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Resumen 

 
En este trabajo se estudia el problema de minimizar el consumo de combustible incurrido por las 
estaciones compresoras en un sistema de redes de transporte de gas natural en estado estable, el cual es 
uno de los problemas de mayor relevancia e importancia en la industria energética por la enorme cantidad 
de gas que se mueve por un sistema de distribución cada año.  En el mundo real, este tipo de instancias 
son muy grandes, en términos del número de variables de decisión y del número de restricciones 
tecnológicas, y muy complejas debido a la presencia de no linealidad y no convexidad en el conjunto  de 
soluciones factibles y en la función objetivo.  La contribución científica del presente trabajo consiste en 
presentar un estudio de las propiedades particulares de redes de gasoductos y explotarlas efectivamente 
para desarrollar una técnica que puede utilizarse para reducir significativamente la dimensión del 
problema sin alterar la estructura matemática del mismo.  El impacto inmediato del trabajo propuesto es 
que un problema de menor dimensión  puede ser solucionado en mucho menor tiempo que el problema en 
su tamaño original, lo cual se traduce en un ahorro económico de recursos como lo es el tiempo de 
cómputo. 
 
Palabras clave:  Investigación de operaciones, gas natural, sistemas de gasoductos, optimización de 
redes, programación no convexa, preprocesamiento 
 
 

Abstract 
 

The problem of minimizing the fuel consumption incurred by compressor stations in steady-state natural gas 
transmission networks, which is one of the most relevant problems in the field, is addressed. In the real world, 
these type of instances are very large, in terms of the number of decision variables and the number of 
constraints, and very complex due to the presence of non-linearity and non-convexity in both the set of 
feasible solutions and the objective function.  The contribution of this work is to present a study of the 
properties of gas pipeline networks, and exploit them to develop a technique that can be used lo reduce 
significantly problem dimension, without disrupting problem structure.  The immediate impact is that a 
relatively large problem can be simplified by this technique and then be solved with considerable smaller 
computational effort. 
 
Keywords: Operations research, pipeline systems, natural gas, network optimization, nonconvex 
programming, preprocessing 
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1  Introducción 
 
Consideramos el problema de minimizar el consumo del combustible incurrido por estaciones 
compresoras a través de una red de transmisión de gas natural.  Este problema se representa mediante una 
red, donde los arcos corresponden a ductos o estaciones compresoras, y los nodos corresponden a sus 
puntos de interconección física.  Las variables de decisión son la tasa de flujo másico en cada arco, y el 
nivel de presión del gas en cada nodo.  En cada estación compresora existe un costo que depende de tres 
variables: la presión de entrada (o de succión), la presión de salida (o de descarga) y la tasa de flujo 
másico a través de la estación.  La función que representa este costo es típicamente no lineal y no 
convexa.  Además, el conjunto de soluciones factibles es regularmente no convexo. 
 
En general, un problema con estas características es muy difícil de resolver.  Esto puede ser visto 
claramente en varias de las metodologías que han sido desarrolladas en el pasado para enfrentar este 
problema, tales como Wong y Larson (1968), Percell y Ryan (1987), Lall y Percell (1990), Mallinson et 
al. (1993), por nombrar algunas.  La principal contribución de nuestro trabajo es el de proveer un 
mecanismo que reduce considerablemente la dimensión del problema en una fase de preprocesamiento sin 
alterar la estructura del mismo.  De hecho, nuestro procedimiento ha sido incorporado exitosamente en 
trabajo reciente, tal como Wu et al. (2000), Kim, Ríos-Mercado y Boyd (2000) y Borraz-Sánchez y Ríos-
Mercado (2005), Ríos-Mercado, Kim y Boyd (2006) y Wu, Lai y Liu (2007). Para una descripción más 
amplia sobre los numerosos trabajos en algoritmos para problemas de optimización de gasoductos, el 
lector es referido al trabajo de Carter (1998) y Ríos-Mercado (2002). 
 
El resto de este trabajo está organizado de la siguiente forma.  En la Sección 2 introducimos el problema y 
presentamos la formulación matemática. Continuamos en la Sección 3 con la descripción del método de 
reducción de red propuesto en este trabajo y mostramos como aplicarlo en dos casos especiales básicos de 
topologías de red. Finalmente, cerramos con las conclusiones del trabajo y recomendaciones para trabajo 
a futuro en la Sección 4. 
 

2  Descripción del Problema 
 
Como todo problema de optimización, su formulación requiere de una función objetvo a optimizar y de 
un conjunto de restricciones tecnológicas que toman la forma de ecuaciones y/o desigualdades.  En este 
caso, la función objetivo del problema es la suma de todos los costos de cada una de las estaciones 
compresoras de la red.  Este problema involucra además las siguientes restricciones tecnológicas: (i) 
balance de flujo másico en cada nodo, (ii) relación de dinámica del flujo en cada ducto, (iii) límites de 
presión en cada nodo y (iv) límites de operación en cada compresor. 
  
Las primeras dos restricciones son comúnmente conocidas como las ecuaciones de flujo en redes en 
estado estable.  Enfatizamos aquí que mientras las ecuaciones de balance de flujo (i) son lineales, las 
ecuaciones de flujo en los ductos (ii) son no lineales.  Esto ha sido documentado en Wu et al. [10].  



 
Las ecuaciones de flujo de red en estado estable pueden establecerse en una forma muy concisa mediante 
el uso de matrices de incidencia.  Para ilustrar esto, consideremos una red con n nodos, l ductos y m 
estaciones compresoras.  A cada ducto se le preasigna una dirección.  Sea Al la matriz n x l cuyos 
elementos están dados por aij

l
 = 1 si el ducto j sale del nodo i, = -1 si el ducto j entra al nodo i, = 0 de otro 

modo.  A Al se le denomina matriz de incidencia nodo-ducto.  Similarmente, sea Am la matriz n x m 
cuyos elementos están dados por: aik

m = 1 si i es el nodo de descarga de la estación k, = -1 si i es el nodo 
de succión de la estación k, = 0 de otro modo.  A Am se le llama matriz de incidencia nodo-estación.  
Denotemos por A a la matriz n x (l+m) formada por A=(Al, Am). 
 
Sean u = (u1, ... , ul)T y v = (v1, ..., vm)T vectores que representan la tasa de flujo a través de los ductos y 
estaciones, respectivamente.  Sea w = (uT, vT)T.  Un componente uj ó vk es positivo si la dirección del 
flujo coincide con la dirección preasignada del arco, y negativo de otro modo.  Sea pi la presión en el 
nodo i, p = (p1, ..., pn)T y s = (s1, ..., sn)T el vector fuente o de flujos netos, donde la fuente si en el nodo i 
es positiva (negativa) si el nodo es un nodo proveedor (demanda).  Un nodo que no es ni proveedor ni 
demanda se denomina nodo de paso y tiene flujo neto si = 0.  Suponemos, sin pérdida de generalidad, que 
la suma de todas las fuentes es igual a cero: 
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Las ecuaciones de flujo en redes pueden ahora establecerse de la siguiente forma: 
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donde p2 = (p1

2, ..., pn
2)T, f(u) = (f1(u1), …, fl(ul))T, con fj(uj) = cj uj|uj|a (a = 1) representando la ecuación 

de flujo en el ducto j. 
 
Supongames ahora que el vector fuente s satisface la condición (1), y que las cotas de presión inferior pL 
y superior pU están dadas en cada nodo. El problema consiste en determinar al vector de presiones p y al 
vector de flujos w de tal forma que se minimice el consumo total de combustible, esto es, 
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donde vk, pin(k) y pout(k) son la tasa de flujo másico, presión de succión y presión de descarga en la estación 
k, respectivamente. Es decir, in(k) y out(k) denotan los índices asociados con los nodos que definen a la 
estación k.  La función gk es la correspondiente función de costo y Dk es el dominio factible de operación 
en la estación k. Véase Wu et al. (2000) para un estudio más profundo de la estructura y propiedades de 
Dk y gk. 
 
En general, un problema con estas características es sumamente difícil de resolver.  Lo que aquí 
proponemos es una técnica para reducir significativamente el tamaño del problema, convirtiéndolo en uno 
más tratable desde el puno de vista computacional.  
 

3  Método de Reducción de Red 
 
La metodología de desarrollo del trabajo que consistió en estudiar y establecer las propiedades y 
resultados importantes relacionados a las ecuaciones de la dinámica de flujo en los ductos y a la unicidad 
y existencia de soluciones, lo cual constituye la piedra angular para derivar y proponer nuestro Método de 
Reducción de Red.  Por tratarse de derivaciones demasiado técnicas, el lector puede consultar nuestro 
trabajo (Ríos-Mercado et al., 2002) para obtener más detalle de cómo se derivaron y establecieron los 
resultados teóricos más relevantes.  En este artículo, exponemos a continuación el Método de Reducción 
de Red. 
 
Uno de los resultados principales derivados en la sección anterior es que, si todos los flujos netos en cada 
nodo de la red (o fuentes) son dados, entonces los flujos en cada ducto pueden ser completamente 
determinados.  Igualmente, las presiones nodales pueden ser determinadas si la presión en un nodo de 
referencia es conocida.  Debemos enfatizar que este resultado se basa en dos hechos: (a) Cada nodo posee 
balance de flujo másico y (b) existe una relación entre el flujo y las presiones en los nodos extremos del 
ducto.  Este resultado, tal como fue derivado, es válido en redes que consisten de ductos únicamente.  
Tomemos ahora un paso adelante y consideremos ahora una red que posee ambos, ductos y estaciones 
compresoras.  Las ecuaciones de balance de flujo deben aún satisfacerse en cada nodo y una ecuación de 
flujo en ductos debe satisfacerse en cada ducto.  Sin embargo, para cada estación, no existe una ecuación 
que relacione el flujo con las presiones en los extremos de ésta.  El flujo, la presión de succión y la 
presión de descarga en una estación son de hecho independientes, y existe solamente un conjunto de 
desigualdades que estas variables deben satisfacer.  De aquí se desprende que el resultado obtenido en la 
sección anterior no puede ser directamente aplicado a este tipo de redes. 
 
Empecemos en primera instancia introduciendo el concepto de una red reducida.  Al remover de la red a 
todos los arcos compresores, nos quedan algunos componentes desconectados, cada uno de los cuales es 
llamado subred y que consiste solamente de nodos y arcos ductos.  Por construcción, no hay estaciones en 
ninguna subred. 
 
Por otro lado, si vemos cada subred como un solo nodo en la red, es decir, encogiendo cada subred y 
convirtiéndolo en un solo nodo, y reponemos los arcos compresores que habían sido removidos al 
principio, obtenemos una nueva red que consiste solo de nodos (cada uno representando una subred) y 
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arcos compresores.  No hay ductos en esta nueva red ya que cada ducto esta encapsulado en los nuevos 
nodos.  A esta nueva red se le denomina red reducida.  Es fácil de ver que existe una única red reducida 
(conexa) asociada con una red dada (original).  A la estructura del grafo no dirigido asociado con la red 
reducida se le llama grafo reducido y puede ser un árbol o un grafo con ciclos, dependiendo de la 
configuración y ubicación de las estaciones compresoras en la red. 
 
Para instancias prácticas de redes de gasoductos, hemos encontrado que la topología de una red reducida 
es mucho menos complicada que la de la red original.  Aún cuando una red dada puede tener varios 
ciclos, especialmente ciclos en los ductos, su grafo reducido asociado es usualmente un árbol, es decir, un 
grafo sin ciclos.  Inclusive, si el grafo reducido asociado no es un árbol, el número de ciclos en el grafo 
reducido es con frecuencia significativamente menor que el de la red original. 
 
En términos de la topología de red, distinguimos dos casos especiales: topología de árbol y topología 
cíclica.  En el caso donde el grafo reducido es un árbol, mostraremos como las tasas de flujo pueden ser 
predeterminadas de antemano.  Esto simplifica tremendamente el problema de optimización de costo.  Por 
otro lado, si el grafo reducido posee al menos un ciclo, los flujos en las estaciones no pueden ser 
determinados de forma única, mas satisfacen un sistema de ecuaciones lineales.  El número de ecuaciones 
lineales independientes en el sistema es igual al número de circuitos fundamentales en la red original.  
Este caso puede ser manejado por el MRR, aunque aquí omitimos la exposición por razones de espacio.  
Véase Ríos-Mercado et al. (2002). 
 
Caso 1: Grafo Reducido es un Árbol 
 
En esta sección suponemos que el grafo reducido es un árbol.  En este caso, como cada nodo en el grafo 
reducido representa una subred, podemos definir el valor del flujo neto en este nodo como la suma de los 
flujos netos de cada uno de los nodos originales incluídos en esta subred.  En este sentido, las fuentes de 
todos los nodos en el grafo reducido quedan fijos. Como el grafo reducido es un árbol, todos los flujos en 
los arcos del grafo reducido pueden determinarse de forma única.  Como cada arco en la red reducida 
representa una estación en la red original, esto significa que los flujos a través de todas las estaciones son 
conocidos. 
 
Examinemos ahora las subredes.  Podemos ver que, para cada subred, todos los flujos netos en los nodos, 
incluyendo los nodos conectados a las estaciones, son conocidos.  Concluímos que los flujos a través de 
los ductos en la subred pueden ser determinados en forma única.  Más aún, las presiones en todos los 
nodos de la subred se determinan de forma única por la presión en un sólo nodo, el de referencia. 
 
Por tanto, tenemos el siguiente teorema fundamental que da base al Método de Reducción de Red. 
 
Teorema 1  Supongamos que: (i) la red consiste sólo de nodos, ductos y estaciones; (ii) las fuentes en 
todos los nodos son dadas; y (iii) el grafo reducido asociado es un árbol.  Entonces: (a) las tasas de flujo 
en todos los arcos son conocidas; y (b) para cada subred, la presión p en cada nodo está relacionada con 
la presión pr en el nodo de referencia mediante   donde cpp r =− 22 ∑ ∈

=
Jj jjucc 2 es una constante, J 
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es el conjunto de índices de los ductos en la ruta que conecta al nodo de referencia con el nodo en 
cuestión, cj es constante y uj es la tasa de flujo en el j-ésimo ducto, la cual es conocida. 
 
Nótese que la constante c es independiente de la ruta seleccionada porque las tasas de flujo uj's se 
resuelven a partir de las ecuaciones de tal modo que la sumatoria ∑ ∈

=
Jj jjucc 2  a lo largo de cualquier 

ciclo en una subred es cero.  Por tanto, si una red se divide en b subredes, el número total de variables 
independientes en la red es precisamente b, es decir, las variables de presión pr en cada uno de los b nodos 
de referencia. 
 
El problema de minimización de costo de combustible (2) puede ahora ser notablemente simplificado 
aplicando el MRR.  Primero, como las tasas de flujo vk en cada estación son conocidas, cada función gk 
en (2) depende solamente de (pin(k), pout(k)).  Por tanto, la función objetivo F(w, p), depende solamente de 
las presiones de succión y descarga.  Sea z el vector de estas presiones de succión y decarga.  La función 
objetivo F puede ahora representarse por 

∑
=

=
m

k
koutkinkk ppvgG

1
)()( ),,()(z  (3) 

donde vk es conocida. 
 
Más aún, supongamos que la red se divide en b subredes. Las variables z pueden particionarse en b 
vectores disjuntos zi, cada uno representando las presiones de todos los nodos de succión y descarga en la 
i-ésima subred, es decir, zi = (z1

T, ..., zb
T)T. Sea zi = (zi,1, ..., zi,Ji)T, donde Ji es el número de los nodos de 

succión y descarga en la i-ésima subred.  Elijamos a zi,1 como la presión de referencia en la i-ésima 
subred. Entonces, de acuerdo al Teorema 1, la presión p en cada nodo de la i-ésima subred está 
relacionada con zi,1  mediante  p2- zi,1

2 = c.  El hecho de que cada valor de presión está acotado implica que 
existen dos constantes zi

L y zi
U, tales que las restricciones de límites de presión (2) para los nodos en la i-

ésima subred son equivalentes a . La efectividad del MRR se basa en las siguientes 

observaciones.  La función objetivo depende sólo de las presiones de succión y descarga.  Esto significa 
que no se necesita calcular los valores de las presiones en los demás nodos. Sin embargo, debemos 
mantener a todas las variables de presión dentro de sus límites, es decir, satisfaciendo las restricciones (2). 
Éstas pueden ser satisfechas limitando la presión de referencia zi,1  dentro de sus límites zi

L y zi
U .  Las 

restricciones del compresor en (2) son irrelevantes para los demás nodos; por lo tanto, estas presiones 
desaparecen del problema de minimización. 

U
ii

L
i zzz ≤≤ 1

 
Por otro lado, las presiones de succión y descarga en la i-ésima subred deben estar relacionadas a la 
presión de referencia zi,1, es decir, , donde las cij's son constantes. iijiij Jjc ,,2   ,2

1
2 K==− zz

 
Como las vk's son conocidas, las restricciones de las estaciones en (2) se convierten en Z∈z , donde Z es 
el dominio factible de las estaciones para las presiones de succión y descarga.  Asi las cosas, el problema 
de minimización de consumo de combustible (2) se puede simplificar de la siguiente forma: 
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donde G(z) se define en (3). 
 
Comparando el problema (2) con el problema (4), las simplificaciones son: (a) el número de variables se 
reduce de l + m + n al tamaño del vector z, que es a lo mucho 2m. Una red típica puede llegar a 
comprender cientos de ductos y nodos, pero sólo algunas decenas de estaciones.  De aquí se ve que esta 
reducción es frecuentemente significativa; (b) las restricciones (no lineales) que involucran 3 variables, se 
reemplazan por las restricciones (no lineales) que involucran 2 variables. Linearizar una restricción no 
lineal con 2 variables es mucho más fácil y efectivo; (c) el número de restricciones de igualdad no lineales 

se reduce de l a . Como las restricciones de igualdad no lineales son a menudo el 

obstáculo principal en problemas de optimización, el reducir este número hace generalmente al problema 
más fácil de resolver. 

bmJb

i i −≤−∑ =
21

1

 
La Tabla 1 despliega una comparación de tamaños antes y después de la reducción para algunas 
configuraciones típicas de redes de gas.  Podemos observar que el tamaño de z es a menudo mucho más 
pequeño que el del problema original.  Debemos señalar aquí que el costo-beneficio de estas 
simplificaciones es que, con la reducción, debemos ahora preocuparnos por resolver las ecuaciones de 
flujo de red para cada subred.  Sin embargo, nuestros experimentos numéricos han mostrado que el 
método de Newton modificado es extremadamante rápido y estable al resolver estas ecuaciones.  Más 
aún, todos estos cálculos pueden hacerse en una fase de pre-procesamiento. 
 

  Antes de  
reducción 

Después de 
reducción 

Configuración l m n l+m+n b | z | 
A 10 2 10 22 2 4 
B 44 7 47 98 7 13 
C 91 9 180 280 10 18 
D 1462 37 1560 3059 38 73 

Tabla 1: Tamaño de redes antes y después de aplicar el MRR 

 
Caso 2: Grafo Reducido es Cíclico 
 
Si el grafo reducido no es acíclico, los flujos no pueden determinarse de forma única, aunque el MRR 
puede todavía aplicarse exitosamente Para ver la extensión al caso donde el grafo reducido es cíclico, 
véase nuestro trabajo (Ríos-Mercado et al., 2002). 

 
4  Conclusiones 
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En este trabajo hemos propuesto un Método de Reducción para uno los problemas de mayor importancia 
en el área de optimización de gasoductos.   La justificación de esta técnica se basó en una ingeniosa 
combinación de teoría de grafos y análisis funcional.  En la práctica, esta técnica puede reducir el tamaño 
del problema por más de un orden de magnitud sin alterar la estructura matemática del problema, lo cual 
representa un impacto signficativo, principalmente porque permite la solución y análisis de problemas de 
mayor tamaño.  La utilidad de este trabajo se ha puesto ya de manifiesto ya que se ha incorporado 
exitosamente como etapa de preprocesamiento en otros trabajos recientes (Kim et al., 2000; Wu et al., 
2000; Borraz-Sánchez y Ríos-Mercado, 2005; Ríos-Mercado et al., 2006; Wu, Lai y Liu, 2007). 
 
Entre las líneas de investigación actuales de mayor importancia en el campo destacamos primordialmente 
dos: El desarrollo de técnicas de optimización global, las cuales son metodologías más sofisticadas 
enfocadas a encontrar soluciones óptimas globales a problemas no convexos como el aquí tratado.  En 
esta línea, una primera propuesta ha sido recién desarrollada por Wu, Lai y Liu (2007).  La otra es el 
estudio de la versión del problema en estado transiente (dependiente del tiempo).  La mayoría de los 
trabajos a la fecha se han enfocado en el estudio del problema en estado estable.  El caso donde la 
dependencia del tiempo forma parte importante del problema no ha sido estudiado a fondo desde la 
perspectiva de optimización ya que presenta una dificultad mucho mayor en cuanto a la dimensión del 
problema.  Entre los trabajos que han comenzado a surgir en esta línea citamos a Mahlke, Martin y Moritz 
(2007), quienes desarrollan una técnica de solución aproximada basada en simulado recocido para el 
problema en estado transiente con resultados bastante prometedores. 
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Científica y Tecnológica de la Universidad Autónoma de Nuevo León (PAICYT, apoyos No. CA36300, 
CA55501 y CA76302). 
 

Referencias 
 
C. Borraz-Sánchez y R. Z. Ríos-Mercado (2005).  A hybrid meta-heuristic approach for natural gas 

pipeline network optimization.  En M. J. Blesa, C. Blum, A. Roli y M. Sampels (editores), Hybrid 
Metaheuristics, pp. 54-65, ISBN: 3-540-28535-0. Springer, Berlin, Alemania. 

R.G. Carter (1998).  Pipeline optimization: Dynamic programming after 30 years.  En Proceedings of the 
30th PSIG Annual Meeting, Denver, EUA, Octubre. 

S. Kim, R.Z. Ríos-Mercado y E.A. Boyd (2000).  Heuristics for minimum cost steady-state gas 
transmission networks.  En M. Laguna y J.L. González-Velarde, editores, Computing Tools for 
Modeling, Optimization, and Simulation, capítulo 11, pp. 203-213. Kluwer, Boston, EUA. 

H.S. Lall y P.B. Percell (1990).  A dynamic programming based gas pipeline optimizer.  En A. 
Bensoussan y J.L. Lions, editores, Analysis and Optimization of Systems, volumen 144 de Lecture 
Notes in Control and Information Sciences, pp. 123-132. Springer-Verlag, Berlín, Alemania. 

9 

http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3636&spage=54
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3636&spage=54


D. Mahlke, A. Martin y S. Moritz (2007).  A simulated annealing algorithm for transient optimization in 
gas networks.  Mathematical Methods of Operations Research, 66(1):99-115. 

J. Mallinson, A.E. Fincham, S.P. Bull, J.S. Rollett y M.L. Wong (1993).  Methods for optimizing gas 
transmission networks.  Annals of Operations Research, 43(1-4):443-454. 

P.B. Percell y M.J. Ryan (1987).  Steady-state optimization of gas pipeline network operation.  En 
Proceedings of the 19th PSIG Annual Meeting, Tulsa, EUA, Octubre. 

R.Z. Ríos-Mercado (2002). Natural gas pipeline optimization.  En P.M. Pardalos y M.G.C. Resende, 
editores, Handbook of Applied Optimization, capítulo 18.8.3, pp. 813-825. Oxford University Press, 
New York, EUA. 

R.Z. Ríos-Mercado, S. Kim y E.A. Boyd (2006).  Efficient operation of natural gas transmission systems: 
A network-based heuristic for cyclic structures.  Computers & Operations Research, 33(8):2323-
2351. 

R.Z. Ríos-Mercado, S. Wu, L.R. Scott y E.A. Boyd (2002).  A reduction technique for natural gas 
transmission network optimization problems.  Annals of Operations Research, 117(1-4):217-234, 
2002. 

P.J. Wong y R.E. Larson (1968).  Optimization of natural-gas pipeline systems via dynamic 
programming.  IEEE Transactions on Automatic Control, AC-13(5):475-481. 

S. Wu, R.Z. Ríos-Mercado, E.A. Boyd y L.R. Scott (2000).  Model relaxations for the fuel cost 
minimization of steady-state gas pipeline networks.  Mathematical and Computer Modelling, 31(2-
3):197-220. 

Y. Wu, K.K. Lai y Y.J. Liu (2007).  Deterministic global optimization approach to steady-state 
distribution gas pipeline networks.  Optimization and Engineering, 8(3):259-275. 

10 



11 

Semblanza 
 
 
Roger Z. Ríos Mercado 
 
El Dr. Roger Z. Ríos Mercado labora actualmente como Profesor Investigador en la División de Posgrado 
en Ingeniería de Sistemas de la UANL.  Recibió sus títulos de Doctor y Maestro en Ciencias en 
Investigación de Operaciones e Ingeniería Industrial de la Universidad de Texas en Austin, y su título de 
Lic. en Matemáticas de la UANL.  Sus áreas de interés se enfocan en el campo de la investigación de 
operaciones como soporte científico a los problemas de toma de decisiones, en particular, a la 
investigación y desarrollo de algoritmos eficientes para la solución de problemas relacionados con el 
diseño óptimo de territorios comerciales en el ramo logístico, la secuenciación de operaciones en procesos 
de manufactura y la operación eficiente de redes de transporte de gas natural.  Es miembro del Sistema 
Nacional de Investigadores (Nivel II) y de la Academia Mexicana de Ciencias.  Más sobre su obra 
científica puede encontrarse en:  < http://yalma.fime.uanl.mx/~roger/ >. 
 


	Un Método de Reducción Eficiente para
	Problemas de Optimización de Redes
	de Transporte de Gas Natural
	Roger Z. Ríos Mercado
	Teorema 1  Supongamos que: (i) la red consiste sólo de nodos, ductos y estaciones; (ii) las fuentes en todos los nodos son dadas; y (iii) el grafo reducido asociado es un árbol.  Entonces: (a) las tasas de flujo en todos los arcos son conocidas; y (b) para cada subred, la presión p en cada nodo está relacionada con la presión pr en el nodo de referencia mediante   donde es una constante, J es el conjunto de índices de los ductos en la ruta que conecta al nodo de referencia con el nodo en cuestión, cj es constante y uj es la tasa de flujo en el j-ésimo ducto, la cual es conocida.



