the makespan. The original worst-case complexity of the heuristic was

O(mn3). Taillard [24] subsequently proposed a better way to perform the computations and came

up with a complexity of O(mn2). Here we extend the NEH heuristic to handle setup times as well

while maintaining the same complexity of O(mn2). We call this procedure NEHT-RB() (Nawaz-

Enscore-Ham, modi�ed by Taillard, extended by R��os-Mercado and Bard).

The NEHT-RB() idea of building a feasible schedule is very simple. At each iteration of the

algorithm there is a partial schedule S. A job h is selected from a priority list P of unscheduled

jobs. Nawaz et al. ssuggest an LPT (largest processing time) rule; that is, a list where the jobs

are ordered from largest to smallest total processing time. The partial schedule S and the job h

de�ne a unique greedy function (j) : f1; 2; : : : ; jS + 1jg ! R, where (j) is the makespan of the

new schedule S0 resulting from inserting job h at the j-th position (right before the j-th job) in S.

7

Here, position jS+ 1j means an insertion at the end of the schedule. Job h is inserted into position

k = argminj=1;:::;jS+1j f (j)g ;

that is, the position in S that has the lowest makespan value.

Procedure NEHT-RB()

Input: Set P of unscheduled jobs.

Output: Feasible schedule S.

Step 0. Set S = ;

Step 1. Sort the jobs in P to form an LPT priority list

Step 2. while jP j > 0 do

Step 2a. Remove h, the �rst job from P

Step 2b. Compute (j) for every position j = 1; : : : ; jS + 1j

Step 2c. Find k = argminjf (j)g

Step 2d. Insert job h at position k in S

Step 3. Output S

Step 4. Stop

Figure 3: Pseudocode of procedure NEHT-RB()

Figure 3 shows the pseudo-code for the procedure. In Step 1 of NEHT-RB(), we form an LPT

list with respect to the sum of the processing times of each job over all machines. In Step 2b, we

use Taillard's modi�cation. Our modi�cation incorporates sequence-dependent setup times.

Computing the partial makespans: We now describe how to e�ciently compute the greedy function

 (j) given in Step 2b of procedure NEHT-RB() (Figure 3). Typically, a job within brackets [j]

denotes the job in position j. Here, for simplicity, we drop the brackets and assume that a current

schedule is given by S = (1; 2; : : : ; k � 1). Let h denote the job to be inserted. De�ne the following

parameters:

� eij = the earliest completion time of job j on machine i; (i = 1; : : : ; m) and (j = 1; : : : ; k � 1).

These parameters are recursively computed as

ei0 = 0

e0j = rj

eij = max fei�1;j ; ei;j�1 + si;j�1;jg+ pij

where rj denotes the release time of job j. Here rj is assumed to be zero.

� qij = the duration between the starting time of the job j on machine i and the end of

operations; (i = m;m� 1; : : : ; 1) and (j = k � 1; k� 2; : : : ; 1).

8

qik = 0

qm+1;j = 0

qij = max fqi+1;j ; qi;j+1 + si;j;j+1g+ pij

� fij = the earliest relative completion time on machine i of candidate job h if inserted at the

j-th position; (i = 1; 2; : : : ; m) and (j = 1; 2; : : : ; k).

fi0 = 0

f0j = rh

fij = maxffi�1;j ; ei;j�1 + si;j�1;hg+ pih

� (j) = the value of the partial makespan when adding job k at the j-th position; (j = 1; : : : ; k).

 (j) = max
i=1;:::;m

ffij + sihj + qijg (2)

where sihj = qij = 0 for j = k.

Procedure Makespans()

Input: Partial schedule S = (1; 2; : : : ; k � 1) and job h to be inserted.

Output: Vector (j) with the value of the makespan when job h is inserted in the j-th

position of schedule S.

Step 1. Compute the earliest completion times eij

Step 2. Compute the tails qij

Step 3. Compute the relative completion times fij

Step 4. Compute values of partial makespan (j)

Step 5. Output vector (j)

Step 6. Stop

Figure 4: Pseudocode of procedure for computing partial makespans

Figure 4 shows how these computations are performed in procedure Makespans(). Steps 1, 2,

and 3 of take O(km) time each. Step 4 is O(k logm). Therefore, this procedure is executed in

O(km) time. Figure 5 illustrates the procedure when job h is inserted at position 3 (between jobs

2 and 3) in a partial 4-job schedule.

Computational complexity: The complexity of Step 1 of NEHT-RB() (Figure 3) is O(n logn). At

the k-th iteration of Step 2; that is, k jobs already scheduled, Step 2a takes O(1), Step 2b takes

O(km), complexity of Step 2c is O(k log k), and Step 2d takes O(km) time. Thus, the complexity

9

Setup time to be removed

Setup time to be added

Setup time Processing time
e1,2

e2,2

q1,3

q2,3

q1,3

q2,3f 2,3

f 1,3

Time

1 32

3 4

M1

M2

4

21

(b)

1 2

1 2

M1

M2

3 4

3 4

h

h

(c)

1 32 4

31 2 4

M1

M2

(a) Time

Time

Figure 5: Illustration of partial makespan computation

of Step 2 at the k-th iteration is O(km). This yields an overall time complexity of O(mn2) for one

execution of NEHT-RB().

Example 4.1 (Example 3.1 continued)

We will now illustrate how algorithm NEHT-RB() proceeds.

Step 0: Initialize the set of scheduled jobs S = ;.

Step 1: Given the total processing time for each job

j 1 2 3 4P
i pij 8 5 6 3

form the LPT priority list as follows: P = (1; 3; 2; 4).

Step 2: (Iteration 1) Job 1 is selected (and removed) from P . Now P = (3; 2; 4).

Because there are no scheduled jobs, insert job 1 into S = (1) and go to the

next iteration.

10

(Iteration 2) Job 3 is selected (and removed) from P . Now P = (2; 4), jSj = 1,

and (k) (makespan value when job 3 is inserted in position k in S) is computed

as follows

k 1 2

 (k) 13 18

Thus job 3 is inserted in position k = 1 (at the beginning of S). S = (3; 1).

(Iteration 3) Job 2 is selected (and removed) from P . Now P = (4), jSj = 2,

and (k) is computed as follows

k 1 2 3

 (k) 22 20 23

Thus job 2 is inserted in position k = 2 (immediately preceding job 1). S =

(3; 2; 1).

(Iteration 4) Job 4 is selected (and removed) from P . Now P = ;, jSj = 3, and

 (k) is computed as follows

k 1 2 3 4

 (k) 32 27 25 27

Thus job 4 is inserted in position k = 3 (immediately preceding job 1). S =

(3; 2; 4; 1).

Step 3: Output schedule S = (3; 2; 4; 1) with corresponding Cmax(S) = 25.

Note that the optimal schedule is S� = (3; 1; 2; 4) with Cmax(S�) = 24. 2

4.3 GRASP

GRASP consists of two phases: a construction phase and an improving phase. During the construc-

tion phase, a feasible solution is built, one element (job) at a time. At each iteration, all feasible

moves are ranked and one is randomly selected from a restricted candidate list (RCL). The ranking

is done according to a greedy function that adaptively takes into account changes in the current

state.

One way to limit the RCL is by its cardinality where only the top � elements are included. A

di�erent approach is by considering only those elements whose greedy function value is within a

�xed percentage of the best move. Sometimes both approaches are applied simultaneously; i.e.,

only the top � elements whose greedy function value is within a given percentage � of the value

of the best move are considered. The choice of the parameters � and � requires insight into the

problem. A compromise has to be made between being too restrictive or being too inclusive. If

the criterion used to form the list is too restrictive, only a few candidates will be available. The

11

extreme case is when only one element is allowed. This corresponds to a pure greedy approach

so the same solution will be obtained every time GRASP is executed. The advantage of being

restrictive in forming the candidate list is that the greedy objective is not overly compromised; the

disadvantage is that the optimum and many very good solutions may be overlooked. If we allow for

large values of �, in the other hand, the value of the greedy function may be compromised. This

implies that the solutions found during the construction phase might not be as good in terms of

their objective function value. GRASP phase 1 is applied N times, using di�erent initial seed values

to generate a solution (schedule) to the problem. In general, a solution delivered in phase 1 is not

guaranteed to be locally optimal with respect to simple neighborhood de�nitions. Hence it is often

bene�cial to apply an improving phase (phase 2) where a local search technique is used to improve

the current solution. Since doing the local search is expensive (in terms of its computational e�ort)

as compared to building a feasible solution, in our implementation we apply the local search every

K iterations to the best phase 1 solution in that subset. The procedure outputs the best of the

N=K local optimal solutions. Figure 6 shows a ow chart of our implementation.

L = EMPTY (list of schedules in working subset)

i = 0 (phase 1 counter)

Tbest = EMPTY (best schedule)

Makespan(Tbest) = INFINITY

i > N ?

|L| = K ?

Output Tbest
STOP

i + 1i Empty L

Makespan(T) < Makespan(Tbest) ?

TTbest
Replace Tbest with T

Phase 2: Apply local search to
best schedule in L to
obtain schedule T

Phase 1: Construct feasible
schedule S(i)

L + S(i)

Initialization

L

K = subset size for phase 2

YesNo

Yes

Yes

No
No

Append S(i) to L

Assume N is multiple of K

N = number of phase 1 instances

Figure 6: Flow chart of complete GRASP algorithm

The fundamental di�erence between GRASP and other meta-heuristics such as tabu search and

12

simulated annealing is that GRASP relies on high quality phase 1 solutions (due to the inherent

worst-case complexity of the local search) whereas the other methods do not require good feasible

solutions. They spend practically all of their time improving the incumbent solution and attempting

to overcome local optimality. For a GRASP tutorial, the reader is referred to [7].

Below we present a GRASP for F jsijk ; prmujCmax based on job insertion. This approach was

found to be signi�cantly more successful than a GRASP based on appending jobs to the partial

schedule.

GRASP for the SDST Flowshop: The GRASP construction phase follows the same insertion idea

as algorithm NEHT-RB() discussed in Section 4.2. The di�erence between them is the selection

strategy for inserting the next unscheduled job into the partial schedule. Recall that NEHT-RB()

always inserts the job in the best available position.

Procedure GRASP()

Input: Set P of unscheduled jobs and size � of the restricted candidate list.

Output: Feasible schedule S.

Step 0. Set S = ;

Step 1. Sort the jobs in P to form an LPT priority list

Step 2. while jP j > 0 do

Step 2a. Remove h, the �rst job from P

Step 2b. Compute (j) for every position j = 1; : : : ; jS + 1j

Step 2c. Construct the RCL with the best � positions

Step 2d. Choose randomly a position k from RCL

Step 2e. Insert job h at position k in S

Step 3. Output S

Step 4. Stop

Figure 7: Pseudocode of GRASP() phase 1

In GRASP(), the positions available for insertion are sorted by nondecreasing values of (j) and

a restricted candidate list is formed with the best � positions. The probabilistic strategy of GRASP()

selects one of the positions in the RCL randomly with equal probability. The job h is inserted at

the selected position into the current partial schedule S and the completion times Cij for all jobs

in the schedule are updated. Figure 7 shows the pseudo-code of the procedure (phase 1). Notice

that GRASP() reduces to NEHT-RB() for the extreme case � = 1.

In Step 1 of GRASP(), we form an LPT (largest processing time) priority list with respect to

the sum of the processing times of each job over all the machines. In Step 2b, we use procedure

Makespans(), which was seen in Section 4.2 to require O(km) time.

13

Computational complexity: The complexity of Step 1 is O(n logn). At the k-th iteration of Step

2 (k jobs already scheduled), Step 2a takes O(1), Step 2b takes O(km), complexity of Step 2c is

O(k log �), Step 2d can be done in O(log�) time, and Step 2e in O(km). Thus, the complexity of

Step 2 at the k-th iteration is O(km). This yields a time complexity of O(mn2) for one execution

of GRASP() phase 1. Therefore, the overall phase 1 time complexity is O(Nmn2).

Example 4.2 (Example 3.1 continued)

We now illustrate the GRASP construction phase with RCL cardinality limitation � = 2.

Step 0: Initialize the set of scheduled jobs S = ;.

Step 1: Given the total processing time for each job

j 1 2 3 4P
i pij 8 5 6 3

form the LPT priority list as follows: P = (1; 3; 2; 4).

Step 2: (Iteration 1) Job 1 is selected (and removed) from P . Now P = (3; 2; 4). Since

there are no scheduled jobs, insert job 1 into S = (1) and go to the next

iteration.

(Iteration 2) Job 3 is selected (and removed) from P . Now P = (2; 4), jSj = 1,

and (k) (makespan value when job 3 is inserted in position k in S) is computed

as.

k 1 2

 (k) 13 18

Because � = 2, RCL = f1; 2g. One is selected at random, say k = 1. Thus,

job 3 is inserted in position k = 1 (at the beginning of S). S = (3; 1).

(Iteration 3) Job 2 is selected (and removed) from P . Now P = (4), jSj = 2,

and (k) is computed as follows

k 1 2 3

 (k) 22 20 23

Form RCL=f1; 2g and select one at random, say k = 1. Job 2 is inserted in

position k = 1 (at the beginning of S). S = (2; 3; 1).

(Iteration 4) Job 4 is selected (and removed) from P . Now P = ;. For jSj = 3,

 (k) is computed as follows

k 1 2 3 4

 (k) 30 26 29 30

14

Form RCL = f2; 3g and select one at random, say k = 3. Job 4 is inserted in

position k = 3 (immediately succeeding job 3). S = (2; 3; 4; 1).

Step 3: Output schedule S = (2; 3; 4; 1) with corresponding Cmax(S) = 29.

Recall that the optimal schedule is S� = (3; 1; 2; 4) with Cmax(S
�) = 24. 2

5 Local Search Procedures

Neighborhoods can be de�ned in a number of di�erent ways, which have di�erent computational

implications. Consider, for instance, a 2-opt neighborhood de�nition that consists of exchanging

two edges in a given tour or sequence of jobs. For this neighborhood, a move in a TSP takes

O(1) time to evaluate whereas a move in the SDST owshop takes O(mn2). One of the most

common neighborhoods for scheduling problems is the 2-job exchange which has been used by

Widmer and Hertz [26] and by Taillard [24] for F jjCmax. We considered the 2-job exchange as

well. In addition, we generalized the 1-job reinsertion neighborhood proposed by Taillard [24]

for F jjCmax to develop an L-job string reinsertion procedure. This was motivated by the presence

of the sequence-dependent setup times, which suggest that subsets (or strings) of consecutive jobs

might �t together in a given schedule. We tried both procedures for our problem and found that

the string reinsertion uniformly outperformed the 2-job exchange, just as Taillard found the 1-job

reinsertion performed better than the 2-job exchange for the regular owshop.

5.1 L-Job String Reinsertion

Given a feasible schedule S, let NL
S (j; k) be the schedule formed from S by removing a string of L

jobs starting at the j-th position and reinserting the string at position k. The neighborhood of S

is given by

N(S) =
n
NL
S (j; k) : 1 � j; k � n+ 1� L

o

For a given value of L, N(S) is entirely de�ned by j and k. The size of N(S) is

jN(S)j = (n� L)2

An example of a 2-job string reinsertion neighbor is shown in Figure 8. The sequence on the

right S' = N2
S(3; 1) is formed from S by removing the 2-job string starting at the 3-rd position (jobs 5

and 4) and reinserting it at the position 1 (immediately preceding job 2). The evaluation of all

makespans can be executed in O(n2m), using the Makespans() algorithm described in Section 4.2.

15

SS’ = N (3,1) = move 2-string at position 3 to position 12

S’ = (5, 4, 2, 3, 1)

0

2 3

5

41

2 3

5

41

0

Position 1

Position 3

S = (2, 3, 5, 4, 1)

Figure 8: Illustration of 2-job string reinsertion neighborhood

5.2 Implementation Considerations

A primary concern in the implementation of local search procedures is how to \move" from the

current feasible solution to a neighbor solution with a better objective function value. There are

three fundamental ways of doing this. The �rst is to examine the whole neighborhood and then

make a move to the \best" neighbor. The second is to examine one neighbor at a time and make

a move as soon as a better solution is found. The trade-o� is that in the �rst case we expect the

incremental improvement in the objective value to be greater; however, the computational e�ort

is higher. The third option is to examine a smaller neighborhood at the expense of the solution

quality. This idea was used by Reeves in [19] for the 1-job reinsertion local search on the owshop

context. Here, we use this idea in the following way. Given a string L of jobs, there are (n � L)

possible sites where L can be reinserted. We observe that the evaluation of all these possible

moves can be cleverly done in O(mn2), which is the same complexity of evaluating just one move.

Therefore, after making this evaluation, we make the move by reinserting L in the best of these

(n� L) positions.

Heuristic String size NSC

SETUP() 3 Lexicographic (last)

NEHT-RB() 1 Lexicographic (last)

GRASP() 1 Lexicographic (�rst)

Table 1: Parameter selection for string reinsertion procedure

When the choice is to examine a smaller neighborhood (or subregion) as described above, we

must have a criterion for selecting the \next" subregion, or in our case, how to select the next

string L. The neighbor selection criteria (NSC) de�nes a way of choosing the next subregion

to be examined. Typical examples of NSC are a lexicographic strategy and a random strategy.

In the former, one sorts all unexamined subregions according to a given lexicographic rule. A

lexicographic �rst (last) rule selects the �rst (last) string of the sorted list and removes it from the

list of unexamined strings. In a random strategy, the next string is chosen randomly among all

16

unexamined candidates. We did a preliminary computation designed to �ne-tune the local search

procedure as a function of both the NSC and string size. This included the evaluation of these

settings on over 360 instances, ranging from 2 to 6 machines and 20 to 100 jobs. The best choices

of these parameters for a particular heuristic in terms of the quality of the solution found are

shown in Table 1. As can be seen, a string size of 1 did better in the insertion-based heuristics, as

opposed to SETUP(). An explanation of this is that both NEHT-RB() and GRASP() are heuristics

that �nd a feasible solution by inserting one job at a time. This produces a feasible schedule where

the interrelationship among strings of jobs may not be as strong as a feasible solution delivered

by SETUP() which is a TSP-based heuristic. Thus, SETUP() bene�ts better from a 3-job string

reinsertion.

6 Lower Bounds

Recall the MIP formulation (1.1)-(1.9) presented in Section 3. Constraint (1.7) implies that

yij + pij � yi�1;j + pi�1;j i 2 I n fmg; j 2 J:

Therefore, the makespan constraint (1.6) can also be written as

yij + pij � Cmax i 2 I; j 2 J:

By relaxing the machine link constraints (1.7), the starting time for a job j on a given machine i

is no longer linked to the �nishing time on the previous machine. We call this new problem SFS

(separable ow shop), with optimal objective function value v(SFS). It is clear that v(SFS) � v(FS),

where v(FS) is the optimal value of problem FS.

Let SFS(i) be the SFS problem where all the subtour elimination and makespan constraints not

related to machine i are removed. Let S = (1; : : : ; n) be a feasible schedule for SFS(i). Here we

assume for simplicity that the jobs in S are sequenced in order so the makespan of S is given by

Cmax(S) = si01 + pi1 + si12 + pi2 + : : :+ si;n�1;n + pin + sin0

=
nX

j=1

pij +
nX

j=0

sij;j+1xj;j+1

where index n+ 1 corresponds to index 0 and sin0 = 0. Thus SFS(i) can be expressed as

(SFS(i)) Minimize
X
j2J0

pij +
X
j2J0

X
k2J0
k 6=j

sijkxjk (3.1)

subject to X
j2J0
j 6=k

xjk = 1 k 2 J0 (3.2)

X
k2J0
k 6=j

xjk = 1 j 2 J0 (3.3)

17

yij � yik + pij + sijk � Ai(1� xjk) j; k 2 J; j 6= k (3.4)

�yik + si0k � Bi(1� x0k) k 2 J (3.5)

xjk 2 f0; 1g j; k 2 J0; j 6= k (3.6)

yij � 0 j 2 J (3.7)

for all i 2 I .

6.1 A Lower Bounding Scheme for the SDST Flowshop

For a �xed machine i,
P

j pij in (3.1) is constant so problem SFS(i) reduces to an instance of the

ATSP, where J0 is the set of vertices and sijk is the distance between vertices j and k. Equa-

tions (3.2) and (3.3) correspond to the assignment constraints. Time-based subtour elimination

constraints are given by (3.4) and (3.5). From the imposed relaxations we have

v(SFS(i)) � v(SFS) � v(FS)

for all i 2 I . Because any valid lower bound for SFS(i), call it Li, is a valid lower bound for FS,

we then proceed to compute a lower bound for every subproblem SFS(i) and obtain a lower bound

on v(FS) by

CLB
max = max

i2I
fLig

The suggested lower bounding procedure for FS is outlined in Figure 9, where procedure

lower bound ATSP(cjk) in Step 1c is any valid lower bound for SFS(i) (ATSP with cost ma-

trix (cjk)).

Procedure lower bound FS() (Phase 1)

Input: An instance of the SDST owshop with corresponding setup time matrix (sijk)

and processing time matrix (pij).

Output: Lower bound CLBmax for the value of the makespan Cmax.

Step 1. for i = 1 to m do

Step 1a. Let Pi =
P

j
pij

Step 1b. Let cjk = sijk be the input cost matrix for the ATSP SFS(i)

Step 1c. Li = Pi + lower bound ATSP(cjk)

Step 2. Output CLBmax = maxifLig

Step 3. Stop

Figure 9: Pseudocode of lower bounding procedure for SDST owshop (phase 1)

We have observed that in all of the randomly generated instances this lower bound CLB
max is

considerably better than the value v(LP) of the linear programming (LP) relaxation of problem

FS. However, the following example shows that this is not always the case.

18

Example 6.1 Consider the following 2� 3 instance of the SDST owshop.

pij 1 2 3 s1jk 1 2 3 s2jk 1 2 3

1 1 1 1 0 1 20 20 0 20 20 1

2 1 1 1 1 { 1 20 1 { 20 20

2 20 { 1 2 1 { 20

3 20 20 { 3 20 1 {

An optimal solution is given by S� = (1; 3; 2) with Cmax(S�) = 45. The lower bound de-

livered by lower bound FS() is 6 when an exact procedure is used at Step 1c in every call to

lower bound ATSP(). The LP relaxation lower bound is 8.333. 2

6.2 Lower Bounds for the ATSP

Several lower bounding schemes have been proposed for ATSP. Approaches based on the assignment

problem (AP) (obtained when subtour elimination constraints are relaxed), r-arborescence problem

(r-ARB) (obtained when the outdegree assignment constraints are relaxed) as well as on Lagrangian

relaxation are extensively discussed in [2].

It has been observed that for randomly generated instances, the AP relaxation provides a very

tight bound [2]. The improvement obtained by any other scheme is very slim compared to the

related computational e�ort. This makes AP an attractive approach when strong asymmetry is

present. However, for symmetric problems (cjk � ckj) the results are not as good. Computational

experience shows that the loss of e�ectiveness of exact algorithms for the symmetric case is mainly

due to the weakness of the available lower bounds.

To deal with harder cases, schemes based on additive approaches have been developed. Balas

and Christo�des [1] proposed an additive approach based on Lagrangian relaxation. Most recently,

Fischetti and Toth [8] have implemented an additive scheme that outperformed the restricted

Lagrangian approach of Balas and Christo�des. Their procedure yields a sequence of increasing

lower bounds within a general framework that exploits several substructures of the ATSP including

AP and r-ARB. We compared two lower bounding schemes for the SDST owshop. One is based on

the AP relaxation and the other on the additive approach of Fischetti and Toth. In our experiments,

we observed that the improvement obtained by the latter was very small. This is attributed to the

fact that for the instances having setup times that are completely asymmetric, the AP bound is very

tight. This phenomenon was also observed by Fischetti and Toth for the ATSP. As the problem

becomes less asymmetric the results yielded by the additive approach improve considerably. Since

the data sets we are working with are assumed to have asymmetric setup times, we use the lower

bounding approach based on the AP relaxation.

6.3 Improving the Lower Bound for SDST Flowshop

19

Procedure lower bound FS()

Input: An instance of the SDST owshop with corresponding setup time matrix (sijk)

and processing time matrix (pij).

Output: Lower bound CLBmax for the value of the makespan Cmax.

Step 1. for i = 1 to m do

Step 1a. Let Pi =
P

j
pij

Step 1b. Let cjk = sijk be the input cost matrix for the ATSP SFS(i)

Step 1c. Li = Pi + lower bound ATSP(cjk)

Step 2. for i = 2 to m do

Step 2a. if � = Li�1 � (Li � p
min
i) > 0

Step 2b then Li Li +�

Step 2. Output CLBmax = Lm

Step 3. Stop

Figure 10: Pseudocode of lower bounding procedure for SDST owshop

Let Cij be the completion time of job j on machine i. In particular, let Ti be the completion of

time of last job on machine i; that is, Ti is the time at which machine i �nishes processing. Then

we have the following relation

Cij = max fCi�1;j; Ci;j�1 + si;j�1;jg+ pij

In particular, if n represents the last job in the sequence, we have

Cin = max fCi�1;n; Ci;n�1 + si;n�1;ng+ pin

Because Ti = Cin we have that Ti � pin � Ti�1. This is valid for job n, and certainly it

is also valid for pmini = minj2Jfpijg; i 2 I . This suggests the following recursive improvement

for a set fLig, where Li is a valid lower bound on the completion time on machine i; i 2 I.

If � = Li�1 � (Li � p
min
i) > 0, then Li can be improved by �; that is, Li Li + �. Hence

CLB
max = Lm is a valid lower bound for Cmax.

We have observed that this improvement step has achieved up to a 5% reduction on the relative

gap for most of the instances examined. The modi�ed procedure is shown in Figure 10.

7 Experimental Work

All procedures were coded in C++ and compiled with the Sun C++ compiler CC version 2.0.1

and optimization ag set to -O. CPU times were obtained by calling the clock() function on

a SPARCStation 10. To evaluate the various schemes, 20 instances of the SDST owshop were

20

randomly generated for every combination

m� n 2 f(2; 4; 6)� (20; 50; 100)g

for two di�erent classes of data sets (available from authors).

� Data set A: pij 2 [1; 99] and sijk 2 [1; 10]

� Data set B: pij 2 [1; 99] and sijk 2 [1; 99]

It has been reported that many real-world instances match data set A (e.g., [10]). Data set B is

included to allow us to investigate the e�ect on the algorithms when the setup times assume a

wider range.

For each set of instances we performed several comparisons:

� Summary statistics. To identify dominating characteristics we compiled the following objec-

tive function value statistics

{ Number of times heuristic is best or tied for best

{ Average percentage above lower bound

and time related statistics

{ Average CPU time

{ Worst CPU time

� Friedman test. This is a non-parametric test, analogous to the classical ANOVA test of

homogeneity, which we apply to the null hypothesis:

H0 : E[S] = E[N] = E[G]

under the assumption of normal distributions with a common variance, where S;N , and G are

random variables corresponding to percentages above the lower bound generated by heuristics

SETUP(), NEHT-RB, and GRASP(), respectively. The test statistic is given by

TF =
(r � 1)fBF � rq(q + 1)2=4g

AF � BF

(r = 20; q = 3) where

AF =
rX

i=1

qX
j=1

(Rij)
2 and BF =

1

r

qX
j=1

rX

i=1

Rij

!2

with Rij being the rank (from 1 to q) assigned to heuristic j (j = SETUP(), NEHT-RB(), and

GRASP()) on problem i (lowest value gets rank of 1). In the case of ties, average ranks are

used. The null hypothesis is rejected at level � if the test statistic exceeds the 1�� quantile

of the F -distribution with q � 1 and (r� 1)(q � 1) degrees of freedom.

21

� Wilcoxon test. If Friedman test is signi�cant, that is, the null hypothesis is rejected, we at-

tempt to identify the \best" heuristic by performing a pairwise test among all candidates. We

apply the Wilcoxon signed rank test, a well-known non-parametric statistical test, to compare

any two of the three heuristics. For the two heuristics NEHT-RB() and GRASP(), for instance,

the null hypothesis is E[N] = E[G]; and the alternate hypothesis is either E[N]> E[G] or

E[N]< E[G]. The Wilcoxon test uses signed ranks of di�erences to assess the di�erence in

location of two populations. The Wilcoxon statistic W is computed in the following way.

First, rank the absolute di�erences of the original measurements, jdij = jNi � Gij. If any

di = 0, drop it from consideration and decrease r by one. If ties occur, average the ranks

of the items involved in the tie and use the average as the rank of each tied item. Second,

attach the sign of Ni �Gi to the rank on the i-th absolute di�erence, and denote this signed

rank by Ri. Finally, obtain the sum W of the signed ranks:

W = R1 + : : :+Rr

The null hypothesis should be rejected at the � signi�cance level if W > W1�� (W < W1��)

if the alternate hypothesis is E[N] > E[G] (E[N]< E[G]). For r � 10, the critical value W�

can be approximated by

W� = Z(�)
q
r(r+ 1)(2r+ 1)=6

where Z(�) is the standard normal fractile such that the proportion � of the area is to the

left of Z(�).

� Expected utility. This approach for comparing two or more heuristics is based on the notion

that we seek a heuristic that performs well on the average and that very rarely performs

poorly; that is, it is concerned with downside risk as well as expected accuracy. The procedure

incorporates this attitude towards risk in a risk-averse utility function. As suggested by

Golden and Stewart, we calculate the expected utility for each heuristic as

�� �(1� b̂t)�ĉ

where b̂ = s2=�x; ĉ = (�x=s)2 are estimated parameters of a gamma distribution; � = 600,

� = 100 are arbitrarily chosen parameters and t = 0:05 gives a measure of risk aversion for

the utility function. It should be pointed out that t must be less than 1=b̂ for each heuristic.

The application of the Friedman test, Wilcoxon test, and the expected utility approach to evaluate

heuristics is proposed by Golden and Stewart [9] for the TSP.

Initial testing was done on over 360 instances for a �xed number of iterations N = 100, and

di�erent values for the partial search strategy subset K and size of restricted candidate list �

22

(ranging from 5 to 15 and 2 to 4, respectively). The choices K = 10 and � = 2 provided the best

balance between the quality of the solution and the computational requirements. These settings

were used to conduct the experiments; that is, we applied the construction phase N = 100 times

and then we did the local search once every K = 10 iterations on the most promising solution in

that subset (see Section 4.3). To evaluate the quality of the heuristics we compared the results with

those obtained from our AP-based two-phase lower bounding procedure discussed in Section 6.

7.1 Experiment 1: Data Set A

n = 20 n = 50 n = 100

m LB UB RG H LB UB RG H LB UB RG H

2 Best 1193 1197 0.3 G 2495 2505 0.4 G 5554 5573 0.3 N

Average 1088 1103 1.4 G 2706 2736 1.1 G 5274 5316 0.8 S

Worst 1041 1073 3.1 G 2539 2593 2.1 S 4686 4754 1.5 S

4 Best 1196 1214 5.5 G 3136 3172 1.1 G 5349 5417 1.3 G

Average 1180 1252 6.1 G 2766 2855 3.2 G 5378 5523 2.7 G

Worst 1056 1188 12.5 N 2542 2700 6.2 N 5223 5481 4.9 N

6 Best 1293 1402 8.4 G 3138 3249 3.5 S 5629 5781 2.7 G

Average 1243 1407 13.2 G 2879 3054 6.1 G 5448 5704 4.7 G

Worst 1168 1391 19.1 G 2710 2990 10.3 N 5230 5621 7.5 G

Table 2: Lower bound computations for data set A

Table 2 shows the lower bound (LB), upper bound (UB), relative gap percentage (RG) between

upper and lower bound. Also indicated is the heuristic (H) that found the upper bound for both

the best and worst instances (out of 20) in terms of their relative gap. Average values are shown

as well. Values are computed for each combination of m and n. Heuristics are identi�ed by their

initials (S, N, and G). We observe that most of the 2-machine instances were solved within a 1%

relative gap. As the number of machines grow, the relative gap increases too.

n = 20 n = 50 n = 100

m Statistic S N G S N G S N G

2 Best 0 3 17 5 2 14 14 3 5

Average % deviation 2.6 2.1 1.4 1.2 1.4 1.1 0.8 1.2 1.0

4 Best 0 2 18 1 3 16 1 1 18

Average % deviation 9.1 7.0 6.1 4.3 3.7 3.2 3.5 3.2 2.7

6 Best 1 4 15 0 2 18 0 2 18

Average % deviation 17.7 14.1 13.2 8.4 6.8 6.1 6.2 5.1 4.7

Table 3: Heuristic comparison for data set A

Summary statistics on the makespan are shown in Table 3. For each cell, entries in the �rst

(Best) row indicate the number of times each heuristic found the best (or tied for best) solution.

23

Entries in the second row show the average percentage above the lower bound. We �rst point

out that the di�erence between the makespans delivered by the algorithms is very small, although

GRASP() dominates in practically all instances, the only exception being the 2� 100 data sets.

CPU time (sec)

n = 20 n = 50 n = 100

m Statistic S N G S N G S N G

2 Average 0.12 0.11 2.45 1.87 1.21 18.40 12.62 8.86 114.29

Worst 0.38 0.26 2.80 3.13 2.13 22.71 20.49 14.24 149.26

4 Average 0.40 0.22 4.12 4.21 2.56 33.26 23.62 18.92 219.00

Worst 0.81 0.39 4.92 8.46 5.07 37.45 45.94 36.61 265.53

6 Average 0.54 0.31 5.95 6.99 3.56 49.48 43.07 30.21 328.76

Worst 0.85 0.60 6.69 13.55 6.65 60.15 67.67 52.15 437.94

Table 4: Time statistics for data set A

CPU time statistics are presented in Table 4. For these data sets, NEHT-RB() is on average 30%

to 70% faster than SETUP() and considerably faster that GRASP(). NEHT-RB() also provides the

best results regarding worst-case CPU time. We observe in general that the randomization e�ect

introduced by GRASP() over NEHT-RB() produces an improvement of up to 3% on the quality of

the solution at a cost of up to 10 times as much CPU time.

m n = 20 n = 50 n = 100

2 GRASP() best GRASP() best SETUP() best

(p < 0:0004) (p < 0:0444) (p < 0:0149)

4 GRASP() best GRASP() best GRASP() best

(p < 0:0011) (p < 0:0011) (p < 0:0006)

6 GRASP() best GRASP() best GRASP() best

(p < 0:0005) (p < 0:0011) (p < 0:0004)

Table 5: Wilcoxon test results for data set A

The Friedman test was signi�cant (at � = 0:01) for each m�n combination. We then performed

a pairwise Wilcoxon test on each combination with results displayed in Table 5. The p-value shown

in the second row in every cell is the probability that the sample outcome could have been more

extreme than the observed one when the null hypothesis hold. Large p-values support the null

hypothesis while small p-values support the alternate hypothesis. As can be seen, all the tests are

signi�cant at � = 0:05. Procedure SETUP() is found to be statistically best for the 2 � 100 data

set, whereas in all other cases GRASP() dominates.

Comparisons between heuristics using the expected utility approach are given in Table 6, which

indicates that expected utility values are nearly identical. This supports the hypothesis that no

signi�cant di�erence exists among the heuristics.

24

Expected utility

n = 20 n = 50 n = 100

m S N G S N G S N G

2 493.4 494.6 496.4 496.8 496.5 497.2 498.1 497.0 497.5

4 473.9 480.6 483.1 488.6 490.2 491.5 490.7 491.8 492.9

6 443.6 457.2 460.5 476.4 481.3 483.3 483.3 486.3 487.5

Table 6: Expected utility comparison of heuristics for data set A

7.2 Experiment 2: Data Set B

n = 20 n = 50 n = 100

m LB UB RG H LB UB RG H LB UB RG H

2 Best 1269 1392 9.7 G 3155 3529 11.9 S 5458 6139 12.5 S

Average 1214 1468 20.9 G 2837 3328 17.3 S 5386 6167 14.5 S

Worst 1057 1375 30.1 S 2668 3281 23.0 S 4792 5705 19.1 S

4 Best 1283 1613 25.7 G 3167 4109 29.7 S 5706 7350 28.8 S

Average 1314 1823 38.7 G 2945 4079 38.5 S 5488 7431 35.4 S

Worst 1208 1852 53.3 S 2840 4187 47.4 S 5235 7373 40.8 S

6 Best 1505 2132 41.7 N 3254 4614 41.8 G 5679 8186 44.1 S

Average 1374 2095 52.5 G 3004 4557 51.7 G 5558 8248 48.4 S

Worst 1261 2114 67.6 G 2700 4379 62.2 G 5348 8173 52.8 S

Table 7: Lower bound computations for data set B

Table 7 shows the lower bound, upper bound, relative gap percentage between upper and lower

bound, and the heuristic that found the upper bound for both the best and worst instances (out of

20) in terms of their relative gap. The average relative gap percentage is shown as well. Values are

computed for each combination of m and n. We observe larger relative gaps; however, the quality

of the lower bound remains to be further investigated.

n = 20 n = 50 n = 100

m Statistic S N G S N G S N G

2 Best 7 0 13 20 0 1 20 0 0

Average % deviation 22.4 24.8 20.9 17.3 24.5 21.3 14.5 23.8 22.0

4 Best 2 0 18 15 1 4 20 0 0

Average % deviation 43.7 43.4 38.7 38.5 43.0 40.2 35.4 44.1 42.2

6 Best 1 2 17 4 1 15 20 0 0

Average % deviation 58.1 56.7 52.5 52.7 54.3 51.7 48.4 55.4 53.8

Table 8: Heuristic comparison for data set B

Summary statistics on the makespan are shown in Table 8. Entries have the same meaning as

25

those described in the previous section. As can be seen, SETUP() clearly dominates the other two

for the 100-job data sets. This tendency is observed in 50-job instances as well. However, as the

number of machines gets large, GRASP() tends to do better, which can be observed in the 6 � 50

data set. For the smallest sized instances (20-job data sets) GRASP() delivers better solutions than

the other two.

CPU time (sec)

n = 20 n = 50 n = 100

m Statistic S N G S N G S N G

2 Average 0.11 0.12 2.50 1.19 1.53 19.95 6.75 9.58 130.79

Worst 0.17 0.21 2.76 1.80 3.60 23.70 9.56 14.91 146.75

4 Average 0.23 0.20 3.96 1.85 2.12 29.52 10.43 13.71 178.83

Worst 0.37 0.46 4.34 2.95 4.99 33.44 18.16 30.24 205.56

6 Average 0.28 0.27 5.20 2.57 2.44 37.42 15.92 16.86 219.23

Worst 0.50 0.78 5.90 4.31 4.42 46.78 24.28 38.83 259.28

Table 9: Time statistics for data set B

CPU time statistics are presented in Table 9. We observe that, on average, NEHT-RB() and

SETUP() take the same amount of time, both of them being considerably faster than GRASP(). It

can also be learned from the table that SETUP() has a better empirical worst-case time behavior

than NEHT-RB(). We observe in general that the randomization e�ect introduced by GRASP() over

NEHT-RB() produces an improvement of up to 12% on the quality of the solution at a cost of up to

15 times as much CPU time.

m n = 20 n = 50 n = 100

2 GRASP() best SETUP() best SETUP() best

(p < 0:0071) (p < 0:0005) (p < 0:0004)

4 GRASP() best SETUP() best SETUP() best

(p < 0:0006) (p < 0:0085) (p < 0:0004)

6 GRASP() best GRASP() best SETUP() best

(p < 0:0004) (p < 0:0242) (p < 0:0004)

Table 10: Wilcoxon test results for data set B

The Friedman test was signi�cant at the � = 0:01 level for each combination of m and n.

Wilcoxon test was then performed between each pair of heuristics (for every combination). These

results are shown in Table 10. It is found that SETUP() outperforms the other two heuristics in all

the 100-job instances. This is also true for the 2� 50 and 4� 50 instances. For the 6� 50, and all

the 20-job data sets, GRASP() is superior.

Comparisons between heuristics using the expected utility approach are given in Table 11. From

this table, we observe that SETUP() is the most accurate (in the 2� 50, 4� 50, and all the 100-job

26

Expected utility

n = 20 n = 50 n = 100

m S N G S N G S N G

2 423.7 411.9 429.6 445.4 413.5 428.5 456.0 418.1 426.3

4 298.7 299.6 331.5 334.4 303.1 323.4 357.0 297.2 311.3

6 162.1 174.8 220.9 221.6 205.9 231.9 263.6 198.5 214.9

Table 11: Expected utility comparison of heuristics for data set B

instances) and that the rankings coincide with those determined from the previous results.

8 Conclusions

We have proposed two new insertion-based heuristics for F jsijk ; prmujCmax. Both procedures,

NEHT-RB() and GRASP(), were extensively evaluated and compared with the only existing heuristic,

TSP-based SETUP(), for this class of scheduling problem.

As part of the study a local search procedure based on string reinsertion was presented and

included in the heuristic computations. Another contribution of this work centered on the develop-

ment of a lower bounding scheme derived from the additive approach for the ATSP. An improvement

phase based on idle time insertion was included as well. The lower bound obtained by the enhanced

scheme was found to be marginally better than the LP relaxation lower bound.

For data set A, the TSP-based heuristic worked better on the larger 2-machine instances; how-

ever, when the number of machines grows, the insertion-based heuristics NEHT-RB() and GRASP()

dominated. This stems from the fact that the fewer the number of machines, the more the problem

resembles an ATSP so a TSP-based procedure should do well. Recall that in SETUP() the distance

between jobs is computed as the sum of the setup times between jobs over all the machines. In

the extreme case where there is only one machine, the problem reduces entirely to an instance of

the ATSP. As more machines are added, the sum of setup times becomes less representative of

the \distance" between the jobs. How small does the number of machines have to be for SETUP()

to do better than the insertion-based heuristics depends not only on the number of jobs, but on

the magnitude of the setup times as well. In data set A, we observe a threshold value of m = 2

or 3. However, for data set B, SETUP() was found to outperform the others with respect to both

makespan (especially for the 50- and 100-job data sets) and CPU time. This implies a threshold

value of m > 6. One explanation of the better performance of SETUP() on the larger instances

of data set B is as follows. Both insertion-based heuristics include a makespan estimation routine

that has the setup costs as part of its performance measure; there is no other explicit treatment

to the setups in the heuristics. Since the job insertion decision is made one job at a time, while

the sequence-dependent setup time is dictated by the interrelationships of an entire sequence of

27

jobs, a TSP-based heuristic tends to do better than this insertion-style methods, specially when

the number of machines is small.

SETUP() and NEHT-RB() run considerably faster that GRASP(). This is to be expected because

they are deterministic algorithms and will deliver a unique solution for each instance. By increasing

the iteration counter in GRASP(), more and perhaps better solutions can be found.

Our computational study also revealed that data set B instances appeared to be harder to solve.

We observed that while our heuristics delivered near-optimal solutions for several of the data set A

instances, the best solution (for data set B) had a relative gap on the average of 15-22%, 35-42%,

and 48-55% for the 2-, 4-, and 6-machine instances, respectively. Nevertheless, further work remains

to be done to determine the quality of the lower bound.

9 Acknowledgments

The research of Roger R��os-Mercado was partly supported by the Mexican National Council of

Science and Technology (CONACyT) and by a Continuing Fellowship from The University of

Texas at Austin. Jonathan Bard was supported by a grant from the Texas Higher Education

Coordinating Boards' Advanced Research Program. We also thank Matthew Saltzman for allowing

us to use his C implementation of the dense shortest augmenting path algorithm to solve AP, and

Mateo Fischetti and Paolo Toth for providing their FORTRAN code to solve r-SAP.

We also thank an anonymous referee whose suggestions helped improve the presentation of this

paper.

References

[1] Balas, E., and Christo�des, N., \A restricted Lagrangean approach to the traveling salesman

problem", Mathematical Programming 21/1 (1981) 19{46.

[2] Balas, E., and Toth, P., \Branch and bound methods", in: E.L. Lawler, J.K. Lenstra,

A.H.G. Rinnoy Kan and D.B. Shmoys (eds.), The Traveling Salesman Problem: A Guided

Tour of Combinatorial Optimization, John Wiley & Sons, Chichester, 1990, 361{401.

[3] Carlier, J., and Rebai, I., \Two branch and bound algorithms for the permutation ow shop

problem", European Journal of Operational Research, 90/2 (1996) 238{251.

[4] Corwin, B.D., and Esogbue, A.O., \Two machine ow shop scheduling problems with se-

quence dependent setup times: A dynamic programming approach", Naval Research Logistics

Quarterly 21/3 (1974) 515{524.

[5] Feo, T.A., and Bard, J.F., \Flight scheduling and maintenance base planning", Management

Science 35/12 (1989) 1415{1432.

28

[6] Feo, T.A., and Resende, M.G.C., \A probabilistic heuristic for a computationally di�cult set

covering problem", Operations Research Letters 8/2 (1989) 67{71.

[7] Feo, T.A., and Resende, M.G.C., \Greedy randomized adaptive search procedures", Journal

of Global Optimization 6 (1995) 109{133.

[8] Fischetti, M., and Toth, P., \An additive bounding procedure for the asymmetric traveling

salesman problem", Mathematical Programming 53/2 (1992) 173{197.

[9] Golden, B.L., and Stewart, W.R., \Empirical analysis of heuristics", in: E.L. Lawler, J.K.

Lenstra, A.H.G. Rinnoy Kan and D.B. Shmoys (eds.), The Traveling Salesman Problem, John

Wiley & Sons, New York, 1990, 207{249.

[10] Gupta, J.N.D., and Darrow, W.P., \The two-machine sequence dependent owshop scheduling

problem", European Journal of Operational Research 24/3 (1986) 439{446.

[11] Gupta, S.K., \n jobs and m machines job-shop problems with sequence-dependent set-up

times", International Journal of Production Research 20/5 (1982) 643{656.

[12] Kontoravdis, G., and Bard, J.F., \A randomized adaptive search procedure for the vehicle

routing problem with time windows", ORSA Journal on Computing 7/1 (1995) 10{23.

[13] Laguna, M., and Gonz�alez-Velarde, J.L., \A search heuristic for just-in-time scheduling in

parallel machines", Journal of Intelligent Manufacturing 2 (1991) 253{260.

[14] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D., \Sequencing and schedul-

ing: Algorithms and complexity", in: S.S. Graves, A.H.G. Rinnooy Kan and P. Zipkin (eds.),

Handbook in Operations Research and Management Science, Vol. 4: Logistics of Production

and Inventory, North-Holland, New York, 1993, 445-522.

[15] Nawaz, M., Enscore, E.E., Jr., and Ham, I., \A heuristic algorithm for the m-machine, n-job

ow-shop sequencing problem", OMEGA The International Journal of Management Science

11/1 (1983) 91{95.

[16] Nowicki, E., and Smutnicki, C., \A fast tabu search algorithm for the ow shop problem",

Report 8/94, Institute of Engineering Cybernetics, Technical University of Wroc law, 1994.

[17] Pinedo, M., Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cli�s,

New Jersey, 1995.

[18] Potts, C.N., \An adaptive branching rule for the permutation ow-shop problem", European

Journal of Operational Research 5/1 (1980) 19{25.

29

[19] Reeves, C.R., \Improving the e�ciency of tabu search for machine sequencing problems",

Journal of the Operational Research Society 44/4 (1993) 375{382.

[20] R��os-Mercado, R.Z., \Optimization of the ow shop scheduling problem with setup times",

PhD thesis, University of Texas at Austin, Austin, TX, 1997.

[21] Sarin, S., and Lefoka, M., \Scheduling heuristics for the n-job m-machine ow shop", OMEGA

The International Journal of Management Science 21/2 (1993) 229{234.

[22] Simons, J.V., Jr., \Heuristics in ow shop scheduling with sequence dependent setup times",

OMEGA The International Journal of Management Science 20/2 (1992) 215{225.

[23] Szwarc, W., and Gupta, J.N.D., \A ow-shop with sequence-dependent additive setup times",

Naval Research Logistics Quarterly 34/5 (1987) 619{627.

[24] Taillard, E., \Some e�cient heuristic methods for the ow shop sequencing problem", European

Journal of Operational Research 47/1 (1990) 65{74.

[25] Turner, S., and Booth, D., \Comparison of heuristics for ow shop sequencing", OMEGA The

International Journal of Management Science 15/1 (1987) 75{85.

[26] Widmer, M., and Hertz, A., \A new heuristic method for the ow shop sequencing problem",

European Journal of Operational Research 41/2 (1989) 186{193.

30

