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Metaheuristics for Natural Gas

Pipeline Network Optimization
Summary. In this chapter, an overview on metaheuristic algorithms that have been very successful

on tackling a particular class of natural gas pipeline network optimization problems is presented. In

particular, the problem of minimizing fuel consumption incurred by the compressor stations driving

natural gas in pipeline networks is addressed. This problem has been studied from different angles

over the past few years by virtue of its tremendous economical impact. First, a general mathematical

framework for this class of problems is presented. Then, the most relevant model properties and

fundamental network topologies are thoroughly discussed. It is established how these different network

topologies play a very important role on choosing an appropriate solution technique. This is followed

by a presentation of current state-of-the-art metaheuristics for handling different versions of this

problem. A discussion on metaheuristics developed to address related problems is included. Finally,

some of the most relevant and important challenges of this very exciting area of research in natural

gas transportation networks is highlighted.

Keywords: Natural gas transmission systems; Pipeline optimization; Nonlinear programming; Mixed-

integer nonlinear programming; Tabu search; Ant colony optimization.
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Introduction

There are many interesting decision-making problems in the natural gas industry

that have been studied over the years. These include fields such as pipeline design, gas

storage, gathering, transporation, and marketing, to name a few. An important class

of these problems, referred to as the minumum fuel consumption problem (MFCP),

deals with how to operate a natural gas transportation network for delivering the

gas from storage facilities to local distribution companies so as to minimize the fuel

consumption employed by the compressor stations moving the gas along the network.

Efficient design and operation of these complex networks can substantially reduce air-

borne emissions, increase safety, and decrease the very high daily operating costs due

to the large amounts of fuel per day needed to operate the compressor stations driving

the gas.

This type of networks are very complex and highly nonlinear since the relation-

ship between the flow variables in every arc and the pressure values at the intercon-

nection points is represented by nonlinear equations, and, in some cases, by partial

differential equations. Thus, in general the class of MFCPs is very challenging due to

the presence of nonlinearities and nonconvexities in the models representing such prob-

lems. These problems have been studied since the late 1960s from many differeny angles,

most of them based on classical hierarchical control and mathematical programming

approaches.

It was until very recently that metaheuristics techniques were introduced

for addressing some of these problems. One of the great advantages of metaheuristic

algorithms over existing approaches is that the former do not depend on gradient-based

information so they can handle the nonlinear and nonconvex nature of the problems

with relative ease. Furthermore, they can be combined with existing mathematical

programming approaches in intelligent ways to derive hybrid metaheuristic methods.
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The purpose of this chapter is to introduce the reader with an important class

of challenging optimization problems in natural gas transportation networks and

to give a detailed discussion on how metaheuristics have been successfully applied

on addressing these problems. There are of course other important decision-making

problems in the natural gas industry for which optimization techniques have made

important contributions. A survey by Zheng et al [65] surveys optimization models in

the natural gas industry, focusing on natural gas production, transportation, and

marketing. Rı́os-Mercado and Borraz-Sánchez [50] present an extensive review on on

classical techniques for fuel consumption minimization on transmission systems, includ-

ing gathering, transmission, and local distribution. Schmidt et al [53] present stationary

nonlinear programming models of gas networks that are primarily designed to include

detailed nonlinear physics in the final optimization steps for mid term planning prob-

lems. Farrokhifar et al [19] present a comprehensive survey of literature in the contexts

of coordinated planning of both natural gas and electricity systems.

It is important to note that we are focusing in the decision-making process of

operating a pipeline network assuming the network is already designed. The problem

consisting of how to design such network, known as a pipeline network design problem,

is also an optimization problem where the decision variables are the diameter choices

of the pipes, the flows, the potentials, and the states of various network components

[25; 31]. This design problem is usually cast as a nonconvex mixed-integer nonlinear

programming problem and it is out of scope of the present work. The distribution

problem [63] which consists of delivering the gas from the demand stations to the end

customers, is not considered either.

The chapter is organized as follows. The basic mathematical framework for

the steady-state case, including important model properties, is presented in the first

section. Then, in the following section, the existing classical approaches for handling
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different versions of this problem including steady-state and transient models are briefly

highlighted. This is followed by two sections where both a Tabu Search algorithm

for handling a nonlinear programming model and an Ant Colony Optimization

algorithm for handling a mixed-integer nonlinear programming model are described.

Other metaheuristic approaches for related problems in the natural gas industry are

reviewed next. Final remarks and discussion on future research trends about meta-

heuristic techniques in natural gas optimization problems are given in the last

section.

Problem Description and Modeling Framework

Background

Basically, the main purpose of a natural gas transmission network is to transport gas

from storage facilities to local distribution companies. The gas is moved by pressure,

and pressure is lost due to the friction of the gas flow with the inner wall of the

pipelines. Thus, to keep the gas moving, compressor stations, whose primary role is

to increase gas pressure, are needed. In turn, every compressor station is composed of

several compressor units. These units may be identical or non-identical and hook-ed

up in different ways. The most typical configuration, which is assumed throughout this

chapter, is that of identical compressor units hooked-up in parallel. It is well known

that most of the operating costs in a pipeline network are due the amount of fuel

consumed at the compressor stations.

When operating a natural gas transmission system aiming at minimizing fuel

consumption, there are two main groups of decision variables that must be taken: (i)

the mass flow rate through every pipe and compressor stations, and (ii) gas pressure

values in each interconnection point. Additionally, decisions such has how many indi-
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vidual compressor units to operate within stations may be taken. Hence, the objective

for a transmission network is to minimize the total fuel consumption of the compressor

stations while satisfying specified delivery flow rates and minimum pressure require-

ments at the delivery terminals. The MFCP is typically modeled as a nonlinear or

mixed-integer nonlinear network optimization problem. It is of course assumed that

the network is given, that is, this is not a design problem.

Depending on how the gas flow changes with respect to time, we distinguish

between systems in steady state and transient state. A system is said to be in steady

state when the values characterizing the flow of gas in the system are independent of

time. In this case, the system constraints, particularly the ones describing the gas flow

through the pipes, can be described using algebraic nonlinear equations. In contrast,

transient analysis requires the use of partial differential equations (PDEs) to describe

such relationships. This makes the problem considerably harder to solve from the op-

timization perspective. In fact, optimization of transient models is one of the most

challenging ongoing research areas. In the case of transient optimization, variables of

the system, such as pressures and flows, are functions of time.

Gas transmission network problems differ from traditional network flow prob-

lems in some fundamental aspects. First, in addition to the flow variables for each

arc, which in this case represent mass flow rates, a pressure variable is defined at ev-

ery node. Second, besides the mass balance constraints, there exist two other types

of constraints: (i) a nonlinear equality constraint on each pipe, which represents the

relationship between the pressure drop and the flow; and (ii) a nonlinear nonconvex

set which represents the feasible operating limits for pressure and flow within each

compressor station. The objective function is given by a nonlinear function of flow

rates and pressures. The problem is very difficult due to the presence of a nonconvex

objective function and a nonconvex feasible region.
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Description of Basic Model

Let G = (V,A) be a directed graph representing a natural gas transmission network,

where V is the set of nodes representing interconnection points, and A is the set of arcs

representing either pipelines or compressor stations. Let Vs and Vd be the set of supply

and demand nodes, respectively. Let A = Ap ∪Ac be partitioned into a set of pipeline

arcs Ap and a set of compressor station arcs Ac. That is, (u, v) ∈ Ac if and only if u

and v are the input and output nodes of compressor station (u, v), respectively.

Two types of decision variables are defined: Let xuv denote the mass flow rate

at arc (u, v) ∈ A, and let pu denote the gas pressure at node u ∈ V . The following

parameters are assumed known: Bu is the net mass flow rate in node u, and PL
u and PU

u

are the pressure limits (lower and upper) at node u. By convention, Bu > 0 (Bu < 0)

if u ∈ Vs (u ∈ Vd), and Bu = 0 otherwise.

The basic mathematical model of the minimum fuel cost problem (MFCP) is

given by:

Minimize g(x, p) =
∑

(u,v)∈Ac

guv(xuv, pu, pv) (1)

subject to
∑

v:(u,v)∈A

xuv −
∑

v:(v,u)∈A

xvu = Bu u ∈ V (2)

(xuv, pu, pv) ∈ Duv (u, v) ∈ Ac (3)

x2
uv = Ruv(p

2
u − p2v) (u, v) ∈ Ap (4)

pu ∈ [PL
u , P

U
u ] u ∈ V (5)

xuv ≥ 0 (u, v) ∈ A (6)

The objective function (1) measures the total amount of fuel consumed in the

system, where guv(xuv, pu, pv) denotes the fuel consumption cost at compressor station

(u, v) ∈ Ac. For a single compressor unit the following function is typically used:



7

g(1)(xuv, pu, pv) =
αxuv

η

{(
pv
pu

)m

− 1

}
,

where α and m are assumed constant and known parameters that depend on the gas

physical properties, and η is the adiabatic efficiency coefficient. This adiabatic coeffi-

cient is a function of (xuv, pu, pv), that is, in general, a complex expression, implicitly

defined. A function evaluation of η requires solving a linear system of algebraic equa-

tions. In practice, though, polynomial approximation functions that fit the function

relatively well and are simpler to evaluate are employed. In other cases, when the

fluctuations of η are small enough, η can be assumed to be a constant.

For a compressor station (u, v) with nuv identical compressor units hooked-up

in parallel which is very commonly found in industry, the fuel consumption is given by:

guv(xuv, pu, pv) = nuvg
(1)(xuv/nuv, pu, pv). (7)

When all nuv units are fixed and operating we have a nonlinear programming (NLP)

model. Treating nuv as decision variables, leads to mixed-integer nonlinear program-

ming (MINLP) models.

Constraints (2) establish the mass balance at each node. Constraints (3) denote

the compressor operating limits, where Duv denote the feasible operating domain for

compressor (u, v) ∈ Ac. Equations (4) express the relationship between the mass flow

rate through a pipe and its pressure values at the end points under isothermal and

steady-state assumptions, where Ruv (also known as the pipeline resistance parameter)

is a parameter that depends on both the physical characteristics of the pipeline and

gas physical properties. When the steady-state assumption does not hold, this relation-

ship is a time-dependent partial differential equation which leads to transient models.

Constraints (5) set the lower and upper limits of the pressure value at every node, and

(6) set the non-negativity condition of the mass flow rate variables. Further details of

this model can be found in Wu et al [61] and Rı́os-Mercado [49].
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Network Topology

There are three different kinds of network topologies: (a) linear or gun-barrel, (b) tree

or branched, and (c) cyclic. Technically, the procedure for making this classification is

as follows. In a given network, the compressor arcs are temporarily removed. Then each

of the remaining connected components is merged into a big super-node. Finally, the

compressor arcs are put back into their place. This new network is called the associated

reduced network. Figure 1 illustrates the associated reduced network for a 12-node, 11-

arc example. As can be seen, the reduced network has 4 supernodes (labeled S1, S2,

S3, S4) and 3 arcs (the compressor station arcs from the original network).

Compressor station arc

Pipeline arc

Transhipment node

Delivery node

Supply node

5 6 7 8

2

9 10

11

(a) Original network.

(b) Associated reduced network.

5 6 7

11

8

2

9 10

12

1

3 4

12

1

3 4

S3

S2

S4

S1

Fig. 1. Illustration of a reduced network.

Types of network topologies:
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Linear topology: Reduced network is a single path.

Tree topology: Reduced network is a tree.

Cyclic topology: Reduced network has cycles (either directed or undirected).

These different types of network topologies are shown in Figure 2, were the

original network is represented by solid line nodes and arcs, and the reduced network

by dotted super nodes. Note that even though networks in Figure 2(a) and 2(b) are

not acyclic from a strict network definition, they are considered as non-cyclic pipeline

network structures.

7

3 4 5 6 7

9

2

(a) Linear topology.

11

(b) Tree topology.

5 6

1

8

1310

4

3

9 11 12

(c) Cyclic topology.

8

1

1

109

876543

2

2

Fig. 2. Different kinds of pipeline network topologies.
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Importance of Network Topology on Solution Algorithms

Let us consider the MFCP model given by (1)-(6), that is, the number of compressor

units operating in each compressor station is known and fixed in advance. This is a

nonconvex NLP. The network topology plays an important role, particular in staeady-

state topologies, when deriving algorithms for finding the optimal set of variables.

Current state of the art on solution techniques for this staedy-state MFCP reveals

these important facts:

• There are theoretical results indicating that in non-cyclic systems, the values of

the flow variables can be uniquely determined and fixed beforehand [51]. There-

fore, the problem reduces to finding out the optimal set of pressure variables at

each node in the network. Of course, the problem is still hard to solve, but it

reduces its dimension in terms of the decision variables.

• As a direct consequence of this, there exists successful implementations mostly

based on dynamic programming (DP) that efficiently solve the problem in non-

cyclic instances by appropriately discretizing the pressure variables.

• When in a cyclyc system, we impose the limitation of fixing the flow variables

in each arc, a nonsequential dynamic programming (NDP), developed by Carter

[8], can been successfully applied for finding the optimal set of pressure variables.

Although this algorithm has the limitation of narrowing the set of solutions to

those subject to a fixed set of flows, it can be used within other flow-modification

based approaches.
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Solution Techniques: Classical Approaches

There is certainly a number of different optimization techniques that have been tried in

the past to address problems in fuel cost minimization of natural gas transportation

networks .

Steady-State NLP models: Most of the work for nonconvex NLP models has been

based on steady-state models. One can find work on dynamic programming based

techniques [5; 8; 15; 26; 29; 34; 52; 59; 60], including attempts to handle non-

identical compressor units [15], methods based on gradient search [20; 23; 47; 45],

global optimization methods [24; 26], linearization techniques [12; 22], interior-point

methods [21], exploiting model properties and lower bounding schemes [7; 51; 61],

multi-objective optimization models [14], and multi-criteria approaches [40].

Steady-State MINLP models: There has also been studies on developing optimization

methods for addressing MINLP models. In most of these models, integer variables

for deciding which individual compressor units must be opearting within a com-

pressor station are introduced. Solution methodologies include mainly successive

branch and bound [48; 56], outer approximation with augmented penalty [11; 66],

sequential linear programming [23] and linearization techniques [38].

Transient models: Transient models are more challenging as the governing PDEs asso-

ciated to the dynamics of the gas system must be taken into consideration. Efforts

on addressing this class of very difficult problems include hierarchical control tech-

niques [3; 30; 41; 42; 43; 46] in the early years, and, more recently, mathematical

programming approaches [1; 16; 17; 28; 32; 36; 37; 44; 57; 64], multi-objective

optimization methods [10], and deep learning methods [2].

For a complete literature review and detailed discussion of some of these tech-

niques the reader is referred to the surveys of Zheng et al [65], Rı́os-Mercado and



12

Borraz-Sánchez [50], and Arya et al [4]. In the following sections we review the most

successful metaheuristic techniques applied to variations of the MFCP. Bear in mind

that we are not including in the review below some papers on metaheuristics for natu-

ral gas pipeline optimization when the authors do not provide a full description of the

algorithm (e.g. [58]).

Tabu Search: An Approach for NLP Models

For the past few years, Tabu Search (see Chapter “Tabu Search”) has established

its position as an effective metaheuristic guiding the design and implementation of

algorithms for the solution of hard combinatorial optimization problems in a number of

different areas. A key reason for this success is the fact that the algorithm is sufficiently

flexible to allow designers to exploit prior domain knowledge in the selection of parame-

ters and subalgorithms. Another important feature is the integration of memory-based

components.

When addressing the MFCP, even though we are dealing with a continuous

optimization problem, Tabu Search (TS), with an appropriate discrete solution space,

is a very attractive choice due to the the non-convexity of the objective function and

the versatility of TS to overcome local optimality.

We now describe the TS-based approach of Borraz-Sánchez and Ŕıos-Mercado

[6, 7], which is regarded as the most successful implementation of a metaheuristic for

the MFCP. This TS takes advantage of the particular problem structure and properties

and in fact can be regarded as a hybrid metaheuristic or matheuristic (see Chapter

“Matheuristics.”)

Let us consider the MFCP model given by (1)-(6), that is, the number of com-

pressor units operating in each compressor station is known and fixed in advance. As

established earlier, this is a nonconvex NLP.
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Recall, from last section, that, in a cyclyc system, if we fix the flow variables in

each arc, NDP [8] can been successfully applied for finding the optimal set of pressure

variables. Although this algorithm has the limitation of narrowing the set of solutions

to those subject to a fixed set of flows, it can be used within flow-modification based

approaches such as the TS presented here.

It is clear that the TS approach is aiming at finding high-quality solutions for

cyclic systems. It exploits the fact that for a given set of flows an optimal set of pressure

values can be efficiently found by NDP.

Nonsequential Dynamic Programming

We include in this section a brief description of the essence of the NDP algorithm.

Further details can be found in [6]. Starting with a feasible set of flow variables, the

NDP algorithm searches for the optimal set of node pressure values associated to that

pre-specified flow. Rather than attempting to formulate DP as a recursive algorithm,

at a given iteration, the NDP procedure grabs two connected compressors and replace

them by a “virtual” composite element that represents the optimal operation of both

compressors. These two elements can be chosen from anywhere in the system, so the

idea of “sequential recursion” in classical DP does not quite apply here. After perform-

ing this step at a stage t, the system with t compressor stations has been replaced

by an equivalent system with t − 1 stations. The procedure continues until only one

virtual element, which fully characterizes the optimal behavior of the entire pipeline

system, is left. Afterwards, the optimal set of pressure variables can be obtained by

a straight-forward backtracking process. The computational complexity of this NDP

technique is O(|Ac|N2
p ), where Np is the maximum number of elements in a pressure

range discretization.
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The Tabu Search Approach

begin TS()

Input: An instance of the MFCP.

Output: A feasible solution (X,P ).

1 (X,P )best ← ∅;

2 TabuList ← ∅;

3 X̄ ← FIND INITIAL FLOW( );

4 while ( stopping criteria not met ) do

5 for ( X ∈ V (X̄) such that X ̸∈ TabuList ) do

6 P ← NDP( X );

7 end-for

8 Choose best (non-tabu) solution (X,P );

9 if (|TabuList| == TabuTenure) then

10 Remove oldest element from TabuList;

11 end-if

12 TabuList ← TabuList ∪X;

13 (X,P )best ← Best( (X,P ), (X,P )best );

14 end-while

15 return (X,P )best;

end TS

Fig. 3. Pseudocode of Procedure TS.

The main steps of the algorithm are shown in Figure 3. Here, a solution Y =

(X,P ) is partitioned into its set of flow variables X and set of pressure variables P .

First note that the search space employed by TS is defined by the flow variables X

only because once the flow rates are fixed, the corresponding pressure variables are

optimally found by NDP. Furthermore, we do not need to handle the entire set of flow

variables, but only one per cycle. This is so because once you fix a flow rate in a cycle,
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the rest of the flows can be uniquely determined. Thus, a given state is represented by

a vector X̂ = (Xα1 , . . . , Xαm), where αw is an arc that belongs to a selected cycle w.

Note that this set of arcs is arbitrarily chosen, and that converting a flow from X to

and from X̂ is straightforward, so in the description X and X̂ are used interchangeably.

This situation is illustrated in Figure 4. The network represents the associated reduced

network. It is clear that given a specified amount of net flow entering at node 1, only

one arc in each cycle is needed to uniquely determine the flows in each arc of the

network. In this case, the bold arcs (5,6) and (10,11), one per cycle, suffice.

Flow vector   X = { (5,6), (10, 11) }

21

3 4

5 6

7

8 9

10 11

12 13

Cycle w = 1 Cycle w = 2

Fig. 4. Flow components of a feasible solution on a cyclic topology.

We now describe each component.

• Initial set of flows: First, in Step 3, in initial set of feasible flows is found. Here,

different methods such as classical assignment techniques can be applied in a

straightforward manner.

• Neighborhood definition: In Step 5, a neighborhood V (X̄) of a given solution

X̄ = {x̄1, x̄2, . . . , x̄m} is defined as the set of solutions reachable from X̄ via a

modification of the current flow in each arc by∆x units in each of its components.

This is given by

V (x̄) = {X ′ ∈ Rm | x′
w = x̄w ± k∆x, k = 1, 2, . . . , N/2, w = 1, . . . ,m}

where N is the pre-defined neighborhood size, ∆x accounts for the mesh size,

and the index w refers to the w-th cyclic component. Note that, for a given
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solution, the entire solution does not need to be stored but only the flow in the

selected arc component to be modified. Note also that once this value is set, the

rest of the flow variables in the cycle are easily determined, so in this sense, it

is precisely this mass flow rate which becomes the attribute of the solution.

• Optimal pressure values: In Steps 6-8, the corresponding set of pressure values

for the given flow is found by invoking the NDP algorithm only for those flow

values that are non-tabu.

• Tabu list: Then in Step 9 the best X ′ ∈ V (X̄) which is non-tabu is chosen and

the corresponding subsets are updated accordingly. A tabu list (TabuList) stores

recently used attributes, in our case, values of the X variables. The size of the

TabuList (TabuTenure) controls the number of iterations a particular attribute

is kept in the list.

• Stopping criterion: The search usually terminates after a given number of it-

erations , or when no significant change has been found in certain number of

iterations. iterations.

As we know from theoretical properties of pipeline networks [51], the flow mod-

ification step is unnecessary for noncyclic topologies because there exists a unique set

of optimal flow values which can be determined in advance at preprocessing.

Empirical Performance

To illustrate the effectiveness of the TS, Table 1 shows the performance of the TS

approach when it is compared with NDP. The table indicates the objective function

value obtained by both methods and the relative improvement (RI) of the TS over

the NDP solution when applied to eleven cyclic real-world size instances of up to 19

super-nodes and 7 compressor stations. As we can see, the TS method significantly

outperformed NDP in terms of solution quality. The running times pof the TS were
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about 220 and 400 CPU seconds. The running times of NDP were less than 20 CPU

seconds. Although the NDP runs faster, the TS obtains solutions in less than 7/8

minutes, which is still very reasonable. Thus, it clearly pays off to spend additional

computational effort because the improvement in solution quality leads to substantial

economical savings in real-world instances.

Table 1. Comparison between NDP and TS.

Instance NDP TS RI (%)

net-c-6c2-C1 2,317,794.61 2,288,252.53 1.27

net-c-6c2-C4 1,394,001.99 1,393,001.99 0.07

net-c-6c2-C7 1,198,415.69 1,140,097.39 4.86

net-c-10c3-C2 6,000,240.25 4,969,352.82 17.18

net-c-10c3-C4 2,533,470.72 2,237,507.93 11.68

net-c-15c5-C2 6,006,930.42 4,991,453.59 16.90

net-c-15c5-C4 3,669,976.44 3,371,985.41 8.11

net-c-15c5-C5 8,060,452.17 7,962,687.43 1.21

net-c-17c6-C1 9,774,345.45 8,659,890.72 11.40

net-c-19c7-C4 12,019,962.22 8,693,003.78 27.67

net-c-19c7-C8 8,693,003.78 7,030,280.45 19.12

Ant Colony Optimization: An Approach for MINLP

Models

Let us consider now the problem where, in addition to the flow variables in each arc

and the pressure variables in each node, the decision process involves determining the

number of operating units in each compressor as well. This leads to a MINLP model.

In this section, the Ant Colony Optimization (ACO) algorithm by Chebouba et al

[9] for this version of the MFCP is described.
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Ant Colony Optimization (see Chapter “Ant Colony Optimization”) is a

relatively new evolutionary optimization method that has been successfully applied to

a number of combinatorial optimization problems. ACO is based on the communication

of a colony of simple agents (called ants), mediated by (artificial) pheromone trails. The

main source of ACO is a pheromone trail laying and following behavior of real ants

which use pheromones a communication medium. The pheromone trails in ACO serve

as distributed, numerical information which the ants use to probabilistically construct

solutions to the problem being solved and which the ants adapt during the algorithm’s

execution to reflect its search experience.

Regarding natural gas pipeline network optimization, Chebouba et al [9]

present an ACO metaheuristic for the MFCP with a variable number of compressor

units within a compressor station. They focus on the linear topology case. As it was

mentioned earlier, solving the MFCP on linear topologies has been successfully ad-

dressed by dynamic programming approaches when the number of compreessor units

is fixed and known; however, when the number of individual compressor units is vari-

able and part of the decision process it leads to a MINLP that has a higher degree of

difficulty.

i +1

( i,2)

( i,1)

i +1

ni( i, )
ni −1)i,(

ii

Fig. 5. Modeling compressor unit choices as a multigraph.

Consider the MINLP given by objective function (7) subject to constraints (2)-

(6). When the number of individual compressor units within a compressor station are

identical and hooked-up in parallel, the linear system, as depicted in Figure 2(a), can

be represented by a multigraph with the compressor stations aligned sequentially where
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the i-th compressor station (compressor arc (i, i+1) in the figure) is modeled by a set

of ni arcs between suction node i and discharge pressure i+1 (see Figure 5). Here, ni is

the number of individual compressor units and each of the multi arcs (i, i+1) represents

a decision on how many units are used in that particular station. Each multi arc in the

i-th station is denoted by (i, i+1, r) (or simply (i, r)), where r identifies the number of

individual compressor stations to be used in a particular solution. Let L be the set of

edges in this multi-graph given by L = {(i, r) : i ∈ {1, . . . , n}, r ∈ {1, . . . , ni}}. In this

case, the cost of arc (i, r) given by cir depends on the values of the pressure variables

pi and pi+1. This will be determined during the construction of the solution. Following

equation (7), the cost is then given by

cir = rg(1)(xi,i+1/r, pi, pi+1).

where it can be seen in a straightforward manner that, in the case of linear systems with

known supply/demand values, the flow variables xi,i+1 through the entire network can

be determined and fixed beforehand. Furthermore, this cost is heuristically estimated

once at the start of the procedure.

At the start of the algorithm, m ants are placed at the starting node. Ants

build a solution while moving from node to an adjacent node by choosing one of the

multi arcs and by randomly generating values of the pressure variables for correct

computation of the arc cost. During iteration t, each ant k carries out a partial path

T k(t), and in this step, the choice of arc (i, r) depends on both the cost cir and the

concentration of pheromone τir(t) on arc (i, r) at iteration t. The pheromone trail takes

into account the ant’s current history performance. This pheromone amount is intended

to represent the learned desirability of choosing the r-th edge at node i. The pheromone

trail information is changed during problem solution to reflect the experience acquired

by ants during problem solving.
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First, the algorithm introduces a transition rule depending on parameter q0 ∈

[0, 1], which determines the relative importance of intensification/diversification trade-

off: evert time an ant at node i chooses arc (i, r) according to the following transition

rule:

r =


argmaxu(τiu(t))

α/(ciu)
β if q ≤ q0,

s otherwise.

where q is random variable uniformly distributed in [0, 1] and s is a random variable

chosen according to the following probability function:

pkis(t) =
(τis(t))

α/(cis)
β∑

u(τiu(t))
α/(ciu)β

As can be seen, low values of q0 lead to diversification and high values of q0 stimulates

intensification. Parameters α and β control the relative importance of the pheromone

trail and greedy construction value. The main steps of the algorithm are shown in

Figure 6.

The pheromone trail is changed both locally (Step 7) and globally (Step 10) as

follows.

• Local updating: Every time arc (i, r) is chosen by an ant, the amount of

pheromone changes by applying this local trail update:

τir(t)← (1− ρ)τir(t) + ρτ0

where τ0 is the initial pheromone value and ρ the evaporation rate.

• Global updating: Upon completion of a solution by every ant in the colony, the

global trail updating is done as follows. The best ant (solution) from this finished

iteration is chosen according to the best objective function value g∗. Then, in

each arc (i, i+ 1, r) used by this best ant, the trail is updated as:

τir(t+ 1)← (1− ρ)τir(t) +
ρ

g∗
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begin ACO()

Input: An instance of the MFCP.

Output: A feasible solution X.

1 t← 0;

2 while ( stopping criteria not met ) do

3 t← t+ 1;

4 Xbest ← ∅;

5 for (k = 1, . . . ,m) do

6 Build solution X;

7 Apply local updating rule along path of X;

8 Xbest ← Best(X, Xbest);

9 end-for

10 Apply global updating rule along path of Xbest;

11 end-while

12 return Xbest;

end ACO

Fig. 6. Pseudocode of Procedure ACO.

Empirical Performance

To illustrate the usefulness of the ACO, the algorithm was tested on the Hassi R’mell-

Arzew real-world pipeline network in Argelia consisting of 5 pipes, 6 nodes, 5 compres-

sor stations, and 3 units in each compressor. The authors also built three additional

cases with up to 23 compressor stations, and 12 compressor units in each compres-

sor. We must point out that these are non-cyclic instances. The empirical evaluation

includes a comparison with DP. Although these are non-cyclic systems, the number

of individual compressor units within each compressor station is considered a decision

variable as well, thus, the DP may not guarantee an exact solution.
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Table 2 displays the results in terms of objective function value (OFV) and

running time when both DP and ACO are applied to three instances.The last column

(RD) indicates the relative difference between the DP solution and the ACO solution.

As we can see, the DP gives a slightly better solution but it takes considerable more

running time than the ACO. In the other hand, the difference in solution quality is

very slim (less than 0.36 %).

Table 2. Comparison between DP and ACO.

DP ACO

Instance OFV Time OFV Time RD (%)

Cs11–Nb6 49,114 10,332 49,217 721 0.21

Cs17–Nb9 81,050 28,262 81,052 1251 0.13

Cs23–Nb12 112,985 55,168 113,390 1869 0.36

We conclude that ACO method performs reasonably well on these type of non-

cyclic networks. A great advantage is its relatively ease of implementation. The issue

on how this algorithm can be modified so as to handle non-cyclic systems remains an

interesting topic for further investigation along this area.

Metaheuristic Approaches to Related Problems

In this section, we review some other related optimization problems in natural gas

pipeline networks that have been addressed by metaheuristic methods.

Particle Swarm Optimization for Non-isothermal Systems

Wu et al [62] address a variation of the problem where, rather than minimizing fuel

consumption, the focus is on maximizing a weighted combination of the maximum oper-

ation benefit and the maximum transmission amount. The operation benefit is defined
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as the sales income minus the costs. These costs include gas purchasing cost, pipeline’s

operation cost, management cost, and compressors running cost. The transmission

amount is defined as the total gas volume that flows into the pipeline. In addition, a

non-isothermal model is considered, that is, the authors consider the dynamics of the

pipes being a function of temperature. Most of the literature focus on the isothermal

case. They develop a Particle Swarm Optimization (PSO) metaheuristic enhanced

by an adaptive inertia weight strategy to adjust the weight value dynamically. In a

PSO implementation (see Chapter “Particle Swarm Methods,”) the inertia weight

parameter is used to balance the global and local search ability. If the weight has a

large value, the particle will search in a broader solution space. Ifthe weight has a small

value, the evolution process will focus on the space near to the local best particle. Thus,

the global and local optimization performances of the algorithm can be controlled by

dynamically adjusting the inertia weight value. This method adjusts the inertia weight

adaptively based on the distance from the particles to the global best particle [55] .

They tested their metaheuristic (named IAPSO) in the Sebeie-Ningxiae-

Lanzhou gas transmission pipeline in China. Nine stations along the pipeline distribute

gases to sixteen consumers. There are four compressor stations with eight compressors

to boost the gas pressure. The results show that IAPSO has fast convergence, ob-

taining reasonably good balances between the gas pipeline’s operations benefit and its

transportation amount.

Simulated Annealing for Time-Dependent Systems

As mentioned earlier, the previous two chapters addressed steady-state systems. How-

ever, when the steady-state assumption does not hold, the constraints that describe the

physical behavior through a pipeline cannot be represented in the simplifying form as

in (4). On the contrary, this behavior is governed by partial differential equations with
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respect to both flow and time. Therefore, to handle this situation, a discretization over

the time variable must be done resulting in a highly complex optimization problem.

The resulting model is a mixed-integer nonlinear problem where now both, flow

variables and pressure variables are also a function of time; that is, we now have xt
ij

and pti variables for every arc (i, j) ∈ A and time step t ∈ T , where T is the set of time

steps.

Although some efforts have been made to address transient systems, one of the

most successfull techniques for handling this problem is the Simulated Annealing (SA)

algorithm of Mahlke et al [35] (see Chapter “Simulated Annealing.”) In that work,

the authors use the following main ideas. First, they relax the equations describing the

gas dynamic in pipes by adding these constraints combined with appropriate penalty

factors to the objective function. The penalty factor is dynamically updated ressembling

a strategic oscillation strategy. This gives the search plenty of flexibility. Then, they

develop a suitable neighborhood structure for the relaxed problem where time steps as

well as pressure and flow of the gas are decoupled. Their key idea of the neighborhood

generation is a small perturbation of flow and pressure variables in the segments and

nodes, respectively. An appropriate cooling schedule, an important feature of each SA

implementation, is developed. They tested their metaheuristic on data instances

provided by the German gas company E.ON Ruhrgas AG. The proposed SA algorithm

yields feasible solutions in very fast running times.

Simulated Annealing for Integrated Preventive Maintenance in

Natural Gas Transmission Networks

An interesting work proposing a framework for optimizainng a natural gas pipeline

including preventive maintenance scheduling operations is due to [39]. In his disserta-

tion, the author proposes a simulated annealing metaheuristic to mininize compressor
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fuel cost in a natural gas transmission network through the integration of an annual

maintenance plan for compressors in the network. The underlying multi-period mathe-

matical model is an extension of the typical single-period MFCP models. Its solution is

an operational/maintenance plan based on the best set of values uncovered for the op-

erational and maintenance decision variables which results in the approximate overall

minimisation of the fuel consumed by the compressors in the network.

The proposed solution approach is applied to three different case studies from the

literature which were developed for the evaluation of single-period MFCP models. The

first case study involves a linear transmission network, the second a tree transmission

network, and the third a cyclic transmission network. The time horizon of each case

study is 52 weeks. Before execution of the SA algorithm, a set of experiments were

carried out in order to determine appropriate combinations of model parameter values

for each of the three case studies. The numerical results indicate that the algorithm is

capable of finding high-quality solutions to all three instances.

NSGA-II for Multi-objective Optimization

The non-dominated sorting genetic algorithm II (NSGA-II) [13] is a multi-objective

evolutionary heuristic that is used to tackle optimization problems with multiple ob-

jectives. This algorithm has been successfully applied to a variety of real-world multi-

objective optimization problems, in particular with nonlinear objective functions. See

Chapter “Multi-Objective Optimization.”)

The solution delivered by the NSGA-II is a set of non-dominated solutions which

is a trade-off between the two objectives. Generally, every non-dominated solution is an

acceptable solution. However, a decision maker has to choose a single solution from the

optimal set by incorporating practical information and experience which significantly

improves the operation of the system.
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Kashani and Molaei [27] present a study that aims to find optimum values of

three conflicting objective functions namely maximum gas delivery flow, maximum

line pack, and minimum operating cost (sum of fuel consumption and carbon dioxide

emission costs), simultaneously, for a natural gas pipeline network. They apply NSGA-

II tom solve a small-scale case study with 5 compressor stations, eight pipelines and

14 nodes.

Demissie et al [14] present a nonlinear multi-objective optimization model

for optimizing the operation of natural gas pipeline networks in steady state. They

consider linear, tree, and cyclic topologies. Their bi-objective optimization model aims

at both minimizing fuel consumption and maximizing gas delivery flow rate. To address

the problem they apply a NSGA-II heuristic. They tested their algorithm in the data

set instances by Wu et al [61].

In a related work, Su et al [54] use NSGA-II to solve a bi-objective optimization

problem that assesses the trade-off between reliability and power demand in natural

gas pipeline networks under steady state. The model considers the uncertainties of the

supply conditions and customer consumptions The effectiveness of the algorithm is

tested on two typical pipeline networks, a tree-topology network and a loop-topology

network. The results show that the developed optimization model is able to find so-

lutions which effectively compromise the need of minimizing gas supply shortage risk

and minimizing energyu cost.

Conclusion

In this paper we have presented a description of successful metaheuristic implemen-

tations for handling very difficult optimization problems in fuel cost minimization of

natural gas transportation networks. Compared to existing approaches, meta-
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heuristics have the great advantage of not depending on gradient-based information

such that they can handle nonlinearities and nonconvexities with relatively ease.

Nonetheless, metaheuristics have been widely applied mostly to discrete linear

optimization problems, and not to fully extent to handle the nasty problems within

the natural gas industry. Therefore, there is a tremendous area of opportunity from

the metaheuristic perspective in this very important field. One must have in mind

that these are real-world problems where even a marginal improvement in the objective

function value represent a significant amount of money to be saved given the total flow

operation of these networks throughout the year. Therefore, further research in this

area is justified and needed from the practical and scientific perspective.

Important research issues such as how to derive new metaheuristics or how

the developed metaheuristics can be applied, extended, modified, so as to handle

MFCPs under different assumptions (e.g., non-isothermal models, non-identical com-

pressor units, non-transient models, uncertainty) remain to be investigated. In these

lines we have seen some preliminary efforts citing for instance the work of Mahlke

et al [35] who present a Simulated Annealing (see Chapter “Simulated Annealing”)

algorithm for addressing a MFCP under transient conditions. However, further work

is needed. We know that advanced concepts in metaheuristic optimization research

such as reactivity, adaptive memory, intensification/diversification strategies, or strate-

gic oscillation, are worthwhile investigating. Furthermore, as we have seen in this paper,

these models have a rich mathematical structure that allow for hybridization where part

of the problem can be solved with mathematical programing techniques while being

guided within a metaheuristic framework.

Over the past few years, we have also seen an increased interest in using machine

learning techniques for handling certain variations of natural gas pipeline networks.

One interesting feature of machine learning techniques such as deep reinforcement
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learning (DRL) is that they employ a model-free mechanism to optimize the system.

For instance, Fan et al [18] propose a method based on Bayesian networks and DRL

to optimize the reliability of gas supply in natural gas pipeline networks. More re-

cently, Liu et al [33] propose an optimization framework for natural gas transportation

pipeline networks based on DRL. The mathematical simulation model is derived from

mass balance, hydrodynamics principles of gas flow, and compressor characteristics.

The optimization control problem in steady state is formulated into a one-step Markov

decision process and solved by DRL. The decision variables are selected as the dis-

charge ratio of each compressor. This technique was empirically tested on very small

scale non-cyclic systems (gun-barrel and tree topologies). Although the technique was

compared with DP and a GA, a step forward on this direction would be to investigate

its applicability on the more challenging cyclic systems on larger real-world instances.

We hope we can stimulate the interest of the scientific community, particularly

from the metaheuristic optimization field, to contribute to advance the state of the art

in this very challenging research area.
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50. Ŕıos-Mercado RZ, Borraz-Sánchez C (2015) Optimization problems in natural gas transportation

systems: A state-of-the-art review. Applied Energy 147:536–555



33
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