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Resumen: Este artículo ilustra el modelado e 

implementación de  metaheurísticas, específicamente una 
Búsqueda Tabú, para la solución del Problema de 
Asignación Cuadrática, considerado como un problema 
difícil de resolver en el campo de la optimización 
combinatoria. En la implementación computacional se 
utiliza el marco de trabajo de ParadisEO que facilita en 
gran medida el desarrollo de la aplicación. Finalmente, 
utilizando las instancias de QAPLIB, se realiza una 
experimentación computacional que ilustra la eficiencia de 
la Búsqueda Tabú para la solución del Problema de 
Asignación Cuadrática además de mostrar el 
comportamiento del método durante la variación de sus 
parámetros de ejecución. 

Abstract: This paper illustrates the model and 
implementation of metaheuristics, specifically a Tabu 
Search to solve the Quadratic Assignment Problem, 
considered a difficult problem to solve in the field of 
combinatorial optimization. The use of the ParadisEO, a 
framework for implementing metaheuristics, greatly 
facilitates the development of the application. The 
computational efficiency of Tabu Search to solve the 
Quadratic Assignment Problem is illustrated over a set of 
instances of the well-known QAPLIB data set. The 
empirical work includes an evaluation of the method as a 
function of some of its algorithmic parameters. 

Palabras clave: Investigación de operaciones, 
metaheurísticas, búsqueda tabú, optimización 
combinatoria, marco de trabajo. 

Keywords: Operations research, metaheuristics, tabu 
search, combinatorial optimization, framework. 
 

Introducción 
Las aplicaciones de la optimización son innumerables, 

cada proceso tiene un potencial para ser optimizado. Las 
compañías e instituciones que toman sus decisiones en 

base a la investigación de operaciones participan en la 
solución de problemas de optimización. Diversas 
aplicaciones en la ciencia y la industria pueden ser 
modelados como problemas de optimización. La 
optimización viene dada por la reducción al mínimo de 
costo, tiempo, distancia y riesgo o la maximización de 
calidad, satisfacción y beneficios. 

Un gran número de problemas de optimización en la 
ciencia, la ingeniería, la economía y las empresas son 
complejos y difíciles de resolver. No se pueden resolver de 
una manera exacta en un tiempo razonable. El uso de 
algoritmos de aproximación es la principal alternativa para 
resolver esta clase de problemas. En este escenario de 
complejidad se presentan como una opción viable el uso 
de metaheurísticas que si bien no garantizan la mejor 
solución, dan un resultado factible que satisface todas las 
restricciones del problema. Los objetivos principales de 
estos algoritmos son: la solución de problemas de una 
forma más rápida y la solución de grandes problemas que 
de una manera exacta su tiempo de cálculo es 
irrazonablemente alto. 

La Búsqueda Tabú es una técnica que puede utilizarse 
en combinación con algún otro método de búsqueda para 
resolver problemas de optimización combinatoria con un 
alto grado de dificultad. Puede verse como una 
metaheurística que se superpone a una técnica de 
búsqueda y que se encarga de evitar que dicha técnica 
caiga en óptimos locales prohibiendo ciertos movimientos. 

El costo en el desarrollo de la solución de un problema 
de optimización es también una cuestión importante. En 
años recientes se han distribuido software libre y código 
abierto que contribuyen en gran medida a la reutilización 
de código. Si bien, en ocasiones la naturaleza del problema 
requiere hacer un desarrollo desde cero con la finalidad de 
ajustarlo a la medida de los requerimientos; habrá 
situaciones en las que es requerido minimizar el tiempo y 
el costo del desarrollo, y por lo tanto se recomienda el uso 
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de marcos de trabajo o framework que incluyan diversas 
características genéricas de los algoritmos metaheurísticos, 
tal es el caso de ParadisEO [12] que permite la 
implementación de metaheurísticas de manera eficiente 
para problemas mono objetivo y problemas multiobjetivo. 

El objetivo del presente artículo es ilustrar al lector 
acerca del modelado e implementación de la 
metaheurística Búsqueda Tabú para la solución de un 
Problema de Asignación Cuadrática y mediante una 
experimentación computacional determinar su eficiencia y 
comportamiento variando los parámetros de ejecución; 
entre otro de los objetivos es ilustrar los beneficios de usar 
marcos de trabajo como ParadisEO durante la fase de 
implementación. 
 

Conceptos generales 
Dada la dificultad práctica para resolver de forma 

exacta toda una serie de importantes problemas 
combinatorios para los cuales, por otra parte es importante 
ofrecer alguna solución, comenzaron a aparecer algoritmos 
que proporcionan soluciones factibles es decir que 
satisfacen todas las restricciones del problema. 

Este tipo de algoritmos se denominan heurísticas [4], 
del griego heuriskein, “encontrar”. Las heurísticas son 
procedimientos simples, a menudo basados en el sentido 
común, que se supone ofrecen una buena solución (aunque 
no necesariamente la óptima) a problemas difíciles, de un 
modo fácil y rápido. 

Los procedimientos metaheurísticos [7] son una clase 
de métodos de aproximación que están diseñados para 
resolver problemas difíciles de optimización combinatoria. 
Las metaheurísticas proporcionan un marco general para 
crear nuevos algoritmos híbridos combinando diferentes 
conceptos derivados de la inteligencia artificial, la 
evolución biológica y los mecanismos estadísticos. 
Podemos agrupar los algoritmos heurísticos en dos 
principales grupos: constructivos y de búsqueda local los 
cuales se definen a continuación. 

 
 Constructivos: Son procedimientos iterativos que, en 

cada paso, añaden un elemento hasta completar una 
solución. Pueden ser métodos deterministas y 
estocásticos [7]. 

 Búsqueda local: Parten desde una solución inicial, en 
cada iteración el movimiento se produce desde una 
solución actual a una de su entorno o vecindario que 
mejore la solución actual y finaliza cuando ninguna 
solución de su vecindario mejora a la actual. Esto 
tiene una desventaja, dado que la solución final 
siempre será un óptimo local; para escapar de 
óptimos locales se usan algoritmos que permiten 
seguir explorando el espacio de soluciones, haciendo 
uso de estructuras de memoria y técnicas 
probabilísticas. 

 

Búsqueda Tabú 

El origen de la Búsqueda Tabú (TS por sus siglas en 
inglés, Tabu Search) se atribuye a Fred Glover [5] que en 
sus palabras define: “la búsqueda tabú guía un 
procedimiento de búsqueda local para explorar el espacio 
de soluciones más allá del óptimo local”. 

 

 
Figura 1: Superficie de función objetivo de un problema 

de optimización combinatoria usada en la Búsqueda Tabú. 

 
El algoritmo toma de la Inteligencia Artificial el 

concepto de memoria y lo implementa mediante 
estructuras simples con el objetivo de dirigir la búsqueda 
teniendo en cuenta la historia de ésta, es decir, el 
procedimiento trata de extraer información de lo sucedido 
y actuar en consecuencia. En este sentido puede decirse 
que hay un cierto aprendizaje y que la búsqueda es 
inteligente. De esta manera permite moverse a una 
solución aunque no sea tan buena como la actual, de modo 
que se pueda escapar de óptimos locales y continuar 
estratégicamente la búsqueda de soluciones aún mejores. 
 
Características 

El principal distintivo de TS sobre otras metaheurísticas 
de tipo búsqueda local es su uso de memoria que contiene 
una estructura basada en una lista tabú, así como la 
implementación de mecanismos para la selección del 
siguiente movimiento. Los elementos básicos de TS son la 
estructura del vecindario, el movimiento, la lista tabú y 
criterio de aspiración. Un movimiento es una operación 
que, cuando se aplica a una solución x, genera un 
vecindario de ( )xN . Una lista tabú es un conjunto de 
atributos prohibidos o tabú, es decir, atributos que no son 
permitidos ser aplicados en la solución actual. 

El tamaño de la lista tabú o tenencia tabú [4] es la 
duración que un atributo permanece en estado tabú o tabú-
activo (medido en número de iteraciones). El tamaño de la 
lista tabú puede adoptar diferentes formas. 
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 Estático: Puede depender del tamaño de la instancia 
del problema y sobre todo del tamaño de la vecindad. 
No hay un tamaño óptimo para todos los problemas, 
o incluso todas las instancias de un problema dado. 
Por otro lado, el valor óptimo puede variar durante el 
progreso de la búsqueda. Para superar este problema, 
se utiliza un tamaño variable de la lista tabú. 

 Dinámico: El tamaño de la lista tabú puede cambiar 
durante la búsqueda sin necesidad de utilizar ninguna 
información sobre la memoria de la búsqueda. 

 
Un criterio de aspiración es una condición que cuando 

es satisfecha se cancela la condición de tabú del atributo. 
La búsqueda se detiene cuando el criterio de parada 
(límite de tiempo, número limitado de iteraciones, etc.) se 
cumple. 
 

Algoritmo Básico de Búsqueda Tabú 
La Búsqueda Tabú [6] puede describirse como sigue. 

Dada una función  a ser optimizada en un conjunto X 
de soluciones, TS empieza de la misma manera que 
cualquier búsqueda local, procediendo iterativamente de 
un punto (solución) a otro hasta satisfacer un criterio dado 
de terminación. Cada  tiene un entorno (o vecindad) 
asociado , y cada solución  se puede 
alcanzar desde x mediante una operación llamada 
movimiento. 

( )xf

x
X

X∈
( )xN ⊆ ( )xNx ∈′

Sea , donde las soluciones que son 

admitidas en  se determinan de varias formas. Una 
de ellas da a TS su nombre, identifica soluciones 
encontradas sobre un horizonte especificado (e 
implícitamente algunas soluciones identificadas con ellas), 
y les prohíbe permanecer en  clasificándolas como 
tabú. A continuación se definen las líneas esenciales en el 
comportamiento de TS en su esquema básico definido en 
el Algoritmo 1. 

( ) ( )xNxN ⊆*

( )xN *

( )xN *

 
Paso 6: Se toma una solución del vecindario que no 

pertenezca a una lista tabú representada por T. 
 

Paso 7: El movimiento es efectuado sin tomar en 
consideración si esta solución empeora o mejora 
a la actual, este comportamiento o movimiento no 
evaluado es lo que permite a TS equivocarse para 
seguir explorando en un espacio de solución 
mayor. 

 
Paso 8: Se actualiza la lista tabú con el movimiento 

efectuado. 
 
 

Algoritmo 1 Búsqueda Tabú 
1:  X  xxx ∈← :*

2:  ∅←T  
3:  0←i  
4:  repeat 
5:   1+← i  i
6:   ( ) ( ) TxNfx \:minarg ∈←′ μμ  
7:   xx ′←  
8:   { }xTT ∪←  

9:   if ( ) ( )*xfxf <  then 

10:    xx ←  *

11:   end if 
12:  until ionmax_iteraci ≤  

13:  return  *x
 
Paso 9: Evaluación de la solución actual respecto a la 

solución incumbente o mejor encontrada hasta el 
momento, dependiendo si el problema es de 
minimización o maximización, si la solución 
actual resulta ser más atractiva, entonces la 
solución actual es asignada a la  incumbente. 

 
TS en su esquema básico no contempla un criterio de 

aspiración que omita el estado tabú de una solución. 
 

Problema de Asignación Cuadrática 
El Problema de Asignación Cuadrática (QAP por sus 

siglas en inglés, Quadratic Assignment Problem), fue 
introducido [1] como un modelo matemático para la 
ubicación de un conjunto indivisible de actividades 
económicas.  

Se considera el problema de asignación de un conjunto 
de facilidades a un conjunto de localidades, teniendo la 
distancia entre cada localidad y el flujo entre las 
facilidades, además de los costos asociados a la instalación 
en un cierto lugar [2]. Se busca que este costo, en función 
de la distancia y flujo, sea mínimo. El QAP es NP-duro y 
es considerado como un complejo problema de 
optimización combinatoria [8]. 
 

Formulación del problema 

Para cada par de facilidades i y j se tiene el flujo 
( )njiaij ,,1, K= . Para cada par de localidades i y j se 

tiene la distancia ( )njibij ,,1, K= . Se busca asignar una 
facilidad a cada una de las localidades a fin de minimizar 
la suma de los productos de los flujos y las distancias. Más 
formalmente, buscamos la permutación p de las n 
localidades que minimice la función objetivo [10]. 
 

( )
( ) ∑∑

= =
∈

=
n

i

n

j
ppijnPp ji

bapz
1 1

min   (1) 
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 y ( )ijbB =( )ijaA = nn × . ( )nP

 en la 

donde  son matrices de  es 
n,,1K  el con bles permutacijunto de todas las posi

la loca
ones de 

lidady ip  representa lidad de la faci  i
permutación ( )nPp∈ . 
 

 
Figura 2: Solución Inicial. 

 
La Figura 2 ial que en un 
ntexto específico representa un conjunto de facilidades 
, B, C, D) en un conjunto de localidades (1, 2, 3, 4). La 

Fi

 ilustra una solución inic
co
(A

gura 3 muestra un grafo bidireccional que define el flujo 
entre cada una de las facilidades. 
 

 
Figura 3: Flujo entre facilidades. 

 
De igual m  distancia 

entre cada una de las localidades. 
anera la Figura 4 representa la

 

 
Figura 4: Distancia entre localidades. 

El costo de la solución inicial representad  la Figura 
2 conforme on l
datos del problema, y dada la complejidad combinatori
del

a en
 a la Ecuación (2) es 142. Contando c os 

a 
 mismo es posible aplicar métodos heurísticos y 

metaheurísticos con la finalidad de encontrar una mejor 

solución. Para este caso en particular se aplico una 
Búsqueda Tabú en su esquema básico definido en el 
Algoritmo 1. El resultado de la solución mejor encontrada 
por TS durante su procesamiento es representada en la 
Figura 5.  
 

 
Figura 5: Solución final. 

 
El costo de la a en la Figura 5 

conforme a la Ecuación (2) es 102, obteniendo una mejora 
de 8.16% respecto a la solución inicial. 

e describe ahora una TS adaptada para la solución de 
 por 

e 
ef

La función de evaluación determina el costo asociado a 
. En este caso, la función permanece sin 
to a la función objetivo definida en la 

Ec

 solución final representad

l 2
 

Búsqueda Tabú en la solución de QAP 
S

QAP; el modelo ha sido desarrollado principalmente
los trabajos de Skorin-Kapov [9] y Taillard [10], qu

ectivamente han reportado resultados favorables para las 
instancias de QAP en base un modelo de solución basado 
en TS. 
 
Evaluación 

la solución p
cambio respec

uación (1), el orden de operaciones requerido por esta 
función es de ( )2nO . 
 

( )z ∑∑
= =

=
n

i

n

j
ppij ji

bap
1 1

  (2) 

 
Movimiento 

El movimiento es definido por el intercambio de los 
s, ubicados en  y  generando una 

nue
elementos r y rp sp

va solución ( )nP∈μ .  
 

Algoritmo 2 Movi o mient
Require: p, r, s  
1:  srkpkk ,: ≠∀=μ  
2:  rs p=μ  
3:  sr p=μ  
4:   return μ  

 
La evalu c

intercambiar lo
a ión incremental determina el costo de 
 s elementos r y s que intervienen en el 
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movimiento, sin necesidad de efectuar una evaluación 
co

 (3) 

 
Sea [10] definida en la Ecuación (3)

e intercam entos r y s ubicados en  y 
 or ónes

Veci

ea  el conjunto de todas las permutaciones que 
btener mediante el intercambio de dos 

elem de p o bien todos los posibles 
mo

mpleta de la solución.  
 

( )
n

srp ×=Δ ∑2,, ( )( )
kskr pppp

rskk
rksk bbaa −−

≠= ,,1

( )srp ,,Δ  
biar los elem
operaci

 el costo 
d
El

rp sp . 
den de  requerido por esta función es de 

( )nO , una mejora considerable frente ( )2nO  de la 
Ecuación (2).  

 
ndario 

S  ( )pN

entos diferentes 
entos 

se pueden o

vimi de p donde ( )pN  es llamado el vecindario 
generado a partir de la solución actual p [10]. 

 
Algoritmo 3 Vecindario 
Require: p 
1:  

then 
  if  

f 
}

∅←←← Nsr  ,0 ,0  
2:  repeat 
3:   if <r 2−n  
4:  then 1−< ns  
5:     1+← ss  
6:    else 
7:     1+← rr  
8:     1+← rs  
9:    end i
10:    {N ← rssr pppN ===∪ μμμμ ,,  :
11:    1←m  
12:   else 
13:    0←m  
14:   end f i
15:  until m 1=  
16:  return N  

 
Atributos Tabú 

os atributos que conforman la lista tabú, están 
par ordenado  que intervienen en 

o definida en el Algoritmo 2. 

ño 
de

L
establecidos por el 
la operación de movimient

 ( )sr,

La Tabla 1 muestra un ejemplo de la ejecución de TS, 
donde es apreciable las actualizaciones que la lista tabú 
tiene durante cada iteración representada por i, el tama

 la lista tabú o tenencia tabú es de t=3. Véase como en 
la iteración 4 la lista tabú esta completa, el par ordenado 
(1,4) es el siguiente en salir de la lista tabú al restarle solo 
una iteración con estatus tabú antes de ser eliminado de la 
lista. 

i Lista Tabú t=3 p ( )pz  rsm  
1 2 3 

1 - - - {2,4,1,3} 118 (1,4)
2 - {3,4 ,2} 102* (3,4)  - (1,4) ,1
3 - (1 ) (3 {3,4 ,1} 104 (1,2) ,4 ,4) ,2
4 (1,4) (3 ) (1 ) ,4 ,2 {4,3,2,1} 118 (1,3) 
5 (3 ) (1 ) ,4 ,2 (1,3) {2,3,4,1} 130 (2,3) 
6 (1 ) ,2 (1,3) (2,3) {2,4,3,1} 122 (1,4) 
7 (1,3) (2,3) (1,4) {1,4,3,2} 114 (3,4) 
8 (2,3) (1,4) (3,4) {1,4,2,3} 112 (1,3) 
9 (1,4) (3,4) (1,3) {2,4,1,3} 118 (2,3) 

10 (3,4) (1,3) (2,3) {2,1,4,3} 126 (1,4) 

Tab te s  p  Q

Implementación en ParadisEO 
El desarrollo constante de modelos de optimización y 

sofisticados y 
e integren las 

ca

aradisEO [11] es un marco de trabajo que separa la 
a de las metaheurísticas, del problema que se 
ver. Esta separación y la gran variedad de 

fu

ara los algoritmos 
evolutivos (algoritmos genéticos, estrategias 

o 
úsqueda local, recocido simulado, búsqueda tabú y 

a para resolver problemas de 
optimización multiobjetivo. Están disponibles los 

elas y 
distribuidas: evaluación paralela, función de 

la 1: I racione de TS ara la solución de AP. 

algoritmos metaheurísticos cada vez más 
complejos demanda el uso de software qu

racterísticas requeridas para la implementación de 
metaheurísticas de tal manera que la curva de tiempo y 
costo implicado en el desarrollo sea mínima. 

 
ParadisEO 

P
lógica genéric
pretende resol

nciones de optimización aplicadas permiten una máxima 
reutilización de código y de diseño. ParadisEO está 
desarrollado en C++, y es un marco de código abierto. Es 
compatible con Unix, Linux, MacOS y Windows e incluye 
el siguiente conjunto de módulos: 

 
 Objetos Evolutivos (EO): Esta librería ha sido 

desarrollada  inicialmente p

evolutivas, programación evolutiva, programación 
genética, algoritmos de estimación y distribución). 
 

 Objetos con Movimiento (MO): Incluye soluciones 
simples basadas en metaheurísticas tales com
b
búsqueda local iterada. 

 

 Objetos Multiobjetivos (MOEO): Incluye los 
mecanismos de búsqued

algoritmos como NSGA-II, IBEA y SPEA2. 
 

 Objetos Paralelos Evolutivos (PEO): Incluye 
herramientas para metaheurísticas paral

evaluación paralela, diseño de distribución e 
hibridación. 
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Un aspecto importante de ParadisEO es la definición de 
sus componentes, ya que todos se encuentran definidos en 
plantillas (clases). El usuario implementa una  
me

am

taheurística en base a plantillas que proveen la 
funcionalidad a los diferentes componentes del problema. 

Para la implementación se hizo uso del Modulo MO, el 
cual incluye genéricamente el algoritmo y componentes de 
la Búsqueda Tabú. Si bien la implementación no explota 

pliamente otros módulos de ParadisEO, da una clara 
visión del modelado y representación de sus componentes. 
Un usuario experto puede extender sin dificultad las 
plantillas disponibles, listas para adaptarse a su problema y 
obtener más eficacia en sus métodos. Sin embargo, 
ParadisEO-MO puede ser utilizado por principiantes, con 
un mínimo de código para producir diversas estrategias de 
búsqueda. 

 
 

 
Figura 6: Diagrama UML de la plantilla de Búsqueda 
Tabú (moTS). 

esquema UML (por sus siglas en inglés, 
Unified Modeling Language) de la Figura 6, se 
im lementa TS para la solución de QAP, segmentos 
im

recomienda que el lector tenga claro los 
co

l objetivo del experimento es ilustrar el 
metaheurística TS así como su 
l tamaño de la lista tabú.  

Condiciones de la experimentación: El equipo de 
computo cuenta con las siguientes características: HP 

Pa

cido en la comunidad científica. Las 
in

ortada por 
el 

 
En base al 

p
portantes del código, se debe a la contribución de los 

desarrolladores de INRA ParadisEO [12] quienes 
implementaron de manera eficiente, la lógica y 
características descritas en el modelo matemático para la 
solución de QAP. 

El código que fue utilizado para la experimentación 
computacional puede ser consultado en sitio web [13]. 
Para su análisis se 

nceptos de POO y conocimientos en programación en 
C/C++, así como la documentación de la API de 
ParadisEO [12] siempre presente para la consulta de 
términos y/o definiciones de clases que el código fuente 
utiliza y de esta manera tener una clara compresión de la 
implementación. 

 
Experimentación 

E
comportamiento de la 
sensibilidad al cambio de

vilion DV5-1135 Portátil, AMD Turion X2-64 Dual 
Core 2.2, 3 GiB RAM, Sistema Operativo Ubuntu 9.04, 
Linux 2.6.28-15.  

Las instancias de prueba son tomadas de QAPLIB (por 
sus siglas en inglés, Quadratic Assignment Problem 
Library) [3] cuya primera publicación data de 1991 y 
sigue siendo hoy en día el repositorio de instancias de 
QAP más recono

stancias utilizadas en este experimento son del grupo de 
É.D. Taillard clase A, con tamaños de n=10 a n=100. Los 
parámetros para la ejecución son de un valor fijo de 
maxi_itera=5000 que representa el máximo número de 
iteraciones, utilizado como criterio de parada. 

Se pretende evaluar el desempeño de TS para diferentes 
valores fijos del tamaño de la lista tabú. Se probó con 
size_tabu=5, 10, 15, 20 y 25. Para determinar la calidad de 
la solución encontrada es calculado el gap que se define 
como el intervalo relativo entre la solución rep

algoritmo y la mejor solución conocida cuya fórmula de 
cálculo está definida en la Ecuación (4). 

 

opt

opta

s
ss

gap
−

= lg%   (4) 

Donde lgas  es la solución reportada por el algoritmo y 

 es la m solución conocida para la instancia. 

 
Resultados computacionales:  Los resultados de la 
ex aci
con web: 
http  el 

espliegue de los resultados se ha omitido size_tabu=25 

opts ejor 

periment ón para cada instancia pueden ser 
sultados en el sitio 
://yalma.fime.uanl.mx/~roger/ftp/paradiseo. En

d
dado que los valores reportados son prácticamente 
similares a size_tabu=20. 

La Figura 7 muestra el tiempo de CPU (t) en segundos 
y la Figura 8 el intervalo gap.   

 
Figura 7: Variación de tiempo computable. 
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Figura 8: Variación del gap %. 

En la Figura 9 se puede observar claramente el 
comportamiento típico de TS durante la solución de la 
instancia tai12a. Se muestran los puntos A, B y C; A indica 
la solución inicial, B y C representan los puntos relevantes 
durante el trayecto de la búsqueda. B, considerado un 
óptimo local, obtiene una mejora del 20.21% respecto al 
punto A, mientras que C el óptimo global del trayecto 
mejora un 6.95% respecto a B y un 25.75% respecto a A. 

Cabe mencionar que de haber utilizado una búsqueda 
local ordinaria esta hubiera determinado a B como la 
solución mejor encontrada dada su incapacidad para seguir 
buscando en el espacio de soluciones, sin embargo TS 
escapa de estos óptimos locales, lo que permitió seguir 
analizando en un espacio de soluciones más amplio hasta 
finalmente llegar a la solución del punto C que no pudo ser 
mejorada por yecto. Para 
llegar a C se n iteraciones 
má

ninguna otra solución en el tra
ecesitaron aproximadamente 90 

s allá de B. 
 

 
Figura 9: Comportamiento de TS en la solución de QAP. 

 

 

Conclusiones 

Es apreciable en la Figura 8, que al incrementar el 
tamaño de la lista tabú, para instancias de tamaño menor a 
30 el gap tiende a mejorar, esto es debido a la lista tabú 
que mantiene a las soluciones por más iteraciones lo cual 
permite generar vecindarios con mayor diversidad de 
soluciones, evitando vecindarios previamente generados. 
Sin embargo para instancias de tamaño mayor a 30, la 
mejora respecto al incremento de la lista tabú es poco 
notable. 

 TS ciertamente no es la mejor opción a aplicar en la 
solución de QAP, argumentando que la calidad de sus 
resultados está por debajo de las mejores solucione
e
l  

stancia de QAP incrementa de manera considerable. Sin 
m o es posible mejorar el desempeño de la 

orzando los siguientes puntos: 

 consideración varios puntos previos a la 
im

 si es 
conveniente realizar un desarrollo desde cero o bien tomar 

crí ntarios de dos revisores anónimos que 
ay aron a mejorar la presentación del trabajo. 

s 
 ncontradas con metaheurísticas más sofisticadas, aunque

a diferencia es tan solo notable cuando el tamaño de la
in
e barg

pim lementación ref
 
 Sustituir una solución inicial basada en aleatoriedad 

por un algoritmo de fase constructiva que determine 
una mejor solución inicial. 

 Cambiar el esquema de la lista tabú de estático a 
dinámico, el cual toma en cuenta el tamaño de la 
instancia. 

 
Durante el diseño de una metaheurística se deben de 

tomar en
plementación, como la escalabilidad y flexibilidad. 

ParadisEO es un marco que permite dotar de complejidad 
y flexibilidad a las implementaciones que desarrollemos, 
siempre haciendo énfasis que el éxito de todo desarrollo 
depende inherentemente de una organizada planificación; 
tomando en cuenta la complejidad en la estrategia de 
búsqueda que se pretenda aplicar, se decidirá qué rumbo 
tomar durante la implementación, es decir

opciones como ParadisEO siempre y cuando satisfaga 
cada uno de los requerimientos del problema. 
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