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Abstract. In this paper we propose a hybrid heuristic solution proce-
dure for fuel cost minimization on gas transmission systems with a cyclic
network topology, that is, networks with at least one cycle containing two
or more compressor station arcs. Our heuristic solution methodology is
based on a two-stage iterative procedure. In a particular iteration, at a
first stage, gas flow variables are fixed in each network arc and optimal
pressure variables in each network node are found via non-sequential dy-
namic programming. At a second stage, pressure variables are fixed and a
short-term memory Tabu Search procedure is used for guiding the search
in the flow variable space. Empirical evidence supports the effectiviness
of the proposed procedure outperforming the best existing approach to
the best of our knowledge.
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1 Introduction

In this paper, we address the problem of minimizing the fuel consumption in-
curred by compressor stations in a natural gas pipeline transmission system.
During this process, energy and pressure are lost due to both friction between
the gas and the pipes’ inner wall, and heat transfer between the gas and the
environment. To keep the gas flowing through the system, it is necessary to
periodically increase its pressure, so compressor stations are installed through
the network. It is estimated that compressor stations typically consume about
3 to 5% of the transported gas. This transportation cost is significant because
the amount of gas being transported in large-scale systems is huge. In the other
hand, even a marginal improvement in gas operations can have a significant pos-
itive impact from the economic standpoint, so this provides the main motivation
from the practical side for the proposed work.

This problem is represented by a network, where arcs correspond to pipelines
and compressor stations, and nodes correspond to their physical interconnection
points. We consider two types of continuous decision variables: mass flow rates
through each arc, and gas pressure level at each node. So, from the optimization
perspective, this problem is modeled as a nonlinear program (NLP), where the



cost function is typically nonlinear and non-convex, and the set of constraints is
typically non-convex as well. It is well know that non-convex NLP is NP-hard [6].
This motivates the choice of the proposed heuristic approach.

The state of the art on research on this problem reveals a few important
facts. First, there are two fundamental types of network topologies: non-cyclic
and cyclic. We would like to emphasize that, the former is a type of topology
that has received most of the attention during the past 30 years. Several methods
of solution have been developed, most of them based on Dynamic Programming
(DP), which were focused on non-cyclic networks.

In particular, as far as handling cyclic topologies is concerned, gradient search
and DP approaches have been applied with little or limited success. The main
limitation of the former is its local optimality status. The drawback of the latter,
is that its application is limited to problems where the flow variables are fixed, so
the final solution is “optimal” with respect to a pre-specified set of flow variables.
This is because cyclic topologies are a lot harder to solve.

In this paper, we proposed a novel solution methodology for addressing the
problem of how to optimally operate the compressor stations in a natural gas
pipeline system, focusing in cyclic topologies. The proposed technique combines
a non-sequential DP technique (originally proposed by Carter [2]) within a Tabu
Search (TS) framework. For the past twelve years, TS has established its posi-
tion as an effective meta-heuristic guiding the design and implementation of
algorithms for the solution of combinatorial optimization problems in a num-
ber of different areas (Glover and Laguna [5]). A key reason for this success is
the fact that the algorithm is sufficiently flexible to allow designers to exploit
prior domain knowledge in the selection of parameters and sub-algorithms. In
this case, even though we are dealing with a continuous optimization problem,
the high non-convexity of the objective function and the versatility of TS to
overcome local optimality make TS very attractive with an appropriate discrete
solution space.

Empirical evidence over a wide range of instances with data taken from in-
dustry shows the efficiency of the proposed approach. A comparison with former
approaches which include GRG-based and state-of-the-art Carter’s DP tech-
nique demonstrates the significant superiority of our procedure. Furthermore, in
order to assess the quality of the solutions delivered by our procedure, a lower
bound procedure was derived. It is shown that the optimality gaps found by
our technique are less than 16%, most of them less than 10%, which represents
a significant progress to the current state of the art in this area. The scientific
contribution of this work is providing the best technique known to date, to the
best of our knowledge, for addressing this type of problem in cyclic topologies.

The rest of this paper is organized as follows. In Section 2, we formally intro-
duce the fuel consumption minimization problem (FCMP), describing its main
features, modeling assumptions, and important properties. Then, in Section 3,
we present a review of earlier approaches for this problem, highlighting the most
related to our work, and how we attempt to exploit some of them. The proposed
methodology is fully described in Section 4. An extensive computational evalua-



tion of the heuristic, including comparison with earlier approaches, is presented
in Section 5. Finally, we wrap up this work with the conclusions and directions
for future research in Section 6.

2 Problem Description

Pipeline system models can be mainly classified into steady-state and transient
systems. The difference between the two is as follows. The flow dynamics through
a pipeline is ruled by a partial differential equation involving derivatives with
respect to time. Under a steady-state assumption, it is possible to work out this
equation and reduce to a nonlinear equation with no derivatives, which makes the
problem a lot more tractable from the optimization perspective. Like all those
previous works (reviewed in Section 3), here we assume a steady-state model.
That is, our model provides solutions for systems that have been operating
for a relatively large amount of time, which is a common practice in industry.
Transient analysis has been done basically by descriptive models, so optimization
for transient systems remains as one of the great research challenges in this area.
We also assume we work with a deterministic model, that is, each parameter
is known with certainty, which is a very reasonable assumption. In terms of
the compressor stations, we assume we work with centrifugal compressor units,
which are the most commonly found in industry. As far as the network model is
concerned, we assumed the network is balanced, that is, no gas is lost, and that
each arc in the network has a pre-specified direction.

The Model

This model was originally introduced by Wu et al. [19].

Sets
V : Set of all nodes in the network
Vs: Set of supply nodes (Vs ⊂ V )
Vd: Set of demand nodes (Vd ⊂ V )
Ap: Set of pipeline arcs
Ac: Set of compressor station arcs
A: Set of all arcs in the network; A = Ap ∪ Ac

Parameters
Uij : Arc capacity of pipeline (i, j); (i, j) ∈ Ap

Rij : Resistance of pipeline (i, j); (i, j) ∈ Ap

PL
i , PU

i : Pressure lower and upper limits at each node; i ∈ V
Bi: Net mass flow rate at node i; i ∈ V . Bi > 0 if i ∈ Vs, Bi < 0 if i ∈ Vd,

Bi = 0 otherwise

Variables
xij : Mass flow rate in arc (i, j); (i, j) ∈ A
pi: Pressure at node i; i ∈ V



Formulation

(FCMP)

Minimize
∑

(i,j)∈Ac

gij(xij , pi, pj) (1)

subject to
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = Bi i ∈ V (2)

xij ≤ Uij (i, j) ∈ Ap (3)

p2
i − p2

j = Rijx
2
ij (i, j) ∈ Ap (4)

pi ∈ [pL
i , pU

i ] i ∈ V (5)

(xij , pi, pj) ∈ Dij (i, j) ∈ Ac (6)

xij , pi ≥ 0 (i, j) ∈ A, i ∈ V (7)

The objective function (1) represents the total amount of fuel consumption in the
system. Constraints (2)-(3) are the typical network flow constraints represent-
ing node mass balance and arc capacity, respectively. Constraint (4) represents
the gas flow dynamics in each pipeline under the steady-state assumption. Con-
straints (5) denote the pressure limits in each node. These limits are defined
by the compressor physical properties. Constraint (6) represents the non-convex
feasible operating domain Dij for compressor station (i, j). Finally, the mathe-
matical model is bounded by non-negative decision variables (7). The algebraic
representation of Dij is the result of curve fitting methods based on empirical
data taken from the compressors.

For measuring fuel consumption, we use a function gij in the following form:

g(xij , pi, pj) = αxij

{(
pj

pi

)m

− 1
}

, (xij , pi, pj) ∈ Dij ,

where α and m are assumed constant (and known) parameters that depend on
the gas physical properties. A more detailed study on the nature of both the
compressor station domain and the fuel consumption function is given in [19].

3 Previous Work

In this section, we review the most significant contributions over the last 30 years
for solving the FCMP.

Methods Based on Dynamic Programming

The key advantages of DP are that a global optimum is guaranteed to be found
and that nonlinearity can be easily handled. In contrast, its application is practi-
cally limited to non-cyclic networks, such as linear (also known as gun-barrel) or
tree topologies, and that computation increases exponentially in the dimension
of the problem, commonly referred as the curse of dimensionality.



DP for pipeline optimization was originally applied to gun-barrel systems in
the late 1960s. It has been one of the most useful techniques due to both its
computational behavior and its versatility for handling non-linearity on sequen-
tial systems. DP was first applied to linear systems by Wong and Larson [16] in
1968, and then applied to tree-structured topologies by Wong and Larson [17].
A similar approach was described by Lall and Percell [7] in 1990, who allow one
diverging branch in their system.

The most significant work on cyclic networks know to date is due to Carter [2]
who developed a non-sequential DP algorithm, but limited to a fixed set of flows.
In our work, we use Carter’s ideas and incorporate them within a Tabu Search
scheme for iteratively adjusting the set of flows with great success. This will be
further described in Section 4.

Methods Based on Gradient Search

In 1987, Percell and Ryan [11] applied a different methodology based on a Gener-
alized Reduced Gradient (GRG) non-linear optimization technique for non-cyclic
structures. One of the advantages of GRG, when compared with DP, is that they
can handle the dimensionality issue relatively well, and thus, can be applied to
cyclic structures. Nevertheless, being a method based on a gradient search, there
is no guarantee for a global optimal soultion, especially when there are discrete
decision variables. Villalobos-Morales and Rı́os-Mercado [15] evaluated prepro-
cessing techniques for GRG, such as scaling, variable bounding, and choice of
starting solution, that resulted in better results for both cyclic and non-cyclic
structures. More recently, Flores-Villarreal and Rı́os-Mercado [4] performed an
extensive computational evaluation of the GRG method over a large set of in-
stances on cyclic structures with relative success. No comparison to DP was done
in that work, so part of our contribution is to provide a comparison frame among
Carter’s NDP, GRG, and our method tested in the same set of instances.

Other Approaches

Wu, Boyd, and Scott [18] presented a mathematical model for the fuel cost
minimization on a compressor station with a single unit. It was the first work that
fully addressed the mathematical description of a centrifugal compressor. Later,
Wu et al. [19] completed the analysis for the same problem, but considering
several units within compressor stations. In a related work, some of the most
important theoretical properties regarding pipeline networks are developed by
Rı́os-Mercado et al. [13].

In a variation of this problem, Cobos-Zaleta and Rı́os-Mercado [3] recently
presented a solution technique based on an outer approximation with equality
relaxation and augmented penalty algorithm OA/ER/AP for solving a mixed-
integer non-linear programming model, where an integer decision variable, rep-
resenting the number of compressor units running within each station, is incor-
porated. They present satisfactory results as they were able to find local optima
for many instances tested.



Optimization techniques have also been applied for transient (time depen-
dent) models (e.g., Osiadacz [8], and Osiadacz and Swierczewski [10]), and net-
work design (e.g., Osiadacz and Górecki [9]), with modest success. See Rı́os-
Mercado [12] for more references on optimization techniques applied to gas
pipeline problems. It is important to mention that optimization approaches de-
veloped to date work well under some general assumptions; however, as the
problems become more complex, the need arises for further research and effec-
tive development of algorithms from the optimization perspective.

4 Solution Procedure

Basically, the proposed methodology consists of four components: (a) Preprocess-
ing: This phase is performed both to refine the feasible operating domain given
by tightening decision variable bounds, and to reduce the size of the network
by a reduction technique (motivated by the work of Rı́os-Mercado et al. [13]);
(b) Finding an initial feasible flow: In this phase, a set of feasible flows is found
by two different methods: a classic assignment technique and a reduced graph
algorithm; (c) Finding an optimal set of pressure values: In this phase, a set of
optimal pressures (for the pre-specified flow in the previous phase) is found by
applying a non-sequential DP (NDP) algorithm; (d) Flow modification: Here,
an attempt to find a different set of flows is made by employing a tabu search
framework.

So the key idea of the procedure is to execute components (c) and (d) itera-
tively until a stopping criteria is satisfied. As we know from theoretical properties
of pipeline networks [13], step (d) is unnecessary for non-cyclic topologies be-
cause there exists a unique set of optimal flow values which can be determined
in advance at preprocessing. So, here we focus on cyclic topologies. For finding
the optimal set of pressures in (c), we implemented a NDP technique motivated
by the work of Carter [2]. The overall procedure is called NDPTS. Components
(a), (b), and (c) are fairly well documented in our previous work [1], so, in the
reminder of this section, we assume we have an initial feasible flow and provide
a description of component (d), which is the core of the proposed work.

Overall Procedure

Figure 1 shows a flow chart of the general solution procedure. Briefly, we start
the procedure by finding an initial feasible set of flows x by the NDP algorithm.
Then a list of neighbors of x, V (x), is generated. To build V (x) we take a mass
flow rate in a selected arc belonging to a cycle and modify it by increasing or
decreasing its value by ∆x units. Note that once this value its set, the rest of the
flow variables in the arc are easily determined, so in this sense, it is precisely this
mass flow rate which becomes the attribute. Then the best x′ ∈ V (x) which is
not tabu is chosen and the corresponding subsets are updated accordingly. This
process of local search and selection of best non-tabu neighbor is repeated until
a termination criteria is met.



Fig. 1. Flowchart of NDPTS.



Proposed Tabu Search

We define the nature of a feasible solution based on three basic components which
are directly related with a cyclic network topology: (a) static component, a mass
flow rate value not belonging to any cycle; (b) variable component, a mass flow
rate value belonging to a cycle; and (c) search component, all pressure variables
in the network. These components are depicted in Figure 2. The search space
employed by TS is defined by the flow variables xij only because once the rates
are fixed, the pressure variables are optimally found by NDP. Furthermore, we do
not need to handle the entire set of flow variables, but only one per cycle. This is
so because once you fix a flow rate in a cycle, the rest of the flows can be uniquely
determined. Thus, a given state is represented by a vector x = (xα1 , . . . , xαm),
where αw is an arc that belongs to a selected cycle w.

Fig. 2. Basic components of a feasible solution on a cyclic topology.

Now, components of the proposed NDPTS procedure are briefly discussed.

Initial solution generation: To generate an initial solution, we use a two-
phase procedure. First, a set of feasible flows are found and then an optimal
set of pressures (for the fixed set of flows) is found by the NDP algorithm [1].

Neighborhood V (x): Let us define the neighborhood V (x) of a given solution
x. By definition, V (x) is a set of solutions reachable from x via a slight
modification of ∆x units.

v(x) = {x′ ∈ R | x′ = x ± j∆x, j = 1, 2, . . . ,Nsize/2} (8)

where Nsize its the predefined neighborhood size. Note that, for a given
solution, we do not store the entire solution but only the flow in the selected
arc to be modified.



Tabu list: The Tabu List (TL) is used to keep attributes that created the best
solution in past iterations so that they can not be used to create new solution
candidates. As iterations proceed, a new attribute value enters in the TL
and the oldest one, if it exceeds the TL size, is released. Particularly, the
size of TL is the control parameter of TS. The size of TL that provided good
solutions usually grows with the size of V (x).

Termination Criteria: The search will terminate after iter max iterations,
which is a user-specified parameter.

5 Empirical Evaluation

The proposed TS was developed in C++ and run on a Sun Ultra 10 worksta-
tion under Solaris 7. All of the compressor-related data, described in Villalobos-
Morales et al. [14], was provided by a consulting firm in the pipeline industry.
For the tabu list size and the neighborhood size, several preliminar experiments
were done using values of {5, 8, 10} and {20, 30, 40}, respectively. Because of
space constraints a full description of the fine-tuning experiment and the in-
stances tested are available from the authors. In preliminar computations for
fine-tuning the procedure we have found the following algorithmic parameters
gave the best results:

– Iteration limit (iter max = 100).
– Discretization size in V (x) (∆x = 5)
– Discretization size for pressure variables (∆p = 20)
– Tabu list size (Ttenure = 8),
– Neighborhood size (Nsize = 20)

In order to assess the effectiveness of the proposed procedures, we apply the
algorithms to solving several instances under different cyclic network topologies
on the same platform. For this, we carried out two experiments. In experiment
A we present a comparison between our procedure and the best GRG-based
implementation known to date. Experiment B compares our procedure with
Carter’s NDP approach, which represents the best DP-based approach known
to date.

Comparative Analysis 1: NDPTS vs. GRG

Table 1 shows a comparison between the GRG and NDPTS on cyclic networks.
For the GRG we used the implementation in [4]. The first column shows the
instances tested. Here the ncm suffix means that the instance has n nodes
and m compressor stations. The second and third column show the GRG and
NDPTS solution, respectively. The last column shows the relative improvement
of NDPTS over GRG.

First, the NDPTS was able to deliver solutions to all instances tested, whereas
GRG failed for five of these. The results indicate that NDPTS procedure outper-
forms GRG in terms of solution quality. In terms of computational effort, GRG
run in less than 2 sec. while NDPTS run in a range of 270-400 seconds.



Table 1. Comparison between GRG and NDPTS.

Instance GRG NDPTS RI (%)

net-c-6c2-C1 2,312,548.24 2,288,252.53 1.05
net-c-6c2-C4 1,393,061.12 1,393,001.99 0.04
net-c-6c2-C7 1,988,998.79 1,140,097.39 42.67
net-c-10c3-C2 Not found 4,969,352.82 N/A
net-c-10c3-C4 5,610,932.12 2,237,507.93 60.12
net-c-15c5-C2 6,313,810.78 4,991,453.59 20.94
net-c-15c5-C4 3,555,353.60 3,371,985.41 5.15
net-c-15c5-C5 Not found 7,962,687.43 N/A
net-c-17c6-C1 Not found 8,659,890.72 N/A
net-c-19c7-C4 Not found 8,693,003.78 N/A
net-c-19c7-C8 Not found 7,030,280.45 N/A

Comparative Analysis 2: NDPTS vs. NDP

We now present a comparative analysis showing the improvement achieved by
the NDPTS approach when compared with the simple NDP approach, Carter’s
algorithmi which represents the current state-of-the-art. In Table 2, the first col-
umn shows the instances tested, the second column shows the solution delivered
by NDP, the third column shows the best value found NDPTS, and the last col-
umn presents the relative improvement percentage of NDPTS over NDP, that
is:

gNDP − gNDPTS

gNDPTS
× 100%

Table 2. Comparison between NDP and NDPTS.

Instance NDP NDPTS RI (%)

net-c-6c2-C1 2,317,794.61 2,288,252.53 1.27
net-c-6c2-C4 1,394,001.99 1,393,001.99 0.07
net-c-6c2-C7 1,198,415.69 1,140,097.39 4.86
net-c-10c3-C2 6,000,240.25 4,969,352.82 17.18
net-c-10c3-C4 2,533,470.72 2,237,507.93 11.68
net-c-15c5-C2 6,006,930.42 4,991,453.59 16.90
net-c-15c5-C4 3,669,976.44 3,371,985.41 8.11
net-c-15c5-C5 8,060,452.17 7,962,687.43 1.21
net-c-17c6-C1 9,774,345.45 8,659,890.72 11.40
net-c-19c7-C4 12,019,962.22 8,693,003.78 27.67
net-c-19c7-C8 8,693,003.78 7,030,280.45 19.12

As can be seen, the improvement of NDPTS over the DP, is larger than 10%
on 6 of 11 tested instances, and larger than 2% in 8 of the 11 instances. In only



one of them the improvement is lower than 1%. The NDP runs in less than 20
sec.

A Lower Bound Comparison

To assess the quality of the solutions delivered by the algorithm it is necessary
to derive a lower bound. Now, deriving lower bounds for a non-convex problem
can become a very difficult task. Obtaining convex envelopes can be as diffi-
cult as solving the original problem. However, for this problem we note two
important facts that lead us to an approximate lower bound. First, by relaxing
constraint (4) in model FCMP the problems becomes separable in each compres-
sor station. That is, the relaxed problem consists of optimizing each compressor
station individually. Now, this is still a non-convex problem, however, we exploit
the fact that in each compressor, the objective is a function of three variables
only, so we build a three-dimensional grid on these three variables and perform
an exhaustive evaluation for finding the global optimum of the relaxed problem
(for a specified discretization).

Table 3 shows these results. The first column displays the instances tested,
the second and third columns show the lower bound and the best value found
by the heuristic, respectively, and the last column shows the relative optimality
gap obtained by NDPTS.

Table 3. Solution quality.

Instance LB NDPTS Gap (%)

net-c-6c2-C1 2,287,470.58 2,288,252.53 0.03
net-c-6c2-C4 1,392,354.29 1,393,001.99 0.05
net-c-6c2-C7 949,909.48 1,140,097.39 16.68
net-c-10c3-C2 4,303,483.50 4,969,352.82 13.40
net-c-10c3-C4 2,015,665.98 2,237,507.93 9.91
net-c-15c5-C2 4,955,752.90 4,991,453.59 0.72
net-c-15c5-C4 3,103,697.48 3,371,985.41 7.96
net-c-15c5-C5 6,792,248.08 7,962,687.43 14.69
net-c-17c6-C1 8,129,730.11 8,659,890.72 6.12
net-c-19c7-C4 7,991,897.18 8,693,003.78 8.06
net-c-19c7-C8 5,897,768.92 7,030,280.45 16.10

As can be seen from the table, all of the tested instances have a relative
optimality gap of less than 17%, 7 out of 11 instances tested have a relative gap
of less than 10%, and 3 of these observed an optimality gap of less than 1%. This
shows the effectiveness of the proposed approach. Finally, although our NDPTS
algorithm finds better solutions than the GRG method or the simple NDP, it is
more computationally expensive. In general, any additional time leading to even



small improvements can be easily justified since the costs involved in natural gas
transportation are relatively huge.

6 Conclusions

In this work we have proposed a hybrid heuristic based on NDP and TS for a
very difficult problem arising in the natural gas pipeline industry. The NDPTS
implementation, based primarily in a short-term memory strategy, proved very
successful in the experimental work as it was able to deliver solutions of much
better quality than those delivered by earlier approaches. This represents, to the
best of our knowledge, a significant contribution to the state of the art in this
area of work.

There are still many areas for forthcoming research. The proposed procedure
is a basic short-term memory tabu search. It would be interesting to incorporate
advanced TS strategies such as intensification and diversification. In addition,
one of the great challenges in the industry is to address time-dependent systems
from the optimization perspective.
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