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In this paper we consider a generalization of the p-center problem called the r-all-neighbor p-center prob-
lem (RANPCP). The objective of the RANPCP is to minimize the maximum distance from a demand point to
its rth-closest located facility. The RANPCP is applicable to facility location with disruptions because it con-
siders the maximum transportation distance after ðr � 1Þ facilities are disrupted. While this problem has
been studied from a single-objective perspective, this paper studies two bi-objective versions. The main
contributions of this paper are (1) algorithms for computing the Pareto-efficient sets for two pairs of objec-
tives (closest distance vs rth-closest distance and cost vs. rth-closest distance) and (2) an empirical analysis
that gives several useful insights into the RANPCP. Based on the empirical results, the RANPCP produces
solutions that not only minimize vulnerability but also perform reasonably well when disruptions do
not occur. In contrast, if disruptions are not considered when locating facilities, the consequence due to
facility disruptions is much higher, on average, than if disruptions had been considered. Thus, our results
show the importance of optimizing for vulnerability. Therefore, we recommend a bi-objective analysis.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction of facilities and vehicles in order to reflect reality. For example,
In this paper we consider the problem of locating facilities that
are subject to disruptions. In particular, we study the r-all neighbor
p-center problem (RANPCP), in which the objective is to minimize
the maximum distance from a demand point to its r th closest facil-
ity, which is the maximum distance from a demand point to its
closest non-disrupted facility after a worst-case disruption of
ðr � 1Þ facilities occurs. In addition to studying the maximum r
th closest distance objective, we also study the maximum 1 st clos-
est distance objective, which is the objective of the classic p-center
problem. In other words, we study both the post-disruption and
pre-disruption performance of the system in order to give deci-
sion-makers a more complete picture of their system of facilities.
Toward this end, we present algorithms for computing the com-
plete Pareto-efficient set for the following pairs of objectives: (1)
maximum 1 st closest distance vs. maximum r th closest distance
and (2) cost of locating facilities vs. maximum r th closest distance.

The facility location problem is a fundamental problem that has
been studied for a long time by researchers from many different
disciplines. Over time, as researchers began to develop location
models for specific applications such as locating fire stations and
ambulances, location models began to include the unavailability
ambulances in large metropolitan areas are very busy and not
always available for service.

In response, researchers began developing deterministic facility
location models that address facility unavailability by considering
backup coverage. Other researchers followed by considering the
use of backup coverage as a method for mitigating against facility
unavailability caused by terrorist attacks, random failures of facili-
ties, and congestion of servers. As a result, facility location research
has developed further to include backup-coverage extensions of the
p-median, p-center, set covering problem, and maximal set cover-
ing problem. Most of the literature on facility location with backup
coverage has focused on the degradation in overall service incurred
when some facilities become unavailable and unable to serve cus-
tomers. Specifically, most of the models involve locating backup
facilities to minimize this potential degradation.

Some research has considered that facilities become unavailable
because of random causes: natural or man-made disasters, conges-
tion of servers, etc. Drezner (1987) was the first to consider random
facility failures in the p-median model and his research was
extended by others (Berman, Krass, & Menezes, 2007; Lee, 2001;
Snyder & Daskin, 2005), and also modified to study facility protec-
tion instead of location (Li, Zeng, & Savachkin, 2013). Snyder and
Daskin (2005) and Cui, Ouyang, and Shen (2011) have modeled
facility failures in the fixed-charge location problem. Daskin
(1982, 1983) was among the first to consider random facility
unavailability in the maximal covering location problem. His work
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was subsequently extended by Batta, Dolan, and Krishnamurthy
(1989), who explicitly included queuing in their model.

Rather than considering random failures, other research has
sought to minimize the worst case degradation in service; in other
words, they measure the risk of facility failures by the worst case
degradation. This research is motivated by the facility interdiction
problem (Aksen, S�engül Akca, & Aras, 2014; Church, Scaparra, &
Middleton, 2004; Zhu, Zheng, Zhang, & Cai, 2013), in which an at-
tacker seeks to cause a maximal disruption to a set of facilities. Sev-
eral papers have included backup coverage in the set covering
model, which ensures adequate coverage in the event of facility
unavailability. Slyke (1982) was the first to include backup cover-
age in a set covering model and Church and Gerrard (2003) worked
on the location set covering problem with facility failures, in which
only one vehicle can be located at a potential location. One of the
earliest models involving the maximal covering problem with back-
ups was by Daskin and Stern (1981), who minimized two objec-
tives: the total amount of demand coverage and the number of
facilities located. This research has since been followed by others
(see Brotcorne, Laporte, & Semet, 2003 for a survey). Aksen and Aras
(2012, 2013) have studied the problem of locating facilities to min-
imize the worst case degradation in service. Rather than locating
facilities, other researchers have examined the question of how to
optimally allocate protection resources among a set of facilities
(Liberatore, Scaparra, & Daskin, 2011; Scaparra & Church, 2008).

Several authors have studied a location problem called the r-
neighbor p-center problem (RNPCP), an extension of the p-center
problem in which the problem is to locate p facilities amongst a
set of nodes in order to minimize the maximum distance from a
client node, defined as a node that does not have a facility located
on it, to its rth closest located facility. This problem is also applica-
ble for locating emergency vehicles that must respond to events
requiring more than one vehicle. In this context he RNPCP mini-
mizes the maximum response time of the rth vehicle to a demand
point. The RNPCP can also be used to minimize the maximum
response time of a single vehicle when ðr � 1Þ vehicles are busy.
Krumke (1995) developed a 4-approximation algorithm 1 for the
RNPCP. Chaudhuri, Garg, and Ravi (1998) and Khuller, Pless, and
Sussmann (2000) independently developed different 2-approxima-
tion algorithms for the RNPCP and show that a better approximation
cannot be obtained in polynomial time.

Other authors have studied a version of the r-neighbor p-center
problem in which all nodes are client nodes, rather than defining a
client node as a node that does not have a facility located on it.
Drezner (1987) called this problem the ðp; rÞ-center problem and
described a heuristic algorithm for the version where facilities
can be located anywhere in a plane. Khuller et al. (2000) named
this problem the r-all-neighbor p-center problem (RANPCP) and
provided approximation algorithms that guarantee an approxima-
tion factor of 3 and if r < 4, an approximation factor of 2.

Elloumi, Labbé, and Pochet (2004) presented a new model and
an exact solution method for the p-center problem (PCP) and men-
tioned that their model and solution method can also be used to
solve the RANPCP. They find that the LP relaxation bound of their
model is at least as good as that of the standard p-center MIP mod-
el (see Daskin, 1995) and found that in many cases their bound is
strictly better. They also demonstrate that a tight lower bound can
be computed by solving a polynomial number of linear programs
within a binary search algorithm, showing that their lower bound
is at least 1/3 of the optimal objective when the distances obey the
triangle inequality and at least 1/2 of the optimal objective when
distances are symmetric. However, they do not prove that the
1 An a-approximation algorithm is an algorithm that is guaranteed to find a
solution with an objective function value of no more than a times the optima
objective value.
l

approximation factors for their bounds are valid for the RANPCP.
Their computational results show when they incorporate their
lower bound into the standard binary search algorithm for the
PCP, the binary search algorithm is able to solve PCP instances of
up to 1817 nodes. Because Elloumi et al. (2004) focused on the
PCP, they leave out the details needed to extend their lower bound
to the RANPCP and only present empirical results for the PCP.

This article extends the existing literature on the RANPCP by
studying the bi-objective version of the RANPCP. Although there
has been work on the facility location problem with multiple objec-
tives (see Current, Min, & Schilling, 1990), only a few studies have
examined multiple objectives in the facility location problem with
disruptions. Snyder and Daskin (2005) optimized a weighted com-
bination of the system performance before and after disruptions for
the p-median problem with random disruptions, and O’Hanley and
Church (2011) did the same for the maximum covering location
problem with interdiction. However, optimizing a weighted combi-
nation of two objective functions is only guaranteed to produce the
Pareto-efficient set if the two objective functions are convex
(Berube, Gendreau, & Potvin, 2009), which is not the case for dis-
crete problems such as the RANPCP. Hernandez, Ramirez-Marquez,
Rainwater, Pohl, and Medal (2014) perform a tri-objective analysis
of the uncapacitated facility location problem. However, because
they use an evolutionary algorithm, their approach is not guaran-
teed to find the complete Pareto-efficient set. This article is the first
to describe a method for computing the complete Pareto-efficient
set for a facility location problem with disruptions.

The main contributions of this article are the following. (1) An
algorithm is presented for computing the Pareto-efficient set for
combinations of two objectives: closest distance vs r th-closest dis-
tance and cost vs. r th-closest distance. (2) Empirical testing of the
single- and bi-objective RANPCP suggest several decision-making
insights. In addition to these main contributions, empirical testing
indicates that a simple MIP formulation for the single-objective
RANPCP provides computational gains over an MIP formulation
by Elloumi et al. (2004).
2. Single-objective problem

The r-all-neighbor p-center problem (RANPCP) can be defined as

locate p facilities amongst a set of candidate locations in order to
minimize the maximum distance from a demand point to its r th

closest facility.

For the sake of brevity, we will refer to the maximum distance
as the radius (Elloumi et al., 2004). Because we are concerned with
facility disruptions, the maximum r th closest distance is thepost-
disruption radius.Thus, the maximum 1 st closest distance is the
non-disruption radius, the objective of the classic p-center problem.

The RANPCP can be mathematically stated as follows. LetN be a
set of points, I #N be a set of potential facility locations and
J #N be a set of demand points. Let dij be the desirability of serv-
ing demand point j 2 J with facility i 2 I . Because our solution
methods are still valid if they are applied to a problem instance
whose distances do not obey the triangle inequality, we could let
dij ¼ hjd

0
ij, where d0ij is the distance from i to j and hj is the weight

of demand point j. For simplicity, in this paper we refer to dij as
the distance from i to j. Let X # I be a set of located facilities and
let Dr

j ðXÞ be the distance from demand point j to its rth closest lo-
cated facility when the facilities X are located. The RANPCP re-
quires that jXj 6 p, the number of facilities that may be located.
The RANPCP can be stated as:

min
X # I
jXj 6 p

max
j2J

Dr
j ðXÞ ð1Þ
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Drezner (1987) modeled the situation in which an interdictor
seeks to destroy r facilities in order to maximize the maximum
post-interdiction distance from a demand point to its closest avail-
able facility. He called this model the ðp; rÞ-center problem. He
noticed that the interdictor’s optimal strategy is to choose a
demand point and interdict the r closest located facilities to that
demand point. Thus, the ðp; rÞ-center problem is equivalent to
the ðr þ 1Þ-all-neighbor p-center problem.

In an optimal solution to the RANPCP, each demand point is
covered by at least r facilities, meaning that each demand point
is within U� distance units of r facilities, where U� is the optimal
maximum distance. Thus, the parameter r can represent either
the number of covers or the number of neighbors required by each
demand point.

The RANPCP model relates to several concepts in risk assess-
ment. First, the consequence modeled in the RANPCP is the
increase in the maximum distance from a demand point to its clos-
est facility when ðr � 1Þ facility disruptions have occurred. The
RANPCP does not consider the likelihood of a facility disruption
event; rather, it models the situation in which a facility
disruption event has occurred. Further, in the RANPCP model the
vulnerability of facilities is complete. That is, if a facility is affected
by an event such as a natural disaster or attack, the facility is com-
pletely inoperable. Thus, the objective of the RANPCP is to mini-
mize the worst case consequence.

In the rest of this section we describe a simple MIP formulation
for the RANPCP.

2.1. Multiple-assignment formulation

The MIP formulation we present is a simple modification of the
MIP formulation for the classic p-center problem (see Daskin,
1995). In this classic formulation, assignment variables, Xij, take a
value of 1 if facility i is the closest located facility to demand point
j. The following constraints are included to ensure that every
demand point is assigned to exactly one facility.X
i2I

Xij ¼ 1 8j 2 J ð2Þ

A formulation for the RANPCP can be obtained by assigning
each demand point to multiple facilities, which explicitly models
backup assignments. In particular, each demand point is assigned
to r facilities. Thus, the distance from a demand point j to its r th
closest facility is simply maxi2I j

fdijg, where I j is the set of r
facilities that are assigned to j. Therefore, the maximum r th closest
distance is maxj2Jmaxi2I j

fdijg. Because each demand point is as-
signed to multiple facilities, this formulation can be called the mul-
tiple-assignment (MA) formulation. To allow for multiple
assignments, Xij is redefined as a binary variable that is 1 if demand
point j is assigned to facility i at some level and 0 otherwise. In
addition, the variable Yi is 1 if a facility is located at i and 0 other-
wise. The MA formulation is as follows:

ðMAÞmin U ð3aÞ
s:t:dijXij 6 U 8i 2 I ; j 2 J ð3bÞX
i2I

Xij ¼ r 8j 2 J ð3cÞ

Xij 6 Yi 8i 2 I ; j 2 J ð3dÞX
i2I

Yi 6 p ð3eÞ

Yi 2 f0;1g 8i 2 I ð3fÞ
Xij 2 f0;1g 8i 2 I ; j 2 J ð3gÞ

The objective (3a) and Constraints (3b) ensure that the objec-
tive value is equal to the maximum value of the weighted distance
between demand points and their rth closest located facility, over
all demand points. Constraints (3c) require that every demand
point be assigned to r facilities. In conjunction with the minimiza-
tion objective, Constraints (3b) and (3c) jointly require each
demand point to be assigned to its r closest located facilities.
Constraints (3d) only allow assignments to be made to located
facilities and Constraint (3e) limits the number of facilities located.
Constraints (3f) and (3g) require the decision variables to be
binary.

2.2. Other models

We also investigated several other models, which are given in A.
However, the (MA) formulation outperformed all of them in a set
of preliminary experiments.

2.3. Binary search algorithm

As an alternative to solving the MA formulation using branch-
and-bound, we can also solve the RANPCP using a binary search
algorithm similar to the one used to solve the p-center problem
(Daskin, 1995). The binary search algorithm is an attractive alter-
native because (1) it solves the RANPCP faster than the MIP formu-
lations (see Section 1) and (2) it can identify the presence of a
special property called saturation (see Section 4.1.4).

The binary search algorithm for the p-center problem solves a
series of set cover problems (SCPs) to find the optimal maximum
distance. Our binary search algorithm for the RANPCP uses the
multi-set-cover location problem (MSCLP) (Church & Gerrard,
2003) in place of the SCPs. The multi-set-cover location problem
modifies the SCP because it requires that each demand point be
covered by at least ‘ facilities, rather than 1. The MSCLP is formu-
lated as the following MIP:

ðMSCLPðdÞÞmin
X
i2I

Yi ð4aÞ

s:t:
X

i2fi:dij6dg
Yi P r 8j 2 J ð4bÞ

Yi 2 f0;1g 8i 2 I ð4cÞ

The RANPCP can be solved by using the binary search algorithm
described in Algorithm 1.

Algorithm 1. Binary search algorithm for RANPCP.
1:
 function BINARY SEARCH
2:
 Let D ¼ fD1; . . . ;DjI j�jJjg be the set of all distances,
fdijgi2I ;j2J , arranged in increasing order.
3:
 lbIndex 0; ubIndex jDj � 1

4:
 while lbIndex – ubIndex do� �

5:
 Set index ¼ lbIndexþ ubIndex�lbIndex

2

6:
 Obtain a heuristic solution to MSCLP (Dindex), �Y . Let

bY ¼ fi 2 Ij�Yi ¼ 1g. . Optional

7:
 if jbY j 6 p then ubIndex index;

go to Line 5. . Optional

8:
 Build RANPCP solution using Ŷ . Let î be the index of

its post-disruption radius. . Optional

9:
 if Dî < DubIndex then ubIndex î

go to Line 5. . Optional

10:
 Solve MSCLP (Dindex) to optimality, obtaining

solution Y�.

11:
 if jY�j > p then lbIndex indexþ 1.

12:
 else ubIndex index.

13:
 return Y�



ustrial Engineering 72 (2014) 114–128 117
Lines 6–9 are optional steps added to speed up the algorithm by
reducing the number of times that MSCLP must be solved to
H.R. Medal et al. / Computers & Ind
optimality. Step 6 of Algorithm 1 involves finding a heuristic solu-
tion to the MSCLP. One way to find such a solution is by using a
heuristic algorithm for the set cover location problem (Balas &
Ho, 1980), modified here for the MSCLP. First, a demand point is
said to be single covered if there is at least one facility within
Dindex. A demand point is multi-covered if there are at least r facil-
ities within distance Dindex. Let ni be the number of facilities that
can single-cover demand point i within distance Dindex. Proceeding
through the list of demand points by increasing order of ni, cover a
demand point i by locating the facility that single-covers the
maximum number of un-multi-covered demand points. Continue
until all of the demand points are multi-covered. Then remove all
redundant facilities, i.e., facilities for which all demand points are
multi-covered after even if the facility is removed.

The method for building a heuristic solution to the RANPCP in
step 8 is as follows.

1. If jbY j > p, remove the facility whose removal minimizes the
increase in the RANPCP objective.

2. Repeat step 1 until jbY j 6 p.
3. Return the modified set bY as the RANPCP heuristic solution.

2.3.1. Bounds
We computed lower and upper bounds before using the binary

search algorithm in order to reduce the set of distances over which
the binary search algorithm searches. These lower and upper
bounds can be added to the binary search algorithm by removing
all values in D that are outside the bounds.

A simple lower bound can be obtained by locating the closest r
facilities to every demand point:

LB0 ¼max
j2J
fdirj jg

Note that when r ¼ 1, this lower bound is zero.
Elloumi et al. (2004) described another lower bound for the PCP

and here we describe how to modify their lower bound for the
RANPCP. First, let i0jðr; iÞ be the rth closest location to demand point
j, not including location i and let ci ¼ maxj2J di0jðr;iÞ;j

. Next, sort the ci

values in increasing order ci1
6 ci2

6 . . . 6 cjjI j
. Then, LB1 ¼ cjI j�p.

Note that LB1 is not always zero for r ¼ 1. In our experimentation,
we used maxfLB0; LB1g as the lower bound.

Elloumi et al. (2004) also described two upper bounds for the
PCP but these bounds cannot be directly extended to the RANPCP
because the RANPCP requires each demand point to be covered r
times while the PCP only requires each demand point to be covered
once. A simple upper bound for the RANPCP can be obtained by
assuming that the p furthest facilities to every demand point are
located. In this case, the rth closest located facility to a demand
point j will be located at the ðjI j � pþ rÞth closest location to j.
Thus, an upper bound is:

UB0 ¼max
j2J
fdijI j�pþr

j
jg

These bounds can also be used to improve the tractability of the
MIP formulations. A lower bound lb may be added to Formulation
MA by adding the constraint lb 6 V .

2.3.2. Greedy heuristic
One way to find an initial upper bound for the binary search

algorithm is to find a good initial feasible solution. The following
greedy heuristic, which is a modification of a heuristic by Mlade-
novic, Labbe, and Hansen (2003) for the p-center problem, can be
used to find an initial feasible solution and corresponding upper
bound, UB1.
1. Solve the 1-center problem (arg mini2Imaxj2J dij) and place r
facilities at the 1-center.

2. Remove a facility from the 1-center and place it at the node that
minimizes the resulting objective increase; repeat until only
one facility is located at the 1-center.

3. Let the set I0 be the set of locations that do not have a facility
and let DðiÞ be the objective function decrease associated with
locating a facility at i. Locate a facility at i0 2 arg mini2I0DðiÞ.
Repeat until all p facilities have been located.

3. Bi-objective problem: generating Pareto-efficient sets

A drawback of the RANPCP model is that it only optimizes one
objective: the post-disruption radius. However, the non-disruption
radius is likely to be a concern of most decision-makers because it
represents the operational cost without disruptions. In addition, a
decision-maker might also like to include the number of facilities
(p), which represents the system design cost, as an objective. Since
these objectives are conflicting, it is more appropriate to present a
set of solutions and let the decision-maker choose a single solution
from the set. One such set of solutions is the set of Pareto-efficient
points.

A Pareto efficient set for two objectives can be described as fol-
lows. If a and b are two objectives of interest to a decision maker,
the set T ¼ fða; bÞg may represent the set of all possible pairs of
objective values. Assuming T is countable, the k th point in the Par-
eto efficient set can be represented by ðak; bkÞ. Point k1 is said to
dominate point k2 if point k1 is better than point k2 in one objective
and point k1 is no worse than point k2 in the other objective. A
point that is not dominated by any other point is called a Pareto
optimal point. A Pareto-efficient set, denoted here as S # T , is the
set of all Pareto optimal points. The Pareto-efficient set for three
objectives can be described in a similar manner.

Since the problems studied in this paper are discrete, the Pare-
to-efficient set is a set of discrete points, as shown in Fig. 1. The
black points represent Pareto-efficient points and the dashed lines
are displayed to show that the a-objective stays constant as the b-
objective decreases.

In general, the problem of finding all Pareto-efficient solutions is
difficult. When a and b are convex functions of the decision
variables, a weighted-sum approach can be used to generate the
Pareto-efficient set. However, the RANPCP and its bi-objective
derivatives are combinatorial problems, and thus non-convex. For-
tunately, the efficiency of the binary search algorithm presented in
Section 2.3 facilitates the efficient generation of the set S for various
combinations of objectives, as described in the following sections.

3.1. Max closest distance vs. max rth closest distance

An efficient method for computing the Pareto-efficient set for
these two objectives is to use Algorithm 1 to alternately solve for
one objective with a constraint on the other objective, which we
call the alternate binary-search (ABS) method. ABS similar to the
�-constraint approach for multi-objective combinatorial optimiza-
tion problems described by Berube et al. (2009), except that ABS
uses binary search to solve the single-objective problems rather
than branch-and-cut.

Let RANPCP (�; dðrÞ) denote the problem of minimizing the non-
disruption radius subject to a constraint that requiring the post-
disruption radius to be no greater than dðrÞ. Further, let RANPCP
(dð1Þ; �) denote the problem of minimizing the post-disruption ra-
dius subject to a constraint requiring the non-disruption radius
to be no greater than dð1Þ. The problems RANPCP (�; dðrÞ) and RAN-
PCP (dð1Þ; �) can both be solved using Algorithm 1 with a modified
auxiliary problem. In particular, the MSCLPðdðrÞÞ auxiliary problem
is modified to account for both post-disruption radius and non-dis-



Fig. 1. Pareto efficient set.
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ruption radius, forming the distance-constrained MSCLP (DC-
MSCLP):

ðDC �MSCLPðdð1Þ; dðrÞÞÞmin
X
i2I

Yi ð5aÞ

s:t:
X

i2fi:dij6dð1Þg

Yi P 1 8j 2 J ð5bÞ

X
i2fi:dij6dðrÞg

Yi P r 8j 2 J ð5cÞ

Yi 2 f0;1g 8i 2 I ð5dÞ
The DC-MSCLPðdð1Þ; dðrÞÞ minimizes the number of facilities lo-

cated subject to the requirements that (i) the r th closest facility
to a demand point be within dðrÞ distance units (5c) and (ii) the
closest facility to a demand point be within dðrÞ distance units (5c).

The DC-MSCLPðdð1Þ; dðrÞÞ can be used to solve RANPCP (�; dðrÞ) by
(i) fixing dðrÞ in Constraints (5c) and (ii) varying dð1Þ in Constraints
(5b) within in a binary search algorithm (see Algorithm 1) in order
to find the optimal non-disruption radius, dð1Þ�. The DC-
MSCLPðdð1Þ; dðrÞÞ can also be used to solve RANPCP (dð1Þ; �): (i) fix
dð1Þ in Constraints (5b) and (ii) vary dðrÞ in Constraints (5c) within
in a binary search algorithm in order to find the optimal non-dis-
ruption radius, dðrÞ�.

Using RANPCP (�; dðrÞ) and RANPCP (dð1Þ; �) as subproblems, Algo-
rithm 2 generates the complete set of Pareto-efficient points. In
Step 1, RANPCP (�; dðrÞk � �) is solved to find the non-disruption ra-
dius for Pareto-efficient point ðkþ 1Þ. The value dðrÞk � � is used for
the post-disruption cover distance to ensure that the optimal
non-disruption radius will increase from the previous iteration. In
Step 2, RANPCP (dð1Þk ; �) is solved to obtain Pareto-efficient point k.

Algorithm 2. Constructing the Pareto-efficient set for max closest
distance and max r th closest distance objectives.

1: function ABS
2: Let � be a small number.

3: Set k 0; dð1Þ0 ¼ 0; dðrÞ0 ¼maxijfdirj jg, and

S S [ fðdðrÞ0 ;minijfdijgÞg
4: while dð1Þk – maxijfdijg do

5: Solve RANPCP (�; dðrÞk � �) to obtain min. non-disruption

radius dð1Þk . Step 1

6: Solve RANPCP (dð1Þk ; �) to obtain min. post-disruption

radius dðrÞkþ1 . Step 2

7: Set S S
S
fðdðrÞkþ1; d

ð1Þ
k Þg

8: k kþ 1
9: return S
3.2. Number of facilities located vs. maximum rth closest distance
The optimal max r th closest distance depends on the value of p
because each additional facility adds more redundancy to the
system. However, in most facility location problems there is a
diminishing return on adding more facilities. Thus, it is useful for
a decision-maker to understand the decrease in the max r th
closest distance that results from adding more facilities. One way
to display this diminishing return is by constructing the Pareto-
efficient set between the number of facilities located and the
max r th closest distance. This set can be constructed using Algo-
rithm 3, which is in the same spirit as Algorithm 2. Algorithm 3
differs from Algorithm 2 in that it maintains upper bounds for
the RANPCP in Step 1. Also, Step 2 consists of merely incrementing
the design cost, rather than solving an optimization problem.

Algorithm 3. Constructing the Pareto-efficient set for design cost
and max r th closest distance objectives.
1:
 function ABS-COSTVSRTHCLOSESTDISTANCE
2:
 RANPCP (p):¼ RANPCP problem with a budget of p
facility locations
3:
 �dðpÞ :¼ incumbent upper bound for RANPCP (p)

4:
 Set k 0 and set �dðpÞ ¼ 1 for p ¼ 1 to jI j

5:
 Solve MSCLP (maxijfdijg) to obtain p0.

6:
 while pk 6 jI j do

7:
 Set minfUB0;UB1; �dðpkÞg as the initial UB to RANPCP

(pk) . Step 1a

8:
 Solve RANPCP (pk) using Algorithm 1 to obtain min.

post-disruption radius dðrÞk .Step 1b

9:
 (During the execution of the Algorithm 1,

continually update the function �dð�Þ.)

10:
 Set S S

S
fðdðrÞk ; pkÞg
11:
 Set pk  pk þ 1

12:
 k kþ 1

13:
 return S
Step 1 of Algorithm 3 minimizes the post-disruption radius sub-
ject to a restriction on the number of facilities located. Step 1
requires the upper bounds, �dðpÞ, to be updated during the execu-
tion of Algorithm 1. The upper bounds can be updated by replacing
Step 4 of Algorithm 1 with the following:

Step 4 If jY�j > pk, set lbIndex ¼ indexþ 1 and set
�dðjY�jÞ  minf�dðjY�jÞ;Dindexg. Otherwise, set ubIndex ¼ index.
Return to step 2.

4. Numerical experimentation

This section describes experiments performed on the single-
and bi-objective RANPCP. All experiments were run on a 64-bit
2.66 GHz AMD processor running the Linux operating system with
16 GB of memory. All MIP formulations, including the multi-set-
cover location problem, were solved with CPLEX v12.1.

Before solving an instance, we first found a lower bound
LB ¼maxfLB0; LB1}, an upper bound UB ¼minfUB0;UB1g, and a
feasible solution produced by the greedy heuristic in Section 2.3.2.
For Formulations MA we used the upper bound to eliminate
variables (see Section 2.3.1) and seeded the branch and bound
algorithm with an initial feasible solution. For the binary search
(Algorithm 1) and PC-SC, we used the upper and lower bounds as
the initial upper and lower bounds for the algorithm.

We tested our solution methods on 12 geographically-moti-
vated datasets from the facility location literature (see Appendix B).
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4.1. Single-objective problem

First, we study the single-objective version of the RANPCP to
gain computational and decision-making insights.

4.1.1. Comparison of run times
In this Section the computational performance of Formulation

MA is compared to the p-center set-covering formulation (PC-SC)
from Elloumi et al. (2004) and the binary search algorithm (BS).

Table 1 shows the computational results for using CPLEX
branch-and-bound to solve several instances of the RANPCP. Each
row contains the run time from solving an instance of the RANPCP
using both formulations. Each cell in the table contains the time re-
quired to solve the problem to optimality. The word ‘‘time’’ in a cell
of the table indicates that the instance was not solved within a
time limit of 72 h; the word ‘‘memory’’ indicates that the CPLEX
branch-and-bound algorithm ran out of memory.

Table 1 shows that Formulation MA solved the RANPCP faster
than PC-SC in all of the instances. This is likely due to the fact that
while the MA and PS-SC formulations have the same number of
variables, the MA formulation has OðjIj � jJjÞ constraints while
the PS-SC formulation has OðjIj2jJjÞ constraints. Our results for
r ¼ 1 contradict the findings of Elloumi et al. (2004), who found
that PC-SC outperformed Formulation MA when r ¼ 1. However,
it is difficult to make a fair comparison because they used CPLEX
v7.1 and we used version 12.1.

The table also shows that binary search (Algorithm 1) required
much less computation time than both MIP formulations.

4.1.2. Scalability of binary search algorithm
In this section we examine how much the computational per-

formance (e.g., run time, number of iterations) of Algorithm 1 is af-
fected by changing problem parameters such as the number of
locations, the number of facilities, and the number of neighbors.

Table 2 shows that datasets with more nodes usually require
more computation time to solve. Each row of the table shows sum-
mary statistics for a set of instances (varying p and r) for a dataset.
The table also shows that the number of nodes does not signifi-
cantly influence the number of iterations. Algorithm 1 runs for
log2ðjI j

2 þ 1Þ iterations in the worst case (Elloumi et al., 2004).
However, the upper and lower bounds for the RANPCP and the
heuristic for the MSCLP often reduce the number of iterations.

Because the number of iterations does not change significantly
with an increase the number of nodes, we conclude that the time
per iteration increases as the number of nodes increase. Therefore,
the increased run time is due to the time required to solve a larger
set cover problem at each iteration.
Table 1
MIP results for various datasets.

No. Dataset p r Run time (s)

PC-SC (Elloumi et al., 2004) Form. MA BS

1 d88 5 1 211 17 <1
2 d88 5 2 3506 74 <1
3 d88 10 1 3199 18 <1
4 d88 10 2 57 30 <1
5 d88 27 3 33 5 <1
6 d88 27 6 34 15 <1
7 d88 27 9 55 23 <1
8 d150 5 1 Time 531 <1
9 d150 5 2 Time 2344 <1
10 d150 10 1 Time 569 <1
11 d150 10 2 Memory 1762 <1
12 d150 45 5 Time 81 <1
13 d150 45 9 Time 100 <1
14 d150 45 14 Time 145 <1
We also examined the affect of jI j; p, and r on the runtime and
found that the runtime increased with jI j. However, we did not
find that p or r had much affect.

4.1.3. Sensitivity of number of neighbors, r
The RANPCP assumes that the number of neighbors required, r,

is known. However, in some applications r is not known; for exam-
ple, when locating facilities with the goal of hedging against a ter-
rorist attack, the locator may not know the number of facilities the
terrorist is able to attack (Liberatore et al., 2011). That is, if the
‘‘true value’’ of the number of neighbors required is equal to 4,
and yet the locator chooses his/her design based on the results of
a model that only requires 2 neighbors, then the facility location
design prescribed by this overly optimistic model will be subopti-
mal. Because a decision-maker may be unsure about the ‘‘true
value’’ of r it is useful for them to understand the sensitivity of
the optimal solutions to the choice of r. To help the decision-maker
understand the sensitivity, we measured the relative error in the
optimal objective value caused by an incorrect choice of r. The fol-
lowing notation is used to quantify this relative error. First, let
fðrÞðYÞ be the maximum distance from a demand point to its r th
closest facility given the set of located facilities represented by
the solution variable Y . Let Y�ðrÞ be the optimal solution to the r-
all-neighbor p-center problem. Finally, let gr0r denote the relative
objective function error that occurs when a decision-maker models
the number of neighbors required as equal to r0 when it is truly
equal to r, which is calculated as

gr0r ¼
fðrÞðY�ðr0 ÞÞ � fðrÞðY�ðrÞÞ

fðrÞðY�ðrÞÞ
ð6Þ

Table 3 displays the value of gr0r for several values of r0 and r for
the d49 and lon150 datasets. Two main observations can be made
from this table. (1) The results indicate that the RANPCP is sensi-
tive to error in the value of r. Excluding the experiments where
gr0r ¼ 0 (i.e., r0 ¼ r), the relative objective function increase, g0,
ranges from 0.15 to 3.5 with an average of 1.06. Thus, on average,
the objective function is doubled when the value of the number of
neighbors is inaccurate. (2) Surprisingly, the relative objective
function increase, gr0r , does not always increase with the magni-
tude of error, jr0 � rj. Thus, a decision-maker is not guaranteed to
obtain higher quality solutions by spending more to improve the
estimate of r.

4.1.4. Saturation point
In this section we investigate a property of the RANPCP called

saturation, which is an artifact of using the maximum distance
measure along with the worst-case risk measure. An instance of
the RANPCP is saturated if the r closest facilities to a given demand
point are located and the distance from that demand point and its
rth closest located facility is equal to the optimal objective value.
When an instance is saturated for a given value of p and r, locating
additional facilities does not improve the objective.

The specific analysis that we present in this section is an anal-
ysis of the point at which datasets become saturated for a value
of r. Let p�ðrÞ be the saturation point for a dataset with r neighbors.
In other words, p�ðrÞ is the smallest value of p such that the
instance of the RANPCP with a given number of facilities p and
number of neighbors r is saturated.

A modeling implication of saturation is that it is possible to al-
low p facilities to be located in the RANPCP when in fact only p�ðrÞ
are needed to minimize the max r th closest distance. A MIP formu-
lation is unlikely to identify the saturation phenomenon unless the
number of facilities located is included as an additional objective
function term. However, since a binary search algorithm such as
Algorithm 1 minimizes the number of facilities in each iteration
(e.g., by solving MSCLP), saturation can be identified.



Table 3
Relative objective function error, gr0 r , for incorrect value of r.

r (Actual)

1 2 3 4

(a) d49 dataset
r0 (Perceived) 1 0 1.89 0.98 1.85

2 1.10 0 2.01 1.85
3 3.50 0.53 0 1.61
4 0.90 1.44 0.15 0

Average excluding zeros 1.48

(b) lon150 dataset
r0 (Perceived) 1 0 0.59 0.68 0.31

2 0.63 0 0.51 0.34
3 1.11 0.35 0 0.45
4 1.7 0.67 0.27 0

Average excluding zeros 0.63 Fig. 2. Saturation point vs. r for several datasets.

Table 4
Super-saturation point for various datasets.

Dataset Wtd. Unwtd. Wtd. � unwtd.

r0
r0
jI j r0

r0
jI j r0

r0
jI j

sw55 22 0.45 49 1 �27 �0.55
lor100 38 0.38 100 1 �62 �0.62
lon150 140 0.93 150 1 �10 �0.07
lor200 67 0.34 200 1 �133 �0.66
lor300a 69 0.23 300 1 �231 �0.77
lor300b 69 0.23 300 1 �231 �0.77

Min 38 0.23 55 1 �231 �0.77
Max 140 0.93 300 1 �9 �0.07
Average 72 0.49 184 1 �113 �0.57

Table 2
Summary statistics for runtime and number of iterations for all instances of each dataset.

Dataset Total computation time (s) Number of iterations

Min Max Avg. Var. Min Max Avg. Var.

sw55 0 0.1 0.02 <0.01 0 10 4.9 19.52
lor100 0 0.26 0.06 <0.01 0 14 6.4 45.49
lon150 0.02 4.4 0.91 1.1 0 15 13 11.44
lor200 0.02 2.9 0.56 0.7 0 16 8.8 43.59
lor300a 0.04 17 1.8 16.2 0 17 6.5 51.15
lor402a 0.1 70 6.3 253 0 18 8.1 53.05
lor818 7.6 5454 861 1,690,336 11 19 16 5.49
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Fig. 2 shows the saturation point vs. r for several datasets. For
an instance with a given value of r, the saturation point can be
found by setting p ¼ jIj and using Algorithm 1. When the algo-
rithm terminates, record the number of facilities located in the
optimal solution. This is the saturation point. In the Figure, the sat-
uration point is always greater than r. This implies that p�ðrÞP r,
which must be true because a saturated solution has at least r lo-
cated facilities. The figure also illustrates that the saturation point
is not monotonic with respect to r.

Fig. 2 also shows that the saturation curves eventually approach
a point where the saturation point equals r. Let the super-saturation
point, r0, be a value of r such that p�ðrÞ ¼ r and p�ðr0 þ nÞ ¼ r0 þ n
for n ¼ 1; . . . ; jI j � r0. We observed the following about the
super-saturation point:

1. Once the super-saturation point is reached, the solutions often
become nested. In other words, the solution for p�ðr0 þ nÞ is a
subset of the solution for p�ðr0 þ nþ 1Þ for
n ¼ 0; . . . ; jI j � r0 � 1.

2. Objective values are not always the same for p�ðr0 þ nÞ for
n ¼ 1; . . . ; jI j � r0. Consequently, the bottleneck pair (the
facility i and demand point j for which dij equals the optimal
objective) are also different for different values of r.

Table 4 contains the super-saturation point for several
instances. The table shows that the ratio r�

jIj varies across datasets.
Also, all of the unweighted datasets had a super saturation point
equal to jI j. Thus, the saturation point is clearly influenced by
the demand point weights.

The appendix contains theoretical results related to saturation.

4.2. Bi-objective problem

Next, we examine two bi-objective versions of the RANPCP: (1)
jointly minimize both the non- and post-disruption radii and (2)
jointly minimize both the number of facilities located and the
post-disruption radius.
4.2.1. Scalability of bi-objective algorithms
In Section 3, algorithms for generating the set of Pareto-efficient

points for two objectives were described. For these algorithms to
be useful in practice, they need to be able to facilitate scenario
analysis; that is, the run time of the algorithm should be short
enough to allow the decision maker to experiment with different
scenarios and receive feedback within a reasonable amount of time
(e.g., about 24 h). Fortunately, Algorithms 2,3 meet the said
requirements for trial-and-error analysis.

Table 5 displays the run times for computing the set of Pareto-
efficient points for the non-disruption radius and post-disruption
radius objectives (Algorithm 2) for several problem instances. As
the results show, Algorithm 2 generates the set of Pareto-efficient
points quickly for the smaller datasets. The run times for the lor818
dataset are much higher than for the other datasets, which is not
surprising because the lor818 instances required much longer
run times for single-objective RANPCP (see Table 2).

Table 6 displays the run times for computing the set of Pareto-
efficient points for the cost and post-disruption radius objectives
(Algorithm 3) for several problem instances. As in Table 5, the re-
sults show that Algorithm 2 generates the set of Pareto-efficient
points quickly, although the run times for the lor818 dataset are
much higher than for the other datasets.



Table 5
Run time for max distance vs. max r th distance algorithm (Algorithm 2).

Dataset Budget, p r Run time (s)

d49 10 1 0.3
d49 10 2 1.0
d49 15 3 0.6
d49 15 5 0.7
d150 15 2 112
d150 15 3 17
d150 30 3 22
d150 30 6 32
lor818 164 33 9066
lor818 164 50 11,857
lor818 245 25 12,548
lor818 245 50 9660

Table 6
Run time for design cost vs. max r th distance algorithm (Algorithm 3).

Dataset r Computation time (s)

d49 2 1
d49 3 1
d150 5 83
d150 9 48
lor402a 5 7
lor402a 9 9
lor818 33 16,672
lor818 50 13,283

Fig. 3. Max closest distance vs. m
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4.2.2. Max closest distance vs. max rth closest distance
Fig. 3 shows the complete Pareto-efficient set for the max

closest distance and max rth closest distance for several instances
ax rth
of the d49 and d150 datasets. Each of the sets were generated
using Algorithm 2.

Fig. 3 produces two main insights. First, for many of the Pareto-
efficient sets, there is significant horizontal and vertical separation
between the points. This separation indicates that the algorithm
for obtaining the Pareto-efficient presents more valuable informa-
tion to a decision-maker than an algorithm that only optimizes a
single objective in isolation. This value comes from the fact that
a single-objective solution may not be Pareto-efficient. For exam-
ple, if an objective is minimized in isolation, a solution could be
obtained that lies on the dashed line to the right of one of the
points, i.e., a non-Pareto-efficient solution. This solution is undesir-
able because the max r th closest distance objective can still be
decreased significantly without any increase in the max closest
distance! Second, the curves show that if a decision-maker wishes
to minimize one of the objectives by itself, the other objective will
be far from its minimum value. This fact can be observed by exam-
ining the two endpoints of each of the Pareto-efficient sets. For
example, for the d49 dataset with p ¼ 4 and r ¼ 2, the max closest
distance value of the leftmost point of the Pareto set is about three
times higher than the minimum max closest distance value.
Because of this fact, a decision-maker may wish to choose one of
the Pareto-efficient solutions that is a compromise between the
two objectives.

Fig. 3 demonstrates graphically that if one of the objectives is
minimized in isolation, the other objective value can be much
higher than optimal. In the remainder of this section, this objective
function increase is demonstrated numerically. Formally, if the
RANPCP model is used to optimize the max rth closest distance,
the resulting solution may have a max closest distance that is
much higher than the max distance of a solution optimized for
max distance. This is a problem because the max distance without
closest distance for several datasets.



Table 7
Values of gr;1 and g1;r for various problem instances.

No. p r gr;1 g1;r g1;r=gr;1

(a) lon150 dataset
1 5 2 0.33 0.67 0.5
2 10 2 0.45 0.59 0.77
3 15 2 0.59 0.63 0.94
4 15 3 0.69 1.1 0.62
5 15 5 0.34 1.7 0.2
6 30 2 0.02 1.4 0.02
7 30 3 0.38 1.2 0.31
8 30 6 0.63 1.8 0.36
9 30 9 0.17 3.6 0.05
10 45 2 0 2.5 0
11 45 5 0.63 1.9 0.34
12 45 9 0.61 3.1 0.2
13 45 14 0.17 5.8 0.03

Average 0.39 2.00 0.33
Min. 0.00 0.59 0.00
Max. 0.69 5.80 0.94

(b) lor200 dataset
1 5 2 0.38 0.9 0.42
2 10 2 0.78 1.4 0.58
3 15 2 0.41 3.3 0.13
4 15 3 0.47 5 0.09
5 15 5 0.8 5 0.16
6 30 2 0.12 7.8 0.02
7 30 3 0.4 11 0.03
8 30 6 0.64 13 0.05
9 30 9 0.84 13 0.07
10 45 2 0 13 0
11 45 5 0.22 18 0.01
12 45 9 0.43 21 0.02
13 45 14 0.61 21 0.03

Average 0.47 10.26 0.12
Min. 0.00 0.90 0.00
Max. 0.84 21.00 0.58

(c) lor300a dataset
1 5 2 0.84 0.81 1
2 10 2 0.9 1.6 0.55
3 30 2 0.41 5.3 0.08
4 30 3 0.29 7.7 0.04
5 30 6 0.92 6.8 0.13
6 30 9 1.5 7.7 0.2
7 60 2 0 11 0
8 60 6 0.25 14 0.02
9 60 12 0.84 15 0.06
10 60 18 1.3 15 0.08
11 90 2 0 18 0
12 90 9 0.23 26 0.01
13 90 18 0.57 26 0.02
14 90 27 0.93 26 0.04

Average 0.64 12.92 0.16
Min. 0.00 0.81 0.00
Max. 1.50 26.00 1.00

(d) lor400a dataset
1 5 2 1.1 0.85 1.3
2 10 2 0.51 1.6 0.33
3 40 2 0 5.1 0
4 40 4 0.27 6.8 0.04
5 40 8 0.74 7.3 0.1
6 40 12 1.3 10 0.13
7 80 2 0 12 0
8 80 8 0.17 17 0.01
9 80 16 0.73 22 0.03
10 80 24 0.96 20 0.05
11 120 2 0 20 0
12 120 12 0.24 37 0.01
13 120 24 0.48 32 0.01
14 120 36 0.84 34 0.02

Average 0.52 16.12 0.15
Min. 0.00 0.85 0.00
Max. 1.30 37.00 1.30
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disruptions is usually a primary objective and potential conse-
quence a secondary objective. We measure this relative objective
function increase for two cases: (1) the RANPCP model is used to
minimize the max rth closest distance and (2) the p-center model
is used to minimize the max closest distance.

We use the following notation for our relative objective func-
tion increase analysis. Define the max closest distance objective as
the objective of minimizing the distance to from a demand point
to its closest located facility. Let the RANPCP objective with r
neighbors required be called the max rth closest distanceobjective.
For a given instance, let Y�ð1Þ be the optimal facility configuration
for the max closest distance objective and let Y�ðrÞ be the optimal
facility configuration for the max rth closest distance objective.
The functions fð1ÞðYÞ and fðrÞðYÞ are the max closest distance and
max rth closest objective values for a location configuration Y .
Let the relative objective function increase for not considering normal
pre-disruption performance be

gr;1 ¼
fð1ÞðY�ðrÞÞ � fð1ÞðY�ð1ÞÞ

fð1ÞðY�ð1ÞÞ

and the relative objective function increase for not considering post-
disruption performance be

g1;r ¼
fðrÞðY�ð1ÞÞ � fðrÞðY�ðrÞÞ

fðrÞðY�ðrÞÞ

Table 7 shows the values of gr;1 and g1;r for various instances of
four medium-sized datasets: lon150, lor200, lor300a, and lor400a.
As the table shows, the relative objective function increase for not
considering normal pre-disruption performance is almost always less
than the relative objective function increase for not considering post-
disruption performance.This implies that while the penalty for only
considering the post-disruption performance is significant (ranging
from an average of 39% to an average of 64%), this penalty is
comparably much smaller than the penalty for only considering
pre-disruption performance (ranging from an average of 200% to
an average of 1600%). However, the frequency of incidents that
require neighbors (e.g., congestion of ambulance systems or facility
disruptions) should also be considered when deciding where to
locate facilities. Knowing this frequency would help a decision
maker trade off between values of gr;1 and g1;r .

Appendix E reports the results of a simple linear regression on
the results reported in Table 7. The results of the regression indi-
cated that gr;1 is not correlated with either p or r, and yet g1;r is cor-
related with both p and r. The strongest correlation occurred
between g1;r and r, due to the fact that as the number of neighbors
needed increases, the penalty for neglecting to model the need for
multiple neighbors increases.

4.2.3. Number of facilities located vs. maximum rth closest distance
Next, we examine the tradeoff between the number of facilities

located and the max rth closest distance.
Fig. 4 shows the complete Pareto-efficient set for the number of

facilities located (p) vs. max rth closest distance for several in-
stances of datasets d49 and d150. Each set was generated using
Algorithm 3.2 but not using the bounds described in Sections
2.3.1 and 2.3.2 during the execution of the Algorithm 1.

Fig. 4 yields several insights. First, the Pareto-sets have a similar
form for different values of r, indicating that the change in the max
r th closest distance is relatively insensitive to the choice of r. This
insight helps a decision-maker make the decision of whether or not
add an additional facility without worrying that the value of r is
inaccurate. Second, many portions of the Pareto-efficient set are
‘‘flat,’’ meaning that a slight increase in the number of facilities sig-
nificantly decreases the max r th closest distance. This insight is
helpful to decision-makers because it shows that it is desirable



Fig. 4. Number of facilities vs. max rth closest distance.

Fig. 5. Ambulance locations for case study.
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to find solutions that are on the left side of the ‘‘flat’’ region, mean-
ing that they achieve a relatively large reduction in the max r th
closest distance by locating a relatively small number of facilities.
Third, the Pareto sets show that once the max r th closest distance
reaches a particular value, increases in the number of facilities no
longer produce a reduction in the max r th closest distance. This
phenomenon is called saturation and is explained in Section 4.1.4.
5. Example

In this section we discuss the implications of the empirical re-
sults described in the previous section. We explain these insights
through a detailed analysis of the classic 55-node dataset from
Swain (1971) (abbreviated sw55). The nodes in this dataset repre-
sent districts in the city of Washington, D.C. The nodes each have a
weight that is proportion to the population at that node.

In this case study a decision maker wishes to locate ambulances
within the districts of the city. The decision maker is especially
interested in the response time for emergencies requiring more
than one ambulance. Each demand point represents a district
and has a weight corresponding to population. The decision is
where to locate 13 ambulances within the 55 city districts.
First, consider the solution to the RANPCP with p ¼ 13 and
r ¼ 6, shown in Fig. 5. In this solution the vehicle locations are
spread so that every demand point has six vehicles within a rea-
sonably close distance. The maximum response time of the 6th
vehicle to an incident at a demand point is 317 time units. The
maximum closest distance for this location configuration is 154.

Next, consider the problem of locating p facilities to minimize
the maximum time required for the first vehicle to arrive at a
scene. This problem can be solved using the classic p-center model.
The solution for p ¼ 13 is shown in Fig. 5(b). In this solution, con-
trasted with the RANPCP solution in Fig. 5, most of the vehicles are
located in the center. This solution is centralized because (1) the
demand points in the center have the largest weights in the Swain
dataset and (2) because r ¼ 1, every demand point only needs to
have one facility within a reasonably close distance. For this solu-
tion, the maximum response time for one vehicle is 72 and the
maximum response time for the 6th vehicle is 741.

Given the application of ambulance response, the relative objec-
tive function increases have different interpretations: the relative
objective function increase for underestimating the number of
vehicles needed, g1;r , and the relative objective function increase
for overestimating the number of vehicles needed, gr;1.
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In this example g1;6 ¼ 741�317
317 ¼ 1:33. This means that if the 13-

center solution is chosen, the response time of the 6th vehicle is
133% higher than if the RANPCP solution had been used. Further,
g6;1 ¼ 154�72

72 ¼ 1:13. This means that if the RANPCP solution is cho-
sen, the response time of the first vehicle is 113% higher than if the
p-center solution had been used. Thus, a decision-maker that is
concerned about incidents requiring the response of many (� 6)
vehicles would likely prefer the solution shown in Fig. 5 over the
solution shown in 5(b).
6. Conclusions and future work

This paper described a study of the r-all-neighbor p-center
problem (RANPCP) and makes the following contributions to the
literature:

1. We described algorithms for computing the Pareto-efficient set
for combinations of two objectives: closest distance vs r th-clos-
est distance and cost vs. r th-closest distance.

2. We performed a series of computational tests of the single- and
bi-objective RANPCP that suggest several decision-making
insights.

3. We found that the solution times for a simple modification of
the standard p-center MIP formulation are better that those of
an existing MIP formulation.

Our experiments revealed several insights into the single- and
bi-objective versions of the RANPCP. For the single-objective ver-
sion, experiments showed that the RANPCP model is sensitive to
changes in the number of neighbors, r. However, in our experi-
ments the relative objective function error did not depend on the
magnitude of the change in the number of neighbors. We also dis-
covered a structural property of the RANPCP called saturation, the
point at which locating additional facilities does not improve the
objective function. As we discussed, this property shows a draw-
back of considering only the post-disruption radius objective in
isolation.

For the bi-objective version, we generated Pareto-efficient solu-
tions for the post-disruption radius and pre-disruption radius
objectives. The sets of solutions demonstrated that if a a single
objective is minimized in isolation, the value of the other objective
will be much higher than optimal. This finding was validated by
measuring the relative objective function increase associated with
optimizing a single objective in isolation. We found that there is a
lower penalty for optimizing the post-disruption objective in isola-
tion than the pre-disruption one. Thus, if only one objective is
modeled, it should be the post-disruption objective. We also used
our model to analyze the tradeoff between the number of facilities
built and the potential consequence. We found that for several
instances, significant reductions in potential consequence can be
obtained by building a few additional facilities.
6.1. Future work

Although this work focused on the maximum distance measure,
there are several other distance measures that are important to
consider in a facility location model with disruptions such as the
total (weighted) distance measure. Considering both maximum
distance and total distance simultaneously would be valuable
because when the maximum distance measure is used, there are
usually multiple optimal solutions due to the bottleneck structure.
In addition, it would be interesting to analyze the worst-case total
distance of solutions produced by the RANPCP.

The models in this paper assumed that the number of neigh-
bors, r, is known with certainty. It may be useful for decision mak-
ers to have a model that allows them to place a probability
distribution on r in order to minimize the expected loss. This could
be used to model the situation where a decision maker is unsure
about the amount of resources that an interdictor has. It could also
be used when a decision maker is interested in emergency
response to different types of incidents, each of which require a
different number of vehicles. Alternatively, a robust optimization
approach could be used to account for the uncertainty in the value
of r. This approach would generate a facility location solution that
minimizes the maximum post-disruption radius over all realiza-
tions of r.
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Appendix A. Other formulations

In this section we describe several other models for the RANPCP,
besides the MA formulation presented in Section 2.1.

A.1. Three index formulation

First, we present a straightforward formulation of the RANPCP.
In this formulation we keep track of the corresponding level for
each demand-facility pair. The ‘‘level’’ at which a facility is
assigned to a demand point is simply the distance rank of that
facility in relation to the other located facilities.

A.1.1. Variables

� Yi is 1 if a facility is located at i and 0 otherwise.
� Xij‘ is 1 if the facility located at i is assigned to demand point j

and i is the ‘th closest located facility to j.

ðM1Þ min U ðA:1aÞ
s:t:
X
i2I

dijXijr6U 8j2J ðA:1bÞ
X
i2I

Xij‘¼1 8j2J ; ‘¼1; . . . ;r ðA:1cÞ

Xr

‘¼1

Xij‘�1 8i2I ; j2J ðA:1dÞ

dij Xij‘6di0 jþMjð1�Xi0 ;j;‘þ1Þ 8j2J ; ‘¼1; . . . ;r�1; ðA:1eÞ
i – i0 2I

Xij‘6Yi 8i2I ; j2J ; ‘¼1; . . . ;r ðA:1fÞX
i2I

Yi6p ðA:1gÞ

Xij‘ 2f0;1g 8i2I ; j2J ; ‘¼1; . . . ;r ðA:1hÞ
Yi 2f0;1g 8i2I ðA:1iÞ

Constraints (A.1b), in conjunction with the minimization objec-
tive in (A.1a), ensure that the objective value is equal to the max-
imum value of the weighted distance between demand points and
their rth closest located facility, over all demand points.
Constraints (A.1c) require that a demand point be assigned to
one facility at each level. Constraints (A.1d) prevent a facility from
being assigned to more than one level for a demand point. Con-
straints (A.1e) enforce an ordering of the levels for each demand
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point. That is, the facility assigned to demand point j at level ‘ must
have a smaller value of dij than the facility assigned at level ð‘þ 1Þ.
The constant Mj is assigned a large value such as maxi–i02I jdij � di0 jj.
Constraints (A.1f) specify that a demand point may only be as-
signed to a facility i at a level if the facility has been located at i.
Constraints (A.1g) place a restriction on the number of facilities
that are located. Constraints (A.1h) define binary assignment
variables for only the r most desirable levels for each facility and
demand point combination. Finally, constraints (A.1i) require the
location variables to be binary.

A.2. Reformulation of the RANPCP

Unfortunately, Model M1 has a large number of assignment
variables, jI j � jJj � p to be exact. In addition, it has a disjunctive
constraint (A.1e) for each pair of consecutive pair of levels
ð‘; ‘þ 1Þ. However, some of the variables in model M1 are unnec-
essary. In finding the optimal solution to the RANPCP it does not
matter if demand points are assigned to the correct level for levels
‘ < r þ 1, because these assignments are not included in the objec-
tive function. The only requirement for the objective function to be
computed correctly is that each demand point is assigned to its
correct ðr þ 1Þth level. Thus, it is enough to require that if Xijr ¼ 1
and Xi0 j‘ ¼ 1 (with ‘ < r) then i must be further to j than i0. Thus,
many of the disjunctive constraints (A.1e) are unnecessary. We
take advantage of this fact in formulating a more compact model.

A.2.1. Variables

� Xij is equal to 1 if the facility located at i is assigned to demand
point j as its ðr � 1Þth or closer located facility and 0 otherwise.
� Zij is equal to 1 if the facility located at i is assigned to demand

point j as its rth closest located facility and 0 otherwise. Since
this variable represents the assignment from a demand point
to one of its backup facilities, we call it the ‘backup variable’.

A.2.2. Indices

� i‘j is the ‘th closest facility to demand point j.
ðM2Þ min U ðA:2aÞ

s:t:
X
i2I

Zij6U 8j2J ðA:2bÞ
X
i2I

Zij ¼1 8j2J ðA:2cÞ
X
i2I

Xij¼ r�1 8j2J ðA:2dÞ

dijXij6 di0jþMjð1�Zi0jÞ 8j2J ; i0 2 I ; i – i0 2 I ðA:2eÞ
XijþZij6Yi 8i2I ; j2J ðA:2fÞX
i2I

Yi6p ðA:2gÞ

Xij;Zij 2f0;1g 8i2I ; j2J ðA:2hÞ
Yi 2f0;1g 8i2I ðA:2iÞ

The objective (A.2a) and constraints (A.2b) serve the same
purpose as in model M1. Constraints (A.2c) require that a demand
point be assigned to exactly one facility at level r. Constraints
(A.2d) ensure that r � 1 facilities are assigned to levels r � 1 or low-
er. Constraints (A.2e) enforce an ordering of the levels for each
demand point. That is, the facilities assigned to demand point j
at levels 1 through ðr � 1Þ must have a smaller value of dij than
the facility assigned at level r. The constant Mj is the same as in
M1. When two facilities have the same distance to a demand point,
the following constraints should be used:

dijXij < di0j þ �þMjð1� Zi0 jÞ 8j 2 J ; i0 2 I ; i – i0 2 I ðA:3Þ
The quantity � should take a value less than the minimum abso-
lute difference between two values of dij. Constraints (A.2f) specify
that a demand point may only be assigned to a facility i at a level if
the facility has been located at i. Constraints (A.2g) place a restric-
tion on the number of facilities located. Constraints (A.2h) define
binary assignment variables for each facility and demand point
combination. Finally, constraints (A.2i) require the location
variables to be binary.

One may notice that in M2, some of the Zij variables will be 0 in
an optimal solution. In particular, for a given j, Zij will be zero for all
facilities closer than the rth facility. To explain this formally we
first need to introduce further notation. Let i‘j be the ‘th closest
facility to demand point j.

Now we state our observation in the form of a remark:

Remark 1. There exists an optimal solution to model M2 with
Zil

jj
¼ 0 for all 1 6 ‘ 6 r � 1 and for all j 2 J .

Proof 1 (By contradiction). Suppose there exists an ‘

(1 6 ‘ 6 r � 1) such that in the optimal solution to model
M2; Zi‘j j ¼ 1 for some j 2 J . As a result,

P
16‘06r�1Z

i‘
0

j j
< r � 1 and

by constraints (A.2e),
P

r�1<‘06jI jZi‘
0

j j
¼ 1. Hence, there exists an ‘0

ðr � 1 < ‘0 6 jI jÞ such that Z
i‘
0

j j
¼ 1.

Case 1: All of the values of dij are different.
By our choice of ‘ and ‘0; di‘j j < d

il
0

j j
. As a result, Constraint (A.2e)

is violated for j if Zi‘j j ¼ 1 and Z
i‘
0

j j
¼ 1.

Case 2: There exists i; i0 2 I such that for some j 2 J ; di0 j ¼ dij.
By our choice of ‘ and ‘0; di‘j j 6 d

i‘
0

j j
. As a result, Constraint is (A.3)

violated for j if Zi‘j j ¼ 1 and Z
i‘
0

j j
¼ 1. h

Because of Remark 1, all variables Zi‘j j for all 1 6 ‘ 6 r � 1 and all
j 2 J can be removed from Model M2. We denote the new model
that is formed by removing variables from model M2 as model
M2� C.

The linear programming (LP) relaxation of M2� C can be
tightened by adding the following constraints:

rZi‘j j 6
X‘�1

‘0¼1

Yi‘j
8j 2 J ; r 6 ‘ 6 jIj ðA:4Þ

These constraints require that for a given demand point j, if its ‘th
closest facility, i‘j , is chosen as its safe facility (i.e., Zi‘j j ¼ 1), then r
facilities must be located that are closer to j than i‘j (i.e.,P‘�1

‘0¼1Yi‘j
¼ r ).

A.3. Formulation without constraints to enforce distance-ordering

A limiting feature of Models M2 and M2� C are the distance-
ordering Constraints (A.2e), which are numerous. These constraints
can be replaced with the following requirement: if a backup
assignment is made from demand point j to a facility at i, then at
least r facilities must be located that are at least as close to j as i.
This replacement also allows the elimination of the variables Xij.
Because this new formulation only uses the backup variables,
Wij, we denote it as BACKUP. Formulation BACKUP is as follows:

ðBACKUPÞ min U ðA:5aÞ

s:t: dijWij 6 U 8i 2 I ; j 2 J ðA:5bÞ

rWij 6
X

i0 :di0 j6dij

Yi0 8j 2 J ; i 2 I ðA:5cÞ
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X
i2I

Wij ¼ 1 8j 2 J ðA:5dÞ
Wij 6 Yi 8i 2 I ; j 2 J ðA:5eÞ
X
i2I

Yi 6 p ðA:5fÞ
Yi 2 f0;1g 8i 2 I ðA:5gÞ
Wij 2 f0;1g 8i 2 I ; j 2 J ðA:5hÞ

The objective (A.5a) and Constraints (A.5b) are equivalent to the
other models. Constraints (A.5c) are the key to this model. They
require that a backup assignment can only be made between
demand point j and a facility placed at location i if at least r facil-
ities are located at locations no further to j than i. Constraints
(A.5d) require every demand point to be assigned a backup facility.
Although the model is still correct without Constraints (A.5e) (be-
cause of the presence of Constraints (A.5c)), they are added to
tighten the linear-programming relaxation. Constraints (A.5f) limit
the number of facilities located and Constraints (A.5g) and (A.5h)
require the variables to be binary.

A weakness of Formulation (BACKUP) is the use of Constraints
(A.5c), in which the coefficient r acts as a ‘‘Big-M’’, weakening
the linear-programming relaxation.
Table B.8
Datasets used in experimentation.

No. Name jIj ¼ jJj Weights Source

1 s55 55 Yes Popula
2 d49 49 Yes 49 US s
3 d88 88 Yes Cities i
4 d150 150 Yes Cities i
5 lor100 100 Yes Popula
6 lon150 150 Yes Popula
7 lor200 Yes Yes Popula
8 lor300a 300 Yes Popula
9 lor300b 300 Yes Popula
10 lor400a 402 Yes Popula
11 lor400b 402 Yes Popula
12 lor818 818 No Popula

Table C.9
Binary search computational results for wtd. and unwtd. datasets.

No. Dataset p r p
jI j

r
p Time (s)

Wtd.

1 lor402a 5 1 0.012 0.2 3.5
2 lor402a 5 2 0.012 0.4 4
3 lor402a 10 1 0.025 0.1 2.9
4 lor402a 10 2 0.025 0.2 3.5
5 lor402a 40 1 0.100 0.025 5.4
6 lor402a 40 2 0.100 0.05 0.1
7 lor402b 5 1 0.012 0.2 3.6
8 lor402b 5 2 0.012 0.4 4
9 lor402b 10 1 0.025 0.1 3
10 lor402b 10 2 0.025 0.2 3.6
11 lor402b 40 1 0.100 0.025 5.4
12 lor402b 40 2 0.100 0.05 0.1

Min 0.1
Max 5.4
Average 3.3
Appendix B. Datasets used in experimentation

The following Table contains the 18 datasets used in the exper-
imentation. The third column of Table B.8 indicates which datasets
have weighted demand points and which do not. If demand points
have weights, the distance values dij usually do not obey the trian-
gle inequality.

Appendix C. Effect of weights on binary search algorithm

In this section we try to determine if weighted or unweighted
instances require more computation time for the binary search
algorithm. We used our two largest weighted datasets, lor400a
and lor400b, for our analysis. Table C.9 shows the computation
times and number of binary search iterations for the weighted
and unweighted versions of several instances of the RANPCP. When
the optimal solution is found after the lower and upper bounds
stage because lb ¼ ub, the number of iterations is listed as 0. Each
row shows the computation time and number of iterations re-
quired for the weighted and unweighted versions of an instance.
From the results in this table, it is difficult to discern if the
weighted or unweighted problem requires more computation. In
half of the instances, the unweighted version requires more com-
putation time. This is also true for the number of iterations.

Appendix D. Saturation

In this section we prove the existence of a structural property of
the RANPCP called saturation. An instance of the RANPCP is satu-
of data Reference

tion centers in Washington, D.C. Swain (1971)
tate capitals and Washington, D.C. Daskin (1995)

n US Daskin (1995)
n US Daskin (1995)
tion centers in San Jose Dos Campos, Brazil Lorena and Senne (2004)
tion centers in London, Ontario Alp et al. (2003)
tion centers in San Jose Dos Campos, Brazil Lorena and Senne (2004)
tion centers in San Jose Dos Campos, Brazil Lorena and Senne (2004)
tion centers in San Jose Dos Campos, Brazil Lorena and Senne (2004)
tion centers in San Jose Dos Campos, Brazil Lorena and Senne (2004)
tion centers in San Jose Dos Campos, Brazil Lorena and Senne (2004)
tion centers in San Jose Dos Campos, Brazil Lorena and Senne (2004)

Number of iterations

Unwtd. Wtd. � unwtd. Wtd. Unwtd. Wtd. � unwtd.

3.2 0.33 18 16 2
3.9 0.08 14 16 �2
3.8 �0.86 17 15 2
3.4 0.15 13 15 �2
14.0 �8.5 16 13 3
15.0 �15 0 14 �14
3.1 0.54 18 16 2
3.9 0.1 14 16 �2
3.8 �0.8 17 15 2
3.4 0.15 13 15 �2
14.0 �8.5 16 13 3
15.0 �15 0 14 �14

3.1 �15 0 13 �14
15 0.54 18 16 3
7.2 �3.9 13 15 �1.8



Table E.10
Results of simple linear regression on number of facilities vs. relative objective function errors and number of neighbors needed vs. relative objective function errors. Bold values
indicate statistical significance.

gr;1 g1;r g1;r=gr;1

P R2 Slope Int. P R2 Slope Int. P R2 Slope Int.

lon150 p 0.487 0.044 �0.003 0.482 0.007 0.4887 0.071 0.035 0.010 0.464 �0.014 0.725
lon150 r 0.845 0.004 �0.004 0.404 7.09E�006 0.851 0.364 0.205 0.090 0.239 �0.039 0.528
lor200 p 0.194 0.148 �0.005 0.653 1.30E�006 0.890 0.332 �1.861 0.002 0.608 �0.007 0.376
lor200 r 0.144 0.184 0.022 0.334 0.003 0.578 1.053 3.784 0.199 0.145 �0.013 0.206
lor300a p 0.209 0.128 �0.005 0.930 3.77E�008 0.926 0.275 �1.535 0.006 0.487 �0.006 0.499
lor300a r 0.111 0.198 0.027 0.418 0.005 0.498 0.785 6.305 0.269 0.101 �0.011 0.256
lor400a p 0.273 0.099 �0.003 0.755 1.63E�006 0.862 0.271 �2.753 0.025 0.353 �0.005 0.492
lor400a r 0.120 0.189 0.018 0.330 0.003 0.536 0.825 7.040 0.316 0.084 �0.009 0.248
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rated if the r closest facilities are located for a given demand point
and the distance from that demand point and its rth closest located
facility is equal to the optimal objective value. When an instance is
saturated for a given value of p and r, locating additional facilities
does not improve the objective.

Let Vðp; rÞ be the optimal objective value for an instance of the
RANPCP with p facilities and r neighbors. An instance of the RAN-
PCP is said to be saturated for a given p and r if an optimal solution
exists that has an objective value of maxjfdirj jg ¼ Vðp; rÞ. We call the
quantity maxjfdirj jg the saturation objective.

Lemma 1. For an instance with r neighbors, the saturation objective
is obtained when the r closest facilities to demand point j are located,
where j ¼ arg maxjfdir

j jg.
Proof 2. By the definition of saturated, maxjfdirj jg ¼ Vðp; rÞ. Let
j ¼ arg maxjfdirj jg. By the definition of the RANPCP, the distance
from j and each of its r closest located facilities must be less than
Vðp; rÞ ¼maxjfdirj jg. However, the distance from j and each of its r
closest located facilities can only be less than Vðp; rÞ ¼maxjfdirj jg
if the r closest facilities to j are located. h
Theorem 1. If an instance is saturated for a given p ðp 6 jJj � 1Þ and
r, then Vðp; rÞ ¼ Vðpþ 1; rÞ and the instance is also saturated for pþ 1
and r.
Proof 3. By the definition of saturation, there exists a j 2 J such
that dirj j ¼ Vðp; rÞ. By Lemma 1, the r closest facilities to j have been
located. Let p ¼ pþ 1. Thus, one new facility can be located. Wher-
ever the new facility is located, it will be at least as far from
demand point j as facility ir

j . As a result, this additional facility loca-
tion would not change the distance from j to its rth closest located
facility and the optimal objective value is not changed. Thus,
Vðp; rÞ ¼ dirj j ¼ Vðpþ 1; rÞ and therefore the instance is saturated
for pþ 1 and r. h
Appendix E. Statistical analysis

This section reports the results of a simple linear least-squares
regression using the following model:

Y ¼ aþ bX

where the number of facilities (p) and the number of neighbors re-
quired (r) were used for the independent variable (X) and three rel-
ative error terms, gr;1, g1;r , and g1;r=gr;1 (see Section 4.2.2), were
used for the dependent variable (Y). Table E.10 shows the P-value,
R2 value, slope (b), and intercept (a) for different combinations of
datasets and independent variables (p and r). As the table shows,
the relative objective function increase for not considering normal
pre-disruption performance, gr;1, is not strongly correlated with the
number of facilities or number of neighbors required for any of
the datasets. On the other hand, the relative objective function in-
crease for not considering post-disruption performance, g1;r , is likely
correlated with both independent variables for all datasets. The
relative error metric g1;r has a stronger correlation with the number
of covers required, r. This is intuitive if one considers the applica-
tion of facility failures: as the number of failures ðr � 1Þ increases,
the penalty for neglecting facility failures increases.
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