Computational Experience with
Heuristics for the p-Median
Problem

Team D
Marcelo Trevifo, Luis F. Medellin, Sebastian Mayorga, Jesus R. Gémez

Selected Topics on Optimization
Roger Z. Rios, Ph.D.

What is the p-Median Problem?

Definition:

The p-Median Problem is a classic facility location problem where the objective is to choose p
facilities (medians) such that the sum of the distances from each demand point to its nearest
facility is minimized.

I

Introduction to the p-Median problem

Applications in real world scenarios:

o™ ¢

i

Problem Description

The p-median problem involves making strategic decisions regarding the location of facilities to efficiently
serve a dispersed population. This problem can be defined by four fundamental components:

1. Data

The entry consists of:

- The location of the possible locations of the facilities.

- The spatial distribution of the population or demand points in which these facilities are located

destined to serve.

- The costs or distances associated with the provision of the service from each installation site to each

demand point.

2. Decisions

The decision involves selecting p locations out of the potential facility sites where
facilities will be placed.

3. Optimization

The objective is to minimize the total cost or distance required to provide service from
the chosen facility locations to all demand points. Mathematically, this can be
represented as minimizing the sum of the distances (or costs) between each demand
point and its assigned facility, where the assignment is based on proximity:.

4. Constraints

The feasible solution is defined by the requirement that each demand point must be
assigned to exactly one facility. Additionally, exactly p facilities must be selected from
the potential facility sites.

Mathematical formulation

Data/Parameters: Decision variables:
e n: Number of demand points. e xj: Binary variable, xj =1 if a facility is
e m: Number of potential facility located at site j, otherwise xj = 0.
locations. e yij: Binary variable, yij = 1 if demand
e p: Number of facilities to be located. point i is assigned to facility at site j,
e dij: Distance between demand point i otherwise yij = 0.

and potential facility location j.

Mathematical formulation

Obijective:

® The objective is to minimize the total
distance between demand points and
their assigned facilities.

Constraints:

Each demand point must be assigned
to exactly one facility.
A facility can only serve a demand

point if it is located there.
Exactly p facilities must be located.
Decision variables must be binary

Constructive Heuristic

The Genetic Algorithm for the p-Median problem
employs principles of natural evolution, such as
selection, crossover, and mutation, to evolve a
population of solutions over multiple generations.
Initially, a population of random solutions is
generated, each representing a set of p facilities.
The fitness of each solution is evaluated based on
the total distance to the demand points.

This process iterates over several
generations, with the goal of converging to an
optimal or near-optimal solution. While more
computationally intensive than the Greedy
Heuristic, the Genetic Algorithm can explore a
broader solution space and potentially find better
solutions.

Example of the p-Median Problem

Suppose we have a set of 6 potential locations where
we can place facilities and a set of 6 demand points.
The goal is to choose 2 facility locations (p = 2) such
that the sum of distances from each demand point to
the nearest facility is minimized

- Possible clinic locations (facilities): A, B, C, D, E, F

A
4
2
5
4
6
8

- Demand points (households): 1, 2, 3,4, 5, 6

- Distance matrix (in kilometers) between the
possible locations of the clinics and the demand
points:

Initialization

1. Population size: 4
2. Chromosomes: Each chromosome represents
a set of facility locations.
3. Initial population (randomly selected sets of 4
facilities out of A-F):
1. Chromosome 1: {A, B, C, D}
2. Chromosome 2: {A, C, F, D}
3. Chromosome 3: {B, D, C, E}
4, C E A F}

~ A e e

Chromosome 4:

Fithess and Crossover

A B, C, D} =11 km
A, C,F,D}=9km
B, D, C, E} = 10 km
C,E A F}=9km

1. Chromosome 1:
2. Chromosome 2:
3. Chromosome 3:
4. Chromosome 4:

~ A A

Let's apply crossover and mutation to produce
new offspring.

e Crossover between Chromosome 2 ({A, C, F,
D}) and Chromosome 4 ({C, E, A, F}):

O Possible offspring after crossover: {A, C, F, E}
and {C, F, D, A}
e Mutation (randomly changing one gene in the
offspring):

A
4
2
5
4
6
8

Pseudocode

GeneticAlgorithm_pMedian(n, m, p, distMatrix, popSize=50, gens=100,
mutRate=0.1):

pop <- initPopulation(m, p, popSize)

bestSol <- selectBest(pop, distMatrix, n)

bestFit <- calcFitness(bestSol, distMatrix, n)

For gen from 1 to gens:

newPop <- []
For i from 1 to (popSize / 2):
parents <- selectParents(pop)
child1, child2 <- crossover(parents[0], parents[1], p)
newPop <- newPop + [mutate(child1, m, p, mutRate), mutate(child2, m, p,
mutRate)]
pop <- newPop
currentBest <- selectBest(pop, distMatrix, n)
If calcFitness(currentBest, distMatrix, n) < bestFit:
bestSol, bestFit <- currentBest, calcFitness(currentBest, distMatrix, n)

Return bestSol, bestFit
initPopulation(m, p, popSize):

Return [selectRandom(p, m) for i in 1 to popSize]
selectRandom(p, m):

Return p unique locations from O to m-1
calcFitness(sol, distMatrix, n):

Return sum(min(distMatrix[i][j] for j in sol) for i in O to n-1)
selectBest(pop, distMatrix, n):

Return min(pop, key=lambda sol: calcFitness(sol, distMatrix, n))
selectParents(pop):

Return 2 random solutions from pop
crossover(parentl, parent2, p):

point <- randomNumber(1, p-1)

Return parenti[:point] + [g for g in parent2 if g not in parent1[:point]],
parent2[:point] + [g for g in parent1 if g not in parent2[:point]]
mutate(sol, m, p, mutRate):

If randomNumber(0, 1) < mutRate:

sol[randomNumber(0, p-1)] <- randomNumber(0, m-1)

Return sol

Experiment 1 (Without Local Search)

Instance = - Genetic Algoritm Heuristic = Time

Data1 1000 10 3 7903.4|35.34s
Data2 1000 10 3 7601.9)|34.84s
Data3 1000 10 3 7207.1]|35.34s
Data4 1000 10 3 8072.1(33.40s
Data5 1000 10 3 7605.5|34.50s
Data6 1000 10 3 8166.1|33.82s
Data7 1000 10 3 7451.7| 37.34s
Data8 1000 10 3 7812.6|34.49s
Data9 1000 10 3 7351.0|33.07s
Data10 1000 10 3 7236.9|34.01s
Data11 1000 10 3 7672.1133.19s
Data12 1000 10 3 7208.3|33.66s
Data13 1000 10 3 8779.8(33.63s
Data14 1000 10 3 7588.8134.00s
Data15 1000 10 3 7662.5|34.07s
Data16 1000 10 3 7398.3|33.83s
Data17 1000 10 3 8543.4|33.24s
Data18 1000 10 3 7484.4133.69s
Data19 1000 10 3 7800.2|33.75s
Data20 1000 10 3 8039.3[31.17s

Experiment 2 (Without Local Search)

Data1 10 000 25 5 116121.4(161.20s
Data2 10 000 25 5 121180.7(163.64s
Data3 10 000 25 5 104109.8(173.08s
Data4 10 000 25 5 97387.5|158.22s
Datab 10 000 25 5 100827.7(167.77s
Data6 10 000 25 5 112131.8(176.98s
Data7 10 000 25 5 102062.3(165.75s
Data8 10 000 25 5 112476.4(175.30s
Data9 10 000 25 5 109332.4(158.51s
Data10 10 000 25 5 104273.0(182.33s
Data11 10 000 25 5 102693.9(176.25s
Data12 10 000 25 5 125373.3(189.28s
Data13 10 000 25 5 107250.2(153.39s
Data14 10 000 25 5 118078.3[183.43s
Data15 10 000 25 5 126643.8(186.03s
Data16 10 000 25 5 130483.2(170.55s
Data17 10 000 25 5 106921.5[(169.89s
Data18 10 000 25 5 111971.0(30.573s
Data19 10 000 25 5 104941.1(147.60s
Data20 10 000 25 5 104947.9(190.87s

Experiment 3 (Without Local Search)

Data1 20 000 50 10 230504.4| 279.96s
Data2 20 000 50 10 231840.91231.16s
Data3 20 000 50 10 228598.7|238.02s
Data4 20 000 50 10 248845.8|1254.57s
Datab 20 000 50 10 219550.5| 235.21s
Data6 20 000 50 10 223935.41260.71s
Data7 20 000 50 10 199164.8(283.47s
Data8 20 000 50 10 217348.51245.76s
Data9 20 000 50 10 250451.9|229.12s
Data10 20 000 50 10 212493.1|250.24s
Data11 20 000 50 10 203685.4)1246.56s
Data12 20 000 50 10 205393.7|241.94s
Data13 20 000 50 10 200296.81251.51s
Data14 20 000 50 10 221142.6|259.92s
Data15 20 000 50 10 227078.51252.70s
Data16 20 000 50 10 223813.7] 253.79s
Data17 20 000 50 10 227050.21249.230s
Data18 20 000 50 10 256901.0|239.13s
Data19 20 000 50 10 206865.8|218.44s
Data20 20 000 50 10 215691.0| 257.43s

Local Search Heuristic

Local search can be used in conjunction
with the Genetic Algorithm to improve the
solutions generated during the evolutionary
process. This hybrid approach, often referred to
as a memetic algorithm, combines the global
search capability of the Genetic Algorithm with
the fine-tuning ability of local search to enhance
solution quality.

The move used by the local search is to iterate
through each of the solution’s indexes and
change each one of the facility points to another
feasible facility (not already in used in the
solution), and close the original one.

In our case, the local search is set to iterate a
total of 100 times, and keep the best solution
found in those iterations.

Experiment 1 (With Local Search)

Instance Size of "m" Genetic Algoritm Heuristic Time S Local Search Time S % Improve

Data1 1000 10 3 7903.4(35.34s 7432.9(0.06s 5.95%
Data2 1000 10 3 7601.9(34.84s 7217.7[0.47s 5.05%
Data3 1000 10 3 7207.1[35.34s 7169.5[0.062s 0.52%
Data4 1000 10 3 8072.1(33.40s 7743.5(0.18s 4.07%
Data5 1000 10 3 7605.5(34.50s 7328.6(0.26s 3.64%
Data6 1000 10 3 8166.1[33.82s 8001.7] 0.20s 2.01%
Data7 1000 10 3 7451.7| 37.34s 7300.2(0.51s 2.03%
Data8 1000 10 3 7812.6(34.49s 7675.6| 0.26s 1.75%
Data9 1000 10 3 7351.0(33.07s 7217.7(0.14s 1.81%
Data10 1000 10 3 7236.9(34.01s 7080.3(0.25s 2.16%
Data11 1000 10 3 7672.1(33.19s 7487.2(0.16s 2.41%
Data12 1000 10 3 7208.3[33.66s 6972.9]0.23s 3.27%
Data13 1000 10 3 8779.8(33.63s 8563.8]0.19s 2.46%
Data14 1000 10 3 7588.8(34.00s 7270.6(0.24s 4.19%
Data15 1000 10 3 7662.5(34.07s 7440.9(0.28s 2.89%
Data16 1000 10 3 7398.3(33.83s 7292.6(0.35s 1.43%
Data17 1000 10 3 8543.4(33.24s 8076.9|0.16s 5.46%
Data18 1000 10 3 7484.4(33.69s 7305.4(0.15s 2.39%
Data19 1000 10 3 7800.2(33.75s 7643.7(0.27s 2.01%
Data20 1000 10 3 8039.3[31.17s 7423.2| 0.39s 7.66%

Avarage 3.16%

Experiment 2 (With Local Search)

Datat 10 000 25 5 116121.4|161.20s 113840.7969(1.71s 1.96%
Data2 10 000 25 5 121180.7|163.64s 114845.1753(0.74s 5.23%
Data3 10 000 25 5 104109.8|173.08s 103996.1201(0.62s 0.11%
Data4 10 000 25 5 97387.5]|158.22s 97046.39614)0.51s 0.35%
Data5 10 000 25 5 100827.7|167.77s 97508.52762|1.62s 3.29%
Data6 10 000 25 5 112131.8]|176.98s 107481.1094(1.14s 4.15%
Data7 10 000 25 5 102062.3|165.75s 95290.90191)0.60s 6.63%
Data8 10 000 25 5 112476.4|175.30s 111048.1283(0.7s 1.27%
Data9 10 000 25 5 109332.4|158.51s 107316.319]1.11s 1.84%
Data10 10 000 25 5 104273.0|182.33s 102767.2235(1.31s 1.44%
Data11 10 000 25 5 102693.9|176.25s 96259.09259)0.98s 6.27%
Data12 10 000 25 5 125373.3|189.28s 125373.3227(0.05s 0.00%
Data13 10 000 25 5 107250.2|153.39s 104788.4007(4.60S 2.30%
Data14 10 000 25 5 118078.3|183.43s 116671.5507(0.40s 1.19%
Data15 10 000 25 5 126643.8|186.03s 126643.7816(0.40s 0.00%
Data16 10 000 25 5 130483.2|170.55s 129491.1095(0.83s 0.76%
Data17 10 000 25 5 106921.5|169.89s 104384.1236(0.44s 2.37%
Data18 10 000 25 5 111971.0|30.573s 111697.0195(33.35s 0.24%
Data19 10 000 25 5 104941.1|147.60s 102998.6932(2.76s 1.85%
Data20 10 000 25 5 104947.91190.87s 104090.0588(0.27s 0.82%

2.10%

Experiment 3 (With Local Search)

Data1 20 000 50 10 230504.4| 279.96s 228369.0(0.749s 0.93%
Data2 20 000 50 10 231840.9]231.16s 212154.7]0.82s 8.49%
Data3 20 000 50 10 228598.71238.02s 212984.910.65s 6.83%
Data4 20 000 50 10 248845.81254.57s 240957.9]1.33s 3.17%
Data5 20 000 50 10 219550.5| 235.21s 211147.2| 0.85s 3.83%
Data6 20 000 50 10 223935.4]260.71s 222942.910.98s 0.44%
Data7 20 000 50 10 199164.8| 283.47s 198282.6] 1.03s 0.44%
Data8 20 000 50 10 217348.5]1245.76s 207469.610.51s 4.55%
Data9 20 000 50 10 250451.91229.12s 241901.1]4.95s 3.41%
Data10 20 000 50 10 212493.1]250.24s 200871.6] 1.78s 5.47%
Data11 20 000 50 10 203685.41246.56s 200207.411.27s 1.71%
Data12 20 000 50 10 205393.71241.94s 194296.1)0.68s 5.40%
Data13 20 000 50 10 200296.81251.51s 196449.3|1.79s 1.92%
Data14 20 000 50 10 221142.6]259.92s 215806.9]1.36s 2.41%
Data15 20 000 50 10 227078.5]|252.70s 226958.0]0.55s 0.05%
Data16 20 000 50 10 223813.7] 253.79s 214820.1{1.190s 4.02%
Data17 20 000 50 10 227050.2]249.230s 225961.5(0.764s 0.48%
Data18 20 000 50 10 256901.0]239.13s 239232.5| 1.34s 6.88%
Data19 20 000 50 10 206865.81218.44s 188734.2|1.47s 8.76%
Data20 20 000 50 10 215691.0] 257.43s 208860.4]0.86s 3.17%

3.62%

Experiment 3 (With Local Search)

Key takeaways from our exploration of the p-Median problem include:

Versatility and Practicality: The p-Median problem's3.

versatility makes it applicable to diverse fields, from
strategic placement of public amenities and emergency
services in urban planning to optimizing distribution
networks in logistics and ensuring equitable access to
healthcare facilities.

Mathematical Rigor and Computational Techniques: The

problem can be rigorously formulated as an integer linear4.

programming (ILP) model, enabling precise mathematical
solutions. However, due to the computational complexity
of solving ILP models for large instances, heuristic and
metaheuristic approaches, such as Genetic Algorithms and
Local Search, play a crucial role in finding near-optimal
solutions efficiently.

Hybrid Heuristic Approaches: Combining global search
techniques like Genetic Algorithms with local optimization
methods, such as Local Search, can significantly enhance
the solution quality and convergence speed. This hybrid
approach leverages the strengths of both methods,
balancing exploration and exploitation to achieve superior
outcomes.

Impact on Decision-Making: The insights derived from
solving the p-Median problem inform critical decision-
making processes in various sectors. For instance, in
urban planning, it aids in alleviating congestion and
improving accessibility, while in healthcare, it ensures
better resource allocation and patient outcomes.

