
Ann Oper Res (2007) 150:205–230

DOI 10.1007/s10479-006-0154-0

A fast swap-based local search procedure
for location problems

Mauricio G. C. Resende · Renato F. Werneck

Published online: 9 January 2007
C© Springer Science + Business Media, LLC 2007

Abstract We present a new implementation of a widely used swap-based local search proce-

dure for the p-median problem, proposed in 1968 by Teitz and Bart. Our method produces the

same output as the best alternatives described in the literature and, even though its worst-case

complexity is similar, it can be significantly faster in practice: speedups of up to three orders

of magnitude were observed. We also show that our method can be easily adapted to handle

the facility location problem and to implement related procedures, such as path-relinking and

tabu search.

Keywords Local search . p-Median . Facility location . Experimental analysis .

Reordering problem

1 Introduction

The p-median problem is defined as follows. Given a set F of m facilities, a set U of n users (or

customers), a distance function d : U × F → R+, and an integer p ≤ m, determine which

p facilities to open so as to minimize the sum of the distances from each user to the closest

open facility. In other words, given p, we want to minimize the cost of serving all customers.

Since this problem is NP-hard (Kariv and Hakimi, 1979), a polynomial-time algorithm

to solve it exactly is unlikely to exist. The most effective algorithms proposed in the lit-

erature (Avella, Sassano, and Vasil’ev, 2003; Beasley, 1985; Briant and Naddef, 2004;

Cornuéjols, Fisher, and Nemhauser, 1977; Galvão, 1980; Rosing, ReVelle, and Rosing-

Vogelaar, 1979; Senne, Lorena, and Pereira, 2005) use branch-and-bound, with lower bounds
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obtained from some linear programming relaxation of the problem. In the worst case, all these

methods are exponential, but they can be quite fast in practice (the recent algorithm by Avella,

Sassano, and Vasil’ev (2003) is particularly effective). Also, similar techniques can be made

to work as heuristics only, producing close-to-optimal solutions in reasonable time (Avella,

Sassano, and Vasil’ev, 2003; du Merle et al., 1999; Senne and Lorena, 2000, 2002).

There are also simpler heuristics that use no duality (linear programming) information at

all. The most natural options are constructive heuristics, methods that build solutions from

scratch, usually in a greedy fashion (Cornuéjols, Fisher, and Nemhauser, 1977; Kuehn and

Hamburger, 1963; Whitaker, 1983). A step further is to use a local search procedure, which

takes an existing solution as input and tries to improve it (Goodchild and Noronha, 1983;

Hodgson, 1978; Maranzana, 1964; Rosing, 1997; Taillard, 2003; Teitz and Bart, 1968). It

does so in an iterative fashion, examining neighboring solutions, those that differ from the

original one by a small (problem- and algorithm-specific) modification. Finally, there are

metaheuristics, procedures that aim at exploring a large portion of the search space in an

organized fashion to obtain close-to-optimal solutions (possibly using constructive algo-

rithms and local search as subroutines). Recent examples in the literature include variable

neighborhood search (Hansen and Mladenović, 1997), variable neighborhood decomposi-

tion search (Hansen, Mladenović, and Perez-Brito, 2001), tabu search (Rolland, Schilling,

and Current, 1996; Voß, 1996), heuristic concentration (Rosing and ReVelle, 1997), scat-

ter search (Garcı́a-López et al., 2003), and a GRASP-based hybrid algorithm (Resende and

Werneck, 2004).

This study concerns the local search proposed by Teitz and Bart (1968), based on

swapping facilities. In each iteration, the algorithm looks for a pair of facilities (one to

be inserted into the current solution, another to be removed) that would lead to an im-

proved solution if swapped. If such a pair exists, the swap is made and the procedure is

repeated.

Arya et al. have shown (Arya et al., 2001) that, in a metric setting, this algorithm al-

ways finds solutions that are within a factor of at most 5 from the optimum. However, for

practical, non-pathological instances the gap is usually much smaller, just a few percentage

points (Rosing, 1997; Whitaker, 1983). This has made the algorithm very popular among

practioners, often appearing as a key subroutine of more elaborate metaheuristics (Garcı́a-

López et al., 2003; Hansen and Mladenović, 1997; Resende and Werneck, 2004; Rolland,

Schilling, and Current, 1996; Rosing and ReVelle, 1997; Voß, 1996).

Our concern in this paper is not solution quality—the reader is referred to Rosing (1997)

and Whitaker (1983) for insights on that matter. Our goal is to obtain the same solutions Teitz

and Bart would, only in less time. We present an implementation that is significantly (often

asymptotically) faster in practice than previously known alternatives.

The paper is organized as follows. In Section 2, we give a precise description of the

local search procedure and a trivial implementation. In Section 3, we describe the best

alternative implementation described in the literature, proposed by Whitaker (1983). Our

own implementation is described in Section 4. We show how it can be adapted to handle the

facility location problem and to handle related operations (such as path-relinking and tabu

search) in Section 5. Experimental evidence to the efficiency of our method is presented in

Section 6. Final remarks are made in Section 7.

Notation and assumptions. Before proceeding to the study of the algorithms themselves, let

us establish some notation. As already mentioned, F is the set of potential facilities and U the

set of users that must be served. The basic parameters of the problem are n = |U |, m = |F |,
and p, the number of facilities to open. Although 1 ≤ p ≤ m by definition, we will ignore
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trivial cases and assume that 1 < p < m and that p < n (if p ≥ n, we just open the facility

that is closest to each user). We assume nothing about the relationship between n and m.

We use u to denote a generic user, and f a generic facility. The cost of serving u with

f is d(u, f ), the distance between them, which is always nonnegative. (We do not make

any other assumption about the distance function; in particular, we do not assume that the

triangle inequality is valid.) A solution S is any subset of F with p elements, and represents

the set of open facilities. Every user u is assigned to the closest facility f ∈ S (the one that

minimizes d(u, f )). This facility will be denoted by φ1(u). Our algorithm often needs to

access the second closest facility to u in S as well; it will be denoted by φ2(u). To simplify

notation, we will abbreviate d(u, φ1(u)) as d1(u), and d(u, φ2(u)) as d2(u).1 We often deal

specifically with a facility that is a candidate for insertion; it will be referred to as fi (by

definition fi �∈ S); similarly, a candidate for removal will be denoted by fr ( fr ∈ S, also by

definition).

Throughout this paper, we assume the distance oracle model, in which the distance be-

tween any customer and any facility can be determined in O(1) time. In this model, all values

of φ1 and φ2 for a given solution S can be straighforwardly computed in O(pn) total time: for

each of the n customers, we explicitly find the distances to the p open facilities and pick the

smallest. Problems defined by a distance matrix clearly fall into the distance oracle model,

but an explicit matrix is not always necessary. If users and facilities are points on the plane,

for example, distances can also be computed in constant time. There are cases, however, in

which that does not happen, such as when the input is given as a sparse graph, with distances

determined by shortest paths. In such situations, one must precompute the corresponding

distance matrix in order to apply our method with the same worst-case running time.

2 The swap-based local search

Introduced by Teitz and Bart (1968), the standard local search procedure for the p-median

problem is based on swapping facilities. For each facility fi �∈ S (the current solution), the

procedure determines which facility fr ∈ S (if any) would improve the solution the most if fi

and fr were interchanged (i.e., if fi were inserted and fr removed from the solution). If any

such “improving” swap exists, the best one is performed, and the procedure is repeated from

the new solution. Otherwise we stop, having reached a local minimum (or local optimum).

Arya et al. have recently proven (Arya et al., 2001) that this procedure is guaranteed to

produce a solution whose value is at most 5 times the optimum in the metric setting (i.e., when

the triangle inequality holds). On non-pathological instances (those more likely to appear

in practice), empirical evidence shows that the algorithm is often within a few percentage

points of optimality (and often does find the optimal solution), being especially successful

when both p and n are small (Rosing, 1997).

Our main concern is not solution quality, but the time it takes to run each iteration of the

algorithm. Given a solution S, we want to find an improving neighbor S′ (if it exists) as fast

as possible.

A straighforward implementation takes O(pmn) time per iteration. Start by determining

the closest and second closest open facilities for each user; this takes O(pn) time. Then, for

each candidate pair ( fi , fr ), compute the profit that would result from replacing fr with fi .

1 More accurate representations of φ1(u), φ2(u), d1(u), and d2(u) would be φS
1 (u), φS

2 (u), d S
1 (u), and d S

2 (u),

respectively, since each value is a function of S as well. Since the solution will be clear from context, we prefer

the simpler representation in the interest of readability.

Springer



208 Ann Oper Res (2007) 150:205–230

To do that, one can reason about each user u independently. If the facility that currently serves

u is not fr (the facility to be removed), the user will switch to fi only if this facility is closer,

otherwise it will remain where it is. If u is currently assigned to fr , the user will have to be

reassigned, either to φ2(u) (the second closest facility) or to fi (the facility to be inserted),

whichever is closest. The net effect is summarized by following expression:

profit( fi , fr ) =
∑

u:φ1(u)�= fr

max{0, [d1(u) − d(u, fi )]} −
∑

u:φ1(u)= fr

[min{d2(u), d(u, fi )} − d1(u)].

The first summation accounts for users that are not currently assigned to fr (these can

only gain from the swap), and the second for users that are (they can gain or lose something

with the swap). In the distance oracle model, the entire expression can be computed in O(n)

time for each candidate pair of facilites. There are p candidates for removal and m − p for

insertion, so the total number of moves to consider is p(m − p) = O(pm). Each iteration

therefore takes O(pmn) time.

Several papers in the literature use this basic implementation, and others avoid using

the swap-based local search altogether mentioning its intolerable running time (Rolland,

Schilling, and Current, 1996; Rosing and ReVelle, 1997; Voß, 1996). These methods would

greatly benefit from asymptotically faster implementations, such as Whitaker’s or ours.

3 Whitaker’s implementation

In Whitaker (1983), describes the so-called fast interchange heuristic, an efficient implemen-

tation of the local search procedure defined above. Even though it was published in 1983,

Whitaker’s implementation was not widely used until 1997, when Hansen and Mladenović

(1997) applied it as a subroutine of a Variable Neighborhood Search (VNS) procedure. A

minor difference between the implementations is that Whitaker prefers a first improvement
strategy (a swap is made as soon as a profitable one is found), while Hansen and Mlade-

nović prefer best improvement (all swaps are evaluated and the most profitable executed).

In our analysis, we assume best improvement is used, even in references to “Whitaker’s

algorithm.”

The key aspect of this implementation is its ability to find in �(n) time the best possible

candidate for removal, given a certain candidate for insertion. The pseudocode for the function

that does that, adapted from Hansen and Mladenović (1997), is presented in Fig. 1.2 Function

findOut takes as input a candidate for insertion ( fi ) and returns fr , the most profitable

facility to be swapped out, as well as the profit itself (profit).
Given a certain candidate for insertion fi , the function implicitly computes profit( fi , fr )

for all possible candidates fr . What makes this procedure fast is the observation (due to

Whitaker) that the profit can be decomposed into two components, which we call gain and

netloss.

Component gain accounts for all users who would benefit from the insertion of fi into

the solution. Each is closer to fi than to the facility it is currently assigned to. The difference

between the distances is the amount by which the cost of serving that particular user will be

reduced if fi is inserted. Lines 4 and 5 of the pseudocode compute gain.

The second component, netloss, accounts for all other customers, those that would not

benefit from the insertion of fi into the solution. If the facility that is closest to u is removed,

2 In the code, an expression of the form a
+← b means that the value of a is incremented by b units.
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Fig. 1 Function to determine, given a candidate for insertion ( fi ), the best candidate for removal ( fr ). Adapted

from Hansen and Mladenović (1997)

u would have to be reassigned either to φ2(u) (its current second closest facility) or to fi (the

new facility), whichever is closest. In both cases, the cost of serving u will either increase or

remain constant. Of course, this reassignment will only be necessary if φ1(u) is the facility

removed to make room for fi . This explains why netloss is an array, not a scalar value: there

is one value associated with each candidate for removal. All values are initially set to zero

in line 2; line 7 adds the contributions of the relevant users.

Given this O(n)-time function, it is trivial to implement the swap-based local search

procedure in O(mn) time per iteration: simply call findOut once for each of the m − p
candidates for insertion and pick the most profitable one. If the best profit is positive, perform

the swap, update the values of φ1 and φ2, and proceed to the next iteration. Updating φ1 and

φ2 requires O(pn) time in the worst case, but the procedure can be made faster in practice,

as mentioned in Whitaker (1983). Since our implementation uses the same technique, its

description is deferred to the next section (Section 4.3.1).

4 An alternative implementation

Our implementation has some similarity with Whitaker’s, in the sense that both methods per-

form the same basic operations. However, the order in which they are performed is different,

and in our case partial results are stored in auxiliary data structures. As we will see, with

this approach we can use values computed in early iterations of the local search procedure

to speed up later ones.

4.1 Additional structures

Before we present our algorithm, let us analyze Whitaker’s algorithm from a broader perspec-

tive. Its ultimate goal is to determine the pair ( fi , fr ) of facilities that maximizes profit( fi , fr ).

To do so, it computes gain( fi ) for every candidate for insertion, and netloss( fi , fr ) for every

pair of candidates. (In the description in Section 3, gain is a scalar and netloss takes as input

only the facility to be removed; however, both are computed inside a function that is called

for each fi , which accounts for the additional dimension.) Implicitly, what the algorithm
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does is to compute profits as

profit( fi , fr ) = gain( fi ) − netloss( fi , fr ).

Our algorithm defines gain( fi ) precisely as in Whitaker’s algorithm: it represents the total

amount gained if fi is added to S, regardless of which facility is removed:

gain( fi ) =
∑
u∈U

max{0, d1(u) − d(u, fi )}. (1)

Our method differs from Whitaker’s in the computation of netloss. While Whitaker’s

algorithm computes it explicitly, we do it in an indirect fashion. For every facility fr in the

solution, we define loss( fr ) as the increase in solution value that results from the removal of

fr from the solution (assuming that no facility is inserted). This is the cost of transferring

every customer assigned to fr to its second closest facility:

loss( fr ) =
∑

u:φ1(u)= fr

[d2(u) − d1(u)]. (2)

As defined, gain and loss are capable of determining the net effect of a single insertion or

a single deletion, but not of a swap, which is nothing but an insertion and a deletion that occur

simultaneously. Whitaker’s algorithm can handle swaps because it computes netloss instead

of loss. To compute netloss from loss, we use yet another function, extra( fi , fr ), defined so

that the following is true for all pairs ( fi , fr ):

netloss( fi , fr ) = loss( fr ) − extra( fi , fr ). (3)

From the pseudocode in Fig. 1, it is clear that netloss( fi , fr ) is actually defined as

netloss( fi , fr ) =
∑

u:[φ1(u)= fr ]∧
[d(u, fi )>d1(u)]

[min{d(u, fi ), d2(u)} − d1(u)]. (4)

Substituting the values in Eqs. (2) and (4) into Eq. (3), we obtain an expression for extra:

extra( fi , fr ) =
∑

u:φ1(u)= fr

[d2(u) − d1(u)] −
∑

u:[φ1(u)= fr ]∧
[d(u, fi )>d1(u)]

[min{d(u, fi ), d2(u)} − d1(u)].

It is possible to simplify this expression. First, consider a user u for which

min{d(u, fi ), d2(u)} = d2(u). It has no net contribution to extra: whatever is added in the

first summation is subtracted in the second. Therefore, we can write

extra( fi , fr ) =
∑

u:[φ1(u)= fr ]∧
[d(u, fi )<d2(u)]

[d2(u) − d1(u)] −
∑

u:[φ1(u)= fr ]∧
[d1(u)<d(u, fi )<d2(u)]

[d(u, fi ) − d1(u)].
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Note that the range of the first summation contains that of the second. We can join both into

a single summation,

extra( fi , fr ) =
∑

u:[φ1(u)= fr ]∧
[d(u, fi )<d2(u)]

[d2(u) − d1(u) − max{0, d(u, fi ) − d1(u)}],

which can be further simplified to

extra( fi , fr ) =
∑

u:[φ1(u)= fr ]∧
[d(u, fi )<d2(u)]

[d2(u) − max{d(u, fi ), d1(u)}]. (5)

This is our final expression for extra. We derived it algebraically from simpler expressions,

but it is possible to get it directly with a bit of case analysis. This alternative approach was

used in an earlier version of our paper (Resende and Werneck, 2003).

Given the expressions of gain, loss, and extra (Eqs. (1), (2), and (5)), we can find the profit

associated with each move in a very simple manner:

profit( fi , fr ) = gain( fi ) − loss( fr ) + extra( fi , fr ). (6)

The interesting aspect of this decomposition of profit is that the only term that depends

on both the facility to be inserted and the one to be removed is extra. Moreover, this term

is always nonnegative (see Eq. 5). This will be relevant in the implementation of the local

search itself, as the next section will make clear.

4.2 Local search

Our implementation of the local search procedure assumes that all necessary values (loss,

gain, and extra) are stored in appropriate data structures: one-dimensional vectors for loss
and gain, and a two-dimensional matrix for extra.3 Once these structures are computed, one

can easily find the best swap in O(pm) time: just use Eq. (6) to determine the profit for each

candidate pair of facilities and pick the minimum.

To compute gain, loss, and extra, we note that every entry in these structures is a summation

over some subset of users (see Eqs. (1), (2), and (5)). The contribution of each user can

therefore be computed independently. Function updateStructures, shown in Fig. 2,

does exactly that. Given a user u and its two closest facilities in solution S (given by φ1 and

φ2), it adds u’s contribution to loss, gain, and extra. The total running time of the procedure

is O(m − p) = O(m), since it is essentially a loop through all the facilities that do not

belong to the solution. Given this function, computing gain, loss, and extra from scratch is

straightforward: first reset all entries in these structures, then call updateStructures
once for each user. Together, these n calls perform precisely the summations defined in

Eqs. (1), (2), and (5).

We now have all the elements necessary to build the local search procedure with O(mn)

operations. In O(pn) time, compute φ1(·) and φ2(·) for all users. In O(pm) time, reset loss,

3 Note that gain and loss could actually share the same m-sized vector, since they are defined for disjoint sets

of facilities.
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Fig. 2 Pseudocode for updating

arrays in the local search

procedure

gain, and extra. With n calls to updateStructures, each taking in O(m) time, determine

their actual values. Finally, in O(pm) time, find the best swap using Eq. (6).

4.3 Acceleration

At first, our implementation seems to be merely a complicated alternative to Whitaker’s; after

all, both have the same worst-case complexity. Furthermore, our implementation has the clear

disadvantage of requiring an O(pm)-sized matrix, whereas �(n + m) memory positions are

enough for Whitaker’s. The additional memory, however, allows for significant accelerations,

as this section will show.

When a facility fr is replaced by a new facility fi , certain entries in gain, loss, extra, φ1,

and φ2 become inaccurate. The straighforward way to update them for the next local search it-

eration is to recompute φ1 and φ2, reset the other arrays, and then callupdateStructures
again for all users.

A downside of this approach is that no information gathered in one iteration is used in

subsequent ones. As a result, unnecessary, repeated computations are bound to occur. In fact,

the actions performed by updateStructures depend only on u, φ1(u), and φ2(u); no

value is read from other structures. If φ1(u) and φ2(u) do not change from one iteration to

another, u’s contribution to gain, loss, and extra will not change either. This means there is

no need to call updateStructures again for u.

To deal with such cases, we keep track of affected users. A user u is affected if there is a

change in either φ1(u) or φ2(u) (or both) after a swap is made. Sufficient conditions for u to

be affected after a swap between fi and fr are:

1. either φ1(u) or φ2(u) is fr , the facility removed; or

2. fi (the facility inserted) is closer to u than the original φ2(u) is.

Contributions to loss, gain, and extra need only be updated for affected users. If there happens

to be few of them (which is often the case, as Section 6.2.1 shows) significant gains can be

obtained.

Note, however, that updating the contributions of an affected user u requires more than

a call to updateStructures. This function simply adds new contributions, so we must

first subtract the old contributions made by u. To acomplish this, we use a function similar to

updateStructures, with subtractions instead of additions.4 This function (undoUp-
dateStructures) must be called for all affected users before φ1 and φ2 are recomputed.

4 This function is identical to the one shown in Fig. 2, with all occurrences of
+← replaced with

–←: instead of

incrementing values, we decrement them.
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Fig. 3 Pseudocode for the local search procedure

Figure 3 contains the pseudocode for the entire local search procedure, already taking into

account the observations just made. Apart from the functions already discussed, three other

nontrivial ones appear in the code. Function resetStructures sets all entries in gain,

loss, and extra to zero. Function findBestNeighbor runs through these structures and

finds the most profitable swap using Eq. (6). It returns which facility to remove ( fr ), the one

to replace it ( fi ), and the profit itself (profit). Finally, updateClosest updates φ1 and φ2,

possibly using the fact that the facility recently opened was fi and the one closed was fr

(Section 4.3.1 explains how this is done).

Restricting updates to affected users can result in significant speedups in the algorithm,

as Section 6.2.1 shows. There are, however, other accelerations to exploit. The pseudocode

reveals that all operations in the main loop run in linear time, with three exceptions:� updating closeness information (calls to updateClosest);� finding the best swap to be made (calls to findBestNeighbor);� updating the auxiliary data structures (calls to updateStructures and undoUpdate
Structures).

These are the potential bottlenecks of the algorithm, since they all run in quadratic time in

the worst case. The next three subsections analyze how each of them can be dealt with.

4.3.1 Closeness

Updating closeness information, in our experience, has proven to be a relatively cheap opera-

tion. Deciding whether the newly inserted facility fi becomes either the closest or the second

closest facility to each user is trivial and can be done in O(n) total time. A more costly

operation is updating closeness information for customers who had fr (the facility removed)

as either the closest or the second closest element. With a straighforward implementation,

updating each such affected user takes O(p) time. Since there are usually few of them, the

total time spent tends to be a small fraction of the entire local search procedure.
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The whole update procedure could actually be performed in O(n log p) worst-case time.

It suffices to keep, for each user u, the set of open facilities in a heap with priorities given

by their distances to u. Since this solution requires O(np) additional memory positions

and is not significantly faster, we opted for using the straighforward implementation in our

code.

It is also important to mention that finding the set of closest and second closest elements

from scratch is itself a cheap operation in some settings, even in the worst case. For example,

when distances between customers and facilities are given by shortest paths on an underlying

graph, this can be accomplished in Õ(|E |) time (Thorup, 2001), where |E | is the number of

edges in the graph.5

In practice, the generic approach above seems to be good enough. Section 6.2.5 shows

that there is not much to gain from accelerating this part of the algorithm; together, other

procedures already dominate the running time of the local search. We therefore do not use

specialized routines in this paper; we always assume we are dealing with arbitrary distance

matrices.

4.3.2 Best neighbor

Given a solution, the straighforward way to find the most profitable swap is to compute

profit( fi , fr ) (as defined in Eq. (6)) for all candidate pairs of facilities and pick the best.

Since each profit computation takes constant time and there are p(m − p) potential swaps,

the entire procedure requires �(pm) operations. In practice, however, the best move can be

found in less time.

It is convenient to think of extra( fi , fr ) as a measure of the interaction between the

neighborhoods of fr and fi . After all, Eq. (5) shows that only users that have fr as their

current closest facility and are also close to fi (i.e., have fi closer than the second closest

open facility) contribute to extra( fi , fr ). In particular, if there are no users in this situation,

extra( fi , fr ) will be zero. Section 6.2.2 shows that this occurs rather frequently in practice,

especially when p is large (and hence the average number of users assigned to each fr is

small).

Therefore, instead of storing extra as a full matrix, one may consider representing only

nonzero elements explicitly: each row becomes a linked list sorted by column number. A

drawback of this sparse representation is the impossibility to make random accesses in O(1)

time. Fortunately, this is not necessary for our purposes. All three functions that access the

matrix (updateStructures, undoUpdateStructures, and bestNeighbor) can

be implemented so as to go through each row sequentially.

In particular, consider the implementation of bestNeighbor. First, it determines the

facility f ∗
i that maximizes gain( fi ) and the facility f ∗

r that minimizes loss( fr ). Since all

values in extra are nonnegative, the pair ( f ∗
i , f ∗

r ) is at least as profitable as any pair ( fi , fr )

for which extra( fi , fr ) is zero. Then, the procedure computes the exact profits (given by

Eq. (6)) for all nonzero elements in extra.

The whole procedure takes O(m + λpm) time, where λ is the fraction of pairs whose

extra value is nonzero. As already mentioned, this value tends to be smaller as p increases,

thus making the algorithm not only faster, but also more memory-efficient (when compared

to the “full matrix” representation).

5 The Õ(·) notation hides polylogarithmic terms.
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4.3.3 Updates

As we have seen, keeping track of affected users can reduce the number of calls to

updateStructures. We now study how to reduce the time spent in each of these

calls.

Consider the pseudocode in Fig. 2. Line 5 represents a loop through all m − p facilities

outside the solution, but line 6 shows that we can actually restrict ourselves to facilities that

are closer to u than φ2(u) is. This is often a small subset of the facilities, especially when p
is large.

This suggests a preprocessing step that builds, for each user u, a list of all facilities sorted

by increasing distance to u. During the local search, whenever we need the set of facilities

whose distance to u is less than d2(u), we just take the appropriate prefix of the precomputed

list, potentially with much fewer than m − p elements.

Building these lists takes O(nm log m) time, but it is done only once, not in every iteration

of the local search procedure. This is true even if local search is applied several times within

a metaheuristic (such as in Hansen and Mladenović (1997), Resende and Werneck (2003),

and Rosing and ReVelle (1997)): a single preprocessing step is enough.

A more serious drawback of this approach is memory usage. Keeping n lists of size

m in memory requires �(mn) space, which may be prohibitive. An alternative is to keep

only relatively small prefixes, not the full list. They would act as a cache: when d2(u) is

small enough, we just take a prefix of the candidate list; when d2(u) is larger than the

largest distance represented, we explicitly look at all possible neighbors (each in constant

time).

In some circumstances, the “cached” version may be faster than the “full” version of the

algorithm, since preprocessing is cheaper. After all, instead of creating sorted lists of size m,

we create smaller ones of size k (for some k < m). Each list can be created in O(m + k log k)

time: first we find the k smallest elements among all m in O(m) time (Cormen et al., 2001),

then we sort them in O(k log k) time. For small values of k, this is an asymptotic improvement

over the O(m log m) time required (per list) in the “full” case.

4.3.4 The reordering problem

There is a slight incompatibility between the accelerations proposed in Sections 4.3.2 and

4.3.3. On the one hand, the sparse matrix data structure proposed in Section 4.3.2 guarantees

efficient queries only when each row is accessed sequentially by column number (facility

label). Section 4.3.3, on the other hand, assumes that facilites are accessed in nondecreas-

ing order of distance from the user. Functions updateStructures and undoUpdat-
eStructures use both data structures: they take a list of facilities sorted by distance, but

must process them in nondecreasing order of label. We need to make these two operations

compatible.

The simplest solution is to take the list of facilities sorted by distance and sort it again by

label. If the list has size k, this takes O(k log k) time. In the worst case k is O(m), so this

introduces an extra log m factor in the complexity of the algorithm. In practice, however,

k is rather small, and the overhead hardly noticeable. In fact, we used this approach in a

preliminary version of our paper (Resende and Werneck, 2003).

Even so, one would like to do better. Recall that the original list is actually a prefix of the

list of all facilities (sorted by distance). Even though the prefix varies in size, the underlying

sorted list does not: it is a fixed permutation of facility labels. This means we need to solve

the following generic problem:
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Let π be a fixed permutation of the labels {1, 2, . . . , m}, and let πk be the size-k prefix

of π , for 1 ≤ k ≤ n (πn = π , by definition). Given any k, sort πk by label in O(k) time.

At most O(m) preprocessing time is allowed.

To solve this, we use an algorithm that mimics insertion sort on a list, but takes advice

from an “oracle” built during preprocessing. Assume we need to sort πk , for some k. One

way to do it is to take each element of πk and insert it into a new list, ordered by label. With

standard insertion sort, this would take O(k2) time. However, if we knew in advance where

to insert each element, the procedure would take O(k) time. The oracle will give us exactly

that.

Let π (i) be the i-th element of π . We define pred(i) to be the predecessor of π (i), the

element after which π (i) should be inserted during the algorithm above. The oracle will give

us pred(i) for every i .

The values of pred(i) are set in the preprocessing step. Initially, it creates an auxiliary

doubly-linked list L containing 0, 1, 2, . . . , m, in this order (element 0 will act as a sentinel).

This can be trivially done in O(m) time. Then, it removes elements from L one by one in

reverse order with respect to π . In other words, the first element removed from L is π (m),

then π (m − 1), and so on, until π (1) is removed; in the end, only 0 (the sentinel) will remain

in L . Upon removing element π (i) from L , the algorithm sets pred(i) to be the predecessor

of π (i) (in L itself) at that particular moment. This procedure takes O(m) time for each of

the n lists.

Note that this procedure is in fact a simulation of insertion sort, but in reverse order. List

L originally has all the elements of πm ; after one removal, we are left with πm−1, and so on.

At all times, L is sorted by label; if it has size k, it represents what the sequence looks like

after the k-th element is inserted during insertion sort.

Given all the pred(·) values, sorting πk is simple. We start with a list L ′ containing only

a sentinel (0); it can be singly-linked, with forward pointers only. We then access the first

i elements of π (following π ’s own order), inserting each element π (i) into L ′ right after

pred(i). Eventually, L ′ will contain all the elements of π (k) sorted by label, as desired. The

running time is only O(k).

5 Generalization

Section 4 presented our algorithm as a local search procedure for the p-median problem.

In fact, with slight modifications, it can also be applied to the facility location problem.

Moreover, the ideas suggested here are not limited to local search: they can also be used

to accelerate other important routines, such as path-relinking and tabu search. This section

details the adaptations that must be made in each case.

5.1 Facility location

The input of the facility location problem consists of a set of users U , a set of potential

facilities F , a distance function d : U × F → R+, and a setup cost function c : F → R+.

The first three parameters are the same as in the p-median problem. The difference is that

here the number of facilities to open is not fixed; there is, instead, a cost associated with

opening each facilty, the setup cost. The more facilities are opened, the greater the setup cost

will be. The objective is to minimize the total cost of serving all customers, considering the

sum of the setup and service cost (distances).
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Any valid solution to the p-median problem is a valid solution to the facility location

problem. To use the local search procedure suggested here for this problem, we have to

adjust the algorithm to compute the cost function correctly. As it is, the algorithm computes

the service costs correctly, but assumes that the setup costs are zero. But including them is

trivial: the service cost depends only on whether a facility is open or not; it does not depend

on other facilities. Consider a facility fi that is not in the solution; when evaluating whether

it should be inserted or not, we must account for the fact that its setup cost will increase the

solution value by c( fi ). Similarly, simply closing a facility fr that belongs to the solution

saves us c( fr ). To take these values into account, if suffices to initialize gain and loss with the

symmetric of the corresponding setup costs, and not with zero as we do with the p-median

problem. In other words, we initialize gain( fi ) with −c( fi ), and loss( fr ) with −c( fr ).

This is enough to implement a swap-based local search for the facility location problem.

Note, however, that there is no reason to limit ourselves to swaps—we could allow individual

insertions and deletions as well. This is not possible with the p-median problem because the

number of facilities is fixed, but there is no such constraint in the facility location problem.

No major change to the algorithm is necessary to support individual insertions and dele-

tions. As already mentioned, gain( fi ) is exactly the amount that would be saved if facility fi

were inserted into the solution (with no corresponding removal). Similarly, loss( fr ) repre-

sents how much would be lost if the facility were removed (with no corresponding insertion).

Positive values of gain and negative values of loss indicate that the corresponding move is

worth making. The greater the absolute value, the better, and we can find the maximum in

O(m) time. Furthermore, we can continue to compute the costs associated with swaps if we

wish to. In every iteration of the local search, we could therefore choose the best move among

all swaps, insertions, and deletions. So we essentially gain the ability to make insertions and

deletions with barely any changes to the algorithm.

We observe that the idea of a swap-based local search for the facility location problem is,

of course, not new; it was first suggested in the literature by Kuehn and Hamburger (1963).

5.2 Other applications

It is possible to adapt the algorithm to perform other routines, not only local search. (In this

discussion, we will always deal with the p-median problem itself, although the algorithms

suggested here also apply to facility location with minor adaptations.)

Consider the path-relinking operation (Glover, 1996; Glover, Laguna, and Martı́, 2000;

Laguna and Martı́, 1999; Resende and Ribeiro, 2005). It takes two solutions as inputs, S1

and S2, and gradually transforms the first (the starting solution) into the second (the guiding
solution). It does so by swapping out facilities that are in S1\S2 and swapping in facilities

from S2\S1. In each iteration of the algorithm, the best available swap is made. The goal of

this procedure is to discover some promising solutions on the path from S1 to S2. The precise

use of these solutions varies depending on the metaheuristic using this procedure.

This function is remarkably similar to the swap-based local search procedure. Both are

based on the same kind of move (swaps), and both make the cheapest move on each round.

There are two main differences:

1. Candidate moves: In path-relinking, only a subset of the facilities in the solution are

candidates for removal, and only a subset of those outside the solution are candidates

for insertion—and these subsets change (i.e., get smaller) over time, as the algorithm

advances into the path.
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2. Stopping criterion: Whereas the local search procedure stops as soon as a local minimum

is found, non-improving moves are allowed in path-relinking: it continues until the guiding

solution is reached.

As long as we take these differences into account, the implementation of the local search

procedure can also handle path-relinking. We need to define two functions: one to return the

appropriate set of candidates for insertion and deletion, another to check if the move chosen

by bestNeighbor should be made or not (i.e., to determine if the stopping criterion was

met). In Section 4, these functions were defined implicitly: the candidates for insertion are

all facilities outside the solution, the candidates for deletion are those in the solution, and the

stopping criterion consists of testing whether the profit associated with a move is positive.

Defining them explicitly is trivial for both local search and path-relinking.

In fact, by redefining these two functions appropriately, we can implement other routines,

such as a simple version of tabu search. At all times, we could have two lists: one for elements

that are forbidden to be inserted into the solution, another for elements that cannot be removed.

The candidate lists would contain the remaining facilities, and the stopping criterion could

be any one used for tabu search (number of iterations, for instance).

6 Empirical analysis

This section has two main goals. One is to present some empirical data to back up some

of the claims we have made to guide our search for a faster algorithm. The other goal is

to demonstrate that the algorithms suggested here are indeed faster than previously existing

implementations of the local search procedure for the p-median problem. To keep the analysis

focused, we will not deal with the extensions proposed in Section 5.

6.1 Instances and methodology

We tested our algorithm on four classes of problems. Three of them, TSP, ORLIB and ODM,

have been previously studied in the literature for the p-median problem. The fourth, RW, is

introduced here as a set of instances that benefit less from our methods.

Class TSP contains three sets of points on the plane (with cardinality 1400, 3038, and

5934), originally used in the context of the traveling salesman problem (Reinelt, 1991). In

the p-median problem, each point is both a user to be served and a potential facility, and

distances are Euclidean. Following (Hansen, Mladenović, and Perez-Brito, 2001), we tested

several values of p for each instance, ranging from 10 to approximately n/3, when comparing

our algorithm to Whitaker’s.

Class ORLIB, originally introduced in Beasley (1985), contains 40 graphs with 100 to 900

nodes, each with a suggested value of p (ranging from 5 to 200). Each node is both a user

and a potential facility, and distances are given by shortest paths in the graph.

The instances in class ODM, proposed by Briant and Naddef (2004), model the optimal
diversity management problem. In this problem, one must assemble a certain product that

appears in a large number of configurations, each defined by the presence or absence of a

certain number of features. Briant and Naddef give as an example the electrical wiring in cars.

Assuming that setting up an assembly line for every possible configuration is not economically

viable, only p configurations are actually produced. Requests for other configurations will

be fulfilled by the least costly alternative that is compatible (i.e., contains all the necessary

features) among those produced. The goal is to decide which p configurations to produce,
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given the demand and the unit cost for each existing configuration. To model this as a

p-median problem, we make each configuration both a user and a facility. The cost of serving

user u with facility f is the demand of u times the unit cost of f , as long as configuration

f is compatible with configuration u; otherwise, the cost is infinity. We tested our algorithm

on the four instances cited in Briant and Naddef (2004), with 535, 1284, 3773, and 5535

configurations. As in Briant and Naddef (2004), we tested values of p from 5 to 20 in each

case.6

In class RW, each instance is a square matrix in which entry (u, f ) is an integer taken

uniformly at random from the interval [1, n] and represents the cost of assigning user u to

facility f . Four values of n were tested (100, 250, 500, and 1000), each with values of p
ranging from 10 to n/2, totaling 27 combinations.7 The random number generator we used

when creating these instances (and in the algorithm itself) was Matsumoto and Nishimura’s

Mersenne Twister (Matsumoto and Nishimura, 1998).

Recall that the algorithms tested here use the distance oracle model, which assumes that

retrieving the distance between any user and any facility takes O(1) time. This can be trivially

achieved for intances in RW (with a table look-up) and TSP (from the Euclidean coordinates).

For ORLIB, we compute the all-pairs shortest paths in advance, as it is usually done in the

literature (Hansen and Mladenović, 1997; Hansen, Mladenović, and Perez-Brito, 2001).

These computations are not included in the running times reported in this section, since

they are the same for all methods (including Whitaker’s). For ODM, to compute the distance

between a user and a facility we need to know whether the user is covered by that facility

or not. To answer this question in O(1) time, we precompute an n × m boolean incidence

matrix with this information. The same expected complexity could be achieved with a hash

table, which potentially uses less space but has higher overhead for accessing each element.

The time to build the incidence matrix is also not included in the times reported here.

All tests were performed on an SGI Challenge with 28 196-MHz MIPS R10000 processors

(with each execution of the program limited to one processor) and 7.6 GB of memory. All

algorithms were coded in C++ and compiled with the SGI MIPSpro C++ compiler (v. 7.30)

with flags -O3 -OPT:Olimit=6586. The source code is available from the authors upon

request, as are the RW instances.

All running times shown in this paper are CPU times, measured with the getrusage
function, whose precision is 1/60 second. In some cases, actual running times were too small

for this precision, so each algorithm was repeatedly run for at least 5 seconds. Overall times

were measured, and averages reported here.

When comparing different local search methods, we applied them to the same initial

solutions. These were obtained by two different algorithms. The first is greedy (Whitaker,

1983): starting from an empty solution, we insert one facility at a time, always picking the

one that reduces the solution cost the most. The second algorithm is random: we just pick a

set of p facilities uniformly at random as the initial solution. All tests with random solutions

were repeated five times for each method, using five different random seeds.

Running times mentioned in this paper refer to the local search only, and they do not

include the cost of building initial solution (which is the same for all methods).

6 In Briant and Naddef (2004), the authors do not show results for p greater than 16 in the instance with 3773

nodes. We include results for 17 to 20 as well, for symmetry.

7 More precisely: for n = 100, we used p = 10, 20, 30, 40, and 50; for n = 250, p = 10, 25, 50, 75, 100, and

125; for n = 500, p = 10, 25, 50, 100, 150, 200, and 250; and for n = 1000, p = 10, 25, 50, 75, 100, 200,

300, 400, and 500.
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6.2 Results

This section presents an experimental comparison of several variants of our implementation

and Whitaker’s method, fast interchange (we will use FI for short). We implemented FI based

on the pseudocode in Hansen and Mladenović (1997) (obtaining comparable running times);

the most important function was presented here in Fig. 1.

6.2.1 Basic algorithm (FM)

We start with the most basic version of our implementation, in which extra is represented

as a full (non-sparse) matrix. This version (called FM, for full matrix) already incorporates

some acceleration, since calls to updateStructures are limited to affected users only.

However, it does not include the accelerations suggested in Sections 4.3.2 (sparse matrix)

and 4.3.3 (preprocessing).

To demonstrate that keeping track of affected users can lead to significant speedups, we

devised the following experiment. We took one instance from each class: odm1284 (class

ODM, 1284 nodes), pmed40 (class ORLIB, 900 nodes), fl1400 (class TSP, 1400 nodes), and

rw1000 (class RW, 1000 nodes). Note that they all have a similar number of nodes. Each

instance was tested with 99 different values of p, from 1% to 99% of m. Since for very large

values of p the greedy algorithm almost always finds local optima (thus rendering the local

search useless), the initial solutions used in this experiment are random.

For each run, we computed how many calls to updateStructures and to undoUp-
dateStructures would have been made if we were not keeping track of affected users,

and how many calls were actually made (in both cases, we did not count calls at the start of the

first iteration, which is just the initialization). The ratio between these values, in percentage

terms, is shown in Fig. 4 (each point is the average of five runs).

It is clear that the average number of affected users is only a fraction of the total number

of users, even for small values of p, and drops significantly as the number of facilities to

open increases. In all four instances, the average number of affected users eventually drops

below 1% of n. By exploiting this fact, our implementation definitely has the potential to be

faster than FI.
To test if this is indeed the case in practice, we ran an experiment with all instances from

the four classes, with the values of p listed in Section 6.1. We used both greedy and random

initial solutions. For each instance, we computed the speedup obtained by our method when

compared to FI, i.e., the ratio between the running times of FI and FM. Table 1 shows the best,

the (geometric) mean, and the worst speedups thus obtained considering all instances in each

class.8 Values greater than 1.0 favor our method, FM.

The table shows that even the basic acceleration scheme achieves speedups of up to more

than 40. There are cases, however, in which FM is actually slower than Whitaker’s method.

This happens for instances in which the local search procedure performs very few iterations,

insufficent to amortize the overhead of using a matrix. This is more common with the greedy

constructive heuristic, which is more likely to find solutions that are close to being local

optima, particularly when p is very large or very small (the worst case among all instances

8 Since we are dealing with ratios, geometric (rather than arithmetic) means seem to be a more sensible choice;

after all, if a method takes twice as much time for 50% of the instances and half as much for the other 50%, it

should be considered roughly equivalent to the other method. Geometric means reflect that, whereas arithmetic

means do not.
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Table 1 Speedup obtained by

FM (full matrix, no preprocessing)

over Whitaker’s FI

Solution Class Best Mean Worst

random ODM 41.66 12.67 2.95

ORLIB 21.19 5.76 1.64

RW 20.96 7.62 2.51

TSP 28.92 11.29 1.95

greedy ODM 20.10 4.49 0.89

ORLIB 14.20 3.76 1.07

RW 13.99 5.50 1.47

TSP 31.96 10.72 1.96

Fig. 4 Percentage of users affected during a run of the local search as a function of p (the percentage is taken

over the set of all possible users that could have been affected, considering all iterations). One instance in each

class is represented. Vertical axis is in logarithmic scale

happened with odm535 and p = 6). On average, however, FM has proven to be from three to

more than ten times faster than FI.

6.2.2 Sparse matrix (SM)

We now analyze a second variant of our method. Instead of using a full matrix to represent

extra, we use a sparse matrix, as described in Section 4.3.2. We call this variant SM. Recall

that our rationale for using a sparse matrix was that the number of nonzero elements in

the extra matrix is small. Figure 5 suggests that this is indeed true. For each of the four

representative instances and each value of p (from 1 to 99% of m), it shows what fraction of

the elements are nonzero (considering all iterations of the local search). The algorithm was

run five times for each value of p, from five random solutions.

Although the percentage approaches 100% when the number of facilities to open is small,

it drops very fast when p increases, approaching 0.1%. Note that rw1000, which is random,

tends to have significantly more nonzeros for small values of p than other instances.

Springer



222 Ann Oper Res (2007) 150:205–230

 0.01

 0.1

 1

 10

 100

 1000

99806040201

n
o

n
z
e

ro
 e

le
m

e
n

ts
 i
n

 e
x
tr

a
 (

p
e

rc
e

n
t)

facilities to open (percent)

odm1284
pmed40
rw1000
fl1400

Fig. 5 Percentage of entries in the extra matrix that have nonzero values as a function of p. One instance of

each class is represented. Vertical axis is in logarithmic scale

It is clear that the algorithm has a lot to benefit from representing only the nonzero elements

of extra. However, the sparse matrix representation is much more involved than the array-

based one, so some overhead is to be expected. Does it really reduce the running time of the

algorithm in practice?

Table 2 shows that the answer to this question is “yes” most of the time. It represents the

results obtained from all instances in the four classes, and contains the best, mean, and worst

speedups obtained by SM over FI, for both types of initial solution (random and greedy).

As expected, SM has proven to be even faster than FM on average and in the best case

(especially for the large instances with large values of p in the RW and TSP classes). However,

some bad cases become slightly worse. This happens mostly for instances with small values

of p: with a relatively large number of nonzero elements in the matrix, a sparse representation

is not the best choice.

Table 2 Speedup obtained by

SM (sparse matrix, no

preprocessing) over Whitaker’s FI

Solution Class Best Mean Worst

random ODM 26.41 9.28 2.49

ORLIB 46.88 6.66 1.19

RW 114.36 12.47 1.95

TSP 142.84 26.28 1.80

greedy ODM 21.62 5.21 0.99

ORLIB 24.88 4.36 1.00

RW 49.35 8.36 1.22

TSP 132.06 24.03 1.87
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Fig. 6 Percentage of facilities actually visited when updating structures, for several values of p. One instance

of each class is represented. Vertical axis is in logarithmic scale

6.2.3 Sparse matrix with preprocessing (SMP)

The last acceleration we study is the preprocessing step (Section 4.3.3), in which all potential

facilities are sorted according to their distances from each of the users. We call this variant

SMP, for sparse matrix with preprocessing. The goal of the acceleration is to avoid looping

through all m facilities in each call to function updateStructures (and undoUpdat-
eStructures). We just have to find the appropriate prefix of the ordered list.

Figure 6 shows the average size of the prefixes (as a percentage of m) that are actually

checked by the algorithm, as a function of p (which varies from 1 to 99% of n). Initial

solutions are random in this experiment.

As claimed before, the average prefix size is only tiny a fraction of m, for all but very

small values of p. Considering only those prefixes instead of all facilities can potentially

accelerate the local search. Of course, this does not come for free: the cost of preprocessing

must be accounted for.

To determine the overall effect of these two conflicting factors, we tested SMP on all

instances of our set. Table 3 shows the best, mean, and worst speedups obtained with respect

to FI. Columns 3, 4, and 5 consider running times of the local search procedure only; columns

6, 7, and 8 also include preprocessing times.

The table shows that the entire SMP procedure (including preprocessing) is on average still

much faster than Whitaker’s FI, but often slightly slower than the other variants studied in

this paper (FM and SM). However, as already mentioned, metaheuristics often need to run the

local search procedure several times, starting from different solutions. Since preprocessing

is run only once, its cost can be quickly amortized. Columns 3, 4, and 5 of the table show that

once this happens, SMP can achieve truly remarkable speedups with respect not only to FI, but

also to other variants studied in this paper. In the best case (instance rl5934 with p = 800),

it is roughly 800 times faster than FI.
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Table 3 Speedup obtained by SMP (sparse matrix, full preprocessing) over

Whitaker’s FI

Local search only Including preprocessing

Solution Class Best Mean Worst Best Mean Worst

random ODM 46.18 13.77 3.42 8.26 3.00 0.87

ORLIB 77.44 8.75 1.28 22.42 3.40 0.66

RW 169.59 17.51 1.92 48.37 6.26 1.05

TSP 812.80 186.81 4.63 128.03 31.92 1.89

greedy ODM 33.16 7.21 1.33 3.30 0.67 0.15

ORLIB 43.26 6.40 1.37 6.86 1.10 0.21

RW 91.05 12.59 1.34 9.98 2.14 0.20

TSP 695.57 161.86 5.11 71.42 18.92 1.45

Fig. 7 Speedup of a multistart procedure implemented with SMP with respect to an implementation using

Whitaker’s method (FI)

To evaluate how fast the amortization is, consider what would happen in a simple mul-

tistart procedure. In each iteration, this algorithm generates a random solution and applies

local search to it; the best solution found over all iterations is picked. We can predict the

behavior of such a method (as far as running times are concerned) from the data used to build

Table 3. After only one iteration, the mean speedups obtained when SMP is used instead of FI
(Whitaker’s method) will be those shown in the seventh column of the table. As the number

of iterations increases, the mean speedups will gradually converge to the values in the fourth

column. Figure 7 shows exactly what happens as a function of the number of iterations.

After only ten iterations, the speedups are already close to those shown in the fourth column

of Table 3: 10.1 for ODM, 7.5 for ORLIB, 14.7 for RW, and 124.0 for TSP.
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Table 4 Speedup obtained by SM5 (sparse matrix, with preprocessing, cache

size 5p/m) over Whitaker’s FI

Local search only Including preprocessing

Solution Class Best Mean Worst Best Mean Worst

random ODM 46.12 13.68 3.42 14.48 4.04 0.86

ORLIB 77.42 8.81 1.29 40.14 4.52 0.66

RW 166.51 17.44 2.01 93.08 9.57 1.13

TSP 774.96 176.42 4.49 283.71 62.97 2.20

greedy ODM 32.65 7.16 1.30 6.23 0.96 0.14

ORLIB 44.31 6.41 1.33 14.51 1.61 0.20

RW 92.93 12.62 1.34 24.73 3.87 0.22

TSP 747.72 160.93 5.07 177.62 40.65 1.73

Apart from the preprocessing time, another important downside of strategy SMP is memory

usage: an array of size m is kept for each of the n customers. As mentioned in Section 4.3.3,

one can use less memory by storing a vector with only a fraction of the m facilities for each

customer. Table 4 shows what happens when we restrict the number of elements per vector

to 5m/p; we call this version of the local search SM5. In general, SMq is an algorithm that

associates a list with qm/p facilities with each user. We use m/p as a parameter because this

correlates well with the number of facilities each user has to look at to find an open one.

Tables 3 and 4 show that using restricted lists (as opposed to m-sized ones) can make the

algorithm significantly faster when preprocessing times are considered. This is true especially

for large instances. On average, SM5 is roughly twice as fast as SMP. The gains from a faster

preprocessing more than offset the potential extra time incurred during the actual local search.

In fact, the table also shows that the time spent on the main loop is barely distinguishable

from SMP; the partial lists are almost always enough for the algorithm. Local search within

SM5 can actually be slightly faster than within SMP. The possible cause here are cache effects;

since less data is kept in memory, there is more locality to be exploited by the hardware.

6.2.4 Overall comparison

To get a better understanding of the performance of all variants proposed in this paper,

we study in detail the largest instance in our set (rl5934, with almost 6000 customers and

facilities). Figures 8 and 9 show the running times of several methods (FI, FM, SM, SM1, SM2,

SM3, SM5, and SMP) for different values of p. Times are averages of five runs from different

random solutions (the same set of initial solutions was given to each method). The first figure

considers the local search only, whereas the second accounts for preprocessing times as well.

The figures show that for some methods, such as Whitaker’s FI and the full-matrix variant

of our implementation (FM), an increase in p leads to greater running times (although our

method is still 10 times faster for p = 1500). For all other methods, which use sparse matrices,

the time spent per iteration tends to decrease as p increases: the effect of swaps becomes

more local, with fewer users affected and fewer neighboring facilities visited in each call to

updateStructures. This latter effect explains why keeping even a relatively small list

of neighboring facilities for each user seems to be worthwhile. The curves for variants SMP
and SM5 are practically indistinguishable in Fig. 8, and both are much faster than SM (which

keeps no list at all).
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Fig. 8 Instance rl5934: dependency of running times on p for different methods. Times are in logarithmic

scale and do not include preprocessing

Fig. 9 Instance rl5934: dependency of running times on p for different methods. Times are in logarithmic

scale and include preprocessing where applicable

As a final note, we observe that, because all methods discussed here implement the same

algorithm, the number of iterations does not depend on the method itself. It does, however,

depend on the value of p: in general, these two have a positive correlation for p ≤ m/2, and

negative from this point on, as Fig. 10 shows. This correlates well with the total number of

solutions: there are
(m

p

)
solutions of size p, and this expression is maximized for p = m/2.
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Fig. 10 Number of iterations of the local search procedure as a function of p, starting from random solutions.

One instance from each class is represented

6.2.5 Profile

The results for SMP show that the modifications proposed in this paper can, together, result

in significant acceleration. How much further can we go? Can additional modifications to

the algorithm make it even faster?

These are open questions. However, we argue that small modifications are unlikely to

lead to major gains, particularly when p is large. To support this claim, we devised the

following experiment. For each class, we took the instance with the greatest number of users

(n) and ran SMP with two values of p (0.01n and 0.25n), from five random solutions in each

case. Table 5 shows the percentage of the total local search time (excluding preprocessing)

spent in each section of the algorithm: initialization (which includes allocating the data

structures), calls toupdateClosest, calls toupdateStructures (andundoUpdate

Table 5 Execution profile for method SMP: percentage of time spent on each

of the potential bottlenecks (only the largest instance in each class is shown).

Preprocessing times are not considered

Instance
Update Update Best Other

Name n, m p Init. closest struct. neigh. oper.

odm5535 5535 56 17.7 5.9 62.3 7.8 6.2

1384 6.4 19.7 4.5 30.9 38.5

pmed40 900 9 6.7 1.7 89.8 0.6 1.2

225 13.4 29.4 13.5 11.2 32.5

rw1000 1000 10 3.7 1.4 93.7 0.5 0.7

250 12.1 26.7 15.1 14.5 31.6

rl5934 5934 60 12.2 5.7 74.0 5.0 3.1

1484 10.7 41.0 4.6 22.7 21.0
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Structures), calls to bestNeighbor, and other operations (such as determining which

users are affected).

Note that calls to updateStructures and undoUpdateStructures dominate

the running time for small values of p. This is to be expected: these functions run in O(mn)

time, while bestNeighbor and updateClosest run in O(pn) and O(pm) operations,

respectively. When p increases, the running time for updateStructures and undoUp-
dateStructures actually decreases, since a larger fraction of the elements in the extra
matrix will be zero (and therefore will not need to accessed). As a result, no component took

more than 50% of the running time for p = 0.25n. In this case, even if we could make a

component run in virtually no time, the algorithm would be at most twice as fast. A decent

speedup, but not at all comparable to 800, the factor we were able to achieve in this paper.

To obtain better factors, it seems necessary to work on all bottlenecks at once, or to come up

with a different strategy altogether.

7 Concluding remarks

We have presented a new implementation of the swap-based local search for the p-median

problem introduced by Teitz and Bart. We combine several techniques (using a matrix to store

partial results, a compressed representation for this matrix, and preprocessing) to obtain

speedups of up to three orders of magnitude with respect to the best previously known

implementation, due to Whitaker. Our implementation is especially well suited to relatively

large instances with moderate to large values of p and, due to the preprocessing step, to

situations in which the local search procedure is run several times for the same instance (such

as within a metaheuristic). When the local search has very few iterations, Whitaker’s method

can still be faster if the preprocessing time is considered.

An important test to the algorithms proposed here would be to apply them within more

sophisticated metaheuristics. We have done that in (Resende and Werneck, 2004). That paper

describes a multistart heuristic for the p-median problem that relies heavily on local search

and path-relinking, both implemented according to the guidelines detailed in this paper. The

algorithm has proved to be very effective in practice, obtaining remarkably good results (in

terms of running times and solution quality) when compared to other methods in the literature.

A possible extension of our work presented would be to apply the methods and ideas

presented here to problems beyond p-median and facility location. Swap-based local search

is a natural procedure to be performed on problems such as maximum set cover, for example.
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