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This paper views the location of emergency facilities as a set covering prob- 
lem with equal costs in the objective. The sets are composed of the po- 
tential facility points within a specified time or distance of each demand 
point. One constraint is written for each demand point requiring 'cover,' 
and linear programming is applied to solve the covering problem, a single- 
cut constraint being added as necessary to resolve fractional solutions. 

DETERMINING 'good' locations for facilities on a network has re- 
ceived a reasonable amount of attention in the last decade. Many 

of the approaches to this class of problems are indicated in CABOT ET AL.,M1 

and REVELLE ET AL.15] This paper is concerned with a facility-location 
problem with the special aspect that the maximum time or distance that 
separates a user from his closest service is a crucial parameter. As such, 
the problem is seen as most applicable to the location of emergency services 
such as fire stations, although one may equally well apply it to the location 
of ordinary services, such as schools, libraries, etc. 

If an upper limit is placed on the response time or distance to any user 
node, consideration can be given to determining the minimum-cost spatial 
arrangement of service facilities that adequately serves the entire user 
region. If costs (determined in any manner desired) are identical for all 
possible facility locations, then an equivalent problem is to minimize the 
total number of service facilities required to meet the response time or 
distance standards for each of the users. The solution to this problem will 
indicate both the number and location of the facilities that provide the 
desired service. 

The location of fire stations might be approached according to the struc- 
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1364 Toregas, Swain, ReVelle, and Bergman 

ture just described. The limit on response time is imposed to ensure that 
no more than a specified time period will elapse before a response will occur 
to any fire. In applications, the definition of response time may not be 
unique. Clearly, its definition must be such that it indicates the spatial 
effects of distributing the emergency service; but, beyond this requirement, 
the definition of response time depends primarily upon the available data. 
Once a response time s is specified, then for each point of demand there 
must be a fire station located within s time units. (It is assumed here that 
each facility has response capability at all times.) The desired solution to 
this problem locates the minimum number of fire stations that satisfies 
the response-time requirement. 

In order to achieve a more tractable problem structure, several abstrac- 
tions are required. First, it will be assumed that the user demands can be 
represented as occurring at a finite set of points and that the potential 
locations for service facilities are also a finite set of points. Second, it is 
assumed that the minimum distance or minimum response time between 
any user-node/service-facility pair is know-n. Third, it will be assumed that 
the user-demand points and the possible facility-location points constitute 
the same set of points. As w ill be seen shortly, this final assumption is not 
essential in structuring the solution technique. It has been included here 
to bring the formulation in line wtith earlier work in the same area. Under 
these simplifications, the problem has now been reduced to a problem of 
'covering' each of the user nodes with one of the facility nodes. 

HAKIMI13' 41 was the earliest to consider similar problems. A part of 
his first study[3] was directed toward the location of the center of a network, 
where the center of a network is the point of the network from which the 
distance to the furthest point is a minimum. Hakimi[41 later generalized 
the concept of a center, and, using Boolean functions, he sought the mini- 
mum number of centers (chosen from a discrete set) that covered all de- 
mand points within a specified maximum distance. The resulting method 
requires an enumeration of all feasible solutions, and, as problem size grows, 
the effort of determining the minimum number of facilities can be expected 
to grow rapidly. The technique given in the following section avoids 
enumeration, so that the growth in problem size has a less significant effect 
upon computational requirements. 

PROBLEM FORMULATION AND SOLUTION 

RECALLING THE assumptions that all user points may also be emergency- 
facility locations and that the minimum time or distance between any pair 
of user nodes is known, the problem will now- be structured as an integer 
programming problemn. 

If the maximum response time s has been decided upon, then, for any 
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Locating Emergency Facilities 1365 

node i, only the set of nodes within s of i can provide acceptable emergency 
service to i; this set will be denoted as Ni. If dji is the response time or 
distance from any node j to node i, the set Ni can be defined as Ni = {jIdji 
<s }. (One may equally well define the set Ni as the nodes within si of 
node i, where si may be different for each node i. Problems with this 
feature have been examined and do not appear to add any difficulties to 
the solution process.) If there are n user nodes, there will be n sets Ni, 
and each set will have at least one member, if dii is taken to be zero. It is 
important to notice that the definition of Ni does not depend on the nature 
of the points j that may be used to provide emergency service to i. There- 
fore, the potential facility locations may be both user and other locations. 
The theoretical requirement is that dji be known and that the number of 
potential facility locations be finite; if this number is too enormous, then, 
of course, the proposed solution method will not be practicable. The 
choice of which points should be taken as potential facility locations is up to 
the analyst. 

To structure the mathematical program, the following decision varia- 
bles are now defined: 

_J'O, if no facility is established at point j, 
X2 1, if a facility is established at point j. (j= 1~ 2, n) 

Thus, xi is a zero-one integer variable. Values of xj other than zero or one 
will not be acceptable in a solution. 

As discussed in the first section, any user node i must have at least one 
facility within s. Recalling that the set of potential facility locations within 
s of i is Ni and using the decision variables, we can write the service require- 
ment for user node i as 

Ejf Ni Xi > 1 1 

The objective z that is to be minimized is the total number of facilities used: 

,i= ?-1 z j. (2) 

Even if the xj's are only restricted to be nonnegative, noine of them will 
be greater than one in an optimal solution to (1) and (2). If any one xj 
were not, it could be reduced in value without violating a constraint. This 
reduction would cause a corresponding reduction in the objective function, 
indicating that the optimum was not at hand. The entire program can be 
written: 

Minimize z =1 x; (2) 

(I) subject to: EiNixjB 1, (i= 1, 2, *,n) (1) 

xj=(0, 1). (j=1, 2, *,n) (3) 
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1366 Toregas, Swain, ReVelle, and Bergman 

The structure is that of the set-covering problem with inequality con- 
straints; the set-covering problem has received extensive treatment in the 
literature, both as a problem in its own right and as a special class of the 
integer programming problem. A recent review of many of the approaches 
to the problem is found in GARFINKLE.[2] 

Three approaches to this problem seem most favored; these are linear- 
programming and cutting-plane techniques, reduction techniques, and 
implicit enumeration. Some investigators combine these approaches. 
The technique utilized here is linear programming supplemented by the 
addition of a single cut constraint. The technique has not yet failed to 
yield all zero-one variables. 

The simplicity of this program is particularly important. It should be 
observed that only one constraint is written for each of the user points to 
be served, and it should also be noted that onily one variable is associated 
with each of the potential facility locations. These two items, coupled 
with the capacity of the current mathematical programming systems, 
should permit the solution of problems with several hundred or more user 
points and potential locations. A second important feature of the model 
is the ease with which a facility location can be forced in or out of the solu- 
tion by specifying its xj to be either one or zero. This feature may be im- 
portant in situations where a facility already exists or where the possibility 
of prohibiting a facility at a given location is to be examined. 

The actual implementation of (I) requires two steps. The first is 
determination of the sets Ni(i= 1, 2, , n) for a given value of s and a 
given matrix of shortest distances D. The second step is solution of (I) 
using the sets established in step one. 

We formed the sets using a Fortran program, and they were recorded on 
disk storage in a form acceptable for use by MPS/360 (the mathematical 
programming code available on IBM S/360 Equipment). The solution 
then was obtained using the linear programming algorithm of MPS/360 
for the sets produced by the Fortran program. This coupling of procedures 
saves the tedious operation of forming and punching the sets. It should be 
noted that s is not explicitly contained in (I). Consequently, it is not 
possible to obtain a set of solutions parameterized on s using only the 
mathematical programming code. Both the set determination and mathe- 
matical programming procedures must be used for this operation. The 
potential inefficiency of this circumstance is reasonably surmounted by 
generating several different-data sets corresponding to a sequence of values 
of s, and then solving each of the associated mathematical programmiing 
problems. 
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1368 Toregas, Swain, ReVelle, and Bergman 

COMPUTATIONAL EXPERIENCE AND THE ELIMINATION OF 

FRACTIONAL RESULTS 

THE SOLUTION of (I) requires zero-one variables, but the use of a linear- 
programming code admits the possibility that fractional solutions may be 
produced. 

m Allocation of a facility at node i 

G ) Covering set of central facility 

24 ~ ES/ 20 

Fig. 1. Allocation of service facilities in ani example problem. 

To exainine the p)roperties of solutions generated by such a code, a 30-node 
problem was examined for maany values of s, ranging from the minimum distance 
between nodes, 7, to the maximuin distance between any two nodes, 275. These 
iodes represent major areas in New York State and the distance matrix between 
them is shown in Table I. 

An example solutioin, obtained with s = 68, is shown in Fig. 1. For a number of 
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Locating Emergency Facilities 1369 

the user nodes, two service facilities are within s. This feature may be desirable in 
many applications. 

Figure 2 indicates the number of service facilities required as a funietion of the 
maximum response distance. Notice that, for s =69, the number of centers used 
is noninteger, with a value of 8X. The corresponiding solutioni is shown ill Fig. 3. 
Although each user node is covered by at least one service facility, manly of the 
facilities are at level , which is invalid according to the definition of xi. To 

z 

J i 

U) 

> 9- 0000000 

.) 0 

0 

8, 

. _ ~ ~ ~ ~ ~ ~ ~ 0 

~~~~~~0~ ~ ~~ 

E 5I 

.E 

E 
2 

I 55 60 65 70 75 s 
Maximum Response Time 

Fig. 2. Miniimum niumber of service facilities as a funcetion of maximum 
response time s. 

achieve a solution with all xj either zero or one, the facility-sharing patterns must 
be broken up). 

All nioniriteger solutions observed in execution of the covering problem 
have beeii resolved with the addition of a single cut constraint, wvhich is a 
direct result of the integer requirements. Suppose that mo is the optimal 
objective value obtained from a fractional linear programming solution to 

0~~~~~~~ 

(I). if mn is noninteger, then, in any integer solution, the minimum -num- 
ber of servers must be at least as great as the least integer greater than ino. 

Therefore, one adds the cut 
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1370 Toregas, Swain, ReVelle, and Bergman 

EJ?-n Xj> [m ,(4) 
where [mi] is the integer part of mn. Although it is possible to have a 
fractional soiuition where mo is integer, no such condition has yet occurred. 
Should such a case occur, it appears that (4) may still be useful. 

The use of (4) can be illustrated by referring to the lioniliteger solution already 
discussed. In that exanl)le, m? had the value 8.. The application of (4) imldi- 

D AlIocation of one unit 

Allocation of Y2 a unit 

g1 21 

25 

30 

8 

PA 29 28 

24 20 
15 7 

X 10 

i0 6 6 23 

10 
17 22 L1 

14 
Fig. 3. Noniiiteger solution of the example problem for the value of s = 69. 

cates that any integer solution must have at least 9 facilities. The constraint 
x= 3 ? Xj_9 was added to (I), and the problem was solved again. The resulting 

solution, shown in Fig. 4, is integer, as were all solutions in which (4) was included 
to eliminate noninteger results. 

Several observations about the properties of solutions to this problem 
can be made. 

First, if the minimum number of servers is m* for two different values of 
s, si, and 82, then the minimum number of servers is m* for any s in [si, 82]. 
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Locating Emergency Facilities 1371 

Second, for any s greater than the maximum distance entry in the dis- 
tance matrix, only one server is required. 

Third, for any s less than the minimum distance djj(i7?j), all nodes 
must have a service facility. 

We have solved this problem at sizes up to 50 nodes over 150 times with 
a standard linear programming code. In the few cases of fractional results, 

L Allocation of one unit for integer optimum 

[ 21 

F16 
25 

30 

8 

19 29 i 28 

24 27 20 

1 5 m R2 

_ 10 

3 
9 6 23 

1 II1 22 Ii3 
14 

Fig. 4. Integer solution of the example problem for the value of s = 69. 

the addition of the cut (4) to the linear program always resulted in an all 
zero-one solution. 

THE RELATION OF THE PROBLEM TO THE 

MODIFIED p-MEDIAN PROBLEM 

THE SOLUTIONS provided from (I) can be used to provide valuable informa- 
tion for a modified form of the p-median problem.[6] 
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1372 Toregas, Swain, ReVelle, and Bergman 

In the original version of the p-median problem, there is no restriction 
on the distance that a user group might be required to travel to the closest 
open facility. A limit on the maximum distance any user group may travel 
can be imposed in the same manner as it is imposed in (I). The same 
definition of Ni as given previously is used in this modified version of the 
p-median problem. 

O | ! p is fixed at p 

c>I 

K- 
Q) 

0 I - 

i I 
_ _ I _ __ * _ _ _ _ 

Smin SS 

Maximum Distance Travelled 
Fig. 5. Average travel distance as a fuiiction of the maximal 

distance travelled. 

To structure the problem, the following additional definitions are 
provided: 
xi= the fraction of population of node i that receives service at node j; 
dij= the distance from node i to node j; 
ai=the user population at node i; 
p = the number of facilities to be established. 

Model I utilized distances dji and considered (at least implicitly) move- 
ment from facility to user (e.g., fire engines). Here, the orientation of this 
model is shifted, reflecting movement from user to facility (e.g., schools), 
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Locating Emergency Facilities 1 373 

hence the use of dij rather than dji. The subscript reversal is irrelevant 
for the mathematics. 

The problem is then written: 

Minimize E_1 Ej,Ni aidijxij, (5) 

subject to ZreNi Xij=, (i=1 2, *, n) (6) 

(II) ~~xjj:_''xij, (i= I, 2, n; jeNi; i5Hj) (7) 

D=1 X jjp, (8) 

xij O for all i,j, and xjj=(O, 1) for all j. 
In this formulation, xjj= 1 is taken to indicate that a facility is established 
at node j. The objective, as expressed in (5), is to minimize the total user 
distance travelled by users to their closest open facilities. The constraints 
represented by (6) ensure that the user population of each node is assigned 
to a service facility. Constraints (7) require that users are assigned only 
to open facilities, and (8) requires that exactly p facilities be established. 

It is important to note that for some (s, p) combinations, no feasible 
solution to (II) may exist. In addition, given a particular value of p, 
there is a maximum value of s beyond which the solution of (II) will not 
differ from the solution without distance constraints. Figure 5 indicates 
the effect that s has upon the solution of (II) for a particular value of p. 

Ihe solutions obtained from the formulation (I) provide the value of 
Sm,n, the lowest feasible limit on maximum distance, for a particular value of 
p. For a particular value of p, say p* 8m is the least value of s for which 
problem (I) has an objective value of p*. No indication of either s*, or 
the values of s in [Sm in, s*] at which the objective of (II) changes, is provided 
by the solutions to (I). 
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