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This paper considers the conditional p-next center problem (CPNCP) and proposes a metaheuristic method as
a solution approach. The p-next center problem (PNCP) is an extension of the classical p-center problem that
captures real-life situations when centers suddenly fail due to an accident or some other problem. When the
center failure happens, the customers allocated to the closed center are redirected to the center closest to
the closed one, called the backup center. On the other hand, when a service network expands, some of the
existing centers are usually retained and a number of new centers are opened. The conditional p-next center
problem involves both of these two aspects that arise in practice and, to the best of our knowledge, has not
been considered in the literature so far. Since the CPNCP is NP-hard, a metaheuristic algorithm based on the
Variable Neighborhood Search is developed. The proposed VNS includes an efficient implementation of the
Fast Interchange heuristic which enables the VNS to tackle with real-life problem dimensions. The exhaustive
computational experiments were performed on the modified PNCP test instances from the literature with up to
900 nodes. The obtained results are compared with the results of the exact solver CPLEX. It is shown that the
proposed VNS reaches optimal solutions or improves the feasible ones provided by CPLEX in a significantly
shorter CPU time. The VNS also quickly returns its best solutions when CPLEX failed to provide a feasible one.
In order to investigate the effects of two different approaches in service network planning, the VNS solutions of
the CPNCP are compared with the optimal or best-known solutions of the p-next center problem. In addition,
the conducted computational study includes direct comparisons of the results obtained when the proposed
SVNS is applied to PNCP (by setting the number of existing centers to 0) with the results of recent solution
methods proposed for the PNCP.

1. Introduction and Hakimi, 1979), many solution methods for PCP are heuristics, for
example Mladenovi¢ et al. (2003), Pelegrin (1991), Pullan (2008), etc.

The p-center problem (PCP) is one of the most studied location
problems in the literature. It was defined in 1965 by Hakimi in Hakimi
(1965) as follows. For a set of n locations and given distances between
them, the objective is to choose p locations (p < n) for the centers to
be established and to assign each of the remaining n — p locations (cus-
tomers, users) to its nearest center. All established centers are identical
and there is no limit for the number of customers that can be assigned
to a center. The centers should be chosen so that the maximal distance

1.1. The p-next center problem

In order to capture different aspects of real-life situations, the p-
center problem has been modified and extended in various ways. Since
the p-center problem is often used to describe emergency situations
(fire, injuries, earthquakes, etc.), it is natural to consider the possible

from each customer to its nearest center is minimal. In the classical
p-center, the focus is on the customer in the worst position. This is a
realistic perspective considering that the centers represent schools, bus
stations, hospitals, fire stations, etc., so each user has to be as close
as possible to its nearest center. Considering the practical importance
of the p-center problem, numerous solution approaches have been
proposed in the literature so far (see Celik Turkoglu and Erol Genevois,
2020; Drezner, 1984; ReVelle and Eiselt, 2005; Tansel et al., 1983).
Since the p-center belongs to the class of NP-hard problems (Kariv
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failure of some centers. This assumption leads to an extension of the
PCP, called the p-next center problem (PNCP), which was defined
by Albareda-Sambola et al. (2015). The main idea behind the PNCP
is to determine the backup center for each primary center so that if the
primary center is closed, all users assigned to that center can proceed to
the backup center. Since the failure of a center is often unpredictable, it
is natural to assume that users will find out about the failure when they
arrive at their primary center. In such a situation, it is also reasonable
to assume that users will proceed directly to some other center instead
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of returning to their home location and choosing the second closest
center. Therefore, it is assumed that a customer will pass through the
primary center to reach its backup center. This implies that the backup
center for a closed center is always the center closest to the closed one.
The goal of the PNCP is to determine the locations of p centers such that
the maximal distance from a user to its backup center via the primary
center is minimal.

Up to now, several methods for solving PNCP have been proposed in
the literature. Lopez-Sanchez et al. (2019) presented a Greedy Random-
ized Adaptive Procedure (GRASP), as well as a Variable Neighborhood
Search (VNS) and the hybridization of these two methods. Compu-
tational experiments on the set of instances with up to 200 nodes
showed that the hybrid method outperforms both GRASP and VNS. In
the paper (Risti¢ et al., 2021), the authors proposed the Filtered VNS
method (FVNS) and introduced an Additional set of pmed instances
with up to 900 nodes, which was used in their computational study. An
efficient VNS-based heuristic was also proposed as a solution method
for the PNCP in Tasi¢ (2024). The heuristic from Tasi¢ (2024) reached
or improved the best FVNS results for the standard PNCP instances
with up to 200 nodes considered in Risti¢ et al. (2021). For the
Additional pmed instances, the heuristic presented in Tasi¢ (2024)
showed to be superior to FVNS in terms of the quality of the solution.
Londe et al. (2021) developed an evolutionary approach (EA) for the
PNCP. Additionally, starting from the best solutions found with another
algorithm, they ran the CPLEX solver with 24 threads for up to a week
for some instances and reported optimal solutions for the extended set
of instances. Mousavi (2023) proposed a variant of the local search
method and applied two strategies to exploit the flat subspaces. In the
first one, flat moves are evaluated using a certain heuristic function in
order to determine whether this move leads to a promising solution.
The second approach includes a tabu restriction for some flat moves,
which are marked as forbidden, while all other flat moves are allowed.
The local search method (Mousavi, 2023) was tested on a set of 132
benchmark instances with up to 200 nodes and provided better quality
solutions than the ones reported in Lopez-Sanchez et al. (2019). Zhang
et al. (2022) proposed a weighting-based tabu search algorithm (WTS)
as a solution approach for the PNCP. The WTS decomposes the PNCP
into a series of decision subproblems and solves each of them with
a fast tabu search procedure. A similar idea was used in the recent
paper (Zhang et al., 2023) for the classical p-center problem. Recently,
Risti¢ et al. in Risti¢ et al. (2023a) designed a modified Basic VNS
algorithm (BVNS) that uses a refined local search and shake step, and
also exploits auxiliary data structures used in VNS for the classical
p-center problem. The computational results on the subset of PNCP
instances used in Risti¢ et al. (2021) showed that the BVNS from Risti¢
et al. (2023a) outperformed the previous state-of-the-art PNCP methods
(in terms of solution quality) on the set of PNCP instances from Risti¢
et al. (2023a).

1.2. Conditional p-center problem

The application of the p-center problem in practice usually turns
into the conditional case. For example, when a particular service net-
work expands, there is a need for a larger number of facilities, but
this does not mean that the existing facilities must be canceled. The
conditional p-center problem (CPCP) aims to find locations for p new
centers while keeping the existing ¢ centers open. The objective is the
same as in the PCP: the maximal distance from a user to its nearest
center, among all p + ¢ centers, should be minimized. The conditional
p-median problem is similarly defined as an extension of the classical
p-median problem. The CPCP is often denoted as the (p,q) center
problem, as in Drezner (1995).

Lin (1975) was the first to mention the conditional p-center problem
in his paper from 1975 in which the problem of adding one new facility
to the existing system was discussed (p = 1,4 > 1). The same version
of the conditional p-center problem was also considered in Handler and
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Mirchandani (1979). Chen (1990) studied both the conditional p-center
and the conditional p-median problem in the Euclidean space. Chen
and Handler (1993) considered a general variant of the CPCP (p > 1)
in the plane. The relaxation method used for the PCP was adapted for
the conditional problem, and its performance was evaluated on a set of
instances with up to 200 randomly distributed locations.

Minieka (1980) introduced the conditional versions of the p-center
and p-median problem on the graph, but only the case of adding a
single new facility was considered in detail. Drezner (1989) proposed
a method for solving the CPCP both in a network and in the plane.
The first step of this method is to sort all customers in descending
order according to their distance to the nearest center. In the optimal
solution of the conditional problem, the first r customers are allocated
to some of the new centers. The task is to determine the value of r,
and this is done using the binary search algorithm and solving one p-
center problem in each iteration. Furthermore, Drezner (1989) proves
that the overall complexity of the algorithm is P(n)O(log n), where n is
the number of the customers and P(n) is the complexity of the algorithm
used for solving p-center problems. Berman and Simchi-Levi (1990)
presented a solution approach to the conditional p-median problem
and the conditional p-center problem based on solving one uncondi-
tional (p + 1)-median problem and one unconditional (p + 1)-center
problem, respectively. The improvement of the method from Berman
and Simchi-Levi (1990) was proposed by Berman and Drezner (2008),
who performed a computational study using the CPLEX solver on the
pmed set of instances with up to 700 nodes.

The Drezner’s algorithm (Drezner, 1989) was further modified by
Chen and Chen (2010), resulting in an iterative algorithm for the CPCP.
The first step is the same as in Drezner (1989), while a different method
is used to determine the value of r. In each step of the iterative algo-
rithm, the bounds of the optimal solution are improved by solving one
p-center subproblem. Initially, the subproblem with only one demand
point is solved, and this point is the first demand point from the
descending order. In each iteration, the next demand point from the
descending order is added. In this way, at most n p-center problems
are solved, but with a small number of demand points (between 1 and
r+ 1), while in Drezner’s method subproblems can have more than r+1
demand points.

Iravan et al. (2016) proposed two metaheuristic approaches based
on VNS, guided multi-start principle, aggregation techniques, and some
exact methods. The computational study was performed on a Traveling
Salesman Problem (TSP) dataset with up to 71 009 nodes. Continuous
variants of PCP and CPCP (the centers can be established anywhere
in the plane) were studied in Callaghan et al. (2018). The paper pro-
vides an improved variant of the relaxation-based algorithm previously
proposed by Chen and Chen (2010), and it was tested on a TSP dataset.

1.3. Motivation and main contribution of the study

The PCP, PNCP and CPCP problems mentioned above deal with
many real life problems. It is well known that the PCP problem is
used for locating emergency and health services such as ambulances,
police, fire stations, etc. The practical significance of the CPCP is that
in most situations it is more convenient to integrate new facilities into
the existing network than to design a completely new system from
scratch. Since establishing new service centers is usually expensive, it
makes sense to keep the existing centers open and add the new ones.
On the other hand, emergency networks assume that each facility can
respond to all customer demands at all times. Many disasters such as
earthquakes, fires, floods, tsunamis, hurricanes, etc. have caused the
destruction of one or more emergency service facilities. Therefore, cus-
tomers cannot rely on their primary center and have to continue to the
nearest backup center. These facts have motivated us to combine the
two aspects mentioned above and present a variant of the p-next center
problem with the additional assumption that some centers are already
established. The goal is to find the locations of a fixed number of new
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Fig. 1. Comparison of the optimal solutions for (a) PCP, (b) CPCP, (c) PNCP, (d) CPNCP on a small-size network.

centers such that the maximal distance of a customer to its backup
center is minimal. We refer to this location problem as the conditional
p-next center problem (CPNCP) or (p, q)-next center problem. To the
best of our knowledge, this is the first reference concerning this variant
of PNCP. Since the PNCP is NP-hard (as an extension of the PCP), the
considered CPNCP also belongs to the class of NP-hard optimization
problems.

In order to graphically illustrate the effects of using different net-
work design strategies given by PCP, CPCP, PNCP, and CPNCP on the
optimal solution, let us consider a small example with n = 10 users
and 3 centers. Let {1,2,...,10} be the set of given locations, as shown
in Fig. 1, and assume that three centers are required for this network.
The Fig. 1(a) shows the optimal solution for the PCP for p = 3. The
centers are located at nodes 3, 7, and 8 (marked with ), while the
allocations of the customers to the centers are denoted with black lines.
The maximal distance to its closest center is traveled by users 1 and 2
and the distance is 2.83. The optimal solution for the CPCP, assuming
that one center is already located at node 2 while two more centers
need to be established (p =2, g = 1), is given in Fig. 1(b). In this case,
the two new centers are located at nodes 5 and 8, and user 1 travels
the maximal distance of 4. Fig. 1(c) shows the optimal solution for the
PNCP for p = 3. The centers are opened at nodes 3, 5, and 8, while
the maximal distance of 5.89 is traveled by user 10. The value of 5.89
is obtained by summing up the distance from 10 to its primary center
8 and the distance from center 8 to its backup center 5. In Fig. 1(d)
the optimal solution of the CPNCP is given, assuming that one center is
already opened at node 2 and two additional centers need to be opened
(p = 2, ¢ = 1). In the optimal solution of the CPNCP, new centers are
established at nodes 3 and 10, with user 7 traveling the longest total
distance of 7.07 (the distance from 7 to 3 increased by the distance
from 3 to 2). Although these problems have some similarities, adding
new realistic factors to the model results in significantly different
optimal solutions in terms of the locations of the established centers and
the corresponding objective function values. For example, the optimal

solutions of CPCP and CPNCP, which are shown in Figs. 1(b) and
1(d), respectively, differ in all located centers, with the exception of
the center at location 2, which was already opened. This means that
additional insight regarding the possible collapse of centers leads to
different sets of new centers to be opened in the CPCP and CPNCP.
Figs. 1(c) and 1(d) show that in the case of the CPNCP, the already
opened center at location 2 is not part of the optimal solution of PNCP.
This implies that the existing centers affect the decision on the locations
for opening the remaining centers.

The previous example illustrates the need to introduce the CPNCP
that captures two important aspects of modeling an emergency service
network: maintaining the existing service centers opened and ensuring
that in case of a primary service center failure, its users are redirected
to the backup center closest to the primary one. Apart from emergency
service networks, the proposed CPNCP also finds its applications in
other areas. CPNCP may be used to make strategic decisions in any
service facility network facing problems such as power outages, staff
or capacity shortages, technical failures, etc. One example is the local-
ization of ATMs in urban areas. A user cannot know in advance whether
an ATM is out of order. If that turns out to be the case on his arrival,
the user would go from there to the nearest ATM. When deciding
where to locate new ATMs, this scenario should also be considered.
Another example is the gas station network of the same company. Many
drivers are accustomed to the quality of fuel offered by a particular
company and tank the fuel only at the gas stations of this company. The
companies further motivate drivers to use only their services by offering
loyalty cards and discounts depending on the amount of fuel filled
at their gas stations. So, if the closest gas station to a driver’s home
or workplace is out of order, due to maintenance, fuel distribution
or working hours, the driver will most likely go to the gas station
that is the closest to the primary one. A similar scenario occurs when
planning the network of drugstores of the same company, the network
of supermarkets of the same brand, the network of hospitals of a private
healthcare company, etc. If a customer is satisfied with the services
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offered by one company, he will most likely go to the branch that is

nearest to his living or working place, and if the service is not available,

he will go to the nearest branch from there. Companies encourage this

customer behavior in different ways by offering them coupons and

discounts if they spend a certain amount of money in their branches.
The main contributions of this paper are the following.

» We consider the conditional p-next center problem as a variant
of the p-next center problem. To the best of our knowledge,
the CPNCP has not been studied in the literature so far. The
example presented in Fig. 1 illustrates the differences between
the optimal solutions of PCP, PNCP, CPCP, and the considered
CPNCP for the same problem instance. The mathematical formu-
lation of the CPNCP is presented, which is obtained by adapting
the integer linear programming (ILP) formulation of the PNCP
from Albareda-Sambola et al. (2015).

As the considered CPNCP is NP-hard, we design and implement
an efficient variant of VNS, called Skewed VNS (SVNS), to solve
the CPNCP. The use of the SVNS metaheuristic is motivated by
the importance of having an efficient solution algorithm to tackle
instances with large problem dimensions that occur in practice. In
the case of real-life problem dimensions, exact methods often fail
to provide a solution due to memory or time limits. In addition,
SVNS can be used in situations where a high-quality solution is
required in a short time. This may be the case when designing
an emergency system consisting of mobile emergency units that
are temporarily set up at certain positions and can be moved
to other positions, if necessary. During a natural disaster or war
crisis, the set of potential locations for the centers or the set of
established centers may suddenly change completely or in great
extent (for example, locations must be moved to another area
or region), making reassignment of customers to backup centers
either inefficient or impossible. This situation requires prompt
reactions and a redesign of the emergency system, which can be
efficiently done by the SVNS metaheuristic.

The proposed SVNS includes an efficient implementation of the
Fast Interchange (FI) heuristic in the Local Search phase. In
addition, recent studies on PNCP (Risti¢ et al., 2021, 2023b;
Tasi¢, 2024) show that a VNS-based metaheuristic is a success-
ful method for PNCP, and therefore the SVNS metaheuristic is
investigated as a promising solution approach for CPNCP. The
elements of the proposed SVNS have been carefully designed
and implemented in accordance with the characteristics of the
problem. Moreover, in our SVNS, we use Move Evaluation and
Update procedures instead of the classical swap and/or update
from scratch, which leads to a speedup of the algorithm and a
reduction of its time complexity.

In order to investigate the effects of the possibility of accepting
worse solutions, we perform experiments for different values of
the parameter a, which controls the solution acceptance in the
SVNS. Note that in the case of « = 0 (also included in the
analysis), the algorithm is reduced to the classical BVNS. In a
separate subsection, the results of the parameter tuning test and
their statistical analysis are presented. The obtained results and
the statistical tests indicate that there is a significant difference
between using BVNS and SVNS for solving CPNCP, i.e., that the
proposed SVNS is superior to BVNS for the considered problem.

For the purpose of computational analysis, we modified the well-
known ORLIB pmed instances from the literature to fit the con-
sidered CPNCP. In our experimental study, we used 716 instances
divided into 5 groups with up to 900 nodes. The commercial
CPLEX solver with the proposed ILP formulation for the CP-
NCP formulation was used to obtain optimal solutions or upper
bounds, when possible. The results obtained using the proposed
SVNS with FI-based Local Search are compared with the results of
the exact solver CPLEX that uses proposed ILP formulation of the
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CPNCP. The obtained results show that our SVNS reaches optimal
solutions or improves the best feasible solutions provided by
CPLEX in significantly shorter CPU times. The SVNS also quickly
returns its best solutions for instances that were out of reach for
CPLEX due to memory limits.

In order to analyze the effects of using two different approaches
in service network planning, we compare the objective function
values of CPNCP for given p and ¢ and the corresponding values
of PNCP when the number of centers to be established is p + g.
Our motivation was to investigate two scenarios that arise as a
result of using PNCP and CPNCP models in real-life situations.
Finally, we investigated the potential of the proposed SVNS to
solve the PNCP. For this purpose, we set the number of existing
centers to 0 and run the SVNS on the set of PNCP instances from
the literature. The obtained results are compared with the results
of recent solution approaches for the PNCP, showing that SVNS
represents a promising solution method for the PNCP as well.

The remaining part of the paper is organized as follows. Problem
definition and ILP mathematical model for the CPNCP are presented
in Section 2. A detailed description of the proposed Skewed Variable
Neighborhood Search with Fast Interchange is given in Section 3.
The computational results are presented and analyzed in Section 4.
A summary of the results and some possible research directions are
outlined in Section 5.

2. Problem definition and mathematical model

In this section, we provide the description of the conditional p-next
center problem and present its mathematical formulation. Let A be the
set of all locations: customers, established centers, and candidates for
new centers. Let O C A be the set of already established centers, where
|A| = n and |Q| = ¢. The distance matrix is denoted as D = (d(i, j)),xn»
where d(i, j) represents the distance (time, cost, etc.) between locations
i and j. For a given network of ¢ centers, the problem is to find the set
P of additional p = | P| centers and allocate each customer to its nearest
(primary) center among all p + g established centers. It is assumed that
customers travel to their primary center and if they find out about its
eventual failure on the spot, they move on to the closest (backup) center
from there. Therefore, the objective is to minimize the distance from
each customer to its backup center, passing through a primary center.

In other words, the value

Py = in{min d(i, j). min dGi j
w(P) gﬂEaX{mm{?gg (M) min ()]

+min{ min d(, k), min d(j’,k)}},
keQ,k#j! keP k#j'

j' = argmin{min d(i, j), mind(i, j)}
j€o jep

is to be minimized. The conditional p-next center problem can be
formulated as an integer linear program (ILP). For that purpose, the
following binary variables are used:

if there is a center at location j, i.e. if j € QU P,

otherwise.

if j is the nearest center to the location i (different from i),
otherwise.

It is important to notice that if x; ;=1 and the location i is a customer,
that means that its primary center is the location j. On the other hand,
if the location i is a center, then j is its backup center.

In Albareda-Sambola et al. (2015) authors presented an ILP for-
mulation for the PNCP. In this study, we adapt the PNCP formulation
from Albareda-Sambola et al. (2015) into the corresponding model for
the CPNCP. Using the notation introduced above, the CPNCP can be
formulated as the following integer linear program:

min w (@]
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The objective (1) is to minimize the value of the continuous variable
w, which represents the maximal travel distance from a customer to his
backup center.

In Constraint (2), the total number of established centers is set to
p + q. Constraint (3) ensures that each user is allocated to exactly one
primary center and that there is exactly one backup center for each
primary center. Customers cannot be allocated to a location without
an established center, which is defined in Constraint (4). Constraint
(5) indicates that each customer is allocated to its nearest established
primary center.

Constraints (6) and (7) are necessary to set w to the correct value in
both possible cases: when the location is either a user or a center. If the
location is a center, it serves itself as the primary center (the distance
is equal to 0), and therefore, a two-leg trip is avoided. Condition (6)
ensures that the value of w is greater than or equal to the largest
distance from any location j to its nearest center different from j.
Since the variable x;, has different meanings depending on the role of
location j (user or center), the sum on the right-hand side of inequality
(6) is interpreted differently. If j is a user, this sum represents the
distance from j to its primary center k. On the other hand, if j is a
center, the distance to itself (its primary center) is 0, and therefore this
sum represents the distance to its backup center.

In case of a failure, all users with the same primary center proceed to
the same backup center. In this case, the total travel distance is equal to
the distance from a user to its primary center increased by the distance
from the primary to the backup center, which is specified in Constraint
(7). Indeed, if i is a user with its primary center j (x; =Ly = 0),
the value of the variable w will be greater than or equal to the sum
of d(i, j)(x; ;=) =dG.j) (distance from i to its primary center) and
the distance from the primary center j to the backup center . In all
other cases, where i is a center (y; = 1), the value of x;; — y; will be less
than or equal to 0, which implies that Constraint (7) is weaker than
Constraint (6), and consequently, only the distance from center i to its
backup center is considered.

Constraints (8)-(9) reflect the binary nature of the variables. The
indicators for the g already established centers are set to 1 in Constraint
(10).

3. Variable neighborhood search algorithm for the CPNCP

The algorithm proposed in this paper for solving the CPNCP is
based on the Variable Neighborhood Search method introduced by
Hansen and Mladenovié¢ in 1997 (Hansen and Mladenovié¢, 1997). This
metaheuristic provides a general solution strategy that can be applied
to various continuous and discrete optimization problems. When de-
signing a VNS algorithm, a set of different neighborhood structures
must be defined. In order to keep the search process away from the local
optimum traps, VNS involves a systematic change of the neighborhoods
in which the local search is performed. This is motivated by three facts:
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a local optimum in a certain neighborhood is not necessarily a local
optimum in some other neighborhood, the global optimum is the local
optimum for each neighborhood, and the points of the local optimum
with respect to different neighborhoods are close to each other (Hansen
and Mladenovié, 1997).

Different variants of the VNS method have been proposed in the lit-
erature. Variable Neighborhood Descent (VND) is a deterministic VNS
variant that changes the set of neighborhoods in the predefined order
within the local search step. In addition to the local search, the basic
VNS variant (BVNS) includes a shaking step as a stochastic procedure
that enables visiting solutions in various parts of the search space.
In the shaking step, a new solution is randomly chosen from some
predefined neighborhood, and this solution is used as the initial one for
some local search procedure. If the solution obtained by the local search
is better than the best obtained solution so far, the algorithm moves to
this new solution and the search is continued from there (Move or Not
step). Otherwise, the larger neighborhood is explored in the shaking
step. In this way, diversification is achieved through the shaking step,
and the local search intensifies the search. The combination of these
two steps reduces the risk of the algorithm getting stuck in a local
optimum that is not the global one. In the Variable the Neighborhood
Decomposition search (VNDS), the local search works on a subproblem
that is obtained by fixing certain number of attributes, while the others
have been changed. The size of a subproblem changes systematically in
each iteration of VNDS according to the size of the neighborhood used
in the shaking step. If a VNS-based method is used in the local search
step, a two-level VNS approach is obtained. A detailed description of
the different VNS variants is beyond the scope of this paper and can be
found in Brimberg et al. (2023) and Hansen et al. (2010).

In situations where a VNS algorithm is trapped in a valley of the
current best solution, shaking and local search may not be sufficient
to ensure the escape from the local optimum trap. In such situations,
it is necessary to increase a diversification of the search process to
some promising regions that are far away from the local optimum
valley. To achieve this, it makes sense not only to allow the moves that
improve the current best solution, but also to allow the algorithm to
move to a slightly worse solution, if these two solutions are enough
away from each other. The inclusion of this modified criterion for
the solution acceptance leads to a variant of the VNS method called
Skewed VNS (SVNS). In SVNS, the acceptance criterion is defined as
follows. If a new solution y is better than the current solution x, it is
always accepted. A new solution y that is worse than x (i.e., has the
greater objective function value f(y) > f(x)) is be accepted if f(y) <
f(xX)+ao(x,y), where o(-, -) is a metric used to define the distance and «
is the parameter of the method that controls the acceptance criterion.
The SVNS showed to be successful for solving various optimization
problems in the literature. The SVNS outperformed other VNS variants
in cases where it was important to enhance the exploration of far away
valleys, see Brimberg et al. (2019, 2015), Macedo et al. (2015), Mrkela
and Stanimirovié¢ (2022), Mladenovié et al. (2022), etc.

Various problems based on the p-center and its variants are solved
by VNS-based methods: p-center in Mladenovi¢ et al. (2020, 2003),
the PNCP in Risti¢ et al. (2023a, 2021), Sanchez-Oro et al. (2022),
and Tasi¢ (2024), the unconditional and conditional vertex p-center
in Iravan et al. (2016), the capacitated vertex p-center in Quevedo-
Orozco and Rios-Mercado (2015), etc. The above observations moti-
vated us to apply a VNS-based approach for solving CPNCP. We have
conducted a series of preliminary computational experiments with dif-
ferent variants of VNS, and the SVNS showed to be the most successful
in terms of solution quality and running times when solving CPNCP.
We believe that the increased impact of diversification in SVNS, which
was achieved by allowing the algorithm to move to a slightly worse
solution that is not too close to the incumbent one, is the reason why
SVNS showed to be superior than other VNS variants in the case of
CPNCP.
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A=1{1,2,..,20}, p=8,qg=2

Q: |1 |19, IQ=q=2

) |w|:p=S

Fig. 2. Solution encoding.

3.1. The proposed SVNS implementation for solving the CPNCP

When designing a metaheuristic for solving a given problem, the
encoding of the solution plays an important role. In the proposed SVNS
for the CPNCP, an integer encoding of the solutions is used. More
precisely, to each location from the set A, a unique integer index from
the set {1,2,...,n} is assigned. The solution of the CPNCP is represented
by a vector of p integers, where each integer represents the index of
a location with an established center. Let Q be the vector containing
the indices of ¢ locations with already established centers. The set of
feasible solutions S is defined as the set of all vectors x of length p
containing the indices of the locations for the new centers that are
different from the indices from Q, i.e., 1 < x(i) < n and x(i) # Q(j),i =
,2,....,p,j=1,2,....q.

Let us consider an example of a problem with » = 20 locations. Let
the indices of two (¢ = 2) already opened centers be 1 and 19. The goal
is to determine p = 8 additional centers among the remaining n—q = 18
locations in such a way that the value of the objective function value is
minimized. In this case, the set of feasible SVNS solutions in this case
is S ={x:|x] =81 <x()<20,x() # 1,x() # 19,i = 1,...,p}. The
cardinality of the set S is (188) = 43.758. One of the solutions x € S is
shown in Fig. 2.

For a,b € A, let d(a, b) represent the distance (delivery costs, travel
time) between the locations « and b obtained from the distance matrix
D. The objective function value f(x) for a feasible solution x € S is
calculated as follows.

» For a € A, we choose the closest center ¢ from the set x U Q such
that d(a, ¢) is minimal. If a is a center, then a = ¢ and d(c,c) = 0.
Let us denote this minimum distance as d,.

» For the chosen primary center ¢, we choose its backup center b
from the set (xUQ)\ {c} such that d(c, b) is minimal. Let us denote
this minimum distance as d,.

+ Finally, the value of f(x) is calculated as max,c4{d| +d,}.

The proposed SVNS uses a set of neighborhoods N, (x), k = 1,2, ..., k.
of a solution x that contains all solutions x’ that differ from x in exactly
k centers. In other words: N, (x) = {x’ € S : p(x,x") = k}, where p(x, x")
is the Hamming distance between the integer arrays x and x’ of length
p. More precisely, p(x,x’) is equal to p minus the number of common
elements of the vectors x and x'.

The main steps of the proposed SVNS metaheuristic for the CPNCP
are given by the Algorithm 1. An initial feasible solution is chosen as
an arbitrary point from .S.

The shaking step Shaking() generates the new solution x,,, €
N, (x) as follows. For a given k, we randomly choose k centers from the
current solution x to be closed and k random locations from A \ (x U Q)
for opening centers. The resulting solution is denoted as x -

Starting from the solution x,,, the local search procedure LS() ex-
plores the neighborhood N, (x,,,..) completely to find a local minimum
in this neighborhood. The cardinality of the N, (x,,.) neighborhood is
p-(n—q—p). If the obtained local minimum represents an improvement of
the objective function value, the process is restarted from that solution.
The local search stops when no further improvement of the objective
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function value is possible. The detailed description of the proposed
local search procedure is given in Section 3.2.

Finally, the solution x” obtained by the local search is compared
with the best solution found x*, in order to decide whether it should
be accepted or not. If f(x”) < f(x*), the current best solution is
updated, the algorithm moves to x” and the search is continued in
the first neighborhood N, of x”. If the solution x” found by L:S()
has a lower quality than the best known solution x*, but fulfills the
condition outlined in step 12 of the Algorithm 1, we take x” as the
current solution and continue the search in N,(x"") without updating
the best solution. The condition f(x”") < F + ao(x,x") is a relaxed
rule that allows the algorithm to visit a solution x” that is worse than
the incumbent solution x, but only if x” is sufficiently different from
x. A metric for difference is measured by previously defined distance
function p. The parameter a > 0 controls the level of diversification:
the search should be recentered to solution x” if x” is slightly worse
than x and the distance p(x”, x) is large enough. If neither of these two
conditions is satisfied, the search is continued in the next neighborhood
Ny, of the current solution.

The described steps are repeated until a stopping criterion is sat-
isfied. In this SVNS implementation, the maximal number of VNS
iterations is used as a stopping criterion. We count a VNS iteration by
the execution of the shaking step followed by the local search step.

Algorithm 1 SVNS algorithm for the CPNCP
1: Initialization: select the set of neighborhoods N, k =1,2,....k

*Ymax
2: Randomly choose an arbitrary initial point x* € S and set f* «
f(x™)
3: Set x « x*, F « f*
4: while the stopping criterion is not met do

5: k<1

6 while k <k, do

7: Xspake < Shaking(x, k) > Shaking step
8: X" — LS(Xgpak0) > Local Search step
9: if f(x") < f* then

10: X* <—x”,f* (—f(X”)
11: end if
12: if f(x") < F + ao(x,x’") then > Move or Not step
13: x < x", F e« f(x"), k <1
14: else
15: k—k+1
16: end if

17: end while
18: end while

3.2. Local search based on the fast interchange heuristic

Exploring the entire N|(x) neighborhood of the solution x means
that all solutions x’ that satisfy p(x,x’) = 1 must be evaluated. In
order to speed up the algorithm and avoid swapping users and centers
that does not lead to an improvement of the objective function value,
we use the Fast Interchange (FI) heuristic to implement the L.S()
procedure. Similar procedures were mentioned in Whitaker (1983)
and Mladenovi¢ et al. (2003). The pseudocode for the L.S() procedure
is given in Algorithm 2.

The implementation of local search for the CPNCP is based on two
main steps: determining the best choice of a location in to enter the
solution, and finding the best choice of a center our to be removed from
the solution. Let the critical user be the one who travels the longest
distance to its backup center. To reduce the value of the objective
function, the distance of the critical user i* to its backup center must be
reduced. This can be achieved if: (i) in becomes the new primary center
for i*, (ii) in becomes the new backup center for i*, (iii) in becomes the
new backup center for some other center that is as far away from i* as
its primary center.
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Algorithm 2 Local search for the CPNCP

1: procedure LS(solution x)

2: Construct the corresponding arrays ¢; and ¢, for x
3 ffef

4 Find the critical user i*
5: while true do

6: w* <« ©
7

8

9

for every location in ¢ (x U Q) do
if in reduces total distance traveled by i* then
out < MoveEuvaluation(in, x, cy, ¢,)

10; F < f((xu {in})\ {out})

11: if F < w* then

12: w* « F, in* < in, out* < out
13: end if

14: end if

15: end for

16: if /* < w* then

17: break

18: else

19: [* e« w*

20: Update(x, in*, out*, cy, c;)

21: Find the new critical user i*
22: end if

23: end while
24: end procedure

Each time we want to add a new center to the solution, the LS()
procedure does not check all possible locations from A\ (xuQ), but only
the locations that can reduce the distance between the critical user to its
backup center. In order to make an adequate choice of the new center
in, the procedure MoveEuvaluation() determines the best center out to
be removed from the solution. The detailed steps of this procedure are
described in Section 3.2.1.

Replacing some centers in the solution generally requires reassign-
ing all users to their (possibly new) primary and backup centers. To
avoid doing this from scratch every time, we use 2 auxiliary vectors c,
and ¢, corresponding to the current solution x. The vectors ¢; and ¢,
are defined as follows:

¢;(i) — the center closest to the location i (among allp + ¢
established centers),

¢,(i) — the second closest center to the location i, i=1,2,...,n.

The value ¢, (i) represents the primary center for the customer i,
and its backup center is given with ¢, (¢, (i)). If the center ¢, (i) fails, the
customer i proceeds to the center ¢, (¢, (i)). In the general case, ¢, (c,(i)) is
not identical to ¢, (i). If there is an established center at location i, then
¢, (i) is a backup center for the center i. For example, let us consider a
network with n = 10 nodes with a previously opened center at location
3 and newly opened centers at nodes 5 and 8, as shown in Fig. 3. Note
that for location 2, the primary center is 3, i.e., ¢;(2) = 3. The backup
center for location 2 is the center 5 that is closest to its primary center
3, i.e. ¢;(¢;(2)) = 5. On the other hand, the second closest center to
location 2 is center 8, i.e. ¢,(2) = 8.

Finally, the exchange of a chosen pair (in,out) is performed by
the procedure Update(), which also makes the necessary changes to
the vectors ¢; and ¢, so that they correspond to the updated solution
(x U {in}) \ {out}. The pseudocode for the Update() procedure is given
in Algorithm 3.

3.2.1. Move evaluation procedure

Previous successful applications of the Move Evaluation algorithm
(such as the one from Mladenovi¢ et al. (2003) for PCP) gave us
some general guidelines on how to design and implement our Move
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c(l) =38, (1) =5
c1(2) =3, c2(2) =8
c(3) =5, c2(3) =8
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ci(5) =3, ca(5) =8
1(6) =5, c2(6) = 3
¥ 5 9 am=5am=s
c1(8) =5, c2(8) =3
c1(9) =8, c2(9) =5

¢1(10) = 8, c2(10) =5

00

Fig. 3. Vectors ¢, and ¢, for a solution of the CPNCP for n=10, g =1,p=2,0 = {3},
new centers are located at nodes 5 and 8.

Algorithm 3 Update procedure for the CPNCP

1: procedure UppATE(x, in, out, c;, ¢;)

2: x « (xu {in})\ {out}
3: for every center j € x do
4: Recalculate ¢, (j) and ¢,(j)
5: end for
6: for every user i € A\ (x U Q) do
7: if ¢, (i) = out then
8: if  d(i,in) < d(i, c,(i)) or (d(i,in) =
d(i, cy(i)) and d(in, ¢;(in)) < d(cy(i), ¢, (¢, (i)))) then
9: c (i) « in
10: else
11: c1(i) < cy(i)
12: Find the second closest center center_2 to the location
]
13: ¢, (i) « center2
14: end if
15: else
16: if  d,in) < d(i, ¢, (i)) or (d(i, in) =
d(i, ¢, (i)) and d(in, ¢, (in)) < d(c; (i), ¢;(c;(i)))) then
17: ey (i) « ¢y (i)
18: c(i) < in
19: else
20: i d,in) < d(i, cy(i)) or (d(i, in) =
d(i, cy(D)) and d(in, c,(in)) < d(c, (i), ¢,(c,(1))) then
21: ¢y (i) < in
22: else
23: if ¢, (i) = out then
24: Find the second closest center center 2 to the
location i
25: ¢, (i) « center_2
26: end if
27: end if
28: end if
29: end if

30: end for
31: end procedure

Evaluation procedure (MEP) for the CPNCP. Comparing with the MEP
procedure for PCP, one can notice that each segment of the imple-
mented MEP for CPNCP has been modified and upgraded with the
new elements to make it work properly for CPNCP. For example, since
we are considering a problem involving backup centers, not even the
primary centers are determined in the same way as for PCP. Adding
or excluding a center from a solution can result in many more cases to
consider. This is reflected in a more complex calculation of the elements
of the arrays r and z compared to the PCP case. The elements of the
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array g must also be determined with some additional checks. In the
rest of the subsection, the MEP proposed for the CPNCP is explained in
detail.

For the given solution x and a candidate location in, the MEP
determines the center out € x that is the best choice to be removed
from x when a center is opened at location in. In other words, f((x U
{in})\ {out}) should be as minimal as possible. The MEP procedure also
calculates the objective function value f((x U {in}) \ {out}), but it does
not perform the exchange of the centers in and our.

The input for MEP contains:

« location in € A\(xUQ), which should become part of the solution,

« arrays ¢; and ¢, that correspond to the solution x.

The output of the procedure includes:

« the center out, which should be removed from the solution x,
+ the evaluation of the swap, i.e. the value f((x U {in}) \ {out}).

Adding the location in to the solution can have the following two
effects on the current solution: (i) There exists a customer i (possibly
more than one) for which the center in is closer than its current primary
center, i.e., d(i,in) < d(i, c,(i)) so that customer i should be reallocated
to the center in. Consequently, the backup center c¢,(c,(i)) should also
be updated for such a customer. (ii) There is an established center j,
for which the location in is closer to j than the current backup center
for j. In this case, in becomes the new backup center for j, as well as
for all customers allocated to j.

On the other hand, removing a center our from the solution affects
all users whose primary or backup center was out. Therefore, for all
users whose primary center was out, a new primary and a new backup
center must be determined, and for all users whose backup center was
out, the backup center must be updated.

Motivated by the possible effects that the swapping of the elements
in and out could cause, and to implement MEP efficiently, we use two
auxiliary vectors: the vector r of a length p+4 and the vector z of length
p, which are defined as follows:

cr(j)= maxiesj{d(i,j)+d(j,k)}, j=12,...,p+q, where S; denotes
the set of all users assigned to the center j € x U Q and k is the
backup center for the center j, i.e., k = ¢;(j).

+ Assuming that the center j = x(/), / = 1,2, ..., p is removed from
the current solution, for all the users i € S allocated to the
center j, the total travel distance, i.e. the distance to the new
backup center through the new primary center, should be calcu-
lated. The element z(j) is set to the longest of these distances:
z(j) = maX;es, {d(i, new_primary) + d(new_primary, new_backup)},
j=12,...,p.

Each step of MEP is described in detail by the pseudocode in Algorithm
4. Considering the previously described effects caused by removing the
center our and/or adding the center in to the solution, we can divide
all users into three main groups: (i) users for whom the new center
in is closer than their primary center, (ii) users who are not affected
by the removal of center our but whose backup center is changed by
opening in, and (iii) users whose primary or backup center is out. In
each of these cases, the vectors r, z, ¢;, and ¢, are suitably modified
by updating only the information related to the given changes in the
solution. It is possible to calculate all values z(j),r(j),j = 1,...,n by
considering each user only once. In addition, a value f((xu{in})\ {out})
is determined, representing a candidate for the objective function value
after the swap.

The MEP procedure considers each candidate to be removed out’ € x
in an effective way, and determines the best choice out to be removed
from the current solution as the one that minimizes the objective
function value. The complexity of the MEP procedure is O(n — p — q)
and it is called n — p — ¢ times. Updating the information about the
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changes made in a solution requires O(n(p + ¢)) operations, which is
the complexity of the Update procedure. Therefore, the worst-time
complexity of the FI procedure used in the Local search is O((n—p—g)?).

Algorithm 4 Move Evaluation procedure for the CPNCP

1: procedure Move EvaLuation(in, x, ¢;, ¢;)
2: Initialization:
fl <o,
r(x(j)) < min{d(x(j), in), d(x(j), c;(x(/))},
z(cy (x(j))) < max {Z(Cl(x(j))), min{d(x(j), in), d(x(j), c,(x(j))} } J
1,2,...,p+q
for every user i € A\ (x U Q) do
if i # inand(d(.in) < d(,c)) or (d(i,in) =
d(i, ¢, (D)) and d(in, c,(in)) < d(c, (i), ¢;(c;(1))))) then

W

5: f < max{f’, d(i,in) + d(in, c,(in)}
6: if f/ =d(i,in) + d(in, c;(in) then
7: critical_user < i, backup_critical « c(in)
8: end if
9: else
> Update the values r(c,(i))
10: r(cy (i) — max {r(cl(i)), min{d(i,c,(i)) +
d(c; (i), ¢;(c; (D)), d(i, ¢y (i) + d(c (i), in)} } i#in
11: r(cy(in)) « max{r(c,(in)), d(in,c|(in))}
> Update the values z(c,(i))
12: Determine new_primary_i between in and c¢,(i) and
new_backup_i for the user i
13: z(cq (@) “« max{z(c (7)), d(i,new_primary_i) +
d(new_primary_i, new_backup_i), } i # in
14: z(c(in)) < max{z(c,(in)), d(in, c,(in))}
> Update the values z(c, (¢, (i)))
15: Determine new_backup_i for the user i between in and
cy(er (D)
16: z(cy(cq(i))) «— max{z(c;(c; (D)), d(i,c (i) +
d(cy (i), new_backup_i)}
17: end if

18: end for

19: for every center x(j),j =1,2,...p do > Update the values

2(x(j))

20: Determine new_primary_j between in and ¢,(j) and
new_backup_j

21: z(x(j)) « max{z(x(j)), d(x(j),new_primary_j) +

d(new_primaryj,new_backup_j)}

22: end for

23: Find g, < max{r(x(D)|! = 1,2,..,p + q}, let the I* be the
corresponding index

24: Find g, « max, s {r(x(1)) |1 = 1,2,...,p+q}

25: for/=1,2,...p do

26: if x(I) = backup_critical then

27: f! “«— f' — d(in, backup_critical) + d(in, ¢, (in))
> Update f’

28: end if

29: if [ # I* then

30: g(l) « max{ f’, z(x(1)), g }

31: else

32: g() < max{f’, z(x()), g, }

33: end if

34: end for

35: Find: /' < min{g(/)|/ =1,2,...,p}

36: Find the center to be eliminated: our « x(/**), where [** is the
index of the found minimum

37: end procedure




J. Tasic et al
4. Computational experiments

The computational experiments were performed on a desktop com-
puter with Intel Core i7-11700 3.6 GHz processor and 16 GB of RAM
in a 64 bit Windows 10 environment. The ILP formulation presented in
Section 2 was solved with the IBM ILOG CPLEX 22.1.0 solver. CPLEX
uses 16 logical processors and stops either when it finds an optimal
solution or it reaches the maximum time of 7200 s per thread. The
SVNS proposed in this paper was implemented in the C++ language
and the execution was carried out on a single core.

4.1. Dataset

We have used 716 instances divided into 5 groups, all derived from
the instances for the p-next center problem used in the papers (Londe
et al.,, 2021; Mousavi, 2023; Risti¢ et al., 2021; Tasi¢, 2024). The
small size instances consider 20 < n < 50, the medium size instances
50 < n < 200, the large size instances 200 < n < 400, and the extra
large size instances 800 < n < 900. The fifth group contains instances
with 100 < n < 900, which are derived from Additional group of pmed
instances from the paper (Risti¢ et al., 2021). In order to generate test
instances for solving CPNCP we used two different approaches.

The first approach is used to generate instances with 20 < n < 100. It
is based on the approach used in Iravan et al. (2016) where the authors
generated test instances for CPCP by adapting the instances of p-center
problem. For each PNCP instance, we solved the g-next problem to
optimality by using the ILP formulation from Albareda-Sambola et al.
(2015). We chose the g established centers from the obtained optimal
solution to be the ¢ existing centers in the CPNCP. For example, for
the (15,5)-next center problem, the existing 5 centers are the optimal
solution of the 5-next center problem. As in Iravan et al. (2016), the
values ¢ are varied with a step of 5 in each considered instance.

The second approach, which is also proposed in Iravan et al. (2016),
is used for PNCP instances with n > 100. Note that no optimal
solution is known for these instances. Therefore, the ¢ exiting centers
for CPNCP are randomly chosen from the PNCP solutions obtained by
the heuristic in Tasi¢ (2024). It should be noted that these solutions are
not necessarily the optimal ones. Assuming that the complexity of the
instance decreases with the increase of ¢, we limited the values of g to
vary from 2 to at most 10% of the value of p + q.

In the paper (Risti¢ et al., 2021), the authors presented an Addi-
tional set of pmed test instances for the PNCP with up to 900 nodes.
These instances were also adapted according to the second approach. In
this way, the fifth set of CPNCP instances, denoted as Additional pmed
dataset, is obtained.

The following notation is used for all instances considered in this
study. The instance name pmedX_n_(p+q)_q contains information about
the total number of nodes (n), the total number of centers (p + ¢q), and
the number of already established centers (g). For example, the instance
pmedl_90_205 is generated from the instance pmedl_90 20 for the
PNCP. It has n = 90 nodes, g = 5 existing centers, and the total number
of centers should be p+ g = 20. Therefore, the aim is to open additional
p=20-5=15 centers.

4.2. Parameter tuning

One of the main problems in the implementation of a metaheuristic
methods is the estimation of the parameter values that should be
used when solving instances or groups of data sets with different
properties. On the other hand, the efficiency and effectiveness of a
metaheuristic method are reflected in its robustness with respect to the
parameter values that must be specified in advance. The most important
parameter of SVNS is the parameter a, which affects the quality and
diversification of the solutions. Our aim was to evaluate the efficiency
of the proposed SVNS without fine adjustments of the parameters to the
specific instances or dataset groups. Therefore, a series of preliminary
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Table 1
Comparison on different values of parameter a.

Instance group #Inst a best,,, #best 1_best,,,
0 102.73 19.73 0.00
0.1 102.73 20 0.00

n <50 15 0.2 102.73 20 0.00
0.3 102.73 20 0.00
0.5 102.73 20 0.00
0 96.78 17.78 0.18
0.1 96.78 20 0.10

50 < n <100 40 0.2 96.78 19.98 0.10
0.3 96.78 19.65 0.12
0.5 96.78 19.28 0.16
0 61.85 16.18 0.93
0.1 61.76 19.5 0.53

100 < n <200 34 0.2 61.76 19.56 0.64
0.3 61.76 18.35 0.70
0.5 61.76 17.47 0.75
0 44.15 12.04 3.95
0.1 43.77 18.23 2.27

200 < n <400 26 0.2 43.88 17.12 2.40
0.3 44.12 15.77 2.61
0.5 44.27 15.61 3.14

computational experiments were performed to determine the best value
of the parameter « to be used for all further tests.

The parameter tuning tests were performed with a subset of 115
randomly selected problem instances from the small, medium and large
instance sets, i.e. about 20% of the total number of instances are used
for this purpose. The set of values considered for the parameter a was
{0,0.1,0.2,0.3,0.5}. Note that in the case of « = 0, the SVNS algorithm
is reduced to the classical BVNS. For each value of «, the algorithm
was executed 20 times for each instance. The stopping criteria was
the maximum number of SVSN iterations. In this way, we ensure that
the SVNS requires similar total execution times for the same instance
when different values of « are used. For each instance, we store the
best solution value obtained (best), the number of times the algorithm
obtained the best value (#best), and the average total execution time
required to reach the best solution for the first time (¢_best).

Table 1 shows the summarized average results obtained for the total
number of #Inst instances in each group. The detailed results of the
parameter tuning test can be found in Appendix C (Tasi¢ et al., 2024c).
For each instance group, the value of « that led to the best average
objective function value is shown in bold. Table 1 shows that a = 0 led
to the worst SVNS performance, while the algorithm performed slightly
better for « = 0.5. For instances with n < 50, only a« = 0 did not lead
SVNS algorithm to the best solutions in all 20 runs in all cases. For
instances with 50 < n < 100, only @ = 0.1 provided the best solutions
in all 20 runs in all cases. Furthermore, for a = 0.1, the SVNS required
the shortest average time to reach these solutions for the first time.
Considering bes?,,, and 7_best,,, the worst SVNS performance was for
a =0, followed by a = 0.5. For the set of instances with 100 < n < 200,
only a = 0 did not lead SVNS to the best solutions in all cases. Looking
at the #best,,,, and t_best,,,, columns, a = 0 performed the worst, a = 0.5
was slightly better, while « = 0.1 and « = 0.2 gave the best results.
Finally, for 200 < n < 400 the best SVNS results considering all three
measures were obtained with « = 0.1, and the worst with « = 0,
followed by a = 0.5. The worst performance of the algorithm at « = 0
clearly shows that the SVNS is more suitable for solving the CPNCP
than the BVNS.

We also performed a statistical analysis to gain a better insight into
the results obtained. Following the recommendations of Demsar (2006),
the Friedman test was performed. This is a non-parametric test based on
a ranking of the performance of the SVNS method for all five different
values of « for each instance. The value that results in the best SVNS
performance for a given instance is ranked as 1, the second best value
is ranked as 2, and so on. Since we have three measures to compare
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Table 2

The average ranks for Friedman test.
a 0 0.1 0.2 0.3 0.5
rank 4.32 2.27 2.3 2.64 3.46

avg

(best, #best, and t_best), the first ranking criterion is the value of the
objective function (besr). If two or more method variants obtained the
same value of best, the method with the higher value of #best is given a
better ranking. If the values of best and #best are the same, the method
that reached the result faster for the first time (according to ¢_best) gets
the better ranking.

The tested null hypothesis is: There is no significant difference
between the compared methods with different « values, while the
alternative hypothesis is: At least one a value provides a significantly
different result than the others. The recommended test significance is
p = 0.05. For each a value, the average value of the assigned ranks is
calculated and shown in the Table 2.

For N = 115 instances and k = 5 different a values, we calculated
72 = 138 using the formula

k
k(k + 1)?
2
<z rankavgl — T) .
i=1

To reject the null hypothesis, this value must be equal to or greater than
the critical value for the y? distribution with df = k — 1 = 4 degrees
of freedom at the significance level 0.05, which is 9.49 (Sheshkin,
2000). Since x> = 138 > 9.49, this means that the null hypothesis
should be rejected and that there are significant differences between
the compared values of a.

To determine which difference(s) is/are significant, we used the
Nemenyi test. According to Nemenyi, two methods lead to significantly

different performances if their average ranks differ by at least CD =
k(k+1)

,_ 12N
T k(k+1)

X a1

, where ¢ stands for the critical value of the Nemenyi test. In
our case, g = 2.728 (Demsar, 2006). We calculated the value CD =
0.5688 and came to the conclusion that SVNS with « = 0 provides
significantly worse results than a = 0.5. Furthermore, a« = 0.5 performs
significantly worse than « = 0.1, « = 0.2, and a = 0.3. There are
no significant differences between the results obtained with the three
middle values 0.1,0.2, and 0.3. Since SVNS with a« = 0.1 has the lowest
average rank, by taking into account the data from Table 1, we decided
to set the value of a to 0.1 in our final computational experiments.

4.3. CPNCP results

In this subsection, we present summarized results of the CPLEX
solver and the proposed SVNS algorithm for the CPNCP. Detailed
results of both CPLEX and SVNS for all considered CPNCP instances
are presented in Appendix A (Tasi¢ et al., 2024a).

In our computational experiments, SVNS was executed 20 times on
each test instance, starting from a different random initial solution.
The maximum number of SVNS iterations was used as a termination
criterion: 500 for the set of small size instances and 5000 for all other
sets. The value of the parameter « was set to 0.1 for all dataset groups.
We set k.., = 5 for all instances except for the Additional pmed
instances with p+¢ =5, for which we used k,,,, = 3 for obvious reasons.

Table 3 contains the average results of CPLEX and SVNS for all 716
pmed instances of CPNCP. For a summarized presentation, the instances
are grouped according to the number of nodes n. For example, five
CPNCP instances with n = 20 nodes derived from pmedl-pmed5 form
one group. The average results shown in Table 3 are calculated over
the results obtained for the instances of the same group.

Each row of Table 3 contains: the name of the pmed instance group,
followed by the total number of locations - n, the interval for the
number of new centers to be opened - p, the interval for the number of
existing centers - g, and the number of instances in the group - #inst.
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In the next four columns of Table 3, the CPLEX results are presented
as average values for all instances in the group. Column #opt contains
the number of instances in the group for which the optimal solution was
obtained. For some instances, the CPLEX solver provided only a feasible
solution within the given execution time, but failed to determine the
optimal solution. The number of such instances is given in #feas.only
column. For a certain number of instances, the CPLEX solver could not
provide even a feasible solution due to the “Out of memory” (OOM)
error message. The number of such instances is reported in the #oom
column for each group. The last column regarding the CPLEX results,
denoted as avg.t, contains the average running time used by CPLEX to
complete its work (in seconds). The values in this column are marked
with “*” to indicate that at least one CPLEX solution in this group
is not optimal. Similarly, for groups of instances with #oom cases the
sign “**” is used to indicate that only the instances with obtained
optimal and/or feasible solution were considered. If CPLEX has reached
neither an optimal nor a feasible solution for each instance in a group, a
mark “~” is written in the corresponding column. Note that the CPLEX
running time presented for an instance is the sum of the execution times
collected from all threads (the result returned by the built-in function
cplex.getTime() of class IloCplex).

The next four columns of Table 3 refer to the SVNS results: #opt /#bk
- the total number of optimal (if known) or best known solutions from
the given group, avg.t - the average total execution time required to
reach the best SVNS solution (in seconds), avg.t,, - the average total
execution time (in seconds), agap - the average gap (in %), where gap
is the average gap between the best objective function value obtained in
a single SVNS run, and the best objective function value obtained in 20
SVNS runs. If the SVNS results match the optimal or best known results
for all instances of the same group, the values in the #opt columns are
in bold.

The last column of Table 3 marked as avg.dev contains the average
ratio of the objective function values obtained by CPLEX and SVNS.
For each instance, we calculate the deviation (in percent) using the
formula:
objcprex = bisvNs 000

objsyns

Then, for each group of instances, we calculate and present the average
deviation values. Please note that the deviation values are positive
in cases when the SVNS solutions are better than the feasible ones
obtained by CPLEX, and negative otherwise. Naturally, in cases when
the objective function values of the SVNS and CPLEX solutions are the
same, the deviation is equal to 0%.

The summarized results from Table 3 show that the proposed SVNS
has reached all optimal solutions for all small size instances. For the set
of medium size instances, SVNS failed to achieve an optimal solution for
only one instance, but it improved 4 instances where CPLEX obtained
only a feasible solution. The average total SVNS running time on all
small and medium size instances was significantly shorter than the CPU
time required by CPLEX.

The advantages of SVNS become more obvious as the problem
size increases, as shown in the last three sections of Table 3. For the
large pmed dataset, SVNS reached all the optimal solutions previously
obtained with CPLEX. For the remaining 6 instances, for which CPLEX
provided only feasible solution, SVNS failed to improve or reach this
upper bound in only one instance. For extra large instances, CPLEX
obtained an optimal solution for only 4 instances, while the remaining
instances were out reach for CPLEX due to the lack of memory. On
the other hand, SVNS reached all 4 optimal solutions in a short CPU
time. For the remaining extra large pmed instances, SVNS showed good
stability as the average gap values of its solutions are 0% for 171 out
of 180 instances in this set.

When considering the Additional pmed dataset, the CPLEX solver
obtained an optimal solution for 43 out of 79 instances and provided
a feasible solution for 14 instances. For the remaining 22 instances,
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Table 3
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Average results of the CPLEX solver and the SVNS algorithm on the groups of pmedl-pmed40 and Additional pmed instances.

Inst. n p q #inst CPLEX average values SVNS average values avg.dev (%)
#opt #feas.only #oom avg.t #opt [#bk avg.t avg.t,, agap
Small size instances
pmedl-pmed5 20 5 5 5 5 0 0 0.07 5 0.00 0.01 0 0
30 5 5 5 5 0 0 0.26 5 0.00 0.02 0 0
40 [5,15] [5,15] 20 20 0 0 0.35 20 0.00 0.04 0 0
50 [5,15] [5,15] 20 20 0 0 0.81 20 0.01 0.06 <0.01 0
Medium size instances
pmedl-pmed5 60 [5,25] [5,10] 25 25 0 0 1.13 25 0.01 0.83 0 0
70 [5,25] [5,10] 25 25 0 0 5.81 25 0.03 1.03 0 0
80 [5,25] [5,10] 25 25 0 0 17.57 25 0.08 1.23 0.02 0
90 [5,45] [5,15] 40 40 0 0 25.16 40 0.09 1.87 0.02 0
100 [5,45] [5,15] 50 50 0 0 72.04 49 0.15 2.08 0.10 —-0.02
1.03 pmed6—pmed10 150 [10,75] [5,20] 60 60 0 0 1691.89 60 0.18 4.78 0.07 0
200 [10,95] [5,20] 80 76 4 0 5441.34* 80 0.76 8.69 0.17 0.22
Large size instances
pmedl1l-pmedl12 250 [27,88] [2,9] 22 18 4 0 13680.85* 21 2.43 10.91 0.74 0.11
300 [54,148] [2,15] 26 26 0 0 161.76 26 0.14 20.53 0 0
pmed16-pmed17 350 [36,118] [2,12] 24 22 2 0 6433.69* 24 4.24 22.61 1.04 0.79
400 [72,198] [2,20] 30 30 0 0 615.67 30 3.67 55.38 0.45 0
Extra large size instances
pmed35-pmed37 800  [144,398]  [2,40] 63 4 0 59 2569.40%* 63 3.65  312.63 0 0+
pmed38-pmed40 850 [81,288] [2,29] 54 0 0 54 - 54 10.28 230.15 0.28 -
900 [162,448] [2,40] 63 0 0 63 - 63 14.07 428.04 0.06 -
Additional pmed instances
pmedl-pmed5 100 [3,31] [2,3] 6 6 0 0 2655.45 6 0.06 1.79 0.00 0
pmed6-pmed10 200 [3,65] [2,6] 8 7 1 0 18406.39* 8 0.27 5.31 0.07 0.30
pmedl1-pmed15 300 [3,98] [2,10] 10 7 3 0 25490.66* 10 1.06 12.17 0.32 5.14
pmed16-pmed20 400 [3,131] [2,13] 11 8 2 1 14312.88** 11 5.30 28.35 1.07 6334.52%*
pmed21-pmed25 500 [3,165] [2,16] 11 6 3 2 19698.17** 11 4.77 46.06 0.77 4.41**
pmed26-pmed30 600 [3,198] [2,20] 14 6 1 7 13446.2** 14 1.63 67.42 0 0.30**
pmed31-pmed34 700 [3,138] [2,141 9 3 3 3 9 5.78 51.88 0.12 14.52%%
pmed35-pmed37 800 [3,78] [2,8] 5 0 1 4 5 1.77 47.15 0 0**
pmed38-pmed40 900 [3,88] [2,9] 5 0 0 5 - 5 21.66 54.93 2.38 -
oo 100 100 98.6999.67 99.02 100 100 The summarized analysis of the CPU times required by CPLEX and
e SVNS to reach the optimal/best solution is shown in Fig. 5. The average
0 CPLEX and SVNS running times (in seconds) for all instances with
- 80 the same dimension n are shown in Fig. 5. Fig. 7(a) refers to the
z 70 average CPLEX time, the average SVNS total execution time and the
% 60 54.43 average SVNS time required to reach the best solution for the first time.
8 <0 These average values are calculated over all instances with the same
E " dimension »n belonging to small, medium and large datasets. Similarly,
= Fig. 7(b) refers to the running times on the subset of Additional pmed
:\2 20 instances that could be solved by using CPLEX. Note that the X-axis
20 indicates the problem dimension n, while the Y-axis represents the CPU
10 533 time presented on a logarithmic scale to improve visualization.
0 — To illustrate the quality of the solutions provided by SVNS, we show
small medium large extra large Additional in Fig. 6 the percentage of instances from each group for which SVNS
mCPLEX mSUNS reached the best solution in each of the 20 runs (agap = 0%). For the

Fig. 4. Success rate (in %) of CPLEX and SVNS in reaching the optimal/best known
value.

CPLEX could not even provide a feasible solution due to memory limita-
tions. On the other hand, SVNS reached the optimal solutions obtained
by CPLEX for all 43 instances. For the remaining 36 instances, the
SVNS solution was better than the feasible one obtained with the CPLEX
solver. Only for one instance (pmed35_800_5_2) does the SVNS solution
match the feasible solution obtained by CPLEX. In the cases where
CPLEX provided optimal solutions, it often required several hours of
CPU time, while the average running time of SVNS was significantly
shorter than that required by CPLEX.

Fig. 4 shows the success rate (in %) of CPLEX and SVNS in reaching
the optimal/best known value for all five instance groups within the
given total execution time for CPLEX and the maximum number of
iterations for SVNS.

11

remaining instances (with agap > 0%), Fig. 7 shows how the average
agap changes with increasing problem dimension n.

Note that the SVNS parameter values in our study were set to the
same values for all instance groups considered. Our intention was to
investigate the performance of the SVNS under the same conditions for
all instances, i.e., without parameter adjustments for specific instance
groups. We believe that fine tuning of parameters for each of the
considered instance groups would lead to further improvements in the
solution quality and shorter running times of the proposed SVNS.

4.4. Comparison with PNCP results

In this subsection, we compare the results of the CPNCP for given
values p and g with the results of the PNCP when the number of
centers to be established is p+4. Our motivation was to investigate two
scenarios resulting from two different approaches to generate instances
(which corresponds to two different approaches when planning service
networks in real life situations). We also investigate the performance
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Fig. 6. Percentage of instances with agap = 0%.

of the proposed SVNS approach in solving the PNCP problem. We run
the SVNS with ¢ = 0 on a set of PNCP instances from the literature and
compare the obtained results with those obtained with recent PNCP
solution methods.

4.4.1. Comparison of CPNCP and PNCP results

For a fair comparison of the two network design strategies, it
was necessary to generate adequate CPNCP instances. We used two
approaches to generate the CPNCP dataset: in the first approach, we
start from the solutions of PNCP with g centers, while the second
approach uses PNCP solutions with p+¢ centers. The remaining parts of
this subsection contain a detailed description of generating the CPNCP
instances used for this purpose and the comparison of the best results
obtained with SVNS for the CPNCP and the known optimal/best known
solutions of the PNCP.

Generating instances for CPNCP from the optimal solution of PNCP with g
centers

In the first approach, the g previously established centers for CPNCP
are taken from the optimal solution of PNCP with ¢ centers. It is
obvious that the optimal solution value of CPNCP with ¢ existing
centers and p new centers to be chosen will not be lower than the
optimal solution value of PNCP with p+ ¢ centers. For example, for the
instance pmed1_40_10_5, the five fixed centers for CPNCP are obtained
from the optimal solution of PNCP with 5 centers: {0, 10,28,37,38}.
The optimal solution of CPNCP with the fixed centers in bold is
{0,10,17,19,20,25,28,31,37,38}, and the objective function value is

12

116. This corresponds to the real situation of expanding a service net-
work from 5 to 10 centers. On the other hand, the optimal solution of
the PNCP problem with 10 centers is {6, 13, 14,17,20,24,28,34,37,38}
with an objective function value of 111. This corresponds to a situation
in which the entire network is designed from scratch, which is rarely
the case in practice. Usually, companies expand their service network
by adding new centers to the existing ones. The above example shows
notice that centers 0 and 10 (the fixed centers in the CPNCP) are not
included in the optimal solution of the PNCP with 10 centers. Thus, the
solution of the CPNCP compared to the solution of the PNCP can either
be a different solution but with the same objective function value or a
solution having a greater objective function value, as in this example.

The presented results provide information on how much loss can
be produced by keeping already existing facilities while expanding
the network. Therefore, the objective value of a PNCP solution can
be interpreted as the lower bound of the objective value of a CPNCP
solution. In addition, the analysis of PNCP and CPNCP solutions and
the comparison of the corresponding objective values can also be used
to decide whether some of the already open facilities should be closed
and replaced by another facility.

Table 4 shows the objective function value (best) of the opti-
mal/feasible solution obtained by CPLEX when solving the PNCP on
the set of small size instances from which the test instances for the
CPNCP were generated. This is followed by the results of the SVNS
algorithm for solving the CPNCP on the set of corresponding CPNCP
instances generated by the first approach. Since our primary goal is
to compare only the values of the obtained solutions, we present the
best obtained objective function value (best) of the SVNS solutions for
the CPNCP and the number of SVNS runs that provided this best value
(#best). From the results shown in Table 4 for the set of 50 small size
instances, it can be seen that for 35 instances the objective function
value for the CPNCP is greater than the objective function value for
the PNCP, while for the remaining 15 instances the values are equal. It
can be noticed that even with the objective function values, the optimal
solutions may contain different nodes. For example, in the case of the
instance pmedl_20_10_5, the optimal solution of the PNCP with 10
nodes is {1,3,5,7,10,11,13,15,16,17} and the objective function value
is 95. The fixed centers for CPNCP are {2,6, 10,11, 16}, while centers 2
and 6 are not included in the PNCP solution. On the other hand, the
SVNS solutions obtained for CPNCP are {1,2,4,6,10,11,13,15,16,17},
{2,3,5,6,10,11,15,16,17,19}, {1,2,6,9,10,11, 14, 15,16, 17}, etc., which
all have the same objective function value 95. Therefore, in this case,
nothing is lost by expanding the network compared to the design
of the network from the beginning. On the other hand, the instance
pmed2_40_10_5 has the result 112 for PNCP and 135 for CPNCP. It is
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Fig. 7. Average agap values for instances with agap > 0%.
obvious that already established centers prevent the full potential of the Table 4

Results of CPLEX for PNCP and the SVNS for CPNCP on the set of small-size instances

service network, so it is justified to consider the possible replacement ‘ )
generated by following the first approach.

of one or more already existing centers if this is possible.

Instance CPLEX for PNCP SVNS for CPNCP
Similar tables with the results on the sets of medium and large " ’ ! _
instances can be found in the Appendix B (Tasi¢ et al., 2024b). For best best fbest
all these instances, a similar conclusion as for the instance n < 100 can pmegi—igﬁg—g gg g g 2; Zg ig
. . . s . pmed1_30_10_
be derived, i.e. the obtained O‘F)_]ec.tlve func.tlon values for CPNCP are pmed1 40.10.5 0 5 5 111 116 20
greater than or equal to the objective function values for PNCP. pmed1_40_20_5 40 15 5 89 89 20
o . . pmedl 402010 40 10 10 89 89 20
Generating instances for CPNCP from solution of PNCP with p + q centers pmedl 402015 40 5 15 89 89 20
Following the second approach for generating test instances for pmed1_50_10_5 50 5 5 110 112 20
CPNCP, we start from the solutions obtained by the heuristic (Tasic, pmed1_50_20_5 50 15 5 89 91 20
2024) for solving the PNCP on instances with n > 100 (note that these pmed1 502010 50 10 10 89 o4 20
lutions d ilv coincide with the optimal ). Th Tt pmedl 502015 50 5 15 89 91 20
solutions o.n(.)t necessarily coincide wi e optimal ones). The results pmed2.20.10 5 20 s 5 99 100 20
of the heuristic from Tasi¢ (2024) were the only available solutions pmed2_30_10_5 30 5 5 110 128 20
for which we had both the objective function values and the locations pmed2 40_10_5 40 5 5 112 135 20
of opened centers, and these data were necessary to generate CPNCP Pmegj—ig-zg—fo 28 12 fo 22 ZZ zg
. . pmed2_40_20_
instances by tl?.e :second .approach. When choo§1,ng the ¢ random cen'ters pmed2402015 40 5 15 9 % 20
from the heuristic solutions of the PNCP (Tasi¢, 2024) as the locations pmed2_50_10_5 50 5 5 140 145 20
of the previously established centers in the CPNCP, it is possible that pmed2_50_20_5 50 15 5 99 99 19
the SVNS algorithm returns a CPNCP solution with a smaller objective pmed2502010 50 10 10 99 104 20
function value compared to the initial PNCP heuristic solution (Tasi¢, pmed2502015 50 15 15 99 99 20
2024). In this situati i t of the initial PNCP solution i pmed3 20105 20 5 5 7 2 i
. In this situation, an improvement of the initia solution is pmed3 30 10 5 30 5 5 192 192 20
provided. pmed3_40_10_5 40 5 5 105 122 20
We compared the results of CPNCP and PNCP on the set of instances pmed3_40_20_5 40 15 5 77 85 20
with n > 100 generated by the second approach. Table 5 shows the pmed3 402010 40 10 10 77 85 20
lts for the set of Additional 4 inst hile th pmed3 402015 40 5 15 77 82 20
average results for the set of Additional pmed instances, while the pmed3.50.10.5 50 5 5 125 128 20
detailed results for the remaining instances can be found in Appendix pmed3.50_20_5 50 15 5 87 87 20
B (Tasi¢ et al., 2024b). Since these instances were generated from the pmed3.502010 50 10 10 87 88 20
heuristic solutions (Tasi¢, 2024), in order to provide a fair analysis of Pm333—50-20—15 50 5 5 & 93 20
. . pmed4_20_10_5 20 5 5 125 125 20
th.e two scenar'lo.s, we cc.)mpare the CPNCP resul't,s obtained by SVNS pmed4 30105 0 s s 199 196 20
with the heuristic solutions of PNCP from Tasi¢ (2024). Note that pmed4_40_10_5 40 5 5 129 126 20
the solution of the CPNCP is also a solution of the PNCP, so the pmed4_40_20_5 40 15 5 85 91 20
CPNCP results with a lower objective function value than those for the pmed4.402010 40 10 10 85 91 20
PNCP obviously lead to an improvement of the existing PNCP solutions pmed4.402015 40 5 15 85 85 20
btained by the heuristic £ Tasi¢ (2024) pmed4_50_10_5 50 5 5 126 141 20
obtained by the heuristic from tasic . pmed450205 50 15 5 91 99 20
In Table 5, the instances are grouped by dimension in the same way pmed4 502010 50 10 10 91 108 20
as in Table 3. For both CPNCP and PNCP, the table contains the number pmed4.5020.15 50 5 15 9 105 20
of optimal or best known solutions (#opt/#bk) from the same group. pmed5 20 10,5 205 5 o1 o1 20
The percentage of the obtained optimal or best known solutions for th pmecs 0185 2025 1% 126 20
e percentage of the obtained optimal or best known solutions for the pmeds40.10.5 w0 5 5 127 137 20
Heur (Tasi¢, 2024) is given i the (%opt/bk) column. The last column pmed5_40_20_5 40 15 5 91 91 20
avg.savings(%) shows the average decrease of the objective function pmed5402010 40 10 10 91 97 20
value achieved by using SVNS for CPNCP, in respect to the objective pmed5.402015 40 5 1591 96 20
. . - pmed5_50_10_5 50 5 5 121 121 20
function value of PNCP obtau.'led by heur%stlc Heur. pmeds 50,20 5 0 15 s 89 % 2
From the data presented in Table 5, it can be seen that for 8 out pmed5.502010 50 10 10 89 91 20
of 79 instances, the SVNS for CPNCP reached solutions with a lower pmed5502015 50 5 15 89 90 20

objective function value than the existing solutions of Heur for PNCP.
For example, consider the instance pmed13_300_30 from the Additional
pmed dataset. For this instance, the heuristic Heur (Tasi¢, 2024) for the

13
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Table 5
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Average results of Heur. (Tasi¢, 2024) for PNCP and the SVNS results for CPNCP on the set of instances generated following

the second approach.

Instance n p q #inst Heur. (Tasi¢, 2024) for PNCP SVNS for CPNCP
#opt [#bk %opt | bk #opt /#bk avg.savings (%)
pmedl-pmed5 100 [3,31] [2,3] 6 6 100 6 0
pmed6-pmed10 200 [3,65] [2,6] 8 8 100 8 0
pmedll-pmedl5 300 [3,98] [2,10] 10 8 80 10 0.42
pmed16-pmed20 400 [3,131] [2,13] 11 8 72.73 11 1.70
pmed21-pmed25 500 [3,165] [2,16] 11 9 81.82 11 0.52
pmed26-pmed30 600 [3,198] [2,20] 14 14 100 14 0
pmed31-pmed34 700 [3,138] [2,14] 9 9 100 9 0
pmed35-pmed37 800 [3,78] [2,8] 5 5 100 5 0
pmed38-pmed40 900 [3,88] [2,9] 5 4 80 5 0.83
Table 6
Literature review for PNCP instances.
Reference Year #inst Stopping criterion Solution data
Albareda-Sambola et al. (2015) 2015 132 max CPU =4 h Average results, CPU
Lépez-Sénchez et al. (2019) 2018 132 The number of generated solutions Best solution, CPU, gap
Londe et al. (2021) 2021 413 max CPU = 7 days Best solution, CPU first
Zhang et al. (2022) 2022 413 CPU =60 s % of hits best solution, normalized CPU first
Risti¢ et al. (2021) 2023 104 max CPU = 5n Best solution, avg.sol, worst sol, CPU first, #best (in 20 runs), gap
Risti¢ et al. (2023a) 2023 264 max CPU = 1800 s Best sol., avg.sol., worst sol., CPU first, #best (in 20 runs)
Tasi¢ (2024) 2023 285 max 5000 iterations Best solution, #best (in 20 runs), CPU total, CPU first, gap, st.dev.

PNCP returned the best objective value of 49 (see Appendix B Tasic¢
et al., 2024b). On the other hand, SVNS for CPNCP obtained the best
solution with an objective function value of 48 for pmed13_300_30_2
and for pmed13_300_30_3. Note that the best SVNS solutions for CP-
NCP on these two instances are also the solution of PNCP for the
instance pmed13_300_30. Similar situation occurs for the instances
pmed19_400_80 and pmed23_500_50, as well as for pmed40_900_90.
For the remaining 71 instances, SVNS for the CPNCP returned the same
best objective values as for the ones obtained when solving the PNCP.

The results presented in this subsection show that comparing CPNCP
and PNCP solutions can help decision makers to expand a service
network. If locating a service facility requires significant installation
costs, the decision maker will most likely opt for the CPNCP model and
keep the installed facilities, as the losses generated by this model are
likely to be lower than the costs of closing some of the existing facilities
and opening new ones. In situations where opening facilities is cheap,
the decision maker may consider designing the network from scratch
with the required number of facilities. Therefore, the choice of model
depends on the information about how much damage would be caused
otherwise.

4.4.2. Comparison with recent approaches for solving PNCP

If the number of fixed centers is set to zero (q = 0), the CPNCP
becomes the PNCP. Recently, many methods have been proposed for
solving PNCP, but their direct comparison is challenging. The difficul-
ties in providing direct comparison of solution methods for PNCP arise
from several facts: Different sets of instances have been used in the
different papers dealing with PNCP, the proposed methods use different
stopping criteria, and the results are presented in different ways.

Table 6 presents our attempt to summarize the existing results
for PNCP from the literature. For each paper dealing with PNCP, we
indicate: the year in which the paper was published, the number of
instances tested, the stopping criterion used for the proposed method,
and the solution data available in the respective reference.

The main goal of these numerical experiments was to investigate
the behavior of our SVNS algorithm for CPNCP when applied to solve
PNCP. For this purpose, we used pmed instances, which represent
a standard benchmark set in the literature commonly used for the
p-center problem and its variants. Based on the available data, we
divided all pmed instances used to test PNCP solution methods from the
literature into 5 groups (453 instances in total), as shown in Table 7.
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In our experiments, we used the same parameter values as in the case
of CPNCP, which means that these results should not be considered as
the best possible results that can be obtained with SVNS when solving
PNCP.

Table 8 shows the number of best solutions obtained by each
method from all five groups and the percentage of best solutions
obtained. (in the cases where this information was available).

It can be seen that the results obtained with our SVNS are com-
parable to seven recent methods from the literature. In 25 out of 453
cases (5.52%), the SVNS did not reach the best known PNCP solution.
Although the papers (Zhang et al., 2022; Risti¢ et al., 2023a) show the
performance of 100% for the tested instances, it should be taken into
account that none of the mentioned papers in the literature used all
pmed instances. For example, Group 5 was not used in Zhang et al.
(2022), while Groups 3 and 4 were not used in Risti¢ et al. (2023a) (see
Table 7). As can be seen from Section 4.3 and Table 3, exactly these
instances were difficult to solve with the exact solver. It should also
be mentioned that in Londe et al. (2021) the experiments performed
for some instances took up to a week to obtain optimal/best known
solutions. From the results presented in Table 8, it can be concluded
that the SVNS developed for solving the CPNCP can also be successfully
applied to the PNCP.

5. Conclusion

In this study, we have introduced the conditional p-next center
problem (CPNCP), as a variant of the p-next center problem (PNCP).
The considered CPNCP has an important role in the design and opti-
mization of emergency systems and other service networks. The CPNCP
covers two key requirements that arise in practice: opening new service
centers while keeping the existing service in function and ensuring that
if a primary center fails, its users are redirected to an open center that
is closest to the primary center. The goal of the CPNCP is to minimize
the distance from each customer to its backup center, passing through
a primary center. In this study, an integer linear formulation of the
CPNCP is given, and it is indicated that the problem itself is NP-hard,
as a generalization of the classical p-center problem.

Due to the complexity of the CPNCP under consideration, an opti-
mization method that is able to solve effectively large, realistic sized
problem instances is required. This study proposes an efficient meta-
heuristic based on Skewed Variable Neighborhood Search (SVNS) as a
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Table 7
PNCP instances.
Group # inst Inst. name Inst. dimension Reference(s)
Group 1 64 pmedl-pmed4, pmed6-pmed8 10 < n <200 Albareda-Sambola et al. (2015), Londe et al. (2021), Lopez-Sanchez et al. (2019), Ristié
et al. (2023a), Risti¢ et al. (2021), Tasi¢ (2024) and Zhang et al. (2022)
Group 2 68 pmedl-pmed4 50 <n <100 Albareda-Sambola et al. (2015), Londe et al. (2021), Lopez-Sanchez et al. (2019), Risti¢
et al. (2023a), Tasi¢ (2024) and Zhang et al. (2022)
Group 3 113 pmed5, pmed9-pmed19 10 < n <400 Londe et al. (2021), Tasi¢ (2024) and Zhang et al. (2022)
Group 4 168 pmed20-pmed40 350 < n <900 Londe et al. (2021) and Zhang et al. (2022)
Group 5 40 Additional pmed 100 < n <900 Risti¢ et al. (2023a), Risti¢ et al. (2021) and Tasi¢ (2024)
Table 8

Comparison of SVNS results when solving the PNCP (case g = 0) with results from the literature.

Group 1 Group 2 Group 3 Group 4 Group 5

#best %best #best %best #best %best #best Y%best #best Y%best
Albareda-Sambola et al. (2015) 64 100 68 100 - - - - - -
Lépez-Sanchez et al. (2019) 46 71.88 52 76.47 - - - - - -
Londe et al. (2021) 63 98.44 68 100 112 99.2 158 95.05 - -
Zhang et al. (2022) 64 100 68 100 113 100 168 100 - -
Risti¢ et al. (2021) 50 78.12 - - - - - - 29 72.5
Risti¢ et al. (2023a) 64 100 68 100 - - - - 40 100
Tasi¢ (2024) 63 98.44 68 100 102 90.27 - - 33 82.5
SVNS 64 100 68 100 109 96.46 149 88.69 38 95

solution method for the CPNCP. Appropriate solution representation,
neighborhood structures, and fast solution evaluation are used. One of
the key aspects of the proposed SVNS is the efficient implementation
of the Fast Interchange (FI) within the Local Search phase.

The experimental study was conducted on the set of modified pmed
and Additional pmed instances with up to 900 nodes. The adequate
value of the SVNS parameter « was found through the set of parameter
tuning tests and statistical analysis of the obtained results. The results of
the final computational experiments on modified pmed instances show
that the proposed SVNS heuristic approach was able to reach optimal
solutions previously obtained by the CPLEX solver in less CPU time.
Moreover, SVNS improved the best feasible solution provided by CPLEX
in cases where no optimal solution was found. For most of the extra
large size pmed instances and Additional pmed instances, CPLEX failed
to provide even a feasible solution within the given time limit. On the
other hand, the proposed SVNS showed high stability in returning good
quality solutions for these instances in short CPU times.

To investigate the effects of two scenarios in service network plan-
ning (the first one based on the PNCP model and the second one based
on the CPNCP model), we generated CPNCP test examples from the
PNCP solutions for which we the list of established centers available.
We compared the SVNS solutions for the obtained CPNCP dataset with
the best known PCNP solutions for PNCP instances from which the
CPNCP dataset was generated. The presented results show how high
the losses can be if the existing facilities are kept when expanding
a service network (which is the case in most real-world situations).
Finally, we considered the case of ¢ = 0 in the CPNCP leading to the
PNCP and compared the solutions of the proposed SVNS algorithm with
q = 0 with the results of seven recent PNCP solution methods from
the literature. The data obtained indicate that the SVNS results for the
PNCP are comparable to the results of recent solution approaches from
the literature that have been developed specifically for the PNCP.

The results presented in this paper show that SVNS is a promising
solution approach for the CPNCP under consideration, but also for the
PNCP. Future work could focus on the hybridization of SVNS with
LP-based methods for solving CPNCP and considering to capacitated
variants of CPNCP. Another promising idea is to decompose the CPNCP
into a set of decision subproblems, and then apply an efficient heuristic
such as tabu search, SVNS or another VNS-based heuristic to the
obtained subproblems.
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