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Abstract

In the paper the problem of how to efficiently operate a natural gas transmission network
under steady-state asumptions is considered. The problem is modeled as a nonlinear network
optimization problem where the decision variables are mass flow rate in each arc and gas pressure
in each node. The objective function to be minimized is the total amount of fuel consumed in the
system by the compressor stations. In the past, several techniques ranging from classical gradient-
based procedures to dynamic programming, for solving this difficult nonconvex problem have been
applied with limited success, particularly when applied to cyclic network topologies. A cyclic system
is defined as a network containing at least one cycle involving two or more compressor stations.
In this paper we propose a hybrid metaheuristic procedure that efficiently exploits the problem
structure. This hybrid procedure combines very effectively a nonsequential dynamic programming
algorithm for finding an optimal set of pressure variables for a fixed set of mass flow rate varables,
and short-term memory tabu search procedure for guiding the search in the flow variable space.
The proposed procedure represents an improvement to the best existing approach to the best of our
knowledge. In addition, empirical evidence over a number of instances supports the effectiviness of
the proposed procedure outperforming a multi-start GRG method both in terms of solution quality
and feasibility. Furthermore, to assess the quality of the solutions obtained by the algorithm, a
lower bound is derived. It is found that the solution quality obtained by the proposed procedure is

relatively good.
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1 Introduction

In this paper, we address the problem of minimizing the fuel consumption incurred by compressor
stations in a natural gas pipeline transmission system. During this process, energy and pressure are
lost due to both friction between the gas and the pipes’ inner wall, and heat transfer between the
gas and the environment. To keep the gas flowing through the system, it is necessary to periodically
increase its pressure, so compressor stations are installed through the network. It is estimated that
compressor stations typically consume about 3 to 5% of the transported gas. This transportation
cost is significant because the amount of gas being transported in large-scale systems is huge. In the
other hand, even a marginal improvement in gas operations can have a significant positive impact
from the economic standpoint, so this provides the main motivation from the practical side of the
proposed work.

The problem is represented by a network, where arcs correspond to pipelines and compressor
stations, and nodes correspond to their physical interconnection points. We consider two types
of continuous decision variables: mass flow rates through each arc, and gas pressure level at each
node. So, from the optimization perspective, this problem is modeled as a nonlinear program
(NLP), where the cost function is typically nonlinear and nonconvex, and the set of constraints is
typically nonconvex as well. It is well know that nonconvex NLP is NP-hard (Horst et al. 1995).
This motivates the choice of the proposed heuristic approach.

The state of the art on research on this problem reveals a few important facts. First, there are
two fundamental types of network topologies: noncyclic and cyclic. We would like to emphasize
that, the former is a type of topology that has received most of the attention during the past
30 years. Several methods of solution have been developed, most of them based on Dynamic
Programming (DP), which were focused on noncyclic networks.

In particular, as far as handling cyclic topologies is concerned, gradient search and DP ap-



proaches have been applied with little or limited success. The main limitation of the former is its
local optimality status. The drawback of the latter, is that its application is limited to problems
where the flow variables are fixed, so the final solution is “optimal” with respect to a prespecified
set of flow variables. This is because cyclic topologies are a lot harder to solve.

In this paper, we proposed a novel solution methodology for addressing the problem of how
to optimally operate the compressor stations in a natural gas pipeline system, focusing in cyclic
topologies. The proposed technique combines a nonsequential DP technique (originally proposed by
Carter (1998)) within a Tabu Search (TS) framework. For the past few years, TS has established its
position as an effective metaheuristic guiding the design and implementation of algorithms for the
solution of combinatorial optimization problems in a number of different areas (Glover and Laguna
1997). In this case, even though we are dealing with a continuous optimization problem, the high
nonconvexity of the objective function and the versatility of T'S to overcome local optimality make
TS, with an appropriate discrete solution space, a very attractive choice.

Empirical evidence over several instances with data taken from industry shows the efficiency
of the proposed approach. A comparison with a multi-start GRG-based method demonstrates the
significant superiority of the proposed procedure. The method represents an improvement over
existing state-of-the-art approaches. Furthermore, in order to assess the quality of the solutions
delivered by the algorithm, a lower bound was derived. It is shown that the optimality gaps found
by our technique are less than 16%, most of them less than 10%, which represents a significant
progress to the current state of the art in this area. The scientific contribution of this work is
providing the best technique known to date, to the best of our knowledge, for addressing this type
of problem in cyclic topologies.

The rest of this paper is organized as follows. In Section 2, we formally introduce the fuel
consumption minimization problem (FCMP), describing its main features, modeling assumptions,

and important properties. Then, in Section 3, we present a review of earlier approaches for this



problem, highlighting the most related to our work, and how we attempt to exploit some of them.
The proposed methodology is outlined in Section 4. A computational evaluation of the heuristic,
including comparison with a multi-start GRG method, is presented in Section 5. Finally, we wrap

up this work with the conclusions and directions for future research in Section 6.

2 Problem Description

Pipeline system models can be mainly classified into steady-state and transient systems. Like all
those previous works (reviewed in Section 3), here we assume a steady-state model. That is, our
model provides solutions for systems that have been operating for a relatively large amount of time,
which is a common practice in industry. Transient analysis has been done basically by descriptive
models, because transient models are a highly intractable from the optimzation perspective. Op-
timization for transient systems remains as one of the great research challenges in this area. We
also assume we work with a deterministic model, that is, each parameter is known with certainty.
In terms of the compressor stations, we assume we work with centrifugal compressor units, which
are the most commonly found in industry. As far as the network model is concerned, we assumed
the network is balanced, that is, no gas is lost, and that each arc in the network has a prespecified

direction.

The Model

This model was originally introduced by Wu et al. (2000). Vs C V and V; C V are the set of
supply and demand nodes, respectively. The set of arcs A is partitioned into a set of pipeline arcs
A, and a set of compressor station (or simply compressor) arcs A, i.e. A, U A, and A, N A.. Let
Ui; and R;; the capacity and resistance of pipeline (i,7) € A,, respectively. Let PL, PV be the

pressure lower and upper limits at node ¢ € V. Let B; the net mass flow rate at node ¢ € V', where



B; >0ifieV,, B; <0if i € V3, and B; = 0 otherwise. The decision variables are given by x;;,

the mass flow rate in arc (i,j) € A, and p;, the pressure at node i € V.

Formulation FCMP

Minimize Z gij(xijapivpj) (1)
(i,j)€Ac

subject to Z Tij — Z Ty = B; 1eV (2)
ji(i,5)EA j:(j,i)EA

iy < Uy (4,7) € Ap (3)

p; —p; = Ryzj; (i,j) €4 (4)

pi € [plpf] i€V (5)

(wij,pi,p5) € Dy (i,7) € Ac (6)

xij,pi = 0 (i,j) € A, i€V (7)

The objective function (1) represents the total amount of fuel consumption in the system. We use
a function g;; in the following form:
9(ij, i, Pj) = Qxij {(%)m - 1} . (@ij.pispj) € Dij,

where o and m are assumed constant (and known) parameters that depend on the gas physical
properties. Constraints (2)-(3) are the typical network flow constraints representing node mass
balance and arc capacity, respectively. Constraint (4) represents the gas flow dynamics in each
pipeline under the steady-state assumption. Constraints (5) denote the pressure limits in each
node. These limits are defined by the compressor physical properties. Constraint (6) represents
the nonconvex feasible operating domain D;; for compressor station (7,7). The algebraic repre-
sentation of D;; is the result of curve fitting methods based on empirical data taken from the
compressors. The details on the nature of the compressor station domain and how it is derived

can be found in Wu et al. (2000). Figure 1 shows a two-dimensional shape of this domain for p;



fixed. The precise model formulation for each of instances tested is available for download from
http://yalma.fime.uanl.mz/ roger/ftp/. Finally, the mathematical model is bounded by nonnega-

tive decision variables (7).

3 Previous Work

In this section, we review the most significant contributions over the last 30 years for solving the

FCMP or related problems.

Methods Based on Dynamic Programming

The key advantages of DP are that a global optimum is guaranteed to be found and that nonlinearity
can be easily handled. In contrast, its application is practically limited to noncyclic networks, such
as linear (also known as gun-barrel) or tree topologies, and that computation increases exponentially
with the dimension of the problem, commonly referred as the curse of dimensionality.

DP for pipeline optimization was originally applied to gun-barrel systems in the late 1960s. It
has been one of the most useful techniques due to both its computational behavior and its versatility
for handling nonlinearity on sequential systems. DP was first applied to linear systems by Wong
and Larson (1968a), and then applied to tree-structured topologies by Wong and Larson (1968b).
A similar approach was described by Lall and Percell (1990), who allow one diverging branch in
their system.

Luongo et al. (1989) published a hierarchical approach that allowed for both cycles and branches
of arbitrary complexity. This represented significant progress in terms of finally addressing the issue
of real world pipeline configurations. Their technique was no longer pure DP. Basically, DP was
used to optimally describe the pieces of the pipeline that were arranged in a sequential manner.

This typically reduced the system to a much smaller combinatorial problem, without any possibility



of a recursive DP solution. A sufficiently small instance could be solved exactly via enumeration;
otherwise it was solved inexactly using simulated annealing. This hierarchical approach worked
very well for some complex pipelines, but for others the computational cost was very high.

The most significant work on cyclic networks known to date is due to Carter (1998) who devel-
oped a nonsequential DP algorithm, but limited to a fixed set of flows. This led to an interesting
question of how to find the optimal setting of the flow variables and how to modify the current flow
setting to obtain a better objective value. So with this in mind, recently Rios-Mercado et al. (2006)
propose a network-based heuristic for modifying the flow values. The computational results showed
an improvement with respect to Carter’s NDP approach. A limitation of that work, though, is that
the experimental phase was done over a small number of instances. Unfortunately, that code is no
longer available for research purposes. In the present work, we use Carter’s ideas and incorporate
them within a Tabu Search scheme for iteratively adjusting the set of flows with great success. This

will be further described in Section 4.

Methods Based on Gradient Search

Percell and Ryan (1987) applied a different methodology based on a Generalized Reduced Gradient
(GRG) nonlinear optimization technique for noncyclic structures. One of the advantages of GRG,
when compared with DP, is that they can handle the dimensionality issue relatively well, and thus,
can be applied to cyclic structures. Nevertheless, being a method based on a gradient search, there
is no guarantee for a global optimal solution, especially when there are discrete decision variables.
Villalobos-Morales and Rios-Mercado (2005) evaluated preprocessing techniques for GRG, such
as scaling, variable bounding, and choice of starting solution, that resulted in better results for
both cyclic and noncyclic structures. More recently, Flores-Villarreal and Rios-Mercado (2003)
performed an extensive computational evaluation of the GRG method over a large set of instances

on cyclic structures with relative success. No comparison to DP was done in that work, so part



of our contribution is to provide a comparison frame among Carter’s NDP, GRG, and our method

tested in the same set of instances.

Related Models

Discrete decisions such as numbre of units operating within compressor stations are incoporated into
a mixed-integer nonlinear programming model (MINLP). MINLP models in pipeline optimization
have been studied by Pratt and Wilson (1984) and Cobos-Zaleta and Rios-Mercado (2002). They
present satisfactory results as they were able to find local optima for many instances tested.

Optimization of individual compressor stations has been studied by Osiadacz (1980), Percell
and Reet (1989), and Wu et al. (1996). Later, Wu et al. (2000) completed the analysis for the same
problem, but considering several units within compressor stations. In a related work, some of the
most important theoretical properties regarding pipeline networks are developed by Rios-Mercado
et al. (2002).

Carter et al. (2002) present some algorithms based on implicit filtering for a class of noisy
optimization problems which also consider discrete decision variables with promising results. In a
related work, Osiadacz and Gérecki (1995) address a pipeline network design problem with modest
success. More recently, Costa et al. (2000) use linear programming for the optimal design of
pressure relief header networks.

Optimization techniques have also been applied for transient (time dependent) models. For
instance, Larson and Wismer (1971) propose a hierarchical control approach for a transient oper-
ation of a gunbarrel pipeline system. Osiadacz and Bell (1986) suggest a simplified algorithm for
the optimization of the transient gas transmission network, which is based on a hierarchical control
approach. The hierarchical control approach for transient models can be found in Anglard and
David (1988), Osiadacz (1994), and Osiadacz and Swierczewski (1994). Some degree of success

has been reported from these approaches as far as optimizing the compressor station subproblem.



However, these approaches have limitations in globally optimizing the minimum cost.

See Rios-Mercado (2002) for more references on optimization techniques applied to gas pipeline
problems. It is important to mention that optimization approaches developed to date work well
under some general assumptions; however, as the problems become more complex, the need arises

for further research and effective development of algorithms from the optimization perspective.

4 Solution Procedure

The proposed methodology (depicted in Figure 2) proceeds as follows. In Step 1, a preprocessing
phase is performed both to refine the feasible operating domain given by tightening decision variable
bounds, and to reduce the size of the network by a reduction technique (motivated by the work
of Rios-Mercado et al. (2002)). Then, in Step 2, a set of initial feasible flows (x) is found by two
different methods: a classic assignment technique and a reduced graph algorithm.

In Step 3, a set of optimal pressures (p), for teh specified flow obtained before is found by
applying a nonsequential DP (NDP) algorithm. At this point, we have an initial feasible solution
(x,p) which enters a tabu search (TS) local search procedure.

Within the TS, there are two main components for neighbor generation: a flow modification
component and a pressure computation component. In the former, an attempt is made to find
a different set of flows, and in the latter, a corresponding set of optimal pressure values is found
by NDP. The TS is performed until a stopping criteria (in the case, a number of iterations) is
met. As we know from theoretical properties of pipeline networks (Rios-Mercado et al. 2002),
the flow modification step is unnecessary for noncyclic topologies because there exists a unique set
of optimal flow values which can be determined in advance at preprocessing. So, here we focus
on cyclic topologies. For finding the optimal set of pressures, we implemented a NDP technique

motivated by the work of Carter (1998). The overall procedure is called NDPTS. The methods



employed in Steps 1 and 2 have been fairly well documented in our previous work (Borraz-Sénchez
and Rios-Mercado 2004b), so, in the reminder of this section, we assume we have an initial feasible
flow and provide a description of the NDP and the TS components, which is the core of the proposed

work.

Nonsequential Dynamic Programming

We include in this section a brief description of the essence of the NDP algorithm. The details
can be found in Borraz-Séanchez and Rios-Mercado (2004a). Starting with a feasible set of flow
variables, the NDP algorithm searches for the optimal set of nodal pressure values associated to
that prespecified flow. Rather than attempting to formulate DP as a recursive algorithm, at a given
iteration, the NDP procedure grabs two connected compressors and replace them by a “virtual”
composite element that represents the optimal operation of both compressors. These two elements
can be chosen from anywhere in the system, so the idea of “recursion” in classical DP does not
quite apply here. After performing this step, the system has been replaced by an equivalent system
with one less compressor station. The procedure continues until only one virtual element, which
fully characterizes the optimal behavior of the entire pipeline system, is left. Aftwerwards, the
optimal set of pressure variables can be obtained by a straight-forward backtracking process. The
computational complexity of this NDP technique is O(\AC]NI?), where N, is the maximum number

of elements in a pressure range discretization.

Tabu Search

We start the procedure with a given feasible solution (x,p). We define the nature of a feasible
solution based on three basic components which are directly related with a cyclic network topology:
(a) static component, a mass flow rate value not belonging to any cycle; (b) variable component,

a mass flow rate value belonging to a cycle; and (c) search component, all pressure variables in



the network. These components are depicted in Figure 3. The search space employed by TS is
defined by the flow variables x;; only because once the flow rates are fixed, the pressure variables
are optimally found by NDP. Furthermore, we do not need to handle the entire set of flow variables,
but only one per cycle. This is so because once you fix a flow rate in a cycle, the rest of the flows
can be uniquely determined. Thus, a given state is represented by a vector T = (Zay,- .., Ta,,)s
where «,, is an arc that belongs to a selected cycle w. Note that this set of arcs is arbitrarily
chosen, and that converting a flow from x to and from Z is straightforward, so in the description x
and T are used interchangeably.

Then a neighborhood V() of a given solution Z is defined as the set of solutions reachable from

Z via a slight modification of A, units in each of its components. This is given by
V(z)={2d' € R" |z, =Ty +jA;,j =1,2,...,Nsize/2, w=1,...,m} (8)

where Nsize its the predefined neighborhood size, and A, accounts for the mesh size. Note that,
for a given solution, we do not store the entire solution but only the flow in the selected arc to
be modified. Note also that once this value is set, the rest of the flow variables in the cycle are
easily determined, so in this sense, it is precisely this mass flow rate which becomes the attribute.
Then the best 2/ € V(Z) which is non-tabu is chosen and the corresponding subsets are updated
accordingly. A tabu list (TL) stores recently used attributes, in our case, values of the x variables.
The size of the TL (tabu tenure) controls the number of iterations a particular attribute is kept in

the list. The search terminates after iter_max iterations.

5 Computational Evaluation

The purpose of designing and setting up a database with problem instances is twofold. First, it is
necessary for testing our proposed algorithms. Second, it aims at providing a common framework

for benchmarking different algorithms. As far as we know, there is no such database for this type
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of problems. So this becomes an important contribution of this work.

There are three different kinds of network topologies: (a) linear or gun-barrel, (b) tree or
branched, and (c) cyclic. Technically, the procedure for making this classification is as follows.
In a given network, the compressor arcs are temporarily removed. Then each of the remaining
connected components are merged into a big supernode. Finally, the compressor arcs are put back

into their place. This new network is called the associated reduced network.

Linear topology: This corresponds to a linear arrangement of the compressor station arcs, that is,

when the reduced network is a single path.

Tree topology: This occurs when the compressors are arranged in branches through the system,

that is, when the reduced network is a tree.

Cyclic topology: This happens when compressors are arranged forming cycles with other compres-

sor stations. That is, it refers to a cyclic reduced network.

As stated before, linear and tree topologies can be solved by dynamic programming since it has
been shown that the flow variables in every arc can be uniquely determined. So in this work, our
focus is on addressing cyclic topologies. Figure 4 shows examples of cyclic topologies. A stripped
node (shown with an ingoing arrow next to it) represents a supply node, a black node (shown
with an outgoing arrow next to it) represents a demand noid, and a white node is a transshipment
node. A single directed arc joining two nodes represents a pipeline, and a directed arc with a black
trapezoid joining two nodes represents a compressor arc.

So in the instance database tested below, a name net-z-mcn represents an instance of type
z, x € {a,b,c}, with m nodes and n compressor arcs. In addition, a suffix -Cy present means
the instance uses compressors type y, where y is one of nine different type of compressors used in
industry. This database is available at: http://yalma.fime.uanl.mz/ roger/ftp/, or directly from

the authors upon request. Each instance is given as a GAMS file.
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The proposed TS was developed in C++ and run on a Sun Ultra 10 workstation under Solaris
7. All of the compressor-related data, described in Villalobos-Morales et al. (2003), was provided
by a consulting firm in the pipeline industry. For the tabu list size and the neighborhood size,
several preliminar experiments were done using values of {5,8,10} and {20, 30,40}, respectively.
For the experiments we use the following values for the algorithmic parameters which were found
to produce the best results in preliminar fine-tuning computations: Iteration limit (iter-maz =
100), discretization size in V(z) (A, = 5), discretization size for pressure variables (A, = 20), tabu
tenure (Ttenure = 8), and eighborhood size (Nsize = 20). In order to assess the effectiveness of
the proposed procedures, we apply the algorithms to solving several instances under different cyclic
network topologies on the same platform.

It is evident that the proposed NDPTS approach dominates NDP. This has been verified em-
pirically, where the NDTPS has reported improvements in solution quality of up to 27% with
respect to NDP. This comparison between NDPTs and NDP is presnted in (Borraz-Sanchez and
Rios-Mercado 2005). In this paper, we present a comparison between the proposed NDPTS and
the best GRG-based implementation known to date. In a second experiment, we provide evidence
of the quality of the solution reported by NDPTS by comparing to a lower bound.

Table 1 shows a comparison between the GRG and NDPTS on cyclic networks. For the GRG
we used the implementation by Flores-Villarreal and Rios-Mercado (2003) within a multi-start
strategy. That is, given that GRG is basically a local search method, the idea is to apply GRG
from multiple different starting solutions for an amount of time equal to the time used by the
NDPTS in each instance. In preliminary work, it was also observed that the multi-start GRG
produced better results than the single application of the GRG as expected.

The first column shows the instances tested. The second column shows the total number of
iterations employed by the multi-start GRG method. The third and fifth column show the GRG

and NDPTS solution, respectively. The fourth column shows the running time of both methods.
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The last column shows the relative improvement of NDPTS over GRG, given by

RI = JGRG — gNDPTS
gNDPTS

x 100%,

where g7 denote the objective function value found by methd Z, and Z being any of GRG or
NDPTS.

First, the NDPTS obtained solutions to all instances tested, whereas GRG failed for four of
these, that is, for the four harder instances the GRG could not find feasible solutions. The results
indicate that NDPTS procedure outperforms GRG in terms of solution quality. In the instances
where both procedures found feasible solutions, NDPTS obtains solution of significantly better
quality than those obtained by GRG as can be observed from the relative improvement of NDPTS
over GRG. In terms of computational effort, both procedures employed the same amount of time
in a range of 270-400 seconds.

To assess the quality of the solutions delivered by the algorithm it is necessary to derive a
lower bound. Now, deriving lower bounds for a nonconvex problem can become a very difficult
task. Obtaining convex envelopes can be as difficult as solving the original problem. However, for
this problem we note two important facts that lead us to an approximate lower bound. First, by
relaxing constraint (4) in model FCMP the problem becomes separable in each compressor station.
That is, the relaxed problem consists of optimizing each compressor station individually. Now, this
is still a nonconvex problem, however, we exploit the fact that in each compressor, the objective
is a function of three variables only, so we build a three-dimensional grid on these three variables
and perform an exhaustive evaluation for finding the global optimum of the relaxed problem (for a
specified discretization).

Table 2 shows these results. The first column displays the instances tested, the second and third
columns show the lower bound and the best value found by the heuristic, respectively, and the last

column shows the relative optimality gap obtained by NDPTS. As can be seen from the table, all
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of the tested instances have a relative optimality gap of less than 17%, 7 out of 11 instances tested
have a relative gap of less than 10%, and 3 of these observed an optimality gap of less than 1%. This
shows the effectiveness of the proposed approach. Finally, although our NDPTS algorithm finds
better solutions than the GRG method or the simple NDP, it is more computationally expensive.
In general, any additional time leading to even small improvements can be easily justified since the
costs involved in natural gas transportation are relatively huge.

Figure 5 show the convergence of the NDPTS algorithm on instance net-c-10c¢3-C1. It can be
seen how, at some iterations, the solution deteriorates but then it improves to a better solution,
which illustrates how getting stuck at a local optimum is overcome by the TS mechanism. This
figure also shows that the algorithm often did not improve beyond fifty iterations. In fact, we have

observed similar behavior in all other tested instances.

6 Conclusions

In this work we have proposed a hybrid heuristic based on NDP and TS for a very difficult problem
arising in the natural gas pipeline industry. The NDPTS implementation, based primarily in a
short-term memory strategy, proved very successful in the experimental work as it was able to
obtained solutions of much better quality than those delivered by earlier GRG-based approaches
when tested on a number of instances with data taken from industry. In addition, the way the
method operates clearly produces better solutions that those found by Carter’s NDP method. This
represents, to the best of our knowledge, a significant contribution to the state of the art in this
area of work. Other contributions include the evaluation of a simple lower bounding scheme and a
data set collection which can be used for benchmarking.

There are still many areas for forthcoming research. The proposed procedure is a basic short-

term memory tabu search. It would be interesting to incorporate advanced TS strategies such as
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intensification and diversification. In addition, one of the great challenges in the industry is to

address time-dependent systems from the optimization perspective.
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Table 1: Comparison between GRG and NDPTS.

Instance Iterations GRG Time NDPTS RI (%)
net-c-6¢2-C1 8712  2,312,548.24  271.72  2,288,252.53 1.06
net-c-6¢2-C4 8535 1,393,061.12 270.02 1,393,001.99 0.004
net-c-6¢2-C7 9637 1,210,687.22 272.33 1,140,097.39 6.19
net-c-10c3-C2 7581 5,811,713.60 288.92 4,969,352.82 16.95
net-c-10c3-C4 7633 4,751,940.94 283.61 2,237,507.93  112.37
net-c-15¢c5-C2 5040 6,219,045.57 228.32 4,991,453.59 24.59
net-c-15c5-C4 5377  3,554,598.11 317.26  3,371,985.41 5.41
net-c-15¢5-C5 10040 Not found 334.01 7,962,687.43 N/A
net-c-17c6-C1 9654 Not found 368.12 8,659,890.72 N/A
net-c-19¢7-C4 8906 Not found 393.45 8,693,003.78 N/A
net-c-19¢7-C8 18574 Not found 398.72 7,030,280.45 N/A

19



Table 2: Solution quality.

Instance LB NDPTS Gap (%)
net-c-6¢2-C1 2,287,470.58  2,288,252.53 0.03
net-c-6¢2-C4 1,392,354.29  1,393,001.99 0.05
net-c-6¢2-C7 949,909.48  1,140,097.39 16.68
net-c-10c3-C2  4,303,483.50  4,969,352.82 13.40
net-c-10c3-C4  2,015,665.98  2,237,507.93 9.91
net-c-15¢5-C2  4,955,752.90  4,991,453.59 0.72
net-c-15¢5-C4  3,103,697.48  3,371,985.41 7.96
net-c-15¢5-C5  6,792,248.08  7,962,687.43 14.69
net-c-17c6-C1  8,129,730.11  8,659,890.72 6.12
net-c-19¢7-C4  7,991,897.18  8,693,003.78 8.06
net-c-19¢7-C8  5,897,768.92  7,030,280.45 16.10
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discharge pressure

mass flow rate

Figure 1: 2-D compressor station feasible domain for p; (suction pressure) fixed.
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function NDPTS ()
Input: An instance of the FCMP.

Output: A feasible assigment (z,p).

1 Preprocessing();

2 x « FindInitialFlow();
3 p<« NDP(x);

4 (z,p) < Ts((z,p);

5 return (z,p);

end NDPTS

Figure 2: Pseudocode of NDPTS.
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Figure 3: Basic components of a feasible solution on a cyclic topology.
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Figure 5: Convergence on instance net-c-10c3-C1.
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