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Abstract 

The k-center problem with triangle inequality is that of placing k center nodes in a weighted undirected graph in which 
the edge weights obey the triangle inequality, so that the maximum distance of any node to its nearest center is minimized. 
In this paper, we consider a generalization of this problem where, given a number p, we wish to place k centers so as to 
minimize the maximum distance of any non-center node to its pth closest center. We derive a best possible approximation 
algorithm for this problem. @ 1998 Elsevier Science B.V. 
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1. Introduction 

The k-center problem is a classical problem in 

facility location: given n cities and the distances 
between them, we wish to select k of these cities 
as centers so that the maximum distance of a city 
from its closest center is minimized. The problem 
is NP-hard and Hochbaum and Shmoys present a 
2-approximation algorithm 2 for graphs with edge 
weights obeying the triangle inequality [4]. Further 
they also show that no polynomial-time algorithm for 
this problem can have a performance guarantee of 
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2 An a-approximation algorithm for a minimization problem runs 

in polynomial time and always outputs a solution of value no 

more than cy times the optimal. 

(2 - E) for any E > 0, unless P = NP. In this paper 
we consider a generalization of the k-center problem 
with triangle inequality in which we require that each 

city has some number (say p) of centers “close” 
to it. We extend the techniques of Hochbaum and 

Shmoys and provide a best possible approximation 
algorithm. 

Suppose that we wish to locate facilities at k out of 
n cities such that the maximum distance of a city to 
its pth-closest facility is minimized. Considering “pth 
closest” (as against closest in the k-center problem) 
is important when the facilities concerned are subject 
to failure and we wish to ensure that even if up to 
p - 1 facilities fail, every city has a functioning fa- 
cility close to it. We refer to this generalization as the 
p-neighbor k-center problem. Formally, the problem 
is to find a subset S of at most k vertices which min- 

imizes 
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Note that setting p = 1 reduces it to the k-center prob- Thus for the k-center problem we wish to find from 
lem. We present a polynomial-time algorithm achiev- among all dominating sets of size k, the one in which 
ing an approximation ratio of 2 for the p-neighbor k- the longest covering edge (we always use a shortest 
center problem. Since this problem is a generalization edge from a node to a neighbor in the dominating 
of the k-center problem, this approximation ratio is set as the covering edge for the node) is the short- 
the best possible. est. 

1.1. Related work 

Location problems including several versions of 
the k-center problem are surveyed in [ 31. Kariv and 
Hakimi [6] describe exact solution methods for the 

k-center problem. 
Turning to approximation algorithms, other than the 

work of Hochbaum and Shmoys mentioned above, 
Gonzalez [ 21 as well as Feder and Greene [ l] also 
describe 2-approximation algorithms for the k-center 
problem. A generalization with vertex weights is ad- 
dressed by Hochbaum and Shmoys in [ 51 which also 
describes a general paradigm for approximating bot- 
tleneck problems. In [ 91, Plesnik considered a gener- 
alization of the k-center problem where the distance 
to the center is multiplied by a vertex priority in the 
objective; He developed a 2-approximation algorithm. 
The paper by Wang and Cheng [ 111 also shows the 

same result. 

Hochbaum and Shmoys [.5] developed a general 
paradigm for approximating NP-hard bottleneck prob- 
lems; we illustrate this paradigm with the k-center 
problem. Let wt , ~2, ~3, . . . be the edge weights in in- 
creasing order and let G; be the subgraph induced by 
edges of weight at most Wi. First observe that the opti- 

mum value for the k-center problem is equal to one of 
the edge weights; in particular it is the minimum edge 
weight wi such that G; has a dominating set of size 

at most k. While it is easy to generate the subgraphs 

Gt 9 G2, G3,. . ., the problem of checking if these sub- 
graphs have a dominating set of size at most k is NP- 
complete. However, suppose that in the subgraph G; 
we can find an independent set I of size more than k 

such that no vertex in Gi is adjacent to two vertices of 
I. Then any dominating set in G; has a unique vertex 
dominating each vertex of I and therefore cannot be 
of size k or less. 

The p-neighbor k-center problem was considered 

previously by Krumke [8] where he provided a 4- 
approximation algorithm. We use ideas from his work 
for deriving a lower bound for this problem but pro- 
vide a different algorithm to achieve an approximation 
ratio of 2. Our techniques are graph-theoretic; we re- 
late the size of a certain type of dominating set in a 
graph to the size of a certain type of independent sets. 
Khul!er, Pless and Sussmann [ 71 have also considered 
this problem (among other variants) and provided an 

approximation with the same performance ratio of two 
using an entirely different approach. 

Given a graph G = (I! E) the xth power of G, de- 
noted by GX = (YE’) is a graph with the same vertex 
set as G and an edge between two vertices if they are 

connected by a path of at most x edges in G. Then I 
is an independent set of vertices in G?. Thus to argue 
that G; has no dominating set of size at most k, it suf- 
fices to find an independent set in G? of size larger 
than k. What if the largest independent set we can find 
in G? is of size no more than k? While we cannot say 
anything for sure about the size of a dominating set in 
G;, we claim that Gj! has a dominating set of size at 

most k. 

2. The basic paradigm 

To prove this claim we only need to assume that the 
independent set in GT that we find (say Z) is maximal, 

i.e., the addition of any other vertex to I yields a set 
which is not independent. But this implies that every 
vertex not in I has a neighbor in I which means that 
I is a dominating set in G?. 

The problem mentioned in the Introduction falls 
into a general class of problems known in the lit- 
erature as bottleneck problems. Roughly speaking, a 
bottleneck problem is one in which we are trying to 
optimize a bottleneck, i.e., minimizing the maximum 
or maximizing the minimum value of some quantity. 

Let Gj be the first subgraph in the sequence 

Gt,G2,Gs,... such that the maximal independent set 
found in Gj’ is of size no more than k. Since G,;_, has 
an independent set of size larger than k, every dom- 
inating set in Gj_1 is of size more than k and hence 
the optimum value is at least Wj. Further, G: has a 
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dominating set (the maximal independent set found) 

of size at most k. Since the edge weights satisfy tri- 
angle inequality, the longest edge in Gj has weight 
at most 2Wj. Thus we have a k-center in which the 

distance of any vertex to its closest center is at most 
twice the optimum. 

Summarizing, we have the following two key ingre- 
dients in this 2-approximation for the k-center prob- 
lem. 
( 1) If G2 has an independent set of size more than k, 

G has no dominating set of size k or less. 
(2) A maximal independent set is also a dominating 

set. 
The first observation is useful in establishing a lower 

bound on the optimum value while the second gives a 

solution of value at most twice the lower bound. 

Proof. Let D be a p-dominating set in G ( IDI = k) 

and I a p-independent set in G2 and let v be a vertex 
in Z - D. Let St be the vertices in D that are neighbors 
of v and 5’2 the vertices in V - D that are neighbors of 
the vertices in St. Further, let S = St U S2. Since each 
vertex in S is a neighbor of v in G2, the set I contains 
at most p vertices from S. The set D on the other hand 
contains at least p vertices from S (the subset St ) . In 
fact, D - S is a p-dominating set in the residual graph 
G[ V - S] and Z - S is a p-independent set in the 
graph G* [ V - S] . Continuing in this manner we will 
eventually reach a situation when there is no vertex in 
the residual graph that belongs to the p-independent 
set but not to the p-dominating set. Since at each step 
the number of vertices deleted from I was at most the 

number deleted from D, we have that 111 < IDI = 

k. 0 

3. The p-neighbor k-center problem 

We first generalize the notion of independent and 
dominating sets following Krumke [ 81 and sketch his 
proof of a lower bound relating these sets. However, to 
obtain the upper bound we describe a different algo- 
rithm motivated by proving a stronger graph-theoretic 

lemma about these sets. 

While Krumke showed that a maximal p-indepen- 

dent set in G is p-dominating in G2, we show below 
that there is a p-independent set in G that is also a p- 

dominating set in G (rather than G2). This reduces the 
performance ratio of the resulting algorithm from 4 
to 2. 

Definition 1. A set of vertices S c V is p-dominating 

if every vertex not in the set has at least p neighbors in 
it, i.e., Vu E V-S: degs(v) > p. Thus, a l-dominating 
set is the same as a dominating set. 

Lemma 4. Given a graph G = ( KE) and 1 6 p < 
n, there exists a p-independent set S C V that is also 

p-dominating. 

Definition 2. A set of vertices 5’ & V is p- 

independent if every vertex in the set has at most p - 1 
neighbors in it, i.e., Vu E S: degs(v) < p - 1. Thus, 
a 1 -independent set is the same as an independent set. 

Proof. Let S be a p-independent set that is not p- 

dominating. In particular let v E V - S be such that 

degs(v) = q < p. Let U be the neighbors of v in S 
that have exactly p - 1 neighbors in S and let G[ U] be 
the subgraph induced by U in G. Let Z be a maximal 
independent set (and hence also a dominating set) 
in G[U]. Therefore the set S - Z U {v} is also p- 

independent. 
The following lemmas relate the size of a p- The idea of the proof then is to define a poten- 

dominating set in a graph G to the size of a p- tial function for a p-independent set in such a way 

independent set in G and G2. These can be viewed that the above swap causes the new p-independent 
as extending the relationship between dominating set S - Z U {v} to have strictly more potential than 

sets and maximal independent sets. The first lemma the original set S. This would then imply that the 
appears in [ 81 as Proposition 5. We sketch the proof p-independent set with maximum potential must also 
here for completeness. be p-dominating. 

Lemma 3 (Krumke [ 81). Zf G has a p-dominating 
set of size k then no p-independent set in G2 has size 
more than k. 

With this motivation, define the potential of a p- 
independent set, S, as $(S) = p . /S( - IE(G[ S] ) 1, 
where E( G[ S] ) denotes the edge set of the subgraph 
induced by S in G. Since 
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ISI - 1s - I u (u}I = 111 - 1, 

and 

of size k or less by Lemma 3. Hence the optimum 
value is strictly larger than wi_1 (i.e., at least w;) 
and this gives a 2-approximation algorithm for this 
problem. 

= (p - l)lIl - (9- VI), 
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