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Abstract 

We study a generalization of the p-Center Problem, which we call the cu-Neighbor p-Center Problem (~-CENTER(~)). 
Given a complete edge-weighted network, the goal is to minimize the maximum distance of a client to its cy nearest neighbors 
in the set of p centers. We show that in general finding a 0(2 PO’Y(l”I))-approximation for ~-CENTER(*) is NP-hard, where 
[VI denotes the number of nodes in the network. If the distances are required to satisfy the triangle inequality, there can 
be no polynomial time approximation algorithm with a (2 - E) performance guarantee for any fixed E > 0 and any fixed 
(Y 6 p, unless P = NP. For this case, we present a simple yet efficient algorithm that provides a 4-approximation for (Y 2 2. 
If LY = 1, our algorithm basically falls back to the algorithm presented in [ 21 and has a relative performance guarantee of 2. 

Keywords: Algorithms; Approximation algorithms; Location problems 

1. Introduction and basic definitions 

The p-Center Problem (P-CENTER for short) is 
one of the classical location problems. The objective 

is to select a set of p centers such that the maximum 
distance of a non-center to its nearest center is mini- 
mized. The problem is used e.g. to model the place- 
ment of emergency facilities such as fire stations or 
hospitals, where the aim is to have a minimum guar- 
anteed response time between a client and its center. 

In this paper, we study a generalization of p- 
CENTER, which we call the a-Neighbor p-Center 
Problem (~-CENTER(~)). Given again an edge- 
weighted network, the target is now to minimize the 
maximum distance of a client to its cy nearest neigh- 
bors in the set of p centers. For cy = 1, ~-CENTER(~) 
is identical to ~-CENTER. 

’ Email: krumke@informatik.uni-wuerzburg.d4OO.de. 

Recall that an approximation algorithm A for a min- 
imization problem is said to have a performance guar- 
antee of K > 0, if given any instance I of the problem 
it returns a solution A( I) of value at most K times the 

optimal function value, i.e. if A( I) /OpT( 1) 6 K for 
any instance I. 

We show that in general finding a O( 2P“‘Y(l”I)) ap- 
proximation for ~-CENTER(“) is NP-hard. If the dis- 
tances are required to satisfy the triangle inequality, 
there can be no polynomial time approximation algo- 
rithm with a (2 - E) performance guarantee for any 
fixed E > 0 and any fixed (Y 6 p, unless P = NP. 

Hochbaum and Shmoys [ 21 have developed an ap- 
proximation algorithm for ~-CENTER for the case 
when the distances in the graph obey the triangle 
inequality. Their algorithm has performance ratio 2. 
Moreover, it is shown in [2] that this is the best ap- 
proximation ratio possible, i.e., that there can be no 
polynomial time approximation algorithm with a per- 
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formance guarantee of (2 - a) for any E > 0 unless 
P=NP. 

We show that the techniques of Hochbaum and 

Shmoys can be extended to obtain a simple yet ef- 

ficient polynomial time approximation algorithm for 

p-CENTER% 

Let G = (YE) be a graph. We will use S(e) for the 

weight of the edge e E E. If the endpoints of e are 

known, i.e. e = {u, v}, we will use 6(u, v) for the edge 

weight for the sake of a shorter notation. As usual, 

we say that a nonnegative distance 6 on the edges 

of G satisfies the triangle inequality, if 6( U, w) < 
S( v, U) + S(z4, w) for all U, w, c4 E V. We are now 

ready to state the problem formally: 

Definition 1. (a-Neighbor p-Center Problem (p- 

CENTER(~)) 

Input: An undirected complete graph G = (YE,) 
with nonnegative edge weights 6(e) (e E EC) and 

two integers 2 < (Y < p 6 IVI. 
Output: A set P 2 V of p nodes such that 

R’“‘(P) = max #a)(~, P) 
L’EV-P 

is minimized, where 

Sca)(u,P) = min max&s 0). 
’ scp, ISl=n XES 

The subset of instances such that the distances 

obey the triangle inequality will be denoted by p- 
CENTER(~)-TI. Notice that for any subset P s V of 

p nodes we have that R(l) (P) < R(*) (P) 6 e + . < 
R”“(P). 

The following definitions are mainly taken from 
[2]. For a given number A, the bottleneck gruph 
Bottleneck(G, A) of G is defined to be the edge- 
subgraph containing those edges of the original graph 

G, which have weight at most A. The t-closure G’ = 
(VE’) of G contains an edge from u to u if and only 
if there is a path of length at most t edges in G con- 
necting u and U. For any subset V’ & V, we use G[ V’] 
to denote the subgraph induced by the nodes in V’. 

Ifv E Visanynode,weletNo(v) :={w 1 {v,w} E 
E} be the set of neighbors of v in G. Moreover, for 
any set S C V we define No(S) := &_s N(V). 

Recall that a set U C V is called independent, if 
for any pair u, v of nodes from U there is no edge 
connecting u and v. 

a u 
% 

V 2 

Y 

Fig. 1. 

Definition 2. A k-independent set is a subset U C V 
such that every node u E U has at most k - 1 neighbors 
in 7-J. 

Consequently, a l-independent set is a classical in- 

dependent set. We use the term maximal k-independent 
set to denote a k-independent set that is maximal with 
respect to inclusion. Given a graph G, we can always 

find a maximal k-independent set in polynomial time, 

simply by choosing a node and then adding nodes re- 

peatedly, until any further addition of a single node 

would destroy the k-independence of our set. 
As the definition of k-independence extends the 

classical notation of independence, there is a parallel 

for dominating sets. Recall that a set D s V is called 

a dominating set, if any node in V either belongs to D 
or has a neighbor in D. 

Definition 3. A k-dominating set is a set D C V such 

that each node v E V-D has at least k neighbors in D. 

2. The basic lemmas 

It is easy to see that a maximal independent set U 
is also a dominating set. For k > 1, in general it is 
not true that a maximal k-independent set is also k- 
dominating; see e.g. the simple example in Fig. 1: 

The set U = {x, y, z} is maximal 3-independent, 

because u cannot be added without destroying the 3- 
independence, but not 3-dominating, for u has only 
one neighbor in U. 

We will now show that, although a maximal k- 
independent set need not be k-dominating in G, it will 
be k-dominating in the square graph G*: 

Lemma 4. Let U be a maximal k-independent set 
such that [UI 3 k. Then U is a k-dominating set in G*. 

Proof. We show that each node v E V - U has a 
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Procedure test(G) 
1 U +- maximal a-independent set in G* 
2 if (1 C/I > p) then return “certificate of failure” 
3 else 
4 begin 
5 if ICI < p then add nodes arbitrarily to make I(11 = p 
6 return CJ 
I end 

Fig. 2. Test procedure for the a-Neighbor p-Center Problem. 

neighbor WI in U such that this neighbor is adjacent 
to k- 1 nodes WZ,..., wk in U. It follows that the 
nodeswl,..., wk will be neighbors of u in G2 and this 
establishes the claim. 

In fact, if there existed a node u that is not adja- 
cent to any node in U with k - 1 neighbors in U, we 
could add u to U without destroying the property of 
k-independence contradicting the fact that U is maxi- 
mal. 0 

Now we will establish a key relation between the 
k-dominating sets in G and the k-independent sets in 
the square G2: 

Proposition 5. Let Vi be a k-dominating set in G. 
Then IUI < IV’1 for any k-independent set U in G2. 

Proof. If U C V’ then the claim of the proposition is 
trivial. 

If U is not contained in V’, then choose an arbitrary 
node u E U - V’ and let S := NG( u) n V’. Clearly 
ISI > k, because V’ is a k-dominating set. Define C := 
NG( S) n ( V - V’) to be the set of vertices in V - V’ 
that are adjacent to the set S. Then any node in C U S 

is adjacent to u in G2 and thus U can contain at most k 
vertices from C U S. On the other hand, we have seen 
thatIV’n(CL-JS)I=ISI >k. 

Now consider the graph c := G[ V - (C U S)] . 
We claim that v’ 3 V’-(CUS) =V’-Sisak- 
dominating se& in G. To see this consider an arbitrary 
node u from G that is not contained in ^vl. Then v E 
V - V’. The node u has at least k neighbors in G that 
are contained in V’, since again V’ is a k-dominating 
set in G. None of these neighbors can be contained 
in S, because otherwise we would have u E NC(S): 
(V - V’) = C and thus u were not contained in G. 
Hence NG ( o) n V’ C V’ - S = v’ and all the neighbors 
of u in S xz still present in P. 

The set U := U - (C U S) is clearly k-independent 

in &. Thus we can repeat the above construction for 
V’ := ?’ and U := fi until we obtain that 6 C ?‘. Since 
in each step we delete at most k nodes from U and at 
least k nodes from V’ it follows that IUJ 6 I V’j. 0 

3. The algorithm 

In this section we will present the algorithm and 
use the results from Section 2 to analyze its perfor- 
mance guarantee. The techniques that are used, were 
introduced in [ 21. 

Let P* C V be an optimal placement of p nodes and 
denote the optimal solution value by 6* = Rca) (P* ) . 
The idea behind the algorithm is the following: By 
definition of the objective function R(“), the optimal 
function value S* must equal the weight of an edge. We 
will present a relaxed test procedure test that, given 
a number A either tells us that iY > A or delivers a 
solution of cost at most 44 (24 for (Y = 1) . 

We now sort the edges of G in nondecreasing 
order, say 6(el> < 6(e2> < ... < &e(;)), and, 
using the output of the procedure test, perform a 
binary search to locate the minimum i such that 
test(Bottleneck( G, S( ei))) returns a solution. It fol- 
lows by the properties of test that S(ei) < 6*. The 
test procedure is shown in Fig. 2, the main procedure 
is shown in Fig. 3. 

First we will establish the following: 

Lemma 6. Zf the procedure test( Gi) returns a “cer- 
tificate of failure”, then S* > 6( ei) . 

Proof. Assume that test returns a “certificate of 
failure”, but nonetheless 6* < S(ei>. Let P* = 

{UT,. . . , u;I} be a set of p centers in G such that 

R(“) (P*) = 6*. By definition of the solution value 
S*, it follows that P* is an a-dominating set in Gi. 

The procedure test can only return a “certificate 
of failure”, if it finds an a-independent set U in G? 
that contains more than p elements. But according to 
Proposition 5 such a set cannot exist in GF. 0 

Theorem 7. Let I be any instance O~P-CENTJZR(~) - 

TI and denote by Heur( I) the solution value of the so- 
lution found by the procedure Bottleneck-Main. Then 
OPT(I)/Heur(l) < 4, where OPT(I) denotes the 
optimal solution value for I. If a = 1 we have the bet- 
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Procedure Bottleneck-Main(G,&p) 
1 Sort the edges of G such that 

&el) < a(& < ... <&et;)) 

2 low&k-1;hightIVI 
3 while (high - low) > I do 

4 begin 

5 i + [(high + low)/21 
6 G; + Bottleneck(G,&ei)) 
7 out.test +- test(G;) 
8 if out.test is a “certificate of failure” then low + i 
9 else high +- i 
10 end 

11 output test(Bonleneck(G,6(ebj~~))) 

Fig. 3. Main Bottleneck procedure. 

ter following estimate: OPT(I) /Heur( I) < 2. 

Proof. Let OPT(l) = 6% = S(ej) and consider the 
call to the test procedure, when i = j. By Lemma 6 
the procedure test must deliver a solution. Let this 
solution be P, where by construction P contains a 
maximal independent set in G;. If (Y = 1, it follows 

that V is a dominating set in G; as was remarked at 
the beginning of the last section. 

If cy > 2, we can use Lemma 4 to deduce that P is 
an a-dominating set in (G;)* = Gj. 

By definition of the bottleneck graph Gj = 
Bottleneck( S( ej) ) each edge weight in Gi is at most 
6(ej). Consequently, by the triangle inequality Gf 

and G; do not contain any edge of weight more than 
26(ej) = 2S* or 4S(ej) = 4S* respectively. Thus the 
claimed performance guarantee follows. 0 

4. Hardness results 

Theorem 8. Unless P = NP, foranyfied a < p Now suppose that G does not have a dominating set 
there can be no polynomial time approximation for p- of size d. We claim that in this case any selection of 
CENTER(“) with a relative performance guarantee of p’=d+(a-l)lVI centers will have radius f ( I VI ) + 
0( 2P0’Y(lv~)). Moreover, p-CENTER(~)-TI cannot be E’. To see this, assume that P is a set of p’ centers with 
approximated in polynomial time within a factor of solution value 1. First observe that P must include all 
(2-E)foranyE>O. the nodes from lJvEV N,. 

Proof. Assume that A is an algorithm with a rela- 
tive performance guarantee of 0( 2P“‘Y(l”I)). Without 
loss of generality we can assume that the performance 
guarantee of A is M . 24(l”l), where q is a suitable 
polynomial. Thus given an input of length R ( 1 VI ) the 

function f (IV/) := M.24(lq) is polynomial time com- 
putable. 

We will show that A can be used to decide DOM- 
INATING SET, a well known NP-complete problem 

(cf. ill>. 
Let Z be any instance of DOMINATING SET, given 

by a graph G = (YE) and an integer d. We now con- 
struct an instance I’ of ~-CENTER(~) in the follow- 
ing way: We choose IV1 pairwise disjoint sets N, := 
{w(1), . . . 
let “VI 

,w(“-*)}(u~V)withN,flV=Q).Wethen 
:=V”iJu,,N,,p’ :=d+(a- l)IVI,cu’ :=(Y 

and define G’ = (V’, E’) to be a complete graph on 
IV’/ nodes. The edge-weights 6’(e) are given by 

( 

1 ifu,uEVand{u,u}EE, 

8(&V) := 1 if u E V and u E No or vice versa, 

f (jV[) + E’ otherwise, 

where we choose E’ > 0 arbitrary. Fig. 4 illustrates the 
transformation from G to G’. All edges shown have 
weight 1, the edges not drawn in the figure have weight 

f(lVl) +d. 
Observe that by definitionof the edge-weights in G’, 

any set P of p’ centers has either radius 78”‘) (P) = 1 
or f(lVl) +E’. 

Observe further that in the special case when f is 
the constant function f = (2 -8) for some E > 0, we 
can choose E’ := E and obtain the distances 1 and 2 in 
G’, as a consequence of which the triangle inequality 
will be satisfied by the distances defined above. 

First, assume that G has a dominating set D of size 
d. Then P := DUU,,, N,isasetofd+(cu-1) =p’ 
centers with solution value 7Z.c”) (P) = 1. In that case, 
because A has a performance guarantee of f ( 1 VI ) , the 
radius of the set of centers returned by A must also 
be 1. 

If (Y = 1, the claim is trivially satisfied, because in 
that case N, = 0 for all u E V. Hence it suffices to 
consider the case LY > 2. Any node w E N, has u as 
the only neighbor in V’, which is within a distance of 
1 and, if not included in the set of centers, must be 
covered by at least cy servers within a distance of 1. 
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G G’ 

Fig. 4. Transformation of G to G’. 

up 
WI” 
wl”’ 

‘(o-1) 
W” 

Hence w must be included in the set of centers. 
It follows that PV := P n V G V consists of IPI - 

((Y - 1) 1 VI = d nodes. We will now show that F’v is 
a dominating set in V. If we take u E V - Pv, then u 
must have at least (Y nodes from P within a distance 
of 1. Only (Y - 1 from these nodes can be from N,. 
Thus by definition of the distances in G’, there must 
be w E PV such that a’(~, w) = 1, i.e. {u, w} E E. 

Hence PV is a dominating set of size d in G as a 
contradiction to the assumption that G does not contain 
any dominating set of size at most d. 

We have seen that A delivers a solution of value 1 
if and only if G has a dominating set of size d. Con- 
sequently, A can be used to decide the given instance 
I of DOMINATING SET in polynomial time. 0 

It should be noted that in the proof of the last theo- 
rem f E 0( 2P0’Y(lq)) is the largest we can do in poly- 
nomial time, since otherwise the length of the binary 
representation for f( 1 VI > is no longer polynomially 
bounded in the input size. 
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