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1. Introduction. 

Knapsack problems represent a class of combinatorial optimization issues that arise in various real-

world scenarios. These problems involve selecting a subset of items, each with a given weight and 

value, to maximize the total value without exceeding a specified weight limit. The complexity of 

knapsack problems stems from the need to balance multiple constraints, such as weight, value, and 

sometimes additional factors like the number of items in certain categories or personal preferences. 

This variability necessitates diverse solution methods tailored to specific contexts and requirements. 

In this paper, we focus on the Multiknapsack problem, a variant where multiple knapsacks are used, 

each with its own capacity constraint. Solving the Multiknapsack problem requires strategies that 

consider the allocation of items across multiple knapsacks to maximize the total value. To address 

this, we employ a heuristic approach based on the value-to-weight ratio, inspired by the methodology 

of Martello and Toth. This heuristic prioritizes items with the highest value-to-weight ratio, providing 

an initial solution that leverages the most valuable items efficiently. 

To enhance the initial solution, we incorporate the 2-opt local search algorithm. This method 

iteratively swaps pairs of items between knapsacks, seeking to improve the overall solution. 

Additionally, we utilize First Found algorithms, which expedite the local search process by accepting 

the first improvement encountered. This combination of heuristic and local search techniques allows 

us to achieve a more refined and effective solution to the Multiknapsack problem. 

Our approach begins with a thorough examination of the basic structure of knapsack problems, 

including various examples and procedures. We then delve into the specifics of the Martello and Toth 

heuristic, analyzing its advantages, nuances, and potential drawbacks. By understanding these 

aspects, we aim to demonstrate the practical application of heuristics in solving complex optimization 

problems in a meaningful and impactful way.  



2. Problem description. 

For the Multiple Knapsack Problem, the following variables are known and needed in order to get a 

feasible solution (Marcelo & Toth, 1990): 

➢ Quantity of items (𝑛). 

➢ Quantity of knapsacks (𝑚 ≤ 𝑛) 

➢ Profit of item j (pj). 

➢ Weight of item (Wj). 

➢ Capacity of Knapsack i (Ci). 

Based on these variables, decisions will be made regarding which items to add to certain knapsack, 

considering that each knapsack has a different capacity, and each item has a different value, in order 

to find the assignment of items to knapsacks that maximizes the total value. 

However, this process is limited by the following constraints: 

➢ Each item can be allocated to at most one knapsack. 

➢ The knapsack capacity cannot be exceeded. 

Likewise, this will be achieved by following the next objective function (Lalami et al., 2012): 

Maximise: ∑ ∑ 𝑝𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 , 

in which N represents the number of items, M the number of knapsacks, pj is the value of item j and 

Xij is a binary decision variable that indicates whether the item j is selected. 

3. Problem example. 

An example in real life that can be modeled using the Multiple Knapsack Problem is the distribution 

of goods by a logistics company to various delivery trucks.  

Here's how the variables and constraints could apply: 

▪ Quantity of items: Represents the different types of goods that need to be distributed. 

▪ Quantity of knapsacks (delivery trucks): Represents the number of available trucks for 

distribution. 

▪ Profit of item j (pj): Represents the value or importance of each type of goods. 

▪ Weight of item (Wj): Represents the physical weight or volume of each type of goods. 

▪ Capacity of Knapsack i (Ci): Represents the maximum weight or volume each truck can carry. 

The objective would be to maximize the total value of goods distributed while ensuring that each 

truck doesn't exceed its capacity and that each type of goods is allocated to only one truck. In addition, 

the decision variables (Xij) would indicate whether a specific type of goods is loaded onto a particular 

truck. By optimizing the assignment of goods to trucks while considering their values and the capacity 



constraints of each truck, the logistics company can efficiently distribute goods to maximize profit 

and ensure timely deliveries. 

The above was a specific way of projecting this type of problem in a real-life situation, for which 

there are a variety of solutions that can be applied. Below are listed the different ways to solve it, each 

with an accompanying explanation of how this would be represented algorithmically in a high-level 

language, for which we have chosen to use Python due to its dedication to data management. 

Furthermore, in this case, for the intention of illustrating, a small system has been implemented in all 

the methods: 

Problem: Suppose we have a knapsack with a capacity of 50 units and a set of items each with a 

specific weight and value. 

Items: 

Item 1: Weight = 10, Value = 60 

Item 2: Weight = 20, Value = 100 

Item 3: Weight = 30, Value = 120 

 

Dynamic Programming 

A method of solving this issue which uses certain cases to generate a result using a set of operations, 

which in turn have certain solutions to these cases. This is the type of method which are used on local 

search to attain better results to before made heuristics and is with it a method which improves on 

what was done before hand. 

Steps: 

1. Create a 2D array ‘dp’ where ‘dp[i][w]’ represents the maximum value that can be attained 

with the first ‘i’ items and a weight limit ‘w’. 

2. Initialize the array with zeros. 

3. Fill the array using the relation: 

𝑑𝑝[𝑖][𝑤] = max(𝑑𝑝[𝑖 − 1][𝑤], 𝑑𝑝[𝑖 − 1][𝑤 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑖] + 𝑣𝑎𝑙𝑢𝑒𝑖) 

𝑖𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 ≤ 𝑤 

Solution: 

• Initialize ‘dp’ with dimensions (𝑛+1) × (𝑊+1) where 𝑛 is the number of items and 𝑊 is the knapsack 

capacity. 



• Fill the ‘dp’ table using the recurrence relation. The maximum value that can be achieved with a 

capacity of 50 is 220. 

 

Image 1. Example of dynamic programming using Python. 

 

Using this method the maximum value that can be achieved with a capacity of 50 is 220. 

 

Backtracking Method 

This method uses backtracking to see new paths towards a result by changing cases when a less 

optimal path is taken with small modifications on a predefined previous iteration to get a better result 

by seeing all paths available, this method with other brute force methods are unreliable for quick 

generation of solutions which our problem needs but are an option which has some need of analyzing. 

Steps: 

1. Start with an empty knapsack. 

2. Recursively explore both possibilities for each item: including it or excluding it. 

3. Backtrack if the current total weight exceeds the capacity. 

  



Solution: 

 

Image 2. Example of backtracking method using Python. 

The backtracking approach also yields a maximum value of 220 for the given capacity. 

 

Greedy Function 

Method in which a desired trait is put at the upmost importance so with it this method can be used to 

generate the result by doing a series pf modification to find better results by increasing this number, 

on this is the method which uses nonlinear search heuristics and is the first use cases for the problem 

which we are focusing on. 

Steps: 

1. Calculate the value-to-weight ratio for each item. 

2. Sort items based on this ratio in descending order. 

3. Add items to the knapsack starting from the highest ratio until the capacity is reached. 

  



Solution: 

 

Image 3. Example of a greedy function using Python. 

The greedy approach results in a value of 240, which is higher than the optimal value for this 

specific problem, indicating the greedy approach might not always yield the optimal solution 

but provides a quick approximation. 

 

Mixed Approach Using Greedy and 2-OPT 

Steps: 

1. Use a greedy algorithm to get an initial feasible solution. 

2. Apply the 2-OPT technique to iteratively improve the solution. 

 

 



Solution: 

 

Image 3. Example of a greedy function using Python. 



 

This mixed approach first finds a feasible solution using the greedy method and then iteratively 

improves it using a local search method (2-OPT). This approach also yields a maximum value of 220, 

demonstrating an efficient combination of methodologies. 

4. Description of heuristics. 

In addressing the Multiknapsack problem, we employed a heuristic approach that involves ordering 

the items from highest to lowest value. This heuristic is based on the premise that prioritizing items 

with the highest value maximizes the total value in the knapsacks. By sorting the items this way, we 

can initially allocate the most valuable items to the knapsacks, thereby providing a strong starting 

solution. 

To further refine this initial solution, we utilized the 2-opt local search algorithm. The 2-opt method 

works by iteratively swapping two items between the knapsacks and assessing whether this exchange 

improves the overall solution. This process continues until no further improvements can be made, 

ensuring that we reach a locally optimal solution. However, in order to minimize computational 

resources and time, we implemented First Found algorithms, which expedite the local search process 

by accepting the first improvement found during the search, thus speeding up convergence to an 

improved solution. 

By combining the value-based heuristic with the 2-opt local search and First Found algorithms, we 

achieve a more effective solution to the Multiknapsack problem. The heuristic provides a solid 

foundation by leveraging high-value items, while the 2-opt local search and First Found algorithms 

fine-tune the allocation to optimize the total value across the knapsacks. This approach not only 

enhances the solution's quality but also demonstrates the practical utility of integrating heuristic 

methods with local search techniques in solving complex combinatorial optimization problems. 

5. Computational work. 

To evaluate the performance of the algorithms and heuristics, we developed three programs using the 

C programming language. The first program was designed to create test instances based on specified 

parameters, including the number of knapsacks, the number of items, and ranges for item values and 

weights. This program generated instances by assigning random weights and values to each item 

within the given ranges. 

The second program implemented the heuristic approach. This program processed the data generated 

by the first program, which was stored in files with a .dat extension. It applied the value-to-weight 

ratio heuristic to order the items and allocate them to the knapsacks, forming an initial solution. 

The third program focused on the local search algorithm. Using the initial solutions generated by the 

heuristic program, this program performed iterative improvements by swapping pairs of items 



between knapsacks to enhance the overall solution. Like the heuristic program, it also read data from 

.dat files generated by the first program. 

The testing process consisted of three segments, each involving 20 instances of varying sizes: small, 

medium, and large. The small instances included 5 knapsacks and 1,000 items, the medium instances 

had 500 knapsacks and 100,000 items, and the large instances comprised 5,000 knapsacks and 

1,000,000 items. Each segment was designed to test the scalability and efficiency of the algorithms 

and heuristics under different conditions, ensuring a comprehensive evaluation of their performance 

across a range of scenarios. Next, the results will be showed according to their size. 

Small instances 

Sample Final Combined Value Execution's time 
1 197467 0.00001 
2 197613 0.000009 
3 199786 0.00001 
4 197897 0.000009 
5 198882 0.000009 
6 197538 0.000009 
7 198818 0.00001 
8 201641 0.000009 
9 199846 0.00001 

10 202666 0.000009 
11 201382 0.00001 
12 194691 0.00001 
13 201699 0.00001 
14 198879 0.000009 
15 203363 0.000009 
16 198727 0.000008 
17 199369 0.00001 
18 199473 0.00001 
19 201963 0.00001 
20 198943 0.00001 

Table 1. Solutions after first heuristic (small instances). 

 

Sample Final Combined Value Execution's time Absolute improvement Relative improvement 
1 200220 0.86346 2753 1.39416% 
2 200000 0.97508 2387 1.20792% 
3 201678 0.93531 1892 0.94701% 
4 201680 1.00281 3783 1.91160% 
5 201486 1.01391 2604 1.30932% 



6 199187 0.80393 1649 0.83478% 
7 199826 0.75668 1008 0.50700% 
8 204163 0.99691 2522 1.25074% 
9 203729 1.04725 3883 1.94300% 

10 204257 0.74694 1591 0.78504% 
11 203277 0.94280 1895 0.94100% 
12 196193 0.96368 1502 0.77148% 
13 202757 0.81492 1058 0.52454% 
14 200152 0.78398 1273 0.64009% 
15 204765 0.74971 1402 0.68941% 
16 202670 0.88750 3943 1.98413% 
17 202120 0.77429 2751 1.37985% 
18 202853 0.95343 3380 1.69446% 
19 203528 0.88025 1565 0.77489% 
20 201455 0.82404 2512 1.26267% 

  Average 2267.65 1.13765% 
Table 2. Solutions and rates of improvement after local search heuristic (small instances). 

Corresponding to the results of the first group of instances, an average relative improvement of 1.14% 

was obtained from the application of local search, with a maximum improvement of 1.94%, while the 

smallest improvement was 0.51%. This is shown in the following graph, which displays the relative 

improvement for each instance in this group. 

 

Figure 1. Relative improvement on each solution after local search (small instances). 

This can be further supported by the following graph, which shows the improvement more clearly. In 

this graph, each line represents the set of final solutions, with the blue line representing the set before 
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applying local search and the red line corresponding to the set after this process. In this way, the 

increase in the final value of each solution is evident in each segment of the graph. 

 

Figure 2. Final total value before and after the local search (small instances). 

 

Medium instances 

Sample Final Combined Value Execution's time 
1 16831771 0.000009 
2 16872269 0.00001 
3 16848033 0.000009 
4 16829585 0.00001 
5 16827491 0.000009 
6 16809195 0.000009 
7 16826197 0.00001 
8 16837344 0.000009 
9 16789786 0.00001 

10 16837587 0.000009 
11 16839615 0.00001 
12 16831825 0.00001 
13 16860155 0.000009 
14 16854953 0.00001 
15 16855415 0.00001 
16 16776632 0.00001 
17 16818979 0.00001 
18 16829969 0.000009 
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19 16878397 0.00001 
20 16836469 0.000009 

Table 3. Solutions after first heuristic (medium instances). 

 

Sample Final Combined Value Execution's time Absolute improvement Relative improvement 
1 17065027 37.564 233256 1.38581% 
2 17103828 33.898 231559 1.37242% 
3 16946329 37.493 98296 0.58343% 
4 17024333 35.014 194748 1.15718% 
5 17033354 34.443 205863 1.22337% 
6 16967279 36.900 158084 0.94046% 
7 17002226 39.100 176029 1.04616% 
8 17021088 35.714 183744 1.09129% 
9 16902372 38.285 112586 0.67056% 

10 17020173 36.055 182586 1.08440% 
11 17058149 36.919 218534 1.29774% 
12 17033446 34.944 201621 1.19786% 
13 17076211 35.492 216056 1.28146% 
14 17051638 34.484 196685 1.16693% 
15 16958923 34.732 103508 0.61409% 
16 16905263 39.135 128631 0.76673% 
17 17027522 39.056 208543 1.23993% 
18 17043154 35.411 213185 1.26670% 
19 17015559 37.381 137162 0.81265% 
20 16969956 36.709 133487 0.79284% 

  Average 176708.15 1.04960% 
Table 4. Solutions and rates of improvement after local search heuristic (medium instances). 

Based on the outcomes of the initial set of instances, an average relative enhancement of 1.05% was 

attained following the implementation of local search. The improvement ranged from a minimum of 

0.58% to a maximum of 1.39%. These variations are graphically depicted below, showcasing the 

relative enhancement achieved for each instance within this dataset. 



 

Figure 3. Relative improvement on each solution after local search (medium instances). 

Further validation is provided through the subsequent visualization, which offers a clearer 

representation of the enhancement. Each line within this graph delineates the final solution set, 

following the same structure as the graphic from the group of small instances. Consequently, the 

augmented value of each solution becomes apparent across all segments of the graph. 

 

Figure 4. Final total value before and after the local search (medium instances). 
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Large instances 

Sample Final Combined Value Execution's time 
1 149997809 0.03964 

2 149994524 0.03964 

3 149914887 0.03964 

4 149921792 0.03964 

5 149949880 0.03963 

6 149921916 0.03964 

7 149932848 0.03965 

8 149945940 0.03964 

9 149989870 0.03964 

10 149999965 0.03965 

11 149983950 0.03964 

12 149934878 0.03964 

13 149974851 0.03964 

14 149912941 0.03965 

15 149943835 0.03964 

16 149948866 0.03964 

17 149929943 0.03964 

18 149932919 0.03964 

19 149923952 0.03963 

20 149934953 0.03964 

Table 5. Solutions after first heuristic (large instances). 

 

Sample Final Combined Value Execution's time* Absolute improvement Relative improvement 
1 150145477 600.00 147668 0.09845% 
2 150118676 600.00 124152 0.08277% 
3 150154933 600.00 240046 0.16012% 
4 149994762 600.00 72970 0.04867% 
5 150196038 600.00 246158 0.16416% 
6 150033357 600.00 111441 0.07433% 
7 150017212 600.00 84364 0.05627% 
8 150178623 600.00 232683 0.15518% 
9 150147812 600.00 157942 0.10530% 

10 150266410 600.00 266445 0.17763% 
11 150156796 600.00 172846 0.11524% 
12 150163486 600.00 228608 0.15247% 
13 150060339 600.00 85488 0.05700% 
14 149995484 600.00 82543 0.05506% 



15 150237468 600.00 293633 0.19583% 
16 150230176 600.00 281310 0.18760% 
17 150014843 600.00 84900 0.05663% 
18 150209072 600.00 276153 0.18418% 
19 150212592 600.00 288640 0.19252% 
20 150158662 600.00 223709 0.14920% 

  Average 185084.95 0.12343% 
Table 6. Solutions and rates of improvement after local search heuristic (large instances). 

Based on the results obtained from the initial set of instances, an average relative progress of 0.05% 

was recorded after applying the local search technique. The range of progress varied from a minimum 

of 0.58% to a maximum of 0.2%. These variations are visually depicted below, illustrating the relative 

progress achieved for each instance within this dataset. 

 

Figure 5. Relative improvement on each solution after local search (large instances). 

Further confirmation is provided through the subsequent graphical representation, which offers a 

clearer visualization of the progress. Each line within this graph represents the final solution set, with 

the initial solution set depicted in blue and the modified solution set shown in red. Consequently, the 

increased value of each solution is evident across all segments of the graph. 
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Figure 6. Final total value before and after the local search (large instances). 

However, it's important to note that due to a processing time limit of 10 minutes, the program did not 

have sufficient opportunity to review all solutions and perform the necessary comparisons and 

movements. Hence, the relative improvement obtained in this group is significantly lower than in 

previous tests. 
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6. Conclusions 

The results of this experiment demonstrate a consistent improvement in the final solutions after 

applying the local search heuristic across instances of varying sizes. On average, a relative 

improvement of 1.14% was achieved for small instances, 1.05% for medium instances, and 0.12% 

for large instances. This indicates that the local search heuristic consistently enhances solution quality, 

regardless of the instance size. 

 

Figure 7. Final total value before and after the local search (large instances). 

These findings underscore the effectiveness of the local search heuristic in refining solutions to the 

Multiknapsack problem. By iteratively optimizing the allocation of items across knapsacks, the local 

search algorithm consistently produces improved solutions compared to the initial heuristic 

allocation. 

Moving forward, there is an opportunity for further improvement by allocating greater time and better 

resources to future research and experiments. By reducing constraints such as time limitations and 

providing access to more robust computational resources, researchers can conduct more extensive 

analyses and experimentation. This would enable the exploration of additional optimization 

techniques and the validation of results with greater statistical validity, ultimately leading to more 

accurate and reliable findings in the field of combinatorial optimization. 
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