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Abstract

In this paper we propose and present two heuristics for the problem of minimizing fuel cost on steady-state
gas transmission problems on looped networks. One of the procedures is based on a two-stage iterative
procedure, where, in a given iteration, gas 
ow variables are �xed and optimal pressure variables are
found via dynamic programming in the �rst stage. In the second stage, the pressure variables are �xed
and an attempt is made to �nd a set of 
ow variables that improve the objective function by exploiting
the underlying network structure. The other proposed heuristic adapts some concepts from generalized
reduced gradient methods to attempt to �nd the direction step. This work focuses on looped network
topologies, that is, networks with at least one cycle containing two or more compressor stations. These
type of topologies posse the highest degree of di�culty in real-world problems.

Keywords : natural gas, transmission networks, fuel minimization, heuristics, generalized reduced gra-

dient

1 Introduction

A gas transmission network for delivering natural gas involves a broad variety of physical components
such as pipes, regulators, and compressor stations to name a few. As the gas travels through the pipe, gas
pressure is lost due to friction with the pipe wall. Some of this pressure is added back at compressor stations,
which raise the pressure of the gas passing through them. In a gas transmission network, the overall operating
cost of the system is highly dependent upon the operating cost of the compressor stations in a network. A
compressor station's operating cost, however, is generally measured by the fuel consumed at the compressor
station. Hence, the goal is to minimize the total fuel consumption used by the stations while satisfying
speci�ed delivery requirements throughout the system.

Gas transmission network problems di�er from traditional network 
ow problem in some fundamental
aspects. First, in gas networks, a pressure variable is de�ned at every node in addition to the 
ow vari-
ables representing mass 
ow rates through each pipe. Second, in addition to the network 
ow conservation
constraint set, there exist two other type of constraints: (1) a nonlinear equality constraint on each pipe,
which represent the relationships between the pressure drop and the 
ow; and (2) a nonlinear non-convex set
for each compressor station, which represents the feasible operating limits for pressure and 
ow within the
station.

The problem is very di�cult due to the presence of non-convexities in both the objective function and
the set of feasible solutions. Optimization algorithm (most of them based on dynamic programming) for
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non-looped gas network topologies are in a relatively well developed stage. However, e�ective algorithms for
looped topologies are practically non-existent.

In this paper we propose two heuristics for the fuel cost minimization on gas transmission systems with
a looped network topology, that is, networks with at least one cycle containing two or more compressor
station arcs. The network based heuristic (NBH) is based on a two-stage iterative procedure. In a particular
iteration, at a �rst stage, gas 
ow variables are �xed and optimal pressure variables are found via dynamic
programming (DP). At the second stage, the pressure variables are �xed and an attempt is made to �nd a
set of 
ow variables that improve the objective function by exploiting the underlying network structure. The
GRG based heuristic (GBH) is based in the generalized reduced gradient and attempts to generate descent
directions and cope with the infeasibility issue at the same time.

The organization of this paper is as follows. In Section 2 we introduce the problem and present the
mathematical model. Our proposed heuristics NBH and GBH are presented in Sections 3 and 4, respectively.
We wrap up with a discussion of the direction of this work in Section 5

2 Problem Statement and Mathematical Formulation

Let G = (N;L;M) be a directed network de�ned by a set N of n nodes, a set L of l pipes, and a set M
of m compressor stations. The mass 
ow rate on a pipe (i; j) 2 L is represented by uij , and the mass 
ow
rate through a compressor station (i; j) 2 M is represented by vij . Note that each compressor station is
represented by a special pipe which connects a pair of nodes (i; j) 2M , where i and j are the corresponding
suction and discharge nodes, respectively. Let u; v be the vectors of uij 's and vij 's, i.e., u = fuij ; (i; j) 2
Lg; v = fvij ; (i; j) 2 Mg; and let w be the vector de�ned by w = (u; v)T . Let p = (p1; :::; pn)

T be the
pressure vector with pi the pressure at node i. Let s = (s1; :::; sn)

T be the source vector with si the source
at node i. If si is positive (negative), this corresponds to the gas supply limit (demand requirement) at node
i. For the steady-state model, the sum of the sources is assumed to be zero, i.e.,

Pn
i=1 si = 0.

The 
ow balance equation at a node has the following meaning: the sum of 
ows coming out of the node
is equal to the sum of the 
ow entering the node. It can be represented asX

j:(i;j)2L[M

wij �
X

j:(j;i)2L[M

wji = si; 8 i 2 N; (1)

where wij represents either uij if (i; j) 2 L or vij if (i; j) 2M .

The physical law that relates the 
ow in the pipe to the di�erence of pressure at its two ends for high-
pressure networks is given, as discussed in (Osiadacz, 1987), by the Weymouth's formula:

p2i � p2j = kiju
2
ij ; 8 (i; j) 2 L; (2)

where kij is a constant whose value depends on the pipe physical properties.

The physical operational limits at each compressor station is another set of constraints, which includes
the maximum/minimum compressor speed ratio, the maximum/minimum allowable volumetric 
ow rate. A
compressor station is typically of many compressor units (which in turn can be of many types) arranged in
di�erent con�gurations settings. Let us assume that each compressor station (i; j) has k centrifugal compressor
units hooked up in parallel.

Let Dk
ij denote the feasible compressor domain for variables (vij ; pi; pj), and let gkij(vij ; pi; pj) denote its

corresponding fuel cost function. Recent work by (Wu et al., 1999) contains a detailed explanation about the
structure of the domain Dk

ij , and the behavior of the fuel consumption function gkij . Figure 1 from (Wu et al.,

1999) shows an example of domain Dunit
ij (k = 1 centrifugal compressor unit) and a compound domain D4

ij .

The fuel cost function, gunitij , in a single compressor unit is computed by

gunitij (vij ; pi; pj) = aijvij

��
pj
pi

�m
� 1

�
; 8 (vij ; pi; pj) 2 D

unit
ij ; (3)
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(a) Dunit
ij for a compressor station with a single

compressor unit
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(b) Dk
ij for compressor station (i; j) with k = 4

compressor units in parallel

Figure 1: Feasible domain of the compressor station.

where aij and m are constants which are determined by the speci�c type of compressors involved.

In our work, we use function g0ij , extended version of gunitij , which is given by g0ij = aijvijf(
pj
pi
)m � 1g,

(vij ; pi; pj) 2 D
k
ij . The mathematical formulation of the problem is given by

minimize
X

(i;j)2M

g0ij(vij ; pi; pj); (4a)

subject to
X

j:(i;j)2L[M

wij �
X

j:(j;i)2L[M

wji = si; 8 i 2 N; (4b)

p2i � p2j = kiju
2
ij ; 8 (i; j) 2 L; (4c)

(vij ; pi; pj) 2 Dk
ij � R3; (i; j) 2 M: (4d)

The di�culty in solving this problem arises from the presence of non-convexity in both the set of feasible
solutions and the objective function. In addition, the type of underlying network topology becomes a crucial
issue. For non-looped network topologies, DP approaches have been applied with relative success. See
(R��os-Mercado, 1999) and (Carter, 1998) for details of the DP algorithms.

These procedures rely heavily on theoretical results establishing that, for this type of (non-looped) systems,
the involved 
ow variables can be uniquely determined in advance, and thus, eliminated from the problem.
For network topologies with loops, the problem becomes more di�cult because the 
ow variables can not be
uniquely determined, so they indeed have to be explicitly treated in the model. Addressing looped networks
becomes the main focus of this work.

3 The Network Based Heuristic

Let x 0 = (v0; p0) be an initial feasible solution to problem (4). For a tree structured gas transmission
network, 
ow variables v are uniquely determined. However, for looped networks, one may obtain better
a objective function by modifying the current 
ow setting v0. For this purpose, we introduce the residual
network concept (Ahuja et al., 1993). The residual network was originally introduced to �nd the optimal 
ow
(or to prove its optimality) in minimum cost network 
ow problems. We de�ne the residual network with
respect to the current 
ow vector v� as follows. We replace each arc (i; j) in the original network by two arcs,
a forward arc (i; j) and a backward arc (j; i): the arc (i; j) has cost cij and the arc (j; i) has cost �cij .
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In our heuristic 
ow modi�cation step, the costs of the residual network are approximated by the deriva-
tives of the objective function with respect to the 
ow on each compressor station, that is,

cij � aij

��
pj
pi

�m
� 1

�
; (5)

where pi; pj are the current solution values delivered by dynamic programming with �xed 
ow variables. This
cost cij is assigned at each forward edge of the residual network, while �cij is assigned at each backward
edge.

The cycle cost �C , total cost of the cycle C in a residual network, is de�ned by

�C =
X

(i;j)2MC

�ij(C) � cij ; (6)

where �ij(C) equals 1 if (i; j) is contained in the cycle C and (i; j) is a forward arc of G0(v�), �1 if (j; i) 2 C
and (j; i) is a backward arc of G0(v�), and 0 otherwise, and MC is the set of compressor stations located in
the cycle C. If �C is negative, then we call a negative cycle and denote it as C�.

Modi�cation of the 
ow is done by augmenting 
ow through a negative cycle C�. That is, if there exists
a negative cost cycle C�, then we augment positive 
ow through C�, and hence update the current 
ow
setting. This 
ow modi�cation step can be represented as

vnew = v0 + � � �(C�); (7)

where � > 0 is the positive amount of 
ow which will be added through the cycle, and �(C�) is the vector of
�ij(C

�), a vector representing the negative cycle C�. The 
ow modi�cation step of NBH can be viewed as a
nonlinear programming algorithm in which we try to �nd a direction (a vector of 
ow modi�cation) such that
by moving � units in this direction, the objective function decreases. In our heuristic procedure, a negative
cycle vector �(C�) corresponds to the search direction.

The value � is bounded below by zero and above by �, which can be obtained by considering the complex
inequality constraint set Dij , (i; j) 2 C

�. If � = 0, then the algorithm stops. Otherwise, we set � = � > 0.

For the newly obtained 
ow setting vnew, we need to �nd pressure variables, which requires to rerun
dynamic programming with �xed 
ow setting vnew. If dynamic programming with vnew has no feasible
solution or no improvement has been achieved, we reduce the size of � by setting � = 
�, where 0 < 
 < 1,
and run dynamic programming until we get a desirable result. The algorithm is summarized below.

Step 1: Find an initial feasible solution x 0 = (v0; p0).

Step 2: Construct the residual network G0, and �nd a negative cycle C� with negative cost �C� .

Step 3: If j�C� j < ", where " is a small number, stop. Otherwise, go to Step 4.

Step 4: Set � = �. If � = 0, stop. Otherwise,

(a) Modify the current 
ow v t by v t+1 = v t + � � �(C�).

(b) Calculate pressure values using dynamic programming with modi�ed 
ow v t+1.
If dynamic programming yields infeasible solution, or gt+1 � gt > 0, then set � = 
�, with
0 < 
 < 1, and go to (a). Otherwise, go to Step 2.

4 The GRG Based Heuristic

Procedure NBH, presented in the previous section, can be viewed in the context of nonlinear programming
in which the descent direction contains information only on 
ow variables. Moreover, if we partition the set
of 
ow variables into basic and nonbasic, and set any 
ow variable in the compressor station as basic and
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the rest of the 
ow variables as nonbasic, then NBH can be interpreted as a sectioning procedure (Reklaitis
et al., 1983) within the space of the single nonbasic variables.

Now consider the case we want to �nd the descent direction but with the information on the pressure
variables along with 
ow variables. That is, when partitioning the variables into basic and nonbasic variables,
we not only consider the 
ow variables, but also the pressure variables de�ned at each suction or discharge
node of the compressor station. Within this framework, the heuristic method could potentially be improved
by changing all nonbasic variables simultaneously, which is the motivation of our GRG based heuristic (GBH).

Applying nonlinear methods such as GRG directly to problem (4) is mainly limited by the fact that the
direction of the movement is not feasible due to the presence of nonlinear equality constraints (4c). So an
extra projection step is necessary to maintain feasibility and this makes the computational e�ort very high.
In GBH, we attempt to generate a feasible descent direction, by adapting some of the fundamentals from
GRG.

Now we consider problem (4), and apply GRG. The two equality constraint sets, (4b) and (4c), are
represented in vector form as (

Aw = s ;

AT
l p

2 = �(u);
(9)

where A = (AljAm), Al and Am are the n � l node-pipe and the n �m node-compressor station incidence
matrices, respectively, p2 = (p21; :::; p

2
n)
T , and �(u) is the vector of �ij(uij)'s, with �ij(uij) = kiju

2
ij , (i; j) 2 L.

Suppose a feasible point x (k) = (w ; p) is available for the problem along with a partition x = (x̂ ; x )T ,
where x̂ and x correspond to the sets of basic and nonbasic variables, respectively. Accordingly, we also
partition the objective function gradient vector rg into rĝ and rg . The corresponding Jacobian matrix
(matrix of partial derivatives) is partitioned into B and N , for basic and nonbasic columns, respectively. The
index sets of basic and nonbasic variables are denoted by SB and SN , respectively. Let J be the gradient
matrix of nonlinear pressure drop constraint set (4c) evaluated at x (k).

At x (k), given a choice of basis, the r~g(x (k)) vector associated with the nonbasic variables is given by

r~g(x (k)) = rg(x (k))�rĝ(x (k))B�1N ; (10)

where B and N are given by

B =

�
A0

SB

JSB

�
=

0
BBBBB@

A0

SB

rĥ1
rĥ2
...

rĥl

1
CCCCCA ; N =

�
ASN

JSN

�
=

0
BBBBB@

ASN

rh1
rh2
...

rhl

1
CCCCCA ;

with A0

SB
= (ASB j 0 ), 0 being the (n� 1)� l zero matrix. Here, rhe = (@he=@x), rĥe = (@he=@x̂), where

he(x) corresponds to the e-th nonlinear equality constraint (4c), and rg = (@g=@x), rĝ = (@g=@x̂) denote
the partial derivatives of g with respect to x and x̂ , respectively.

Necessary conditions for a local minimum are

r~g � 0; (11)

and xi(r~gi) = 0; for i 2 SN ; (12)

Since both conditions (11) and (12) must be satis�ed at a local minimum, the nonbasic variable direction
vector d can be de�ned as follows

di =

(
�r~gi; if r~gi � 0;

�xir~gi; if r~gi � 0;
(13)
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where i 2 SN .

Thus, if r~gi < 0, nonbasic variable i is increased; while if r~gi > 0 and xi > 0, then nonbasic variable i is
decreased. This de�nition ensures that when di = 0 for all i, the necessary condition will be satis�ed. When
d , the change in the nonbasic variables, is calculated using (13), then the change in the basic variables must
be calculated using

d̂ = �B�1Nd : (14)

Note, however, that d = (d ; d̂) is not a feasible direction. More precisely, d is a descent direction in the

space of the nonbasic variables x , but the composite direction vector d = (d ; d̂)T , where d̂ is calculated via

the linear equation (14), yields infeasible points. Since d has desirable properties but the addition of d̂ makes

d infeasible, it seems reasonable that the computation of d̂ should be revised.

In a GRG framework, for instance, we �rst calculate d using the linearization. Then, rather than calcu-
lating d̂ using equation (14), we apply a direction correction step, which usually is an iterative procedure for
solving sets of nonlinear equations.

In our proposed heuristic, we take similar steps as in GRG. That is, we take the nonbasic direction d ,
which contains not only nonbasic 
ow variables, but also nonbasic pressure variables, along with d̂v as initial
movement, while setting d̂p = 0. Therefore, in GBH, we consider not only the direction of the movement for


ow variables, but for the nonbasic pressure variables. Note that the addition of d̂v = �A
�1
SB

Nd guarantees
the 
ow conservation law being satis�ed after the modi�cation. Hence the direction of the movement of GBH
is given by:

d =

0
@ d

d̂v

d̂p

1
A =

0
@ �r~g

�A�1
SB

Nd

0

1
A (15)

After the modi�cation along this direction d , the feasible pressure variables are obtained by changing the
basic pressure variables using equations (4c). This calculation is done very e�ectively because each nonbasic
pressure variable has its basic pressure variable connected by a single ordinary pipe, and hence (4c) can be
used to get the value of the pressure at one end of the pipe once we know the pressure at the other end of
the pipe.

The step size � is chosen in a di�erent way than that of NBH. In NBH, the step size � is interpreted as
the amount of augmenting 
ow through the cycle. In GBH, however, � regulates both the 
ow amount and
the pressure values. The computation of �, therefore, needs further consideration.

Once � is chosen, the feasible pressure variables are obtained by simple calculation. We now provide a
step-by-step summary of the algorithm.

Step 1 Find an initial feasible solution x 0 = (v0; p0) and set k = 0.

Step 2 Choose a partition of x into x and x̂ such that B has nonzero determinant, and compute the reduced
gradient

r~g(xk)

Step 3 If jr~gj < ", where " is a small number, stop. Otherwise, set

d = �(r~g)T ;

d̂ = (d̂v ; d̂p)
T = (�A�1

SB
Nd ; 0 )T ;

and d = (d̂ ; d)T

Step 4 Set � = �. If � = 0, stop. Otherwise,

(a) Modify the current solution xk by xk+1 = xk + � � d .
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(b) Calculate pressure values using (4c).
If new solution x t+1 is infeasible, or gt+1 � gt > 0, then set � = 
�, with 0 < 
 < 1, and go to
(a). Otherwise, update t t+ 1 and go to Step 2.

5 Conclusion

In this paper we have presented the design of two heuristics for the fuel cost minimization on natural gas
transmission networks in steady-state. The algorithms focus on addressing looped network topologies. Our
current ongoing research involves the computational implementation of the heuristics so we can provide an
empirical evaluation. Among other issues that remain to be investigated are a criteria for choosing the step
size �, and proof of convergence.
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