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The capacitated K -center (CKC) problem calls for locating K service centers in the vertices 
of a given weighted graph, and assigning each vertex as a client to one of the centers, 
where each service center has a limited service capacity and thus may be assigned at 
most L clients, so as to minimize the maximum distance from a vertex to its assigned 
service center. This paper studies the fault-tolerant version of this problem, where one or 
more service centers might fail simultaneously. We consider two variants of the problem. 
The first is the α-fault-tolerant capacitated K -center (α-FT-CKC) problem. In this version, 
after the failure of some centers, all nodes are allowed to be reassigned to alternate 
centers. The more conservative version of this problem, hereafter referred to as the α-fault-
tolerant conservative capacitated K -center (α-FT-CKC) problem, is similar to the α-FT-CKC
problem, except that after the failure of some centers, only the nodes that were assigned to 
those centers before the failure are allowed to be reassigned to other centers. We present 
polynomial time algorithms that yield 9-approximation for the α-FT-CKC problem and 
17-approximation for the α-FT-CKC problem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problems and results

The basic K -center problem is defined as follows. For a given weighted graph G , it is required to select a set S of up 
to K nodes that will host service centers, and to assign each vertex as a client to a service center, so as to minimize the 
maximum distance from a vertex to its assigned service center. Formally, the objective function is

min
S⊆V ,|S|≤K

{
max
v∈V

{
δG(v, S)

}}
,

where δG(v, S) is the distance in G from v to its closest node in S .
This paper considers the capacitated K -center (CKC) problem, where it is required to locate K service centers in a weighted 

graph, and to assign each of the vertices to one of the service centers, where each service center has a limited service 
capacity and may be assigned at most L vertices, so as to minimize the maximum distance from a vertex to its assigned

* Corresponding author.
E-mail addresses: shiri.chechik@gmail.com (S. Chechik), david.peleg@weizmann.ac.il (D. Peleg).

1 Supported in part by the Israel Science Foundation (grant 894/09), the United States–Israel Binational Science Foundation (grant 2008348), the Israel 
Ministry of Science and Technology (infrastructures grant 3-6478) and the Citi Foundation, Citigroup.
http://dx.doi.org/10.1016/j.tcs.2014.11.017
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.11.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:shiri.chechik@gmail.com
mailto:david.peleg@weizmann.ac.il
http://dx.doi.org/10.1016/j.tcs.2014.11.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.11.017&domain=pdf


S. Chechik, D. Peleg / Theoretical Computer Science 566 (2015) 12–25 13
service center. All nodes serve as clients, namely, it is required to assign each node to a center even though the node may 
contain a center place on it.

In the fault-tolerant version of this problem, one or more service centers might fail simultaneously. After the failure of 
the service centers, it is still required to assign each node to some surviving center, obeying the constraint that each center 
can still serve at most L nodes. The objective is to minimize the maximum distance from a node to its assigned center, 
under all possible subsets of up to α failed service centers, for some integer α.

We consider two variants of the problem. The first is the α-fault-tolerant capacitated K-Center (α-FT-CKC) problem. In 
this version, after the failure of some centers, all nodes are allowed to be reassigned to other centers.

The second variant is a more conservative version of this problem, hereafter referred to as the α-fault-tolerant conservative 
capacitated K -center (α-FT-CCKC) problem, which is similar to the α-FT-CKC problem, except that after the failure of 
some centers, only the nodes that were assigned to those centers before the failure are allowed to be reassigned to other 
centers. All other nodes continue to be served by their original centers. We present a polynomial time algorithms that yields 
9-approximation for the α-FT-CKC problem and 17-approximation for the α-FT-CCKC problem.

Our definition assumes that a failed node can no longer host a center and supply demands, but its own demands must 
still be supplied. Notice that in all of the fault-tolerant problems mentioned above, the capacity L must be greater than 1, 
since if L = 1, then all nodes in the graph must be allocated as centers, and if one or more of the nodes fail, then there is 
not enough overall capacity to handle all nodes.

1.2. Related work

The basic K -center problem is known to be NP-hard [7] and admits a 2-approximation algorithm [8–12].
Some generalizations of the K -center problem were considered in the literature (e.g. [3,5,11,15]). One generalization for 

the K -center problem, referred to as the capacitated K -center problem, was introduced in [2]. In this version of the problem 
it is required to locate K service centers in a graph, and to assign each of the vertices to one of the service centers, where 
each service center has a limited capacity and may be assigned at most L vertices, so as to minimize the maximum distance 
from a vertex to its assigned service center. An approximation algorithm with ratio 10 was presented in [2] for this problem. 
This approximation ratio was later improved by Khuller and Sussmann [14] to 6, or to 5 in the version where a single node 
is allowed to host several service centers.

Cygan, Hajiaghayi and Khuller [4] considered the more general variant of the capacitated K -center problem, where 
instead of uniform capacity function we have a general function. They obtained an algorithm with a constant approximation 
ratio for this version. This approximation ratio was later improved by An et al. [1] to 9.

The basic K -center problem was considered in a failure-prone setting in [13]. In this version it is again required to create 
K service centers, but some of these centers may fail. After the failure, each node is assigned to the closest surviving center. 
Here, too, the objective is to minimize the maximum distance from a node to its assigned service center. The problem is 
parameterized by an integer parameter α, bounding the maximum number of centers that may fail in the worst case. In 
this version, where each center has an unlimited capacity, the problem can be given the following alternative formulation. 
Each node is assigned to α + 1 service centers and the objective is to minimize the maximum distance from a node to 
any of its α + 1 service centers. Two subversions of this problem were considered in [13]. In the first subversion, every 
node is required to have α + 1 centers close to it, whereas in the second subversion, this requirement is applied only to a 
node that does not have a center placed on it. For the first subversion, a 3-approximation algorithm is given for any α and 
a 2-approximation algorithm for α < 3. For the second subversion, a 2-approximation ratio algorithm is given for any α. 
Observe that in the capacitated version of the problem, which is studied here, it is harder to manage α-fault-tolerance, since 
it is not enough to make sure that each node has α + 1 service centers close to it; the difficulty is that it could be the case 
that the nearby service centers do not have enough free capacity to handle this node.

2. Preliminaries

A solution for the capacitated K -center problem, in both the failure free and failure-prone settings, is a set R of up to 
K nodes in which centers are to be located. Once the set of locations R is determined, it is then required to assign every 
node v (as a client) to a service center ctr(v) from R in such a way that the number of nodes served by each center is at 
most the capacity L. Formally, letting dom(r) denote the set of clients served by a center r, dom(r) = {v | ctr(v) = r}, it is 
required that |dom(r)| ≤ L for every r ∈ R . Such an assignment is termed a feasible assignment. A solution R is feasible if 
it has sufficiently many centers to handle the capacity of all nodes, namely, K ≥ �n/L� + α. The cost of a solution R is the 
maximum distance from a node to its assigned center.

Note that in the failure free setting, given a solution R , one can efficiently find an optimal feasible assignment, namely, 
an assignment for each node to a center of R , that satisfies the constraint that each center serves at most L nodes, and 
minimizes the cost. This can be done using the following bottleneck method. Sort all edge weights in nondecreasing order, 
let the sorted list of edges be e1, ..., e|E| . We assume G is a complete weighted graph (a non-complete graph G can be made
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complete by defining the weight of each edge (x, y) as the length of the shortest path between x and y in G). Note that 
the cost of every feasible solution R is equal to ω(ei) for some 1 ≤ i ≤ m. For each weight W = ω(ei), define the graph G W

to be the subgraph obtained from G by taking only edges of weight at most W . Consider each possible value of W from 
ω(e1) to ω(e|E|). For each W , the goal is to check if there is a way to assign all nodes to R using only edges from G W , 
under the constraint that each center in R can serve at most L nodes. This can be done by defining a suitable flow problem 
and finding the max flow on it. Construct a bipartite graph G̃ = (R, V , E ′) where for every r ∈ R and v ∈ V , there is an edge 
(r, v) in E ′ iff the distance from r to v is at most W . Set the capacity of these edges to 1. Add two auxiliary nodes s and t , 
connect s to each node in R with an edge of capacity L and add an edge of capacity 1 from each node of V to t . If the 
maximum (s, t)-flow on G̃ is |V |, then the K center problem has an assignment of cost W (where a client v is assigned to 
a center r if the edge (v, r) is used in the flow).

Given a solution R , denote by ρ(R) its cost, namely, the minimum W such that there is a way to assign all nodes to R
using only edges from G W , under the capacity constraint.

In the failure-prone setting, given a solution R of the capacitated K -Center problem and a set of failed service centers F , 
denote by ρ(R, F ) the minimum weight W such that there is a way to assign all nodes to centers in R \ F using only edges 
from GW , under the constraint that each center in R \ F can serve at most L clients, namely, ρ(R, F ) = ρ(R \ F ). Denote the 
worst case service radius by

ρα(R) = max|F |≤α

{
ρ(R, F )

}
.

The α-FT-CKC problem requires finding a solution R that minimizes ρα(R). In contrast, in the α-FT-CCKC problem the 
cost of the optimal solution might be higher than ρα(R), due to the additional constraint that only the nodes that were 
served by the set of failed centers F can be reassigned.

3. High level structure of the algorithm

Our algorithms for both versions are based on using the (non-fault-tolerant) algorithms proposed by Khuller and Suss-
mann [14] as a starting point, and introducing the necessary modifications to make them tolerant against the failure of 
some centers. For the sake of completeness we first describe the main ideas of [14] (which in turn follow [9,2]).

As in [6,9–11,14], the algorithms we present follow the general strategy of the bottleneck method. Turn G into a complete 
graph as described in Section 2, and sort all edge weights in nondecreasing order; let the sorted list of edges be e1, ..., e|E| . 
For each weight W , define the graph G W to be the subgraph of G containing only edges ei of weight ω(ei) ≤ W . Run 
algorithm Main(G W , K , L) for each value W from ω(e1) to ω(e|E|), until a feasible solution (with K or fewer centers) is 
obtained. (Note that instead of sequentially iterating on w(ei) values to find a feasible solution, one can rather invoke a 
binary search for improving the running time.) In each iteration, consider the subgraph G W and treat it as an unweighted 
graph. In this graph, define the distance dist(u, v, G W ) between two nodes as the number of edges on the shortest path 
between them. For the weight W , let K ∗

W denote the minimal number of centers needed for a feasible solution of cost 
at most W . Algorithm Main finds a solution for the problem on G W using some number KW of centers. We prove in 
Lemma 4.5 and Corollary 5.4 that if KW > K , then K ∗

W > K , i.e., there is no feasible solution of cost at most W using at 
most K centers.

For a node v ∈ V , let Γi(v) = {u | dist(u, v, G W ) ≤ i}, and Ni(v) = {u | dist(u, v, G W ) = i}. The algorithms presented in 
[14] use three central procedures. The first procedure, referred to as Select_Monarchs, first constructs the power graph G2

W , 
obtained from G W by adding edges between all pairs that have a common neighbor, and then selects an independent set 
M in G2

W and places centers on them. The nodes of M are referred to as monarchs.
The set M of monarchs is selected by the following iterative process. Initially, all nodes are unmarked. After choosing a 

new monarch m, mark all unmarked nodes at distance (in G W ) 1 or 2 from it. The set of new marked nodes is referred 
to as the empire of m, denoted Emp(m). In each iteration we choose a new monarch m′ by picking an unmarked node m′
that is adjacent to a marked node v . This v is termed the deputy of m′ , and v ’s monarch, namely, the monarch m such 
that v ∈ Emp(m), is termed the parent monarch of m′ and denoted Parent(m′). Note that v must be at distance 2 from 
its monarch, and in addition, m′ is the only monarch at distance 1 from v . For a monarch m, Emp(m) ⊆ Γ2(m) in GW . 
This procedure yields a rooted tree T of monarchs with the property that the distance between a monarch and its parent 
monarch in G W is three.

A second procedure of [14], referred to as Assign_Domains, tries to assign to each monarch a domain of L nodes at 
distance at most 2 from it in G W . A monarch may be assigned vertices from the empires of other monarchs, in case no 
more nodes from its empire are unassigned.

The third Procedure, ReAssign, handles all unassigned nodes. This procedure creates new centers and assigns all unas-
signed nodes to centers. The centers are chosen for each connected component separately; this can be done as no nodes 
will be assigned to centers in different connected components of G W assuming the optimal cost is W .

The main algorithm is given in Procedure Main. This main procedure is used also for all algorithms presented in this 
paper. However, the internal components need to be modified for each version of the problem.
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Algorithm Main(G = (V , E), K , L)

1. for every edge weight W in non-decreasing order of weights do:
• let GW = (V , EW ) where EW = (e ∈ E | ω(e) ≤ W )

• unmark all vertices
• if Assign_Centers(GW ) then exit

Algorithm Assign_ Centers(GW )

1. Suppose G W consists of connected components G1
W , ..., G�

W
2. for 1 ≤ c ≤ �, let nc

W = number of nodes in connected component Gc
W

3. let KW ← ∑
c �nc

W /L�
4. if KW > K then return false
5. for each connected component Gc

W do:
• Select_Monarchs(Gc

W )

• Assign_Domains(Gc
W )

• ReAssign(Gc
W )

6. if the total number of centers used is more than K then return false
7. return true

4. Constant approximation for the α-FT-CKC problem

In this section we show a constant approximation algorithm for the α-FT-CKC problem. Recall that in this version of 
the problem, after the failure of a set of centers F , all nodes can be reassigned again.

In this algorithm, we modify procedures Select_ Monarchs, Assign_Domains and ReAssign of [14], and in addition intro-
duce another procedure, named ReAssign_by_F, which is invoked after the failure of a set of centers F .

Lemma 4.1. If the α-FT-CKC problem has a solution of cost at most W = w(ei) for some 1 ≤ i ≤ m, then the minimum node degree 
in GW is at least α. Moreover, every solution of cost at most W requires having α + 1 service centers in Γ1(v) for every v ∈ V .

Proof. Assume otherwise, and consider some node v of degree less than α or with less than α + 1 service centers in Γ1(v). 
Then in a failure event where all centers located in Γ1(v) fail simultaneously, v is forced to be served by a center at distance 
more than W , contradicting the feasibility of the solution. �

By Lemma 4.1, we restrict ourself to the case where the minimum node degree in G W is at least α. Our Procedure 
Select_Monarchs first finds a set M1 of monarchs, which is a maximal independent set in G2

W , in a way similar to Procedure 
Select_Monarchs of [14] (as described in Section 3). We call these monarchs major monarchs. The algorithm of [14] required 
a single type of monarchs. In contrast, we introduce a second type of monarchs, referred to as minor monarchs, which are 
selected as follows. For every major monarch m, choose a set of α − 1 neighbors of m, not including the deputy of m. 
(Note that the degree of m is at least α, hence such α − 1 neighbors must exist.) Denote this set by minors(m), and set 
major(m′) = m for each m′ ∈ minors(m) ∪ {m}. For every major monarch m, denote the set {m} ∪ minors(m) by team(m). Let 
M2 be the set of all minor monarchs. As claimed above, the optimal solution must contain at least α + 1 service centers 
in Γ1(m), therefore at least α of m’s neighbors must host centers. The reason for choosing just α − 1 neighbors, instead 
of α, is that we would like to keep the deputy of m available for placing a center on it in Procedure ReAssign, and setting 
centers at only α − 1 neighbors is sufficient for our needs, as will become clearer later on. In Procedure Select_Monarchs, 
each time a new major monarch m is selected, all unmarked nodes at distance at most 2 from m are marked and assigned 
to the empire Emp(m) of m.

We would like to serve as many nodes as possible using the monarchs of M = M1 ∪ M2, where every monarch m
can serve clients from Γ2(major(m)). Procedure Assign_Domains solves this problem by constructing a suitable graph 
G̃ and finding the minimum cost maximum flow on it. This procedure constructs a bipartite graph G̃ = (M, V , E ′), 
where M is the set of all monarchs, V is the set of nodes of the graph and E ′ contains an edge (m, v) for every 
monarch m and node v in Γ2(major(m)). The goal now is to assign as many nodes as possible to the service cen-
ters, where a node v can be assigned to a center m if it has an edge to it in G̃ , i.e., (v, m) ∈ E ′ . Add to G̃ new 
nodes s and t and edges {(s, m) | m ∈ M} and {(v, t) | v ∈ V }. For every monarch m ∈ M set a capacity of u(s, m) = L
and for every node v ∈ V set a capacity of u(m, v) = 1. Set the cost of edge (m, v) to be c(m, v) = 0 if m = v and 
1 otherwise. Compute a min-cost maximum integral flow in this new graph. Set dom(m) to be all nodes that got a 
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unit flow from m. For a set of monarchs X ⊆ M , let dom(X) = ⋃
m∈X dom(m). We note that, unlike in [14], here the 

monarchs can be at distance 1 from one another. Therefore, the monarchs can serve one another, we hence do not 
assume that all monarchs serve themselves (it could be that by forcing monarchs to serve themselves we will hurt 
the maximum flow). However, by setting the cost of the edge from a monarch to itself in the graph G̃ to be 0 (and 
the rest of the edges 1), we make sure that even if a monarch does not serve itself it is still served by another 
monarch (otherwise we can get a lower cost solution with the same maximum flow). In other words, all monarchs are 
served.

We now turn to describe Procedure ReAssign. For every major monarch m, let unassigned(m) be the set of all nodes 
in its empire Emp(m) that are unassigned, namely, that do not belong to the domain of any monarch. Consider the tree 
T of major monarchs as described in Section 3. The algorithm assigns clients to the monarchs in a bottom–up process 
on T . More precisely, the process maintains a copy T ′ of T consisting of all the monarchs that have not been handled 
yet. In each step of the algorithm, pick a leaf m from the tree T ′ for processing and remove it from T ′ . Let k′L + ε be 
the number of nodes in unassigned(m) plus the number of unassigned nodes passed to m by its children monarchs in T . 
Allocate k′ new centers at free nodes in m’s empire and assign the remaining ε unassigned nodes to the monarch m, 
releasing at most ε nodes from m’s domain, and pass these nodes to m’s parent in T for reassignment (we say that 
a node is free if no center is placed on it). If m is the root monarch of T , then allocate enough new centers to serve 
all k′L + ε unassigned nodes. For each of these new allocated centers, we say that m is their major monarch. Notice 
that if up to α failures might occur, then any feasible solution must contain at least �n/L� + α centers, as otherwise, 
after the failure of any α centers, there is not enough capacity left to handle all nodes. So in the last step of Proce-
dure ReAssign, check if the algorithm creates fewer than �n/L� + α centers; if so, then add new centers to complete to 
�n/L� + α.

Algorithm Select_ Monarchs(GW )

1. pick an arbitrary vertex v ∈ G W and set Q = {v}
2. Parent(v) ← nil
3. while Q has unmarked nodes do:

• remove an unmarked node v from Q
• make v a monarch, mark it and add it to M1
• add v to T , set its parent in T to be Parent(v)

• for all u ∈ Γ2(v)

– if u is unmarked then add u to Emp(v) and mark u
• for all u ∈ Emp(v) ∩ N2(v)

– for all w ∈ N1(u)

∗ if w is unmarked and w /∈ Q then set Parent(w) = v , deputy(w) ← u and add w to Q
4. M2 ← ∅
5. for each m ∈ M1 do:

• minors(m) ← {α − 1 arbitrary nodes from N1(m) \ {deputy(m)}}
• M2 ← M2 ∪ minors(m)

• major(m′) ← m for each m′ ∈ minors(m) ∪ {m}
6. let M ← M1 ∪ M2

A light monarch is one whose domain is of size less than L. Let K L denote the number of light monarchs and nL be the 
number of vertices belonging to the domains of light monarchs, and let n be the total number of vertices.

Define the set of useful monarchs U as follows. Let U0 be the set of light monarchs. Increase U0 by an iterative process, in 
which U j is created by U j−1 by adding to it any monarch that contains in its domain a node that could have been assigned 
to a node in U j−1. Formally, let

U j = U j−1 ∪ {
m ∈ M

∣∣
∃v ∈ dom(m),∃m′ ∈ U j−1 and dist

(
v,major

(
m′)) ≤ 2 in G W

}
.

Let U be the largest set obtained in this way. We say that a monarch m is overloaded if there are unassigned nodes in 
Γ2(major(m)).

We note that the definition of overloaded monarchs is close to the definition of heavy monarchs introduced in [14]. The 
difference between the two terms is that an overloaded monarch m has unassigned vertices in Γ2(major(m)) instead of in 
its empire. In addition, note that the definition of U is similar to the one presented in [14] with the slight modification that
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we use dist(v, major(m′)) instead of dist(v, m′). The reason for these modifications is that in our Procedure Assign_Domains, 
every monarch m′ can serve nodes from Γ2(major(m′)) rather than from Γ2(m′).

Algorithm Assign_ Domains(GW )

1. let M ← M1 ∪ M2 /* the set of monarchs in G W */
2. let E ′ ← {(m, v) | v ∈ Γ2(major(m))}
3. construct a bipartite graph G̃ = (M, V , E ′)
4. add vertices s and t and edges {(s, m) | m ∈ M} and {(v, t) | v ∈ V }
5. for m ∈ M, v ∈ V , set capacities u(s, m) = L, u(m, v) = 1 and u(v, t) = 1. Cost of edge c(m, v) = 0 if v = m and 1 

otherwise
6. compute a min-cost maximum integral flow MCMF(G̃) in G̃
7. for each monarch m, set

dom(m) = {v | v receives one unit of flow from m in G̃}

The following lemmas summarize some basic properties.

Lemma 4.2. The set U does not contain any overloaded monarchs.

Proof. Assume, towards contradiction, that an overloaded monarch m is added to U j at iteration j. It is possible to transfer 
a node that m serves to a monarch in U j−1, releasing another node v ′ that can be transferred to a monarch in U j−2, and 
this process can be continued until reaching a monarch m0 in U0. The monarch m0 is light, therefore it has at most L − 1
clients in its domain and can serve another node. The node m can now absorb an unassigned node in Γ2(major(m)). Hence 
the process yields a higher flow, a contradiction. �
Lemma 4.3. Consider some major monarch m ∈ M1 . If one of the nodes in team(m) belongs to U , then all of them do.

Proof. This follows trivially from the fact that all monarchs in team(m) can serve the same constituency, namely Γ2(m) in 
GW . �

Denote by dom∗(θ) the set of nodes that are served by some center θ before any failure occurs in the optimal solution.

Lemma 4.4. Consider a monarch m ∈ U ∩ M1 and a center θ in an optimal solution such that θ ∈ Γ1(m). Then dom∗(θ) ⊆
dom(U ).

Proof. Consider a monarch m ∈ U ∩ M1 and a center θ in an optimal solution such that θ ∈ Γ1(m).
Suppose θ also serves some node u in the optimal solution, i.e., u ∈ dom∗(θ). If u does not belong to any domain 

(i.e., u is unassigned), then a contradiction is derived by Lemma 4.2 since it follows that the distance from u to m is 
at most 2, hence m is overloaded. Hence u ∈ dom(m′) for some m′ . Then since u ∈ Γ2(m) and m ∈ U , also m′ ∈ U , as 
required. �
Lemma 4.5. In every solution of radius cost W , the number of centers required satisfies K ∗

W ≥ max{K L +�(n −nL)/L�, �n/L� +α} =
KW .

Proof. By Lemma 4.1, at the neighborhood of each major monarch m ∈ M1 where one of the nodes in team(m) be-
longs to U there must be at least α + 1 distinct centers. By Lemma 4.4, these centers cannot cover any node that is 
not in dom(U ). So the number of required centers is K ∗

W ≥ |U | + �(n − |dom(U )|)/L� = K L + �(n − nL)/L�, where the 
last equality comes from the fact that U contains all the light monarchs, plus monarchs that serve L nodes. In ad-
dition any feasible solution must contain at least �n/L� + α centers, as otherwise, after the failure of any α centers, 
there is not enough capacity left to handle all nodes. We get that K ∗

W ≥ max{K L + �(n − nL)/L�, �n/L� + α}. Procedure 
Select_Monarchs creates K L + (dom(M) − nL)/L centers and Procedure ReAssign creates �n − dom(M)/L� additional centers. 
In addition, Procedure ReAssign ensures that there are at least �n/L� + α allocated centers, by allocating additional cen-
ters in case fewer centers were allocated so far. Therefore, the total number of service centers created by the algorithm is 
max{K L + �(n − nL)/L�, �n/L� + α}. �

Procedure ReAssign is similar to the one given in [14]; for the sake of completeness we describe it here as well.
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Algorithm ReAssign(G W )

1. let M = M1 ∪ M2 be the set of monarchs in G W

2. for each monarch m ∈ M1, set unassigned(m) = ({m} ∪ Emp(m)) \ dom(M)

3. let T be the tree of monarchs M1 in GW

4. for each node m in T , set passed(m) = ∅
5. while T is not empty do

• remove a leaf node m from T
• let |unassigned(m) + passed(m)| = k′L + ε
• allocate k′ new centers at free nodes in m’s empire and assign k′L of the nodes to them
• assign the ε remaining nodes to monarch m, releasing up to ε nodes in dom(m)

• add the released nodes to passed(Parent(m)), unless m is the root monarch and then allocate a new center in 
a free node in m’s empire and assign to it the ε remaining nodes

• delete m from T
6. Let M ′ be all centers allocated so far
7. If |M ′| < �n/L� + α, allocate �n/L� + α − |M ′| new centers at arbitrary free nodes

Lemma 4.6. Each major monarch m ∈ M1 has sufficiently many free nodes in its empire to allocate centers for all the clients in 
unassigned(m) and passed(m).

Proof. Each monarch passes at most L − 1 nodes to its parent. Each child monarch of monarch m has a unique deputy. 
In addition, all these deputies do not contain a center yet, so they are available to be allocated as centers. Let S be the 
set of all these deputies. We get that there are sufficiently many deputies to handle all clients in passed(m) and in S ∩
unassigned(m). Next, we claim that all other nodes v in unassigned(m) also do not contain a center placed on them yet, 
namely, v /∈ M ′ . To see this, assume, towards contradiction, that there exists an unassigned node v such that v ∈ M ′ . Then 
we can replace some node that v ′ serves with v itself, yielding a max flow with a lower cost, a contradiction. We get 
that all unassigned(m) \ S are available to be allocated as centers, so clearly can handle all nodes in unassigned(m) \ S (as 
L ≥ 1). �

We now turn to describe the main difference between the algorithm of [14] and ours, designed to handle also fail-
ures. When a set F of at most α centers fails, each of the clients of dom(F ) needs to be reassigned to one of the 
surviving centers. Hence after the failure of a set of centers F , we invoke the procedure ReAssign_by_F, which han-
dles the reassignment, possibly by performing a sequence of transfers until reaching a “free spot”, i.e., a surviving 
center that currently serves fewer than L clients. First note that as we make sure that there are at least �n/L� + α
centers, the capacity of all surviving centers is sufficient to serve all nodes. We note that given a set of centers R
and a set of failures F , one can efficiently find an optimal feasible assignment using the centers R \ F that mini-
mizes the cost (as mentioned above for the failure-free case). Hence Procedure ReAssign_by_F is used only for the 
analysis, and specifically, for bounding the approximation ratio. The idea of Procedure ReAssign_by_F is to assign each 
node x ∈ dom(F ) to a “free spot” by a sequence of transfers that reassign x to some other center, possibly caus-
ing another node to become unassigned, then looking for a center for this client, and so on, until reaching the “free 
spot”.

More precisely, Procedure ReAssign_by_F is as follows. Let F = { f1, ..., fk}, for some k ≤ α, be the set of failed cen-
ters. Think of every surviving center r as having |dom(r)| “occupied” capacity and f (r) = L − |dom(r)| “free” places for 
hosting new clients. Consider all nodes of dom(F ) and assign for each unassigned node v a unique free place in a 
non-faulty center. Let free(v) be that center. Note that at most f (r) nodes can be assigned to the same center r if it 
contains f (r) free places, namely it serves L − f (r) nodes. The idea now is to perform a sequence of transfers from 
each unassigned node v until reaching the free place in free(v). For each unassigned node v ∈ dom( f ) for some f ∈ F , 
find the shortest monarch path MP(v) in the tree of monarchs T between the major monarch of f and the major 
monarch of free(v) (namely, the major monarch m such that free(v) ∈ Emp(m)). Let MP(v) = (m1, ..., m j) be this short-
est path, where m1 is the major monarch of f and m j is the major monarch of free(v). Naively, we could apply the 
following process. Assign v to m1, and to enable that, cancel the assignment of some other node v1 in m1, making it 
unassigned. Next, assign v1 to m2, making some other node v2 unassigned, and so on, and by a sequence of trans-
fers reach m j and make some node v j that was originally served by m j unassigned and finally assign v j to the center 
free(v).

However, this naive rolling process does not necessarily yield a “good” solution, namely, one in which each node is 
assigned to a “relatively” close center. To see this, note that for all unassigned nodes v , the shortest monarch path MP(v)
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in T from the major monarch of v to the major monarch of free(v) could pass through some major monarch m. As m can 
serve only L nodes, it cannot serve all nodes passed to it during this process, so it must pass some of these nodes further. 
This could result in a large approximation ratio. Luckily, each major monarch has α − 1 minor monarchs at distance 1 from 
it, which can be used in order to avoid such a situation. Select, for each failed center f and for each major monarch m, 
such that f /∈ team(m), a different non-faulty center from team(m), and denote this center by χ( f , m).

Consider now an unassigned node v and let f ∈ F be the center that serves v previous to the failure event. Let MP(v) =
(m1, ..., m j) be this shortest path in T from the major monarch of f to the major monarch of free(v). Assign v to χ( f , m2), 
thereby releasing some other node v2 that was originally served by χ( f , m2) and making it unassigned. Repeating this, 
one gets a sequence of transfers that reaches m j and releases some node v j that was originally served by χ( f , m j). Finally, 
assign this node v j to the center free(v).

Algorithm ReAssign_by_F(GW )

1. let M = M1 ∪ M2 be the set of monarchs in G W

2. let F = { f1, ..., fk} for some k ≤ α be the set of centers that fail
3. for each failed center f and for each monarch m ∈ M1 such that f /∈ team(m) do:

• select a different non-faulty center r ∈ team(m)

• Set χ( f , m) ← r
4. for each node v that was served by some f ∈ F do:

• assign v to a unique free place in a non-faulty center, set free(v) to be the center with the free place
• let the path in the tree of monarchs T from the major monarch of f to the major monarch of free(v) be 

MP = (m1, ..., m j), where m j is the major monarch of free(v)

• assign v to χ( f , m2) releasing some other node from the original nodes χ( f , m2) served, this node is assigned 
to χ( f , m3) and so on until χ( f , m j). The node that the server χ( f , m j) released is then assign to free(v)

which can absorb the extra node

The following two lemmas establish the desired stretch bound. Let W be the first value for which Algorithm 
Assign_ Centers returns true.

Lemma 4.7. Let c∗ be the optimal solution to the fault-tolerant capacitated K -center problem, namely, the set of vertices such that 
ρα(c∗) is minimal. Then ρα(c∗) ≥ W .

Proof. By Lemma 4.5, for every value W ′ , K ∗
W ′ ≥ KW ′ , where K ∗

W ′ is the number of centers needed in the optimal solution 
in order to get a cost of W ′ and KW ′ is the number of centers Algorithm Assign_Centers uses for W ′ . The algorithm stops 
once it finds a solution that uses at most K centers. Therefore, W is the lowest cost that can be attained using at most K
centers. �
Lemma 4.8. After the failure of a set F where |F | ≤ α, the reassignment process ensures that each client is assigned a center at distance 
at most 9 in G W .

Proof. Before the failure of the set F , every node v is assigned to one of the following:

(a) Some major monarch m at distance at most 2 from v (i.e., such that v ∈ dom(m)).
(b) Some minor monarch m′ such that m′ ∈ minors(m) for some major monarch m, where v ∈ Γ2(m).
(c) Some new center c /∈ M such that c ∈ Emp(Parent(m)), where m is the major monarch such that v ∈ Emp(m).
(d) Parent(m), where m is the major monarch such that v ∈ Emp(m).
(e) Some new center c /∈ M such that c ∈ Emp(m), where m is the major monarch such that v ∈ Emp(m).

It’s not hard to verify that before the failure of the set F , all nodes were assigned to a center whose distance in G W is 
at most 7. Consider a node v and let m be the center that served v before the failure of F . Let m′ be the center that serves 
v after the failure of the set F .

First note that in Procedure ReAssign_by_F, every node may be reassigned at most once. Each such vi is assigned to 
χ( f , mi+1) for 1 ≤ i ≤ j − 1. Note that dist(vi, mi) ≤ 5 and dist(mi, χ( f , mi+1)) ≤ 4, hence every vi is assigned to a center 
at distance at most 9 from it, for 1 ≤ i ≤ j − 1. The last node v j is assigned to free(v). Note that dist(v j, m j) ≤ 5 and 
dist(m j, free(v)) ≤ 2, so dist(v j, free(v)) ≤ 7. In conclusion, the distance is at most 9. �
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By Lemmas 4.7 and 4.8 we have the following.

Corollary 4.9. Algorithm Main yields an approximation ratio of 9 for the fault-tolerant capacitated K -center problem.

5. Constant approximation for the α-FT-CCKC problem

We now present a constant approximation algorithm to the α-FT-CCKC problem. For the same reasons mentioned in 
Section 4, we consider only the case where the minimum node degree in G W is at least α.

5.1. Relationship with α-FT-CKC

The following lemma shows that the α-FT-CCKC problem might requires creating more centers than the CKC problem. 
We say that a set of nodes A ⊆ V is k-independent if every two nodes in A are at distance at least k apart. Let K ∗

CKC(W )

be the minimal number of centers needed for a feasible solution of cost at most W for the CKC problem. Similarly, let 
K ∗

α-FT-CCKC(W ) be the minimal number of centers needed for a feasible solution of cost at most W for the α-FT-CCKC

problem. Let R∗
CKC(W ) be a solution to the Capacitated K -Centers of cost at most W with minimal number of centers and

let R∗
α-FT-CCKC(W ) be a solution to the α-FT-CCKC of cost at most W with minimal number of centers.

Lemma 5.1. For a 7-independent A ⊆ V , K ∗
α-FT-CCKC(W ) ≥ K ∗

CKC(W ) + α|A|.

Proof. Let A = {v1, ..., vk} where d(vi, v j) ≥ 7 for every 1 ≤ i �= j ≤ k. To prove the lemma, we show that it is possible to 
remove α|A| centers from R∗

α-FT-CCKC(W ) and still have a feasible solution to the CKC problem of cost at most W . We 
first claim that |Γ1(v j) ∩ R∗

α-FT-CCKC(W )| ≥ α + 1 for every 1 ≤ j ≤ k. To see this, assume otherwise, i.e., suppose there 
exists some 1 ≤ j ≤ k such that the optimal solution R∗

α-FT-CCKC(W ) contains fewer than α + 1 centers in Γ1(v j). Then
all centers in Γ1(v j) ∩ R∗

α-FT-CCKC(W ) might fail simultaneously, forcing v j to be served by a backup center at distance
greater than W , contradiction. In addition, the 3-neighborhoods Γ3(v j) are disjoint for 1 ≤ j ≤ k, due to the fact that 
A is 7-independent. For every 1 ≤ j ≤ k, choose arbitrarily a set F j of α nodes from Γ1(v j) ∩ R∗

α-FT-CCKC(W ). We now 
consider the failure of the set of centers F j under the solution R∗

α-FT-CCKC(W ). Let B j be the set of servers that are
assigned as backup centers to the nodes that belonged to dom(F j) before the failure. We now claim that B j ⊆ Γ3(v j). To 
see this, note that all clients of centers from Γ1(v j) are at distance at most W from them, hence all clients of centers 
from Γ1(v j) are in Γ2(v j). The backup centers of all those clients are at distance at most W from the clients, therefore 
all these backup centers are in Γ3(v j). As the sets Γ3(v j) are disjoint, it follows that the sets B j are also disjoint for 
1 ≤ j ≤ k. We now consider the solution R ′ obtained by taking R∗

α-FT-CCKC(W ) and removing all nodes of F j for every 
1 ≤ j ≤ k. As the sets B j are disjoint and the centers of B j can handle all nodes that were originally served by the centers 
of F j , we conclude that R ′ is also a feasible solution to the Capacitated K -Centers problem. Hence |R∗

α-FT-CCKC(W )| ≥
|R∗

CKC(W )| + α|A|. �

5.2. Multi-k-centers

Let us consider first a simpler variant of this problem, where a node may host several centers. Using Lemma 5.1 we can 
establish a 6-approximation ratio for this problem. It’s not hard to see that the same bound as in Lemma 5.1 also holds 
in case multi-centers at each node are allowed. At the first stage, invoke the 5-approximation ratio algorithm of [14] for 
the multi-k-centers problem. Each node is now assigned to a center. Next, select backup centers and assign each node to 
α backup centers that will serve it in case its original center fails. In the second stage, choose a maximal 7-independent 
set of centers R , namely, every pair of nodes in R are at distance at least 7 from one another and for every node v ∈ V
there is a node in R at distance at most 6 from it. In each node r ∈ R , place α backup centers. Note that in case no 
failures occurred, the backup centers do not serve any node. Therefore, in case at most α centers fail, the backup centers 
can be used to replace the faulty centers. By Lemma 5.1, the number of centers that are selected in both these stages 
is at most K ∗

α-FT-CCKC(W ). Moreover, the distance from every node to its center is at most 5 and the distance to one 
of its backup centers is at most 6. Hence, we get a 6-approximation ratio. Therefore, the main difficulty in the version 
where we allow only one center at each node is to spread the centers in a way that will not harm the approximation too 
much.
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5.3. The algorithm

The next lemma shows that if the α-FT-CCKC problem admits a feasible solution of cost at most W , namely, 
K ∗

α-FT-CCKC(W ) ≤ K , then for every node v there are sufficiently many nodes in Γ4(v) to allocate α backup centers (that 
will not serve any node as long as there are no failures) and sufficiently many additional centers to serve all nodes in 
Γ4(v). If this is not the case, namely, Γ4(v) is too small, then there is no feasible solution of cost at most W , and the 
algorithm has to proceed to the next possible weight W ′ . This will be needed in our algorithm when placing centers at the 
nodes.

Lemma 5.2. If the α-FT-CCKC problem admits a feasible solution of cost at most W , then for every node v, the set Γ4(v)

has sufficiently many nodes to allocate centers for all nodes in Γ4(v) and for α additional backup servers, i.e., |Γ4(v)| ≥ α +
�|Γ4(v)|/L�.

Proof. We first observe that if N3(v) is empty, then there must be enough available nodes in Γ2(v) to allocate as cen-
ters for all the nodes in Γ2(v) and for α backup servers. To see this, first note that if Γ2(v) contains fewer than α
nodes than all centers located at Γ2(v) might fail simultaneously, forcing the nodes in Γ2(v) to be served by centers 
at distance more than W . Now if Γ2(v) contains at least α nodes but still fewer than α + �|Γ4(v)|/L�, then α cen-
ters might fail simultaneously at Γ2(v) and again some nodes at Γ2(v) will be served by centers at distance more 
than W .

So now assume N3(v) is not empty. As mentioned above, there must be at least α + 1 servers in Γ1(v) in the optimal 
solution R∗

α-FT-CCKC(W ). Consider some node u in N3(v). There must be at least α + 1 servers in Γ1(u) in the optimal

solution R∗
α-FT-CCKC(W ). Note that Γ1(u) ⊆ N2(v) ∪ N3(v) ∪ N4(v). Therefore, there must be at least α additional nodes in 

N2(v) ∪ N3(v) ∪ N4(v). Altogether, there are at least 2α nodes in Γ4(v). Since L ≥ 2, the lemma follows. �
As in Section 4, we employ Procedures Select_Monarchs, Assign_Domains and ReAssign, using the same Procedure 

Assign_Domains as in [14] and modifying Procedures Select_ Monarchs and ReAssign.
As explained above, Procedure Select_Monarchs constructs a tree T of major monarchs. The idea behind assigning the 

monarchs in Procedure Select_Monarchs is as follows. In Section 4 we could settle for α backup centers, due to the as-
sumption that all nodes can be reassigned after the failure of some centers. In contrast, in the current setting we need to 
spread many additional backup centers on the graph, in order to ensure that each node v has sufficiently many backup 
centers close to it. We select major monarchs at some distance from each other, and for each major monarch we allocate 
α of its neighbors as backup centers. In order to make sure that each major monarch can “afford” to allocate α backup 
centers and still have enough nearby nodes to allocate as centers to all nodes in its empire and to nodes passed to it, we 
first make sure that each major monarch m has all the nodes Γ4(m) in its empire. By Lemma 5.2 this guarantees that each 
monarch m has enough nodes to allocate centers to α backup centers and to handle all nodes in Γ4(m). To ensure that, 
we select the major monarchs so that they are at distance at least 10 from each other, and each monarch is at distance 
exactly 10 from its parent monarch. All nodes in Γ4(m) are assigned to m’s empire and nodes at distance 5 from some 
major monarchs are assigned to the first selected monarch. For a major monarch m, define the deputy of m as some node 
that is at level-5 of m’s parent monarch and its distance to m is 5, where a node v is on level-k of some monarch m̃ if 
v belongs to Emp(m̃) and v is at distance k from m̃. Note that in contrast to the setting in Section 4, here a node may 
be the deputy of more than one major monarch. In order to prove that a major monarch m has enough free nodes to 
allocate centers for all nodes passed to it from its children, we make sure each deputy will get at most L − 1 nodes from 
the monarchs it serves as their deputy. For all other unassigned nodes, we allocate centers in the empire of some of these 
children.

Formally, the major monarchs are selected by an iterative process. Initially set Q to contain an arbitrary node v . While 
Q has unmarked nodes v such that dist(v, M1) ≥ 10 do the following. If M1 = ∅ then remove a node v from Q (in 
this case Q contains only one node) else remove an unmarked node v such that dist(v, M1) = 10 from Q . Make v a 
major monarch, add it to M1 and mark it. Add all unmarked nodes in Γ5(v) to Emp(v) and mark them. For each node 
w in N10(v) (distance 10 from v) such that there exists a node u in Emp(v) ∩ N5(v) ∩ N5(w) do the following. If w is 
unmarked and w /∈ Q then set v to be w ’s parent in T , setting Parent(w) = v , set the deputy of w to be u, and add 
w to Q . In addition, for every node m ∈ M1, choose α arbitrary nodes at distance 1 from m and make them backup 
centers.

Observe that for every m ∈ M1, Γ4(m) ∈ Emp(m). In addition, note that after this process ends, there could be some 
nodes that are unassigned to any empire, namely, nodes that are at distance more than 5 from all major monarchs 
and thus were not selected to be in the empire of any major monarch. Observe that these nodes are at distance at 
most 9 from some major monarchs (as otherwise they would have been selected as major monarchs). The purpose 
of the second stage of Procedure Select_ Monarchs is to handle these unassigned nodes. In this stage we allocate mi-
nor monarchs and assign all unassigned nodes to those monarchs. This is again done by an iterative process as fol-
lows.
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Algorithm Select_Monarchs(GW ) [for the conservative version]

1. set M1 ← ∅, the set of major monarchs
2. set M2 ← ∅, the set of minor monarchs
3. pick an arbitrary vertex v ∈ V and set Q = {v}
4. Parent(v) = nil
5. while Q has unmarked nodes v such that dist(v, M1) ≥ 10 do

• if M1 = ∅ then remove a node v from Q else remove an unmarked node v such that dist(v, M1) = 10 from Q
• make v a major monarch, add it to M1 and mark it
• add all unmarked nodes in Γ5(v) to Emp(v) and mark them
• for each node u in Emp(v) ∩ N5(v)

– for each node w in N5(u)

∗ if w is unmarked and w /∈ Q then set v to be w ’s parent in T , setting Parent(w) = v , set the deputy of 
w to be u, and add w to Q

6. for each m ∈ M1, choose α arbitrary nodes at distance 1 from m and make them backup centers
7. Q ← ∅
8. for each m ∈ M1

• for each node u in N5(m) ∩ Emp(m)

– for every unassigned neighbor m′ of u such that m′ /∈ Q , set m to be m′ parent, setting Parent(m′) = m, add 
m′ to Q , and set the deputy of m′ to be u

9. while Q has unassigned nodes do
• remove an unassigned node m from Q
• make m a minor monarch, add it to M2
• assign all unassigned nodes from Γ5(m) to m’s empire
• for each node u in N5(m) ∩ Emp(m)

– for every unassigned neighbor m′ of u such that m′ /∈ Q , set m to be m′ parent, setting Parent(m′) = m, add 
m′ to Q , and set the deputy of m′ to be u

In each iteration, choose an unassigned node m′ that is a neighbor of some node u such that u ∈ N5(m) ∩ Emp(m) for 
some major or minor monarch m. Make m′ a minor monarch, place it in M2 and assign m′ all unassigned nodes at distance 
5 from it. Set the parent of m′ to be Parent(m′) = m and the deputy of m′ to be u. In the end of this process, all nodes are 
assigned to the empire of some monarch and the distance from a minor monarch to its parent is 6. Let M2 be the set of 
minor monarchs.

Procedure Assign_Domains is again similar to the one presented in [14]. The procedure assigns as many nodes as possible 
to all chosen major and minor monarchs, where once again, each monarch can serve all nodes at distance at most 2 from 
it. The domain dom(m) of a monarch m is the set of all nodes assigned to it by this procedure.

Algorithm Assign_Domains(GW ) [for the conservative version]

1. let M be the set of monarchs in G W

2. let E ′ = {(m, v)|m ∈ M, v ∈ V , and dist(v, m, G W ) ≤ 2}
3. construct a bipartite graph G̃ = (M, V , E ′)
4. add vertices s and t , add edges from s to all m ∈ M and from all v ∈ V to t
5. set capacities u(s, m) = L, u(m, v) = 1 and u(v, t) = 1 for m ∈ M and v ∈ V
6. compute a maximum integral flow in G̃
7. for each monarch m, 

set dom(m) = {v | v receives 1 unit flow from m}

Procedure ReAssign takes care of all nodes that are not served by any center. The main difference with respect to 
Procedure ReAssign in Section 4 is that here, a node may be the deputy of more than one monarch. We need to make 
sure each deputy receives at most L − 1 nodes in total from all the monarchs it serves as deputy. We do that by allocating 
centers in the empires of some of these children. Formally, let unassigned(m) be the set of all nodes in its empire that 
are unassigned, namely the nodes in its empire that do not belong to the domain of any monarch. Let T be the tree of 
monarchs. The process maintains a copy T ′ of T consisting of all the monarchs that have not been handled yet. In each 
step of the algorithm, pick a leaf m from the tree T ′ for processing and remove it from T ′ . Now for each node u at level-5 
of m, let kL + ε be the number of nodes passed to m by its children monarchs in T such that u serves as their deputy. If 
k > 0 then allocate k new centers in the empires of the monarchs that u serves as their deputy. Assign kL from passed(u)

to those new centers. Pass the ε remaining nodes to m. The next step takes care of all unassigned nodes in m’s empire and 
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the nodes passed to m by its children in the tree T . Let k′L + ε be the number of nodes in m’s empire that are unassigned 
plus the number of nodes passed to m. Allocate k′ new centers in the empire of monarch m. Allocate the ε remaining nodes 
at m possibly displacing ε other nodes from m’s original clients. Add the displaced nodes to the list of Passed nodes of the 
deputy of m unless m is the root and then allocate a new center at m’s empire and assign the unassigned nodes to it.

Algorithm ReAssign(G W ) [for the conservative version]

1. let M = M1 ∪ M2 be the set of monarchs in G W

2. for each monarch m ∈ M , set unassigned(m) = Emp(m) \ dom(M)

3. let T be the tree of monarchs
4. for each node u ∈ V , set passed(u) ← ∅
5. while T is not empty do:

• remove a leaf m from T
• for each node u at level-5 of m do:

– let |passed(u)| = kL + ε
– if k > 0 then allocate k new centers in the empires of the monarchs that u serve as their deputy. Assign kL

from passed(u) to those new centers
– pass the ε remaining nodes to m

• let |passed(m) ∪ unassigned(m)| = kL + ε
• allocate k new centers in the empire of monarch m
• allocate the ε remaining nodes at m possibly displacing ε other nodes from m’s original clients
• add the displaced nodes to the list of Passed nodes of the deputy of m unless m is the root and then allocate 

a new center at m’s empire and assign the unassigned nodes to it

5.4. Analysis

Towards proving that the number of centers selected by our algorithm is at most the number required in the optimal 
solution R∗

α-FT-CCKC(W ), we first give the following lemma. As in Section 4, K L denotes the number of light monarchs and 
nL the number of vertices belonging to the domains of light monarchs, and n is the total number of vertices. K L , nL and n
are defined as in Section 4. Note that we do not consider the backup centers as monarchs, and that no clients are assigned 
to the backup centers before a failure event happens. Denote by dom∗

CKC(θ) the set of nodes that are served by some center 
θ in the optimal solution R∗

CKC(W ) for the CKC problem.

Lemma 5.3. The number of centers required in the optimal solution R∗
CKC(W ) is at least K L + �(n − nL)/L�.

Proof. Notice that each monarch has a unique center that covers it in the optimal solution R∗
CKC(W ). Consider a light 

monarch m. let θ be the center that covers m in the optimal solution R∗
CKC(W ). We claim that, dom∗

CKC(θ) ⊆ dom(m).

Assume otherwise, let u be some node that θ covers in the optimal solution R∗
CKC(W ) and m does not cover it. Notice that 

as the monarchs are at distance at least 6 from each other, then dist(m′, u) > 2 for any monarch m′ �= m and therefore u
cannot be assigned to any m′ �= m. We get that u does not belong to any domain. Since m is a light monarch and its distance 
to u is less than 2, then m can be assigned as a center to u, resulting a higher flow, a contradiction. �

By Lemmas 5.1 and 5.3, we have the following.

Lemma 5.4. K ∗
α-FT-CCKC(W ) ≥ K L + �(n − nL)/L� + α|M1| = KW .

The following two lemmas show that each time the algorithm has to allocate new centers, there are sufficiently many 
free nodes to do so.

Lemma 5.5. Each monarch m has sufficiently many available nodes in its vicinity to allocate centers for passed(m) and unassigned(m)

nodes.

Proof. We need to consider two cases. The first is when m is a major monarch, i.e., m ∈ M1. Notice that in that case, 
Emp(m) contain all nodes from Γ4(m) and possibly some other nodes from N5(m). By Lemma 5.2 there are sufficiently 
many available nodes in Γ4(m) to allocate centers for all nodes in Γ4(m) and also for α backup servers (note that dom(m) ⊆
Γ2(m) ⊆ Γ4(m)). Each node in N5(m) passes to m at most L − 1 nodes from the monarchs it serves as their deputy. In 
addition, the nodes in N5(m) do not host a center, so they are available to be allocated as centers. The second case is when 
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m is a minor monarch, i.e., m ∈ M2. In that case, the algorithm does not place backup servers on m’s empire, so clearly 
there are enough available nodes to allocate as centers for all nodes. �
Lemma 5.6. Let u be the deputy of a set of monarchs S and assume |passed(u)| = kL + ε for some integer k ≥ 0. Then there are at 
least k available nodes to allocate centers in the empires of S.

Proof. By Lemma 5.5, each monarch t ∈ S has sufficiently many available nodes to allocate centers for the clients in passed(t)
and unassigned(t) nodes. So if some t ∈ S passes nodes to u, then there is left an available node at Emp(t) to allocate as a 
new center. So there are at least k available nodes to allocate as centers in the empires of S . �

Finally, the following lemma establishes the desired stretch bound.

Lemma 5.7. Under all possible subsets of up to α failed service centers, each vertex v is assigned to a center w s.t. dist(v, w) ≤ 17
in G W .

Proof. Consider a client v and let m be its monarch, namely, v ∈ Emp(m). If v is not passed in Procedure ReAssign, then 
it is still assigned to m and note that dist(v, m) ≤ 2. Assume v was passed to another center in Procedure ReAssign. We 
consider several cases.

The first case is when m ∈ M1 and v is covered by some node in Emp(Parent(m)). Notice that dist(v, m) ≤ 2, 
dist(m, Parent(m)) ≤ 10 and dist(Parent(m), z) ≤ 5 for every z ∈ Emp(Parent(m)). Therefore, the distance from v to the center 
it is assigned to satisfies dist(v, ctr(v)) ≤ 17.

The second case is when m ∈ M1 and v is covered by some node in the empire of one of its brother monarchs 
m′ where deputy(m) = deputy(m′). Again, dist(v, m) ≤ 2, dist(m, m′) ≤ 10 and dist(m′, z) ≤ 5 for every z ∈ Emp(m′), so 
dist(v, ctr(v)) ≤ 17.

The third case is when m ∈ M2 and v is covered by some node in Emp(Parent(m)). Again, dist(v, m) ≤ 2 and 
dist(m, Parent(m)) ≤ 6, so dist(v, ctr(v)) ≤ 13.

The last case is when m ∈ M2 and v is covered by some node in the empire of one of its brothers monarchs. Again, 
dist(v, m) ≤ 2. So dist(v, ctr(v)) ≤ 13.

Also notice that each node has α backup servers at distance at most 10 from it. So the maximum distance is at 
most 17. �
5.5. Large capacities

We now consider the special case where α < L.

Lemma 5.8. For every node v, the set Γ1(v) has sufficiently many available nodes to allocate centers for all nodes in Γ1(v) and for α
backup servers.

Proof. There must be at least α + 1 servers in Γ1(v) in the optimal solution R∗
α-FT-CCKC(W ). Consider some α backup

centers from N1(v). The node v can cover itself and also the α backup centers from N1(v). All other uncovered nodes do 
not contain a center placed on them and are free to be allocated as centers. �

We use the same method as in the general case, with some changes. The set of monarchs M1 is chosen to be 
7-independent instead of 10-independent. The empire of each monarch m ∈ M1 is set to be all nodes unassigned so far 
from Γ3(v), instead of Γ5(v). The monarchs M2 are chosen in the same manner as before, but handle all nodes unassigned 
so far at distance 3 from them instead of 5. By the same reasoning as before, we bound the approximation ratio by 13.
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