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Resumen 
 
La investigación de operaciones es la aplicación, por grupos interdisciplinarios, del método 
científico a problemas relacionados con el control de las organizaciones o sistemas, a fin de que 
se produzca soluciones que mejor sirvan a los objetivos de la organización. Dentro del campo, 
existen una serie de aplicaciones, comúnmente conocidos como problemas de localización en 
redes, en las cuales resulta de marcada trascendencia saber encontrar en forma efectiva el centro 
de las mismas.  Por centro nos referimos a un punto de la red en el cual la distancia a su nodo 
más alejado sea la menor posible. La importancia de encontrar el centro absoluto en una red es 
la localización óptima de un servicio de emergencia, tal como ambulancias, estación de 
bomberos y estación de policía en una transportación de red.  En este trabajo se ilustra una 
implementación basada en el algoritmo de Dvir y Handler para encontrar dicho centro en una 
red dada. Las pruebas de la implementación se realizaron con diferentes instancias en distintas 
magnitudes de nodos y arcos para comprobar la eficiencia del algoritmo. Como se comprueba 
empíricamente, el algoritmo funciona muy eficientemente para redes relativamente grandes.   
 
 
Abstract 
 
Operations research is commonly referred as the science of decision-making, and it attempts to 
provide with quantitative and analytical tools to model, analyze, and solve a number of 
decision-making problems arising in many industrial settings.  One of the operations research 
fields deal with location problems in networks, for which is very important to find absolute 
centers.  The absolute center of a network is the point for which the maximum of the minimum 
distance from that node to all other nodes in the network is minimized.  Applications of this 
problem include optimal location of emergency services such as ambulances, fire stations, and 
police stations.  In this work, an implementation of the Dvir-Handler algorithm for finding 
absolute centers in a graph is presented and illustrated.  Empirical evidence based on relatively 
large instances illustrates the effectiveness of the method. 
 
Palabras clave: Investigación de operaciones; optimización de flujo en redes; localización, 
centro absoluto de una red. 
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Introducción 
 
La investigación de operaciones es la ciencia que brinda soporte a problemas de toma de 
decisiones que surgen en los diversos ámbitos industriales.  En particular, uno de los subcampos 
de gran interés tanto práctico como científico es el de los problemas de localización [1, 2].  Un 
problema de localización típico tiene que ver con dónde ubicar/construir instalaciones para 
brindar un determinado tipo de servicio.  El problema se modela normalmente como una red 
donde los nodos de la misma corresponden a clientes y/o puntos potenciales de ubicación de las 
instalaciones, y los arcos (que unen a estos nodos) corresponden con relaciones entre dichos 



puntos, típicamente relaciones de distancia o costo.  En este proceso, resulta de marcada 
trascendencia saber encontrar en forma efectiva el centro de las mismas.  Por centro nos 
referimos a un punto de la red en el cual la distancia a su nodo más alejado sea lo menor 
posible.  El significado físico es que una instalación ubicada en este nodo centro tiene la 
característica que, al compararlo con cualquier otro nodo, la distancia recorrida al nodo más 
alejado siempre será la menor posible.  Técnicamente, se dice que cumple con un criterio min-
max, es decir, minimizar la peor (max) de las distancias.   
 
En este trabajo se trata el problema de como ubicar el centro absoluto una red.  El problema de 
encontrar un centro absoluto de una red fue introducido por Hakimi [3]. Entre las aplicaciones 
prácticas de dicho problema en problemas de localización, destacamos por ejemplo: localización 
de instalaciones de servicios de emergencia [4], localización de centros en problemas de diseño 
de territorios [5], por mencionar algunas.  Uno de los métodos más recientes para encontrar el 
centro absoluto en una red es el de Dvir y Handler [6].  En nuestro trabajo llevamos  a cabo una 
implementación computacional del algoritmo de Dvir-Handler, e ilustramos su utilidad en la 
solución de algunas instancias de red relativamente grandes.   
 
Nuestro trabajo está organizado de la siguiente forma.  En las primeras dos secciones 
introducimos algunos conceptos básicos y marco teórico con el fin de darle claridad a la 
explicación del algoritmo de solución, el cual se presenta posteriormente.  Ese mismo capítulo 
contiene un ejemplo que ilustra paso a paso la aplicación del método.  Finalmente presentamos 
una evaluación empírica del método al aplicarlo a la solución de algunas instancias del 
problema. 
 
 
Nomenclatura y conceptos básicos 
 
Como se comenta anteriormente nuestro trabajo se basa en el algoritmo desarrollado por Dvir y 
Handler [4]. La implementación de este algoritmo para encontrar el centro absoluto de una red 
necesita como entrada la matriz de distancias más cortas de un grafo dado. En este trabajo se 
utiliza el algoritmo Floyd-Warshall (véase [7]) para obtener la matriz de distancias más cortas, 
posteriormente se utiliza el algoritmo de Dvir-Handler para encontrar el centro absoluto de la 
red. 
 
A continuación reproducimos algunos conceptos introducidos por Dvir y Handler [6] y algunas 
conceptos básicos de redes [7] con el fin de darle claridad al material presentado. Sea G=(V,A) 
un grafo compuesto por un conjunto de nodos V = {v1, v2, …, vn} y un conjunto de arcos no 
dirigidos A con cardinalidad m. Denotamos la conexión de arco vi a vj como (vi,vj) o simplemente 
(i,j) y asociamos una longitud positiva dij. Sea d(x,y) la distancia más corta entre dos puntos x, y 
en V, y p(x,y) una correspondiente trayectoria de ruta más corta.  La distancia max{d(x,y): y en 
V} para un punto x en G a el nodo más lejano será denotada por l(x). Se define ahora el centro 
vértice (VC) y el centro absoluto (AC). VC es un nodo que satisface l(VC)= min{l(x): x en V}, 
mientras AC es un punto en G tal que l(AC) = min{l(x): x en G}. 
 
El valor r(G)= l(AC) es conocido como el radio de G. El diámetro de un grafo se define como 
el máximo de las distancias de las rutas mas cortas entre un par de nodos, esto es max{l(x):x en 
V}. Se define el diámetro d(G) de la red como dos veces su  radio, llamados d(G)=2r(G).  En 
general se conoce como r(G)< max l(x) < d(G) y para una red de árbol T, se puede ver que 
2r(T) = max{ l(x)=d(T)}. Supongamos ahora que T denota algún árbol de expansión de G. 
Luego, se define un mínimo diámetro de árbol (MDT) de G como un  árbol de expansión de G 
tal que d(MDT) = min{d(T): T en Г(G)}, donde Г(G), es el conjunto de todos los árboles de 
expansión de G. Se define el árbol de trayectoria mínima enraizado a x ( MPT(x) )  como el 
árbol de expansión de trayectoria más corta de G desde un punto x en G.  
 



Una alternativa para acelerar la solución ha sido encontrar cotas inferiores para el diámetro local 
de algún arco. La mejor cota, denominada 2l(x*)>LBrs =  drs + d(s,p) + d(r,q), donde X* es un 
centro local para el arco (r,s) y vp, vq son los nodos mas lejanos de vr, vs respectivamente. El 95% 
de los arcos pueden ser eliminados comparando esta cota a una cota superior como UB =  
2l(VC). 
 
La idea principal del algoritmo es tener un procedimiento iterativo exacto para identificar un 
MDT local asociado con un arco dado (r,s) de la red. Para el caso de una red cíclica, la cota de 
Halpern rinde una cota inferior para el diámetro de un árbol de expansión mínimo centrado en 
un arco particular (r,s) de la red. Comenzando con la cota de Halpern, el método genera una 
secuencia de cotas inferiores LBrs hasta que el centro local es determinado (o hasta que LBrs > 
UB). 
 
Fundamentos teóricos 
 
Los siguientes conceptos son tomados de [6] para ayudar a la comprensión y construcción del 
algoritmo el cual será presentado mas adelante. 
 
Suponga que  un centro absoluto (AC) existe sobre un arco. La cota inferior de Halpern es la 
cota para el  diámetro local de  un grafo, utilizando esta definición se puede actualizar esta cota 
hasta que el diámetro del grafo es alcanzado, sin embargo, no conocemos el hecho de que un 
arco dado (r,s) incluye un AC, entonces hay dos posibilidades para abordar esto: 
 
1) Si el arco contiene un AC. El diámetro local es el diámetro de G y el punto medio de la ruta 
diametral es un AC. 
 
2) Si el arco no  contiene un AC. Si se ha encontrado el diámetro de algún árbol de expansión de 
G, el cual es una cota superior de el diámetro de G, entonces si se repite este procedimiento para 
todos los arcos (r,s)  en A (conjunto de arcos en el grafo) se garantiza  encontrar el diámetro de 
G como el mínimo de todos los diámetros locales.  
 
A continuación se presenta un lema y tres teoremas que servirán para el procedimiento de 
diámetro local basado en arco (r,s). La demostración se encuentra en [6]. 
   
Para un arco dado (r,s) suponga que vp y vq son los vértices mas lejanos a los vértices  vr y vs 
respectivamente. 
 
Lema: Si un AC es localizado sobre el interior de un arco (r,s) entonces la ruta mas corta entre 
AC y vp  no puede ir a través de vr . 
 
Teorema 1: si para un arco (r,s) existe vp y vq  tales que son los mismos entonces el interior de 
este arco no puede contener un AC. 

 
Teorema 2: (Cota de Halpern) Sí un AC esta localizado sobre un arco (r,s) entonces  
 

),(),()( qrdpsddLBGd rsrs ++≡≥  
donde  es el diámetro del grafo. )(Gd
            la longitud de la ruta mas corta de el vértice r a el vértice s.   rsd
            la longitud de la ruta mas corta de s a p. ),( psd
            la longitud de la ruta mas corta de r a q. ),( qrd
 
A continuación se presenta el más importante teorema, el cual nos permite actualizar LBrs hasta 
que el diámetro actual es alcanzado, suponiendo que el AC existe en el interior del arco. 



 
En general, la idea básica es encontrar exitosamente un nuevo nodo, el cual es el más lejano que 
vp y vq de AC. Específicamente, se selecciona un nodo más lejano a AC en una dirección, 
digamos a través de vr lo cual implica que estará conectado al AC (sobre la ruta mínima del 
árbol enraizado en AC) en la dirección opuesta vs. 
  
Ahora supongamos que vc(r) y vc(s)  son el par de vértices actuales más cercanos conectados a AC 
vía vr y vs respectivamente. Esto significa que si hay un AC en el interior del arco considerado 
entonces hay una ruta más corta de AC a vc(r) que va a través de vr, de la misma manera la ruta 
más corta de AC a vc(s) que va a través de vs, entonces la cota inferior asociada con este par de 
nodos es ))(,())(,( scsdrcrddLB rsrs ++≡ . 
 
Se supone que para un arco dado (r,s) y un nodo vk se definen dos diferencias 

))(,(),( rcrdkrdrk −=δ , ))(,(),( scsdksdsk −=δ . Posteriormente de define  δk* = max{ 
max{ δrk, δsk}: k ∈ K} como la máxima diferencia, donde K = {k: δrk> 0, δrs>0, k = 1, 2, 3, …n} 
y si K=Ø se define 0* =kδ . 
Teorema 3: Suponga que un AC esta localizado en el interior de un arco (r,s) y suponga que se 
tiene un par actual de nodos mas lejanos vc(r) , vc(s)  de un AC asociado a una cota inferior 
.Construyendo los pares de la diferencia para cada  nodo vk, se distinguen tres casos: 
 
1) Si 0* =kδ entonces el diámetro rsLBGd =)(  
2) Si 0*** >== skrkk δδδ  entonces *)( krsLBGd δ+=  
3) Sin perdida de generalidad 0*** >>= skrkk δδδ  entonces la ruta mas corta p(AC, k*) va a 
través de vs, así que c(s)=k* y vc(r), vk* es un par actualizado de los nodos mas lejanos con 
respecto a el AC con cota inferior asociada a la cota inferior rsskrs LBLB +← *δ  
 
Descripción del Algoritmo 
 
El algoritmo de Dvir y Handler [6] para encontrar un centro absoluto de una red recibe como 
entrada la distancia de rutas mas cortas D y el conjunto de arcos A. Como salida muestra el 
diámetro d(G) y un centro absoluto AC. El algoritmo utiliza los siguientes dos procedimientos: 
 

Procedimiento setupWT(r, s) 
 hacer t(i, c) := d(i, c) para i = r, s y c = 1, 2, …, n. 
 

Se utiliza para guardar la tabla WT en la cual se realiza la actualización de las filas r y s. 
 

Procedimiento update( i, j, k ) 
 restar t(j, k) de todas las entradas en la fila j 
 si no quedan columnas positivas en WT, entonces 
  UB := LBrs y CAC se localiza a .5 UB – d(j, k) unidades de vj en (i, j) 
  ir a fin de ciclo 

 
Se utiliza para realizar las actualizaciones en las filas r, s,  en el caso de que no existan 
columnas positivas en la tabla WT se actualiza el UB y se encuentra el CAC. 
 

Inicio 
 Dado D, encontrar {k(i)}i=i

n, VC 
 Hacer UB := 2l(VC), CAC := VC 
 
 Para todo (r, s) ∈ A hacer 
 Inicio 



  Si k(r) = k(s) entonces ir a fin de ciclo 
  calcular LBrs := drs + d(r, k(s)) + d(s, k(r)) 
  si LBrs ≥ UB entonces ir a fin de ciclo 
  set upWT(r, s) 
  update( s, r, k(s) ) 
  update( r, s, k(r) ) 

cotas:   (suponga que ocurre  una entrada máxima de WT en la fila i, 
i∈{r, s} y en la columna k, y sea j la otra fila). 

   buscar una entrada máxima t(i, k) en WT 
   calcular LBrs := LBrs + t(j, k) 
   si LBrs ≥ UB entonces ir a fin de ciclo 
   update( i, j, k ) 
   ir a cotas; 
  Fin de ciclo: 

Fin 
d(G) := UB, AC := CAC; 

Fin 
Para la aplicación del algoritmo propuesto por Dvir y Handler para encontrar el centro absoluto 
se requiere la matriz de distancias más cortas D, la cual es obtenida por el método Floyd-
Warshall. Sea k(i) la columna en D que contiene un valor máximo para la fila i. Entonces, k(i) 
representa un nodo mas lejano del nodo i y l(i) = d(i, k(i)). De entre todos los lazos se selecciona 
uno arbitrariamente. Sea UB la cota superior actual en d(G), y CAC, el candidato actual 
correspondiente a UB. Una inicialización natural es hacer CAC = VC y UB = 2l(VC), donde 
d(VC, k(VC)) = min{d(i, k(i))}, i = 1,2,…,n}. El algoritmo trabaja sobre un arco (r, s) dado. Los 
cálculos se realizan en una matriz WT2 x n, la cual inicialmente consiste en el par de filas r, s de 
D, esta es actualizada de manera iterativa. Cuando se completa el análisis del arco (r, s), se 
forma una nueva tabla para el siguiente arco a ser investigado. 
 
Tal como se documentó en [6], el algoritmo se justifica por los resultados de los teoremas 1, 2 y 
3, los cuales se reproducen en el apéndice 1. Por ejemplo el Teorema 1 trata el caso donde vp, vq 
coinciden con k(r) = k(s). El Teorema 2 establece la cota inferior inicial LBrs, mientras el 
Teorema 3 establece el procedimiento iterativo de actualización para LBrs. En resumen, la 
inspección del arco (r, s) termina en una de tres maneras: cuando k(r) = k(s), LBrs ≥ UB, o WT 
no contiene mas columnas positivas, en cuyo caso se mejora UB y CAC. 
 

     
 

Figura 2 
   

 



Ejemplo: A continuación se ilustra el uso del algoritmo encontrando el centro absoluto en una 
red con 11 nodos y 16 arcos, mostrados en la Figura 2. La matriz de rutas más cortas está dada 
en la Tabla 1. 
 
El algoritmo inicializa y supone que VC = 4, l(VC) = d(4, 10)  = 13, UB = 26, CAC = VC. 
 
El algoritmo descarta los arcos con k(r) = k(s), al eliminarlos el grafo resultante se muestra en la 
Figura 3. 
 
 
 

 
 

  1 2 3 4 5 6 7 8 9 10 11 K(i) 
1 0 5 7 10 11 15 12 17 19 20 17 10 
2 5 0 2 5 6 10 7 12 14 15 12 10 
3 7 2 0 3 4 8 5 10 15 16 13 10 
4 10 5 3 0 3 5 2 7 12 13 10 10 
5 11 6 4 3 0 8 1 10 15 16 13 10 
6 15 10 8 5 8 0 7 12 17 18 15 10 
7 12 7 5 2 1 7 0 9 14 15 12 10 
8 17 12 10 7 10 12 9 0 5 6 3 1 
9 19 14 15 12 15 17 14 5 0 1 2 1 

10 20 15 16 13 16 18 15 6 1 0 3 1 
11 17 12 13 10 13 15 12 3 2 3 0 1 

Tabla 1  
 

 
 

Figura 3 
 
Al procesar el arco (2,11) se calcula LB2,11= 12+5+3 =20, noté que es menor que UB, por lo que 
este arco  no se descarta, así que este arco necesita ser investigado. Se guarda WT con las filas 2 
y 11 como se muestra en la Tabla 2.  
 

  1 2 3 4 5 6 7 8 9 10 11 
2 5 0 2 5 6 10 7 12 14 15 12 

11 17 12 13 10 13 15 12 3 2 3 0 
Tabla 2 



 
Se realiza el procedimiento update( ) dos veces lo que resta t(2, 1) = 5 de la fila 2 y t(11, 10) = 
3 de la fila 13. Las columnas que permanecen estrictamente positivas son mostradas en la Tabla 
3. 
 

  5 6 7 
2 -4 0 -3 

11 10 12 9 

  5 6 7 
2 1 5 2 

11 10 12 9 
Tabla 3      Tabla 4 

 
El elemento mayor en la Tabla 3 es 12, ahora se actualiza LB2,11 = 20 + t(2,6) =25 y nuevamente 
se realiza el procedimiento update( ) en WT, restando t(2,6) = 5 de la fila 2. Ya que no quedan 
columnas positivas (como se muestra en la Tabla 4) se actualiza el UB = LB2,11 = 25 y CAC se 
localiza a .5 UB – d(2, 6) = 3 unidades de v2 en el arco (11, 2).  Se continúa investigando en los 
dos arcos restantes y se tiene que LB11,4 = 10 + 3 + 10 = 23 por lo que se tiene que revisar este 
arco ya que es menor que UB, se guarda WT con las filas 4 y 11 como se muestra en la tabla 5. 
 

  1 2 3 4 5 6 7 8 9 10 11 
4 10 5 3 0 3 5 2 7 12 13 10 

11 17 12 13 10 13 15 12 3 2 3 0 
Tabla 5 

 
Se realiza el procedimiento update( ) dos veces lo que resta t(11, 10) = 3 de la fila 11 y t(4, 1) 
=10  de la fila 4. Nótese que ya no quedan columnas positivas en WT como se muestra en la 
Tabla 6. 
 

  1 2 3 4 5 6 7 8 9 10 11 
4 0 -5 -7 -10 -7 -5 -8 -3 2 3 0 

11 14 9 10 7 10 12 9 0 -1 0 -3 
 

Tabla 6. 
 

Entonces  UB = LB11,4= 23 y CAC se localiza a .5 UB – d(4, 1) = 1.5 unidades de v4 en el arco 
(11, 4).  Enseguida se investiga el arco restante y se tiene que LB4,8 = 7+ 10 + 6 = 23, nótese que  
LB ≥ UB =23  por lo que ya no se tiene que revisar este arco. Dado lo anterior se tiene que 
d(G)=UB=23 y AC=CAC.  
 
Complejidad computacional del algoritmo: El orden de complejidad del algoritmo para 
encontrar el centro absoluto de una red es O(mn2). Sin embargo debido a que el algoritmo recibe 
como parámetro de entrada una matriz de rutas mas cortas, esta debe ser calculada, para realizar 
esta operación se utilizó el algoritmo Floyd-Warshall, el cual tiene una complejidad 
computacional de O(n3), lo que produce un algoritmo de orden O(n3 + mn2). 
 
Experimentación Computacional 
 
Las características del equipo en donde se realizaron las ejecuciones del algoritmo son las 
siguientes: Laptop Dell Inspiron con procesador Intel Centrino Duo de 1.66 GHz, 1 GB RAM, 
disco duro de 5400 rpm, utilizando como sistema operativo Windows XP. La implementación 
se realizó en lenguaje C con compilador GNU de Dev C++. 
 
Para realizar las pruebas del algoritmo se utilizaron instancias en las cuales los nodos 
representan coordenadas de ubicación de instalaciones y los costos de los arcos representan la 
distancia entre los nodos. Además se tiene la característica de que un nodo solo se puede 
comunicar con sus vecinos, es decir, con los nodos que se encuentran cercanos a él. Esta 



cercanía se definió como una zona en donde se encuentran los nodos vecinos.   Los resultados 
reportados al correr las pruebas se encuentran en la Tabla 7. 
 
      Arcos Eliminados Tiempo ejecución (seg.) 
Nodos Redes Arcos Coincidencia Halpern's Bound Floyd-Warshall ACNet 
250 10 436-460 217-229 0 0-1* 0* 
1000 10 1774-1814 886-906 0 13-14 0-1* 
5000 1 9024 4465 46 1669 16 
* 0 seg. se refiere a que el tiempo de ejecución es menor a un segundo. 
 

Tabla 7 
 
Nótese en la tabla 7, que las  redes generadas con 250 nodos, tuvieron alrededor de 200 arcos de 
coincidencia, es decir se están eliminando casi la mitad de los arcos que se generaron, lo cual 
ayuda al algoritmo en el tiempo de ejecución para encontrar el  centro absoluto. Obsérvese que 
para  las redes generadas con 1000 nodos  y 5000 nodos pasa algo similar, los arcos que 
coinciden son alrededor de la mitad de los arcos de cada una de las instancias en ambos casos. 
De esta manera el algoritmo encuentra los centros absolutos  en tiempo de ejecución muy 
buenos para instancias relativamente grandes. 
 
Cabe mencionar que estas pruebas se realizaron en instancias de mayor tamaño (mayor cantidad 
de nodos y arcos) que las realizadas por el autor del algoritmo obteniendo resultados muy 
buenos con respecto a tiempo de cómputo. 
 
Conclusiones 
 
En este trabajo hemos llevado a cabo una implementación computacional de un algoritmo 
propuesto en [6] para encontrar el centro absoluto de una red, además de realizar una 
implementación del algoritmo Floyd-Warshall. Se realizaron pruebas con una cantidad de nodos 
mayor que las probadas por Dvir y Handler, obteniendo muy buenos resultados respecto a 
tiempo de cómputo, con lo cual se cumple con el objetivo de mostrar que se tienen buenos 
tiempos de ejecución para instancias de mayor tamaño que las utilizadas por los autores del 
algoritmo.  
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