
Chapter I

ELEMENTARY PATH PROBLEMS

1. lntroductlon

Dynamic programming is an optimization procedure that is
particularly applicable to problems requiring a sequence of interrelated
decisions. Each decision transforms the current situation into a new
situation. A sequence of decisions, which in turn yields a sequence of
situations, is sought that maximizes (or minimizes) some measure of value.
The value of a sequence of decisions is generally equal to the sum of the
values of the individual decisions and situations in the sequence.

Through the study of a wide variety of examples we hope the reader
will develop the largely intuitive skill for recognizing problems fitting the
above very general description. We begin with a problem seeking the best
path from one physical location to another. Then we elaborate the problem
to show how a “situation” may encompass more than just information
about location and must be defined in a way that is appropriate to each
particular problem.

2. A Slmple Path Problem

Suppose for the moment that you live in a city whose streets are laid
out as shown in Figure 1.1, that all streets are one-way, and that the
numbers shown on the map represent the effort (usually time but some-
times cost or distance) required to traverse each individual block. You live
at A and wish to get to B with minimum total effort. (In Chapter 4, you
will learn how to find minimum-effort paths through more realistic cities.)

You could, of course, solve this problem by enumerating all possible
paths from A to B; adding up the efforts, block by block, of each; and
then choosing the smallest such sum. There are 20 distinct paths from A to

1

2 1 . ELEMENTARY PATH PROBLEMS

H

Figure 1.1

B and five additions yield the sum of the six numbers along a particular
path, so 100 additions would yield the 20 path sums to be compared. Since
one comparison yields the smaller of two numbers, one additional
comparison (of that number with a third) yields the smallest of three, etc.,
19 comparisons complete this enumerative solution of the problem. As you
might suspect, one can solve this problem more efficiently than by
brute-force enumeration. This more efficient method is called dynamic
programming.

3. The Dynamlc-Programming Solution
To develop the dynamic-programming approach, one reasons as

follows. I do not know whether to go diagonally upward or diagonally
downward from A , but if I somehow knew just two additional
numbers-namely, the total effort required to get from C to B by the best
(i.e., minimum-effort) path and the total effort required to get from D to B
by the best path-I could make the best choice at A . Denoting the
minimum effort from C to B by S, and the minimum effort from D to B
by S,, I would add to S, the effort required in going from A to C,
obtaining the effort required on the best path starting diagonally upward
from A . I would then add the effort on A D to S, to obtain the effort on
the best path starting diagonally downward from A , and I would compare
these two sums to find the overall minimum effort and the best first
decision.

Of course, all this is predicated on knowing the two numbers S, and
S, which, unfortunately, are not yet known. However, one of the two key
ideas of dynamic programming has already made its innocuous
appearance. This is the observation that only the efforts along the best

3. THE DYNAMIC-PROGRAMMING SOLUTION 3

paths from C and from D to B are relevant to the above computation, and
the efforts along the nine inferior paths from each of C and D to B need
never be computed. This observation is often called the principle of
optimality and is stated as follows:
The best path from A to B has. the property that, whatever the initial
decision at A , the remaining path to B, starting from the next point after
A , must be the best path from that point to B.

Having defined S, and S, as above, we can cite the principle of
optimality as the justification for the formula

s, =min[1 + s, 1,
0 + s,

where S, is the minimum effort to get from A to B and the symbol min[;]
means “the smaller of the quantities x and y.” In the future we shall
always cite the principle rather than repeat the above verbal reasoning.

Now for the second key idea. While the two numbers S, and S, are
unknown to us initially, we could compute S, if we knew the two numbers
S, and S, (the minimum efforts from E and F to B, respectively) by
invoking the principle of optimality to write

S,=min[5 + s, 1.
4 + s,

Likewise,
S,=min[7 + s, 1.

3 + s,
S,, S , and S , are at first not known, but they could be computed if S,,
S,, S,, and S, were available. These numbers, in turn, depend on S,, S,,
aad S,, which themselves depend on So and S,. Hence we could use
formulas of the above type to compute all the 5”s if we knew So and S,,
the minimum efforts from 0 and P, respectively, to B. But these numbers
are trivially known to be 2 and 1, respectively, since 0 and P are so close
to B that only one path exists from each point. Working our way
backward from 0 and P to A, we now carry out the desired computations:

2 + so s, = 5 + so = 7, s, = min[] = 4, s, = 4 + s, = 5 ;
8 + S ,

3 + s, 2 + s,
4+s, 2 + s, s, = 3 + s, = 10, s, = min[] = 8, S,= mi.[] = 6,

S,= 2 + S, = 7;
(equations conrinue)

4 1 . ELEMENTARY PATH PROBLEMS

,=mi.[2 + s,] =9,

s,=min[5 + SE] = 12,

SA=min[1 + s,] = 13.

1 + s,
5 + s,
4 + s,

4 + SF

o + s,

S,=min[1 + s,] = 8 ,
2 + s,

7 + SF
3 + S G

S, = min[] = 14;

Our second key idea has been to compute lengths of the needed
minimum-effort paths by considering starting points further and further
away from B, finally working our way back to A. Then the numbers
required by idea one, the principle of optimality, are known when they are
needed.

In order to establish that the best path has total effort 13 (i.e., that
S,, = 13), we performed one addition at each of the six points H, L, 0, K,
N, and P where only one decision was possible and we performed two
additions and a comparison at each of the remaining nine points where
two initial decisions were possible. This sums to 24 additions and nine
comparisons, compared with 100 additions and 19 comparisons for the
brute-force enumeration described earlier.

Of course we are at least as interested in actually finding the best path
as we are in knowing its total effort. The path would be easy to obtain had
we noted which of the two possible first decisions yielded the minimum in
our previous calculations at each point on the figure. If we let x represent
any particular starting point, and denote by P, the node after node x on
the optimal path from x to B, then the P table could have been computed
as we computed the S table above. For example, P, = 0 since 2 + So was
smaller than 8 + S,, P, = M since 4 + S, was smaller than 3 + S,, etc.
The P table, which can be deduced with no further computations as the S
table is developed, is given in Table 1.1. To use this table to find the best
path from A to B we note that PA = C, so we move from A to C. Now,
since Pc = F, we continue on to F, PF = J means we move next to J;

Table 1.1 The optimal next point for each initial point

Po = B,

PH = L, P! = M , P, = M, PK= N;
P , = I , P ,=J , P , = J o r K
P, = F,

P p = B ;
PL = 0, P" = 0, PN = P;

Po = G;
PA = c.

4. TERMINOLOGY 5

P, = M sends us on to M where PM = 0 tells us 0 is next and B is last.
The best path is therefore A-C-F-J-M-0-B. As a check on the accuracy
of our calculations we add the six efforts along this path obtaining
1 + 4 + 2 + 2 + 2 + 2 = 13 which equals S,, as it must if we have made no
numerical errors.

It may surprise the reader to hear that there are no further key ideas
in dynamic programming. Naturally, there are special tricks for special
problems, and various uses (both analytical and computational) of the
foregoing two ideas, but the remainder of the book and of the subject is
concerned only with how and when to use these ideas and not with new
principles or profound insights. What is common to all dynamic-
programming procedures is exactly what we have applied to our example:
first, the recognition that a given “whole problem” can be solved if the
values of the best solutions of certain subproblems can be determined (the
principle of optimality); and secondly, the realization that if one starts at
or near the end of the “whole problem,” the subproblems are so simple as
to have trivial solutions.

4. Termlnology

To clarify our explanations of various elaborations and extensions of
the above ideas, let us define some terms and develop some notations. We
shall call the rule that assigns values to various subproblems the optimal
value function. The function S is the optimal value (here minimum-effort)
function in our example. The subscript of S-e.g., the A in the symbol
S,-is the argument of the function S, and each argument refers to a
particular subproblem. By our definition of S, the subscript A indicates
that the best path from A to B is desired, while C means that the best path
from C to B is sought. The rule that associates the best first decision with
each subproblem-the function P in our example-is called the optimal
policy function. The principle of optimality yields a formula or set of
formulas relating various values of S. This formula is called a recurrence
relation. Finally, the value of the optimal value function S for certain
arguments is assumed obvious from the statement of the problem and from
the definition of S with no computation required. These obvious values are
called the boundary conditions on S .

In this jargon, to solve a problem by means of dynamic programming
we choose the arguments of the optimal value function and define that
function in such a way as to allow the use of the principle of optimality to
write a recurrence relation. Starting with the boundary conditions, we then
use the recurrence relation to determine concurrently the optimal value

6 1. ELEMENTARY PATH PROBLEMS

and policy functions. When the optimal value and decision are known for
the value of the argument that represents the original whole problem, the
solution is completed and the best path can be traced out using the optimal
policy function alone.

We now develop a particular notation for the simple path problem at
hand which will allow for a more systematic representation of the
procedure than did our earlier formulas. We say nothing new. We shall
only say it in a different way. Let us place our city map (Figure 1.1) on a
coordinate system as shown in Figure 1.2. Now the point A has
coordinates (0, 0), B has coordinates (6, 0), I has (3, l), etc.

We do not show the one-way arrows on the lines, but we assume
throughout the remainder of this chapter that admissible paths are always
continuous and always move toward the right.

The optimal value function S is now a function of the pair of numbers
(x , y) denoting a starting point, rather than a function of a literal argument
such as A or C. For those pairs (x , y) denoting a street intersection on our
map (henceforth called a vertex of our network) we define the optimal
value function S(x, y) by

S(x, y) =the value of the minimum-effort path connecting

The diagonal straight line connecting one vertex of our network and a
neighboring one represents a block of our city and will now be called an
arc of our network. We let the symbol a,(x, y) denote the effort associated
with the arc connecting the vertex (x , y) with the vertex (x + 1, y + 1); the
subscript u signifies the arc goes diagonally up from (x , y). We let a,(x, y)
denote the effort of the arc going diagonally down from (x , y) to (x + 1,

the vertex (x , y) with the terminal vertex (6, 0). (1.1)

Y

Figure 1.2

4. TERMINOLOGY 7

y - l), and we say that a,(x, y) or a,(x, y) = 00 (a very large number) if
there is no such arc in our network (e.g., aU(4, 2) = w).

In terms of these symbols, the principle of optimality gives the
recurrence relation

and the obvious boundary condition is

since the effort in going from (6, 0) to (6, 0) is zero for we are already there.
Alternatively, we could write the equally obvious boundary conditions
S(5, 1) = 2, S(5, -1) = 1 as we did earlier, but these are implied by (1.2),
(1.3), and our convention that ~“(5 , 1) = w and ad(5, -1) = 00.

Furthermore, (1.3) is simpler to write. Either boundary condition is correct.
In the exercises assigned during this and subsequent chapters, when

we use a phrase such as, “Give the dynamic-programming formulation of
this problem,” we shall mean:

Define the appropriate optimal value function, including both a
specific definition of its arguments and the meaning of the value of the
function (e.g., (1.1)).

S(6, 0) = 0, (1.3)

(1)

(2) Write the appropriate recurrence relation (e.g., (1.2)).
(3) Note the appropriate boundary conditions (e.g., (1.3)).

Y

Figure 1.3 6

8 1 . ELEMENTARY PATH PROBLEMS

As we emphasized in the Preface, the art of dynamic-programming
formulation can be mastered only through practice, and it is absolutely
essential that the reader attempt almost all of the assigned problems.
Furthermore, the student should understand the correct solution given in
the back of this book before continuing.

Problem 1.1. On the network shown in Figure 1.3, we seek that path
connecting A with any point on line B which minimizes the sum of the four arc
numbers encountered along the path. (There are 16 admissible paths.) Give the
dynamic-programming formulation of this problem.

Problem 1.2. Solve the above problem using dynamic programming, with the
additional specification that there is a rebate associated with each terminal point;
ending at the point (4, 4) has a cost of - 2 (i.e., 2 is subtracted from the path cost),
(4, 2) has cost - 1, (4, 0) has cost -3, (4, - 2) has cost -4, and (4, - 4) has
cost -3.

5. Computational Efficiency

Before proceeding, let us pause to examine the efficiency of the
dynamic-programming approach to the minimum-effort path problems we
have considered. Let us first ask approximately how many additions and
comparisons are required to solve a problem on a network of the type first
considered, an example of which is shown in Figure 1.4 (without specifying
the arc costs and without arrows indicating that, as before, all arcs are
directed diagonally to the right). First we note that in the problem
represented in Figure 1.1 each admissible path contained six arcs, whereas
in the one given in Figure 1.4 each path has 10. We call the former a
six-stage problem, the one in Figure 1.4 a 10-stage problem, and we shall
now analyze an N-stage problem for N an even integer. There are N
vertices (those on the lines CB and DB, excluding B, in Figure 1.4) at

Figure 1.4

5. COMPUTATIONAL EFFICIENCY 9

which one addition and no comparisons are required in the dynamic-
programming solution. There are (N/2)2 remaining vertices (those in the
diamond AEFG) at which two additions and a comparison are required.
Hence a total of N2/2 + N additions and N2/4 comparisons are needed
for the dynamic2programming solution. (Note that for N = 6, the first
problem in the text, these formulas yield 24 additions and nine
comparisons, which checks with the count that we performed earlier.)

When we ask, in future problems, how many additions and how many
comparisons are required for the dynamic-programming solution, we
expect the reader to do roughly what we did above-imagine that the
calculations are really being performed, count the points (or situations)
that must be considered, count the additions and comparisons required at
each such point (taking account of perhaps varying calculations at
differing points), and total the computations.

To get an idea of how much more efficient dynamic programming is
than what we called earlier brute-force enumeration, let us consider
enumeration for an N-stage problem. There are ($2) admissible paths.
(The symbol (;) should be read, “The number of different ways of
choosing a set of Y items out of a total of X distinguishable items” and
($) = X ! / [Y! (X - Y)!] where z! = 1 - 2 . 3 . . . 2.) To derive this formula
for the number of paths we note that each path can be represented by a
sequence of N symbols, half of which are Us and half of which are D’s,
where a U in the Kth position in the sequence means the Kth step is
diagonally up and a D means the Kth step is diagonally down. Then ($2)
is the number of different ways of choosing the N/2 steps that are U, with,
of course, the remainder being D’s. Note that the formula gives the correct
number, 20, for our original six-stage example. Each path requires N - 1
additions, and all but the first one evaluated require a comparison in order
to find the best path. This totals to (N - 1)($J additions and ($2) - 1
comparisons. For N = 6 we have already seen that dynamic programming
required roughly one-fourth the computation of brute-force enumeration.
However, for N = 20 we find that the dynamic-programming solution
involves 220 additions and 100 comparisons, while enumeration requires
more than three million additions and some 184,000 comparisons. We shall
find in general that the larger the problem, the more impressive the
computational advantage of dynamic programming.

Problem 1.3. How many additions and how many comparisons are required
in the dynamic-programming solution and in brute-force enumeration for an
N-stage problem involving a network of the type shown in Figure 1.3? Evaluate
your formulas for N = 20.

Let us note here a further advantage of dynamic programming. Once

10 1. ELEMENTARY PATH PROBLEMS

a problem has been solved by the computational scheme that we have been
using, which works backward from the terminal point or points, one also
has solved a variety of other problems. One knows, in our examples, the
best paths from each vertex to the end. In our initial example of this
chapter, referral to the policy Table 1.1 of Section 3 tells us that the best
path from D to B goes first to vertex G, then to J or K, and, if J is chosen,
the remaining vertices are M, 0, and B.

6. Forward Dynamic Programming

We now explicate a variation on the above dynamic-programming
procedure which is equally efficient but which yields solutions to slightly
different but related problems. In a sense we reverse all of our original
thinking. First we note that we could easily determine the effort of the best
path from A to B in Figure 1.1 if we knew the effort of both the best path
from A to 0 and the best path from A to P. Furthermore, we would know
these two numbers if we knew the efforts of the best paths to each of L,
M , and N from A, etc. This leads us to define a new optimal value
function S by

S(x, y) =the value of the minimum-effort path connecting
the initial vertex (0, 0) with the vertex (x, y). (1.4)

Note that this is a quite different function from the S defined and
computed previously; however, the reader should not be disturbed by our
use of the same symbol S as long as each use is clearly defined. There are
far more functions in the world than letters, and surely the reader has let
f (x) = x for one problem andf(x) = x 2 for the next.

The appropriate recurrence relation for our new optimal value
function is

a,(x - 1, y - 1) + S(x - 1, y - 1)
a d (X - l , y + l) + S (x - l , y + l)

S(x, y) = min

Here we are using a reversed version of the principle of optimality, which
can be stated as follows:

The best path from A to any particular vertex B has the property that
whatever the vertex before B, call it C, the path must be the best path from
A to C.

The boundary condition is
S(0, 0) = 0 (1 -6)

since the cost of the best path from A to itself is zero.

6. FORWARD DYNAMIC PROGRAMMING 1 1

problem 1.4. Solve the problem in Figure 1.1 by using (1.4)-(1.6). How
many additions and how many comparisons does the solution entail? How does
this compare to the numbers for the original dynamic-programming solution in the
text?

We shall call the procedure using the new reversed viewpoint the
forward dynamic-programming procedure since the computation is
performed by moving forward from A to B rather than moving backward
from B to A as in the original (backward) procedure.

The two procedures differ in the auxiliary information they produce.
The forward procedure used in Problem 1.4 yields the optimal path from A
to every vertex, but tells nothing about the optimal paths from most
vertices to B. The latter information is furnished by the backward
procedure.

Problem 2.5. Do Problem 1 . 1 by the forward procedure. Compute and
compare the number of additions and comparisons for the backward and the
forward solutions.

Problem 1.6. Find the minimum-cost path starting from'line A and going to
line B in the network shown in Figure 1.5. The numbers shown along lines A and
B are additional costs associated with various initial and terminal points.

Y

A

Figure 1.5

12 1. ELEMENTARY PATH PROBLEMS

7. A More Complicated Example

We now complicate the situation to show that for some problems the
argument of the optimal value function may have to contain more
information than just the current vertex. A major part of the art of
dynamic programming is the appropriate choice of the subproblems that
must be solved in order eventually to solve the given problem.

Let us stipulate that if, after arriving at any vertex on our way from A
to B in Figure 1.1, we turn rather than continue in a straight line, an
additional cost of 3 is assessed. No penalty is assessed if we continue
straight on. The path that solved the original problem before the
turn-penalty charge was introduced looked like

and hence had three turns. Therefore, that path costs 22 (13 plus 3 for each
of three turns) and may no longer be optimal since there may have been
paths originally costing less than 19 and containing one turn.

Suppose, just as we did at the start of this chapter, that we are at the
initial vertex A and we already know the cost (including the turn penalties)
of the best path from C to B and also from D to B. Can we then compute
the optimal decision at A? If we move diagonally upward from A to C, the
arc cost is 1, but what is the remaining cost? It is clearly the (assumed
known) cost of going from C to B if it is optimal, in going from C to B, to
go diagonally upward at C (i.e., continue straight at C rather than turn).
But what if the optimal decision at C, in order to minimize the cost
including turn penalties of going from C to B, is to go diagonally down at
C? Then if we first go from A to C and then follow this path the total cost
is the cost of the arc A C plus a cost of 3 for the turn plus the (assumed
known) optimal cost from C to B. But, in this case, there is another
possibility that we must consider. Maybe, if we were to go diagonally
upward to C, we should continue diagonally upward at C and avoid the
turn penalty cost of 3. If the minimum-cost path from C to B that starts
diagonally upward at C costs only 1 or 2 more than the optimal path from
C to B (which we assumed went diagonally down at 0, using this path
would be preferable to turning at C and going diagonally down, even
though the optimal path from C to B goes diagonally down at C. So what
we need to know at C is both the minimal cost from C to B, including any
turn penalties incurred after C, if we leave C in the diagonally upward
direction and also the minimal cost should we choose to leave C in the
diagonally downward direction. That is, we need two numbers associated
with the vertex C. Let us now apply these insights to solve the problem.
We define the optimal value function S, which in this case is a function of

7. A MORE COMPLICATED EXAMPLE 13

three variables (two describe the vertex and one, which can take on only
two possible values, tells us whether we are to leave the vertex by going
diagonally up or by going diagonally down), by

S(x, y , z) =the minimum attainable sum of arc numbers
plus turn penalties if we start at the vertex (x , y),
go. to B, and move initially in the direction
indicated by z, where z equals 0 denotes diago-
nally upward and z equals 1 denotes diagonally
downward. (1.7)

Now, supposing we are at (x , y) and move upward (z = 0), we arrive at
(x + 1, y + 1) moving in an upward direction. If we continue to move
upward, we incur an additional cost S(x + 1, y + 1, 0), but should we turn
and proceed downward instead the cost is 3 (the penalty for the turn) plus
S(x + 1, y + 1, l), the remaining cost once we have started downward. The
optimal cost from (x , y) starting upward is the minimum of these two
alternatives. Hence, by the principle of optimality, we obtain the
recurrence relation

a,(x, y) + S (x + 1, y + 1 9 0)
a,(x, y) + 3 + S(x + 1, y + 1, 1)

S(x , y , 0) = min

or, equivalently,

. (1.9) 1 S(x + 1,y + 1, 0)
3 + S(x + 1, y + 1, 1) S(x, y , 0) = a,(x, y) + min

Repeating the reasoning above under the assumption that we choose to
start from (x , y) in a downward direction, we obtain

. (1.10) 1 3 + S(x + 1, y - 1,O)
S(x + 1, y - 1, 1) S(x , y, 1) = ad(x, y) + min

It is essential to note that we do nor compare S(x, y , 0) and S(x, y, 1) but,
rather, we compute, record, and later use both of them. (The clever reader
might have observed that if one of the above S values exceeds the other by
more than 3, the larger can never be part of an overall minimum-sum path
and can be dropped. However, such cleverness, when it exploits the
particular data of the problem-the fact that a turn costs 3 in this example
-should be avoided since it, at the very least, obscures the general
principle and, in this particular example, the computation needed to make
the comparison may well exceed the savings accrued from occasionally
dropping the larger from consideration.)

Formulas (1.9) and (1.10) together constitute the recurrence relation
for this problem. We shall now write (1.9) and (1.10) together as just one
formula, but first we want to discourage the reader from doing so in the

14 1. ELEMENTARY PATH PROBLEMS

future and promise not to do so ourselves. The elegance of the result does
not, in our opinion, justify the complexity of the formula. By first letting z
equal 0 and comparing with (1.9) and then letting 2 equal 1 and comparing
with (l.lO), the reader can verify that

S(x, y, z) = (1 - Z)%(X , y) + %(X, y)

. (1.11) 1 S(x + 1, y + 1 - 22, 2)

3 + S (x + l , y + 1 - 2 2 , l - 2)
+ min

The boundary condition for our particular problem is, literally,
S(5, 1,O) = 00, S(5, 1, 1) = 4 5 , 1) = 2;

S (5 , - 1 , 0) = ~ , (5 , - 1) = 1 , S(5, - 1 , 1) = 0 0 ; (1.12)
but if we write

(1.13)
(and use our convention that nonexistent arcs cost oo), then (1.9) and
(1.10) imply the results (1.12). Conditions (1.13) assert that once we are at
B, the end, there is no remaining cost no matter what we do there.

S(6, 0, 0) = 0, S(6, 0, 1) = 0

8. Solutlon of the Example

Using (1.7), (1.9) and (1. lo), and (1.13), we now actually numerically
solve the problem shown in Figure 1.1 with the additional stipulation that
each direction change costs 3. P (x , y, z) = U means that up is the optimal
second decision if we start at (x , y) and move first in the direction
indicated by z and a similar definition holds for P (x , y, z) = D.

Defining S as co at points that are not vertices of our problem
network,

S(5, 1, 0) = 00 + min [3 Y m] = ~ ;

S(5, 1, 1) = 2 + min = 2; [:I
S(5, - 1, 0) = 1 + min = 1; [:I

Now, using the above results,
00 S(4,2,0) = 00 + min[3 + 0 0] = 00;

= 7, .P(4, 2, 1) = D ; 1 3 + S(5, 1, 0)
S(4,2, 1) = 5 + min

8. SOLUTION OF THE EXAMPLE 15

S(4, 0, 0) = 2 + min [S(59 ”] = 7, P (~ , o , 0) = D ;
3 + S(5, 1, 1)

3 + S(5, - 1,O)
S(5, - 1, 1)

S(5, - 1,O)
3 + S(5, - 1, 1)

= 12,

= 5 ,

P(4, 0, 1) = U ;

P(4 , - 2 ,O) = u;
1
1

S(4, 0, 1) = 8 + rnin

S(4, - 2, 0) = 4 + min i
S(4, - 2, 1) = 00.

Proceeding to various situations that are three steps from the end (i.e.,
x = 3),

S(3, 3, 0) = 00;

S(3, 3, 1) = 3 + min [3;m] = 10,

S(3, 1,O) = 3 + min

S(3 , 1, 1) = 4 + min

S(3, - 1,O) = 2 + min

~ (3 , - 1, I) = 2 + min[3 2 5 1 = 10,

~ (3 , - 3 , 0) = 2 + min[21 = 7,

S(3, - 3, 1) = 00.

P (3 , 3, 1) = D;

[
O0
+

] = 13, ~ (3 , 1,0) = D ;

~ (3 , - 1 , 1) = U;

~ (3 , - 3 , 0) = U ;

Using these eight numbers to compute all four-step solutions (i.e., x = 2),
00 S(2, 2, 0) = 2 + min [] = 15, P(2 , 2, 0) = D ;
+

S(2, 2, 1) = 1 + rnin = 15, P (2 , 2, 1) = D ;

[l 3] = 14, S(2, 0, 0) = 1 + min P (2 , 0, 0) = U; 3 + 14

s (~ , o , 1) = 2 + min = 12,

] = 14,

= 14,

P (~ , o , 1) = D ;

S(2, - 2, 0) = 5 + min[P(2 , - 2, 0) = U ;
3 + 10

S(2, - 2 , 1) = 4 + min P (2 , - 2, 1) = U.

16 1 . ELEMENTARY PATH PROBLEMS

Next,
15 S(1, 1,O) = 5 + min

S(1, 1, 1) = 4 + min + l4 = 16, P (1, 1, 1) = D; [12 1
P(1, - 1,O) = u; [3 Y 1 2] = 21, S(l , - 1,O) = 7 + min

S (l , - 1 , 1) = 3 + m i n 3 + 1 4 =17, P(1, - l , l) = D . [14 1
Finally,

S(0, 0, 0) = 1 + min [Yl6] = 20, P (0 , 0,O) = D;

S(0, 0, 1) = 0 + min + 21 = 17, P(0 , 0, 1) = D. [17 I
From the last two numbers we conclude that the cost of the best path
starting from A in an upward direction is 20 and in a downward direction
is 17. Hence we choose to start in the downward direction. Since
P(O,O, 1) = D, we continue in the downward direction at the vertex
(1, - 1). Since P(l , - 1, 1) is D, we continue downward when we reach
(2, - 2). P(2, - 2, 1) being U, we turn and move diagonally upward at
(3, - 3). P(3, - 3, 0) equaling U means we go upward at (4, - 2) and
P(4, - 2, 0) being U means we go upward at (5, - 1). The optimal path is
therefore (0, 0), (1, - l), (2, - 2), (3, - 3), (4, - 2), (5, - l), (6, 0); and its
cost is 14 for its arc costs plus 3 for its one turn, 17 in all, which conforms
with our computed value of S(0, 0, 1).

It is crucial for the reader to understand that, to work the problem
correctly, the “current situation” must include current direction
information as well as current vertex information. Therefore, the optimal
value function depends on an additional argument, which in turn
somewhat increases the required computations.

Problem 1.7. The preceding problem can equally well be solved by defining
the “current situation” to be a vertex and the direction of the arc by which we
arrived at that vertex. Give the dynamic-programming formulation using this
approach, but you need not solve the problem numerically.

Problem 1.8. For an N-step problem of the above type on a diamond-shaped
network, how many additions and how many comparisons are needed for solution?
For simplicity, assume that boundary vertices are the same as all others.

Problem 1.9. Give a forward dynamic-programming procedure for solving
the turn-penalty problem solved above in the text. Do not solve numerically.

10. STAGE AND STATE 17

9. The Consultant Question

Once the key ideas of dynamic programming (the use of an optimal
value function, its characterization by a recurrence relation, and its
recursive solution yielding successively the solutions to problems ,of longer
and longer duration) are understood, the art of dynamic-programming
formulation involves the proper choice of the arguments for the optimal
value function. If too few arguments are chosen (such as neglecting the
direction information in the turn-penalty problem), no correct recurrence
relation can be written. If too many are chosen (such as specifying the
direction of the next two arcs, rather than one, in the turn-penalty
problem) a correct result can be obtained, but at the expense of an
unnecessary amount of computation. A good way to determine the right
amount of information to incorporate in the arguments of the optimal
value function for a backward procedure is to think as follows. Suppose
that someone were making a series of (perhaps nonoptimal) decisions for
the problem at hand and then decided that he was not doing too well and
needed the help of an expert dynamic-programming consultant, namely
you, the reader. After he has described the problem to you, but before he
tells you anything about what he has done so far, he says, “Now you take
over and do things optimally from now on.” The minimal information that
you would have to acquire from him about the current situation from
which you are to start constitutes the arguments of the optimal value
function. Thinking of the situation in this way and asking what
information you would need to know in order to take over the decision
making will subsequently be called “asking the consultant question.”

Problem 1.10. Reconsider the original problem of this chapter with no turn
penalty (see Figure 1 . 1) and define the optimal value function by (1.7). Give a
correct dynamic-programming formulation based on this unnecessarily elaborate
optimal value function.

10. Stage and State

Thus far we have spoken of the arguments of the optimal value
function as describing the current situation. Generally one variable
describes how many decisions have thus far been made, and it is one larger
on the right-hand side of the recurrence relation than on the left regardless
of the particular decision. (In (1.2), we are speaking of the variable x ;
likewise in (1.9) and (1.10). For some definitions of the arguments of the
optimal value function, this variable will decrease by one after each
decision.) This particular monotonic (i.e., either always increasing or
always decreasing) variable is called the stage variable. All the remaining

18 1. ELEMENTARY PATH PROBLEMS

variables needed to describe the current situation, given the stage variable,
are called state variables. The values of the stage and state variables
constitute a description of the situation adequate to allow a dynamic-
programming solution.

Below is a series of problems of increasing difficulty that. will allow
the reader to check his understanding of the simple but elusive ideas
covered above. The reader who proceeds without verifying that he can
correctly solve the problems, before reading the solutions at the back of the
book, does so at his own peril. I t is our experience that there is a wide gap
between understanding someone else’s dynamic-programming solution and
correctly devising one’s own, and that the latter skill is acquired only
through practice in independent problem solving. Correct problem
formulation requires creative thinking rather than merely passive
understanding. While we can lead the student to the understanding, we
cannot make him think.

Unless otherwise stated, the following 12 problems seek the
minimum-cost continuous path connecting A and B, always moving
toward the right, on a general N-stage network (N even) of the type shown
in Figure 1.6. Each arc has an arc cost associated with it, with a,(x, y) and
a,(x, y) representing the arc costs as in the text. The total cost of a path is
defined in the statement of the problem. For each problem, define the
optimal value function, write the recurrence relation and give boundary
conditions.

Y

Problem 1.11. The cost of a path is the sum of the arc costs plus the total
direction-change cost where the kth change of direction costs k, k = 1, 2, 3, . . .
(i.e., a path with three direction changes has a total direction-change cost of
1 + 2 + 3 = 6) .

Frob/em 1.12. The cost is the sum of the arc costs plus a charge of 3 for each
odd-numbered change of direction (i.e., the first, third, fifth, etc. direction change
costs 3; other direction changes are free).

Problem 1.13. Only paths with m or fewer direction changes (for given m) are
allowable. The cost is the sum of the arc costs. Direction changes cost 0.

1 1 . THE DOUBLING-UP PROCEDURE 19

Problem 1.14. The cost of each N-stage path from A to B is the sum of the
N - 1 smallest arc costs along the path (i.e., you do not have to pay the largest arc
cost on the path).

Problem 1.15. The cost of a path is the largest arc cost on the path (e.g., the
cost of a path with arc costs 1, 7, 6, 2, 5, 3 is 7).

Problem 1.16. The cost of a path is the second largest arc cost on the path.

Problem 1.17. You start at A with Z coupons. If you choose to go diagonally
up from (X , J J) and simultaneously spend z of your coupons, the original cost
a,(x,y) is reduced by an amount g,(x,y, z), where g, increases with increasing z .
A similar reduction of g,(x,y, z) occurs if you go diagonally down. The total cost
is the sum of the reduced arc costs.

Problem 1.18. The path may start at any node, not just A . The cost is the
sum of the arc costs plus a cost of p (x , y) if the initial node of the path is (x , y).

Problem 1.19. The cost is the usual sum of the arc costs. If you change
directions at any vertex, you are not allowed to do so at the next vertex of the path.

Problem 1.20. Only paths with sum of arc costs less than or equal to 2 (a
given number) are allowed. The cost of a path is the maximum arc cost along the
path. All arc costs are nonnegative.

Problem 1.21. All arc costs are positive, and the cost is the product of the arc
costs along the path.

Problem 1.22. Some arc costs are positive and some are negative. The cost is
the product of the arc costs along the path.

11. The Doubling-Up Procedure

We now use a special kind of simple path problem to develop an idea
that, when appropriate, saves considerable computation. The reader will be
asked to apply this idea to various problems in subsequent chapters. In
what follows we assume that all arcs point diagonally to the right, 2nd we
assume, and this is crucial to our method, that while as usual the arc costs
depend on their initial and final vertices, they do not depend on the stage
(i.e., the x coordinate). Such a repeating cost pattern is called
stage-invariant and, later, when the stage is often time, it means that costs
do not vary with time, only with the nature of the decision. An eight-stage
example of such a network with terminal costs (shown in circles) as well as
arc costs is shown in Figure 1.7 and subsequently solved.

20 1 . ELEMENTARY PATH PROBLEMS

Y

Figure 1.7

Our goal is to devise a procedure for doubling at each iteration the
duration of the problem solved. To accomplish this aim we define an
optimal value function that depends on three variables as follows:

S(y , , yz , k) =the cost (ignoring terminal costs) of the
minimum-cost path of length k stages connect-
ingy =yI a n d y =y2 . (1.14)

Note that the actual x value at the start or finish is irrelevant, only the
number of stages matters. We obtain a recurrence relation for this function
by seeking the optimal value of y at the midpoint of a path of duration 2k
stages connecting yl and yz . Given any particular value of y at the end of k
stages of a 2k-stage problem, we clearly want to proceed from y1 to that
value of y in k stages at minimum cost and from that value y to y 2 in the
next k stages, also at minimum cost. Then if we minimize this sum over all
possible values of y at the end of k stages, we clearly have the cost of the
best path of length 2k stages. The formula is therefore

S(y, , y2,2k) = min [S(y1, YI k) + S(Y? Y27 4 1 7 (1.15)
y = O,I,2

and the obvious boundary condition is
S(yl, y23 ‘1 = ‘yIy2) (1.16)

where cy,y2 is the cost of the single arc directly connecting yI to y z in one
step and, for the example of Figure 1.7, is given by the table

coo = 2, COI = 1, co2 = 3;
CIO’ 1, CI1 = 2, C12 = 4;
c20 = 3, c21 = 1, CZ2 = 2.

Once S(y , , y , , 8) has been computed for all combinations of y I and yz ,
nine in all, the value of the answer, including terminal costs which we

1 1 . THE DOUBLING-UP PROCEDURE 21

denote by to(y) for x = 0 and t8(y) for x = 8, is given by
answer = min [to(y ,) + q y , , y2, 8) + t ,(~,)]. (1.17)

Letting P(y,, yz , 2k) denote the optimal decision, i.e., the minimizing
midpoint on the best path of duration 2k stages connecting y , and y2, we
now use (1.15)-(1.17) to solve the problem. By (1.16)

y,=o,1,2
y2 = 0,1,2

S(O,O, 1) = 2, S(0, 1, 1) = 1, S(0,2, 1) = 3,
S(l,O, 1) = 1, S(1, 1, 1) = 2 , S(1,2, 1) = 4 ,
S(2, 0, 1) = 3, S(2, 1, 1) = 1,

Now using (1.15) with k = 1 to obtain the optimal two-stage solutions for
a11 pairs of end points,

S(O, 0, 2) = min[S (O , O , 1) + S(O, 0, I), S(O, 1, 1) + ~ (1 , 0, I), S(O, 2, 1)

S(2, 2, I) =2 .

+S(2,0, I)]

+S(2, 1, 93

= min[4, 2, 61 = 2, P(0, 0, 2) = 1;
S(O, I , 2) = min[~ (0 , 0, 1) + S(O, 1, 11, S(O, 1, 1) + ~ (1 , 1, I), S(O, 2, 1)

= min[3, 3, 41 = 3,
S(0, 2, 2) = min[2 + 3, 1 + 4, 3 + 21 = 5 ,

S(1, 0, 2) = min[3, 3, 71 = 3,
S(1, 1, 2) = min[2, 4, 51 = 2,
S(1, 2, 2) = min[4, 6, 61 = 4,
S(2, 0, 2) = min[5, 2, 51 = 2,
S(2, 1, 2) = min[4, 3, 31 = 3,
S(2, 2, 2) = min[6, 5, 41 = 4,

S(O, 0,4) = min[S(O, 0,2) + s(O,O, 2), ~ (0 , 1,2) + S(l,O, 2), S(0,2,2)

P(0, 1, 2) = 0 or 1;

P(1, 0, 2) = 0 or 1;
P(1, 1, 2) = 0;
P(1, 2, 2) = 0;
P(2, 0, 2) = 1;
P(2, 1, 2) = 1 or 2;
P(2, 2, 2) = 2.

P(0, 2, 2) = 0, 1, or 2;

Using (1.15) with k = 2 to solve all four-stage problems,

+ S(2,0,2)]
= min[2 + 2, 3 + 3, 5 + 21 = 4, P(0, 0, 4) = 0;

S(O, 1 , 4) = m i n [2 + 3 , 3 + 2 , 5 + 3] = 5 , P(0, 1 , 4) = 0 o r l ;
S(0, 2, 4) = min[7, 7, 91 = 7,
S(1, 0, 4) = min[5, 5, 61 = 5,
S (1 , 1 , 4) = m i n [6 , 4 , 7] = 4 , P(1, 1 , 4) = 1 ;
S (1 ,2 ,4)=min[8 ,6 ,8]=6 , P (1 , 2 , 4) = 1 ;

P(0, 2, 4) = 0 or 1;
P(1, 0, 4) =Oor 1;

(equations continue)

22 1 . ELEMENTARY PATH PROBLEMS

S(2, 0, 4) = min[4, 6, 61 = 4, P(2, 0, 4) = 0;
S(2, 1, 4) = min[5, 5, 71 = 5 , P(2, 1, 4) = 0 or 1;
S (2 ,2 ,4)=min[7 ,7 ,8]=7 , P (2 , 2 , 4) = 0 o r l .

Using (1.15) once more to solve all eight-stage problems,
S(0, 0, 8) = min[S(0, 0, 4) + S(0, 0, 4), S(0, 1, 4) + S(1, 0, 4), S(0, 2, 4)

+ ~ (2 , 0 , 4)]
= min[8, 10, 111 = 8, P(0, 0, 8) = 0;

S(0, 1, 8) = min[9, 9, 121 = 9,
S(O,2,8)=min[l l , 11, 14]=11, P (O , 2 , 8) = 0 o r l ;
S(1, 0, 8) = min [9, 9, 101 = 9,
S(1, 1, 8)=min[10, 8, 111 = 8 ,
S(1,2,8)=min[l2,10, 13]=10, P (1 , 2 , 8) = 1 ;
S(2, 0, 8) = min [8, 10, 1 1] = 8,
S(2, 1, 8) = min[9, 9, 121 = 9,
S(2, 2, 8) = min[11, 11, 141 = 11,

P(0, 1, 8) = 0 or 1;

P (1, 0, 8) = 0 or 1 ;
P(1, 1, 8) = 1;

P(2, 0, 8) = 0;
P(2, 1, 8) = 0 or 1;

P(2, 2, 8) = 0 or 1.
Now, using (1.17) to obtain the value of the answer and the optimal choice
of the initial and terminal points,
answer = min[to(0) + S(0, 0, 8) + t8(0), to(0) + S(0, 1, 8) + t8(l),

to(()) S(0, 2, 8) + f8(2), fo(1) S(1, 0, 8) t,(O),

fo(1) + S(1, 1, 8) fs(l), to(1) S(1, 2, 8) + t8(2),
fo(2) + S(2, 0, 8) + f@) , to(2) S(2, 1, 8) + l 8 (l),
to(2) + S(2, 2, 8) -I- f8(2)]

= min[3 + 8 + 5 , 3 + 9 + 4 , 3 + 11 + 1 ,2 + 9 + 5 , 2 + 8 + 4,

= 13 with yI = 1, y 2 = 2, and yI = 2, y2 = 2 both yielding that value.

Using the policy information to reconstruct optimal paths is somewhat
tricky. Going from (0, 1) to (8, 2) (i.e., yI = 1, y2 = 2) we refer to P(1, 2, 8)
and find that (4, 1) is the optimal midpoint. Now we conclude from
P(1, 1, 4) = 1 that (2, 1) is the best midpoint of the first four-stage
segment, i.e., (2, 1) lies on the path, and from P(1, 2, 4) = 1 that 1 is the
best midpoint of the second four-stage segment, i.e., that (6, 1) is on the
path. Since the first segment connects (0, 1) to (2, l), we consult P(1, 1, 2),
which is 0, to deduce that (1, 0) is on the path. The second segment
connects (2, 1) and (4, 1) and P(1, 1, 2) = 0 indicates (3, 0) is on the path.

2 + 10+ 1 , 1 + 8 + 5 , 1 + 9 + 4 , 1 + 11 + 1 1

11. THE DOUBLING-UP PROCEDURE 23

The third segment connects (4, 1) and (6, l), so again P(1, 1, 2) tells us
that (5, 0) is on the path; and, finally, the last segment joins (6, 1) and
(8, 2), and P(1, 2, 2) = 0 says (7, 0) is on the path. One optimal solution is

similar deductive process tells us that nine paths connect (0, 2) and (8, 2) at
a cost of 11 + 2 for the terminal costs. Just listing the successive y
coordinates, they are

therefore (0, I), (1, O), (2, I), (3, O), (4, 11, (5 , O), (6, 11, (7, 01, (8, 2). A

2-1-0-1-0-1-0-&2, 2-1-0-1-0-1-0-1-2, 2-1-0-1-0-1-4&2-2,
2-1-0-1-0-0-1u2, 2 - 1 U l U l - l U 2 , 2 - 1 4 - 0 - 1 u 1 4 2 ,
2-1-0-1-1-0-1-0-2, 2 - i - i n i n i u 2 , 2-2-1-0-1-0-142.

Let us now compare the amount of computation required by this
doubling-up procedure to that required by the usual procedure for this
problem, where we assume that the duration is 2N stages and there are M
states at each stage. In our example N = 3 and M = 3. For doubling-up,
each doubling of k requires M additions for each of M z pairs (y , , yz). We
must double-up N times to solve the 2N-stage problem (neglecting the
terminal costs) so N . M 3 additions are needed. For the usual procedure,
each stage requires Mz additions (M decisions at each of M points) so
roughly 2N*M2 additions are needed. For N = 3 and M = 3 the usual
one-state-variable procedure is slightly better, but for N = 4 (i.e., a
duration of 16 stages) doubling-up dominates. No matter what M is, for
large enough N, doubling-up will dominate. We remind the reader once
more that doubling-up can be used only for time-invariant processes, while
the usual procedure still works for completely general stage-dependent
costs.

To solve using doubling-up, say a 12-stage problem, one can combine
S(y,, y2, 8) and S(y, , yz , 4) by the formula

Similarly, a 14-stage problem can then be solved by combining
S(y , , y2, 12) with S(y l , y2, 2), so the procedure can still be used even if the
duration is not exactly some power of two. Generally, we have the formula

s (~ , , y2, 12) = min [w19 y , 8) + s(y, yz, 411. (1.18)
Y

which raises some interesting questions about the minimum number of
iterations to get to some given duration N.

Problem 1.23. Using doubling-up and formulas like (1.18), how many
iterations are needed for duration 27? Can you find a procedure using (1.19) that
requires fewer iterations?

