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A Simple Path Problem

Find shortest path fromAto P




How to solve it?

2 Enumeration

£ Heuristics

& Dynamic Programming




Enumeration

Problem with 6 stages

Find all possible paths (20)
or C(6,3) =6! / 3! 3!
For each path (5 sums)

Comparisons (19)
FLOPS = 119

Problem with N stages

# of paths = C(n, n/2)

For each path (n-1 sums)

# Comparisons = C(n, n/2) - 1
FLOPS = nC(n, n/2) - 1




Enumeration

Computational Effort

N FLOPS
6 119
20 > 3106
100 > 1030




Heuristics

Greedy

o Take “best” decision at each stage

e Path found:
A>C>F>I>M>0>P

e Cost: 14 (optimal??)

o Effort: 6 comparisons, 5 adds
o Effort(N): N comparisons, N-1 adds
« Optimality is not guaranteed




FLOPS

Heuristics

N| Enumeration Heuristic

6 119 11

20 > 310° 39

100 > 1030 199
Optimal Yes “No”




g(i) = least cost from i to P

Stage 0

Stage 1
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Dynamic Programming

e Solve backward with “boundary condition™
g(P)=0

& p(i) := Optimal decision taken at node i




Start with g(P) =0

Stage 5

Stage 4




Dynamic Programming
Optimal Solution

Node i g(i) p(i)

A 13 U B Optlmal Path

12 D>E A>B2>E-2>I2>L>N->P

14 D>F
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Computational Efficiency

N nodes with 1 branch (1 add)

(N/2)% nodes with 2 branches
(2 adds + 1 comp)

FLOPS = 3(N/2)% + N




Computational Efficiency

FLOPS
N| Enumeration Heuristic DP
6 119 11 33
20 > 310° 39 320
100 > 1030 199 7600
Optimal Yes “No” Yes




Terminology

& gi(y) := optimal value function
[min cost from (t,y) to (N,0)]

e t :=stage variable (0,1,...,6)
e vy :=state vector (-3,-2,...,2,3)

e Data: CU(t,y), CD(t,y) := cost of “U”,
decision at (t,y)

& Recurrence relation

CU(t,y)+g,.(y+1)
CD(t,y)+g,..(y—-1)

g(y)= min{

€ Boundary condition gy(0) =0

€ pe(y) := optimal decision at (t,y)

1 D”



Terminology

¢ Principle of Optimality [Richard Bellman]

“Any subpolicy of an optimal policy must be optimal”

e Consultant Question

“What do | have to know in order to take optimal decisions
from now on?”

Min info required - state variables




€

€

€

Wish to find a min cost path from (0,0) to
CHY)

Every time you make a “turn” you pay $2

You are given 2 coupons for “free” arcs

DP Formulation:

g:(y,X,z) := Min cost effort from node (t,y) to
(N,0) when arrival to (t,y) comes from a “x”
direction (x={U,D}) and with z coupons left

Optimal solution gy(0,-,2)

Boundary condition gy(0,x,z) = 0 for any x, z




Example B

DP Formulation:
Recurrence relationship

g,(»,U,z)=min

g,(y,D,z)=min

CUty)+g.(y+LU,z2)
g1+1(y+1,U,Z_1)

CD(tay)+2+gt+l(y_laDaz)
2+gt+1(y_1:Daz_1)

CU(#,y)+2+g,,,(y+1LU,2)
2+ g, (yv+LU,z-1)

CD(t,y)+8g..(y=1D,2)
gn(y—-1D,z-1)

U, don't use coupon
U, use coupon
D, don't use coupon

D, use coupon

U, don't use coupon
U, use coupon

D, don't use coupon

D, use coupon



Example C: Equipment Replacement|

e Own a “machine” which deteriorates with age

€  Must own machine during next N years

@ At start of year 1, age of incumbent machine is y

€ Decision at start of each year is either to keep machine or replace it

1 ] N Year

e (i) := yearly cost of operating machine of age i

€ p :=price of a new machine (age 0)

@ (i) := trade-in amount received for old machine of age i

@ s(i) := salvage value received at end of year N for a machine of age i

€ Must find an optimal replacement policy which minimizes the total
cost during the next N years




Example C: Equipment Replacement' 2

DP Formulation

€ Optimal value function:

J¢(x) := min cost of owning a machine from year t to N,
starting year t with a machine of age x

& Recurrence relation:
p—t(x)+c(0)+J,,, (1) (replace)
c(x)+J,, (x+1) (keep)

J, (x)= min{

& Boundary condition:

JN+1 (.X') — —S(X)

€ Optimal solution:




Closing Remarks

DP applies in “sequential” decisions (deterministic or
stochastic)

Very efficient solution procedure (backward & forward
formulations)

Applications:
e Equipment replacement
e Resource allocation
e Pipeline network systems
e Inventory systems
e Control systems




»
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