\9 } +5
° ° ° ° .ZO
Computational Experience with Heuristics

for the Generalized Assignment Problem
(GAP)

Miguel A. Ramirez Gutiérrez, Alejandro S. Carranza Rodriguez
FIME — UANL

miguel.ramirezg@uanl.edu.mx
INTRODUCTION

The Generalized Assignment Problem (GAP) is an optimization challenge commonly encountered in
real-world situations where resources must be allocated efficiently to tasks or jobs. It involves
assigning a set of resources, each with specific capacities, to a set of tasks, each with different
requirements and associated costs. The main goal is to minimize the total cost of assigning resources
to tasks while ensuring that each resource's capacity is not exceeded.

This problem has attracted attention since 1975 and is about finding the best way to assign tasks (or
jobs) to agents (or machines) at the lowest cost. GAP has diverse applications ranging from job
scheduling to facility location and routing in wvarious industries like manufacturing,
telecommunications, and transportation. By optimizing resource-task assignments, organizations can
boost operational efficiency, cut costs, and improve productivity.

Unlike simpler assignment problems, GAP allows for assigning multiple tasks to a single resource if
the resource's capacity is not surpassed. This flexibility mirrors the complexity of real-world scenarios
such as production planning and project scheduling, where resources may need to handle multiple tasks
simultaneously.

In summary, the Generalized Assignment Problem is widely applicable across fields like
manufacturing, telecommunications, transportation, and project management. Its adaptability makes it
an invaluable tool for addressing resource allocation challenges involving multiple tasks and resources
with different capacities and costs.

Practical applications of GAP

Manufacturing and Production Planning: Allocating machines to different production tasks to
minimize production costs. Assigning workers to specific manufacturing operations considering their
skills and capacity. (Deb, Kalyanmoy. "Multi-Objective Optimization Using Evolutionary
Algorithms." John Wiley & Sons, 2001.)

Project Scheduling: Assigning project tasks to available team members while minimizing costs and
considering skill requirements. (Baker, Kenneth R., and Dan Trietsch. "Principles of sequencing and
scheduling.” John Wiley & Sons, 2009.)

Facility Location and Assignment: In logistics and supply chain management, GAP can be applied
to decide the optimal location for facilities (such as warehouses or distribution centers) and assign tasks
related to order fulfillment to these facilities. (Drezner, Zvi, and Horst W. Hamacher. "Facility location:
Applications and theory." Springer Science & Business Media, 2004.)

mailto:miguel.ramirezg@uanl.edu.mx
roger
Sticky Note
Final report grade (20 pts)

Introduction and problem motivation (15% - 3 pts)
+2.9

Description of constructive heuristic (20% - 4 pts)
+4.0

Description of local search heuristic (20% - 4 pts)
+4.0

Description and clarity of experimental design and test runs (10% - 2 pts)
+2.0

Presentation and discussion of computational results (30% - 6 pts)
+5.9

Adequate usage of bibliographic references (5% - 1 pts)
+0.9

TOTAL: 19.7 / 20

Extra credit for an additioonal heuristic: +5.0

roger
Pencil

Specific examples of GAP

Manufacturing and Production Planning

Project Name: Toyota Production System Optimization Project
Date: 2005

Description: Toyota utilized genetic algorithms to optimize its production system by allocating
machines to different production tasks. By optimizing machine allocation, Toyota aimed to reduce
production costs and improve overall efficiency in its manufacturing processes.

Project Scheduling

Project Name: NASA's Mars Rover Mission Scheduling

Date: 2012

Description: NASA employed genetic algorithms to schedule tasks for the Mars rover missions.
Tasks such as data collection, analysis, and communication were scheduled considering resource
constraints, environmental conditions, and mission objectives. Genetic algorithms helped NASA to
optimize task schedules and ensure efficient utilization of resources during the missions.

Facility Location and Assignment:

Project Name: Amazon Warehouse Location Optimization Project
Date: 2018

Description: Amazon utilized genetic algorithms to optimize the location of its warehouses and
distribution centers. By considering factors such as customer demand patterns, transportation costs,
and inventory management requirements, Amazon aimed to determine the most strategic locations
for its facilities. Additionally, genetic algorithms were used to assign tasks related to order fulfillment
and inventory management to these facilities, optimizing the overall logistics operations.

PROBLEM DESCRIPTION

LetI={1,2....m} be asetofagents, and letJ={ 1,2 n} be a set of jobs. For i E I,j ~ J, define c
as the cost of assigning job j to agent i (or assigning agent i to job j), b as the resource required by
agent i to perform job j, and a as the resource availability (capacity) of agent i. Also, x 0 is a 0-1
variable that is 1 if agent i performs job j and 0 otherwise.

Data: Input data consists of:

¢ n: Number of jobs to be assigned.
e m: Number of agents.
e Define (n>m) and N= {1, 2,...n}

Decisions: Decisions to be made include:

o Designate multiple tasks to agents.

Objective: The goal is to minimize the total cost of assigning resources to tasks while satisfying the
capacity constraints of each resource.

Constraints:

e Each job is assigned exactly to one agent.
e The total resource requirement of the jobs assigned to an agent does not exceed the capacity
of the agent.

We allow all data elements to be real (certain efficiencies follow if the data elements are assumed to
be integral).

Mathematical Model:

The GAP may be formulated as a 0-1 integer linear programming (ILP) model. Let n be the number
of'tasks to be assigned to m agents (n > m and define N =1 2 n). We define the requisite data ele ments
as follows:

e Cjj = cost of task j being assigned to agent i.
e aj= capacity of agent i.
o bj= the requirement of task j to be performed.
Decision Variables
1 if task j is assigned to agent i
o Xij=
0 if not.
Mathematical Model
The 0-1 ILP model may then be written as:
Minimize:

m n
i=1 2j=1Cij» Xij 1)

Subject to
n

i=1

Xij=0or1l, Vvij 4)

The objective function (1) sums the costs of the assignments, while constraint (2) enforces the resource
limitation for each agent. Constraint (3) ensures that each job is assigned to exactly one agent. We allow all
data elements to be real (certain efficiencies follow if the data elements are assumed to be integral)

PROBLEM EXAMPLE

Consider a small instance of the GAP with:

Agent Capacities: al=7, a2=5

Task Requirement: b1=2, b2=3, b3=2

Constrains:
e Each task must be assigned to exactly one agent.
e The capacity of each agent must not be exceeded.

Agent 1 Agent 2
Task 1 1 3
Task 2 2 1
Task 3 2 4

Feasible Solution:
x11=1, X12=0, x13=1 (Tasks T1 and T3 is assigned to agent 1)
x21=0, X22=1, X23=0 (Task T1 is assigned to agent 2)
Objective Function Evaluation:
X1+ Xoo + X13=4 agent 1 capacity: 7-2-2 =3
Total Cost = 1+1+2 =4 agent 2 capacity =5-3=2

DESCRIPTION OF CONSTRUCTIVE HEURISTICS

HEURISTIC 1: GREEDY COST-CAPACITY RATIO

The objective of this heuristic is to achieve the optimal solution using the cost-capacity ratio to select the
best possible assignment, in the context of the general assignment problem the best assignment are the
ones with lowest values. The steps are the next ones:

Step 1: Initialization

e Start with an empty assignment of tasks to agents.
¢ Initialize remaining capacities for each agent to their respective maximum capacities.
o Initialize the total cost to 0.

Step 2: Task Selection
For each task:

e Compute the cost-capacity ratio for assigning the task to each available agent. The cost-capacity
ratio is calculated by dividing the cost of assigning the task to an agent by the remaining
capacity of that agent.

o Select the agent with the minimum cost-capacity ratio for the task.

Step 3: Task Assignment

e Assign the selected task to the agent with the minimum cost-capacity ratio.
e Update the remaining capacity of the assigned agent by decrementing it by 1.
e Update the total cost by adding the cost of assigning the task to the selected agent.

Step 4: Repeat

¢ Repeat steps 2 and 3 until all tasks are assigned to agents.
Step 5: Termination

e Once all tasks are assigned, the algorithm terminates.

Example:
Let's consider a simple example with 3 tasks and 2 agents. Here are the details:
e Tasks: 3
e Agents: 2
e Capacities: Agent 1: 6, Agent 2: 5
e Requirement: Task 1: 3 Task 2: 2 Task 3: 3
Costs Matrix:

Agent 1 Agent 2
Task 1 10 5
Task 2 8 6
Task 3 7 9

Task 1:
2-Task Selection

e Cost-Capacity Ratio: Agent 1 =10/6 = 1.66, Agent 2 = 5/6 = 0.866
3-Task Assignment

e Assign Task 1 to Agent 2 (min ratio 2.5).

e Updated Capacities: Agent 1: 6, Agent 2: 2

Total Cost: 5

4-Repeat

Task 2:

Task 3:

Cost-Capacity Ratio: Agent 1 =8/6 =1.33, Agent2=6/2=3
Assign Task 2 to Agent 1 (min ratio 1.33).

Updated Capacities: Agent 1: 3, Agent 2: 2

Total Cost: 5+8 =13

Cost-Capacity Ratio: Agent1=7/3=2.33, Agent2=9/2=45
Assign Task 3 to Agent 1 (min ratio 2.33).

Updated Capacities: Agent 1: 0, Agent 2: 2

Total Cost: 13+7 =20

5-Termination

Final Assignment:

Task 1 -> Agent 2

Task 2 -> Agent } Xi2+ X211+ X13=20
Task 3 -> Agent 1

Total Cost: 20

LOCAL SEARCH TASK REASIGNATION

The objective of the task resignation it’s to find the local optimal of a feasible solution this move only takes
in mind the tasks and agents involved in the solution, that makes the algorithm fast, but it can be that in
some scenarios its possible that it can’t find a better solution that the one given. The steps are the next ones:

Step 1:

Step 2:

Step 3:

Step 4:

Initial Solution Generation
We need to pick a feasible solution of an instance.

Neighbor Solution Generation
Identify "neighbor" solutions by reassigning one task to a different agent.
movel(l, i; K) =reassign task i € X of agent | to agent k

AZ= Cl,i — Ck,i

Az>0 NO

Az<0 YES
Evaluate Neighbor Solutions

Calculate the total cost of each neighbor’s solution. Compare these costs to the total cost of the
current solution.

Acceptance Criterion

If a neighbor solution has a lower total cost than the current solution, accept the neighbor solution
as the new current solution. If no better neighbor is found, the current solution remains unchanged.

Step 5: Iteration

o Repeat the process of generating neighbor solutions and evaluating them until no further
improvements can be made, or a predefined number of iterations is reached.

Step 6: Termination

e The algorithm terminates when no better neighbor solution is found, indicating a locally optimal
solution has been achieved.

LOCAL SEARCH TASK REASIGNATION APPLY IN HEURISTIC 1

In base of the feasible solution given: X12+ X21 + X13=20
1.Generate Neighbor Solutions:

. 1(2, 1; 1) = Not possible (capacity exceeded, agent 1 has 1 of capacity left and the
requirement of this task is 3).

. 1(1,2;2)=-8+6 = -2

. 1(1, 3; 2) = Not possible (capacity exceeded, agent 2 has 2 of capacity left and the

requirement of this task is 3).
2. Evaluate Neighbor Solutions:
e Only valid neighbor solution with improved cost: Task 2 to Agent 2
3. Update Solution:

e Accept the neighbor solution with Task 2 reassigned to Agent 2:
e Updated Capacities: Agent 1: 1, Agent 2: 0
e Total Cost: 5 (Task 1) + 6 (Task 2) + 7 (Task 3) = 18

New Assignment:

e Task1->Agent2

e Task2->Agent 2

o Task3->Agentl
Total Cost: 18

4. Iteration:
Continue searching for neighbor solutions. For simplicity, assume no further improvement is found.

5. Termination:
The local search terminates, and the final assignment is:
e Task1->Agent2
e Task 2 -> Agent 2 } Xo1+ X22+ X13=18
e Task3->Agentl
Total Cost: 18

HEURISTIC 2: GREEDY CAPACITY BALANCING ASSIGNMENT

The Greedy Capacity Balancing Assignment heuristic aims to assign tasks to agents while balancing the
load across agents and minimizing the total cost. The heuristic considers the cost of assigning a task to an
agent and the remaining capacity of the agent. The goal is to distribute tasks in a way that avoids overloading
any single agent and keeps the overall assignment cost low.

Step 1: Initialization
e Start with all tasks unassigned.
¢ Initialize the remaining capacity of each agent based on their initial capacity.
Step 2: Iterative Task Assignment
e For each task, determine the best agent to assign it to. The "best" agent is chosen based on a
metric that combines the cost of assignment and the remaining capacity of the agent.
e Assign the task to the agent that has the lowest cost per remaining capacity (cost divided by
remaining capacity plus one).
e Update the remaining capacity of the chosen agent.
Step 3: Repeat
o Continue the process for all tasks until all tasks are assigned or no feasible assignment can be
made due to capacity constraints.
Step 4: Completion
e Once all tasks are assigned, calculate the total cost of the assignment.
¢ Output the assignment and the total cost.
Example

Consider an example with 3 tasks and 2 agents:

Tasks: 4

Agents: 3

Capacities: Agent 1: 6, Agent 2: 5, Agent 3: 6
Requirement: Task 1: 3 Task 2: 2 Task 3: 3 Task 4:2
Costs Matrix:

Agent 1 Agent 2 Agent 3
Task 1 10 5 7
Task 2 8 6 9
Task 3 7 9 4
Task 4 6 3 8

Task 1 Assignment:
Calculate metric (cost / (remaining capacity + 1)) for Task 1:

Agent1:10/(6 +1)=1.42

Agent2:5/(5+1)=0.833

Agent3:7/(6+1)=1

Assign Task 1 to Agent 2 (lowest metric: 0.833)

Update remaining capacities: Agent 1: 6, Agent 2: 2, Agent 3: 6
Assigned tasks: Task 1 -> Agent 2

Task 2 Assignment:
Calculate metric for Task 2:

Agent1:8/(6+1)=1.14

Agent2:6/(2+1)=3

Agent3:9/(6+1)=1.28

Assign Task 2 to Agent 1 (lowest metric: 1.14)

Update remaining capacities: Agent 1: 4, Agent 2: 2, Agent 3: 6
Assigned tasks: Task 1 -> Agent 2, Task 2 -> Agent 1

Task 3 Assignment:
Calculate metric for Task 3:

Agentl1l:7/(4+1)=14

Agent2:9/(2+1)=3

Agent3:4/(6+1)=0.57

Assign Task 3 to Agent 3 (lowest metric: 0.57)

Update remaining capacities: Agent 1: 4, Agent 2: 2, Agent 3: 3
Assigned tasks: Task 1 -> Agent 2, Task 2 -> Agent 1, Task 3 -> Agent 3

Task 4 Assignment:
Calculate metric for Task 4:

Agent1l:6/(4+1)=12

Agent2:3/(2+1)=1

Agent3:8/(3+1)=2

Assign Task 4 to Agent 2 (lowest metric: 1)

Update remaining capacities: Agent 1: 4, Agent 2: 0, Agent 3: 3

Assigned tasks: Task 1 -> Agent 2, Task 2 -> Agent 1, Task 3 -> Agent 3, Task 4 -> Agent 2

Final Assignments:

Task 1 -> Agent 2

Task 2 -> Agent 1

Task 3 -> Agent 3 Xo1+ X2+ Xzz+ Xoa=20
Task 4 -> Agent 2

Total Cost: 5+8+4+3=20

LOCAL SEARCH TASK REASSIGNATION APPLY IN HEURISTIC 2
In base of the feasible solution given: Xz21+ X12 + X33+ Xo4 =20
1. Generate Neighboring Solutions:

1(2,1;1)=-5+10=5 NO

1(1, 2; 2) = Not possible (capacity exceeded, agent 2 has 0 of capacity left and the
requirement of this task is 3).

1(2,1;3)=-5+7=2 NO

133,3;1)=-4+7=3 NO

1(3, 3; 2) = Not possible (capacity exceeded, agent 2 has 0 of capacity left and the
requirement of this task is 3).

1(1, 2; 3) = -8+9=1 NO
1(2,4;1)=-3+6=3 NO
1(2,4;3)=-3+8 =5 NO

5. Termination:
No better neighbor was found, so the solution stays the same: X2,1+ X12 + X33+ X24 =20

EXPERIMENTAL COMPUTATION

Experiments for the GAP

For the experiments we will approach 3 different sizes of data:

Data

Small: Set of size n = 1000 — 50 tasks, 20 agents

Medium: Set of size n = 10,000 — 200 tasks, 50 agents
Large: Set of size n = 100,000 — 500 tasks, 200 agents

e For every task the cost will be generated randomly between 0 and 101

o For every agent the capacity will be generated randomly

There will be generated 20 instances for every size of data (small, medium, and large). Then in every
instance of every size, we will be applying the two heuristics (CH1: Greedy Cost-Capacity Ratio and
CH2: Greedy Capacity Balancing Assignment) as well the local search algorithms in both of them, to
visualize and compare the minimum cost on every instance and compare the results so we can select
which was a better a more efficient Heuristic as well the local search algorithm.

Heuristics and Local Search

e H1: Greedy Cost-Capacity Ratio
e H2: Greedy Capacity Balancing Assignment

Experiment 1: CH1 vs CH2

e In this first experiment we will compare the results between our two heuristics (Table Data)

Small Instances:

Small CH1vsCH2 {with NO local search)

Instance CH1_OF CH1_time (epu sec) CH2_OF CH2_time (cpu sec) ABS CH1-CH2 REL IMP OF CH1 over CH2 REL IMP OF CH1 over CH2
Small 01 367 0.008 348 0.008 15 -0.054597701 0.051771117
Small_02 305 0.008 305 0.008 0 0 0

Small 03 369 0.009 367 0.009 2 -0.005449591 0.005420054
Small_04 322 0.008 309 0.008 13 -0.042071187 0.040:372671
Small 05 321 0.009 284 0.008 37 -0.13028169 0.115264798
Small_06 374 0.009 352 0.009 22 -0.0625 0.058823529
Small 07 394 0.008 394 0.009 0 0 0
Small_08 347 0.009 346 0.008 1 -0.002890173 0.002881844
Small 09 352 0.008 347 0.008 5 -0.014409222 0.014204545
Small_10 356 0.009 338 0.009 18 -0.053254438 0.050561798
Small_11 421 0.018 399 0.009 2 -0.055137845 0.052256532
Small_12 396 0.009 370 0.009 26 -0.07027027 0.065656566
Small_13 314 0.009 303 0.008 11 -0.03630363 0.035031847
Small_14 316 0.011 311 0.009 5 -0.01607717 0.015822785
Small_15 340 0.009 326 0.008 14 -0.042944785 0.041176471
Small_16 293 0.008 295 0.008 -2 0.006779661 -0.006825939
Small_17 294 0.01 292 0.008 2 -0.006849315 0.006802721
Small_18 345 0.009 343 0.008 2 -0.005830004 0.005797101
Small_19 304 0.009 289 0.009 15 -0.051803114 0.045342105
Small_20 350 0.009 338 0.008 12 -0.035502959 0.034285714

Average Time 0.0093 0.0084

Medium Instances:

Medium CH1vsCH2 {with NO local search)

Instance CH1 OF | CH1 time (cpusec) | CH2 OF | CH2_time (cpusec) ABS CH1-CH2 | RELIMPOFCH1overCH2 | RELIMPOF CH2 overCH1
Medium_01 716 0.321 706 0.307 10 -0.014164306 0.01396648
Medium_02 642 0.317 642 0.313 0 0 0
Medium_03 588 0.319 583 0.317 9 -0.008576329 0.008503401
Medium_04 605 0.336 579 0.32 26 -0.0442305009 0.042975207
Medium_05 634 0.316 632 0.319 2 -0.003184557 0.003154574
Medium_08 677 0.313 669 0.313 8 -0.011958146 0.011816839
Medium_07 661 0.307 633 0.32 6 -0.009160305 0.009077156
Medium_08 662 0.311 637 0.313 5 -0.00761035 0.00755287
Medium_09 722 0.31 722 0.316 0 0 0
Medium_10 683 0.316 681 0.319 2 -0.0025936858 0.002928258
Medium_11 762 0.316 730 0.316 32 -0.043835616 0.041994751
Medium_12 736 0.309 732 0.317 4 -0.005464481 0.005434783
Medium_13 691 0.317 686 0.319 5 -0.00728863 0.00723589
Medium_14 583 0.309 581 0.316 2 -0.003442341 0.003430532
Medium_15 762 0.306 760 0.317 2 -0.002631579 0.002624672
Medium_16 703 0.319 703 0.319 0 0 0
Medium_17 651 0.313 651 0.316 0 0 0
Medium_18 662 0.305 654 0.317 8 -0.012232416 0.012084592
Medium_19 678 0.32 673 0.307 5 -0.007429421 0.007374631
Medium_20 776 0.306 767 0.317 9 -0.011734029 0.011597938

Average Time 0.3143 0.3159
Large Instances:

Large CH1ws CH2 (with MO local search)

Instance CH1_0F |CH1_time (cpusec) CH2 OF |CH2_time ([cpusec) ABS CH1-CH2 |RELIMP OF CH1 overCH2 |RELIMP OF CH2 overCH1
Large 01 694 0.317 691 0.336 3 -0.004341534 0.004322767
Large_02 703 0.336 703 0.309 0 0 0
Large 03 686 0.313 686 0.307 0 0 0
Large 04 683 0.307 682 0.313 1 -0.001466276 0.001464129
Large 05 703 0.317 702 0.307 1 -0.001424501 0.001422475
Large_06 679 0.336 672 0.309 7 -0.010416667 0.010309278
Large 07 688 0.309 695 0.316 -7 0.010071242 -0.010174419
Large 08 692 0.307 692 0.313 0 0 0
Large 09 686 0.316 686 0.313 0 0 0
Large_10 711 0.31 711 0.316 0 0 0
Large 11 673 0.336 709 0.307 -36 0.05077574 -0.053491828
Large_12 713 0.317 673 0.309 40 -0.059435364 0.056100332
Large 13 6684 0.306 682 0.336 2 -0.002532551 0.002523577
Large 14 702 0.336 702 0.313 0 0 0
Large_15 742 0.316 742 0.316 0 0 0
Large_16 727 0.317 726 0.309 1 -0.00137741 0.001375516
Large_17 695 0.309 695 0.313 0 0 0
Large 18 677 0.306 677 0.309 0 0 0
Large_19 683 0.336 683 0.336 0 0 0
Large_20 701 0.313 699 0.313 2 -0.00286123 0.002853067

Average Time 0.318 0.315

Experiment 2: CH1vs CH1 LS

¢ In this second experiment we will compare the Heuristic Number 1 and the local search algorithm

applied to this heuristic (swapping the assignment of a task from one agent to another).

Small Instances:

Small CH1vsCH1 LS (with local search)
Instance CH1 OF CH1_time (cpusec) CH1 LS CH1LS_time (cpu sec) ABS CH1-CH1LS | RELIMP OF CH1 overCH1LS RELIMP OF CH1ls over CH1
Small_01 367 0.008 285 2.7 82 -0.287719298 0.223433243
Small_02 305 0.008 259 2.77 46 -0.177606178 0.150815672
Small 03 369 0.009 296 2.789 73 -0.246621622 0.187831978
Small 04 322 0.008 240 2,742 82 -0.341666667 0.254658385
Small_05 321 0.009 245 2.778 76 -0.310204082 0.236760125
Small_06 374 0.009 260 2.769 114 -0.438461538 0.304812834
Small_07 394 0.008 347 2.803 47 -0.135446686 0.11928934
Small_08 347 0.009 282 2,734 G5 -0.230496454 0.187319885
Small_09 352 0.008 290 2.815 62 -0.213793103 0.176136364
Small_10 356 0.009 297 2.758 59 -0.158653159% 0.165730337
Small_11 421 0.018 288 2.798 133 -0.461805556 0.315914489
Small_12 396 0.009 295 2.849 101 -0.342372881 0.255050505
Small_13 314 0.009 286 2.748 _ 28 -0.097902098 0.089171975
Smal. 14 316 0.011 280 2,771 |Cerrar] 0128571429 0.113924051
Small_15 340 0.009 268 2.733 72 -0.268656716 0.211764706
Small_16 293 0.008 240 2.734 53 -0.220833333 0.180887372
Small_17 294 0.01 233 2.566 61 -0.261802575 0.207482993
Small_18 345 0.009 278 2.787 67 -0.241007194 0.194202899
Small_19 304 0.009 246 3.044 58 -0.235772358 0.190789474
Small_20 350 0.009 266 2,781 24 -0.315788474 0.24
Average Time 0.0093 2.77695

Medium Instances:

Medium CH1vsCH1 LS {with local search)

Instance CH1 OF | CH1 time ([cpusec) | CH1_LS CH1LS time (cpu sec) ABS CH1-CH1LS|REL IMP OF CH1 over CH1LS | REL IMP OF CH1ls over CH1
Medium_01 716 0.321 540 117.32 176 -0.325825926 0.245810056
Medium_02 642 0.317 489 110,712 153 -0.312383436 0.238317757
Medium_03 588 0.319 469 108.927 119 -0.253731343 0.202380952
Medium_04 605 0.336 322 110.724 283 -0.878881988 0.467768595
Medium_05 634 0.316 516 108.445 118 -0.228682171 0.186119874
Medium_06 677 0.313 515 109.353 162 -0.314563107 0.23525099
Medium_07 661 0.307 471 108.788 1590 -0.403397028 0.287443268
Medium_08 662 0.311 488 109.184 174 -0.356557377 0.262839879
Medium_09 722 0.31 532 108.345 1590 -0.357142857 0.263157895
Medium_10 683 0.316 534 109.647 149 -0.279026217 0.218155198
Medium_11 762 0.316 483 108.767 279 -0.577639752 0.366141732
Medium_12 736 0.309 537 108.864 199 -0.370577281 0.270:380435
Medium_13 691 0.317 509 109.301 182 -0.357563851 0.263386397
Medium_14 583 0.309 467 109.008 116 -0.248394004 0.19897084
Medium_15 762 0.306 555 109.516 207 -0.372972973 0271653543
Medium_16 703 0.319 520 109.382 183 -0.351823077 0.260312045
Medium_17 651 0.313 498 109.583 153 -0.307228916 0.235023041
Medium_18 662 0.305 504 109.569 158 -0.313452063 0.23B8670605
Medium_19 678 0.32 523 109.939 155 -0.296367113 0.228613569
Medium_20 776 0.306 522 109.916 254 -0.4865590038 0.327319588

Average Time 0.3143 109.7645

Large Instances:

Large CH1vsCH1 LS [with local search)
Instance CH1_OF CH1_time (cpu sec) CH1 LS | CHILS time (cpusec) pB5S CH1-CH1LY RELIMP OF CH1 over CH1LS RELIMP OF CH1ls over CH1
Large 01 694 0.317 567 449,38 127 -0.223985801 0.182997118
Large 02 703 0.336 498 4561.58 205 -0.411646586 0.291607397
Large 03 686 0.313 567 434.32 119 -0.208876543 0.173469388
Large 04 683 0.307 534 465.62 145 -0.279026217 0.218155198
Large 05 703 0.317 467 426.54 236 -0.505353319 0.335704125
Large 06 679 0.336 455 461.58 2324 -0.492307692 0.325896907
Large 07 668 0.309 598 516.7 90 -0.150501672 0.130813953
Large 08 692 0.307 573 449,38 119 -0.207678883 0.171965318
Large 09 686 0.316 520 427.64 166 -0.319230769 0.241982507
Large 10 711 0.31 522 550.54 189 -0.362068966 0.265822785
Large 11 673 0.336 455 465.62 218 -0.479120879 0.323922734
Large 12 713 0.317 532 427.64 181 -0.340225564 0.253856942
Large 13 654 0.306 566 519.46 118 -0.208480565 0.17251462
Large 14 702 0.336 571 451.58 131 -0.229422067 0.186609687
Large 15 742 0.316 491 556.85 251 -0.511201629 0338274933
Large 16 727 0.317 543 434.32 184 -0.338858185 0253094911
Large 17 695 0.309 512 465.62 183 -0.357421875 0.263309353
Large 18 677 0.306 444 519.46 233 -0.524774775 0.344165436
Large 159 683 0.336 505 489.34 178 -0.352475248 0260614934
Large 20 701 0.313 555 436.61 146 -0.263063063 0.208273804
Average Time 0.318 473.989

Experiment 3: CH2 vs CH2_LS

e In this third experiment we will compare the Heuristic Number 2 and the local search algorithm
applied to this heuristic (swapping the assignment of a task from one agent to another).

Small Instances:

Small CH2vs CH2 LS {with local search)
Instance CH2 OF CH2 _time (cpu sec) CH2 LS CH2LS _time (cpu sec) ABS CH2-CH2LS | RELIMP OF CH2 over CH2LS RELIMP OF CH2ls over CH2
Small 01 348 0.008 258 0.05 80 -0.348837209 0.25862069
Small 02 305 0.008 247 0.04 58 -0.234817814 0.190163934
Small 03 367 0.009 276 0.04 91 -0.325710145 0.247956403
Small 04 309 0.008 240 0.04 69 -0.2875 0.223300971
Small_05 284 0.008 245 0.82 39 -0.159183673 0.137323844
Small 06 352 0.009 226 0.08 126 -0.557522124 0.357954545
Small 07 394 0.009 329 0.06 65 -0.187568389 0.164974619
Small 08 346 0.008 281 0.05 65 -0.231316726 0.187861272
Small 09 347 0.008 290 0.05 57 -0.186551724 0.16426513
Small_10 338 0.009 296 0.05 42 -0.141891892 0.124260355
Small_11 399 0.009 288 0.05 111 -0.385416667 0.278195489
Small 12 370 0.009 295 0.05 75 -0.254237288 0.202702703
Small_13 303 0.008 282 0.02 21 -0.074468085 0.065306931
Small_14 311 0.009 277 0.04 34 -0.122743682 0.109324759
Small_15 326 0.008 246 0.04 80 -0.325203252 0.245398773
Small_16 295 0.008 240 0.03 55 -0.229166667 0.186440678
Small 17 292 0.008 233 0.04 59 -0.253218884 0.2020547395
Small_18 343 0.008 278 0.04 65 -0.23381295 0.189504373
Small 19 289 0.009 193 0.05 86 -0.497409326 0.332179931
Small_20 338 0.008 265 0.04 73 -0.275471698 0.215976331
Average Time 0.0084 0.084

Medium Instances:

Medium CH2vsCH2 LS (with local search)

Instance CH2_OF | CH2_time [cpusec) | CH2_LS CH2LS_time (cpu sec) ABS CH2-CH2LS| REL IMP OF CH2 over CH2LS | REL IMP OF CH2ls over CH2
Medium_01 706 0.307 538 5.87 168 -0.312267658 0.23796034
Medium_02 642 0.313 489 5.2 153 -0.312883436 0.238317757
Medium_03 583 0.317 469 5.53 114 -0.243070362 0.195540309
Medium_04 579 0.32 480 4.51 =] -0.20625 0.170984456
Medium_05 632 0.319 515 5.55 117 -0.227184466 0.185126582
Medium_06 669 0.313 515 6.7 154 -0.2908029126 0.23019432
Medium_07 655 0.32 471 7.06 184 -0.300658174 0280916031
Medium_08 657 0.313 478 6.36 179 -0.374476987 0.272450533
Medium_09 722 0.316 495 6.34 227 -0.458585859 0.314404432
Medium_10 661 0.319 528 6.64 153 -0.289772727 0.224669604
Medium_11 730 0.316 473 7.07 257 -0.543340381 0.352054795
Medium_12 732 0.317 533 6.93 159 -0.373358349 0271857923
Medium_13 686 0.319 509 6.32 177 -0.347740668 0.258017493
Medium_14 581 0.316 467 5.41 114 -0.244111345 0.196213425
Medium_15 760 0.317 549 8.13 211 -0.384335155 0277631579
Medium_16 703 0.319 519 6.41 184 -0.354527938 026173542
Medium_17 651 0.316 494 8.39 157 -0.317813765 0241167435
Medium_18 654 0.317 500 6.54 154 -0.308 0.235474006
Medium_19 673 0.307 521 6.54 152 -0.201746641 0225854383
Medium_20 767 0.317 518 7.99 249 -0.480694981 0.32464146

Average Time 0.3159 6.4745

Large Instances:
Large CH2vs CH2_LS (with local search)
Instance CH2 OF CH2_time (cpu sec) CH2 LS | CH2LS time [cpusec) pBSCH2-CH2LY RELIMPOF CH2 over CHZLS RELIMP OF CH2ls over CH2
Large 01 691 0.336 583 253.37 108 -0.185248714 0.156205224
Large_02 703 0.309 586 281.58 117 -0.199658703 0.166429587
Large 03 686 0.307 578 265.62 108 -0.186851211 0.157434402
Large 04 682 0.313 580 249,38 102 -0.175862069 0.149560117
Large_05 702 0.307 596 269.54 106 -0.177852349 0.150997151
Large_06 672 0.309 569 259.16 103 -0.181019332 0.15327381
Large 07 695 0.316 596 2727.64 =] -0.166107383 0.142446043
Large_08 692 0.313 583 261.58 109 -0.186963979 0.157514451
Large 09 686 0.313 585 226.54 101 -0.172649573 0.147230321
Large_10 711 0.316 582 340.54 129 -0.221649485 0.181434559
Large_11 709 0.307 570 233.54 139 -0.243859649 0.196050776
Large_12 673 0.309 574 316.7 =] -0.172473868 0.147102526
Large 13 682 0.336 577 264.78 105 -0.1815975737 0.153958044
Large_14 702 0.313 570 293.31 132 -0.231578847 0.188034188
Large_15 742 0.316 586 356.85 156 -0.266211604 0.210242588
Large_16 726 0.309 579 319.46 147 -0.25388601 0.202479339
Large 17 695 0.313 569 279.91 126 -0.221441125 0.181294964
Large_18 677 0.309 579 236.61 98 -0.16925734 0.144756278
Large 19 683 0.336 576 234.32 107 -0.185763889 0.156661736
Large 20 699 0.313 588 289.34 111 -0.18877551 0.158798283
Average Time 0.315 273.0035

Experiment 4: CH1 LSvs CH2_LS

e In this third experiment we will compare the Heuristic Number 2 and the local search algorithm
applied to this heuristic (swapping the assignment of a task from one agent to another).

Small Instances:

Small CH1 LSvsCH2 LS (with local search)
I CH1 LS CH1LS_time (cpu sec) CH2 LS CH2LS_time (cpu sec) IABS CHlLS—CHZLSI REL IMP OF CH2LS over CH2LS | RELIMP OF CH2ls overCH:
Small_01 285 2.77 258 0.05 27 -0.104651163 0.094736842
Small_02 259 2.77 247 0.04 12 -0.048582996 0.046332046
Small_03 296 2.789 276 0.04 20 -0.072463768 0.067567568
Small_04 240 2.742 240 0.04 0 0 0
Small_05 245 2.778 245 0.82 0 0 0
Small_06 260 2.769 226 0.08 34 -0.150442478 0.130769231
Small_07 347 2.803 329 0.06 18 -0.054711246 0.051873199
Small_08 282 2.734 281 0.05 1 -0.003558719 0.003546099
Small_09 290 2.815 290 0.05 0 0 0
Small_10 297 2.758 296 0.05 1 -0.003378378 0.003367003
Small_11 288 2.798 268 0.05 0 0 0
Small_12 295 2.849 295 0.05 0 0 0
Small_13 286 2.748 282 0.02 4 -0.014184357 0.013986014
Small_14 280 2,771 277 0.04 3 -0.010830325 0.010714286
Small_15 268 2.733 246 0.04 22 -0.089430854 0.082089552
Small_16 240 2.734 240 0.03 0 0 0
Small_17 233 2.566 233 0.04 0 0 0
Small_18 278 2.787 278 0.04 0 0 0
Small_19 246 3.044 193 0.05 53 -0.274611399 0.215447154
Small_20 266 2.781 265 0.04 1 -0.003773585 0.003759398

Averace Time 2.77695 0.084

Medium Instances:

Medium CH1 LSvsCH2 LS (with local search)

Instance CH1.LS |CHI1LS time (cpusec) CH2 LS CH2LS_time (cpu sec) BSCHILS—CHS!LhELIHP OF CH2LS over CH2L§§ELIHP OF CH2ls over CH1LS
Medium_01 540 117.32 538 5.87 2 -0.003717472 0.003703704
Medium_02 489 110.712 489 5.2 0 0 0
Medium_03 469 108.927 469 5.53 0 0 0
Medium_04 322 110.724 480 4.51 -158 0.329166667 -0.49068323
Medium_05 516 108.445 515 5.55 1 -0.001541748 0.001937584
Medium_06 515 109.353 515 6.7 0 0 0
Medium_07 471 108.768 471 7.06 0 0 0
Medium_08 488 109.184 478 6.36 10 -0.020920502 0.020491803
Medium_09 532 108.345 495 6.34 a7 -0.074747475 0.069548872
Medium_10 534 109.647 528 6.64 6 -0.011363636 0.011235955
Medium_11 483 108.767 473 7.07 10 -0.021141649 0.020703934
Medium_12 537 108.864 533 6.93 4 -0.00750469 0.00744879
Medium_13 509 109.301 509 6.32 0 0 0
Medium_14 467 109.008 467 5.41 0 0 0
Medium_15 555 109.516 549 8.13 6 -0.010928962 0.010810811
Medium_16 520 109.382 519 6.41 1 -0.001926782 0.001923077
Medium_17 498 109.583 494 8.39 4 -0.008097166 0.008032129
Medium_18 504 109.569 500 6.54 4 -0.008 0.007936508
Medium_19 523 109.939 521 6.54 2 -0.003838772 0.003824082
Medium_20 522 109.916 518 7.99 4 -0.007722008 0.007662835

Average Time 109.7645 6.4745

Large Instances:

Large CH1_LSwsCH2_LS (with local search)
Instance CH1_ LS |CHI1LS time (cpusec)| CH2 LS | CH2LS time (cpusec) BS CHILS5-CH2]l RELIMPOFCH2LS overCH2LS |RELIMPOFCH2ls over CH1L:
Large 01 567 449.38 583 253.37 -16 0.027444254 -0.028218695
Large_02 498 481.58 586 281.58 -88 0.150170648 -0.176706827
Large_03 567 434.32 567 265.62 0 0 0
Large_04 534 465.62 580 249.38 -45 0.079310345 -0.086142322
Large_05 467 426.54 596 269.54 -129 0.216442953 -0.276231263
Large_06 455 481.58 569 259.16 -114 0.200351494 -0.250549451
Large_07 598 516.7 596 227.64 2 -0.003355705 0.003344482
Large 08 573 449.38 583 261.58 -10 0.017152659 -0.017452007
Large_09 520 427.64 585 226.54 -65 0111111111 -0.125
Large_10 522 550.54 582 340.54 -60 0.103092784 -0.114942529
Large_11 455 465.62 570 233.84 -115 0.201754386 -0.252747253
Large_12 532 427.64 532 316.7 0 0 0
Large_13 566 519.48 577 264.78 -11 0.019064125 -0.019434629
Large_14 571 481.58 570 293.31 1 -0.001754386 0.001751313
Large_15 491 556.85 586 356.85 -95 0.162116041 -0.193482688
Large_16 543 434.32 543 319.45 0 0 0
Large_17 512 465.62 569 279.91 -57 0.100175747 -0.111328125
Large_18 444 519.46 444 236.61 0 0 0
Large_19 505 489.34 578 234.32 -71 0.123263889 -0.140594059
Large_20 555 436.61 588 289.34 -33 0.056122449 -0.059459459

Average Time 473.989 273.0035

CONCLUSIONS

Experiment Number 1: CH1 vs CH2

For smaller problems, Heuristic Number 2 (Greedy Capacity Balancing Assignment) worked better than
Heuristic Number 1 (Greedy Cost-Capacity Ratio) because it was faster and cheaper. This means that for
smaller tasks, Heuristic Number 2 is better at quickly balancing capacities and keeping costs low.

For medium and large problems, both heuristics gave pretty similar results. Sometimes, the results were
exactly the same, even though the methods are different. This might be because both methods end up finding
similar solutions when dealing with the same capacities and costs. This shows that both heuristics can handle
bigger problems well, and the complexity of the tasks might make their differences less noticeable.

Both heuristics are useful and work well in real situations. They can handle different problem sizes
efficiently. This means you can choose either one depending on what you need, like if you care more about
speed or cost, and still get good results.

Experiment Number 2: CH1vs CH1_LS

We noticed that the local search algorithm gave better results for costs compared to Heuristic Number 1
(H1), but it took longer to run. The extra time is because the algorithm has to go through many iterations to
find a better solution. This means it looks at more options, which takes more computing effort. For all the
problem sizes we tested, the local search algorithm always reduced costs more than Heuristic Number 1.
This shows that the local search method is better at finding the best or near-best solutions, even though it
takes more time. So, even though the local search algorithm takes longer because it repeats its process a lot,
it always beats Heuristic Number 1 when it comes to saving costs.

Experiment Number 3: CH2 vs CH2_LS

In this case, the local search algorithm did better than Heuristic Number 2 (Greedy Capacity Balancing
Assignment). It saved costs in every problem size, showing it's better at cutting costs. This big improvement
shows how much local search can help Heuristic Number 2.

But like in experiment number 2, this better cost saving meant it took longer to run. This took a longer time
because the local search algorithm works by taking a lot of steps over and over to look through all the
solutions and find the best one. Each step checks out different solutions and improves the current one,
needing more computing work than the heuristic way. The results of this test tell us that the local search
algorithm makes a big difference in saving costs over Heuristic Number 2. It did better no matter the
problem’s size, showing it's good at working with different levels of trouble.

Experiment Number 4: CH1 LSvs CH2 LS

For every problem size, both algorithms effectively cut costs, ensuring they find almost the best solutions.
But they differed a lot in how long they took to run. Heuristic 2's local search was faster, finishing way
quicker than Heuristic 1's local search for every problem size. This big-time difference shows that even
though both do well at saving costs, they need different amounts of computer power.

In the end, both Heuristic 1 and Heuristic 2's local search do well at cutting costs for different problem sizes.
But Heuristic 2's local search is much faster, making it a better pick when you need quicker results. This
shows how important it is to think about both how good the solution is and how fast the computer can find
it when you pick an algorithm for fixing problems.

General Conclusion

Both local search and heuristic approaches work well to save costs across different problem sizes. Local
search methods always do better at cutting costs compared to heuristics, showing they're good at finding
almost the best solutions. But they take longer to run because they have to try lots of solutions over and over
again. Among the local search ways, Heuristic 2's was much faster than Heuristic 1's for every problem size.
Even though Heuristic 1 took almost twice as long, local search methods still save more costs than heuristics,
making them good choices, especially when getting a great solution is most important.

Heuristic 2's local search had better times and still saved costs well. Choosing between them depends on
what the problem needs. If saving costs is what matters most and you have enough computer power, local
search is best. But if time is the main thing, Heuristic 2 and its local search are better because they're faster.

REFERENCES
Book

Ding-Zhu (China) & Panos (Greece). M. (2005) Handbook of Optimatorial Optimization Problem.
Springer. Dordrecht, Netherlands.

Papers

Robert M. Nauss, (2003) Solving the Generalized Assignment Problem: An Optimizing and Heuristic
Approach. INFORMS Journal on Computing 15(3) Page 249-266. Hanover, United States.

E C. Chu't' & J. E. Beasley. (1996). A genetic algorithm for the generalized assignment problem.
Pergamon. Page 17-18. Oxford, United Kingdom.

Klose, A., & Drexl, A. (2005). Facility location models for distribution system design. European
Journal of Operational Research, 162(1), Page 4-29. Berlin, Germany.

Pirkul, H., & Schilling, D. A. (1993). Algorithms for the generalized assignment problem. European
Journal of Operational Research, 65(3), Page 389-403. Dallas, United States.

