Applied Soft Computing 140 (2023) 110276

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Auxiliary data structures and techniques to speed up solving of the
p-next center problem: A VNS heuristic @

Dalibor Risti¢ **, Nenad Mladenovi¢®, Mustapha Ratli ¢, Raca Todosijevi¢

Dragan UroSevic “*

Check for
updates

zc,d
’

2 Union University, School of Computing, Knez Mihailova 6, Belgrade, Serbia
b Department of Industrial Engineering and Research Center on Digital Supply Chain and Operations Management, Khalifa University, PO Box

127788, Abu Dhabi, United Arab Emirates

¢ Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France
4 INSA Hauts-de-France, F-59313 Valenciennes, France
€ Mathematical Institute of the Serbian Academy of Sciences and Arts, Knez Mihailova 36, Belgrade, Serbia

ARTICLE INFO

Article history:

Received 5 December 2021

Received in revised form 28 March 2023
Accepted 31 March 2023

Available online 3 April 2023

Keywords:

Location

p-center

p-next center

Heuristics

Variable neighborhood search

ABSTRACT

In this paper we study the p-next center problem and propose an adequate solution approach. The
p-next center problem aims to minimizing the maximum distance from a user to the nearest center
plus the distance between the center and its closest center. In this paper we propose a new Variable
Neighborhood Search based algorithm to solve the p-next center problem. It uses refined local search
and shaking procedures as well as auxiliary data structures. The implementation consists in filtering
out the candidate centers to enter a solution by considering only ones that potentially decrease the
objective function value. The same approach has been applied to the classical p-center problem. Here
we show that known properties of an efficient implementation of VNS heuristic developed for the
p-center problem, hold for the new problem as well. More precisely, all the proposals in this work
are inspired by other analogous ones used in the literature for similar problems. Hence, the novelty
is the adaptation of the known properties that hold for the p-center problem to the p-next center
problem. The performance of the proposed heuristic is assessed on the benchmark instances from the
literature as well as newly generated larger instances with 1000, 1500, 2000 and 2500 vertices and
instances defined over graphs up to 1000 vertices with different densities. The obtained results clearly
demonstrate the effectiveness and efficiency of the proposed algorithm. Hence, the paper shows that
the same observations used to solve p-center problem may be used to efficiently solve the p-next
center problem.

© 2023 Elsevier B.V. All rights reserved.

Code metadata

Permanent link to reproducible Capsule: https://doi.org/10.

24433/C0.0378282.v2.

1. Introduction

The p-center problem is a relatively well-known and well-
studied facility location problem. It aims to locate p identical

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-

engineering/computer-science/journals.
* Corresponding author.

facilities, called centers, on a network to minimize the maximum
distance between demand vertices (users) and their closest (near-
est) centers. The closest center, assigned to a user, is referred
to as reference center. The applications of p-center problem are
mainly related to emergency service locations (determining op-
timal locations of ambulances, fire stations and police stations)
or natural disasters and human-caused disasters. In all of these
applications, the worst case service time is extremely important
because a prompt action is always sought to respond to requests
and save lives. But, what to do if some center fails down? Such sit-
uations may occur, for example, in the case of war, earthquakes,
tsunamis and hurricanes, when all affected persons instinctively
run toward the closest refugee camp, rescue center, hospital etc.,
but due to high demand/overcrowding the closest center easily

E-mail addresses: dristic@rafrs (D. Risti¢), nenad@mi.sanu.ac.rs
(N. Mladenovi¢), Mustapha.Ratli@uphf.fr (M. Ratli), racatodosijevic@gmail.com
(R. Todosijevi¢), draganu@mi.sanu.ac.rs, durosevic@mi.sanu.ac.rs (D. UroSevic).

https://doi.org/10.1016/j.as0c.2023.110276
1568-4946/© 2023 Elsevier B.V. All rights reserved.

becomes unavailable. Another, more recent example is related
to the epidemics such as COVID-19, when temporary hospitals
and quarantines are quickly filled out and unable to accept new

https://doi.org/10.1016/j.asoc.2023.110276
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110276&domain=pdf
https://doi.org/10.24433/CO.0378282.v2
https://doi.org/10.24433/CO.0378282.v2
https://doi.org/10.24433/CO.0378282.v2
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:dristic@raf.rs
mailto:nenad@mi.sanu.ac.rs
mailto:Mustapha.Ratli@uphf.fr
mailto:racatodosijevic@gmail.com
mailto:draganu@mi.sanu.ac.rs
mailto:durosevic@mi.sanu.ac.rs
https://doi.org/10.1016/j.asoc.2023.110276

D. Ristic, N. Mladenovic, M. Ratli et al.

patients. To resolve such issues one possibility is that all users,
whose reference center fails, are re-directed to another open
center, called backup center, and which is the closest center to
that which has become unavailable. In this case, the distance
that a user travels until it gets service is equal to the sum of
distance from a user to the nearest center, plus the distance
between that center and its closest center. The problem that aims
to simultaneously optimize the maximum distance from a user to
the nearest center plus the distance between that center and its
closest center (backup center) is called the p-next center problem
(pNCP). This problem is the topic of this paper.

The p-next center problem is defined on an undirected graph
G = (V,E), where V = {vq, vy..., v, }(|V| = n) is the set of vertices
that represent both the locations of potential centers and users;
and E = {(v;, v) : vi,v; € V,i # j} is the edge set. Each edge
is assumed to have the distance d(v;, v;) that corresponds to the
length of the shortest (minimum cost) path that connects v; and
vj, and therefore the distances satisfy the triangle inequality. The
goal of the pNCP is to designate p centers from the given set V so
that the maximum distance from a user to its allocated backup
center is minimized. The distance from a user to its allocated
backup center is calculated as the sum of the distance from the
user to its closest (reference) center and the distance from that
center to its (backup) center. Let us for a given set IT C V of p
centers define the following sets:

o the set of the closest centers to given vertex v; € V: IT(v;) =
arg min{d(v;, mj)|m; € IT};

o the set of centers closest to the center 7; € IT: [1(w;) =
arg min{d(m;,)| € I1, mj # mi}.

Then the objective function value for a given set of vertices V and
a given set of centers IT C V is calculated as:

fur) = max{ min

vieV | mel(vy),myell(m;)

{d(vi, ;) + d(7;j, ﬂk)}}~ (1)

In the case that the objective function is calculated with re-
spect to the subset of vertices V C V, the corresponding objective
function value of such restricted problem, will be denoted as
f(I1,V) and is given as:

f(H,_/):max{ min

vieV | e (vi).meel ()

{d(vi’”j)+d(”jv77k)}} . (2)

By convention, f(IT, V) = f(IT).

Contrary to the pNCP problem, the p-center problem (pCP)
only considers the distance from the user to its closest (reference)
center and therefore the objective function value of the pCP with
respect to the given set of vertices V and centers IT C V is
calculated as:

FpCP(I1,V) = max{ min d(v;, nj)} . (3)
vieV | mjel(v;)
In [1] the p-next center problem has been formulated as a
mixed-integer programming (MIP) problem. For that purpose, the
authors introduced three sets of variables:

e binary variables y; that receive value 1 if and only if a center
is located at vertex v; € V;

e binary variables x;; that receive value 1 if and only if the cen-
ter located at vertex v; € V is the closest to the user/center
at v; € V,i # j; In the case if v; is a user, the variable
indicates the assignment of a center to a user, while if v;
is the center it indicates the assignment of a backup center
to the existing center.

e the continuous variable f that reflects the objective function
value.

Applied Soft Computing 140 (2023) 110276

Using the defined variables, they formulated the p-next problem
as the following MIP problem:

min f (4)
s.t.

n

Y vi=np)
j=1

D xj=1,Vie{l,2,....n), (6)
j=1

J#
Xij fy]s Vi;je{‘l»Zy"wn}vi#J’s (7)

n

it Y xes1Vije{lL2...nLi#j)

k=1
d(vi.vk)>d(vi,vj)

n
f= dw, v, Vi€ {1,2,....n), 9)
k=1

ki

n

= (o, vy —yi) + Y d(vy, v, Vij€ (1,2, n} i #j,
k=1
k]

(10)

f=0,x5y;€{0,1}, Vi,je{1,2,...,n},i#]. (11)

In the model, the objective function value f is bounded by
constraints (9) and (10). Constraints (9) ensure that f is greater
or equal to the distance between a reference center and its
backup, while constraints (10) guarantee that f is not less than
the distance between a user and its backup center. Constraint (5)
imposes that exactly p vertices are designated to be the centers.
The assignment of users to centers is guaranteed by constraints
(6) and (7). Constraints (7) forbid the assignment of users to
non-open centers, while constraints (6) require that each vertex
(user or center) is assigned to exactly one reference center. Each
user/center is assigned to its closest reference center by con-
straints (8). Finally, variables’ domains are stated by constraints
(11).

While the literature on the pCP is vast and proposes various
solution approaches [2-13], the pNCP, as a recent problem, has
started to gain more attention recently. Besides introducing the
pNCP, Albareda-Sambola et al. [1] proposed integer programming
formulations of the pNCP: two and three-indexed formulations
using path variables and a formulation using covering variables.
The authors showed that they are capable to solve instances with
up to 50 vertices within a reasonable computational effort. They
also provided a formal proof that the pNCP is a NP-hard problem.

The first heuristic algorithms for the pNCP were suggested by
Lopez-Sanchez et al. [14]. The authors proposed three heuris-
tics: Greedy Randomized Adaptive Search Procedure (GRASP)
heuristic, Variable Neighborhood Search (VNS) heuristic and hy-
brid GRASP-VNS approach combining developed GRASP and VNS
heuristics. The proposed GRASP heuristic consists in generating
100 semi-greedy solutions which are subsequently improved by
a local search based on the vertex substitution (or Interchange)
neighborhood. On the other hand, the proposed VNS heuristic
follows the basic VNS framework. Starting, from the best solu-
tion among 100 semi-greedy solutions, the proposed Basic VNS
heuristic applies alternately shaking and local search procedures.
The applied local search procedure is the same as the one used
in the GRASP heuristic, while the shaking procedure aims to
diversify the search by generating a random solution from the kth

D. Ristic, N. Mladenovic, M. Ratli et al.

neighborhood of the incumbent solution. The kth neighborhood is
defined as the set of solutions that may be derived from a given
solution by closing k centers in the given solution and opening
another k centers. Finally, the hybrid GRASP-VNS approach is
derived from the GRASP heuristic by replacing the local search
step by the proposed VNS heuristic. The proposed algorithms
were evaluated on a set of instances with up to 200 vertices,
and as expected, the hybrid algorithm returned the best results.
Still, it took much more execution time than the GRASP and VNS
executed alone. Comparing GRASP and VNS heuristics, it turned
out that they were similar in terms of time consumption. GRASP
was a bit faster, but VNS returned slightly better solutions.

Recently, Londe et al. [15] proposed a new hybrid heuristic for
solving the pNCP. Their heuristic is a hybrid Biased Random-Key
Genetic Algorithm (BRKGA). In that framework, BRKGA is used
for creating and maintaining the pool of solutions (population).
This standard BRKGA is enhanced by two intensification strate-
gies. The first strategy explores the interchange neighborhood
of a solution to possibly reach better quality solutions, while
the second strategy, the implicit path re-linking, explores paths
connecting a base solution and a guide solution, both extracted
from the population. In order to avoid premature convergence of
BRKGA, due to employed intensification strategies, and to enable
better exploration of the solution space, the authors proposed
two diversification mechanisms. The first one is the same shaking
procedure as in [14], where a random solution from the kth
neighborhood is generated by applying k random swap moves.
The second one is the full population reset which consists in
generating completely new population. The authors tested and
implemented three variants of their algorithm: BRKGA-NLS (the
local search of the interchange neighborhood is not employed);
BRKGA-BI (the local search of the interchange neighborhood with
the best improvement strategy is used) and BRKGA-FI (the local
search of the interchange neighborhood with the first improve-
ment strategy is used). They concluded that BRKGA-BI was able to
provide quality solutions more frequently than the other variants,
and recommended it as the best option if the time consumption is
not an issue. However, if the time aspect is crucial, and decisions
need to be made quickly, they identified BRKGA-NLS as a viable
alternative.

In this paper, we suggest a new basic VNS heuristic for the
p-next center problem. It differs from the previous one in using
more refined local search and shaking procedures. This refined
implementation is inspired by work on the p-center problem
realized by Mladenovi¢ et al. [16] and consists in recognizing, in
an advanced way, centers which opening would not improve the
current solution. Therefore, our approach filters out the centers
considering only ones which opening potentially decreases the
objective function value. In addition, the Basic VNS in [14] uses
the first improvement search strategy, while our Basic VNS uses
the best improvement search strategy. The idea of filtering solu-
tions has been already proposed in [17], where the authors made
the first attempt to improve the implementation of Basic VNS
presented in [14]. In this paper, we go further and additionally
enhance the Basic VNS proposed in [17] by incorporating new
data structures to speed up the local search process and present
a new more refined shaking procedure. Note that Basic VNS by
Risti¢ et al. [17] uses the same straightforward implementation of
the shaking procedure as Basic VNS in [14], while our Basic VNS
incorporates a filtering mechanism into the shaking procedure
as well. Moreover, here we show that the so-called Whitaker
data structure, implemented within the interchange (vertex sub-
stitution) local search, previously proposed for solving both the
p-median problem [18-20], and the p-center problems [16], may
be efficiently adapted for solving p-next center problem as well.
The Whitaker data structure, originally proposed in [20], involves

Applied Soft Computing 140 (2023) 110276

auxiliary arrays that for each vertex store the closest and the
second closest center.

Compared to the previous approaches in [14,15,17] we pro-
pose a local search that avoids non-promising solutions in a very
efficient way. As it will be shown, an iteration of the newly
proposed local search has, by the factor n, smaller time com-
plexity than an iteration of the standard local search. In the
same spirit we refined the standard shaking procedure used
in [14,15,17]. The refinement aims to redirect the search toward
promising regions of the solution space without increasing the
time complexity compared to the standard shaking procedure.
The refinement is the simplest possible, yet effective, and consists
in one simple condition that verifies, before executing a random
swap move, if it is promising or not. More precisely, our intention
was to follow the recent “Less-is-more” approach philosophy [5,
21-24]. We design a Basic VNS algorithm, using the minimum
number of search ingredients, but in the most efficient manner.
Following this research direction, we prove that the previous data
structure in an efficient VNS implementation for solving the p-
center problem [16], can be used in the p-next-center problem as
well. The novelty is thus theoretical and practical adaptation of
known properties that hold for the p-center, to this new problem.
In other words, more theory, that allows the simplest possible
algorithm. On the other hand, computational results significantly
outperform the previous state-of-the-art results from the litera-
ture. In addition, we generated larger instances with 1000, 1500,
2000 and 2500 vertices and instances defined over graphs up to
1000 vertices with different densities to assess the performance
of the proposed approach on wide range of instances. The ob-
tained results again clearly demonstrate the effectiveness and
efficiency of the proposed algorithm. Overall, the contributions
of the paper may be summarized as follows:

e The new Basic VNS heuristic for the p-next problem is pro-
posed. It uses refined local search and shaking procedures.

e Known properties that hold for the p-center problem are
theoretically and practically extended to the p-next cen-
ter problem. They include an adaptation of Whitaker data
structure within Interchange local search procedure.

e The newly proposed heuristic advances the state-of-the-art
results by offering higher number of best-known solutions.
In most cases the average time-to-target of proposed heuris-
tic is shorter. In addition, the worst and average solution val-
ues in 20 runs are very often better than the state-of-the-art
ones.

e This is the first time the instances with up to 2500 ver-
tices are considered for the p-next center. We consider
OR-Lib instances which are well-established instances for
the p-median and p-center problems, and have up to 900
vertices. In addition new benchmark set of larger instances
is proposed and contains instances with up to 2500 vertices.

e Our heuristic shows that it can cope even with such large
instances in an efficient and effective way.

The rest of the paper is organized as follows. In Section 2, we
explain the steps of the straightforward implementation of the
Basic Variable Neighborhood Search heuristic. In the following
Section 2.1, we present the enhancements of this implemen-
tation by presenting an efficient implementation of the local
search within Interchange or Vertex Substitution neighborhood.
Section 2.3 contains the refined implementation of the shaking
procedure as well as complete pseudo-code of the refined VNS
algorithm. In Section 3, we present computational results, and
finally, we conclude the paper by summarizing the contributions
and giving some future work directions in Section 4.

D. Ristic, N. Mladenovic, M. Ratli et al.

2. Variable neighborhood search heuristic for the p-next cen-
ter problem

Variable Neighborhood Search metaheuristic was initially in-
troduced by Mladenovi¢ and Hansen [25] as a general framework
for building heuristics based on systematic changes of neighbor-
hood structures during the search for a (near-) optimal solution.
Since then, many heuristics following this recipe have been suc-
cessfully applied for solving a wide range of optimization and
location problems. For example, VNS heuristics have been devel-
oped for the solution of the p-center problem [16], probabilistic
p-center problem [26] and p-next center problem [14,17].

Basic VNS includes two main phases: the local search phase
within one neighborhood structure, and the shaking phase, where
the change of neighborhoods occurs. During the local search
phase, the current neighborhood is being explored to reach a local
optimum, while the goal of the shaking phase is to jump from
the current neighborhood to a new one, i.e., escaping from the
local optima valleys. In other words, Basic VNS during the local
search phase achieves intensification, while jumping to faraway
neighborhoods achieves diversification of the search process.

In this section we present the straightforward implementation
of the Basic VNS heuristic for the p-next center problem. This
implementation is also presented in [14], but we repeat it here
to show how it may be improved. Within the Basic VNS, the
solution of the p-next center problem is represented as a set
I = {my,m,...,mp}, [IT| = p, IT C V. Consequently, the kth
neighborhood of a solution /7 may be defined as:

Ne(IT) = {IT'||IT'| =p, [I' CV, |IT'N M| =p—k},
k=1,2,...,p.

In other words, it represents a set of solutions obtained by re-
placing k centers from the solution IT by k centers not included
in IT. Recall that the set of potential center locations and the
set of users coincide, and both are denoted by V, as stated in
Introduction.

Based on the previous definitions, Algorithm 1 presents pseu-
docode of the Basic VNS algorithm for the p-next center problem.
The algorithm starts by generating an initial solution which is
set to be the current incumbent solution I7. After that the main
VNS loop starts. It consists in applying alternately, the shak-
ing procedure, the local search procedure and the neighborhood
change step in order to enhance the incumbent solution. The
shaking procedure aims to diversify the search by generating
a random solution from the neighborhood Ni(/T). The level of
diversification is controlled by the parameter k;;ox which deter-
mines the largest possible k value. Initially, k is set to 1, meaning
that the solutions from the neighborhood N;(/T) are used to
diversify the search. After that, each time an improvement of the
incumbent solution occurs, k is reset to 1. Otherwise, its value
is incremented by one, meaning that bigger jumps will be made
by the shaking procedure Shake(IT, Ni) to possibly resolve the
current local optima trap. As a local search procedure, the Basic
VNS applies the local search within the neighborhood N1(IT). The
local search in [14] uses the first improvement search strategy (as
soon as a better neighbor solution is detected it is set to be new
incumbent solution and search is resumed), while the BVNS we
develop in this paper uses the best improvement search strategy
(the best improving neighbor solution (if any) is set to be new
incumbent solution and the search is resumed). The Basic VNS
finishes its work once the maximum allowed CPU time, specified
by parameter T;,qy, is reached.

The local search through the neighborhood N; examines p -
(n—p) possible solutions in each iteration. However, many among
them do not improve the current solution. Therefore, it would

Applied Soft Computing 140 (2023) 110276

Algorithm 1: Basic VNS for the p-next center problem

Function BVNS(/7, Kmax, Timax)
1 IT < Initial_Solution();

2 repeat
3 k < 1;
4 while k < ko do
5 IT" < Shake (IT, Ny) ;
6 IT" < Local_Search (IT',N;) ;
7 k <~ k+1;
s if IT" is better then IT then
9 o<’
L k <~ 1;
10 T < CpuTime();

until T > Ty,
11 Return /7;

be beneficial to eliminate these solutions from the search pro-
cess. This may enable an efficient move to a better solution
and therefore significantly speed up the local search process. In
the context of p-center problems, such speed-up has been done
in [16], where the authors called such approach 1-Interchange
or Vertex Substitution (VS) heuristic. In this paper, following the
ideas from [16], we propose our Vertex Substitution (VS) heuristic
applicable to the p-next center problem. As already said in the
introduction, our aim is to show that the properties that hold
for the p-center problem are applicable for the p-next center
problem as well, and that they enable the development of an
efficient heuristic for the p-next center problem. In addition, we
enhance the straightforward Basic VNS (given in Algorithm 1), by
developing a refined shaking procedure which does not generate
completely random solution from the neighborhood Nj.

2.1. An efficient vertex substitution heuristic for the p-next center
problem

Similarly, as observed in the case of the pCP, each solution
IT of the p-next center problem partitions users into p disjoint
subsets, S1, Sz, ..., Sp. Each subset set S;, called a star, contains
the users allocated to the same reference center ;. The distance
between the center 77; and its farthest user, plus the distance from
center ; to its closest, i.e., the backup center, 77; represents the
radius of star S;. The distance is named the radius by analogy
to the terminology used in the p-center problem. Denoting the
radius of each star by r(S;), it follows that the objective function
value of the solution I7 is determined by the critical star S,
with the greatest radius, i.e., f(J7) = maXiq,. p{r(S)}. The
corresponding center and user, that yield the objective function
value, are also called critical and they are denoted by =, and u,,
respectively.

Consequently, to improve the solution, the largest radius needs
to be shortened. This may be accomplished by opening new
center which: (i) reduces the distance from the critical user to
the reference center and/or; (ii) reduces the distance between
the critical center 7. and its backup center. In both cases a new
center needs to be opened, and one of the existing centers needs
to be closed. The discussed situation is illustrated in Fig. 1. A
current solution of the p-next center problem with n = 15 users
and p = 3 centers partitions users into three disjoint subsets,
S», Ss and Sy, represented by the reference centers 2, 5 and 11,
respectively. The critical center 5 and the critical user 8 yield the
radius 3.94+2.73 = 6.67(cm), represented by the red edges (8, 5)
and (5, 2). To improve the current solution, the largest distance
d(8,5) + d(5, 2) needs to be shortened (vertex 2 is the backup

D. Ristic, N. Mladenovic, M. Ratli et al.

(a) Solution

Applied Soft Computing 140 (2023) 110276

& |
e

4 541 3% 84 0 114 251 142 426 32 5.18 3. 338 2.8 3 4
428 273 2 114 252 112 394 213 423 343 451 319 264 42

6 7 41 442 251 252 0 356 645 293 638 436 4 36 158 0
446 1 1 142 11 6 0 292 95 88 6 43 21 374 3

8 480 43 238 426 394 64 29 0 1 308 48 6.3 432

(b) Distance matrix

Fig. 1. Example of the p-next center problem with n = 15 and p = 3; the current solution is I7 = {2, 5, 11} and the critical user =, = 8; cluster S, = {1, 2,9, 10}
has radius r, = 5.29, reference center 2 and backup center 5, cluster Ss = {3, 4,5, 6, 7, 8, 14} has radius rs = 6.67, reference center 5 and backup center 2; cluster
S11 = {11, 12, 13, 15} has radius ri; = 6.04, reference center 11 and backup center 5. The best improving swap move replaces 11 by 4. The distance matrix is given

at the right-side of solution.

center of center 5). Hence, potential centers which opening may
reduce the objective function value are ones located inside circle
C; (of radius d(8, 5) rooted at vertex 8) or centers located inside
circle G, (of radius d(5,2) rooted at vertex 5). It should be
noted that circle C; contains possible locations that may improve
reference center positioning, while circle C; contains ones that
may improve backup center location. For example, if vertex 7 is
selected to be a new center, the best choice for the center deletion
is center 2 since it yields the lowest objective function value. The
new solution is [T = {5, 7, 11} with the critical user u. = 1,
the critical center 7. = 5, the backup center at vertex 7 and the
largest radius r = d(1,5) + d(5,7) = 4.28 + 1.12 = 5.4. This
radius value corresponds to the new objective function value.
The user 8, as the critical user from the previous solution, now
is included into the cluster S; = {3,7,8,10, 13} and due to
its new reference center 7 and backup center 5, its distance is
shortened to d(8,7) + d(7,5) = 2.92 + 1.12 = 4.04. On the
other hand, if the vertex 6 had been selected to be a new center,
the objective function value would have increased. Although,
the critical user (p = 8) from the previous solution with the
newly assigned pair of centers (5, 6) would shorten its distance
(d(8,5) + d(5,6) = 3.94 + 252 = 6.46 < 6.67), the new
solution would not be better. The new solution IT = {5, 6, 11},
with the new critical user 7. = 1, its reference center 7. = 5
and backup center at vertex 6, would yield the objective function
value d(8,5) + d(5, 6) = 4.28 + 2.52 = 6.8, which is worse than
the previous 6.67. Therefore, the new solution has been discarded.

Anyway, after all the vertices from the circles C; and C, have
been tried out, it turns out that the vertex 4 is the best choice for
the new center. In order to minimize the objective function value,
the center 4 should be opened and center 11 closed. In this case,
the new solution is IT = {2, 4, 5}; the critical user is u. = 10;
its reference and backup centers are 2 and 5, respectively. Such
solution yields the maximally improved objective function value
d(10,2)+d(2,5)=2.56 +2.73 = 5.29.

The previous observations suggest that to improve a cur-
rent solution, there is no need to evaluate all solutions in the
interchange neighborhood N;(/T). Hence, analogously to [16],
we propose an efficient way to discard non-promising solu-
tions and focus only on promising ones. For this purpose, we
adopt the following solution representation. Besides a set IT =
{m1, 2, ..., mp} of p chosen centers, we use arrays c1y and

c2 to store, for each vertex, the closest and the second closest
center from the set I7. By convention, for a user v; € V, c17(v;)
corresponds to the reference center with respect to solution I7,
ie,

c1p(vi) = argmin{d(v;, 7j)|m; € 1T}, for v e V\II,

while for a center p; € II, c1(p;) corresponds to the backup
center from I7, i.e.,

c1p(m;) = argmin{d(m;, j)|7; € [T, mj # m;}, for m; e I1.
Similarly, we have

2p(vi) = argmin{d(v;, m;)|m; € 1T, 7w; # c17(vi)},
for vieV\II

and

C2p(m;) = argmin{d(r;, 7;)|7; € IT, mj # 73, 73 # c1p(mi)},
for m; € I1.

Please note that in the case of critical user u, c17(u.) equals to
pc and therefore we will use these two notations interchangeably
in the rest of the paper.

Determining a promising center to open. Using the in-
troduced notation, we can easily verify whether certain swap
move is promising or not. In particular, Algorithm 2 presents the
procedure to verify whether opening of center 7, is promising or
not. The algorithm exploits the fact that a center is promising if
its opening shortens the radius associated to the critical user and
critical center. Three cases that may lead to an improvement are
distinguished:

(1) if centers c15(uc) = 7, and c2(uc) are equidistant from
the critical user u., then the opening of center mj,, may
enable center c2;(u.) to become better option than ..
This happens if c2;(u.) has now closer backup center j,,

(2) if center 7y, is not farther from u. than n., then the radius
may be shortened,

(3) if center 7, is closer to critical center 7. than c1(7¢), then
the radius may be shortened.

These three cases are elaborated in Algorithm 2, which shows that
the verification whether opening of center 7, is promising or not,

D. Ristic, N. Mladenovic, M. Ratli et al.

may be accomplished in the constant time by using arrays c1p
and c2p.

Algorithm 2: Checking whether there is a better solution
if pin is opened as new center
Function ExistsRelaxedDistance(/7, cly, c2p, U, 7¢,
Tin)
1 f <~ d(uc» ﬂc) + d(”m Cll’[(nc));
[*Case 1:*/
2 if d(uc, m.) = d(uc, c27(uc)) and min(d(me, c15(mc)),
d(me, 7in)) > d(c2p(uc), min) then
L return True;
[*Case 2:%/
3 if d(uc, mip) < d(ue, 7o) and d(uc, wip) + d(mwin, ¢17(7in))
< f then
L return True;
[*Case 3:*/
a if d(uc, mip) > d(uc, 7o) and d(uc,) + d(me, min) < f then
L return True;

5 Return False;

Determining the best center to close. Once, the promising
center 7mj,, to be opened, is detected another center m,,, to be
closed, needs to be determined. Similarly, as done in [16], we
develop the greedy procedure that aims to close a center myy; SO
that the objective function value of solution 17" = IT U {m,} is
deteriorated as least as possible. It should be noted that since
the center m;, is promising, we have f(I1') < f(IT). Hence, our
aim is to close center 7, so that the objective function value
fUT" \ {mou}) is as close as possible to f(/1'). In this way we
increase chances to obtain a better solution.

For this purposes, two additional data structures are intro-
duced:

e 1'(m;, 7;) - stores the objective function value for the re-
stricted problem pNCP considering only users that use 7; as
the reference and 7; as the backup center, where 7;, 77; € I7T'.
Note that the values are not computed for all pairs (r;,),
but only for pairs (7;, c17/(7;)), where c1/(7r;) corresponds
to the closest center with respect to the set 17" = IT U {r;,}.
More formally,

(i, 1 (m;)) = max
vjEV,C1n/(Uj):7Ti

d(vj, i) + d(mi, €1 (omi).

It should also be noted that this data structure aims to
calculate the radius for each center from the set /7' and
therefore it contains the objective function value of the
solution IT" = IT U {mj,}.

e z(m;) - stores the objective function value of the restricted
pNCP problem, where the set of vertices contains only ver-
tices that will change the reference or the backup center if
we close center 7; € IT (ie., the set of p centers becomes
IT" \ {m;}). More formally, let us denote by V = {v; €
Viclg(v) = m vV (c1p(v)) # i A el (c 1 (vy)) = 7)), the
set of vertices that change their reference or backup center
if we exclude vertex w; € IT from the solution I7’. Then,
according to Eq. (2), we have:

2(mi) = fUT'\ {7}, V).

If these two data structures are available, the objective func-
tion value of solution f(/7"\ {m;}) may be calculated as:

fUr \ {m)) = maX{Z(m), max
miell,
J'rj;érri.cln/(rrj V£

r'(mj, Clnr(nj))}. (12)

Applied Soft Computing 140 (2023) 110276

Consequently, the best center to be closed may be determined
as:

Tlout = argminf(H/ \ {mi})

wiell
= arg min{ max\ z(7m;), max r' (s, 1 (7)) ¢ -
el miel,

nj#ni.cln/(nj)#ni

(13)

Algorithm 3: The fast vertex substitution local search for
the p-next center problem

Function FastLocalSearchVertexSubstitution(/7,

clp, C2p, e, e, feur)
1 Improvement < True,
2 while Improvement do

3 | f <« o0;
4 Tin <— null, 7wy < null;
5 for each my, € V \ IT do
6 if ExistsRelaxedDistance(I1, c1y, c2p, Uc, 7¢,
7iy) then

7 I < U {my,};

[*Calculate z and r' values *|
8 z < Calculate_z(I1,c1p, c2p, Uc, e, Tin);
9 1" < Calculate_r/(IT, c1y, €27, Uc, ¢, Tin);

[*determine the best center to close and resulting

objective function value *|
10 oyt < argminf(I7'\ {m;}) = argmin

mwiell miell
{ max {z(m), max r'(7;, cln/(nj))} };
miell’,
Hj#]‘[i,cln/(n}')#ﬂ,’
11 [< fFUT'\ {ou}) = max {Z(nout),
max r'(7j, cln/(nj))};
miell’,

ﬂj#”oubﬂnf(”j)#ﬂout
12 if f” < f’ then
13 f/ (_f//;
14 T i < Tins
15 T out <= Tout;

if f.,, > f’ then
16 four < f';
17 n enu{n*in}\{”*out};
18 Update (I1,clp, c2p, uc, 7c);
19 Improvement <« True;
else
| Improvement < False;

return (71, c1, c2p, Uc, mc);

The outline of the algorithm that examines only promising
solutions in the neighborhood N1(/7) and exploits data structures
r’ and z to determine the best center to be closed is presented
in Algorithm 3. The algorithm is named Fast Local Search Vertex
Substitution. At the input, Algorithm 3 requires solution /7, critical
user u., critical center 7. as well as associated data structures
c1 and c2p. The objective function value of the input solution
is provided via parameter fq,. Each time a better solution is
found all input parameters are updated. Hence, at the output the
procedure returns the best encountered solution stored in the
input parameters.

D. Ristic, N. Mladenovic, M. Ratli et al.

Applied Soft Computing 140 (2023) 110276

d(vi, win) < d(vi, c17(vy)) Vv
Vi=que V‘(d(v,-,mn)zd(vi,cln(vin A d(in, (i) < d (1o, clp(cln(v))) (14)
Box I.
d(c1(vi). in) < d(c1r(vi), clp(clp(vi) A
= ”"eV‘(d(vi,mn(vi))<d<v,-,n,-n) v (d(vf,c1n<vi)>=d(ui, nm)Ad(c1n(vi),n.-n)<d(c1n(mn),mn))) (16)
Box II.
d(vi, c17(v;)) = d(vi, 2(vi)) < d(vi, Tin) A
V" = v,-eV‘({ }) (18)
min{ d(c (o), 11 (u)), d(c1 (v,)} > d(c2r(vr). min)

Box III.

2.2. Theoretical foundations of fast local search vertex substitution
algorithm

In this section we discuss the correctness of the precedent
algorithm and its complexity. First, we explain how the r’ and
z values may be computed in an efficient way by using c1; and
c2p arrays.

Property 1. Using arrays c1; and c2p, the r’ values in Algorithm 3
may be computed in the time complexity O(n), where n is the number
of users.

Proof. We distinguish four cases:

(1) The opening of new center 7, may attract certain users
to change their reference centers in one of two following
ways: (1) new center j, is closer; or (2) i, and c17(v;) are
at the same distance from v; € V but the distance between
new center and its backup center is smaller. Consequently,
the set of such users is defined as Eq. (14) given in Box L.
In this case the corresponding r’ value is calculated as:

r'(in, 1 (i) = max{d(vi, 7in) + d(7in, 1 (7in))}- (13)

(2) The users may keep the allocated reference center but be
allocated to a new backup center 7;,. Hence, we distinguish
the set of users given in Box II.

This set enables us to calculate the corresponding r’ values,
for each pair (7j, i), 7 € {c1(vi)lvi € V"}, as:

r'(7j, i) = ma‘/ﬁd(vi, ;) + d(mj, 7win)lr; = c1p(vi)}. (17)
vie

(3) The users may become allocated to c2(v;) and use the
center m;, as the backup center. This situation occurs if
c17(v;) and c2(v;) are equally distant from v;, center
is farther from v;, but center m; enables center c2p(v;)
to become better reference center (that is, the distance
d(c2p(v;), min) is shorter than any of the distances
d(c17(vi), c1(c17(v1))), d(c1g(v;), win)). Consequently, we
distinguish the set given in Box III. This set enables us to

calculate the corresponding r’ values, for each pair (7j, i),
7j € {c2p(vi)|v; € V"), as:

r'(7j, i) = {2%{61(1):', ;) + d(7j, 7win)|mp = 2z (vi)}. (19)

(4) The last set includes the users that keep their pair of
centers from the solution I7: VO = V \ (V' U V" U V")
In this case r’ values are given as:

r'(mj, c1p(m;)) = mé‘%{d(vh ;) +d(7j, 17 ()| = c1(vi)}.

(20)

In any of the precedent formulas (15), (17), (19) and (20) the
values in the brackets can be calculated in the constant time
and therefore the time complexity to calculate all r’ values is
O(IVO[+ V'] + [V"| + V")) = O(]V|) = O(n). O

Property 2. Using arrays c1 and c2p, the z values in Algorithm 3
may be computed in the time complexity O(n), where n is the number
of users.

Proof. First, we note that for any vertex v € V, the closest center
from the set IT; = IT' \ {m;} = IT\ {m;} U {mx}, denoted as
c1p,(v), may be determined in the constant time. Namely, the
user (center) either keeps the same closest center c¢1;(v) it had
before, or it is assigned to the closest of c2;(v) and my,. This
observation would be used in the following two cases:

(1) Closing center 7r; € IT causes a user to lose its reference
center. That is c1/(v;) = m; which implies c1p(v;) =
c17(v;). The set of such users is defined as:

—
V!- = {Uj S V|C1n(vj) =]Ti}.

In this case, a user from set V; is re-assigned to the second
closest center c2(v;) or newly added center . Let us
denote the closest one to v; as c,,. Then, the maximum
p-next center function value among all users to whom
center r; € IT was assigned as a reference center may be

D. Ristic, N. Mladenovic, M. Ratli et al.

computed as:

z'(m):mm/({d(vj,cvj)—f-d(cuj,clni(cvj))}, (21)

vieV;
where clni(cvj) refers to the center from the set IT; = IT \
{m;} U {min} which is closest to Cy- This closest center may
be determined in the constant time only examining the
centers from the set C' = {cln(cvj), cZn(cvj), Tin} \ {cuj, mi}.
This further implies that in this case z/(7;) is calculated in
the time complexity O(|V|).

(2) Closing center 7r; € IT causes a user to lose its backup
center. The set of such users is defined as:

—
Vi = {Uj € V|C]n/(C]n/(vj)) =T N\ C]n/(Uj) ;é i},

Let us suppose that c15/(v;) equals to Cy; and corresponds
to the closer of c1;(v;) and 7, to the vertex v;. If Cyj = Tin
and the current backup center is c1/(miy) = clp(my) =
m;, then the new backup center becomes c2p/(my) =
c27(min). On the other hand, if Cy = c1(v;) and cln/(cvj)
= cln(cuj) = 7;, then the new backup center, after closing
7;, will be the closer of czn(cvj) and 7;, to Cyj- This implies
that the new backup center c1 n,-(Cvj) may be determined in
the constant time from the set C" = {c2p(cy), win} \ {cy;}
as closer one to Cy-

Therefore, the maximum p-next center function value
among all users to whom center m; € IT was assigned
as a backup center may be computed in O(|V;/|) time
complexity as:

2'(m) = m.:g(/{d(vj, cvj) + d(cvj, clni(cvj))}. (22)
vjEVi

The observations (1) and (2) imply that the resulting objective
function value of all users who lost their reference or backup
center is given as:

z(m;) = max({z'(m;), 2" ()}

Hence, we infer that z values may be computed with respect to
the users in the time complexity O(|V|) = O(n). O

Having known z and r’ values, we show in the next property
that the best center to be closed may be found in an efficient way.

Property 3. The best center to be closed is determined as:

oy = argminy max{ z(m;), max
el mjell’,
wj#En, 1 (j)#m

r'(7j, Cln’(ﬂj))”,

(23)

where IT' = IT U {m;,}. Therefore, it may be determined in time
complexity O(p?), where p is the number of centers.

Proof. Once again we define IT; = IT \ {m} U {my,} as the
solution obtained by closing center 77; and opening center r;, and
IT' = IT U {m;;} as the solution obtained by opening center ;.
In addition, we define by V; =V \ {V; UV} the set of users that
do not change the reference and backup centers if center 7; € IT
is closed. The definitions of sets V:» and V,/»/ remain the same as in
the previous property. Using this notation, the objective function

Applied Soft Computing 140 (2023) 110276

value of the best solution I7* is determined as:

far) = ie(rlrvlzivr_l_mf(ﬂf)

= min {max{d(vj, 1, (vy)) +d(v;, cln‘(clnl(vj)))”

i€{1,2,..p} | vjeV

= min { max
i€(1.2e.p} | oy 77 7

{d(vj, 1, (vy)) +d(v;, cln((cln,(uj)))}}

nlgxﬂ’{d(ujg c1,(vy)) + d(v;, c1n,(c1n,(vj)))},
) vieV;UV;
= min ,{max{

etz magg{d(v,, 1 (wy) +d(vy, c1n,(c1n‘(vj)))]

par
vieV;

) e

= min {max{z(m). max {r/(ﬂj,clnr(nj))}“
i€(1,2,...p} mell’,
T g ()
= min{max{z(m), max {r'(m, Cln'(ﬂj))}”~
piell e,

T Cl g ()3
Note that in Eq. (24) we exploited fact that the value of

max, 1 gt d(vj, c1i,(vy)) + d(vj, c1,(c1p,(vy))) ¢ is stored in

z(7;). On the other hand the value maxujev/_u{d(vj, Cl]'[i(vj)) +

d(vj, clni(clni(vj))) is actually the largest radius associated to

a center who remains in the solution together with its backup
center and therefore it may be found as
max mell’, {T’(T[j, Cln/(”j))}
7j #ni,cln/ (nj)#ni
Therefore, from the last equation in (24) we conclude that
the best center, that should be closed, is determined in the time
complexity O(p?), using auxiliary data structures. O

This property confirms that Algorithm 3, in line 10, prop-
erly identifies center ., to be closed. The direct consequence
of Eq. (24) is the following corollary, which provides the number
of solutions examined by the used greedy approach to identify
the best center to be closed.

Corollary. Using the greedy approach to determine the best center
to be closed, the p different solutions from the neighborhood N(IT)
are visited.

The next property provides overall complexity of Fast Local
Search Vertex Substitution algorithm (Algorithm 3).

Property 4. The time complexity of one iteration of Fast Local
Search Vertex Substitution (Algorithm 3) in the worst case is
0(n® +p?n) if the auxiliary data structures are used, n is the number
of users and p is the number of centers.

Proof. In order to determine the time complexity of one iter-
ation of the Local Search Vertex Substitution algorithm,
it is necessary to determine first the complexity of employed
subroutines. Based on Properties 1 and 2, the time complexity of
calculating z and r’ values is O(n). The best center to be deleted
is determined in the complexity O(p?). The Update method up-
dates the arrays c1; and c2;7 which length is p for each of n
users. Hence, its time complexity is O(pn). (Note: If the heap
data structure were used to store the second-closest centers, the
time complexity would be improved to O(nlog(p)), but in that
case, the space complexity would increase for O(pn) and the
time complexity of Fast Local Search Vertex Substitution
would not be improved.) The time complexity of the Exists
Relaxed Distance function is constant. Fast Local Search
Vertex Substitution uses Exists Relaxed Distance and
greedy center removal at most n — p times while Update method
is used once. Hence, the worst-case time complexity is O(n® +
p?n) + O(pn) ~ O(n® + p?n). O

D. Ristic, N. Mladenovic, M. Ratli et al.

In the case of straightforward implementation of the local
search within neighborhood N1(/T), we will need to visit nx(n—p)
solutions and to evaluate each solution by formula (1) we need
np? operations. Hence, the time complexity of straightforward
implementation is O(n>p?).

On the other hand, if p is significantly less than n, Algorithm
3 has O(n?) time complexity as stated in the following corollary,
while straightforward implementation has time complexity O(n>).

Corollary. If p < n, the time complexity of one iteration of Fast
Local Search Vertex Substitution algorithm (Algorithm 3)
is O(n?), while straightforward implementation has time complexity
o(n).

It should be noted that Fast Local Search Vertex Substi-
tution algorithm is actually a heuristic approach to explore In-
terchange neighborhood. Namely, a heuristic approach is applied
in any of functions Exists Relaxed Distance, Calculate_z
and Calculate_r. This heuristic approach comes from the fact
that we do not keep the track of all centers that are equidistant
from a user, but we store at most two of them. Preliminary
experiments where we kept the track of all equidistant centers
revealed that the storing and evaluating all equidistant centers
had negative impact on overall performance of our solution ap-
proach: the solution process was slowed down and therefore
sometimes worse solution values were found within the same
time. On the other hand, we recall that our aim is to propose a
“less-is-more” solution approach by identifying the least number
of ingredients yielding the highest performance. For this reason,
we have decided to store at most two equidistant centers (if
any) and show in the subsequent sections that even with this
reduction our solution approach is very powerful.

2.3. Shaking procedure for the p-next center problem

In addition to the refined local search, we implement a refined
shaking procedure as well. The shaking procedure is still based
on generating a random solution from the neighborhood N (IT),
but instead of generating completely random solution, our refined
procedure generates a semi-greedy solution in each iteration.
Namely, to generate a solution from the neighborhood N(IT),
our procedure applies k iterations where in each iteration it
exchanges one pair of centers. In each iteration, a center to be
opened is chosen so that the current objective function value is
improved, while a center to be closed is chosen at random. The
outline of shaking procedure is given in Algorithm 4.

Algorithm 4: Refined Shaking Procedure for the p-next
center problem
Procedure RefinedShaking(I7, c1y, c2, Uc, 7c, four, k)
forj=1:kdo

1 Choose center i, to be opened at random;
2 if ExistsRelaxedDistance (P, c1p, c2p, U, ;) then
3 T <~ T U {my);
4 1" < Calculate_r/'(I1,cly, c2p, Uc, Tc, Tin);
5 Choose center 7y, to be closed at random;
6 Calculate z(moyue);
7 feur < max {Z(nout)a

max r'(m;, cln/(nj))};

nj-eﬂ’.

7j#ETout ¢ 17 (70)# Tout

8 IT < IT' \ {mout};
9 Update (c1p, 2, Uc, c);

Applied Soft Computing 140 (2023) 110276

Hence, the more refined version of the Algorithm 1 that we
implement in this paper is presented in Algorithm 5. It works
following the same principles as Algorithm 1, but has more ad-
vanced ways of intensifying (see Algorithm 3) and diversifying
the search (see Algorithm 4).

Algorithm 5: Refined Basic VNS for the p-next center
problem

Function Refined BVNS(Kmnax, Trmax)
1 [*random initial solution*/
2 IT < choose p centers at random;
3 Form arrays c1; and c2p;
4 Determine critical user u, and critical center m;
5 Calculate objective function value, f, of the current

solution IT;
6 repeat
7 k < 1;
8 while k < kj. do
9 ', clg, 2prul, mw'e, f'or) < (I, ¢y, €2, U,
e, feur) s
10 RefinedShaking(IT', c1p, 2, g, 7w/, f e K) 5
11 (", clgr, c2pr,ul, 7", f") < FastLocal
SearchVertexSubstitution(/1’, cly, 2, ul,
7o f)
12 if IT" is better then IT then
13 (I1, 1y, 2, Ue, e, four) <= (I1, clpgr, C2ppr,
u' . " f//)
C»s C» cur’»
k < 1;
14 T < CpuTime();

until T > Ty,
15 Return (17, c1p, €27, Ue, ¢, four)i

The algorithm implementation can be downloaded from https:
//1drv.ms/u/s! AnaX64fUELcfgoF74G7IMuEksN5SGg?e=BFFH8q.

2.4. Less-is-more strategy used in the paper

At the end of this section, we provide more details that high-
light what is “less” in our heuristic compared to the previous
ones. First of all, we recall that the main idea of the “less-is-more”
approach is to use a minimum number of search ingredients,
in the most efficient way, so that the developed heuristic is
competitive or better than the state-of-the-art approach. In other
words, the “less-is-more” methodology highly encourages that
we first exploit all techniques that may increase the efficiency
of the used set of ingredients before involving new ingredi-
ents. For example, the current state-of-the-art approaches hybrid
GRASP [14] and hybrid BRKGA [15] use the same local search
and shaking procedures, but on top of them they apply other
metaheuristic methodologies that make their approaches to be
very complex hybrid approaches. As already said, in this paper we
follow another philosophy and, as much as possible, try to refine
the same local search and shaking procedures used in [14,15].
As a result, we show that the local search within N;(/7) may
be performed in an efficient way by avoiding non-promising
solutions. Consequently, we come up with the local search pro-
cedure whose single iteration has smaller time complexity than
the one iteration of the standard local search. In particular the
time complexity is reduced by the factor n, where n is the number
of vertices. Similarly, we refined the standard shaking procedure.
The refinement is the simplest possible, yet effective, and consists
in one simple condition that verifies, before executing a random
swap move, if it is promising or not. As it will be shown in
Section 3.1, this simple refinement enables us to additionally im-
prove the results. It should be noted that this refinement does not
increase the time complexity of the shaking procedure. Last but

https://1drv.ms/u/s!AnaX64fUELcfgoF74G7lMuEksN5SGg?e=BFFH8q
https://1drv.ms/u/s!AnaX64fUELcfgoF74G7lMuEksN5SGg?e=BFFH8q
https://1drv.ms/u/s!AnaX64fUELcfgoF74G7lMuEksN5SGg?e=BFFH8q

D. Ristic, N. Mladenovic, M. Ratli et al.

not least, our heuristic has smaller number of parameters to be
adjusted compared to the previous hybrid approaches. Therefore,
our heuristic can be considered in this regard more user-friendly.

On the other hand, it is true that our heuristic consumes
more memory to store a solution together with auxiliary data
structures, compared to the state-of-the-art heuristics. However,
this memory consumption equals O(n), where n is the number of
vertices, and it is not higher than 200 MB on the largest instances
with 2500 vertices. Obviously, such memory consumption is neg-
ligible for modern computers. Even if we drastically increase the
size of instances, our heuristic will be still executable on any of
nowadays computers.

To summarize, in terms of techniques this section proposes
two techniques. The first one is to speed up the local search
process by screening only promising solutions; while the second
technique is the one that enables smarter shaking by hopefully
re-directing the search toward promising parts of the solution
space instead of performing random jumps. Both techniques are
accompanied by auxiliary data structures, which are indeed sim-
ple arrays, but which enable us to quickly calculate the objective
function values and detect promising zones of the solution space.
It should be noted that the inspiration for these techniques and
data structures comes from [16,18,20], where authors proposed
similar ideas for the p-center problem and p-median problem.
Inspired by those ideas, we develop and test, for the first time,
auxiliary data structures and techniques for the p-next problem.
As it will be shown in Section 3, these techniques and data struc-
tures enable us to obtain remarkable results on the benchmark
instances.

3. Computational results

In this section, we present the computational results obtained
by testing the proposed VNS algorithm for the p-next center
problem. The algorithm is implemented using C++ and all tests
were carried out on an Intel Core i7-8700K (3.7 GHz) CPU with
32 GB RAM. For testing purposes four different data sets have
been used:

e OR-Lib instances. The data set contains 40 instances from
OR-Library [27]. Those instances are well-known benchmark
instances used for p-median and p-center problems. In those
instances the number of vertices n varies from 100 to 900,
while number of sought centers p is between 5 and 200.

e Instances from [14]. This is the set of small-sized instances
that was originally proposed in [14]. It contains 132 test
instances derived from OR-Library instances, pmed1-pmed4
and pmed6-pmed8, by taking the first n vertices into con-
sideration. The largest instances contain 200 vertices.

e rndkreg test instances. This set is proposed for the first
time in this paper for the p-next center problem. It con-
tains 44 instances with n varying from 1000 to 2500 and
p between 5 and 200.

e rnddnskreg test instances. This is the second data set that
is proposed in this paper for the p-next center problem.
It contains 48 instances with 500-1000 vertices defined
over graphs with densities varying from 50% to 80%, and p
between 5 and 200.

Please note that Londe et al. [15] developed their own set
of benchmark instances. Unfortunately, this data set was not
available for us and therefore we did not include it in comparison.
However, it should be noted that those instances were derived
from OR-Lib instances and consequently the largest instances
from the data set of Londe et al. do not have more vertices than
the largest instances from OR-Lib data set. On the other hand,

10

Applied Soft Computing 140 (2023) 110276

here we go even further and propose two data sets that con-
tain instances with larger number of vertices than any instance
considered so far for the p-next problem.

The computational experiments are divided into four parts:

o The first part of experiments aims to assess the performance
of the proposed refined BVNS algorithm against the Basic
VNS proposed in [17] and the Basic VNS that uses the refined
local search procedure and the standard shaking procedure
of performing a random swap move. The aim is to show ben-
efits of using both refined local search and refined shaking
procedures. For this purpose, the OR-Lib test instances are
used, the same ones used in [17].

e The second part is devoted to tune parameter Ky, to iden-
tify the best value from the chosen set {p/4, p/2, p} of po-
tential values. This experiment is conducted on the set of 30
instances chosen at random from the OR-LIB, rnddnskreg,
rndkreg data sets.

e The third part of experiments compares the proposed re-
fined BVNS and CPLEX MIP solver on the small size instances
from [14]. For all those instances, but one, optimal solution
values are given in [15]. Hence, the aim of this experiment is
to assess the ability of the refined BVNS to attain the optimal
solution values.

e The last part of experiments aims to assess the perfor-
mance of the proposed refined BVNS against state-of-the-art
heuristics. The analysis is conducted over all instances from
the OR-LIB, rndkreg and rnddnskreg data sets. As state-
of-the-art heuristics we identified the hybrid GRASP heuris-
tic from [14] and the hybrid BRKGA-BI heuristic from [15].
For the sake of brevity they will be referred to as GRASP and
BRKGA, in the rest of section. Similarly, the refined BVNS
will be referred to as BVNS whenever is suitable. It should
be noted that the authors provided us with original source
codes of GRASP and BRKGA, and therefore they are executed
under same conditions as our BVNS. Consequently, we have
had a fair comparison among all heuristics.

On each test instance, all heuristics (refined BVNS, GRASP and
BRKGA) has been executed 20 times, each time starting from a
different initial solution. Regarding the parameter setting, our
BVNS heuristic has two formal parameters, ky,,x — the maximum
level of shaking and T - the maximum CPU time allowed
to our heuristic, and their setting will be discussed in subse-
quent sections. The obtained results of heuristics are assessed in
terms of a solution quality (Best, Average, Worst) and time-to-
target (the time needed to reach, for the first time, a solution
provided at the output). This analysis has been accompanied by
adequate statistical analysis. More precisely, to further strengthen
analysis, we perform Wilcoxon signed rank test [28] and also
derive the performance profiles for both the solution values and
times-to-target as suggested in [29].

The Wilcoxon signed rank test is conducted pairwise for any
two heuristics H and H’. Let us denote by Best(H), Avg.(H),
Worst(H), the set of the best, worst and average solution values,
respectively, found by certain heuristic H. Similarly, let us de-
note by CPU(H), the set of times-to-target consumed by certain
heuristic H. Then, for each two H and H’ under consideration, we
apply Wilcoxon signed rank test on Best(H) and Best(H') values;
Avg.(H) and Avg.(H’); Worst(H) and Worst(H') and finally on
CPU(H) and CPU(H’) values.

The performance profiles have been derived relatively to the
used set of test instances, and the measure we used to quantify
the performance of a heuristic. More precisely, we derive the
performance profiles for the Best, Average, and Worst solution
values as well as for time-to-target values. For solution values
(Best, Average and Worst) the performance profile is derived in

D. Ristic, N. Mladenovic, M. Ratli et al.

the following way. Let us denote by #, the set of heuristics in
comparison, and by M the measure under consideration, which
may be the Best solution value, Average Solution or Worst Solu-
tion value. Then for each heuristic H € # we calculate the ratio
R as: RY = My / ming ey My. These ratios are then used to de-
rive performance profiles, as described in [29]. The performance
profile of heuristic H with respect to metric R’;;’ measured over
each instance s in a set S is simply the graph of the cumulative
distribution function, defined as: Fi(r) = [{s € SIRY < r}|/IS|.
In the case of time-to-target, the performance profile of heuristic
H with respect to time-to-target CPU_Timey measured over each
instance s in a set S is the graph of the cumulative distribution
function, defined as: FfLy 14,6(r) = I{s € S|CPU_Timey < r}|/|S|.

3.1. Assessing the benefits of new local search and shaking proce-
dures

In this section we want to show benefits of using the re-
fined local search and shaking procedures. For this purpose, we
compare Basic VNS from [17], refined BVNS presented in Al-
gorithm 5 and BVNS that uses the standard shaking procedure
and the refined local search. Note that Basic VNS from [17] uses
the standard shaking procedure and the local search procedure
that filters solution, without using any auxiliary data structure.
Hence, this local search is very close to the standard local search.
To differentiate these three variants we will use the following
nomenclature: BVNS1 will be Basic VNS from [17]; BVNS2 will be
BVNS that uses the standard shaking procedure and the refined
local search; and BVNS will be newly proposed refined BVNS.

In [17], BVNS1 was executed on OR-Lib instances with kpgy
set to p and Ty Set to 5n, where n is the number of vertices
in a considered instance. Hence, for BVNS and BVNS2 we adopt
the same value for kp., while we set Ty to n. The idea is to
show that even with 5 times shorter Ty, both BVNS2 and BVNS
may outperform BVNS1. The tests are performed on 40 OR-Lib
instances as BVNS1 was. On each instance, each variant has been
executed 20 times. In Table 1, we report the best, the average and
the worst solution values attained in 20 runs (Columns ‘Best’,
‘Avg.’ and ‘Worst’, respectively), the average time-to-target in
20 runs (Columns ‘CPU Time’); and the number of runs (out
of 20) in which a heuristic have succeeded to reach the best
value reported in the second column (Columns ‘# Best’). The best
value corresponds to the best solution value found by one of the
three BVNS in comparison. In addition, we provide performance
profiles derived with respect to the best, average, worst solution
values and time-to-target (see Figs. 2(a)-2(d)). To verify if there
is significant difference between each two heuristic with respect
to the best, average, worst solution values or time-to-target, we
perform Wilcoxon signed rank test and report resulting p values
in Table 2.

From the reported results, we observe that the results of
BVNS2 are better than the results of BVNS1. BVNS2 has ten
times smaller average-time-to-target than BVNS1, but even the
average of the worst solution values of BVNS2 is better than
the average of the best solution values of BVNS1. The better
performance of BVNS2 becomes more evident looking at per-
formance profiles. With respect to any measure (best, average,
worst solution value or time-to-target), the curve of BVNS2 is
above the curve of BVNS1. In addition, Wilcoxon signed rank test
applied to BVNS1 and BVNS2 shows that, at significance level
of 5%, there is a significant difference between them. Namely,
for each measure (best, average, worst solution value or time-to-
target) the resulting p values are less than 0.05. Consequently, we
conclude that BVNS2 significantly outperforms BVNS1. Since both
heuristic use the same shaking procedure, the obtained results
show the clear benefits of using refined local search than the one

11

Applied Soft Computing 140 (2023) 110276

proposed in [17] (i.e., significantly better solutions in significantly
less time). This also confirms the benefits of using the auxiliary
data structures.

Comparing BVNS and BVNS2, we observe that BVNS exhibits
higher level of stability. The difference between the average of
the best solution values and the average of the worst solution
values for BVNS is only 0.10, while the same difference for BVNS2
is almost 0.50. In addition, BVNS is only heuristic able to reach
all best solution values identified in the second column, while
BVNS2 fails to do so in 4 cases. Also, we observe that the average
time-to-target of BVNS (that is 19.38) is around 3 times shorter
than that of BVNS2 (that is 61.61). Referring to performance
profiles, we observe that the curve of BVNS is always above the
curve of BVNS2. This signifies that BVNS outperforms BVNS with
respect to any measure (best, average, worst solution value or
time-to-target). The Wilcoxon signed rank test revealed that, at
significance level of 5%, this difference is significant in terms of
average, worst solution value or time-to-target. Consequently, we
infer that the refined shaking procedure is significantly better
option to be coupled with the refined local search than the
standard shaking procedure.

3.2. Parameter tuning

In the previous test, kmq parameter was set following the
recommendations from [17], while T, was set so that is sig-
nificantly less than the Tp. from [17]. Now, we set Tyq to
1800 s, as it is recommended in [15]. Due to this change, we are
interested to verify if k. = p is still the best choice or not for
our BVNS (Algorithm 5). In this regard, we test three different
choices of kiax: {p/4, p/2, p} and perform the tests on the training
set of instances. The training set is a representative subset of
30 instances (around 25% of the total set of instances) that are
randomly selected. Hence, the training set contains instances of
different size, different p values and different graph densities. It
contains 10 instances from each of the sets: OR-Lib, rndkreg and
rnddnskreg. The obtained results are presented in Table 3. For
each choice of kpqy value we report: the best, the average and the
worst solution value attained in 20 runs, the average CPU time to
attain the final solution for the first time (i.e., the average time-
to-target), and the number of times that the algorithm is able
to attain the best value reported in the second column. The best
value corresponds to the best solution value found under one of
three considered parameter settings.

From the reported results we infer that the best average values
in terms of best, worst, average solution values are attained by
setting kmqx to p. In addition, this setting enables BVNS from Al-
gorithm 5 to quickly reach the final solution. Namely, the average
CPU time of 221.43 s is slightly better compared to other two
kmax settings. In addition, this setting causes that the best-known
solution values (provided in the second column) are attained on
average in 16.03 out of 20 runs. Again, this is the highest value
compared to the two other settings. The second best setting turns
out to be kyqx = p/2, followed by kyqx = p/4.

However, the difference among all settings does not seem
significant. The best, worst and average solution values as well
as CPU times, under different settings, tend to be very close. To
verify this we conduct Wilcoxon signed rank test. The outcomes
of Wilcoxon signed rank test are given in Table 4. Since all entries
of the table are above 0.05 (the significance level of 5% is consid-
ered in Wilcoxon signed rank test), we reject the hypothesis that
there is a significant difference for any pair of kg settings. This
implies that choosing one of considered k. values does not play
critical role in BVNS performance with respect to any of criteria:
solution quality or time-to-target. However, since k., = p leads
to slightly better results and higher stability of VNS, we decide to
fix the value of k. to p in the rest of experiments.

D. Ristic, N. Mladenovic, M. Ratli et al.

Applied Soft Computing 140 (2023) 110276

Table 1

Comparison of three BVNS on OR-lib instances.
Test Best BVNS1 BVNS2 BVNS
instance Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time Best Avg. Worst time Best Avg. Worst time

pmed1 166 166 166.30 172 050 19 166 166.00 166 0.10 20 166 166 166 0.14 20
pmed2 135 135 136.05 147 10046 16 135 135.00 135 249 20 135 135 135 147 20
pmed3 151 151 153.80 164 8724 15 151 151.00 151 227 20 151 151 151 049 20
pmed4 118 118 11935 125 177.84 5 118 118.00 118 431 20 118 118 118 078 20
pmed5 85 85 85.00 85 38.63 20 85 85.00 85 029 20 85 85 85 0.10 20
pmed6 107 107 107.90 111 146.09 14 107 107.00 107 2192 20 107 107 107 191 20
pmed7 84 84 86.00 91 390.52 2 84 84.00 84 16.57 20 84 84 84 1022 20
pmed8 81 84 86.85 92 332.01 0 81 81.05 82 66.10 19 81 81 81 1729 20
pmed9 71 71 74.60 75 261.44 2 71 71.00 71 398 20 71 71 71 041 20
pmed10 70 70 70.00 70 974 20 70 70.00 70 0.19 20 70 70 70 0.16 20
pmed11 70 70 70.10 72 168.67 19 70 70.00 70 147 20 70 70 70 0.76 20
pmed12 72 72 72.75 79 54426 16 72 72.00 72 1.70 20 72 72 72 085 20
pmed13 47 52 60.95 65 658.49 0 47 48.00 49 102.89 1 47 47 47 1791 20
pmed14 60 60 60.60 61 515.14 8 60 60.00 60 340 20 60 60 60 074 20
pmed15 44 44 44.95 48 81139 13 44 44.00 44 2262 20 44 44 44 1.68 20
pmed16 54 55 55.10 57 106.52 0 54 54.35 55 9849 13 54 54 54 57.07 20
pmed17 46 47 49.70 53 791.43 0 46 46.80 47 34.63 4 46 46.35 47 11024 13
pmed18 50 50 52.40 55 1101.69 6 50 50.00 50 1239 20 50 50 50 1.67 20
pmed19 32 40 43.50 46 1113.12 0 33 34.80 37 293.75 0 32 32 32 10.61 20
pmed20 40 40 43.30 48 1079.11 4 40 40.00 40 26.26 20 40 40 40 3.05 20
pmed21 48 48 48.80 50 377.36 5 48 48.20 50 5249 17 48 48.05 49 10.90 19
pmed22 49 52 55.05 58 849.43 0 49 49.45 50 144.02 11 49 49 49 7278 20
pmed23 32 42 44.40 47 1371.95 0 36 36.75 37 183,51 0 32 32 32 50.16 20
pmed24 33 35 38.40 45 1196.55 0 33 33.15 34 14154 17 33 33 33 6.89 20
pmed25 44 44 44.00 44 24245 20 44 44.00 44 446 20 44 44 44 199 20
pmed26 47 47 47.95 49 905.53 7 47 47.00 47 36.30 20 47 47 47 1434 20
pmed27 38 40 41.20 43 946.39 0 38 38.55 40 236.00 11 38 38.1 39 12489 18
pmed28 57 57 57.00 57 2040 20 57 57.00 57 255 20 57 57 57 271 20
pmed29 36 36 37.25 42 1461.31 9 36 36.00 36 26.18 20 36 36 36 414 20
pmed30 40 40 40.00 40 108.86 20 40 40.00 40 424 20 40 40 40 265 20
pmed31 35 35 36.95 40 1057.44 7 35 35.00 35 2629 20 35 35 35 18.77 20
pmed32 72 72 72.00 72 1529 20 72 72.00 72 414 20 72 72 72 4.07 20
pmed33 22 33 34.85 37 1611.42 0 28 28.55 30 442.10 0 22 22.75 23 193.32 5
pmed34 41 41 41.00 41 7214 20 41 41.00 41 433 20 41 41 41 439 20
pmed35 36 36 36.85 38 927.56 4 36 36.00 36 48.57 20 36 36 36 17.96 20
pmed36 42 42 42.00 42 22352 20 42 42.00 42 895 20 42 42 42 6.95 20
pmed37 33 33 34.90 38 1634.93 6 33 33.00 33 2223 20 33 33 33 6.49 20
pmed38 40 40 40.20 41 110241 16 40 40.00 40 17.87 20 40 40 40 10.16 20
pmed39 74 74 74.00 74 3270 20 74 74.00 74 9.02 20 74 74 74 929 20
pmed40 23 29 32.10 35 1394.52 0 26 26.75 27 333.57 0 23 23 23 34.15 20
Average 60.63 61.93 6345 66.23 599.66 9.33 60.98 61.16 61.45 61.61 16.33 60.63 60.66 60.73 20.86 19.38

Table 2

Pairwise Wilcoxon test for three BVNS.
Method Best solution values Average solution values Worst solution values CPU time

BVNS1 BVNS2 BVNS BVNS1 BVNS2 BVNS BVNS1 BVNS2 BVNS BVNS1 BVNS2 BVNS

BNS1 - 9.77E—04 9.77E—04 - 1.17E—-06 1.17E—-06 - 1.69E—06 1.15E—-06 - 3.57E—08 3.57E—08
BVNS2 - - 1.25E-01 - - 4.88E—04 - - 9.77E—-04 - - 1.31E-06

3.3. Results on small instances from [14]

The data set from [14] contains 132 small instances. For all in-
stances from this set, but one, optimal solution values are known
and published in [15]. Hence, our aim is to verify the capability of
the proposed BVNS to retrieve the optimal solutions. The detailed
results, per instance, are provided in Appendix 1, while here we
provide summary results in Table 5. This table is conceived in the
same way as the similar table in [15] and contains the success
ratios for BVNS, GRASP and BRKGA. To quantify the success ratio
of a heuristic we count the number of optimal solutions it is able
to reproduce (Column ‘# Opt’); calculate the absolute percentage
of reproduced optimal solutions as % x 100 (Column ‘% Opt’);
and provide the percentage number of runs a heuristic is able
to reach an optimal solution (Column ‘), Run’). The results for
BRKGA and GRASP are directly taken from [15]. To demonstrate
fast convergence of our refined BVNS, we present its results for
Tmax = 1 seconds, where n is number of vertices and Tp,qx = 1800

seconds. It should be noted that the instances from [14] has from
10 to 200 nodes. Consequently, Ty,q, = n is at least 9 times shorter
than Tj;,q = 1800.

According to Table 5, both BVNS heuristics, with different time
limits, are able to reach all known optimal solutions, BRKGA does
so on 127 instances while GRASP provides optimal solutions on
96 out of 131 instances. In addition, BVNS with T,,,x = n, has
much higher percentage number of runs in which it provides
an optimal solution than GRASP and BRKGA. Extending the time
limit to 1800 s, this percentage increases for around 1%, and
becomes 10% higher than the percentage number of runs reported
for BRKGA. In general there are only 5 instances where BVNS with
Tmax = 1, did not reach the optimal solution in each of 20 runs,
and only 4 such instances for BVNS with Ty;,,, = 1800. Referring to
the average time-to-target (see Tables A-1-A-3), we infer that the
average time-to-target of BVNS with Tj;,.x = n is not greater than
81.82 s, which witnesses its efficiency in reproducing an optimal
solution.

12

D. Ristic, N. Mladenovic, M. Ratli et al.

1 v T T T x T T 1 —

‘ / [P —e—BUNS1
P BVNS2
0.95 o’ EVNS
-] _
S o091 o
= ' i
Z ¥
£ \
o 085 ¢
o /
;=)
o
® 08r [
. e
075 #
07 L !
1 105 11 115 12 125 13 135 14 145 15
solution value ratios
(a) Best solution values
1 - —
; o [—=—Bwns1
&
L - BVNS2| |
09 o BVNS
+ ©
N P
7 T
8 A 3
S 07 ,of
© &
@
2 3
— 06f
% g
5 p
= 05r ¢
)
0.4F g
03r ¢
é
¢
02 . . . L . .
1 1.1 12 1.3 14 15 16 1.7

solution value ratios

(c) Worst solution values

Applied Soft Computing 140 (2023) 110276

1 T — r T E—

—©—BVNS1
BVNS2| |
BVNS

09 prwsd e

08

0.7t

Q\'%xr

06F

05F

fraction of instances

04

0.3

M Hmée‘&e—ao S

02 . ; " "
12 13 14 15
solution value ratios

(b) Average solution values

—

i —&—BVNS1
091 i) Pt BVNS2| |
’ BVNS

08

0.7

fraction of instances

600 800 1000 1200 1400 1600 1800
seconds to reach a best solution

0 200 400

(d) CPU time

Fig. 2. Performance profiles for three BVNS on ORlib instances.

The only one instance from this set, without known optimal
solution, is pmed6_200_30. For this instance, CPLEX 12.10 MIP
solver returns the solution value of 69 as reported in [15]. On this
instance, both BVNS with T,,.x = n and BVNS with Tj,,x = 1800
are able to provide an improved solution with value of 66 in each
run. On the other hand BRKGA and GRASP, executed by us 20
times and time limit of 1800 s, offer the solution which value is
72.

We tried to solve the remaining benchmark instances with
CPLEX 22.1 MIP solver imposing the time limit of 8 h (28,800 s)
and using MIP formulation presented in this paper. Unfortunately,
CPLEX succeeded to provide a feasible solution value on only
16 out of 40 OR-Lib instances (instances pmedil-pmed15 and
pmed20), while for the remaining 24 OR-Lib instances, and all
rndkreg and rnddnskreg instances failed to provide a feasible
solution or at least meaningful lower-bound value. The results
obtained on 16 OR-Lib instances, where a feasible solution is
attained, are provided in Appendix 2. Among these 16 feasible
solutions, only 9 are optimal ones.

3.4. Comparison with state-of-the-art heuristics

This section presents a comparison of the proposed refined
BVNS against the state-of-the-art heuristics: the hybrid GRASP
from [1] and the hybrid BRKGA from [15]. All three heuristics
have been executed by us on the same machine, and run 20 times
on each test instance. In each of 20 executions, the maximum

13

allowed time T for any of heuristic has been set to 1800 s.
For testing purpose three data sets are used: OR-Lib, rndkreg
and rnddnskreg. The results are reported in Tables 6, 8 and
10. The first column in each table provides the names of test
instances, the next column gives the best-known solution values
for each test instances while the remaining ones contain results
obtained by three heuristic: the best, the average and the worst
solution values in 20 runs (Columns ‘Best’, ‘Avg.’ and ‘Worst’,
respectively); the average time-to-target in 20 runs (Columns
‘CPU Time’); and the number of runs (out of 20) in which a
heuristic have succeeded to reach best-known value reported in
the second column (Columns ‘# Best Known').

3.4.1. Results on OR-Lib instances

From the results on OR-Lib instances, we infer that the pro-
posed refined BVNS exhibits the highest stability. On 37 out of
40 instances, it is able to attain the best-known solution value in
each of 20 runs. On the other hand, BRKGA succeeded to do so on
28 out of 40 instances, while GRASP is able to do so on only 10
instances. In addition, BVNS is able to reproduce all best-known
solutions, while BRKGA fails to do the same on 7 instances. In this
regard GRASP again exhibits the poorest performance failing to
reach the best known solution values on 18 instances. Referring to
nine optimal solutions found by CPLEX 22.1 MIP solver (Appendix
2, Table A-4), BRKGA and BVNS are able to reach all of them in
each run, while GRASP fails to encounter the optimal solution for
pmed20 instance.

D. Ristic, N. Mladenovic, M. Ratli et al.

Applied Soft Computing 140 (2023) 110276

Table 3

Tuning kg parameter.
Test Best kpo =D kmax = p/2 kmax = p/4
instance Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time Best Avg. Worst time Best Avg. Worst time
pmed1 166 166 166.00 166 0.08 20 166 166.00 166 0.12 20 166 166.50 171 0.07 18
pmed10 70 70 70.00 70 013 20 70 70.00 70 0.14 20 70 70.00 70 0.13 20
pmed16 54 54 54.00 54 10530 20 54 54.00 54 19570 20 55 55.10 57 1.46 0
pmed17 46 46 46.00 46 35041 20 46 46.25 47 30471 15 46 46.15 47 51354 17
pmed20 40 40 40.00 40 356 20 40 40.00 40 3.14 20 40 40.00 40 331 20
pmed21 48 48 48.05 49 129.68 19 48 48.15 49 2175 17 48 48.95 51 6.00 8
pmed23 31 31 31.85 32 138.60 3 32 32.00 32 65.26 0 31 31.85 32 172.51 3
pmed27 38 38 38.00 38 24463 20 38 38.00 38 35587 20 38 38.05 39 37201 19
pmed33 22 22 22.25 23 62352 15 22 22.45 23 58464 11 22 22.10 23 648.76 18
pmed40 23 23 23.00 23 3488 20 23 23.00 23 43.02 20 23 23.00 23 36.92 20
rndkreg1 14 14 14.00 14 26.72 20 14 14.00 14 4358 20 14 14.00 14 36.85 20
rndkreg5 10 10 10.55 11 407.15 9 10 10.40 11 51585 12 10 10.60 11 361.16 8
rndkreg7 9 9 9.00 9 9164 20 9 9.00 9 85.89 20 9 9.00 9 9538 20
rndkreg9 8 8 8.00 8 230.75 20 8 8.00 8 22917 20 8 8.00 8 255.84 20
rndkreg11 7 7 7.00 7 73555 20 7 7.05 8 856.14 19 7 7.00 7 716.05 20
rndkreg34 8 8 8.85 9 485.04 3 8 8.80 9 557.29 4 8 8.75 9 583.56 5
rndkreg38 7 7 7.55 8 711.52 9 7 7.50 8 772.67 10 7 7.25 8 816.54 15
rndkreg40 6 6 6.95 7 553.30 1 7 7.00 7 489.89 0 6 6.90 7 524.99 2
rndkreg42 6 6 6.00 6 917.31 20 6 6.00 6 885.64 20 6 6.00 6 87459 20
rndkreg44 6 6 6.00 6 566.98 20 6 6.00 6 665.55 20 6 6.00 6 578.99 20
rnddnskreg1 7 7 7.00 7 247 20 7 7.00 7 295 20 7 7.00 7 3.04 20
rnddnskreg5 6 6 6.00 6 418 20 6 6.00 6 392 20 6 6.00 6 385 20
rnddnskreg6 5 5 5.95 6 26.85 1 5 5.90 6 70.88 2 5 5.95 6 21.28 1
rnddnskreg11 4 4 4.00 4 345 20 4 4.00 4 345 20 4 4.00 4 317 20
rnddnskreg12 2 2 2.95 3 69.73 1 2 2.85 3 198.84 3 3 3.00 3 4.01 0
rnddnskreg37 5 5 5.00 5 65.94 20 5 5.00 5 8225 20 5 5.00 5 7184 20
rnddnskreg41 5 5 5.00 5 37.04 20 5 5.00 5 3425 20 5 5.00 5 3136 20
rnddnskreg42 5 5 5.00 5 40.21 20 5 5.00 5 3462 20 5 5.00 5 3399 20
rnddnskreg47 4 4 4.00 4 15.92 20 4 4.00 4 1431 20 4 4.00 4 17.92 20
rnddnskreg48 3 3 3.00 3 2034 20 3 3.00 3 21.86 20 3 3.00 3 2032 20
Average 2217 2217 22365 2247 22143 16.03 2223 22378 2253 238.11 15.77 2223 22438 2287 22698 15.13
Table 4
Pairwise Wilcoxon test for different choices of kpq, parameter.
kmax Best solution values Average solution values Worst solution values CPU time
p p/2 p/4 p p/2 p/4 p p/2 p/4 p p/2 p/4
p - 1.0000 1.0000 - 0.9141 07319 - 0.5000 0.1250 - 0.1254 0.9263
p/2 - - 1.0000 - - 06356 - - 0.1875 - - 0.5716
Table 5 solution values. From all above observations, we may rank BVNS

Comparison on 131 instances from [14] with known optimal solutions.

Method # Opt % Opt % Run
BRKGA 127 96.21 88.11
GRASP 96 72.73 74.42
BVNS (Tax = 1) 131 100.00 97.12
BVNS (Tpax = 1800) 131 100.00 98.14

Looking at performance profiles for the best and average solu-
tion values (Figs. 3(a) and 3(b)) we infer that there is no instance
on which the best (average) solution value of BVNS is worse than
the best (average) solution value of two other heuristics. BRKGA
is able to provide the best average solution values on around
70% of instances, while GRASP is able to do so on less than 30%
percent of instances. In terms of the quality of the worst solution
values, BVNS is again the best. Its curve is on the top of two other
curves and on more than 95% instances, its worst solution value is
better than the corresponding worst solution values of two other
heuristics. The performances of two other heuristics with respect
to the worst solution values remain similar as for the average

14

as the best, BRKGA as the second best and GRASP as the worst.

Comparing the average time-to-target we observe that BVNS is
the fastest heuristic (average time 49.61), followed by GRASP (the
average time 114.77), while BRKGA turns out to be the slowest
(the average time 231.21). This observation is further confirmed
by the performance profile in Fig. 3(d) where the curve of BVNS
is on top of two other curves, and the curve of GRASP is above
the curve of BRKGA.

To check if the difference among methods is statistically signif-
icant or not, we applied Wilcoxon signed rank test on each pair of
heuristics. Table 7 provides the resulting p-values for each pair of
heuristics and each measure used (Best Solution Value; Average
Solution value; Worst Solution Value; and time-to-target). From
the obtained results we infer that at the significance level of 5%,
there is a significant difference among methods with respect to
Best, Average and Worst Solution Values. In terms of time-to-
target, the significant difference has been detected only between
BRKGA and BVNS. Consequently, we may conclude that on OR-
library instances the proposed BVNS significantly outperforms
BRKGA and GRASP in terms of solution quality (Best, Average, and

D. Ristic, N. Mladenovic, M. Ratli et al.

Applied Soft Computing 140 (2023) 110276

Table 6

Comparison on ORIib instances.
Test Best GRASP BRKGA BVNS
instance known Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time known Best Avg. Worst time known Best Avg. Worst time known

pmed1 166 166 166.00 166 005 20 166 166.00 166 0.10 20 166 166.00 166 0.08 20
pmed2 135 137 14225 145 0.14 0 135 135.00 135 2.09 20 135 135.00 135 062 20
pmed3 151 151 159.35 170 0.14 2 151 151.00 151 104.30 20 151 151.00 151 056 20
pmed4 118 120 12830 140 0.47 0 118 118.00 118 52.76 20 118 118.00 118 1.16 20
pmed5 85 85 91.40 95 1.14 2 85 85.00 85 163 20 85 85.00 85 0.10 20
pmed6 107 107 108.60 110 0.14 7 107 107.00 107 108.73 20 107 107.00 107 3.07 20
pmed7 84 86 90.40 94 0.49 0 84 84.55 85 701.80 9 84 84.00 84 13.76 20
pmed8 81 87 93.50 102 1.78 0 84 84.00 84 81.64 0 81 81.00 81 2298 20
pmed9 71 75 80.85 85 6.39 0 71 71.00 71 889.38 20 71 71.00 71 042 20
pmed10 70 70 70.00 70 1392 20 70 70.00 70 0.11 20 70 70.00 70 0.13 20
pmed11 70 70 70.75 73 028 13 70 70.00 70 312 20 70 70.00 70 1.05 20
pmed12 72 72 74.35 78 1.12 9 72 72.00 72 4339 20 72 72.00 72 087 20
pmed13 47 61 65.70 69 7.93 0 51 51.00 51 159.61 0 47 47.00 47 1439 20
pmed14 60 60 62.35 66 36.47 2 60 60.00 60 423 20 60 60.00 60 076 20
pmed15 44 48 49.80 53 75.94 0 44 44.00 44 229 20 44 44.00 44 142 20
pmed16 54 55 55.40 58 0.53 0 54 54.85 55 417.81 3 54 54.00 54 10530 20
pmed17 46 49 51.60 53 1.83 0 47 47.05 48 777.98 0 46 46.00 46 35041 20
pmed18 50 53 55.55 59 23.87 0 50 50.00 50 283 20 50 50.00 50 174 20
pmed19 32 41 43.90 46 75.09 0 33 33.60 34 939.87 0 32 32.00 32 1050 20
pmed20 40 41 44.10 46 216.35 0 40 40.00 40 339 20 40 40.00 40 356 20
pmed21 48 48 49.25 51 0.83 5 48 48.00 48 33350 20 48 48.05 49 129.68 19
pmed22 49 53 56.80 58 3.02 0 49 51.15 52 587.04 2 49 49.00 49 16452 20
pmed23 31 43 45.35 48 59.11 0 36 37.20 38 927.40 0 31 31.85 32 138.60 3
pmed24 33 36 38.85 42 218.15 0 33 33.00 33 17.99 20 33 33.00 33 6.83 20
pmed25 44 44 44.00 44 42794 20 44 44.00 44 032 20 44 44.00 44 189 20
pmed26 47 47 47.70 49 1.15 10 47 47.60 48 925.71 8 47 47.00 47 16.86 20
pmed27 38 40 42.35 45 4,09 0 39 39.75 40 391.88 0 38 38.00 38 24463 20
pmed28 57 57 57.00 57 11117 20 57 57.00 57 025 20 57 57.00 57 258 20
pmed29 36 36 36.75 38 396.01 10 36 36.00 36 143 20 36 36.00 36 431 20
pmed30 40 40 40.00 40 956.79 20 40 40.00 40 041 20 40 40.00 40 255 20
pmed31 35 35 36.15 38 1.56 6 35 35.00 35 564 20 35 35.00 35 16.93 20
pmed32 72 72 72.00 72 554 20 72 72.00 72 020 20 72 72.00 72 414 20
pmed33 22 33 34.85 37 195.61 0 26 26.95 27 368.81 0 22 22.25 23 62352 15
pmed34 41 41 41.00 41 836.41 20 41 41.00 41 039 20 41 41.00 41 435 20
pmed35 36 36 36.45 37 204 11 36 36.10 37 87237 18 36 36.00 36 19.87 20
pmed36 42 42 42.00 42 745 20 42 42.00 42 1.00 20 42 42.00 42 7.00 20
pmed37 33 33 34.05 35 374.09 6 33 33.00 33 338 20 33 33.00 33 6.09 20
pmed38 40 40 40.00 40 254 20 40 40.00 40 153 20 40 40.00 40 1259 20
pmed39 74 74 74.00 74 945 20 74 74.00 74 024 20 74 74.00 74 953 20
pmed40 23 29 30.85 32 513.90 0 23 23.00 23 511.65 20 23 23.00 23 3488 20
Average: 60.60 62.83 65.09 6745 11477 7.08 61.08 61.27 6140 23121 16.85 60.60 60.63 60.68 49.61 1943
Total best-known 22 33 40

Table 7

Pairwise Wilcoxon test on results on OR-Lib instances.
Method Best solution values Average solution values Worst solution values CPU time

GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS

GRASP - 1.89E—04 1.90E—04 - 1.73E—06 1.73E-06 - 2.46E—06 1.68E—06 - 0.1878 0.5453
BRKGA - - 0.0156 - - 4.88E—04 - - 1.50E—03 - - 0.0039

Worst). In addition it significantly outperforms BRKGA in terms of
average time-to-target.

3.4.2. Results on rnddnskreg instances

On rnddnskreg instances the proposed BVNS reaches best-
known solution values on 44 out of 48 instances, in each of 20
runs. There is only one instance on which it fails to reproduce the
best-known solution in any of 20 runs. BRKGA reaches in total 34
best-known solution values. Among them 29 best-known solution
values are reported in each of 20 runs. The performance of GRASP
is the poorest. It attains 23 out of 48 best-known solution values
and there are only 4 instances on which the best-known solution
value is reached in any of 20 runs. Consequently, looking at
the performance profiles related to the best solution values (see
Fig. 4(a)), BVNS is highly on the top, BRKGA turns out to be the

second best and GRASP is the worst. The same tendency may be
observed in Figs. 4(b) and 4(c) related to the average and worst
solution values. This implies that regarding any criterion (the
best, average or worst solution values), the proposed BVNS is the
best option. Even more the average of the worst solution values
of BVNS is better than the average of the best solution values
of BRKGA. Similarly, the average of the worst solution values of
BRKGA is better than the average of the best solution values of
GRASP. In particular, on 47 out of 48 instances the worst solution
values of BVNS are equal or better than the best solution values
of BRKGA. On the other hand on all instances, the worst solution
values of BRKGA are equal or better than the best solution values
of GRASP. The results of Wilcoxon signed rank test (Table 9), with
significance level of 5%, imply that indeed there are significant
differences among GRASP, BRKGA and BVNS in respect to any

15

D. Ristic, N. Mladenovic, M. Ratli et al.

:
A _|—e—cRrasp
B BRKGA | -|
BVNS

0.95

09k ¢ //

085 +

08 $
075 $

0.7

fraction of instances

0.65

06

0.55 L L . . . n
12 126 13 135 14 145 15

solution value ratios

1.15

(a) Best solution values

09F .‘Y - = e

08 / f

0.7¢

06

051

fraction of instances

04r

03

02 i i i
13 14 15
solution value ratios

12

(c) Worst solution values

Applied Soft Computing 140 (2023) 110276

08 f o— BVNS
7 /fj—e
H b
08¢

0.7

0.6

05

fraction of instances

04

03

02 . i : i
12 1.3 1.4 15
solution value ratios

1 1 ‘.1
(b) Average solution values

1 T . - - : . 1 T 2
v § O —°|—o—GRASP

09 g BRKGA |]
@—649(—62 ° L | BVNS

081

0.7

0.6

0.5

fraction of instances

0 100 200 300 400 500 600 700 800 900 1000
seconds to reach a best solution

(d) CPU time

Fig. 3. Performance profiles on OR-Lib instances.

of measures (the best, average or worst solution values). Hence,
we may conclude that BVNS significantly outperforms two other
heuristics in terms of the solution quality.

Referring to the time-to-target, GRASP turns out to be the
slowest with the average time-to-target of 315.67 s. The average
times-to-target of BRKGA and BVNS are considerably better: the
average time-to-target of BRKGA is 46.52, while that of BVNS is
38.98 s. The results of Wilcoxon signed rank test (Table 9), with
significance level of 5%, indicate the there is a significant differ-
ence between BVNS and GRASP in terms of time-to-target, while
the difference between BVNS and BRKGA, as well as the difference
between BRKGA and GRASP, is not statistically significant.

3.4.3. Results on rndkreg instances

The results in Table 10 reveal that the rndkreg are more
challenging than the other instances. This is expected since the
number of vertices in rndkreg instances is greater than in other
instances. Regarding the solution quality we observe that only on
3 instances GRASP has found the best-known solution value, and
there is no instance on which it is able to reach the best-known
solution value in each of twenty runs. BRKGA behaves better in
this regard. It is able to reach 18 best-known solution values, and
on 5 instances it is able to reach the best-known solution value in
each run. BVNS is the heuristic that establishes the best-known
solutions for 41 out of 44 instances and on 25 instances it reaches

16

the best-known solution in each run. On average, it reaches a
best known solution in 14.64 runs, BRKGA does the same in 9.41
runs, while GRASP does so in 0.34 (out of 20) runs. In general,
even the worst solution values of BVNS are in most cases equal
or better than the best solution values of BRKGA. In particular,
this happens on 37 out of 44 instances and therefore the average
of worst solution values of BVNS is better than the average of best
solution values of BRKGA. The same holds when we compare the
worst solution values of BRKGA and the best solution values of
GRASP. Hence, we may conclude that, regarding solution quality,
BVNS is the best option, BRKGA is the second best, while GRASP
turns out to be the worst. Our findings are further supported by
performance profiles in Figs. 5(a), 5(b) and 5(c). On each of these
figures the curve of BVNS is above two other curves, while the
curve of BRKGA is between curves of BVNS and GRASP. Moreover,
on around 90% of instances BVNS attains the best of the best
and average solution values. The best of the best (respectively
average) solution values are attained by BRKGA on slightly above
40% (respectively 20%) instances. In this regard, GRASP exhibits
very poor performance being able to attain the best of the best
solution values on less than 10% of instances and almost none
of the best of average solution values. The similar behavior is
detected when comparing worst solution values (Fig. 5(c)). On all
instances the best of the worst solution values is due to BVNS;
on almost 40% the best of worst solution values are attained by

D. Ristic, N. Mladenovic, M. Ratli et al.

Applied Soft Computing 140 (2023) 110276

Table 8

Comparison on rnddnskreg instances.
Test Best GRASP BRKGA BVNS
instance known Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time known Best Avg. Worst time known Best Avg. Worst time known

rnddnskreg1 7 7 7.10 8 0.71 18 7 7.00 7 0.79 20 7 7.00 7 2.47 20
rnddnskreg2 6 7 7.25 8 2.15 0 6 6.00 6 5.46 20 6 6.00 6 15.05 20
rnddnskreg3 5 6 645 7 44.96 0 5 505 6 331.10 19 5 500 5 724 20
rnddnskreg4 4 4 490 5 491.89 2 4 400 4 504 20 4 400 4 329 20
rnddnskreg5 6 6 6.15 7 0.64 17 6 6.00 6 1.04 20 6 6.00 6 4.18 20
rnddnskreg6 5 6 655 7 2.05 0 6 6.00 6 0.87 0 5 595 6 26.85 1
rnddnskreg7 4 5 560 6 42.99 0 5 500 5 0.25 0 4 400 4 1366 20
rnddnskreg8 3 4 400 4 521.51 0 4 400 4 0.51 0 3 300 3 872 20
rnddnskreg9 5 5 590 6 0.62 2 5 500 5 557 20 5 500 5 1347 20
rnddnskreg10 5 5 575 6 2.05 5 5 500 5 275 20 5 500 5 507 20
rnddnskreg11 4 5 500 5 45.17 0 4 495 5 45.00 1 4 400 4 345 20
rnddnskreg12 2 4 400 4 488.65 0 3 3.00 3 21.13 0 2 2.95 3 69.73 1
rnddnskreg13 6 6 680 7 0.93 4 6 6.00 6 2182 20 6 600 6 2193 20
rnddnskreg14 6 6 695 7 2.99 1 6 600 6 432 20 6 6.00 6 1113 20
rnddnskreg15 4 6 6.00 6 66.06 0 5 5.00 5 164.36 0 4 4.90 5 139.89 2
rnddnskreg16 4 4 470 5 774.05 6 4 400 4 214 20 4 400 4 471 20
rnddnskreg17 6 6 6.10 7 092 18 6 600 6 168 20 6 6.00 6 6.83 20
rnddnskreg18 5 6 6.05 7 2.98 0 5 500 5 50.13 20 5 500 5 4954 20
rnddnskreg19 4 5 535 6 62.42 0 4 480 5 117.11 4 4 400 4 1413 20
rnddnskreg20 3 4 400 4 789.91 0 4 400 4 0.62 0 3 3.00 3 1415 20
rnddnskreg21 5 5 525 6 085 15 5 500 5 128 20 5 500 5 745 20
rnddnskreg22 5 5 5.05 6 2.73 19 5 5.00 5 024 20 5 5.00 5 6.68 20
rnddnskreg23 4 5 500 5 61.42 0 4 425 5 36370 15 4 400 4 576 20
rnddnskreg24 3 3 395 4 734.86 1 3 300 3 16.40 20 3 300 3 490 20
rnddnskreg25 6 6 6.00 6 1.58 20 6 6.00 6 0.61 20 6 6.00 6 14.92 20
rnddnskreg26 5 6 6.15 7 5.11 0 5 500 5 112.87 20 5 500 5 51891 20
rnddnskreg27 4 5 590 6 112.20 0 5 500 5 216.56 0 4 400 4 13344 20
rnddnskreg28 3 4 400 4 1508.31 0 4 400 4 0.79 0 3 300 3 4130 20
rnddnskreg29 5 5 585 6 156 3 5 500 5 1833 20 5 500 5 3035 20
rnddnskreg30 5 5 575 6 5.26 5 5 500 5 659 20 5 500 5 2357 20
rnddnskreg31 4 5 500 5 123.74 0 5 500 5 0.47 0 4 400 4 20.72 20
rnddnskreg32 3 4 400 4 1631.05 0 4 400 4 0.76 0 3 3.00 3 2382 20
rnddnskreg33 5 5 500 5 172 20 5 500 5 038 20 5 500 5 1586 20
rnddnskreg34 4 5 500 5 5.65 0 4 455 5 307.36 9 5 500 5 16.45 0
rnddnskreg35 4 4 4.65 5 122.52 7 4 400 4 28.17 20 4 4.00 4 824 20
rnddnskreg36 3 3 395 4 1505.11 1 3 300 3 7543 20 3 3.00 3 1092 20
rnddnskreg37 5 5 590 6 2.38 2 5 500 5 12822 20 5 500 5 65.94 20
rnddnskreg38 5 6 6.00 6 8.36 0 5 500 5 16.94 20 5 500 5 7028 20
rnddnskreg39 4 5 510 6 185.45 0 5 500 5 2.71 0 4 400 4 53.66 20
rnddnskreg40 3 4 400 4 1800.01 0 4 400 4 125 0 3 3.00 3 7299 20
rnddnskreg4l 5 5 500 5 238 20 5 500 5 171 20 5 500 5 37.04 20
rnddnskreg42 5 5 520 6 790 16 5 500 5 411 20 5 500 5 4021 20
rnddnskreg43 4 5 500 5 187.28 0 5 500 5 0.67 0 4 400 4 3784 20
rnddnskreg44 3 4 400 4 1800.01 0 4 400 4 1.40 0 3 3.00 3 29.04 20
rnddnskreg45 5 5 5.00 5 231 20 5 5.00 5 0.30 20 5 5.00 5 27.71 20
rnddnskreg46 4 5 500 5 7.83 0 4 400 4 5412 20 4 400 4 8120 20
rnddnskreg47 4 4 420 5 181.11 16 4 400 4 0.68 20 4 400 4 1592 20
rnddnskreg48 3 4 400 4 1800.01 0 3 300 3 8931 20 3 300 3 2034 20
Average 4.42 498 528 5.56 31567 4.96 471 476 481 46.52 13.08 444 450 450 3898 1842
Total best-known 23 34 47

Table 9

Pairwise Wilcoxon test on results on rnddnskreg instances.
Method Best solution values Average solution values Worst solution values CPU time

GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS

GRASP - 2.44E—04 3.66E—06 - 1.65E—07 9.97E—-09 - 3.14E-08 8.83E—-10 - 0.0777 0.0412
BRKGA - - 0.0018 - - 3.16E—04 - - 6.10E—05 - - 0.1662

BRKGA, while GRASP fails to reach the bests of worst solution
values on all test instances.

In terms of time-to-target we observe that GRASP heuristic is
the slowest one. On most instances the final reported solution
is attained at the end of the imposed time limit. This signifies
that GRASP has difficulty to cope with large size instances and to
quickly explore the large-size solution space. On the other hand,
such behavior does not apply to BRKGA and BVNS. Comparing

17

the average times-to-target, BRKGA seems to be faster than BVNS.
Looking at performance profiles at Fig. 5(d), this is also confirmed.
However, as may be seen at performance profiles, both BRKGA
and BVNS do not require more than 15 min to reach a final
solution.

To verify if the observed differences among heuristics are
statistically significant or not, Wilcoxon signed rank test is con-
ducted. The p-values are given in Table 11. The provided results

D. Ristic, N. Mladenovic, M. Ratli et al.

1 —t —
o —o— GRASP
0.95 /[BRKGA
'/ BVNS
09 /
’/
$ 085 j/
=
¢
] 0.8 /
0 |
= /|
= 075} /]
o ——
[
§ orf /
= |
Q [
© 065F |
= /
06 4
0.55 /
4
054— i ; . y
1 11 12 13 14 15 16 17 18 19 2
solution value ratios
(a) Best solution values
Pl —o— GRASP
09 P BRKGA | -
¥ 0 BVNS
0.8+
@ 07k
Q
=
8 o6}
wv
=
%5 057
s
= 04r
Q
T
2
Y- 03 o
02+
0.1 ey L L n L n L L
1105 11 115 12 125 13 135 14 145 15

solution value ratios

(c) Worst solution values

Applied Soft Computing 140 (2023) 110276

———"]

[—e—cRrasp
09 /f BRKGA |
/ BVNS

08r /
0.7 ’ £ o
06
051

04

fraction of instances

03

02r

0.1

12 125 13 135 14 145 15

solution value ratios

11 1.15

(b) Average solution values

11— T T T T T S
—©— GRASP
—+—BRKGA |

BVNS

09r ¥ |

08 '.“‘7 .

0.7

0.6
05

04

fraction of instances

03¢

02%

0.1¢

0 200 400 600 800 1000 1200 1400 1600 1800 2000
seconds to reach a best solution

(d) CPU time

Fig. 4. Performance profiles on rnddnskreg instances.

show that there is a significant difference, at significance level
of 5%, between any pair of heuristics regarding the best, av-
erage, worst solution values as well as time-to-target. Taking
into account all findings, we conclude that GRASP is not suitable
for rndkreg instance. It provides significantly poorer solutions
and consumes significantly more time-to-target than other ap-
proaches. BVNS turns out to be the best option: it provides
significantly better solution than any other heuristic. The only
drawback of BVNS might be significantly higher time-to-target
than that of BRKGA. However, taking into account the remark-
able solution values and the highest time-to-target of 15 min to
produce a final solution, BVNS can be recommended as the best
option to solve rndkreg instance of the p-next problem. Namely,
the p-next problem arises on strategical/tactical planning level
and therefore 15 min to solve large-scale problem instances can
be considered as acceptable.

4. Conclusion

This paper studies the p-next center problem. The problem has
been introduced as a model of handling humanitarian logistics,
and nowadays, during the COVID-19 epidemic, the interest in the
problem might significantly increase. The aim is to identify p out
of n possible centers, e.g., emergency centers, able to serve all the
users, e.g., patients, in a way that the maximum distance from
the user’s location to the backup center (the center assigned to

18

the user if the reference center is disabled) passing through the
reference center (the user’s closest center) is minimized among
all of the users.

In this paper, we follow the recent “Less-is-more” approach
philosophy and design a refined Basic VNS algorithm, using the
minimum number of search ingredients in the most efficient
manner. As a main contribution, we theoretically and empiri-
cally show that the properties and data structures applicable to
the p-center problem may be extended to this new problem.
In other words, we use more theory which allows the simplest
possible algorithm to advance the current state-of-the-art algo-
rithms. Consequently, we show that Interchange neighborhood
can be significantly reduced by following sophisticated filtering
rules and that the Whitaker data structure, developed originally
for solving the p-median problem, works as well for the p-next
center problem. In particular, we proposed refined local search
and shaking procedures which benefits are empirically evaluated
and which are main ingredients of our refined BVNS.

The computational results show that the refined BVNS sig-
nificantly outperforms the previous state-of-the-art results from
the literature in terms of solution quality. It is only heuristic
able to reach all optimal solutions for instances from [14]. In
addition, on OR-Lib, rnddnskreg, and rndkreg instances, the
refined BVNS is able to reproduce 128 out of 132 best-known
solution values, the hybrid BRKGA is able to reproduce 85 out
of 132 best-known solution values, while the hybrid GRASP is

D. Risti¢, N. Mladenovic, M. Ratli et al.

Applied Soft Computing 140 (2023) 110276

Table 10

Comparison on rndkreg instances.
Test Best GRASP BRKGA BVNS
instance known Solution value CPU # Best Solution value CPU # Best Solution value CPU # Best

Best Avg. Worst time known Best Avg. Worst time known Best Avg. Worst time known

rndkreg1 14 14 1480 15 3.22 4 14 1410 15 2415 18 14 1400 14 26.72 20
rndkreg?2 12 14 1455 15 9.95 0 12 12.05 13 15369 19 12 12.00 12 116.09 20
rndkreg3 11 14 15.00 16 36.58 0 11 11.70 12 24492 6 11 11.15 12 374.16 17
rndkreg4 11 14 1465 15 95.90 0 11 11.00 11 21869 20 11 11.00 11 15290 20
rndkreg5 10 13 1420 15 226.32 0 10 1095 11 373.96 1 10 1055 11 407.15 9
rndkreg6 10 14 14.00 14 383.88 0 10 1095 11 338.37 1 10 10.00 10 11575 20
rndkreg7 9 12 1245 13 805.38 0 10 10.00 10 321.65 0 9 9.00 9 9164 20
rndkreg8 8 11 11.60 12 1296.45 0 9 925 10 737.64 0 8 8.00 8 13461 20
rndkreg9 8 12 12.00 12 1589.97 0 10 10.00 10 268.38 0 8 8.00 8 230.75 20
rndkreg10 7 11 11.00 11 1792.75 0 10 10.00 10 93.44 0 7 7.60 8 394.43 8
rndkreg11 7 11 1135 12 1800.01 0 10 10.00 10 93.15 0 7 7.00 7 73555 20
rndkreg12 10 10 1125 12 6.51 1 10 10.80 11 208.05 4 10 10.10 11 51466 18
rndkreg13 10 11 12.15 13 22.73 0 10 10.00 10 113.88 20 10 10.00 10 100.73 20
rndkreg14 9 12 1275 13 81.00 0 9 9.75 10 352.89 5 10 10.00 10 164.46 0
rndkreg15 9 11 12.00 13 219.72 0 9 9.05 10 27865 19 9 9.00 9 420.17 20
rndkreg16 9 11 11.15 12 482.57 0 9 9.00 9 39885 20 9 9.00 9 11426 20
rndkreg17 8 11 11.30 12 853.80 0 9 9.00 9 413.56 0 8 8.40 9 426.07 12
rndkreg18 8 10 10.80 11 1754.86 0 9 9.00 9 563.03 0 8 8.00 8 16335 20
rndkreg19 7 10 10.00 10 1800.01 0 9 9.00 9 117.63 0 7 7.00 7 417.84 20
rndkreg20 8 10 10.00 10 1800.01 0 9 9.00 9 101.00 0 8 8.00 8 90.71 20
rndkreg21 7 10 10.00 10 1800.64 0 9 9.00 9 79.18 0 7 7.00 7 286.87 20
rndkreg22 6 9 980 10 1800.38 0 8 8.90 9 95.01 0 6 6.30 7 902.73 14
rndkreg23 10 10 10.50 11 12.93 10 10 10.05 11 156.26 19 10 10.00 10 20126 20
rndkreg24 9 10 1095 12 45.48 0 9 9.00 9 252,70 20 9 9.00 9 367.53 20
rndkreg25 8 10 1090 11 163.80 0 8 8.05 9 452.14 19 8 8.50 9 53950 10
rndkreg26 8 10 1075 11 442.48 0 8 8.15 9 71913 17 8 8.25 9 61682 15
rndkreg27 7 10 10.00 10 951.34 0 8 8.20 9 633.57 0 7 7.95 8 403.24 1
rndkreg28 7 10 10.00 10 1681.58 0 8 8.20 9 640.97 0 7 7.85 8 324.27 3
rndkreg29 7 9 940 10 1800.01 0 8 8.20 9 609.73 0 7 7.00 7 396.50 20
rndkreg30 6 9 9.00 9 1800.41 0 8 8.00 8 502.15 0 6 6.80 7 421.83 4
rndkreg31 6 9 9.00 9 1800.26 0 8 8.25 9 731.55 0 6 6.65 7 601.77 7
rndkreg32 6 9 9.00 9 1800.61 0 8 8.00 8 3.18 0 6 6.35 7 87186 13
rndkreg33 6 8 8.80 9 1800.19 0 8 8.00 8 2194 0 6 6.00 6 773.12 20
rndkreg34 8 9 9.05 10 23.46 0 9 9.00 9 9.84 0 8 8.85 9 485.04 3
rndkreg35 8 9 985 10 85.46 0 8 8.00 8 21084 20 8 8.00 8 607.56 20
rndkreg36 7 9 985 10 301.96 0 7 7.15 8 807.63 17 8 8.00 8 722.95 0
rndkreg37 7 9 985 10 787.28 0 7 7.85 8 400.65 3 8 8.00 8 580.43 0
rndkreg38 7 9 9.00 9 1651.23 0 8 8.00 8 349.63 0 7 7.55 8 711.52 9
rndkreg39 7 9 9.00 9 1800.01 0 8 8.00 8 387.15 0 7 7.00 7 700.64 20
rndkreg40 6 8 8.95 9 1800.24 0 8 8.00 8 3.15 0 6 6.95 7 553.30 1
rndkreg41 6 8 8.05 9 1800.38 0 7 7.90 8 148.60 0 6 6.00 6 857.07 20
rndkreg42 6 8 8.00 8 1800.13 0 7 7.95 8 69.53 0 6 6.00 6 91731 20
rndkreg43 6 8 8.00 8 1800.86 0 7 7.95 8 66.23 0 6 6.00 6 760.57 20
rndkreg44 6 7 7.95 8 1800.15 0 7 7.75 8 87.59 0 6 6.00 6 566.98 20
Average 8.00 1027 1074 11.07 1484.00 0.34 8.89 9.14 941 292.13 5.64 8.07 827 843 440.06 14.64
Total best-known 3 18 41

Table 11

Pairwise Wilcoxon test on results on rndkreg instances.
Method Best solution values Average solution values Worst solution values CPU time

GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS GRASP BRKGA BVNS

GRASP - 5.93E—08 1.60E—08 - 7.41E—09 7.53E—09 - 5.03E—08 5.26E—09 - 1.23E—04 8.39E—05
BRKGA - - 2.41E-05 - - 1.93E—-06 - - 2.03E—-06 - - 0.0327

able to reproduce only 48 out of 132 best-known solution values.
On OR-Lib and rnddnskreg instances the refined BVNS is, on
average, faster than hybrid BRKGA and GRASP. On the other hand,
on rndkreg instances the refined BVNS is faster than the hybrid
GRASP but slower than the hybrid BRKGA. Therefore, we may
conclude that we successfully identified the minimum number
of search ingredients that makes our heuristic to be better than
more complex hybrid approaches. Therefore, the main conclusion
of this work is that the first step in designing a heuristic should
be trying to make each search ingredient as efficient as possible

before bringing so many different search ingredients that increase
complexity.

The possible future research may include the development
of VNS algorithms for the other discrete location problems. We
are witnesses that the centers could quickly run out of their
capacities. Also, in the information age, it is expected to be known
in advance if the reference center is unavailable. Therefore, it
would be interesting to address the capacitated p-next center
and «-neighbor p-center problems, wherein you in advance know
whether to go to the reference or any of the backup centers.

19

D. Ristic, N. Mladenovic, M. Ratli et al.

1 [—r— T ———
g —o— GRASP

0.9 / —+— BRKGA | |

, BVNS
08 Ns i
/ - ¥

07F / P 1

06F / 4
05 P i

04— 1

fraction of instances

03f i

02 ij])

0.1}t - j
[

1 11 12 13 14 15 16
solution value ratios

(a) Best solution values

09t +— BRKGA |

08} 1

06 / / 1

05F / 1

fraction of instances

03} / |
02f J 1

01F J/W 1

0 —_ i 1 1 1 H 1 L
1 14 12 13 14 15 1.6 1.7 1.8

solution value ratios

(c) Worst solution values

Applied Soft Computing 140 (2023) 110276

1 ! , o . —
i —7" [—=—GRASP
0.9 p ——+— BRKGA |
+ BVNS

0.8 /
o 7 2
o 07f e+ g
< ¥
3
n 06+ ¥
£ N
Y A
o 05+ g
c 4
(o] #H
B 04f [/ J
] /
ol P
=03y

02} %f

3
0.1 m*€$9€9®%%
NP
1 1.1 12 13 14 15 16 17
solution value ratios
(b) Average solution values
1 T T —— T T T T —
¥ —o&— GRASP
o9 7 ~— BRKGA|

BVNS

08

071

06

05F

0.4

fraction of instances

03r

021,

0.1

s L L " L L L L

o L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
seconds to reach a best solution

(d) CPU time

Fig. 5. Performance profiles on rndkreg instances.

CRediT authorship contribution statement

Dalibor Risti¢: Methodology, Software, Formal analysis,
Investigation, Data Curating, Writing - original draft. Nenad
Mladenovi¢: Conceptualization, Validation, Formal analysis,
Writing - review & editing, Supervision. Mustapha Ratli:
Conceptualization, Validation, Writing - review & editing.
Raca Todosijevi¢: Methodology, Validation, Formal analysis,
Resources, Writing - original draft, Writing - review &
editing. Dragan UroSevi¢: Conceptualization, Methodology,
Formal analysis, Investigation, Resources, Writing - review &
editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Data availability

Data will be made available on request

Acknowledgments

We are more than grateful to the authors of [14,15] who kindly
provided us with original source codes of their algorithms. We are

also thankful to the reviewers for their valuable comments that
helped us to improve our manuscript.

The work of N. Mladenovic has been partially funded by the
Science Committee of the Ministry of Education and Science of
the Republic of Kazakhstan (Grant No. BR10965172). The work
of D. UroSevi¢ is partially supported by the Serbian Ministry
of Education, Science and Technological Development through
Mathematical Institute of the Serbian Academy of Sciences and
Arts.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.as0c.2023.110276.

References

[1] M. Albareda-Sambola, Y. Hinojosa, A. Marin, J. Puerto, When centers can
fail: a close second opportunity, Comput. Oper. Res. 62 (2015) 145-156.

[2] H. Galik, M. Labbé, H. Yaman, p-Center problems, 2019.

[3] H. Galik, B.C. Tansel, Double bound method for solving the p-center
location problem, Comput. Oper. Res. 40 (2013) 2991-2999.

[4] T. Davidovi¢, D. Ramljak, M. Selmi¢, D. Teodorovi¢, Bee colony optimization
for the p-center problem, Comput. Oper. Res. 38 (2011) 1367-1376.

[5] N. Mladenovié¢, R. Todosijevi¢, UroSevi¢, Less is more: basic variable
neighborhood search for minimum differential dispersion problem, Inform.
Sci. 326 (2016) 160-171.

[6] S. Elloumi, M. Labbé, Y. Pochet, A new formulation and resolution method
for the p-center problem, INFORMS]. Comput. 16 (2014) 84-94.

https://doi.org/10.1016/j.asoc.2023.110276
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb1
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb1
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb1
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb2
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb3
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb3
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb3
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb4
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb4
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb4
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb6
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb6
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb6

D. Ristic, N. Mladenovic, M. Ratli et al.

[7

8

9

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

R. Garfinkel, A. Neebe, M. Rao, The m-center problem: minimax facility
location, Manage. Sci. 23 (10) (1977) 1133-1142.

T. Ilhan, M.C. P1 nar, An efficient exact algorithm for the vertex p-center
problem, Technical Report, vol. 1, 2001, pp. 209-215.

D.S. Hochbaum, D.B. Shmoys, A best possible heuristic for the k-center
problem, Math. Oper. Res. 10 (2) (1985) 180-184.

0. Kariv, S.L. Hakimi, An algorithmic approach to network location
problems. I: The p-centers, SIAM J. Appl. Math. 37 (3) (1979) 513-538.
B. Robi¢, J. Miheli¢, Solving the k-center problem efficiently with
a dominating set algorithm,]. Comput. Inf. Technol. 13 (3) (2005)
225-234,

W. Pullan, Algorithm for the vertex p-center problem, Evol. Comput. 16
(3) (2008) 417-436.

E. Minieka, The m-center problem, Soc. Ind. Appl. Math. 12 (1) (1970)
138-139.

A.D. Lopez-Sanchez,]. Sinchez-Oro, A.G. Hernandez-Diaz, GRASP and VNS
for solving the p-next center problem, Comput. Oper. Res. 104 (2019)
295-303.

Mariana A. Londe, Carlos E. Andrade, Luciana S. Pessoa, An evolutionary
approach for the p-next center problem, Expert Syst. Appl. 175 (2021)
114728.

N. Mladenovi¢, M. Labbé, P. Hansen, Solving the p-center problem with
tabu search and variable neighborhood search, Networks 42 (1) (2003)
48-54.

D. Risti¢, N. Mladenovi¢, R. Todosijevi¢, D. UroSevié, Filtered variable
neighborhood search method for the p-next center problem, Int. J. Traffic
Transp. Eng. 11 (2) (2021) 294-309.

P. Hansen, N. Mladenovié, Variable neighborhood search for the p-median,
Locat. Sci. 5 (4) (1997) 207-226.

21

[19]

[20]

Applied Soft Computing 140 (2023) 110276

N. Mladenovi¢, J. Brimberg, P. Hansen,]J.A. Moreno-Perez, The p-median
problem: A survey of metaheuristic approaches, European]. Oper. Res.
179 (3) (2007) 927-939.

R.A. Whitaker, A fast algorithm for the greedy interchange for large-scale
clustering and median location problems, INFOR: Inf. Syst. Oper. Res. 21
(2) (1983) 95-108.

[21] J. Brimberg, N. Mladenovi¢, R. Todosijevi¢, D. UroSevi¢, Less is more:

[22]

[23]

[24]

[25]

[26]

solving the max-mean diversity problem with variable neighborhood
search, Inform. Sci. 382 (2017) 179-200.

L.R. Costa, D. Aloise, N. Mladenovi¢, Less is more: basic variable neighbor-
hood search heuristic for balanced minimum sum-of-squares clustering,
Inform. Sci. 415 (2017) 247-253.

K. Goncalves-E-Silva, D. Aloise, S. Xavier-De-Souza, N. Mladenovic,
Less is more: Simplified nelder-mead method for large unconstrained
optimization, YUJOR 28 (2) (2018) 153-169.

M. Miki¢, R. Todosijevi¢, D. UroSevi¢, Less is more: General variable
neighborhood search for the capacitated modular hub location problem,
Comput. Oper. Res. 110 (2019) 101-115.

N. Mladenovi¢, P. Hansen, Variable neighborhood search, Comput. Oper.
Res. 24 (11) (1997) 1097-1100.

LI. Martinez-Merino, M. Albareda-Sambola, A.M. Rodri guez Chia, The
probabilistic p-center problem: planning service for potential customers,
European J. Oper. Res. 262 (2) (2017) 509-520-303.

[27] J.E. Beasley, OR-library: distributing test problems by electronic mail, J.

[28]

[29]

Oper. Res. Soc. 41 (11) (1990) 1069-1072.

Frank Wilcoxon, Individual comparisons by ranking methods, Biom. Bull.
6 (1) (1945) 80-83.

Elizabeth D. Dolan, Jorge J. Moré, Benchmarking optimization software
with performance profiles, Math. Program. 91 (2) (2002) 201-213.

http://refhub.elsevier.com/S1568-4946(23)00294-6/sb7
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb7
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb7
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb9
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb9
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb9
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb10
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb10
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb10
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb11
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb11
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb11
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb11
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb11
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb12
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb12
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb12
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb13
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb13
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb13
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb18
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb18
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb18
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb21
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb21
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb21
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb21
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb21
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb24
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb24
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb24
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb24
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb24
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb25
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb25
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb25
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb26
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb26
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb26
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb26
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb26
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb27
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb27
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb27
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb28
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb28
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb28
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb29
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb29
http://refhub.elsevier.com/S1568-4946(23)00294-6/sb29

	Auxiliary data structures and techniques to speed up solving of the p-next center problem: A VNS heuristic
	Code metadata
	Introduction
	Variable Neighborhood Search heuristic for the p-next center problem
	An Efficient Vertex Substitution heuristic for the p-next center problem
	Theoretical foundations of Fast Local Search Vertex Substitution algorithm
	Shaking procedure for the p-Next Center Problem
	Less-is-more strategy used in the paper

	Computational results
	Assessing the benefits of new local search and shaking procedures
	Parameter Tuning
	Results on small instances from lopez2019
	Comparison with state-of-the-art heuristics
	Results on OR-Lib instances
	Results on rnddnskreg instances
	Results on rndkreg instances

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

