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Abstract

We address the problem of minimizing the fuel consumption incurred by compressor stations in
steady-state natural gas transmission networks. In the practical world, these type of instances are very
large, in terms of the number of decision variables and the number of constraints, and very complex due
to the presence of non-linearity and non-convexity in both the set of feasible solutions and the objective
function. In this paper we present a study of the properties of gas pipeline networks, and exploit them
to develop a technique that can be used to reduce significantly problem dimension, without disrupting

problem structure, making it more amenable to solution.
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1 Introduction

We consider the problem of minimizing the fuel cost consumption incurred by compressor stations
through natural gas transmission networks. It is represented by a network, where arcs correspond to
pipelines and compressor stations, and nodes correspond to their physical interconnection points. The
decision variables are the mass flow rate through each arc, and the gas pressure level at each node. At
cach compressor station, there is a cost that depends on the inlet (suction) pressure, the outlet (discharge)
pressure and the mass flow rate through the compressor. The function representing this cost is typically
non-convex and nonlinear. In addition, the set of feasible solutions is typically non-convex as well.

In general, a problem with these characteristics is very difficult to solve. This can be clearly seen
in many of the approaches that have been taken in past to deal with this problem, such as those of
Wong and Larson (1968a, 1968b), Tsal et al. (1986), Percell and Ryan (1987), Lall and Percell (1990),
Mallinson et al. (1993), to name a few. The main contribution of our work is to provide a way to
reduce significantly problem dimension at preprocessing without disrupting problem structure. In fact,
our approach has been successfully incorporated in recent work, such as that of Wu et al. (2000), Kim
(1999), and Kim, Rios-Mercado, and Boyd (2000). For a more complete review on algorithms for
pipeline optimization the reader is referred to the work of Carter (1998) and Rios-Mercado (2002).

The rest of the paper is organized as follows. In Section 2 we introduce the problem and present a
mathematical formulation. In Section 3, we present the relevant results related to the pipeline network
flow equations. In Section 4 we develop the main theoretical results about uniqueness and the existence
of solutions using techniques from nonlinear functional analysis. We continue in Section 5 with the
description of the proposed network reduction method and show how to apply it to the two basic cases

of network topologies. We provide conclusions in Section 6.

2 Model Description

The objective function of the problem is the sum of the fuel costs over all the compressor stations in the

network. This problem involves the following constraints:
(i) mass flow balance at each node;
(ii) gas flow relation through each pipe;
(iii) pressure limit constraints at each node; and
(iv) operation limits at each compressor station.

The first two of the just-mentioned constraints are also called steady-state network flow equations.
We emphasize that while the mass flow balance equations (i) are linear, the pipe flow equations (ii)

are nonlinear. This has been well documented in (Wu, 1998; Wu et al., 2000). For medium and high



pressure flows, when taking into account the fact that a change of the flow direction of the gas stream

may take place in the network, the pipe flow equation takes the form:
pi—p; = cjulul® M

where p; and p; are pressures at the end nodes of pipe (¢, j), u is the mass flow rate through the pipe,
o is a constant (o =~ 1), and the pipe resistance c;; is a positive quantity depending on the physical
attributes of pipe (i, 7).

The steady-state network flow equations can be stated in a very concise form by using incidence
matrices. Let us consider a network with n nodes, ! pipes, and m compressor stations. Each pipe is
assigned a direction which, may or may not, coincide with the direction of the gas flow through the

pipe. Let A; be the n x [ matrix whose elements are given by

1, if pipe j comes out of node ;
aéj = —1, if pipe 5 goes into node 7; and
0, otherwise.
Ay is called the node-pipe incidence matrix. Similarly, let A,, be the n X m matrix whose elements are

given by

1, if node ¢ is the discharge node of station &;
ajy = —1, ifnode % is the suction node of station &; and

0, otherwise.

Ay, is called the node-station incidence matrix. The matrix formed by appending A,,, to the right hand
side of A; is denoted by A, i.e., A = (4; Ay), which is an n X (I + m) matrix.

Figure 1: An example of a simple network.

Figure 1 shows a simple network example with n = 10 nodes, [ = 6 pipes, and m = 3 stations.

Directions assigned to the pipes have been indicated. Note that all nodes, pipes, and stations have been
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labeled separately. The matrices A; and A,, for this network are given by,

0o 0o o0 0 o0 O 1 0 O
1 0 0 0 0 o0 -1 0 0
-1 0 0 0 0 O 0 1 1
0o 1 0 0 0 O 0 -1 0
A= 0 -1 1 1 0 O A, — 0 0 0
0o 0 -1 0 0 O 0 0 0
0o 0 o0 -1 o0 O 0 0 0
0o o o0 o0 1 0 0 0 -1
0O 0o o0 0 -1 1 0 0 0
0O 0o 0 0 0 -1 0 0

where the 4-th row in each matrix corresponds to node i, the columns in A; correspond to pipes (2,3),
4,5), (5,6), (5,7), (8,9), and (9,10), respectively, and the k-th column in A,, to compressor station &
(CSk) in the network. Note that in each matrix every column contains exactly two nonzero elements, 1
and —1, which correspond to the two end nodes of the pipe or compressor.

Letu = (uy,...,u)" and v = (vy,...,v,)T be the mass flow rate through the pipes and stations,
respectively. Let w = (u”,vT)T. A component u; or vy is positive if the flow direction coincides
with the assigned pipe or station direction, negative, otherwise. Let p; be the pressure at node 7, p =
(p1y...,pn)7, and s = (s1,...,3,)7 be the source vector, where the source s; at node 4 is positive
(negative) if the node is a supply (delivery) node. A node that is neither a supply or delivery node is
called a transition node and has its s; set equal to zero. We assume, without loss of generality, the sum

of the sources to be zero:
3 s =0. @

The network flow equations can now be stated as the following:

Aw =s, and
{ (3)

Ap? = p(u),

where p? = (p2,...,p2)T, ¢(u) = (¢1(w1), ..., dr(w))T, with ¢;(u;) = cju;|u;j|® being the pipe
flow equation at pipe j.

Now suppose the source vector s satisfying the zero sum condition (2), and the bounds p%, pU of
pressures at every node are given. The problem is to determine the pressure vector p and the flow vector

w so that the total fuel consumption is minimized, that is,

m

Minimize F(w,p) = > gk Pings) Pout(r)): (4a)
k=1

subject to Aw = s, (4b)



ATP® = ¢(u), (4¢)
p € [p"pY], and (4d)

(Ukapin(k)’pout(k)) € Dka k= ]-a 2; -e-, M, (46)

where vy, Pin(k): and poyg(x) are the mass flow rate, suction pressure, and discharge pressure at station k,
respectively. That is, in(k) and out(k) denote the indices associated with the nodes defining compressor
station k. In Figure 1, for instance, compressor 2 is formed by arc (3,4), which means in(2)=3 and
out(2)=4. Function g, is the corresponding cost function, and Dy, is the feasible domain in station & for
vector (vg, Pin(k) Pout(k))- See (Wu, 1998; Wu et al., 2000) for an in-depth study of the structure and
properties of Dy, and gi. Note the following:

1. The feasible domains Dy, are typically non-convex.
2. The fuel minimization functions g, are nonlinear, non-convex and sometimes discontinuous.

3. The pipe flow equations (4c) define a non-convex set.

In general, a problem with these characteristics is very difficult to solve. What we do here is propose
a technique that significantly reduces problem size, making it more tractable. This technique uses

concepts from graph theory that can be found in standard works, such as Deo (1974).

3 The Pipeline Network Flow Equations

Now let us consider a gas pipeline network subsystem which consists of nodes and pipes only, that is
with no compressor stations. We arbitrarily assign a direction for every pipe and view it as a digraph. Let
G be such a digraph with n vertices and e edges. Following notation from Section 2, w = (wy, ..., we)T
denotes the flow vector with w; the mass flow rate through the j-th edge. The flow w; is positive if the
directions of the flow and the edge coincide, negative otherwise. Let s = (sy,...,5,)T be the source
vector satisfying (2).

Given that no compressor stations are considered, the compressor flows u; can be ignored so that

system (3) can now be restated as:

Aw =s, and
{ 5

ATp? = p(w).

In many network flow problems functions, {¢;} describing the relationship between arc flows and node
variables at end points of the arc, are nonlinear. In the case of gas transmission networks, the most

commonly used functions are of the following form:
¢j(wj) = cjwjlwsl, 1<j<e,
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with ¢; > 0. In some cases, ¢;’s could also be of the form:
$j(w;) = cjwjlw;|*, 1< j<e,

where o > 0.

Now suppose a source vector 8 is given, satisfying the zero sum condition (2), and a reference vertex
has been selected whose pressure is also given (which is a necessary condition to solve system (5)). The
number of unknowns is e+n — 1 (since we assumed one pressure value is given, the unknowns are n — 1
pressure variables and e flow variables), and the number of flow equations is e + n. These are n node
flow balance equations and e pipe flow equations. Since rank(A)= n — 1, only n — 1 node flow balance
equations are linearly independent. Let A be the reduced incident matrix with respect to the selected
vertex; let By be the reduced cycle matrix with respect to some spanning tree. Since B fAT = 0 (from

Theorem 2 in Rios-Mercado et al. (2000)), system (5) is equivalent to

Afw = 8¢,
Byp(w) =0, and (6)
ATp? = ¢(w),

where s¢ is a (n — 1)-vector formed by removing from s the source term corresponding to the selected
reference vertex. The advantage of system (6) is that the first two sets of equations:

Arw =8¢, and
{ f f 7

Bpp(w) =0,
contain only the flow vector w. Notice that system (7) comprises e equations and e unknowns ((n — 1)
equations in the first equation and (e — n + 1) equations in the second, and e components in w). If it
has a unique solution, the flow vector w can be solved separately from the pressure vector p, and the
pressure vector p can be directly computed from the third equation of system (6), if the pressure at a

reference vertex is given. We now address the question of whether system (7) has a unique solution.

4 Uniqueness and Existence of the Solution

In this section, we show that system (7) has a unique solution. A direct implication of this result is that
system (5) has a unique solution if the source vector 8¢, and the pressure value at a reference node, are
given. We begin with some definitions.

Let H be a Hilbert space with a scalar product (-, -), and let || - || denote the associated norm, i.e.
lz|| = /(z, z) forany z € H.
Definition I A mapping ¢: H — H is said strongly monotonic if there exists a constant ¢ > 0, such

that, for every z,y € H:
((z) — ¢(y),z —y) > a(z —y,z —y).



Definition 2 A mapping ¢: H — H is said to be strictly monotonic if for every z, y € H we have

(¢(z) - ¢(y),z —y) 20,

and equality holds if and only if z = y.
Definition 3 A mapping ¢: H — H is said to be a basin, if for every zo € H, the set

X = {o € H: ($(a),2 — o) < 0}

is bounded.

Now we prove some basic results related to the above concepts.
Lemma 1 If ¢: H — H is strongly monotonic, ¢ is a strictly monotonic basin.

Proof: Obviously ¢ is strictly monotonic. To show that it is also a basin, we notice that, for every
2o € H,z € Xy,

a(x—zo,z—20) < (P(x) — d(z0), 2 — x0) (since ¢ is strongly monotonic)
(¢(2), 2 — m0) — ($(20), T — 7o)
< —(¢(z0), z — o) (since T € Xy,)
< lg(zo)llllz — ol (by Schwartz’ inequality).
So
1
lz = zoll < —li¢(zo)ll-
Hence, X, is bounded. u

However, a mapping ¢ that is a strictly monotonic basin is not necessarily strongly monotonic. Here

is an example.

Lemma 2 Let H = R% with the Euclidean scalar product, where d is a positive integer. Let ¢: R? —
R be a mapping as follows: for every x = (z1,xo,...,z4)7 € RY,

$(x) = (p1(z1), d2(22); - - -, palza)) 7,

where
bj(z;) = cjzj|z;|®,  for 1 < j<d,

with c; > 0 and o > 0. Then ¢ is a strictly monotonic basin.

Proof: For every x = (21, %2,...,29)T,y = (W1,%2,---,ya)" € RY,

d

(¢(x) — oy Z (@l251* = y5ly; |*) (@5 — y5)-



Since @ > 0, the function h(s) = s|s|® is a strictly increasing function for all s. Hence, each term on

the right-hand side (RHS) is nonnegative. Thus,

(¢(x) — 4(y),x —y) 2 0.

Equality holds if, and only if, every term on the RHS is zero, so that z; = y;, for every j. Therefore ¢
is strictly monotonic.

To show that ¢ is a basin, let x" € R%. Thenx € X0 means

(%, $(x)) < (x, $(x)),
ie.,
d d
Z Cj$?|$‘j|a < Z ijng|xj|a.
j=1 j=1
Let p = ||x|| and y = x/p, so, ||y|| = 1. Replace z; by py; in the above inequality, we have

d
Y51 ¢ Ty y;1*

p<
Yo ciptrely 2o
d 1
— d -
>i=1¢4lys Pt
Since ¢; > 0, function
d
o) = >ogo1 ¢ilyl e

Z?:l 4] |y.7 |2+a

is continuous on the unit sphere ||y|| = 1. Let

G = max

= i 9)-

Then, for every x € X, 0, we have
p= x|l < IIX°|IG.

Hence, X,o is bounded for every x° € R%; i.e., ¢ is a basin. [ |

Remark: ¢ is not strongly monotonic if @ > 0. If & = 0, we obtain the following.
Corollary 1 The identity function ¢: R® — RE, ¢(x) = x is a strictly monotonic basin.
The following lemma can be found in Schwartz (1969).

Lemma 3 Let H be a Hilbert space. If ¢: H — H is continuous and strongly monotonic, then ¢ maps
H onto H.



Letr > 0,t > 0, be two integers, and d = r + £. We say an r X d matrix A and a ¢ x d matrix B
are perpendicular to each other if they satisfy the following hypothesis.
Hypothesis P

1. rank(A) = r, rank(B) = ¢, and
2. ABT = BAT =0.

Let M = {x € R?: Ax = 0}, and N = {y € R?: By = 0}. By Hypothesis P, we have M = N+
and

R'=M@o N.
Let ppr: R% — M be the projection from R% to M, py: R¢ — N be the projection from R? to N.

Then, for every w € R¢,

w = py (W) +pn(W).

Theorem 1 (Uniqueness) Let matrices A and B be perpendicular to each other. Suppose ¢: R¢ — R4

is strictly monotonic. Then, for every s € R, the solution to the system of equations

Aw =s, and
{ ®)

By(w) =0

is unique.
Proof: Suppose both u and v are solutions to system (8), then

{ A(lu—v) =0, and
B(¢(u) — ¢(v)) = 0.

Hence, u — v € M, and ¢(u) — ¢(v) € N. Thus, (u — v,é(u) — ¢(v)) = 0. Since ¢ is strictly
monotonic, the above equation implies that u = v. Hence, the solution is unique. [ |

The proof of the existence of a solution to system (8) is not so straightforward. We first prove, in
Lemma 4, that it is true for the continuous and strongly monotonic mapping ¢. Then, in Theorem 2, we

prove that it is also true if the mapping ¢ is a continuous and strictly monotonic basin.

Lemma 4 Suppose ¢: R% — R is continuous and strongly monotonic. Then, for every s € R,

system (8) has a solution.

Proof: Let wy be the unique solution to the linear system:

Aw =s, and
{ )

Bw =0,



so that wo € N. We define ¢: M — M as follows. For every x € M,

P(x) = pum($(x + wo)). (10)

Then, for every x!, x> € M, we have

($x) =92, x' = %) = (pu((x" + wo)) — par($(x* + wo)), x" — x?)
= (pum((x" + wo)) — par(B(* + wp)), x' - x?)
+ (pn($(x" +wo)) — v (B(x* + o)), x' — x?)
x! + wy) — d(x +wy), x! — x2)
x' + wo) — p(x* + wo), (x' + wo) — (x* + Wo))

(x' +wo) — (x> +wo), (x' + wo) — (x” + wo))

Hence, 4 is strongly monotonic on M. Moreover, 4 is continuous because ¢ is continuous. By
Lemma 3, there is ax € M such that 1(x) = 0. Thus, by (10), par(d(x+wg)) = 0. Let w = x+ wy.
Since x € M, Awy = s, we have Aw = A(x + wy) = s. Moreover, since pys(¢(w)) = 0, we have

d(w) = pp(d(w)) + pn(d(w)) = pn(p(w). Hence, ¢(w) € N, and so Bp(w) = 0. Hence, system
(8) has a solution w. ]

Theorem 2 Let matrices A and B be perpendicular to each other. Let ¢: R% — R be continuous.

Suppose
(i) ¢ is strictly monotonic, and
(ii) ¢ is a basin.
Then system (8) has a solution for everys € R'.

Proof: Since ¢ is strictly monotonic, for every € > 0, ¢(w) = ¢p(w) + ew is strongly monotonic

because
(¢e(w ) — de(w ) w _W2)
(p(wh) — p(W?), w! — w?) + (ew! — ew?, w! — w?)
2 1

> e(w! —w? w! — w?).

Hence, by Lemma 4, there is a we € R4, such that

Aw,. =38, and (11
Bg(w,) = 0.



Let wy be the solution to linear system (9), as in Lemma 4. Then
A(we —wp) =0.
Hence, w, — wy € M. The second equation of (11) implies that ¢.(w,) € N. So,
(We — wo, pe(We)) =0, (12)

ie.,

(We — wo, p(We)) + (We — wo, ew,) = 0.

Since ¢ is a basin, there is a G; > 0, such that for every w € RY, the inequality
(W — Wy, ¢(W)) S Oa

implies ||w|| < G;. By Corollary 1, y(w) = w is also a basin. Hence, there is a G2 > 0, such that the
inequality

(W - W(),W) < Oa

implies ||w|| < Ga. Thus, by (12), we must have
||we|| < max(Gi, Ga).
By Weierstrass’ theorem, there isaw € RY, such that
|lwe, — w|| — 0 asn — oo,

for some sequence €. Since ¢ is continuous, by (11), we have

Aw =s, and
Bg(w) = 0.

Hence, system (8) has a solution. [ ]
Corollary 2 System (7) has a unique solution for every sy € R L

Proof: By applying Theorems 1 and 2, taking A = Ay and B = By, then using Lemma 2. [ |

Even a single nonlinear equation can have no solution or more than one solution. Interestingly, some
systems of nonlinear equations which arise in industrial engineering, have a unique solution, as do (7)
and (8), as proposed in this paper.

Since the function ¢ involved in gas pipeline network problems is monotonic, solving the system
(7) by Newton’s method is very stable, fast, and accurate. These facts lead us to introduce the Network
Reduction Method for networks consisting of nodes, pipes, and compressor stations. We shall show
in the next section that this method can greatly reduce the size of the problem, without modifying its

mathematical structure.
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5 The Network Reduction Method

The main result obtained in the previous section is that, if all the sources (that is, the mass flow rates at
all the nodes of the network going into or out of the network) are given, then all the flows in the pipes
are completely determined. Also the pressures at the nodes can be determined if the pressure at one

(reference) node is given. It must be pointed out that this result is based on two facts:
1. Each node has mass flow balance.
2. There is a relation between the flow rate and the pressures at the two end nodes of each pipe.

This result is valid in networks consisting of pipes only. Let us take a step further and consider now a
network comprising both pipes and compressor stations. The mass flow balance equations must still be
satisfied at each node, and a pipe flow equation (relating flow rate through the pipe, and the pressure at
the end points) must be satisfied at each edge representing a pipe. However, for each edge representing
a station, there is no equation relating the flow rate through the station and the pressures at its suction
and discharge sides. The flow rate, suction pressure, and discharge pressure of a station are actually
independent of each other, and there are only certain inequalities that these variables must satisfy. Hence,
the result obtained in the previous section cannot be directly applied to such networks.

In this section, we shall introduce the Network Reduction Method for networks consisting of nodes,
pipes, and compressor stations. In the sequel, we refer to the latter simply as “stations.”

Let us first start by introduing the concept of a reduced network. By removing all the stations’ arcs
from a network, which consists of nodes, pipes, and compressor stations, we are left with disconnected
components, each of them called a subnetwork, consisting of only nodes and pipes. By construction,
there are no stations in any subnetwork.

On the other hand, if we view each subnetwork as a single node for the network, i.e., shrinking
cach subnetwork to a node, and replacing the compressor arcs we had previously removed, we get a
new network which consists only of nodes, each representing a subnetwork, and the station arcs. There
are no pipes in this network because all the pipes are encapsulated in the nodes. This new network is
called a reduced network (where each node represents a subnetwork, and each edge represents a station).
It is easy to see that there is a unique (connected) reduced network associated with a given (original)
network. The structure of the undirected graph associated with the reduced network is called reduced
graph and can be cither a tree or a graph with cycles, depending on the configuration of the compressor
stations in the network.

In order to illustrate these concepts let us look at the following example. In Figure 2, a pipeline
network has been drawn which comprises n = 38 nodes, [ = 38 pipes, and m = 5 compressor
stations. Stations are labeled: CS1, CS2, CS3, CS4, and CSS5. The number of edges (pipes or stations)
is e = [ +m = 43. Hence, the number of fundamental circuitsise—n+1 =43 —-38+1=6.Ifall 5

stations are removed from this digraph, we get 5 disconnected components, i.c., 5 subnetworks, labeled

11



Figure 2: A network with five subnetworks.

SBN1, SBN2, SBN3, SBN4, and SBNS5. Each subnetwork is indicated by dotted lines. The undirected
graph of the associated reduced network is shown in Figure 3, which comprises b nodes and 5 edges,
cach node representing a subnetwork and each edge representing a station. In this example, the reduced

graph has only one cycle.

Figure 3: The reduced graph for network of Figure 2.

For practical instances of pipeline networks, we have found that the topology of a reduced network
is much less complicated than that of the original network. Although a network may have a number of
cycles, especially cycles in pipes, its associated reduced graph is usually a tree. Even if the associated
reduced graph is not a tree, the number of cycles in the reduced graph is often significantly less than that

in the original network.
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We distinguish two cases in terms of the network topology. In the case where the reduced graph
is a tree, we shall show that the mass flow rates through all the stations can be fixed if, as we have
always assumed, the sources (supplying or delivering flow rates) at all nodes are given. This greatly
simplifies the fuel cost minimization problem. On the other hand, if the reduced graph possesses at least
one cycle, the mass flow rates through the stations are not uniquely determined but satisfy a system of
linear equations. The number of independent linear equations in the system is equal to the number of
the fundamental circuits in the super-network. For example, for the network shown in Figure 2, there is

only one independent linear equation in the system.

5.1 Case 1: Reduced Graph is a Tree

In this section we assume that the reduced graph is a tree. In this case, since each node in the reduced
network represents a subnetwork, we can define the source value at this node as the sum of the source
values at all the nodes included in this subnetwork. In this sense, the sources at all the nodes in the
reduced network are fixed. Since the reduced graph is a tree, all the flow rates through the edges of the
reduced network are uniquely determined (by Corollary 2, with B = 0). Since each edge in the reduced
network represents a station in the original network, it means that the flow rates through all the stations
are known.

Now we examine the subnetworks. We can see that, for each subnetwork, all the sources at the
nodes, including the nodes connected to stations are known. By Theorem 2, we conclude that the flow
rates through all the pipes in the subnetwork can be uniquely determined. Moreover, the pressures at all
the nodes in the subnetwork are uniquely determined by the pressure at one node, the reference node.
These pressures will also be increased or decreased as the pressure at the reference node is increased or
decreased, respectively.

Hence, we have the following fundamental theorem that underpins the network reduction method.
Theorem 3 Suppose that
(i) The pipeline network comprises only nodes, pipes, and stations;
(ii) the sources at all the nodes are given; and
(iii) the associated reduced graph is a tree.
Then
1. Flow rates through all the pipes and stations are known.

2. For each subnetwork, pressure p at any node is related to the pressure p, at a reference node by

p’—pi=c¢

13



where
_— . . . (81
c= Z ¢j ujlu;l
jed
is a constant, J is an index set of pipes in a path connecting the node and the reference node, c;

and o are constants, and u; is the flow rate in the j-th pipe, which is known.

Note that the constant c is independent of the selection of the path because the flow rate u;’s are
solved from the equations such that summation - ;¢ ; ¢; u;|u;|* along any cycle in a subnetwork is
zero. Hence, if a network is divided into b subnetworks, the total number of independent variables in
the network is b, i.e., the pressure variables p, at the b reference nodes.

The fuel cost minimization problem (4a)—(4¢) can now be greatly simplified by applying the network
reduction method. First, since the flow rates vy, through all the stations are known, each function g in

(4a) depends on (Pin(k)apout(k)) only. Thus, the objective function F(w,p), depends on only the

suction and discharge pressures (pin( k)> Pout( k)), k=1,...,m. Let z be the vector of these suction and
discharge pressures, i.c., z = {pin(1)’ Pout(1)s - - - » Pin(m)> Pout(m) }. The objective function F' can now
be represented by
m
G(z) = Y 95(Vk: Pingry: Pout(r))- (13)
k=1

where vy, is known.

Further, suppose the network is divided into b subnetworks. The pressure variables in z can be
partitioned into b disjoint vectors z;, each representing the pressures at all the suction or discharge nodes
in the 4-th subnetwork, i.c., z = (27 ,..., ZE)T. Let z; = (%1,..-,2is;)", where J; is the number of
the suction and discharge nodes in the ¢-th subnetwork. Let us choose z;1 as the reference pressure for
the ¢-th subnetwork. Then, according to Theorem 3, pressure p at every node in the ¢-th subnetwork is

related to z;; by
2 2

b =% =¢
The fact that each pressure value is bounded implies that there are two constants z) and zY, such that

the pressure limit constraints (4d) for nodes in the ¢-th subnetwork are equivalent to
zZL <zn1 < zZU .

The effectiveness of the network reduction method is based on the following observations. The objective
function depends only on the pressures at suction and discharge nodes. This means that we do not need
to calculate the values of pressures at the nodes other than the suction or discharge nodes. However, we
must keep all pressure variables within their pressure limits, i.e., satisfying the constraints (4d). These
can be fulfilled by confining the reference pressure z;; within its limits zZL and zZU . Constraints (4¢) are
irrelevant to the pressures at nodes other than suction or discharge nodes; therefore, these pressures will

disappear in the minimization problem.

14



On the other hand, the pressures at suction or discharge nodes in the i-th subnetwork must be related

to the reference pressure z;, i.¢.,

2 2 _ . :
Zij — Zij1 = Cij, 31=2,...,J;

where c¢;;’s are constants.
Since the vg’s are known, the compressor station constraint (4e) becomes z € Z, where Z is the
feasible domain of stations for the suction and discharge pressures z.

Hence, the fuel cost minimization problem (4a)—(4e) can be simplified to the following:

Minimize G(z), (14a)
subject to z' <z < 2Y, 1<i<b, (14b)
Z—zy = ¢, 1<i<b j=2,...,J;, and (14¢)

z € Z, (14d)

where G(z) is defined in (13).
Comparing problem (4a)—(4e) with problem (14a)—(14d), the simplifications are:

1. The number of variables is reduced from { 4+m + n to the size of vector z, which is at most 2m. A
typical pipeline network may comprise thousands of pipes and nodes, but only dozens of stations.

Hence this reduction is typically significant.

2. The (nonlinear) constraints (4c¢), involving 3 variables, are replaced by the (nonlinear) constraints
(14c¢), involving 2 variables. Linearizing a nonlinear constraint involving 2 variables is much

easier and more effective.

3. The number of nonlinear equality constraints is reduced from [ to 2?21 (J; —1) < 2m —b. Since
nonlinear equality constraints are often the main obstacles in optimization problems, reducing the

number of the nonlinear equality constraints can make the problem easier to solve.

Before reduction After reduction
Configuration l m n I+m+n| b |z|
A 10 2 10 22 2 4
B 44 7 47 98 7 13
C 91 9 180 280 10 18
D 1462 | 37 | 1560 3059 38 73

Table 1: Size of networks before and after reduction.

Table 1 displays a comparison of sizes before and after the reduction for some typical network
configurations. We can see that the size of z is often much smaller than the number [ + m + n, i.c.,

the size of the reduced problem is much smaller than that of the original problem. We must point
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out that the tradeoff for these simplifications is that we need to solve the network flow equations for
cach subnetwork. However, our numerical experiments show that a modified Newton’s method is an
extremely fast and stable way to solve these equations. Moreover, all these calculations can be done at

pre-processing.

5.2 Case 2: Reduced Graph Has Cycles

If the reduced graph is not acyclic, the flow rates cannot be uniquely determined, although the network
reduction method can still be successfully used. In this case, the mass flow rate v through the stations

satisfies a simple system of linear equations;
Av =S, (15)

where A is the node-edge incidence matrix for the super-network and S is the vector of sources at the
nodes in the reduced network. The i-th element of S is the sum of the sources at all the nodes in the ¢-th

subnetwork. Since the flow rate v must be bounded, say, ||v|| < Ymqez, We can define a set V' as
V= {V AV = Sa ”V” < Umaw} .

Theorem 4 The number of independent variables in system (15) is equal to the number of fundamental

cycles in the associated reduced network.

For each v € V, we define a function f(v) on V, which is

fv) = min{G”(z) c (2 <z < 2V, 1 <i < by

G- = 1<i<bj=2.... 05 ze€Z'},

where G?, (2F)?, (Y)Y, ci;» and Z” all depend upon v. Hence, the fuel cost minimization problem
becomes one of minimizing f(v) over V. A numerical approximation technique, such as grid generation
on v could be applied to find approximate solutions. This method might work well if the dimension of
the kernel of the matrix A is small, or equivalently, if the number of independent variables in system (15)
is small. On the other hand, the dimension of the kernel of matrix A is equal to the number of the
fundamental cycles in the reduced graph. Therefore, the method is relatively effective for networks
whose reduced graph has relatively few cycles. The extreme case occurs when this dimension equals
zero; i.e., the reduced graph is a tree. This is Case 5.1. In this case, v can be uniquely solved via
equation Av = S.

The efficiency of decomposition techniques can be increased via the network reduction method.
This is so because, at a given iteration, fixing v implies that all other flow variables in the system can be

determined, due to the developments presented in the previous section.
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6 Conclusions

We have proposed a reduction technique for gas pipeline optimization problems. The justification of
the technique was based on a novel combination of graph theory and nonlinear functional analysis. The
reduction technique can decrease the problem size by more than an order of magnitude in practice,

without disrupting its mathematical structure.
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