
1

Implementación de Búsqueda Tabú en la Solución
del Problema de Asignación Cuadrática

Dagoberto Ramón Quevedo Orozco
Instituto Tecnológico de Tepic

Ingeniería en Sistemas Computacionales
Tepic, Nayarit 63175, México

dago.qvd@gmail.com

Roger Z. Ríos Mercado
Universidad Autónoma de Nuevo León

División de Posgrado en Ingeniería de Sistemas, FIME
San Nicolás de los Garza, NL 66450, México

roger@mail.uanl.mx

Resumen: Este artículo ilustra el modelado e

implementación de metaheurísticas, específicamente una
Búsqueda Tabú, para la solución del Problema de
Asignación Cuadrática, considerado como un problema
difícil de resolver en el campo de la optimización
combinatoria. En la implementación computacional se
utiliza el marco de trabajo de ParadisEO que facilita en
gran medida el desarrollo de la aplicación. Finalmente,
utilizando las instancias de QAPLIB, se realiza una
experimentación computacional que ilustra la eficiencia de
la Búsqueda Tabú para la solución del Problema de
Asignación Cuadrática además de mostrar el
comportamiento del método durante la variación de sus
parámetros de ejecución.

Abstract: This paper illustrates the model and
implementation of metaheuristics, specifically a Tabu
Search to solve the Quadratic Assignment Problem,
considered a difficult problem to solve in the field of
combinatorial optimization. The use of the ParadisEO, a
framework for implementing metaheuristics, greatly
facilitates the development of the application. The
computational efficiency of Tabu Search to solve the
Quadratic Assignment Problem is illustrated over a set of
instances of the well-known QAPLIB data set. The
empirical work includes an evaluation of the method as a
function of some of its algorithmic parameters.

Palabras clave: Investigación de operaciones,
metaheurísticas, búsqueda tabú, optimización
combinatoria, marco de trabajo.

Keywords: Operations research, metaheuristics, tabu
search, combinatorial optimization, framework.

Introducción
Las aplicaciones de la optimización son innumerables,

cada proceso tiene un potencial para ser optimizado. Las
compañías e instituciones que toman sus decisiones en

base a la investigación de operaciones participan en la
solución de problemas de optimización. Diversas
aplicaciones en la ciencia y la industria pueden ser
modelados como problemas de optimización. La
optimización viene dada por la reducción al mínimo de
costo, tiempo, distancia y riesgo o la maximización de
calidad, satisfacción y beneficios.

Un gran número de problemas de optimización en la
ciencia, la ingeniería, la economía y las empresas son
complejos y difíciles de resolver. No se pueden resolver de
una manera exacta en un tiempo razonable. El uso de
algoritmos de aproximación es la principal alternativa para
resolver esta clase de problemas. En este escenario de
complejidad se presentan como una opción viable el uso
de metaheurísticas que si bien no garantizan la mejor
solución, dan un resultado factible que satisface todas las
restricciones del problema. Los objetivos principales de
estos algoritmos son: la solución de problemas de una
forma más rápida y la solución de grandes problemas que
de una manera exacta su tiempo de cálculo es
irrazonablemente alto.

La Búsqueda Tabú es una técnica que puede utilizarse
en combinación con algún otro método de búsqueda para
resolver problemas de optimización combinatoria con un
alto grado de dificultad. Puede verse como una
metaheurística que se superpone a una técnica de
búsqueda y que se encarga de evitar que dicha técnica
caiga en óptimos locales prohibiendo ciertos movimientos.

El costo en el desarrollo de la solución de un problema
de optimización es también una cuestión importante. En
años recientes se han distribuido software libre y código
abierto que contribuyen en gran medida a la reutilización
de código. Si bien, en ocasiones la naturaleza del problema
requiere hacer un desarrollo desde cero con la finalidad de
ajustarlo a la medida de los requerimientos; habrá
situaciones en las que es requerido minimizar el tiempo y
el costo del desarrollo, y por lo tanto se recomienda el uso

mailto:dago.qvd@gmail.com
mailto:roger@mail.uanl.mx

2

de marcos de trabajo o framework que incluyan diversas
características genéricas de los algoritmos metaheurísticos,
tal es el caso de ParadisEO [12] que permite la
implementación de metaheurísticas de manera eficiente
para problemas mono objetivo y problemas multiobjetivo.

El objetivo del presente artículo es ilustrar al lector
acerca del modelado e implementación de la
metaheurística Búsqueda Tabú para la solución de un
Problema de Asignación Cuadrática y mediante una
experimentación computacional determinar su eficiencia y
comportamiento variando los parámetros de ejecución;
entre otro de los objetivos es ilustrar los beneficios de usar
marcos de trabajo como ParadisEO durante la fase de
implementación.

Conceptos generales
Dada la dificultad práctica para resolver de forma

exacta toda una serie de importantes problemas
combinatorios para los cuales, por otra parte es importante
ofrecer alguna solución, comenzaron a aparecer algoritmos
que proporcionan soluciones factibles es decir que
satisfacen todas las restricciones del problema.

Este tipo de algoritmos se denominan heurísticas [4],
del griego heuriskein, “encontrar”. Las heurísticas son
procedimientos simples, a menudo basados en el sentido
común, que se supone ofrecen una buena solución (aunque
no necesariamente la óptima) a problemas difíciles, de un
modo fácil y rápido.

Los procedimientos metaheurísticos [7] son una clase
de métodos de aproximación que están diseñados para
resolver problemas difíciles de optimización combinatoria.
Las metaheurísticas proporcionan un marco general para
crear nuevos algoritmos híbridos combinando diferentes
conceptos derivados de la inteligencia artificial, la
evolución biológica y los mecanismos estadísticos.
Podemos agrupar los algoritmos heurísticos en dos
principales grupos: constructivos y de búsqueda local los
cuales se definen a continuación.

 Constructivos: Son procedimientos iterativos que, en

cada paso, añaden un elemento hasta completar una
solución. Pueden ser métodos deterministas y
estocásticos [7].

 Búsqueda local: Parten desde una solución inicial, en
cada iteración el movimiento se produce desde una
solución actual a una de su entorno o vecindario que
mejore la solución actual y finaliza cuando ninguna
solución de su vecindario mejora a la actual. Esto
tiene una desventaja, dado que la solución final
siempre será un óptimo local; para escapar de
óptimos locales se usan algoritmos que permiten
seguir explorando el espacio de soluciones, haciendo
uso de estructuras de memoria y técnicas
probabilísticas.

Búsqueda Tabú

El origen de la Búsqueda Tabú (TS por sus siglas en
inglés, Tabu Search) se atribuye a Fred Glover [5] que en
sus palabras define: “la búsqueda tabú guía un
procedimiento de búsqueda local para explorar el espacio
de soluciones más allá del óptimo local”.

Figura 1: Superficie de función objetivo de un problema

de optimización combinatoria usada en la Búsqueda Tabú.

El algoritmo toma de la Inteligencia Artificial el

concepto de memoria y lo implementa mediante
estructuras simples con el objetivo de dirigir la búsqueda
teniendo en cuenta la historia de ésta, es decir, el
procedimiento trata de extraer información de lo sucedido
y actuar en consecuencia. En este sentido puede decirse
que hay un cierto aprendizaje y que la búsqueda es
inteligente. De esta manera permite moverse a una
solución aunque no sea tan buena como la actual, de modo
que se pueda escapar de óptimos locales y continuar
estratégicamente la búsqueda de soluciones aún mejores.

Características

El principal distintivo de TS sobre otras metaheurísticas
de tipo búsqueda local es su uso de memoria que contiene
una estructura basada en una lista tabú, así como la
implementación de mecanismos para la selección del
siguiente movimiento. Los elementos básicos de TS son la
estructura del vecindario, el movimiento, la lista tabú y
criterio de aspiración. Un movimiento es una operación
que, cuando se aplica a una solución x, genera un
vecindario de ()xN . Una lista tabú es un conjunto de
atributos prohibidos o tabú, es decir, atributos que no son
permitidos ser aplicados en la solución actual.

El tamaño de la lista tabú o tenencia tabú [4] es la
duración que un atributo permanece en estado tabú o tabú-
activo (medido en número de iteraciones). El tamaño de la
lista tabú puede adoptar diferentes formas.

3

 Estático: Puede depender del tamaño de la instancia
del problema y sobre todo del tamaño de la vecindad.
No hay un tamaño óptimo para todos los problemas,
o incluso todas las instancias de un problema dado.
Por otro lado, el valor óptimo puede variar durante el
progreso de la búsqueda. Para superar este problema,
se utiliza un tamaño variable de la lista tabú.

 Dinámico: El tamaño de la lista tabú puede cambiar
durante la búsqueda sin necesidad de utilizar ninguna
información sobre la memoria de la búsqueda.

Un criterio de aspiración es una condición que cuando

es satisfecha se cancela la condición de tabú del atributo.
La búsqueda se detiene cuando el criterio de parada
(límite de tiempo, número limitado de iteraciones, etc.) se
cumple.

Algoritmo Básico de Búsqueda Tabú
La Búsqueda Tabú [6] puede describirse como sigue.

Dada una función a ser optimizada en un conjunto X
de soluciones, TS empieza de la misma manera que
cualquier búsqueda local, procediendo iterativamente de
un punto (solución) a otro hasta satisfacer un criterio dado
de terminación. Cada tiene un entorno (o vecindad)
asociado , y cada solución se puede
alcanzar desde x mediante una operación llamada
movimiento.

()xf

x
X

X∈
()xN ⊆ ()xNx ∈′

Sea , donde las soluciones que son

admitidas en se determinan de varias formas. Una
de ellas da a TS su nombre, identifica soluciones
encontradas sobre un horizonte especificado (e
implícitamente algunas soluciones identificadas con ellas),
y les prohíbe permanecer en clasificándolas como
tabú. A continuación se definen las líneas esenciales en el
comportamiento de TS en su esquema básico definido en
el Algoritmo 1.

() ()xNxN ⊆*

()xN *

()xN *

Paso 6: Se toma una solución del vecindario que no

pertenezca a una lista tabú representada por T.

Paso 7: El movimiento es efectuado sin tomar en
consideración si esta solución empeora o mejora
a la actual, este comportamiento o movimiento no
evaluado es lo que permite a TS equivocarse para
seguir explorando en un espacio de solución
mayor.

Paso 8: Se actualiza la lista tabú con el movimiento

efectuado.

Algoritmo 1 Búsqueda Tabú
1: X xxx ∈← :*

2: ∅←T
3: 0←i
4: repeat
5: 1+← i i
6: () () TxNfx \:minarg ∈←′ μμ
7: xx ′←
8: { }xTT ∪←

9: if () ()*xfxf < then

10: xx ← *

11: end if
12: until ionmax_iteraci ≤

13: return *x

Paso 9: Evaluación de la solución actual respecto a la

solución incumbente o mejor encontrada hasta el
momento, dependiendo si el problema es de
minimización o maximización, si la solución
actual resulta ser más atractiva, entonces la
solución actual es asignada a la incumbente.

TS en su esquema básico no contempla un criterio de

aspiración que omita el estado tabú de una solución.

Problema de Asignación Cuadrática
El Problema de Asignación Cuadrática (QAP por sus

siglas en inglés, Quadratic Assignment Problem), fue
introducido [1] como un modelo matemático para la
ubicación de un conjunto indivisible de actividades
económicas.

Se considera el problema de asignación de un conjunto
de facilidades a un conjunto de localidades, teniendo la
distancia entre cada localidad y el flujo entre las
facilidades, además de los costos asociados a la instalación
en un cierto lugar [2]. Se busca que este costo, en función
de la distancia y flujo, sea mínimo. El QAP es NP-duro y
es considerado como un complejo problema de
optimización combinatoria [8].

Formulación del problema

Para cada par de facilidades i y j se tiene el flujo
()njiaij ,,1, K= . Para cada par de localidades i y j se

tiene la distancia ()njibij ,,1, K= . Se busca asignar una
facilidad a cada una de las localidades a fin de minimizar
la suma de los productos de los flujos y las distancias. Más
formalmente, buscamos la permutación p de las n
localidades que minimice la función objetivo [10].

()
() ∑∑

= =
∈

=
n

i

n

j
ppijnPp ji

bapz
1 1

min (1)

4

 y ()ijbB =()ijaA = nn × . ()nP

 en la

donde son matrices de es
n,,1K el con bles permutacijunto de todas las posi

la loca
ones de

lidady ip representa lidad de la faci i
permutación ()nPp∈ .

Figura 2: Solución Inicial.

La Figura 2 ial que en un
ntexto específico representa un conjunto de facilidades
, B, C, D) en un conjunto de localidades (1, 2, 3, 4). La

Fi

 ilustra una solución inic
co
(A

gura 3 muestra un grafo bidireccional que define el flujo
entre cada una de las facilidades.

Figura 3: Flujo entre facilidades.

De igual m distancia

entre cada una de las localidades.
anera la Figura 4 representa la

Figura 4: Distancia entre localidades.

El costo de la solución inicial representad la Figura
2 conforme on l
datos del problema, y dada la complejidad combinatori
del

a en
 a la Ecuación (2) es 142. Contando c os

a
 mismo es posible aplicar métodos heurísticos y

metaheurísticos con la finalidad de encontrar una mejor

solución. Para este caso en particular se aplico una
Búsqueda Tabú en su esquema básico definido en el
Algoritmo 1. El resultado de la solución mejor encontrada
por TS durante su procesamiento es representada en la
Figura 5.

Figura 5: Solución final.

El costo de la a en la Figura 5

conforme a la Ecuación (2) es 102, obteniendo una mejora
de 8.16% respecto a la solución inicial.

e describe ahora una TS adaptada para la solución de
 por

e
ef

La función de evaluación determina el costo asociado a
. En este caso, la función permanece sin
to a la función objetivo definida en la

Ec

 solución final representad

l 2

Búsqueda Tabú en la solución de QAP
S

QAP; el modelo ha sido desarrollado principalmente
los trabajos de Skorin-Kapov [9] y Taillard [10], qu

ectivamente han reportado resultados favorables para las
instancias de QAP en base un modelo de solución basado
en TS.

Evaluación

la solución p
cambio respec

uación (1), el orden de operaciones requerido por esta
función es de ()2nO .

()z ∑∑
= =

=
n

i

n

j
ppij ji

bap
1 1

 (2)

Movimiento

El movimiento es definido por el intercambio de los
s, ubicados en y generando una

nue
elementos r y rp sp

va solución ()nP∈μ .

Algoritmo 2 Movi o mient
Require: p, r, s
1: srkpkk ,: ≠∀=μ
2: rs p=μ
3: sr p=μ
4: return μ

La evalu c

intercambiar lo
a ión incremental determina el costo de
 s elementos r y s que intervienen en el

5

movimiento, sin necesidad de efectuar una evaluación
co

 (3)

Sea [10] definida en la Ecuación (3)

e intercam entos r y s ubicados en y
 or ónes

Veci

ea el conjunto de todas las permutaciones que
btener mediante el intercambio de dos

elem de p o bien todos los posibles
mo

mpleta de la solución.

()
n

srp ×=Δ ∑2,, ()()
kskr pppp

rskk
rksk bbaa −−

≠= ,,1

()srp ,,Δ
biar los elem
operaci

 el costo
d
El

rp sp .
den de requerido por esta función es de

()nO , una mejora considerable frente ()2nO de la
Ecuación (2).

ndario

S ()pN

entos diferentes
entos

se pueden o

vimi de p donde ()pN es llamado el vecindario
generado a partir de la solución actual p [10].

Algoritmo 3 Vecindario
Require: p
1:

then
 if

f
}

∅←←← Nsr ,0 ,0
2: repeat
3: if <r 2−n
4: then 1−< ns
5: 1+← ss
6: else
7: 1+← rr
8: 1+← rs
9: end i
10: {N ← rssr pppN ===∪ μμμμ ,, :
11: 1←m
12: else
13: 0←m
14: end f i
15: until m 1=
16: return N

Atributos Tabú

os atributos que conforman la lista tabú, están
par ordenado que intervienen en

o definida en el Algoritmo 2.

ño
de

L
establecidos por el
la operación de movimient

 ()sr,

La Tabla 1 muestra un ejemplo de la ejecución de TS,
donde es apreciable las actualizaciones que la lista tabú
tiene durante cada iteración representada por i, el tama

 la lista tabú o tenencia tabú es de t=3. Véase como en
la iteración 4 la lista tabú esta completa, el par ordenado
(1,4) es el siguiente en salir de la lista tabú al restarle solo
una iteración con estatus tabú antes de ser eliminado de la
lista.

i Lista Tabú t=3 p ()pz rsm
1 2 3

1 - - - {2,4,1,3} 118 (1,4)
2 - {3,4 ,2} 102* (3,4) - (1,4) ,1
3 - (1) (3 {3,4 ,1} 104 (1,2) ,4 ,4) ,2
4 (1,4) (3) (1) ,4 ,2 {4,3,2,1} 118 (1,3)
5 (3) (1) ,4 ,2 (1,3) {2,3,4,1} 130 (2,3)
6 (1) ,2 (1,3) (2,3) {2,4,3,1} 122 (1,4)
7 (1,3) (2,3) (1,4) {1,4,3,2} 114 (3,4)
8 (2,3) (1,4) (3,4) {1,4,2,3} 112 (1,3)
9 (1,4) (3,4) (1,3) {2,4,1,3} 118 (2,3)

10 (3,4) (1,3) (2,3) {2,1,4,3} 126 (1,4)

Tab te s p Q

Implementación en ParadisEO
El desarrollo constante de modelos de optimización y

sofisticados y
e integren las

ca

aradisEO [11] es un marco de trabajo que separa la
a de las metaheurísticas, del problema que se
ver. Esta separación y la gran variedad de

fu

ara los algoritmos
evolutivos (algoritmos genéticos, estrategias

o
úsqueda local, recocido simulado, búsqueda tabú y

a para resolver problemas de
optimización multiobjetivo. Están disponibles los

elas y
distribuidas: evaluación paralela, función de

la 1: I racione de TS ara la solución de AP.

algoritmos metaheurísticos cada vez más
complejos demanda el uso de software qu

racterísticas requeridas para la implementación de
metaheurísticas de tal manera que la curva de tiempo y
costo implicado en el desarrollo sea mínima.

ParadisEO

P
lógica genéric
pretende resol

nciones de optimización aplicadas permiten una máxima
reutilización de código y de diseño. ParadisEO está
desarrollado en C++, y es un marco de código abierto. Es
compatible con Unix, Linux, MacOS y Windows e incluye
el siguiente conjunto de módulos:

 Objetos Evolutivos (EO): Esta librería ha sido

desarrollada inicialmente p

evolutivas, programación evolutiva, programación
genética, algoritmos de estimación y distribución).

 Objetos con Movimiento (MO): Incluye soluciones
simples basadas en metaheurísticas tales com
b
búsqueda local iterada.

 Objetos Multiobjetivos (MOEO): Incluye los
mecanismos de búsqued

algoritmos como NSGA-II, IBEA y SPEA2.

 Objetos Paralelos Evolutivos (PEO): Incluye
herramientas para metaheurísticas paral

evaluación paralela, diseño de distribución e
hibridación.

6

Un aspecto importante de ParadisEO es la definición de
sus componentes, ya que todos se encuentran definidos en
plantillas (clases). El usuario implementa una
me

am

taheurística en base a plantillas que proveen la
funcionalidad a los diferentes componentes del problema.

Para la implementación se hizo uso del Modulo MO, el
cual incluye genéricamente el algoritmo y componentes de
la Búsqueda Tabú. Si bien la implementación no explota

pliamente otros módulos de ParadisEO, da una clara
visión del modelado y representación de sus componentes.
Un usuario experto puede extender sin dificultad las
plantillas disponibles, listas para adaptarse a su problema y
obtener más eficacia en sus métodos. Sin embargo,
ParadisEO-MO puede ser utilizado por principiantes, con
un mínimo de código para producir diversas estrategias de
búsqueda.

Figura 6: Diagrama UML de la plantilla de Búsqueda
Tabú (moTS).

esquema UML (por sus siglas en inglés,
Unified Modeling Language) de la Figura 6, se
im lementa TS para la solución de QAP, segmentos
im

recomienda que el lector tenga claro los
co

l objetivo del experimento es ilustrar el
metaheurística TS así como su
l tamaño de la lista tabú.

Condiciones de la experimentación: El equipo de
computo cuenta con las siguientes características: HP

Pa

cido en la comunidad científica. Las
in

ortada por
el

En base al

p
portantes del código, se debe a la contribución de los

desarrolladores de INRA ParadisEO [12] quienes
implementaron de manera eficiente, la lógica y
características descritas en el modelo matemático para la
solución de QAP.

El código que fue utilizado para la experimentación
computacional puede ser consultado en sitio web [13].
Para su análisis se

nceptos de POO y conocimientos en programación en
C/C++, así como la documentación de la API de
ParadisEO [12] siempre presente para la consulta de
términos y/o definiciones de clases que el código fuente
utiliza y de esta manera tener una clara compresión de la
implementación.

Experimentación

E
comportamiento de la
sensibilidad al cambio de

vilion DV5-1135 Portátil, AMD Turion X2-64 Dual
Core 2.2, 3 GiB RAM, Sistema Operativo Ubuntu 9.04,
Linux 2.6.28-15.

Las instancias de prueba son tomadas de QAPLIB (por
sus siglas en inglés, Quadratic Assignment Problem
Library) [3] cuya primera publicación data de 1991 y
sigue siendo hoy en día el repositorio de instancias de
QAP más recono

stancias utilizadas en este experimento son del grupo de
É.D. Taillard clase A, con tamaños de n=10 a n=100. Los
parámetros para la ejecución son de un valor fijo de
maxi_itera=5000 que representa el máximo número de
iteraciones, utilizado como criterio de parada.

Se pretende evaluar el desempeño de TS para diferentes
valores fijos del tamaño de la lista tabú. Se probó con
size_tabu=5, 10, 15, 20 y 25. Para determinar la calidad de
la solución encontrada es calculado el gap que se define
como el intervalo relativo entre la solución rep

algoritmo y la mejor solución conocida cuya fórmula de
cálculo está definida en la Ecuación (4).

opt

opta

s
ss

gap
−

= lg% (4)

Donde lgas es la solución reportada por el algoritmo y

 es la m solución conocida para la instancia.

Resultados computacionales: Los resultados de la
ex aci
con web:
http el

espliegue de los resultados se ha omitido size_tabu=25

opts ejor

periment ón para cada instancia pueden ser
sultados en el sitio
://yalma.fime.uanl.mx/~roger/ftp/paradiseo. En

d
dado que los valores reportados son prácticamente
similares a size_tabu=20.

La Figura 7 muestra el tiempo de CPU (t) en segundos
y la Figura 8 el intervalo gap.

Figura 7: Variación de tiempo computable.

7

Figura 8: Variación del gap %.

En la Figura 9 se puede observar claramente el
comportamiento típico de TS durante la solución de la
instancia tai12a. Se muestran los puntos A, B y C; A indica
la solución inicial, B y C representan los puntos relevantes
durante el trayecto de la búsqueda. B, considerado un
óptimo local, obtiene una mejora del 20.21% respecto al
punto A, mientras que C el óptimo global del trayecto
mejora un 6.95% respecto a B y un 25.75% respecto a A.

Cabe mencionar que de haber utilizado una búsqueda
local ordinaria esta hubiera determinado a B como la
solución mejor encontrada dada su incapacidad para seguir
buscando en el espacio de soluciones, sin embargo TS
escapa de estos óptimos locales, lo que permitió seguir
analizando en un espacio de soluciones más amplio hasta
finalmente llegar a la solución del punto C que no pudo ser
mejorada por yecto. Para
llegar a C se n iteraciones
má

ninguna otra solución en el tra
ecesitaron aproximadamente 90

s allá de B.

Figura 9: Comportamiento de TS en la solución de QAP.

Conclusiones

Es apreciable en la Figura 8, que al incrementar el
tamaño de la lista tabú, para instancias de tamaño menor a
30 el gap tiende a mejorar, esto es debido a la lista tabú
que mantiene a las soluciones por más iteraciones lo cual
permite generar vecindarios con mayor diversidad de
soluciones, evitando vecindarios previamente generados.
Sin embargo para instancias de tamaño mayor a 30, la
mejora respecto al incremento de la lista tabú es poco
notable.

 TS ciertamente no es la mejor opción a aplicar en la
solución de QAP, argumentando que la calidad de sus
resultados está por debajo de las mejores solucione
e
l

stancia de QAP incrementa de manera considerable. Sin
m o es posible mejorar el desempeño de la

orzando los siguientes puntos:

 consideración varios puntos previos a la
im

 si es
conveniente realizar un desarrollo desde cero o bien tomar

crí ntarios de dos revisores anónimos que
ay aron a mejorar la presentación del trabajo.

s
 ncontradas con metaheurísticas más sofisticadas, aunque

a diferencia es tan solo notable cuando el tamaño de la
in
e barg

pim lementación ref

 Sustituir una solución inicial basada en aleatoriedad

por un algoritmo de fase constructiva que determine
una mejor solución inicial.

 Cambiar el esquema de la lista tabú de estático a
dinámico, el cual toma en cuenta el tamaño de la
instancia.

Durante el diseño de una metaheurística se deben de

tomar en
plementación, como la escalabilidad y flexibilidad.

ParadisEO es un marco que permite dotar de complejidad
y flexibilidad a las implementaciones que desarrollemos,
siempre haciendo énfasis que el éxito de todo desarrollo
depende inherentemente de una organizada planificación;
tomando en cuenta la complejidad en la estrategia de
búsqueda que se pretenda aplicar, se decidirá qué rumbo
tomar durante la implementación, es decir

opciones como ParadisEO siempre y cuando satisfaga
cada uno de los requerimientos del problema.

Agradecimientos: El primer autor fue apoyado por la
Academia Mexicana de Ciencias a través de una beca
otorgada dentro del XIX Verano de Investigación
Científica durante el año 2009. Agradecemos también las

cas y cometi
ud

Referencias
[1] M. Beckmann y T. Koopmans. Assignment problems

and the location of economic activities.
Econometrica, 25(1):53–76, 1957.

[2] E. Burkard, E. Çela, M. Pardalos y S. Pitsoulis. The
quadratic assignment problem. En D.Z. Du y P. M.

8

APLIB - A

o, Madrid,
España, 1996.

Future paths for integer programming.
 Operations Research, 13(5):533–549,

95.

Pardalos, editores, Handbook of Combinatorial
Optimization, volumen 3, págs. 241–337. Kluwer,
Boston, EUA, 1998.

[3] E. Burkard, S. Karisch y F. Rendl. Q
Quadratic Assignment Problem Library. Journal of
Global Optimization, 10(4):391–403, 1997.
http://www.opt.math.tu-graz.ac.at/qaplib/

[4] A. Díaz, F. Glover, H. M. Ghaziri, J. L. González, M.
Laguna, P. Moscato y F. T. Tseng. Optimización
Heurística y Redes Neuronales. Paraninf

[5] F. Glover.
Computers &
1986.

[6] F. Glover y M. Laguna. Tabu Search. Kluwer,
Boston, EUA, 1997.

[7] R. Martí. Algoritmos heurísticos en optimización
combinatoria. Departamento de Estadística e
Investigación Operativa, Facultad de Ciencias
Matemáticas. Universidad de Valencia, España,
2003.

[8] S. Sahni y T. Gonzalez. P-complete approximation
problems. Journal of the ACM, 23(3):555–565, 1976.

[9] J. Skorin-Kapov. Tabu search applied to the
quadratic assignment problem. ORSA Journal on
Computing, 2(1):33–45, 1990.

[10] É. Taillard. Comparison of iterative searches for the
quadratic assignament problem. Location Science,
3(2):87–105, 19

[11] E. Talbi. Metaheuristics from Design to
Implementation. Wiley, Boston, EUA, 2009.

 E. Tal[12] bi, J. Boisson, J. Humeau, T. Legrand, A.
Liefooghe, L. Jourdan, N. Melab, A. Tantar, M.
Fatene, T. Luong y A. Khanafer. INRIA ParadisEO.
http://paradiseo.gforge.inria.fr.

