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What is the p-Median Problem?
Definition:

The p-Median Problem is a classic facility location problem where the objective is to choose p 
facilities (medians) such that the sum of the distances from each demand point to its nearest 
facility is minimized.



Introduction to the p-Median problem

Applications in real world scenarios:



Problem Description
The p-median problem involves making strategic decisions regarding the location of facilities to efficiently 
serve a dispersed population. This problem can be defined by four fundamental components:

1. Data

The entry consists of:

- The location of the possible locations of the facilities.

- The spatial distribution of the population or demand points in which these facilities are located

destined to serve.

- The costs or distances associated with the provision of the service from each installation site to each

demand point.



2. Decisions
The decision involves selecting p locations out of the potential facility sites where
facilities will be placed.

3. Optimization
The objective is to minimize the total cost or distance required to provide service from
the chosen facility locations to all demand points. Mathematically, this can be 
represented as minimizing the sum of the distances (or costs) between each demand
point and its assigned facility, where the assignment is based on proximity.

4. Constraints
The feasible solution is defined by the requirement that each demand point must be 
assigned to exactly one facility. Additionally, exactly p facilities must be selected from
the potential facility sites.



Decision variables:

● xj: Binary variable, xj =1 if a facility is 
located at site j, otherwise xj = 0.

● yij: Binary variable, yij = 1 if demand 
point i is assigned to facility at site j, 
otherwise yij = 0.

Data/Parameters:

● n: Number of demand points.
● m: Number of potential facility 

locations.
● p: Number of facilities to be located.
● dij: Distance between demand point i

and potential facility location j.

Mathematical formulation



Objective:

● The objective is to minimize the total 
distance between demand points and 
their assigned facilities.

Mathematical formulation

Constraints:

● Each demand point must be assigned 
to exactly one facility.

● A facility can only serve a demand 
point if it is located there.

● Exactly p facilities must be located.
● Decision variables must be binary



Constructive Heuristic
- The Genetic Algorithm for the p-Median problem 

employs principles of natural evolution, such as 
selection, crossover, and mutation, to evolve a 
population of solutions over multiple generations. 
Initially, a population of random solutions is 
generated, each representing a set of p facilities. 

- The fitness of each solution is evaluated based on 
the total distance to the demand points. 

This process iterates over several
generations, with the goal of converging to an
optimal or near-optimal solution. While more
computationally intensive than the Greedy
Heuristic, the Genetic Algorithm can explore a
broader solution space and potentially find better
solutions.



Example of the p-Median Problem

Suppose we have a set of 6 potential locations where 
we can place facilities and a set of 6 demand points. 
The goal is to choose 2 facility locations (p = 2) such 
that the sum of distances from each demand point to 
the nearest facility is minimized

- Possible clinic locations (facilities): A, B, C, D, E, F

- Demand points (households): 1, 2, 3, 4, 5, 6

- Distance matrix (in kilometers) between the 
possible locations of the clinics and the demand 
points:



Initialization

1. Population size: 4
2. Chromosomes: Each chromosome represents

a set of facility locations.
3. Initial population (randomly selected sets of 4 

facilities out of A-F):
1. Chromosome 1: {A, B, C, D}
2. Chromosome 2: {A, C, F, D}
3. Chromosome 3: {B, D, C, E}
4. Chromosome 4: {C, E, A, F}



Fitness and Crossover

1. Chromosome 1: {A, B, C, D} = 11 km
2. Chromosome 2: {A, C, F, D} = 9 km
3. Chromosome 3: {B, D, C, E} = 10 km
4. Chromosome 4: {C, E, A, F} = 9 km

Let's apply crossover and mutation to produce 
new offspring.

● Crossover between Chromosome 2 ({A, C, F, 
D}) and Chromosome 4 ({C, E, A, F}):

○ Possible offspring after crossover: {A, C, F, E} 
and {C, F, D, A}

● Mutation (randomly changing one gene in the
offspring):



Pseudocode

● GeneticAlgorithm_pMedian(n, m, p, distMatrix, popSize=50, gens=100, 
mutRate=0.1):

● pop <- initPopulation(m, p, popSize)
● bestSol <- selectBest(pop, distMatrix, n)
● bestFit <- calcFitness(bestSol, distMatrix, n)
● For gen from 1 to gens:
● newPop <- []
● For i from 1 to (popSize / 2):
● parents <- selectParents(pop)
● child1, child2 <- crossover(parents[0], parents[1], p)
● newPop <- newPop + [mutate(child1, m, p, mutRate), mutate(child2, m, p, 

mutRate)]
● pop <- newPop
● currentBest <- selectBest(pop, distMatrix, n)
● If calcFitness(currentBest, distMatrix, n) < bestFit:
● bestSol, bestFit <- currentBest, calcFitness(currentBest, distMatrix, n)
● Return bestSol, bestFit
● initPopulation(m, p, popSize):
● Return [selectRandom(p, m) for i in 1 to popSize]
● selectRandom(p, m):
● Return p unique locations from 0 to m-1
● calcFitness(sol, distMatrix, n):
● Return sum(min(distMatrix[i][j] for j in sol) for i in 0 to n-1)
● selectBest(pop, distMatrix, n):
● Return min(pop, key=lambda sol: calcFitness(sol, distMatrix, n))
● selectParents(pop):
● Return 2 random solutions from pop
● crossover(parent1, parent2, p):
● point <- randomNumber(1, p-1)
● Return parent1[:point] + [g for g in parent2 if g not in parent1[:point]], 

parent2[:point] + [g for g in parent1 if g not in parent2[:point]]
● mutate(sol, m, p, mutRate):
● If randomNumber(0, 1) < mutRate:
● sol[randomNumber(0, p-1)] <- randomNumber(0, m-1)
● Return sol



Experiment 1 (Without Local Search)



Experiment 2 (Without Local Search)



Experiment 3 (Without Local Search)



Local Search Heuristic
Local search can be used in conjunction

with the Genetic Algorithm to improve the
solutions generated during the evolutionary
process. This hybrid approach, often referred to
as a memetic algorithm, combines the global
search capability of the Genetic Algorithm with
the fine-tuning ability of local search to enhance
solution quality.

The move used by the local search is to iterate 
through each of the solution’s indexes and 
change each one of the facility points to another 
feasible facility (not already in used in the 
solution), and close the original one.

In our case, the local search is set to iterate a 
total of 100 times, and keep the best solution
found in those iterations.



Experiment 1 (With Local Search)



Experiment 2 (With Local Search)



Experiment 3 (With Local Search)



Experiment 3 (With Local Search)

1. Versatility and Practicality: The p-Median problem's
versatility makes it applicable to diverse fields, from
strategic placement of public amenities and emergency
services in urban planning to optimizing distribution
networks in logistics and ensuring equitable access to
healthcare facilities.

2. Mathematical Rigor and Computational Techniques: The
problem can be rigorously formulated as an integer linear
programming (ILP) model, enabling precise mathematical
solutions. However, due to the computational complexity
of solving ILP models for large instances, heuristic and
metaheuristic approaches, such as Genetic Algorithms and
Local Search, play a crucial role in finding near-optimal
solutions efficiently.

3. Hybrid Heuristic Approaches: Combining global search
techniques like Genetic Algorithms with local optimization
methods, such as Local Search, can significantly enhance
the solution quality and convergence speed. This hybrid
approach leverages the strengths of both methods,
balancing exploration and exploitation to achieve superior
outcomes.

4. Impact on Decision-Making: The insights derived from
solving the p-Median problem inform critical decision-
making processes in various sectors. For instance, in
urban planning, it aids in alleviating congestion and
improving accessibility, while in healthcare, it ensures
better resource allocation and patient outcomes.

Key takeaways from our exploration of the p-Median problem include:


