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Abstract

The k-center problem with triangle inequality is that of placing k center nodes in a weighted undirected graph in which
the edge weights obey the triangle inequality, so that the maximum distance of any node to its nearest center is minimized.
In this paper, we consider a generalization of this problem where, given a number p, we wish to place & centers so as to
minimize the maximum distance of any non-center node to its pth closest center. We derive a best possible approximation

algorithm for this problem. © 1998 Elsevier Science B.V.
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1. Introduction

The k-center problem is a classical problem in
facility location: given n cities and the distances
between them, we wish to select k¥ of these cities
as centers so that the maximum distance of a city
from its closest center is minimized. The problem
is NP-hard and Hochbaum and Shmoys present a
2-approximation algorithm? for graphs with edge
weights obeying the triangle inequality [4]. Further
they also show that no polynomial-time algorithm for
this problem can have a performance guarantee of
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2 An a-approximation algorithm for a minimization problem runs
in polynomial time and always outputs a solution of value no
more than « times the optimal.

(2 — &) for any € > 0, unless P = NP. In this paper
we consider a generalization of the k-center problem
with triangle inequality in which we require that each
city has some number (say p) of centers “close”
to it. We extend the techniques of Hochbaum and
Shmoys and provide a best possible approximation
algorithm.

Suppose that we wish to locate facilities at k out of
n cities such that the maximum distance of a city to
its pth-closest facility is minimized. Considering “pth
closest” (as against closest in the k-center problem)
is important when the facilities concerned are subject
to failure and we wish to ensure that even if up to
p — 1 facilities fail, every city has a functioning fa-
cility close to it. We refer to this generalization as the
p-neighbor k-center problem. Formally, the problem
1s to find a subset S of at most k vertices which min-
imizes
I B (0. 5).
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Note that setting p = 1 reduces it to the k-center prob-
lem. We present a polynomial-time algorithm achiev-
ing an approximation ratio of 2 for the p-neighbor k-
center problem. Since this problem is a generalization
of the k-center problem, this approximation ratio is
the best possible.

1.1. Related work

Location problems including several versions of
the k-center problem are surveyed in [3]. Kariv and
Hakimi [6] describe exact solution methods for the
k-center problem.

Turning to approximation algorithms, other than the
work of Hochbaum and Shmoys mentioned above,
Gonzalez [2] as well as Feder and Greene [1] also
describe 2-approximation algorithms for the k-center
problem. A generalization with vertex weights is ad-
dressed by Hochbaum and Shmoys in [5] which also
describes a general paradigm for approximating bot-
tleneck problems. In [9], Plesnik considered a gener-
alization of the k-center problem where the distance
to the center is multiplied by a vertex priority in the
objective; He developed a 2-approximation algorithm.
The paper by Wang and Cheng [11] also shows the
same result.

The p-neighbor k-center problem was considered
previously by Krumke [8] where he provided a 4-
approximation algorithm. We use ideas from his work
for deriving a lower bound for this problem but pro-
vide a different algorithm to achieve an approximation
ratio of 2. Our techniques are graph-theoretic; we re-
late the size of a certain type of dominating set in a
graph to the size of a certain type of independent sets.
Khuller, Pless and Sussmann [7] have also considered
this problem (among other variants) and provided an
approximation with the same performance ratio of two
using an entirely different approach.

2. The basic paradigm

The problem mentioned in the Introduction falls
into a general class of problems known in the lit-
erature as bottleneck problems. Roughly speaking, a
bottleneck problem is one in which we are trying to
optimize a bottleneck, i.e., minimizing the maximum
or maximizing the minimum value of some quantity.

Thus for the k-center problem we wish to find from
among all dominating sets of size %, the one in which
the longest covering edge (we always use a shortest
edge from a node to a neighbor in the dominating
set as the covering edge for the node) is the short-
est.

Hochbaum and Shmoys [5] developed a general
paradigm for approximating NP-hard bottleneck prob-
lems; we illustrate this paradigm with the k-center
problem. Let wy, wa, ws, . .. be the edge weights in in-
creasing order and let G; be the subgraph induced by
edges of weight at most w;. First observe that the opti-
mum value for the k-center problem is equal to one of
the edge weights; in particular it is the minimum edge
weight w; such that G; has a dominating set of size
at most k. While it is easy to generate the subgraphs
G, Gy, Gs, . . ., the problem of checking if these sub-
graphs have a dominating set of size at most k is NP-
complete. However, suppose that in the subgraph G;
we can find an independent set I of size more than &
such that no vertex in G; is adjacent to two vertices of
I. Then any dominating set in G; has a unique vertex
dominating each vertex of 7 and therefore cannot be
of size k or less.

Given a graph G = (V, E) the xth power of G, de-
noted by G* = (V, E*) is a graph with the same vertex
set as G and an edge between two vertices if they are
connected by a path of at most x edges in G. Then [/
is an independent set of vertices in G?. Thus to argue
that G; has no dominating set of size at most k, it suf-
fices to find an independent set in G? of size larger
than k. What if the largest independent set we can find
in G? is of size no more than k? While we cannot say
anything for sure about the size of a dominating set in
G, we claim that G? has a dominating set of size at
most k.

To prove this claim we only need to assume that the
independent set in G? that we find (say /) is maximal,
i.e., the addition of any other vertex to I yields a set
which is not independent. But this implies that every
vertex not in / has a neighbor in / which means that
I is a dominating set in G?.

Let G; be the first subgraph in the sequence
G, Gz, Gs, . .. such that the maximal independent set
found in G is of size no more than . Since G2_, has
an independent set of size larger than k, every dom-
inating set in G;_; is of size more than k and hence
the optimum value is at least w;. Further, G7 has a
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dominating set (the maximal independent set found)
of size at most k. Since the edge weights satisfy tri-
angle inequality, the longest edge in sz has weight
at most 2w;. Thus we have a k-center in which the
distance of any vertex to its closest center is at most
twice the optimum.

Summarizing, we have the following two key ingre-
dients in this 2-approximation for the k-center prob-
lem.

(1) If G? has an independent set of size more than k,
G has no dominating set of size k or less.

(2) A maximal independent set is also a dominating
set.

The first observation is useful in establishing a lower

bound on the optimum value while the second gives a

solution of value at most twice the lower bound.

3. The p-neighbor k-center problem

We first generalize the notion of independent and
dominating sets following Krumke [8] and sketch his
proof of a lower bound relating these sets. However, to
obtain the upper bound we describe a different algo-
rithm motivated by proving a stronger graph-theoretic
lemma about these sets.

Definition 1. A set of vertices S C V is p-dominating
if every vertex not in the set has at least p neighbors in
it,i.e., Vo € V—S:degs(v) = p. Thus, a 1-dominating
set is the same as a dominating set.

Definition 2. A set of vertices S C V is p-
independent if every vertex in the set has at most p — 1
neighbors in it, i.e., Vo € S: degs(v) < p — 1. Thus,
a 1-independent set is the same as an independent set.

The following lemmas relate the size of a p-
dominating set in a graph G to the size of a p-
independent set in G and G?. These can be viewed
as extending the relationship between dominating
sets and maximal independent sets. The first lemma
appears in [8] as Proposition 5. We sketch the proof
here for completeness.

Lemma 3 (Krumke [8]). If G has a p-dominating
set of size k then no p-independent set in G* has size
more than k.

Proof. Let D be a p-dominating set in G (|D| = k)
and 7 a p-independent set in G and let v be a vertex
in I — D. Let $; be the vertices in D that are neighbors
of v and §, the vertices in V — D that are neighbors of
the vertices in S;. Further, let S = ) U S,. Since each
vertex in S is a neighbor of v in G2, the set I contains
at most p vertices from S. The set D on the other hand
contains at least p vertices from § (the subset S;). In
fact, D — § is a p-dominating set in the residual graph
G[V — 8] and I — S is a p-independent set in the
graph G?[V — S]. Continuing in this manner we will
eventually reach a situation when there is no vertex in
the residual graph that belongs to the p-independent
set but not to the p-dominating set. Since at each step
the number of vertices deleted from 7 was at most the
number deleted from D, we have that |I| < |D| =
k. O

While Krumke showed that a maximal p-indepen-
dent set in G is p-dominating in G2, we show below
that there is a p-independent set in G that is also a p-
dominating set in G (rather than G?). This reduces the
performance ratio of the resulting algorithm from 4
to 2.

Lemma 4. Givena graph G = (VE)and 1 < p <
n, there exists a p-independent set S C V that is also
p-dominating.

Proof. Let S be a p-independent set that is not p-
dominating. In particular let v € V — § be such that
degs(v) = g < p. Let U be the neighbors of v in §
that have exactly p — 1 neighbors in S and let G{ U] be
the subgraph induced by U in G. Let I be a maximal
independent set (and hence also a dominating set)
in G[U]. Therefore the set § — I U {v} is also p-
independent.

The idea of the proof then is to define a poten-
tial function for a p-independent set in such a way
that the above swap causes the new p-independent
set S — I U {v} to have strictly more potential than
the original set S. This would then imply that the
p-independent set with maximum potential must also
be p-dominating.

With this motivation, define the potential of a p-
independent set, S, as ¢(S) = p - |S| — |E(G[S])|,
where E(G[S]) denotes the edge set of the subgraph
induced by S in G. Since
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ISl—Is—1u{v} =11 -1,

and

|E(GLS)| — |E(GLS = T U {v}])]
=(p— D= (g— I,

we have

Y(8) —y(S-1U{v}) =q-p<0.

As mentioned earlier, given any p-independent set
that is not p-dominating we can obtain another p-
independent set that has strictly larger potential. There-
fore the p-independent set with maximum potential is
also p-dominating. O

The proof of the above lemma also yields a
polynomial-time procedure for computing a p-
independent set that is also p-dominating. We start
with some p-independent set and if this is not p-
dominating we find a vertex that has less than p neigh-
bors in the set. Then as in the proof we delete and add
vertices to the set to obtain another p-independent
set with strictly larger potential. Since the potential
of a p-independent set is at least zero and at most
p|V|, we will obtain a p-independent set that is also
p-dominating in at most p|V| steps.

Let G; be the first subgraph in the sequence
G1,G5,G5... for which the p-independent set
found in G? by using the above procedure is
of cardinality at most k. By triangle inequal-
ity it follows that the longest edge in G? is of
length at most 2w; and hence we have a p-
neighbor k-center of value 2w;. Since in G2
we found a p-independent set of cardinality more
than k, G;—; does not have a p-dominating set

of size k or less by Lemma 3. Hence the optimum
value is strictly larger than w;_; (i.e., at least w;)
and this gives a 2-approximation algorithm for this
problem.
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