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Abstract

This paper aims to solve large continuous p−centre problems optimally by re-examining a

recent relaxation-based algorithm. The algorithm is strengthened by adding four mathemat-

ically supported enhancements to improve its efficiency. This revised relaxation algorithm

yields a massive reduction in computational time enabling for the first time larger data sets

to be solved optimally (e.g. up to 1323 nodes). The enhanced algorithm is also shown to

be flexible as it can be easily adapted to optimally solve related practical location problems

that are frequently faced by senior management when making strategic decisions. These in-

clude the α−neighbour p−centre problem and the conditional p−centre problem. A scenario

analysis using variable α is also performed to provide further managerial insights.

Keywords: Location, p−centre problem, α−neighbourhood, conditional, continuous space,

relaxation method, optimal solutions, managerial insights.

1. Introduction

Finding the best location for a facility can be a challenge, especially for public service facili-

ties such as hospitals, fire stations and ambulance stations. For example, if an ambulance is

summoned for someone having a heart attack, both the time and distance from the ambu-
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lance station to the patient could mean the difference between life and death. This dilemma

of locating emergency facilities efficiently has led to a large number of studies where vari-

ous mathematical models and algorithms have been suggested. The location problem that

this paper will focus on is the continuous p−centre problem, alongside two related problems

known as the α−neighbour and the conditional p−centre problem.

The p−centre problem wishes to locate p facilities on a plane or network to serve n de-

mand points such that the maximum distance, time or cost is minimised. In other words, it

aims to respond to the worst case scenario. The problem can be categorised as discrete or

continuous, but this paper will be focusing on the latter. In other words, the facilities can be

located anywhere in the plane, rather than at prespecified locations as in the discrete case.

Note that the continuous p−centre problem can provide useful greenfield solutions for the

discrete p−centre problem or promising regions of a network where potential sites should be

chosen. For more information on the discrete case, see Chen & Chen (2009), Irawan et al

(2016), and references therein.

Traditionally, the continuous p−centre problem is formulated as the Euclidean unweighted

p−centre problem, though a non-linear mathematical programming formulation does also ex-

ist. However, there is a binary linear programming formulation, as defined by CP1, with

the centres of all critical circles making up the set of potential facility sites. This finite

dominating set is found by constructing circles from one, two or three demand points, see

Chen & Handler (1987). This limits the total number of potential facility sites to be at most

m =
(

n

3

)

+
(

n

2

)

+n, made up of n null circles based on one point,
(

n

2

)

circles defined from two

points and
(

n

3

)

circles defined from three points. Note that m could be relatively smaller due

to the geometry of the three critical points.

CP1 : Minimise Z (1)

subject to
∑

j∈J

Ai,jxj ≥ 1 ∀i ∈ I, (2)

∑

j∈J

xj = p, (3)

Z ≥ xjrj ∀j ∈ J, (4)

xj ∈ {0, 1}, ∀j ∈ J. (5)
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where

Z: the maximum distance between a facility and a covered demand point,

I: set of demand points indexed by i = 1 . . . n,

J : set of identified candidate circles indexed by j = 1 . . .m (i.e. their known centres act as

potential sites for facilities),

rj: the radius of circle Cj, j ∈ J ,

di,j: Euclidean distance from demand point i to the centre of circle Cj, i ∈ I, j ∈ J ;

p: number of facilities to locate,

Ai,j =











1 if di,j ≤ rj (i.e. demand point i will be covered by a facility located at the centre of circle Cj) ,

0 else, i ∈ I, j ∈ J .

xj =











1 if circle Cj is selected

0 else, j ∈ J .

The objective function (1) refers to minimising the maximum distance between a demand

point and its closest facility. Constraint (2) guarantees that every demand point will be

covered by at least one facility, while constraint (3) ensures that exactly p facilities are

chosen. Constraint (4) guarantees that the solution value is the radius of the largest covering

circle and constraint (5) refers to the binary decision variables.

The mathematical formulation above may be used to solve the problem. However, due to

a massive computational explosion in the number of binary variables as represented by the

number of potential circles, the implementation is not practical for larger n. For convenience,

the formulation is reproduced here as it serves as an important basis in the proposed research

that actually uses a set covering-based formulation.

The contributions of this study are as follows:

i) several enhancements supported by mathematical proofs are derived to strengthen

and speed up a recently proposed relaxation-based algorithm for solving

the continuous p−centre problem;

ii) large problem instances with up to 1332 nodes and 90 facilities are now capable

of being solved for the first time;
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iii) adaptations of the proposed algorithm to optimally solve two related location

problems, namely, the α−neighbour p−centre and the conditional p−centre

problems, are also presented. These two variants play an important role for locating

public service facilities.

The paper is organised as follows. A brief literature review is given in the next section.

Section 3 describes the reverse relaxation algorithm given by Chen & Chen (2009), and

proposes four new enhancements designed to significantly reduce the computational time.

Section 4 shows the computational results found for large data sets taken from the TSP-

library, namely rat575, rat783, pr1002 and rl1323. Section 5 describes the adaptations

introduced to our algorithm to optimally solve both the α−neighbour and the conditional

p−centre problems. We also introduce a practical extension to the α−neighbour problem

where the required coverage for each demand point is not necessarily the same. Finally, we

summarize our findings alongside further research suggestions.

2. A Brief Literature Review

Research into the p−centre problem first began by studying the simpler 1−centre problem,

that is, finding the location of one facility in a plane or network in order to minimise the

maximum distance from a given set of demand points to the facility. Sylvester (1860) was

the first to propose and to solve this problem. Since then, efficient algorithms have been

developed to solve this problem quickly and efficiently, such as Elzinga & Hearn’s (1972)

geometrical-based algorithm. Several enhancements have been made to this algorithm to re-

duce its overall computational time further, see Elshaikh et al (2015) and references therein.

Cooper (1961) was the first to formulate the general location problem with p > 1. He later

proposed four heuristics that could be used to solve the p−centre problem (Cooper(1964)).

This included the multi-start heuristic that is now commonly employed to obtain an up-

per bound that can be embedded into optimal methods (or sophisticated metaheuristics).

Minieka (1970) solved the p−centre problem on a network as a minimal set covering, which

was then developed further by Daskin (1995) to create an efficient set-covering based al-

gorithm. Elshaikh et al (2015) designed a powerful and adaptive variable neighbourhood

search heuristic, while Elshaikh et al (2016) explored a pertubation method for the same

problem with encouraging results.
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Some real-life applications have also been modelled as the p−centre problem. For ex-

ample, Pacheco & Casado (2004) presented a real health case study, where they located

health resources such as geriatric and diabetic health care clinics in Spain using a scatter

search algorithm. Drezner et al (2006) tackled the location of casualty collection points

which happen in cases of mass casualty due to catastrophic events such as earthquakes or

natural or man-made incidents. A five-objective optimisation problem with the p−centre

included is utlised and tested on a case study based on Orange County in Califfornia. Wei et

al (2006) solved the constrained continuous p−centre problem to locate 25 service facilities

in Dublin, Ohio using a Voronoi-based algorithm. Kaveh & Nasr (2011) used a modified

harmony search algorithm to solve the conditional and unconditional p−centre problem for

locating bicycle stations in the city of Isfahan. Lu (2013) located urgent relief centres in

Taiwan to serve the injured residents following a 7.3 Richter scale earthquake by devising a

simulated annealing-based heuristic.

It is important to note that in the above real case studies, heuristic solutions to the

p−centre problem are used exclusively. However, due to many advances in technology and

computer power, alongside the latest developments in exact algorithms, it is now possible to

find the optimal solutions to such problems.

Drezner (1984) proposed an exact method to solve the p−centre problem that used a sub-

set of potential facility locations generated by an upper bound using the concept of maximal

circles. Recent enhancements to this method have created a faster, more efficient algorithm

that is used to optimally solve large problems for the first time, see Callaghan et al (2017).

A classic relaxation algorithm was originally suggested by Handler & Mirchandani (1979)

to solve the discrete p− centre problem. Chen & Handler (1987) proposed a relaxation-based

algorithm for the continuous p−centre problem after observing that a) the solution to the

(p − 1)−centre problem is an upper bound for the p−centre problem and b) if the optimal

solution for the sub-problem is feasible for the original problem, then it is optimal for the

original problem. Chen & Chen (2009) proposed three interesting alternative algorithms

to the classic relaxation algorithm which they referred to as the improved relaxation algo-

rithm, the binary relaxation algorithm and the reverse relaxation algorithm. The improved

relaxation algorithm updates the upper bound more frequently and adds k points to the

subset at a time rather than just one at a time. The latter two algorithms form two new

relaxation-based methods. Note that the reverse relaxation algorithm will be re-examined
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and dramatically strengthened in this study.

An interesting related problem that we also investigate here is the α−neighbour p−centre

problem. This was first presented by Krumke (1995) with the aim to minimise the maximum

distance between each demand point and its closest α facilities. This is a useful strategic

problem that is used in the case of disruption so that coverage is still valid. Krumke (1995)

provided an approximation algorithm to solve the problem on a network with an approxima-

tion factor of 4 when α ≥ 2. Khuller et al (2000) improved this by producing an algorithm

that had an approximation factor of 3 for α ≥ 3, and 2 for α = 2. Chen & Chen (2013)

devised an optimal algorithm for the continuous α−neighbour p−centre problem by adapt-

ing two well-known optimal algorithms, namely Minieka’s (1970) algorithm used to solve the

discrete and continuous p−centre problem, and the classic relaxation algorithm by Chen &

Chen (2009). The authors found optimal solutions for one TSP-Library data set (n = 439)

for the first time with α = 2 and 3. Our method will be shown to be flexible and powerful

enough to optimally solve for the first time much larger instances (e.g. up to n = 1323).

Another related problem which we also explore here is the conditional p−centre prob-

lem. This is sometimes referred to as the (p, q)−centre problem with the aim to locate p

facilities on a plane or network given that q facilities already exist. This is a closely re-

lated problem faced by management when services need to be expanded. Minieka (1970)

introduced conditional location problems on a network and Handler & Mirchandani (1979)

formally presented the first conditional location problem. Chen & Handler (1993) solved the

conditional p−centre problem by modifying the relaxation-based method for the continuous

p−centre problem of Chen & Handler (1987) using two ways. The first modification dis-

allowed demand points within a certain distance to an existing facility to be added to the

subset, while the second one included the existing facilities when checking for feasibility for

the full problem. Drezner (1989) proposed a binary algorithm for the conditional p−centre

problem, and Chen & Chen (2010) developed this algorithm further by incorporating their

earlier reverse relaxation algorithm (see Chen & Chen (2009)). This method will be revisited

in Section 5.

3. An Enhancement-Based Algorithm

Chen & Chen (2009) proposed two new relaxation algorithms to solve the p−centre problem

called the reverse relaxation algorithm and the binary relaxation algorithm. Although these
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algorithms are proven to be efficient at solving the discrete p−centre problem, they have not

been tested on several data sets in the continuous case. We conducted a detailed experiment

using all values of k (k = 1, . . . , 10) and found that the reverse relaxation algorithm performs

relatively better on average. For brevity, the detailed results are not given here but can be

found in Callaghan (2016). We therefore focus on this algorithm which is given in Figure

1. Note that in Step 3 of Figure 1, the sub-problem is said to be feasible if the number

of facilities found to cover the subset of demand points for a given coverage distance when

solving the set covering problem, is ≤ p. For simplicity the general set covering formulation

which we refer to as SCF is reproduced here based on the entire set of demand points I and

the set of facilities (circles) J . All other notation is given earlier in CP1.

SCF : Minimise
∑

j∈J

xj (6)

subject to
∑

j∈J

Ai,jxj ≥ 1 ∀i ∈ I, (7)

xj ∈ {0, 1} ∀j ∈ J. (8)

The objective function (6) wishes to minimise the number of facilities to open and constraint

(7) ensures that all demand points are covered by at least one facility.

The rest of this section will describe the four enhancements that we developed to create

a deterministic, fast and efficient algorithm that is powerful enough to solve large continuous

p−centre problems optimally.

3.1. A Deterministic Generator for the Initial Subset (Step 2 of Figure 1)

One potential way to enhance Chen & Chen’s algorithm would be to reexamine the selection

of the initial subset. One scheme is to guarantee that the demand points chosen are evenly

spread out over the data’s distribution besides being generated in a deterministic way. This

would lead to computational times that are less sensitive to the initial subset of the demand

points. This idea is translated into our first enhancement, SubE1, which aims to find the

minimum number of dispersed initial demand points.
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1. Set the lower bound to be 0 and specify k.

2. Choose a random subset of demand points, Sub.

3. Determine whether Sub has a feasible solution, feasible, with objective value less
than the lower bound.

a) If feasible cannot be found, generate a new lower bound by finding the

smallest radius of a covering circle created from Sub that is larger than the

current lower bound and go back to Step 3.

b) If feasible can be found, continue to Step 4.

4. Determine whether feasible is feasible for the full problem.

a) If it is, halt and return feasible as the final solution.

b) Otherwise add k demand points to Sub and go back to Step 3.

Figure 1: Reverse Relaxation based on Chen & Chen (2009: pp 1649)

Let us define d′i,l as the Euclidean distance from demand point i to demand point l, and

Sub as the subset of demand points.

SubE1: An Overview

i) Firstly, the convex hull of the demand points is found, and let CS be the set of

points defining the vertices of the convex hull. In this study, we used the quickhull

algorithm as proposed by Barber, Dobkin & Huhdanpaa (1996).

ii) The demand point, î ∈ I that yields the greatest sum distance from all i′ ∈ CS is

identified by

î = Arg(Max
i∈I\CS

{
∑

i′∈CS

d′i,i′}), (9)

and let Sub = {̂i}.

iii) The algorithm then enters the third stage where

a) All i ∈ I are allocated to their closest facility j ∈ Sub. This is represented by

the following allocation matrix Al

Ali,j =











1 if di,j < di,j∗ ∀i ∈ I, ∀j, j∗ ∈ Sub : j 6= j∗,

0 else.

Note that di,j is used instead of d′i,j though j is both a facility and a demand
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point. This is used to retain consistency of the distance between a faciltiy and a

demand point.

b) The temporary facility with the most allocated demand points, jMax, is then

identified as

jMax = Arg(Max
j∈Sub

{
∑

i∈I

Ali,j}). (10)

c) The demand point that is both allocated to jMax and sits the furthest away

from it, say i∗, is then identified as follows:

i∗ = Arg(Max
i∈I

(di,jMax
: Ali,jMax

= 1). (11)

d) The demand point i∗ is then added to the initial subset (e.g., Sub = Sub∪{i∗}).

We will now discuss the method used to determine the cardinality of this initial subset.

Determining the minimum |Sub|

The minimum number of demand points, r, needed for the initial subset Sub to yield an

initial solution (i.e. p circles) is found by Chen & Handler (1987) as follows:

r = Min
r′∈N;r′≥3

:

(

r′

3

)

+

(

r′

2

)

+ r′ ≥ p, (12)

where r′ is the number of demand points in Sub, and
(

r′

3

)

and
(

r′

2

)

represent the number of

circles formed from three and two critical demand points in Sub respectively. For example,

if p = 4 we need r′ = 3 which leads to 7 identified candidate circles (one interescting the

3 demand points, three intersecting a different pair each and three degenerate circles (ra-

dius=0) intersecting a single point each.

To save computational time, the algorithm finds (r − 1) demand points using SubE1.

The number of circles created from this initial subset may not be large enough to guaran-

tee an initial solution (i.e., the number of circles < p), as some circles can be discarded due

to the geometry of the critical demand points. If this is the case, the algorithm returns back

to step 4 and adds another demand point to the initial subset one by one until an initial

solution is obtained. The algorithm for SubE1 can be found in Figure 2.

This method allows the distribution of the data set to be embedded into the search. This
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1. Set Sub = ∅. Find the demand points i′ ∈ I that form the vertices of the convex
hull, defined as the set CS.

2. Find the demand point î ∈ I \ CS that has the largest sum distance from all
i′ ∈ CS using Equation (9). Set Sub = Sub ∪ {̂i}.

3. Determine the value of r using Equation (12).

4. While |Sub| < r do:
Allocate all i ∈ I to their closest j ∈ Sub. Determine jMax using Equation (10)
and then find the furthest demand point i∗ ∈ I that is allocated to jMax using
Equation (11). Set Sub = Sub ∪ {i∗}.

5. Find all circles made by one, two or three demand points from Sub. If the number
of circles is ≥ p, return Sub as the initial subset and stop.
Else, set r = r + 1 and go back to Step 4.

Figure 2: Initial Subset Algorithm (SubE1)

means the initial subset is proportionally dispersed over clustered areas as well as evenly

spread areas, yielding a more efficient initial subset. Furthermore, by checking to see if the

subset can produce an initial solution each time another demand point is added, the size of

the subset is minimised.

As an example, Figure 3 shows the initial subset found using SubE1 for the data set

pr439 where p = 50. There are 25 demand points in this initial subset.

Figure 3: Initial subset for p = 50 using Enhancement One

Why all i′ ∈ CS are not necessarily added to the initial subset

Observation 1. Take two points i1, i3 /∈ CS and point i2 ∈ CS. If the angle ∠i1i2i3 > 90◦,

then the point i2 can be encompassed by the covering circle formed from i1 and i3.

10



This observation is illustrated in Figure 4 where the point i2 is encompassed by a covering

circle formed from the two other points i1, i3 /∈ CS.

Figure 4: Observation 1

As the third part of SubE1 is designed to find a subset of dispersed points in the plane,

it might seem reasonable to add all i ∈ CS to Sub automatically. However, observation 1

demonstrates that the extreme points that form the convex hull are not necessarily critical

points for their covering circles. Although SubE1 could select some points that form the

vertices of the convex hull to be in Sub, it is also designed to find a good initial subset based

on the data distribution and thus be more selective about the points that are chosen.

CPU Times (secs)

Chen & Chen’s Our Chen &Chen Our Results
Results Implementation With SubE1

p Z Best† Case of Best⊥ Worst Average+ Best⊥

(k = 2) (k = 2) (k = 3) (k = 1) (k = 2)

10 1716.510 0.84 2.41 4.18 2.27 29.65 1.98
20 1029.715 2.63 3.02 3.22 2.31 18.94 2.12
30 739.193 6.16 7.62 3.75 5.05 27.10 42.39
40 580.005 93.38 66.54 38.69 29.29 57.96 38.96
50 468.542 207.45 95.46 63.62 69.20 127.83 67.84
60 400.195 62.19 161.96 24.49 77.55 54.59 14.18
70 357.946 103.28 461.17 57.12 52.18 107.24 45.33
80 312.500 172.59 68.12 41.62 620.60 188.09 52.39
90 280.903 157.07 49.70 63.24 274.08 85.05 85.45
100 256.680 60.40 68.13 17.32 119.36 51.92 31.59

Average 86.60 98.41 31.73 125.18 74.81 38.22

† Results reported from Chen & Chen’s paper with k = 2.
+ Average over k = 1, . . . , 10.
⊥ Best result for k = 1, . . . , 10.

Table 1: Results comparing the Reverse Relaxation Algorithm with and without SubE1
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Table 1 shows the comparison between the computational times for Chen & Chen’s re-

sults, our results based on our implementation of Chen & Chen algorithm, and our results

with SubE1 for the reverse relaxation algorithm applied to the TSP-Library data set pr439.

These results may suggest that initially the first enhancement does not improve the compu-

tational time when compared with our original results. However, as stated before, SubE1

has the advantage of being deterministic. When compared with Chen & Chen’s results, it

can be seen that SubE1 was considerably faster on average. It is worth noting that such

comparison may not be valid as the other authors used a relatively older computer, older

version of cplex and above all different coding style. In brief, they used a 3.2 GHz Intel

Pentium 4 computer while we ran our tests on a much faster machine, namely, HP Elitebook

8570w with 12 GB memory. For the optimisation part, we used the IBM cplex 12.6 console

while they solved their models with cplex 7.5. An attempt to assess the performance of the

two machines can be explored in Dongarra (1992) if necessary. To avoid any unnecessary

confusion, we also reported the results of our implementation of Chen &Chen algorithm for

the same case when k = 2 using our code, our CPLEX optimiser and our machine. These

results show that the original implementation is relatively much slower as the overall average

of around 98 seconds is reported compared to about 38 seconds only for SubE1. Given that

the original algorithm is non-deterministic, some runs may obviously be much faster than

others. As an example, our first run (when k = 3) happens to be the fastest on average as a

better initial subset may have been randomly selected. Therefore, it is promising to see the

computational time taken by SubE1 to be much closer to the best initial solution generated

by the random selection, besides that the CPU time with SubE1 is less sensitive to the value

of p. Above all, a deterministic method such as SubE1 is more reliable as it can be replicated

by other researchers.

3.2. An Efficient Scheme for Adding Demand Points (Step 4b in Figure 1)

Chen & Chen’s reverse relaxation algorithm states that the demand points added to the

subset are the k furthest ones from their allocated facilities. This scheme, though interesting

and simple to use, could be improved further by identifying its weakness through the following

‘worst-case scenario’ example.

In order to explain the second enhancement, we define R(K) as the radius of the smallest

circle encompassing all points in K (where K ⊂ I). The closure of circle Cj is defined as
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follows.

Definition 1. The closure of circle Cj is the set of demand points covered by circle Cj:

Clj = {i ∈ I| di,j ≤ rj} ∀ j = 1 . . .m.

An Illustrative Example

Figure 5a demonstrates a solution for the relaxed subset where p = 4. The grey dots are the

facility locations (circle centres) for the subset’s solution. The black dots are the uncovered

demand points in the full problem. The subset’s solution is not feasible for the full problem

as there are still some uncovered demand points.

(a) (b)

Figure 5: Adding k furthest demand points example

As an example consider k = 4. According to the original algorithm, all uncovered demand

points must now be allocated to their nearest facility and the k furthest points will be added

to the subset. In this example, the first demand point that will be allocated to the subset

is the one encompassed by its own dotted circle and labelled P1 in Figure 5b. Adding P1

to the subset could contribute to a good result as it would guide the algorithm towards the

optimal solution.

However, the remaining three demand points that will be added to the subset are the

three demand points circled with a dashed line and labelled P2, P3 and P4 in Figure 5b.

The addition of these three demand points to the subset does not contribute to improving

the solution as the new information is now redundant. This is because R(K ∪ {P1}) ≥
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R(K ∪{Pk}), k = 2, 3, 4, as P1 lies further from the common closest circle Cj. Adding P2, P3

or P4 to Sub would mean there were extra calculations that are both redundant and time

consuming. This claim is stated in Lemma 2.

Lemma 1. Take two demand points, i1 and i2, that are not encompassed by Cj. If di1,j >

di2,j, then R(K ∪ {i1, i2}) > R(K ∪ {i2}).

Proof.

R(K ∪ {i1, i2}) =
rj + di2,j + (di1,j − ν)

2
− ǫ

where 0 ≤ ν ≤ di2,j, ǫ a small positive value and

R(K ∪ {i2}) =
rj + di2,j

2
− ǫ.

di1,j > di2,j.

=⇒
di1,j − ν

2
> 0,

=⇒
rj + di2,j + (di1,j − ν)

2
− ǫ >

rj + di2,j
2

− ǫ,

Therefore R(K ∪ {i1, i2}) > R(K ∪ {i2})

Enhancement two, which will be referred to as AddE2, aims to overcome the possible

shortcoming of adding redundant points by slightly altering Chen and Chen’s selection rule.

In order to explain AddE2, the following definition is given.

Definition 2. An artificial circle is a candidate circle whose radius, rj, has been enlarged

to Zt, where Zt is the subset’s solution value at iteration t.

At any iteration t, all circles’ radii are artificially increased to size Zt and the solution is

analysed again to see what demand points remain uncovered. This allows more demand

points to be covered whilst not compromising the solution quality.

Figure 6 demonstrates the usefulness of artificial circles. The demand point P5 appears to

be uncovered by circle Cj. However, once the smaller circle is transformed into an artificial

circle (the dashed circle) by increasing its radius rj to size Z, it then becomes clear that

point P5 is now covered based on the solution value Z.

The enhancement AddE2, which is described in Figure 7, uses artificial circles to enhance
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Figure 6: Construction of an artificial circle with radius Z (rMax)

and improve the selection technique when choosing the k demand points to be added to the

subset.

1. Input: set of solution circles (facilities) F and value k.

2. Allocate all the demand points i ∈ I to their closest facility j ∈ F and define the
allocation matrix Ai,j where Ai,j = 1 if demand point i is allocated to facility j,
else Ai,j = 0. Record Z = Max(rj : j ∈ F ).

3. Create the artificial circles by artificially increasing all rj so that rj = Z ∀ j ∈ F .

4. Update the allocation matrix such that Ai,j = 1 if demand point i is both allocated
to facility j and di,j > Z.

5. Find the k furthest demand points from their allocated facility such that no more
than one demand point is selected from each facility.

Figure 7: Point Selection Algorithm (AddE2)

AddE2 was first added on its own to the reverse relaxation algorithm and tested on the

data pr439 where p = 10, . . . , 100 and k = 1, . . . , 10. This yielded an improvement with an

average reduction in computational time of 10.60%. Although this is an encouraging result,

fast results such as these cannot be replicated with AddE2 alone as the algorithm is not

deterministic. To achieve the desired outcome, both SubE1 and AddE2 are incorporated

into the reverse relaxation algorithm. The results, given in the last column of Table A.1 in

the Appendix, show that the deterministic algorithm with these two enhancements yields the

optimal solution in a faster time with an average decrease of computational time of 11.30%.
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3.3. Jump-Based Lower Bound Update (Step 3a in Figure 1)

The reverse relaxation algorithm usually requires a large number of iterations due to the

algorithm constantly updating the lower bound. However, many of these adjacent ‘jumps’

to the next lower bound could be redundant. The third enhancement, which will be referred

to as DyJumpE3, takes this drawback into account by providing a more efficient updating

scheme by redefining what the next lower bound will be set to. Instead of setting the next

lower bound as the smallest radius larger than the current lower bound, it will be set to the

jumpth smallest radius where the value of jump is determined dynamically.

A similar approach was first proposed for the discrete p−centre problem by Al-Khedhairi

& Salhi (2005), where the authors suggested the use of the second lower bound rather than

the first. As the algorithm may require several iterations until the optimal solution is reached

by the lower bound, we set the jumpth lowest bound to LB0 = LBjump where

LBjump = min{di,j : di,j > LBjump−1 ∀ i ∈ I, j ∈ J}. (13)

Defining the backward jump

Note that if an upper bound is found when jump = 2, the next lower bound to consider is

the single value before that was missed as demonstrated by Al-Khedhairi & Salhi. However,

if jump > 2, this scheme is no longer valid as there is more than one value missed.

One option is to find the next value using the binary (bisector) method. In other words,

the missed value that is halfway between the current lower bound and upper bound is taken

as the new bound to be evaluated (as it can be determined as either a lower bound or an

upper bound). The option which we adopt is to use a strategic increase leading to the very

first missed lower bound (i.e., upper bound) and then continue from this point to decrease

the value systematically until a lower bound is identified meaning that the upper bound

previously used is then the optimal solution guaranteeing no further checking.

One may think that setting jump to a large number will avoid many redundant iterations

as the lower bound is updated fewer times. However, this is not always true as when demand

points are added to the relaxed subset, more circles are generated that have radius rj such

that LBq(t−1) < rj < LBqt at iteration t and jump = q. A scheme that balances the use of

large jumps whilst minimising the number of circles to check through once an upper bound
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is established is given next.

A dynamic jumping scheme

A dynamic scheme where jump is initially set to be large, and then slowly decreased during

the search is presented. This is a non-increasing but discontinuous function of iterations

jump(t) with t denoting the tth iteration and jump(t) ∈ N. As the value of jump will change

throughout the search, the computational time savings for 0 ≤ q < jump, (No
(jump)
q ), can

be defined for any value of jump as follows:

No(jump)
q =











α− ⌊ α
jump

− 1⌋ if q = 0,

α− ⌊ α−q

jump
+ 1 + (jump− q)⌋ if q > 0,

(14)

where α = q mod jump.

Let jumpMax be the maximum number of jumps, such that 2 ≤ jump(t) ≤ jumpMax ∀t.

Let N t
u be the number of uncovered demand points at iteration t. Initially we set jump =

jumpMax. The scheme uses the proportion of uncovered demand points as defined in Equa-

tion (15).

jump(t) = ⌊jumpMax − (jumpMax × (1−
N t

u

N
) + 0.5)⌋. (15)

This scheme was tested on the data set pr439 with jumpMax = 10 and k = 1, . . . , 10

with the best result found when k = 4 with an average of 6.40 seconds whereas the worst

computational time recorded was for k = 1 which required nearly two and a half times more

computational time (i.e., 16.95 seconds).

3.4. A Dynamic Scheme for the Determination of k (Step 4b in Figure 1)

When the enhanced algorithm did not include DyJumpE3, the best results were often ob-

tained when k = 2 or 3. However when DyJumpE3 was included, the best computational

times were found when k = 4. This suggests that the value of k is critical to the success of

the algorithm.

One way to identify the most appropriate estimator for k would be to perform a thorough

statistical analysis. However, this requires performing experiments with the expectation that

a similar performance will remain valid when tested on new data sets. Another, more robust,

approach is to develop a self-adaptive method that will learn as the search progresses while
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incorporating the characteristics of the p−centre problem. Our final enhancement, PointE4,

aims to implement such an idea where we aim to determine the number of demand points

k during the algorithm based on the number of uncovered points. This scheme shares some

similarities with the dynamic jumping scheme described previously. In other words, PointE4

seeks to find a balance between adding more demand points at the beginning, and decreasing

k as the algorithm starts to slow. This is achieved by setting k to be a certain percentage of

uncovered demand points so a proportionally small amount of demand points can be added

to the subset at each iteration.

Previous results show that the reverse relaxation algorithm generally works best when

k > 1. Therefore, at iteration t we set k to be

k(t) = Min(p,Max(2, ⌊(0.02×N t
u) + 0.5⌋)). (16)

In other words, the minimum value of k can be at least 2 while being bounded by a maximum

of p.

3.5. The Enhanced Reverse Relaxation Algorithm

Figure 8 describes the Enhanced Reverse Relaxation algorithm (ERRA) incorporating all

four enhancements.

4. Computational Results of ERRA

ERRA was tested on larger instances, namely the TSP-library data sets rat575, rat783,

pr1002 and rl1323. Each data set was given a time limit of 24 hours for each value of p, and

the result found is either the optimal solution or the best lower bound established within

the time limit. The latter can be used, if necessary, as bounds when evaluating heuristic

solutions in general.

Tables 2-6 are structured in the following way. The first column, titled p, shows the

number of required facilities. The second column, titled ZH , gives the upper bound found

from the best heuristic solution obtained in Elshaikh et al (2015). This value was used as

an upper bound on the radius whenever updating the set of candidate circles was required.

The third column gives the optimal solution, Z∗, or the best lower bound shown by ⊥ if no
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1. Set the lower bound LB = 0, c = 1, t = 0 and jumpMax = 10.

2. Select the initial subset of demand points using Initial Subset Algorithm given in
Figure 2.

3. Set t = t + 1. Determine if Sub has a feasible solution, feasible, with a solution
value, Zt ≤ LB.

a) If feasible cannot be found, determine the value of jump using Equation

(15) and find the jumpth smallest lower bound, LBjump, that is larger than

LB. Set LB = LBjump and go back to Step 3.

b) Otherwise if feasible is found, determine N t
u, and continue to Step 4.

4. Determine whether feasible is feasible for the full problem.

a) If it is, determine whether Sub has a feasible solution, feasible, with a

solution value ≤ LB(jump−c).

If not, return LBjump−(c−1) as the final solution.

Else set c = c+ 1 and repeat Step 4(a).

b) Determine the value of k using Equation (16). Add k demand points to

Sub using the Point Selection Algorithm in Figure 7 and go to Step 3.

Figure 8: The Enhanced Reverse Relaxation Algorithm (ERRA)

optimal solution is obtained. The final three columns state the total number of iterations of

ERRA, the total number of times the lower bound was updated and the total computational

time in seconds (if less than 24 hours), respectively.

Results show that optimal solutions were found in a reasonable computational time for

the larger data sets with some results being discovered for the first time, such as those for

the data set rl1323 when p < 30. This suggests that ERRA is particularly effective for

smaller values of p.

Furthermore, if we compare the best upper bound solution found (ZH) to the best lower

bound found within the time limit of 86400 seconds, we can observe that the lower bound is

very close to the value of the best upper bound, with the worst-case being a 4.4% difference

(n = 783, p = 80). This confirms that the solutions found by the VNS-based metaheuristic

are either optimal or near optimal for those instances with unconfirmed optimal solutions.

On the other hand, referring to Table 2, we see that the VNS solutions can be quite far from

the optimal ones.
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Best Heuristic Enhanced Reverse Relaxation

p ZH Z∗ # Iterations # LB Updates CPU Time (secs)

10 1716.510 1716.510 40 11 0.78
20 1169.540 1029.715 53 9 1.48
30 975.000 739.193 68 9 2.86
40 874.271 580.005 93 13 9.97
50 580.005 468.542 107 26 13.79
60 570.088 400.195 99 12 10.00
70 503.271 357.946 130 25 16.77
80 467.039 312.500 126 19 14.95
90 391.511 280.903 139 17 20.83
100 315.486 256.680 128 7 15.55

Average 756.272 614.218 98 15 10.70

ZH : Heuristic solution found by Elshaikh et al (2015)

Table 2: Results for TSP-Lib pr439 using ERRA

Best Heuristic Enhanced Reverse Relaxation

p ZH Z∗ # Iterations # LB Updates CPU Time (secs)

10 67.926 67.926 110 68 11.42
20 45.621 45.475 342 233 590.42
30 35.556 35.556 335 188 1412.07
40 30.265 30.063 434 253 76647.60
50 26.173 25.826 332 159 16354.00
60 23.662 23.163 294 117 22277.80
70 21.059 20.858 283 100 28210.70
80 19.510 19.026 253 68 9789.67
90 17.923 17.460 239 60 1114.37
100 16.511 16.420 243 53 3696.07

Average 30.421 30.178 287 130 16010.41

ZH : Heuristic solution found by Elshaikh et al (2015)

Table 3: Results for TSP-Lib rat575 using ERRA

Best Heuristic Enhanced Reverse Relaxation

p ZH Z∗ # Iterations # LB Updates CPU Time (secs)

10 79.313 79.313 151 102 24.14
20 53.441 53.332 386 268 1181.29
30 42.395 42.307 638 460 39558.80
40 35.962 35.249⊥ 417 259 86400.00
50 31.184 30.647⊥ 401 236 86400.00
60 28.053 27.067⊥ 276 134 86400.00
70 25.446 24.521⊥ 250 114 86400.00
80 23.560 22.519⊥ 261 112 86400.00
90 21.710 20.940⊥ 265 103 86400.00
100 20.334 19.526⊥ 254 90 86400.00

Average 36.140 −−− 330 188 64556.42

ZH : Heuristic solution found by Elshaikh et al (2015)
⊥ Best lower bound found within 86400 seconds.

Table 4: Results for TSP-Lib rat783 using ERRA
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Best Heuristic Enhanced Reverse Relaxation

p ZH Z∗ # Iterations # LB Updates CPU Time (secs)

10 2389.36 2389.36 119 69 17.97
20 1609.54 1607.53 471 336 5066.19
30 1231.36 1231.36 330 185 2072.17
40 1030.40 1021.41 307 159 1091.56
50 901.455 895.342 333 170 10874.10
60 801.474 795.709 328 137 23724.40
70 727.154 725.431 366 142 10545.50
80 664.798 655.746 269 89 1492.98
90 604.152 604.152 270 67 670.39
100 559.017 555.662 256 51 391.07

Average 1051.870 1048.170 305 141 5594.63

ZH : Heuristic solution found by Elshaikh et al (2015)

Table 5: Results for TSP-Lib pr1002 using ERRA

Best Heuristic Enhanced Reverse Relaxation

p ZH Z∗ # Iterations # LB Updates CPU Time (secs)

10 2897.49 2987.49 328 242 666.71
20 1886.82 1868.92 674 543 5485.95
30 1466.97 1466.97 858 670 81009.20
40 1236.38 1225.74⊥ 666 486 86400.00
50 1060.82 1051.82⊥ 557 384 86400.00
60 941.870 930.977⊥ 472 297 86400.00
70 844.967 841.578⊥ 571 323 86400.00
80 774.764 770.532⊥ 495 267 86400.00
90 720.625 706.145 428 202 9863.38
100 662.936 658.267⊥ 424 195 86400.00

Average 1249.364 −−− 547 361 61542.52

ZH : Heuristic solution found by Elshaikh et al (2015)
⊥ Best lower bound found within 86400 seconds.

Table 6: Results for TSP-Lib rl1323 using ERRA

5. Adapting ERRA to two related location problems

In this section, we show the effectiveness and flexibility of ERRA to easily adapt to

related p-centre problems that have a considerable significance in practice. These include

the α -neighbour p -centre and the conditional p− centre problems.

5.1. The α−Neighbour p−Centre Problem

This problem aims to minimise the maximum distance between each demand point and

its α− closest facility (where α < p). For example, if α = 3, we wish to minimise the

maximum distance to the third closest facilitiy. This is equivalent to ensuring that each
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demand point is covered by at least α = 3 covering circles. In other words, Z∗ is the minmax

closest distance to the nearest facility that ensures all demand points are covered by at least

α facilities within this maximum distance.

A strength of this classification type is that it allows for either failure or closure of α− 1

facilities whilst ensuring that each demand point is still covered. This provides extra safety

and security, which is particularly important when locating emergency facilities.

As previously stated, Chen & Chen [7] were the first to propose an optimal algorithm for

the α−neighbour p−centre problem by adjusting the classic relaxation algorithm. ERRA

shares many similar properties to the classic relaxation algorithm, and hence some adapta-

tions for ERRA are similar, though some are different. The modifications include (i) changes

to the formulation, (ii) adjusting the enhancement AddE2, (iii) clarifying how the solution

value is obtained and (iv) discussing the concept of co-location of facilities.

5.1.1. The Modifications of ERRA for the α−Neighbour p−Centre Problem

(i) Some changes to the set-covering formulation

ERRA uses a similar set covering formulation as the one given in (SCF ) to solve the

p−centre problem except that constraint (7) is replaced by constraint (18) which ensures

that all demand points are now covered by at least α facilities. We refer to this new model

as Forαsc.

Forαsc: Minimise
∑

j∈J

xj (17)

subject to
∑

j∈J

Ai,jxj ≥ α ∀i ∈ I, (18)

xj ∈ {0, 1} ∀j ∈ J. (19)

(ii) Adjusting the enhancement AddE2

In both the classic relaxation algorithm and ERRA, if the solution to the subset is not

feasible for the full problem, then k demand points are added to the subset of demand

points. In the case of the α− neighbour p−centre problem, Chen & Chen adjusted the

classic relaxation algorithm so that the k demand points that lie the furthest from their αth
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nearest facility were added to the subset of demand points instead. We can therefore amend

our selection of the k demand points in the following way:

1. Allocate all i ∈ I to their αth closest facility. This forms at most p clusters.

2. Find the k demand points that lie the furthest from their αth closest facility such that

only one demand point is selected from each cluster.

(iii) Finding the Solution Value

For the α− neighbour p−centre, the worst case scenario would be the failure of the closest

(α − 1) facilities serving a demand point. Therefore, the solution value for this problem is

also the radius of the largest covering circle.

(iv) Co-Location of Facilities

For the classic p−centre problem, the co-location of facilities (i.e., more than one facility

situated at the same location) may not be worth it, as the extra facility could be better

located within the maximum circle. However, for the α−neighbour p−centre problem, this

observation is no longer valid and hence co-location may be beneficial as demonstrated by

the following lemma.

Let d̂αi be the distance from demand point i ∈ I to its αth closest facility, and i′ the demand

point that yields the largest d̂αi (i.e., i′ = Arg[Max
i∈I

{d̂αi }] ).

Also let J ′ be the set of α closest circles to demand point i′, and ZI′ the corresponding

optimal solution value for the α−neighbour p−centre problem for a subset of demand points

I ′ ⊂ I.

Lemma 2. If ∃ di′,j′′ > ZI\{i′} for j′′ ∈ J ′, then the co-location of facilities will improve the

solution value ZI .

Proof. The optimal solution, with value ZI\{i′}, for the α−neighbour p−centre problem

covers demand points I \ {i′}. Therefore, ZI must cover demand point i′ with α circles. As

there is at least one j′′ ∈ J ′ with a distance

di′,j′′ > ZI\{i′}
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to demand point i′, this implies

ZI > ZI\{i′}.

Therefore, to reduce ZI (i.e. ZI = ZI\{i′}), p⊥ facilities must be co-located at a facility site

j′′ ∈ J ′ such that di′,j′′ ≤ ZI\{i′} where 1 < p⊥ ≤ α.

In order to allow co-location of facilities, constraint (19) in Forαsc is altered to constraint (20)

where xj changes from a binary variable to an integer variable.

xj ∈ {0, . . . , α} ∀j ∈ J. (20)

A Simple Illustrative Example

Figure 9a shows the solution to the 2−neighbour 4−centre problem for this data set where

co-location is not permitted, yielding a solution value of 6.72 (i.e., maximum distance to the

2nd closest facility). Figure 9b displays the solution for the 2−neighbour 4−centre problem

for the same data set where co-location is allowed. In this case, two facilities are located

at each site yielding a massive improvement with the new solution value of 2.83. In this

particular example, the demand point i′ is the one covered by the null circle and the largest

circle in Figure 9a but served by two null circles in Figure 9b.

(a) Co-location is not allowed (b) Co-location is allowed

Figure 9: Solving the 2−neighbour 4−centre problem
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5.1.2. Computational Results

The four adaptations were incorporated into ERRA to form the adapted ERRA (AERRA).

This modified exact algorithm was used to optimally solve the α−neighbour p−centre for the

TSP-Library data set pr439 where p = 10, 20, . . . , 100 and α = 2. For comparison purposes,

the results in Table 7 are also given alongside Chen & Chen’s [7] results where the adapted

classic relaxation algorithm was used.

Classic Relaxation (Chen & Chen) Adapted Enhanced Reverse Relaxation
p Z∗ CPU (secs) SubMax # Iterations CPU (secs) SubMax # Iterations
10 2752.639 0.37 52 82 0.37 35 24
20 1716.510 3.04 108 162 0.84 60 37
30 1271.830 18.32 158 237 0.94 75 35
40 1008.170 27.20 196 314 3.40 120 59
50 874.271 605.65 250 389 4.53 125 63
60 739.193 978.71 260 404 7.90 154 78
70 621.742 1888.61 306 493 25.81 193 104
80 580.005 1576.88 322 515 24.80 210 112
90 530.477 1737.54 341 565 49.18 247 140
100 463.175 1443.72 352 587 26.89 234 115

Average 1055.801 828.004 235 375 14.52 145 77

Table 7: Optimal results for the 2−neighbour p−centre problem for pr439 using Chen and Chen ’s
algorithm and AERRA

Table 7’s first column states the number of facilities, p, that need to be located. The second

column, titled Z∗, shows the optimal solution found for the corresponding p value (i.e., the

maximum distance to the 2nd closest facility). The next three columns give Chen & Chen’s

results, with the third one referring to the total amount of computational time spent (in

seconds), the fourth to the maximal size of the relaxation sub-problem (SubMax) and the

fifth to the number of sub-problems (iterations) solved. The remaining three columns are

ordered identically, with the results corresponding to those obtained by AERRA.

These results show that for the data set pr439, AERRA was considerably better than

the adapted classic relaxation algorithm used by Chen & Chen, as it required 98.25% less

computational time, 38.30% fewer demand points in the subset and 79.47% fewer iterations

to solve the problem optimally. These encouraging results suggest that ERRA is both

reliable and efficient when adapted to optimally solve the α−neighbour p−centre problem.

Full results for the TSP-Library data sets pr439, rat575, rat783, pr1002 and rl1323 where

α = 2 & 3 can be found for the first time in Tables A.2-A.6 in the Appendix.
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5.1.3. An Observation & Sensitivity Analysis

Let Zα denote the solution value to the α−neighbour p−centre problem. We observe

that Zα ≥ Zα−1, as the coverage need for each demand point has increased. In other words,

if at least one demand point is not covered by α facilities, then at least one covering circle

will need to increase in size in order to establish a feasible solution. Figure 10 demonstrates

this observation for the data set pr439 where p = 10, . . . , 50 and α = 1, 2 and 3.

Figure 10: The optimal solution value, Z∗, for the data set pr439
where p = 10, . . . , 50 and α = 1, 2 & 3.

We can therefore conclude that Zα−1 can be used as an initial lower bound when solving

the α−neighbour p−centre problem. Furthermore, Table 8 shows the percentage increase in

the solution value, and therefore additional coverage required, as the value of α increases.

In this particular instance, there is a dramatic increase in the solution value on average

when α = 3 compared to α = 1. From a managerial perspective, this means it may be

more desirable to find a balance between reducing the value of α as much as possible whilst

ensuring that all demand points have the required coverage. This compromise introduces an

alternative setup to the α−neighbour p−centre problem which will be discussed next.

5.1.4. A Variable α−Neighbour p−Centre Problem

It may be beneficial from a managerial view to investigate the case where the number

of times a demand point needs to be covered by a facility varies. In other words, not every

demand point needs to be covered by exactly α facilities. For example, an analogy was

attempted by Toregas (1971) for the set covering problem where coverage demand was not
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α=1 α = 2 α = 3

p Z∗ Z∗ % Increase Z∗ % Increase

10 1716.51 2752.639 58.99 3989.302 132.41
20 1029.715 1716.510 66.70 2347.505 127.98
30 739.193 1271.830 72.06 1716.51 132.21
40 580.005 1008.17 73.82 1407.624 142.69
50 468.542 874.271 86.59 1226.02 161.67

Average 906.793 1574.684 71.632 2137.392 139.39

Table 8: Sensitivity analysis when solving the α−neighbour p−centre
problem where n = 439 and α = 1, 2 & 3

held constant at each demand point.

AERRA was modified to accommodate αi at each demand point i, which we shall refer to

as the variable AERRA (V −AERRA). For clarity, the full formulation for the V −AERRA,

Forαalt

sc , is given here.

Forαalt

sc : Minimise
∑

j∈J

xj (21)

subject to
m
∑

j=0

Ai,jxj ≥ αi ∀i ∈ I, (22)

xj ∈ {0, . . . , αMax} ∀j ∈ J, (23)

where

αi is the required number of times demand point i needs to be covered, and αMax is a

maximum preassigned threshold. All other definitions are as previously given.

The objective function (21) wishes to minimise the number of facilities. Constraint (22)

ensures that every demand point i is covered by at least αi facilities, and constraint (23)

represents the integer decision variable xj that allows co-location up to αMax.

For simplicity, and to provide the possibility for other researchers to conduct similar

experiments, in our investigation we allocated the αi value for each demand point based on

its position in the data set. For each demand point i ∈ I we set
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αi =



























1 if i mod 3 = 1,

2 if i mod 3 = 2,

3 if i mod 3 = 0.

(24)

This therefore demonstrates a simple example where the demand points are assigned one

of three potential α values. This scenario could be adapted when appointing an α value

based on the data’s distribution areas (i.e. clustered, semi-clustered and sparse) or the de-

mand point’s importance ranking (i.e. high, medium or low).

Computational Results

The V − AERRA was tested on the TSP-Library data sets pr439, rat575, rat783, pr1002

and rl1323. The results are given in Tables 9-13, which are structured as follows. The first

column shows the number of facilities located, p, while the second column displays the opti-

mal solution value, Z∗, or the best lower bound obtained shown by ⊥ if no optimal solution is

found. The last three columns show the total computational time in seconds, the maximum

number of demand points in the subset, SubMax, and the total number of iterations required

respectively.

p Z∗ CPU (secs) SubMax # Iterations

10 3855.779 1.41 49 67
20 2298.267 1.87 68 94
30 1636.784 2.03 87 94
40 1381.179 4.75 110 142
50 1125.972 3.40 115 81
60 936.833 8.85 148 154
70 850.827 13.91 151 245
80 748.853 11.88 168 177
90 637.377 20.72 205 170
100 586.090 15.70 198 154

Average 1405.796 8.45 129 137

Table 9: Results for the variable α−neighbour p−centre problem for pr439
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p Z∗ CPU (secs) SubMax # Iterations

10 131.787 6.06 45 67
20 88.996 18.30 92 88
30 64.979 79.24 129 112
40 55.322 341.73 178 179
50 46.507 531.97 209 165
60 41.599 914.78 246 187
70 38.108 779.68 225 255
80 34.567 653.07 260 190
90 31.847 16573.05 345 257
100 29.904 2200.61 302 231

Average 56.362 2209.90 206 170

Table 10: Results for the variable α−neighbour p−centre problem for rat575

p Z∗ CPU (secs) SubMax # Iterations

10 157.728 21.01 59 83
20 105.643 26.03 94 82
30 76.820 199.37 141 177
40 65.526 1423.54 200 260
50 55.626 5404.38 267 261
60 49.323 33549.65 296 342
70 44.769⊥ 86400.00 309 268
80 40.812 11710.84 366 253
90 37.962⊥ 86400.00 373 252
100 35.471 34130.75 440 265

Average −−− 25926.56 255 224
⊥ Best lower bound found in 86400 seconds

Table 11: Results for the variable α−neighbour p−centre problem for rat783

p Z∗ CPU (secs) SubMax # Iterations

10 5250.952 2.23 43 50
20 2962.790 86.57 106 116
30 2324.059 48.27 127 83
40 1948.236 1010.83 200 190
50 1676.313 6813.59 257 236
60 1494.094 15979.66 320 285
70 1367.708 15070.05 325 277
80 1226.020 5784.52 356 201
90 1155.231 7296.74 363 237
100 1068.878 2628.73 352 189

Average 2047.428 5472.12 244 186

Table 12: Results for the variable α−neighbour p−centre problem for pr1002
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p Z∗ CPU (secs) SubMax # Iterations

10 6097.429 0.98 37 21
20 3677.728 345.055 132 131
30 2789.975 9415.31 209 373
40 2313.391 31059.45 280 378
50 2022.358 23532.27 299 379
60 1776.000 31290.30 348 432
70 1604.88⊥ 86400.00 303 418
80 1464.19⊥ 86400.00 318 310
90 1351.72⊥ 86400.00 309 243
100 1264.73⊥ 86400.00 370 295

Average −−− 44124.34 261 298
⊥ Best lower bound found in 86400 seconds

Table 13: Results for the variable α−neighbour p−centre problem for rl1323

Optimal solutions were found using V −AERRA in a reasonable amount of computational

time, including the largest data set rl1323. This is a useful result, especially from a man-

agerial perspective, as alternating the number of facilities to cover each demand point allows

more flexibility to study different options and tradeoffs in practice.

5.2. The Conditional p−Centre Problem

The (p, q)−centre, or conditional p−centre, problem wishes to locate p facilities given

that q facilities already exist. Drezner (1989) proposed an optimal algorithm to solve this

problem. First, the set of demand points are allocated to their nearest facility in Q, where Q

is the set of existing facilities. The demand points, and their corresponding nearest distances

to the existing facilities, are then sorted into descending order of Euclidean distance. This

yields an ordered set of demand points OrdI and ordered distance vector OrdD. A bisection

algorithm is then used to solve a succession of sub-problems until the solution value for

the subset is greater than or equal to the next furthest distance in the list. Chen & Chen

(2010) incorporated their reverse relaxation algorithm (see Chen & Chen 2009) into Drezner’s

algorithm to optimally solve the sub-problems. They began by creating OrdI and OrdD

as originally suggested. The subset of demand points was then solved using the reverse

relaxation algorithm, where the subset initially consisted of the first demand point only in

OrdI. If the solution value for the subset exceeded the next furthest distance in OrdD, then

all the demand points are covered by this solution value and so the optimal solution has

been found. Otherwise, the next demand point in the ordered list was added to the subset

and the process was repeated. Chen & Chen’s algorithm is described in Figure 11 and is
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referred to as CON CCA.

1. Input: The set of existing facilities Q.

2. Set the lower bound, LB=0, the subset of demand points Sub = ∅ and k = 1.

3. Allocate all i ∈ I to their nearest facilities β ∈ Q. Sort the demand points in
descending order of Euclidean distance. Let OrdD = {M1,M2, . . . ,Mn} be the
set of ordered distances, and OrdI = {i′1, i

′
2, . . . , i

′
n} be the set of ordered demand

points.

4. Add i′k to Sub.

5. Determine if there is a feasible solution for the p−centre problem for Sub with a
solution value Zk ≤ LB.

6. If so, determine whether Zk ≥ Mk+1.

i) If so, determine if Zk < Mk.
If so, return Zk as the optimal solution value and stop.
Else, return Max(Zk−1,Mk) as the optimal solution value and stop.

ii) Else, set k = k + 1 and go back to Step 4.

Else, set LB as the smallest radius larger than the current LB and go to Step 5.

Figure 11: Chen & Chen’s (2010) algorithm for the conditional p−centre problem (CON CCA)

Note that the optimal solution value is determined in Step 5. It is important to observe that

once Zk ≥ Mk+1, either Z
k, Zk−1 or Mk can be determined as the optimal solution value.

5.2.1. Enhancing Chen & Chen’s Algorithm

Enhancement one: Incorporating ERRA

For small problems, the CON CCA is very efficient. However, as the problem size increases,

so does |Sub|. This means large subsets are required to be solved optimally, which leads

to computational issues such as excess memory. We therefore incorporated ERRA into the

CON CCA with an aim to create a more efficient algorithm that can solve larger problems.

Enhancement two: An Efficient Initial Sub

The initial Sub in the CON CCA consists of a single demand point. However, this can be

improved by adding a further (p−1) demand points, as there must be at least this number of

demand points in Sub to find a meaningful initial feasible solution for the p−centre problem.

We therefore set the initial Sub = {i′1, i
′
2, . . . , i

′
p} where i′ ∈ OrdI.
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Enhancement Three: Adding more than one demand point to Sub

Each time feasibility cannot be found for the full problem, CON CCA adds one demand

point only to Sub and repeats the process again. This approach is effective on smaller data

sets, but as the problem size increases, so does the final cardinality of Sub. Therefore, the

process of adding one demand point at a time yields many iterations and hence greatly in-

creases the total amount of computational time. Thus, instead of adding the next demand

point only in the ordered list to Sub, the next k′ demand points are added where k′ > 1.

For simplicity, we set k′ = 2 in our experiments though other values could be explored.

For clarity, the enhanced algorithm, CON ERRA, that incorporates ERRA and the two

enhancements given above, is provided in Figure 12.

1. Input: The set of existing facilities Q.

2. Set the subset of demand points Sub = ∅, and logical variable tracker TAG = True.

3. Allocate all i ∈ I to their nearest β ∈ Q. Sort the demand points in descending
order of Euclidean distance. Let OrdD = {M1,M2, . . . ,Mn} be the set of ordered
distances, and OrdI = {i′1, i

′
2, . . . , i

′
n} be the set of ordered demand points.

4. Set Sub = {i′1, . . . , i
′
p} and k = p.

5. Solve the p−centre problem for Sub using ERRA (see Figure 8). This yields
solution value Zk.

6. Updating/termination step:

If TAG = True then (updating step)

If Zk ≥ Mk+1

If Zk < Mk, set Z
k as optimal, else Max(Zk−1,Mk) is optimal.

Set Sub = Sub \ {i′k}, TAG = False, k = k − 1 and go to Step 5.

Else, set k = k + 2, Sub = Sub ∪ {i′k−1, i
′
k} and go to Step 5.

Else (i.e., TAG = False) then (termination step)

If Zk ≥ Mk+1

If Zk < Mk, return Zk as the optimal solution value and stop.
Else, return Max(Zk−1,Mk) as the optimal solution value and stop.

Else return optimal as the optimal solution value and stop.

Figure 12: The CON ERRA

5.2.2. Computational Results

The (p, q)−centre problem was solved using both the CON CCA and the CON ERRA

for the TSP-Library data set pr439. Table 14 shows the results for both algorithms where
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q = 10 & 20. The first column shows the number of new facilities located, where the

maximum total number of facilities was 100 (i.e. p + q ≤ 100). The next three columns

correspond to the results using q = 10. The second column displays the corresponding

optimal solution, Z∗, and columns three and four represent the total computational time

in seconds for the CON CCA and the CON ERRA, respectively. The remaining three

columns display the same information, but referring to the results where q = 20.

q = 10 q = 20
p Z∗ CPU (secs) Z∗ CPU (secs)

CON CCA CON ERRA CON CCA CON ERRA
10 1429.434 1.83 11.41 981.150 0.79 2.10
20 958.188 2156.90 64.28 880.696 4.67 4.29
30 655.016 4231.22 138.42 705.780 212.90 40.23
40 558.038 9475.67 167.67 545.722 1499.01 91.78
50 439.638 3620.33 229.09 445.939 1904.46 171.03
60 394.305 3248.75 358.61 370.928 1083.08 274.27
70 356.000 2502.21 524.31 334.448 950.40 419.15
80 307.459 996.35 610.03 297.321 464.02 529.33
90 276.699 478.62 734.54 N/A N/A N/A

Average 597.197 2967.99 354.80 570.256 764.92 191.52

Table 14: Results for the conditional p−centre problem for pr439 where q = 10 & 20

Table 14 shows that CON ERRA performs better than CON CCA. On average, optimal

solutions were obtained using approximately 81.5% less computational time. The efficiency

of the CON ERRA is then demonstrated by solving the (p, q)−centre problem optimally

for the TSP-Library data sets rat575, rat783, pr1002 and rl1323 where q = 20. The results

are produced in Table 15. The first column represents the number of new facilities added, p,

and the second and third columns show the optimal solution value, Z∗, and corresponding

computational time for CON ERRA in seconds, respectively. Table 15 shows that, with

the exception of rl1323 and p = 70 where memory was exceeded, optimal solutions were

obtained for all data sets in a reasonable amount of time. In addition, it is encouraging

to note that all solutions were obtained within a maximum computational time of 23159.05

seconds with those instances for p ≤ 30 requiring less than 5 minutes.
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rat575 rat783 pr1002 rl1323
p Z∗ CPU

(secs)
Z∗ CPU

(secs)
Z∗ CPU

(secs)
Z∗ CPU

(secs)
10 45.113 1.59 52.660 2.45 1595.712 1.34 1860.859 2.15
20 39.665 16.62 47.184 18.42 1362.369 40.06 1644.258 35.56
30 32.104 97.47 37.165 182.57 1147.007 264.17 1352.777 603.99
40 26.673 287.22 32.466 1210.18 957.209 1233.67 1111.14 2995.96
50 23.345 627.22 28.306 3010.33 845.932 3561.78 973.382 7971.74
60 21.412 1114.18 25.775 6441.97 755.811 4526.57 857.13 9866.43
70 19.559 1903.97 23.505 13975.64 682.825 6454.95 1137.754∧ 2391.66
80 17.901 2131.41 21.552 14764.33 622.268 6460.20 718.441 23159.05

Average 28.222 772.458 33.577 4950.736 996.142 2817.84 −−− 5878.32
∧ Best upper bound obtained (with corresponding time) due to memory issues

Table 15: Results for the conditional p−centre problem where q = 20

6. Conclusions and Suggestions

This paper investigates and enhances a relatively new relaxation-based algorithm proposed

by Chen & Chen (2009) to optimally solve the continuous p−centre problem. Effective neigh-

bourhood reductions are introduced to make the enhanced algorithm both deterministic and

more efficient. This is empirically confirmed on five TSP-Library data sets where n ≤ 1323.

Overall, the results show that the enhanced algorithm is faster than its original counterpart.

Using the enhanced algorithm, optimal solutions for larger instances, in particular, n = 1323

and p = 10, 20 & 30 were also obtained for the first time. The enhanced algorithm was also

adapted to solve the α−neighbour p−centre problem, with parameter α either a constant or

allowed to vary over the demand points, as well as the conditional problem where a given

number of facilities already exist. Optimal solutions were obtained for these two related

location problems using the same TSP-Library data sets.

In this study, the initial lower bound for the ERRA was set to 0. A further investigation

that aims to produce a reliable and efficient method to find a tighter initial lower bound

could be worth the effort. This paper also introduces the variable α−neighbour p−centre

problem by using a simple scheme to set coverage requirements for individual demands. From

a decision maker’s view point, this approach can be applied in practice by setting coverage

requirements according to data distribution or the importance ranking of customers that

may be available for consideration. Finally, ERRA can also be adapted to other related
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location problems, such as the constrained continuous p−centre problem with the presence

of forbidden regions.
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Appendix

CPU Time (secs)

p Z∗ Without
Enhancements⊥,
k = 3

With AddE2⊥,
k = 2

With SubE1 &
AddE2⊥, k = 3

10 1716.510 4.18 2.08 1.81
20 1029.715 3.22 4.63 2.32
30 739.193 3.70 10.51 5.94
40 580.005 38.69 24.87 49.97
50 468.542 63.62 83.76 53.08
60 400.195 24.49 20.76 12.10
70 357.946 57.12 51.32 47.07
80 312.500 41.62 29.32 47.43
90 280.903 63.24 38.33 48.20
100 256.680 17.32 17.81 13.36

Average 614.22 31.73 28.34 28.13

⊥ Best result for k = 1, . . . , 10.

Table A.1: Results for the Reverse Relaxation Algorithm without enhancements, with
AddE2 and with SubE1 & AddE2 where n = 439

α = 3

p Z∗ CPU (secs) SubMax # Iterations

10 3989.302 0.49 29 34
20 2347.505 6.27 76 114
30 1716.510 2.01 61 93
40 1407.624 3.21 98 91
50 1226.020 3.23 93 81
60 1019.986 5.76 110 150
70 946.457 17.48 141 215
80 853.028 54.00 172 275
90 739.193 21.18 165 211
100 657.885 77.691 186 384

Average 1490.35 19.05 113 164

Table A.2: Results for the 3−neighbour p−centre problem for pr439
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α = 2 α = 3

p Z∗ CPU (secs) SubMax # Iterations Z∗ CPU (secs) SubMax # Iterations

10 114.064 13.29 71 55 137.023 1.77 41 37
20 67.926 110.95 118 111 89.885 67.00 116 80
30 54.073⊥ 86400.00 235 287 67.926 87.72 121 158
40 44.782⊥ 86400.00 258 295 58.592 15674.13 238 468
50 39.061⊥ 86400.00 269 267 49.941⊥ 86400.00 245 483
60 34.599⊥ 86400.00 274 235 44.406⊥ 86400.00 228 363
70 31.099⊥ 86400.00 281 171 40.736⊥ 86400.00 261 508
80 28.513⊥ 86400.00 298 183 37.207⊥ 86400.00 276 527
90 26.727⊥ 86400.00 335 221 34.558⊥ 86400.00 295 518
100 25.008⊥ 86400.00 346 198 32.070⊥ 86400.00 284 426

Average −−− 69132.42 249 202 −−− 53423.06 210 356
⊥ Best lower bound found in 86400.00 secs (lower bound)

Table A.3: Results for the α−neighbour p−centre problem for rat575 and α = 2 & 3

α = 2 α = 3

p Z∗ CPU (secs) SubMax # Iterations Z∗ CPU (secs) SubMax # Iterations

10 131.846 20.84 79 73 160.721 0.87 33 32
20 79.312 87.30 121 118 106.304 171.29 126 118
30 63.343⊥ 86400.00 247 373 79.313 248.15 139 202
40 52.131⊥ 86400.00 268 314 69.065⊥ 86400.00 236 796
50 45.868⊥ 86400.00 273 238 58.831⊥ 86400.00 257 898
60 40.336⊥ 86400.00 302 264 51.886⊥ 86400.00 246 1073
70 36.433⊥ 86400.00 283 173 47.383⊥ 86400.00 249 860
80 33.634⊥ 86400.00 318 198 43.276⊥ 86400.00 254 747
90 31.117⊥ 86400.00 321 154 40.083⊥ 86400.00 295 773
100 29.300⊥ 86400.00 352 165 37.314⊥ 86400.00 270 632

Average −−− 69130.81 256 207 −−− 60522.03 210 613
⊥ Best lower bound found in 86400.00 secs (lower bound)

Table A.4: Results for the α−neighbour p−centre problem for rat783 and α = 2 & 3

α = 2 α = 3

p Z∗ CPU (secs) SubMax # Iterations Z∗ CPU (secs) SubMax # Iterations

10 3641.566 1.76 51 34 5268.064 2.96 45 39
20 2389.356 193.89 128 127 3107.089 21.83 93 75
30 1916.540 72557.25 262 396 2389.356 123.40 131 125
40 1568.679⊥ 86400.00 268 243 2038.961 45414.38 260 385
50 1347.869 3525.44 293 217 1760.26⊥ 86400.00 251 328
60 1221.289⊥ 86400.00 332 249 1563.75⊥ 86400.00 292 301
70 1110.214⊥ 86400.00 351 247 1430.211⊥ 86400.00 307 311
80 1011.461⊥ 86400.00 420 267 1290.213⊥ 86400.00 302 233
90 940.597⊥ 86400.00 383 232 1221.17⊥ 86400.00 357 276
100 866.083⊥ 86400.00 360 176 1135.70⊥ 86400.00 336 240

Average −−− 59467.83 285 218 −−− 56396.26 237 231
⊥ Best lower bound found in 86400.00 secs (lower bound)

Table A.5: Results for the α−neighbour p−centre problem for pr1002 and α = 2 & 3
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α = 2 α = 3

p Z∗ CPU (secs) SubMax # Iterations Z∗ CPU (secs) SubMax # Iterations

10 4441.013 8.56 67 52 6200.039 2.85 46 39
20 2882.010⊥ 86400 237 433 3716.203 40.39 144 110
30 2222.236⊥ 86400 259 452 2880.940⊥ 86400.00 252 430
40 1827.67⊥ 86400 279 471 2372.675⊥ 86400.00 264 662
50 1587.654⊥ 86400 299 335 2090.673⊥ 86400.00 287 783
60 1428.493⊥ 86400 324 321 1809.207⊥ 86400.00 264 675
70 1275.304⊥ 86400 335 213 1648.718⊥ 86400.00 293 935
80 1173.849⊥ 86400 378 252 1503.291⊥ 86400.00 296 637
90 1087.53⊥ 86400 365 216 1417.600⊥ 86400.00 293 693
100 1009.66⊥ 86400 394 205 1326.82⊥ 86400.00 334 807

Average −−− 77760.86 294 297 −−− 69124.32 247 577
⊥ Best lower bound found in 86400.00 secs (lower bound)

Table A.6: Results for the α−neighbour p−centre problem for rl1323 and α = 2 & 3
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