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Abstract 

This contribution summarizes recent work in the field of lot sizing and scheduling. The objective is not to give a compre- 
hensive literature survey, but to explain differences of formal models and to provide some first readings recommendations. 
Our focus is on capacitated, dynamic, and deterministic cases. To underscore the importance of the research efforts, current 
practice is described and its shortcomings are exposed. Mathematical programming models where the planning horizon is 
subdivided into several discrete periods are given for both approaches that are well-established and approaches which may 
represent tomorrow's state of the art. Two research directions are discussed in more detail: continuous time models and 
multi-level lot sizing and scheduling. The paper concludes with some advice for future research activities. (~) 1997 Elsevier 
Science B.V. 
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1. Background and motivation 

1.1. Prob l em  context  

Consider  the organization of  an in-house production 
system. Typically, the architecture of  such a system is 
buil t  up from several production cells, so-called seg- 
ments, which may be implemented in different fash- 
ions (flow lines or work centers for instance).  This 
macro-structure further refines into a micro-structure 
as each segment provides the capabil i ty to perform a 
bunch o f  operations.  

Raw materials and component  parts are floating 
concurrently through this complex system in order 
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to be processed and assembled until a final product  
comes out ready for deliverance. 

Production planning and scheduling is one of  the 
most challenging subjects for the management  there. 
It appears to be an hierarchical process ranging from 
long- to medium- to short-term decisions. Our focus 
will  be the short-term scope which links to medium- 
term decisions via the master product ion schedule 
(MPS) .  The MPS defines the external (or  indepen- 
dent) demand, i.e. due dates and order sizes for final 
products. The goal now is to find a feasible product ion 
plan which meets the requests and provides release 
dates and amounts for all products including compo-  
nent parts. For economical  reasons, finding a feasible 
plan is not sufficient. In the usual case, product ion 
plans can be evaluated by means of  an object ive func- 
tion (e.g. a function which measures the setup and 
the holding costs) .  Then, the aim is to find a feasible 
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production plan with optimum (or close to optimum) 
objective function value. 

1.2. Problem outline 

Let the manufacturing process be triggered by or- 
ders which originate from customers or from other fa- 
cilities. Suppose now that the output of the make-to- 
order system under concern is or at least includes a set 
of  non-customized products. Certainly, this is a valid 
assumption for many firms no matter what industry 
they belong to and no matter what size they are. 

To motivate a planning activity, we first need to 
identify a subject of  concern that is worth (in terms 
of economical rationale) considering. A first clue are 
large inventories. Due to the opportunity costs of capi- 
tal and the direct costs of  storing goods, holding items 
in inventory and thus causing holding costs should be 
avoided. On the other hand, if different parts are mak- 
ing use of common resources, say machines, and a 
setup action must take place to prepare proper opera- 
tion, then opportunity costs (i.e. setup costs) are in- 
curred since production is delayed. Another aspect of 
sharing resources is that the production of such parts 
cannot coincide if different setup states are required. 
Hence, orders must be sequenced. In summary, we 
have a trade-off between low setup costs (favoring 
large production lots) and low holding costs (favoring 
a lot-for-lot-like production where sequence decisions 
have to be made due to sharing common resources). 
Essentially, the problem of short-term production plan- 
ning turns out to be a lot sizing and scheduling prob- 
lem, then. 

If  we ask about how to solve this production plan- 
ning problem, we first need a deeper understanding of 
its basic attributes. The first key element we have to 
remember is the stream of component parts floating 
through a complex production system. Operations may 
be executed only if parts which are subject of these par- 
ticular operations are indeed available. In other words, 
a production plan must respect the precedence rela- 
tions of operations. Hence, multi-level structures must 
be taken into account. For the sake of convenience, 
we do not further distinguish between operations and 
items (also called products or parts). Each operation 
produces an item, and each item is the output of an 
operation. Apparently, we face a multi-item problem 
here. 

The second key element of our problem is the pres- 
ence of scarce capacity. As usual in in-house pro- 
duction systems, producing an item requires a certain 
amount of one or more resources (e.g. manpower, ma- 
chine time, energy, etc.) with limited capacity per time 
unit. Thus, production planning must take scarce ca- 
pacity into account. 

The (known or estimated) external demand (given 
by the MPS) is to be met promptly at the end of 
each period. Backlogging and shortages are not al- 
lowed here, which enforces a high service level. The 
demand may vary over time. This is called dynamic 
demand. All relevant data for the planning process are 
assumed to be deterministic, which is justified by hav- 
ing a short-term planning problem on hand. 

1.3. Case descriptions 

To underscore the practical importance of (multi- 
level) lot sizing and scheduling, we enumerate some 
real-world reports demanding for methods to be ap- 
plied. A case at Eastman Kodak Company and an 
elaborate analysis attached with results of a simula- 
tion of this case can be found in [67]. Another case 
at Owens-Corning Fiberglas Corporation is described 
in [89]. Mathematical models of  cases can be found 
in [48] (tire production) and [ 111 ] (pharmaceutical 
industry). 

1.4. Current practice 

In most commercial production planning and con- 
trol systems, the logic of manufacturing resource plan- 
ning (MRP II) is implemented [ 117]. The working 
principle of this approach tries to construct feasible 
production plans in a stepwise manner. Basically, three 
phases can be discriminated, which are outlined below. 

Phase I: Starting with end items, lot sizes are com- 
puted level by level for all items in the multi-level goz- 
into structure. By doing so, capacity constraints are 
ignored. 
Phase II: The result obtained by phase I usually ex- 
ceeds the available capacity in some periods. Hence, 
some lots are shifted in order to find a plan which 
meets the capacity limits. By doing so, precedence re- 
lations among the items are ignored. 
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Phase III: Sequence decisions are made and orders are 
released to the shop floor. 

Let us consider a small example to assess the MRP 
II concept. Assume the following data: two items are 
to be produced sharing a single machine. Among these 
items there is a precedence relation: For each unit o f  
item j = 1 we must produce one unit of  item j = 2 
in advance. The minimum lead time is assumed to be 
zero. The inventory is empty. The planning horizon is 
T = 4 weeks long. We have two shifts per working day, 
and five working days per week. The working time per 
shift and week is 40 hours. Hence, the capacity Ct is 
80 hours per week t = 1 . . . . .  4. The external demand 
d jr, the item-specific holding costs hj for having one 
unit in inventory at the end of  a week, the item-specific 
setup costs s j ,  and the capacity pj  that is needed to 
produce one unit o f  a specific item are given in Table 1. 

Running an MRP II module may give the following 
result (see Table 2):  Phase I: Starting with the end 
item 1, lot sizes are computed. For item 1 we have a 
lot of  size 55 in period 1 and a lot of  size 45 in period 
3. This defines the demand for item 2 for which it 
seems to be best to produce just in time'. The resulting 
plan is not feasible due to capacity restrictions. Hence, 
Phase H takes over: In period 1 as well as in period 
3 the available capacity is exceeded. Thus, we shift 
30 units of  item 1 from period 1 to period 2, and 10 
units of  item 1 from period 3 to period 2. The plan 
still is not feasible, because the demand for item 1 in 
period 1 (30 units) is not met promptly. Also, the lot 
of  size 40 for item 1 in period 2 cannot be produced, 
because we are short on item 2. The subsequent Phase 
III  provides no satisfying answer either: the lot of  size 
40 can be delayed, but this implies that the demand 
for item 1 in periods 1, 2, and 3 can only be fulfilled 
late. Note, phase III  makes sequence decisions. The 
annotations given in brackets in Table 2 represent the 
outcome of  these decisions. 

Table 1 
Data of the example 

d.# hj sj pj 

t = l  t=2  t = 3  t = 4  

j = 1 30 25 25 20 25 900 1 
j = 2 10 850 1 

Table 2 
Results for the example 
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Table 3 
A feasible solution for the example 

t = l  t = 2  t=3  t = 4  

30 (2nd) 25 (2nd) 45 
50 (lst) 50 (lst) 

A feasible solution for the example is shown in 
Table 3. 

In summary, following the MRP II concept we have 
what practitioners complain about: long lead times, 
high work-in-process, and backlogging. The research 
community is thus eager to find more sophisticated 
approaches. Some of  these will be reviewed in the 
remaining part of  this paper. 

1.5. Br ie f  history review 

Research on lot sizing started with the classical eco- 
nomic order quantity (EOQ)  model [3, 37, 54].  The 
assumptions for the EOQ model are a single-level pro- 
duction process with no capacity constraints, which 
makes the problem become a single-item problem. The 
demand for that item is assumed to be stationary, i.e. 
demand occurs continuously with a constant rate. The 
EOQ model is a continuous time model with an infi- 
nite planning horizon. The optimal solution is easy to 
derive. 

Since these assumptions appear to be very restric- 
tive, other models have evolved. First to mention is the 
economic lot scheduling problem (ELSP)  [35, 94] 
where capacity restrictions come in. Because scarce 
resources are usually shared in common by several 
items, the ELSP is a single-level, multi-item problem. 

Phase t = 1 t = 2 t = 3 t = 4 Comment 

I 55 45 Lot sizing for 
item 1 

I 55 45 Lot sizing for 
55 45 item 2 

II 25 40 35 Capacity check 
55 45 

III 25 (2nd) 35 (2nd) 40 Scheduling 
55 (lst) 45 (lst) 
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However, the ELSP still assumes stationary demand. Table 5 
Parameters for the CLSP 

It is a continuous time model, too, and the planning 
horizon is infinite again. Solving the ELSP optimally 
is NP-hard [ 60]. Hence, heuristics dominate the arena 
[31,46, 118]. 

A quite different step was made from the EOQ 
model assumptions towards dynamic demand condi- 
tions. The so-called Wagner-Whitin (WW) problem 
[ 114] assumes a finite planning horizon which is sub- 
divided into several discrete periods. Demand is given 
per period and may vary over time. However, capacity 
limits are not considered which means that the single- 
level WW problem is a single-item problem. The prob- 
lem can be viewed as a shortest path problem. This 
interpretation reveals that optimal solution procedures 
for the WW problem exist which are polynomially 
bounded. Exact solution procedures are presented in 
[1], [38] and [113]. 

The next generation of models has combined ca- 
pacitated and dynamic approaches and bothered the 
community since then. Surveys of lot sizing literature 
can be found in [6], [26] and [79]. 

Also, scheduling was integrated with lot size deci- 
sions. This is what our review is about. Section 2 thus 
presents established single-level models for lot sizing 
and scheduling as well as new trends. Section 3 dis- 
cusses continuous time approaches. Multi-level exten- 
sions are dealt with in Section 4. Finally, Section 5 
provides some suggestions for future research direc- 
tions. 

2. Single-level lot sizing and scheduling 

2.1. The capac i ta ted  lot s iz ing p ro b l em  

The capacitated lot sizing problem (CLSP) can be 
seen as the extension of the WW problem to capacity 
constraints. Similar to the ELSP, the CLSP is a multi- 

Table 4 
Decision variables for the CLSP 

Symbol Definition 

jr 

q jr 
xjt 

Inventory for item j at the end of period t. 
Production quantity for item j in period t. 
Binary variable which indicates whether a setup for 
item j occurs in period t (xjt = 1) or not  (x j t  = 0) .  

Symbol Definition 

Ct 
~lj, 
hj 
#o 
J 
pj 
sj 
T 

Available capacity of the machine in period t. 
External demand for item j in period t. 
Non-negative holding costs for item j .  
Initial inventory for item j .  
Number of items. 
Capacity needs for producing one unit of item j .  
Non-negative setup costs for item j .  
Number of periods. 

item problem. 
The decision variables for the CLSP are given in 

Table 4. Table 5 provides the parameters. 
Using this notation, the CLSP can formally be 

couched as a mixed-integer programming model: 

J T 

M i n  Z ~ ( s j x j ,  ~- h j l j t )  (1) 
j=l t=l 

subject to 

I j t =  l j(t-l)  + qjt -- djt ,  

j = l  . . . . .  J, t = l  . . . . .  T, (2) 

Pjqj t  <~ Ctxjt, J = I . . . . .  J, t =  1 . . . . .  T, (3) 
J 

Pj qjt <~ Ct, t = 1 . . . . .  T, (4 )  
j=l 

x j t E { 0 , 1 } ,  j = l  . . . . .  J, t = l  . . . . .  T, (5) 

I j t , q j t>~O,  j = l  . . . . .  J, t = l  . . . . .  T. (6) 

The objective ( 1 ) is to minimize the sum of setup 
and holding costs. Eq. (2) represents the inventory 
balances. Due to the restrictions (3),  production of 
an item can only take place if the machine is set up 
for that particular item. Constraints (4) are the ca- 
pacity constraints. The setup variables are defined to 
be binary (5) and the inequalities (6) are the non- 
negativity conditions. 

The CLSP is called a large bucket problem [36], 
because several items may be produced per period. 
Such a period typically represents a time slot of, say, 
one week in the real world. The planning horizon usu- 
ally is less than six months. 

Solving the CLSP optimally is known to be NP- 
hard [9,45]. If positive setup times are incorpo- 
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rated into the model, the feasibility problem is NP- 
complete [82]. Hence, there are only a few attempts 
to solve the CLSP optimally [7,21,36,47].  Many 
authors have developed heuristics [ 16, 28, 29, 57, 76, 
83]. 

Scheduling decisions are, however, not integrated 
into the CLSP. The usual approach therefore is to solve 
the CLSP first, and to solve a scheduling problem for 
each period separately afterwards. A review of the 
scheduling literature can be found in [ 10], [ 11 ] and 
[90]. A recent attempt to hierarchically integrate lot 
sizing and scheduling is described in [24], [25] and 
[80]. 

Let us return to the example given in Section 1.4. If  
we would use a solution procedure for the CLSP dur- 
ing phase I, the problem of capacity violations would 
vanish and phase II  would no longer be necessary. 
However, due to the multi-level gozinto structure it is 
easy to figure out an example where the CLSP is used 
on a level by level basis and does not yield a feasi- 
ble solution. Also, phase III, which is the scheduling 
phase, is not integrated. 

2.2. The discrete lot s iz ing and  schedul ing prob lem 

Subdividing the (macro-)periods of  the CLSP into 
several (micro-) periods leads to the discrete lot sizing 
and scheduling problem (DLSP). In this subsection 
we will use the term period for short in order to re- 
fer to a micro-period. The fundamental assumption of 
the DLSP is the so-called 'all-or-nothing' production: 
Only one item may be produced per period, and, if so, 
production uses the full capacity. 

The DLSP is called a small bucket problem [36], 
because at most one item can be produced per period. 
Hence, periods in the DLSP model usually correspond 
to small time slots such as hours or shifts. 

The decision variables and the parameters for the 
DLSP are the same as for the CLSP (see Tables 4 
and 5). Since we consider short periods, it does not 
make much sense to raise setup costs in every period 
in which production takes place as it is done in the 
CLSP. Thus, setup costs should be incurred only if the 
production of a new lot begins. Note, the production 
of a lot may last several periods. To model this, we 
need a new decision variable (see Table 6) and a new 
parameter (see Table 7) both representing the setup 
state in a certain period. 
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Table 6 
A new decision variable for the DLSP 
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Symbol Definition 

Yjt Binary variable which indicates whether the machine is 
set up for item j in period t (Yjt = 1) or not (Yjt = 0). 

Table 7 
A new parameter for the DLSP 

Symbol Definition 

Yjo Binary value which indicates whether the machine is 
set up for item j at the beginning of period 1 (Yjo = 1 ) 

J 
or not (YjO = 0). Of course,  E j = I  YjO ~ 1 must  hold. 

Mathematically, the DLSP can now be specified as 
a mixed-integer programming model: 

J T 

M i n  E E ( s j x j t  "[-hj l j t )  (7) 
j=l t=l 

subject to 

ljt  = l j ( t -1)  + qjt -- dj, ,  

j = l  . . . . .  J, t = l  . . . . .  T, (8) 

pjq j t  = C t Y j t ,  J = 1 . . . . .  J, t = 1 . . . . .  T, (9) 

J 

E Y j t  <<. 1, t =  1 . . . . .  T, (10) 
j=l 

Xjt • Yjt -- Yj(t--l) ,  

j = l  . . . . .  J, t = l  . . . . .  T, (11) 

y j t E { O ,  1) ,  j = l  . . . . .  J, t = l  . . . . .  T, (12) 

I jr, qjt, Xjt ~ O, 

j = l  . . . . .  J, t = l  . . . . .  T. (13) 

The objective function as well as most of the con- 
straints equal those of the CLSP. The 'all-or-nothing' 
assumption comes in via Eq. (9),  where in contrast 
to the CLSP the left- and the right-hand side must be 
equal. Restrictions (10) make sure that at most one 
item can be produced per period. In combination with 
the constraints (9) capacity limits are taken into ac- 
count. Most authors assume that the capacity does not 
vary over time, i.e. Cl . . . . .  CT. T h e  beginning of a 
new lot is spotted by the inequalities ( 11 ). The condi- 
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tions (12) define the setup state variables to be binary. 
Note that in contrast to the CLSP, a non-negativity 
constraint for the xjt variables is sufficient (see the 
inequalities (13)) .  This is due to the combination of 
restrictions ( 11 ) and (12) together with the objective 
(7).  

Complexity considerations for the DLSP are pub- 
lished in [ 12], [97] and [98]. Solving the DLSP op- 
timally is known to be NP-hard. A feasible solution 
can be obtained in polynomial time. If  setup times or 
parallel machines are considered, even the feasibility 
problem is NP-complete. Some state-of-the-art arti- 
cles about solution procedures for the DLSP are [2], 
[17], [42], [43], [58], [81], [85] and [100]. 

Again, let us consider the example in Section 1.4. 
The DLSP combines phases I-III .  However, in the 
presence of multi-level precedence constraints among 
the items, the DLSP, when applied level by level, still 
does not guarantee a feasible solution. The advantage 
over the CLSP is that minimum lead times, such as 
transportation time or time for cooling, can easily be 
taken into account, because of having short time peri- 
ods in mind. I f  the CLSP is used as a basis with pe- 
riods representing, say, weeks, (short) minimum lead 
times must either be ignored or be overestimated. The 
latter leads to high total lead times which is certainly 
not desired. 

2.3. The continuous setup lot sizing problem 

The 'all-or-nothing' assumption of the DLSP seems 
to be fairly strict and is primarily motivated by caus- 
ing 'nice' properties which make efficient implemen- 
tations of  mathematical programming approaches pos- 
sible. A step towards more realistic situations is the 
continuous setup lot sizing problem (CSLP). It is very 
similar to the DLSP. The difference is that the 'all-or- 
nothing' assumption is given up. Still, only one item 
may be produced per period. 

The decision variables and the parameters equal 
those of  the DLSP. A mixed-integer programming 
model of  the CSLP can be stated as follows: 

J T 

Min Z ~--~(SjXjt "~ hjI j t )  (14) 
j=l  t=l 

subject to 

I j t =  Ij(t--1) -~- qjt -- dj t ,  

j = l  . . . . .  J, t = l  . . . . .  T, (15) 

Pjqjt <~ CtYjt, j =  l . . . . .  J, t =  l . . . . .  T , ( 1 6 )  

J 

Z Y j t  <~ l ,  t =  l . . . . .  T, (17) 
j=l 

Xjt ~ Yjt -- Y j ( t -1 ) ,  

j = l  . . . . .  J, t = l  . . . . .  T, (18) 

y j t C { O ,  1}, j = l  . . . . .  J, t = l  . . . . .  T, (19) 

I jr, q jr, x jr >1 O, 

j = l  . . . . .  J, t = l  . . . . .  T. (20) 

Comparing the DLSP and the CSLP models reveals 
that only restrictions (16) and (9) differ. Produc- 
tion quantities can now be of any continuous size. Of 
course, capacity restrictions must not be violated. 

At first glance, the difference between the DLSP 
and the CSLP seems to be almost negligible. How- 
ever, there is an important aspect which can easily be 
overseen: In the DLSP, setup costs are incurred when- 
ever a new lot begins. Assume, for example, that a lot 
for item j is completed in period t. Furthermore, as- 
sume that another lot for the same item j is scheduled 
in period t ~ > t. Consider now the case where the ma- 
chine is idle in the periods 7- = t + 1 . . . . .  t ~ - 1. In 
the DLSP, setup costs for item j are incurred twice. 
In the CSLP, however, setup costs would occur only 
once. This is because in the CSLP one can have 

Yj(t+l) = " " " = Yj(F--1) = 1, 

which does not contradict 

qj(t+l) . . . . .  qj(F--1) = 0 ,  

as it does in the DLSE 
Compared to the DLSP, the CSLP has attracted only 

little research interest. It is dealt with in [ 8], [ 66] and 
[68]. 

2.4. The proportional lot sizing and scheduling 
problem 

A shortcoming of the CSLP model is that, if the 
capacity of a period is not used in full, the remain- 
ing capacity is left unused. An attempt to avoid this 
is the proportional lot sizing and scheduling problem 
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(PLSP). Roughly speaking, the basic idea of the PLSP 
is to use remaining capacity for scheduling a second 
item in the particular period. 

If  two items are produced in a period, it must be 
clear in which order these items are to be produced. 
This is accomplished by interpreting the setup state 
decision variables Yjt in the following manner: Yjt is 
the setup state of the machine at the end of a period. 
The underlying assumption of the PLSP is that the 
setup state can be changed at most once per period. 
Production in a period may take place if the machine 
is properly set up either at the beginning or at the 
end of the period. Hence, at most two items may be 
produced per period. 

To give a formal specification of the PLSP, we use 
the decision variables and the parameters of the DLSP. 
A mixed-integer programming model for the PLSP 
can be formulated as follows: 

J T 

Min ~_ ,~ '~ ( s j x j t  "}-hjljt) (21) 
j=l t=l 

subject to 

Ij  t m l j ( t_ l )  Jr qjt -- djt, 

j = l  . . . . .  J, t = l  . . . . .  T, (22) 

Pjqjt  ~ Ct (Y j ( t -1)  ~- Yj t ) ,  

j = l  . . . . .  J, t = l  . . . . .  T, (23) 

J 

~ P j q j t  <<, Ct, t = 1 . . . . .  T, (24) 
j=l 

J 

Z Y j t  ~ 1, t = 1 . . . . .  T, (25) 
j=l 

xjt >~ Yjt - Yj(t-1), 

j = l  . . . . .  J, t = l  . . . . .  T, (26) 

y j t E { O ,  1}, j = l  . . . . .  J, t = l  . . . . .  T, (27) 

lit, q jr, X jr >1 O, 

j = l  . . . . .  J, t = l  . . . . .  T. (28) 

While the objective function and most of the con- 
straints equal the CSLP model, we should explain what 
is new. The inequalities (23) make sure that produc- 
tion of an item in a certain period can only take place if 
the machine is properly set up either at the beginning 

or at the end of that period. Since more than one item 
may be produced per period, (24) is introduced to 
keep the total capacity requirement per period within 
limits. 

Similar to the CSLP, idle periods between two lots 
of the same item do not cause additional setup costs. 

Several variants of the PLSP are studied in [33], 
[34], [51], [69], [70] and [75]. 

2.5. The general lot sizing and scheduling problem 

A critique against small bucket models is that for 
real world problem sizes the number of periods is pro- 
hibitively large. This argument may apply for mathe- 
matical programming approaches. For common sense 
heuristics it is definitely not true, because instances 
with hundreds of  periods can nowadays be solved on 
personal computers with reasonable effort. 

Nevertheless, it is a valid point that imposing a re- 
striction on the number of  items which may be pro- 
duced per period is primarily motivated by modeling 
concerns. Comparing the small bucket lot sizing and 
scheduling models with the CLSP model reveals that 
only little needs to be added in order to model se- 
quence decisions. 

Recent research has thus returned to take large 
bucket models into account where in contrast to the 
CLSP lot sizing and scheduling is done simultane- 
ously. A practical case of  large bucket lot sizing 
and scheduling is described in [102]. In [50] and 
[ 103], large bucket lot sizing models are presented, 
but only a partial rather than a total order among the 
production quantities is determined. Large bucket lot 
sizing and scheduling models and methods are given 
in [52], [53] and [65]. 

In more detail we discuss here the so-called general 
lot sizing and scheduling problem (GLSP) [44]. The 
parameters are the same as for the DLSP. The underly- 
ing idea for the GLSP comes from lot sizing with sta- 
tionary demand, where each lot is uniquely assigned to 
a position number in order to define a sequence [ 118 ]. 
The fundamental assumption for the GLSP is that a 
user-defined parameter restricts the number of lots per 
period (see Table 8). 

Straightforwardly, the position numbers are 1 . . . . .  
N1, Nl + 1 . . . . .  Nr. As a short-hand notation, we will 
u s e  
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Table 8 
A new parameter for the GLSP 

Symbol Definition 

Nt Maximum number of lots in period t. 

Table 9 
Decision variables for the GLSP 

Symbol Definition 

lit 
qjn 
Xjn 

Y j,, 

Inventory for item j at the end of period t. 
Production quantity for item j at position n. 
Binary variable which indicates whether a setup for 
item j occurs at position n (Xjn = 1) or not (Xjn = 0) .  
Binary variable which indicates whether the machine 
is ready to produce item j at position n (Yjn = 1) or 
not (Yjn = 0). 

t--1 

Ft=  I + ~-~ N~ 
7"=1 

to denote the first position in period t, and 

Lt = Ft + Nt - 1 

to denote the last position in period t. N = ~--]t~l Nt is 
the total number of positions and thus the maximum 
number of lots that can be built. As we will see, re- 
stricting the number of lots per period is purely mo- 
tivated by modeling concerns, and research on large 
bucket models without such assumptions is worth- 
while. If, however, the parameters Nt are chosen to be 
large numbers, the restriction is of theoretical inter- 
est only. For procedures to be developed it remains to 
prove that they show good performance not only for 
small values Nt. 

The decision variables are basically the same as for 
the DLSP. To be formally correct, we give a precise 
definition in Table 9. 

A mixed-integer programming model for the GLSP 
can now be given as follows: 

J N J T 

Min Z Z s . i X j n - k - Z Z h j l j t  (29) 
j=l n=l j=l t=l 

subject to 

Lt 

Ijt = I j ( t -1)  + ~-~ qjn -- ajt,  
n=Ft 

j = l  . . . . .  J, t = l  . . . . .  T, (30) 

Pjqjn ~ CtYjn, J = 1 . . . . .  J, 

t = l  . . . . .  T, n = F t  . . . . .  Lt, (31) 
J L, 

Z Z p j q j n  <~ Ct, t =  I . . . . .  T, ( 3 2 )  

j=l n=Ft 

J 

Z y j n  <<. 1, n=  l . . . . .  N (33) 
j=l 

Xjn ) Yjn -- Y j (n - l ) ,  

j = l  . . . . .  J, n = l  . . . . .  N, (34) 

y j n E { O ,  1}, j = l  . . . . .  J, n = l  . . . . .  N , ( 3 5 )  

l j ,~>0, j = l  . . . . .  J, t = l  . . . . .  T, (36) 

qjn,Xjn>~O, j = l  . . . . .  J, n = l  . . . . .  N. (37) 

Again, the objective (29) is to minimize the to- 
tal sum of setup and holding costs. Eq. (30) gives 
the inventory balances. Note, a particular item may be 
produced at several positions in a period. Inequalities 
(31 ) guarantee that, if a lot for item j is scheduled at 
position n, the machine is in the correct setup state. 
Capacity restrictions are incorporated via constraints 
(32). The restrictions (33) enforce a unique setup 
state. The position at which a setup must take place 
is determined with the inequalities (34). The condi- 
tions (35) are the binary conditions for the setup state 
variables and restrictions (36) and (37) are the non- 
negativity constraints. 

Other GLSP papers than [44] are not published yet. 
However, this reference discusses two model variants 
and three variants of a heuristic for the GLSP. Note, 
if we have Nt = 1 for all t = 1 . . . . .  T, then the GLSP 
equals the CSLE 

In the context of the example discussed in Sec- 
tion 1.4, the GLSP can be seen to integrate phases 
I-III .  Since the GLSP is formulated for a single-level 
gozinto structure only, solution procedures for this 
problem may be applied level by level in the case of 
multi-level gozinto structures. As for all other single- 
level approaches, this does not guarantee feasible solu- 
tions. Furthermore, the GLSP is a large bucket model 
and thus the problem associated with incorporating 
minimum lead times is back again. 
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3. Continuous time lot sizing and scheduling Table 11 
Parameters for the BSP 

Away from discrete time models, a continuous time 
axis (as it is used in the EOQ and ELSP models) 
may be used for dynamic demand conditions as well. 
Ref. [92] stresses the close relationship between 
scheduling (as described in [ 10], [ 11] and [90])  
and lot sizing and scheduling. 

In [62] and [63] this idea is picked up. Each de- 
mand is characterized by its deadline and its size. De- 
mands are interpreted as jobs and the demand size de- 
termines the processing time of a job. An important 
assumption is that the capacity, e.g. the speed of the 
machine, is constant over time, and thus, the process- 
ing time of a job does not depend on the schedule. 
Another fundamental assumption is that jobs are not 
allowed to be split, which means that a certain demand 
must always be processed in one piece. Of course, 
several demands (= jobs) for the same item may be 
grouped together to form one lot and to save setup 
costs. Due to this assumption, the problem is referred 
to as a batching and scheduling problem (BSP) rather 
than a lot sizing and scheduling problem. 

To give a formal presentation of the BSP, let us 
assume the following: a unique number is assigned to 
each job to identify it. Hence, if there are N demands to 
be fulfilled, we can assume without loss of generality 
that 1 . . . . .  N are the job numbers. Furthermore, 0 and 
N + 1 are the numbers of dummy jobs which are to 
be scheduled as the first and the last job, respectively. 

A solution of the BSP is uniquely characterized by 
the sequence in which jobs are to be scheduled and 
by the completion time for each job. These decision 
variables are specified in Table 10. The parameters are 
given in Table 11. 

A mixed-integer program for the BSP can now be 
given as follows: 

Table 10 
Decision variables for the BSP 

Symbol Definition 

rn Completion time of job n. 
xnk Binary variable which indicates that job n is scheduled 

right before job k. 

Symbol Definition 

B 

fn 
hj 
j(n) 
N 
Pn 
sji 

A big number. 
Deadline for job n. 
Holding costs for item j .  
The item for which job n represents demand. 
Number of  jobs. 
Processing time of job n. 
Sequence dependent setup costs for items. 

N N 

Min ~ ~ Sj(n)j(k)Xnk 
n--0 k=l 

kq:n 

N 

+ ~ hj(n)Pn(fn - rn) (38) 
j=n 

subject to 

N+I 

Z x " k = l '  n = 0  . . . . .  N, (39) 
k=l 
kg~n 

N 

~-~Xtn=l ,  n = l  . . . . .  N + I ,  (40) 
k=l 

kg:n 

rn +Pt  <~ rk + B(1- -  Xnk), 

n = 0  . . . . .  N, k = l  . . . . .  N + l ,  (41) 

rn <~ fn, n= l . . . . .  N, (42) 

x.~ ~ {o, 1}, 

n = 0  . . . . .  N, k = l  . . . . .  N + I ,  (43) 

rn>/O, n = l  . . . . .  N + I ,  (44) 

ro =0 .  (45) 

The objective (38) is to minimize the total sum 
of setup and holding costs. Note, due to the defini-  
tion of the Xnk variables it is quite easy to incorporate 
sequence dependencies into the model. The holding 
costs for a job are calculated by multiplying the hold- 
ing costs for the corresponding item with the process- 
ing time of the job (and with the earliness of the job).  
This is because a demand is fulfilled if the whole job 
which represents that particular demand is processed. 
Eq. (39) makes sure that each job has exactly one suc- 
cessor; only job N +  1 has none. Analogously, Eq. (40) 
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guarantee that each job has exactly one predecessor; 
only job 0 has none. Due to restrictions (41), jobs 
do not overlap. Constraints (41) in combination with 
constraints (39) and (40) define a total order among 
the jobs. Backlogging cannot occur because of the in- 
equalities (42).  Constraints (43) are the binary con- 
ditions, and restrictions (44) are the non-negativity 
conditions for the decision variables. The completion 
time of the dummy job 0 is zero as stated in Eq. (45). 

In this BSP model formulation, idle periods among 
jobs for the same item do not cause additional setups, 
which is similar to the CSLP, the PLSP, and the GLSP 
as stated above. 

A variety of BSP models as well as solution meth- 
ods for it are discussed in [62]. Under restrictive as- 
sumptions such as equal holding costs for all items 
or unit processing times for all items, efficient pro- 
cedures for computing the optimum sequence are de- 
rived. For a variant of the BSP it can be shown that 
it is equivalent to the DLSP, and thus, solution proce- 
dures for the BSP can be employed to solve DLSP in- 
stances [ 63 ]. By utilizing the idea of unique position 
numbers to which jobs are to be assigned (compare 
the GLSP model formulation), a model can be formu- 
lated which uses position numbers as decision vari- 
ables and which is amenable to the constraint (logic) 
programming paradigm (see [64] for a similar idea 
where decision variables are used as indices; a related 
idea can be found in [ 116] ). 

With respect to the example in Section 1.4 the BSP, 
too, can be seen as an approach to integrate phases I -  
III. And again, as long as multi-level gozinto structures 
are not taken into account, using the BSP level by level 
does not guarantee feasible solutions. Minimum lead 
times can easily be incorporated into the model. 

4. Multi-level lot sizing and scheduling 

All approaches reviewed so far are for the single- 
level case only. In most real-world situations, however, 
we face complex multi-level gozinto structures, and 
thus need solution procedures capable of dealing with 
these. 

As a consequence, multi-level lot sizing has at- 
tracted research interest. An extensive review of the 
literature is given in [75]. 

Many authors have considered a multi-level WW- 

type of problem, i.e. they ignored capacity constraints. 
Most of them have tested so-called improved heuris- 
tics where methods for the single-level WW problem 
are applied level by level in order to construct a fea- 
sible plan (see, e.g. [23], [49] and [107]).  More 
sophisticated approaches are described in [ 5 ], [ 61 ], 
[77], [88], [91], [96], [97] and [101]. A sensitiv- 
ity analysis is done in [93] and [ 112], and complex- 
ity results for uncapacitated, multi-level lot sizing are 
provided in [4]. 

Most authors who consider capacitated, multi-level 
lot sizing make restrictive assumptions. Refs. [69], 
[70], [78], [95], [97] and [99], for example, 
take only a single bottleneck machine into account. 
Refs. [82], [84], [86] and [110] focus on assembly 
gozinto structures. The work in [ 13] is confined to 
two levels only. The multi-level CLSP, where general 
gozinto structures and multiple machines are taken 
into account, is dealt with in [55], [56], [104], 
[ 105], [ 108] and [ 109]. 

The literature on multi-level lot sizing and schedul- 
ing is sparse. An hierarchical integration of some lot 
sizing and some scheduling procedures is discussed in 
[24], [25], [80] and [106]. The only work where 
multi-level lot sizing and scheduling is done simulta- 
neously under quite general assumptions such as gen- 
eral gozinto structures and multiple machines is docu- 
mented in [71 ] - [75] .  In these references, the multi- 
level PLSP is tackled. 

To give a formal specification of the multi-level 
PLSP, we use the same decision variables as for the 
single-level PLSP. Some of the single-level PLSP pa- 
rameters are used again, some must be redefined, and 
some parameters are new. To avoid confusion, we list 
all multi-level PLSP parameters in Table 12. 

The following mixed-integer model gives a precise 
specification for the multi-level PLSP: 

J T 

Min EE(sjxj, +hjljt) (46) 
j=l  t=l 

subject to 

I j t =  I j ( t - l )  -+- qjt -- djt - E ajiqit, 
iESj 

j = l  . . . . .  J, t = l  . . . . .  T, (47) 
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Table 12 
Parameters for the multi-level PLSP 

Symbol Definition 

Cmt 
d j, 
hj 

ljo 
,7,, 

J 
M 
mj 
Pj 
s: 
s: 

T 
vj 
Yjo 

'Gozinto' factor. Its value is zero if item i is not an 
immediate successor of item j .  Otherwise, it is the 
quantity of item j that is directly needed to produce 
one item i. 
Available capacity of  machine m in period t. 
External demand for item j in period t. 
Non-negative holding cost for having one unit of item 
j one period in inventory. 
Initial inventory for item j .  
Set of all items that share the machine m, i.e. 

Jm de__f {j  6 {1 . . . . .  J} I mj = m}. 

Number of items. 
Number of machines. 
Machine on which item j is produced. 
Capacity needs for producing one unit of item j .  
Non-negative setup cost for item j .  
Set of immediate successors of item j ,  i.e. 

Sj  de__f{/ C {1 . . . . .  J} [aji > 0}. 

Number of  periods. 
Positive and integral lead time of item j .  
Unique initial setup state. 

restrict ourselves to an explanation of the new aspects. 
Eq. (47) gives the inventory balances. At the end of a 
period t we have in inventory what was in there at the 
end of period t - 1 plus what is produced minus ex- 
ternal and internal demand. To fulfill internal demand 
we must respect positive lead times, which represents 
the time for transportation and cooling, for instance. 
Restrictions (48) guarantee so. 

Research on several variants of the multi-level PLSP 
is summarized in [75]. It can be proven that the 
(multi-level) DLSP and the (multi-level) CSLP are 
special cases of the (multi-level) PLSE Compared 
to the DLSP, for instance, the PLSP is a much more 
thorny problem, because it lacks 'nice' properties. 
However, efficient heuristics for the multi-level PLSP 
do already exist and justify more research effort. 

The multi-level PLSP integrates phases I-III from 
the example in Section 1.4. In contrast to the above- 
mentioned models, it additionally pays attention to 
multi-level gozinto structures. Thus, the multi-level 
PLSP is a promising candidate for replacing traditional 
MRP II logic. 

nfin{ t+vj,T } 

iGSj r=t+l 

j = l  . . . . .  J, t = 0  . . . . .  T -  1, (48)  

pjqjt ~ Cm:(yj<t-l) + Yjt), 

j = l  . . . . .  J, t = l  . . . . .  T, (49) 

Z PJ q jr <<. Cmt, 
jcJ , ,  

m = l  . . . . .  M, t = l  . . . . .  T, (50) 

jeff , ,  

m = l  . . . . .  M, t = l  . . . . .  T, (51) 

Xjt ) Yjt -- Yj( t - - l ) ,  

j = l  . . . . .  J, t = l  . . . . .  T, (52) 

yjt E {O, 1}, j =  l . . . . .  J, t = l  . . . . .  T, (53) 

]jt, qjt,Xjt >1 O, 

j = l  . . . . .  J, t = l  . . . . .  T. (54) 

The objective function and most of the constraints 
equal those in the single-level PLSP model. Hence, we 

5. Further research opportunit ies  

Ongoing research tries to incorporate additional 
real-world aspects into lot sizing and scheduling 
models and methods. Quite important are the consid- 
eration of positive setup times [ 17, 32, 53, 62, 100] 
and sequence dependencies [30, 32, 43, 44, 52, 53, 62, 
6 5 , 1 0 0 ] .  

Another challenging subject is represented by lot 
sizing and scheduling with parallel machines [ 14, 15, 
65, 75, 97, 98]. 

Also, backlogging attracts increasing research in- 
terest, but most authors stick to the WW problem 
[22,39,49,59, 115]. 

Taking into account that planning in practice has 
to be done on a rolling horizon basis is yet another 
topic worth attacking. Again, the uncapacitated type 
of problem is the matter of concern in most cases [ 18, 
20,27,40,41,87],  and an open gap remains for ca- 
pacitated lot sizing and scheduling [ 75 ]. 

Apparently, lot sizing and scheduling interacts with 
other planning activities in a firm, e.g. distribution 
planning, cutting and packing, and project schedul- 
ing [ 75 ] ~ The coordination of these planning tasks is 
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thus a mus t  in order to avoid high transact ion costs. 
However,  research has almost  neglected the p rob lem 
of  coord ina t ion  and provides  no advice (as an excep- 
t ion, see [ 19],  where  product ion  and d i s t r ibu t ionp lan-  
n ing  is coord ina ted) .  S ince  mak ing  use o f  cost sav- 
ing  oppor tuni t ies  is a vital  aspect in the presence of  
compet i t ion ,  so lv ing  coordina t ion  problems is proba- 
b ly  the mos t  crucial  goal for future work. 
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