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Resumen 
 
Uno de los problemas más famosos y difíciles en la teoría de optimización, es del problema del agente 
viajero (TSP).  El interés en el estudio de técnicas para su solución es motivado por la enorme 
cantidad de aplicaciones prácticas de problemas de toma de decisiones donde éste aparece como 
subestructura.  En este artículo se hace una breve reseña de los métodos de aproximación 
(heurísticas) más relevantes que se han propuesto para intentar encontrar soluciones factibles de alta 
calidad. 
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1. Introducción 
 
En [1] introdujimos al lector con el Problema del Agente Viajero (mejor conocido por TSP, por sus 
siglas en inglés; Traveling Salesperson Problem), el cual es un problema clásico de optimización 
combinatoria, una de las subdisciplinas de la investigación de operaciones (IO).  Señalamos cómo las 
aplicaciones de IO se encuentran en prácticamente todos los niveles y en todo tipo de industrias, y 
cómo una utilización adecuada de las técnicas de IO dándole soporte al complejo proceso de toma de 
decisiones que enfrentan las empresas, puede tener un impacto económico significativo. 
 
En particular, ilustramos la importancia del TSP con un par de problemas reales: el problema de 
programación de tareas que se presenta en la manufactura de bienes y el del ruteo de vehículos en el 
ramo de la logística. 
 
Como una de las características del TSP es el de pertenecer a una clase de problemas muy difíciles de 
resolver, es decir, hallar la solucion óptima, en la práctica es muy común el utilizar algoritmos de 
aproximación (heurísticas) para obtener soluciones factibles de alta calidad (relativamente cercanas 
al óptimo) en tiempos de ejecución relativamente pequeños.  En este artículo, a manera de 
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continuación, exponemos algunas de las heurísticas más utilizadas para intentar obtener 
soluciones al TSP. 
 
 

2. Qué es el TSP 
 
Retomando la definición efectuada en [1], el TSP se formula de la siguiente manera.  Un agente 
viajero, partiendo de su ciudad de origen, debe visitar exactamente una vez cada ciudad de un 
conjunto de ellas (previamente especificado) y retornar al punto de partida.  Un recorrido con estas 
características, es llamado dentro de este contexto un tour.  El problema consiste en encontrar el tour 
para el cual la distancia total recorrida sea mínima.  Se asume que se conoce, para cada par de 
ciudades, la distancia entre ellas.  La Figura 1 ilustra un tour en una instancia de ocho ciudades, 
representada por un grafo donde cada nodo del grafo corresponde a una ciudad y cada arista que une 
a un par de nodos representa la parte del tour que pasa por dichos nodos.  En la figura se ilustra el 
tour que visita las ciudades 1, 2, 3, 8, 5, 4, 7, 6 y 1, en ese orden. 
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Figura 1:  Un tour en un TSP de ocho ciudades 
 
 
El problema en sí es fácil de formular.  Sin embargo, al igual que muchos otros que se presentan en 
el campo de optimización, es sumamente difícil de resolver (por resolver, nos referimos a encontrar la 
solución óptima al problema y probar desde luego que ésta es efectivamente la mejor solución 
posible).  En [1] establecimos con más detalle cuándo un problema es “fácil” o “difícil”.  La 
implicación directa de un problema difícil de resolver es que cualquier algoritmo empleado para 
encontrar la solución óptima emplea un tiempo de cómputo que crece exponencialmente con el 
tamaño de los datos del problema.  Por tal motivo, nace la necesidad de emplear heurísticas, las 
cuales son procedimientos que aún que no garantizan una solución óptima al problema, obtienen 
soluciones factibles de alta calidad (relativamente cercanas al óptimo) en un tiempo de ejecución 
razonable. 
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3. Algoritmos para la solución del TSP 
 
Heurísticas de Propósito Especial 
 
Empezaremos describiendo algunas heurísticas de propósito especial que han sido propuestas para 
resolver el TSP. Se llaman de propósito especial, porque explotan la estructura y características 
particulares de cada problema. 
 
La primera familia de esta clase de heurísticas que describiremos pertencen a las heurísticas de tipo 
miope (greedy en inglés), son llamadas así porque sólo se preocupan por hacer lo mejor que pueden 
localmente, sin ver más allá de un cierto entorno muy cercano. 
 
(a) El vecino más cercano:  Se trata de un procedimiento constructivo, se parte de elegir un vértice 

inicial, llamémoslo j1.  Una vez seleccionado, mediremos la distancia que hay de este vértice a los 
restantes, y elegiremos ahora aquél cuya distancia al vértice inicial sea la mínima (es decir 
elegimos al vecino más cercano), y lo llamaremos j2. De la misma forma, construiremos una 
trayectoria j1, j2, j3,…jk, jk+1, …,jn, donde el vértice jk+1 se elige tomando la mínima distancia que 
hay desde jk hasta cada uno de los vértices que sean distintos de los ya elegidos j1, j2, j3,   jk. Al 
terminar, se debe de agregar el arco que va del vértice jn., hasta el vértice j1. Con esto habremos 
completado el tour.  Esta heurística tiene una ventaja en las primeras selecciones, sin embargo, el 
problema que presenta es que en los últimos pasos puede elegir aristas de longitud muy grande, 
especialmente en la última. 

 
(b) La inserción más cercana:  Este procedimiento es también constructivo, pero en contraste con el 

anterior, en el cual se tiene un camino, y sólo al final se completa un tour, aquí tenemos subtours, 
los cuales van creciendo hasta completar un tour que abarque todos los vértices. Iniciemos con 
un subtour, al cual llamaremos T, queremos ahora insertar el nodo “más cercano” a este subtour 
para ampliarlo. Así que examinemos primero todos los nodos j que no estén aún incluidos en T.y 
vamos a definir para estos nodos, su distancia a T de la siguiente manera: d( j,T) es la distancia 
mínima que hay desde el nodo j a cualquiera de los nodos que pertenecen a T. Ordenamos las 
distancias calculadas de menor a mayor, y llamemos j* al nodo que se encuentra al principio de 
esta lista, este será el nodo “más cercano” a T. Vamos ahora a seleccionar dentro de T al nodo 
que se encuentre “más cerca” de j*, esto es, medimos la distancia desde j* a cada uno de los 
nodos de T, y llamaremos k* aquel nodo dentro de T, cuya distancia a j* sea la menor de todas. 
Ampliaremos ahora el subtour insertando a j* entre k* y alguno de sus dos vecinos en T, esto es, 
si (k1, k*) y (k*, k2) son dos aristas de T y la distancia de j* a k1, es menor o igual que la distancia 
de j* a k2, entonces j* se inserta entre k1 y k*. El proceso terminará cuando se haya construido un 
tour completo. Como en el caso anterior, no se puede garantizar que se produzca una buena 
solución. 
 

Garantías de Desempeño. 

Hemos mencionado que no es posible garantizar que los dos métodos anteriormente descritos 
produzcan buenas soluciones. ¿Será posible encontrar otros métodos heurísticos con los cuales sí se 
pueda garantizar un buen desempeño del método? Para contestar esta pregunta, definiremos en 
primer lugar qué es lo que se entiende por una garantía del desempeño. Dado un ejemplo particular 
de un problema al cual denotaremos por I ( de aquí en adelante llamaremos instancia a un caso 
particular de un problema), A(I) será el valor producido por el algoritmo de aproximación que 
estemos usando, mientras que OPT(I) es el valor de la solución óptima, como en el TSP, lo que 
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queremos encontrar es el tour de menor longitud, siempre tendremos que OPT(I) debe de ser 
menor o igual que la longitud de cualquier otro tour, así que OPT(I) ≤.A(I). Diremos que el 
algoritmo de aproximación tiene una garantía de comportamiento c* , donde c* es un número real, si 
para cualquier instancia del problema I, se puede probar que A(I) ≤. c* OPT(I). ¿Qué es lo que 
indica este número c*? Observemos primero que si su valor es 1, el algoritmo de aproximación 
siempre producirá la solución óptima, ya que combinando las dos desigualdades, se tiene que OPT(I) 
= A(I). Por otra parte, su valor no puede ser menor que 1, ya que en ese caso, se tendría que A(I) < 
OPT(I), es decir el algoritmo de aproximación produciría un valor menor que el óptimo, lo cual es 
imposible. Así que c* tiene que ser un valor mayor o igual que 1.  Ahora bien, mientras más cerca se 
encuentre de 1 este valor, tenemos que el algoritmo de aproximación, obtendrá soluciones que no se 
encuentran muy lejos del valor óptimo, y si este valor es muy grande, esto indica que se pueden 
producir soluciones muy alejadas del valor óptimo. 

En el caso del TSP es posible encontrar garantías de desempeño, pero con la condición de que las 
instancias examinadas posean una propiedad adicional: la desigualdad del triángulo.  Esta 
desigualdad puede describirse de la siguiene manera: para viajar de una ciudad a otra es más corto 
hacerlo directamente que pasando por una ciudad intermedia. Más formalmente, se tiene que cumplir 
que la distancia de i a j para cualquier par de nodos debe de ser menor o igual que la distancia de i a 
k  más la distancia de k a j, para cualquier otro nodo k. Si esto es cierto, enotnces sí es posible dar 
una garantía de desempeño. Por ejemplo para la heurística del vecino más cercano. Denotando por 
NN(I) al valor producido, es posible demostrar que para cualquier instancia I con m ciudades 

 
NN(I) ≤ ½ (log 2 m + 1) OPT(I) 

 
Pero, por otro lado, para valores arbitrariamente grandes de m, siempre será posible construir 
instancias con m ciudades, para las cuales 

 
NN(I) > 1/3 (log 2 (m + 1) + 4/3) OPT(I) 

 
Lo que estos resultados nos indican es entonces que la heurística deja mucho que desear, ya que en la 
primera desigualdad no tenemos un valor constante que nos dé una garantía para todas las instancias, 
así que en todo caso podríamos decir que c* = ∞. Por otra parte, la segunda desigualdad nos asegura, 
que de hecho, encontraremos instancias para las cuales la heurística produce valores muy alejados del 
óptimo. 
 
¿Sé podrán construir otras heurísticas con una mejor garantía de desempeño? Afortunadamente sí es 
posible, describirlas aquí, sin embargo, nos llevaría mucho más allá de los alcances de este artículo, 
la mejor de todas ellas se debe a Christofides [2] y combina la solución de varios problemas de la 
teoría de grafos para construir un tour, con una garantía de desempeño de c* = 3/2. La implicación 
de este valor es que, cualquier solución que construyamos con este esquema de aproximación, nos 
dará un valor que nunca excederá en 50 % al valor de la solución óptima.  Algo muy interesante es 
que si eliminamos esta propiedad de la desigualdad del triángulo, es imposible construir algoritmos 
de aproximación cuyo comportamiento sea polinomial que tengan una garantía de desempeño, por 
mala que esta sea.  Es decir, si tal construcción fuese posible, entonces podríamos también construir 
un algoritmo polinomial que resuelve en forma exacta el TSP. 
 
Metaheurísticas 
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Las metaheurísticas son una clase de métodos de aproximación, que se diseñan para atacar 
problemas difíciles para los cuales las heurísticas de propósito especial han fracasado en dar 
resultados efectivos y eficientes. Las metaheurísticas proporcionan marcos generales que permiten 
crear nuevos híbridos combinando diferentes conceptos derivados de las heurísticas clásicas, la 
inteligencia artificial, la evolución biológica, los sistemas neuronales, la mecánica estadística y el 
psicoanálisis freudiano.  Estas familias de enfoques incluyen,  pero no están limitadas a algoritmos 
genéticos, GRASP, redes neuronales, búsqueda tabú y recocido simulado. En [3] pueden encontrarse 
unos excelentes tutoriales de cada una de estas metaheurísticas. 
 
El método metaheurístico que emplearemos aquí, Búsqueda Tabú, fue propuesto por Fred Glover [4] 
en 1986, y está basado en el psicoanálisis freudiano. 
 
Iniciaremos describiendo qué es un método de búsqueda local. Se trata de un método iterativo el cual 
da inicio desde una solución arbitraria, el procedimiento consiste en explorar una vecindad 
previamente definida para cada punto del espacio de soluciones y elige una nueva solución dentro de 
tal vecindad, la cual mejora el valor que se tiene a mano.  La búsqueda termina cuando se alcanza 
una solución tal que es la mejor dentro de la vecindad predefinida, esto es ya no puede seguirse 
mejorando. A esta solución se le llama un mínimo local. En muchas ocasiones, este mínimo local será 
la solución óptima del problema, sin embargo, no podemos esperar que siempre suceda esto. Al 
contrario es plausible esperar que este mínimo local se encuentre lejos de la solución óptima del 
problema. 
 
En el caso particular del TSP, un método de búsqueda local sencilla, es el llamado 2-opt. Este 
consiste en eliminar del tour un par de aristas que no sean adyacentes, y reemplazarlas con el único 
par de aristas con el cual se puede formar nuevamente un tour.  Éste se ilustra en la Figura 2. 
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Figura 2:  (a) Solución inicial;  (b) Eliminación de dos aristas: (2,3) y (5,4); 
(c) Nuevo tour sustituyendo con las aristas (2,5) y (3,4) 

 
TS guía un procedimiento de búsqueda local para continuar más allá de óptimos locales, esto es al no 
poder seguir mejorando la solución, se permite tomar otra solución aún cuando el valor no mejore, 
sino que se degrade, esto permite salir del óptimo local encontrado, pero al mismo tiempo se corre el 
peligro de caer en un ciclo, de mejorar-empeorar la solución, para evitar esto, se emplea una 
estrategia que modifica las vecindades a medida que la búsqueda avanza. TS utiliza estructuras de 
memoria para determinar esta vecindad modificada, las soluciones permitidas se determinan 
identificando soluciones encontradas dentro de un horizonte especificado. En nuestro ejemplo, dada 
una solución particular, una vez suprimido un par de aristas del tour, estas dos aristas no pueden 
formar parte del tour por un determinado número de iteraciones, este número de iteraciones se conoce 
como la permanencia tabú. Simétricamente cuando un par de aristas se insertan en un tour, no 
podrán ser suprimidas durante un número de iteraciones.  Si la permanencia tabú se elige de manera 
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adecuada, la búsqueda podrá continuar más allá de los óptimos locales sin caer en ciclos, y 
eventualmente alcanzar, si no el óptimo global del problema, sí soluciones que estén cerca de 
él. 
 
 

4. Conclusión 
 
En este artículo hemos mostrado al lector algunos de los algoritmos más notables y populares para 
encontrar soluciones aproximadas al problema clásico del agente viajero.  Esta clase de métodos 
tienen la ventaja que son relativamente rápidos en sus tiempos de ejecución y por ende, se convierten 
en una elección importante cuando el tiempo para encontrar una solución es la restricción más 
importante.  Sin embargo, cuando la precisión y calidad de una solución cobra mayor importancia, 
existe otro tipo de algoritmos basados en técnicas de enumeración implícita, los cuales intentan, a 
costa de un mayor esfuerzo computacional, encontrar soluciones óptimas globales al problema.  Ese 
será tema para un próximo trabajo. 
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