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Introducción 
 

En el presente trabajo se aborda un problema de toma 
de decisiones que surge en el campo de diseño territorial 
como una aplicación de una empresa distribuidora de 
bebidas embotelladas.  Puede decirse que el problema 
bajo estudio cae dentro del área de la Investigación de 
Operaciones, que es la ciencia que brinda soporte 
científico a problemas de toma de decisiones. 

El problema consiste en determinar una agrupación 
de manzanas o unidades básicas (UBs), dentro de un área 
geográfica objetivo, en un número fijo de territorios 
(dado por p) de tal manera que se cumplan una serie de 
requerimientos de planificación impuestos por la 
empresa.  Denominamos el problema como TDP (por sus 
siglas en inglés, Territory Design Problem). 

El problema que se estudia en este trabajo fue 
introducido por Ríos-Mercado y Fernández [1]. Ellos 
desarrollaron un procedimiento de solución basado en un 
procedimiento metaheurístico denominado GRASP  
reactivo (por sus siglas en inglés, Greedy  Randomized 
Adaptive  Search Procedure). En su trabajo,  la 
compacidad  fue modelada  a través de la función 
objetivo del problema  de  p-centro, el cual representa la 
máxima  dispersión  en los territorios. Consideraron  
restricciones de balance en términos de número de 
clientes, volumen de ventas y carga de trabajo. Los 
resultados  reportados fueron mejores que aquellos 
generados por la compañía, quienes lo hacían con un 
método ad-hoc. Diferentes versiones del problema se 
estudiaron en Caballero-Hernández et  al. [2], Ríos-
Mercado y Salazar-Acosta [3], Salazar-Aguilar et al. [4], 
Ríos-Mercado y López-Pérez [5] y López-Pérez y Ríos-
Mercado [6]. En  cada  uno de ellos, se desarrollaron 

enfoques heurísticos para  instancias  de tamaño grande,  
las cuales son intratables para  propósitos de  
optimización  exacta.  En  efecto, detectamos que en 
trabajos  previos  no se había  reportado algún  esquema  
de solución exacta  para  estos modelos, sólo 
procedimientos  heurísticos. Sin embargo,  instancias  de 
tamaño pequeño y mediano  con frecuencia  aparecen  en 
situaciones  reales  y por  ello, sus soluciones exactas  se  
consideran  importantes.  Entonces,  una de las 
contribuciones importantes de este trabajo es el 
desarrollo de un método de optimización exacta  que 
maneje de manera efectiva el número exponencial de 
restricciones  de conexidad  en instancias  pequeñas y 
medianas. 

Por otro lado, en los problemas  de diseño de 
territorios, los modelos que incorporan  restricciones  de 
conexidad  usualmente son estudiados  con heurísticas, 
como se analizó en Kalcsics et al. [7]. Son pocos los 
trabajos  que realmente  proveen soluciones óptimas.  
Dos ejemplos son Garfinkel y Nemhauser  [8] y Shirabe  
[9].  Los primeros  estudiaron un  problema  de distritos  
con 39 UBs y 7 territorios, mientras  que  el último  
propuso  un  método de solución  para  un  problema  
similar  utilizando  48 unidades  básicas  y un  número  
variable  de territorios. El  método propuesto  en Shirabe  
[9] fue probado  sólo para  un número pequeño de 
territorios. 

Nuestro trabajo  presenta  contribuciones  en dos 
direcciones. La primera  dirección consiste en un 
procedimiento  de optimización exacta, como se 
mencionó anteriormente.  El algoritmo  propuesto  está 
orientado  hacia  la solución de instancias  de tamaño  
mediano  (alrededor  de 200 UBs  para  formar  hasta  10 
territorios). El algoritmo  consiste en la solución iterativa 



de un problema  de programación lineal entera mixta 
(MILP) mediante la relajación de las restricciones de 
conexidad. Las restricciones  no satisfechas  se 
identifican a través de la solución de un problema  de 
separación simple. Después de ésto, tales restricciones  se 
introducen como cortes al modelo. El procedimiento  
continúa hasta  que se alcanza  optimalidad. 

En la segunda  dirección, se propone una nueva 
formulación de programación cuadrática entera (IQP). 
Esta  formulación  realmente  reduce el número de 
variables  binarias  permitiendo la solución de instancias 
más grandes  que aquellas  permitidas por el MILP  
equivalente.  El procedimiento  de optimización exacta  
se prueba  con ambas formulaciones (MILP  e IQP).   

También  se presenta  un estudio  empírico  acerca  
de la compacidad  de los territorios sobre un rango 
amplio de instancias, para  explicar  qué tipo de medidas  
de dispersión tiene  el potencial  de brindar  las mejores 
soluciones para el problema  de diseño de territorios 
comerciales. En el diseño de territorios en general, no 
hay una medida  estándar de compacidad. Se pueden  
encontrar diferentes tipos de medidas  de dispersión 
dependiendo  de la aplicación específica. En el contexto  
de distritos  políticos por ejemplo, hay algunos estudios  
en medidas  de compacidad  en Altman  [10]. Este 
criterio también  es discutido  por Kalcsics et  al. [6] 
desde una  perspectiva  más  general.  Por  tanto,  en la 
ausencia  de una  medida  estándar  para  el caso  del 
diseño  de territorios comerciales,  realizamos  el trabajo  
experimental sobre un amplio  rango  de  instancias  con 
el fin de analizar  el desempeño  de los modelos basados  
en la medidas  del p-centro  y p-mediana. 

 
Descripción del problema 

 
Sea G = (V, E),  un grafo donde V  es el conjunto  de 

UBs -manzanas  en este caso- y E es el conjunto  de arcos 
que representan adyacencia  entre  manzanas.  Cada  
nodo j en el conjunto V tiene una serie de parámetros 
tales como coordenadas  geográficas, y dos atributos o 
actividades: número  de clientes  y volumen de ventas.  
Se utiliza también una  distancia  Euclidiana, dij  que 
puede calcularse entre  cada  par  de UBs i y j. El 
conjunto  de UBs debe ser dividido  en p territorios de 
manera tal que cada nodo pertenezca  sólo a un territorio 
(asignación exclusiva).  Adicionalmente, la compañía 
busca territorios balanceados  con respecto al número de 
clientes y demanda  de producto.  

Definimos el tamaño de un territorio con respecto a 
la actividad a, como la suma de los valores de actividad a 
asociados a las unidades básicas que conforman el 
territorio. Debido  a  la  estructura discreta  del  problema 
y a la restricción de asignación exclusiva, es 
prácticamente imposible tener  territorios perfectamente 
balanceados, es decir, territorios con exactamente el 
mismo tamaño con respecto a cada actividad.  Entonces,  
con el fin de modelar  el balance,  se introduce  un  

parámetro  de tolerancia τa. Este parámetro  mide la 
desviación  relativa  con respecto  al tamaño  deseado  en 
la actividad a, a ∈A.  El valor deseado representa el 
tamaño promedio de los territorios y está dado por µa = 
wa(V)/p. Otra restricción importante es la de conexidad,  
es decir, por cada i y j asignados  al mismo territorio debe  
existir  una  ruta  entre  ellos y ésta  debe estar  
totalmente contenida  en el territorio. Además, con el fin 
de lograr  compacidad, las UBs del mismo territorio 
deben estar tan cerca una de la otra como sea posible. 
Una forma de cumplir con este requerimiento es 
minimizando una  medida  de dispersión.  En la literatura 
se han  utilizado  varias  medidas,  en este trabajo  
estudiamos  dos, una basada  en el objetivo del problema  
de p-centro (pCP) y la otra basada en el objetivo del 
problema  p-mediana  (pMP). Ésto  conduce  a dos 
modelos  diferentes que se describen a continuación. 
 
Modelos de optimización lineal 

 
Para presentar el modelo, definamos primero al 

conjunto Ni para todo i en V como el conjunto de todas 
las UBs adyacentes a la UB i, es decir, 

Ni = j ∈V : (i, j)∈ E∨( j, i)∈ E{ }  

Las variables de decisión se definen como: 

xij =
1 si la UB i es asignada al territorio 

con centro en j
0 en otro caso

!

"
#

$
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Nótese que xii = 1 implica que la UB i  es un centro 
territorial.  El modelo matemático MTDP  (TDP basado 
en p-mediana) se define a continuación.  
 

(MTDP)   minimizar   z = dij xij
i∈V
∑

j∈V
∑  (1) 

sujeta a   xii
i∈V
∑ = p  (2) 

xij
i∈V
∑ =1     j ∈V  (3) 

wj
axij

j∈V
∑ ≥ (1−τ a )µ axii      i ∈V,a ∈ A  (4) 

wj
axij

j∈V
∑ ≤ (1+τ a )µ axii      i ∈V,a ∈ A  (5) 

xij
j∈v∈S N

v \S
∑ − xij

j∈S
∑ ≥1− S   

 i ∈V,S ⊂V \ (Ni∪{i})  (6) 
xij ∈ 0,1{ }      i, j ∈V  (7) 
 

El objetivo (1) representa una  medida  de dispersión 
basada  en el objetivo  del pMP. En  este sentido, 



minimizar  dispersión es equivalente  a maximizar  
compacidad. La restricción (2) garantiza la creación de 
exactamente p territorios. Las restricciones (3) 
representan la asignación exclusiva de las UBs. Las 
restricciones (4)-(5) representan el balance con respecto a 
cada actividad y establecen que el tamaño de cada 
territorio debe estar dentro de un rango de variación 
(determinado por  τa)  con  respecto  al  tamaño  
promedio.  La  conexidad  de  los territorios está  dada  
por  las restricciones (6). Estas últimas son similares a las 
restricciones de eliminación de subrutas (subtours) en el 
problema  del agente viajero. La cantidad de estas 
restricciones  es un número exponencial por lo cual 
escribirlas explícitamente resulta prácticamente 
imposible. El método de solución propuesto  genera  de 
manera  iterativa  las restricciones de conexidad  
necesarias  para  encontrar una  solución óptima del 
problema.  Este  modelo fue utilizado  en [4] y puede ser 
visto como el problema  pMP con  múltiples restricciones 
de capacidad  y restricciones  adicionales (4)-(6).   

Cuando  la medida  de dispersión  utilizada es el 
objetivo  del  pCP,   la  función  objetivo (1) es 
reemplazada por la función (8). El modelo resultante es 
llamado  CTDP y fue introducido  en [1]. 

 
z =max

i, j∈V
dij xij{ }  (8) 

 
Estos  modelos  pertenecen a  la  clase  NP-duro   

[1,4]. Pruebas de  complejidad   para  problemas   
similares  en  el  contexto   de  distritos políticos pueden  
encontrarse en Altman  [10,11]. 

Ríos-Mercado y Fernández [1] propusieron  un 
GRASP  reactivo para  el CTDP.  Salazar-Aguilar et al. 
[4] propusieron  una heurística para  el MTDP.  Sin 
embargo, hasta el momento  no se han desarrollado  
métodos exactos para este problema. Cabe señalar que 
aunque en teoría, las restricciones de conexidad pudieran 
ser escritas explícitamente, esto no tendría ningún sentido 
práctico debido a su número exponencial. En este trabajo 
se propone un procedimiento  de solución exacto para  
resolver  el MTDP  y el  CTDP.  En  la fase de 
modelación estas restricciones no se escriben 
explícitamente y se generan de manera iterativa dentro 
del algoritmo  propuesto. Por tanto, el procedimiento  se 
puede implementar de manera  fácil en cualquier sistema 
de modelación algebraico y puede ser resuelto  por 
cualquier  optimizador MILP  comercial.  Denominemos 
como R_MTDP al modelo relajado que se obtiene de 
relajar las restricciones (6) del MTDP. De manera similar 
definimos el modelo relajado R_CTDP como el modelo 
resultante al eliminar (6) en CTDP. En la Tabla 1 se 
muestra el conjunto de restricciones que se utilizan en 
cada uno de los modelos propuestos.  

Adicionalmente, en este trabajo introducimos nuevas 
formulaciones matemáticas del problema utilizando 
optimización cuadrática entera (IQP). El número de 

variables se redujo de n2 a 2np. Las formulaciones 
cuadráticas propuestas en este trabajo son las primeras 
formulaciones propuestas en la literatura para el 
problema estudiado. En el modelo cuadrático, hacemos 
uso de los mismos parámetros utilizados en el modelo 
lineal. Se define un conjunto adicional Q = { 1, 2, …, p } 
de índices  de territorios y un  conjunto de variables  
binarias yiq para  identificar  los centros  de  los territorios 
y zjq  para  representar la asignación de UBs a territorios.  
Las variables de decisión para el modelo IQP se definen 
así: 

zjq =
1 si la UB j  es asignada al territorio q
0 en otro caso

!
"
#

$#
 

yiq =
1 si la UB i es asignada al territorio q
0 en otro caso

!
"
#

$#
 

De acuerdo con las definiciones anteriores,  la 
equivalencia  existente  entre las variables  utilizadas en 
el modelo lineal y las utilizadas en el cuadrático está dada  
por:                                                                                                          

xij = zjqyiq
q∈Q
∑  (9) 

 
El modelo QMTDP (quadratic median-based 

territory  design problem) usa una medida  de dispersión  
equivalente  a  la  utilizada   en  el modelo  MTDP.  A 
continuación se muestra la formulación del modelo 
QMTDP.  
 

(QMTDP)   minimizar   z = dijz jqyiq
i∈V
∑

j∈V
∑

q∈Q
∑ (10) 

sujeta a   yiq
i∈V
∑ =1     q ∈Q  (11) 

zjq
q∈Q
∑ =1     j ∈V  (12) 

zjq ≥ yjq      q ∈Q, j ∈V  (13) 

wj
az jq

j∈V
∑ ≥ (1−τ a )µ a      q ∈Q,a ∈ A  (14) 

wj
az jq

j∈V
∑ ≤ (1+τ a )µ a      q ∈Q,a ∈ A  (15) 

 

zjqyiq
j∈v∈S N

v \S
∑

q∈Q
∑ − zjqyiq

j∈S
∑

q∈Q
∑ ≥1− S   

 i ∈V,S ⊂V \ (Ni∪{i})  (16) 
zjq ∈ 0,1{ }      q ∈Q, j ∈V  (17) 

yiq ∈ 0,1{ }      q ∈Q, i ∈V  (18) 
 

Las  restricciones  (11)  son  usadas  para garantizar 



la asignación de un centro por cada territorio. La 
asignación exclusiva está dada por las restricciones  (12). 
El balance territorial se establece con las restricciones 
(14)-(15). Las restricciones (13) indican  que una  UB j 
no puede ser centro del territorio q si j no pertenece  al 
territorio q. El último conjunto de restricciones (16) 
garantizan la conexidad de los territorios. Nuevamente 
tenemos  un número exponencial de estas restricciones. 

Bajo esta formulación cuadrática, una medida de 
dispersión basada en el objetivo pCP está dada por (19). 
Entonces, el QCTDP (quadratic  center-based  territory 
design  problem) es el modelo resultante al reemplazar  la 
función objetivo (10) por la medida  de dispersión (19). 

min   z =max
i, j∈V

z jqyiq
q∈Q
∑
#
$
%

&%

'
(
%

)%
 (19) 

 
Cabe recalcar que estas  formulaciones IQP son 

nuevas  en la literatura de diseño de territorios. QMTDP 
es difícil de resolver debido  a que posee un objetivo 
cuadrático y un conjunto  de restricciones cuadráticas 
(restricciones de conexidad). Adicionalmente, no es 
posible escribirlas explícitamente  debido  a su número 
exponencial. Si las restricciones  de conexidad  son 
relajadas,  el modelo puede  resolverse utilizando  
cualquier optimizador para  problemas  MINLP. 

Similar a la definición de los modelos relajados 
R_MTDP y R_CTDP, definimos R_QMTDP como la 
relajación de QMTDP cuando las restricciones (16) son 
removidas del modelo. Claramente, una solución para 
R_QMTDP brinda una cota inferior para QMTDP. 

Hay algunos casos especiales para los cuales el 
modelo puede ser reforzado, por ejemplo, cuando no hay 
soluciones factibles  que contengan  territorios formados  
por una  sola UB. Es decir, cuando cada solución factible 
tiene territorios con al menos dos unidades  básicas 
asociadas a él, la siguiente es una desigualdad válida para 
R_QMTDP. 

 

ziq
i∈N j
∑ ≥ zjq    q ∈Q, j ∈V  (20) 

 
Estas desigualdades evitan la creación de 

subconjuntos no conexos S tales que |S|=1. Existe un 
número polinomial de estos subconjuntos, así que estas 
desigualdades pueden incorporarse fácilmente al modelo. 

Note que, para  las formulaciones MILP las 
desigualdades  válidas equivalentes  están dadas  por: 

 

  xil
l∈N j
∑ ≥ xij    i ∈V, j ∈V \ {i}∪Ni( )  (21) 

                
En contraste con las desigualdades dadas en (20) que sólo 
son válidas cuando permanece la condición de territorios 
formados por más de una unidad básica, las restricciones 
(21) son válidas para cualquier instacia. Definamos 

entonces a R1_QMTDP como la relajación conformada 
por R_QMTDP más las restricciones de adicionales (20). 
De manera similar podemos definir modelos relajados 
para el modelo QCTDP. Nos referimos a éstos como 
R_QCTDP y R1_QCTDP, respectivamente. Igualmente, 
para los modelos MTDP y CTDP, se obtienen nuevos 
modelos relajados agregando (21) en los modelos 
relajados R_MTDP y R_CTDP. Los denominamos como 
R1_MTDP y R1_CTDP, respectivamente. Para una 
mejor definición de los modelo, véase la Tabla 1. 
 

Tabla  1: Modelos relajados asociados a los modelos 
MILP  e IQP, respectivamente. 

 
 
 
Procedimiento de solución propuesto 

 
 Una de las principales  dificultades  para  obtener  

soluciones exactas  para  cualquiera  de los modelos 
previamente descritos, se debe al número exponencial de 
restricciones  de conexidad. Como ya se mencionó 
anteriormente, resulta  prácticamente imposible escribir  
estas  restricciones  de manera explícita. Así que ideamos 
un procedimiento  iterativo  que utiliza ramificación y 
acotamiento (B&B) y un esquema de generación de 
cortes. La idea es relativamente simple. Al relajar  las 
restricciones  de conexidad, nos quedamos con un 
problema  relajado que se puede resolver mediante  B&B. 
Después, se verifica la conexidad  de la solución obtenida  
para  este problema  relajado.  Esta  prueba  de conexidad  
se realiza resolviendo un problema  de separación, el cual 
se puede  resolver polinomialmente con el algoritmo 
breadth first search (BFS, veáse Cormen et al. [12]).  Las 
desigualdades  válidas correspondientes  (restricciones  
de conexidad no satisfechas)  se agregan  al modelo 
relajado  como cortes  y el procedimiento  continúa hasta  
que no se encuentran más desigualdades sin satisfacer. El 
procedimiento  de generación  de cortes  iterativo  para 
resolver  TDPs (ICGP-TDP) se resume en el Algoritmo 1 
(Figura 1).  Para   resolver  los modelos  relajados MILP,  
el método  ResolverMILP en ICGP-TDP llama a algún  
método  de B&B. En  contraste, el método  ResolverIQP  
llama  ya  sea a un  procedimiento exacto o a uno  
aproximado. En  nuestro caso, utilizamos  un  método 
que garantiza optimalidad local (GAMS/DICOPT). Un 
tema para ser investigado es precisamente el costo-
beneficio  entre el tiempo de cómputo empleado y la 



calidad de la solución obtenida. Asumiendo que se utiliza 
un algoritmo finito para  resolver los modelos relajados 
enteros (en ResolverMILP() o ResolverIQP()), la 
convergencia de nuestro  algoritmo  propuesto  está 
garantizada debido a que el problema  de separación se 
resuelve en tiempo polinomial.  Entonces,  la 
convergencia del algoritmo se  garantiza  debido  a que 
hay un  conjunto  finito  de restricciones  de conexidad.  
Cuando  éste  se detiene,  la  última  solución  es factible  
con respecto  a las restricciones  de conexidad, y por eso, 
es una solución óptima del problema.  

 

 
Figura 1. Procedimiento ICGP-TDP. 

 
 

Resultados computacionales 
 
El método propuesto ICGP-TDP fue codificado en 

C++ y compilado con Sun C++ 8.0. Las relajaciones 
MILP son resueltas con CPLEX 11.2 y las relajaciones 
IQP con DICOPT, uno de los métodos más populares 
para resolver programas enteros mixtos no lineales. 
DICOPT fue desarrollado por Viswanathan y Grossmann 
en el Centro de Investigación de Diseño de Ingeniería 
(EDRC) en la Universidad Carnegie Mellon (veáse Kocis 
y Grossmann [13]; y Viswanathan y Grossmann [14]) 
para más detalles). Se utilizaron dos criterios de parada: 
por intervalo de optimalidad relativa (gap ≤ 5 × 10-6) y 
por tiempo (7200 s). Se utilizaron instancias generadas 
aleatoriamente basadas en datos reales provenientes de la 
compañía. La topología de cada instancia se formó 
utilizando el generador desarrollado por Ríos-Mercado y 
Fernández [1]. En este trabajo, los autores usaron 
información histórica de la compañía y obtuvieron la 

distribución de los datos asociados al número de clientes 
y volumen de venta. La compañía utiliza distancias 
Euclidianas entre las unidades básicas calculadas en su 
GIS. Consideramos una tolerancia de τ(a)=0.05, a ∈A y 
generamos tres conjuntos de instancias diferentes con  
(n,p) ∈ {(60, 4), (80, 5), (100, 6)}. Para cada uno de estos 
conjuntos, se generaron 20 instancias diferentes. 
Adicionalmente, se generaron diez instancias diferentes 
de dos conjuntos más grandes con (n,p) ∈ {(150, 8), 
(200, 11)}. 

En primera instancia, trabajamos con los modelos 
lineales, CTDP y MTDP. El procedimiento  ICGP-TDP 
fue utilizado con los modelos relajados R_CTDP y 
R_MTDP, respectivamente. 

Las Tablas 2 y 3 muestran los resultados para CTDP 
y MTDP, respectivamente. La primera columna indica el 
tamaño de la instancia probada. La segunda columna 
muestra el porcentaje de instancias que fueron resueltas 
en la primera iteración (hasta 20 excepto para el conjunto 
(150, 8)), esto es, el porcentaje de instancias para las 
cuales se encontró una partición conexa en la primera 
iteración. La tercera columna contiene el promedio y el 
máximo número de iteraciones/instancia requeridas por el 
algoritmo. La cuarta columna muestra el porcentaje de 
instancias resueltas dentro del tiempo límite especificado. 
La quinta columna muestra el promedio y el máximo 
número de cortes agregados por instancia resuelta. 
Finalmente, la última columna muestra información del 
tiempo de CPU (promedio y máximo) utilizado por 
instancia. 

 
Tabla 2: Resultados reportados por ICGP-TDP para 

CTDP bajo la relajación R_CTDP. 

 
 

Tabla 3: Resultados reportados por ICGP-TDP para 
MTDP bajo la relajación R_MTDP. 

 
 

Para el modelo CTDP, la Tabla 2 indica que una 
proporción muy pequeña de las instancias fueron 
resueltas en la primera iteración. Hasta 26 iteraciones y 
82 cortes fueron necesarios en el peor de los casos para 
resolver problemas de tamaño (60, 4). Al final del 
procedimiento, todas las instancias de (60, 4) se 
resolvieron a optimalidad. 90% del conjunto (80, 5) fue 
resuelto a optimalidad. Sin embargo, el procedimiento 
tuvo dificultad con los conjuntos más grandes. Para los 



dos conjuntos más pequeños, se necesitaron en promedio 
alrededor de 5 iteraciones y 12 cortes. Note que, para una 
iteración específica el problema de separación tiene la 
propiedad de identificar más de un subconjunto no 
conexo y genera todas las restricciones de conexidad no 
satisfechas en la misma iteración. Para el conjunto (150, 
80), el procedimiento no pudo terminar una sola iteración 
dentro del límite de tiempo. 

Estos estadísticos mejoran significativamente para el 
modelo MTDP (Tabla 2). Excepto por muy pocos casos 
en los conjuntos más grandes, todas las demás instancias 
fueron resueltas a optimalidad. Una gran proporción de 
éstas fue resuelta en la primera iteración. En promedio, 
requirió menos de 2 iteraciones y muy pocos cortes para 
obtener soluciones óptimas. Esto no sólo sugiere que la 
relajación LP del modelo basado en mediana es más 
difícil que la del modelo basado en centros, sino también 
que las soluciones para la relajación R_MTDP producen 
soluciones prácticamente conexas. Esto tiene un impacto 
positivo en el tiempo total de solución.  

Posteriormente se analizó el comportamiento de los 
modelos de optimización IQP. Claramente observamos 
que el tiempo necesario para resolver los  modelos 
cuadráticos es menor que el tiempo requerido para 
resolver los modelos lineales. Sin embargo, resolver el 
modelo cuadrático con métodos de optimización local no 
asegura optimalidad global. Por ésto, un tema importante 
para analizarse fue precisamente el balance entre la 
calidad de la solución y el esfuerzo computacional. Para 
ello, aplicamos ICGP-TDP con los modelos MTDP y 
QMTDP, usamos 20 instancias de los conjuntos {(60, 4), 
(80, 5), (100, 6)} y 10 instancias del conjunto (150, 8). 
 

Tabla  4: Calidad  de las soluciones reportadas para  el 
modelo QMTDP. 

 
 

La Tabla 4 muestra la calidad de las soluciones 
encontradas mediante la optimización del modelo 
QMTDP. En estos conjuntos de instancias, el tiempo 
computacional no es un problema, sin embargo para  
instancias más grandes (mostrados en la Tabla 5), el 
tiempo llega a ser un factor sumamente importante. En la 
Tabla 5 se muestra cómo el tiempo incrementa 
significativamente para el modelo MILP. Hay dos 
instancias donde se alcanzó el tiempo límite cuando se 
utilizó el modelo MILP. Cuando se usó el modelo 
cuadrático, todas las instancias se resolvieron en 1 
minuto de tiempo de CPU, con intervalos de optimalidad 
de menos de 5% en 90% de las instancias. Por tanto, el 
modelo cuadrático es una alternativa rápida y atractiva 

para encontrar soluciones de calidad para instancias 
grandes del problema.  
 
Tabla  5: MTDP  vs. QMTDP para  instancias  (200, 11). 

 
 

Adicionalmente, se analizó el comportamiento de los 
modelos basados en la medida de dispersión pCP, 
observamos que el tiempo computacional en ambas 
formulaciones, CTDP y QCTDP, es extremadamente 
costoso. La descripción detallada y resultados 
computacionales completos están ampliamente descritos 
en Salazar-Aguilar [15].  

 
Conclusiones 
 

En este trabajo propusimos nuevos modelos 
cuadráticos (IQP) para el problema de diseño de 
territorios comerciales con restricciones de conexidad y 
múltiples restricciones de balance. Estas formulaciones 
IQP utilizan un número más pequeño de variables 
binarias. Además, desarrollamos un procedimiento de 
solución exacta (ICGP-TDP) basado en B&B y una 
estrategia de generación de cortes. El método puede 
aplicarse a ambos modelos, MILP e IQP. Éste es el 
primer algoritmo exacto desarrollado a la fecha para tal 
problema. Los modelos fueron reforzados con la 
introducción de desigualdades válidas que eliminan los 
subconjuntos no conexos de cardinalidad uno. 
Observamos de manera empírica que la mayoría de los 
subconjuntos no conexos encontrados en los modelos 
relajados (relajando las restricciones de conexidad) tienen 
cardinalidad igual a 1, lo cual motivó la introducción de 
estas desigualdades válidas. Empíricamente probamos 
que en los modelos MTDP y QMTDP los cortes 
propuestos aceleran la convergencia del algoritmo 
propuesto. 

Cuando el método de solución se aplicó para resolver 
instancias con los modelos lineales y cuadráticos, los 
modelos IQP propuestos mostraron un desempeño 
balanceado entre calidad y esfuerzo. Para las instancias 
más grandes, los tiempos de ejecución de los modelos 
cuadráticos fueron significativamente más bajos que los 
observados con los modelos lineales. La calidad de 



solución de las obtenidas con el modelo cuadrático sobre 
todas las instancias estuvo en el rango de 0.0-14.8%, y en 
el mejor de los casos menor que 5%. 

Se observó que el objetivo de pMP es más amigable 
que el objetivo pCP. Durante el proceso de B&B, la 
relajación lineal para el objetivo pMP mostró mejor 
desempeño que la relajación lineal para el objetivo pCP. 
Además, también se observó que las soluciones obtenidas 
de la relajación de los modelos basados en p-mediana 
tienen un grado muy alto de conexidad. Esto tuvo un 
impacto muy bueno en la eficiencia computacional ya 
que se necesitaron muy pocas iteraciones para encontrar 
las soluciones conexas a diferencia de los modelos 
basados en p-centro. Por tanto, en la ausencia de una 
medida de dispersión estándar, el objetivo pMP podría 
ser una buena elección para otro problema de diseño de 
territorios que tenga a la compacidad como medida de 
desempeño. 

 
Agradecimientos: El trabajo de M. Angélica Salazar 
Aguilar fue apoyado por la Universidad Autónoma de 
Nuevo León (proyecto NL-2006-C09-32652) mediante 
una beca de estudios de doctorado. La infraestructura 
requerida para la elaboración del mismo, así como el 
financiamiento para la presentación del trabajo en foros 
internacionales fue posible gracias a: UANL-PAICYT 
CA1478-07 y UANL-PAICYT CE012-09; SEP-
CONACYT 48499-Y y SEP-CONACYT 61343; y al 
Tecnológico de Monterrey (CAT128). 
 
Resumen: En este trabajo se estudió el problema de 
diseño de territorios comerciales. Se propusieron 
modelos, desigualdades válidas y procedimientos de 
solución para el diseño óptimo de territorios comerciales 
para una situación presente en una empresa distribuidora 
de bebidas embotelladas. Los resultados de esta 
investigación contribuyen significativamente en el estado 
del arte en el área de diseño de territorios. Los modelos y 
métodos propuestos para este problema superan el 
desempeño de los mejores métodos existentes a la fecha. 
 
Palabras clave: diseño de territorios, programación 
cuadrática no-lineal entera, desigualdades válidas, 
ramificación y acotamiento. 
 
Abstract: In this work, we address the problem of 
computing optimal territory designs for a beverage 
distribution company. New models, valid inequalities, 
and solution methods have been proposed in this 
research. The results advance the state of the art in the 
field of territory design. Empirical evidence shows the 
significant impact of the proposed models and algorithms 
which outperformed significantly the best solution 
methods known to date. 
 
Keywords: territory design, non-linear integer quadratic 
programming, valid inequalities, branch and bound. 
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