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A B S T R A C T

This paper considers the conditional 𝑝-next center problem (CPNCP) and proposes a metaheuristic method as
a solution approach. The 𝑝-next center problem (PNCP) is an extension of the classical 𝑝-center problem that
captures real-life situations when centers suddenly fail due to an accident or some other problem. When the
center failure happens, the customers allocated to the closed center are redirected to the center closest to
the closed one, called the backup center. On the other hand, when a service network expands, some of the
existing centers are usually retained and a number of new centers are opened. The conditional 𝑝-next center
problem involves both of these two aspects that arise in practice and, to the best of our knowledge, has not
been considered in the literature so far. Since the CPNCP is NP-hard, a metaheuristic algorithm based on the
Variable Neighborhood Search is developed. The proposed VNS includes an efficient implementation of the
Fast Interchange heuristic which enables the VNS to tackle with real-life problem dimensions. The exhaustive
computational experiments were performed on the modified PNCP test instances from the literature with up to
900 nodes. The obtained results are compared with the results of the exact solver CPLEX. It is shown that the
proposed VNS reaches optimal solutions or improves the feasible ones provided by CPLEX in a significantly
shorter CPU time. The VNS also quickly returns its best solutions when CPLEX failed to provide a feasible one.
In order to investigate the effects of two different approaches in service network planning, the VNS solutions of
the CPNCP are compared with the optimal or best-known solutions of the 𝑝-next center problem. In addition,
the conducted computational study includes direct comparisons of the results obtained when the proposed
SVNS is applied to PNCP (by setting the number of existing centers to 0) with the results of recent solution
methods proposed for the PNCP.
1. Introduction

The 𝑝-center problem (PCP) is one of the most studied location
problems in the literature. It was defined in 1965 by Hakimi in Hakimi
(1965) as follows. For a set of 𝑛 locations and given distances between
them, the objective is to choose 𝑝 locations (𝑝 < 𝑛) for the centers to
be established and to assign each of the remaining 𝑛− 𝑝 locations (cus-
tomers, users) to its nearest center. All established centers are identical
and there is no limit for the number of customers that can be assigned
to a center. The centers should be chosen so that the maximal distance
from each customer to its nearest center is minimal. In the classical
𝑝-center, the focus is on the customer in the worst position. This is a
realistic perspective considering that the centers represent schools, bus
stations, hospitals, fire stations, etc., so each user has to be as close
as possible to its nearest center. Considering the practical importance
of the 𝑝-center problem, numerous solution approaches have been
proposed in the literature so far (see Celik Turkoglu and Erol Genevois,
2020; Drezner, 1984; ReVelle and Eiselt, 2005; Tansel et al., 1983).
Since the 𝑝-center belongs to the class of NP-hard problems (Kariv
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and Hakimi, 1979), many solution methods for PCP are heuristics, for
example Mladenović et al. (2003), Pelegrin (1991), Pullan (2008), etc.

1.1. The 𝑝-next center problem

In order to capture different aspects of real-life situations, the 𝑝-
center problem has been modified and extended in various ways. Since
the 𝑝-center problem is often used to describe emergency situations
(fire, injuries, earthquakes, etc.), it is natural to consider the possible
failure of some centers. This assumption leads to an extension of the
PCP, called the 𝑝-next center problem (PNCP), which was defined
by Albareda-Sambola et al. (2015). The main idea behind the PNCP
is to determine the backup center for each primary center so that if the
primary center is closed, all users assigned to that center can proceed to
the backup center. Since the failure of a center is often unpredictable, it
is natural to assume that users will find out about the failure when they
arrive at their primary center. In such a situation, it is also reasonable
to assume that users will proceed directly to some other center instead
https://doi.org/10.1016/j.cor.2024.106916
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of returning to their home location and choosing the second closest
center. Therefore, it is assumed that a customer will pass through the
primary center to reach its backup center. This implies that the backup
enter for a closed center is always the center closest to the closed one.

The goal of the PNCP is to determine the locations of 𝑝 centers such that
the maximal distance from a user to its backup center via the primary
center is minimal.

Up to now, several methods for solving PNCP have been proposed in
the literature. López-Sánchez et al. (2019) presented a Greedy Random-
zed Adaptive Procedure (GRASP), as well as a Variable Neighborhood

Search (VNS) and the hybridization of these two methods. Compu-
ational experiments on the set of instances with up to 200 nodes

showed that the hybrid method outperforms both GRASP and VNS. In
the paper (Ristić et al., 2021), the authors proposed the Filtered VNS
method (FVNS) and introduced an Additional set of pmed instances

ith up to 900 nodes, which was used in their computational study. An
fficient VNS-based heuristic was also proposed as a solution method
or the PNCP in Tasić (2024). The heuristic from Tasić (2024) reached

or improved the best FVNS results for the standard PNCP instances
ith up to 200 nodes considered in Ristić et al. (2021). For the

Additional pmed instances, the heuristic presented in Tasić (2024)
howed to be superior to FVNS in terms of the quality of the solution.

Londe et al. (2021) developed an evolutionary approach (EA) for the
NCP. Additionally, starting from the best solutions found with another
lgorithm, they ran the CPLEX solver with 24 threads for up to a week
or some instances and reported optimal solutions for the extended set
f instances. Mousavi (2023) proposed a variant of the local search

method and applied two strategies to exploit the flat subspaces. In the
first one, flat moves are evaluated using a certain heuristic function in
order to determine whether this move leads to a promising solution.
The second approach includes a tabu restriction for some flat moves,
which are marked as forbidden, while all other flat moves are allowed.
The local search method (Mousavi, 2023) was tested on a set of 132
benchmark instances with up to 200 nodes and provided better quality
solutions than the ones reported in López-Sánchez et al. (2019). Zhang
t al. (2022) proposed a weighting-based tabu search algorithm (WTS)
s a solution approach for the PNCP. The WTS decomposes the PNCP
nto a series of decision subproblems and solves each of them with
 fast tabu search procedure. A similar idea was used in the recent
aper (Zhang et al., 2023) for the classical 𝑝-center problem. Recently,

Ristić et al. in Ristić et al. (2023a) designed a modified Basic VNS
lgorithm (BVNS) that uses a refined local search and shake step, and
lso exploits auxiliary data structures used in VNS for the classical
-center problem. The computational results on the subset of PNCP
nstances used in Ristić et al. (2021) showed that the BVNS from Ristić

et al. (2023a) outperformed the previous state-of-the-art PNCP methods
in terms of solution quality) on the set of PNCP instances from Ristić

et al. (2023a).

1.2. Conditional 𝑝-center problem

The application of the 𝑝-center problem in practice usually turns
into the conditional case. For example, when a particular service net-
work expands, there is a need for a larger number of facilities, but
his does not mean that the existing facilities must be canceled. The
onditional 𝑝-center problem (CPCP) aims to find locations for 𝑝 new
enters while keeping the existing 𝑞 centers open. The objective is the
ame as in the PCP: the maximal distance from a user to its nearest
enter, among all 𝑝 + 𝑞 centers, should be minimized. The conditional
-median problem is similarly defined as an extension of the classical
-median problem. The CPCP is often denoted as the (𝑝, 𝑞) center
roblem, as in Drezner (1995).

Lin (1975) was the first to mention the conditional 𝑝-center problem
in his paper from 1975 in which the problem of adding one new facility
to the existing system was discussed (𝑝 = 1, 𝑞 ≥ 1). The same version
of the conditional 𝑝-center problem was also considered in Handler and
2 
Mirchandani (1979). Chen (1990) studied both the conditional 𝑝-center
nd the conditional 𝑝-median problem in the Euclidean space. Chen

and Handler (1993) considered a general variant of the CPCP (𝑝 ≥ 1)
n the plane. The relaxation method used for the PCP was adapted for
he conditional problem, and its performance was evaluated on a set of

instances with up to 200 randomly distributed locations.
Minieka (1980) introduced the conditional versions of the 𝑝-center

and 𝑝-median problem on the graph, but only the case of adding a
single new facility was considered in detail. Drezner (1989) proposed
 method for solving the CPCP both in a network and in the plane.
he first step of this method is to sort all customers in descending
rder according to their distance to the nearest center. In the optimal
olution of the conditional problem, the first 𝑟 customers are allocated
o some of the new centers. The task is to determine the value of 𝑟,

and this is done using the binary search algorithm and solving one 𝑝-
enter problem in each iteration. Furthermore, Drezner (1989) proves

that the overall complexity of the algorithm is 𝑃 (𝑛)𝑂(log 𝑛), where 𝑛 is
he number of the customers and 𝑃 (𝑛) is the complexity of the algorithm
sed for solving 𝑝-center problems. Berman and Simchi-Levi (1990)

presented a solution approach to the conditional 𝑝-median problem
and the conditional 𝑝-center problem based on solving one uncondi-
tional (𝑝 + 1)-median problem and one unconditional (𝑝 + 1)-center
problem, respectively. The improvement of the method from Berman
nd Simchi-Levi (1990) was proposed by Berman and Drezner (2008),
ho performed a computational study using the CPLEX solver on the

pmed set of instances with up to 700 nodes.
The Drezner’s algorithm (Drezner, 1989) was further modified by

Chen and Chen (2010), resulting in an iterative algorithm for the CPCP.
The first step is the same as in Drezner (1989), while a different method
is used to determine the value of 𝑟. In each step of the iterative algo-
rithm, the bounds of the optimal solution are improved by solving one
𝑝-center subproblem. Initially, the subproblem with only one demand
point is solved, and this point is the first demand point from the
descending order. In each iteration, the next demand point from the
descending order is added. In this way, at most 𝑛 𝑝-center problems
are solved, but with a small number of demand points (between 1 and
𝑟+ 1), while in Drezner’s method subproblems can have more than 𝑟+ 1
demand points.

Iravan et al. (2016) proposed two metaheuristic approaches based
on VNS, guided multi-start principle, aggregation techniques, and some
exact methods. The computational study was performed on a Traveling
Salesman Problem (TSP) dataset with up to 71 009 nodes. Continuous
variants of PCP and CPCP (the centers can be established anywhere
in the plane) were studied in Callaghan et al. (2018). The paper pro-
vides an improved variant of the relaxation-based algorithm previously
proposed by Chen and Chen (2010), and it was tested on a TSP dataset.

1.3. Motivation and main contribution of the study

The PCP, PNCP and CPCP problems mentioned above deal with
many real life problems. It is well known that the PCP problem is
sed for locating emergency and health services such as ambulances,

police, fire stations, etc. The practical significance of the CPCP is that
in most situations it is more convenient to integrate new facilities into
the existing network than to design a completely new system from
scratch. Since establishing new service centers is usually expensive, it
makes sense to keep the existing centers open and add the new ones.
On the other hand, emergency networks assume that each facility can
respond to all customer demands at all times. Many disasters such as
earthquakes, fires, floods, tsunamis, hurricanes, etc. have caused the
destruction of one or more emergency service facilities. Therefore, cus-
tomers cannot rely on their primary center and have to continue to the
nearest backup center. These facts have motivated us to combine the
two aspects mentioned above and present a variant of the 𝑝-next center
problem with the additional assumption that some centers are already

established. The goal is to find the locations of a fixed number of new
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Fig. 1. Comparison of the optimal solutions for (a) PCP, (b) CPCP, (c) PNCP, (d) CPNCP on a small-size network.
centers such that the maximal distance of a customer to its backup
center is minimal. We refer to this location problem as the conditional
𝑝-next center problem (CPNCP) or (𝑝, 𝑞)-next center problem. To the
best of our knowledge, this is the first reference concerning this variant
of PNCP. Since the PNCP is NP-hard (as an extension of the PCP), the
considered CPNCP also belongs to the class of NP-hard optimization
problems.

In order to graphically illustrate the effects of using different net-
work design strategies given by PCP, CPCP, PNCP, and CPNCP on the
optimal solution, let us consider a small example with 𝑛 = 10 users
and 3 centers. Let {1, 2,… , 10} be the set of given locations, as shown
in Fig. 1, and assume that three centers are required for this network.
The Fig. 1(a) shows the optimal solution for the PCP for 𝑝 = 3. The
centers are located at nodes 3, 7, and 8 (marked with ■), while the
allocations of the customers to the centers are denoted with black lines.
The maximal distance to its closest center is traveled by users 1 and 2
and the distance is 2.83. The optimal solution for the CPCP, assuming
that one center is already located at node 2 while two more centers
need to be established (𝑝 = 2, 𝑞 = 1), is given in Fig. 1(b). In this case,
the two new centers are located at nodes 5 and 8, and user 1 travels
the maximal distance of 4. Fig. 1(c) shows the optimal solution for the
PNCP for 𝑝 = 3. The centers are opened at nodes 3, 5, and 8, while
the maximal distance of 5.89 is traveled by user 10. The value of 5.89
is obtained by summing up the distance from 10 to its primary center
8 and the distance from center 8 to its backup center 5. In Fig. 1(d)
the optimal solution of the CPNCP is given, assuming that one center is
already opened at node 2 and two additional centers need to be opened
(𝑝 = 2, 𝑞 = 1). In the optimal solution of the CPNCP, new centers are
established at nodes 3 and 10, with user 7 traveling the longest total
distance of 7.07 (the distance from 7 to 3 increased by the distance
from 3 to 2). Although these problems have some similarities, adding
new realistic factors to the model results in significantly different
optimal solutions in terms of the locations of the established centers and
the corresponding objective function values. For example, the optimal
3 
solutions of CPCP and CPNCP, which are shown in Figs. 1(b) and
1(d), respectively, differ in all located centers, with the exception of
the center at location 2, which was already opened. This means that
additional insight regarding the possible collapse of centers leads to
different sets of new centers to be opened in the CPCP and CPNCP.
Figs. 1(c) and 1(d) show that in the case of the CPNCP, the already
opened center at location 2 is not part of the optimal solution of PNCP.
This implies that the existing centers affect the decision on the locations
for opening the remaining centers.

The previous example illustrates the need to introduce the CPNCP
that captures two important aspects of modeling an emergency service
network: maintaining the existing service centers opened and ensuring
that in case of a primary service center failure, its users are redirected
to the backup center closest to the primary one. Apart from emergency
service networks, the proposed CPNCP also finds its applications in
other areas. CPNCP may be used to make strategic decisions in any
service facility network facing problems such as power outages, staff
or capacity shortages, technical failures, etc. One example is the local-
ization of ATMs in urban areas. A user cannot know in advance whether
an ATM is out of order. If that turns out to be the case on his arrival,
the user would go from there to the nearest ATM. When deciding
where to locate new ATMs, this scenario should also be considered.
Another example is the gas station network of the same company. Many
drivers are accustomed to the quality of fuel offered by a particular
company and tank the fuel only at the gas stations of this company. The
companies further motivate drivers to use only their services by offering
loyalty cards and discounts depending on the amount of fuel filled
at their gas stations. So, if the closest gas station to a driver’s home
or workplace is out of order, due to maintenance, fuel distribution
or working hours, the driver will most likely go to the gas station
that is the closest to the primary one. A similar scenario occurs when
planning the network of drugstores of the same company, the network
of supermarkets of the same brand, the network of hospitals of a private
healthcare company, etc. If a customer is satisfied with the services
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offered by one company, he will most likely go to the branch that is
nearest to his living or working place, and if the service is not available,
he will go to the nearest branch from there. Companies encourage this
customer behavior in different ways by offering them coupons and
iscounts if they spend a certain amount of money in their branches.

The main contributions of this paper are the following.

• We consider the conditional 𝑝-next center problem as a variant
of the 𝑝-next center problem. To the best of our knowledge,
the CPNCP has not been studied in the literature so far. The
example presented in Fig. 1 illustrates the differences between
the optimal solutions of PCP, PNCP, CPCP, and the considered
CPNCP for the same problem instance. The mathematical formu-
lation of the CPNCP is presented, which is obtained by adapting
the integer linear programming (ILP) formulation of the PNCP
from Albareda-Sambola et al. (2015).

• As the considered CPNCP is NP-hard, we design and implement
an efficient variant of VNS, called Skewed VNS (SVNS), to solve
the CPNCP. The use of the SVNS metaheuristic is motivated by
the importance of having an efficient solution algorithm to tackle
instances with large problem dimensions that occur in practice. In
the case of real-life problem dimensions, exact methods often fail
to provide a solution due to memory or time limits. In addition,
SVNS can be used in situations where a high-quality solution is
required in a short time. This may be the case when designing
an emergency system consisting of mobile emergency units that
are temporarily set up at certain positions and can be moved
to other positions, if necessary. During a natural disaster or war
crisis, the set of potential locations for the centers or the set of
established centers may suddenly change completely or in great
extent (for example, locations must be moved to another area
or region), making reassignment of customers to backup centers
either inefficient or impossible. This situation requires prompt
reactions and a redesign of the emergency system, which can be
efficiently done by the SVNS metaheuristic.

• The proposed SVNS includes an efficient implementation of the
Fast Interchange (FI) heuristic in the Local Search phase. In
addition, recent studies on PNCP (Ristić et al., 2021, 2023b;
Tasić, 2024) show that a VNS-based metaheuristic is a success-
ful method for PNCP, and therefore the SVNS metaheuristic is
investigated as a promising solution approach for CPNCP. The
elements of the proposed SVNS have been carefully designed
and implemented in accordance with the characteristics of the
problem. Moreover, in our SVNS, we use Move Evaluation and
Update procedures instead of the classical swap and/or update
from scratch, which leads to a speedup of the algorithm and a
reduction of its time complexity.

• In order to investigate the effects of the possibility of accepting
worse solutions, we perform experiments for different values of
the parameter 𝛼, which controls the solution acceptance in the
SVNS. Note that in the case of 𝛼 = 0 (also included in the
analysis), the algorithm is reduced to the classical BVNS. In a
separate subsection, the results of the parameter tuning test and
their statistical analysis are presented. The obtained results and
the statistical tests indicate that there is a significant difference
between using BVNS and SVNS for solving CPNCP, i.e., that the
proposed SVNS is superior to BVNS for the considered problem.

• For the purpose of computational analysis, we modified the well-
known ORLIB pmed instances from the literature to fit the con-
sidered CPNCP. In our experimental study, we used 716 instances
divided into 5 groups with up to 900 nodes. The commercial
CPLEX solver with the proposed ILP formulation for the CP-
NCP formulation was used to obtain optimal solutions or upper
bounds, when possible. The results obtained using the proposed
SVNS with FI-based Local Search are compared with the results of
the exact solver CPLEX that uses proposed ILP formulation of the
4 
CPNCP. The obtained results show that our SVNS reaches optimal
solutions or improves the best feasible solutions provided by
CPLEX in significantly shorter CPU times. The SVNS also quickly
returns its best solutions for instances that were out of reach for
CPLEX due to memory limits.

• In order to analyze the effects of using two different approaches
in service network planning, we compare the objective function
values of CPNCP for given 𝑝 and 𝑞 and the corresponding values
of PNCP when the number of centers to be established is 𝑝 + 𝑞.
Our motivation was to investigate two scenarios that arise as a
result of using PNCP and CPNCP models in real-life situations.

• Finally, we investigated the potential of the proposed SVNS to
solve the PNCP. For this purpose, we set the number of existing
centers to 0 and run the SVNS on the set of PNCP instances from
the literature. The obtained results are compared with the results
of recent solution approaches for the PNCP, showing that SVNS
represents a promising solution method for the PNCP as well.

The remaining part of the paper is organized as follows. Problem
efinition and ILP mathematical model for the CPNCP are presented

in Section 2. A detailed description of the proposed Skewed Variable
eighborhood Search with Fast Interchange is given in Section 3.

The computational results are presented and analyzed in Section 4.
A summary of the results and some possible research directions are
outlined in Section 5.

2. Problem definition and mathematical model

In this section, we provide the description of the conditional 𝑝-next
enter problem and present its mathematical formulation. Let 𝐴 be the
et of all locations: customers, established centers, and candidates for

new centers. Let 𝑄 ⊂ 𝐴 be the set of already established centers, where
|𝐴| = 𝑛 and |𝑄| = 𝑞. The distance matrix is denoted as 𝐷 = (𝑑(𝑖, 𝑗))𝑛×𝑛,
where 𝑑(𝑖, 𝑗) represents the distance (time, cost, etc.) between locations
𝑖 and 𝑗. For a given network of 𝑞 centers, the problem is to find the set
𝑃 of additional 𝑝 = |𝑃 | centers and allocate each customer to its nearest
(primary) center among all 𝑝+ 𝑞 established centers. It is assumed that
customers travel to their primary center and if they find out about its
eventual failure on the spot, they move on to the closest (backup) center
from there. Therefore, the objective is to minimize the distance from
each customer to its backup center, passing through a primary center.

In other words, the value

𝑤(𝑃 ) = max
𝑖∈𝐴

{

min{min
𝑗∈𝑄

𝑑(𝑖, 𝑗),min
𝑗∈𝑃

𝑑(𝑖, 𝑗)}

+ min{ min
𝑘∈𝑄,𝑘≠𝑗′

𝑑(𝑗′, 𝑘), min
𝑘∈𝑃 ,𝑘≠𝑗′ 𝑑(𝑗

′, 𝑘)}
}

,

𝑗′ = argmin{min
𝑗∈𝑄

𝑑(𝑖, 𝑗),min
𝑗∈𝑃

𝑑(𝑖, 𝑗)}

is to be minimized. The conditional 𝑝-next center problem can be
ormulated as an integer linear program (ILP). For that purpose, the
ollowing binary variables are used:

𝑦𝑗 =
{

1, if there is a center at location 𝑗, i.e. if 𝑗 ∈ 𝑄 ∪ 𝑃 ,
0, otherwise.

𝑖𝑗 =
{

1, if 𝑗 is the nearest center to the location 𝑖 (different from 𝑖),
0, otherwise.

It is important to notice that if 𝑥𝑖𝑗 = 1, and the location 𝑖 is a customer,
that means that its primary center is the location 𝑗. On the other hand,
if the location 𝑖 is a center, then 𝑗 is its backup center.

In Albareda-Sambola et al. (2015) authors presented an ILP for-
mulation for the PNCP. In this study, we adapt the PNCP formulation
from Albareda-Sambola et al. (2015) into the corresponding model for
the CPNCP. Using the notation introduced above, the CPNCP can be
formulated as the following integer linear program:

min 𝑤 (1)
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∑

𝑗∈𝐴
𝑦𝑗 = 𝑝 + 𝑞 , (2)

∑

𝑗∈𝐴, 𝑗≠𝑖
𝑥𝑖𝑗 = 1, 𝑖 ∈ 𝐴, (3)

𝑥𝑖𝑗 ≤ 𝑦𝑗 , 𝑖, 𝑗 ∈ 𝐴, 𝑖 ≠ 𝑗 , (4)

𝑗 +
∑

𝑘∈𝐴, 𝑑(𝑖,𝑘)>𝑑(𝑖,𝑗)
𝑥𝑖𝑘 ≤ 1, 𝑖, 𝑗 ∈ 𝐴, 𝑖 ≠ 𝑗 , (5)

≥
∑

𝑘∈𝐴,𝑘≠𝑗
𝑑(𝑗 , 𝑘)𝑥𝑗 𝑘, 𝑗 ∈ 𝐴, (6)

≥ 𝑑(𝑖, 𝑗)(𝑥𝑖𝑗 − 𝑦𝑖) +
∑

𝑘∈𝐴,𝑘≠𝑗
𝑑(𝑗 , 𝑘)𝑥𝑗 𝑘, 𝑖, 𝑗 ∈ 𝐴, 𝑖 ≠ 𝑗 , (7)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖, 𝑗 ∈ 𝐴, 𝑖 ≠ 𝑗 , (8)

𝑦𝑗 ∈ {0, 1}, 𝑗 ∈ 𝐴 ⧵𝑄, (9)

𝑦𝑗 = 1, 𝑗 ∈ 𝑄. (10)

The objective (1) is to minimize the value of the continuous variable
𝑤, which represents the maximal travel distance from a customer to his
backup center.

In Constraint (2), the total number of established centers is set to
+ 𝑞. Constraint (3) ensures that each user is allocated to exactly one
rimary center and that there is exactly one backup center for each
rimary center. Customers cannot be allocated to a location without
n established center, which is defined in Constraint (4). Constraint

(5) indicates that each customer is allocated to its nearest established
primary center.

Constraints (6) and (7) are necessary to set 𝑤 to the correct value in
both possible cases: when the location is either a user or a center. If the
location is a center, it serves itself as the primary center (the distance
is equal to 0), and therefore, a two-leg trip is avoided. Condition (6)
nsures that the value of 𝑤 is greater than or equal to the largest
istance from any location 𝑗 to its nearest center different from 𝑗.

Since the variable 𝑥𝑗 𝑘 has different meanings depending on the role of
location 𝑗 (user or center), the sum on the right-hand side of inequality
(6) is interpreted differently. If 𝑗 is a user, this sum represents the
distance from 𝑗 to its primary center 𝑘. On the other hand, if 𝑗 is a
enter, the distance to itself (its primary center) is 0, and therefore this
um represents the distance to its backup center.

In case of a failure, all users with the same primary center proceed to
he same backup center. In this case, the total travel distance is equal to
he distance from a user to its primary center increased by the distance

from the primary to the backup center, which is specified in Constraint
7). Indeed, if 𝑖 is a user with its primary center 𝑗 (𝑥𝑖𝑗 = 1, 𝑦𝑖 = 0),

the value of the variable 𝑤 will be greater than or equal to the sum
of 𝑑(𝑖, 𝑗)(𝑥𝑖𝑗 − 𝑦𝑖) = 𝑑(𝑖, 𝑗) (distance from 𝑖 to its primary center) and
he distance from the primary center 𝑗 to the backup center 𝑘. In all

other cases, where 𝑖 is a center (𝑦𝑖 = 1), the value of 𝑥𝑖𝑗 −𝑦𝑖 will be less
than or equal to 0, which implies that Constraint (7) is weaker than
Constraint (6), and consequently, only the distance from center 𝑖 to its
ackup center is considered.

Constraints (8)–(9) reflect the binary nature of the variables. The
ndicators for the 𝑞 already established centers are set to 1 in Constraint
10).

3. Variable neighborhood search algorithm for the CPNCP

The algorithm proposed in this paper for solving the CPNCP is
based on the Variable Neighborhood Search method introduced by
Hansen and Mladenović in 1997 (Hansen and Mladenović, 1997). This
metaheuristic provides a general solution strategy that can be applied
to various continuous and discrete optimization problems. When de-
signing a VNS algorithm, a set of different neighborhood structures
must be defined. In order to keep the search process away from the local
optimum traps, VNS involves a systematic change of the neighborhoods
in which the local search is performed. This is motivated by three facts:
5 
a local optimum in a certain neighborhood is not necessarily a local
optimum in some other neighborhood, the global optimum is the local
optimum for each neighborhood, and the points of the local optimum
with respect to different neighborhoods are close to each other (Hansen
nd Mladenović, 1997).

Different variants of the VNS method have been proposed in the lit-
rature. Variable Neighborhood Descent (VND) is a deterministic VNS
ariant that changes the set of neighborhoods in the predefined order
ithin the local search step. In addition to the local search, the basic
NS variant (BVNS) includes a shaking step as a stochastic procedure

that enables visiting solutions in various parts of the search space.
In the shaking step, a new solution is randomly chosen from some
predefined neighborhood, and this solution is used as the initial one for
some local search procedure. If the solution obtained by the local search
is better than the best obtained solution so far, the algorithm moves to
this new solution and the search is continued from there (Move or Not
step). Otherwise, the larger neighborhood is explored in the shaking
tep. In this way, diversification is achieved through the shaking step,

and the local search intensifies the search. The combination of these
two steps reduces the risk of the algorithm getting stuck in a local
optimum that is not the global one. In the Variable the Neighborhood
Decomposition search (VNDS), the local search works on a subproblem
that is obtained by fixing certain number of attributes, while the others
have been changed. The size of a subproblem changes systematically in
each iteration of VNDS according to the size of the neighborhood used
in the shaking step. If a VNS-based method is used in the local search
step, a two-level VNS approach is obtained. A detailed description of
the different VNS variants is beyond the scope of this paper and can be
found in Brimberg et al. (2023) and Hansen et al. (2010).

In situations where a VNS algorithm is trapped in a valley of the
current best solution, shaking and local search may not be sufficient
to ensure the escape from the local optimum trap. In such situations,
it is necessary to increase a diversification of the search process to
some promising regions that are far away from the local optimum
valley. To achieve this, it makes sense not only to allow the moves that
improve the current best solution, but also to allow the algorithm to
move to a slightly worse solution, if these two solutions are enough
away from each other. The inclusion of this modified criterion for
the solution acceptance leads to a variant of the VNS method called
Skewed VNS (SVNS). In SVNS, the acceptance criterion is defined as
follows. If a new solution 𝑦 is better than the current solution 𝑥, it is
always accepted. A new solution 𝑦 that is worse than 𝑥 (i.e., has the
greater objective function value 𝑓 (𝑦) > 𝑓 (𝑥)) is be accepted if 𝑓 (𝑦) ≤
𝑓 (𝑥) +𝛼 𝜚(𝑥, 𝑦), where 𝜚(⋅, ⋅) is a metric used to define the distance and 𝛼
is the parameter of the method that controls the acceptance criterion.
The SVNS showed to be successful for solving various optimization
problems in the literature. The SVNS outperformed other VNS variants
in cases where it was important to enhance the exploration of far away
valleys, see Brimberg et al. (2019, 2015), Macedo et al. (2015), Mrkela
and Stanimirović (2022), Mladenović et al. (2022), etc.

Various problems based on the 𝑝-center and its variants are solved
by VNS-based methods: 𝑝-center in Mladenović et al. (2020, 2003),
he PNCP in Ristić et al. (2023a, 2021), Sánchez-Oro et al. (2022),
nd Tasić (2024), the unconditional and conditional vertex 𝑝-center
n Iravan et al. (2016), the capacitated vertex 𝑝-center in Quevedo-
rozco and Ríos-Mercado (2015), etc. The above observations moti-

vated us to apply a VNS-based approach for solving CPNCP. We have
onducted a series of preliminary computational experiments with dif-

ferent variants of VNS, and the SVNS showed to be the most successful
in terms of solution quality and running times when solving CPNCP.
We believe that the increased impact of diversification in SVNS, which

as achieved by allowing the algorithm to move to a slightly worse
olution that is not too close to the incumbent one, is the reason why
VNS showed to be superior than other VNS variants in the case of

CPNCP.
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Fig. 2. Solution encoding.

3.1. The proposed SVNS implementation for solving the CPNCP

When designing a metaheuristic for solving a given problem, the
encoding of the solution plays an important role. In the proposed SVNS
for the CPNCP, an integer encoding of the solutions is used. More
precisely, to each location from the set 𝐴, a unique integer index from
the set {1, 2,… , 𝑛} is assigned. The solution of the CPNCP is represented
by a vector of 𝑝 integers, where each integer represents the index of
a location with an established center. Let 𝑄 be the vector containing
the indices of 𝑞 locations with already established centers. The set of
feasible solutions 𝑆 is defined as the set of all vectors 𝑥 of length 𝑝
containing the indices of the locations for the new centers that are
different from the indices from Q, i.e., 1 ≤ 𝑥(𝑖) ≤ 𝑛 and 𝑥(𝑖) ≠ 𝑄(𝑗), 𝑖 =
1, 2,… , 𝑝, 𝑗 = 1, 2,… , 𝑞.

Let us consider an example of a problem with 𝑛 = 20 locations. Let
the indices of two (𝑞 = 2) already opened centers be 1 and 19. The goal
is to determine 𝑝 = 8 additional centers among the remaining 𝑛−𝑞 = 18
locations in such a way that the value of the objective function value is
minimized. In this case, the set of feasible SVNS solutions in this case
is 𝑆 = {𝑥 ∶ |𝑥| = 8, 1 ≤ 𝑥(𝑖) ≤ 20, 𝑥(𝑖) ≠ 1, 𝑥(𝑖) ≠ 19, 𝑖 = 1,… , 𝑝}. The
cardinality of the set 𝑆 is

(18
8

)

= 43.758. One of the solutions 𝑥 ∈ 𝑆 is
shown in Fig. 2.

For 𝑎, 𝑏 ∈ 𝐴, let 𝑑(𝑎, 𝑏) represent the distance (delivery costs, travel
time) between the locations 𝑎 and 𝑏 obtained from the distance matrix
𝐷. The objective function value 𝑓 (𝑥) for a feasible solution 𝑥 ∈ 𝑆 is
calculated as follows.

• For 𝑎 ∈ 𝐴, we choose the closest center 𝑐 from the set 𝑥 ∪𝑄 such
that 𝑑(𝑎, 𝑐) is minimal. If 𝑎 is a center, then 𝑎 = 𝑐 and 𝑑(𝑐 , 𝑐) = 0.
Let us denote this minimum distance as 𝑑1.

• For the chosen primary center 𝑐, we choose its backup center 𝑏
from the set (𝑥∪𝑄)⧵{𝑐} such that 𝑑(𝑐 , 𝑏) is minimal. Let us denote
this minimum distance as 𝑑2.

• Finally, the value of 𝑓 (𝑥) is calculated as max𝑎∈𝐴{𝑑1 + 𝑑2}.

The proposed SVNS uses a set of neighborhoods 𝑁𝑘(𝑥), 𝑘 = 1, 2,… , 𝑘𝑚𝑎𝑥
of a solution 𝑥 that contains all solutions 𝑥′ that differ from 𝑥 in exactly
𝑘 centers. In other words: 𝑁𝑘(𝑥) = {𝑥′ ∈ 𝑆 ∶ 𝜌(𝑥, 𝑥′) = 𝑘}, where 𝜌(𝑥, 𝑥′)
is the Hamming distance between the integer arrays 𝑥 and 𝑥′ of length
𝑝. More precisely, 𝜌(𝑥, 𝑥′) is equal to 𝑝 minus the number of common
elements of the vectors 𝑥 and 𝑥′.

The main steps of the proposed SVNS metaheuristic for the CPNCP
are given by the Algorithm 1. An initial feasible solution is chosen as
an arbitrary point from 𝑆.

The shaking step 𝑆 ℎ𝑎𝑘𝑖𝑛𝑔() generates the new solution 𝑥𝑠ℎ𝑎𝑘𝑒 ∈
𝑁𝑘(𝑥) as follows. For a given 𝑘, we randomly choose 𝑘 centers from the
current solution 𝑥 to be closed and 𝑘 random locations from 𝐴⧵ (𝑥∪𝑄)
for opening centers. The resulting solution is denoted as 𝑥𝑠ℎ𝑎𝑘𝑒.

Starting from the solution 𝑥𝑠ℎ𝑎𝑘𝑒, the local search procedure 𝐿𝑆() ex-
plores the neighborhood 𝑁1(𝑥𝑠ℎ𝑎𝑘𝑒) completely to find a local minimum
in this neighborhood. The cardinality of the 𝑁1(𝑥𝑠ℎ𝑎𝑘𝑒) neighborhood is
𝑝⋅(𝑛−𝑞−𝑝). If the obtained local minimum represents an improvement of
the objective function value, the process is restarted from that solution.
The local search stops when no further improvement of the objective
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function value is possible. The detailed description of the proposed
local search procedure is given in Section 3.2.

Finally, the solution 𝑥′′ obtained by the local search is compared
with the best solution found 𝑥∗, in order to decide whether it should
be accepted or not. If 𝑓 (𝑥′′) < 𝑓 (𝑥∗), the current best solution is
updated, the algorithm moves to 𝑥′′ and the search is continued in
the first neighborhood 𝑁1 of 𝑥′′. If the solution 𝑥′′ found by 𝐿𝑆()
has a lower quality than the best known solution 𝑥∗, but fulfills the
condition outlined in step 12 of the Algorithm 1, we take 𝑥′′ as the
current solution and continue the search in 𝑁1(𝑥′′) without updating
the best solution. The condition 𝑓 (𝑥′′) < 𝐹 + 𝛼 𝜚(𝑥, 𝑥′′) is a relaxed
rule that allows the algorithm to visit a solution 𝑥′′ that is worse than
the incumbent solution 𝑥, but only if 𝑥′′ is sufficiently different from
𝑥. A metric for difference is measured by previously defined distance
function 𝜌. The parameter 𝛼 > 0 controls the level of diversification:
the search should be recentered to solution 𝑥′′ if 𝑥′′ is slightly worse
than 𝑥 and the distance 𝜌(𝑥′′, 𝑥) is large enough. If neither of these two
conditions is satisfied, the search is continued in the next neighborhood
𝑁𝑘+1 of the current solution.

The described steps are repeated until a stopping criterion is sat-
isfied. In this SVNS implementation, the maximal number of VNS
iterations is used as a stopping criterion. We count a VNS iteration by
the execution of the shaking step followed by the local search step.

Algorithm 1 SVNS algorithm for the CPNCP
1: Initialization: select the set of neighborhoods 𝑁𝑘, 𝑘 = 1, 2, ..., 𝑘𝑚𝑎𝑥
2: Randomly choose an arbitrary initial point 𝑥∗ ∈ 𝑆 and set 𝑓 ∗ ←

𝑓 (𝑥∗)
3: Set 𝑥 ← 𝑥∗, 𝐹 ← 𝑓 ∗

4: while the stopping criterion is not met do
5: 𝑘 ← 1
6: while 𝑘 ≤ 𝑘𝑚𝑎𝑥 do
7: 𝑥𝑠ℎ𝑎𝑘𝑒 ← 𝑆 ℎ𝑎𝑘𝑖𝑛𝑔(𝑥, 𝑘) ⊳ Shaking step
8: 𝑥′′ ← 𝐿𝑆(𝑥𝑠ℎ𝑎𝑘𝑒) ⊳ Local Search step
9: if 𝑓 (𝑥′′) < 𝑓 ∗ then

10: 𝑥∗ ← 𝑥′′, 𝑓 ∗ ← 𝑓 (𝑥′′)
11: end if
12: if 𝑓 (𝑥′′) < 𝐹 + 𝛼 𝜚(𝑥, 𝑥′′) then ⊳ Move or Not step
13: 𝑥 ← 𝑥′′, 𝐹 ← 𝑓 (𝑥′′), 𝑘 ← 1
14: else
15: 𝑘 ← 𝑘 + 1
16: end if
17: end while
18: end while

3.2. Local search based on the fast interchange heuristic

Exploring the entire 𝑁1(𝑥) neighborhood of the solution 𝑥 means
that all solutions 𝑥′ that satisfy 𝜌(𝑥, 𝑥′) = 1 must be evaluated. In
order to speed up the algorithm and avoid swapping users and centers
that does not lead to an improvement of the objective function value,
we use the Fast Interchange (FI) heuristic to implement the 𝐿𝑆()
procedure. Similar procedures were mentioned in Whitaker (1983)
and Mladenović et al. (2003). The pseudocode for the 𝐿𝑆() procedure
is given in Algorithm 2.

The implementation of local search for the CPNCP is based on two
main steps: determining the best choice of a location 𝑖𝑛 to enter the
solution, and finding the best choice of a center 𝑜𝑢𝑡 to be removed from
the solution. Let the critical user be the one who travels the longest
distance to its backup center. To reduce the value of the objective
function, the distance of the critical user 𝑖∗ to its backup center must be
reduced. This can be achieved if: (i) 𝑖𝑛 becomes the new primary center
for 𝑖∗, (ii) 𝑖𝑛 becomes the new backup center for 𝑖∗, (iii) 𝑖𝑛 becomes the
new backup center for some other center that is as far away from 𝑖∗ as
its primary center.
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Algorithm 2 Local search for the CPNCP
1: procedure LS(solution 𝑥)
2: Construct the corresponding arrays 𝑐1 and 𝑐2 for 𝑥
3: 𝑓 ∗ ← 𝑓 (𝑥)
4: Find the critical user 𝑖∗

5: while true do
6: 𝑤∗ ← ∞
7: for every location 𝑖𝑛 ∉ (𝑥 ∪𝑄) do
8: if 𝑖𝑛 reduces total distance traveled by 𝑖∗ then
9: 𝑜𝑢𝑡 ← 𝑀 𝑜𝑣𝑒𝐸 𝑣𝑎𝑙 𝑢𝑎𝑡𝑖𝑜𝑛(𝑖𝑛, 𝑥, 𝑐1, 𝑐2)

10: 𝐹 ← 𝑓 ((𝑥 ∪ {𝑖𝑛}) ⧵ {𝑜𝑢𝑡})
11: if 𝐹 < 𝑤∗ then
12: 𝑤∗ ← 𝐹 , 𝑖𝑛∗ ← 𝑖𝑛, 𝑜𝑢𝑡∗ ← 𝑜𝑢𝑡
13: end if
14: end if
15: end for
16: if 𝑓 ∗ ≤ 𝑤∗ then
17: break
18: else
19: 𝑓 ∗ ← 𝑤∗

20: 𝑈 𝑝𝑑 𝑎𝑡𝑒(𝑥, 𝑖𝑛∗, 𝑜𝑢𝑡∗, 𝑐1, 𝑐2)
21: Find the new critical user 𝑖∗

22: end if
23: end while
24: end procedure

Each time we want to add a new center to the solution, the 𝐿𝑆()
procedure does not check all possible locations from 𝐴⧵(𝑥∪𝑄), but only
the locations that can reduce the distance between the critical user to its
backup center. In order to make an adequate choice of the new center
𝑖𝑛, the procedure 𝑀 𝑜𝑣𝑒𝐸 𝑣𝑎𝑙 𝑢𝑎𝑡𝑖𝑜𝑛() determines the best center 𝑜𝑢𝑡 to
be removed from the solution. The detailed steps of this procedure are
described in Section 3.2.1.

Replacing some centers in the solution generally requires reassign-
ing all users to their (possibly new) primary and backup centers. To
avoid doing this from scratch every time, we use 2 auxiliary vectors 𝑐1
and 𝑐2 corresponding to the current solution 𝑥. The vectors 𝑐1 and 𝑐2
are defined as follows:

𝑐1(𝑖) − the center closest to the location 𝑖 (among all 𝑝 + 𝑞
established centers),
𝑐2(𝑖) − the second closest center to the location 𝑖, 𝑖 = 1, 2,… , 𝑛.

The value 𝑐1(𝑖) represents the primary center for the customer 𝑖,
and its backup center is given with 𝑐1(𝑐1(𝑖)). If the center 𝑐1(𝑖) fails, the
customer 𝑖 proceeds to the center 𝑐1(𝑐1(𝑖)). In the general case, 𝑐1(𝑐1(𝑖)) is
not identical to 𝑐2(𝑖). If there is an established center at location 𝑖, then
𝑐1(𝑖) is a backup center for the center 𝑖. For example, let us consider a
network with 𝑛 = 10 nodes with a previously opened center at location
3 and newly opened centers at nodes 5 and 8, as shown in Fig. 3. Note
that for location 2, the primary center is 3, i.e., 𝑐1(2) = 3. The backup
center for location 2 is the center 5 that is closest to its primary center
3, i.e. 𝑐1(𝑐1(2)) = 5. On the other hand, the second closest center to
location 2 is center 8, i.e. 𝑐2(2) = 8.

Finally, the exchange of a chosen pair (𝑖𝑛, 𝑜𝑢𝑡) is performed by
the procedure Update(), which also makes the necessary changes to
the vectors 𝑐1 and 𝑐2 so that they correspond to the updated solution
(𝑥 ∪ {𝑖𝑛}) ⧵ {𝑜𝑢𝑡}. The pseudocode for the Update() procedure is given
in Algorithm 3.

3.2.1. Move evaluation procedure
Previous successful applications of the Move Evaluation algorithm

(such as the one from Mladenović et al. (2003) for PCP) gave us
some general guidelines on how to design and implement our Move
7 
Fig. 3. Vectors 𝑐1 and 𝑐2 for a solution of the CPNCP for 𝑛 = 10, 𝑞 = 1, 𝑝 = 2, 𝑄 = {3},
new centers are located at nodes 5 and 8.

Algorithm 3 Update procedure for the CPNCP
1: procedure Update(𝑥, 𝑖𝑛, 𝑜𝑢𝑡, 𝑐1, 𝑐2)
2: 𝑥 ← (𝑥 ∪ {𝑖𝑛}) ⧵ {𝑜𝑢𝑡}
3: for every center 𝑗 ∈ 𝑥 do
4: Recalculate 𝑐1(𝑗) and 𝑐2(𝑗)
5: end for
6: for every user 𝑖 ∈ 𝐴 ⧵ (𝑥 ∪𝑄) do
7: if 𝑐1(𝑖) = 𝑜𝑢𝑡 then
8: if 𝑑(𝑖, 𝑖𝑛) < 𝑑(𝑖, 𝑐2(𝑖)) or (𝑑(𝑖, 𝑖𝑛) =

𝑑(𝑖, 𝑐2(𝑖)) and 𝑑(𝑖𝑛, 𝑐1(𝑖𝑛)) < 𝑑(𝑐2(𝑖), 𝑐1(𝑐2(𝑖)))) then
9: 𝑐1(𝑖) ← 𝑖𝑛

10: else
11: 𝑐1(𝑖) ← 𝑐2(𝑖)
12: Find the second closest center 𝑐 𝑒𝑛𝑡𝑒𝑟_2 to the location

𝑖
13: 𝑐2(𝑖) ← 𝑐 𝑒𝑛𝑡𝑒𝑟_2
14: end if
15: else
16: if 𝑑(𝑖, 𝑖𝑛) < 𝑑(𝑖, 𝑐1(𝑖)) or (𝑑(𝑖, 𝑖𝑛) =

𝑑(𝑖, 𝑐1(𝑖)) and 𝑑(𝑖𝑛, 𝑐1(𝑖𝑛)) < 𝑑(𝑐1(𝑖), 𝑐1(𝑐1(𝑖)))) then
17: 𝑐2(𝑖) ← 𝑐1(𝑖)
18: 𝑐1(𝑖) ← 𝑖𝑛
19: else
20: if 𝑑(𝑖, 𝑖𝑛) < 𝑑(𝑖, 𝑐2(𝑖)) or (𝑑(𝑖, 𝑖𝑛) =

𝑑(𝑖, 𝑐2(𝑖)) and 𝑑(𝑖𝑛, 𝑐1(𝑖𝑛)) < 𝑑(𝑐2(𝑖), 𝑐1(𝑐2(𝑖))) then
21: 𝑐2(𝑖) ← 𝑖𝑛
22: else
23: if 𝑐2(𝑖) = 𝑜𝑢𝑡 then
24: Find the second closest center 𝑐 𝑒𝑛𝑡𝑒𝑟_2 to the

location 𝑖
25: 𝑐2(𝑖) ← 𝑐 𝑒𝑛𝑡𝑒𝑟_2
26: end if
27: end if
28: end if
29: end if
30: end for
31: end procedure

Evaluation procedure (MEP) for the CPNCP. Comparing with the MEP
procedure for PCP, one can notice that each segment of the imple-
mented MEP for CPNCP has been modified and upgraded with the
new elements to make it work properly for CPNCP. For example, since
we are considering a problem involving backup centers, not even the
primary centers are determined in the same way as for PCP. Adding
or excluding a center from a solution can result in many more cases to
consider. This is reflected in a more complex calculation of the elements
of the arrays 𝑟 and 𝑧 compared to the PCP case. The elements of the



J. Tasić et al.

d
f
{
c
n

e
m
c

a
u

𝑜

𝑝

i
f
f
a

t

1

1

1

1

1

1

1

2

2

2
2

2
2
2
2

2
2
3
3
3
3
3
3
3

3

Computers and Operations Research 175 (2025) 106916 
array 𝑔 must also be determined with some additional checks. In the
rest of the subsection, the MEP proposed for the CPNCP is explained in
detail.

For the given solution 𝑥 and a candidate location 𝑖𝑛, the MEP
etermines the center 𝑜𝑢𝑡 ∈ 𝑥 that is the best choice to be removed
rom 𝑥 when a center is opened at location 𝑖𝑛. In other words, 𝑓 ((𝑥 ∪
𝑖𝑛})⧵{𝑜𝑢𝑡}) should be as minimal as possible. The MEP procedure also
alculates the objective function value 𝑓 ((𝑥 ∪ {𝑖𝑛}) ⧵ {𝑜𝑢𝑡}), but it does
ot perform the exchange of the centers 𝑖𝑛 and 𝑜𝑢𝑡.

The input for MEP contains:

• location 𝑖𝑛 ∈ 𝐴⧵(𝑥∪𝑄), which should become part of the solution,

• arrays 𝑐1 and 𝑐2 that correspond to the solution 𝑥.

The output of the procedure includes:

• the center 𝑜𝑢𝑡, which should be removed from the solution 𝑥,
• the evaluation of the swap, i.e. the value 𝑓 ((𝑥 ∪ {𝑖𝑛}) ⧵ {𝑜𝑢𝑡}).
Adding the location 𝑖𝑛 to the solution can have the following two

ffects on the current solution: (i) There exists a customer 𝑖 (possibly
ore than one) for which the center 𝑖𝑛 is closer than its current primary

enter, i.e., 𝑑(𝑖, 𝑖𝑛) < 𝑑(𝑖, 𝑐1(𝑖)) so that customer 𝑖 should be reallocated
to the center 𝑖𝑛. Consequently, the backup center 𝑐1(𝑐1(𝑖)) should also
be updated for such a customer. (ii) There is an established center 𝑗,
for which the location 𝑖𝑛 is closer to 𝑗 than the current backup center
for 𝑗. In this case, 𝑖𝑛 becomes the new backup center for 𝑗, as well as
for all customers allocated to 𝑗.

On the other hand, removing a center 𝑜𝑢𝑡 from the solution affects
ll users whose primary or backup center was 𝑜𝑢𝑡. Therefore, for all
sers whose primary center was 𝑜𝑢𝑡, a new primary and a new backup

center must be determined, and for all users whose backup center was
𝑢𝑡, the backup center must be updated.

Motivated by the possible effects that the swapping of the elements
𝑖𝑛 and 𝑜𝑢𝑡 could cause, and to implement MEP efficiently, we use two
auxiliary vectors: the vector 𝑟 of a length 𝑝+𝑞 and the vector 𝑧 of length
, which are defined as follows:

• 𝑟(𝑗) = max𝑖∈𝑆𝑗
{𝑑(𝑖, 𝑗) +𝑑(𝑗 , 𝑘)}, 𝑗 = 1, 2,… , 𝑝+𝑞, where 𝑆𝑗 denotes

the set of all users assigned to the center 𝑗 ∈ 𝑥 ∪ 𝑄 and 𝑘 is the
backup center for the center 𝑗, i.e., 𝑘 = 𝑐1(𝑗).

• Assuming that the center 𝑗 = 𝑥(𝑙), 𝑙 = 1, 2,… , 𝑝 is removed from
the current solution, for all the users 𝑖 ∈ 𝑆𝑗 allocated to the
center 𝑗, the total travel distance, i.e. the distance to the new
backup center through the new primary center, should be calcu-
lated. The element 𝑧(𝑗) is set to the longest of these distances:
𝑧(𝑗) = max𝑖∈𝑆𝑗

{𝑑(𝑖, 𝑛𝑒𝑤_𝑝𝑟𝑖𝑚𝑎𝑟𝑦) + 𝑑(𝑛𝑒𝑤_𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑛𝑒𝑤_𝑏𝑎𝑐 𝑘𝑢𝑝)},
𝑗 = 1, 2,… , 𝑝.

Each step of MEP is described in detail by the pseudocode in Algorithm
4. Considering the previously described effects caused by removing the
center 𝑜𝑢𝑡 and/or adding the center 𝑖𝑛 to the solution, we can divide
all users into three main groups: (i) users for whom the new center
𝑖𝑛 is closer than their primary center, (ii) users who are not affected
by the removal of center 𝑜𝑢𝑡 but whose backup center is changed by
opening 𝑖𝑛, and (iii) users whose primary or backup center is 𝑜𝑢𝑡. In
each of these cases, the vectors 𝑟, 𝑧, 𝑐1, and 𝑐2 are suitably modified
by updating only the information related to the given changes in the
solution. It is possible to calculate all values 𝑧(𝑗), 𝑟(𝑗), 𝑗 = 1,… , 𝑛 by
considering each user only once. In addition, a value 𝑓 ((𝑥∪ {𝑖𝑛})⧵{𝑜𝑢𝑡})
is determined, representing a candidate for the objective function value
after the swap.

The MEP procedure considers each candidate to be removed 𝑜𝑢𝑡′ ∈ 𝑥
n an effective way, and determines the best choice 𝑜𝑢𝑡 to be removed
rom the current solution as the one that minimizes the objective
unction value. The complexity of the MEP procedure is 𝑂(𝑛 − 𝑝 − 𝑞)
nd it is called 𝑛 − 𝑝 − 𝑞 times. Updating the information about the
8 
changes made in a solution requires 𝑂(𝑛(𝑝 + 𝑞)) operations, which is
he complexity of the Update procedure. Therefore, the worst-time

complexity of the FI procedure used in the Local search is 𝑂((𝑛−𝑝−𝑞)2).

Algorithm 4 Move Evaluation procedure for the CPNCP
1: procedure Move Evaluation(𝑖𝑛, 𝑥, 𝑐1, 𝑐2)
2: Initialization:

𝑓 ′ ← 0,
𝑟(𝑥(𝑗)) ← min{𝑑(𝑥(𝑗), 𝑖𝑛), 𝑑(𝑥(𝑗), 𝑐1(𝑥(𝑗)))},
𝑧(𝑐1(𝑥(𝑗))) ← max

{

𝑧(𝑐1(𝑥(𝑗))), min{𝑑(𝑥(𝑗), 𝑖𝑛), 𝑑(𝑥(𝑗), 𝑐2(𝑥(𝑗)))}
}

, 𝑗 =
1, 2, ..., 𝑝 + 𝑞

3: for every user 𝑖 ∈ 𝐴 ⧵ (𝑥 ∪𝑄) do
4: if 𝑖 ≠ 𝑖𝑛 and (𝑑(𝑖, 𝑖𝑛) < 𝑑(𝑖, 𝑐1(𝑖)) or (𝑑(𝑖, 𝑖𝑛) =

𝑑(𝑖, 𝑐1(𝑖)) and 𝑑(𝑖𝑛, 𝑐1(𝑖𝑛)) < 𝑑(𝑐1(𝑖), 𝑐1(𝑐1(𝑖))))) then
5: 𝑓 ′ ← max{𝑓 ′, 𝑑(𝑖, 𝑖𝑛) + 𝑑(𝑖𝑛, 𝑐1(𝑖𝑛)}
6: if 𝑓 ′ = 𝑑(𝑖, 𝑖𝑛) + 𝑑(𝑖𝑛, 𝑐1(𝑖𝑛) then
7: 𝑐 𝑟𝑖𝑡𝑖𝑐 𝑎𝑙_𝑢𝑠𝑒𝑟 ← 𝑖, 𝑏𝑎𝑐 𝑘𝑢𝑝_𝑐 𝑟𝑖𝑡𝑖𝑐 𝑎𝑙 ← 𝑐1(𝑖𝑛)
8: end if
9: else

⊳ Update the values 𝑟(𝑐1(𝑖))
0: 𝑟(𝑐1(𝑖)) ← max

{

𝑟(𝑐1(𝑖)), min{𝑑(𝑖, 𝑐1(𝑖)) +

𝑑(𝑐1(𝑖), 𝑐1(𝑐1(𝑖))), 𝑑(𝑖, 𝑐1(𝑖)) + 𝑑(𝑐1(𝑖), 𝑖𝑛)}
}

, 𝑖 ≠ 𝑖𝑛
1: 𝑟(𝑐1(𝑖𝑛)) ← max{𝑟(𝑐1(𝑖𝑛)), 𝑑(𝑖𝑛, 𝑐1(𝑖𝑛))}

⊳ Update the values 𝑧(𝑐1(𝑖))
2: Determine 𝑛𝑒𝑤_𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑖 between 𝑖𝑛 and 𝑐2(𝑖) and

𝑛𝑒𝑤_𝑏𝑎𝑐 𝑘𝑢𝑝_𝑖 for the user 𝑖
3: 𝑧(𝑐1(𝑖)) ← max{𝑧(𝑐1(𝑖)), 𝑑(𝑖, 𝑛𝑒𝑤_𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑖) +

𝑑(𝑛𝑒𝑤_𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑖, 𝑛𝑒𝑤_𝑏𝑎𝑐 𝑘𝑢𝑝_𝑖), } 𝑖 ≠ 𝑖𝑛
4: 𝑧(𝑐1(𝑖𝑛)) ← max{𝑧(𝑐1(𝑖𝑛)), 𝑑(𝑖𝑛, 𝑐2(𝑖𝑛))}

⊳ Update the values 𝑧(𝑐1(𝑐1(𝑖)))
5: Determine 𝑛𝑒𝑤_𝑏𝑎𝑐 𝑘𝑢𝑝_𝑖 for the user 𝑖 between 𝑖𝑛 and

𝑐2(𝑐1(𝑖))
6: 𝑧(𝑐1(𝑐1(𝑖))) ← max{𝑧(𝑐1(𝑐1(𝑖))), 𝑑(𝑖, 𝑐1(𝑖)) +

𝑑(𝑐1(𝑖), 𝑛𝑒𝑤_𝑏𝑎𝑐 𝑘𝑢𝑝_𝑖)}
17: end if
18: end for
19: for every center 𝑥(𝑗), 𝑗 = 1, 2, ...𝑝 do ⊳ Update the values

𝑧(𝑥(𝑗))
0: Determine 𝑛𝑒𝑤_𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑗 between 𝑖𝑛 and 𝑐1(𝑗) and

𝑛𝑒𝑤_𝑏𝑎𝑐 𝑘𝑢𝑝_𝑗
1: 𝑧(𝑥(𝑗)) ← max{𝑧(𝑥(𝑗)), 𝑑(𝑥(𝑗), 𝑛𝑒𝑤_𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑗) +

𝑑(𝑛𝑒𝑤_𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑗 , 𝑛𝑒𝑤_𝑏𝑎𝑐 𝑘𝑢𝑝_𝑗)}
2: end for
3: Find 𝑔1 ← max{𝑟(𝑥(𝑙)) | 𝑙 = 1, 2, ..., 𝑝 + 𝑞}, let the 𝑙∗ be the

corresponding index
4: Find 𝑔2 ← max𝑙≠𝑙∗{𝑟(𝑥(𝑙)) | 𝑙 = 1, 2, ..., 𝑝 + 𝑞}
5: for 𝑙 = 1, 2, ..., 𝑝 do
6: if 𝑥(𝑙) = 𝑏𝑎𝑐 𝑘𝑢𝑝_𝑐 𝑟𝑖𝑡𝑖𝑐 𝑎𝑙 then
7: 𝑓 ′ ← 𝑓 ′ − 𝑑(𝑖𝑛, 𝑏𝑎𝑐 𝑘𝑢𝑝_𝑐 𝑟𝑖𝑡𝑖𝑐 𝑎𝑙) + 𝑑(𝑖𝑛, 𝑐2(𝑖𝑛))

⊳ Update 𝑓 ′

8: end if
9: if 𝑙 ≠ 𝑙∗ then
0: 𝑔(𝑙) ← max{𝑓 ′, 𝑧(𝑥(𝑙)), 𝑔1}
1: else
2: 𝑔(𝑙) ← max{𝑓 ′, 𝑧(𝑥(𝑙)), 𝑔2}
3: end if
4: end for
5: Find: 𝑓 ← min{𝑔(𝑙) | 𝑙 = 1, 2, ..., 𝑝}
6: Find the center to be eliminated: 𝑜𝑢𝑡 ← 𝑥(𝑙∗∗), where 𝑙∗∗ is the

index of the found minimum
7: end procedure
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4. Computational experiments

The computational experiments were performed on a desktop com-
uter with Intel Core i7-11700 3.6 GHz processor and 16 GB of RAM

in a 64 bit Windows 10 environment. The ILP formulation presented in
Section 2 was solved with the IBM ILOG CPLEX 22.1.0 solver. CPLEX
uses 16 logical processors and stops either when it finds an optimal
solution or it reaches the maximum time of 7200 s per thread. The
VNS proposed in this paper was implemented in the C++ language
nd the execution was carried out on a single core.

4.1. Dataset

We have used 716 instances divided into 5 groups, all derived from
the instances for the 𝑝-next center problem used in the papers (Londe
et al., 2021; Mousavi, 2023; Ristić et al., 2021; Tasić, 2024). The
mall size instances consider 20 ≤ 𝑛 ≤ 50, the medium size instances
0 < 𝑛 ≤ 200, the large size instances 200 < 𝑛 ≤ 400, and the extra
arge size instances 800 ≤ 𝑛 ≤ 900. The fifth group contains instances
ith 100 ≤ 𝑛 ≤ 900, which are derived from Additional group of pmed

instances from the paper (Ristić et al., 2021). In order to generate test
nstances for solving CPNCP we used two different approaches.

The first approach is used to generate instances with 20 ≤ 𝑛 ≤ 100. It
is based on the approach used in Iravan et al. (2016) where the authors
generated test instances for CPCP by adapting the instances of 𝑝-center
problem. For each PNCP instance, we solved the 𝑞-next problem to
ptimality by using the ILP formulation from Albareda-Sambola et al.

(2015). We chose the 𝑞 established centers from the obtained optimal
olution to be the 𝑞 existing centers in the CPNCP. For example, for
he (15,5)-next center problem, the existing 5 centers are the optimal

solution of the 5-next center problem. As in Iravan et al. (2016), the
values 𝑞 are varied with a step of 5 in each considered instance.

The second approach, which is also proposed in Iravan et al. (2016),
is used for PNCP instances with 𝑛 > 100. Note that no optimal
olution is known for these instances. Therefore, the 𝑞 exiting centers
or CPNCP are randomly chosen from the PNCP solutions obtained by
he heuristic in Tasić (2024). It should be noted that these solutions are
ot necessarily the optimal ones. Assuming that the complexity of the
nstance decreases with the increase of 𝑞, we limited the values of 𝑞 to
ary from 2 to at most 10% of the value of 𝑝 + 𝑞.

In the paper (Ristić et al., 2021), the authors presented an Addi-
tional set of pmed test instances for the PNCP with up to 900 nodes.
These instances were also adapted according to the second approach. In
this way, the fifth set of CPNCP instances, denoted as Additional pmed
dataset, is obtained.

The following notation is used for all instances considered in this
tudy. The instance name pmedX_n_(p+q)_q contains information about
he total number of nodes (𝑛), the total number of centers (𝑝 + 𝑞), and
he number of already established centers (𝑞). For example, the instance
med1_90_20_5 is generated from the instance pmed1_90_20 for the
NCP. It has 𝑛 = 90 nodes, 𝑞 = 5 existing centers, and the total number
f centers should be 𝑝+𝑞 = 20. Therefore, the aim is to open additional
= 20 − 5 = 15 centers.

4.2. Parameter tuning

One of the main problems in the implementation of a metaheuristic
methods is the estimation of the parameter values that should be
used when solving instances or groups of data sets with different
properties. On the other hand, the efficiency and effectiveness of a
metaheuristic method are reflected in its robustness with respect to the
parameter values that must be specified in advance. The most important
parameter of SVNS is the parameter 𝛼, which affects the quality and
diversification of the solutions. Our aim was to evaluate the efficiency
of the proposed SVNS without fine adjustments of the parameters to the
specific instances or dataset groups. Therefore, a series of preliminary
 i

9 
Table 1
Comparison on different values of parameter 𝛼.

Instance group #𝐼 𝑛𝑠𝑡 𝛼 𝑏𝑒𝑠𝑡𝑎𝑣𝑔 #𝑏𝑒𝑠𝑡𝑎𝑣𝑔 𝑡_𝑏𝑒𝑠𝑡𝑎𝑣𝑔
0 102.73 19.73 0.00
0.1 102.73 20 0.00

𝑛 ≤ 50 15 0.2 102.73 20 0.00
0.3 102.73 20 0.00
0.5 102.73 20 0.00

0 96.78 17.78 0.18
0.1 96.78 20 0.10

50 < 𝑛 ≤ 100 40 0.2 96.78 19.98 0.10
0.3 96.78 19.65 0.12
0.5 96.78 19.28 0.16

0 61.85 16.18 0.93
0.1 61.76 19.5 0.53

100 < 𝑛 ≤ 200 34 0.2 61.76 19.56 0.64
0.3 61.76 18.35 0.70
0.5 61.76 17.47 0.75

0 44.15 12.04 3.95
0.1 43.77 18.23 2.27

200 < 𝑛 ≤ 400 26 0.2 43.88 17.12 2.40
0.3 44.12 15.77 2.61
0.5 44.27 15.61 3.14

computational experiments were performed to determine the best value
f the parameter 𝛼 to be used for all further tests.

The parameter tuning tests were performed with a subset of 115
randomly selected problem instances from the small, medium and large
instance sets, i.e. about 20% of the total number of instances are used
for this purpose. The set of values considered for the parameter 𝛼 was
{0, 0.1, 0.2, 0.3, 0.5}. Note that in the case of 𝛼 = 0, the SVNS algorithm
is reduced to the classical BVNS. For each value of 𝛼, the algorithm
was executed 20 times for each instance. The stopping criteria was
the maximum number of SVSN iterations. In this way, we ensure that
the SVNS requires similar total execution times for the same instance
when different values of 𝛼 are used. For each instance, we store the
best solution value obtained (𝑏𝑒𝑠𝑡), the number of times the algorithm
obtained the best value (#𝑏𝑒𝑠𝑡), and the average total execution time
required to reach the best solution for the first time (𝑡_𝑏𝑒𝑠𝑡).

Table 1 shows the summarized average results obtained for the total
umber of #𝐼 𝑛𝑠𝑡 instances in each group. The detailed results of the
arameter tuning test can be found in Appendix C (Tasić et al., 2024c).
or each instance group, the value of 𝛼 that led to the best average

objective function value is shown in bold. Table 1 shows that 𝛼 = 0 led
to the worst SVNS performance, while the algorithm performed slightly
better for 𝛼 = 0.5. For instances with 𝑛 ≤ 50, only 𝛼 = 0 did not lead
SVNS algorithm to the best solutions in all 20 runs in all cases. For
nstances with 50 < 𝑛 ≤ 100, only 𝛼 = 0.1 provided the best solutions
n all 20 runs in all cases. Furthermore, for 𝛼 = 0.1, the SVNS required
he shortest average time to reach these solutions for the first time.
onsidering 𝑏𝑒𝑠𝑡𝑎𝑣𝑔 and 𝑡_𝑏𝑒𝑠𝑡𝑎𝑣𝑔 the worst SVNS performance was for
= 0, followed by 𝛼 = 0.5. For the set of instances with 100 < 𝑛 ≤ 200,

nly 𝛼 = 0 did not lead SVNS to the best solutions in all cases. Looking
at the #𝑏𝑒𝑠𝑡𝑎𝑣𝑔 and 𝑡_𝑏𝑒𝑠𝑡𝑎𝑣𝑔 columns, 𝛼 = 0 performed the worst, 𝛼 = 0.5
was slightly better, while 𝛼 = 0.1 and 𝛼 = 0.2 gave the best results.
Finally, for 200 < 𝑛 ≤ 400 the best SVNS results considering all three
measures were obtained with 𝛼 = 0.1, and the worst with 𝛼 = 0,
ollowed by 𝛼 = 0.5. The worst performance of the algorithm at 𝛼 = 0
learly shows that the SVNS is more suitable for solving the CPNCP
han the BVNS.

We also performed a statistical analysis to gain a better insight into
the results obtained. Following the recommendations of Demšar (2006),
he Friedman test was performed. This is a non-parametric test based on
 ranking of the performance of the SVNS method for all five different
alues of 𝛼 for each instance. The value that results in the best SVNS
erformance for a given instance is ranked as 1, the second best value
s ranked as 2, and so on. Since we have three measures to compare
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Table 2
The average ranks for Friedman test.
𝛼 0 0.1 0.2 0.3 0.5

𝑟𝑎𝑛𝑘𝑎𝑣𝑔 4.32 2.27 2.3 2.64 3.46

(𝑏𝑒𝑠𝑡, #𝑏𝑒𝑠𝑡, and 𝑡_𝑏𝑒𝑠𝑡), the first ranking criterion is the value of the
objective function (𝑏𝑒𝑠𝑡). If two or more method variants obtained the
same value of 𝑏𝑒𝑠𝑡, the method with the higher value of #𝑏𝑒𝑠𝑡 is given a
better ranking. If the values of 𝑏𝑒𝑠𝑡 and #𝑏𝑒𝑠𝑡 are the same, the method
that reached the result faster for the first time (according to 𝑡_𝑏𝑒𝑠𝑡) gets
the better ranking.

The tested null hypothesis is: There is no significant difference
etween the compared methods with different 𝛼 values, while the
lternative hypothesis is: At least one 𝛼 value provides a significantly
ifferent result than the others. The recommended test significance is
= 0.05. For each 𝛼 value, the average value of the assigned ranks is

alculated and shown in the Table 2.
For 𝑁 = 115 instances and 𝑘 = 5 different 𝛼 values, we calculated

𝜒2 = 138 using the formula

𝜒2 = 12𝑁
𝑘(𝑘 + 1)

( 𝑘
∑

𝑖=1
𝑟𝑎𝑛𝑘2𝑎𝑣𝑔𝑖 −

𝑘(𝑘 + 1)2
4

)

. (11)

To reject the null hypothesis, this value must be equal to or greater than
the critical value for the 𝜒2 distribution with 𝑑 𝑓 = 𝑘 − 1 = 4 degrees
of freedom at the significance level 0.05, which is 9.49 (Sheshkin,
2000). Since 𝜒2 = 138 > 9.49, this means that the null hypothesis
hould be rejected and that there are significant differences between
he compared values of 𝛼.

To determine which difference(s) is/are significant, we used the
Nemenyi test. According to Nemenyi, two methods lead to significantly
different performances if their average ranks differ by at least 𝐶 𝐷 =
𝑞
√

𝑘(𝑘+1)
6𝑁 , where 𝑞 stands for the critical value of the Nemenyi test. In

ur case, 𝑞 = 2.728 (Demšar, 2006). We calculated the value 𝐶 𝐷 =
.5688 and came to the conclusion that SVNS with 𝛼 = 0 provides
ignificantly worse results than 𝛼 = 0.5. Furthermore, 𝛼 = 0.5 performs
ignificantly worse than 𝛼 = 0.1, 𝛼 = 0.2, and 𝛼 = 0.3. There are
o significant differences between the results obtained with the three
iddle values 0.1, 0.2, and 0.3. Since SVNS with 𝛼 = 0.1 has the lowest

verage rank, by taking into account the data from Table 1, we decided
to set the value of 𝛼 to 0.1 in our final computational experiments.

4.3. CPNCP results

In this subsection, we present summarized results of the CPLEX
olver and the proposed SVNS algorithm for the CPNCP. Detailed
esults of both CPLEX and SVNS for all considered CPNCP instances
re presented in Appendix A (Tasić et al., 2024a).

In our computational experiments, SVNS was executed 20 times on
ach test instance, starting from a different random initial solution.

The maximum number of SVNS iterations was used as a termination
criterion: 500 for the set of small size instances and 5000 for all other
sets. The value of the parameter 𝛼 was set to 0.1 for all dataset groups.
We set 𝑘max = 5 for all instances except for the Additional pmed
instances with 𝑝+𝑞 = 5, for which we used 𝑘max = 3 for obvious reasons.

Table 3 contains the average results of CPLEX and SVNS for all 716
med instances of CPNCP. For a summarized presentation, the instances
re grouped according to the number of nodes 𝑛. For example, five
PNCP instances with 𝑛 = 20 nodes derived from pmed1–pmed5 form
ne group. The average results shown in Table 3 are calculated over

the results obtained for the instances of the same group.
Each row of Table 3 contains: the name of the pmed instance group,

followed by the total number of locations - 𝑛, the interval for the
number of new centers to be opened - 𝑝, the interval for the number of
existing centers - 𝑞, and the number of instances in the group - #𝑖𝑛𝑠𝑡.
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In the next four columns of Table 3, the CPLEX results are presented
as average values for all instances in the group. Column #𝑜𝑝𝑡 contains
the number of instances in the group for which the optimal solution was
btained. For some instances, the CPLEX solver provided only a feasible
olution within the given execution time, but failed to determine the
ptimal solution. The number of such instances is given in #𝑓 𝑒𝑎𝑠.𝑜𝑛𝑙 𝑦
olumn. For a certain number of instances, the CPLEX solver could not
rovide even a feasible solution due to the ‘‘Out of memory’’ (OOM)
rror message. The number of such instances is reported in the #𝑜𝑜𝑚
olumn for each group. The last column regarding the CPLEX results,
enoted as 𝑎𝑣𝑔 .𝑡, contains the average running time used by CPLEX to
omplete its work (in seconds). The values in this column are marked
ith ‘‘*’’ to indicate that at least one CPLEX solution in this group

s not optimal. Similarly, for groups of instances with #𝑜𝑜𝑚 cases the
ign ‘‘**’’ is used to indicate that only the instances with obtained
ptimal and/or feasible solution were considered. If CPLEX has reached
either an optimal nor a feasible solution for each instance in a group, a
ark ‘‘–’’ is written in the corresponding column. Note that the CPLEX

unning time presented for an instance is the sum of the execution times
ollected from all threads (the result returned by the built-in function
plex.getTime() of class IloCplex).

The next four columns of Table 3 refer to the SVNS results: #𝑜𝑝𝑡∕#𝑏𝑘
 the total number of optimal (if known) or best known solutions from
he given group, 𝑎𝑣𝑔 .𝑡 - the average total execution time required to
each the best SVNS solution (in seconds), 𝑎𝑣𝑔 .𝑡𝑡𝑜𝑡 - the average total
xecution time (in seconds), 𝑎𝑔 𝑎𝑝 - the average gap (in %), where 𝑔 𝑎𝑝
s the average gap between the best objective function value obtained in
 single SVNS run, and the best objective function value obtained in 20
VNS runs. If the SVNS results match the optimal or best known results
or all instances of the same group, the values in the #𝑜𝑝𝑡 columns are
n bold.

The last column of Table 3 marked as 𝑎𝑣𝑔 .𝑑 𝑒𝑣 contains the average
ratio of the objective function values obtained by CPLEX and SVNS.
For each instance, we calculate the deviation (in percent) using the
formula:
𝑜𝑏𝑗𝐶 𝑃 𝐿𝐸 𝑋 − 𝑜𝑏𝑗𝑆 𝑉 𝑁 𝑆

𝑜𝑏𝑗𝑆 𝑉 𝑁 𝑆
⋅ 100%.

Then, for each group of instances, we calculate and present the average
deviation values. Please note that the deviation values are positive
in cases when the SVNS solutions are better than the feasible ones
obtained by CPLEX, and negative otherwise. Naturally, in cases when
the objective function values of the SVNS and CPLEX solutions are the
same, the deviation is equal to 0%.

The summarized results from Table 3 show that the proposed SVNS
has reached all optimal solutions for all small size instances. For the set
of medium size instances, SVNS failed to achieve an optimal solution for
only one instance, but it improved 4 instances where CPLEX obtained
only a feasible solution. The average total SVNS running time on all
small and medium size instances was significantly shorter than the CPU
ime required by CPLEX.

The advantages of SVNS become more obvious as the problem
ize increases, as shown in the last three sections of Table 3. For the

large pmed dataset, SVNS reached all the optimal solutions previously
obtained with CPLEX. For the remaining 6 instances, for which CPLEX
provided only feasible solution, SVNS failed to improve or reach this
upper bound in only one instance. For extra large instances, CPLEX
obtained an optimal solution for only 4 instances, while the remaining
instances were out reach for CPLEX due to the lack of memory. On
the other hand, SVNS reached all 4 optimal solutions in a short CPU
time. For the remaining extra large pmed instances, SVNS showed good
stability as the average gap values of its solutions are 0% for 171 out
of 180 instances in this set.

When considering the Additional pmed dataset, the CPLEX solver
obtained an optimal solution for 43 out of 79 instances and provided
a feasible solution for 14 instances. For the remaining 22 instances,
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Table 3
Average results of the CPLEX solver and the SVNS algorithm on the groups of pmed1–pmed40 and Additional pmed instances.

Inst. 𝑛 𝑝 𝑞 #inst CPLEX average values SVNS average values 𝑎𝑣𝑔 .𝑑 𝑒𝑣 (%)

#𝑜𝑝𝑡 #𝑓 𝑒𝑎𝑠.𝑜𝑛𝑙 𝑦 #oom 𝑎𝑣𝑔 .𝑡 #𝑜𝑝𝑡∕#𝑏𝑘 𝑎𝑣𝑔 .𝑡 𝑎𝑣𝑔 .𝑡𝑡𝑜𝑡 𝑎𝑔 𝑎𝑝
Small size instances

pmed1–pmed5 20 5 5 5 5 0 0 0.07 5 0.00 0.01 0 0
30 5 5 5 5 0 0 0.26 5 0.00 0.02 0 0
40 [5,15] [5,15] 20 20 0 0 0.35 20 0.00 0.04 0 0
50 [5,15] [5,15] 20 20 0 0 0.81 20 0.01 0.06 <0.01 0

Medium size instances
pmed1–pmed5 60 [5,25] [5,10] 25 25 0 0 1.13 25 0.01 0.83 0 0

70 [5,25] [5,10] 25 25 0 0 5.81 25 0.03 1.03 0 0
80 [5,25] [5,10] 25 25 0 0 17.57 25 0.08 1.23 0.02 0
90 [5,45] [5,15] 40 40 0 0 25.16 40 0.09 1.87 0.02 0
100 [5,45] [5,15] 50 50 0 0 72.04 49 0.15 2.08 0.10 −0.02

1.03 pmed6–pmed10 150 [10,75] [5,20] 60 60 0 0 1691.89 60 0.18 4.78 0.07 0
200 [10,95] [5,20] 80 76 4 0 5441.34* 80 0.76 8.69 0.17 0.22

Large size instances
pmed11–pmed12 250 [27,88] [2,9] 22 18 4 0 13 680.85* 21 2.43 10.91 0.74 0.11

300 [54,148] [2,15] 26 26 0 0 161.76 26 0.14 20.53 0 0
pmed16–pmed17 350 [36,118] [2,12] 24 22 2 0 6433.69* 24 4.24 22.61 1.04 0.79

400 [72,198] [2,20] 30 30 0 0 615.67 30 3.67 55.38 0.45 0
Extra large size instances

pmed35–pmed37 800 [144,398] [2,40] 63 4 0 59 2569.40** 63 3.65 312.63 0 0**
pmed38–pmed40 850 [81,288] [2,29] 54 0 0 54 – 54 10.28 230.15 0.28 –

900 [162,448] [2,40] 63 0 0 63 – 63 14.07 428.04 0.06 –
Additional pmed instances

pmed1–pmed5 100 [3,31] [2,3] 6 6 0 0 2655.45 6 0.06 1.79 0.00 0
pmed6–pmed10 200 [3,65] [2,6] 8 7 1 0 18 406.39* 8 0.27 5.31 0.07 0.30
pmed11–pmed15 300 [3,98] [2,10] 10 7 3 0 25 490.66* 10 1.06 12.17 0.32 5.14
pmed16–pmed20 400 [3,131] [2,13] 11 8 2 1 14 312.88** 11 5.30 28.35 1.07 6334.52**
pmed21–pmed25 500 [3,165] [2,16] 11 6 3 2 19 698.17** 11 4.77 46.06 0.77 4.41**
pmed26–pmed30 600 [3,198] [2,20] 14 6 1 7 13 446.2** 14 1.63 67.42 0 0.30**
pmed31-pmed34 700 [3,138] [2,14] 9 3 3 3 16 044.66** 9 5.78 51.88 0.12 14.52**
pmed35–pmed37 800 [3,78] [2,8] 5 0 1 4 25 111.6** 5 1.77 47.15 0 0**
pmed38–pmed40 900 [3,88] [2,9] 5 0 0 5 – 5 21.66 54.93 2.38 –
Fig. 4. Success rate (in %) of CPLEX and SVNS in reaching the optimal/best known
value.

CPLEX could not even provide a feasible solution due to memory limita-
tions. On the other hand, SVNS reached the optimal solutions obtained
by CPLEX for all 43 instances. For the remaining 36 instances, the
SVNS solution was better than the feasible one obtained with the CPLEX
solver. Only for one instance (pmed35_800_5_2) does the SVNS solution
match the feasible solution obtained by CPLEX. In the cases where
CPLEX provided optimal solutions, it often required several hours of
CPU time, while the average running time of SVNS was significantly
shorter than that required by CPLEX.

Fig. 4 shows the success rate (in %) of CPLEX and SVNS in reaching
the optimal/best known value for all five instance groups within the
given total execution time for CPLEX and the maximum number of
iterations for SVNS.
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The summarized analysis of the CPU times required by CPLEX and
SVNS to reach the optimal/best solution is shown in Fig. 5. The average
CPLEX and SVNS running times (in seconds) for all instances with
the same dimension 𝑛 are shown in Fig. 5. Fig. 7(a) refers to the
average CPLEX time, the average SVNS total execution time and the
average SVNS time required to reach the best solution for the first time.
These average values are calculated over all instances with the same
dimension 𝑛 belonging to small, medium and large datasets. Similarly,
Fig. 7(b) refers to the running times on the subset of Additional pmed
instances that could be solved by using CPLEX. Note that the 𝑋-axis
indicates the problem dimension 𝑛, while the 𝑌 -axis represents the CPU
time presented on a logarithmic scale to improve visualization.

To illustrate the quality of the solutions provided by SVNS, we show
in Fig. 6 the percentage of instances from each group for which SVNS
reached the best solution in each of the 20 runs (𝑎𝑔 𝑎𝑝 = 0%). For the
remaining instances (with 𝑎𝑔 𝑎𝑝 > 0%), Fig. 7 shows how the average
𝑎𝑔 𝑎𝑝 changes with increasing problem dimension 𝑛.

Note that the SVNS parameter values in our study were set to the
same values for all instance groups considered. Our intention was to
investigate the performance of the SVNS under the same conditions for
all instances, i.e., without parameter adjustments for specific instance
groups. We believe that fine tuning of parameters for each of the
considered instance groups would lead to further improvements in the
solution quality and shorter running times of the proposed SVNS.

4.4. Comparison with PNCP results

In this subsection, we compare the results of the CPNCP for given
values 𝑝 and 𝑞 with the results of the PNCP when the number of
centers to be established is 𝑝+𝑞. Our motivation was to investigate two
scenarios resulting from two different approaches to generate instances
(which corresponds to two different approaches when planning service
networks in real life situations). We also investigate the performance
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Fig. 5. Average CPU time required by CPLEX and SVNS algorithm (logarithmic scale).
Fig. 6. Percentage of instances with 𝑎𝑔 𝑎𝑝 = 0%.

of the proposed SVNS approach in solving the PNCP problem. We run
the SVNS with 𝑞 = 0 on a set of PNCP instances from the literature and
compare the obtained results with those obtained with recent PNCP
solution methods.

4.4.1. Comparison of CPNCP and PNCP results
For a fair comparison of the two network design strategies, it

was necessary to generate adequate CPNCP instances. We used two
approaches to generate the CPNCP dataset: in the first approach, we
start from the solutions of PNCP with 𝑞 centers, while the second
approach uses PNCP solutions with 𝑝+𝑞 centers. The remaining parts of
this subsection contain a detailed description of generating the CPNCP
instances used for this purpose and the comparison of the best results
obtained with SVNS for the CPNCP and the known optimal/best known
solutions of the PNCP.

Generating instances for CPNCP from the optimal solution of PNCP with 𝑞
centers

In the first approach, the 𝑞 previously established centers for CPNCP
are taken from the optimal solution of PNCP with 𝑞 centers. It is
obvious that the optimal solution value of CPNCP with 𝑞 existing
centers and 𝑝 new centers to be chosen will not be lower than the
optimal solution value of PNCP with 𝑝+ 𝑞 centers. For example, for the
instance pmed1_40_10_5, the five fixed centers for CPNCP are obtained
from the optimal solution of PNCP with 5 centers: {0, 10, 28, 37, 38}.
The optimal solution of CPNCP with the fixed centers in bold is
{𝟎, 𝟏𝟎, 17, 19, 20, 25, 𝟐𝟖, 31, 𝟑𝟕, 𝟑𝟖}, and the objective function value is
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116. This corresponds to the real situation of expanding a service net-
work from 5 to 10 centers. On the other hand, the optimal solution of
the PNCP problem with 10 centers is {6, 13, 14, 17, 20, 24, 28, 34, 37, 38}
with an objective function value of 111. This corresponds to a situation
in which the entire network is designed from scratch, which is rarely
the case in practice. Usually, companies expand their service network
by adding new centers to the existing ones. The above example shows
notice that centers 0 and 10 (the fixed centers in the CPNCP) are not
included in the optimal solution of the PNCP with 10 centers. Thus, the
solution of the CPNCP compared to the solution of the PNCP can either
be a different solution but with the same objective function value or a
solution having a greater objective function value, as in this example.

The presented results provide information on how much loss can
be produced by keeping already existing facilities while expanding
the network. Therefore, the objective value of a PNCP solution can
be interpreted as the lower bound of the objective value of a CPNCP
solution. In addition, the analysis of PNCP and CPNCP solutions and
the comparison of the corresponding objective values can also be used
to decide whether some of the already open facilities should be closed
and replaced by another facility.

Table 4 shows the objective function value (𝑏𝑒𝑠𝑡) of the opti-
mal/feasible solution obtained by CPLEX when solving the PNCP on
the set of small size instances from which the test instances for the
CPNCP were generated. This is followed by the results of the SVNS
algorithm for solving the CPNCP on the set of corresponding CPNCP
instances generated by the first approach. Since our primary goal is
to compare only the values of the obtained solutions, we present the
best obtained objective function value (𝑏𝑒𝑠𝑡) of the SVNS solutions for
the CPNCP and the number of SVNS runs that provided this best value
(#𝑏𝑒𝑠𝑡). From the results shown in Table 4 for the set of 50 small size
instances, it can be seen that for 35 instances the objective function
value for the CPNCP is greater than the objective function value for
the PNCP, while for the remaining 15 instances the values are equal. It
can be noticed that even with the objective function values, the optimal
solutions may contain different nodes. For example, in the case of the
instance pmed1_20_10_5, the optimal solution of the PNCP with 10
nodes is {1, 3, 5, 7, 10, 11, 13, 15, 16, 17} and the objective function value
is 95. The fixed centers for CPNCP are {2, 6, 10, 11, 16}, while centers 2
and 6 are not included in the PNCP solution. On the other hand, the
SVNS solutions obtained for CPNCP are {1, 𝟐, 4, 𝟔, 𝟏𝟎, 𝟏𝟏, 13, 15, 𝟏𝟔, 17},
{𝟐, 3, 5, 𝟔, 𝟏𝟎, 𝟏𝟏, 15, 𝟏𝟔, 17, 19}, {1, 𝟐, 𝟔, 9, 𝟏𝟎, 𝟏𝟏, 14, 15, 𝟏𝟔, 17}, etc., which
all have the same objective function value 95. Therefore, in this case,
nothing is lost by expanding the network compared to the design
of the network from the beginning. On the other hand, the instance
pmed2_40_10_5 has the result 112 for PNCP and 135 for CPNCP. It is
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Fig. 7. Average 𝑎𝑔 𝑎𝑝 values for instances with 𝑎𝑔 𝑎𝑝 > 0%.
obvious that already established centers prevent the full potential of the
service network, so it is justified to consider the possible replacement
of one or more already existing centers if this is possible.

Similar tables with the results on the sets of medium and large
instances can be found in the Appendix B (Tasić et al., 2024b). For
all these instances, a similar conclusion as for the instance 𝑛 ≤ 100 can
be derived, i.e. the obtained objective function values for CPNCP are
greater than or equal to the objective function values for PNCP.

Generating instances for CPNCP from solution of PNCP with 𝑝 + 𝑞 centers
Following the second approach for generating test instances for

CPNCP, we start from the solutions obtained by the heuristic (Tasić,
2024) for solving the PNCP on instances with 𝑛 ≥ 100 (note that these
solutions do not necessarily coincide with the optimal ones). The results
of the heuristic from Tasić (2024) were the only available solutions
for which we had both the objective function values and the locations
of opened centers, and these data were necessary to generate CPNCP
instances by the second approach. When choosing the 𝑞 random centers
from the heuristic solutions of the PNCP (Tasić, 2024) as the locations
of the previously established centers in the CPNCP, it is possible that
the SVNS algorithm returns a CPNCP solution with a smaller objective
function value compared to the initial PNCP heuristic solution (Tasić,
2024). In this situation, an improvement of the initial PNCP solution is
provided.

We compared the results of CPNCP and PNCP on the set of instances
with 𝑛 ≥ 100 generated by the second approach. Table 5 shows the
average results for the set of Additional pmed instances, while the
detailed results for the remaining instances can be found in Appendix
B (Tasić et al., 2024b). Since these instances were generated from the
heuristic solutions (Tasić, 2024), in order to provide a fair analysis of
the two scenarios, we compare the CPNCP results obtained by SVNS
with the heuristic solutions of PNCP from Tasić (2024). Note that
the solution of the CPNCP is also a solution of the PNCP, so the
CPNCP results with a lower objective function value than those for the
PNCP obviously lead to an improvement of the existing PNCP solutions
obtained by the heuristic from Tasić (2024).

In Table 5, the instances are grouped by dimension in the same way
as in Table 3. For both CPNCP and PNCP, the table contains the number
of optimal or best known solutions (#𝑜𝑝𝑡∕#𝑏𝑘) from the same group.
The percentage of the obtained optimal or best known solutions for the
Heur (Tasić, 2024) is given i the (%𝑜𝑝𝑡∕𝑏𝑘) column. The last column
𝑎𝑣𝑔 .𝑠𝑎𝑣𝑖𝑛𝑔 𝑠(%) shows the average decrease of the objective function
value achieved by using SVNS for CPNCP, in respect to the objective
function value of PNCP obtained by heuristic Heur.

From the data presented in Table 5, it can be seen that for 8 out
of 79 instances, the SVNS for CPNCP reached solutions with a lower
objective function value than the existing solutions of Heur for PNCP.
For example, consider the instance pmed13_300_30 from the Additional
pmed dataset. For this instance, the heuristic Heur (Tasić, 2024) for the
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Table 4
Results of CPLEX for PNCP and the SVNS for CPNCP on the set of small-size instances
generated by following the first approach.

Instance 𝑛 𝑝 𝑞 CPLEX for PNCP SVNS for CPNCP

𝑏𝑒𝑠𝑡 𝑏𝑒𝑠𝑡 #𝑏𝑒𝑠𝑡

pmed1_20_10_5 20 5 5 95 95 20
pmed1_30_10_5 30 5 5 95 95 20
pmed1_40_10_5 40 5 5 111 116 20
pmed1_40_20_5 40 15 5 89 89 20
pmed1_40_20_10 40 10 10 89 89 20
pmed1_40_20_15 40 5 15 89 89 20
pmed1_50_10_5 50 5 5 110 112 20
pmed1_50_20_5 50 15 5 89 91 20
pmed1_50_20_10 50 10 10 89 94 20
pmed1_50_20_15 50 5 15 89 91 20
pmed2_20_10_5 20 5 5 99 100 20
pmed2_30_10_5 30 5 5 110 128 20
pmed2_40_10_5 40 5 5 112 135 20
pmed2_40_20_5 40 15 5 96 98 20
pmed2_40_20_10 40 10 10 96 98 20
pmed2_40_20_15 40 5 15 96 96 20
pmed2_50_10_5 50 5 5 140 145 20
pmed2_50_20_5 50 15 5 99 99 19
pmed2_50_20_10 50 10 10 99 104 20
pmed2_50_20_15 50 15 15 99 99 20
pmed3_20_10_5 20 5 5 77 92 20
pmed3_30_10_5 30 5 5 122 122 20
pmed3_40_10_5 40 5 5 105 122 20
pmed3_40_20_5 40 15 5 77 85 20
pmed3_40_20_10 40 10 10 77 85 20
pmed3_40_20_15 40 5 15 77 82 20
pmed3_50_10_5 50 5 5 125 128 20
pmed3_50_20_5 50 15 5 87 87 20
pmed3_50_20_10 50 10 10 87 88 20
pmed3_50_20_15 50 5 15 87 93 20
pmed4_20_10_5 20 5 5 125 125 20
pmed4_30_10_5 30 5 5 122 126 20
pmed4_40_10_5 40 5 5 122 126 20
pmed4_40_20_5 40 15 5 85 91 20
pmed4_40_20_10 40 10 10 85 91 20
pmed4_40_20_15 40 5 15 85 85 20
pmed4_50_10_5 50 5 5 126 141 20
pmed4_50_20_5 50 15 5 91 99 20
pmed4_50_20_10 50 10 10 91 108 20
pmed4_50_20_15 50 5 15 91 105 20
pmed5_20_10_5 20 5 5 91 91 20
pmed5_30_10_5 30 5 5 120 126 20
pmed5_40_10_5 40 5 5 127 137 20
pmed5_40_20_5 40 15 5 91 91 20
pmed5_40_20_10 40 10 10 91 97 20
pmed5_40_20_15 40 5 15 91 96 20
pmed5_50_10_5 50 5 5 121 121 20
pmed5_50_20_5 50 15 5 89 90 20
pmed5_50_20_10 50 10 10 89 91 20
pmed5_50_20_15 50 5 15 89 90 20
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Table 5
Average results of Heur. (Tasić, 2024) for PNCP and the SVNS results for CPNCP on the set of instances generated following
the second approach.

Instance 𝑛 𝑝 𝑞 #inst Heur. (Tasić, 2024) for PNCP SVNS for CPNCP

#𝑜𝑝𝑡∕#𝑏𝑘 %𝑜𝑝𝑡∕𝑏𝑘 #𝑜𝑝𝑡∕#𝑏𝑘 𝑎𝑣𝑔 .𝑠𝑎𝑣𝑖𝑛𝑔 𝑠 (%)

pmed1–pmed5 100 [3,31] [2,3] 6 6 100 6 0
pmed6–pmed10 200 [3,65] [2,6] 8 8 100 8 0
pmed11–pmed15 300 [3,98] [2,10] 10 8 80 10 0.42
pmed16–pmed20 400 [3,131] [2,13] 11 8 72.73 11 1.70
pmed21–pmed25 500 [3,165] [2,16] 11 9 81.82 11 0.52
pmed26–pmed30 600 [3,198] [2,20] 14 14 100 14 0
pmed31–pmed34 700 [3,138] [2,14] 9 9 100 9 0
pmed35–pmed37 800 [3,78] [2,8] 5 5 100 5 0
pmed38–pmed40 900 [3,88] [2,9] 5 4 80 5 0.83
Table 6
Literature review for PNCP instances.

Reference Year #inst Stopping criterion Solution data

Albareda-Sambola et al. (2015) 2015 132 max CPU = 4 h Average results, CPU
López-Sánchez et al. (2019) 2018 132 The number of generated solutions Best solution, CPU, gap
Londe et al. (2021) 2021 413 max CPU = 7 days Best solution, CPU first
Zhang et al. (2022) 2022 413 CPU = 60 s % of hits best solution, normalized CPU first
Ristić et al. (2021) 2023 104 max CPU = 5n Best solution, avg.sol, worst sol, CPU first, #best (in 20 runs), gap
Ristić et al. (2023a) 2023 264 max CPU = 1800 s Best sol., avg.sol., worst sol., CPU first, #best (in 20 runs)
Tasić (2024) 2023 285 max 5000 iterations Best solution, #best (in 20 runs), CPU total, CPU first, gap, st.dev.
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PNCP returned the best objective value of 49 (see Appendix B Tasić
et al., 2024b). On the other hand, SVNS for CPNCP obtained the best
solution with an objective function value of 48 for pmed13_300_30_2
and for pmed13_300_30_3. Note that the best SVNS solutions for CP-
NCP on these two instances are also the solution of PNCP for the
instance pmed13_300_30. Similar situation occurs for the instances
pmed19_400_80 and pmed23_500_50, as well as for pmed40_900_90.
For the remaining 71 instances, SVNS for the CPNCP returned the same
best objective values as for the ones obtained when solving the PNCP.

The results presented in this subsection show that comparing CPNCP
and PNCP solutions can help decision makers to expand a service
network. If locating a service facility requires significant installation
costs, the decision maker will most likely opt for the CPNCP model and
keep the installed facilities, as the losses generated by this model are
likely to be lower than the costs of closing some of the existing facilities
nd opening new ones. In situations where opening facilities is cheap,
he decision maker may consider designing the network from scratch
ith the required number of facilities. Therefore, the choice of model

depends on the information about how much damage would be caused
therwise.

4.4.2. Comparison with recent approaches for solving PNCP
If the number of fixed centers is set to zero (q = 0), the CPNCP

ecomes the PNCP. Recently, many methods have been proposed for
olving PNCP, but their direct comparison is challenging. The difficul-
ies in providing direct comparison of solution methods for PNCP arise
rom several facts: Different sets of instances have been used in the

different papers dealing with PNCP, the proposed methods use different
stopping criteria, and the results are presented in different ways.

Table 6 presents our attempt to summarize the existing results
or PNCP from the literature. For each paper dealing with PNCP, we
ndicate: the year in which the paper was published, the number of
nstances tested, the stopping criterion used for the proposed method,
nd the solution data available in the respective reference.

The main goal of these numerical experiments was to investigate
he behavior of our SVNS algorithm for CPNCP when applied to solve
NCP. For this purpose, we used pmed instances, which represent
 standard benchmark set in the literature commonly used for the
-center problem and its variants. Based on the available data, we
ivided all pmed instances used to test PNCP solution methods from the
iterature into 5 groups (453 instances in total), as shown in Table 7.
 h
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In our experiments, we used the same parameter values as in the case
of CPNCP, which means that these results should not be considered as
the best possible results that can be obtained with SVNS when solving
PNCP.

Table 8 shows the number of best solutions obtained by each
method from all five groups and the percentage of best solutions
obtained. (in the cases where this information was available).

It can be seen that the results obtained with our SVNS are com-
parable to seven recent methods from the literature. In 25 out of 453
cases (5.52%), the SVNS did not reach the best known PNCP solution.
Although the papers (Zhang et al., 2022; Ristić et al., 2023a) show the
erformance of 100% for the tested instances, it should be taken into

account that none of the mentioned papers in the literature used all
pmed instances. For example, Group 5 was not used in Zhang et al.
(2022), while Groups 3 and 4 were not used in Ristić et al. (2023a) (see
Table 7). As can be seen from Section 4.3 and Table 3, exactly these
instances were difficult to solve with the exact solver. It should also
be mentioned that in Londe et al. (2021) the experiments performed
or some instances took up to a week to obtain optimal/best known
olutions. From the results presented in Table 8, it can be concluded
hat the SVNS developed for solving the CPNCP can also be successfully
pplied to the PNCP.

5. Conclusion

In this study, we have introduced the conditional 𝑝-next center
roblem (CPNCP), as a variant of the 𝑝-next center problem (PNCP).
he considered CPNCP has an important role in the design and opti-
ization of emergency systems and other service networks. The CPNCP

overs two key requirements that arise in practice: opening new service
enters while keeping the existing service in function and ensuring that
f a primary center fails, its users are redirected to an open center that
s closest to the primary center. The goal of the CPNCP is to minimize
he distance from each customer to its backup center, passing through
 primary center. In this study, an integer linear formulation of the
PNCP is given, and it is indicated that the problem itself is NP-hard,
s a generalization of the classical 𝑝-center problem.

Due to the complexity of the CPNCP under consideration, an opti-
ization method that is able to solve effectively large, realistic sized
roblem instances is required. This study proposes an efficient meta-
euristic based on Skewed Variable Neighborhood Search (SVNS) as a
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Table 7
PNCP instances.

Group # inst Inst. name Inst. dimension Reference(s)

Group 1 64 pmed1–pmed4, pmed6–pmed8 10 ≤ 𝑛 ≤ 200 Albareda-Sambola et al. (2015), Londe et al. (2021), López-Sánchez et al. (2019), Ristić
et al. (2023a), Ristić et al. (2021), Tasić (2024) and Zhang et al. (2022)

Group 2 68 pmed1–pmed4 50 ≤ 𝑛 ≤ 100 Albareda-Sambola et al. (2015), Londe et al. (2021), López-Sánchez et al. (2019), Ristić
et al. (2023a), Tasić (2024) and Zhang et al. (2022)

Group 3 113 pmed5, pmed9–pmed19 10 ≤ 𝑛 ≤ 400 Londe et al. (2021), Tasić (2024) and Zhang et al. (2022)
Group 4 168 pmed20–pmed40 350 ≤ 𝑛 ≤ 900 Londe et al. (2021) and Zhang et al. (2022)
Group 5 40 Additional pmed 100 ≤ 𝑛 ≤ 900 Ristić et al. (2023a), Ristić et al. (2021) and Tasić (2024)
Table 8
Comparison of SVNS results when solving the PNCP (case 𝑞 = 0) with results from the literature.

Group 1 Group 2 Group 3 Group 4 Group 5
#best %best #best %best #best %best #best %best #best %best

Albareda-Sambola et al. (2015) 64 100 68 100 – – – – – –
López-Sánchez et al. (2019) 46 71.88 52 76.47 – – – – – –
Londe et al. (2021) 63 98.44 68 100 112 99.2 158 95.05 – –
Zhang et al. (2022) 64 100 68 100 113 100 168 100 – –
Ristić et al. (2021) 50 78.12 – – – – – – 29 72.5
Ristić et al. (2023a) 64 100 68 100 – – – – 40 100
Tasić (2024) 63 98.44 68 100 102 90.27 – – 33 82.5
SVNS 64 100 68 100 109 96.46 149 88.69 38 95
M
R

solution method for the CPNCP. Appropriate solution representation,
neighborhood structures, and fast solution evaluation are used. One of
the key aspects of the proposed SVNS is the efficient implementation
of the Fast Interchange (FI) within the Local Search phase.

The experimental study was conducted on the set of modified pmed
nd Additional pmed instances with up to 900 nodes. The adequate

value of the SVNS parameter 𝛼 was found through the set of parameter
tuning tests and statistical analysis of the obtained results. The results of
he final computational experiments on modified pmed instances show
hat the proposed SVNS heuristic approach was able to reach optimal
olutions previously obtained by the CPLEX solver in less CPU time.

Moreover, SVNS improved the best feasible solution provided by CPLEX
in cases where no optimal solution was found. For most of the extra
large size pmed instances and Additional pmed instances, CPLEX failed
to provide even a feasible solution within the given time limit. On the
other hand, the proposed SVNS showed high stability in returning good
quality solutions for these instances in short CPU times.

To investigate the effects of two scenarios in service network plan-
ning (the first one based on the PNCP model and the second one based
on the CPNCP model), we generated CPNCP test examples from the
PNCP solutions for which we the list of established centers available.
We compared the SVNS solutions for the obtained CPNCP dataset with
he best known PCNP solutions for PNCP instances from which the

CPNCP dataset was generated. The presented results show how high
the losses can be if the existing facilities are kept when expanding
a service network (which is the case in most real-world situations).
Finally, we considered the case of 𝑞 = 0 in the CPNCP leading to the
PNCP and compared the solutions of the proposed SVNS algorithm with
𝑞 = 0 with the results of seven recent PNCP solution methods from
the literature. The data obtained indicate that the SVNS results for the
PNCP are comparable to the results of recent solution approaches from
the literature that have been developed specifically for the PNCP.

The results presented in this paper show that SVNS is a promising
olution approach for the CPNCP under consideration, but also for the
NCP. Future work could focus on the hybridization of SVNS with
P-based methods for solving CPNCP and considering to capacitated
ariants of CPNCP. Another promising idea is to decompose the CPNCP
nto a set of decision subproblems, and then apply an efficient heuristic
uch as tabu search, SVNS or another VNS-based heuristic to the

obtained subproblems.
15 
CRediT authorship contribution statement

Jelena Tasić: Writing – original draft, Software, Methodology,
Investigation, Formal analysis, Data curation. Zorica Dražić: Writing
– review & editing, Writing – original draft, Validation, Resources,
Methodology, Formal analysis. Zorica Stanimirović: Writing – review
& editing, Validation, Supervision, Formal analysis, Conceptualization.

Acknowledgments

The research of the authors was partially funded by Faculty of
Mathematics University of Belgrade (the contracts 451-03-47/2023-
01/200104 and 451-03-66/2024-03/200104) through the grant by the

inistry of Science, Technological Development, and Innovation of the
epublic of Serbia.

Data availability

Data will be made available on request.

References

Albareda-Sambola, M., Hinojosa, Y., Marín, A., Puerto, J., 2015. When centers can fail:
A close second opportunity. Comput. Oper. Res. 62, 145–156.

Berman, O., Drezner, Z., 2008. A new formulation for the conditional p-median and
p-center problems,. Oper. Res. Lett. 36, 481–483.

Berman, O., Simchi-Levi, D., 1990. The conditional location problem on networks.
Transp. Sci. 24, 77–78.

Brimberg, J., Mladenović, N., Todosijević, R., Urošević, D., 2019. Solving the capaci-
tated clustering problem with variable neighborhood search. Ann. Oper. Res. 272,
289–321.

Brimberg, J., Mladenović, N., Urošević, D., 2015. Solving the maximally diverse
grouping problem by skewed general variable neighborhood search. Inform. Sci.
295, 650–675.

Brimberg, J., Salhi, S., Todosijević, R., Urošević, D., 2023. Variable neighborhood
search: The power of change and simplicity. Comput. Oper. Res. 155, 106221.

Callaghan, B., Slhi, S., Brimberg, J., 2018. Optimal solutions for the continuous p-centre
problem and related 𝛼-neighbour and conditional problems: A relaxation-based
algorithm. J. Oper. Res. Soc. 70 (2), 192–211.

Celik Turkoglu, D., Erol Genevois, M., 2020. A comparative survey of service facility
location problems. Ann. Oper. Res. 292, 399–468.

Chen, R., 1990. Conditional minisum and minimax location-allocation problems in
Euclidean space. Transp. Sci. 22, 158–160.

http://refhub.elsevier.com/S0305-0548(24)00388-5/sb1
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb1
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb1
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb2
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb2
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb2
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb3
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb3
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb3
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb4
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb4
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb4
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb4
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb4
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb5
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb5
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb5
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb5
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb5
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb6
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb6
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb6
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb7
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb7
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb7
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb7
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb7
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb8
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb8
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb8
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb9
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb9
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb9


J. Tasić et al. Computers and Operations Research 175 (2025) 106916 
Chen, D., Chen, R., 2010. A relaxation-based algorithm for solving the conditional
p-center problem,. Oper. Res. Lett. 38, 215–217.

Chen, R., Handler, G.Y., 1993. The conditional p-center in the plane. Naval Res. Logist.
40, 117–127.

Demšar, J., 2006. Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30.

Drezner, Z., 1984. The p-centre problem-heuristic and optimal algorithms. J. Oper. Res.
Soc. 35 (8), 741–748.

Drezner, Z., 1989. Conditional p-center problems. Transp. Sci. 23, 51–53.
Drezner, Z., 1995. On the conditional p-median problem. Comput. Oper. Res. 22,

525–530.
Hakimi, S., 1965. Optimum distribution of switching centers in a communication

network and some related graph theoretic problem. Oper. Res. 13 (3), 462—-475.
Handler, G., Mirchandani, P.B., 1979. Location on Networks: Theory and Algorithms. MIT

Press, Cambridge.
Hansen, P., Mladenović, N., 1997. Variable neighborhood search. Comput. Oper. Res.

24 (11), 1097–1100.
Hansen, P., Mladenović, N., Moreno Pérez, J.A., 2010. Variable neighbourhood search:

methods and applications. Ann. Oper. Res. 175, 367–407.
Iravan, C.A., Slhi, S., Drezner, Z., 2016. Hybrid meta-heuristics with VNS and ex-

act methods: Application to large unconditional and conditional vertex p-centre
problems. J. Heuristics 22 (4), 507–537.

Kariv, O., Hakimi, S., 1979. An algorithmic approach to network location problems.
Part 1: The p-centers. SIAM J. Appl. Math. 37 (3), 513–538.

Lin, C.C., 1975. A note about the new emergency facility insertion in an undirected
connected graph. In: Proceedings of the Sixth Annual Pittsburgh Conference on
Modelling Simulation, Pittsburgh, Penn. Vol. 1, pp. 375–377.

Londe, M.A., Andrade, C.E., Pessoa, L.S., 2021. An evolutionary approach for the p-next
center problem. Expert Syst. Appl. 175, 114728.

López-Sánchez, A., Sánchez-Oro, J., Hernandez-Dõaz, A., 2019. GRASP and VNS for
solving the p-next center problem. Comput. Oper. Res. 104, 295–303.

Macedo, R., Alves, C., Hanafi, S., Jarboui, B., Mladenović, N., Ramos, B., De Car-
valho, J.V., 2015. Skewed general variable neighborhood search for the location
routing scheduling problem. Comput. Oper. Res. 61, 143–152.

Minieka, E., 1980. Conditional centers and medians on a graph. Networks 10, 265–272.
Mladenović, N., Alkandari, A., Pei, J., Todosijević, R., Pardalos, P.M., 2020. Less is

more approach: basic variable neighborhood search for the obnoxious p-median
problem. Int. Trans. Oper. Res. 27 (1), 480–493.

Mladenović, N., Labbe, M., Hansen, P., 2003. Solving the p-center problem with tabu
search and variable neighborhood search. Networks 42 (1), 48–64.

Mladenović, N., Todosijević, R., Urošević, D., Ratli, M., 2022. Solving the capacitated
dispersion problem with variable neighborhood search approaches: From basic to
skewed VNS. Comput. Oper. Res. 139, 105622.

Mousavi, S.R., 2023. Exploiting flat subspaces in local search for p-center problem and
two fault-tolerant variants. Comput. Oper. Res. 149, 106023.
16 
Mrkela, L., Stanimirović, Z., 2022. A variable neighborhood search for the budget-
constrained maximal covering location problem with customer preference ordering.
Oper. Res. 22 (5), 5913–5951.

Pelegrin, B., 1991. Heuristic methods for the p-center problem. RAIRO-Oper. Res. 25
(1), 65–72.

Pullan, W., 2008. A memetic genetic algorithm for the vertex p-center problem. Evol.
Comput. 16 (3), 417–436.

Quevedo-Orozco, D.R., Ríos-Mercado, R.Z., 2015. Improving the quality of heuristic
solutions for the capacitated vertex p-center problem through iterated greedy local
search with variable neighborhood descent. Comput. Oper. Res. 62, 133–144.

ReVelle, C.S., Eiselt, H.A., 2005. Location analysis: A synthesis and survey. European
J. Oper. Res. 165 (1), 1–19.

Ristić, D., Mladenović, N., Ratli, M., Todosijević, R., Urošević, D., 2023a. Auxiliary data
structures and techniques to speed up solving of the p-next center problem: A VNS
heuristic. Appl. Soft Comput. 140, 110276.

Ristić, D., Mladenović, N., Todosijević, R., Urosević, D., 2021. Filtered variable
neighborhood search method for the p-next center problem. Int. J. Traffic Transp.
Eng. 11 (2), 294–309.

Ristić, D., Urošević, D., Mladenović, N., Todosijević, R., 2023b. Solving the p-second
center problem with variable neighborhood search. Comput. Sci. Inf. Syst. 20 (1),
95–115.

Sánchez-Oro, J., López-Sánchez, A.D., Colmenar, J.M., 2022. A multi-objective parallel
variable neighborhood search for the bi-objective obnoxious p-median problem.
Optim. Lett. 104, 1–31.

Sheshkin, D.J., 2000. Handbook of Parametric and Nonparametric Statistical
Procedures. CRC Press, Boca Raton.

Tansel, B.C., Francis, R.L., Lowe, T.J., 1983. State of the art - location on networks: A
survey. part I: the p-center and p-median problems. Manage. Sci. 29 (4), 482–497.

Tasić, J., 2024. An efficient solution approach to the p-next center problem. Mat. Vesnik
76 (1–2), 66–83.

Tasić, J., Dražić, Z., Stanimirović, Z., 2024a. Complete results of the SVNS mehod for
the CPNCP. http://www.matf.bg.ac.rs/p/files/77-AppA.pdf. (Last Access: 25 August
2024).

Tasić, J., Dražić, Z., Stanimirović, Z., 2024b. Detailed comparison of the results for the
CPNCP and PNCP on the sets of medium and large instances. http://www.matf.bg.
ac.rs/p/files/77-AppB.pdf. (Last Access: 25 August 2024).

Tasić, J., Dražić, Z., Stanimirović, Z., 2024c. Parameter tuning. http://www.matf.bg.
ac.rs/p/files/77-AppendixC.pdf. (Last Access: 18 April 2024).

Whitaker, R., 1983. A fast algorithm for the greedy interchange for large-scale clustering
and median location problems. INFOR 21 (2).

Zhang, Q., Lü, Z., Su, Z., Li, C., 2023. A vertex weighting-based double-tabu search
algorithm for the classical p-center problem. Comput. Oper. Res. 160, 106373.

Zhang, Q., Su, Z., Lü, Z., Yang, L., 2022. A weighting-based tabu search algorithm for
the p-next center problem. In: Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence (IJCAI-22). pp. 4828–4834.

http://refhub.elsevier.com/S0305-0548(24)00388-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb11
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb11
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb11
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb12
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb12
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb12
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb13
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb13
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb13
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb14
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb15
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb15
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb15
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb16
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb16
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb16
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb17
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb17
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb17
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb18
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb18
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb18
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb19
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb19
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb19
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb20
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb20
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb20
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb20
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb20
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb21
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb21
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb21
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb22
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb22
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb22
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb22
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb22
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb23
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb23
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb23
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb24
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb24
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb24
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb25
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb25
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb25
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb25
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb25
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb26
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb27
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb27
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb27
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb27
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb27
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb28
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb28
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb28
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb29
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb29
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb29
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb29
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb29
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb30
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb30
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb30
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb31
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb31
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb31
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb31
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb31
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb32
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb32
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb32
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb33
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb33
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb33
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb34
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb34
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb34
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb34
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb34
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb35
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb35
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb35
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb36
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb36
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb36
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb36
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb36
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb37
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb37
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb37
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb37
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb37
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb39
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb39
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb39
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb39
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb39
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb40
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb40
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb40
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb41
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb41
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb41
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb42
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb42
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb42
http://www.matf.bg.ac.rs/p/files/77-AppA.pdf
http://www.matf.bg.ac.rs/p/files/77-AppB.pdf
http://www.matf.bg.ac.rs/p/files/77-AppB.pdf
http://www.matf.bg.ac.rs/p/files/77-AppB.pdf
http://www.matf.bg.ac.rs/p/files/77-AppendixC.pdf
http://www.matf.bg.ac.rs/p/files/77-AppendixC.pdf
http://www.matf.bg.ac.rs/p/files/77-AppendixC.pdf
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb46
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb46
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb46
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb47
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb47
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb47
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb48
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb48
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb48
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb48
http://refhub.elsevier.com/S0305-0548(24)00388-5/sb48

	A VNS method for the conditional p-next center problem
	Introduction
	The p-next center problem
	Conditional p-center problem
	Motivation and main contribution of the study

	Problem definition and mathematical model 
	Variable Neighborhood Search algorithm for the CPNCP
	The proposed SVNS implementation for solving the CPNCP
	Local search based on the Fast Interchange heuristic
	Move Evaluation procedure


	Computational experiments
	Dataset
	Parameter tuning
	CPNCP results
	Comparison with PNCP results 
	Comparison of CPNCP and PNCP results
	Comparison with recent approaches for solving PNCP


	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Data availability
	References


