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Resumen

Uno de los problemas mas famosos y dificiles en la teoria de optimizacion, es del problemadel agente
vigjero (TSP). El interés en el estudio de técnicas para su solucidn es motivado por la enorme
cantidad de aplicaciones practicas de problemas de toma de decisiones donde éste aparece como
subestructura. En este articulo se hace una breve resefia de los métodos de aproximacion
(heuristicas) mas relevantes que se han propuesto para intentar encontrar soluciones factibles de ata
calidad.

Pdabras clave: Investigacion de Operaciones, Problemadel Agente Vigjero, Heuristica,
Metaheuristica

1. Introduccion

En [1] introdujimos &l lector con el Problema del Agente Vigjero (mejor conocido por TSP, por sus
siglasen inglés; Traveling Salesperson Problem), el cua es un problema clésico de optimizacion
combinatoria, una de las subdisciplinas de la investigacion de operaciones (10). Sefidlamos cdmo las
aplicaciones de 10 se encuentran en practicamente todos los niveles y en todo tipo de industrias, y
cdmo una utilizacién adecuada de las técnicas de 10 dandole soporte a complejo proceso de toma de
decisiones que enfrentan las empresas, puede tener un impacto econdmico significativo.

En particular, ilustramos laimportancia del TSP con un par de problemas redes: € problemade
programacion de tareas que se presenta en la manufactura de bienesy € del ruteo de vehiculos en €
ramo de lalogistica.

Como una de las caracteristicas del TSP es el de pertenecer a una clase de problemas muy dificiles de
resolver, es decir, hallar la solucion 6ptima, en la préactica es muy comin € utilizar algoritmos de
aproximacion (heuristicas) para obtener soluciones factibles de dta calidad (relativamente cercanas

a Optimo) en tiempos de gjecuciOn relativamente pequefios. En este articulo, a manera de



continuacion, exponemos algunas de las heuristicas més utilizadas para intentar obtener
soluciones a TSP.

2. Quéese TSP

Retomando la definicion efectuada en [1], € TSP se formula de la siguiente manera. Un agente
vigero, partiendo de su ciudad de origen, debe visitar exactamente una vez cada ciudad de un
conjunto de ellas (previamente especificado) y retornar a punto de partida. Un recorrido con estas
caracteristicas, es |lamado dentro de este contexto un tour. El problema consiste en encontrar €l tour
parael cua ladistanciatotal recorrida seaminima. Se asume que se conoce, para cada par de
ciudades, ladistanciaentre ellas. LaFigura 1 ilustra un tour en unainstancia de ocho ciudades,
representada por un grafo donde cada nodo del grafo corresponde a una ciudad y cada arista que une
aun par de nodos representa la parte del tour que pasa por dichos nodos. En lafiguraseilustrael
tour que visitalasciudades 1, 2, 3, 8,5, 4, 7, 6 y 1, en ese orden.

Figura1: Un tour en un TSP de ocho ciudades

El problemaen si esfécil de formular. Sin embargo, al igual que muchos otros que se presentan en

el campo de optimizacion, es sumamente dificil de resolver (por resolver, nos referimos a encontrar la
solucion Optima a problemay probar desde luego que ésta es efectivamente la mejor solucion
posible). En[1] establecimos con més detalle cuando un problema es “fécil” o “dificil”. La
implicacion directa de un problema dificil de resolver es que cualquier algoritmo empleado para
encontrar la solucion Gptima emplea un tiempo de cdmputo que crece exponencialmente con €
tamario de los datos del problema. Por tal motivo, nace la necesidad de emplear heuristicas, las
cuales son procedimientos que alin que no garantizan una solucion Optima a problema, obtienen
soluciones factibles de ata calidad (relativamente cercanas a Gptimo) en un tiempo de g ecucion
razonable.



3. Algoritmos para la solucién del TSP
Heuristicas de Propoésito Especial

Empezaremos describiendo a gunas heuristicas de propdsito especia que han sido propuestas para
resolver el TSP. Se llaman de propdsito especial, porque explotan la estructuray caracteristicas
particulares de cada problema

La primera familia de esta clase de heuristicas que describiremos pertencen a las heuristicas de tipo
miope (greedy en inglés), son [lamadas asi porque solo se preocupan por hacer [o megjor que pueden
localmente, sin ver més dlé de un cierto entorno muy cercano.

(8 El vecino mas cercano: Se trata de un procedimiento constructivo, se parte de elegir un vértice
inicia, llamémodo j;. Unavez seleccionado, mediremos la distancia que hay de este vértice alos
restantes, y elegiremos ahora aguél cuya distanciaal vértice inicial sealaminima (es decir
elegimos a vecino mas cercano), y lo llamaremos j,. De la misma forma, construiremos una
trayectoriajy, j2, j3,---Jks jkets ---»jn, dOnde € vértice ji+1 Se elige tomando la minima distancia que
hay desde j« hasta cada uno de los vértices que sean distintos de losya elegidos |y, j2, j3, jk- Al
terminar, se debe de agregar el arco que va del vértice j,., hasta el vértice j;. Con esto habremos
completado € tour. Esta heuristica tiene una ventaja en las primeras selecciones, sin embargo, €
problema que presenta es que en los Ultimos pasos puede elegir aristas de longitud muy grande,
especiamente en la dltima.

(b) Lainsercion mas cercana: Este procedimiento es también constructivo, pero en contraste con €l
anterior, en e cua setiene un camino, y solo al fina se completa un tour, aqui tenemos subtours,
los cuaes van creciendo hasta completar un tour que abarque todos |os vértices. Iniciemos con
un subtour, a cual llamaremos T, queremos ahorainsertar € nodo “més cercano” a este subtour
paraampliarlo. Asi que examinemos primero todos los nodos j que no estén alin incluidos en T.y
vamos a definir para estos nodos, su distanciaa T de la siguiente manera: d( j,T) esladistancia
minima que hay desde e nodo j a cualquiera de los nodos que pertenecen a T. Ordenamos las
distancias calculadas de menor amayor, y llamemos j* a nodo que se encuentra a principio de
estalista, este sera & nodo “més cercano” aT. Vamos ahora a seleccionar dentro de T a nodo
gue se encuentre “més cerca’ de j*, esto es, medimos la distancia desde j* a cada uno de los
nodosde T, y llamaremos k* aquel nodo dentro de T, cuya distanciaaj* seala menor de todas.
Ampliaremos ahora € subtour insertando aj* entre k* y alguno de susdos vecinosen T, esto es,
s (ky, kK*) y (k*, k;) son dos aristasde T y la distanciade j* ak;, esmenor o igua que ladistancia
dej* ak,, entoncesj* seinsertaentrek; y k*. El proceso terminara cuando se haya construido un
tour completo. Como en & caso anterior, no se puede garantizar que se produzca una buena
solucion.

Garantias de Desempefio.

Hemos mencionado que no es posible garantizar que los dos métodos anteriormente descritos
produzcan buenas soluciones. ¢Seré posible encontrar otros métodos heuristicos con los cuales si se
pueda garantizar un buen desempefio del método? Para contestar esta pregunta, definiremos en
primer lugar qué es lo que se entiende por una garantia del desempefio. Dado un gemplo particular
de un problemaa cua denotaremos por | ( de aqui en adelante llamaremos instancia a un caso
particular de un problema), A(l) serd el vaor producido por e agoritmo de aproximacion que
estemnos usando, mientras que OPT(I) es e valor de la solucion 6ptima, como en e TSP, lo que



gueremos encontrar es € tour de menor longitud, siempre tendremos que OPT (1) debe de ser

menor o igua que lalongitud de cuaquier otro tour, asi que OPT(I) £.A(l). Diremos que €
algoritmo de aproximacion tiene una garantia de comportamiento c* , donde ¢* es un nimero redl, s
para cuaquier instancia del problemal, se puede probar que A(l) £. c* OPT(l). ¢Qué eslo que
indica este nimero c*? Observemos primero que s su vaor es 1, e algoritmo de aproximacion
siempre producira la solucion 6ptima, ya que combinando las dos desigua dades, se tiene que OPT(1)
= A(l). Por otra parte, su valor no puede ser menor que 1, yaque en ese caso, setendriaque A(l) <
OPT(I), es decir & agoritmo de aproximacion produciria un valor menor que e éptimo, lo cua es
imposible. Asi que c* tiene que ser un valor mayor o igual que 1. Ahorabien, mientras més cerca se
encuentre de 1 este valor, tenemos que € agoritmo de aproximacion, obtendra soluciones que no se
encuentran muy legjos del valor éptimo, y s este valor es muy grande, esto indica que se pueden
producir soluciones muy aejadas del valor optimo.

En el caso del TSP es posible encontrar garantias de desempefio, pero con la condicidn de que las
instancias examinadas posean una propiedad adicional: la desigualdad del triangulo. Esta
desigualdad puede describirse de la siguiene manera: paravigjar de una ciudad a otra es mas corto
hacerlo directamente que pasando por una ciudad intermedia. Mas formamente, se tiene que cumplir
gue ladistanciadei aj paracuaquier par de nodos debe de ser menor o igual que ladistanciadei a
k mésladistanciadek aj, para cualquier otro nodo k. S esto es cierto, enotnces si es posible dar
una garantia de desempefio. Por jemplo para la heuristica del vecino més cercano. Denotando por
NN(I) a valor producido, es posible demostrar que para cualquier instancial con m ciudades

NN(I) £ ¥ (log m + 1) OPT(l)

Pero, por otro lado, para valores arbitrariamente grandes de m, siempre sera posible construir
instancias con m ciudades, paralas cuales

NN(1) > 1/3 (log » (m + 1) + 4/3) OPT(l)

Lo que estos resultados nos indican es entonces que la heuristica deja mucho que desear, yaque en la
primera desigualdad no tenemos un valor constante que nos dé una garantia para todas las instancias,
asi que en todo caso podriamos decir que c* = ¥ . Por otra parte, la segunda desigual dad nos asegura,
gue de hecho, encontraremos instancias para las cuales la heuristica produce valores muy aeados del
Optimo.

¢Sé podran construir otras heuristicas con una mejor garantia de desempefio? Afortunadamente si es
posible, describirlas agui, sin embargo, nos Ilevaria mucho mas allé de los acances de este articulo,
lamejor de todas ellas se debe a Christofides [2] y combina la solucion de varios problemas de la
teoria de grafos para construir un tour, con una garantia de desempefio de c* = 3/2. Laimplicacion
de este valor es que, cualquier solucidn que construyamos con este esquema de aproximacion, nos
dara un valor que nunca excederd en 50 % a valor de la solucion optima. Algo muy interesante es
que s diminamos esta propiedad de la desigualdad del tridngulo, esimposible construir algoritmos
de aproximacion cuyo comportamiento sea polinomia que tengan una garantia de desempefio, por
mala que estasea. Esdecir, si tal construccion fuese posible, entonces podriamos también construir
un agoritmo polinomial que resuelve en forma exacta el TSP.

M etaheuristicas



Las metaheuristicas son una clase de métodos de aproximacion, que se disefian para atacar
problemas dificiles paralos cuales las heuristicas de propdsito especia han fracasado en dar
resultados efectivosy eficientes. Las metaheuristicas proporcionan marcos generales que permiten
crear nuevos hibridos combinando diferentes conceptos derivados de las heurigticas clasicas, la
inteligencia artificial, la evolucion biologica, |os sistemas neuronales, la mecanica estadisticay €
psicoandlisis freudiano. Estas familias de enfoques incluyen, pero no estan limitadas a algoritmos
genéticos, GRASP, redes neuronales, blsqueda tabu y recocido simulado. En [3] pueden encontrarse
unos excelentes tutorial es de cada una de estas metaheuristicas.

El método metaheuristico que emplearemos aqui, Busqueda Tabu, fue propuesto por Fred Glover [4]
en 1986, y esta basado en el psicoandlisis freudiano.

Iniciaremos describiendo qué es un método de blsgueda local. Se trata de un método iterativo e cua
dainicio desde una solucién arbitraria, € procedimiento consiste en explorar una vecindad
previamente definida para cada punto del espacio de solucionesy elige una nueva solucion dentro de
tal vecindad, la cual mejora el vaor que setiene amano. La blsgueda termina cuando se acanza
una solucion tal que es lamejor dentro de la vecindad predefinida, esto es ya no puede seguirse
mejorando. A esta solucién se e llama un minimo local. En muchas ocasiones, este minimo local sera
la solucién éptima del problema, sin embargo, no podemos esperar que siempre suceda esto. Al
contrario es plausible esperar que este minimo local se encuentre lgjos de la solucion Optima del
problema

En el caso particular del TSP, un método de busqueda loca sencilla, es el Ilamado 2-opt. Este
consiste en eliminar del tour un par de aristas que no sean adyacentes, y reemplazarlas con € Unico
par de aristas con e cual se puede formar nuevamente un tour. Este seilustraen laFigura 2.

@ (b)

Figura2: (a) Soluciéninicia; (b) Eliminacion de dos aristas: (2,3) y (5,4);
(c) Nuevo tour sustituyendo con las aristas (2,5) y (3,4)

TS guia un procedimiento de blsqueda local para continuar mas all& de dptimos locales, esto es al no
poder seguir mejorando la solucion, se permite tomar otra solucion adn cuando e valor no mejore,
sino que se degrade, esto permite salir del éptimo local encontrado, pero a mismo tiempo se corre €
peligro de caer en un ciclo, de mejorar-empeorar la solucion, para evitar esto, se emplea una
estrategia que modifica las vecindades a medida que la busqueda avanza. TS utiliza estructuras de
memoria para determinar esta vecindad modificada, las soluciones permitidas se determinan
identificando soluciones encontradas dentro de un horizonte especificado. En nuestro g emplo, dada
una solucién particular, unavez suprimido un par de aristas del tour, estas dos aristas no pueden
formar parte del tour por un determinado nimero de iteraciones, este niimero de iteraciones se conoce
como la permanencia tabu. Simétricamente cuando un par de aristas se insertan en un tour, no
podran ser suprimidas durante un nimero de iteraciones. Si la permanenciatabu se elige de manera



adecuada, 1a busqueda podré continuar mas allé de los dptimos locales sin caer en ciclos, y

eventualmente acanzar, s no € 6ptimo global del problema, si soluciones que estén cerca de
.

4. Conclusion

En este articulo hemos mostrado a lector algunos de los algoritmos mas notables y populares para
encontrar soluciones aproximadas a problema clasico del agente vigiero. Esta clase de métodos
tienen la ventaja que son relativamente rgpidos en sus tiempos de gecucion y por ende, se convierten
en una eleccién importante cuando €l tiempo para encontrar una solucion es la restriccion mas
importante. Sin embargo, cuando la precision y calidad de una solucion cobra mayor importancia,
existe otro tipo de algoritmos basados en técnicas de enumeracion implicita, los cuaes intentan, a
costa de un mayor esfuerzo computacional, encontrar soluciones Optimas globales d problema. Ese
serd tema para un proximo trabajo.
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