Formulaciones y Técnicas Exactas de Solucion
para el Diseiio Optimo de Territorios

Introduccion

En el presente trabajo se aborda un problema de toma
de decisiones que surge en el campo de disefio territorial
como una aplicacion de una empresa distribuidora de
bebidas embotelladas. Puede decirse que el problema
bajo estudio cae dentro del area de la Investigacion de
Operaciones, que es la ciencia que brinda soporte
cientifico a problemas de toma de decisiones.

El problema consiste en determinar una agrupacion
de manzanas o unidades basicas (UBs), dentro de un area
geografica objetivo, en un numero fijo de territorios
(dado por p) de tal manera que se cumplan una serie de
requerimientos de planificaciéon impuestos por la
empresa. Denominamos el problema como TDP (por sus
siglas en inglés, Territory Design Problem).

El problema que se estudia en este trabajo fue
introducido por Rios-Mercado y Fernandez [1]. Ellos
desarrollaron un procedimiento de solucion basado en un
procedimiento metaheuristico denominado GRASP
reactivo (por sus siglas en inglés, Greedy Randomized
Adaptive  Search Procedure). En su trabajo, Ila
compacidad fue modelada a través de la funcion
objetivo del problema de p-centro, el cual representa la
maxima dispersion en los territorios. Consideraron
restricciones de balance en términos de numero de
clientes, volumen de ventas y carga de trabajo. Los
resultados  reportados fueron mejores que aquellos
generados por la compaiiia, quienes lo hacian con un
método ad-hoc. Diferentes versiones del problema se
estudiaron en Caballero-Hernandez et al. [2], Rios-
Mercado y Salazar-Acosta [3], Salazar-Aguilar et al. [4],
Rios-Mercado y Lopez-Pérez [S] y Lopez-Pérez y Rios-
Mercado [6]. En cada uno de ellos, se desarrollaron
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enfoques heuristicos para instancias de tamafio grande,
las cuales son intratables para propositos  de
optimizaciéon exacta. En efecto, detectamos que en
trabajos previos no se habia reportado algun esquema
de solucion exacta  para estos modelos, so6lo
procedimientos heuristicos. Sin embargo, instancias de
tamafio pequefio y mediano con frecuencia aparecen en
situaciones reales y por ello, sus soluciones exactas se
consideran  importantes.  Entonces, una de las
contribuciones importantes de este trabajo es el
desarrollo de un método de optimizaciéon exacta que
maneje de manera efectiva el niimero exponencial de
restricciones de conexidad en instancias pequefias y
medianas.

Por otro lado, en los problemas de disefio de
territorios, los modelos que incorporan restricciones de
conexidad usualmente son estudiados con heuristicas,
como se analizd en Kalcsics et al. [7]. Son pocos los
trabajos que realmente proveen soluciones optimas.
Dos ejemplos son Garfinkel y Nemhauser [8] y Shirabe
[9]. Los primeros estudiaron un problema de distritos
con 39 UBs y 7 territorios, mientras que el ultimo
propuso un método de soluciébn para un problema
similar utilizando 48 unidades basicas y un niimero
variable de territorios. E1 método propuesto en Shirabe
[9] fue probado sbélo para un nimero pequeio de
territorios.

Nuestro trabajo presenta contribuciones en dos
direcciones. La primera  direcciébn consiste en un
procedimiento de optimizaciéon exacta, como se
menciond anteriormente. El algoritmo propuesto esta
orientado hacia la solucién de instancias de tamafio
mediano (alrededor de 200 UBs para formar hasta 10
territorios). El algoritmo consiste en la solucion iterativa



de un problema de programacion lineal entera mixta
(MILP) mediante la relajacion de las restricciones de
conexidad. Las restricciones  no satisfechas se
identifican a través de la solucion de un problema de
separacion simple. Después de ésto, tales restricciones se
introducen como cortes al modelo. El procedimiento
continta hasta que se alcanza optimalidad.

En la segunda direccion, se propone una nueva
formulacion de programacion cuadratica entera (IQP).
Esta formulacion realmente reduce el ntimero de
variables binarias permitiendo la solucion de instancias
mas grandes que aquellas permitidas por el MILP
equivalente. El procedimiento de optimizacién exacta
se prueba con ambas formulaciones (MILP e IQP).

También se presenta un estudio empirico acerca
de la compacidad de los territorios sobre un rango
amplio de instancias, para explicar qué tipo de medidas
de dispersion tiene el potencial de brindar las mejores
soluciones para el problema de disefio de territorios
comerciales. En el disefio de territorios en general, no
hay una medida estandar de compacidad. Se pueden
encontrar diferentes tipos de medidas de dispersion
dependiendo de la aplicacion especifica. En el contexto
de distritos politicos por ejemplo, hay algunos estudios
en medidas de compacidad en Altman [10]. Este
criterio también es discutido por Kalcsics et al. [6]
desde una perspectiva mas general. Por tanto, en la
ausencia de una medida estindar para el caso del
disefio de territorios comerciales, realizamos el trabajo
experimental sobre un amplio rango de instancias con
el fin de analizar el desempefio de los modelos basados
en la medidas del p-centro y p-mediana.

Descripcion del problema

Sea G = (V, E), un grafo donde V' es el conjunto de
UBs -manzanas en este caso- y E es el conjunto de arcos
que representan adyacencia entre manzanas. Cada
nodo j en el conjunto ¥ tiene una serie de parametros
tales como coordenadas geograficas, y dos atributos o
actividades: nimero de clientes y volumen de ventas.
Se utiliza también una distancia Euclidiana, d; que
puede calcularse entre cada par de UBs i y j. El
conjunto de UBs debe ser dividido en p territorios de
manera tal que cada nodo pertenezca so6lo a un territorio
(asignacion exclusiva). Adicionalmente, la compaiiia
busca territorios balanceados con respecto al nimero de
clientes y demanda de producto.

Definimos el tamafio de un territorio con respecto a
la actividad a, como la suma de los valores de actividad a
asociados a las unidades basicas que conforman el
territorio. Debido a la estructura discreta del problema
y a la restriccion de asignacion exclusiva, es
practicamente imposible tener territorios perfectamente
balanceados, es decir, territorios con exactamente el
mismo tamafo con respecto a cada actividad. Entonces,
con el fin de modelar el balance, se introduce un

parametro de tolerancia 7“. Este pardmetro mide la
desviacion relativa con respecto al tamafio deseado en
la actividad a, a €4. EIl valor deseado representa el
tamafio promedio de los territorios y estd dado por u =
w'(V)/p. Otra restriccion importante es la de conexidad,
es decir, por cada 7 y j asignados al mismo territorio debe
existir una ruta entre ellos y ésta debe estar
totalmente contenida en el territorio. Ademas, con el fin
de lograr compacidad, las UBs del mismo territorio
deben estar tan cerca una de la otra como sea posible.
Una forma de cumplir con este requerimiento es
minimizando una medida de dispersion. En la literatura
se han utilizado varias medidas, en este trabajo
estudiamos dos, una basada en el objetivo del problema
de p-centro (pCP) y la otra basada en el objetivo del
problema p-mediana (pMP). Esto conduce a dos
modelos diferentes que se describen a continuacion.

Modelos de optimizacion lineal

Para presentar el modelo, definamos primero al
conjunto N' para todo i en ¥ como el conjunto de todas
las UBs adiacentes ala UB i, es decir,

N'={jEV:(,))EEV(ji)EE}
Las variables de decision se definen como:
1 silaUB i es asignada al territorio
X, = con centro en j

0 en otro caso

Notese que x; = 1 implica que la UB i es un centro
territorial. El modelo matematico MTDP (TDP basado
en p-mediana) se define a continuacion.

(MTDP) minimizar z= Y ¥ d,x; 1)
JEVIEV
sujeta a Exﬁ =p (2)
eV

Yx,=1 jEV 3)
eV

Y wix;z(1-tu'x, i€EV,a€A @)
JEV

ijxij =s(1+t%u’x, i€EV,aEA (5)
JEV

E xi,»—zx,.j =1-[s]
€U,es N'\S JES

iIEV,SCV\(N'U{Y) (6)
x, €{0.1} i, jEV @)

El objetivo (1) representa una medida de dispersion
basada en el objetivo del pMP. En este sentido,



minimizar  dispersion es equivalente a maximizar
compacidad. La restriccion (2) garantiza la creacion de
exactamente p territorios. Las restricciones (3)
representan la asignacion exclusiva de las UBs. Las
restricciones (4)-(5) representan el balance con respecto a
cada actividad y establecen que el tamafio de cada
territorio debe estar dentro de un rango de variacion
(determinado por %) con respecto al tamafio
promedio. La conexidad de los territorios estd dada
por las restricciones (6). Estas ultimas son similares a las
restricciones de eliminacion de subrutas (subtours) en el
problema del agente viajero. La cantidad de estas
restricciones es un numero exponencial por lo cual
escribirlas  explicitamente  resulta  practicamente
imposible. El método de solucidén propuesto genera de
manera iterativa  las restricciones de conexidad
necesarias para encontrar una solucion Optima del
problema. Este modelo fue utilizado en [4] y puede ser
visto como el problema pMP con multiples restricciones
de capacidad vy restricciones adicionales (4)-(6).

Cuando la medida de dispersion utilizada es el
objetivo del pCP, la  funciébn objetivo (1) es
reemplazada por la funcion (8). El modelo resultante es
llamado CTDP y fue introducido en [1].

¢ =max dl.jxij} (8)

Estos modelos pertenecen a la clase NP-duro
[1,4]. Pruebas de complejidad para  problemas
similares en el contexto de distritos politicos pueden
encontrarse en Altman [10,11].

Rios-Mercado y Fernandez [1] propusieron un
GRASP reactivo para el CTDP. Salazar-Aguilar et al.
[4] propusieron una heuristica para el MTDP. Sin
embargo, hasta el momento no se han desarrollado
métodos exactos para este problema. Cabe sefialar que
aunque en teoria, las restricciones de conexidad pudieran
ser escritas explicitamente, esto no tendria ningtin sentido
practico debido a su nimero exponencial. En este trabajo
se propone un procedimiento de soluciéon exacto para
resolver el MTDP y el CTDP. En la fase de
modelacion  estas restricciones no se  escriben
explicitamente y se generan de manera iterativa dentro
del algoritmo propuesto. Por tanto, el procedimiento se
puede implementar de manera facil en cualquier sistema
de modelacion algebraico y puede ser resuelto por
cualquier optimizador MILP comercial. Denominemos
como R MTDP al modelo relajado que se obtiene de
relajar las restricciones (6) del MTDP. De manera similar
definimos el modelo relajado R CTDP como el modelo
resultante al eliminar (6) en CTDP. En la Tabla 1 se
muestra el conjunto de restricciones que se utilizan en
cada uno de los modelos propuestos.

Adicionalmente, en este trabajo introducimos nuevas
formulaciones matematicas del problema utilizando
optimizacion cuadratica entera (IQP). El numero de

variables se redujo de n° a 2mp. Las formulaciones
cuadraticas propuestas en este trabajo son las primeras
formulaciones propuestas en la literatura para el
problema estudiado. En el modelo cuadratico, hacemos
uso de los mismos parametros utilizados en el modelo
lineal. Se define un conjunto adicional 0 = { 1,2, ...,p }
de indices de territorios y un conjunto de variables
binarias y;, para identificar los centros de los territorios
y zj; para representar la asignacion de UBs a territorios.
Las variables de decision para el modelo IQP se definen
asi:

1 silaUBj es asignada al territorio g

qu =

0 en otro caso

1 silaUB i es asignada al territorio g
y iq =

0 en otro caso
De acuerdo con las definiciones anteriores, la

equivalencia existente entre las variables utilizadas en
el modelo lineal y las utilizadas en el cuadratico esta dada
por:

Xy = E ZjgYig ©)

q9€0

El modelo QMTDP (quadratic median-based
territory design problem) usa una medida de dispersion
equivalente a la utilizada en el modelo MTDP. A
continuacion se muestra la formulacion del modelo
QMTDP.

(QMTDP) minimizar z= Y ¥ ¥d,z,,y, (10)

gEQ JEV iEV
sujeta a Ey,.q=1 qEQ (11)
eV

Yz,=1 jEV (12)
SY
2,2y, 4EQ,JEV (13)
wazjqz(l—r”),u“ gEQ,a€A (14)
JEV
waz}.qs(l+r“)u“ gEQ,aEA (15)
JEV
E E Z.iqyiq_EEquyiq21_|S|
4€0 jEU,es N'\S g€Q jES

iEV,SCV\(N'U{Y) (16)
2, €{0,1} ¢EQEV (17)
y, €{0.1} ¢€Q.iEV (18)

Las restricciones (11) son usadas para garantizar



la asignacion de un centro por cada territorio. La
asignacion exclusiva esta dada por las restricciones (12).
El balance territorial se establece con las restricciones
(14)-(15). Las restricciones (13) indican que una UB j
no puede ser centro del territorio ¢ si j no pertenece al
territorio ¢. El tultimo conjunto de restricciones (16)
garantizan la conexidad de los territorios. Nuevamente
tenemos un nimero exponencial de estas restricciones.
Bajo esta formulacion cuadratica, una medida de
dispersion basada en el objetivo pCP esta dada por (19).
Entonces, el QCTDP (quadratic center-based territory
design problem) es el modelo resultante al reemplazar la
funcién objetivo (10) por la medida de dispersion (19).

min z =max 2 234 Vig (19)
q9€0

Cabe recalcar que estas formulaciones IQP son
nuevas en la literatura de disefio de territorios. QMTDP
es dificil de resolver debido a que posee un objetivo
cuadratico y un conjunto de restricciones cuadraticas
(restricciones de conexidad). Adicionalmente, no es
posible escribirlas explicitamente debido a su numero
exponencial. Si las restricciones de conexidad son
relajadas, el modelo puede resolverse utilizando
cualquier optimizador para problemas MINLP.

Similar a la definicion de los modelos relajados
R MTDP y R CTDP, definimos R QMTDP como la
relajacion de QMTDP cuando las restricciones (16) son
removidas del modelo. Claramente, una solucion para
R_QMTDP brinda una cota inferior para QMTDP.

Hay algunos casos especiales para los cuales el
modelo puede ser reforzado, por ejemplo, cuando no hay
soluciones factibles que contengan territorios formados
por una sola UB. Es decir, cuando cada solucion factible
tiene territorios con al menos dos unidades basicas
asociadas a ¢él, la siguiente es una desigualdad valida para
R_QMTDP.

Eziqzzjq gEQ,JEV (20)

iEN/

Estas desigualdades evitan la creacidon de
subconjuntos no conexos S tales que |S|=/. Existe un
nimero polinomial de estos subconjuntos, asi que estas
desigualdades pueden incorporarse facilmente al modelo.

Note que, para las formulaciones MILP las
desigualdades validas equivalentes estan dadas por:

x,zx, i€EV,jEV\[{{IUN') (1
2 %%, ({iyuN)

IEN/

En contraste con las desigualdades dadas en (20) que s6lo
son validas cuando permanece la condicion de territorios
formados por mas de una unidad basica, las restricciones
(21) son validas para cualquier instacia. Definamos

entonces a R1_ QMTDP como la relajaciéon conformada
por R_ QMTDP mas las restricciones de adicionales (20).
De manera similar podemos definir modelos relajados
para el modelo QCTDP. Nos referimos a éstos como
R _QCTDP y R1_QCTDP, respectivamente. Igualmente,
para los modelos MTDP y CTDP, se obtienen nuevos
modelos relajados agregando (21) en los modelos
relajados R MTDP y R CTDP. Los denominamos como
R1 MTDP y R1 CTDP, respectivamente. Para una
mejor definicion de los modelo, véase la Tabla 1.

Tabla 1: Modelos relajados asociados a los modelos
MILP e IQP, respectivamente.

Modelo Objetivo | Restricciones
RMTDP (1) (2)-(5)
RIMTDP (2)-(3) v (21)
R_.CTDP (8) {2)-(3)
R1_CTDP (8) (2)-(5) v (2
R_.OMTDP (10} (11)-(13)

R1I_.QMTDP (10) (11)-(13) y (20)
R_QCTDP (19) (11)-(13)
RI.QCTDP | (19) | (11)-(13) ¥ (20)

Procedimiento de soluciéon propuesto

Una de las principales dificultades para obtener
soluciones exactas para cualquiera de los modelos
previamente descritos, se debe al nimero exponencial de
restricciones de conexidad. Como ya se menciond
anteriormente, resulta practicamente imposible escribir
estas restricciones de manera explicita. Asi que ideamos
un procedimiento iterativo que utiliza ramificacion y
acotamiento (B&B) y un esquema de generacion de
cortes. La idea es relativamente simple. Al relajar las
restricciones  de conexidad, nos quedamos con un
problema relajado que se puede resolver mediante B&B.
Después, se verifica la conexidad de la solucion obtenida
para este problema relajado. Esta prueba de conexidad
se realiza resolviendo un problema de separacion, el cual
se puede resolver polinomialmente con el algoritmo
breadth first search (BFS, vease Cormen et al. [12]). Las
desigualdades validas correspondientes (restricciones
de conexidad no satisfechas) se agregan al modelo
relajado como cortes y el procedimiento continta hasta
que no se encuentran mas desigualdades sin satisfacer. El
procedimiento de generacion de cortes iterativo para
resolver TDPs (ICGP-TDP) se resume en el Algoritmo 1
(Figura 1). Para resolver los modelos relajados MILP,
el método ResolverMILP en ICGP-TDP llama a algin
método de B&B. En contraste, el método ResolverIQP
llama ya sea a un procedimiento exacto o a uno
aproximado. En nuestro caso, utilizamos un método
que garantiza optimalidad local (GAMS/DICOPT). Un
tema para ser investigado es precisamente el costo-
beneficio entre el tiempo de computo empleado y la



calidad de la solucion obtenida. Asumiendo que se utiliza
un algoritmo finito para resolver los modelos relajados
enteros (en ResolverMILP() o ResolverIQP()), la
convergencia de nuestro algoritmo propuesto esta
garantizada debido a que el problema de separacion se
resuelve en tiempo polinomial. Entonces, la
convergencia del algoritmo se garantiza debido a que
hay un conjunto finito de restricciones de conexidad.
Cuando éste se detiene, la 0ltima solucidén es factible
con respecto a las restricciones de conexidad, y por eso,
es una solucion 6ptima del problema.

Algoritmo 1 ICGP-TDP(P, DispersionM.TModelo)
Entrada:

P:=Instancia del TDP

DispersionM:= pCP o pMP

TModelo:= MILP o IQP

Salida: X = (X, X>,..., Xp):= Una p-particién factible de V'

Cortes + 0 { Conjunto de cortes}
ModeloR < GenerarModeloRelajado( P, DispersionM,T Modelo)

Mientras(Cortes # ()
Si(TModelo = MILP)
X + ResolverMILP(ModeloR)
Si no
X « ResolverlQP(ModeloR)

Fin si
Cortes + ResolverProbSeparacion(P.X)

AgregarCortes(T Modelo, Cortes)

Fin mientras

Regresar X

Figura 1. Procedimiento ICGP-TDP.

Resultados computacionales

El método propuesto ICGP-TDP fue codificado en
C++ y compilado con Sun C++ 8.0. Las relajaciones
MILP son resueltas con CPLEX 11.2 y las relajaciones
IQP con DICOPT, uno de los métodos mas populares
para resolver programas enteros mixtos no lineales.
DICOPT fue desarrollado por Viswanathan y Grossmann
en el Centro de Investigacion de Disefio de Ingenieria
(EDRC) en la Universidad Carnegie Mellon (vease Kocis
y Grossmann [13]; y Viswanathan y Grossmann [14])
para mas detalles). Se utilizaron dos criterios de parada:
por intervalo de optimalidad relativa (gap <5 x 10°) y
por tiempo (7200 s). Se utilizaron instancias generadas
aleatoriamente basadas en datos reales provenientes de la
compaiiia. La topologia de cada instancia se formo
utilizando el generador desarrollado por Rios-Mercado y
Fernandez [1]. En este trabajo, los autores usaron
informacion historica de la compaiiia y obtuvieron la

distribucion de los datos asociados al nimero de clientes
y volumen de venta. La compaiiia utiliza distancias
Euclidianas entre las unidades basicas calculadas en su
GIS. Consideramos una tolerancia de 7/=0.05, a €4 y
generamos tres conjuntos de instancias diferentes con
(n,p) € {(60, 4), (80, 5), (100, 6)}. Para cada uno de estos
conjuntos, se generaron 20 instancias diferentes.
Adicionalmente, se generaron diez instancias diferentes
de dos conjuntos mas grandes con (np) € {(150, 8),
(200, 11)}.

En primera instancia, trabajamos con los modelos
lineales, CTDP y MTDP. El procedimiento ICGP-TDP
fue utilizado con los modelos relajados R_CTDP vy
R_MTDP, respectivamente.

Las Tablas 2 y 3 muestran los resultados para CTDP
y MTDP, respectivamente. La primera columna indica el
tamafio de la instancia probada. La segunda columna
muestra el porcentaje de instancias que fueron resueltas
en la primera iteracion (hasta 20 excepto para el conjunto
(150, 8)), esto es, el porcentaje de instancias para las
cuales se encontrd una particion conexa en la primera
iteracion. La tercera columna contiene el promedio y el
maximo numero de iteraciones/instancia requeridas por el
algoritmo. La cuarta columna muestra el porcentaje de
instancias resueltas dentro del tiempo limite especificado.
La quinta columna muestra el promedio y el maximo
nimero de cortes agregados por instancia resuelta.
Finalmente, la Gltima columna muestra informacion del
tiempo de CPU (promedio y méaximo) utilizado por
instancia.

Tabla 2: Resultados reportados por ICGP-TDP para
CTDP bajo la relajacion R_ CTDP.

Iteraciones Tiempo (s)

Prom Maeax Prom Maeax

5.3 26 381 1446

54 1 2682 T200

23 5812 T200

(150.8) 0 - - 0 - - 7200 T200

Tabla 3: Resultados reportados por ICGP-TDP para
- MTDP bajo la relajacion R_MTDP.

Temeifio | Resuelto en | Itersciones | Resuelto | Cortes/inst | Tiempo (s)
. P Prom Meax (%) Prom Mex | Prom Max
60.4) 80 i 6 ] 0.5 3 7 33
80.3) 70 H i 100 0.5 i 33 235
10.6) 75 14 i 100 0.5 i a5 138
50.8) 75 8 5 80 1.6 6 1000 7200

Para el modelo CTDP, la Tabla 2 indica que una
proporcion muy pequefia de las instancias fueron
resueltas en la primera iteracion. Hasta 26 iteraciones y
82 cortes fueron necesarios en el peor de los casos para
resolver problemas de tamafio (60, 4). Al final del
procedimiento, todas las instancias de (60, 4) se
resolvieron a optimalidad. 90% del conjunto (80, 5) fue
resuelto a optimalidad. Sin embargo, el procedimiento
tuvo dificultad con los conjuntos mas grandes. Para los



dos conjuntos mas pequefios, se necesitaron en promedio
alrededor de 5 iteraciones y 12 cortes. Note que, para una
iteracion especifica el problema de separacion tiene la
propiedad de identificar mas de un subconjunto no
conexo y genera todas las restricciones de conexidad no
satisfechas en la misma iteracion. Para el conjunto (150,
80), el procedimiento no pudo terminar una sola iteracion
dentro del limite de tiempo.

Estos estadisticos mejoran significativamente para el
modelo MTDP (Tabla 2). Excepto por muy pocos casos
en los conjuntos mas grandes, todas las demas instancias
fueron resueltas a optimalidad. Una gran proporcion de
éstas fue resuelta en la primera iteracion. En promedio,
requirié menos de 2 iteraciones y muy pocos cortes para
obtener soluciones Optimas. Esto no so6lo sugiere que la
relajacion LP del modelo basado en mediana es mas
dificil que la del modelo basado en centros, sino también
que las soluciones para la relajacion R MTDP producen
soluciones practicamente conexas. Esto tiene un impacto
positivo en el tiempo total de solucion.

Posteriormente se analiz6 el comportamiento de los
modelos de optimizacion IQP. Claramente observamos
que el tiempo necesario para resolver los modelos
cuadraticos es menor que el tiempo requerido para
resolver los modelos lineales. Sin embargo, resolver el
modelo cuadratico con métodos de optimizacion local no
asegura optimalidad global. Por ésto, un tema importante
para analizarse fue precisamente el balance entre la
calidad de la solucion y el esfuerzo computacional. Para
ello, aplicamos ICGP-TDP con los modelos MTDP y
QMTDP, usamos 20 instancias de los conjuntos {(60, 4),
(80, 5), (100, 6)} y 10 instancias del conjunto (150, 8).

Tabla 4: Calidad de las soluciones reportadas para el
modelo QMTDP.

Temefio Gep (%)

(n, p) Min Prom Mex
(60.4) .00 275 1480
(80.5 101 261 815
(100.6) | 006 314 7.56
(150.8) | 005 313 10.30

La Tabla 4 muestra la calidad de las soluciones
encontradas mediante la optimizacion del modelo
QMTDP. En estos conjuntos de instancias, el tiempo
computacional no es un problema, sin embargo para
instancias mas grandes (mostrados en la Tabla 5), el
tiempo llega a ser un factor sumamente importante. En la
Tabla 5 se muestra coémo el tiempo incrementa
significativamente para el modelo MILP. Hay dos
instancias donde se alcanz6 el tiempo limite cuando se
utilizé6 el modelo MILP. Cuando se usé el modelo
cuadratico, todas las instancias se resolvieron en 1
minuto de tiempo de CPU, con intervalos de optimalidad
de menos de 5% en 90% de las instancias. Por tanto, el
modelo cuadratico es una alternativa rapida y atractiva

para encontrar soluciones de calidad para instancias
grandes del problema.

Tabla 5: MTDP vs. QMTDP para instancias (200, 11).

Velor Objetivo Gep (%) Tiempo (sec)

Inst MTDP QMTDP MTDP QMTDP
11523 10.56 1116 28
2 - 125 7.32 T200 )66
3 143 5.50 1468 7200
t - 143 2.80 T200 3618
5 | (%) 197 ) T200 a3
6 (%) 10400.20 10746 2.35 7200 871
7 (%) 11061.00 11686 5.65 200 |88
8 10630.51 11205 5.12 2641 502
8 (%)11470.20 11648 1.35 7200 1263
10 11043.82 11780 6.67 2 2340

Adicionalmente, se analizé el comportamiento de los
modelos basados en la medida de dispersion pCP,
observamos que el tiempo computacional en ambas
formulaciones, CTDP y QCTDP, es extremadamente
costoso. La descripcion detallada y resultados
computacionales completos estan ampliamente descritos
en Salazar-Aguilar [15].

Conclusiones

En este trabajo propusimos nuevos modelos
cuadraticos (IQP) para el problema de disefio de
territorios comerciales con restricciones de conexidad y
multiples restricciones de balance. Estas formulaciones
IQP utilizan un nimero mas pequefio de variables
binarias. Ademas, desarrollamos un procedimiento de
solucién exacta (ICGP-TDP) basado en B&B y una
estrategia de generacion de cortes. El método puede
aplicarse a ambos modelos, MILP e IQP. Este es el
primer algoritmo exacto desarrollado a la fecha para tal
problema. Los modelos fueron reforzados con la
introduccion de desigualdades validas que eliminan los
subconjuntos no conexos de cardinalidad uno.
Observamos de manera empirica que la mayoria de los
subconjuntos no conexos encontrados en los modelos
relajados (relajando las restricciones de conexidad) tienen
cardinalidad igual a 1, lo cual motivé la introduccion de
estas desigualdades validas. Empiricamente probamos
que en los modelos MTDP y QMTDP los cortes
propuestos aceleran la convergencia del algoritmo
propuesto.

Cuando el método de solucion se aplico para resolver
instancias con los modelos lineales y cuadraticos, los
modelos IQP propuestos mostraron un desempefio
balanceado entre calidad y esfuerzo. Para las instancias
mas grandes, los tiempos de ejecucion de los modelos
cuadraticos fueron significativamente mas bajos que los
observados con los modelos lineales. La calidad de



solucion de las obtenidas con el modelo cuadratico sobre
todas las instancias estuvo en el rango de 0.0-14.8%, y en
el mejor de los casos menor que 5%.

Se observo que el objetivo de pMP es mas amigable
que el objetivo pCP. Durante el proceso de B&B, la
relajacion lineal para el objetivo pMP mostr6 mejor
desempefio que la relajacion lineal para el objetivo pCP.
Ademas, también se observo que las soluciones obtenidas
de la relajacion de los modelos basados en p-mediana
tienen un grado muy alto de conexidad. Esto tuvo un
impacto muy bueno en la eficiencia computacional ya
que se necesitaron muy pocas iteraciones para encontrar
las soluciones conexas a diferencia de los modelos
basados en p-centro. Por tanto, en la ausencia de una
medida de dispersion estandar, el objetivo pMP podria
ser una buena eleccion para otro problema de disefio de
territorios que tenga a la compacidad como medida de
desempeno.
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Resumen: En este trabajo se estudido el problema de
disefio de territorios comerciales. Se propusieron
modelos, desigualdades validas y procedimientos de
solucion para el diseflo optimo de territorios comerciales
para una situacion presente en una empresa distribuidora
de bebidas embotelladas. Los resultados de esta
investigacion contribuyen significativamente en el estado
del arte en el area de disefio de territorios. Los modelos y
métodos propuestos para este problema superan el
desempefio de los mejores métodos existentes a la fecha.

Palabras clave: disefio de territorios, programacion
cuadrdtica no-lineal entera, desigualdades validas,
ramificacion y acotamiento.

Abstract: In this work, we address the problem of
computing optimal territory designs for a beverage
distribution company. New models, valid inequalities,
and solution methods have been proposed in this
research. The results advance the state of the art in the
field of territory design. Empirical evidence shows the
significant impact of the proposed models and algorithms
which outperformed significantly the best solution
methods known to date.

Keywords: territory design, non-linear integer quadratic
programming, valid inequalities, branch and bound.
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