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Abstract

In this paper we propose and present two heuristics for the problem of minimizing fuel cost on steady-state
gas transmission problems on looped networks. One of the procedures is based on a two-stage iterative
procedure, where, in a given iteration, gas flow variables are fixed and optimal pressure variables are
found via dynamic programming in the first stage. In the second stage, the pressure variables are fixed
and an attempt is made to find a set of flow variables that improve the objective function by exploiting
the underlying network structure. The other proposed heuristic adapts some concepts from generalized
reduced gradient methods to attempt to find the direction step. This work focuses on looped network
topologies, that is, networks with at least one cycle containing two or more compressor stations. These
type of topologies posse the highest degree of difficulty in real-world problems.
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1 Introduction

A gas transmission network for delivering natural gas involves a broad variety of physical components
such as pipes, regulators, and compressor stations to name a few. As the gas travels through the pipe, gas
pressure is lost due to friction with the pipe wall. Some of this pressure is added back at compressor stations,
which raise the pressure of the gas passing through them. In a gas transmission network, the overall operating
cost of the system is highly dependent upon the operating cost of the compressor stations in a network. A
compressor station’s operating cost, however, is generally measured by the fuel consumed at the compressor
station. Hence, the goal is to minimize the total fuel consumption used by the stations while satisfying
specified delivery requirements throughout the system.

Gas transmission network problems differ from traditional network flow problem in some fundamental
aspects. First, in gas networks, a pressure variable is defined at every node in addition to the flow vari-
ables representing mass flow rates through each pipe. Second, in addition to the network flow conservation
constraint set, there exist two other type of constraints: (1) a nonlinear equality constraint on each pipe,
which represent the relationships between the pressure drop and the flow; and (2) a nonlinear non-convex set
for each compressor station, which represents the feasible operating limits for pressure and flow within the
station.

The problem is very difficult due to the presence of non-convexities in both the objective function and
the set of feasible solutions. Optimization algorithm (most of them based on dynamic programming) for



non-looped gas network topologies are in a relatively well developed stage. However, effective algorithms for
looped topologies are practically non-existent.

In this paper we propose two heuristics for the fuel cost minimization on gas transmission systems with
a looped network topology, that is, networks with at least one cycle containing two or more compressor
station arcs. The network based heuristic (NBH) is based on a two-stage iterative procedure. In a particular
iteration, at a first stage, gas flow variables are fixed and optimal pressure variables are found via dynamic
programming (DP). At the second stage, the pressure variables are fixed and an attempt is made to find a
set of flow variables that improve the objective function by exploiting the underlying network structure. The
GRG based heuristic (GBH) is based in the generalized reduced gradient and attempts to generate descent
directions and cope with the infeasibility issue at the same time.

The organization of this paper is as follows. In Section 2 we introduce the problem and present the
mathematical model. Our proposed heuristics NBH and GBH are presented in Sections 3 and 4, respectively.
We wrap up with a discussion of the direction of this work in Section 5

2 Problem Statement and Mathematical Formulation

Let G = (N, L, M) be a directed network defined by a set N of n nodes, a set L of | pipes, and a set M
of m compressor stations. The mass flow rate on a pipe (i,j) € L is represented by u;;, and the mass flow
rate through a compressor station (4,j) € M is represented by v;;. Note that each compressor station is
represented by a special pipe which connects a pair of nodes (i,7) € M, where 7 and j are the corresponding
suction and discharge nodes, respectively. Let u,v be the vectors of w;;’s and v;;’s, i.e., u = {u;j, (i,7) €
L},v = {vij, (i,j) € M}, and let w be the vector defined by w = (u,v)T. Let p = (p1,...,pn)T be the
pressure vector with p; the pressure at node i. Let s = (s1,...,5,)7 be the source vector with s; the source
at node i. If s; is positive (negative), this corresponds to the gas supply limit (demand requirement) at node
i. For the steady-state model, the sum of the sources is assumed to be zero, i.e., Y ., s; = 0.

The flow balance equation at a node has the following meaning: the sum of flows coming out of the node
is equal to the sum of the flow entering the node. It can be represented as

Z Wij — Z Wi = Si, Vi€eN, (1)

j:(i,j)eLUM j:(4,i)ELUM

where w;; represents either w;; if (i, ) € L or vy if (¢,7) € M.

The physical law that relates the flow in the pipe to the difference of pressure at its two ends for high-
pressure networks is given, as discussed in (Osiadacz, 1987), by the Weymouth’s formula:

p?_pizkiju?ja v (17]) EL) (2)

where k;; is a constant whose value depends on the pipe physical properties.

The physical operational limits at each compressor station is another set of constraints, which includes
the maximum/minimum compressor speed ratio, the maximum/minimum allowable volumetric flow rate. A
compressor station is typically of many compressor units (which in turn can be of many types) arranged in
different configurations settings. Let us assume that each compressor station (4, j) has k centrifugal compressor
units hooked up in parallel.

Let ij denote the feasible compressor domain for variables (v;;, p;,p;), and let gfj(vij,pi,pj) denote its
corresponding fuel cost function. Recent work by (Wu et al., 1999) contains a detailed explanation about the
structure of the domain ij, and the behavior of the fuel consumption function gf] Figure 1 from (Wu et al.,
1999) shows an example of domain ij"it (k = 1 centrifugal compressor unit) and a compound domain ij.

The fuel cost function, g™

i7", in a single compressor unit is computed by

m
Q?jnlt(vij;pi,Pj) = Q;;Vij { <p—J> - 1} ) vV (vij, pispj) € D?jm, (3)

(3
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Figure 1: Feasible domain of the compressor station.

where a;; and m are constants which are determined by the specific type of compressors involved.

: ! ) unit 3 ) 3 I Pjiym
In our work, we use function g;;, extended version of gii"**, which is given by gi; = aj;vi; {(;2)™ — 1},

(vij, pi, Pj) € ij The mathematical formulation of the problem is given by

minimize Z 9:;(Vij, Pi, Pj), (4a)
(i,5)eM

subject to Yo wii— Y wi=si, Yi€EN, (4b)
J:(4,j)eLUM j:(j4,8)eLUM
pz2 _p? = kiju?j) V(Z>.7) € L7 (46)
(Uijvpiapj) € Df] - RB) (7’7]) € M. (4d)

The difficulty in solving this problem arises from the presence of non-convexity in both the set of feasible
solutions and the objective function. In addition, the type of underlying network topology becomes a crucial
issue. For non-looped network topologies, DP approaches have been applied with relative success. See
(Rios-Mercado, 1999) and (Carter, 1998) for details of the DP algorithms.

These procedures rely heavily on theoretical results establishing that, for this type of (non-looped) systems,
the involved flow variables can be uniquely determined in advance, and thus, eliminated from the problem.
For network topologies with loops, the problem becomes more difficult because the flow variables can not be
uniquely determined, so they indeed have to be explicitly treated in the model. Addressing looped networks
becomes the main focus of this work.

3 The Network Based Heuristic

Let z° = (v°,p°) be an initial feasible solution to problem (4). For a tree structured gas transmission
network, flow variables v are uniquely determined. However, for looped networks, one may obtain better
a objective function by modifying the current flow setting v°. For this purpose, we introduce the residual
network concept (Ahuja et al., 1993). The residual network was originally introduced to find the optimal flow
(or to prove its optimality) in minimum cost network flow problems. We define the residual network with
respect to the current flow vector v° as follows. We replace each arc (i, ) in the original network by two arcs,
a forward arc (i,7) and a backward arc (j,4): the arc (i,j) has cost ¢;; and the arc (j,7) has cost —c;;.



In our heuristic flow modification step, the costs of the residual network are approximated by the deriva-
tives of the objective function with respect to the flow on each compressor station, that is,

wen (24

where p;, p; are the current solution values delivered by dynamic programming with fixed flow variables. This
cost c;; is assigned at each forward edge of the residual network, while —c;; is assigned at each backward
edge.

The cycle cost 7, total cost of the cycle C in a residual network, is defined by

To = Z 0i;(C) - ¢, (6)

(i,j)EMc

where d;;(C) equals 1 if (4, j) is contained in the cycle C' and (7, j) is a forward arc of G'(v°), —1if (j,i) € C
and (4,7) is a backward arc of G'(v°), and 0 otherwise, and M is the set of compressor stations located in
the cycle C. If 7¢ is negative, then we call a negative cycle and denote it as C ™.

Modification of the flow is done by augmenting flow through a negative cycle C'~. That is, if there exists
a negative cost cycle C~, then we augment positive flow through C'~, and hence update the current flow
setting. This flow modification step can be represented as

v = 0 X 5(C), (7)

where A > 0 is the positive amount of flow which will be added through the cycle, and §(C ™) is the vector of
9;;(C7), a vector representing the negative cycle C~. The flow modification step of NBH can be viewed as a
nonlinear programming algorithm in which we try to find a direction (a vector of flow modification) such that
by moving A units in this direction, the objective function decreases. In our heuristic procedure, a negative
cycle vector §(C ™) corresponds to the search direction.

The value A is bounded below by zero and above by X, which can be obtained by considering the complex
inequality constraint set D;j, (¢,7) € C~. If A =0, then the algorithm stops. Otherwise, we set A = X > 0.

For the newly obtained flow setting v™¢", we need to find pressure variables, which requires to rerun
dynamic programming with fixed flow setting v™¢*. If dynamic programming with v™* has no feasible
solution or no improvement has been achieved, we reduce the size of A by setting A = v\, where 0 < v < 1,
and run dynamic programming until we get a desirable result. The algorithm is summarized below.

Step 1: Find an initial feasible solution z° = (v°, p°).

Step 2: Construct the residual network G', and find a negative cycle C~ with negative cost 7¢-.
Step 3: If |7o-| < €, where ¢ is a small number, stop. Otherwise, go to Step 4.

Step 4: Set A = X. If A = 0, stop. Otherwise,

(a) Modify the current flow v! by v**! = vt + X - §(C7).
1

(b) Calculate pressure values using dynamic programming with modified flow v*1.
If dynamic programming yields infeasible solution, or gt*' — gt > 0, then set A = )\, with
0 <y < 1, and go to (a). Otherwise, go to Step 2.

4 The GRG Based Heuristic

Procedure NBH, presented in the previous section, can be viewed in the context of nonlinear programming
in which the descent direction contains information only on flow variables. Moreover, if we partition the set
of flow variables into basic and nonbasic, and set any flow variable in the compressor station as basic and



the rest of the flow variables as nonbasic, then NBH can be interpreted as a sectioning procedure (Reklaitis
et al., 1983) within the space of the single nonbasic variables.

Now consider the case we want to find the descent direction but with the information on the pressure
variables along with flow variables. That is, when partitioning the variables into basic and nonbasic variables,
we not only consider the flow variables, but also the pressure variables defined at each suction or discharge
node of the compressor station. Within this framework, the heuristic method could potentially be improved
by changing all nonbasic variables simultaneously, which is the motivation of our GRG based heuristic (GBH).

Applying nonlinear methods such as GRG directly to problem (4) is mainly limited by the fact that the
direction of the movement is not feasible due to the presence of nonlinear equality constraints (4c). So an
extra projection step is necessary to maintain feasibility and this makes the computational effort very high.
In GBH, we attempt to generate a feasible descent direction, by adapting some of the fundamentals from

GRG.

Now we consider problem (4), and apply GRG. The two equality constraint sets, (4b) and (4c), are
represented in vector form as
Aw = s,
{ (9)

AT p? = ¢(u),

where A = (A;|4n), A; and A, are the n x [ node-pipe and the n x m node-compressor station incidence
matrices, respectively, p® = (pi, ..., p5)", and ¢(u) is the vector of ¢;;(ui;)’s, with ¢y (uij) = kijui;, (i,5) € L.

Suppose a feasible point z(¥) = (w,p) is available for the problem along with a partition z = (z,7)7,

where Z and T correspond to the sets of basic and nonbasic variables, respectively. Accordingly, we also
partition the objective function gradient vector Vg into Vg and Vg. The corresponding Jacobian matrix
(matrix of partial derivatives) is partitioned into B and N, for basic and nonbasic columns, respectively. The
index sets of basic and nonbasic variables are denoted by Sp and Sy, respectively. Let J be the gradient
matrix of nonlinear pressure drop constraint set (4¢) evaluated at z(¥).

At z(F) | given a choice of basis, the V§(z(*)) vector associated with the nonbasic variables is given by

Vy(a™) = vg(z") - V(=) BN, (10)
where B and N are given by
AI&B Asy
: Vhy Vhy
p= ()= V| w=(5) = |7 |
V‘ﬁl Vlﬁl

with A5 = (As, | 0), 0 being the (n — 1) x [ zero matrix. Here, Vhe = (0he/0T), Vhe = (0h,/0%), where
he(z) corresponds to the e-th nonlinear equality constraint (4c), and Vg = (0g/0%), V§ = (0¢/0%) denote
the partial derivatives of g with respect to T and Z, respectively.

Necessary conditions for a local minimum are

Vg
and  Z;(V§)

Y%

0, (11)
0, for i€ Sy, (12)

Since both conditions (11) and (12) must be satisfied at a local minimum, the nonbasic variable direction
vector d can be defined as follows

- ~ia if ~i< )
Z_{ Vg if Vg; <0 (13)

g =



where i € Sn.

Thus, if V§; < 0, nonbasic variable i is increased; while if Vg; > 0 and T; > 0, then nonbasic variable i is
decreased. This definition ensures that when d; = 0 for all i, the necessary condition will be satisfied. When
d, the change in the nonbasic variables, is calculated using (13), then the change in the basic variables must
be calculated using

d=—-B"'Nd. (14)

Note, however, that d = (d, El) is not a feasible direction. More precisely, d is a descent direction in the
space of the nonbasic variables Z, but the composite direction vector d = (d, El)T, where d is calculated via
the linear equation (14), yields infeasible points. Since d has desirable properties but the addition of d makes
d infeasible, it seems reasonable that the computation of d should be revised.

In a GRG framework, for instance, we first calculate d using the linearization. Then, rather than calcu-
lating d using equation (14), we apply a direction correction step, which usually is an iterative procedure for
solving sets of nonlinear equations.

In our proposed heuristic, we take similar steps as in GRG. That is, we take the nonbasic direction d,
which contains not only nonbasic flow variables, but also nonbasic pressure variables, along with d, as initial
movement, while setting d, = 0. Therefore, in GBH, we consider not only the direction of the movement for
flow variables, but for the nonbasic pressure variables. Note that the addition of d, = —Ag; N d guarantees
the flow conservation law being satisfied after the modification. Hence the direction of the movement of GBH
is given by:

N (Vi
d=|d, | =|-45.Nd (15)
7 :

After the modification along this direction d, the feasible pressure variables are obtained by changing the
basic pressure variables using equations (4¢). This calculation is done very effectively because each nonbasic
pressure variable has its basic pressure variable connected by a single ordinary pipe, and hence (4¢) can be
used to get the value of the pressure at one end of the pipe once we know the pressure at the other end of
the pipe.

The step size A is chosen in a different way than that of NBH. In NBH, the step size A is interpreted as
the amount of augmenting flow through the cycle. In GBH, however, A regulates both the flow amount and
the pressure values. The computation of A, therefore, needs further consideration.

Once A is chosen, the feasible pressure variables are obtained by simple calculation. We now provide a
step-by-step summary of the algorithm.

Step 1 Find an initial feasible solution z° = (v°, p°) and set k = 0.

Step 2 Choose a partition of z into T and Z such that B has nonzero determinant, and compute the reduced
gradient .
Vg(a*)

Step 3 If |Vg| < €, where € is a small number, stop. Otherwise, set

E: _(Vg)Ta
d = (dy, d,)T = (A5 Nd,0)7,
and  d=(d, 47

Step 4 Set A = X. If A =0, stop. Otherwise,

(a) Modify the current solution z* by z*+1 = zF + X\ . d.



(b) Calculate pressure values using (4c).
If new solution z™! is infeasible, or gt*! — g* > 0, then set A = v\, with 0 < v < 1, and go to
(a). Otherwise, update ¢t < t + 1 and go to Step 2.

5 Conclusion

In this paper we have presented the design of two heuristics for the fuel cost minimization on natural gas
transmission networks in steady-state. The algorithms focus on addressing looped network topologies. Our
current, ongoing research involves the computational implementation of the heuristics so we can provide an
empirical evaluation. Among other issues that remain to be investigated are a criteria for choosing the step
size A, and proof of convergence.
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