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Abstract

We study a generalization of the p-Center Problem, which we call the a-Neighbor p-Center Problem (p-CENTER'®).
Given a complete edge-weighted network, the goal is to minimize the maximum distance of a client to its a nearest neighbors
in the set of p centers. We show that in general finding a O(2°°¥!!V1))_approximation for p-CENTER® is NP-hard, where
[V| denotes the number of nodes in the network. If the distances are required to satisfy the triangle inequality, there can
be no polynomial time approximation algorithm with a (2 — ) performance guarantee for any fixed & > 0 and any fixed
a < p, unless P = NP. For this case, we present a simple yet efficient algorithm that provides a 4-approximation for a > 2.
If @ = 1, our algorithm basically falls back to the algorithm presented in {2] and has a relative performance guarantee of 2.
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1. Introduction and basic definitions

The p-Center Problem (p-CENTER for short) is
one of the classical location problems. The objective
is to select a set of p centers such that the maximum
distance of a non-center to its nearest center is mini-
mized. The problem is used e.g. to model the place-
ment of emergency facilities such ‘as fire stations or
hospitals, where the aim is to have a minimum guar-
anteed response time between a client and its center.

In this paper, we study a generalization of p-
CENTER, which we call the a-Neighbor p-Center
Problem (p-CENTER(®)). Given again an edge-
weighted network, the target is now to minimize the
maximum distance of a client to its « nearest neigh-
bors in the set of p centers. For @ = 1, p-CENTER(®
is identical to p-CENTER.
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Recall that an approximation algorithm A for a min-
imization problem is said to have a performance guar-
antee of K > 0, if given any instance / of the problem
it returns a solution A(7) of value at most X times the
optimal function value, i.e. if A(I) /OPT(I) < K for
any instance /.

We show that in general finding a O(2P°Y(YD)) ap-
proximation for p-CENTER(® is NP-hard. If the dis-
tances are required to satisfy the triangle inequality,
there can be no polynomial time approximation algo-
rithm with a (2 — &) performance guarantee for any
fixed £ > 0 and any fixed a < p, unless P = NP.

Hochbaum and Shmoys [2] have developed an ap-
proximation algorithm for p-CENTER for the case
when the distances in the graph obey the triangle
inequality. Their algorithm has performance ratio 2.
Moreover, it is shown in [2] that this is the best ap-
proximation ratio possible, i.e., that there can be no
polynomial time approximation algorithm with a per-
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formance guarantee of (2 — &) for any € > 0 unless
P=NP.

We show that the techniques of Hochbaum and
Shmoys can be extended to obtain a simple yet ef-
ficient polynomial time approximation algorithm for
p-CENTER (¥,

Let G = (V E) be a graph. We will use 6(e) for the
weight of the edge e € E. If the endpoints of e are
known, i.e. e = {u, v}, we will use 8(u, v) for the edge
weight for the sake of a shorter notation. As usual,
we say that a nonnegative distance § on the edges
of G satisfies the triangle inequality, if §(v,w) <
6(v,u) + 6(u,w) for all v,w,u € V. We are now
ready to state the problem formally:

Definition 1.
CENTER(®))
Input: An undirected complete graph G = (V E,)
with nonnegative edge weights 8(e) (e € E.) and
two integers 2 < a < p < |V].
Outpur: A set P C V of p nodes such that

(a-Neighbor p-Center Problem (p-

(a) = (a)
R (P) Ug}a}PS (v, P)

is minimized, where

8@ (v,PYy= min maxd(s,v).
SCP |S|=a sE€§

The subset of instances such that the distances
obey the triangle inequality will be denoted by p-
CENTER(®-TIL. Notice that for any subset P C V of
p nodes we have that R(V(P) < RO(P) £ --- K
R (P).

The following definitions are mainly taken from
[2]. For a given number A, the bottleneck graph
Bottleneck(G, 4) of G is defined to be the edge-
subgraph containing those edges of the original graph
G, which have weight at most 4. The t-closure G* =
(V E") of G contains an edge from u to v if and only
if there is a path of length at most ¢ edges in G con-
necting « and v. For any subset V' C V, we use G[ V']
to denote the subgraph induced by the nodes in V'.

Ifv € Visany node, welet Ng(v) :={w | {v,w} €
E} be the set of neighbors of v in G. Moreover, for
any set S C V we define Ng(8) :=J s N(v).

Recall that a set U C V is called independent, if
for any pair u,v of nodes from U there is no edge
connecting u and v.

Fig. 1.

Definition 2. A k-independent set is a subset U C V
such that every node v € U has at most k— 1 neighbors
inU.

Consequently, a 1-independent set is a classical in-
dependent set. We use the term maximal k-independent
set to denote a k-independent set that is maximal with
respect to inclusion. Given a graph G, we can always
find a maximal k-independent set in polynomial time,
simply by choosing a node and then adding nodes re-
peatedly, until any further addition of a single node
would destroy the k-independence of our set.

As the definition of k-independence extends the
classical notation of independence, there is a parallel
for dominating sets. Recall that a set D C V is called
a dominating set, if any node in V either belongs to D
or has a neighbor in D.

Definition 3. A k-dominating setisaset D C V such
that each node v € V— D has at least k neighbors in D.

2. The basic lemmas

It is easy to see that a maximal independent set U
is also a dominating set. For k > 1, in general it is
not true that a maximal k-independent set is also k-
dominating; see e.g. the simple example in Fig. 1:

The set U = {x,y,z} is maximal 3-independent,
because v cannot be added without destroying the 3-
independence, but not 3-dominating, for v has only
one neighbor in U.

We will now show that, although a maximal k-
independent set need not be k-dominating in G, it will
be k-dominating in the square graph G2:

Lemmad4. Let U be a maximal k-independent set
such that |U| > k. Then U is a k-dominating set in G2.

Proof. We show that each node v € V — U has a
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Procedure test(G)
1 U « maximal a-independent set in G?

2 if (|U| > p) then return “certificate of failure”

3 else

4  begin

5 if |U| < p then add nodes arbitrarily to make |U|=p
6 return U

7 end

Fig. 2. Test procedure for the @-Neighbor p-Center Problem.

neighbor wy in U such that this neighbor is adjacent
to k — 1 nodes ws,...,w; in U. It follows that the
nodes wy, . . ., wy will be neighbors of v in G? and this
establishes the claim.

In fact, if there existed a node v that is not adja-
cent to any node in U with k — 1 neighbors in U, we
could add v to U without destroying the property of
k-independence contradicting the fact that U is maxi-
mal. [

Now we will establish a key relation between the
k-dominating sets in G and the k-independent sets in
the square G?:

Proposition 5. Let V' be a k-dominating set in G.
Then |U| < |V'| for any k-independent set U in G*.

Proof. If U C V' then the claim of the proposition is
trivial.

If U is not contained in V', then choose an arbitrary
node u € U — V' and let § := Ng(u) N V. Clearly
|S| > k, because V' is a k-dominating set. Define C :=
N (S) N (V — V') to be the set of vertices in V — V’
that are adjacent to the set S. Then any node in C U §
is adjacent to u in G? and thus U can contain at most k
vertices from C U S. On the other hand, we have seen
that [V N (CUS)|=|S| =k

Now consider the graph G = G[V — (C U 5)].
We claim that V' := V' — (CUS) = V' - Sisa k-
dominating set in G. To see this consider an arbitrary
node v from G that is not contained in V. Then v €
V — V’. The node v has at least k neighbors in G that
are contained in V', since again V’ is a k-dominating
set in G. None of these neighbors can be contained
in §, because otherwise we would have v € Ng(S) N
(V- V') = C and thus v were not contained in G.
Hence Ng(v)NV C V' -8 = ¥ and all the neighbors
of v in S are still present in V.

The set U :=U — (C US) is clearly k-independent

in G. Thus we can repeat the above construction for
V' := V' and U := U until we obtain that U C V' Since
in each step we delete at most k nodes from U and at
least k nodes from V" it follows that |U| < |V/|. O

3. The algorithm

In this section we will present the algorithm and
use the results from Section 2 to analyze its perfor-
mance guarantee. The techniques that are used, were
introduced in [2].

Let P* C V be an optimal placement of p nodes and
denote the optimal solution value by §* = R(®) (P*).
The idea behind the algorithm is the following: By
definition of the objective function R(®’, the optimal
function value §* must equal the weight of an edge. We
will present a relaxed test procedure test that, given
a number 4 either tells us that §* > 4 or delivers a
solution of cost at most 44 (24 fora = 1).

We now sort the edges of G in nondecreasing
order, say 8(e;) € 8(ez) € -+ £ 5(e(;) ), and,
using the output of the procedure test, perform a
binary search to locate the minimum i such that
test(Bottleneck (G, 6(¢;))) returns a solution. It fol-
lows by the properties of test that 6(e;) < 6*. The
test procedure is shown in Fig. 2, the main procedure
is shown in Fig. 3.

First we will establish the following:

Lemma 6. If the procedure test(G;) returns a “cer-
tificate of failure”, then 5* > 8(e;).

Proof. Assume that test returns a “certificate of
failure”, but nonetheless 6* < &(e¢;). Let P* =
{uf,...,v;} be a set of p centers in G such that
R(@) (P*) = §*. By definition of the solution value
6*, it follows that P* is an a-dominating set in G;.
The procedure test can only return a “certificate
of failure”, if it finds an a-independent set U in G,-2
that contains more than p elements. But according to
Proposition 5 such a set cannot exist in G?. [J

Theorem 7. Let I be any instance of p-CENTER(® -
TI and denote by Heur (1) the solution value of the so-
lution found by the procedure Bottleneck-Main. Then
OPT(1)/Heur(1) < 4, where OPT(I) denotes the
optimal solution value for 1. If a = 1 we have the bet-
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Procedure Bottleneck-Main(G, 8, p)
I Sort the edges of G such that
S(e1) < 8(e) £+ K 5(8(.,))
2

2 low — k— 1; high — |V|
3 while (high— low) > 1 do
4 begin

5 i [(high+ low) /2]

6 G; «— Bottleneck(G,8(¢;))

7 out.test — test(G;)

8 if out.test is a “certificate of failure” then low « i
9 else high — i

10 end

11 output test(Bottleneck(G, 8(enign)))

Fig. 3. Main Bottleneck procedure.

ter following estimate: OPT(I) /Heur(I) < 2.

Proof. Let OPT(l) = 6* = 6(¢;) and consider the
call to the test procedure, when i = j. By Lemma 6
the procedure test must deliver a solution. Let this
solution be P, where by construction P contains a
maximal independent set in G]2~. If a = 1, it follows
that U is a dominating set in GJZ. as was remarked at
the beginning of the last section.

If @« > 2, we can use Lemma 4 to deduce that P is
an a-dominating set in (GJZ)2 = G}?.

By definition of the bottleneck graph G; =
Bottleneck(8(e;)) each edge weight in G; is at most
d(e;). Consequently, by the triangle inequality G}
and Gj do not contain any edge of weight more than
28(e;) =26 or 46(e;) = 46" respectively. Thus the
claimed performance guarantee follows. [

4. Hardness results

Theorem 8. Unless P = NP, for any fixed @ < p
there can be no polynomial time approximation for p-
CENTER'Y with a relative performance guarantee of
O(2P%UVDY . Moreover, p-CENTER(®-TI cannot be
approximated in polynomial time within a factor of
(2 —¢) foranye > 0.

Proof. Assume that A is an algorithm with a rela-
tive performance guarantee of O(2P°Y(D) Without
loss of generality we can assume that the performance
guarantee of A is M - 29IVD | where ¢ is a suitable
polynomial. Thus given an input of length Q({V|) the

function £(]V]) := M-294"D is polynomial time com-
putable.

We will show that A can be used to decide DOM-
INATING SET, a well known NP-complete problem
(cf. [1]).

Let I be any instance of DOMINATING SET, given
by a graph G = (V E) and an integer d. We now con-
struct an instance I’ of p-CENTER‘®) in the follow-
ing way: We choose |V| pairwise disjoint sets N, :=
{wV, ..., wle=D} (v € V) with N,NV = ). We then
let V':i=VU,ey Now o' i=d + (@ - 1)|V],d' =@
and define G’ = (V’, E’) to be a complete graph on
|V’| nodes. The edge-weights & (e) are given by

1 ifu,veVand {u,v}€E,
& (u,v) =<1
fUV]) +& otherwise,

ifv € Vand u € N, or vice versa,

where we choose &' > 0 arbitrary. Fig. 4 illustrates the
transformation from G to G'. All edges shown have
weight 1, the edges not drawn in the figure have weight
favp +¢'.

Observe that by definition of the edge-weights in G,
any set P of p’ centers has either radius R(*) (P) =1
or f(|V]) +¢'.

Observe further that in the special case when f is
the constant function f = (2 —¢) for some ¢ > 0, we
can choose &’ := & and obtain the distances 1 and 2 in
G, as a consequence of which the triangle inequality
will be satisfied by the distances defined above.

First, assume that G has a dominating set D of size
d.Then P := DU|J,cy Ny isasetof d+(a—1) =p’
centers with solution value R(®) (P) = 1. In that case,
because A has a performance guarantee of f(|V]), the
radius of the set of centers returned by A must also
be 1.

Now suppose that G does not have a dominating set
of size d. We claim that in this case any selection of
p' =d+ (a—1)|V| centers will have radius f(|V|) +
€'. To see this, assume that P is a set of p’ centers with
solution value 1. First observe that P must include all
the nodes from | J ¢y N,

If a = 1, the claim is trivially satisfied, because in
that case N, = § for all v € V. Hence it suffices to
consider the case a > 2. Any node w € N, has v as
the only neighbor in V', which is within a distance of
1 and, if not included in the set of centers, must be
covered by at least a servers within a distance of 1.
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Fig. 4. Transformation of G to G'.

Hence w must be included in the set of centers.

It follows that Py := PNV C V consists of |P| —
(a — 1)|V| = d nodes. We will now show that Py is
a dominating set in V. If we take v € V — Py, then v
must have at least & nodes from P within a distance
of 1. Only a@ — 1 from these nodes can be from N,,.
Thus by definition of the distances in G’, there must
be w € Py such that 8 (v,w) =1, i.e. {v,w} € E.

Hence Py is a dominating set of size d in G as a
contradiction to the assumption that G does not contain
any dominating set of size at most d.

We have seen that A delivers a solution of value 1
if and only if G has a dominating set of size d. Con-
sequently, A can be used to decide the given instance
I of DOMINATING SET in polynomial time. [

It should be noted that in the proof of the last theo-
rem f € O(2PM(UVD) js the largest we can do in poly-
nomial time, since otherwise the length of the binary
representation for f(|V|) is no longer polynomially
bounded in the input size.
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