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Abstract

The basic K-center problem is a fundamental facility location problem, where we are asked to
locate K facilities in a graph, and to assign vertices to facilities, so as to minimize the maximum
distance from a vertex to the facility to which it is assigned. This problem is known to be NP-
hard, and several optimal approximation algorithms that achieve an approximation factor of 2
have been developed for it.
We focus our attention on a generalization of this problem, where each vertex is required to

have a set of � (�6K) centers close to it. In particular, we study two di�erent versions of this
problem. In the �rst version, each vertex is required to have at least � centers close to it. In the
second version, each vertex that does not have a center placed on it is required to have at least �
centers close to it. For both these versions we are able to provide polynomial time approximation
algorithms that achieve constant approximation factors for any �. For the �rst version we give an
algorithm that achieves an approximation factor of 3 for any �, and achieves an approximation
factor of 2 for � ¡ 4. For the second version, we provide algorithms with approximation factors
of 2 for any �. The best possible approximation factor for even the basic K-center problem
is 2, assuming P 6= NP. In addition, we give a polynomial time approximation algorithm for
a generalization of the K-supplier problem where a subset of at most K supplier nodes must
be selected as centers so that every demand node has at least � centers close to it. For this
version our approximation factor is 3. The best possible approximation factor for even the basic
K-supplier problem is 3, assuming P 6= NP. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The basic K-center problem is a fundamental facility location problem and is de�ned
as follows: Given an edge-weighted graph G = (V; E), �nd a subset S⊆V of size at
most K such that each vertex in V is “close” to some vertex in S. More formally, it
is de�ned as follows:

min
S⊆ V |S|6K

max
u∈V

min
v∈S

d(u; v);

where d is the distance function. For example, one may wish to install K �re stations
and minimize the maximum distance (response time) from a location to its closest �re
station. The problem is known to be NP-hard [5].
An approximation algorithm with a factor of �, for a minimization problem, is a poly-

nomial time algorithm that guarantees a solution with cost at most � times the optimal
solution. Approximation algorithms for the basic K-center problem have been very well
studied and are known to be optimal [6–9]. These schemes present natural methods for
obtaining an approximation factor of 2. Several approximation algorithms are known
for interesting generalizations of the basic K-center problem as well [1, 3, 8, 11, 13, 15],
including costs [8, 13, 15], weights [3, 13, 15], and capacities [1, 11]. A related problem
of placing as few centers as possible so that each vertex without a center has at least
k vertex-disjoint paths to centers is also studied in [1].
The �-neighbor K-center problem is discussed in a recent paper by Krumke [12].

The problem is formally de�ned as follows: given an edge-weighted graph G = (V; E)
�nd a subset S⊆V of size at most K such that each vertex in V −S is “close” to
a set of � vertices in S. Formally,

min
S⊆ V |S|6K

max
u∈V−S

�(�)(u;S);

where

�(�)(u;S) = min
A⊆S;|A|=�

max
a∈A

d(u; a);

where d is the distance function. Krumke [12] gives an algorithm with an approximation
factor of 4, by generalizing the notion of an independent set of vertices.
The main motivation to study this problem is to provide some notion of fault-

tolerance. Namely, if we are concerned with the placement of emergency facilities,
then providing “backup” centers when one center fails to respond is useful [14].
We consider a variation of this problem as well, called the �-all-neighbor K-center

problem that is formally de�ned as follows: given an edge-weighted graph G = (V; E)
�nd a subset S⊆V of size at most K such that each vertex in V is “close” to a set
of � vertices in S. Formally,

min
S⊆ V |S|6K

max
u∈V

�(�)(u;S):
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1.1. Our results

We improve Krumke’s result, and show that we can obtain an approximation factor
of 2 for the problem considered in his paper. This matches the bound for the basic
K-center problem, which is the best possible assuming P 6= NP [9]. The algorithm is
a very natural extension of the method given by Hochbaum and Shmoys [8] for the
basic K-center problem.
We also show that for the �-all-neighbor K-center problem, we can obtain an ap-

proximation factor of 3 for any �, and a similar algorithm gives an approximation
factor of 2 for � ¡ 4 (perhaps the practically interesting case).
For the �-neighbor K-suppliers problem, we obtain an approximation factor of 3.

For the K-suppliers problem, Hochbaum and Shmoys [8] give a proof (originally due
to Howard Karlo�) showing that the factor of 3 is the best possible unless P = NP.
In [10] we provide algorithms for several generalizations of these problems where

we also include the notion of weights and costs [8, 13, 15].
Recently, Chaudhuri et al [2] independently came up with a di�erent algorithm with

a matching approximation factor for the �-neighbor K-center problem. Their algorithm
modi�es Krumke’s approach and is di�erent from the methods used in our paper.

2. �-all-neighbor K -center problems

We may assume for simplicity that G is a complete graph, where the edge weights
satisfy the triangle inequality. (We can always replace any edge by the shortest path
between the corresponding pair of vertices.)
The algorithm uses the threshold method (see [4]) used for the K-center problem

by Hochbaum and Shmoys in [8]. Sort all edge weights in non-decreasing order. Let
the (sorted) list of edges be e1; e2; : : : em (where m =

(n
2

)
). For each i, let the threshold

graph Gi be the subgraph obtained from G by including edges of weight at most d(ei).
Run the algorithm below for each i from 1 to m, until a solution is obtained. (One
can also use binary search to speed up the computation as suggested by Hochbaum
and Shmoys [8].) In each iteration, we work with the subgraph Gi and view it as an
unweighted graph. Since Gi is an unweighted graph, when we refer to the distance
between two nodes, we refer to the number of edges on a shortest path between them.
In iteration i, we �nd a solution using some number of centers. If the number of centers
exceeds K , we prove that there is no solution with cost at most d(ei). If the number
of centers is at most K , we return an approximate solution.
Let G2i denote the graph obtained by adding edges to Gi between nodes that have

at least one common neighbor.

2.1. Any �

We give an algorithm that obtains an approximation factor of 3 for any value of �.
The following technique was introduced by Hochbaum and Shmoys [7, 8] and has
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been used extensively to solve K-center problems. Find a maximal independent set
I in G2i . Note that if the independent set has size |I |, then any solution with radius
d(ei) must use at least �|I | centers, because nodes in the independent set cannot be
assigned a common center. We therefore place � centers at each node in the independent
set. At this point, every node in the graph is at distance at most 2 (in Gi) from �
centers.
We now have to distribute the centers so that no two centers are placed on a common

node. Note that if there is a solution with radius d(ei), then every node has degree
at least � − 1 in Gi. We can therefore move � − 1 centers from each node in the
independent set to a subset of its neighbors in Gi. Since every node in the graph is at
distance at most 2 from a node in the independent set, we must have that every node
in the graph is at distance at most 3 from � centers, which implies that this approach
gives an approximation factor of 3.

2.2. � = 2; 3

Here we give another algorithm for the �-all-neighbor K-center problem. The algo-
rithm essentially chooses � independent sets in G2i . The algorithm gives an approxi-
mation factor of 3 for any �, and we prove that it achieves an approximation ratio of
2 if � is 2 or 3.
The algorithm consists of � iterations. In each iteration we choose an independent

set in G2i . At the end of each iteration j = 1; 2; : : : ; �, we guarantee that each node is
covered by at least j centers within two steps. We ensure this by de�ning a “covering
number” C(u) (initially 0) for each node u. When we add a node v to the independent
set in iteration j, we increase the covering number of v and all nodes u adjacent to
v in G2i such that C(u) ¡ j. At any time during the execution of the algorithm, let
the set S refer to the set of nodes picked in the independent set of any previous
iteration.
The independent set in each iteration j is composed of nodes v such that just before

v was picked, we had C(v) ¡ j. Each iteration consists of two phases. In the �rst
phase, we choose nodes not in S to add to the independent set. In the second phase,
if there are still nodes v remaining with C(v) ¡ j, we allow nodes already in S to
be picked as well. We maintain a count of the number of iterations in which a node v
was selected in the independent set in phase two as extra(v). Extra(v) is the number of
centers assigned to v throughout the algorithm that cannot be placed at node v. These
centers will be shifted at the end of the algorithm to neighboring locations not in S,
to make centers distinct. De�ne helps(v) as the set of neighbors u of v in G2i such that
v was chosen in phase two of iteration j and C(u) ¡ j when v was picked in this
iteration. These are the nodes we must consider when shifting extra centers from v.
We prove that if � ¡ 4 then we can shift the extra centers to nodes within distance 2
in Gi for all nodes in helps(v). (This last step ensures that we place centers on distinct
vertices.)
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�-ALL-NEIGHBOR K -CENTER ALGORITHM(Gi).
1 for all v
2 C(v) = 0.
3 extra(v) = 0.
4 helps(v) = ∅.
5 for j = 1 to � do

// Phase I
6 while ∃v =∈ S with C(v)¡ j do
7 create new center at v and set S =S ∪ {v}.
8 C(v) = C(v) + 1.
9 C(u) = C(u) + 1 if (u; v) ∈ E(G2i ).

// Phase II
10 while ∃v with C(v)¡ j do
11 create new center at v and set S =S ∪ {v}.
12 C(v) = C(v) + 1.
13 extra(v) = extra(v) + 1.
14 for all u with C(u)¡ j and (u; v) ∈ E(G2i )
15 C(u) = C(u) + 1.
16 Set helps(v) = helps(v) ∪ {u}.
17 for all v ∈ S with extra(v)¿1 do
18 if helps(v) = ∅
19 Shift extra(v) centers to neighbors of v in Gi that are not in S.
20 else
21 Shift one center to a common neighbor of any node in helps(v) and

v in Gi not in S.
22 Shift extra(v)− 1 centers to neighbors of v in Gi that are not in S.
23 end-proc

Lemma 2.1. The above algorithm uses no more centers than the optimal solution.

Proof. In each iteration we select an independent set in G2i . Let I
∗ be the size of the

largest independent set picked in any iteration. Any solution with radius d(ei) must
use at least �I∗ centers, and we must have that |S|6�I∗.

Theorem 2.2. The above algorithm returns a solution to the �-all-neighbor K-center
problem with an approximation ratio of 2 if � = 2 or 3.

Proof. Call a node v satis�ed in iteration j if C(v) ≥ j. Although in each iteration we
prefer to pick nodes not previously chosen as centers, after the �rst phase all nodes
remaining with C(v)¡ j are in S. De�ne Hj to be subgraph of G2i induced by these
(unsatis�ed) nodes in round j. Now consider the structure of Hj. The graph H2 is a
collection of singleton nodes, disconnected in G2i (because they were all picked in the
independent set in the �rst iteration). Therefore all nodes in H2 will be added to S.
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Fig. 1. The circled nodes are cliques of four nodes, and edges to circled nodes represent edges to each of
the four nodes in the clique.

First, suppose � = 2. Since the nodes in H2 form an independent set, helps(v) = ∅
for all nodes in H2. Therefore, we can shift all but one center to unassigned neighbors
of v in Gi. Such neighbors must exist because v must have at least one neighbor in Gi
and at most two centers total are placed in the neighborhood of v in G2i .
Now let � = 3. Consider a node v that was assigned as a center multiple times. If

helps(v) = ∅, then we can shift all but one center to unassigned neighbors of v in Gi,
by the above argument.
If helps(v) 6= ∅ then we must have |helps(v)| = 1, because H3 is a graph with

maximum vertex degree of 1 (since any node in H3 with degree 2 must be satis�ed).
Assume helps(v) = {u}. Note that only 2 centers are assigned to v. This follows from
the fact that the center on u covers v. We must shift the extra center so that it covers
both u and v within distance 2. If u and v are adjacent in Gi, then we can shift the extra
center on v to any neighbor of v in Gi. Otherwise, there must exist a node w adjacent
to both u and v in Gi. Node w does not have any centers assigned to it because it
already has 3 centers adjacent to it. Therefore we can shift the extra center to w.
Any node which does not have a center placed on it has at least � centers adjacent

to it in G2i . As shown above, a node which has a center placed on it also has at least
� centers adjacent to it in G2i . Therefore all nodes have at least � centers within radius
2d(ei).

The following example (see Fig. 1) shows that this algorithm fails when � = 4. Our
algorithm may do the following. In the �rst three rounds, it chooses a center from the
central clique and one of the corners – this forms a maximal independent set in G2i . In
the fourth round, it places a center on the �nal remaining vertex in the central clique,
and the only nodes that then remain unhappy are the corner vertices, all of whom have
been picked in earlier rounds. It now picks one of the corners on which to place a
second center. This center would have to be shifted o� to a node which covers all
three corners, and there is no vertex that is distance 2 from all corners. It is important
to note that the algorithm fails not because it places too many centers. In fact, in this
example the optimal solution uses 16 centers (one on every node in each of the four
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cliques) while our algorithm places eight and leaves one vertex unsatis�ed. While in
this case we can see where to add the extra center, it is not clear how to automate
this process.

3. �-neighbor K -center problems

In this section, we describe an algorithm which gives an approximation factor of 2
for the �-neighbor K-center problem.
We assume that G is a complete graph with edges satisfying the triangle inequality.

Iterate for each i from 1 to m until a solution is obtained.
Consider the graph G2i . Every node is assigned a “covering number” C(v) (initially

0). The set of centers is S = ∅. At the end of each iteration j = 1; 2; : : : ; �, we
guarantee that each node not chosen as a center is covered by at least j centers within
distance two. In each iteration, we pick a center that is not covered by at least j
centers. We assign a center at the chosen vertex, and increase the covering number for
all vertices within distance two in Gi.

�-NEIGHBOR K -CENTER ALGORITHM(G2i ).
1 for all v
2 C(v) = 0.
3 for j = 1 to � do
4 while ∃v with C(v)¡ j do
5 create center at v and and set S =S ∪ {v}.
6 C(v) = �.
7 C(u) = C(u) + 1 if (u; v) ∈ E(G2i ).
8 end-proc

We �nd at most � independent sets in � iterations.

Theorem 3.1. The above algorithm �nds a solution to the �-neighbor K-center prob-
lem with an approximation ratio of two.

Proof. When the algorithm terminates, each vertex has a covering number equal to �.
This guarantees that each vertex was either chosen as a center, or is covered by at
least � centers within distance 2. We now prove that if there is a feasible solution with
K centers in some Gi, then our algorithm will not assign more than K centers in Gi.
Assume that this does not hold. In other words, there is a graph for which there

is a solution that uses at most K centers, and our algorithm assigns more than K
centers. Consider the smallest value of K for which the algorithm fails, and consider
the smallest graph G that is a counter-example for that value of K . Assume that the
centers assigned in iteration j have label j. Let SOPT be the set of K vertices in graph
G that have centers placed on them by the optimal solution. Note that each vertex in
V − SOPT has at least � neighbors in SOPT.
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If our algorithm places centers only on vertices in SOPT then we certainly do not place
more than K centers. Assume that j is the highest labeled center placed at v ∈ V−SOPT
by the algorithm. Let NOPT(v) be the neighbors of v in SOPT. Clearly |NOPT(v)|¿�. Let
VOPT(v) be all the vertices that are adjacent to some vertex in NOPT(v).
We claim that there are at most � centers placed by the algorithm in v ∪ NOPT(v) ∪

VOPT(v) from G. If v had a center placed on it in iteration j, then at the instant it was
placed it had at most j− 1 centers within distance 2 in Gi. Hence, there were at most
j−1 centers with label ¡ j in this region. Since all centers with label ¿ j are placed
only at nodes in SOPT this implies that we cannot place two nodes with the same label
in NOPT(v) (since the nodes placed in a single iteration form an independent set in
G2i ). Thus there can be at most � − j nodes of label ¿ j in v ∪ NOPT(v) ∪ VOPT(v)
from G. Adding gives at most � nodes in this region.
We now claim that if we delete v ∪ NOPT(v) ∪ VOPT(v) from G, this gives us a

smaller counter-example (unless the deleted nodes are exactly G, which is not a valid
counter-example as we use only � nodes).

4. �-neighbor K -suppliers problems

In this section, we give an algorithm that obtains an approximation factor of 3 for
the �-neighbor K-suppliers problem.
We assume that G = (U; V; E) is a complete bipartite graph with edges satisfying

the triangle inequality. We place centers on the vertices in U and have to ensure that
each vertex in V has � centers in its neighborhood in Gi.
Iterate for each i from 1 to m until a solution is obtained. (As before, we will �nd

the smallest i for which we obtain a solution that uses at most K centers.) De�ne Hi
to be the subgraph of G2i induced by V and �nd a maximal independent set in Hi.
This returns a subset S⊆V . We shift these to the set S′ ⊆U by placing a center on
each of � neighbors in U of each node in S.
Let SOPT be the set of vertices in U that have centers placed on them by the optimal

solution. Let P = |SOPT|.
We �rst prove that |S′| is at most P. Each node in S has at least � neighbors in

Gi that are in SOPT. No other neighbor of these � nodes in SOPT can be picked in S.
Therefore we chose at most bP=�c nodes in V . Thus the algorithm chooses at most
� bP=�c6P centers.
Since each node in the independent set has at least � neighbors in U , and no two

nodes in the independent set can share a neighbor in U , each node in the independent
set can place a center on � of its neighbors in U .
We now prove the approximation bound of 3. If the optimal solution has cost d(ei),

then in Gi we will �nd a valid solution as follows. Consider a node v ∈ V . If v was
not chosen in S, it has a neighbor v′ in Hi that is in S. Since v′ has � centers adjacent
to it in Gi. Each of these centers is within distance 3 from v in Gi. If v is in S, then
it has � centers within distance 1.
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5. Extensions and generalizations

In [10] we provide algorithms for several generalizations of these problems where
we also include the notion of weights and costs, which are de�ned as follows. Each
node has an associated “cost” for placing a center on it, and rather than limiting the
number of centers, we have a limited budget [8, 13, 15]. Other generalizations include
cases where the vertices have weights and we consider the weighted distance from a
node to its closest center [3, 13, 15]. The methods used by Chaudhuri et al. [2] do not
seem to extend to include the notion of weights or cost.
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