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Introducción  
 
En muchos procesos de toma de decisiones existe 
una jerarquía de gente encargada de tomarlas, y 
éstas se efectúan a diferentes niveles en esta 
jerarquía.  Una manera de manejar tales jerarquías 
es concentrarse en un nivel incluyendo el 
comportamiento de los otros niveles como 
suposiciones.  La programación (u optimización) 
multijerárquica (o de múltiples niveles) es el área 
de investigación que estudia y analiza los 
problemas de toma de decisiones con enfoque en 
la estructura jerárquica. 
 
En términos de modelaje, el dominio de 
soluciones factibles asociado con problemas de 
optimización multinivel se determina 
implícitamente por una serie de problemas de 
optimización, los cuales deben ser resueltos en 
una secuencia predeterminada.  El caso especial 
donde sólo se consideran dos niveles se llama 
optimización binivel.  En este caso se tiene un 
problema de decisión que se toma a un nivel 
superior (llamado también el nivel del “líder”) y 
otro problema de decisión que se toma a un 
segundo nivel (llamado también el nivel 
“subordinado”).  Cuando las restricciones de 
ambos niveles son todas lineales, se dice que se 
tiene un problema de optimización binivel lineal 
(BLP, por sus siglas en inglés).  En Bard [1] y 
Migdalas, Pardalos y Värbrand [8], pueden 
hallarse los fundamentos esenciales así como 
aplicación a la solución de sistemas reales de la 
rama de optimización multinivel.   
 
Ahora bien, el proceso de toma de decisiones de 
comprar, vender, almacenar, y transportar gas, 

está inmerso en un mundo bastante complejo donde 
los productores, gasoductos (transportistas) y 
vendedores, juegan un papel muy importante en la 
cadena.  Esta cadena se hace aún más compleja 
cuando tomamos en cuenta que la red de gasoductos 
y oleoductos en Latinoamérica abarca desde Canadá 
hasta Argentina pasando por EUA, México, Centro y 
Sudamérica.  En lo que a México respecta, es muy 
importante estudiar y comprender este complejo 
fenómeno y más aún, desarrollar el soporte técnico 
que permita tomar decisiones científicamente 
fundamentadas a la hora de interactuar en los 
procesos de compra/venta/transporte con sus 
contrapartes de otros países. 
 
El objetivo del presente artículo es el de introducir al 
lector con el area de optimización binivel y el de 
ilustrar su aplicación en el modelaje de un importante 
problema de toma de decisiones que surge de la 
industria del gas natural.   
 
Problemas de Programación Binivel 
 
Un rasgo distintivo de sistemas multiniveles es que el 
que toma las decisiones en un nivel puede influenciar 
el comportamiento del que toma la decisión en otro 
nivel (aunque no controla sus acciones 
completamente).  Además, la función objetivo de 
cada unidad puede, en parte, ser determinada por 
variables controladas por otras unidades operando en  
niveles paralelos o subordinados.  Entre las 
características comunes de organizaciones 
multiniveles figuran: (a) existe una toma de 
decisiones interactiva entre unidades dentro de una 
estructura predominantemente jerárquica; (b) cada 
nivel subordinado ejecuta sus decisiones/políticas 
después de las decisiones tomadas en un nivel 



superior; y (c) cada unidad maximiza sus 
beneificios netos de forma independiente, pero es 
afectada por las acciones de otras unidades 
externas.  El modelo BLP incorpora estas 
características.  El marco cubre una unidad de 
manejo corporativa al nivel más alto (líder) y una 
o más unidades subordinadas en el nivel bajo 
(subordinado). 
 
Para formular matemáticamente el problema, 
supongamos que el líder tiene control sobre el 

vector de decisiones  y que las 
subunidades, o subordinado, tiene control sobre el 

vector .  El líder decide primero y 
selecciona x en un intento por minimizar una 
función objetivo  sujeto quizás a 
algunas restricciones tecnológicas adicionales.  
La nomenclatura y(x) enfatiza el hecho de que el 
problema del líder está implícito en las variables 
y.  Luego, el subordinado observa la acción del 
líder y reacciona seleccionando un vector de 
decisión y que minimice su función objetivo 
f(x,y), sujeta a un conjunto de restriccones en las 
variables y para el valor de x elegido.  Véase 
Figuras 1 y 2. 
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Figura 1.  El problema de programación binivel 
lineal.  Esquematizado en dos dimensiones, F(x,y) 
denota el objetivo del líder, f(x,y) el objetivo del 
subordinado y M (polígono delimitado por los puntos 
A, B, C, D y E) el conjunto común de soluciones 
factibles a ambos problemas.  Para cada decisión y del 
líder, el subordinado responde con el valor f(x,y) que 
optimiza su función en la dirección señalada, por tanto, 
la línea gruesa denota el conjunto de soluciones 
factibles del problema del líder.  En este caso, el punto 
D sería la solución óptima al problema. 
 

Ahora bien, por razones de espacio, en este trabajo 
omitimos los detalles técnicos de la formulación 
general, los cuales pueden ser encontrados en [1] y 
[8].  Lo importante de destacar aquí es que este tipo 
de problemas, con las características aquí expuestas, 
surge en una diversidad de ramos y que puede 
modelarse matemáticamente y ser resuelto por 
métodos adecuados.  Para ilustrar su aplicación, 
planteamos ahora un problema de la industria del gas 
natural. 
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Figura 2.  Importancia del orden de las decisiones.  En 
esta diagrama se enfatiza que la solución depende 
fuertemente del orden de juego.  Si en el problema de la 
Figura 1, el subordinado y el líder invirtieran sus 
posiciones de decisión, el conjunto de soluciones factibles 
del subordinado sería el señalado por la línea gruesa, y por 
tanto, la solución óptima sería el punto E. 
 
 
Descripción del Problema 
 
El problema en cuestión surge cuando el transportista 
hace un contrato con una compañía de gasoductos 
para trasladar cierta cantidad de gas entre varios 
puntos del gasoducto.  Lo que finalmente se entrega 
en cada punto puede ser una cantidad mayor o menor 
de la estipulada originalmente en el contrato (este 
fenómeno se denomina desbalance).  Cuando ocurre 
un desbalance, la compañía de gasoductos penaliza al 
transportista mediante una política de penalización de 
cambio.  Como esta penalización es una función de 
los desbalances operativos diarios, resulta que un 
problema muy importante para el contratista es el 
cómo manejar los desbalances diarios para minimizar 
la penalización incurrida.  Supongamos que el 
contratista ha establecido un contrato (con otros 
clientes) para llevar una cantidad dada de gas natural 
desde un punto de “recepción” a un punto de entrega 
en un marco de tiempo dado.  El contratista debe 



estipular un acuerdo de transferencia con el 
gasoducto.  Bajo tal acuerdo, el contratista 
nomina una cantidad diaria de gas que debe ser 
inyectada en el gasoducto en el punto de 
recepción y que debe ser extraída en un punto de 
entrega.  
 
Debido a la naturaleza propia de la industria, la 
cantidad que se entrega en un punto es 
inevitablemente diferente de la cantidad que fue 
nominada.  Esta diferencia constituye un 
desbalance.  Mientras que los gasoductos 
permiten pequeños desbalances, imponen 
penalizaciones por desbalances mayores.  Desde 
la perspectiva del contratista, un desbalance 
puede ser positivo o negativo.  Un desbalance 
positivo (negativo) surge cuando el contratista 
deja (toma) gas en (de) el gasoducto.  
Alternativamente, un desbalance positivo 
(negativo) significa que el flujo real es menor 
(mayor) que la cantidad de gas que fue nominada.  
Un desbalance a fin de mes implica una 
transacción de dinero entre el contratista y el 
gasoducto.  Los precios de canje se establecen de 
manera tal que cuando el contratista vende 
(compra) gas a (de) el gasoducto, lo hace a un 
precio muy bajo (alto).  La relación entre el 
precio de canje y la posición de desbalance 
depende de forma no lineal del precio del gas 
promedio, mínimo y máximo del mes anterior. 
 
Antecedentes 
 
En Kalashnikov y Ríos-Mercado [4], se presenta 
un marco de modelación matemática del 
problema recién descrito.  El problema se modela 
como un problema de optimización entera mixta 
lineal de dos niveles, donde el contratista juega el 
papel del líder (nivel principal) y el gasoducto 
representa el subordinado (segundo nivel).  El 
término entero mixto denota que el problema 
tiene variables de decisión continuas y discretas.  
Es bien conocido que aún la versión más simple 
de un problema de optimización multinivel es 
muy difícil de resolver.  BLP enteros mixtos 
poseen un grado mayor de dificultad ya que los 
conceptos típicos de técnicas de solución como 
ramificación y acotamiento para problemas de 
optimización entera mixta necesitan de 
caracterizaciones más fuertes por lo que no 

pueden ser directamente aplicados.  Se desarrolla 
además una método de penalización para resolver el 
problema.  Sin entrar en detalles técnicos, este 
método  fue motivado por los trabajos de Fukushima 
[3], Marcotte [5], Marcotte y Dussault [6] y Marcotte 
y Zhu [7]. 
 
Método Propuesto 
 
En [4], consideramos un sistema jerárquico donde el 
líder incorpora en su estrategia la reacción  del 
subordinado a su decisión.  La reacción del 
subordinado es generalmente representada como el 
conjunto de soluciones de una desigualdad 
variacional monótona.  Para resolver este problema 
de optimización no convexa se aplica una técnica de 
penalización basada en la formulación de la 
desigualdad variacional del nivel inferior como un 
problema de optimización.  Bajo condiciones 
generales, establecimos condiciones para la 
convergencia del método de penalización. Usamos 
estos resultados para implementar un algoritmo 
eficiente de solución, el cual ha sido probado en unos 
ejemplos del problema de desbalances. 
 
Como otra alternativa, se desarrolló un método 
directo para resolver el BLP en cuestión. Este método 
resuelve separadamente el problema de nivel inferior, 
el cual consiste en encontrar la respuesta óptima del 
gasoducto a los valores del desbalance del último día, 
y después el problema de hallar el vector óptimo de 
desbalances para el contratista. Al pasar de un vector 
de desbalances a otro, el algoritmo  averigua la 
factibilidad del mismo antes que calcular el valor de 
la función objetivo en este punto. El proceso se 
termina cuando la diferencia entre dos iteraciones 
consecutivas no exceda la tolerancia seleccionada de 
antemano.  
 
Ejemplo Ilustrativo 
 
Para ilustrar el uso de la técnica, en [4] se aplicaron 
los métodos a varios problemas de prueba. Los 
métodos fueron implementados con la ayuda de 
GAMS [2] (software de modelación algebráica para 
resolver problemas de optimización).  Por ejemplo, 
aquí ilustramos los resultados de los algoritmos en el 
siguiente caso de 4 zonas y 2 días de planificación 
representado por los datos que se muestran en las 
Tablas 1 a la 7 (las celdas vacías significan ceros).  



Los límites inferior y superior para arreglos del 
desbalance  son como siguen: 
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Tabla 1.  Datos iniciales 
Zonas j Desbalances 

initiales  x0 

 Factores 
de 
penaliza-
ción  rj 

 Coeficientes 
de 
penalización 
βj 

   Zona 1     -10.0     10.0    0.1 
   Zona 2     -4.0      8.0    0.2 
   Zona 3       3.0      6.0    0.3 
   Zona 4       6.0      4.0    0.4 

 
 

Tabla 2.  Acotaciones inferior y superior 
del desbalance total 

    Períodos de tiempo  
t 

     Acotación 
inferior  xt

L 
Acotación 
superior 
xt

U 

    Día   1            -11.0     1.0 
    Día   2            -17.0     7.0 

               
 

Tabla 3.  Costos de transportación entre zonas 
fij  Zona 1   Zona 2 Zona  3   Zona 4 

  Zona 1        2.0     4.0      4.0 
  Zona 2       2.0      2.0 
  Zona 3         1.0 
  Zona 4     

 
 

Tabla 4.  Porcentaje del gas retenido transportando 
entre zonas 

eij   Zona1  Zona 2   Zona 3  Zona 4 
 Zona 1       0.1    0.2     0.2 
 Zona 2      0.1     0.1 
 Zona 3        0.05 
 Zona 4     

 
      

Tabla 5.  Bonos por contratista  para  el gas regresado 
bij  Zona 1   Zona 2   Zona 3   Zona 4 

 Zona 1       4.0    2.0     2.0 
 Zona 2      4.0     4.0 
 Zona 3        2.0 
 Zona 4     

 
 

Tabla 6.  Límite inferior del desbalance en 
la zona  j en el  día t 

xLtj  Zona 1  Zona 2   Zona 3    Zona 4 
 Día 1     -15.0      -9.0    0.0     1.0 
 Día 2     -20.0     -13.0    -5.0     -4.0 

       
 

Tabla 7.  Límite superior del desbalance en 
la zona  j en el  día t 

xUtj  Zona 1  Zona 2   Zona 3    Zona 4 
 Día 1     5.0      1.0    6.0     10.0 
 Día 2     0.0      5.0    10.0     15.0 

 
 
Los algoritmos se comportaron del siguiente modo. 
Después del paso preliminar empezando a partir del 

desbalance inicial , se obtuvo el 

desbalance del último día  con el 

valor de la función objetivo del contratista z = 14.9. 
Ya que  este  vector no tiene todos sus components 
del mismo   signo (lo cual es una restricción 
tecnológica del modelo), procedemos  con los pasos 
del algoritmo.  Con la tolerancia final ε = 0.001, se 
obtiene la  aproximación final del desbalance del 

último día   con el 

valor de la función objetivo del contratista z = 
50.072.  La respuesta óptima del gasoducto a esta 
estrategia del contratista es el desbalance  final 

 con el mismo valor 

de la función objetivo del gasoducto  z = 50.072.  
Todos los movimientos hacia delante son ceros, 
mientras que los movimientos hacia atrás (v
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ij) son: v13 
= 9.0; v14 = 3.495; v24 = 5.809. El desbalance del 

último día   

satisface la prueba de factibilidad, es decir, se obtiene 

a partir del desbalance inicial  

mediante los movimientos diarios indicados en la  
Tabla 8.  El problema del canje del gas queda 
resuelto, con la solución  dada en la Tabla 9. 
                                
 

Tabla 8.  Movimientos óptimos del desbalance 
en zona j durante día t 

stj Zona 1  Zona 2  Zona 3   Zona 4 
 Día 1     -1.148      -0.805    3.000     1.994 
 Día 2     -1.347      -1.004    3.000     1.795 



 
 

Tabla 9.  Desbalance óptimo en la zona  j en día t 
xtj   Zona 1      Zona 2   Zona 3  Zona 4 

 Día 1     -11.148      -4.805    6.000     7.994 
 Día 2     -12.495      -5.809    9.000     9.789 

 
 
Conclusiones 
 
El campo de la optimización multinivel es por 
hoy un campo muy importante en materia de 
investigación y sobre todo de aplicación.  Las 
estructuras jerárquicas pueden encontrarse en 
diversas disciplinas científicas incluyendo 
estudios ambientales, teoría de clasificación, 
bases de datos, diseño de redes, transporte, teoría 
de juegos y economía; y nuevas aplicaciones 
(como la descrita arriba de la industria del gas) 
continúan surgiendo.  Este hecho es positivo para 
el desarrollo de nueva teoría y conceptos, así 
como de algoritmos eficientes de solución.   
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Resumen 
En este artículo, introducimos al lector con el 
campo de la optimización binivel.  Ilustramos esta 
área de la toma de decisiones con un problema de 
minimización de transacción monetaria entre un 
contratista del gas natural y un dueño de un 
gasoducto, el cual se modela  como un problema 
de programación lineal binivel mixto. Para 
resolverlo, lo reformulamos como un problema de 
programación matemática estándar y proponemos 
dos algoritmos iterativos, probando su 
comportamiento en un problema de dimensión 
pequeña. 
 
Palabras clave: problema de optimización bi-
nivel mixto, problema de minimización de 
transacciones de dinero, un método de 
penalización. 
 
Abstract 
In this paper, we introduce the reader with the 
field of bilevel programming.  We illustrate this 
area of decision-making science by presenting the 
problem of minimization of the cash-out penalties 
from the point of view of the natural gas shipper. 
The problem is modeled as a mixed bilevel linear 
programming problem. To solve it efficiently, we 
reformulate it as a standard mathematical 
programming problem and describe two iterative 
algorithms for its solution. The algorithms are 
tested for a small dimension instance.  
 
Keywords: mixed bilevel optimization problem, 
gas cash-out problem, penalty function method. 
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