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Resumen 
 
En los sistemas de distribución de información en sistemas de telecomunicaciones se utiliza una 
combinación de “empujar” y “jalar” paquetes de información para obtener los datos precisos en 
el lugar adecuado. El problema principal de estos sistemas es el tráfico innecesario que se 
genera. Una forma de minimizar dicho tráfico es resolviendo un problema de Árbol de Empuje 
asociado. En este trabajo presentamos una descripción a detalle del problema del Árbol de 
Empuje, desde la perspectiva de la optimización de flujo en redes, y una implementación 
computacional de un algoritmo heurístico para obtener soluciones aproximadas, basado en el 
método de Havet y Wennink. 
 
Palabras clave: Investigación de operaciones; optimización de flujo en redes; 
telecomunicaciones; heurística; árbol de Steiner. 
 
Abstract 
 
In data distribution systems, a “push" and “pull” combination procedure is used to obtain the 
correct data in the correct place. The main problem in these systems is the unnecessary traffic 
that is generated. One way to minimize this traffic is to solve an associated Push Tree problem. 
In this paper, a detailed description of the Push Tree problem from the network flow 
programming perspective, and a heuristic scheme for approximate solutions, based on the 
method developed by Havet and Wennink, are discussed. 
 
Keywords: Operations research; network flow programming; telecommunications; heuristic; 
Steiner tree. 
 
 
 

Introducción 
 
El presente trabajo cae en el marco de la 
optimización de problemas de flujos en redes 
el cual es un subcampo de la investigación de 
operaciones, que es la ciencia que brinda 
sustento científico a los problemas de toma de 
decisiones.  Dentro de este subcampo, uno de 
los problemas importantes encontrados en el 
área de telecomunicaciones es el derroche de 
recursos del ancho de banda.  Esto se debe al 
tráfico innecesario de información que puede 
presentarse en la red causado por el envío de 
información no requerida.  Este tipo de 
problema se puede resolver al plantearse como 

un problema del árbol de empuje óptimo, el 
cual se describe en detalle más adelante. 
 
Recientemente, Havet y Wennink [1] 
presentan una heurística (algoritmo de 
solución aproximada) para encontrar el árbol 
de empuje (al cual referiremos como PT por 
sus siglas en inglés, Push Tree) para una red 
determinada. 
 
El primer objetivo de este trabajo es el de 
presentar al lector una descripción formal del 
problema del árbol de empuje. Posteriormente, 
se describe e implementa la heurística de 
Havet y Wennink para la solución aproximada 
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del mismo.  Otra contribución de nuestro 
trabajo es el desarrollo de un programa de 
optimización basado en CPLEX [2] (paquete 
de bibliotecas de optimización para problemas 
de programación lineal entera).  Finalmente 
presentamos una evaluación empírica de la 
heurística de Havet y Wennink y una 
comparación con la solución óptima al 
problema reportada por CPLEX. 
   
El artículo está organizado de la siguiente 
manera.  Primero se describe el problema del 
árbol de empuje, seguido después por su 
formulación.  Posteriormente se plantea la 
formulación del problema del árbol de Steiner 
mínimo y una heurística para obtenerlo, ya que 
es necesario para encontrar el PT óptimo 
mediante el método presentado en [1].  Por 
último se muestran resultados de la 
experimentación computacional a partir de los 
cuales obtenemos conclusiones. 
 
Descripción general del problema  
 
En los sistemas de telecomunicaciones 
encargados de la distribución de  información 
se utiliza una combinación de empujar y jalar 
paquetes de información para obtener los datos 
adecuados en el momento y lugar correctos. La 
función de “empujar” se emplea donde se 
encuentra la información y consiste en enviarla 
a todos los usuarios (estén interesados o no en 
ella), mientras que la función de “jalar” les 
corresponde a los usuarios que están 
interesados en obtenerla. En general el lugar 
de origen envía mensajes actualizados a un 
conjunto de nodos en la red, los cuales van a 
mantener réplicas actualizadas de la 
información y ésta se encontrará a la mano de 
los nodos que así la requieran. Las dos formas 
de distribución de información producen 
tráfico en la red. 
 
El objetivo es encontrar la mejor forma de 
distribuir la información minimizando la 
cantidad total de tráfico respetando las 
restricciones tecnológicas del problema. Es 
decir, encontrar el conjunto de nodos 
(usuarios) y aristas (rutas) a través de los  
cuales serán trasmitidas las actualizaciones y 
requisiciones, de tal manera que se minimice 
el tráfico generado por las funciones de 
“empujar” y “jalar”, tomando en cuenta los 
nodos requerimiento (los que necesitan 
información y la solicitan) y la tasa de 

actualización (cantidad de veces que la 
información cambia por unidad de tiempo). 
Este problema, introducido por Havet y 
Wennink [1], se denomina el problema del 
árbol de empuje. 
 
La solución óptima al problema del PT está 
caracterizada por un árbol enraizado en el 
nodo donde se genera la información. El 
problema  del PT se enfoca a la minimización 
de costos variables asociados con la cantidad 
de tráfico generada por los diferentes 
mecanismos. 
 
Si sólo se utilizara el mecanismo de “jalar” 
tratando de minimizar el costo variable 
generado por dicho tráfico,   correspondería  a 
solucionar el problema de ruta más corta entre 
todos los pares de nodos; en cambio si sólo 
utilizamos el mecanismo de “empujar” 
corresponde a encontrar la solución a un 
problema del mínimo árbol de Steiner (ver 
Apéndice).  Una  característica importante del 
problema del PT es la transición entre estos 
dos tipos de problemas cuando ocurren 
cambios en la tasa de actualización. 
 
Formulación del problema del árbol de 
empuje 
 
Para formular adecuadamente el problema del 
árbol de empuje se utilizan conceptos básicos 
de la teoría de grafos y de optimización de 
flujos en redes (véase por ejemplo el texto de 
Ahuja, Magnanti y Orlin [3]). En el  Apéndice 
se incluyen algunos términos para darle mayor 
claridad a la exposición. 
 
Sea ))(),(( GEGVG =  un grafo no dirigido y 
sea 0),()( >= vulel la longitud de la arista 

).(),( GEvue ∈=  Además sea ∑
∈

=
)(

)()(
HEe

elHl  

la longitud del subgrafo H de G. Entonces  se 
puede modelar el problema del PT como 
sigue: Dado un grafo G, un nodo origen 

)(GVs∈ , una tasa de actualización 0≥µ  , 
un conjunto de nodos requerimiento 

, cada uno de estos con una tasa de 
requerimiento , , encontrar un 
subgrafo PT de G, con , y rutas  
de  a cualquier nodo en V(PT), , tal 
que : 

)(GVR ⊆
0)( ≥vr v R∀ ∈

)(PTVs∈ vP
v Rv∈∀
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sea  mínimo. 
 
El nodo origen s contiene una parte de la 
información la cual cambia µ veces por unidad 
de tiempo. Después de cada cambio, la 
información actualizada es “empujada” del 
nodo s a todos los nodos en V(PT) usando las 
aristas en E(PT). Medimos la cantidad de 
tráfico generado por un mensaje al recorrer 
cierta distancia. La cantidad total de tráfico de 
actualización  por unidad de tiempo es igual a 

)(PTalµ  donde  es el tamaño (número de 
bits) de un mensaje de actualización. 

a

 
La información requerida del nodo s por los 
nodos requerimiento se almacena en que 
es el número de veces por unidad de tiempo 
que se necesita información en el nodo 

)(vr

Rv∈ . 
Cada requerimiento es causado por un mensaje 
requisitor (de tamaño b) a ser enviado sobre la 
ruta  (sobre la cual se aplica el mecanismo 
de “jalar”) del nodo  a un nodo en PT el cual 
contiene una copia actualizada de la 
información. Este nodo envía un mensaje de 
respuesta (de tamaño c) a v  usando la misma 
ruta pero ahora en la dirección contraria. La 
cantidad total de tráfico de requerimiento por 
unidad de tiempo es igual a: 

vP
v

                    ∑
∈

+
Rv

vPlcbvr )())((

  
Por comodidad, se normaliza el tamaño del 
tráfico con  y utilizando tasas de 
requerimiento ajustadas que son obtenidas de 
multiplicar la ecuación original por un factor 
(b + c). Esto resulta en un tráfico total que es 
igual a . Es fácil ver 

que en la solución óptima PT es un árbol. Para 
probarlo, suponga que PT=(V(PT), E(PT)) 
contiene un ciclo C. Sea  una arista del ciclo 

. Entonces el subgrafo 
 todavía está 

conectado y todos los nodos en V(PT) aún 
están recibiendo mensajes de actualización. 
Sin embargo, el tráfico de actualización 
generado por  PT´ es 

1=a

∑
∈

+
Rv

vPlvrPTl )()()(µ

e
C

)\)(),((' ePTEPTVPT =

)(elµ  y es más pequeño 
que el tráfico generado por PT. 
 
Además, para un árbol dado PT, la ruta óptima 

 para un nodo requerimiento  es una ruta 

más corta de v  a cualquier nodo en PT. 
Encontrar esta ruta es fácil, sin embargo la 
principal dificultad  es encontrar el óptimo PT. 

vP v

 
Suponga que µ  es lo suficientemente pequeño 
(digamos Rvvr ∈∀< ),(µ ). Considere una 
solución al correspondiente problema del PT 
en el cual se tiene un nodo requerimiento v  
que no está en PT. Por lo tanto la ruta por la 
cual se “jala” la información tiene una 
longitud positiva. Incluyendo todas las aristas 
en , en el árbol de empuje se generará un 
tráfico de actualización adicional de 

vP

)( vPlµ que resultará en una reducción en el 
tráfico de requerimiento dado por . 
El efecto en la red es una reducción en el 
tráfico total. Todos los nodos en R deben ser 
incluidos en el árbol de empuje, y el óptimo 
PT es el mínimo árbol que conecta todos los 
nodos en . Este árbol es conocido 
como el árbol de Steiner de  en G. 
Encontrar el árbol de Steiner es un  problema 
NP-difícil [4], por lo tanto el problema del PT 
también es NP-difícil.  Esto significa que 
cualquier algoritmo que pretenda encontrar la 
solución exacta al problema emplea un tiempo 
de cómputo que crece exponencialmente con 
el tamaño del problema en el peor de los casos.   

)()( vPlvr

}{sR ∪
}{sR ∪

 
Por otro lado si µ es suficientemente grande 
(digamos ∑

∈

>
Rv

vr )(µ ), entonces el óptimo 

PT consiste de un sólo nodo s.  Sea w un nodo  
hoja de un árbol de empuje PT, y sea 

)(),( PTEvue ∈= . Eliminar w y e de PT 
causa una reducción del tráfico de 
actualización dado por )(elµ  y un incremento 
en el tráfico de requerimiento de al menos 

∑
∈Rv

elvr )()( . Otra vez el efecto en la red es la 

reducción del tráfico total. Este proceso puede 
ser repetido sólo cuando s está en PT. El 
problema del PT es equivalente a encontrar las 
rutas más cortas de cada nodo en R a s.  
 
Se podría decir  que el problema del PT 
cambia  de ser un problema de árbol de Steiner 
a ser un problema de rutas más cortas cuando 
la tasa de actualización µ  se incrementa. 
 
Formulación del problema del árbol de 
Steiner 
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Dado un grafo G=(N,A) donde N es un 
conjunto de nodos y A es un conjunto de 
aristas, además de un conjunto de nodos 
requerimiento  y un nodo  que 
representa el nodo fuente, una formulación 
matemática del problema del árbol de Steiner 
está dada como sigue. 

NR ⊂ Rs∈

 
Parámetros: 

),( arista lautilizar por  Costo jic ji =  

 
Variables de decisión: 

no. si 0y  fuente es   nodo el si 1

no. si 0y  utiliza se ),( arista la si 1

),( arista la de Flujo
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La función objetivo representa la búsqueda de 
la mínima longitud del árbol de Steiner que 
para nuestro modelo está estructurado como un 
problema de flujo en redes.  La restricción (1) 
asegura que el flujo que pasa por la arista (i,j) 
no excede el requerimiento solicitado por los 
nodos. La restricción (2)  muestra la ecuación 
de balance nodal para los nodos que no se 
encuentran en el conjunto R.  La restricción (3) 
señala la ecuación de balance de los nodos 
requerimiento. La restricción (4) establece que 
únicamente existe un nodo fuente. Por último, 
la restricción (5) exige que las variables 

 tomen valores binarios y la restricción 

(6) limita las variables  a tomar valores 
enteros positivos. 

iij wz y

ijx

 
Heurística para encontrar el árbol de 
Steiner 
 

La heurística que se utilizó para encontrar el 
árbol de Steiner consta de tres pasos: 
1.- Calcular las rutas más cortas entre todos los 
pares de nodos. 
2.- Calcular el mínimo árbol de expansión. 
3.- Construcción del árbol de Steiner. 
 
A partir de un grafo dado se calculan las rutas 
más cortas entre cada par de nodos (utilizando 
el algoritmo de Floyd-Warshall [3]) y este 
valor reemplazará el peso de las aristas. Una 
vez obtenida esta información el siguiente 
paso es encontrar el mínimo árbol de 
expansión considerando únicamente los nodos 
requerimiento, después se agregará un 
elemento del conjunto N-R.  Para ilustrar la 
heurística se presenta un pequeño ejemplo del 
cual su grafo inicial se muestra en la Fig. 1. 
 

 
Figura 1: Grafo inicial. 

 
A partir del grafo inicial se genera la matriz de 
incidencia nodo-nodo con las distancias más 
cortas, en este caso desde el nodo 1 hasta el 
nodo 7, esto se muestra en la Fig. 2.  Es fácil 
observar que se trata de una matriz simétrica.  
 

 
Figura 2: Matriz de incidencia nodo-nodo de 

las distancias más cortas. 
 

Con la matriz de la Fig. 2 se buscan todos los 
posibles árboles de expansión que puedan 
construirse con los subconjuntos formados con 
los nodos  requerimiento (en este ejemplo  
nodos 1, 2 y 3) y cualquier otro nodo del grafo. 
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Los pesos de los árboles encontrados se 
muestran en la Tabla 1. 

 
Tabla 1: Árboles mínimos de expansión 

encontrados. 
 
De los árboles encontrados se selecciona el de 
menor peso, para nuestro ejemplo el árbol 
mínimo es el 2 con un peso de 8, este árbol es 
el mínimo árbol de Steiner el cual se muestra 
en la Fig. 3. 
 

 
Figura 3: Mínimo árbol de Steiner. 

 
Método para encontrar el árbol de empuje 
 
Sea T = (V, E) un árbol con origen en Vs∈ y  
sea un conjunto de  nodos 
requerimiento . Removiendo del árbol T 
cualquier arista se va a dividir al árbol 
en dos componentes. Denotemos  al 

componente que contiene a s y sea  el otro 
componente. Se define la tasa de 
requerimiento de una arista e  como 

.  Si una arista e  está en el 

ábol de empuje, este va a contribuir con 

VR ⊂
Ee∈

1
eV

2
eV

∑
∈

=
2

)(:)(
vv

vreλ

)(elµ al total de tráfico, si la arista e  no está, 
contribuye con )()( eleλ . Si  µλ >)(e  sería 
conveniente incluir a  en el árbol de empuje. 
Para cualquier µ > 0, el conjunto de aristas  
tal que 

e
e

µλ >)(e  forman un subárbol de T que 
contiene el nodo origen s, este subárbol 
entonces es el árbol de empuje óptimo para un 
µ dado.  

 
Supongamos la red mostrada en la Fig. 3. Los 
números dentro de los nodos representan las 
correspondientes tasas de requerimiento y los 
números asociados con las aristas son los 
valores de )(eλ . Las longitudes de las aristas 
son irrelevantes para determinar el árbol de 
empuje óptimo, sin embargo para obtener el 
tráfico si se toman en cuenta. Se denota 

}),(min{)()( µλ eelew ⋅= el tráfico que pasa 
a través de la arista . El total del tráfico es 
entonces 

e
∑
∈

=
Ee

ewtw )()( . En la Fig. 4 se 

muestran los niveles de tráfico que 
corresponden al árbol óptimo presentado en la 
Fig. 1 para diferentes valores de µ. La cantidad 
total de tráfico se observa en la gráfica de 
manera cóncava, no decreciente y parece que 
en algunas secciones se comporta de manera 
lineal con respecto a µ. La cantidad de tráfico 
generado por la función “jalar” es no 
decreciente. Cuando µ se incrementa el tamaño 
del árbol de empuje decrece. 
 

 
Figura 4: Relación tráfico - tasa de 

actualización. 
 
Experimentación computacional 
 
Para los casos prueba que se han desarrollado 
para verificar la eficacia de la heurística 
implementada se utilizaron 2 herramientas 
computacionales: a) CPLEX 9.0 mediante su 
interfaz interactiva en un servidor V440 de 4 
procesadores bajo el sistema operativo 
SolarisTM versión 9, ubicado en el Laboratorio 
de Cómputo de Alto Rendimiento de la 
División de Posgrado en Ing. de Sistemas 
(PISIS) de la FIME,  y b) lenguaje C con 
compilador GNU de Dev C++, en una laptop 
Dell Inspirion 9400 con 1 GB de memoria 
RAM y un procesador Intel Duo 1.66GHz, con 
sistema operativo Windows XP profesional.  
Para llevar a cabo nuestro análisis de 
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comparación se crearon códigos en lenguaje C 
para obtener instancias con diferentes 
parámetros, dicho código genera: la cantidad 
de nodos, de aristas y su longitud, un conjunto 
de nodos requerimiento y su tasa  de 
actualización; todo esto se incluye en un 
archivo de texto a partir del cual se construye 
un grafo a partir de los siguientes datos: el 
número de nodos, número de aristas, lista de 
aristas con su respectivo peso, número de 
nodos requerimiento, nodo s, lista de nodos 
requerimiento con su respectiva tasa de 
actualización.  
 
Se generaron grafos de 50, 100 y 150 nodos 
con 5%, 10% y 15% nodos requerimiento del 
total de  nodos, todos los grafos con densidad 
del 10%.  Para cada combinación se 
obtuvieron 3 distintas instancias. Los 
resultados se muestran en la Tabla 2.  Las 
primeras dos columnas muestran la 
información de cada instancia (el número de 
nodos y la cantidad de nodos requerimiento, 
representado por un porcentaje del total de 
nodos). En la tercera columna se presenta el 
tiempo en segundos que tardó CPLEX para 
llegar a la solución mostrada en la cuarta 
columna, esta representa el costo en unidades 
para satisfacer la tasa de actualización de los 
nodos requerimiento. En la quinta columna 
podemos ver la cota inferior encontrada por 
CPLEX  de cada uno de los problemas.  En la 
sexta columna se observa el intervalo de 
optimalidad relativa (IOR) alcanzado para 
cada uno de los problemas, es decir, la 
diferencia relativa entre la mejor solución 
factible y la mejor cota inferior encontradas 
por CPLEX.  En dicha columna, un valor de 
0.00% indica que la solución de CPLEX es 
óptima. En la última columna se observa el 
valor de la solución encontrado por la 
heurística que se implementó. El tiempo de 
ejecución de la heurística no se muestra ya que 
es relativamente pequeño (menos de 5 
segundos en cualquiera de las instancias), 
comparado con el de CPLEX. 
 
Podemos observar que los resultados 
obtenidos por la heurística para problemas de 
50 nodos y 5% nodos requerimiento la 

solución encontrada es óptima mientras que 
para los de 10% nodos requerimiento la 
solución de la heurística difiere de la óptima 
en 3.3 unidades en promedio, y 1.3 unidades 
promedio para las de dimensión de 15% nodos 
requerimiento; debemos aclarar que el tiempo 
de ejecución para encontrar la solución óptima 
por CPLEX depende en gran medida de la 
estructura del grafo. 
 
Además para casos pruebas con 100 y 150 
nodos ya sea con 5, 10 y 15% nodos 
requerimiento el tiempo que usa CPLEX para 
obtener una solución es grande, a comparación 
de nuestra heurística que da una solución en 
tiempo razonable (menos de 5 segundos para 
las instancias más grandes), la cual puede ser 
usada como una buena cota superior para estos 
problemas. 
 
Conclusiones 
 
Se pudo constatar que empleando la heurística 
desarrollada se obtuvieron buenos resultados 
en un tiempo razonablemente pequeño. La 
aplicación de este método es de gran ayuda en 
el área de telecomunicaciones para minimizar 
el tráfico en las redes de información. 
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% de nodos Heurística
Nodos requerimiento Tiempo(seg) Solución Cota IOR (%) Solución

50 5 1.54 61 61 0.00% 61
50 5 1.36 35 35 0.00% 35
50 5 0.8 36 36 0.00% 36
50 10 3.3 42 42 0.00% 43
50 10 147.68 83 83 0.00% 87
50 10 1.78 45 45 0.00% 50
50 15 6.67 60 60 0.00% 61
50 15 6.58 61 61 0.00% 61
50 15 713.81 95 95 0.00% 98
100 5 2003.55 49 49 0.00% 50
100 5 695.26 34 34 0.00% 36
100 5 1996.41 40 40 0.00% 44
100 10 3600.02 47 42.2 10.17% 47
100 10 3600.01 52 34.2 34.21% 55
100 10 3600.02 52 34.5 33.58% 59
100 15 3600.01 66 44.5 32.45% 70
100 15 3600.02 74 50.1 32.27% 79
100 15 3600.02 83 60.8 26.70% 89
150 5 3600.03 36 19.4 46.03% 39
150 5 3600.02 42 21.1 49.70% 47
150 5 3600.02 47 26.6 43.24% 49
150 10 3600.02 64 43.4 32.05% 70
150 10 3600.01 76 35.7 53.02% 71
150 10 3600.01 83 42.0 49.33% 82
150 15 3600.06 99 53.5 45.92% 109
150 15 3600.01 83 40.2 51.56% 90
150 15 3600.02 79 47.4 39.90% 92

Cplex

 
Tabla 2: Resultados de la experimentación 

 
Apéndice 
 
En este apartado se incluye la definición de 
algunos términos de teoría de grafos y redes 
usados durante la exposición del trabajo. 
 
Ruta: Una secuencia de nodos adyacentes 

 en un grafo en la cual no 
hay repetición de nodos. 

riii −−− K21

 
Ciclo: Ruta  agregándole la 
arista . 

riii −−− K21

),( 1iir

 
Nodo hoja: Vértice de un grafo que tiene 
solo una arista incidente. 
 
Matriz de incidencia nodo-nodo: 
Representación del grafo en una matriz de 

 nn× { }ijhH =  donde es  si la arista 
 y 0 en otro caso. 
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Densidad de un grafo: Cociente entre el 
número  de aristas y el número de aristas 
del grafo completo de  vértices. Se denota 
como: 
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Árbol de expansión: Grafo conexo sin 
ciclos que abarca todos los nodos de una 
red no dirigida.  Su costo es la suma de los 
costos de cada uno de los arcos que lo 
conforman. 
 
Mínimo árbol de expansión: Árbol de 
expansión de costo mínimo. 
 
Problema del Árbol de Steiner: Dado un 
subconjunto  de nodos, llamados 
nodos requerimiento. Se desea determinar 
el árbol de mínimo costo (no 
necesariamente árbol de expansión) que 
debe contener todos los nodos en  y 
opcionalmente, algunos nodos en . 
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