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INTRODUCTION 

The Generalized Assignment Problem (GAP) is an optimization challenge commonly encountered in 

real-world situations where resources must be allocated efficiently to tasks or jobs. It involves 

assigning a set of resources, each with specific capacities, to a set of tasks, each with different 

requirements and associated costs. The main goal is to minimize the total cost of assigning resources 

to tasks while ensuring that each resource's capacity is not exceeded. 

This problem has attracted attention since 1975 and is about finding the best way to assign tasks (or 

jobs) to agents (or machines) at the lowest cost. GAP has diverse applications ranging from job 

scheduling to facility location and routing in various industries like manufacturing, 

telecommunications, and transportation. By optimizing resource-task assignments, organizations can 

boost operational efficiency, cut costs, and improve productivity. 

Unlike simpler assignment problems, GAP allows for assigning multiple tasks to a single resource if 

the resource's capacity is not surpassed. This flexibility mirrors the complexity of real-world scenarios 

such as production planning and project scheduling, where resources may need to handle multiple tasks 

simultaneously. 

In summary, the Generalized Assignment Problem is widely applicable across fields like 

manufacturing, telecommunications, transportation, and project management. Its adaptability makes it 

an invaluable tool for addressing resource allocation challenges involving multiple tasks and resources 

with different capacities and costs. 

Practical applications of GAP 
 

Manufacturing and Production Planning: Allocating machines to different production tasks to 

minimize production costs. Assigning workers to specific manufacturing operations considering their 

skills and capacity. (Deb, Kalyanmoy. "Multi-Objective Optimization Using Evolutionary 

Algorithms." John Wiley & Sons, 2001.) 

 

Project Scheduling: Assigning project tasks to available team members while minimizing costs and 

considering skill requirements. ( Baker, Kenneth R., and Dan Trietsch. "Principles of sequencing and 

scheduling." John Wiley & Sons, 2009.) 

 

Facility Location and Assignment: In logistics and supply chain management, GAP can be applied 

to decide the optimal location for facilities (such as warehouses or distribution centers) and assign tasks 

related to order fulfillment to these facilities. (Drezner, Zvi, and Horst W. Hamacher. "Facility location: 

Applications and theory." Springer Science & Business Media, 2004.) 
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Specific examples of GAP 

Manufacturing and Production Planning 

Project Name: Toyota Production System Optimization Project 

Date: 2005 

Description: Toyota utilized genetic algorithms to optimize its production system by allocating 

machines to different production tasks. By optimizing machine allocation, Toyota aimed to reduce 

production costs and improve overall efficiency in its manufacturing processes. 

 

Project Scheduling 

 

Project Name: NASA's Mars Rover Mission Scheduling 

 

Date: 2012 

 

Description: NASA employed genetic algorithms to schedule tasks for the Mars rover missions. 

Tasks such as data collection, analysis, and communication were scheduled considering resource 

constraints, environmental conditions, and mission objectives. Genetic algorithms helped NASA to 

optimize task schedules and ensure efficient utilization of resources during the missions. 

 

Facility Location and Assignment: 

 

Project Name: Amazon Warehouse Location Optimization Project 

 

Date: 2018 

 

Description: Amazon utilized genetic algorithms to optimize the location of its warehouses and 

distribution centers. By considering factors such as customer demand patterns, transportation costs, 

and inventory management requirements, Amazon aimed to determine the most strategic locations 

for its facilities. Additionally, genetic algorithms were used to assign tasks related to order fulfillment 

and inventory management to these facilities, optimizing the overall logistics operations. 

 

 

  



PROBLEM DESCRIPTION 

Let I = { 1,2 ..... m} be a set of agents, and let J = { 1,2 ..... n} be a set of jobs. For i E l,j ~ J, define c  

as the cost of assigning job j to agent i (or assigning agent i to job j), b as the resource required by 

agent i to perform job j, and a as the resource availability (capacity) of agent i. Also, x 0 is a 0-1 

variable that is 1 if agent i performs job j and 0 otherwise. 

Data: Input data consists of: 

• n: Number of jobs to be assigned. 

• m: Number of agents.   

• Define (n ≥ m) and N= {1, 2,…n} 

Decisions: Decisions to be made include: 

• Designate multiple tasks to agents. 

 

Objective: The goal is to minimize the total cost of assigning resources to tasks while satisfying the 

capacity constraints of each resource. 

 

Constraints: 

• Each job is assigned exactly to one agent. 

• The total resource requirement of the jobs assigned to an agent does not exceed the capacity 

of the agent. 

 

We allow all data elements to be real (certain efficiencies follow if the data elements are assumed to 

be integral). 

 

Mathematical Model: 

The GAP may be formulated as a 0–1 integer linear programming (ILP) model. Let n be the number 

of tasks to be assigned to m agents (n ≥ m and define N = 1 2 n). We define the requisite data ele ments 

as follows: 

 

• cij = cost of task j being assigned to agent i.  

• ai= capacity of agent i. 

• bj= the requirement of task j to be performed. 

 

Decision Variables 

 

                                   1 if task j is assigned to agent i  

• Xij= 

                      0 if not.  
 

Mathematical Model 

 

The 0–1 ILP model may then be written as: 

 

Minimize:      

 

∑ ,𝒎
𝒊=𝟏 ∑ 𝒄𝒊𝒋, 𝒙𝒊𝒋

𝒏
𝒋=𝟏   (1) 

 
 

 

 



Subject to  

∑ 𝒃𝒋, 𝒙𝒊𝒋  ≤  𝒂𝒊,   ∀𝐢

𝒏

𝒋=𝟏

     (2) 

 

∑ 𝒙𝒊𝒋 =  𝟏,   ∀𝐣 ∈ 𝐍

𝒎

𝒊=𝟏

     (3) 

 

xij = 0 or 1,  ∀i j           (4)    
 
The objective function (1) sums the costs of the assignments, while constraint (2) enforces the resource 

limitation for each agent. Constraint (3) ensures that each job is assigned to exactly one agent. We allow all 

data elements to be real (certain efficiencies follow if the data elements are assumed to be integral) 

 

PROBLEM EXAMPLE 

Consider a small instance of the GAP with: 

Agent Capacities: a1=7, a2=5 

Task Requirement: b1=2, b2=3, b3=2 

Constrains: 

• Each task must be assigned to exactly one agent. 

• The capacity of each agent must not be exceeded. 

 

 Agent 1 Agent 2 

Task 1 1 3 

Task 2 2 1 

Task 3 2 4 

Feasible Solution: 

x11=1, x12=0, x13=1 (Tasks T1 and T3 is assigned to agent 1) 

x21=0, x22=1, x23=0 (Task T1 is assigned to agent 2) 

Objective Function Evaluation: 

X1,1 + X2,2 + X1,3 = 4  agent 1 capacity: 7-2-2 = 3 

Total Cost = 1+1+2 =4  agent 2 capacity = 5-3 = 2 

 

  



DESCRIPTION OF CONSTRUCTIVE HEURISTICS 

 

HEURISTIC 1: GREEDY COST-CAPACITY RATIO  
The objective of this heuristic is to achieve the optimal solution using the cost-capacity ratio to select the 

best possible assignment, in the context of the general assignment problem the best assignment are the 

ones with lowest values. The steps are the next ones: 

 

Step 1: Initialization 

 

• Start with an empty assignment of tasks to agents. 

• Initialize remaining capacities for each agent to their respective maximum capacities. 

• Initialize the total cost to 0. 

 

Step 2: Task Selection 

 

For each task: 

 

• Compute the cost-capacity ratio for assigning the task to each available agent. The cost-capacity 

ratio is calculated by dividing the cost of assigning the task to an agent by the remaining 

capacity of that agent. 

• Select the agent with the minimum cost-capacity ratio for the task. 

 

Step 3: Task Assignment 

 

• Assign the selected task to the agent with the minimum cost-capacity ratio. 

• Update the remaining capacity of the assigned agent by decrementing it by 1. 

• Update the total cost by adding the cost of assigning the task to the selected agent. 

 

Step 4: Repeat 

 

• Repeat steps 2 and 3 until all tasks are assigned to agents. 

 

Step 5: Termination 

 

• Once all tasks are assigned, the algorithm terminates. 

 

Example:  

Let's consider a simple example with 3 tasks and 2 agents. Here are the details: 

• Tasks: 3 

• Agents: 2 

• Capacities: Agent 1: 6, Agent 2: 5 

• Requirement: Task 1: 3 Task 2: 2 Task 3: 3 

Costs Matrix: 

 Agent 1 Agent 2 

Task 1 10 5 

Task 2 8 6 

Task 3 7 9 

 

Task 1: 

2-Task Selection 

• Cost-Capacity Ratio: Agent 1 = 10/6 = 1.66, Agent 2 = 5/6 = 0.866 

3-Task Assignment 

• Assign Task 1 to Agent 2 (min ratio 2.5). 

• Updated Capacities: Agent 1: 6, Agent 2: 2 



• Total Cost: 5 

 

4-Repeat 

 

Task 2: 

• Cost-Capacity Ratio: Agent 1 = 8/6 = 1.33, Agent 2 = 6/2 = 3 

• Assign Task 2 to Agent 1 (min ratio 1.33). 

• Updated Capacities: Agent 1: 3, Agent 2: 2 

• Total Cost: 5 + 8 = 13 

Task 3: 

• Cost-Capacity Ratio: Agent 1 = 7/3 = 2.33, Agent 2 = 9/2 = 4.5 

• Assign Task 3 to Agent 1 (min ratio 2.33). 

• Updated Capacities: Agent 1: 0, Agent 2: 2 

• Total Cost: 13 + 7 = 20 

5-Termination 

 

Final Assignment: 

 

• Task 1 -> Agent 2 

• Task 2 -> Agent X1,2 + X2,1 + X1,3 = 20 

• Task 3 -> Agent 1 

Total Cost: 20 

 

LOCAL SEARCH TASK REASIGNATION 

The objective of the task resignation it’s to find the local optimal of a feasible solution this move only takes 

in mind the tasks and agents involved in the solution, that makes the algorithm fast, but it can be that in 

some scenarios its possible that it can’t find a better solution that the one given. The steps are the next ones: 

 

Step 1: Initial Solution Generation 

 

• We need to pick a feasible solution of an instance. 

 

Step 2: Neighbor Solution Generation 

• Identify "neighbor" solutions by reassigning one task to a different agent. 

move1(l, i; k) =reassign task i ∈ X of agent l to agent k 

∆z= 𝒄𝒍,𝒊 − 𝒄𝒌,𝒊 

∆z>0 NO 

∆z<0  YES 
Step 3: Evaluate Neighbor Solutions 

 

• Calculate the total cost of each neighbor’s solution. Compare these costs to the total cost of the 

current solution. 

 

Step 4: Acceptance Criterion 

 

• If a neighbor solution has a lower total cost than the current solution, accept the neighbor solution 

as the new current solution. If no better neighbor is found, the current solution remains unchanged. 

 



Step 5: Iteration 

 

• Repeat the process of generating neighbor solutions and evaluating them until no further 

improvements can be made, or a predefined number of iterations is reached. 

 

 

Step 6: Termination 

 

• The algorithm terminates when no better neighbor solution is found, indicating a locally optimal 

solution has been achieved. 

 

LOCAL SEARCH TASK REASIGNATION APPLY IN HEURISTIC 1  

In base of the feasible solution given:  X1,2 + X2,1 + X1,3 = 20 

1.Generate Neighbor Solutions: 

• move1(2, 1; 1) = Not possible (capacity exceeded, agent 1 has 1 of capacity left and the 

requirement of this task is 3). 

• move1(1, 2; 2) = -8+6 = -2   BEST 

• move1(1, 3; 2) = Not possible (capacity exceeded, agent 2 has 2 of capacity left and the 

requirement of this task is 3). 

2. Evaluate Neighbor Solutions: 

 

• Only valid neighbor solution with improved cost: Task 2 to Agent 2 

 

3. Update Solution: 

 

• Accept the neighbor solution with Task 2 reassigned to Agent 2: 

• Updated Capacities: Agent 1: 1, Agent 2: 0 

• Total Cost: 5 (Task 1) + 6 (Task 2) + 7 (Task 3) = 18 

 

New Assignment: 

 

• Task 1 -> Agent 2 

• Task 2 -> Agent 2 

• Task 3 -> Agent 1 

Total Cost: 18 

 

4. Iteration: 

 

Continue searching for neighbor solutions. For simplicity, assume no further improvement is found. 

 

5. Termination: 

The local search terminates, and the final assignment is: 

• Task 1 -> Agent 2 

• Task 2 -> Agent 2 X2,1 + X2,2 + X1,3 = 18  

• Task 3 -> Agent 1 

Total Cost: 18 

  



HEURISTIC 2: GREEDY CAPACITY BALANCING ASSIGNMENT 
The Greedy Capacity Balancing Assignment heuristic aims to assign tasks to agents while balancing the 

load across agents and minimizing the total cost. The heuristic considers the cost of assigning a task to an 

agent and the remaining capacity of the agent. The goal is to distribute tasks in a way that avoids overloading 

any single agent and keeps the overall assignment cost low. 

 

Step 1: Initialization 

 

• Start with all tasks unassigned. 

• Initialize the remaining capacity of each agent based on their initial capacity. 

 

Step 2: Iterative Task Assignment 

 

• For each task, determine the best agent to assign it to. The "best" agent is chosen based on a 

metric that combines the cost of assignment and the remaining capacity of the agent. 

• Assign the task to the agent that has the lowest cost per remaining capacity (cost divided by 

remaining capacity plus one). 

• Update the remaining capacity of the chosen agent. 

 

Step 3: Repeat 

 

• Continue the process for all tasks until all tasks are assigned or no feasible assignment can be 

made due to capacity constraints. 

 

Step 4: Completion 

 

• Once all tasks are assigned, calculate the total cost of the assignment. 

• Output the assignment and the total cost. 

 

Example 

 

Consider an example with 3 tasks and 2 agents: 

• Tasks: 4 

• Agents: 3 

• Capacities: Agent 1: 6, Agent 2: 5, Agent 3: 6 

• Requirement: Task 1: 3 Task 2: 2 Task 3: 3 Task 4:2 

Costs Matrix: 

 

 Agent 1 Agent 2 Agent 3 

Task 1 10 5 7 

Task 2 8 6 9 

Task 3 7 9 4 

Task 4 6 3 8 

 

Task 1 Assignment: 

Calculate metric (cost / (remaining capacity + 1)) for Task 1: 

• Agent 1: 10 / (6 + 1) = 1.42 

• Agent 2: 5 / (5 + 1) = 0.833 

• Agent 3: 7 / (6 + 1) = 1 

• Assign Task 1 to Agent 2 (lowest metric: 0.833) 

• Update remaining capacities: Agent 1: 6, Agent 2: 2, Agent 3: 6 

• Assigned tasks: Task 1 -> Agent 2 

 



Task 2 Assignment: 

Calculate metric for Task 2: 

• Agent 1: 8 / (6 + 1) = 1.14 

• Agent 2: 6 / (2 + 1) = 3 

• Agent 3: 9 / (6 + 1) = 1.28 

• Assign Task 2 to Agent 1 (lowest metric: 1.14) 

• Update remaining capacities: Agent 1: 4, Agent 2: 2, Agent 3: 6 

• Assigned tasks: Task 1 -> Agent 2, Task 2 -> Agent 1 

 

Task 3 Assignment: 

Calculate metric for Task 3: 

• Agent 1: 7 / (4 + 1) = 1.4 

• Agent 2: 9 / (2 + 1) = 3 

• Agent 3: 4 / (6 + 1) = 0.57 

• Assign Task 3 to Agent 3 (lowest metric: 0.57) 

• Update remaining capacities: Agent 1: 4, Agent 2: 2, Agent 3: 3 

• Assigned tasks: Task 1 -> Agent 2, Task 2 -> Agent 1, Task 3 -> Agent 3 

 

Task 4 Assignment: 

Calculate metric for Task 4: 

• Agent 1: 6 / (4 + 1) = 1.2 

• Agent 2: 3 / (2+ 1) = 1 

• Agent 3: 8 / (3+ 1) = 2 

• Assign Task 4 to Agent 2 (lowest metric: 1) 

• Update remaining capacities: Agent 1: 4, Agent 2: 0, Agent 3: 3 

• Assigned tasks: Task 1 -> Agent 2, Task 2 -> Agent 1, Task 3 -> Agent 3, Task 4 -> Agent 2 

 

Final Assignments: 

 

• Task 1 -> Agent 2 

• Task 2 -> Agent 1 

• Task 3 -> Agent 3  X2,1 + X1,2 + X3,3 + X2,4 = 20 

• Task 4 -> Agent 2 

• Total Cost: 5 + 8 + 4 + 3 = 20 

 

LOCAL SEARCH TASK   REASSIGNATION APPLY IN HEURISTIC 2 

In base of the feasible solution given:  X2,1 + X1,2 + X3,3 + X2,4 = 20 

1. Generate Neighboring Solutions: 

• move1(2, 1; 1) = -5+10 = 5   NO 

• move1(1, 2; 2) = Not possible (capacity exceeded, agent 2 has 0 of capacity left and the 

requirement of this task is 3). 

• move1(2, 1; 3) = -5+7 = 2   NO 

• move1(3, 3; 1) = -4+7 = 3   NO 

• move1(3, 3; 2) = Not possible (capacity exceeded, agent 2 has 0 of capacity left and the 

requirement of this task is 3). 

• move1(1, 2; 3) = -8+9=1  NO 

• move1(2, 4; 1) = -3+6 = 3   NO 
• move1(2, 4; 3) = -3+8 = 5   NO 

 

5. Termination: 

No better neighbor was found, so the solution stays the same: X2,1 + X1,2 + X3,3 + X2,4 = 20 

  



EXPERIMENTAL COMPUTATION 

 
Experiments for the GAP 

For the experiments we will approach 3 different sizes of data: 

 

Data 

Small: Set of size n = 1000 – 50 tasks, 20 agents  

Medium: Set of size n = 10,000 – 200 tasks, 50 agents 

Large: Set of size n = 100,000 – 500 tasks, 200 agents 

 

• For every task the cost will be generated randomly between 0 and 101 

• For every agent the capacity will be generated randomly  

 

There will be generated 20 instances for every size of data (small, medium, and large). Then in every 

instance of every size, we will be applying the two heuristics (CH1: Greedy Cost-Capacity Ratio and 

CH2: Greedy Capacity Balancing Assignment) as well the local search algorithms in both of them, to 

visualize and compare the minimum cost on every instance and compare the results so we can select 

which was a better a more efficient Heuristic as well the local search algorithm. 

 

Heuristics and Local Search 

 

• H1: Greedy Cost-Capacity Ratio 

• H2: Greedy Capacity Balancing Assignment 

 

Experiment 1: CH1 vs CH2 

 

• In this first experiment we will compare the results between our two heuristics (Table Data) 

 
Small Instances: 

 
  



Medium Instances:  

 

 
 
 

Large Instances: 

 

  



Experiment 2: CH1 vs CH1_LS 
 

• In this second experiment we will compare the Heuristic Number 1 and the local search algorithm 

applied to this heuristic (swapping the assignment of a task from one agent to another).  
 
 
Small Instances: 

 

 
 

 
Medium Instances:  

 

 
 

 
 

 



Large Instances: 

 

 
 
Experiment 3: CH2 vs CH2_LS 

 
• In this third experiment we will compare the Heuristic Number 2 and the local search algorithm 

applied to this heuristic (swapping the assignment of a task from one agent to another).  
 
 

Small Instances: 

 

 
 

 



Medium Instances: 

 

 
 

 

 

 

Large Instances: 

 

 
 

 

 

 

 

 

 



Experiment 4: CH1_LS vs CH2_LS 

 
• In this third experiment we will compare the Heuristic Number 2 and the local search algorithm 

applied to this heuristic (swapping the assignment of a task from one agent to another).  
 

Small Instances: 

 

 
 

 

 

 

Medium Instances:  

 

 
 

 

 

 



Large Instances: 

 

   



CONCLUSIONS 

 
Experiment Number 1: CH1 vs CH2 

 

For smaller problems, Heuristic Number 2 (Greedy Capacity Balancing Assignment) worked better than 

Heuristic Number 1 (Greedy Cost-Capacity Ratio) because it was faster and cheaper. This means that for 

smaller tasks, Heuristic Number 2 is better at quickly balancing capacities and keeping costs low. 

 

For medium and large problems, both heuristics gave pretty similar results. Sometimes, the results were 

exactly the same, even though the methods are different. This might be because both methods end up finding 

similar solutions when dealing with the same capacities and costs. This shows that both heuristics can handle 

bigger problems well, and the complexity of the tasks might make their differences less noticeable. 

 

Both heuristics are useful and work well in real situations. They can handle different problem sizes 

efficiently. This means you can choose either one depending on what you need, like if you care more about 

speed or cost, and still get good results. 

 

Experiment Number 2: CH1 vs CH1_LS 

 

We noticed that the local search algorithm gave better results for costs compared to Heuristic Number 1 

(H1), but it took longer to run. The extra time is because the algorithm has to go through many iterations to 

find a better solution. This means it looks at more options, which takes more computing effort. For all the 

problem sizes we tested, the local search algorithm always reduced costs more than Heuristic Number 1. 

This shows that the local search method is better at finding the best or near-best solutions, even though it 

takes more time. So, even though the local search algorithm takes longer because it repeats its process a lot, 

it always beats Heuristic Number 1 when it comes to saving costs. 

 

Experiment Number 3: CH2 vs CH2_LS 

 

In this case, the local search algorithm did better than Heuristic Number 2 (Greedy Capacity Balancing 

Assignment). It saved costs in every problem size, showing it's better at cutting costs. This big improvement 

shows how much local search can help Heuristic Number 2. 

 

But like in experiment number 2, this better cost saving meant it took longer to run. This took a longer time 

because the local search algorithm works by taking a lot of steps over and over to look through all the 

solutions and find the best one. Each step checks out different solutions and improves the current one, 

needing more computing work than the heuristic way. The results of this test tell us that the local search 

algorithm makes a big difference in saving costs over Heuristic Number 2. It did better no matter the 

problem’s size, showing it's good at working with different levels of trouble. 

 

Experiment Number 4: CH1_LS vs CH2_LS 

 

For every problem size, both algorithms effectively cut costs, ensuring they find almost the best solutions. 

But they differed a lot in how long they took to run. Heuristic 2's local search was faster, finishing way 

quicker than Heuristic 1's local search for every problem size. This big-time difference shows that even 

though both do well at saving costs, they need different amounts of computer power. 

 

In the end, both Heuristic 1 and Heuristic 2's local search do well at cutting costs for different problem sizes. 

But Heuristic 2's local search is much faster, making it a better pick when you need quicker results. This 

shows how important it is to think about both how good the solution is and how fast the computer can find 

it when you pick an algorithm for fixing problems. 

 

 

 

 



General Conclusion 

 

Both local search and heuristic approaches work well to save costs across different problem sizes. Local 

search methods always do better at cutting costs compared to heuristics, showing they're good at finding 

almost the best solutions. But they take longer to run because they have to try lots of solutions over and over 

again. Among the local search ways, Heuristic 2's was much faster than Heuristic 1's for every problem size. 

Even though Heuristic 1 took almost twice as long, local search methods still save more costs than heuristics, 

making them good choices, especially when getting a great solution is most important. 

 

Heuristic 2's local search had better times and still saved costs well. Choosing between them depends on 

what the problem needs. If saving costs is what matters most and you have enough computer power, local 

search is best. But if time is the main thing, Heuristic 2 and its local search are better because they're faster. 
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