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Abstract

In this paper we propose a heuristic solution procedure for fuel cost minimization on gas transmis-
sion systems with a cyclic network topology, that is, networks with at least one cycle containing two
or more compressor station arcs. Our heuristic solution methodology is based on a two-stage iterative
procedure. In a particular iteration, at a first stage, gas flow variables are fixed and optimal pressure
variables are found via dynamic programming. At a second stage, pressure variables are fixed and an
attempt is made to find a set of flow variables that improve the objective function by exploiting the
underlying network structure. Empirical evidence supports the effectiviness of the proposed procedure
outperforming the best existing approach to the best of our knowledge.

Scope and Purpose

Gas transmission network problems differ from traditional network flow problems in some funda-
mental aspects. First, in addition to the flow variables for each arc, which in this case represent mass
flow rates, a pressure variable is defined at every node. Second, besides the mass balance constraints,
there exist two other types of constraints: (i) a nonlinear equality constraint on each pipe, which rep-
resents the relationship between the pressure drop and the flow; and (ii) a nonlinear non-convex set
which represents the feasible operating limits for pressure and flow within each compressor station. The
objective function is given by a nonlinear function of flow rates and pressures. In the real world, these
type of instances are very large both in terms of the number of decision variables and the number of
constraints, and very complex due to the presence of non-linearity and non-convexity in both the set of
feasible solutions and the objective function.
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1 Introduction

As natural gas pipeline systems have grown larger and more complex, the importance of optimum
operation and planning of these facilities has increased. The investment costs and operation expenses of
pipeline networks are so large that even small improvements in system utilization can involve substantial
amounts of money.

The natural gas industry services include producing, moving, and selling gas. Our main interest in
this study is focused on the transportation of gas through a pipeline network. Moving gas is divided
into two classes: transmission and distribution. Transmission of gas means moving a large volume of
gas at high pressures over long distances from a gas source to distribution centers. In contrast, gas
distribution is the process of routing gas to individual customers. For both transmission and distribution
networks, the gas flows through various devices including pipes, regulators, valves, and compressors.
In a transmission network, gas pressure is reduced due to friction with the pipe wall as the gas travels
through the pipe. Some of this pressure is added back at compressor stations, which raises the pressure
of the gas passing through them.

In a gas transmission network, the overall operating cost of the system is highly dependent upon the
operating cost of the compressor stations in a network. A compressor station’s operating cost, however,
is generally measured by the fuel consumed at the compressor station. According to Luongo, Gilmour,
and Schroeder [12], the operating cost of running the compressor stations represents between 25% and
50% of the total company’s operating budget. Hence, the objective for a transmission network is to
minimize the total fuel consumption of the compressor stations while satisfying specified delivery flow
rates and minimum pressure requirements at the delivery terminals.

Depending on how the gas flow changes with respect to time, we distinguish between systems in
steady state and transient state. A system is said to be in steady state when the values characterizing the
flow of gas in the system are independent of time. In this case, the system constraints, particularly the
ones describing the gas flow through the pipes, can be described using algebraic non-linear equations.
In contrast, transient analysis requires the use of partial differential equations to describe such relation-
ships. This makes the problem considerably harder to solve from the optimization perspective. In fact,
optimization of transient models is one of the most challenging areas of opportunity for future research.

In the case of transient optimization, variables of the system, such as pressures and flows, are functions
of time. In this work, we focus on steady-state gas transmission network problems with the objective of
minimizing the operational costs.

Gas transmission network problems differ from traditional network flow problems in some funda-
mental aspects. First, in addition to the flow variables for each arc, which in this case represent mass
flow rates, a pressure variable is defined at every node. Second, besides the mass balance constraints,
there exist two other types of constraints: (i) a nonlinear equality constraint on each pipe, which rep-
resents the relationship between the pressure drop and the flow; and (ii) a nonlinear non-convex set



which represents the feasible operating limits for pressure and flow within each compressor station. The
objective function is given by a nonlinear function of flow rates and pressures.

The problem is very difficult due to the presence of a non-convex objective function and non-convex
feasible region. Optimization algorithms (most of them based on dynamic programming) for non-cyclic
gas network topologies are in a relatively well developed stage. However, effective algorithms for cyclic
topologies are practically non-existent. While it is true that the majority of pipeline systems world-wide
have non-cyclic structures, there is an important number of cyclic systems for which these results are
applicable. So our work focuses on addressing gas transmission problems on cyclic topologies. A cyclic
topology is a network with at least one cycle containing two or more compressor station arcs.

In this paper we propose a heuristic solution procedure for fuel cost minimization on gas transmis-
sion systems with a cyclic network topology. Our heuristic solution methodology is based on a two-stage
iterative procedure. In a particular iteration, at a first stage, gas flow variables are fixed and optimal pres-
sure variables are found via dynamic programming. At a second stage, the pressure variables are fixed
and an attempt is made to find a set of flow variables that improve the objective function by exploiting
the underlying network structure. Our procedure is compared with the best approach known to date to
the best of our knowledge. Empirical evidence supports the effectiviness of this proposed procedure by
providing solution with significantly better quality than those obtained by the existing approach.

The organization of this paper is as follows. In Section 2 we introduce the gas transmission network
problem and present the mathematical model. Section 3 presents a survey of previous related work. In
Section 4, we present the network formulation of the gas transmission system and discuss the network
decomposition. In Section 5, we describe the proposed algorithm. Implementation, numerical examples
and computational experiments are reported in Section 6. This is followed by our conclusions and
directions for future research in Section 7.

2 Problem Definition

A gas transmission network is composed of pipelines, junction nodes, including supply and delivery
nodes, and compressor stations. The existence of compressor stations in the network is one of the key
characteristics of a gas transmission network. The transmission segment operates systems of pipes and
compressors and attempts to move large quantities of gas over long distances. When traveling through
the pipes, the gas pressure is reduced by friction with the pipe walls. Some of this pressure is added
back at the compressor stations.

Compressor stations in a transmission network are complex entities typically involving a number
of compressor units arranged in parallel or in serial at one location. The operating cost of the gas
transmission network is usually ruled by the operating cost of the compressor stations. Therefore,
representing compressor stations within a network configuration is quite an important issue and the way
of representing them varies according to the solution methodology. We now present the model we use



for this problem and discuss the most important assumptions.

2.1 Modd for Steady-State Problem

LetG = (N, L, M) be a directed network defined by a gétof n nodes, a sef of [ pipes, and
a setM of m compressor stations. Note that the set of adds G is defined asd = £ U M, with
LN M = 0. The decision variables atgj, the mass flow rate at af¢, j) € A andp;, the gas pressure
at node; € N. At each node € N, there is a known parametercalled the net flow through that
node. Clearlys; > 0 (s; < 0) implies nodei is a source (delivery) node, whereas= 0 means node
i is just a transhipment node. In addition, pressure ligfitandp!’ are given at every node. For each
pipe (i, j) the pipe resistancg;, which is computed from the pipe physical properties, is assumed to be
known.

Note also that for each af¢, j) € Athere are three associated variablgsp; andp;. In particular,
in a compressor station agg,andp; are called suction and discharge pressures, respectively.

The goal of the problem is to minimize the total fuel consumption used by the stations while satis-
fying specified delivery requirements throughout the system. We assume that there is no transportation
cost associated with ordinary pipes. At each compressor statigh a costg;(v;;, p;, pj) measured
by the fuel consumption is incurred, so the objective function is the total amount of fuel consumed at
the system.

The mathematical formulation of the gas transmission network problem (GTN) is given by

(GTN) minimize Z gij(vij,pi,pj) (13)
(3,§)eEM
subject to Z Vij — Z Vi = 8§ ieN (1b)
J:(i,5)€A Ji(d0)eA
p; —p; = tyv (4,7) € L (1c)
pi € Ipfpfl  iEN (1d)
(ijaplapj) € DZ] - R3 (Za]) eEM (1e)

where D;; is the feasible operating domain of compressor station) and g;(vi;, pi, p;) is the fuel
consumed at statiofi, 5).

Flow balance conservation is given by Equation (1b). Constraint (1c) represents the dynamics of
the pipe flow under isothermal and steady-state assumptions. The compressor station constraints (1e)
are not expressed explicitly here. It suffices to know that the feasiblB s&t a non-convex set. The
details can be found in Wu et al. [28].

For measuring fuel consumption, we use a funcgan the following form

m
D
9(vij, piyPj) = awyj { (#) — 1} ., (vij,pi,pj) € Dyj, (2)

i
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whereqa is an assumed constant (and known) parameters which depend on the gas physical properties.
A more detailed study on the nature of both the compressor station domain and the fuel consumption
function is given in [28].

The problem is very difficult due to the non-convex nature of both the objective function and the
feasible region. Furthermore, the feasible dom@jnof the compressor station is not represented in
algebraic form, but as a result of curve fitting methods based on empirical data for the compressor
units used. An example of a typical 4-compressor domain in two dimensions (by fixisggiven in
Figure 7. Also, the type of underlying network topology becomes a crucial issue. That is, depending on
the underlying network configuration, the problem can be more difficult to solve. It is well know that
cyclic topologies are harder to solve than non-cyclic ones. We will discuss this issue in more detail in
Section 4.

3 Literature Review

Dynamic programming (DP) has been by far the most popular technique for solving many classes of
natural gas pipeline networks since the late 1960s. One of the main reasons is that, in a DP framework,
it is relatively easy to satisfy the pipeline constraints and to handle the non-convexity of the feasible
domain. Other techniques such as mathematical programming and hierarchical control methods have
been applied as well with modest degrees of success. Mathematical programming is usually used for
cyclic systems. Hierarchical control techniques can be more effective when the model of the compressor
station is fairly complicated. In the following sections we present an overview of the most relevant work
done on the solution methodologies used for steady state gas transmission networks.

3.1 Mathematical Programming Approaches

As we have seen in Section 2, problem GTN has a non-convex feasible region, and a non-convex
objective function. In fact, it has been reported by Wu et al. [28] that this objective function typically
has many local optima. These problem features make it very difficult to solve using classical techniques
from mathematical programming. Several researchers have tried to apply mathematical programming
techniques, but their approaches are based on inaccurate or oversimplified models of the compressor
stations. Next we review the most significant works related with mathematical programming, which has
been rather limited.

Pratt and Wilson [19] propose a successive mixed integer linear programming method. Their al-
gorithm solves the nonlinear optimization problem iteratively by linearizing the pressure drop-flow
equations (1c). Integer variables are included in the formulation for compressor unit selection, and
the problem is solved using branch and bound. Percell and Ryan [18] propose an algorithm using a gen-
eralized reduced gradient method for minimizing the fuel consumption problem for a gas transmission



network. We reemphasize the difficulties in handling the nonlinear equality constraints and the complex
nature of the compressor stations in the gas transmission network as the key factors in the relatively
poor success of mathematical programming approaches.

3.2 Hierarchical Control Approaches

Difficulty in solving a gas transmission network problem in an integrated way calls for other tech-
niques, such as hierarchical structure in the solution process, which in turn demands an efficient method
for decomposing of the problem. In a hierarchical control approach (Singh [22]), the overall network
is decomposed into two levels: (i) the network state level and (ii) the compressor station level. The
compressor station problem is the lowest level and the network state problem is the highest level. The
local optimization of the compressor stations at the lowest level is the firm basis for an optimization
procedure for the global minimization of total cost. Optimization of the compressor station subproblem
has been studied previously by Osiadacz [13], Percell and Van Reet [17], and Wu, Boyd, and Scott [27].

Larson and Wismer [11] propose a hierarchical control approach for a transient operation of a gun-
barrel pipeline system. Osiadacz and Bell [15] suggest a simplified algorithm for the optimization of
the transient gas transmission network, which is based on a hierarchical control approach. The hierar-
chical control approach for transient models can be found in Anglard and David [2], Osiadacz [14], and
Osiadacz and Swierczewski [16]. Some degree of success has been reported from these approaches as
far as optimizing the compressor station subproblem. However, these approaches have limitations in
globally optimizing the minimum cost. As mentioned in Carter, Schroeder, and Harbick [6], numerical
simulation of the behavior of the gas transmission network is quite widespread, and with a successful
compressor station optimizer, these simulations are quite accurate. However, little work has been done
or even attempted in optimizing the gas transmission network. After the introduction of the hierarchical
control approach, in which detailed compressor station optimization is attached as a lower level sub-
problem, several approaches have focused on the optimization of the higher level problem, the network
state problem.

3.3 Dynamic Programming Approaches

Dynamic programming (DP) (Dreyfus and Law [8]) was first used for a steady state gas transmission
system in Wong and Larson [24, 25]. The authors apply DP to the gunbarrel and diverging branch tree
systems to solve the network state problem. The gunbarrel system, which is basically a single-path
topology, posseses an appropriate serial structure so it can be solved via DP. For the diverging branch
problem, the overall problem is decomposed into a sequence of several one-dimensional DP problems,
each of which deals with a single branch.

There are, however, some limitations to the DP method described by Wong and Larson. First, its
application is limited only to tree networks. Second, the method assumes that there is only a single



compressor unit installed within each compressor station. In addition, the feasible domain of the com-
pressor station is oversimplified in order to make an easier solution process. A successful commercial
optimizer for tree-structured gas transmission networks using DP was developed by Zimmer [29], and
Lall and Percell [10].

When applying DP, the underlying network configuration of the given problem can enhance the
solution process. Note that for these non-cyclic systems, the DP formulation is one-dimensional and
can be easily applied because it has been shown [21] that the flow variables can be uniquely determined
beforehand and thus eliminated from the problem, so we only deal with the pressure variables. That
is, in a tree network, once both supply and delivery flow rates are given, the steady state flows can be
uniquely determined. This nice property does not hold for a cyclic system. The existence of cycles
breaks the serial structure, so the flow variables must be explicitly handled, which makes the underlying
DP multidimensional.

The DP approach for cyclic systems has been limited. There were some efforts in applying DP on
the nonsequential structure for applications in chemical engineering problems. Two of the earliest works
include Wilde [23] and Aris, Nemhauser, and Wilde [3]. Both groups treated cycles via “cuts”, i.e., they
cut one end of a cycle in the system and treat the resulting system using DP for tree structures. More
general issues of the nonsequential DP can be found in Bertele and Brioschi [4].

Although several researchers over the years have addressed branched systems in the gas transmission
problem, cyclic systems were not addressed until Luongo, Gilmour, and Schroeder [12]. In their study,
the authors apply DP with the assumption that the flow rates through pipes and at the compressor stations
are fixed. After solving the DP problem with prefixed flow rates, they use a direct search method with
multiple restarts on different flow settings. Thus their approach is a hybrid of DP and either brute-force
enumeration or simulated annealing, depending on problem size. Recently Carter [5] proposed a DP
approach on more general structures with flow rates being fixed. A more detailed description of DP
approaches to gas transmission networks can be foundsifRércado [20].

The principal obstacle to date using DP is that its application is limited in practice to simple struc-
tures. Otherwise, the computational effort becomes too large to be practical. This leads to an interesting
guestion of how to find the optimal setting of the flow variables and how to modify the current flow
setting to obtain a better objective value. This study focuses on these issues.

4 Natural Gas Network Decomposition

In our solution procedure, we first decompose the original graph into several subgraphs (not con-
taining compressor stations), and we further contract each subgraph, yielding a reduced network. It
turns out that the network configuration for each subgraph is not crucial, while the network configura-
tion of the reduced network is critical. In this section we will see how the underlying network topology
becomes a key issue, and plays a very important role in developing solution procedures for this problem.



4.1 Modeling Assumptions

In this section we consider the general network configuration of the gas transmission network and
discuss several assumptions about the underlying network configuration. Gas pipeline networks are
very complex entities. To make our mathematical model simple enough, several assumptions are made
through our discussion.

Assumption 1 A gastransmission network is composed of only nodes, pipes, and compressor stations.

Under Assumption 1, the only control variables over the network are the ones in the compressor stations
((v,ps,pq))- A compressor station may be in one of three states: active, bypassed, or closed. In our
network model these states are not explicitly represented in the formulation, but are decided in the
context of the optimization problem. If the discharge pressure value is greater than the suction pressure
value at the compressor station, then the compressor station is said to be active. If the discharge pressure
value equals to the suction pressure value, then the compressor station is bypassed. When the flow rate
through the compressor station is zero, then the compressor station is closed. For both bypassed and
closed compressor stations, the operating costs are zero.

Assumption 2 There are no self-loops in the system.

Assumption 3 Bypass over any compressor station is not allowed.

Any directed sequence of pipes connecting notte nodey, for which there is an alternate path con-
taining at least one compressor station, is considered a bypass. In Figure 1, the dott8d5arard
(4,10) bypass compressor stati¢® 5) and(8, 9), respectively, so they are not allowed in our model.

Figure 1. Example of bypasses in a gas transmission network.

Under assumptions 2 and 3, the gas transmission network problem can be viewed as a directed
network whose components are nodes, pipeline arcs, and compressor station arcs.



Assumption 4 At each node 7 € N of G, the net inflow s; is assumed to be known with certainty.
Moreover, at each delivery node, minimum requirement of the pressure is assumed to be known.

This assumption is not restrictive, and it stems from the fact that the amount of gas to be delivered
to or taken from a given node is usually known in advance.

4.2 Decomposition

Now consider the gas transmission netw6fk= (N, £, M), with n nodes] pipes, andn compres-
sor stations, and its mathematical model GTN defined in (1).Aebe then x [ node-pipe incidence
matrix, A o, be then x m node-compressor station incidence matrix, ane- (Az | A rq). This parti-
tion induces a corresponding partition of the flow variabtes (v* | v**). The equality constraint set
of the problem GTN can be represented in vector form by

Av = s,
{ 3)
AE p2 = ¢(V£)a

wherep? = (pi, ..., p7)T and¢(v*) is the vector ofpi;(vi;)'s, (4,5) € L, inwhichgy;(vij) = ti;07;.

Since we assume that there is no bypass, if we delete every compressor station from the entire
system, then we have disconnected subgraphs, each one of which being composed only of pipes and
nodes. Figure 2 shows an example of the subgraphs created by deleting compressor stations.

Each node or pipe of th€é belongs to exactly one subgraph. It follows that the subgraph@ of
determine a unique partition of its nodes and pipes. Assume that theresatmgraphs. Lefy, =
(N, L), h =1, ..,r, be the subgraph defined by a set of nodé¢s,and a set of pipe<;,. We assume
G}, hasny nodes and;, pipes. Note that the nodes @& can be renumbered in such a way that its
node-pipe incidence matrix takes the block diagonal form

Ay
A,

A,

whereA,, is the node-pipe incidence matrix fof,, h = 1,...,r.
Let v, be the vector of mass flow rates through the pipe&gfandp;, be the pressure vector for
each node of7;, i.e.,

v, ={vij | (4,7) € Ln}y, Prn={pili € Ni}.

Let b, be the vector of net inflow at nodes located in subgr&phthat is,b;, = {s;|i € N,}. Since
A = (A-|Ay) andv = (v5, vM)T, flow balance equations of system (3) become

AEV'C—FAMVM = 8. (5)
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(b) Subgraph&s1, G2, Gs andG4

Figure 2: Example of the subgraphs after removal of compressor arcs.

Then, by using (4), equation (5) can be rewritten as

A, vy Ay, by
A I e R el
A, \'e Ay, b,
whereA 4, is the rearranged node-station incidence matrix corresponditg,fo = 1,...,r. That

is, we decompose the set of flow balance equation constraints to each sugiaph
Apvy +Aym, v =by, h=1,...,r

Since the set£;, of pipes inGy,h = 1,...,r are disjoint, the nonlinear pressure drop constraint
set in (3) can be naturally decomposed as

Aij;pi = ¢(vh)a h=1,..r (6)

wherep? is the vector ofp?’s, i € N}, and¢(vy,) is the vector ofg;;(vi;)'s, (4,5) € Ly, in which
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bij(vij) = tijvizj. Therefore system (3) can be decomposed for each subgraph as

A, vy, —i—AMh vM = by,
A%jp}% = ¢(Vh)a

SinceA,, is the node-pipe incidence matrix fof,, we have (by Proposition 3 in Kim [9])

1=1,...,7 @)

A,CL, =Cp,Af =0, h=1,..r

whereCr, is the cycle matrix of5}, with respect to the spanning trég of G},. If we multiply Cr, on
both sides of (6), we have
CTh¢(Vh) = 0, h = 1, ey T

Hence for eaclt?,,h = 1, ..., r, we have the following system

Apvy +Ap, VM = by,
Cr, ¢(vn) = 0, (8)
ATpi = ¢(va).
The advantage of system (8) over (7) is that if the mass flow rates through the compressor stations
vM are known, then the flow variables;, can be solved separately from the pressure variables.

That is, the first two equations in (8) can be used for solwing v is fixed. The system of equations
for solving vy, for the h-th subnetwork’), becomes

Apvy, = by,

CTh ¢(vh) = 07

(9)

whereb), = by, — A, vM.

Formal proof of the uniqueness and existence of the solution of the above system (9) can be found
in Rios-Mercado et al. [21]. If the configuration G}, is a tree, then no cycle matrix is defined, and
we have onlyA, v, = b/, which is trivial to solve. IfG}, has cycles, a method such as the modified
Newton method can be used to solve the nonlinear system 9.

Decomposing the given network into subgraphs gives us insight into the structure and motivation
for the development of a solution procedure. That is, once we fix the flow vétest the compressor
stations, the rest of the flow variables are calculated at each subgraph by solving system (9). Then we
are left with the pressure variablpsas unknown variables, and with pressure drop equalﬁmsﬂ =
#(¥y), wherevy, is the known flow vector foiG,. We need to address two issues: (i) how to solve
the rest of the problem which contains only pressure variables, and (ii) how to modify the flow rates
through the compressor stations. The first issue will be handled by dynamic programming. To answer
the second question, we further consider the network configuration of the entire system, which is the
purpose of the following two subsections.

10



4.3 The Associated Reduced Networ k

As we have seen in the previous section, once the flow varialffethrough the compressor sta-
tions are fixed, then at each subgraphh = 1, ..., r, regardless of its configuration, the flow variables
through the pipes are uniquely determined. Hence, we focus on analyzing how the compressors partici-
pate in the entire network structure, rather than analyzing the individual subgraphs.

For this purpose, we introduce the concept oéduced network. Let @ = (V, ) be the reduced
network of G = (N, £, M), whereV, £ are the set of nodes and the set of arc&'oEach node o’
corresponds to exactly one subgraphGofit follows that the subgraphs of a graph determine a unique
partition of its nodes. Suppose we contract all those arcs, i.e., pipes, which lies in each subgraph. Then
the resulting contraction network has the appearance of the network in Figure 3 which is the reduced
networkG’ of the example network in Figure 2(a).

(3 )

| 9 ’;

(_’

‘48 {10}
g [t

Figure 3: Example of the reduced netwdark

Note that each node of the reduced netw6tks identified with a subgraphy;, of G. The set of
arcs€ of G’ is the same a#1, the set of compressor stations®@f That is, an arc iy corresponds to
a compressor station ifi. Note thatG is a connected directed network with no self-loops. Hence, it
could have various configurations, which we divide into three classes: a gunbarrel system, a tree struc-
tured system, and a cyclic system. Throughout the following chapters, when we mention the network
configuration of a gas transmission network, we mean the configuration of the reduced n@twork

In the reduced networks’, since we contract a whole subgraph into a node, the configuration of
each subgraph does not affect the configuration of a reduced network. For example, in Figure 3, even
though the original network example has cycles, its reduced network is acyclic, and thus is considered a
tree structure. Similarly, in Figure 4 below, the reduced networks of Figure 4(a) and 4(b) are the same,
and they both are gunbarrel systems, even though the network in Figure 4 (b) has a cycle in subgraphs
G1, G-, andGs.

If the reduced network?’ is a non-cyclic system (i.e., a gunbarrel or a tree system) then the flow

11



Subnetwork1 Subnetwork?2 Subnetwork3
(b) Gunbarrel system with a subgraph between compressor stations.

Figure 4: Example of a gunbarrel system.

rates through the arcs i of G/, which correspond to the flow rates of each compressor station in

G, are uniquely determined. @& has a cycle, then optimat*! values have to be determined in the
context of the underlying minimization problem. In our solution procedure, even th@ugis cycles,

we will start with a feasible value for™, and oncev™ is fixed, we have independent nonlinear
systems (9) (with unique solution as previously discussed), each of which corresponds to a subnetwork
Gr,h=1,...,r of G. By solving system (9) for all subgraplis,, h» = 1,...,r, we have a full profile

of flow variables for the whole network with respect to the fixed flows of the compressor stations. The
remaining problem is now to determine the pressure variables. In the following section, we consider
this problem and discuss a solution procedure.

4.4 Handling the Subproblem

In the previous section, we see that once the flow values of the compressor stations are fixed, we can
determine all other flow variables by solving system (9) for each subgraph independently. This in effect
eliminates the flow variables from the whole formulation, leaving only pressure variables as unknowns.
That is, for each subnetwoi®;,, h = 1,...,r, we have

Aipr® = ¢(¥n), (10)

wherev,, is the vector of known pipe flows;, (i,j) € L. Using the original notation, by fixing the
flow variablesy;;, we have the following optimization problem with only pressures involved as unknown

variables:

minimize " gi;(vij, pi, py) (112)
(i,j)eEM

12



subject to Pi—pi = iy, (j,k) € L (11b)
pj € [pf.pf] jeEN (11c)
(vij,pisp;) € DujyC R (i) € M (11d)

Consider equation (10) above. Since edghis connected, if any pressure variable, gayj €
Ny, is known, then all other pressure variables defined at the other nodgsare just calculated
using (10). Moreover, between any two nodes in Gy, if there exists a direct pat®.; .~ from
nodej to nodek, thenp; (p) can be written as a function @f, (p;). Using these two observations,
we can further reduce the problem at each subgraph. That is, we include the nonlinear relationships
between the reference nodes, such as suction, discharge, source and delivery Gpdmscoéliminate
other nonlinear equations from the problem model. Hence we simplify the problem so that the reduced
problem only contains the pressure variables of the reference nodes of each suljgraght, ..., r.

At each subgrapld,, gas flow entergs}, through either discharge nodes or supply nodes, i.e., gas
sources. Similarly, some gas flow comes ouG@fthrough either suction nodes or delivery nodes. Let
Nie, Nge, v, andN& be the set of discharge, suction, source, and delivery nodgs respectively,
and let\;" = N U N5* and NPt = A€ U N be the set ofnput nodes of Gj, and the set obutput
nodes of G}, respectively.

Let j;, andj; be a discharge and a suction node(Hf, respectively, i.e.j; € /\/',ffc,js e Nje
Let P, j,~ be a direct path from,; to j;. Note that nodegy, j; are from two different compressor
stations connected with subgragh. A path, P.;,;.~, is represented by a sequence of pipes, i.e.,
{(a,51), U1, d2)s-- -, (Jg Js)}, wherej; € Ny, 1 =1,...,q. For each pipe in the patR.;, ., a
pressure drop equation (11b) is defined. Hence, we have

,

2 .9 4 =2
Pj, pjl_t]dﬂvjdjl’

2 2 3. . =2
by, —Ppj, = tJlJ?vjljz’ (12)

2 2 3. .52
(Pj, — Pjs = tigsVj, js-
Adding the above equations yields

P, - = S timTin (13)

(lrm)€P<jd,js>
Thus equation (13) replaces equations (12) in the model. Likewise, between any twoi raoikes
wheresi € N,ﬁ” andj € NP“, if there exist a pattP.; ;~, we can obtain a nonlinear relationship such
as equation (13), and include it in the reduced formulation.

Based on the same logic, we can also convert the pressure bounds aféadgento the bounds of
the other pressure variahg i € N;fc,/\/,fc. For example, consider the minimum pressure requirement
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constraintp; > p]L-,j € N,‘f” for the delivery nodg in Gy, and letP.; ;- be a path from the discharge
nodei € N to nodej € V. We can eliminatg; from the problem formulation, and include a new
pressure bound fags;. That is, we have

piz\/(p§)2+ St
(Iym

YEP<i i>

In general, the bounding inequal'ybf <pj < pg-] of any nodej € N, of G}, is replaced by the pressure
bounds of the variablg;, i € N ori € N with

@i = \/(P]L)Q + > tmpE, < pi < \/(Pg-])2 + >t} =Py €N,
(I,m

)JEP<i ;> (Lm)eP<i,j>
(14)
aji= [N = Y b, <pi < [0V = D b, =B i €N
(I,m)€P<j,i> (L, m)ePsji>
(15)

The above procedure is motivated by the following. First, the reduced problem contains only pres-
sure variables at nodes A" UN?%, h = 1,...,r, and hence the problem size is reduced. Second, the
reduced problem can be converted into the sequential decision structure, which enables us to efficiently
apply dynamic programming. If we 18, = {(i,) : i € N/", j € NP}, then the reduced problem,
denoted ag)(p), can be formulated as follows.

Minimize " (v, pi, 1)) (16a)
(1,7)eM
subject to P —pp = > tumb, (k) €Bu h=1,...,r (16b)
(I,m)€P<j k>
max{p]L, ajrt < pj < min{pg-],ﬁj,k} jE ./\/fblc, h=1,...,r (16c¢)
max{pf, ap;it < p;j < min{p?,ﬁk,j} JENS h=1,...,r (16d)
(Bij,pirp;) € Dgjy CR? (4,7) e M (16e)

wherea; i, ay j, Bj,r andpy ; are defined in equations (14)-(15).

The degree of the sequential decision structure of this problem varies depending on the nature of
the subgraph. That s, if eve@,, h = 1,...,r has a single input nodee A" and a single output
node; € N, then the reduced problem 6f has an appropriate sequential decision structure. Any
gunbarrel system has such structure for which DP is well defined. However, if the subgraph has multiple
suction nodes or has multiple discharge nodes, then the reduced pr@pipinhas a nonsequential
structure representing diverging or converging branches, respectively.

There are some limitations in applying DP for some complex configurations of the subgraph, and
we assume the following.
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Assumption 5 Each subgraph can have either multiple discharge nodes with one suction node or have
multiple suction nodes with one discharge node, but cannot have multiple discharge nodes and multiple
suction nodes at the same time.

The above restriction is made for purpose of modeling via DP. Under the above assumption, we have
the following cases related to the configurationdf h = 1,...,r. Thatis,

Casel Gj hasasingle nodei € A" and asingle node j € N?ut,
Case2 Gy hasasingle nodei € N;™ and multiple nodes j € N?ut,

Case 3 G, hasmultiple nodes i € N,ﬁ" and asingle node j € NP“%.

In a gunbarrel network, every subgrapl has the configuration stated in Case 1, and hence the se-
guential decision structure is maintained throughout the network. However, in the tree and the cyclic
structures, we have a combination@®jf’s having the various configurations from case 1 to case 3.

5 Heuristic Description

Our solution procedure is based on a two-stage iterative procedure. In a particular iteration, at the
first stage, gas flow variables are fixed and optimal pressure variables are found via DP. At the second
stage, the pressure variables are fixed and an attempt is made to find a set of flow variables that improve
the objective function by exploiting the underlying network structure. Figure 5 shows an overview of
the proposed procedure.

5.1 Dynamic Programming for the Reduced Problem

In the previous section, we reduced the problem into a form which had only pressure variables de-
fined at the input or output nodes 6f. Depending on the configuration 6éf;, the problem has a
sequential decision structure or a nonsequential structure. DP can be applied directly to the sequential
decision structure, such as a gunbarrel transmission system. For the nonsequential structure, nonsequen-
tial DP is applied.

So given DP is a fairly well studied technique and has been described widely our focus here is in
elaborating in how we modify the flows. The details of the DP implementation can be found in the work
of Carter [5] and in Chapter 5 of Kim’s dissertation [9]. The main point here is that we do know how to
solve effectively for pressures when flows are known or fixed.
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Figure 5: Overview of the solution procedure.

5.2 TheFlow Modification Heuristic

Letx” = (v%, p°) be an initial feasible solution to (1). As we have seen in Section 4, once the
flow rates through the compressor statiar!)? are given, the other flow variables defined at each
pipe (v©)? can be computed in each subgraph. Now with given flow varia#lethe problem can be
simplified into the reduced problef,o (p). Let p® be the solution of the reduced problepo (p).

For a tree structured gas transmission network, since the flow variddes uniquely determined,
no flow modification step is needed. However, for a cyclic structure, one may attempt to obtain a better
objective function value by modifying the current flow settisly For this purpose, we make use of
the residual network and negative cycle concepts ([1]), which are used in network theory for finding
augmenting paths or proving optimality. LE{v") represent the residual network corresponding to the
flow v of the original networlG.

The following two fundamental theorems, which we state here without proof (can be found in [1]),
relate residual networks to negative cycles.
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Theorem 1 (Augmenting Cycle Theorem): Let v and v be any two feasible solutions of a network flow
problem. Then v equals v° plusthe flow on acyclein G (+°). Furthermore, the cost of v equals the cost
of v¥ plus the cost of flow on the augmenting cycle.

Theorem 2 (Negative Cycle Optimality Condition): A feasible solution v’ of the minimum cost flow
problem is an optimal solution if and only if the residual network G(+’) contains no negative cost
directed cycles.

Both theorems assume that the incremental cost of the flow is constant. From Theorem 1, we know
that augmenting some amount of flow though a cycle does not violate the flow conservation. Thus the
new flow is also feasible with respect to network flow constraints. Moreover, by the second part of
Theorem 1, if we have a negative cycle, then augmenting some amount of flow through the negative
cycle will yield a reduced total cost. By Theorem 2, if there exists a negative cycle with regard to the
current feasible flow, then the current flow value is not optimal. Specifically, since our problem has
a non-convex feasible region, this last result may not necessarily hold, however, it can be used in a
heuristic way to guide a search for a better solution.

Using these two results, we want to develop a scheme to modify the current flow*rateae new
flow ratesv’ which will yield a better objective value. To do this, we first create the residual network
G'(v") of the reduced network’ with respect to the current flow variable vectdr Figure 6 shows
an example of a reduced network and its residual network.

Figure 6: A reduced network and its residual network.

Note that a self-cycle which includes both a forward &r¢j) and a backward ar¢j, ) of the
compressor statiofy, j), is not considered a cycle. That is, either the forward or the backward arc of
the compressor statiofi, 7) should be included in the cycle, but not both. For example, in Figure 6,
self-cyclesi — k — 4 andi — k — j — k — 4, are not considered as cycles. Note also that the starting node
of the cycle is not important. In Figure 6, there exist two cycles, the (clockwise) ¢yele — 5 — 4,
and the (counterclockwise) cycle- j — k — i. We denote the cycle in the residual networkd@yand
denote the set of the compressor stations in a aydbsy M.

In our heuristic flow modification step, the costs of the residual network are approximated by the
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derivatives of the objective functiapwith respect to the flow on each compressor station. Then,

pi\"
enf(E) -1}
A

wherep; andp; are the current solution values delivered by DP with fixed flow variables,caad
defined in 2. This cost;; is assigned to each forward arc of the residual network-agdis assigned
to each backward arc. The cycle cast the total cost of the cycl€' in a residual network, is defined
by
e= > 6;(C)-cy
(i.7)EMc

whered;;(C) equalsl if arc (i, j) is contained in cycle” and is a forward arc o (v°), —1 if arc
(j,i) € C and is a backward arc &¥ (v°), and0 otherwise. Ifr¢ is negative, then we call' a negative
(cost) cycle and denote it &% .

Modification of the flow is done by augmenting flow through a negative ogcleThat is, if there
exists a negative cost cycté—, then we augment positive flow througli~, and hence update the
current flow setting. This flow modification step can be represented by

vier =0 L\ §(C7), (18)

where) > 0 is the positive amount of flow which will be added through the cycle, &dd ) is the
vector ofd;;(C™)’s, a vector representing the negative cy€le. The flow modification step can be
viewed as a descent nonlinear programming algorithm in which we try to find a direction (a vector of
flow modification) such that by moving units in this direction, the objective function decreases. In
our heuristic procedure, a negative cycle veat@ ) corresponds to the search direction. The value

A is bounded below by zero and above Ry.., which can be obtained by considering the complex
inequality constraint seb;;, (4,7) € C~. If Anax = 0, then the algorithm stops. Otherwise, we set

A = pAmax > 0, where0 < p < 1. The purpose of multiplying by a small parameteis explained in

the following subsection.

For the newly obtained flow setting*¢”, we need to find pressure variables, which requires us
make use of DP again with the updated flo#f™. If DP with v*¢* has no feasible solution, or no
improvement to the objective value has been achieved, we reduce the sizeyofettingA = 2,
where( < v < 1, and apply DP until we get a better result. The algorithm is summarized below.

Step 1: Find an initial feasible solutiodd = (v°, p%), set the iteration countér= 0, x (0 < p < 1),
andy (0 <y <1).

Step 2: Construct the residual netwdiv'), and find a negative cyclé— with negative cost, - .
Step 3: If|7¢-| < €, wheree is a small number, stop. Otherwise, go to Step 4.

Step 4: Sel = pAmax. If A =0, stop. Otherwise,
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(a) Modify the current flow?! by v**¥ = vt + X . §(C™).

(b) Calculate pressure values using DP with modified R&#F .
If DP yields an infeasible solution, @r¢? — g* > 0, then set\ = v\, with0 < v < 1,
and go to 4(a). Otherwise!*! = v™* t = ¢+ 1 and go to Step 2.

To prevent cycling, Step 4(b) is executed a maximunh difmes, wherd. is a user-specified parameter.

5.3 Choiceof Step Size

To determine the value of the step sixelefined in (18), we need to consider the feasible domain
D;; for each compressor statiqn, j) € M within a loop. As mentioned in the previous chapter,
the inequality constraints sé;; is not given in algebraic form, but is defined as a result of the curve
fitting methods based on empirical data for compressor units. Consider for instance a compressor station
(i,7) € M with four parallel compressor units. Figure 7 shows the profiles of the feasible domain
with a fixed suction pressure value. Discharge prespuasd mass flow rate;; are shown in they-
andz-axes, respectively.

A /\ A A"

<

<
<
<
<
<

(&) Example of upper (b) Example of lower
bounds. bounds.

Figure 7: Profiles of the feasible region with suction presgufiged.

Assume that the triple valuds);, p{, p}) of the current solution®’ are located at pointd or B in
Figure 7. For either cases, with the assumption p@naztndp? are fixed at the current feasible point,
v can vary fromw' to v”. The valuesy andv” can be obtained in a straightforward manner from the
equations defining the compressor stations. The technical details can be found in [9].

For each compressor station in the loop, i&.j) € Mc, we can geb!. andv!

i i and the step size
A should be decided within the bounds

" _ 9.
0 <A< Amax =mind 7

0 _ .

i(C7) =1, (i,j) € Mc,

5 _
52](0_) = _17 (27]) € MC?
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where .« IS the upper bound of the step sikeandﬁ% is the current flow setting at the compressor
station(z, j) € C.

Figure 8: Choice of step size

For instance, consider the example shown in Figure 8. Here, we assume that there is a negative
cycle, whose direction is clockwise. Then the maximum stepsizgis determined by

s " 0 0 / 0 !
Amax = MIN{vjp — v, V5 — Vi, Vi — Vis }-
Similarly, for the counter-clockwise negative cyclg,., will be
o 0 / n 0 " 0
Amax = MiN{v;, — vy, V5 — Vig, vi5 — vy}

Now, the step size is set o= pAnax, Where0 < p < 1. This choice attempts to keeping feasibility
and stems from the fact that taking= \,.x causes the new solution to tend to fall outside the feasible
region as the corresponding pressure values may have changed accordingly. Large valeesl®to
larger improvements of the objective function, but increases the possibility of infeasibility. In contrast,
small values ofu may keep the updated flow within the bounds, but the value of improvement in the
objective may be rather small.
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6 Empirical Evaluation

6.1 Numerical Examples

In this section we provide an extensive computational evaluation of the proposed solution procedure.
For that purpose we have generated problem instances based on network topology examples we have
discussed previously, but using real world data for compressor stations. These data was gathered from
SSI (Scientific Software Intercomp, Inc.), a Houston-based vendor specializing in gas operations. For
the network topologies, we have built structures similar to the ones found in industry. The values of all
data and parameters used in this experimental part can be found in [9].

Example 1. A Tree Srructured System. Consider the following instance (depicted in Figure 9) with 64
nodes, 56 pipes, and 16 compressor stations.

[}
%@%@m
o

<= Q

®%
o ©
U

U

B23 B22 D= D2

Figure 9: Network of Example 1.

The associated reduced netwdrk (shown in Figure 10) is a tree with 17 nodes, each of which
corresponds to a subgraph, and 16 arcs, each of which corresponding to a compressor station. Using the
decomposition technique explained in Section 4, at each subgraph we can calculate the flow variables
beforehand by solving system (9).
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Figure 10: Reduced networ® of Example 1.

Table 1: DP solution.

Compressor Statioﬁ Suction pressure# Discharge pressur# o° ‘ Objective
508.16470 508.16470 50.0 0.00000

2 509.72955 509.72955 90.0 79.86951
3 514.96478 514.96478 180.0 262.60706
4 523.63025 523.63025 200.0| 1070.30823
5 553.16473 553.16473 200.0| 1139.41699
6 565.62067 565.76611 250.0| 1225.92798
7 503.36340 585.91382 150.0 | 13622.09473
8 540.74146 540.74146 220.0| 13625.22949
9 599.35669 599.35669 300.0| 13694.63379
10 629.71375 663.49652 300.0| 21685.33984
B11 504.73297 505.73398 70.0 269.78931
B12 510.74597 510.74597 70.0 336.68485
B13 515.37427 515.37427 70.0 446.73724
B21 573.41547 573.41547 70.0 0.00000
B22 574.86243 574.86243 70.0 0.00000
B23 580.44147 580.44147 40.0 0.00000
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We now apply our nonserial implementation of DP to solve the problem and obtain the profiles of
pressure values at the compressor stations. Table 1 shows the results when the system input pressure
at the super source node 1 is 700 psia and using 10 grid points in each pressure range at each stage of
the DP. Itis clear that a finer discretization yields more precise solution values, but at a more expensive
computational cost. So, the issue here is to investigate this trade-off. For this example, we have explored
using a different mesh sizes for pressure ranges (meassured by the number of grid points) in our dynamic
programming solution process. Table 2 summarizes the quality of the solutions using four different
numbers of grid points. We can observe that the computational time doubles when the number of grid
points doubles, and the solution converges as the number of grid points increases. The relative difference
in solution quality between a 10-grid and a 20-grid solution is about 1%. Going from a 20-point to a
40-point grid yields an approximate relative improvement of 0.1%.

Table 2: Results of DP for different grid sizes.

Number of | Objective value| CPU time

grid points | (Total fuel cost)| (second)

5 22916.9961 2.73
10 21685.3398 5.03
20 20508.3281 10.01
40 20404.4238 21.83

In this example, since the reduced network is a tree structure, flow rates at the compressor station
are uniquely determined, and thus the flow modification step is not required. This example shows how
to handle insignificant loops in subgraphs and demonstrates the network decomposition scheme of the
solution methodology. In the next two examples, we consider cyclic structures.

Example 2: A Sngle-Cycle System. The second example is a simple cycle network with 6 compressor
stations and 9 pipeline arcs (see Figure 11). This example can be considered as one of the simplest
forms of the loop structure. The associated reduced network is shown in Figure 12(a).

As discussed before, by initializing the compressor flow rates the pipeline flow rates can be easily
determined (see Table 3). Table 4 shows the solution when DP is applied to solve for the pressure values.
We have assumed that the system input of pregsuat the super source nodeis 700 psia.
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CMP2 CMP3

Figure 11: Network of Example 2.

(a) Reduced network’ (b) Residual networlG” (v°)

Figure 12: Reduced and corresponding residual network for Example 2.

Table 3: Flow rates on each pipe.

‘Pipe‘ Uij |Pipe‘ Uij ‘

PS1 | 350.0 | P45 | 150.0
P12 | 100.0 | P46 | 100.0
P14 | 250.0 ] PSD | 250.0
P23 | 100.0 ] P6D | 100.0
P35 | 100.0

24



Table 4: DP iteration 1.

‘ Station | Suction pressur4 Discharge pressur% v?]- ‘ Fuel cost
CMP1 566.0268 689.3578 350.0 | 34728.6914
CMP2 674.1254 674.1254 100.0 0.0000
CMP3 655.9074 655.9074 100.0 0.0000
CMP4 561.3552 631.0216 250.0 | 15418.7940
CMP5 586.2333 626.7272 250.0| 8275.7842
CMP6 608.6840 608.6840 100.0 0.0000

‘ Total Costl ‘ ‘ 58423.2695

Table 5: DP iteration 2.
Station Suction pressure+ Discharge pressur% v?]- ‘ Fuel cost
1 566.0268 676.2758 350.0000| 31668.7832
2 655.5665 655.5665 115.2395 0.0000
3 630.5466 630.5466 115.2395 0.0000
4 562.2967 621.6626 234.7605| 12376.5967
5 585.2015 626.7272 250.0000| 8480.5098
6 598.9761 598.9761 100.0000 0.0000
Total Cost ‘ 52525.8906
Table 6: DP iteration 3.
Station Suction pressure+ Discharge pressur% v?j ‘ Fuel cost
1 566.0268 700.0000 350.0000| 37288.7109
2 674.7831 674.7831 129.1978 0.0000
3 644.1168 644.1168 129.1978 0.0000
4 604.2491 611.1767 220.8022| 4362.0278
5 581.5298 626.7272 250.0000| 9227.1436
6 588.0858 588.0858 100.0000 0.0000
Total Cost ‘ 50877.8828
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Based on the solution given in Table 4, we can construct the residual netw6tkfigure 12 shows
the reduced networ&’ of the problem and its residual netwotk(v°) with respect to the current flow
settingv®. A (clockwise) negative cycle with negative cagt= —61.67518 is found, and the step size
A was calculated a$5.2395. Now we augment flow\ through the negative cycle, with parametgrs
and~ set to 0.9 and 0.5, respectively. At iteration 4, the algorithm stops because a negative cycle is not
found, i.e.,7¢ = 0.0 for both clockwise and counter-clockwise cydle Tables 5 through 7 show the
solution of each iteration.

Table 7: Iteration 4.

Station Suction pressure+ Discharge pressur% vy ‘ Fuel cost

1 566.0268 700.0000 350.0000| 37288.7109

2 669.7152 669.7152 141.3252 0.0000

3 632.5530 632.5530 141.3252 0.0000

4 615.1898 615.1898 208.6749 0.0000

5 583.6664 626.7272 250.0000| 8789.2715

6 592.2554 592.2554 100.0000 0.0000

‘ Total Costl ‘ ‘ ‘ 46077.9844

Example 3: A Multiple-Cycle System. Now let us consider the example shown in Figure 13. This
instance contains multiple cycles and branches. Moreover, some of the cycles are dependent on each
other.

CMPL42 CMPL41 CMPL2 CMPB D1
— | >

g CMP10 cMmP9 CMP8 CMP4 |CMP3/ CMP2 CMP1 D

O=
o

CMPL12 CMPL11

- g—
CMPL3

Figure 13: A complex system with multiple loops and branches.

Table 8 shows the DP solution of the given problem with different initial flow settings. We assumed
that the input pressure value at the super source node S is 600 psia. The solution shown in Table 8 is
checked for feasibility. Based on the current solution, we found 4 negative &cl€s, , C;, andCy,
each of which corresponds to a counter-clockwise cycleMg} ={CMP4,CMP3,CMPL22,CMPL2},

a clockwise cycle with/\/lc2_ = {CMPL2,CMP4,CMP5%, a counter-clockwise cycle witbh/lcg_ =
{CMP8,CMPL3, and a counter-clockwise cycle WitMC; = {CMPL41,CMPL42,CMP8, respec-
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Table 8: DP solution of Example 3 at iteration 1.

‘ Station | Suction pressur4 Discharge pressur% v?j Fuel cost
CMP1 592.14349 592.14349 250.000000 0.00000
CMP2 598.64215 598.64215 250.000000 0.00000
CMP3 616.95190 616.95190 300.000000 0.00000
CMP4 599.94464 617.86743 100.000000{ 3587.70825
CMP5 600.79651 600.79651 200.000000 0.00000
CMP6 576.27094 607.03632 400.000000( 11016.26074
CMP7 599.70898 599.70898 400.000000 0.00000
CMP8 558.29919 603.43390 150.000000{ 6217.34277
CMP9 561.43622 561.43622 400.000000 0.00000
CMP10 581.77887 581.77887 400.000000 0.00000
CMPL11 599.27130 599.27130 100.000000 0.00000
CMPL12 600.12408 600.12408 100.000000 0.00000
CMPL2 602.76453 621.47272 200.000000; 7178.70117
CMPL3 560.14026 601.18829 100.000000{ 4086.03784
CMPL41 579.52564 601.62470 150.000000{ 6597.18750
CMPL42 559.81580 581.82019 150.000000{ 3329.72974
CMPB 614.98547 614.98547 150.000000 0.00000

Total Cost | ‘ 42012.96875
tively. The negative cycle costs arg- = —15.37, 7~ = —0.03, 7, =

we augment flow byt.3029 units through negative cycl€] . Table 9 presents the solutions in the
successive iterations for the given problem.

Table 9: Successive solutions for example 3.

‘ Iteration | Total Fuel Cost| Most Negative cycle cos} Step Size‘

1 42012.9698 -15.3703 4.3029
2 41110.9727 -14.1674| 4.0354
3 40816.2773 -13.9453 3.7908
4 38750.9844 -4.0386 0.3330
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After 4 iterations, we stop with the solution given in Table 10, because the step size is considered
too small to continue. The percentile improvement of fuel cost in this example is almost 8%, and the
computational time is 42.75 seconds, when 5 grid points are used at each stage of the DP.

Table 10: Final DP solution.

Station Suction pressur% Discharge pressur% vy Fuel cost
CMP1 565.336609 565.336609 250.000000 0.000000
CMP2 572.139832 572.139832 250.000000 0.000000
CMP3 614.253479 614.253479 287.870941 0.000000
CMP4 568.800598 614.963623 87.870964 | 8402.583984
CMP5 569.494385 569.494385 200.000000 0.000000
CMP6 576.073364 576.073364 400.000000 0.000000
CMP7 599.519104 599.519104 400.000000 0.000000
CMP8 558.299194 603.245239 150.000000, 6191.366699
CMP9 561.436218 561.436218 400.000000 0.000000
CMP10 581.778870 581.778870 400.000000 0.000000
CMPL11 567.470337 572.967346 112.129036| 1494.207642
CMPL12 568.602295 568.602295 112.129036 0.000000
CMPL2 571.570251 618.794006 200.000000] 8723.612305
CMPL3 560.140259 600.998962 100.000000| 4068.000732
CMPL41 579.525635 601.435425 150.000000, 6541.483887
CMPL42 559.815796 581.820190 150.000000| 3329.729736
CMPB 612.278381 612.278381 150.000000 0.000000
Total Cost 38750.984375

Animportant observation is that in these two cases our procedure shows a considerable improvement
over the initial solution, where this initial solution is found by a single application of the non-sequential
DP approach, which is the current state of the art to the best of our knowledge.

6.2 Benchmark Results

Because of the lack of test problems in gas pipeline literature, another goal of this work is to provide
some benchmark test results which may be used for testing other methods.

The algorithm, as described previously, consists of about 15,000 lines of C code. Numerical exper-
iments on 12 instances based on three different cyclic topologies were run on a SGI Power Challenge L
running IRIX 6.2. Even though our solution methodology can handle gunbarrel and tree structures, our
computational experiments are done for the cyclic structure, which is the main focus of our study. The
three topologies used for our computational experiments are (A) a single cycle instance with six com-
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pressor stations (Figure 11), (B) a multi-cyclic structure with 3 cycles, 3 branches, and 21 compressor
stations (Figure 14), and (C) a multi-cyclic structure with 4 cycles, 1 branch, and 17 compressor stations
(Figure 13).

cvpB3 p3  CMPL22 CMPL21 CMPB1 D1
1

s CMP10 CMP9 CMP8 CMP7 CMP5

i CMP6
,O_’O,

CMPL33 CMPL32 CMPL31

CMP3  CMP2/ cMP1 D
-O=

>

CMPL12 CMPL11
-OpO-O=
CMPB22 CMPB21 D2

Figure 14: An example with multiple loops and multiple branches.

The two algorithmic parametegsand-y play a role in the heuristic’s performance. As explained in
Section 5, the greater the value @fthe higher probability the iteration will move out of the feasible
region. On the other hand, a larger valueuahay yield a faster convergence. Parametes needed if
the new solution is not feasible, or if we have not obtained an better solution. During our preliminary
experiments, we found thataround0.8, andy around0.5 gave the best results, so we used these values
for our experiments.

We have applied our solution methodology with different initial flow settings to each of these three
network topologies. In this part of our experiment we compare the solution delivered by existing work to
the one delivered by our procedure. The way the current approach works is actuyally done in industrial
settings is as follows. One first attempts to guess, based on experience and practical considerations, a
value for the flow variables at compressor stations. Once this is done, flow values for pipelines can be
computed by using the model equations. Finally, the non-sequential DP approach (which operates in
fixed flows) is applied to obtain an optimal set of pressure flows. We use this actual solution as an input
to our algorithm.

Table 11 shows the results of the experiments for these problems. The last column shows the relative
improvement in objective function value of the proposed procedure procedure iver the existing approach.
An 0.0% implies the algorithm terminates at the very first iteration because no improvement was found.
The cost improvement obtained by applying our solution methodology ranges from 0.00% to 41.77%.
According to [26], even a 1% savings on gas transportation cost may be worth in the order of 48.6
million dollars. Thus the economical impact is significant.

It is noted that for instance A, in the neighborhood of a possible local optimal point, the solution of
the proposed algorithm seems to converge. Table 12 shows the results using different starting points.
Here,u3; andu}, represent the initial starting point and the final solution of the flow rate at(@ig,
respectively.
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Table 11: Solution benchmarks.

Problem Initial | CPU time Relative
instance| flow settings| (seconds)| Improvement (%)
flow setting 1 2.64 24.88

A | flow setting 2 4.57 21.13

flow setting 3 20.24 41.77

flow setting 1 6.07 0.00

B | flow setting 2 6.20 0.00

flow setting 3 23.84 17.32

flow setting 1 41.17 4.62

C | flow setting 2 42.75 3.34

flow setting 3 74.46 8.20

Table 12: Solution from different starting points for instance A.

Flow setting | Final Fuel Cost| u3, U3
1 47054.2813| 50.0 | 132.3961
2 47014.1445| 100.0 | 132.5264
3 47007.2152| 120.0 | 132.9225

7 Closing Remarks

In this study we have addressed the problem of minimizing the fuel consumption of compressor
stations in a steady-state gas transmission network. We have modeled this problem as a non-linear non-
convex network flow problem, and derived a heuristic solution methodology. We have classified the
network topologies as non-cyclic and cyclic structures and have highlighted how this type is related to
the solution technigues’ success. In particular, a cyclic topology is considerable harder to solve because
flow rate variables must be handled explicitly, thus making traditional DP approaches not suitable.

This motivated what constitutes the main scientific contribution of this work, which is the deriva-
tion and implementation of a network-based heuristic that aims at providing good-quality solutions for
cyclic topologies. To the best of our knowledge, there is no previous work that addresses handling both
flow and pressure variables simultaneously. The solution procedure is an iterative process. First flow
variables are fixed by flow modification, then DP is used to find an associated set of pressure variables.
The flow modification step exploits the underlying network properties.
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Our computational experimentation showed the effectiviness of the proposed approach, even in non-
cyclic structures. Significant improvements were found in most of the tested instances outperforming
the best existing approach to the best of our knowledge. The average cost reduction obtained from our
solution methodology was about 27% over all instances. The maximum improvement was of about
41.77% (in the instances tested), which amounts to considerable fuel savings.

During our experiments, the distribution of the running time among the various types of operations in
the algorithm was studied. It showed that most of time (about 95%) is spent on solving DP. These results
highlight the importance of having an efficient procedure for solving DP. Our dynamic programming
implementation can be improved by using time efficient interpolation techniques and perhaps parallel
programming.

In this study, we consider minimizing fuel consumption at compressor stations for the steady-state
model of gas transmission networks. In the operating perspective, there could be other objective func-
tions of interest such as finding the maximal throughput. Currently the feasible domain of the compres-
sor station is not represented algebraically. If we could represent the domain algebraically, it may be
possible to develop a mathematical model in which a global optimum can be found. Finally models that
consider transient gas networks are a new research area and an important future research direction.

Another line of work is to consider a decision variable that would tell us how many compressor
units to operate within each compressor station. This leads to a mixed-integer nonlinear program. In
fact, this line is now being pursued, and some preliminary results can be found in Cobos-Zaleta and
Rios-Mercado [7].
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