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a b s t r a c t

In this paper we study the p-next center problem and propose an adequate solution approach. The
p-next center problem aims to minimizing the maximum distance from a user to the nearest center
plus the distance between the center and its closest center. In this paper we propose a new Variable
Neighborhood Search based algorithm to solve the p-next center problem. It uses refined local search
and shaking procedures as well as auxiliary data structures. The implementation consists in filtering
out the candidate centers to enter a solution by considering only ones that potentially decrease the
objective function value. The same approach has been applied to the classical p-center problem. Here
we show that known properties of an efficient implementation of VNS heuristic developed for the
p-center problem, hold for the new problem as well. More precisely, all the proposals in this work
are inspired by other analogous ones used in the literature for similar problems. Hence, the novelty
is the adaptation of the known properties that hold for the p-center problem to the p-next center
problem. The performance of the proposed heuristic is assessed on the benchmark instances from the
literature as well as newly generated larger instances with 1000, 1500, 2000 and 2500 vertices and
instances defined over graphs up to 1000 vertices with different densities. The obtained results clearly
demonstrate the effectiveness and efficiency of the proposed algorithm. Hence, the paper shows that
the same observations used to solve p-center problem may be used to efficiently solve the p-next
center problem.

© 2023 Elsevier B.V. All rights reserved.
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. Introduction

The p-center problem is a relatively well-known and well-
tudied facility location problem. It aims to locate p identical
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facilities, called centers, on a network to minimize the maximum
distance between demand vertices (users) and their closest (near-
est) centers. The closest center, assigned to a user, is referred
to as reference center. The applications of p-center problem are
mainly related to emergency service locations (determining op-
timal locations of ambulances, fire stations and police stations)
or natural disasters and human-caused disasters. In all of these
applications, the worst case service time is extremely important
because a prompt action is always sought to respond to requests
and save lives. But, what to do if some center fails down? Such sit-
uations may occur, for example, in the case of war, earthquakes,
tsunamis and hurricanes, when all affected persons instinctively
run toward the closest refugee camp, rescue center, hospital etc.,
but due to high demand/overcrowding the closest center easily
becomes unavailable. Another, more recent example is related
to the epidemics such as COVID-19, when temporary hospitals
and quarantines are quickly filled out and unable to accept new
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atients. To resolve such issues one possibility is that all users,
hose reference center fails, are re-directed to another open
enter, called backup center, and which is the closest center to
that which has become unavailable. In this case, the distance
that a user travels until it gets service is equal to the sum of
distance from a user to the nearest center, plus the distance
between that center and its closest center. The problem that aims
to simultaneously optimize the maximum distance from a user to
the nearest center plus the distance between that center and its
closest center (backup center) is called the p-next center problem
(pNCP). This problem is the topic of this paper.

The p-next center problem is defined on an undirected graph
G = (V , E), where V = {v1, v2..., vn}(|V | = n) is the set of vertices
hat represent both the locations of potential centers and users;
nd E = {(vi, vj) : vi, vj ∈ V , i ̸= j} is the edge set. Each edge
s assumed to have the distance d(vi, vj) that corresponds to the
ength of the shortest (minimum cost) path that connects vi and
j, and therefore the distances satisfy the triangle inequality. The
oal of the pNCP is to designate p centers from the given set V so
hat the maximum distance from a user to its allocated backup
enter is minimized. The distance from a user to its allocated
ackup center is calculated as the sum of the distance from the
ser to its closest (reference) center and the distance from that
enter to its (backup) center. Let us for a given set Π ⊂ V of p
enters define the following sets:

• the set of the closest centers to given vertex vi ∈ V : Π (vi) =
argmin{d(vi, πj)|πj ∈ Π};
• the set of centers closest to the center πj ∈ Π : Π (πj) =

argmin{d(πj, πk)|πk ∈ Π, πj ̸= πk}.

hen the objective function value for a given set of vertices V and
given set of centers Π ⊂ V is calculated as:

(Π ) = max
vi∈V

{
min

πj∈Π (vi),πk∈Π (πj)
{d(vi, πj)+ d(πj, πk)}

}
. (1)

In the case that the objective function is calculated with re-
pect to the subset of vertices V̄ ⊂ V , the corresponding objective
unction value of such restricted problem, will be denoted as
(Π, V̄ ) and is given as:

(Π, V̄ ) = max
vi∈V̄

{
min

πj∈Π (vi),πk∈Π (πj)
{d(vi, πj)+ d(πj, πk)}

}
. (2)

y convention, f (Π, V ) = f (Π ).
Contrary to the pNCP problem, the p-center problem (pCP)

nly considers the distance from the user to its closest (reference)
enter and therefore the objective function value of the pCP with
espect to the given set of vertices V and centers Π ⊂ V is
alculated as:

pCP(Π, V ) = max
vi∈V

{
min

πj∈Π (vi)
d(vi, πj)

}
. (3)

In [1] the p-next center problem has been formulated as a
ixed-integer programming (MIP) problem. For that purpose, the
uthors introduced three sets of variables:

• binary variables yj that receive value 1 if and only if a center
is located at vertex vj ∈ V ;
• binary variables xij that receive value 1 if and only if the cen-

ter located at vertex vj ∈ V is the closest to the user/center
at vi ∈ V , i ̸= j; In the case if vi is a user, the variable
indicates the assignment of a center to a user, while if vi
is the center it indicates the assignment of a backup center
to the existing center.
• the continuous variable f that reflects the objective function

value.
2

Using the defined variables, they formulated the p-next problem
as the following MIP problem:

min f (4)

s.t.
n∑

j=1

yj = p, (5)

∑
j=1
j̸=i

xij = 1, ∀i ∈ {1, 2, . . . , n}, (6)

xij ≤ yj, ∀i, j ∈ {1, 2, . . . , n}, i ̸= j, (7)

yj +
n∑

k=1
d(vi,vk)>d(vi,vj)

xik ≤ 1, ∀i, j ∈ {1, 2, . . . , n}, i ̸= j, (8)

f ≥
n∑

k=1
k̸=j

d(vj, vk)xjk, ∀j ∈ {1, 2, . . . , n}, (9)

f ≥ d(vi, vj)(xij − yi)+
n∑

k=1
k̸=j

d(vj, vk)xjk, ∀i, j ∈ {1, 2, . . . , n}, i ̸= j,

(10)

f ≥ 0, xij, yj ∈ {0, 1}, ∀i, j ∈ {1, 2, . . . , n}, i ̸= j. (11)

In the model, the objective function value f is bounded by
constraints (9) and (10). Constraints (9) ensure that f is greater
or equal to the distance between a reference center and its
backup, while constraints (10) guarantee that f is not less than
the distance between a user and its backup center. Constraint (5)
imposes that exactly p vertices are designated to be the centers.
The assignment of users to centers is guaranteed by constraints
(6) and (7). Constraints (7) forbid the assignment of users to
non-open centers, while constraints (6) require that each vertex
(user or center) is assigned to exactly one reference center. Each
user/center is assigned to its closest reference center by con-
straints (8). Finally, variables’ domains are stated by constraints
(11).

While the literature on the pCP is vast and proposes various
solution approaches [2–13], the pNCP, as a recent problem, has
started to gain more attention recently. Besides introducing the
pNCP, Albareda-Sambola et al. [1] proposed integer programming
formulations of the pNCP: two and three-indexed formulations
using path variables and a formulation using covering variables.
The authors showed that they are capable to solve instances with
up to 50 vertices within a reasonable computational effort. They
also provided a formal proof that the pNCP is a NP-hard problem.

The first heuristic algorithms for the pNCP were suggested by
López-Sánchez et al. [14]. The authors proposed three heuris-
tics: Greedy Randomized Adaptive Search Procedure (GRASP)
heuristic, Variable Neighborhood Search (VNS) heuristic and hy-
brid GRASP-VNS approach combining developed GRASP and VNS
heuristics. The proposed GRASP heuristic consists in generating
100 semi-greedy solutions which are subsequently improved by
a local search based on the vertex substitution (or Interchange)
neighborhood. On the other hand, the proposed VNS heuristic
follows the basic VNS framework. Starting, from the best solu-
tion among 100 semi-greedy solutions, the proposed Basic VNS
heuristic applies alternately shaking and local search procedures.
The applied local search procedure is the same as the one used
in the GRASP heuristic, while the shaking procedure aims to
diversify the search by generating a random solution from the kth
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eighborhood of the incumbent solution. The kth neighborhood is
efined as the set of solutions that may be derived from a given
olution by closing k centers in the given solution and opening
nother k centers. Finally, the hybrid GRASP-VNS approach is
erived from the GRASP heuristic by replacing the local search
tep by the proposed VNS heuristic. The proposed algorithms
ere evaluated on a set of instances with up to 200 vertices,
nd as expected, the hybrid algorithm returned the best results.
till, it took much more execution time than the GRASP and VNS
xecuted alone. Comparing GRASP and VNS heuristics, it turned
ut that they were similar in terms of time consumption. GRASP
as a bit faster, but VNS returned slightly better solutions.
Recently, Londe et al. [15] proposed a new hybrid heuristic for

olving the pNCP. Their heuristic is a hybrid Biased Random-Key
enetic Algorithm (BRKGA). In that framework, BRKGA is used
or creating and maintaining the pool of solutions (population).
his standard BRKGA is enhanced by two intensification strate-
ies. The first strategy explores the interchange neighborhood
f a solution to possibly reach better quality solutions, while
he second strategy, the implicit path re-linking , explores paths
onnecting a base solution and a guide solution, both extracted
rom the population. In order to avoid premature convergence of
RKGA, due to employed intensification strategies, and to enable
etter exploration of the solution space, the authors proposed
wo diversification mechanisms. The first one is the same shaking
rocedure as in [14], where a random solution from the kth
eighborhood is generated by applying k random swap moves.
he second one is the full population reset which consists in
enerating completely new population. The authors tested and
mplemented three variants of their algorithm: BRKGA-NLS (the
ocal search of the interchange neighborhood is not employed);
RKGA-BI (the local search of the interchange neighborhood with
he best improvement strategy is used) and BRKGA-FI (the local
earch of the interchange neighborhood with the first improve-
ent strategy is used). They concluded that BRKGA-BI was able to
rovide quality solutions more frequently than the other variants,
nd recommended it as the best option if the time consumption is
ot an issue. However, if the time aspect is crucial, and decisions
eed to be made quickly, they identified BRKGA-NLS as a viable
lternative.
In this paper, we suggest a new basic VNS heuristic for the

-next center problem. It differs from the previous one in using
ore refined local search and shaking procedures. This refined

mplementation is inspired by work on the p-center problem
ealized by Mladenović et al. [16] and consists in recognizing, in
n advanced way, centers which opening would not improve the
urrent solution. Therefore, our approach filters out the centers
onsidering only ones which opening potentially decreases the
bjective function value. In addition, the Basic VNS in [14] uses
he first improvement search strategy, while our Basic VNS uses
he best improvement search strategy. The idea of filtering solu-
ions has been already proposed in [17], where the authors made
he first attempt to improve the implementation of Basic VNS
resented in [14]. In this paper, we go further and additionally
nhance the Basic VNS proposed in [17] by incorporating new
ata structures to speed up the local search process and present
new more refined shaking procedure. Note that Basic VNS by
istić et al. [17] uses the same straightforward implementation of
he shaking procedure as Basic VNS in [14], while our Basic VNS
ncorporates a filtering mechanism into the shaking procedure
s well. Moreover, here we show that the so-called Whitaker
ata structure, implemented within the interchange (vertex sub-
titution) local search, previously proposed for solving both the
-median problem [18–20], and the p-center problems [16], may
e efficiently adapted for solving p-next center problem as well.

he Whitaker data structure, originally proposed in [20], involves a

3

uxiliary arrays that for each vertex store the closest and the
econd closest center.
Compared to the previous approaches in [14,15,17] we pro-

ose a local search that avoids non-promising solutions in a very
fficient way. As it will be shown, an iteration of the newly
roposed local search has, by the factor n, smaller time com-
lexity than an iteration of the standard local search. In the
ame spirit we refined the standard shaking procedure used
n [14,15,17]. The refinement aims to redirect the search toward
romising regions of the solution space without increasing the
ime complexity compared to the standard shaking procedure.
he refinement is the simplest possible, yet effective, and consists
n one simple condition that verifies, before executing a random
wap move, if it is promising or not. More precisely, our intention
as to follow the recent ‘‘Less-is-more’’ approach philosophy [5,
1–24]. We design a Basic VNS algorithm, using the minimum
umber of search ingredients, but in the most efficient manner.
ollowing this research direction, we prove that the previous data
tructure in an efficient VNS implementation for solving the p-
enter problem [16], can be used in the p-next-center problem as
ell. The novelty is thus theoretical and practical adaptation of
nown properties that hold for the p-center, to this new problem.
n other words, more theory, that allows the simplest possible
lgorithm. On the other hand, computational results significantly
utperform the previous state-of-the-art results from the litera-
ure. In addition, we generated larger instances with 1000, 1500,
000 and 2500 vertices and instances defined over graphs up to
000 vertices with different densities to assess the performance
f the proposed approach on wide range of instances. The ob-
ained results again clearly demonstrate the effectiveness and
fficiency of the proposed algorithm. Overall, the contributions
f the paper may be summarized as follows:

• The new Basic VNS heuristic for the p-next problem is pro-
posed. It uses refined local search and shaking procedures.
• Known properties that hold for the p-center problem are

theoretically and practically extended to the p-next cen-
ter problem. They include an adaptation of Whitaker data
structure within Interchange local search procedure.
• The newly proposed heuristic advances the state-of-the-art

results by offering higher number of best-known solutions.
In most cases the average time-to-target of proposed heuris-
tic is shorter. In addition, the worst and average solution val-
ues in 20 runs are very often better than the state-of-the-art
ones.
• This is the first time the instances with up to 2500 ver-

tices are considered for the p-next center. We consider
OR-Lib instances which are well-established instances for
the p-median and p-center problems, and have up to 900
vertices. In addition new benchmark set of larger instances
is proposed and contains instances with up to 2500 vertices.
• Our heuristic shows that it can cope even with such large

instances in an efficient and effective way.

The rest of the paper is organized as follows. In Section 2, we
xplain the steps of the straightforward implementation of the
asic Variable Neighborhood Search heuristic. In the following
ection 2.1, we present the enhancements of this implemen-
ation by presenting an efficient implementation of the local
earch within Interchange or Vertex Substitution neighborhood.
ection 2.3 contains the refined implementation of the shaking
rocedure as well as complete pseudo-code of the refined VNS
lgorithm. In Section 3, we present computational results, and
inally, we conclude the paper by summarizing the contributions
nd giving some future work directions in Section 4.
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. Variable neighborhood search heuristic for the p-next cen-
er problem

Variable Neighborhood Search metaheuristic was initially in-
roduced by Mladenović and Hansen [25] as a general framework
or building heuristics based on systematic changes of neighbor-
ood structures during the search for a (near-) optimal solution.
ince then, many heuristics following this recipe have been suc-
essfully applied for solving a wide range of optimization and
ocation problems. For example, VNS heuristics have been devel-
ped for the solution of the p-center problem [16], probabilistic
-center problem [26] and p-next center problem [14,17].
Basic VNS includes two main phases: the local search phase

ithin one neighborhood structure, and the shaking phase, where
he change of neighborhoods occurs. During the local search
hase, the current neighborhood is being explored to reach a local
ptimum, while the goal of the shaking phase is to jump from
he current neighborhood to a new one, i.e., escaping from the
ocal optima valleys. In other words, Basic VNS during the local
earch phase achieves intensification, while jumping to faraway
eighborhoods achieves diversification of the search process.
In this section we present the straightforward implementation

f the Basic VNS heuristic for the p-next center problem. This
mplementation is also presented in [14], but we repeat it here
o show how it may be improved. Within the Basic VNS, the
olution of the p-next center problem is represented as a set
= {π1, π2 . . . , πp}, |Π | = p, Π ⊂ V . Consequently, the kth

eighborhood of a solution Π may be defined as:

Nk(Π ) = {Π ′||Π ′| = p, Π ′ ⊂ V , |Π ′ ∩Π | = p− k},
k = 1, 2, . . . , p.

n other words, it represents a set of solutions obtained by re-
lacing k centers from the solution Π by k centers not included
n Π . Recall that the set of potential center locations and the
et of users coincide, and both are denoted by V , as stated in
ntroduction.

Based on the previous definitions, Algorithm 1 presents pseu-
ocode of the Basic VNS algorithm for the p-next center problem.
he algorithm starts by generating an initial solution which is
et to be the current incumbent solution Π . After that the main
NS loop starts. It consists in applying alternately, the shak-
ng procedure, the local search procedure and the neighborhood
hange step in order to enhance the incumbent solution. The
haking procedure aims to diversify the search by generating
random solution from the neighborhood Nk(Π ). The level of
iversification is controlled by the parameter kmax which deter-
ines the largest possible k value. Initially, k is set to 1, meaning

hat the solutions from the neighborhood N1(Π ) are used to
iversify the search. After that, each time an improvement of the
ncumbent solution occurs, k is reset to 1. Otherwise, its value
s incremented by one, meaning that bigger jumps will be made
y the shaking procedure Shake(Π,Nk) to possibly resolve the
urrent local optima trap. As a local search procedure, the Basic
NS applies the local search within the neighborhood N1(Π ). The
ocal search in [14] uses the first improvement search strategy (as
oon as a better neighbor solution is detected it is set to be new
ncumbent solution and search is resumed), while the BVNS we
evelop in this paper uses the best improvement search strategy
the best improving neighbor solution (if any) is set to be new
ncumbent solution and the search is resumed). The Basic VNS
inishes its work once the maximum allowed CPU time, specified
y parameter Tmax, is reached.
The local search through the neighborhood N1 examines p ·

n−p) possible solutions in each iteration. However, many among
hem do not improve the current solution. Therefore, it would
4

Algorithm 1: Basic VNS for the p-next center problem
Function BVNS(Π , kmax, Tmax)

1 Π ← Initial_Solution();
2 repeat
3 k← 1;
4 while k ≤ kmax do
5 Π ′ ← Shake (Π,Nk) ;
6 Π ′′ ← Local_Search (Π ′,N1) ;
7 k← k+ 1;
8 if Π ′′ is better then Π then
9 Π ← Π ′′;

k← 1;

10 T ← CpuTime();
until T > Tmax;

11 Return Π ;

be beneficial to eliminate these solutions from the search pro-
cess. This may enable an efficient move to a better solution
and therefore significantly speed up the local search process. In
the context of p-center problems, such speed-up has been done
in [16], where the authors called such approach 1-Interchange
or Vertex Substitution (VS) heuristic. In this paper, following the
ideas from [16], we propose our Vertex Substitution (VS) heuristic
applicable to the p-next center problem. As already said in the
introduction, our aim is to show that the properties that hold
for the p-center problem are applicable for the p-next center
problem as well, and that they enable the development of an
efficient heuristic for the p-next center problem. In addition, we
enhance the straightforward Basic VNS (given in Algorithm 1), by
developing a refined shaking procedure which does not generate
completely random solution from the neighborhood Nk.

2.1. An efficient vertex substitution heuristic for the p-next center
problem

Similarly, as observed in the case of the pCP, each solution
Π of the p-next center problem partitions users into p disjoint
subsets, S1, S2, . . . , Sp. Each subset set Si, called a star, contains
the users allocated to the same reference center πi. The distance
between the center πi and its farthest user, plus the distance from
center πi to its closest, i.e., the backup center, π̄i represents the
radius of star Si. The distance is named the radius by analogy
to the terminology used in the p-center problem. Denoting the
radius of each star by r(Si), it follows that the objective function
value of the solution Π is determined by the critical star Sc
with the greatest radius, i.e., f (Π ) = maxi∈{1,...,p}{r(Si)}. The
corresponding center and user, that yield the objective function
value, are also called critical and they are denoted by πc and uc ,
respectively.

Consequently, to improve the solution, the largest radius needs
to be shortened. This may be accomplished by opening new
center which: (i) reduces the distance from the critical user to
the reference center and/or; (ii) reduces the distance between
the critical center πc and its backup center. In both cases a new
center needs to be opened, and one of the existing centers needs
to be closed. The discussed situation is illustrated in Fig. 1. A
current solution of the p-next center problem with n = 15 users
and p = 3 centers partitions users into three disjoint subsets,
S2, S5 and S11, represented by the reference centers 2, 5 and 11,
respectively. The critical center 5 and the critical user 8 yield the
radius 3.94+2.73 = 6.67(cm), represented by the red edges (8, 5)
and (5, 2). To improve the current solution, the largest distance

d(8, 5) + d(5, 2) needs to be shortened (vertex 2 is the backup
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Fig. 1. Example of the p-next center problem with n = 15 and p = 3; the current solution is Π = {2, 5, 11} and the critical user πc = 8; cluster S2 = {1, 2, 9, 10}
has radius r2 = 5.29, reference center 2 and backup center 5, cluster S5 = {3, 4, 5, 6, 7, 8, 14} has radius r5 = 6.67, reference center 5 and backup center 2; cluster
S11 = {11, 12, 13, 15} has radius r11 = 6.04, reference center 11 and backup center 5. The best improving swap move replaces 11 by 4. The distance matrix is given
at the right-side of solution.
T
t

center of center 5). Hence, potential centers which opening may
reduce the objective function value are ones located inside circle
C1 (of radius d(8, 5) rooted at vertex 8) or centers located inside
circle C2 (of radius d(5, 2) rooted at vertex 5). It should be
noted that circle C1 contains possible locations that may improve
reference center positioning, while circle C2 contains ones that
may improve backup center location. For example, if vertex 7 is
selected to be a new center, the best choice for the center deletion
is center 2 since it yields the lowest objective function value. The
new solution is Π = {5, 7, 11} with the critical user uc = 1,
the critical center πc = 5, the backup center at vertex 7 and the
largest radius r = d(1, 5) + d(5, 7) = 4.28 + 1.12 = 5.4. This
radius value corresponds to the new objective function value.
The user 8, as the critical user from the previous solution, now
is included into the cluster S7 = {3, 7, 8, 10, 13} and due to
its new reference center 7 and backup center 5, its distance is
shortened to d(8, 7) + d(7, 5) = 2.92 + 1.12 = 4.04. On the
other hand, if the vertex 6 had been selected to be a new center,
the objective function value would have increased. Although,
the critical user (pc = 8) from the previous solution with the
newly assigned pair of centers (5, 6) would shorten its distance
(d(8, 5) + d(5, 6) = 3.94 + 2.52 = 6.46 < 6.67), the new
solution would not be better. The new solution Π = {5, 6, 11},
with the new critical user πc = 1, its reference center πc = 5
and backup center at vertex 6, would yield the objective function
value d(8, 5)+ d(5, 6) = 4.28+ 2.52 = 6.8, which is worse than
the previous 6.67. Therefore, the new solution has been discarded.

Anyway, after all the vertices from the circles C1 and C2 have
been tried out, it turns out that the vertex 4 is the best choice for
the new center. In order to minimize the objective function value,
the center 4 should be opened and center 11 closed. In this case,
the new solution is Π = {2, 4, 5}; the critical user is uc = 10;
its reference and backup centers are 2 and 5, respectively. Such
solution yields the maximally improved objective function value
d(10, 2)+ d(2, 5) = 2.56+ 2.73 = 5.29.

The previous observations suggest that to improve a cur-
rent solution, there is no need to evaluate all solutions in the
interchange neighborhood N1(Π ). Hence, analogously to [16],
we propose an efficient way to discard non-promising solu-
tions and focus only on promising ones. For this purpose, we
adopt the following solution representation. Besides a set Π =

{π , π , . . . , π } of p chosen centers, we use arrays c1 and
1 2 p Π

5

c2Π to store, for each vertex, the closest and the second closest
center from the set Π . By convention, for a user vi ∈ V , c1Π (vi)
corresponds to the reference center with respect to solution Π ,
i.e.,

c1Π (vi) = argmin{d(vi, πj)|πj ∈ Π}, for vi ∈ V \Π,

while for a center pi ∈ Π , c1Π (pi) corresponds to the backup
center from Π , i.e.,

c1Π (πi) = argmin{d(πi, πj)|πj ∈ Π, πj ̸= πi}, for πi ∈ Π .

Similarly, we have

c2Π (vi) = argmin{d(vi, πj)|πj ∈ Π, πj ̸= c1Π (vi)},
for vi ∈ V \Π

and

c2Π (πi) = argmin{d(πi, πj)|πj ∈ Π, πj ̸= πi, πj ̸= c1Π (πi)},
for πi ∈ Π .

Please note that in the case of critical user uc , c1Π (uc) equals to
pc and therefore we will use these two notations interchangeably
in the rest of the paper.

Determining a promising center to open. Using the in-
troduced notation, we can easily verify whether certain swap
move is promising or not. In particular, Algorithm 2 presents the
procedure to verify whether opening of center πin is promising or
not. The algorithm exploits the fact that a center is promising if
its opening shortens the radius associated to the critical user and
critical center. Three cases that may lead to an improvement are
distinguished:

(1) if centers c1Π (uc) = πc and c2Π (uc) are equidistant from
the critical user uc , then the opening of center πin, may
enable center c2Π (uc) to become better option than πc .
This happens if c2Π (uc) has now closer backup center πin,

(2) if center πin is not farther from uc than πc , then the radius
may be shortened,

(3) if center πin is closer to critical center πc than c1Π (πc), then
the radius may be shortened.

hese three cases are elaborated in Algorithm 2, which shows that
he verification whether opening of center π is promising or not,
in
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ay be accomplished in the constant time by using arrays c1Π

nd c2Π .

Algorithm 2: Checking whether there is a better solution
if pin is opened as new center

Function ExistsRelaxedDistance(Π, c1Π , c2Π , uc, πc,

πin)
1 f ← d(uc, πc)+ d(πc, c1Π (πc));
/*Case 1:*/

2 if d(uc, πc) = d(uc, c2Π (uc)) and min(d(πc, c1Π (πc)),
d(πc, πin)) > d(c2Π (uc), πin) then

return True;
/*Case 2:*/

3 if d(uc, πin) ≤ d(uc, πc) and d(uc, πin)+ d(πin, c1Π (πin))
< f then

return True;
/*Case 3:*/

4 if d(uc, πin) ≥ d(uc, πc) and d(uc, πc)+ d(πc, πin) < f then
return True;

5 Return False;

Determining the best center to close. Once, the promising
enter πin, to be opened, is detected another center πout , to be
closed, needs to be determined. Similarly, as done in [16], we
develop the greedy procedure that aims to close a center πout so
hat the objective function value of solution Π ′ = Π ∪ {πin} is
eteriorated as least as possible. It should be noted that since
he center πin is promising, we have f (Π ′) < f (Π ). Hence, our
im is to close center πout so that the objective function value
(Π ′ \ {πout}) is as close as possible to f (Π ′). In this way we
ncrease chances to obtain a better solution.

For this purposes, two additional data structures are intro-
uced:

• r ′(πi, πj) - stores the objective function value for the re-
stricted problem pNCP considering only users that use πi as
the reference and πj as the backup center, where πi, πj ∈ Π ′.
Note that the values are not computed for all pairs (πi, πj),
but only for pairs (πi, c1Π ′ (πi)), where c1Π ′ (πi) corresponds
to the closest center with respect to the set Π ′ = Π ∪{πin}.
More formally,

r ′(πi, c1Π ′ (πi)) = max
vj∈V ,c1Π ′ (vj)=πi

d(vj, πi)+ d(πi, c1Π ′ (πi)).

It should also be noted that this data structure aims to
calculate the radius for each center from the set Π ′ and
therefore it contains the objective function value of the
solution Π ′ = Π ∪ {πin}.
• z(πi) – stores the objective function value of the restricted

pNCP problem, where the set of vertices contains only ver-
tices that will change the reference or the backup center if
we close center πi ∈ Π (i.e., the set of p centers becomes
Π ′ \ {πi}). More formally, let us denote by V̄ = {vj ∈

V |c1Π ′ (vj) = πi ∨ (c1Π ′ (vj) ̸= πi ∧ c1Π ′ (c1Π ′ (vj)) = πi)}, the
set of vertices that change their reference or backup center
if we exclude vertex πi ∈ Π from the solution Π ′. Then,
according to Eq. (2), we have:

z(πi) = f (Π ′ \ {πi}, V̄ ).

If these two data structures are available, the objective func-
ion value of solution f (Π ′ \ {πi}) may be calculated as:

(Π ′ \ {πi}) = max
{
z(πi), max

πj∈Π ′,
r ′(πj, c1Π ′ (πj))

}
. (12)
πj ̸=πi,c1Π ′ (πj)̸=πi

6

Consequently, the best center to be closed may be determined
s:

out = argmin
πi∈Π

f (Π ′ \ {πi})

= argmin
πi∈Π

{
max

{
z(πi), max

πj∈Π ′,
πj ̸=πi,c1Π ′ (πj)̸=πi

r ′(πj, c1Π ′ (πj))
}}

.

(13)

Algorithm 3: The fast vertex substitution local search for
the p-next center problem

Function FastLocalSearchVertexSubstitution(Π,

c1Π , c2Π , uc, πc, fcur )
1 Improvement← True;
2 while Improvement do
3 f ′ ←∞;
4 πin ← null, πout ← null;
5 for each πin ∈ V \Π do
6 if ExistsRelaxedDistance(Π, c1Π , c2Π , uc, πc,

πin) then
7 Π ′ ← Π ∪ {πin};

/*Calculate z and r ′ values */
8 z ← Calculate_z(Π, c1Π , c2Π , uc, πc, πin);
9 r ′ ← Calculate_r′(Π, c1Π , c2Π , uc, πc, πin);

/*determine the best center to close and resulting
objective function value */

10 πout ← argmin
πi∈Π

f (Π ′ \ {πi}) = argmin
πi∈Π{

max
{
z(πi), max

πj∈Π
′,

πj ̸=πi,c1Π ′ (πj)̸=πi

r ′(πj, c1Π ′ (πj))
}}
;

11 f ′′ ← f (Π ′ \ {πout}) = max
{
z(πout ),

max
πj∈Π

′,

πj ̸=πout ,c1Π ′ (πj)̸=πout

r ′(πj, c1Π ′ (πj))
}
;

12 if f ′′ < f ′ then
13 f ′ ← f ′′;
14 π∗ in ← πin;
15 π∗out ← πout ;

if fcur > f ′ then
16 fcur ← f ′;
17 Π ← Π ∪ {π∗ in} \ {π

∗
out};

18 Update (Π, c1Π , c2Π , uc, πc);
19 Improvement← True;

else
Improvement← False;

return (Π, c1Π , c2Π , uc, πc);

The outline of the algorithm that examines only promising
solutions in the neighborhood N1(Π ) and exploits data structures
r ′ and z to determine the best center to be closed is presented
in Algorithm 3. The algorithm is named Fast Local Search Vertex
Substitution. At the input, Algorithm 3 requires solution Π , critical
user uc , critical center πc as well as associated data structures
c1Π and c2Π . The objective function value of the input solution
is provided via parameter fcur . Each time a better solution is
found all input parameters are updated. Hence, at the output the
procedure returns the best encountered solution stored in the
input parameters.
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V ′ =

⎧⎨⎩vi ∈ V
⏐⏐⏐⏐ d(vi, πin) < d(vi, c1Π (vi)) ∨(

d(vi, πin) = d(vi, c1Π (vi)) ∧ d(πin, c1Π (πin)) < d
(
c1Π (vi), c1Π (c1Π (vi))

))⎫⎬⎭ . (14)

Box I.
V ′′ =

⎧⎨⎩vi ∈ V
⏐⏐⏐⏐ d(c1Π (vi), πin) < d

(
c1Π (vi), c1Π (c1Π (vi))

)
∧(

d(vi, c1Π (vi)) < d(vi, πin) ∨
(
d(vi, c1Π (vi)) = d(vi, πin) ∧ d(c1Π (vi), πin) < d(c1Π (πin), πin)

) )⎫⎬⎭ . (16)

Box II.
V ′′′ =

⎧⎨⎩vi ∈ V
⏐⏐⏐⏐ d(vi, c1Π (vi)) = d(vi, c2Π (vi)) < d(vi, πin) ∧(

min
{
d(c1Π (vi), c1Π (c1Π (vi))), d(c1Π (vi), πin)

}
> d(c2Π (vi), πin)

)⎫⎬⎭ . (18)

Box III.
I
v
a
O

P
m
o
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2.2. Theoretical foundations of fast local search vertex substitution
algorithm

In this section we discuss the correctness of the precedent
algorithm and its complexity. First, we explain how the r ′ and
z values may be computed in an efficient way by using c1Π and
c2Π arrays.

Property 1. Using arrays c1Π and c2Π , the r ′ values in Algorithm 3
may be computed in the time complexity O(n), where n is the number
of users.

Proof. We distinguish four cases:

(1) The opening of new center πin may attract certain users
to change their reference centers in one of two following
ways: (1) new center πin is closer; or (2) πin and c1Π (vi) are
at the same distance from vi ∈ V but the distance between
new center and its backup center is smaller. Consequently,
the set of such users is defined as Eq. (14) given in Box I.
In this case the corresponding r ′ value is calculated as:

r ′(πin, c1Π (πin)) = max
vi∈V ′
{d(vi, πin)+ d(πin, c1Π (πin))}. (15)

(2) The users may keep the allocated reference center but be
allocated to a new backup center πin. Hence, we distinguish
the set of users given in Box II.
This set enables us to calculate the corresponding r ′ values,
for each pair (πj, πin), πj ∈ {c1Π (vi)|vi ∈ V ′′}, as:

r ′(πj, πin) = max
vi∈V ′′
{d(vi, πj)+ d(πj, πin)|πj = c1Π (vi)}. (17)

(3) The users may become allocated to c2Π (vi) and use the
center πin as the backup center. This situation occurs if
c1Π (vi) and c2Π (vi) are equally distant from vi, center πin
is farther from vi, but center πin enables center c2Π (vi)
to become better reference center (that is, the distance
d(c2Π (vi), πin) is shorter than any of the distances
d(c1Π (vi), c1Π (c1Π (vi))), d(c1Π (vi), πin)). Consequently, we
distinguish the set given in Box III. This set enables us to
7

calculate the corresponding r ′ values, for each pair (πj, πin),
πj ∈ {c2Π (vi)|vi ∈ V ′′′}, as:

r ′(πj, πin) = max
vi∈V ′′′
{d(vi, πj)+ d(πj, πin)|πj = c2Π (vi)}. (19)

(4) The last set includes the users that keep their pair of
centers from the solution Π : V 0

= V \ (V ′ ∪ V ′′ ∪ V ′′′).
In this case r ′ values are given as:

r ′(πj, c1Π (πj)) = max
vi∈V0
{d(vi, πj)+d(πj, c1Π (πj))|πj = c1Π (vi)}.

(20)

n any of the precedent formulas (15), (17), (19) and (20) the
alues in the brackets can be calculated in the constant time
nd therefore the time complexity to calculate all r ′ values is
(|V 0
| + |V ′| + |V ′′| + |V ′′′|) = O(|V |) = O(n). □

roperty 2. Using arrays c1Π and c2Π , the z values in Algorithm 3
ay be computed in the time complexity O(n), where n is the number
f users.

roof. First, we note that for any vertex v ∈ V , the closest center
rom the set Πi = Π ′ \ {πi} = Π \ {πi} ∪ {πin}, denoted as
1Πi (v), may be determined in the constant time. Namely, the
ser (center) either keeps the same closest center c1Π (v) it had
efore, or it is assigned to the closest of c2Π (v) and πin. This
bservation would be used in the following two cases:

(1) Closing center πi ∈ Π causes a user to lose its reference
center. That is c1Π ′ (vj) = πi which implies c1Π ′ (vj) =
c1Π (vj). The set of such users is defined as:

V
′

i = {vj ∈ V |c1Π (vj) = πi}.

In this case, a user from set V
′

i is re-assigned to the second
closest center c2Π (vj) or newly added center πin. Let us
denote the closest one to vj as cvj . Then, the maximum
p-next center function value among all users to whom
center π ∈ Π was assigned as a reference center may be
i
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computed as:

z ′(πi) = max
vj∈V

′

i

{
d(vj, cvj )+ d

(
cvj , c1Πi (cvj )

)}
, (21)

where c1Πi (cvj ) refers to the center from the set Πi = Π \

{πi} ∪ {πin} which is closest to cvj . This closest center may
be determined in the constant time only examining the
centers from the set C ′ = {c1Π (cvj ), c2Π (cvj ), πin}\{cvj , πi}.
This further implies that in this case z ′(πi) is calculated in
the time complexity O(|V

′

i|).
(2) Closing center πi ∈ Π causes a user to lose its backup

center. The set of such users is defined as:

V
′′

i = {vj ∈ V |c1Π ′ (c1Π ′ (vj)) = πi ∧ c1Π ′ (vj) ̸= πi}.

Let us suppose that c1Π ′ (vj) equals to cvj and corresponds
to the closer of c1Π (vj) and πin to the vertex vj. If cvj = πin

and the current backup center is c1Π ′ (πin) = c1Π (πin) =
πi, then the new backup center becomes c2Π ′ (πin) =
c2Π (πin). On the other hand, if cvj = c1Π (vj) and c1Π ′ (cvj )
= c1Π (cvj ) = πi, then the new backup center, after closing
πi, will be the closer of c2Π (cvj ) and πin to cvj . This implies
that the new backup center c1Πi (cvj ) may be determined in
the constant time from the set C ′′ = {c2Π (cvj ), πin} \ {cvj}
as closer one to cvj .
Therefore, the maximum p-next center function value
among all users to whom center πi ∈ Π was assigned
as a backup center may be computed in O(|V

′′

i |) time
complexity as:

z ′′(πi) = max
vj∈V

′′

i

{
d
(
vj, cvj

)
+ d

(
cvj , c1Πi (cvj )

)}
. (22)

he observations (1) and (2) imply that the resulting objective
unction value of all users who lost their reference or backup
enter is given as:

(πi) = max{z ′(πi), z ′′(πi)}.

ence, we infer that z values may be computed with respect to
he users in the time complexity O(|V |) = O(n). □

Having known z and r ′ values, we show in the next property
hat the best center to be closed may be found in an efficient way.

roperty 3. The best center to be closed is determined as:

out = argmin
πi∈Π

{
max

{
z(πi), max

πj∈Π ′,
πj ̸=πi,c1Π ′ (πj)̸=πi

r ′(πj, c1Π ′ (πj))
}}

,

(23)

here Π ′ = Π ∪ {πin}. Therefore, it may be determined in time
complexity O(p2), where p is the number of centers.

Proof. Once again we define Πi = Π \ {πi} ∪ {πin} as the
solution obtained by closing center πi and opening center πin and
Π ′ = Π ∪ {πin} as the solution obtained by opening center πin.
n addition, we define by V

′′′

i = V \ {V
′

i ∪V
′′

i } the set of users that
o not change the reference and backup centers if center πi ∈ Π

s closed. The definitions of sets V
′

i and V
′′

i remain the same as in
he previous property. Using this notation, the objective function
8

value of the best solution Π∗ is determined as:
f (Π∗) = min

i∈{1,2,...p}
f (Πi)

= min
i∈{1,2,...p}

{
max
vj∈V

{
d
(
vj, c1Πi (vj)

)
+ d

(
vj, c1Πi (c1Πi (vj))

)}}
= min

i∈{1,2,...p}

{
max

vj∈V
′

i∪V
′′

i ∪V
′′′

i

{
d
(
vj, c1Πi (vj)

)
+ d

(
vj, c1Πi (c1Πi (vj))

)}}

= min
i∈{1,2,...p}

{
max

{ max
vj∈V

′

i∪V
′′

i

{
d
(
vj, c1Πi (vj)

)
+ d

(
vj, c1Πi (c1Πi (vj))

)}
,

max
vj∈V

′′′

i

{
d
(
vj, c1Πi (vj)

)
+ d

(
vj, c1Πi (c1Πi (vj))

)}
}}

= min
i∈{1,2,...p}

{
max

{
z(πi), max

πj∈Π ′ ,
πj ̸=πi ,c1Π ′ (πj )̸=πi

{r ′(πj, c1Π ′ (πj))}
}}

= min
pi∈Π

{
max

{
z(πi), max

πj∈Π ′ ,
πj ̸=πi ,c1Π ′ (πj )̸=pi

{r ′(πj, c1Π ′ (πj))}
}}

.

(24)

Note that in Eq. (24) we exploited fact that the value of

max
vj∈V

′

i∪V
′′

i

{
d
(
vj, c1Πi (vj)

)
+ d

(
vj, c1Πi (c1Πi (vj))

)}
is stored in

z(πi). On the other hand the value max
vj∈V

′′′

i

{
d
(
vj, c1Πi (vj)

)
+

d
(
vj, c1Πi (c1Πi (vj))

)}
is actually the largest radius associated to

a center who remains in the solution together with its backup
center and therefore it may be found as
max πj∈Π ′,

πj ̸=πi,c1Π ′ (πj)̸=πi

{r ′(πj, c1Π ′ (πj))}.

Therefore, from the last equation in (24) we conclude that
the best center, that should be closed, is determined in the time
complexity O(p2), using auxiliary data structures. □

This property confirms that Algorithm 3, in line 10, prop-
erly identifies center πout to be closed. The direct consequence
of Eq. (24) is the following corollary, which provides the number
of solutions examined by the used greedy approach to identify
the best center to be closed.

Corollary. Using the greedy approach to determine the best center
to be closed, the p different solutions from the neighborhood N1(Π )
are visited.

The next property provides overall complexity of Fast Local
Search Vertex Substitution algorithm (Algorithm 3).

Property 4. The time complexity of one iteration of Fast Local
Search Vertex Substitution (Algorithm 3) in the worst case is
O(n2
+p2n) if the auxiliary data structures are used, n is the number

of users and p is the number of centers.

Proof. In order to determine the time complexity of one iter-
ation of the Local Search Vertex Substitution algorithm,
it is necessary to determine first the complexity of employed
subroutines. Based on Properties 1 and 2, the time complexity of
calculating z and r ′ values is O(n). The best center to be deleted
is determined in the complexity O(p2). The Update method up-
dates the arrays c1Π and c2Π which length is p for each of n
users. Hence, its time complexity is O(pn). (Note: If the heap
data structure were used to store the second-closest centers, the
time complexity would be improved to O(nlog(p)), but in that
case, the space complexity would increase for O(pn) and the
time complexity of Fast Local Search Vertex Substitution
would not be improved.) The time complexity of the Exists
Relaxed Distance function is constant. Fast Local Search
Vertex Substitution uses Exists Relaxed Distance and
greedy center removal at most n− p times while Update method
is used once. Hence, the worst-case time complexity is O(n2

+

p2n)+ O(pn) ≈ O(n2
+ p2n). □
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In the case of straightforward implementation of the local
search within neighborhood N1(Π ), we will need to visit n×(n−p)
solutions and to evaluate each solution by formula (1) we need
np2 operations. Hence, the time complexity of straightforward
implementation is O(n3p2).

On the other hand, if p is significantly less than n, Algorithm
3 has O(n2) time complexity as stated in the following corollary,
while straightforward implementation has time complexity O(n3).

orollary. If p ≪ n, the time complexity of one iteration of Fast
ocal Search Vertex Substitution algorithm (Algorithm 3)
s O(n2), while straightforward implementation has time complexity
(n3).

It should be noted that Fast Local Search Vertex Substi-
ution algorithm is actually a heuristic approach to explore In-
erchange neighborhood. Namely, a heuristic approach is applied
n any of functions Exists Relaxed Distance, Calculate_z
nd Calculate_r. This heuristic approach comes from the fact
hat we do not keep the track of all centers that are equidistant
rom a user, but we store at most two of them. Preliminary
xperiments where we kept the track of all equidistant centers
evealed that the storing and evaluating all equidistant centers
ad negative impact on overall performance of our solution ap-
roach: the solution process was slowed down and therefore
ometimes worse solution values were found within the same
ime. On the other hand, we recall that our aim is to propose a
‘less-is-more’’ solution approach by identifying the least number
f ingredients yielding the highest performance. For this reason,
e have decided to store at most two equidistant centers (if
ny) and show in the subsequent sections that even with this
eduction our solution approach is very powerful.

.3. Shaking procedure for the p-next center problem

In addition to the refined local search, we implement a refined
haking procedure as well. The shaking procedure is still based
n generating a random solution from the neighborhood Nk(Π ),
ut instead of generating completely random solution, our refined
rocedure generates a semi-greedy solution in each iteration.
amely, to generate a solution from the neighborhood Nk(Π ),
ur procedure applies k iterations where in each iteration it
xchanges one pair of centers. In each iteration, a center to be
pened is chosen so that the current objective function value is
mproved, while a center to be closed is chosen at random. The
utline of shaking procedure is given in Algorithm 4.

Algorithm 4: Refined Shaking Procedure for the p-next
center problem

Procedure RefinedShaking(Π, c1Π , c2Π , uc, πc, fcur , k)
for j = 1 : k do

1 Choose center πin to be opened at random;
2 if ExistsRelaxedDistance (P, c1P , c2P , uc, πin) then
3 Π ′ ← Π ∪ {πin};
4 r ′ ← Calculate_r′(Π, c1Π , c2Π , uc, πc, πin);
5 Choose center πout to be closed at random;
6 Calculate z(πout );

7 fcur ← max
{
z(πout ),

max
πj∈Π

′,

πj ̸=πout ,c1Π ′ (πj)̸=πout

r ′(πj, c1Π ′ (πj))
}
;

8 Π ← Π ′ \ {πout};
9 Update (c1Π , c2Π , uc, πc);
9

Hence, the more refined version of the Algorithm 1 that we
implement in this paper is presented in Algorithm 5. It works
following the same principles as Algorithm 1, but has more ad-
vanced ways of intensifying (see Algorithm 3) and diversifying
the search (see Algorithm 4).

Algorithm 5: Refined Basic VNS for the p-next center
problem

Function Refined BVNS(kmax, Tmax)
1 /*random initial solution*/
2 Π ← choose p centers at random;
3 Form arrays c1Π and c2Π ;
4 Determine critical user uc and critical center πc ;
5 Calculate objective function value, fcur , of the current
solution Π ;

6 repeat
7 k← 1;
8 while k ≤ kmax do
9 (Π ′, c1Π ′ , c2Π ′ , u′c, π

′
c, f ′cur )← (Π, c1Π , c2Π , uc,

πc, fcur ) ;
10 RefinedShaking(Π ′, c1Π ′ , c2Π ′ , u′c, π

′
c, f
′
cur , k) ;

11 (Π ′′, c1Π ′′ , c2Π ′′ , u′′c , π
′′
c, f ′′cur )← FastLocal

SearchVertexSubstitution(Π ′, c1Π ′ , c2Π ′ , u′c,
π ′c, f ′cur ) ;

12 if Π ′′ is better then Π then
13 (Π, c1Π , c2Π , uc, πc, fcur )← (Π, c1Π ′′ , c2Π ′′ ,

u′′c, π ′′c, f ′′cur );
k← 1;

14 T ← CpuTime();
until T > Tmax;

15 Return (Π, c1Π , c2Π , uc, πc, fcur );

The algorithm implementation can be downloaded from https:
//1drv.ms/u/s!AnaX64fUELcfgoF74G7lMuEksN5SGg?e=BFFH8q.

2.4. Less-is-more strategy used in the paper

At the end of this section, we provide more details that high-
light what is ‘‘less’’ in our heuristic compared to the previous
ones. First of all, we recall that the main idea of the ‘‘less-is-more’’
approach is to use a minimum number of search ingredients,
in the most efficient way, so that the developed heuristic is
competitive or better than the state-of-the-art approach. In other
words, the ‘‘less-is-more’’ methodology highly encourages that
we first exploit all techniques that may increase the efficiency
of the used set of ingredients before involving new ingredi-
ents. For example, the current state-of-the-art approaches hybrid
GRASP [14] and hybrid BRKGA [15] use the same local search
and shaking procedures, but on top of them they apply other
metaheuristic methodologies that make their approaches to be
very complex hybrid approaches. As already said, in this paper we
follow another philosophy and, as much as possible, try to refine
the same local search and shaking procedures used in [14,15].
As a result, we show that the local search within N1(Π ) may
be performed in an efficient way by avoiding non-promising
solutions. Consequently, we come up with the local search pro-
cedure whose single iteration has smaller time complexity than
the one iteration of the standard local search. In particular the
time complexity is reduced by the factor n, where n is the number
of vertices. Similarly, we refined the standard shaking procedure.
The refinement is the simplest possible, yet effective, and consists
in one simple condition that verifies, before executing a random
swap move, if it is promising or not. As it will be shown in
Section 3.1, this simple refinement enables us to additionally im-
prove the results. It should be noted that this refinement does not

increase the time complexity of the shaking procedure. Last but

https://1drv.ms/u/s!AnaX64fUELcfgoF74G7lMuEksN5SGg?e=BFFH8q
https://1drv.ms/u/s!AnaX64fUELcfgoF74G7lMuEksN5SGg?e=BFFH8q
https://1drv.ms/u/s!AnaX64fUELcfgoF74G7lMuEksN5SGg?e=BFFH8q
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ot least, our heuristic has smaller number of parameters to be
djusted compared to the previous hybrid approaches. Therefore,
ur heuristic can be considered in this regard more user-friendly.
On the other hand, it is true that our heuristic consumes

ore memory to store a solution together with auxiliary data
tructures, compared to the state-of-the-art heuristics. However,
his memory consumption equals O(n), where n is the number of
ertices, and it is not higher than 200 MB on the largest instances
ith 2500 vertices. Obviously, such memory consumption is neg-

igible for modern computers. Even if we drastically increase the
ize of instances, our heuristic will be still executable on any of
owadays computers.
To summarize, in terms of techniques this section proposes

wo techniques. The first one is to speed up the local search
rocess by screening only promising solutions; while the second
echnique is the one that enables smarter shaking by hopefully
e-directing the search toward promising parts of the solution
pace instead of performing random jumps. Both techniques are
ccompanied by auxiliary data structures, which are indeed sim-
le arrays, but which enable us to quickly calculate the objective
unction values and detect promising zones of the solution space.
t should be noted that the inspiration for these techniques and
ata structures comes from [16,18,20], where authors proposed
imilar ideas for the p-center problem and p-median problem.
nspired by those ideas, we develop and test, for the first time,
uxiliary data structures and techniques for the p-next problem.
s it will be shown in Section 3, these techniques and data struc-
ures enable us to obtain remarkable results on the benchmark
nstances.

. Computational results

In this section, we present the computational results obtained
y testing the proposed VNS algorithm for the p-next center
roblem. The algorithm is implemented using C++ and all tests
ere carried out on an Intel Core i7-8700K (3.7 GHz) CPU with
2 GB RAM. For testing purposes four different data sets have
een used:

• OR-Lib instances. The data set contains 40 instances from
OR-Library [27]. Those instances are well-known benchmark
instances used for p-median and p-center problems. In those
instances the number of vertices n varies from 100 to 900,
while number of sought centers p is between 5 and 200.
• Instances from [14]. This is the set of small-sized instances

that was originally proposed in [14]. It contains 132 test
instances derived from OR-Library instances, pmed1-pmed4
and pmed6-pmed8, by taking the first n vertices into con-
sideration. The largest instances contain 200 vertices.
• rndkreg test instances. This set is proposed for the first

time in this paper for the p-next center problem. It con-
tains 44 instances with n varying from 1000 to 2500 and
p between 5 and 200.
• rnddnskreg test instances. This is the second data set that

is proposed in this paper for the p-next center problem.
It contains 48 instances with 500–1000 vertices defined
over graphs with densities varying from 50% to 80%, and p
between 5 and 200.

Please note that Londe et al. [15] developed their own set
f benchmark instances. Unfortunately, this data set was not
vailable for us and therefore we did not include it in comparison.
owever, it should be noted that those instances were derived
rom OR-Lib instances and consequently the largest instances
rom the data set of Londe et al. do not have more vertices than
he largest instances from OR-Lib data set. On the other hand,
10
here we go even further and propose two data sets that con-
tain instances with larger number of vertices than any instance
considered so far for the p-next problem.

The computational experiments are divided into four parts:

• The first part of experiments aims to assess the performance
of the proposed refined BVNS algorithm against the Basic
VNS proposed in [17] and the Basic VNS that uses the refined
local search procedure and the standard shaking procedure
of performing a random swap move. The aim is to show ben-
efits of using both refined local search and refined shaking
procedures. For this purpose, the OR-Lib test instances are
used, the same ones used in [17].
• The second part is devoted to tune parameter kmax to iden-

tify the best value from the chosen set {p/4, p/2, p} of po-
tential values. This experiment is conducted on the set of 30
instances chosen at random from the OR-LIB, rnddnskreg,
rndkreg data sets.
• The third part of experiments compares the proposed re-

fined BVNS and CPLEX MIP solver on the small size instances
from [14]. For all those instances, but one, optimal solution
values are given in [15]. Hence, the aim of this experiment is
to assess the ability of the refined BVNS to attain the optimal
solution values.
• The last part of experiments aims to assess the perfor-

mance of the proposed refined BVNS against state-of-the-art
heuristics. The analysis is conducted over all instances from
the OR-LIB, rndkreg and rnddnskreg data sets. As state-
of-the-art heuristics we identified the hybrid GRASP heuris-
tic from [14] and the hybrid BRKGA-BI heuristic from [15].
For the sake of brevity they will be referred to as GRASP and
BRKGA, in the rest of section. Similarly, the refined BVNS
will be referred to as BVNS whenever is suitable. It should
be noted that the authors provided us with original source
codes of GRASP and BRKGA, and therefore they are executed
under same conditions as our BVNS. Consequently, we have
had a fair comparison among all heuristics.

On each test instance, all heuristics (refined BVNS, GRASP and
BRKGA) has been executed 20 times, each time starting from a
different initial solution. Regarding the parameter setting, our
BVNS heuristic has two formal parameters, kmax – the maximum
level of shaking and Tmax – the maximum CPU time allowed
to our heuristic, and their setting will be discussed in subse-
quent sections. The obtained results of heuristics are assessed in
terms of a solution quality (Best, Average, Worst) and time-to-
target (the time needed to reach, for the first time, a solution
provided at the output). This analysis has been accompanied by
adequate statistical analysis. More precisely, to further strengthen
analysis, we perform Wilcoxon signed rank test [28] and also
derive the performance profiles for both the solution values and
times-to-target as suggested in [29].

The Wilcoxon signed rank test is conducted pairwise for any
two heuristics H and H ′. Let us denote by Best(H), Avg.(H),
Worst(H), the set of the best, worst and average solution values,
espectively, found by certain heuristic H . Similarly, let us de-
ote by CPU(H), the set of times-to-target consumed by certain
euristic H . Then, for each two H and H ′ under consideration, we
pply Wilcoxon signed rank test on Best(H) and Best(H ′) values;
vg.(H) and Avg.(H ′); Worst(H) and Worst(H ′) and finally on
PU(H) and CPU(H ′) values.
The performance profiles have been derived relatively to the

sed set of test instances, and the measure we used to quantify
he performance of a heuristic. More precisely, we derive the
erformance profiles for the Best, Average, and Worst solution
alues as well as for time-to-target values. For solution values
Best, Average and Worst) the performance profile is derived in
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he following way. Let us denote by H, the set of heuristics in
omparison, and by M the measure under consideration, which
ay be the Best solution value, Average Solution or Worst Solu-

ion value. Then for each heuristic H ∈ H we calculate the ratio
M
H as: RM

H = MH/minH ′∈H MH ′ . These ratios are then used to de-
ive performance profiles, as described in [29]. The performance
rofile of heuristic H with respect to metric RM

H measured over
each instance s in a set S is simply the graph of the cumulative
distribution function, defined as: FH

M (r) = |{s ∈ S|RM
H ≤ r}|/|S|.

In the case of time-to-target, the performance profile of heuristic
H with respect to time-to-target CPU_TimeH measured over each
instance s in a set S is the graph of the cumulative distribution
function, defined as: FH

CPU_Time(r) = |{s ∈ S|CPU_TimeH ≤ r}|/|S|.

3.1. Assessing the benefits of new local search and shaking proce-
dures

In this section we want to show benefits of using the re-
fined local search and shaking procedures. For this purpose, we
compare Basic VNS from [17], refined BVNS presented in Al-
gorithm 5 and BVNS that uses the standard shaking procedure
and the refined local search. Note that Basic VNS from [17] uses
the standard shaking procedure and the local search procedure
that filters solution, without using any auxiliary data structure.
Hence, this local search is very close to the standard local search.
To differentiate these three variants we will use the following
nomenclature: BVNS1 will be Basic VNS from [17]; BVNS2 will be
BVNS that uses the standard shaking procedure and the refined
local search; and BVNS will be newly proposed refined BVNS.

In [17], BVNS1 was executed on OR-Lib instances with kmax
et to p and Tmax set to 5n, where n is the number of vertices
n a considered instance. Hence, for BVNS and BVNS2 we adopt
he same value for kmax, while we set Tmax to n. The idea is to
how that even with 5 times shorter Tmax, both BVNS2 and BVNS
ay outperform BVNS1. The tests are performed on 40 OR-Lib

nstances as BVNS1 was. On each instance, each variant has been
xecuted 20 times. In Table 1, we report the best, the average and
he worst solution values attained in 20 runs (Columns ‘Best’,
Avg.’ and ‘Worst’, respectively), the average time-to-target in
0 runs (Columns ‘CPU Time’); and the number of runs (out

of 20) in which a heuristic have succeeded to reach the best
value reported in the second column (Columns ‘# Best’). The best
value corresponds to the best solution value found by one of the
three BVNS in comparison. In addition, we provide performance
profiles derived with respect to the best, average, worst solution
values and time-to-target (see Figs. 2(a)–2(d)). To verify if there
is significant difference between each two heuristic with respect
to the best, average, worst solution values or time-to-target, we
perform Wilcoxon signed rank test and report resulting p values
in Table 2.

From the reported results, we observe that the results of
BVNS2 are better than the results of BVNS1. BVNS2 has ten
times smaller average-time-to-target than BVNS1, but even the
average of the worst solution values of BVNS2 is better than
the average of the best solution values of BVNS1. The better
performance of BVNS2 becomes more evident looking at per-
formance profiles. With respect to any measure (best, average,
worst solution value or time-to-target), the curve of BVNS2 is
above the curve of BVNS1. In addition, Wilcoxon signed rank test
applied to BVNS1 and BVNS2 shows that, at significance level
of 5%, there is a significant difference between them. Namely,
for each measure (best, average, worst solution value or time-to-
target) the resulting p values are less than 0.05. Consequently, we
conclude that BVNS2 significantly outperforms BVNS1. Since both
heuristic use the same shaking procedure, the obtained results
show the clear benefits of using refined local search than the one
11
proposed in [17] (i.e., significantly better solutions in significantly
less time). This also confirms the benefits of using the auxiliary
data structures.

Comparing BVNS and BVNS2, we observe that BVNS exhibits
higher level of stability. The difference between the average of
the best solution values and the average of the worst solution
values for BVNS is only 0.10, while the same difference for BVNS2
is almost 0.50. In addition, BVNS is only heuristic able to reach
all best solution values identified in the second column, while
BVNS2 fails to do so in 4 cases. Also, we observe that the average
time-to-target of BVNS (that is 19.38) is around 3 times shorter
than that of BVNS2 (that is 61.61). Referring to performance
profiles, we observe that the curve of BVNS is always above the
curve of BVNS2. This signifies that BVNS outperforms BVNS with
respect to any measure (best, average, worst solution value or
time-to-target). The Wilcoxon signed rank test revealed that, at
significance level of 5%, this difference is significant in terms of
average, worst solution value or time-to-target. Consequently, we
infer that the refined shaking procedure is significantly better
option to be coupled with the refined local search than the
standard shaking procedure.

3.2. Parameter tuning

In the previous test, kmax parameter was set following the
recommendations from [17], while Tmax was set so that is sig-
nificantly less than the Tmax from [17]. Now, we set Tmax to
1800 s, as it is recommended in [15]. Due to this change, we are
interested to verify if kmax = p is still the best choice or not for
our BVNS (Algorithm 5). In this regard, we test three different
choices of kmax: {p/4, p/2, p} and perform the tests on the training
set of instances. The training set is a representative subset of
30 instances (around 25% of the total set of instances) that are
randomly selected. Hence, the training set contains instances of
different size, different p values and different graph densities. It
contains 10 instances from each of the sets: OR-Lib, rndkreg and
rnddnskreg. The obtained results are presented in Table 3. For
each choice of kmax value we report: the best, the average and the
worst solution value attained in 20 runs, the average CPU time to
attain the final solution for the first time (i.e., the average time-
to-target), and the number of times that the algorithm is able
to attain the best value reported in the second column. The best
value corresponds to the best solution value found under one of
three considered parameter settings.

From the reported results we infer that the best average values
in terms of best, worst, average solution values are attained by
setting kmax to p. In addition, this setting enables BVNS from Al-
gorithm 5 to quickly reach the final solution. Namely, the average
CPU time of 221.43 s is slightly better compared to other two
kmax settings. In addition, this setting causes that the best-known
solution values (provided in the second column) are attained on
average in 16.03 out of 20 runs. Again, this is the highest value
compared to the two other settings. The second best setting turns
out to be kmax = p/2, followed by kmax = p/4.

However, the difference among all settings does not seem
significant. The best, worst and average solution values as well
as CPU times, under different settings, tend to be very close. To
verify this we conduct Wilcoxon signed rank test. The outcomes
of Wilcoxon signed rank test are given in Table 4. Since all entries
of the table are above 0.05 (the significance level of 5% is consid-
ered in Wilcoxon signed rank test), we reject the hypothesis that
there is a significant difference for any pair of kmax settings. This
implies that choosing one of considered kmax values does not play
critical role in BVNS performance with respect to any of criteria:
solution quality or time-to-target. However, since kmax = p leads
to slightly better results and higher stability of VNS, we decide to
fix the value of k to p in the rest of experiments.
max
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Table 1
Comparison of three BVNS on OR-lib instances.
Test Best BVNS1 BVNS2 BVNS

instance Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time Best Avg. Worst time Best Avg. Worst time

pmed1 166 166 166.30 172 0.50 19 166 166.00 166 0.10 20 166 166 166 0.14 20
pmed2 135 135 136.05 147 100.46 16 135 135.00 135 2.49 20 135 135 135 1.47 20
pmed3 151 151 153.80 164 87.24 15 151 151.00 151 2.27 20 151 151 151 0.49 20
pmed4 118 118 119.35 125 177.84 5 118 118.00 118 4.31 20 118 118 118 0.78 20
pmed5 85 85 85.00 85 38.63 20 85 85.00 85 0.29 20 85 85 85 0.10 20
pmed6 107 107 107.90 111 146.09 14 107 107.00 107 21.92 20 107 107 107 1.91 20
pmed7 84 84 86.00 91 390.52 2 84 84.00 84 16.57 20 84 84 84 10.22 20
pmed8 81 84 86.85 92 332.01 0 81 81.05 82 66.10 19 81 81 81 17.29 20
pmed9 71 71 74.60 75 261.44 2 71 71.00 71 3.98 20 71 71 71 0.41 20
pmed10 70 70 70.00 70 9.74 20 70 70.00 70 0.19 20 70 70 70 0.16 20
pmed11 70 70 70.10 72 168.67 19 70 70.00 70 1.47 20 70 70 70 0.76 20
pmed12 72 72 72.75 79 544.26 16 72 72.00 72 1.70 20 72 72 72 0.85 20
pmed13 47 52 60.95 65 658.49 0 47 48.00 49 102.89 1 47 47 47 17.91 20
pmed14 60 60 60.60 61 515.14 8 60 60.00 60 3.40 20 60 60 60 0.74 20
pmed15 44 44 44.95 48 811.39 13 44 44.00 44 22.62 20 44 44 44 1.68 20
pmed16 54 55 55.10 57 106.52 0 54 54.35 55 98.49 13 54 54 54 57.07 20
pmed17 46 47 49.70 53 791.43 0 46 46.80 47 34.63 4 46 46.35 47 110.24 13
pmed18 50 50 52.40 55 1101.69 6 50 50.00 50 12.39 20 50 50 50 1.67 20
pmed19 32 40 43.50 46 1113.12 0 33 34.80 37 293.75 0 32 32 32 10.61 20
pmed20 40 40 43.30 48 1079.11 4 40 40.00 40 26.26 20 40 40 40 3.05 20
pmed21 48 48 48.80 50 377.36 5 48 48.20 50 52.49 17 48 48.05 49 10.90 19
pmed22 49 52 55.05 58 849.43 0 49 49.45 50 144.02 11 49 49 49 72.78 20
pmed23 32 42 44.40 47 1371.95 0 36 36.75 37 183.51 0 32 32 32 50.16 20
pmed24 33 35 38.40 45 1196.55 0 33 33.15 34 141.54 17 33 33 33 6.89 20
pmed25 44 44 44.00 44 242.45 20 44 44.00 44 4.46 20 44 44 44 1.99 20
pmed26 47 47 47.95 49 905.53 7 47 47.00 47 36.30 20 47 47 47 14.34 20
pmed27 38 40 41.20 43 946.39 0 38 38.55 40 236.00 11 38 38.1 39 124.89 18
pmed28 57 57 57.00 57 20.40 20 57 57.00 57 2.55 20 57 57 57 2.71 20
pmed29 36 36 37.25 42 1461.31 9 36 36.00 36 26.18 20 36 36 36 4.14 20
pmed30 40 40 40.00 40 108.86 20 40 40.00 40 4.24 20 40 40 40 2.65 20
pmed31 35 35 36.95 40 1057.44 7 35 35.00 35 26.29 20 35 35 35 18.77 20
pmed32 72 72 72.00 72 15.29 20 72 72.00 72 4.14 20 72 72 72 4.07 20
pmed33 22 33 34.85 37 1611.42 0 28 28.55 30 442.10 0 22 22.75 23 193.32 5
pmed34 41 41 41.00 41 72.14 20 41 41.00 41 4.33 20 41 41 41 4.39 20
pmed35 36 36 36.85 38 927.56 4 36 36.00 36 48.57 20 36 36 36 17.96 20
pmed36 42 42 42.00 42 223.52 20 42 42.00 42 8.95 20 42 42 42 6.95 20
pmed37 33 33 34.90 38 1634.93 6 33 33.00 33 22.23 20 33 33 33 6.49 20
pmed38 40 40 40.20 41 1102.41 16 40 40.00 40 17.87 20 40 40 40 10.16 20
pmed39 74 74 74.00 74 32.70 20 74 74.00 74 9.02 20 74 74 74 9.29 20
pmed40 23 29 32.10 35 1394.52 0 26 26.75 27 333.57 0 23 23 23 34.15 20

Average 60.63 61.93 63.45 66.23 599.66 9.33 60.98 61.16 61.45 61.61 16.33 60.63 60.66 60.73 20.86 19.38
Table 2
Pairwise Wilcoxon test for three BVNS.
Method Best solution values Average solution values Worst solution values CPU time

BVNS1 BVNS2 BVNS BVNS1 BVNS2 BVNS BVNS1 BVNS2 BVNS BVNS1 BVNS2 BVNS

BNS1 – 9.77E−04 9.77E−04 – 1.17E−06 1.17E−06 – 1.69E−06 1.15E−06 – 3.57E−08 3.57E−08
BVNS2 – – 1.25E−01 – – 4.88E−04 – – 9.77E−04 – – 1.31E−06
3.3. Results on small instances from [14]

The data set from [14] contains 132 small instances. For all in-
tances from this set, but one, optimal solution values are known
nd published in [15]. Hence, our aim is to verify the capability of
he proposed BVNS to retrieve the optimal solutions. The detailed
esults, per instance, are provided in Appendix 1, while here we
rovide summary results in Table 5. This table is conceived in the
ame way as the similar table in [15] and contains the success
atios for BVNS, GRASP and BRKGA. To quantify the success ratio
f a heuristic we count the number of optimal solutions it is able
o reproduce (Column ‘# Opt’); calculate the absolute percentage
of reproduced optimal solutions as #Opt

131 × 100 (Column ‘% Opt’);
and provide the percentage number of runs a heuristic is able
to reach an optimal solution (Column ‘% Run’). The results for
BRKGA and GRASP are directly taken from [15]. To demonstrate
fast convergence of our refined BVNS, we present its results for
T = n seconds, where n is number of vertices and T = 1800
max max

12
seconds. It should be noted that the instances from [14] has from
10 to 200 nodes. Consequently, Tmax = n is at least 9 times shorter
than Tmax = 1800.

According to Table 5, both BVNS heuristics, with different time
limits, are able to reach all known optimal solutions, BRKGA does
so on 127 instances while GRASP provides optimal solutions on
96 out of 131 instances. In addition, BVNS with Tmax = n, has
much higher percentage number of runs in which it provides
an optimal solution than GRASP and BRKGA. Extending the time
limit to 1800 s, this percentage increases for around 1%, and
becomes 10% higher than the percentage number of runs reported
for BRKGA. In general there are only 5 instances where BVNS with
Tmax = n, did not reach the optimal solution in each of 20 runs,
and only 4 such instances for BVNS with Tmax = 1800. Referring to
the average time-to-target (see Tables A-1–A-3), we infer that the
average time-to-target of BVNS with Tmax = n is not greater than
81.82 s, which witnesses its efficiency in reproducing an optimal
solution.
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Fig. 2. Performance profiles for three BVNS on ORlib instances.
The only one instance from this set, without known optimal
olution, is pmed6_200_30. For this instance, CPLEX 12.10 MIP
olver returns the solution value of 69 as reported in [15]. On this
nstance, both BVNS with Tmax = n and BVNS with Tmax = 1800
re able to provide an improved solution with value of 66 in each
un. On the other hand BRKGA and GRASP, executed by us 20
imes and time limit of 1800 s, offer the solution which value is
2.
We tried to solve the remaining benchmark instances with

PLEX 22.1 MIP solver imposing the time limit of 8 h (28,800 s)
nd using MIP formulation presented in this paper. Unfortunately,
PLEX succeeded to provide a feasible solution value on only
6 out of 40 OR-Lib instances (instances pmed1-pmed15 and
med20), while for the remaining 24 OR-Lib instances, and all
ndkreg and rnddnskreg instances failed to provide a feasible
olution or at least meaningful lower-bound value. The results
btained on 16 OR-Lib instances, where a feasible solution is
ttained, are provided in Appendix 2. Among these 16 feasible
olutions, only 9 are optimal ones.

.4. Comparison with state-of-the-art heuristics

This section presents a comparison of the proposed refined
VNS against the state-of-the-art heuristics: the hybrid GRASP
rom [1] and the hybrid BRKGA from [15]. All three heuristics
ave been executed by us on the same machine, and run 20 times
n each test instance. In each of 20 executions, the maximum
13
allowed time Tmax for any of heuristic has been set to 1800 s.
For testing purpose three data sets are used: OR-Lib, rndkreg
and rnddnskreg. The results are reported in Tables 6, 8 and
10. The first column in each table provides the names of test
instances, the next column gives the best-known solution values
for each test instances while the remaining ones contain results
obtained by three heuristic: the best, the average and the worst
solution values in 20 runs (Columns ‘Best’, ‘Avg.’ and ‘Worst’,
respectively); the average time-to-target in 20 runs (Columns
‘CPU Time’); and the number of runs (out of 20) in which a
heuristic have succeeded to reach best-known value reported in
the second column (Columns ‘# Best Known’).

3.4.1. Results on OR-Lib instances
From the results on OR-Lib instances, we infer that the pro-

posed refined BVNS exhibits the highest stability. On 37 out of
40 instances, it is able to attain the best-known solution value in
each of 20 runs. On the other hand, BRKGA succeeded to do so on
28 out of 40 instances, while GRASP is able to do so on only 10
instances. In addition, BVNS is able to reproduce all best-known
solutions, while BRKGA fails to do the same on 7 instances. In this
regard GRASP again exhibits the poorest performance failing to
reach the best known solution values on 18 instances. Referring to
nine optimal solutions found by CPLEX 22.1 MIP solver (Appendix
2, Table A-4), BRKGA and BVNS are able to reach all of them in
each run, while GRASP fails to encounter the optimal solution for
pmed20 instance.
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Table 3
Tuning kmax parameter.
Test Best kmax = p kmax = p/2 kmax = p/4

instance Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time Best Avg. Worst time Best Avg. Worst time

pmed1 166 166 166.00 166 0.08 20 166 166.00 166 0.12 20 166 166.50 171 0.07 18
pmed10 70 70 70.00 70 0.13 20 70 70.00 70 0.14 20 70 70.00 70 0.13 20
pmed16 54 54 54.00 54 105.30 20 54 54.00 54 195.70 20 55 55.10 57 1.46 0
pmed17 46 46 46.00 46 350.41 20 46 46.25 47 304.71 15 46 46.15 47 513.54 17
pmed20 40 40 40.00 40 3.56 20 40 40.00 40 3.14 20 40 40.00 40 3.31 20
pmed21 48 48 48.05 49 129.68 19 48 48.15 49 21.75 17 48 48.95 51 6.00 8
pmed23 31 31 31.85 32 138.60 3 32 32.00 32 65.26 0 31 31.85 32 172.51 3
pmed27 38 38 38.00 38 244.63 20 38 38.00 38 355.87 20 38 38.05 39 372.01 19
pmed33 22 22 22.25 23 623.52 15 22 22.45 23 584.64 11 22 22.10 23 648.76 18
pmed40 23 23 23.00 23 34.88 20 23 23.00 23 43.02 20 23 23.00 23 36.92 20

rndkreg1 14 14 14.00 14 26.72 20 14 14.00 14 43.58 20 14 14.00 14 36.85 20
rndkreg5 10 10 10.55 11 407.15 9 10 10.40 11 515.85 12 10 10.60 11 361.16 8
rndkreg7 9 9 9.00 9 91.64 20 9 9.00 9 85.89 20 9 9.00 9 95.38 20
rndkreg9 8 8 8.00 8 230.75 20 8 8.00 8 229.17 20 8 8.00 8 255.84 20
rndkreg11 7 7 7.00 7 735.55 20 7 7.05 8 856.14 19 7 7.00 7 716.05 20
rndkreg34 8 8 8.85 9 485.04 3 8 8.80 9 557.29 4 8 8.75 9 583.56 5
rndkreg38 7 7 7.55 8 711.52 9 7 7.50 8 772.67 10 7 7.25 8 816.54 15
rndkreg40 6 6 6.95 7 553.30 1 7 7.00 7 489.89 0 6 6.90 7 524.99 2
rndkreg42 6 6 6.00 6 917.31 20 6 6.00 6 885.64 20 6 6.00 6 874.59 20
rndkreg44 6 6 6.00 6 566.98 20 6 6.00 6 665.55 20 6 6.00 6 578.99 20

rnddnskreg1 7 7 7.00 7 2.47 20 7 7.00 7 2.95 20 7 7.00 7 3.04 20
rnddnskreg5 6 6 6.00 6 4.18 20 6 6.00 6 3.92 20 6 6.00 6 3.85 20
rnddnskreg6 5 5 5.95 6 26.85 1 5 5.90 6 70.88 2 5 5.95 6 21.28 1
rnddnskreg11 4 4 4.00 4 3.45 20 4 4.00 4 3.45 20 4 4.00 4 3.17 20
rnddnskreg12 2 2 2.95 3 69.73 1 2 2.85 3 198.84 3 3 3.00 3 4.01 0
rnddnskreg37 5 5 5.00 5 65.94 20 5 5.00 5 82.25 20 5 5.00 5 71.84 20
rnddnskreg41 5 5 5.00 5 37.04 20 5 5.00 5 34.25 20 5 5.00 5 31.36 20
rnddnskreg42 5 5 5.00 5 40.21 20 5 5.00 5 34.62 20 5 5.00 5 33.99 20
rnddnskreg47 4 4 4.00 4 15.92 20 4 4.00 4 14.31 20 4 4.00 4 17.92 20
rnddnskreg48 3 3 3.00 3 20.34 20 3 3.00 3 21.86 20 3 3.00 3 20.32 20

Average 22.17 22.17 22.365 22.47 221.43 16.03 22.23 22.378 22.53 238.11 15.77 22.23 22.438 22.87 226.98 15.13
Table 4
Pairwise Wilcoxon test for different choices of kmax parameter.
kmax Best solution values Average solution values Worst solution values CPU time

p p/2 p/4 p p/2 p/4 p p/2 p/4 p p/2 p/4

p – 1.0000 1.0000 – 0.9141 0.7319 – 0.5000 0.1250 – 0.1254 0.9263
p/2 – – 1.0000 – – 0.6356 – – 0.1875 – – 0.5716
Table 5
Comparison on 131 instances from [14] with known optimal solutions.
Method # Opt % Opt % Run

BRKGA 127 96.21 88.11
GRASP 96 72.73 74.42

BVNS (Tmax = n) 131 100.00 97.12
BVNS (Tmax = 1800) 131 100.00 98.14

Looking at performance profiles for the best and average solu-
ion values (Figs. 3(a) and 3(b)) we infer that there is no instance
n which the best (average) solution value of BVNS is worse than
he best (average) solution value of two other heuristics. BRKGA
s able to provide the best average solution values on around
0% of instances, while GRASP is able to do so on less than 30%
ercent of instances. In terms of the quality of the worst solution
alues, BVNS is again the best. Its curve is on the top of two other
urves and on more than 95% instances, its worst solution value is
etter than the corresponding worst solution values of two other
euristics. The performances of two other heuristics with respect
o the worst solution values remain similar as for the average
14
solution values. From all above observations, we may rank BVNS
as the best, BRKGA as the second best and GRASP as the worst.

Comparing the average time-to-target we observe that BVNS is
the fastest heuristic (average time 49.61), followed by GRASP (the
average time 114.77), while BRKGA turns out to be the slowest
(the average time 231.21). This observation is further confirmed
by the performance profile in Fig. 3(d) where the curve of BVNS
is on top of two other curves, and the curve of GRASP is above
the curve of BRKGA.

To check if the difference among methods is statistically signif-
icant or not, we applied Wilcoxon signed rank test on each pair of
heuristics. Table 7 provides the resulting p-values for each pair of
heuristics and each measure used (Best Solution Value; Average
Solution value; Worst Solution Value; and time-to-target). From
the obtained results we infer that at the significance level of 5%,
there is a significant difference among methods with respect to
Best, Average and Worst Solution Values. In terms of time-to-
target, the significant difference has been detected only between
BRKGA and BVNS. Consequently, we may conclude that on OR-
library instances the proposed BVNS significantly outperforms
BRKGA and GRASP in terms of solution quality (Best, Average, and
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Table 6
Comparison on ORlib instances.
Test Best GRASP BRKGA BVNS

instance known Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time known Best Avg. Worst time known Best Avg. Worst time known

pmed1 166 166 166.00 166 0.05 20 166 166.00 166 0.10 20 166 166.00 166 0.08 20
pmed2 135 137 142.25 145 0.14 0 135 135.00 135 2.09 20 135 135.00 135 0.62 20
pmed3 151 151 159.35 170 0.14 2 151 151.00 151 104.30 20 151 151.00 151 0.56 20
pmed4 118 120 128.30 140 0.47 0 118 118.00 118 52.76 20 118 118.00 118 1.16 20
pmed5 85 85 91.40 95 1.14 2 85 85.00 85 1.63 20 85 85.00 85 0.10 20
pmed6 107 107 108.60 110 0.14 7 107 107.00 107 108.73 20 107 107.00 107 3.07 20
pmed7 84 86 90.40 94 0.49 0 84 84.55 85 701.80 9 84 84.00 84 13.76 20
pmed8 81 87 93.50 102 1.78 0 84 84.00 84 81.64 0 81 81.00 81 22.98 20
pmed9 71 75 80.85 85 6.39 0 71 71.00 71 889.38 20 71 71.00 71 0.42 20
pmed10 70 70 70.00 70 13.92 20 70 70.00 70 0.11 20 70 70.00 70 0.13 20
pmed11 70 70 70.75 73 0.28 13 70 70.00 70 3.12 20 70 70.00 70 1.05 20
pmed12 72 72 74.35 78 1.12 9 72 72.00 72 43.39 20 72 72.00 72 0.87 20
pmed13 47 61 65.70 69 7.93 0 51 51.00 51 159.61 0 47 47.00 47 14.39 20
pmed14 60 60 62.35 66 36.47 2 60 60.00 60 4.23 20 60 60.00 60 0.76 20
pmed15 44 48 49.80 53 75.94 0 44 44.00 44 2.29 20 44 44.00 44 1.42 20
pmed16 54 55 55.40 58 0.53 0 54 54.85 55 417.81 3 54 54.00 54 105.30 20
pmed17 46 49 51.60 53 1.83 0 47 47.05 48 777.98 0 46 46.00 46 350.41 20
pmed18 50 53 55.55 59 23.87 0 50 50.00 50 2.83 20 50 50.00 50 1.74 20
pmed19 32 41 43.90 46 75.09 0 33 33.60 34 939.87 0 32 32.00 32 10.50 20
pmed20 40 41 44.10 46 216.35 0 40 40.00 40 3.39 20 40 40.00 40 3.56 20
pmed21 48 48 49.25 51 0.83 5 48 48.00 48 333.50 20 48 48.05 49 129.68 19
pmed22 49 53 56.80 58 3.02 0 49 51.15 52 587.04 2 49 49.00 49 164.52 20
pmed23 31 43 45.35 48 59.11 0 36 37.20 38 927.40 0 31 31.85 32 138.60 3
pmed24 33 36 38.85 42 218.15 0 33 33.00 33 17.99 20 33 33.00 33 6.83 20
pmed25 44 44 44.00 44 427.94 20 44 44.00 44 0.32 20 44 44.00 44 1.89 20
pmed26 47 47 47.70 49 1.15 10 47 47.60 48 925.71 8 47 47.00 47 16.86 20
pmed27 38 40 42.35 45 4.09 0 39 39.75 40 391.88 0 38 38.00 38 244.63 20
pmed28 57 57 57.00 57 111.17 20 57 57.00 57 0.25 20 57 57.00 57 2.58 20
pmed29 36 36 36.75 38 396.01 10 36 36.00 36 1.43 20 36 36.00 36 4.31 20
pmed30 40 40 40.00 40 956.79 20 40 40.00 40 0.41 20 40 40.00 40 2.55 20
pmed31 35 35 36.15 38 1.56 6 35 35.00 35 5.64 20 35 35.00 35 16.93 20
pmed32 72 72 72.00 72 5.54 20 72 72.00 72 0.20 20 72 72.00 72 4.14 20
pmed33 22 33 34.85 37 195.61 0 26 26.95 27 368.81 0 22 22.25 23 623.52 15
pmed34 41 41 41.00 41 836.41 20 41 41.00 41 0.39 20 41 41.00 41 4.35 20
pmed35 36 36 36.45 37 2.04 11 36 36.10 37 872.37 18 36 36.00 36 19.87 20
pmed36 42 42 42.00 42 7.45 20 42 42.00 42 1.00 20 42 42.00 42 7.00 20
pmed37 33 33 34.05 35 374.09 6 33 33.00 33 3.38 20 33 33.00 33 6.09 20
pmed38 40 40 40.00 40 2.54 20 40 40.00 40 1.53 20 40 40.00 40 12.59 20
pmed39 74 74 74.00 74 9.45 20 74 74.00 74 0.24 20 74 74.00 74 9.53 20
pmed40 23 29 30.85 32 513.90 0 23 23.00 23 511.65 20 23 23.00 23 34.88 20

Average: 60.60 62.83 65.09 67.45 114.77 7.08 61.08 61.27 61.40 231.21 16.85 60.60 60.63 60.68 49.61 19.43

Total best-known 22 33 40
Table 7
Pairwise Wilcoxon test on results on OR-Lib instances.
Method Best solution values Average solution values Worst solution values CPU time

GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS

GRASP – 1.89E−04 1.90E−04 – 1.73E−06 1.73E−06 – 2.46E−06 1.68E−06 – 0.1878 0.5453
BRKGA – – 0.0156 – – 4.88E−04 – – 1.50E−03 – – 0.0039
Worst). In addition it significantly outperforms BRKGA in terms of
average time-to-target.

3.4.2. Results on rnddnskreg instances
On rnddnskreg instances the proposed BVNS reaches best-

known solution values on 44 out of 48 instances, in each of 20
runs. There is only one instance on which it fails to reproduce the
best-known solution in any of 20 runs. BRKGA reaches in total 34
best-known solution values. Among them 29 best-known solution
values are reported in each of 20 runs. The performance of GRASP
is the poorest. It attains 23 out of 48 best-known solution values
and there are only 4 instances on which the best-known solution
value is reached in any of 20 runs. Consequently, looking at
the performance profiles related to the best solution values (see
Fig. 4(a)), BVNS is highly on the top, BRKGA turns out to be the
15
second best and GRASP is the worst. The same tendency may be
observed in Figs. 4(b) and 4(c) related to the average and worst
solution values. This implies that regarding any criterion (the
best, average or worst solution values), the proposed BVNS is the
best option. Even more the average of the worst solution values
of BVNS is better than the average of the best solution values
of BRKGA. Similarly, the average of the worst solution values of
BRKGA is better than the average of the best solution values of
GRASP. In particular, on 47 out of 48 instances the worst solution
values of BVNS are equal or better than the best solution values
of BRKGA. On the other hand on all instances, the worst solution
values of BRKGA are equal or better than the best solution values
of GRASP. The results of Wilcoxon signed rank test (Table 9), with
significance level of 5%, imply that indeed there are significant
differences among GRASP, BRKGA and BVNS in respect to any
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Fig. 3. Performance profiles on OR-Lib instances.
f measures (the best, average or worst solution values). Hence,
e may conclude that BVNS significantly outperforms two other
euristics in terms of the solution quality.
Referring to the time-to-target, GRASP turns out to be the

lowest with the average time-to-target of 315.67 s. The average
imes-to-target of BRKGA and BVNS are considerably better: the
verage time-to-target of BRKGA is 46.52, while that of BVNS is
8.98 s. The results of Wilcoxon signed rank test (Table 9), with
ignificance level of 5%, indicate the there is a significant differ-
nce between BVNS and GRASP in terms of time-to-target, while
he difference between BVNS and BRKGA, as well as the difference
etween BRKGA and GRASP, is not statistically significant.

.4.3. Results on rndkreg instances
The results in Table 10 reveal that the rndkreg are more

hallenging than the other instances. This is expected since the
umber of vertices in rndkreg instances is greater than in other
nstances. Regarding the solution quality we observe that only on
instances GRASP has found the best-known solution value, and

here is no instance on which it is able to reach the best-known
olution value in each of twenty runs. BRKGA behaves better in
his regard. It is able to reach 18 best-known solution values, and
n 5 instances it is able to reach the best-known solution value in
ach run. BVNS is the heuristic that establishes the best-known
olutions for 41 out of 44 instances and on 25 instances it reaches
16
the best-known solution in each run. On average, it reaches a
best known solution in 14.64 runs, BRKGA does the same in 9.41
runs, while GRASP does so in 0.34 (out of 20) runs. In general,
even the worst solution values of BVNS are in most cases equal
or better than the best solution values of BRKGA. In particular,
this happens on 37 out of 44 instances and therefore the average
of worst solution values of BVNS is better than the average of best
solution values of BRKGA. The same holds when we compare the
worst solution values of BRKGA and the best solution values of
GRASP. Hence, we may conclude that, regarding solution quality,
BVNS is the best option, BRKGA is the second best, while GRASP
turns out to be the worst. Our findings are further supported by
performance profiles in Figs. 5(a), 5(b) and 5(c). On each of these
figures the curve of BVNS is above two other curves, while the
curve of BRKGA is between curves of BVNS and GRASP. Moreover,
on around 90% of instances BVNS attains the best of the best
and average solution values. The best of the best (respectively
average) solution values are attained by BRKGA on slightly above
40% (respectively 20%) instances. In this regard, GRASP exhibits
very poor performance being able to attain the best of the best
solution values on less than 10% of instances and almost none
of the best of average solution values. The similar behavior is
detected when comparing worst solution values (Fig. 5(c)). On all
instances the best of the worst solution values is due to BVNS;
on almost 40% the best of worst solution values are attained by
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Table 8
Comparison on rnddnskreg instances.
Test Best GRASP BRKGA BVNS

instance known Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time known Best Avg. Worst time known Best Avg. Worst time known

rnddnskreg1 7 7 7.10 8 0.71 18 7 7.00 7 0.79 20 7 7.00 7 2.47 20
rnddnskreg2 6 7 7.25 8 2.15 0 6 6.00 6 5.46 20 6 6.00 6 15.05 20
rnddnskreg3 5 6 6.45 7 44.96 0 5 5.05 6 331.10 19 5 5.00 5 7.24 20
rnddnskreg4 4 4 4.90 5 491.89 2 4 4.00 4 5.04 20 4 4.00 4 3.29 20
rnddnskreg5 6 6 6.15 7 0.64 17 6 6.00 6 1.04 20 6 6.00 6 4.18 20
rnddnskreg6 5 6 6.55 7 2.05 0 6 6.00 6 0.87 0 5 5.95 6 26.85 1
rnddnskreg7 4 5 5.60 6 42.99 0 5 5.00 5 0.25 0 4 4.00 4 13.66 20
rnddnskreg8 3 4 4.00 4 521.51 0 4 4.00 4 0.51 0 3 3.00 3 8.72 20
rnddnskreg9 5 5 5.90 6 0.62 2 5 5.00 5 5.57 20 5 5.00 5 13.47 20
rnddnskreg10 5 5 5.75 6 2.05 5 5 5.00 5 2.75 20 5 5.00 5 5.07 20
rnddnskreg11 4 5 5.00 5 45.17 0 4 4.95 5 45.00 1 4 4.00 4 3.45 20
rnddnskreg12 2 4 4.00 4 488.65 0 3 3.00 3 21.13 0 2 2.95 3 69.73 1
rnddnskreg13 6 6 6.80 7 0.93 4 6 6.00 6 21.82 20 6 6.00 6 21.93 20
rnddnskreg14 6 6 6.95 7 2.99 1 6 6.00 6 4.32 20 6 6.00 6 11.13 20
rnddnskreg15 4 6 6.00 6 66.06 0 5 5.00 5 164.36 0 4 4.90 5 139.89 2
rnddnskreg16 4 4 4.70 5 774.05 6 4 4.00 4 2.14 20 4 4.00 4 4.71 20
rnddnskreg17 6 6 6.10 7 0.92 18 6 6.00 6 1.68 20 6 6.00 6 6.83 20
rnddnskreg18 5 6 6.05 7 2.98 0 5 5.00 5 50.13 20 5 5.00 5 49.54 20
rnddnskreg19 4 5 5.35 6 62.42 0 4 4.80 5 117.11 4 4 4.00 4 14.13 20
rnddnskreg20 3 4 4.00 4 789.91 0 4 4.00 4 0.62 0 3 3.00 3 14.15 20
rnddnskreg21 5 5 5.25 6 0.85 15 5 5.00 5 1.28 20 5 5.00 5 7.45 20
rnddnskreg22 5 5 5.05 6 2.73 19 5 5.00 5 0.24 20 5 5.00 5 6.68 20
rnddnskreg23 4 5 5.00 5 61.42 0 4 4.25 5 363.70 15 4 4.00 4 5.76 20
rnddnskreg24 3 3 3.95 4 734.86 1 3 3.00 3 16.40 20 3 3.00 3 4.90 20
rnddnskreg25 6 6 6.00 6 1.58 20 6 6.00 6 0.61 20 6 6.00 6 14.92 20
rnddnskreg26 5 6 6.15 7 5.11 0 5 5.00 5 112.87 20 5 5.00 5 518.91 20
rnddnskreg27 4 5 5.90 6 112.20 0 5 5.00 5 216.56 0 4 4.00 4 133.44 20
rnddnskreg28 3 4 4.00 4 1508.31 0 4 4.00 4 0.79 0 3 3.00 3 41.30 20
rnddnskreg29 5 5 5.85 6 1.56 3 5 5.00 5 18.33 20 5 5.00 5 30.35 20
rnddnskreg30 5 5 5.75 6 5.26 5 5 5.00 5 6.59 20 5 5.00 5 23.57 20
rnddnskreg31 4 5 5.00 5 123.74 0 5 5.00 5 0.47 0 4 4.00 4 20.72 20
rnddnskreg32 3 4 4.00 4 1631.05 0 4 4.00 4 0.76 0 3 3.00 3 23.82 20
rnddnskreg33 5 5 5.00 5 1.72 20 5 5.00 5 0.38 20 5 5.00 5 15.86 20
rnddnskreg34 4 5 5.00 5 5.65 0 4 4.55 5 307.36 9 5 5.00 5 16.45 0
rnddnskreg35 4 4 4.65 5 122.52 7 4 4.00 4 28.17 20 4 4.00 4 8.24 20
rnddnskreg36 3 3 3.95 4 1505.11 1 3 3.00 3 75.43 20 3 3.00 3 10.92 20
rnddnskreg37 5 5 5.90 6 2.38 2 5 5.00 5 128.22 20 5 5.00 5 65.94 20
rnddnskreg38 5 6 6.00 6 8.36 0 5 5.00 5 16.94 20 5 5.00 5 70.28 20
rnddnskreg39 4 5 5.10 6 185.45 0 5 5.00 5 2.71 0 4 4.00 4 53.66 20
rnddnskreg40 3 4 4.00 4 1800.01 0 4 4.00 4 1.25 0 3 3.00 3 72.99 20
rnddnskreg41 5 5 5.00 5 2.38 20 5 5.00 5 1.71 20 5 5.00 5 37.04 20
rnddnskreg42 5 5 5.20 6 7.90 16 5 5.00 5 4.11 20 5 5.00 5 40.21 20
rnddnskreg43 4 5 5.00 5 187.28 0 5 5.00 5 0.67 0 4 4.00 4 37.84 20
rnddnskreg44 3 4 4.00 4 1800.01 0 4 4.00 4 1.40 0 3 3.00 3 29.04 20
rnddnskreg45 5 5 5.00 5 2.31 20 5 5.00 5 0.30 20 5 5.00 5 27.71 20
rnddnskreg46 4 5 5.00 5 7.83 0 4 4.00 4 54.12 20 4 4.00 4 81.20 20
rnddnskreg47 4 4 4.20 5 181.11 16 4 4.00 4 0.68 20 4 4.00 4 15.92 20
rnddnskreg48 3 4 4.00 4 1800.01 0 3 3.00 3 89.31 20 3 3.00 3 20.34 20

Average 4.42 4.98 5.28 5.56 315.67 4.96 4.71 4.76 4.81 46.52 13.08 4.44 4.50 4.50 38.98 18.42

Total best-known 23 34 47
Table 9
Pairwise Wilcoxon test on results on rnddnskreg instances.
Method Best solution values Average solution values Worst solution values CPU time

GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS

GRASP – 2.44E−04 3.66E−06 – 1.65E−07 9.97E−09 – 3.14E−08 8.83E−10 – 0.0777 0.0412
BRKGA – – 0.0018 – – 3.16E−04 – – 6.10E−05 – – 0.1662
BRKGA, while GRASP fails to reach the bests of worst solution
values on all test instances.

In terms of time-to-target we observe that GRASP heuristic is
he slowest one. On most instances the final reported solution
s attained at the end of the imposed time limit. This signifies
hat GRASP has difficulty to cope with large size instances and to
uickly explore the large-size solution space. On the other hand,
uch behavior does not apply to BRKGA and BVNS. Comparing
17
the average times-to-target, BRKGA seems to be faster than BVNS.
Looking at performance profiles at Fig. 5(d), this is also confirmed.
However, as may be seen at performance profiles, both BRKGA
and BVNS do not require more than 15 min to reach a final
solution.

To verify if the observed differences among heuristics are
statistically significant or not, Wilcoxon signed rank test is con-
ducted. The p-values are given in Table 11. The provided results
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Fig. 4. Performance profiles on rnddnskreg instances.
how that there is a significant difference, at significance level
f 5%, between any pair of heuristics regarding the best, av-
rage, worst solution values as well as time-to-target. Taking
nto account all findings, we conclude that GRASP is not suitable
or rndkreg instance. It provides significantly poorer solutions
nd consumes significantly more time-to-target than other ap-
roaches. BVNS turns out to be the best option: it provides
ignificantly better solution than any other heuristic. The only
rawback of BVNS might be significantly higher time-to–target
han that of BRKGA. However, taking into account the remark-
ble solution values and the highest time-to-target of 15 min to
roduce a final solution, BVNS can be recommended as the best
ption to solve rndkreg instance of the p-next problem. Namely,

the p-next problem arises on strategical/tactical planning level
and therefore 15 min to solve large-scale problem instances can
be considered as acceptable.

4. Conclusion

This paper studies the p-next center problem. The problem has
been introduced as a model of handling humanitarian logistics,
and nowadays, during the COVID-19 epidemic, the interest in the
problem might significantly increase. The aim is to identify p out
of n possible centers, e.g., emergency centers, able to serve all the
users, e.g., patients, in a way that the maximum distance from
the user’s location to the backup center (the center assigned to
18
the user if the reference center is disabled) passing through the
reference center (the user’s closest center) is minimized among
all of the users.

In this paper, we follow the recent ‘‘Less-is-more’’ approach
philosophy and design a refined Basic VNS algorithm, using the
minimum number of search ingredients in the most efficient
manner. As a main contribution, we theoretically and empiri-
cally show that the properties and data structures applicable to
the p-center problem may be extended to this new problem.
In other words, we use more theory which allows the simplest
possible algorithm to advance the current state-of-the-art algo-
rithms. Consequently, we show that Interchange neighborhood
can be significantly reduced by following sophisticated filtering
rules and that the Whitaker data structure, developed originally
for solving the p-median problem, works as well for the p-next
center problem. In particular, we proposed refined local search
and shaking procedures which benefits are empirically evaluated
and which are main ingredients of our refined BVNS.

The computational results show that the refined BVNS sig-
nificantly outperforms the previous state-of-the-art results from
the literature in terms of solution quality. It is only heuristic
able to reach all optimal solutions for instances from [14]. In
addition, on OR-Lib, rnddnskreg, and rndkreg instances, the
refined BVNS is able to reproduce 128 out of 132 best-known
solution values, the hybrid BRKGA is able to reproduce 85 out
of 132 best-known solution values, while the hybrid GRASP is
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Table 10
Comparison on rndkreg instances.
Test Best GRASP BRKGA BVNS

instance known Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time known Best Avg. Worst time known Best Avg. Worst time known

rndkreg1 14 14 14.80 15 3.22 4 14 14.10 15 24.15 18 14 14.00 14 26.72 20
rndkreg2 12 14 14.55 15 9.95 0 12 12.05 13 153.69 19 12 12.00 12 116.09 20
rndkreg3 11 14 15.00 16 36.58 0 11 11.70 12 244.92 6 11 11.15 12 374.16 17
rndkreg4 11 14 14.65 15 95.90 0 11 11.00 11 218.69 20 11 11.00 11 152.90 20
rndkreg5 10 13 14.20 15 226.32 0 10 10.95 11 373.96 1 10 10.55 11 407.15 9
rndkreg6 10 14 14.00 14 383.88 0 10 10.95 11 338.37 1 10 10.00 10 115.75 20
rndkreg7 9 12 12.45 13 805.38 0 10 10.00 10 321.65 0 9 9.00 9 91.64 20
rndkreg8 8 11 11.60 12 1296.45 0 9 9.25 10 737.64 0 8 8.00 8 134.61 20
rndkreg9 8 12 12.00 12 1589.97 0 10 10.00 10 268.38 0 8 8.00 8 230.75 20
rndkreg10 7 11 11.00 11 1792.75 0 10 10.00 10 93.44 0 7 7.60 8 394.43 8
rndkreg11 7 11 11.35 12 1800.01 0 10 10.00 10 93.15 0 7 7.00 7 735.55 20
rndkreg12 10 10 11.25 12 6.51 1 10 10.80 11 208.05 4 10 10.10 11 514.66 18
rndkreg13 10 11 12.15 13 22.73 0 10 10.00 10 113.88 20 10 10.00 10 100.73 20
rndkreg14 9 12 12.75 13 81.00 0 9 9.75 10 352.89 5 10 10.00 10 164.46 0
rndkreg15 9 11 12.00 13 219.72 0 9 9.05 10 278.65 19 9 9.00 9 420.17 20
rndkreg16 9 11 11.15 12 482.57 0 9 9.00 9 398.85 20 9 9.00 9 114.26 20
rndkreg17 8 11 11.30 12 853.80 0 9 9.00 9 413.56 0 8 8.40 9 426.07 12
rndkreg18 8 10 10.80 11 1754.86 0 9 9.00 9 563.03 0 8 8.00 8 163.35 20
rndkreg19 7 10 10.00 10 1800.01 0 9 9.00 9 117.63 0 7 7.00 7 417.84 20
rndkreg20 8 10 10.00 10 1800.01 0 9 9.00 9 101.00 0 8 8.00 8 90.71 20
rndkreg21 7 10 10.00 10 1800.64 0 9 9.00 9 79.18 0 7 7.00 7 286.87 20
rndkreg22 6 9 9.80 10 1800.38 0 8 8.90 9 95.01 0 6 6.30 7 902.73 14
rndkreg23 10 10 10.50 11 12.93 10 10 10.05 11 156.26 19 10 10.00 10 201.26 20
rndkreg24 9 10 10.95 12 45.48 0 9 9.00 9 252.70 20 9 9.00 9 367.53 20
rndkreg25 8 10 10.90 11 163.80 0 8 8.05 9 452.14 19 8 8.50 9 539.50 10
rndkreg26 8 10 10.75 11 442.48 0 8 8.15 9 719.13 17 8 8.25 9 616.82 15
rndkreg27 7 10 10.00 10 951.34 0 8 8.20 9 633.57 0 7 7.95 8 403.24 1
rndkreg28 7 10 10.00 10 1681.58 0 8 8.20 9 640.97 0 7 7.85 8 324.27 3
rndkreg29 7 9 9.40 10 1800.01 0 8 8.20 9 609.73 0 7 7.00 7 396.50 20
rndkreg30 6 9 9.00 9 1800.41 0 8 8.00 8 502.15 0 6 6.80 7 421.83 4
rndkreg31 6 9 9.00 9 1800.26 0 8 8.25 9 731.55 0 6 6.65 7 601.77 7
rndkreg32 6 9 9.00 9 1800.61 0 8 8.00 8 3.18 0 6 6.35 7 871.86 13
rndkreg33 6 8 8.80 9 1800.19 0 8 8.00 8 21.94 0 6 6.00 6 773.12 20
rndkreg34 8 9 9.05 10 23.46 0 9 9.00 9 9.84 0 8 8.85 9 485.04 3
rndkreg35 8 9 9.85 10 85.46 0 8 8.00 8 210.84 20 8 8.00 8 607.56 20
rndkreg36 7 9 9.85 10 301.96 0 7 7.15 8 807.63 17 8 8.00 8 722.95 0
rndkreg37 7 9 9.85 10 787.28 0 7 7.85 8 400.65 3 8 8.00 8 580.43 0
rndkreg38 7 9 9.00 9 1651.23 0 8 8.00 8 349.63 0 7 7.55 8 711.52 9
rndkreg39 7 9 9.00 9 1800.01 0 8 8.00 8 387.15 0 7 7.00 7 700.64 20
rndkreg40 6 8 8.95 9 1800.24 0 8 8.00 8 3.15 0 6 6.95 7 553.30 1
rndkreg41 6 8 8.05 9 1800.38 0 7 7.90 8 148.60 0 6 6.00 6 857.07 20
rndkreg42 6 8 8.00 8 1800.13 0 7 7.95 8 69.53 0 6 6.00 6 917.31 20
rndkreg43 6 8 8.00 8 1800.86 0 7 7.95 8 66.23 0 6 6.00 6 760.57 20
rndkreg44 6 7 7.95 8 1800.15 0 7 7.75 8 87.59 0 6 6.00 6 566.98 20

Average 8.00 10.27 10.74 11.07 1484.00 0.34 8.89 9.14 9.41 292.13 5.64 8.07 8.27 8.43 440.06 14.64

Total best-known 3 18 41
Table 11
Pairwise Wilcoxon test on results on rndkreg instances.
Method Best solution values Average solution values Worst solution values CPU time

GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS

GRASP – 5.93E−08 1.60E−08 – 7.41E−09 7.53E−09 – 5.03E−08 5.26E−09 – 1.23E−04 8.39E−05
BRKGA – – 2.41E−05 – – 1.93E−06 – – 2.03E−06 – – 0.0327
able to reproduce only 48 out of 132 best-known solution values.
On OR-Lib and rnddnskreg instances the refined BVNS is, on
verage, faster than hybrid BRKGA and GRASP. On the other hand,
n rndkreg instances the refined BVNS is faster than the hybrid
RASP but slower than the hybrid BRKGA. Therefore, we may
onclude that we successfully identified the minimum number
f search ingredients that makes our heuristic to be better than
ore complex hybrid approaches. Therefore, the main conclusion
f this work is that the first step in designing a heuristic should
e trying to make each search ingredient as efficient as possible
 w

19
before bringing so many different search ingredients that increase
complexity.

The possible future research may include the development
of VNS algorithms for the other discrete location problems. We
are witnesses that the centers could quickly run out of their
capacities. Also, in the information age, it is expected to be known
in advance if the reference center is unavailable. Therefore, it
would be interesting to address the capacitated p-next center
and α-neighbor p-center problems, wherein you in advance know
hether to go to the reference or any of the backup centers.
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