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Abstract
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1. Introduction

The facility location problem has been used as a model in network design
location theory: placement of routers or caches [11,21], plants or warehouses [1,
agglomeration of traffic or data [2,12], among others (refer to [9] for a more exhau
list). The problem, given a set of demand and facility locations, tries to minimize the
of the cost of building facilities at a subset of facility locations and the cost of assig
every demand to a built facility. It models the tradeoff of developing resources (facil
and the utility (reduction in assignment cost) accruing from such. In several applica
caching on a network, for example, fault tolerance is also a facet. The placement of
should be resistant to failures of nodes and links. The facility location problem doe
provide any guarantee about the second closest facility to any node. In a fault-to
situation, the cost of a location that requires a “backup” would be a combination o
costs of assigning a demand location to the two facilities. A natural choice could
weighted linear combination.

In this paper we consider the problem of fault-tolerant facility location in which e
locationj specifies to be assigned torj facilities. The cost of assignment of this location
a weighted combination of theserj assignments. Recently Jain and Vazirani [15] provi
a primal dual approximation whose approximation ratio is logarithmic in the la
requirementrj . In their algorithm, even for all requirements being 1, the approxima
is at least 3. In contrast the fault-tolerant variant of thek-center problem, which is close
related to the facility location problem, has constant factor approximation algorithm
18,20,25]. We resolve this issue by providing a constant factor approximation fo
fault-tolerant facility location problem. Our result improves on [15] even if the maxim
requirement is 1.

Our algorithm is based on rounding the relaxation of an integer linear program. W
filtering in a fashion similar to [22,26], however we combine it with scaling and uncros
steps. These steps allow us to ensure that while we are considering a filtered neighb
if a demand point is assigned, we will round in such a way that the entire assignme
be rearranged to maintain feasibility.

Finally, we demonstrate another facet in which fault tolerance does not im
approximability of facility location. This is the idea of local improvement heuristics.
use greedy local improvement similar to [10] to construct a solution of integrality
2.408. The core of the similarity is that once a set of facilities are fixed, the assignmen
are also determined. However, the similarity does not seem to extend to allow us to
facilities as in the combinatorial facility location algorithms in [4,19]. Very recently [
obtain stronger results adapting other paradigms of approximating uncapacitated
location to the fault-tolerant case.

2. Problem statement

In the fault-tolerant facility location problem, we are given a finite metricG= (V ,E)
with a distance functionc, a set of possible facility locationsF ⊆ V , and a set of deman
pointsD ⊆ V . The subscriptsi, j will be used to denote facilities and demand poi
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respectively throughout this paper. The cost of opening a facility at locationi is fi . Every
demandj must be connected torj open facilities.

For demandj , let the weights corresponding to assigningj to the rj facilities be

w
(1)
j �w(2)j � · · · �w(rj )j . Naturally this would ensure that the open facilities to whichj is

connected to, would be ordered according to the (increasing) distance fromj . The goal is
to optimize the sum of the cost of open facilities and the weighted sum of the routing
of each demand to the closest open facilities. We assumeunit demands. The algorithm
remains exactly the same for general demands, since the demands can be incorpo
the weightsw(r).

This problem can be formulated as an integer program. Here,yi denotes whether facility
i is open, andx(r)ij denotes that demandj is assigned to facilityi and facility i is therth
closest open facility toj . The distance betweeni andj is cij .

Minimize
∑
i

∑
j

∑
r

cijw
(r)
j x

(r)
ij +

∑
i

fiyi,

∑
i

x
(r)
ij � 1 ∀j, r,

∑
r

x
(r)
ij � yi ∀i, j,

yi � 1 ∀i,
x
(r)
ij , yi ∈ {0,1} ∀i, j, r.

The relaxation will involve relaxing the last constraints to 0� x(r)ij , yi � 1. The upper
bound is only relevant foryi and ensures that more than one facility is not built at a loca

Define C∗ to be the optimal fractional assignment cost andF ∗ to be the optima
fractional facility cost. That is∑

i

∑
j

∑
r

cijw
(r)
j x

(r)
ij = C∗ and

∑
i

fiyi = F ∗,

where (x, y) denotes the optimal fractional solution of the above linear programm
relaxation.

2.1. Previous results

Classical facility location is MAX-SNP hard [10], and several constant factor app
imations [4,16,26] are known. Since the problem we study is a generalization o
problem, the hardness results carry over. Many variants of the facility location pro
have been studied. The more well known ones include capacitated facility locatio
26], multi-level facility location [1,11],k-center [13], andk-median [4,5,16,22]. All thes
problems have constant factor approximation algorithms.

Jain and Vazirani [15] defined the fault-tolerant facility location problem. They as
equal weights to all the facilities a demand is connected to. They present aO(logmaxj rj )
primal-dual approximation algorithm for this problem. Constant factor approxima



432 S. Guha et al. / Journal of Algorithms 48 (2003) 429–440

ch

riant

ered

f

tional
e
ties.

o
g this

set

er
r

and
last
e

f

the

,

algorithms are known for the fault-tolerantk-center problem [6,18,20,25], where ea
demand pointj is required to haverj centers within a fixed distanceL from it.

2.2. Subsequent work

There has been a lot of interesting work on the facility location problem and its va
thek-median [3,14,23,24].

In [27] a factor 2.07 approximation algorithm was provided for the problem consid
here starting from the algorithms of [7,8]. They further improve the factor to 1.52 for the
uniform requirement case (rj values are 0 orr for some fixedr) adapting techniques o
[14].

3. Constructing a structured fractional solution

The linear relaxation of the above-mentioned integer program gives us a frac
solution. We will convert the solution(x, y) to a solution(x̄, y) such that the cost of th
new solution does not increase, and the new solution satisfies certain useful proper

We will treat a demand pointj as havingrj copies under the constraint that no tw
copies of any demand point are assigned to the same facility. In the fractional settin
reduces to the condition

∑
r x
(r)
ij � yi � 1. The converted solution will ensure that the

of facilities to which a copyj (r1) is fractionally assigned to are closer toj than any facility
to which the copyj (r2) is assigned to fractionally forr1< r2.

For every demand pointj , we reassign it to facilities, fractionally, as follows. Ord
the facilities in nondecreasing distance fromj , breaking ties arbitrarily. The ordering fo
a specific demand pointj is fixed throughout the rest of the algorithm. The first dem
copy j (1), is assigned to the initial set of facilities that sum up to 1 fractionally. The
facility i in this set can be incompletely assigned, i.e.,x̄

(1)
ij < yi . For the second copy, w

start from this facilityi, settingx̄(2)ij = yi − x̄(1)ij . After that we again pick up one unit o

facility fractionally, so that
∑
i x̄
(2)
ij = 1. We repeat this process for all the copies of

demand point.

Definition 3.1. DefineC(r)j = ∑
i x̄
(r)
ij cij . DefineC(r)j (β) to be the distance at which therth

copy of the demand pointj picks up at leastβ fraction of a facility; therefore we have∫ 1
0 C(r)j (β)dβ = C(r)j .

The following are true by construction:

Proposition 3.2. The cost of the solution does not increase;
∑
j,r w

(r)
j C(r)j = C∗.

Proposition 3.3. For any facility i and demandj , there exist at most two values ofr such
that x̄(r) > 0. Further, if two such values exist they must be consecutive.
ij
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Once the (fractional) facilities are fixed, it is simple to see that the above reassignm
(one of) the best possible. Intuitively, the copies of the demandj with larger weightwrj
(and thus smallerr) go to the closer open facilities.

4. The algorithm

The algorithm rounds the fractional solution in two phases. The algorithm use
filtering technique of Lin and Vitter [22] combined with reassignment of the fracti
demands, such that each copy of the demand goes to a different facility. As in the pr
section, we treat the different copies of a demand as separate, and denote therth copy of
demandj by j (r). Fix α ∈ (0,1), to be determined later.

4.1. Phase 1: Filtering and scaling

In this section we will modify the fractional solution(x̄, y) to create a new solutio
(x̂, ŷ), which we will round in the next phase. This phase uses the filtering tech
of [22].

Let us fix a demand pointj . We will perform the following operations for the copi
j (r) in increasing order ofr = 1,2 . . . . For every demandj (r), we consider the facilities t
which it is fractionally assigned in increasing order of distance (the same ordering u
the previous section).

Let i be the first facility in the ordering ofj (r) (thereforex(r)ij > 0) such that∑
i′: ci′j 〈cji ,x(r)i′j 〉0

x̂
(r)

i′j � 1− α.

In other words,i is the nearest facility toj such that within the distancecij , j (r) picks up
1− α fraction of a facility.

For all i ′ appearing beforei in our ordering, we set̂x(r)
i′j = x̄(r)

i′j . We setx̂(r)ij so that the
total assignment ofj (r) is exactly1− α. For all i ′ appearing afteri in the ordering, we se
x̂
(r)

i′j = 0.

We scale thêx(r)ij by 1/(1 − α) so that
∑
i x̂
(r)
ij = 1 for all j (r). Subsequently for alli

we setŷi = min{yi/(1− α),1}.

Lemma 4.1 [22]. If x̂(r)ij > 0, thencij � 1
α
C(r)j .

We first show that(x̂, ŷ) is feasible. For this, it is enough to show the following lemm

Lemma 4.2. For all i, j , we have
∑
r x̂
(r)
ij � ŷi .

Proof. Before filtering, by Proposition 3.3, we knew that at most two copies of a dem
went to any one facility. Suppose we are considering facilityi and demandj . If exactly
one copy, sayr is assigned toi, the inequality trivially holds, aŝx(r) � ŷi .
ij
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We therefore assume that two copies ofj are assigned toi. Let j (r) and j (r+1) be
assigned toi. Note that by the construction in Section 3,i is the furthest assigned facilit
to j (r) and the closest toj (r+1).

The interesting case isyi � 1− α, otherwise
∑
r x̂
(r)
ij � yi was true before scaling, an

the lemma follows as we scale both the left- and right-hand sides by the same amou
Let us look at thêx(r)ij values before scaling (but after filtering). Therefore we nee

show
∑
r x̂
(r)
ij � 1 − α, then, scaling could not have increased this value beyond 1. W

we were consideringj (r) for filtering, we must have set̂x(r)ij = max(0, x̄(r)ij −α), asi is the

furthest assigned facility toj (r). We now consider two cases:
Case1: x̂(r)ij = 0. Then,x̂(r+1)

ij � 1− α because of filtering onj (r+1).

Case2: x̂(r)ij = x̄(r)ij − α. This impliesx̂(r)ij + x̂(r+1)
ij = x̄(r)ij + x̄(r+1)

ij − α � 1 − α, as

x̄
(r)
ij + x̄(r+1)

ij � yi � 1.
This completes the proof.✷

Lemma 4.3. Let r1< r2. For any demandj , the furthest( from j ) facility to whichj (r1) is
assigned to( fractionally) is at a distance no greater than the closest( from j ) facility to
whichj (r2) is assigned to( fractionally) in the filtered and scaled solution.

Proof. The rearrangement from Section 3 guarantees this on the un-filtered so
filtering does not change the ordering of the edges.✷
4.2. Phase 2: Rounding

In this phase we will round the fractional solution(x̂, ŷ) as produced in the previou
phase. We will perform a rounding similar to [22,26], and preserve

∑
r x̂
(r)
ij � ŷi as an

invariant.
The scheme from [26] cannot be applied directly, since the distinct copies of a de

need to be assigned to distinct facilities. The way we ensure this is to pick just e
fractions of facilities to merge so that one copy of the demand can be completely sa
We then perform uncrossing of neighborhoods so that the other copies of that dema
assigned to facilities outside the set of facilities we picked for rounding.

StepA: Ordering the demands. Arrange all copies of all demand points in increas
order of the distance to the farthest fractional facility serving it. We will process the c
in this order, and repeatedly apply Steps B–E. Note that copies ofj will be picked in
increasing order.

StepB: Choosing a facility. Assume we are consideringj (r), therth copy of the deman
pointj . Let the set of facilities serving it beP (r)j .

We will build a facility at the cheapest facilityi in P (r)j .

StepC: Merging facilities. We now specify a set̂P of (fractional) facilities which will
be closed down in exchange for the facility to be opened ati. In other words, we can view
this set as a set of fractional facilities to be merged intoi. The set will have the propert
that

∑
′ ̂ ŷi′ = 1.
i ∈P
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(1) We select facilitiesi ′ with x̂(r)
i′j > 0 starting withi (order does not matter) until th

total fraction by which selected facilities are open is at least 1. LetY = ∑
i′ ŷi′ � 1 be

the total fraction by which these facilities are open.
(2) If Y > 1 we will have to use the last selected facility, sayi ′′, partially. Make two copies

i1 and i2, of facility i ′′. Set ŷi2 = Y − 1, andŷi1 = ŷi′′ − ŷi2. For any other deman

j ′(r ′) the assignment̂x(r
′)

i′′j ′ is distributed arbitrarily between the two facility copiesi1

andi2; maintaining
∑
r x̂
(r)

i′j � ŷi′ for bothi ′ = i1 andi ′ = i2. The facility (copy)i1 is

selected andi2 is not. Denote the set of picked facilities bŷP .4

We open a facility completely ati, and close the rest of the facilities in the setP̂ .
StepD: Assignment of demands. For any demandj ′ (inclusive ofj ), consider its copie

r1, r2, . . . , rk served at least fractionally bŷP . If P̂ serves any copy ofj ′ fractionally, we
assign the smallest numbered copy (r1) of j ′ to be completely served byi. Note that the
assignment distance forj ′(r1) has at most tripled as compared toC(r)

j ′ (1− α), see proof of
Lemma 4.6.

StepE: Uncrossing neighborhoods. We now reassign the remaining copies ofj ′ (i.e.,
j ′(r2), . . . , j ′(rk)) completely to facilities outside the set̂P by performing an uncrossin
step.

For j ′, we computeX(1)
j ′ = ∑

i′∈P̂ x̂
(r1)

i′j ′ , andX(2)
j ′ , . . . ,X

(k)

j ′ likewise. These quantitie

denote the fractions to which the copies ofj ′ are assigned to the facilities in̂P . Define
Y
(1)
j ′ = ∑

i′ /∈P̂ x̂
(r1)

i′j ′ = 1 − X(1)
j ′ , and similarlyY (2)

j ′ , . . . , Y
(k)

j ′ . These quantities denote th

fractions by which the copies ofj ′ are assigned to facilities outside the setP̂ , respectively.
The following is achieved by the construction:

Proposition 4.4. For any j ′ which is fractionally assigned to the facilities in set̂P , we
have:

X
(t)

j ′ + Y (t)
j ′ = 1 for all 1 � t � k, and

∑
t

X
(t)

j ′ �
∑
i′∈P̂

ŷi′ = 1.

We have assigned the copyj ′(r1) to i. But in this process it may be thatX(r
′)

j ′ > 0 that is

P̂ serves some other copyj ′(r ′) of j ′. If we use the fractional facility of̂P (which amounts
to 1) then we need to ensure that the copyj ′(r ′) gets assigned (fractionally) to facilitie

outsideP̂ ; and the fraction isX(r
′)

j ′ . Notice that in this case from Proposition 4.4,

X
(r ′)
j ′ +X(1)

j ′ � 1 =X(1)
j ′ + Y (1)

j ′ .

We consider the fractionY (1)
j ′ by which the copyj ′(r1) was assigned to facilities no

in P̂ , and reassign this to the other copies ofj ′ which were originally assigned to the s
P̂ as follows: Consider the fraction by whichj ′(r1) was assigned to the facility closest

4 We havei1 ∈ P̂ andi2 /∈ P̂ . Note that since a facility is being built ati, we can build a facility later ati′′ �= i.
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j but not in P̂ . We assign this fraction toj ′(r2) until eitherj ′(r2) is completely satisfied
or we have assigned the fraction completely. In the former case, we move toj ′(r3); in the
latter case, we consider the next closest facility not inP̂ that was previously connected
j ′(r1), and repeat.

During uncrossing, we maintain the invariants
∑
i′ x̂

(rt )

i′j ′ = 1 and
∑
t x̂
(rt )

i′j ′ � ŷi′ for all
1 � t � k.

Lemma 4.5. For anyj ′, we can always reassign the copiesr2, r3, . . . , rk completely outside
setP̂ by the uncrossing step.

Proof. Note that since we use the assignments ofr1 (andr1 was the smallest numbere
copy), by Lemma 4.3, the cost of the solution can only reduce.

Consider the total fraction by which demandj ′ is assigned outside the set̂P . This was
originally

∑
t Y
(t)

j ′ . We have to show that after reassignment, the final total fraction

more than this. We remove fractionY (1)
j ′ (because we assignj ′(r1) completely in set̂P ) and

add
∑
t X

(t)

j ′ −X(1)
j ′ because of the uncrossing. Therefore, the final fraction is:∑

t

Y
(t)

j ′ +
∑
t

X
(t)

j ′ − (
Y
(1)
j ′ +X(1)

j ′
)
.

Invoking Proposition 4.4, the final fraction is clearly at most
∑
t Y
(t)

j ′ . This means tha
the reassignment is always possible.✷

At the end of one iteration of Steps B–E, we have opened facilityi completely. For
every demand fractionally assigned to the setP̂ , the smallest assigned copy is complet
assigned toi. Every other copy is fractionally reassigned completely outside setP̂ . We
drop the set̂P and the copiesj ′(r1) from further consideration.

Using arguments similar to [22,26], it follows:

Lemma 4.6. Therth copy of a demand pointj is assigned within a distance3
α
C(r)j , thus

the service cost is at most3
α
C∗. The facility cost of the above solution is at most1

1−αF
∗.

Proof. Since
∑
i∈P̂ yi = 1, and we charge this to the cheapest facility, the facility c

cannot go up in this step. But since we scaled theŷi in Phase 1, our cost could go u
by 1/(1 − α). Since the distances form a metric, and we are using the demand wi
smallestĈ (r)j (1 − α), the distance cannot have more than tripled. Note that since w
the assignments ofr1 (andr1 was the smallest numbered copy), by Lemma 4.3, the
assignments introduced in uncrossing can only decrease. This, combined with the d
bound from Lemma 4.1 completes the proof.✷

Settingα = 3/4 we have:

Theorem 4.1. Fault-tolerant facility location has a factor4 approximation in polytime.

The rounding phase requiresO(|D|2|F |2)=O(n4) steps.
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4.3. A tighter analysis

Recall from Definition 3.1 thatC(r)j (β) is the distance fromj such that at leastβ fraction
of the demand for copyr of j is satisfied. ThusC(r)j = C(r)j (1).

For a particular choice ofα, the cost of the solution,S(α), is:

S(α)� 1

1− αF
∗ + 3

∑
j,r

w
(r)
j C(r)j (1− α). (1)

We present the analysis of the algorithm ifα were chosen at random from the interv
(0,1− x). Since there are at most|D||F | =O(n2) values ofα for which the rounding can
be different; the algorithm can be derandomized. Following analysis from [26], the av
cost evaluates to:

3

1− xC
∗ + ln 1/x

1− x F
∗.

The above expression is minimized forx = e−3, resulting in the following:

Theorem 4.2. Fault-tolerant facility location has a3.16 approximation algorithm in
polytime.

4.4. Facility location revisited

In this section, we will show how to improve the approximation factor, and demons
the similarities between uncapacitated facility location and the fault-tolerant ve
Consider the heuristic that repeatedly chooses a facility to add while the total cost re
The heuristic is known as the ‘add’ heuristic in the facility location literature. [4,10
analyze the heuristic (with some variations specific to the analysis) from a standpo
approximation algorithms. We follow the analysis of [10].

Define the Gain(i) of a facility i to be the decrease intotal cost(decrease in assignme
cost minus the facility cost ofi) of the solution on addition of facilityi to the solution.
The facility with the best gain ratio is the facilityim with the ratio maxi Gain(i)/fi . If the
Gain(im) is positive, the heuristic addsim and repeats; and stops otherwise.

The computation of the assignment cost is easy following the observation that on
set of facilities are fixed, every demand point chooses the facilities serving it in incre
order of distance. The improvement of the solution depends on the quality of gain w
guarantee at every step; the following lemma can be proved:

Lemma 4.7. If the current costs of facility and assignment areF andC, respectively, and
there exists a fractional solution with costsF ∗ andC∗ satisfyingC � F ∗ +C∗ , then there
exists a nodei with ratio Gain(i)/fi � (C − F ∗ −C∗)/F ∗.

Proof. Consider the fractional solution(x̄, ȳ) with facility and assignment costsF ∗
andC∗. Without loss of generality we can assume that (a copy of) a demand point
uses a fractional facility completely or not at all. This can be achieved by replicat
facility as in Step C in the previous subsection.
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Now consider a facilityi in the fractional solution which is open with fraction̄yi . In
the fractional solution consider the set calSi = {j (r)} of the copies of the demand poi
assigned toi. By the assumption that a copy of a demand uses a (fractional) fa
completely or not at all in the fractional solution—we are guaranteed that the setSi
does not contain two copiesj (r) andj (r

′) of the same demand pointj .
Consider (for the purpose of proof only) adding this facilityintegrally to our current

solution and change the assignment of the demand copies calSi to the newly added
facility i. Define Gain′(i) as

Gain′(i)= −fi +
∑

j (r)∈calSi

w
(r)
j

(
“current assignment distance ofj (r)” − cij

)
.

We can interpret Gain′(i) easily if i were not already open, i.e.,i /∈ F . In this case
Gain′(i) is the change if the facilityi were opened and all demand copies calSi served by
i in the fractional solution(x̄, ȳ) were to be assigned integrally toi. If i is in the current
set of open facilitiesF , then the cost of the facility is paid again.

Observe that since the facilityi cannot serve two copies of the same demand poinj ,
the solution as interpreted above is a feasible solution.

Notice at this step we may be making possibly suboptimal assignments to this faci;
and thus Gain′(i)� Gain(i). This is true since once we fix the set of facilities, we comp
the best possible assignment solution and Gain(i) is the maximum over all possibl
reassignments.

Now consider the last equation multiplied withȳi and summed up asi ranges over the
facilities in the fractional solution. We get∑

i

ȳi Gain′(i)= −
∑
i

ȳifi −
∑
i

∑
j (r)∈calSi

ȳiw
(r)
j cij

+
∑
i

∑
j (r)∈calSi

w
(r)
j ȳi current assignment distance ofj (r).

The first term sums to−F ∗ which is the fractional facility cost. The second term is the c
of fractional assignment of all the demand copies and is−C∗. For the last term the sum
can be rewritten, switching the order of summations, as∑

j (r)

w
(r)
j “current assignment distance ofj (r)”

∑
i:j (r)∈calSi

ȳi .

In the fractional solution the sum
∑
i:j (r)∈calSi ȳi has to be 1, or in other words the dema

copy is fractionally assigned to a total of 1. Thus the term sums to exactly the c
assignment costC. Thus

C −C∗ − F ∗ =
∑
i

ȳi Gain′(i)=
∑
i

ȳifi
Gain′(i)
fi

�
∑
ȳifi max

{
0,max

i

Gain(i)

fi

}
.

i
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Now if C > C∗ + F ∗ then there must exist onei such that Gain′(i) is positive. Moreover
in that case ifim is the facility with maximum positive Gain′(i)/fi then

C −C∗ − F ∗ � F ∗ Gain′(im)
fim

.

Since Gain(i)� Gain′(i) for all i, the lemma is proved.✷
The above argument is exactly the same for the original facility location problem

proved in [4]. This is because in the fractional solution the assumption that a frac
facility serves a demand point completely or not at all allows us to treat the copie
demand point as separate demand points.

Thus the complete algorithm is as follows: We solve the linear program and pe
the rounding as described in Section 4.2. We then repeatedly choose a facility to add
solution which gives us the best gain. We stop when adding no other facility gives u
gain. The post-processing after the rounding phase takes timeO(|D||F |2)=O(n3) since
we add at mostF more facilities.

The next lemma follows from the above lemma and the analysis in [10], or a sim
one in [4].

Lemma 4.8. If the initial cost of facilities isF and of assignment cost isC > F ∗ + C∗,
then at the end of the heuristic the cost isF +F ∗ +C∗ +F ∗ ln(C−C∗)/F ∗, if there exists
a ( possibly fractional) solution of facility costF ∗ and assignment costC∗.

The details of the proof are exactly the same as in [4,10], and we omit it.

Theorem 4.3. The fault-tolerant facility location problem has a2.408 approximation
algorithm in polytime.

It is interesting to note that the combinatorial algorithms proposed in [4,19] do
extend since deletion of a node cannot be allowed—since it may render a so
infeasible. Both these algorithms employ a pure delete operation—where the num
facilities decreases. A combinatorial algorithm employing only addition of facilities
pure exchanges would very likely extend to the fault-tolerant case.
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