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Resumen

En este trabajo se estudia el problema de minimizar el consumo de combustible incurrido por las
estaciones compresoras en un sistema de redes de transporte de gas natural en estado estable, el cual es
uno de los problemas de mayor relevancia e importancia en la industria energética por la enorme cantidad
de gas que se mueve por un sistema de distribucion cada afio. En el mundo real, este tipo de instancias
son muy grandes, en términos del nimero de variables de decision y del nimero de restricciones
tecnoldgicas, y muy complejas debido a la presencia de no linealidad y no convexidad en el conjunto de
soluciones factibles y en la funcion objetivo. La contribucion cientifica del presente trabajo consiste en
presentar un estudio de las propiedades particulares de redes de gasoductos y explotarlas efectivamente
para desarrollar una técnica que puede utilizarse para reducir significativamente la dimension del
problema sin alterar la estructura matematica del mismo. El impacto inmediato del trabajo propuesto es
gue un problema de menor dimension puede ser solucionado en mucho menor tiempo que el problema en
su tamafio original, lo cual se traduce en un ahorro econémico de recursos como lo es el tiempo de
cémputo.

Palabras clave: Investigacion de operaciones, gas natural, sistemas de gasoductos, optimizacién de
redes, programacidn no convexa, preprocesamiento

Abstract

The problem of minimizing the fuel consumption incurred by compressor stations in steady-state natural gas
transmission networks, which is one of the most relevant problems in the field, is addressed. In the real world,
these type of instances are very large, in terms of the number of decision variables and the number of
constraints, and very complex due to the presence of non-linearity and non-convexity in both the set of
feasible solutions and the objective function. The contribution of this work is to present a study of the
properties of gas pipeline networks, and exploit them to develop a technique that can be used lo reduce
significantly problem dimension, without disrupting problem structure. The immediate impact is that a
relatively large problem can be simplified by this technique and then be solved with considerable smaller
computational effort.

Keywords: Operations research, pipeline systems, natural gas, network optimization, nonconvex
programming, preprocessing



1 Introduccion

Consideramos el problema de minimizar el consumo del combustible incurrido por estaciones
compresoras a través de una red de transmision de gas natural. Este problema se representa mediante una
red, donde los arcos corresponden a ductos o estaciones compresoras, y los nodos corresponden a sus
puntos de interconeccién fisica. Las variables de decisidn son la tasa de flujo masico en cada arco, y el
nivel de presion del gas en cada nodo. En cada estacion compresora existe un costo que depende de tres
variables: la presién de entrada (o de succion), la presion de salida (o de descarga) y la tasa de flujo
masico a través de la estacion. La funcion que representa este costo es tipicamente no lineal y no
convexa. Ademas, el conjunto de soluciones factibles es regularmente no convexo.

En general, un problema con estas caracteristicas es muy dificil de resolver. Esto puede ser visto
claramente en varias de las metodologias que han sido desarrolladas en el pasado para enfrentar este
problema, tales como Wong y Larson (1968), Percell y Ryan (1987), Lall y Percell (1990), Mallinson et
al. (1993), por nombrar algunas. La principal contribucion de nuestro trabajo es el de proveer un
mecanismo que reduce considerablemente la dimension del problema en una fase de preprocesamiento sin
alterar la estructura del mismo. De hecho, nuestro procedimiento ha sido incorporado exitosamente en
trabajo reciente, tal como Wu et al. (2000), Kim, Rios-Mercado y Boyd (2000) y Borraz-Sanchez y Rios-
Mercado (2005), Rios-Mercado, Kim y Boyd (2006) y Wu, Lai y Liu (2007). Para una descripcién mas
amplia sobre los numerosos trabajos en algoritmos para problemas de optimizacion de gasoductos, el
lector es referido al trabajo de Carter (1998) y Rios-Mercado (2002).

El resto de este trabajo esta organizado de la siguiente forma. En la Seccion 2 introducimos el problemay
presentamos la formulacién matematica. Continuamos en la Seccién 3 con la descripcion del método de
reduccion de red propuesto en este trabajo y mostramos como aplicarlo en dos casos especiales basicos de
topologias de red. Finalmente, cerramos con las conclusiones del trabajo y recomendaciones para trabajo
a futuro en la Seccion 4.

2 Descripcion del Problema

Como todo problema de optimizacién, su formulacion requiere de una funcién objetvo a optimizar y de
un conjunto de restricciones tecnoldgicas que toman la forma de ecuaciones y/o desigualdades. En este
caso, la funcion objetivo del problema es la suma de todos los costos de cada una de las estaciones
compresoras de la red. Este problema involucra ademas las siguientes restricciones tecnoldgicas: (i)
balance de flujo masico en cada nodo, (ii) relacién de dinamica del flujo en cada ducto, (iii) limites de
presién en cada nodo y (iv) limites de operacion en cada compresor.

Las primeras dos restricciones son comunmente conocidas como las ecuaciones de flujo en redes en
estado estable. Enfatizamos aqui que mientras las ecuaciones de balance de flujo (i) son lineales, las
ecuaciones de flujo en los ductos (ii) son no lineales. Esto ha sido documentado en Wu et al. [10].



Las ecuaciones de flujo de red en estado estable pueden establecerse en una forma muy concisa mediante
el uso de matrices de incidencia. Para ilustrar esto, consideremos una red con n nodos, | ductos y m
estaciones compresoras. A cada ducto se le preasigna una direccion. Sea A la matriz n x | cuyos
elementos estan dados por ai,-' = 1 si el ducto j sale del nodo i, = -1 si el ducto j entra al nodo i, = 0 de otro
modo. A A, se le denomina matriz de incidencia nodo-ducto. Similarmente, sea A, la matrizn x m
cuyos elementos estan dados por: a;™ = 1 si i es el nodo de descarga de la estacion k, = -1 si i es el nodo
de succién de la estacion k, = 0 de otro modo. A A, se le llama matriz de incidencia nodo-estacion.
Denotemos por A a la matriz n x (I+m) formada por A=(A;, An).

Sean u = (Uy, ..., )"y V= (v, ..., Vim)" Vectores que representan la tasa de flujo a través de los ductos y
estaciones, respectivamente. Seaw = (u', v')". Un componente u; 6 v, es positivo si la direccion del
flujo coincide con la direccion preasignada del arco, y negativo de otro modo. Sea p; la presion en el
nodo i, p = (py, ..., pn)T Y S=(S1, ooy sn)T el vector fuente o de flujos netos, donde la fuente s; en el nodo i
es positiva (negativa) si el nodo es un nodo proveedor (demanda). Un nodo que no es ni proveedor ni
demanda se denomina nodo de paso y tiene flujo neto s; = 0. Suponemaos, sin pérdida de generalidad, que
la suma de todas las fuentes es igual a cero:

Zsi =0 (1)

Las ecuaciones de flujo en redes pueden ahora establecerse de la siguiente forma:

Aw = s

Ap? = f(u)

donde p* = (pi?, ..., pr)", f(U) = (Fa(ua), ..., fiu))", con fi(u;) = ¢; ujluil* (a = 1) representando la ecuacion
de flujo en el ducto j.

Supongames ahora que el vector fuente s satisface la condicion (1), y que las cotas de presion inferior p-
y superior p” estan dadas en cada nodo. El problema consiste en determinar al vector de presiones p y al
vector de flujos w de tal forma que se minimice el consumo total de combustible, esto es,

m

Min F(w,p) = ng(vkv Pin) » pout(k))
| @
sujeta a Aw = S
A'p? = f(u)
p € pt.pY]

m
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donde Vi, Ping Y Poutky SON la tasa de flujo masico, presion de succion y presion de descarga en la estacion
k, respectivamente. Es decir, in(k) y out(k) denotan los indices asociados con los nodos que definen a la
estacion k. La funcion gy es la correspondiente funcion de costo y Dy es el dominio factible de operacion
en la estacion k. Véase Wu et al. (2000) para un estudio mas profundo de la estructura y propiedades de

Dk Y k.

En general, un problema con estas caracteristicas es sumamente dificil de resolver. Lo que aqui
proponemos es una técnica para reducir significativamente el tamarfio del problema, convirtiéndolo en uno
mas tratable desde el puno de vista computacional.

3 Meétodo de Reduccion de Red

La metodologia de desarrollo del trabajo que consistid en estudiar y establecer las propiedades y
resultados importantes relacionados a las ecuaciones de la dindmica de flujo en los ductos y a la unicidad
y existencia de soluciones, lo cual constituye la piedra angular para derivar y proponer nuestro Método de
Reduccion de Red. Por tratarse de derivaciones demasiado técnicas, el lector puede consultar nuestro
trabajo (Rios-Mercado et al., 2002) para obtener mas detalle de cdmo se derivaron y establecieron los
resultados tedricos mas relevantes. En este articulo, exponemos a continuacion el Método de Reduccion
de Red.

Uno de los resultados principales derivados en la seccion anterior es que, si todos los flujos netos en cada
nodo de la red (o fuentes) son dados, entonces los flujos en cada ducto pueden ser completamente
determinados. Igualmente, las presiones nodales pueden ser determinadas si la presion en un nodo de
referencia es conocida. Debemos enfatizar que este resultado se basa en dos hechos: (a) Cada nodo posee
balance de flujo mésico y (b) existe una relacion entre el flujo y las presiones en los nodos extremos del
ducto. Este resultado, tal como fue derivado, es valido en redes que consisten de ductos Unicamente.
Tomemos ahora un paso adelante y consideremos ahora una red que posee ambos, ductos y estaciones
compresoras. Las ecuaciones de balance de flujo deben aln satisfacerse en cada nodo y una ecuacién de
flujo en ductos debe satisfacerse en cada ducto. Sin embargo, para cada estacion, no existe una ecuacion
que relacione el flujo con las presiones en los extremos de ésta. El flujo, la presion de succiény la
presion de descarga en una estacion son de hecho independientes, y existe solamente un conjunto de
desigualdades que estas variables deben satisfacer. De aqui se desprende que el resultado obtenido en la
seccidn anterior no puede ser directamente aplicado a este tipo de redes.

Empecemos en primera instancia introduciendo el concepto de una red reducida. Al remover de lared a
todos los arcos compresores, nos quedan algunos componentes desconectados, cada uno de los cuales es
Ilamado subred y que consiste solamente de nodos y arcos ductos. Por construccion, no hay estaciones en
ninguna subred.

Por otro lado, si vemos cada subred como un solo nodo en la red, es decir, encogiendo cada subred y
convirtiendolo en un solo nodo, y reponemos los arcos compresores que habian sido removidos al
principio, obtenemos una nueva red que consiste solo de nodos (cada uno representando una subred) y



arcos compresores. No hay ductos en esta nueva red ya que cada ducto esta encapsulado en los nuevos
nodos. A esta nueva red se le denomina red reducida. Es facil de ver que existe una Unica red reducida
(conexa) asociada con una red dada (original). A la estructura del grafo no dirigido asociado con la red
reducida se le llama grafo reducido y puede ser un arbol o un grafo con ciclos, dependiendo de la
configuracion y ubicacion de las estaciones compresoras en la red.

Para instancias practicas de redes de gasoductos, hemos encontrado que la topologia de una red reducida
es mucho menos complicada que la de la red original. Aun cuando una red dada puede tener varios
ciclos, especialmente ciclos en los ductos, su grafo reducido asociado es usualmente un arbol, es decir, un
grafo sin ciclos. Inclusive, si el grafo reducido asociado no es un arbol, el numero de ciclos en el grafo
reducido es con frecuencia significativamente menor que el de la red original.

En términos de la topologia de red, distinguimos dos casos especiales: topologia de arbol y topologia
ciclica. En el caso donde el grafo reducido es un arbol, mostraremos como las tasas de flujo pueden ser
predeterminadas de antemano. Esto simplifica tremendamente el problema de optimizacion de costo. Por
otro lado, si el grafo reducido posee al menos un ciclo, los flujos en las estaciones no pueden ser
determinados de forma Unica, mas satisfacen un sistema de ecuaciones lineales. El nimero de ecuaciones
lineales independientes en el sistema es igual al nimero de circuitos fundamentales en la red original.
Este caso puede ser manejado por el MRR, aunque aqui omitimos la exposicion por razones de espacio.
Véase Rios-Mercado et al. (2002).

Caso 1: Grafo Reducido es un Arbol

En esta seccion suponemos que el grafo reducido es un arbol. En este caso, como cada nodo en el grafo
reducido representa una subred, podemos definir el valor del flujo neto en este nodo como la suma de los
flujos netos de cada uno de los nodos originales incluidos en esta subred. En este sentido, las fuentes de
todos los nodos en el grafo reducido quedan fijos. Como el grafo reducido es un arbol, todos los flujos en
los arcos del grafo reducido pueden determinarse de forma unica. Como cada arco en la red reducida
representa una estacion en la red original, esto significa que los flujos a través de todas las estaciones son
conocidos.

Examinemos ahora las subredes. Podemos ver que, para cada subred, todos los flujos netos en los nodos,
incluyendo los nodos conectados a las estaciones, son conocidos. Concluimos que los flujos a través de
los ductos en la subred pueden ser determinados en forma tnica. Mas adn, las presiones en todos los
nodos de la subred se determinan de forma Unica por la presién en un sélo nodo, el de referencia.

Por tanto, tenemos el siguiente teorema fundamental que da base al Método de Reduccion de Red.

Teorema 1 Supongamos que: (i) la red consiste s6lo de nodos, ductos y estaciones; (ii) las fuentes en
todos los nodos son dadas; y (iii) el grafo reducido asociado es un arbol. Entonces: (a) las tasas de flujo
en todos los arcos son conocidas; y (b) para cada subred, la presion p en cada nodo esta relacionada con

la presion p; en el nodo de referencia mediante p° — pf =C donde c = szJ Cjuf es una constante, J



es el conjunto de indices de los ductos en la ruta que conecta al nodo de referencia con el nodo en
cuestion, ¢; es constante y uj es la tasa de flujo en el j-ésimo ducto, la cual es conocida.

Notese que la constante c es independiente de la ruta seleccionada porque las tasas de flujo uj's se
resuelven a partir de las ecuaciones de tal modo que la sumatoria ¢ = Z,—EJ Cjuf a lo largo de cualquier

ciclo en una subred es cero. Por tanto, si una red se divide en b subredes, el niimero total de variables
independientes en la red es precisamente b, es decir, las variables de presion p, en cada uno de los b nodos
de referencia.

El problema de minimizacién de costo de combustible (2) puede ahora ser notablemente simplificado
aplicando el MRR. Primero, como las tasas de flujo v, en cada estacion son conocidas, cada funcién g
en (2) depende solamente de (Pin), Pouttky). POr tanto, la funcion objetivo F(w, p), depende solamente de
las presiones de succién y descarga. Sea z el vector de estas presiones de succion y decarga. La funcién
objetivo F puede ahora representarse por

G(Z) = Z gk (Vk ' pin(k) ' pout(k)) (3)
k=1

donde v, es conocida.

Mas aun, supongamos que la red se divide en b subredes. Las variables z pueden particionarse en b
vectores disjuntos z;, cada uno representando las presiones de todos los nodos de succion y descarga en la
i-ésima subred, es decir, z = (z,', ..., z,')". Sea z; = (i1, ..., Zisi)', donde J; es el nimero de los nodos de
succion y descarga en la i-ésima subred. Elijamos a z;; como la presion de referencia en la i-ésima
subred. Entonces, de acuerdo al Teorema 1, la presién p en cada nodo de la i-ésima subred esta
relacionada con z;,; mediante p* z,°=c. El hecho de que cada valor de presion esta acotado implica que
existen dos constantes z;" y z;", tales que las restricciones de limites de presion (2) para los nodos en la i-

ésima subred son equivalentes a z- <z, <z. . La efectividad del MRR se basa en las siguientes

observaciones. La funcién objetivo depende s6lo de las presiones de succion y descarga. Esto significa
que no se necesita calcular los valores de las presiones en los demas nodos. Sin embargo, debemos
mantener a todas las variables de presion dentro de sus limites, es decir, satisfaciendo las restricciones (2).
Estas pueden ser satisfechas limitando la presion de referencia z;; dentro de sus limites zt y zV . Las
restricciones del compresor en (2) son irrelevantes para los demas nodos; por lo tanto, estas presiones
desaparecen del problema de minimizacion.

Por otro lado, las presiones de succién y descarga en la i-ésima subred deben estar relacionadas a la
presion de referencia z; 5, es decir, zﬁ — zizl =Cy, j= 2,...,J;, donde las cjj's son constantes.

Como las vy's son conocidas, las restricciones de las estaciones en (2) se conviertenen z € Z , donde Z es
el dominio factible de las estaciones para las presiones de succion y descarga. Asi las cosas, el problema
de minimizacion de consumo de combustible (2) se puede simplificar de la siguiente forma:
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z € Z
donde G(z) se define en (3).

Comparando el problema (2) con el problema (4), las simplificaciones son: (a) el nimero de variables se
reduce de | + m + n al tamafio del vector z, que es a lo mucho 2m. Una red tipica puede llegar a
comprender cientos de ductos y nodos, pero sélo algunas decenas de estaciones. De aqui se ve que esta
reduccion es frecuentemente significativa; (b) las restricciones (no lineales) que involucran 3 variables, se
reemplazan por las restricciones (no lineales) que involucran 2 variables. Linearizar una restriccién no
lineal con 2 variables es mucho més facil y efectivo; (c) el nimero de restricciones de igualdad no lineales

b L . .
se reduce de | a Zi:lJi —1<2m-—b. Como las restricciones de igualdad no lineales son a menudo el

obstéaculo principal en problemas de optimizacién, el reducir este nimero hace generalmente al problema
mas facil de resolver.

La Tabla 1 despliega una comparacion de tamafios antes y después de la reduccion para algunas
configuraciones tipicas de redes de gas. Podemos observar que el tamafio de z es a menudo mucho mas
pequefio que el del problema original. Debemos sefialar aqui que el costo-beneficio de estas
simplificaciones es que, con la reduccidn, debemos ahora preocuparnos por resolver las ecuaciones de
flujo de red para cada subred. Sin embargo, nuestros experimentos numéricos han mostrado que el
método de Newton modificado es extremadamante rapido y estable al resolver estas ecuaciones. Mas
aun, todos estos célculos pueden hacerse en una fase de pre-procesamiento.

Antes de Después de
reduccion reduccion
Configuracion | m n I+m+n b [z]
A 10 2 10 22 2 4
B 44 7 47 98 7 13
C 91 9 180 280 10 18
D 1462 37 1560 3059 38 73

Tabla 1: Tamafio de redes antes y después de aplicar el MRR

Caso 2: Grafo Reducido es Ciclico
Si el grafo reducido no es aciclico, los flujos no pueden determinarse de forma Unica, aunque el MRR

puede todavia aplicarse exitosamente Para ver la extension al caso donde el grafo reducido es ciclico,
véase nuestro trabajo (Rios-Mercado et al., 2002).

4 Conclusiones



En este trabajo hemos propuesto un Método de Reduccién para uno los problemas de mayor importancia
en el &rea de optimizacion de gasoductos. La justificacion de esta técnica se bas6 en una ingeniosa
combinacién de teoria de grafos y analisis funcional. En la préactica, esta técnica puede reducir el tamafio
del problema por mas de un orden de magnitud sin alterar la estructura matematica del problema, lo cual
representa un impacto signficativo, principalmente porque permite la solucién y analisis de problemas de
mayor tamafio. La utilidad de este trabajo se ha puesto ya de manifiesto ya que se ha incorporado
exitosamente como etapa de preprocesamiento en otros trabajos recientes (Kim et al., 2000; Wu et al.,
2000; Borraz-Sanchez y Rios-Mercado, 2005; Rios-Mercado et al., 2006; Wu, Lai y Liu, 2007).

Entre las lineas de investigacion actuales de mayor importancia en el campo destacamos primordialmente
dos: El desarrollo de técnicas de optimizacion global, las cuales son metodologias mas sofisticadas
enfocadas a encontrar soluciones dptimas globales a problemas no convexos como el aqui tratado. En
esta linea, una primera propuesta ha sido recién desarrollada por Wu, Lai y Liu (2007). La otraes el
estudio de la version del problema en estado transiente (dependiente del tiempo). La mayoria de los
trabajos a la fecha se han enfocado en el estudio del problema en estado estable. El caso donde la
dependencia del tiempo forma parte importante del problema no ha sido estudiado a fondo desde la
perspectiva de optimizacion ya que presenta una dificultad mucho mayor en cuanto a la dimension del
problema. Entre los trabajos que han comenzado a surgir en esta linea citamos a Mahlke, Martin y Moritz
(2007), quienes desarrollan una técnica de solucion aproximada basada en simulado recocido para el
problema en estado transiente con resultados bastante prometedores.
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Nacional de Investigadores (Nivel 1) y de la Academia Mexicana de Ciencias. Mas sobre su obra
cientifica puede encontrarse en: < http://yalma.fime.uanl.mx/~roger/ >.
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