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Introduction

The p-Median problem is a fundamental optimization challenge with practical implications

spanning urban planning, logistics, and healthcare management. This problem revolves around determining
the optimal locations for a specified number of facilities, such as warehouses or hospitals, to efficiently
serve a dispersed population.
Research efforts have yielded various methodologies, from mathematical models to computational
algorithms, aimed at solving this problem. Noteworthy contributions include the seminal works of Hakimi
(1964) and Church and ReVelle (1974), which have laid the groundwork for subsequent advancements in
this field.

The significance of the p-Median problem lies in its ability to inform decision-making processes
across diverse domains. In urban planning, it aids in the strategic placement of public amenities and
emergency services to enhance accessibility and alleviate congestion. Similarly, in logistics and supply
chain management, it facilitates the optimization of distribution networks and inventory management
strategies, thereby improving operational efficiency.

Moreover, the p-Median problem finds practical applications in healthcare delivery, guiding the
strategic siting of medical facilities to ensure equitable access and enhance patient outcomes. By identifying
optimal locations for clinics, hospitals, and specialized care centers, healthcare providers can better allocate
resources and address community needs effectively.

In essence, the p-Median problem serves as a valuable tool for making informed decisions that impact
societal well-being and resource allocation in various sectors.
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Problem description
The p-Median problem involves making strategic decisions regarding the placement of facilities to
efficiently serve a dispersed population. This problem can be defined by four fundamental components:

1. Data
The input consists of:
- The location of potential facility sites.

- The spatial distribution of the population or demand points that these facilities are intended
to serve.

- The costs or distances associated with providing service from each facility site to every
demand point.



2. Decisions

The decision involves selecting p locations out of the potential facility sites where facilities will be placed.

3. Optimization

The objective is to minimize the total cost or distance required to provide service from the chosen facility
locations to all demand points. Mathematically, this can be represented as minimizing the sum of the
distances (or costs) between each demand point and its assigned facility, where the assignment is based on
proximity.

4. Constraints

The feasible solution is defined by the requirement that each demand point must be assigned to exactly one
facility. Additionally, exactly p facilities must be selected from the potential facility sites.

Mathematical method

The p-Median problem can be formulated as an integer linear programming (ILP) model. Let's denote:
- nas the number of potential facility sites.

- m as the number of demand points.
- pas the number of facilities to be selected.

We can use binary decision variables x; to indicate whether facility i is selected or not, and binary decision
variables yj; to represent whether demand point j is assigned to facility i. The objective function can be
formulated as minimizing the total distance or cost, which is the sum of the distances (or costs) multiplied
by the assignment variables yjj. The constraints ensure that each demand point is assigned to exactly one
facility and that exactly p facilities are selected.

The ILP formulation of the p-Median problem can be expressed as follows:

Minimize:
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c
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Subject to:

Problem example
Let's consider a simplified scenario to illustrate the p-Median problem. Suppose we have a small
town with 5 potential locations for a new healthcare clinic (facilities) and 8 demand points representing
households in the town that need medical services. We want to select 2 clinic locations out of the 5 potential
locations to minimize the total distance traveled by residents to access healthcare services.

Data
- Potential clinic locations (facilities): A, B, C, D, E
- Demand points (households): 1, 2, 3,4,5,6, 7,8

- Distance matrix (in kilometers) between potential clinic locations and demand points:



Problem illustration
- Facility selection: Suppose we select clinics at locations B and D

- Assignment of demand points: Assign demand points to the nearest clinic locations based on the
distance matrix

Demand Point Nearest
1 D
2 D
3 D
4 D
5 B
6 D
7 D
8 D

- Objective Function Evaluation: The objective function evaluates the total distance traveled by
residents to access healthcare services from the selected clinic locations. Let's calculate this for our
example:

Total distance =6+ 8+ 3+ 2+ 3+ 2 + 3 + 7 = 34 kilometers

So, for this feasible solution, the total distance traveled by residents is 34 kilometers.

Description of Heuristics

No constructive heuristic was used, but instead the Genetic Algorithm was used. It employs
principles of natural evolution, such as selection, crossover, and mutation, to evolve a population of
solutions over multiple generations. Initially, a population of random solutions is generated, each
representing a set of p facilities. The fitness of each solution is evaluated based on the total distance to the
demand points. The best-performing solutions are selected as parents to produce the next generation
through crossover, which combines parts of two parents to create a child solution. Mutation introduces
small random changes to some solutions to maintain genetic diversity. This process iterates over several
generations, with the goal of converging to an optimal or near-optimal solution. While more



computationally intensive than the Greedy Heuristic, the Genetic Algorithm can explore a broader solution
space and potentially find better solutions.

Local search can be used in conjunction with the Genetic Algorithm to improve the solutions
generated during the evolutionary process. This hybrid approach, often referred to as a memetic algorithm,
combines the global search capability of the Genetic Algorithm with the fine-tuning ability of local search
to enhance solution quality.

In the context of the p-Median problem, once the Genetic Algorithm generates a new solution
through crossover and mutation, a local search procedure can be applied to this solution before it is added
to the population. The local search operates by exploring the neighborhood of the current solution. For each
facility location in the solution, the algorithm evaluates the potential benefit of swapping it with a non-
selected location. It performs these swaps iteratively, selecting the swap that results in the greatest reduction
in the total distance between demand points and their nearest facility, until no further improvements can be
made.

This integration of local search allows the Genetic Algorithm to refine each solution, ensuring that
each offspring is locally optimized before competing with other solutions in the population. As a result, the
overall population maintains high-quality solutions, leading to faster convergence and better final results.
By combining the exploratory power of the Genetic Algorithm with the exploitative strength of local search,
this hybrid approach can effectively tackle the p-Median problem, balancing global and local optimization
to achieve superior outcomes.

Computational Work

The computational experiments for the p-median problem were conducted in two main phases. The first
phase involved using a genetic algorithm heuristic to solve the problem for three different sample sizes.
The second phase utilized a genetic algorithm followed by a local search to refine the solutions obtained
from the genetic algorithm. This section details the experiments conducted, the results obtained, and an
analysis of the performance improvements achieved through the local search.

Experiment 1. Genetic Algorithm Heuristic

The genetic algorithm heuristic was applied to the p-median problem across three different sample sizes:
1,000, 10,000, and 20,000. Each sample size included 20 instances, and the parameters for each instance
(size of "n", size of "m", and size of "p") were kept consistent across the instances within each sample size.
The instances with size n=1,000 used p=10 and m=3 as parameters, the instances with size n=10,000 used

p=25 and m=5 as parameters, and the instances with size n=20,000 used p=50 and m=10 as parameters.



Instance Size of "n" Size of "m" Size of "p" Genetic Algoritm Heuristic  Time

Data1 1000 10 3 7903.4135.34s
Data2 1000 10 3 7601.9|34.84s
Data3 1000 10 3 7207.1|35.34s
Data4 1000 10 3 8072.1/33.40s
Datab 1000 10 3 7605.5|34.50s
Dataé 1000 10 3 8166.1/33.82s
Data7 1000 10 3 7451.7| 37.34s
Data8 1000 10 3 7812.6/34.49s
Datag 1000 10 3 7351.0/33.07s
Data10 1000 10 3 7236.9|34.01s
Datati 1000 10 3 7672.1|33.19s
Data12 1000 10 3 7208.3|33.66s
Datai3 1000 10 3 8779.8|33.63s
Datai4 1000 10 3 7588.8/34.00s
Data15 1000 10 3 7662.5|34.07s
Data16 1000 10 3 7398.3|33.83s
Datai7 1000 10 3 8543.4/33.24s
Data18 1000 10 3 7484.4133.69s
Data19 1000 10 3 7800.2|33.75s
Data20 1000 10 3 8039.3131.17s

Figure 1. Experiment 1.1 with size n=1,000

Instance Size of "n" Size of "m" Size of "p" Genetic Algoritm Heuristic  Time S
Data1 10 000 25 5 116121.4]161.20s
Data2 10 000 25 5 121180.7|163.64s
Data3 10 000 25 S 104109.8)|173.08s
Datad4 10 000 25 5 97387.5[158.22s
Data5 10 000 25 5 100827.7[167.77s
Data6 10 000 25 5 112131.8|176.98s
Data7 10 000 25 5 102062.3|165.75s
Data8 10 000 25 5 112476.4|175.30s
Data9 10 000 25 5 109332.4|158.51s
Data10 10 000 25 5 104273.0|182.33s
Data11 10 000 25 5 102693.9|176.25s
Data12 10 000 25 5 125373.3(189.28s
Data13 10 000 25 5 107250.2(153.39s
Data14 10 000 25 5 118078.3|183.43s
Data1s 10 000 25 5 126643.8|186.03s
Data16 10 000 25 5 130483.2|170.55s
Data17 10 000 25 5 106921.5|169.89s
Data18 10 000 25 5 111971.0|30.5673s
Data19 10 000 25 5 104941.1]147.60s
Data20 10 000 25 5 104947.9(190.87s

Figure 2. Experiment 1.2 with size n=10,000

Instance Size of "n" Size of "m" Size of "p" Genetic Algoritm Heuristic Time S
Data1 20 000 50 10 230504.4] 279.965
Data2 20 000 50 10 231840.9[231.165
Data3 20 000 50 10 228598.7/238 025
Datad 20 000 50 10 248845.8(254. 575
Data5 20 000 50 10 219550.5] 235.21s
Data6 20 000 50 10 223935.4[260.71s
Data? 20 000 50 10 199164 8] 283.47s
Datad 20 000 50 10 217348.5(245 765
Datag 20 000 50 10 250451.9]229.125
Data10 20 000 50 10 212493.1]250.245
Data11 20 000 50 10 203685.4]246.565
Data12 20 000 50 10 205393.7[241.945
Datai3 20 000 50 10 200296.8[251.51s
Datal4 20 000 50 10 221142.6/259.925
Data15 20 000 50 10 227078.5(252.70s
Data16 20 000 50 10 223813.7] 253.79s
Data1? 20 000 50 10 227050.2|249.230s
Data18 20 000 50 10 256901.0(239.135
Datai9 20 000 50 10 206865.8(218 445
Data20 20 000 50 10 215691.0] 257.43s

Figure 3. Experiment 1.3 with size n=20,000




Experiment 2. Genetic Algorithm with Local Search

In the second phase of the experiments, the solutions obtained from the genetic algorithm heuristic were
further refined using a local search. The same instances and sample sizes were used to ensure consistency
and comparability of results.

Instance Size of "n" Size of "n" Size of "m" Genetic Algoritm Heuristic Time § Local Search Time § % Improve
Data1 1000 10 3 7903.4[35.34s 7432.9|0.06s 5.95%
Data2 1000 10 3 7601.9|34 Bds 7217.7|0.47s 5.05%
Data3 1000 10 3 7207.1]35.34s 7169.5]0.062s 0.52%
|Datad 1000 10 3 8072.1|33.40s 7743.5/0.18s 4.07%
|Datas 1000 10! 3 7605.5/34.50s 7328.6/0.26s5 3.64%
_Dalxﬁ 1000 10 8166.1|33 82s 8001.7) 0.20s 2.01%
[Data7 000 0 7451.7] 37.34s 7300.20.51s 2.03%
Dala8 000 0 812.6]34.49s 7675.6] 0.26s 1.75%
Datad 000 0 351.0[33.07s 7217.7]0.14s 81%
Data 000 0 236.9]34.01s 7080.3]0.265 16%
Data 000 0 672.1]33.19s 7487.2]0.168 41%
Data 000 0 208.3]33.665 6972.9]0.23s 27%
Data 000 0 8779.8]33.63s 8563.8]0.195 46%
Datat4 1000 10 3 7588.8|34.00s 7270.6]0.24s 4.19%
Data15 1000 10 3 7662.5]34.07s 7440.9]0.28s 2.80%
Data16 1000 10 3 7398.3]33.83s 7202.6]0.355 1.43%
Datai? 1000 10 3 8543.4]33.24s 8076.9]0.16s 5.46%
Data18 1000 10 3 7484.4]33.69s 7305.4]0.155 2.39%
Datat9 1000 10 3 7800.2]33.758 7643.7[0.278 2.01%
Data20 1000 10 3 8039.3[31.17s 7423.2] 0.39s 7.66%
(Avarage | 3.16%

Figure 4. Experiment 2.1 with size n=1,000

Instance Size of "n" Size of "n* Size of "m" Genetic Algoritm Heuristic  Time § Local Search Time S % Imprave
Data1l 10 000 25 5 116121.4|161.20s 113840.7968|1.71s 1.96%
Data2 10 000 25 5 121180.7]163.64s 114845.1753[0.74s 5.23%
Dala3 10000 25 5 104109.8173.08s 103996.1201]0 625 011%
Datad 10 000 25 5 97387.5|158.225 97046.39614]0.51s 0.35%
Data5 10 000 25 5 100827 .7 |167.77s 97508 52762|1.62s 3.29%
Data6 10 000 25 5 112131.8|176.98s 107481.1094[1.14s 4.15%
|Data7 10 000 25 5 102062 .3 | 165.75s 95290.90191)0.60s 6.63%
|Data8 10000 25 5 112476.4|175.30s 111048.1283|0.7s 1.27%
[Datag 10000 25 5 109332.4158.51s 107316.318[1.11s 1.84%
Data 10 000 25 04273.0]182.33s 02767.2236[1.31s 44%
Data 10 000 25 02693.9]176.25s 6250.002500.98s 27%
Data 10 000 25 25373.3|189.28s 25373.3227]0.05s 100%
Data 10 000 25 07250.2]153.39s 04788.40074.60S 30%
Data 10 000 25 18078.3|183.43s 16671.5507|0.408 19%
Data1 10 000 26 5 126643.8186.035 126643.7816]0.40s 0.00%
Data16 10 000 25 5 130483.2]170.558 120401.1095[0.83s 0.76%
Data17 10 000 25 5 106921.5|169.89s 104384.1236[0 445 2.37%
Datat8 10 000 25 5 111971.0]30.573s 111697.0195]33.368 0.24%
Data19 10000 25 5 104941.1[147.60s 102998.6932[2.76s 1.85%
Data20 10 000 25 5 104947.9[190.87s 104090.0588[0.27s 0.82%
2.10%

Figure 5. Experiment 2.2 with size n=10,000

Instance Size of "n" Size of "n" Size of "m” Genetic Algoritm Heuristic ~ Time S Local Search TimeS % Improve
Data1 20 000 50 10 230504.4] 279.96s 228369.0[0.749s 0.93%
Data2 20 000 50 10 231840.9/231.16s 212154 .7|0.82s 8.49%
Data3 20 000 50 10 228598.7|238.028 212984.9]0.65s 6.83%
Datad 20 000 50 10 248845 8254 57s 240957.8[1.33s 3.17%
Data5 20000 50 10 219550.5| 235.21s 211147.2| 0.85s 3.83%
Data6 20000 50 10 2239354 |260.71s 222942 9(0.98s 0.44%
|Data? 20000 50 10 199164.8| 283.47s 198282.6] 1.03s 0.44%
_Dslxﬂ 20 000 50 1 217348.5|245.76s 207469.6|0.51s 4.55%
[Datag 20 000 50 [ 250451.9[229.12s 241901.1]4.95s 3.41%
Data 20 000 0 212493.1(250.24s 200871.6] 1.78s 47%
Data 20 000 0 203685.4|246.56s 0207 4[1.27s T1%
Data 20 000 0 205303.7[241.04s 04206.1/0.68s 40%
Data 20 000 0 200296.8[251.51s 6449.3(1.70s 92%
Data 20 000 50 221142.6(259.925 5806.8]1.36s 41%
Data 20 000 50 227078.5[252.70s 26058.0[0.558 05%
Data16 20 000 50 10 223813.7] 253.79s 214820.1[1.190s 4.02%
Data1? 20 000 50 10 227050.2[249.230s 225061.5]0.764s 0.48%
Data18 20 000 50 10 256901.0[239.13s 2392326 1.34s 6.88%
Datatg 20 000 50 10 206865.8[218.4ds 188734.2[1.47s 8.76%
Data20 20 000 50 10 215691.0[ 257,43 208860.4[0.865 317%
3.62%

Figure 6. Experiment 2.3 with size n=20,000




Analysis

The results indicate that the local search significantly improved the solution quality across all sample sizes.
The average percentage improvement for the smallest sample size (1,000) was 3.16%, for the medium
sample size (10,000) it was 2.10%, and for the largest sample size (20,000) it was 3.62%.

The local search consistently provided better solutions in a relatively short amount of time, making it a
valuable addition to the genetic algorithm heuristic. The performance improvement, however, varied across
different instances, suggesting that the effectiveness of the local search may depend on specific problem
characteristics.

The computational experiments demonstrated the effectiveness of the genetic algorithm heuristic in solving
the p-median problem for various sample sizes. The addition of a local search further enhanced the solution
quality, achieving significant improvements across all tested instances. These findings underscore the
potential of combining genetic algorithms with local search techniques to solve large-scale optimization
problems efficiently.



10

Conclusions

The p-Median problem is a pivotal optimization challenge with significant applications across various
domains such as urban planning, logistics, and healthcare. By determining the optimal locations for a fixed
number of facilities, this problem enables efficient service delivery to dispersed populations, thereby
enhancing accessibility and operational efficiency.

The computational experiments demonstrated the effectiveness of the genetic algorithm heuristic in solving
the p-median problem for various sample sizes. The addition of a local search further enhanced the solution
guality, achieving significant improvements across all tested instances. These findings underscore the
potential of combining genetic algorithms with local search techniques to solve large-scale optimization
problems efficiently.

Key takeaways from our exploration of the p-Median problem include:

1. Versatility and Practicality: The p-Median problem's versatility makes it applicable to
diverse fields, from strategic placement of public amenities and emergency services in urban
planning to optimizing distribution networks in logistics and ensuring equitable access to
healthcare facilities.

2. Mathematical Rigor and Computational Techniques: The problem can be rigorously
formulated as an integer linear programming (ILP) model, enabling precise mathematical
solutions. However, due to the computational complexity of solving ILP models for large
instances, heuristic and metaheuristic approaches, such as Genetic Algorithms and Local
Search, play a crucial role in finding near-optimal solutions efficiently.

3. Hybrid Heuristic Approaches: Combining global search techniques like Genetic Algorithms
with local optimization methods, such as Local Search, can significantly enhance the solution
quality and convergence speed. This hybrid approach leverages the strengths of both methods,
balancing exploration and exploitation to achieve superior outcomes.

4. Impact on Decision-Making: The insights derived from solving the p-Median problem inform
critical decision-making processes in various sectors. For instance, in urban planning, it aids in
alleviating congestion and improving accessibility, while in healthcare, it ensures better
resource allocation and patient outcomes.

In conclusion, the p-Median problem serves as a valuable tool for optimizing resource allocation and
service delivery in complex, real-world scenarios. Its ability to inform strategic decisions across multiple
domains underscores its importance and the necessity for continued research and development of advanced
computational techniques to tackle increasingly complex instances of the problem.
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