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Pipeline Networks

Summary. In this chapter an overview on metaheuristié algorithms that have been very successfull
on tackling a particular class of natural'gas pipeline network optimization problems is presented. In
particular, the problem of minimizing fuel consumption incurred by the compressor stations driving
natural gas in pipeline networks is addressed. This problem has been studied from different angles
over the past few years by virtue of its tremendous economical impact. First, a general mathematical
framework for this class of problems is presented. After establishing the most relevant model proper-
ties and fundamental network topologies, which are key factors for choosing an appropriate solution
technique, current state-of-the-art metaheuristics are presented for handling different versions of
this problem. This work concludes by highlighting the most relevant and important challenges of this

very exciting area of research in natural’'gas ftransportation networks .
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Introduction

There are many interesting decision-making problems in the hatural’gas industry
that have been studied over the years. These include fields such as pipeline design, gas
storage, gathering, transporation, and marketing, to name a few. An important class
of these problems, referred to as the minumum fuel consumption problem (MFCP),
deals with how to operate a natural'gas fransportation network for delivering the
gas from storage facilities to local distribution companies so as to minimize the fuel
consumption employed by the compressor stations moving the gas along the network.
Efficient design and operation of these complex networks can substantially reduce air-
borne emissions, increase safety, and decrease the very high daily operating costs due
to the large amounts of fuel per day needed to operate the compressor stations driving
the gas.

This type of networks are very complex and highly nonlinear since the relation-
ship between the flow variables in every arc and the pressure values at the intercon-
nection points is represented by nonlinear equations, and, in some cases, by partial
differential equations. Thus, in general the class of MFCPs is very challenging due to
the presence of nonlinearities and nonconvexities in the models representing such prob-
lems. These problems have been studied since the late 1960s from many differeny angles,
most of them based on classical hierarchical control and mathematical programming
approaches.

It was until very recently that metaheuristics techniques were introduced
for addressing some of these problems. One of the great advantages of metaheuristic
algorithms over existing approaches is that the former do not depend on gradient-based
information so they can handle the nonlinear and nonconvex nature of the problems
with relative ease. Furthermore, they can be combined with existing mathematical

programming approaches in intelligent ways to derive hybrid mefahéuristié methods.
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The purpose of this chapter is to introduce the reader with an important class
of challenging optimization problems in hatiraligas fransportationmetworks and
to give a detailed discussion on how mefaheuristics have been successfully applied
on addressing these problems. There are of course other important decision-making
problems in the hatural’gas industry for which optimization techniques have made
important contributions. A recent survey by Zheng et al [40] surveys optimization
models in the nat@raligas industry, focusing on nat@raligas production, trans-
portation, and marketing. Rios-Mercado and Borraz-Sénchez [29] present an extensive
review on on classical techniques for fuel consumption minimization on transmission
systems, including gathering, transmission, and local distribution. Schmidt et al [32]
present stationary nonlinear programming models of gas networks that are primarily
designed to include detailed nonlinear physics in the final optimization steps for mid
term planning problems.

The chapter is organized as follows. The basic mathematical framework for
the steady-state case, including important model properties, is presented in the first
section. Then, in the following section, the existing classical approaches for handling

different versions of this problem including steady-state and transient models are briefly

highlighted. This is followed by two sections where both a [Fabu'Séarch algorithm for

handling o FHINEANFOKAMING ond o AHCOIHFIOPHMZGON ozorithm for
handling a mixed-infeger nonlinear programming model are described. Other méfas

heéuristié approaches for related problems in the natural’gas industry are reviewed

next. Final remarks and discussion on future research trends about ietaheuristic

techniques in Bafural’gas optimization problems are given in the last section.



Problem Description and Modeling Framework

Background

Basically, the main purpose of a natural gas transmission network is to transport gas
from storage facilities to local distribution companies. The gas is moved by pressure,
and pressure is lost due to the friction of the gas flow with the inner wall of the
pipelines. Thus, to keep the gas moving, compressor stations, whose primary role is
to increase gas pressure, are needed. In turn, every compressor station is composed of
several compressor units. These units may be identical or non-identical and hook-ed
up in different ways. The most typical configuration, which is assumed throughout this
chapter, is that of identical compressor units hooked-up in parallel. It is well known
that most of the operating costs in a pipeline network are due the amount of fuel
consumed at the compressor stations.

When operating a natural'gas transmission system aiming at minimizing fuel
consumption, there are two main groups of decision variables that must be taken: (i)
the mass flow rate through every pipe and compressor stations, and (ii) gas pressure
values in each interconnection point. Additionally, decisions such has how many indi-
vidual compressor units to operate within stations may be taken. Hence, the objective
for a transmission network is to minimize the total fuel consumption of the compressor
stations while satisfying specified delivery flow rates and minimum pressure require-
ments at the delivery terminals. The MFCP is typically modeled as a nonlinear or
mixed-integer nonlinear network optimization problem. It is of course assumed that
the network is given, that is, this is not a design problem.

Depending on how the gas flow changes with respect to time, we distinguish
between systems in steady state and transient state. A system is said to be in steady

state when the values characterizing the flow of gas in the system are independent of
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time. In this case, the system constraints, particularly the ones describing the gas flow
through the pipes, can be described using algebraic nonlinear equations. In contrast,
transient analysis requires the use of partial differential equations (PDEs) to describe
such relationships. This makes the problem considerably harder to solve from the op-
timization perspective. In fact, optimization of transient models is one of the most
challenging ongoing research areas. In the case of transient optimization, variables of
the system, such as pressures and flows, are functions of time.

Gas transmission network problems differ from traditional network flow prob-
lems in some fundamental aspects. First, in addition to the flow variables for each
arc, which in this case represent mass flow rates, a pressure variable is defined at ev-
ery node. Second, besides the mass balance constraints, there exist two other types
of constraints: (i) a nonlinear equality constraint on each pipe, which represents the
relationship between the pressure drop and the flow; and (ii) a nonlinear nonconvex
set which represents the feasible operating limits for pressure and flow within each
compressor station. The objective function is given by a nonlinear function of flow
rates and pressures. The problem is very difficult due to the presence of a nonconvex

objective function and a nonconvex feasible region.

Description of Basic Model

Let G = (V, A) be a directed graph representing a Haturallgas transmission network,
where V' is the set of nodes representing interconnection points, and A is the set of arcs
representing either pipelines or compressor stations. Let V, and V; be the set of supply
and demand nodes, respectively. Let A = A, U A, be partitioned into a set of pipeline
arcs A, and a set of compressor station arcs A.. That is, (u,v) € A, if and only if u

and v are the input and output nodes of compressor station (u,v), respectively.
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Two types of decision variables are defined: Let x,, denote the mass flow rate
at arc (u,v) € A, and let p, denote the gas pressure at node u € V. The following
parameters are assumed known: B, is the net mass flow rate in node u, and P and PV
are the pressure limits (lower and upper) at node u. By convention, B, > 0 (B, < 0)
if ue Vy (ueVy),and B, = 0 otherwise.

The basic mathematical model of the minimum fuel cost problem (MFCP) is

given by:
Minimize  g(z,p) = Z Guo(Tuws Pus Po) (1)
(u,v)EA:
subject to Z Ty — Z Touw = By ueV (2)
vi(u,v)EA vi(v,u)€EA
(xumpwpv) € Duv <u>v) € AC (3)
xiv = Ruv(ﬁoi - pi) (u,v) € 4, (4)
pu € [Py, P/ ueV (5)
Ty > 0 (u,v) €A (6)

The objective function (1) measures the total amount of fuel consumed in the
system, where ¢y, (T, Pu, P») denotes the fuel consumption cost at compressor station

(u,v) € A.. For a single compressor unit the following function is typically used:

Oty [ (o)
g(l)(xuvapuapv) = { <_) - 1} )
n Pu

where v and m are assumed constant and known parameters that depend on the gas

physical properties, and 7 is the adiabatic efficiency coefficient. This adiabatic coeffi-
cient is a function of (%, pu, Py), that is, in general, a complex expression, implicitly
defined. A function evaluation of 7 requires solving a linear system of algebraic equa-

tions. In practice, though, polynomial approximation functions that fit the function
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relatively well and are simpler to evaluate are employed. In other cases, when the
fluctuations of 7 are small enough, n can be assumed to be a constant.
For a compressor station (u,v) with n,, identical compressor units hooked-up

in parallel which is very commonly found in industry, the fuel consumption is given by:
guv(xuvapuapv) - nuvg(l)(muv/nuvapuapv)- (7)

When all n,, units are fixed and operating we have a honlinear’programming (NLP)

model. Treating n,, as decision variables, leads to [HiXedSinteger Honlinear program-
ming (MINLP) models.

Constraints (2) establish the mass balance at each node. Constraints (3) denote
the compressor operating limits, where D,, denote the feasible operating domain for
compressor (u,v) € A.. Equations (4) express the relationship between the mass flow
rate through a pipe and its pressure values at the end points under isothermal and
steady-state assumptions, where R, (also known as the pipeline resistance parameter)
is a parameter that depends on both the physical characteristics of the pipeline and
gas physical properties. When the steady-state assumption does not hold, this relation-
ship is a time-dependent partial differential equation which leads to transient models.
Constraints (5) set the lower and upper limits of the pressure value at every node, and
(6) set the non-negativity condition of the mass flow rate variables. Further details of

this model can be found in Wu et al [38] and Rios-Mercado [28].

Network Topology

There are three different kinds of network topologies: (a) linear or gun-barrel, (b) tree
or branched, and (c) cyclic. Technically, the procedure for making this classification is
as follows. In a given network, the compressor arcs are temporarily removed. Then each

of the remaining connected components is merged into a big super-node. Finally, the
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compressor arcs are put back into their place. This new network is called the associated
reduced network. Figure 1 illustrates the associated reduced network for a 12-node, 11-
arc example. As can be seen, the reduced network has 4 supernodes (labeled S1, S2,

S3, S4) and 3 arcs (the compressor station arcs from the original network).
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(b) Associated reduced network.

Fig. 1. Illustration of a reduced network.

Types of network topologies:

Linear topology: Reduced network is a single path.
Tree topology: Reduced network is a tree.

Cyclic topology: Reduced network has cycles (either directed or undirected).

These different types of network topologies are shown in Figure 2, were the

original network is represented by solid line nodes and arcs, and the reduced network
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by dotted super nodes. Note that even though networks in Figure 2(a) and 2(b) are
not acyclic from a strict network definition, they are considered as non-cyclic pipeline

network structures.

~_- L _ ___

(c) Cyclic topology.

Fig. 2. Different kinds of pipeline network topologies.

Solution Techniques: Classical Approaches

There is certainly a number of different optimization techniques that have been tried in

the past to address problems in fuel cost minimization of Hatiraligas fransportation
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Steady-State NLP models: Most of the work for nonconvex NLP models has been
based on steady-state models. One can find work on dynamic programming based
techniques [3; 6; 13; 15; 17; 31; 36; 37], methods based on gradient search [12; 26],
global optimization methods [13], linearization techniques [9], and model properties
and lower bounding schemes [5; 30; 38].

Steady-State MINLP models: There has also been studies on developing optimization
methods for addressing MINLP models. In most of these models, integer variables
for deciding which individual compressor units must be opearting within a com-
pressor station are introduced. Solution methodologies include mainly successive
branch and bound [27; 34], outer approximation with augmented penalty [8], and
linearization techniques [20].

Transient models: Transient models are more challenging as the governing PDEs asso-
ciated to the dynamics of the gas system must be taken into consideration. Efforts
on addressing this class of very difficult problems include hierarchical control tech-
niques [2; 16; 21; 22; 23; 25] in the early years, and mathematical programming

approaches [1; 10; 11; 14; 19; 24; 35], more recently.

For a complete literature review and detailed discussion of some of these tech-
niques the reader is referred to the recent surveys of Zheng et al [40] and Rios-Mercado
and Borraz-Sanchez [29]. In the following sections we review the most successful metas

heéuristi¢ techniques applied to variations of the MFCP.

Tabu Search: An Approach for NLP Models

For the past few years, [Tabu'Search [(SESCHAPTET“TabINSEaFc™) has established

its position as an effective met@heuristic guiding the design and implementation of

algorithms for the solution of hard combinatorial optimization problems in a number of
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different areas. A key reason for this success is the fact that the algorithm is sufficiently
flexible to allow designers to exploit prior domain knowledge in the selection of parame-
ters and subalgorithms. Another important feature is the integration of memory-based
components.

When addressing the MFCP, even though we are dealing with a continuous
optimization problem, Tabu Search (TS), with an appropriate discrete solution space,
is a very attractive choice due to the the non-convexity of the objective function and
the versatility of TS to overcome local optimality.

We now describe the T'S-based approach of Borraz-Sanchez and Rios-Mercado
4, 5], which is regarded as the most successful implementation of a [iCtANEUFSHE for
the MFCP. This TS takes advantage of the particular problem structure and properties
and in fact can be regarded as a hybrid metaheuristic or matheuristic —[SCEICHEPEEH
“Matheuristics”) |

Let us consider the MFCP model given by (1)-(6), that is, the number of com-
pressor units operating in each compressor station is known and fixed in advance.
As established earlier, this is a nonconvex NLP. Current state of the art on solution

techniques for this MFCP reveals these important facts:

° There are theoretical results indicating that in non-cyclix systems, the values of
the flow variables can be uniquely determined and fixed beforehand [30]. There-
fore, the problem reduces to finding out the optimal set of pressure variables at
each node in the network. Of course, the problem is still hard to solve, but it
reduces its dimension in terms of the decision variables.

° As a direct consequence of this, there exists successful implementations mostly
based on dynamic programming (DP) that efficiently solve the problem in non-

cyclic instances by appropriately discretizing the pressure variables.
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° When in a cyclyc system, we impose the limitation of fixing the flow variables
in each arc, a nonsequential dynamic programming (NDP), developed by Carter
[6], can been successfully applied for finding the optimal set of pressure variables.
Although this algorithm has the limitation of narrowing the set of solutions to
those subject to a fixed set of flows, it can be used within other flow-modification

based approaches.

It is clear that the TS approach is aiming at finding high-quality solutions for
cyclic systems. It exploits the fact that for a given set of flows an optimal set of pressure

values can be efficiently found by NDP.

Nonsequential Dynamic Programming

We include in this section a brief description of the essence of the NDP algorithm.
Further details can be found in [4]. Starting with a feasible set of flow variables, the
NDP algorithm searches for the optimal set of node pressure values associated to that
pre-specified flow. Rather than attempting to formulate DP as a recursive algorithm,
at a given iteration, the NDP procedure grabs two connected compressors and replace

¢

them by a “virtual” composite element that represents the optimal operation of both
compressors. These two elements can be chosen from anywhere in the system, so the
idea of “sequential recursion” in classical DP does not quite apply here. After perform-
ing this step at a stage ¢, the system with ¢ compressor stations has been replaced
by an equivalent system with ¢ — 1 stations. The procedure continues until only one
virtual element, which fully characterizes the optimal behavior of the entire pipeline
system, is left. Afterwards, the optimal set of pressure variables can be obtained by
a straight-forward backtracking process. The computational complexity of this NDP

technique is O(|Ac|N7), where N, is the maximum number of elements in a pressure

range discretization.
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Procedure 1 Pseudocode of Procedure TS

Input: An instance of the MFCP.

Output: A feasible solution (X, P).

L (X, P)Pest « ¢

2: TabuList <

3: X <« FindInitialFlow( )

4: while ( stopping criteria not met ) do

5:

6:

10:

11:

12:

13:

14:

Generate neighborhood V (X)

for ( X € V(X) such that X ¢ TabuList ) do
P+ NDP( X )

end for

Choose best (non-tabu) solution (X, P)

if (|TabuList| == TabuTenure) then
Remove oldest element from TabuList

end if

TabuList < TabuList U X

(X, P)Pest « Best( (X, P), (X, P)best )

15: end while

16: Return (X, P)best

The main steps of the algorithm are shown in Procedure 1. Here, a solution

Y = (X, P) is partitioned into its set of flow variables X and set of pressure variables

P. First note that the search space employed by TS is defined by the flow variables

X only because once the flow rates are fixed, the corresponding pressure variables are

optimally found by NDP. Furthermore, we do not need to handle the entire set of flow

variables, but only one per cycle. This is so because once you fix a flow rate in a cycle,

the rest of the flows can be uniquely determined. Thus, a given state is represented by

a vector X = (X,,,...

, Xa,, ), where a,, is an arc that belongs to a selected cycle w.
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Note that this set of arcs is arbitrarily chosen, and that converting a flow from X to
and from X is straightforward, so in the description X and X are used interchangeably.
This situation is illustrated in Figure 3. The network represents the associated reduced
network. It is clear that given a specified amount of net flow entering at node 1, only
one arc in each cycle is needed to uniquely determine the flows in each arc of the

network. In this case, the bold arcs (5,6) and (10,11), one per cycle, suffice.

Cyclew=1 Cyclew =2

Flow vector X ={(5,6), (10, 11) }

Fig. 3. Flow components of a feasible solution on a cyclic topology.

We now describe each component.

° Initial set of flows: First, in Step 3, in initial set of feasible flows is found. Here,
different methods such as classical assignment techniques can be applied in a
straightforward manner.

o Neighborhood definition: In Step 5, a neighborhood V(X)) of a given solution
X ={%,Zy,...,%,} is defined as the set of solutions reachable from X via a

modification of the current flow in each arc by A, units in each of its components.

This is given by
V(Iz)={X"e R |2, =T, kA, k=1,2,....N/2, w=1,...,m}

where N is the pre-defined neighborhood size, A, accounts for the mesh size,
and the index w refers to the w-th cyclic component. Note that, for a given
solution, the entire solution does not need to be stored but only the flow in the

selected arc component to be modified. Note also that once this value is set, the
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rest of the flow variables in the cycle are easily determined, so in this sense, it
is precisely this mass flow rate which becomes the attribute of the solution.

. Optimal pressure values: In Steps 6-8, the corresponding set of pressure values
for the given flow is found by invoking the NDP algorithm only for those flow
values that are non-tabu.

° Tabu list: Then in Step 9 the best X’ € V(X) which is non-tabu is chosen and
the corresponding subsets are updated accordingly. A tabu list (Tabulist) stores
recently used attributes, in our case, values of the X variables. The size of the
TabuList (TabuTenure) controls the number of iterations a particular attribute
is kept in the list.

° Stopping criterion: The search usually terminates after a given number of it-

erations , or when no significant change has been found in certain number of

1terations. iterations.

As we know from theoretical properties of pipeline networks [30], the flow mod-
ification step is unnecessary for noncyclic topologies because there exists a unique set
of optimal flow values which can be determined in advance at preprocessing.

The algorithm was tested on several cyclic real-world size instances of up to
19 super-nodes and 7 compressor stations with excellent results. The method signifi-
cantly outperformed the best earlier approaches finding solutions of very good quality

relatively quickly.

Ant Colony Optimization: An Approach for MINLP

Models

Let us consider now the problem where, in addition to the flow variables in each arc

and the pressure variables in each node, the decision process involves determining the
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number of operating units in each compressor as well. This leads to a MINLP model.

In this section, the AntiColony Optimization (ACO) algorithm by Chebouba et al
[7] for this version of the MFCP is described.

Ant Colony Optimization  (sée Chiapter “Ant Colony Optimization”) i
relatively new evolutionary optimization method that has been successfully applied to
a number of combinatorial optimization problems. ACO is based on the communication
of a colony of simple agents (called ants), mediated by (artificial) pheromone trails. The
main source of ACO is a pheromone trail laying and following behavior of real ants
which use pheromones a communication medium. The pheromone trails in ACO serve
as distributed, numerical information which the ants use to probabilistically construct
solutions to the problem being solved and which the ants adapt during the algorithm’s
execution to reflect its search experience.

Regarding  Watufaligas pipeline network optimization, Chebouba et al [7]
present an ACO metahéutistic for the MFCP with a variable number of compressor
units within a compressor station. They focus on the linear topology case. As it was
mentioned earlier, solving the MFCP on linear topologies has been successfully ad-
dressed by dynamic programming approaches when the number of compreessor units
is fixed and known; however, when the number of individual compressor units is vari-
able and part of the decision process it leads to a MINLP that has a higher degree of

difficulty.

Fig. 4. Modeling compressor unit choices as a multigraph.
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Consider the MINLP given by objective function (7) subject to constraints (2)-
(6). When the number of individual compressor units within a compressor station are
identical and hooked-up in parallel, the linear system, as depicted in Figure 2(a), can
be represented by a multigraph with the compressor stations aligned sequentially where
the i-th compressor station (compressor arc (i,7 + 1) in the figure) is modeled by a set
of n; arcs between suction node ¢ and discharge pressure i+ 1 (see Figure 4). Here, n; is
the number of individual compressor units and each of the multi arcs (i, i+ 1) represents
a decision on how many units are used in that particular station. Each multi arc in the
i-th station is denoted by (i,74 1,7) (or simply (¢,r)), where r identifies the number of
individual compressor stations to be used in a particular solution. Let L be the set of
edges in this multi-graph given by L = {(i,r) : i € {1,...,n},r € {1,...,n;}}. In this
case, the cost of arc (i,r) given by ¢;. depends on the values of the pressure variables
p; and p;41. This will be determined during the construction of the solution. Following

equation (7), the cost is then given by

Cip = Tg(l)(ﬂfi,iﬂ/?? pi7pi+1)-

where it can be seen in a straightforward manner that, in the case of linear systems with
known supply/demand values, the flow variables z; ;11 through the entire network can
be determined and fixed beforehand. Furthermore, this cost is heuristically estimated
once at the start of the procedure.

At the start of the algorithm, m ants are placed at the starting node. Ants
build a solution while moving from node to an adjacent node by choosing one of the
multi arcs and by randomly generating values of the pressure variables for correct
computation of the arc cost. During iteration ¢, each ant k carries out a partial path
T*(t), and in this step, the choice of arc (i,r) depends on both the cost ¢; and the

concentration of pheromone 7;,(t) on arc (i, 7) at iteration t. The pheromone trail takes
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into account the ant’s current history performance. This pheromone amount is intended
to represent the learned desirability of choosing the r-th edge at node i. The pheromone
trail information is changed during problem solution to reflect the experience acquired
by ants during problem solving.

First, the algorithm introduces a transition rule depending on parameter ¢y €
[0, 1], which determines the relative importance of intensification/diversification trade-
off: evert time an ant at node i chooses arc (i,7) according to the following transition
rule:

arg maxu(’rz’u(t»a/(ciu)ﬂ lf q S qo,

s otherwise.

where ¢ is random variable uniformly distributed in [0, 1] and s is a random variable

chosen according to the following probability function:

ph(t) =

(7is (£)*/ (cis)”
2 (T (1)) %/ (i)

As can be seen, low values of ¢y lead to diversification and high values of gy stimulates
intensification. Parameters a and [ control the relative importance of the pheromone
trail and greedy construction value. The main steps of the algorithm are shown in
Procedure 2.

The pheromone trail is changed both locally (Step 7) and globally (Step 10) as

follows.
o Local updating: Every time arc (i,r) is chosen by an ant, the amount of
pheromone changes by applying this local trail update:

Tir(t) < (1 = p)73(t) + p7o0

where g is the initial pheromone value and p the evaporation rate.
° Global updating: Upon completion of a solution by every ant in the colony, the

global trail updating is done as follows. The best ant (solution) from this finished
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Procedure 2 Pseudocode of Procedure ACO
1: t<0

2: while ( stopping criteria not met ) do

3: t—t+1
4: xbest . 0
5: for (k=1,..,m) do
6: Build solution X
7 Apply local updating rule along path of X
8: XPest o Best(X, XPest)
9: end for
10: Apply global updating rule along path of XPest

11: end while

12: Return X Pest

iteration is chosen according to the best objective function value g*. Then, in

each arc (4,7 + 1,7) used by this best ant, the trail is updated as:

Tir(t + 1) < (1 — p)1ir(t) + i

*

This algorithm was tested on the Hassi R'mell-Arzew real-world pipeline net-
work in Argelia consisting of 5 pipes, 6 nodes, 5 compressor stations, and 3 units in each
compressor. They also built three additional cases with up to 23 compressor stations,
and 12 compressor units in each compressor. This method performs reasonably well on
these type of networks according to the authors’ empirical work. A great advantage is
its relatively ease of implementation.

The issue on how this algorithm can be modfied so as to handle non-cyclic

systems remains an interesting topic for further investigation along this area.
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Metaheuristic Approaches to Related Problems

In this section, we review some other related optimization problems in hatural gas

pipeline networks that have been addressed by nietaheuristic methods.

Particle Swarm Optimization for Non-isothermal Systems

Wu et al [39] address a variation of the problem where, rather than minimizing fuel
consumption, the focus is on maximizing a weighted combination of the maximum oper-
ation benefit and the maximum transmission amount. The operation benefit is defined
as the sales income minus the costs. These costs include gas purchasing cost, pipeline’s
operation cost, management cost, and compressors running cost. The transmission
amount is defined as the total gas volume that flows into the pipeline. In addition, a
non-isothermal model is considered, that is, the authors consider the dynamics of the
pipes being a function of temperature. Most of the literature focus on the isothermal

case. They develop - PAFHCIESWANMOPHIIZINGN (PSO) FHEMNEWHSHE onhanced

by an adaptive inertia weight strategy to adjust the weight value dynamically. In a
PSO implementation [(SEENCHapITParticlelSWarmVIEthods™) , the inertia weight
parameter is used to balance the global and local search ability. If the weight has a
large value, the particle will search in a broader solution space. Ifthe weight has a small
value, the evolution process will focus on the space near to the local best particle. Thus,
the global and local optimization performances of the algorithm can be controlled by
dynamically adjusting the inertia weight value. This method adjusts the inertia weight
adaptively based on the distance from the particles to the global best particle [33] .
They tested their méfaheuristic (named IAPSO) in the Sebeie-Ningxiae-
Lanzhou gas transmission pipeline in China. Nine stations along the pipeline distribute
gases to sixteen consumers. There are four compressor stations with eight compressors

to boost the gas pressure. The results show that IAPSO has fast convergence, ob-
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taining reasonably good balances between the gas pipeline’s operations benefit and its

transportation amount.

Simulated Annealing for Time-Dependent Systems

As mentioned earlier, the previous two chapters addressed steady-state systems. How-
ever, when the steady-state assumption does not hold, the constraints that describe the
physical behavior through a pipeline cannot be represented in the simplifying form as
in (4). On the contrary, this behavior is governed by partial differential equations with
respect to both flow and time. Therefore, to handle this situation, a discretization over
the time variable must be done resulting in a highly complex optimization problem.

The resulting model is a mixed-integer nonlinear problem where now both, flow
variables and pressure variables are also a function of time; that is, we now have a:'gj
and p! variables for every arc (i,7) € A and time step ¢ € T, where T is the set of time
steps.

Although some efforts have been made to address transient systems, one of the
most successfull techniques for handling this problem is the Simulatéd Annealing (SA)
algorithm of Mahlke et al [18] [SEEICHEpteR“Simtlated ATREaAlng™) . [n that work,
the authors use the following main ideas. First, they relax the equations describing the
gas dynamic in pipes by adding these constraints combined with appropriate penalty
factors to the objective function. The penalty factor is dynamically updated ressembling
a strategic oscillation strategy. This gives the search plenty of flexibility. Then, they
develop a suitable neighborhood structure for the relaxed problem where time steps as
well as pressure and flow of the gas are decoupled. Their key idea of the neighborhood
generation is a small perturbation of flow and pressure variables in the segments and

nodes, respectively. An appropriate cooling schedule, an important feature of each SA

implementation, is developed. They tested their meétaheuristic on data instances
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provided by the German gas company E.ON Ruhrgas AG. The proposed SA algorithm

yields feasible solutions in very fast running times.

Conclusion

In this paper we have presented a description of successful ~nietaheuristié implemen-
tations for handling very difficult optimization problems in fuel cost minimization of
natural gas fransportafion networks . Compared to existing approaches, —hietas
heuristics have the great advantage of not depending on gradient-based information
such that they can handle nonlinearities and nonconvexities with relatively ease.

Nonetheless, metaheuristics have been widely applied mostly to discrete linear
optimization problems, and not to fully extent to handle the nasty problems within
the natural'gas industry. Therefore, there is a tremendous area of opportunity from
the mMEtARGUTSHE perspective in this very important field. One must have in mind
that these are real-world problems where even a marginal improvement in the objective
function value represent a significant amount of money to be saved given the total flow
operation of these networks throughout the year. Therefore, further research in this
area is justified and needed from the practical and scientific perspective.

Important research issues such as how to derive new metaheuristics or how
the developed etaheuristics can be applied, extended, modified, so as to handle
MFCPs under different assumptions (e.g., non-isothermal models, non-identical com-
pressor units, non-transient models, uncertainty) remain to be investigated. In these
lines we have seen some preliminary efforts citing for instance the work of Mahlke
et al [18] who present a Simulated Annealing |[(SECICHAPTCHSitIateANATRCaAliTHGE")
algorithm for addressing a MFCP under transient conditions. However, further work
is needed. We know that advanced concepts in metaheuristié optimization research

such as reactivity, adaptive memory, intensification/diversification strategies, or strate-
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gic oscillation, are worthwhile investigating. Furthermore, as we have seen in this paper,
these models have a rich mathematical structure that allow for hybridization where part
of the problem can be solved with mathematical programing techniques while being
guided within a metaheuristic framework.

We hope we can stimulate the interest of the scientific community, particularly
from metaheuristic optimization field, to contribute to advance the state of the art in
this very challenging research area.
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