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Abstract

Lot sizing is one of the most important and also one of the most di4cult problems in production planning. This subject
has been studied extensively in the literature. In this article, we consider single-level lot sizing problems, their variants and
solution approaches. After introducing factors a9ecting formulation and the complexity of production planning problems, and
introducing di9erent variants of lot sizing and scheduling problems, we discuss single-level lot sizing problems, together with
exact and heuristic approaches for their solution. We conclude with some suggestions for future research.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Production planning is an activity that considers the best
use of production resources in order to satisfy production
goals (satisfying production requirements and anticipating
sales opportunities) over a certain period named the planning
horizon.

Production planning typically encompasses three time
ranges for decision making: long-term, medium-term and
short-term. In long-term planning usually the focus is on
anticipating aggregate needs and involves such strategic de-
cisions as product, equipment and process choices, facility
location and design, and resource planning. Medium-term
planning often involves making decisions on material re-
quirements planning (MRP) and establishing production
quantities or lot sizing over the planning period, so as
to optimise some performance criteria such as minimis-
ing overall costs, while meeting demand requirements
and satisfying existing capacity restrictions. In short-term
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planning, decisions usually involve day-to-day schedul-
ing of operations such as job sequencing or control in a
workshop.

In this review the focus is on medium-term production
planning and especially on single-level lot sizing decisions.
Lot sizing decisions give rise to the problem of identify-
ing when and how much of a product to produce such that
setup, production and holding costs are minimised. Making
the right decisions in lot sizing will a9ect directly the sys-
tem performance and its productivity, which are important
for a manufacturing Drm’s ability to compete in the market.
Therefore, developing and improving solution procedures
for lot sizing problems is very important. The applicability
of these problems arises commonly in operations such as
forging and casting and in industries which consist of a sin-
gle production process, or where all production process can
be considered as a single operation, such as some medical
or chemical industries.

After an introduction to lot sizing problems, this paper
will focus on the capacitated lot sizing problem and will
review the main contributions to this long standing but active
research Deld focusing, particularly, on developments that
have taken place since research was reviewed and compared
in [1,2].
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2. Characteristics of lot sizing models

The complexity of lot sizing problems depends on the fea-
tures taken into account by the model. The following char-
acteristics a9ect classifying, modelling and the complexity
of lot sizing decisions.

2.1. Planning horizon

The planning horizon is the time interval on which the
master production schedule extends into the future. The
planning horizon may be 5nite or in5nite. A Dnite-planning
horizon is usually accompanied by dynamic demand and
an inDnite planning horizon by stationary demand. In ad-
dition, the system can be observed continuously or at
discrete time points, which then classiDes it as a continuous-
or discrete-type system. In terms of time period terminol-
ogy, lot sizing problems fall into the categories of either
big bucket or small bucket problems. Big bucket problems,
are those where the time period is long enough to produce
multiple items (in multi-item problem cases), while for
small bucket problems the time period is so short that only
one item can be produced in each time period. Another
variant of the planning horizon is a rolling horizon usually
considered when there is uncertainty in data. Under this
assumption, optimal approaches for each horizon act as
heuristics but cannot guarantee the optimal solution.

2.2. Number of levels

Production systems may be single-level or multi-level.
In single-level systems, usually the Dnal product is simple.
Raw materials, after processing by a single operation such
as forging or casting, are changed to Dnal product. In other
words, the end item is directly produced from raw materi-
als or purchased materials with no intermediate subassem-
blies. Product demands are assessed directly from customer
orders or market forecasts. This kind of demand, as will be
further discussed later, is known as independent demand. In
multi-level systems, there is a parent–component relation-
ship among the items. Raw materials after processing by
several operations change to end products. The output of an
operation (level) is input for another operation. Therefore,
the demand at one level depends on the demand for its par-
ents’ level. This kind of demand is named dependent de-
mand. Multi-level problems are more di4cult to solve than
single-level problems.

Multi-level systems are further distinguished by the type
of product structure, which includes serial, assembly, dis-
assembly and general or MRP systems.

2.3. Number of products

The number of end items or Dnal products in a produc-
tion system is another important characteristic that a9ects
the modelling and complexity of production planning prob-

lems. There are two principal types of production system in
terms of number of products. In single-item production plan-
ning there is only one end item (Dnal product) for which the
planning activity has to be organised, while in multi-item
production planning, there are several end items. The com-
plexity of multi-item problems is much higher than that of
single-item problems. van Hoesel and Wagelmans [3] pro-
vide theoretical results for the performance of algorithms
for the single item capacitated lot sizing problem. (See also
Section 4 of this paper.)

2.4. Capacity or resource constraints

Resources or capacities in a production system include
manpower, equipment, machines, budget, etc. When there
is no restriction on resources, the problem is said to be un-
capacitated, and when capacity constraints are explicitly
stated, the problem is named capacitated. Capacity restric-
tion is important, and directly a9ects problem complexity.
Problem solving will be more di4cult when capacity con-
straints exist.

2.5. Deterioration of items

In the case that deterioration of items is possible, we en-
counter restrictions in the inventory holding time. This in
turn is another characteristic which would a9ect problem
complexity.

2.6. Demand

Demand type is considered as an input to the model of
the problem. Static demand means that its value does not
change over time, it is stationary or even constant, while dy-
namic demandmeans that its value changes over time. If the
value of demand is known in advance (static or dynamic),
it is termed deterministic, but if it is not known exactly and
the demand values occurring are based on some probabili-
ties, then it is termed probabilistic. In independent demand
cases, an item’s requirements do not depend on decisions
regarding another item’s lot size. This kind of demand can
be seen in single-level production systems. In multi-level
lot sizing, where there is a parent–component relationship
among the items, because the demand at one level depends
on the demand for their parents (pervious level), it is called
dependent. Problems with dynamic and dependent demands
are much more complex than problems with static and/or
independent demands. Also, problems with probabilistic de-
mand will be more complex than problems with determin-
istic demand.

2.7. Setup structure

Setup structure is another important characteristic that di-
rectly a9ects problem complexity. Setup costs and/or setup
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times, are usually modelled by introducing zero–one vari-
ables in the mathematical model of the problem and cause
problem solving to be more di4cult. Usually, production
changeover between di9erent products can incur setup time
and setup cost. There are two types of setup structure: sim-
ple setup structure and complex setup structure. If the setup
time and cost in a period are independent of the sequence
and the decisions in previous periods, it is termed a simple
setup structure, but when it is dependent on the sequence or
previous periods, it is termed a complex setup. Three types
of complex setups will now be described. First, if it is possi-
ble to continue the production run from the previous period
into the current period without the need for an additional
setup, thus reducing the setup cost and time, the structure is
named setup carry-over. We also can deDne a second type of
complex setup, family or major setup, caused by similarities
in manufacturing process and design of a group of item(s).
An item setup or minor setup also occurs when changing
production among items within the same family. If we have
sequence-dependent setup, item setup cost and time depend
on the production sequence; this is the third type of complex
setup structure. It is obvious that the complex structures are
more awkward in both modelling and solving the lot sizing
problems.

2.8. Inventory shortage

Inventory shortage is another characteristic a9ecting mod-
elling and complexity of problem solving. If shortage is al-
lowed it means that it is possible to satisfy the demand of
the current period in future periods (backlogging case), or it
may be allowable for demand not to be satisDed at all (lost
sales case). The combination of backlogging and lost sales
is also possible (see for instance [4] for a model of this type
based on a Weibull distribution). This usually introduces a
shortage cost in the objective function. Problems with short-
age are more di4cult to solve than without shortage.

2.9. Previous reviews

Gelders and Van Wassenhove [5] in their review paper,
discussed medium- and short-term production planning. In
particular, they discussed hierarchical planning, material re-
quirement(s) planning (MRP), lot sizing and scheduling and
they classiDed the concepts and variants of these problems.
Bahl et al. [1] in their outstanding review paper, classiDed
lot sizing problems into four categories based on type of
demand and presence or absence of resource constraints:
single-level lot sizing without resource constraints (SLUR),
single-level lot sizing with resource constraints (SLCR),
multi-level lot sizing without resource constraints (MLUR),
and multi-level lot sizing with resource constraints (MLCR).
The characteristics and solution approaches for each cate-
gory are discussed and some suggestions for further research
in each category are presented.

3. Variants of lot sizing and scheduling problems

Because the range of lot sizing problems is very
large, in this review we will only focus on determinis-
tic, single-level dynamic lot sizing—the capacitated lot
sizing problem (CLSP). CLSP, which is an NP-hard prob-
lem, will be discussed in detail in the next section. In
the remainder of this section, Dve other problem vari-
ants will be identiDed together with an associated ref-
erence. These are: the economic lot scheduling problem
(ELSP), the discrete lot sizing and scheduling prob-
lem (DLSP), the continuous setup lot sizing problem
(CSLP), the proportional lot sizing and scheduling prob-
lem (PLSP), and the general lot sizing and scheduling
problem (GLSP).

ELSP [6] is a single-level, multi-item problem with sta-
tionary demand. The time is continuous and planning hori-
zon is inDnite. Solving the ELSP where capacity restrictions
are involved is NP-hard.

The NP-hard problem DLSP [7,8] subdivides the
(macro) periods of the CLSP into several (micro) pe-
riods. The fundamental assumption of the DLSP is the
so-called all-or-nothing production, which means only
one item may be produced per period, and, if so, the pro-
duction amount would be as much as using full capa-
city. From this viewpoint, DLSP is called a small bucket
problem.

CSLP [9] is a step towards a more realistic situation com-
pared to DLSP. In CSLP the all-or-nothing assumption, that
seems to be strict and makes e4cient implementation of
mathematical programming approaches possible, does not
exist any more, but still only one item may be produced per
period.

The basic idea behind the PLSP [10] is to use the re-
maining capacity for scheduling a second item in the par-
ticular period, if the capacity of a period is not used in
full. This is in fact the shortcoming of the CSLP. The un-
derlying assumption of the PLSP is that the setup state of
the machine can be changed at most once per period. Pro-
duction in a period could take place only if the machine is
properly set up either at the beginning or at the end of the
period. Hence, at most two products may be produced per
period.

GLSP [11,12] integrates lot sizing and scheduling of sev-
eral products on a single capacitated machine. Continuous
lot sizes are determined and scheduled, thus generalising
models using restricted time structures.

It should also be noted that DLSP introduces a connec-
tion between batching and lot sizing. Jordan and Drexl [7]
develop an algorithm for the batch sequencing problem
(BSP) and use this as a building block to solve DLSP. A
paper by Fisher et al. [13] considers end e9ects of inventory
policies for DLSP and produces optimal or near-optimal
results on problems using a new algorithm. Further con-
nections between scheduling and batching are reviewed
in [14].
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4. The single-level lot sizing problem

In this section, we describe the literature relating to the
single-level lot sizing problem. First, we begin with the un-
capacitated case and then we consider the capacitated case.

4.1. The single-level uncapacitated lot sizing problem

Many articles have discussed the single-level uncapaci-
tated lot sizing problem. In this section, we present the model
and review some major contributions related to this problem.

Assumption.

• Planning horizon is Dnite and consists of T periods.
• Demand, (dt; t = 1; : : : ; T ) is known in each period and

is satisDed at the beginning of the period.
• Variable production unit cost is independent of production

amount.
• Each unit item is produced independently from other

units.
• Lead time is known and constant (without loss of gener-

ality it is set to zero).
• No shortage(s) are allowed.
• Setup cost for each production lot is constant over time.
• Inventory holding cost is linear and is paid to the end of

period stock.
• Without loss of generality the initial and terminal inven-

tories are set to zero.

The objective is to minimize the sum of setup, production
and inventory holding cost under the above assumptions. As
it is well known [15] that every N -item uncapacitated prob-
lem can easily be divided into N single-item uncapacitated
problems, we only present the single-item formulation.

Notation

St setup cost in period t
Yt a binary variable that assumes value 1 if the product

is produced in period t and 0, otherwise
Ct variable unit production cost in period t
Xt production amount in period t
ht unit inventory holding cost in period t (usually con-

stant for all t)
It inventory at the end of period t

Mt =
T∑
k=t

dk :

4.1.1. Model
The single-item uncapacitated lot sizing problem can be

formulated as follows:

Minimise Z =
T∑
t=1

(StYt + CtXt + htIt)

Subject to Xt + It−1 − It = dt (t = 1; : : : ; T );

Xt6MtYt (t = 1; : : : ; T );

Yt ∈{0; 1} (t = 1; : : : ; T )

Xt; It¿ 0 (t = 1; : : : ; T ):

4.1.2. Algorithms
Many authors have studied the problemmodelled in 4.1.1.

Historically, the economic order quantity (EOQ) presented
by Harris [16] predates this problem. EOQ is also known
as the Wilson lot size formula since it was used in practice
by Wilson [17]. EOQ balances the setup cost and inventory
holding cost. In the EOQ model, demand is known with a
stationary rate and the planning horizon is inDnite.

Wagner and Whitin [18] presented a dynamic program-
ming algorithm for the single-item uncapacitated lot sizing
problem, which provides its optimal solution. However, al-
gorithms running in linear time are now available, essen-
tially removing the need for heuristic algorithms.

Wagelmans et al. [19] and Aggarwal and Park [20] have
proposed algorithms based on dynamic programming for the
uncapacitated lot sizing problem case of Wagner–Whitin.
Federgruen and Tzur [21] also have proposed a forward al-
gorithm that solves the general single-item lot sizing model.
The main contribution of the three above-mentioned papers
is a reduction in computational complexity in comparison
with the Wagner–Whitin algorithm. The Wagelmans et al.
[19] paper provides an O(n log n) algorithm that runs in lin-
ear time in the Wagner–Whitin case, while the paper by
Federgruen and Tzur [21] develops an alternative simple
forward algorithm to solve general dynamic lot sizing mod-
els with equivalent complexity properties. More recent work
by van Hoesel and Wagelmans [3] provides a theoretical
underpinning for fully polynomial approximation schemes
for single-item capacitated economic lot sizing problems.
Wolsey [22] has also described some solution approaches for
the uncapacitated lot sizing problem. Stadtler [23] develops
a modiDed model which looks at demand forecasts beyond
the planning horizon. He states that ‘As there are algorithms
available now that solve the standard SLLSP in linear time
former arguments favouring simple myopic heuristics be-
cause of its solution quality and computational complexity
have become obsolete’. He is of the view that ideas devel-
oped by Tempelmeier and Helber [24] and improved on by
him, Stadtler [25], in the form of the shortest-route model
show future promise.

For certain models, demand may be independent of time
period and can be regarded as constant. An early reference
to models with constant demand is [26] but more recently
Ganas and Papachristos [27] looks at heuristics for constant
demand models and Papachristos and Ganas [28] have in-
vestigated the e9ect of stationary demand on optimal in-
ventory policy. The authors develop a six-stage algorithm
and construct a solution table which provides simple to
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understand information regarding the stability regions for
inventory policy.

4.2. Single-level capacitated lot sizing problems

In the context of single-level production planning, with
Dnite planning horizon and known dynamic demand without
incurring backlogs, the classical capacitated lot sizing prob-
lem (CLSP), consists of determining the amount and the
timing of the production of products in the planning hori-
zon. Capacity restrictions constrain the production quantity
in each period. A Dxed setup cost and a linear production
cost are speciDed and there is also an inventory holding cost
proportional to the inventory amount and time carried.

In the classical CLSP, although the setup costs may vary
for each product and each period, they are sequence indepen-
dent. There are also some variants of CLSP, where setups
are sequence dependent. This kind of problem as mentioned
before is named the complex setup structure. The objective
of classical CLSP is to determine a production plan with
minimum cost. Its mathematical formulation is as follows:

T number of periods in the planning hori-
zon

Xit production (lot size) of item i in period t
Iit inventory of item i at the end of period t

(Ii1 = IiT = 0, without loss of generality)
Yit a binary variable that assumes value 1

if item i is produced in period t and 0,
otherwise

Rt available capacity in period t
dit demand for item i in period t
Cit unit production cost of item i produced

in period t
Sit setup cost incurred if item i is produced

in period t
Mit =

∑T
k=t dik upper bound on the production of item i

in period t
ai unit resource consumption for item i
hit unit holding cost of item i at the end of

period t.

Minimise Z =
n∑

i=1

T∑
t=1

SitYit + CitXit + hitIit

Subject to
n∑

i=1

aiXit6Rt (t = 1; : : : ; T );

Xit + Ii; t−1 − Iit = dit

(i = 1; : : : ; n; t = 1; : : : ; T );

Xit6MitYit (i = 1; : : : ; n; t = 1; : : : ; T );

Yit ∈{0; 1} (i = 1; : : : ; n; t = 1; : : : ; T );

Xit6 0 (i = 1; : : : ; n; t = 1; : : : ; T );

Iit¿ 0 (i = 1; : : : ; n; t = 1; : : : ; T ):

The single-item CLSP has been shown by Florian et al.
[29] and Bitran and Yanasse [30] to be NP-hard. In conse-
quence, Chen and Thizy [31] have shown that the multi-item
CLSP problem, is strongly NP-hard. Maes et al. [32] have
shown that even Dnding a feasible solution for CLSP with
setup times is NP-hard. Based on these results, it is un-
likely that we can develop any e9ective optimal algorithm
for this problem. Therefore, research on developing e9ec-
tive heuristics has been a proDtable research area for a long
time.

Based on the literature, solution methods of the problem
can be classiDed into three main categories. The Drst is
exact methods, the second category is common-sense or spe-
cialised heuristics and the third category belongs to mathe-
matical programming-based heuristics. Table 1 shows the
heuristics in each category.

4.2.1. Exact methods
Since the CLSP is NP-hard, most of the practical algo-

rithms are heuristic. However, besides the straightforward
implementation of a mixed integer programming formula-
tion of the problem, and using branch and bound technique
to solve it, there are basically two other exact approaches.
One is Barany et al. [33] and Leung et al. [35] who use
cut-generation techniques, and the other is the variable re-
deDnition technique of Eppen and Martin [34].

In the cut-generation technique of Barany et al., by the
addition of strong valid inequalities, which are facets for
the single-item uncapacitated problem (Wagner–Whitin-
type schedules), the problem is reformulated to speed up
the solution process and obtain a good approximation of the
convex hull of feasible solutions to the CLSP. The inequal-
ities (cuts) are generated using a cutting plane procedure.
The resulting reformulated problem is then solved using a
branch-and-bound algorithm.

In the second approach, Eppen and Martin, used a vari-
able redeDnition technique to change the classic CLSP
formulation into a graph-based representation. This refor-
mulation has more variables and constraints, but has a
much tighter linear relaxation than the traditional model,
and therefore reduced solution time. To Dnd the optimal
solution, the LP-relaxation problem is Drst solved and then
a branch and bound procedure is used in the Dnal stage.

These older methods mentioned so far in this section need
considerable computational e9ort to obtain an optimal so-
lution and so were only able to solve relatively small prob-
lems within a reasonable time, thus intensifying the reason
to explore heuristics.

More recent work suggests that practical sized prob-
lems may be solvable. The bc-prod system of Belvaux and
Wolsey [36] provides a general framework for modelling
and solving lot sizing problems. Cuts are generated and
various ingenious developments, deduced from the data, are
introduced. The problems solved are from various families
including big-bucket and small-bucket variants of sizes up
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Table 1
Summary of CLSP algorithms

Barany et al. [33] Exact methods Methods for solving CLSP
Eppen and Martin [34]
Leung et al. [35]
Belvaux and Wolsey [36]
Belvaux and Wolsey [37]
Fatemi Ghomi and Hashemin [38]

Eisenhut [39] Period-by-period Common-sense
Lambrecht and Vanderveken [40] heuristics or
Dixon and Silver [41] specialised
Maes and Van Wassenhove [42] heuristics
Kirca and Kokten [15]

Dogramaci et al. [43] Improvement
Karni and Roll [44] heuristics
Gunther [45]
Selen and Heuts [46]
Trigeiro [47]

Newson [48] Relaxation Mathematical
Billington et al. [49] heuristics Programming
Thizy and Van Wassenhove [50] Based
Bitran and Matsuo [51] Heuristics
Trigeiro [52]
Trigeiro et al. [53]
Chen and Thizy [31]
Thizy [54]
Diaby et al. [55]
Millar and Yang [56]

Gelders et al. [57] Branch-and-bound
Diaby et al. [58] heuristics
Chung et al. [59]
LotD and Yoon [60]
Hindi [61]
Armentano et al. [62]

Manne [63] Set partitioning and
Cattrysse et al. [64] column generation

heuristics

Lozano et al. [65] Other heuristics
Hindi [66]
Hindi [67]
Hung and Hu [68]

to 10 machines, up to 20 items and up to three periods.
The overall idea is that a variety of types of problem vari-
ants can be solved by a general approach, namely integer
programming with cuts. The work is further extended in
[37] where the modelling of start-ups, changeovers and
switch-o9s is introduced.

Most of the previous works have considered multi-item
CLSP. However, recently Fatemi Ghomi and Hashemin
[38] considered single item CLSP. They developed an

analytical method based on reformulating the problem
as a shortest path problem. They have shown that under
certain circumstances their algorithm provides optimal
solutions.

4.2.2. Common-sense or specialised heuristics
The structure of common-sense heuristics is often char-

acterised by three steps: the lot sizing step, the feasibility
routine and the improvement step.
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The lot sizing step essentially consists in converting a
given matrix of demand dit into a matrix of production lot
sizes xit . One of the di9erences between heuristics is the way
in which they combine demands into lots, i.e. in their lot siz-
ing step. The second part of the structure of the heuristic is a
feasibility routine. This part of the heuristic ensures that all
demand is satisDed without backlogging. Since it is possible
that in some periods total demand exceeds total capacity,
in these cases some inventory should be built up in earlier
periods with slack capacity. There are two basic feasibility
mechanisms that can be employed for the feasibility step:
the feedback mechanism and the look-ahead mechanism. In
the feedback mechanism, whenever a period in which de-
mand exceeds available capacity is encountered during the
execution of the lot sizing step (an infeasible period), ex-
cess demand is pushed back to earlier periods with leftover
capacity, taking into consideration setup and holding costs.
In a look-ahead mechanism, the minimum required inven-
tory build-up in every period in order to avoid capacity vio-
lations in later periods is computed a priori. In other words,
the cumulative requirements up to any period t (t6 T − 1)
are computed a priori, so that inventory is held in anticipa-
tion of infeasibility in future period (t + 1). The lot sizing
step is then adjusted so that the planned production lots in
each period satisfy these conditions.

In the improvement step several rules are applied to the
solution obtained by the lot sizing step to reDne and improve
the current solution and Dnd further savings. Since in the
improvement step, demand splitting is allowed over di9erent
lots (whereas it is not allowed in the lot sizing step), this
step often is very e9ective and can improve the solution
considerably.

As Maes and Van Wassenhove [69] describe, heuris-
tics in the common-sense category can be classiDed into
two groups, period-by-period heuristics, and improvement
heuristics.

Period-by-period heuristics: Period-by-period heuristics
work from period 1 to T in a single-pass construction algo-
rithm. After producing the required amount for all products
in period t (max{0; dit − Ii; t−1}), to save the setup costs,
any excess capacity can be used to produce for demand in
future periods. To choose the product and the amount of its
production for future periods, all heuristics use a priority in-
dex. These priority indexes can be any well-known criteria
taken from uncapacitated dynamic lot sizing heuristics such
as the Silver and Meal [70] heuristic, part-period balanc-
ing, etc. Among this group of heuristics, Eisenhut’s heuris-
tic [39] is the pioneering work. Other more recent heuristics
are Maes and Van Wassenhove [42], Gunther [45], Trigeiro
[53], Selen and Heuts [46], and Kirca and Kokten [15].

Maes and Wassenhove [42], also use a period-by-period
approach. In the current period the products which must
be produced are determined, i.e. products that need setup.
By identifying the minimum amount of production for each
product in the current period and by considering the avail-
able capacity, the algorithm seeks products for which their

future demand periods can be satisDed in the current period.
For this purpose, the algorithm uses well-known single-item
uncapacitated heuristics such as Silver–Meal, least-unit cost,
least total cost or absolute cost criterions. The sequence in
which the future demands are checked for inclusion in the
production lots is important. The items are always searched
in lexicographic order. There are two basic strategies for
doing this. The Drst is named east strategy, which adds de-
mands to the production lot until either the criterion (e.g.
S–M or P-P-B, etc.) is no longer satisDed or there does not
exist enough capacity. The second strategy named south,
searches all demands in a given period in lexicographic or-
der before the procedure moves to the next period. A de-
mand will be added to a production lot when the criterion
is satisDed and when the available capacity is su4cient. Be-
sides the two pure strategies, a mixed southeast strategy can
be used, that is the items are divided into classes according
to their time between orders. Since searching for items in
each period is in lexicographic order, a priori ordering of
the items is very important. Maes and Wassenhove imple-
mented six types of orderings: TBO (i.e. ordering according
to non-increasing values of time between orders), SH (ac-
cording to non-increasing values of ordering cost over inven-
tory holding cost, Si=hi), SHC (according to non-increasing
Si=hiai Rdi ratios), EC (according to non-increasing values of
expected average cost per period), ES (according to ex-
pected savings when combining demands over TBO periods
into a single production lot), ESC (same as ES but nor-
malised for average capacity utilisation). Based on the three
parts of their algorithm, i.e. various prior ordering of the
items, the criterion used to decide whether or not to include
demand into the current production lot and the search strat-
egy, their heuristic has 72 variants (6× 4× 3). Their algo-
rithm uses a look-ahead routine (but di9erent from [41]) to
ensure feasibility. They also used a lot elimination approach
in the improvement step.

Kirca and Kokten [15] have developed a heuristic algo-
rithm, named item-by-item. This algorithm di9ers in that at
each iteration, a set of items from those not already sched-
uled is selected and production schedules over the planning
horizon for this set of items are determined. The selection
rule for scheduling is an algorithm named 1-item algorithm,
which is based on the well-known economic order quantity
(EOQ) concept where uniform demand is assumed (aver-
age demand per period). By using this selection rule the
N -item problem changes to N -single-item problems. In the
next step, the available capacity in each period is updated.
A capacity adjustment factor is used to cope with high us-
age of the capacity by the items that are scheduled at the
initial iterations. The resulting single-item bounded lot siz-
ing problems are then solved by a dynamic programming
based procedure. Their computational results demonstrate
that an algorithm which uses this approach is more e4cient
than some other well-known algorithms such as Lambrecht
and Vanderveken [40], Dixon and Silver, Maes andWassen-
hove, and Cattrysse et al. [64].
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Improvement Heuristics: Heuristics in this category all
start with an initial solution (often infeasible) for the com-
plete planning horizon usually found by uncapacitated lot
sizing techniques. These heuristics generally contain three
steps. In the Drst step generate an initial solution, ignoring
capacity constraints. In the second step try to enforce fea-
sibility conditions, by shifting lots from period to period at
minimal extra cost. Finally, in the third (cost reduction) step,
the aim is to maximise cost savings as long as no new infea-
sibilities are incurred. For choosing shifts, usually a simple
rule based on trade-o9 between setup cost and holding cost
is used, and both left and right shifts can be applied. One
such simple rule for example could be

SC = SiY + hi(t − k)Sxit

where SC is the potential cost saving, Si the setup
cost for product i (assumed the same at any period),

Y =

{
1 if a new setup is needed in period t

−1 if a setup is eliminated from period t
; k the

period to which the production lot is shifted, and Sxit the
amount of item i shifted from period t to production in
period k.

The four-step algorithm of Dogramaci et al. [43] begins
with a lot-for-lot initial solution (step I), which ignores the
capacity constraints. The result of this step is a solution with
minimum inventory cost and maximum setup cost. In the
next step (II) it tries to reduce the total cost and achieve fea-
sibility. This is done by a left-shift procedure, that searches
for shifts with the largest reduction in costs over all items
and the whole planning horizon. Step three (III), is basically
another left shift, which tries to get more cost reduction as
long as the feasibility condition is not violated. Since the
algorithm performs in the order I–II–I–III, it is called the
four-step algorithm.

The algorithm of Karni and Roll [44] is an improve-
ment heuristic that begins with the single item uncapacitated
Wagner–Whitin dynamic programming solution. Their al-
gorithm consists of Dve sub-algorithms and is executed in
three phases. In phase one, an initial lower bound solution
is derived based on the Wagner–Whitin algorithm. In phase
two, by combining adjacent lots in varying proportions it
tries to remove infeasibility and improve the solution, for
this the algorithm uses both left and right shifts. By forcing
changes in the structure of the current best solution, it tries to
get further improvements in phase three. To limit the num-
ber of possible shifts, the algorithm deDnes some conditions
for e9ective shifts. Based on these conditions 10 types of
shifts are introduced. The e9ect of a shift is expressed as a
cost-saving coe4cient based on trade o9 between setup cost
and holding cost, which is similar to the above-mentioned
simple rule.

The heuristic of Gunther [45] starts with an initial
lot-for-lot solution and comprises three elements: a marginal
cost coe4cient as a lot sizing rule, capacity constraints
which ensure feasibility, and a cost coe4cient as a priority

index for capacity balancing. The algorithm uses Gro9’s
[71] single-level uncapacitated criterion for the lot sizing
rule and deDnes the lot sizing criterion as the marginal cost
saving per unit of additional capacity absorbed. The cost
coe4cient of product i in current period t is

Ui =
[2Si=hi − dipTi(P(i)− t + 1)]

dipai
;

where t is current period, Ti the number of period require-
ments which a batch of product i will satisfy (time sup-
ply), P(i) the next period to t with a positive requirement
for product i (supply period), and dip requirement for prod-
uct i at period p(i). Other parameters are the same as be-
fore. The lot size of the item with the maximum positive
Ui is increased, as long as a cost saving can be achieved
and capacity is available. To ensure feasibility, Gunther’s
algorithm deDnes some constraints on capacity, which can
be viewed as a look-ahead procedure for a feasibility step.
These constraints ensure that cumulative capacity available
exceeds the cumulative capacity requirements with respect
to any future period. If there is a positive maximum capacity
overload then the lot sizes in the current period have to be
increased, subject to capacity constraints mentioned before.
The cost increase per unit of additional capacity absorbed
serves as a priority index in capacity balancing. The product
with the maximum cost increase is selected in order to re-
duce the capacity overload in the remainder of the horizon.
This priority index is given by

Vi = ((p(i)− t)qiphi + Si[1− d(xit)])=aiqip;

where qip is the maximum quantity of product i which can
be shifted from period p(i) to period t for pre-production,
and d(xit) the binary decision variable indicating whether
product i is set up in period t or not where

d(xit) =

{
1 if xit ¿ 0;

0 otherwise:

Selen and Heuts [46] have suggested a modiDcation of Gun-
ther’s heuristic. The modiDcation is for the case when an
entire future period requirement is added to the existing lot
sizes of an already-scheduled product. They have introduced
the following priority index:

Ui =
(P(i)− t)qiphi + Si(d(xip; qip)− d(xit))

aiqip
;

where

d(xip; qip) =

{
1 if xip ¿qip;

0 if xip = qip:

They have mentioned that this modiDcation may outperform
Gunther’s heuristic.

Trigeiro [47] developed a heuristic algorithm for CLSP
with setup times. This heuristic (named Simple Heuristic)
is also based on the Silver–Meal lot sizing heuristic and
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Table 2
Characteristics of specialised heuristics

Lot shifting Feasibility Priority Initial Algorithm
check indices solution

— — PPB — Eisenhut [39]
Left shifting Feedback Silver–Meal — Lambrecht and Vanderveken [40]
Left shifting Look-ahead Silver–Meal — Dixon and Silver [41]
Left shifting Look-ahead Several indices — Maes and Van Wassenhove [42]
— Cumulative EOQ — Kirca and Kokten [15]

feasibility
Left and right Cumulative A simple rule Lot-for-lot Dogramaci et al. [43]
shifting feasibility
Left and right Cumulative A simple rule Wagner–Whitin Karni and Roll [44]
shifting feasibility
Left shifting Look-ahead Gro9 Lot-for-lot Gunther [45]
Left shifting Look-ahead Gro9 Lot-for-lot Selen and Heuts [46]
Left shifting Feedback Silver–Meal Lot-for-lot Trigeiro [47]

uses the same cost reduction coe4cient. The heuristic starts
with an initial lot-for-lot solution. Trigeiro used a feedback
mechanism for ensuring feasibility. In periods with excess
capacity usage of available capacity, among products with
positive production, some production is shifted into earlier
periods. The criterion is minimising the sum of production,
setup and inventory costs, for each unit of overtime elim-
inated in a shift. Then the algorithm tries to improve the
solution with some rearrangement moves.

The improvement heuristics involving checking a large
number of shifts and feasibility, and need more computa-
tion time compared to period-by-period heuristics, which is
a drawback for these kind of heuristics. For some compar-
isons among the heuristics of Lambrecht and Vanderveken,
Dixon and Silver, and Dogramaci et al. refer to [72].
Table 2 summarises the characteristics of the specialised
heuristics.

4.2.3. Mathematical programming-based heuristics
Heuristics, which belong to the mathematical program-

ming class, are based on an optimum seeking mathematical
programming methodology. Comparing to common sense
approaches, to which modiDcations are very di4cult to
make (because in most cases we have to alter the heuristic
completely), the heuristics of this class usually use a math-
ematical programming procedure to generate a solution.
Mathematical programming heuristics usually produce bet-
ter quality solutions, are more general and allow extensions
to di9erent problems. They also have the advantage that
there exist many commercial solvers (see Section 5), which
can be used as black boxes with some customisation. An-
other advantage is that many of these heuristics provide
a lower bound on the optimal solution. Therefore, they
provide guidance for the assessment of the quality of the
solution. On the other hand, these heuristics have much
more computational complexity for real-world problems,

and due to their technical concepts cannot be implemented
easily by practitioners.

Relaxation Heuristics: Heuristics of the relaxation cat-
egory rely upon a relaxation of capacity constraints. These
heuristics are very popular and have been implemented
by many researchers. By relaxing capacity constraints,
the problem reduces to N single item uncapacitated prob-
lems. These single item problems then can be solved using
Wagner–Whitin (or any other uncapacitated single item)
algorithm.

Thizy and Van Wassenhove [50], using Lagrangian re-
laxation for capacity constraints, decomposed the problem
into N single item uncapacitated lot sizing sub-problems,
solvable by the Wagner–Whitin algorithm. The solution of
the relaxed problem (dual solution) is a lower bound on the
original problem. By Dxing the setup variables given by the
dual solution, a transportation problem will result, which
provides an upper bound. Then the Lagrangian multipliers
are updated using the well-known subgradient optimisation
procedure of Held et al. [73]. This process repeats until the
lower bound equals the upper bound or a pre-speciDed num-
ber of iterations are completed. Contrary to the Newson [48]
algorithm and many other mathematical programming based
heuristics, their solutions are not restricted to solutions with
Wagner–Whitin extreme point conditions.

The algorithm of Trigeiro [52] basically is the same as
Thizy and Van Wassenhove’s. The di9erence and main con-
tribution in Trigeiro’s algorithm is the use of a smoothing
procedure to construct a feasible schedule from the dual so-
lution to the original problem. In the smoothing routine both
forward and backward passes are used. At each iteration, a
forward pass yields cumulative feasibility, and then its back-
ward pass Dnds a feasible schedule, if one exists, since the
cumulative feasibility is always satisDed. A Lagrangian cost
criterion is implemented to determine which item to move
and how much to shift.
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The works of other authors such as Billington et al.
[49], Trigeiro et al. [53], and Diaby et al. [55], all follow
the same basic approach as Thizy and Van Wassenhove
[50].

Bitran and Matsuo [51] gave error bounds for the relax-
ation method. In their research, they concluded that as the
number of products increase, the relative di9erence between
the capacity-relaxed problem and the original problem be-
comes negligible.

Millar and Yang [56] presented two algorithms for solving
a network-based formulation of the capacitated multi-item
lot sizing problem with backordering. They implemented
Lagrangian decomposition and Lagrangian relaxation tech-
niques. The algorithms guarantee Dnding a feasible schedule
and also provide an obvious measure of the quality of the
solutions generated.

Chen and Thizy [31] gave a comprehensive analysis of
relaxation methods for classical CLSP. They compared La-
grangian relaxation with other alternate relaxations of CLSP,
and showed that Lagrangian relaxation is most precise in a
rigorous sense. They also showed that the Lagrangian relax-
ation of the capacity constraints provides the tightest lower
bound to the optimal solution, compared to the relaxation
of other types. Thizy [54] also applied Lagrangian decom-
position for the CLSP.

Relaxation techniques are more Texible, but worthy of
mention is the fact that their useful properties may not be
applicable for more complex production planning models,
(e.g. multi-level problems or complex setup structures).

Branch and bound based heuristics: The branch and
bound approach can be used as a general method for solv-
ing integer-programming problems, but solving large-scale
CLSP problems by this approach is very time consuming
needing a huge amount of computational e9ort. Therefore,
this approach is not usually used as an optimal solution
method for large problems. The previously mentioned re-
laxation heuristics can be used as a lower bound for the
branch and bound procedure.

Gelders et al. [57] presented a branch and bound algo-
rithm which Dnds the lower bound at each node based upon
a Lagrangian relaxation of capacity constraints and sub-
gradient optimisation. Again as mentioned in [50], at each
iteration of the subgradient procedure, a primal transporta-
tion problem may yield a feasible solution, as an upper
bound.

Diaby et al. [58] in their paper try to develop several
new procedures for solving classic CLSP and CLSP with
setup times, limited regular time and limited overtime. Their
most successful procedure is a branch and bound method,
which is based on Lagrangian relaxation and subgradient
optimisation of capacity constraints.

Hindi [61] in his heuristic has implemented the branch and
bound method as a solution strategy for CLSP. The heuris-
tic Drst reformulates the problem as a shortest path problem
via variable redeDnition. The multi-item lower bound prob-
lems are solved by using a column generation strategy with

capacity constraints as the linking constraints. The resulting
single-item uncapacitated subproblems are solved as short-
est path problems. E9ective upper bounds, i.e. good feasible
solutions for the original problem, are found by solving an
appropriate minimum cost Tow problem at each node of the
branch and bound search tree.

Armentano et al. [62], represented multi item single-level
CLSP with setup times as a minimum cost network Tow
problem. They used a branch and bound method (implicit
enumeration) for solving this model, in which an initial
solution is obtained by a heuristic approach. Other related
research is Chung et al. [59], which combines dynamic pro-
gramming and branch and bound to solve a single item
CLSP. Another related work is LotD and Yoon [60].

Set partitioning and column generation heuristics:
Manne [63] approximated a production scheduling prob-
lem by a linear programming model, which provides a
good approximation when the number of distinct parts is
large in comparison with the number of time periods. In
this approximation, instead of individual combinations of
item-period, complete production plans are considered.
The original problem is handled by being partitioned into
sets of dominant production sequences. Many heuristics
are based on Manne’s approximate representation of the
CLSP, which is similar to a set-partitioning approach. For
example, Cattrysse et al. [64], discussed set partitioning and
column generation heuristics for the CLSP problem. They
suggested three-set partitioning heuristics and a column
generation heuristic. All their heuristics start from a feasible
set of tentative schedules (generated by several well-known
heuristics) for each individual item. Then by solving the
LP relaxation of the set partitioning problem formulation,
a subset of these schedules is chosen. At the Dnal step
they used a heuristic to convert the possibly fractional LP
solution to an integer one, for the original problem. Chen
and Thizy [31], have shown that the column generation
technique often can obtain the Lagrangian optimal solution
in less time than the relaxation heuristics.

The above-mentioned methods have some drawbacks,
particularly when capacity constraints are particularly tight
and also when the number of items is not substantially
larger than the number of periods. These drawbacks limit
their implementation in industry and since these methods
are based on Manne’s formulation, which only considers
Wagner–Whitin schedules, they may not obtain any feasible
solution even though the original problem may be feasible.
Besides, it is possible that the true optimal solution may not
always be of the Wagner–Whitin type. Trigeiro et al. [53]
remark that the set-partitioning approaches tend to under
account for the setup costs and times, because these are
charged only once when a lot is split.

Other approaches: Among other research in the literature,
there are some other works that used hybrid solution meth-
ods or approaches di9erent in some aspects from previously
discussed ones. Hindi [67], formulated the CLSP problem as
a shortest path problem. The LP relaxation of this problem
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Table 3
Summary of mathematical based heuristics

Algorithm Methods used in algorithm

Newson [48] Lagrangian relaxation, shortest path, Wagner–Whitin
Thizy and Van Wassenhove [50] Lagrangian relaxation, transportation, Wagner–Whitin, subgradient optimisation
Billington et al. [49] Lagrangian relaxation, transportation, Wagner–Whitin, subgradient optimisation
Trigeiro [52] Lagrangian relaxation, Wagner–Whitin, subgradient optimisation, smoothing
Trigeiro et al. [53] Lagrangian relaxation, transportation, Wagner–Whitin, subgradient optimisation
Diaby et al. [58] Lagrangian relaxation, transportation, Wagner–Whitin, subgradient optimisation
Bitran and Matsuo [51] Various relaxations
Millar and Yang [56] Network formulation, Lagrangian relaxation, Lagrangian decomposition
Chen and Thizy [31] Relaxation methods
Thizy [54] Lagrangian decomposition
Gelders et al. [57] Branch and bound, Lagrangian relaxation
Diaby et al. [58] Branch and bound, Lagrangian relaxation, subgradient optimisation
Hindi [61] Branch and bound, shortest path, column generation, minimum cost network Tow
Armentano et al. [62] Branch and bound, minimum cost network Tow
Chung et al. [59] Branch and bound, dynamic programming
LotD and Yoon [60] Branch and bound
Manne [63] Set partitioning, linear programming
Cattrysse et al. [64] Set partitioning, column generation
Lozano et al. [65] Primal–dual, relaxation
Hindi [66] Tabu search, transshipment
Hindi [67] Shortest path, column generation, minimum cost network Tow, tabu search
Hung and Hu [68] Shadow prices

is then solved by column generation. This relaxation yields
a feasible solution, which is further improved by adopting
the corresponding setup schedules and re-optimising vari-
able costs by solving aminimum-cost network Tow problem.
Finally, this improved solution is used by the tabu search
method as a starting solution to obtain better solutions. The
initial feasible solution used by tabu search is also com-
pared with Lagrangian relaxation and set-partitioning fea-
sible solutions. More recent work by Hindi et al. [74] to
solve multi-item CLSPs with setup times uses Lagrangian
relaxation with subgradient optimization combined with a
smoothing heuristic and local search. The method Drst forms
good feasible solutions (upper bounds) and then improves
on these.

Lozano et al. [65] used a primal–dual approach method to
solve a Lagrangian relaxation of CLSP. The approach works
as the steepest ascent method. To obtain a feasible solution
in each iteration, a heuristic routine is used. Their computa-
tional experiences show that the method usually yields better
solutions than the subgradient method, although it requires
greater CPU time. Some other works are Hindi [66], and
Hung and Hu [68]. Table 3 summarises the mathematical
based heuristics.

5. Software

For approaches to solving CLSP using mathematical
programming, especially integer programming, the popu-

lar solvers are CPLEX (www.ilog.com) and XPRESS-MP
(www.dash.co.uk). bc-prod developed by Belvaux and
Wolsey [36] and updated in [37] provides a complete
framework for solving problems using the integer program-
ming solver XPRESS-MP. The framework allows model
development and the addition of cuts.

Codes are available for approximate methods. Shaw and
Wagelmanns [75] have developed a code called ELSP for
single-item capacitated economic lot sizing with piecewise
linear production costs and general holding costs. The code
is available from the authors for testing.

6. Conclusions

In this work, after a brief introduction in Section 1, in Sec-
tion 2 we described factors which cause di9erent variants of
production planning problem and a9ect its complexity. The
variants are discussed in Section 3, and in Section 4, among
di9erent variants, the single-level lot sizing problem, in both
uncapacitated and capacitated cases is discussed. Basic for-
mulations are presented and, based on di9erent solution ap-
proaches, the literature and its classiDcation is reviewed in
detail. The focus has been more on the capacitated variant,
termed CLSP in the literature.

Although the traditional CLSP problem has been stud-
ied by many authors, looking for more e4cient solution
approaches is a challenging subject. Variants of the CLSP
with complex setup and other variants which are more
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realistic and practical have received less attention in the
literature. There has been little literature regarding prob-
lems such as CLSP with backlogging or with setup times
and setup carry-over. Since these problems are NP-hard,
fast and e4cient heuristics are required. Also there is little
literature for problems such as CLSP with single-family or
multi-family joint setup, in both capacitated and uncapac-
itated cases. Developing heuristics with reasonable speed
and solution quality for these kinds of problems is another
interesting research area.

Using some relatively new solution approaches such as
tabu search, simulated annealing, and other meta-heuristics
for solving CLSP is also another fruitful area of research.
Such techniques have been shown to be e9ective for similar
NP-hard problems.
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