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a b s t r a c t 

This work presents an extension of the discrete p -center problem. In this new model, called Stratified 

p -Center Problem (S p CP), the demand is concentrated in a set of sites and the population of these sites 

is divided into different strata depending on the kind of service that they require. The aim is to locate 

p centers to cover the different types of services demanded minimizing the weighted average of the 

largest distances associated with each of the different strata. In addition, it is considered that more than 

one stratum can be present at each site. Different formulations, valid inequalities and preprocessings 

are developed and compared for this problem. An application of this model is presented in order to 

implement a heuristic approach based on the Sample Average Approximation method (SAA) for solving 

the probabilistic p -center problem in an efficient way. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Discrete location problems have been widely studied since the

eminal paper Balinski (1965) , where the first MILP formulation for

uch a problem was proposed. Among the fundamental problems

n this area, the p -Center Problem ( p CP) aims at selecting, from

 given sites, the locations of p service centers that minimize the

aximum distance between any of the sites and its closest ser-

ice center. This model, in contraposition to the p -median prob-

em, was motivated by the need not to discriminate spatially dis-

ersed clients when locating essential or emergency centers (see

alik et al., 2015; Garfinkel et al., 1977 , for more details). 

Both, continuous and discrete versions have already been

ddressed by several authors. Examples of works concern-

ng the continuous version are Callaghan et al. (2017) and

lshaikh et al. (2016) where the planar version is analyzed. This

aper focuses on an extension of the discrete p CP. The discrete

 CP, also known as vertex p CP, has been proven to be NP-hard

 Kariv and Hakimi, 1979 ). However, many efficient exact and

euristic algorithms have been introduced for this problem. See

or instance, Contardo et al. (2019) , Calik and Tansel (2013) or

rawan et al. (2016) . 

In the last decades, several extensions of the discrete p CP have

een introduced in the literature. These include variants consid-

ring capacities ( Albareda-Sambola et al., 2010; Özsoy and Pınar,

006; Quevedo-Orozco and Ríos-Mercado, 2015 ) or pre-existing
∗ Corresponding author. 
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enters, as in the conditional p -center problem ( Drezner, 1989 ).

ther extensions, such as the α-neighbor p -center problem, con-

ider the largest distance of a demand point to its α closest cen-

ers, see Chen and Chen (2013) . 

In addition, the p CP with uncertain parameters has been

ddressed both, from the perspective of robust optimization

 Averbakh and Berman, 1997; Lu and Sheu, 2013 ) and of stochas-

ic programming ( Espejo et al., 2015; Martínez-Merino et al.,

017; Revelle and Hogan, 1989 ). In particular, in Martínez-

erino et al. (2017) the probabilistic p -center problem (P p CP) is

ntroduced. In this problem, the goal is to minimize the expected

argest distance between any demand point and its corresponding

enter. The P p CP considers that the demand can occur indepen-

ently at each demand site with a certain known probability. Ob-

erve, that the p CP is a particular case of this problem where all

ites have demand with probability one. In this paper, we will in-

roduce a heuristic method for the P p CP making use of the formu-

ations of the p CP extension that will be proposed. 

A common characteristic of most of the considered problem

ariants is that customers are assumed to be homogeneous in the

ense that they are all considered in the same way in the ob-

ective function. The only exception would be the weighted p CP,

here the distances between each site and its closest center are

ffected by site-dependent weights. See, for instance, Jeger and

ariv (1985) where the particular case of this problem defined on

rees is addressed. 

In this paper, we consider situations where, for instance, the

opulation of a region is divided into different strata, and people of

ifferent strata can live together in the same cities. The goal of the

https://doi.org/10.1016/j.cor.2019.04.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.04.013&domain=pdf
mailto:luisa.martinez@uca.es
https://doi.org/10.1016/j.cor.2019.04.013
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problem is to locate centers in such a way that the weighted sum

of the largest distance associated with each stratum is minimized.

This problem is called the Stratified p -Center Problem (S p CP) and

it could be applied when the evaluation of the service is measured

separately for each stratum due to social or political reasons. The

idea of analyzing demands distributed in a spatially different way

has been used in covering problems ( Schilling et al., 1979 ) but, up

to the best of our knowledge, it has not been applied in the con-

text of the p CP. 

A possible real life application could be the location of centers

in an humanitarian relief planning framework. The purpose is to

locate centers that provide different essential services and where

not all demand points need all the services. This is the case of

underdeveloped countries where humanitarian aid centers offering

assistance (medical supplies, basic goods, clothes, etc.) need to be

located. Note that in this context, the opening of many aid cen-

ters could be very costly, for instance, due to safety reasons. The

model that we propose takes into account the largest distance as-

sociated with each of the provided services in contrast with the

p CP, where only the largest distance is considered. Consequently,

the S p CP evaluates the performance of each of the services. 

Another application of this model could be the location

of warehouses for different perishable items (fruits, vegetables,

seafood) whose demand sites are not the same for all the items.

In this case, the warehouses should be located in such a way that

the clients of each kind of item could be served as soon as possible

to avoid the damage of the products. 

Besides, this model could also be useful to locate social service

centers that offer support to different social minorities needing as-

sistance. The S p CP model allows to minimize the weighted sum of

the largest distance associated with each minority. In all the above

mentioned applications, the weight associated with each stratum

could be related to its importance or its associated cost. 

The paper is organized as follows. In Section 2 , a formula-

tion for the S p CP based on the Daskin (1995) and Calik and

Tansel (2013) formulations for the p CP is introduced. In Section 3 ,

some alternative formulations together with some valid inequali-

ties are proposed. Section 4 applies the results in previous sections

for an efficient implementation of a Sample Average Approxima-

tion heuristic for the probabilistic p -center problem (see Martínez-

Merino et al., 2017 ). Section 5 reports the computational results

comparing all the proposed formulations and the results of using

Sample Average Approximation. Finally, Section 6 gathers the con-

clusions of the paper. 

2. Notation and classical formulation 

Let N = { 1 , . . . , n } be a given set of sites and p ≥ 2 the num-

ber of facilities to be located. For each pair i, j ∈ N , let d ij be the

distance from location i to j . Besides, d ii = 0 for i ∈ N and d ij > 0

for i � = j . In the following we use the next notation. The sorted dis-

tances associated with pairs of sites are denoted by 

0 = d (1) < d (2) < . . . < d (G ) . 

The sorted distances from a site i ∈ N to the remaining sites are

denoted by 

0 = d i (1) < d i (2) < . . . < d i (G i ) . 

In the previous notation G and G i are the number of different dis-

tances between pairs of sites and between i and any other site,

respectively (removing possible multiplicities). 

Moreover, the population of each site 1 , . . . , n is partitioned into

a set of strata, taking into account that more than one stratum

can be present in a site i and not always all the strata are present

in a site. Given S the set of strata in which the population is di-

vided, we consider a family of subsets { N 

s } s ∈S such that N 

s ⊆N is
he set of sites where stratum s is present for s ∈ S . Then, the

orted distances from a stratum, i.e., the sorted sequence of family

 d i j } i ∈ N s , j∈ N is denoted by 

 = d s (1) < d s (2) < . . . < d s (G s ) , 

here G 

s is the number of different distances of the family

 d i j } i ∈ N s , j∈ N . 
The problem addressed in this work is based on the classical

 CP. However, in contrast with the p CP, this new problem considers

hat population of the sites is divided in different strata depend-

ng on the kind of service that they require. For a given stratum s ,

his problem takes into account the largest distance from the sites

here stratum s is present and their corresponding closest service

acility. Recall that in the same site there can be inhabitants be-

onging to more than one stratum. 

For each site j ∈ N , and each stratum s ∈ S, the following binary

arameter is defined: 

s 
j = 

{
1 , if j ∈ N 

s , 
0 , otherwise. 

Besides, each stratum has an associated weight, ( w s , s ∈ S) that

s used to balance the cost related to the different strata in the ob-

ective function. The weights can be interpreted in different ways.

or instance, they can measure the importance given to a certain

tratum. 

Given the former parameters, the aim of this problem is to lo-

ate p service facilities minimizing the weighted sum of the largest

ssignments within each stratum. Therefore, the problem can be

xpressed synthetically in the following way: 

min 

P⊆N 

 P| = p 

∑ 

s ∈S 
w s d(P, N 

s ) , (1)

here P is a subset of facilities to open and d(P, N 

s ) = max 
j∈ N s 

min 

i ∈ P 
d ij .

or a given site j ∈ N , we will refer to min 

i ∈ P 
d i j as the allocation

istance of site j , so d ( P, N 

s ) is the maximum allocation distance

mong the sites with presence of stratum s , or equivalently within

tratum s . 

The problem previously described can be formulated using the

lassic p -center formulation (see Daskin, 1995 ). With this purpose,

he following variables are defined: 

 i j = 

{
1 , if site j is assigned to center i , 
0 , otherwise, 

for i, j ∈ N. (2)

s = largest allocation distance for the sites where stratum s 

is present , s ∈ S. (3)

sing these variables, the derived formulation is, 

F1) min 

∑ 

s ∈S 
w s θ

s (4)

s.t. 
∑ 

i ∈ N 
x ii = p, (5)

∑ 

i ∈ N 
x i j = 1 , j ∈ N, (6)

x i j � x ii , i, j ∈ N, (7)

θ s � 

∑ 

i ∈ N 
d i j x i j , s ∈ S, j ∈ N 

s , (8)

x i j ∈ { 0 , 1 } , i, j ∈ N, (9)

θ s � 0 , s ∈ S. (10)
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Constraint (5) restricts that there are p centers. Constraints

6) indicate that each site is associated with only one center. Con- 

traints (7) restrict that sites must be assigned to an open center.

onstraints (8) ensure that the largest allocation distance within

tratum s is not smaller than the allocation distance of any site

here stratum s is present. As mentioned before, the objective

unction is the weighted sum of the largest distances within each

tratum. 

To the best of our knowledge, the most recent formulation for

he p -center problem was given by Calik and Tansel (2013) provid-

ng very good results. We propose a formulation of our problem

nspired in Calik and Tansel (2013) using the following families of

ariables. 

¯ sr = 

{
1 , if d (r) is the largest allocation distance among the sites in N 

s

0 , otherwise , 

s ∈ S, r = 1 , . . . , G . 

y i = 

{
1 , if a center is placed at i , 
0 , otherwise, 

for i ∈ N. 

Using these families of variables, the new formulation is given

y 

F2) min 

∑ 

s ∈S 

G ∑ 

k =1 

w s d (k ) ̄u sk (11) 

s.t. 
∑ 

i ∈ N 
y i = p, (12) 

G ∑ 

k =1 

ū sk = 1 , s ∈ S, (13) 

k −1 ∑ 

k ′ =1 

ū sk ′ � 

∑ 

i ∈ N 
d i j <d (k ) 

y i , s ∈ S, j ∈ N 

s , k = 2 , . . . , G, 

(14) 

y i ∈ { 0 , 1 } , i ∈ N, (15) 

ū sk ∈ { 0 , 1 } , s ∈ S, k = 1 , . . . , G. (16) 

Constraint (12) restricts that there are p centers. Constraints

13) ensure that for each stratum, only one of the distances is

he largest allocation distance. Constraints (14) determine that the

argest allocation distance within a stratum s will be among the

rst k distances if there is a center with a distance smaller than or

qual to d ( k ) with respect to any site in N 

s . 

Observe that ū -variables determine the largest allocation dis-

ance among the sites where each stratum s ∈ S is present. As a

onsequence, only the distances associated with sites in N 

s will be

ecessary to obtain the largest distance with respect to s . There-

ore, the number of variables can be reduced defining ˜ u -variables

n the following way, 

˜ 
 sk = 

{ 

1 , if d s 
(k ) 

is the largest allocation 

distance for the sites in N 

s 

0 , otherwise , 

s ∈ S, k = 1 , . . . , G 

s . 

Observe that in the original formulation F2, the number of ū -

ariables is |S| G . However, by doing this reduction, the obtained

umber of variables is 
∑ 

s ∈S 
G 

s . Taking advantage of this reduction of

he number of variables, the new objective function for the model

s 

 

s ∈S 

G s ∑ 

k =1 

w s d 
s 
(k ) ̃  u sk , (17) 
nd constraints (14) can be replaced by 

k −1 ∑ 

 

′ =1 

˜ u sk ′ � 

∑ 

i ∈ N 
d i j <d s 

(k ) 

y i , s ∈ S, j ∈ N 

s , k = 2 , . . . , G 

s . (18)

herefore, this new family of ˜ u -variables allows us to provide a

ew formulation with a smaller number of variables and con-

traints. Moreover, the following result allows to strengthen this

ew formulation. 

roposition 2.1. For s ∈ S and j ∈ N 

s , let l s 
jr 

∈ { 1 , . . . , G 

s } be such that

 j(r) = d s 
(l s 

jr 
) 
. Considering formulation F2 with ˜ u variables (instead of

¯ variables), the objective function (17) and replacing (14) by 

 

s 
jr 
−1 ∑ 

k ′ =1 

˜ u sk ′ � 

∑ 

i ∈ N 
d i j <d s 

(l s 
jr 

) 

y i , s ∈ S, j ∈ N 

s , r = 2 , . . . , G j , (19)

esults in a valid equivalent formulation F2’ with a smaller number of

onstraints. 

Proof: 

We prove that constraint families (18) and (19) are equivalent.

et ˜ s ∈ S, ̃  j ∈ N 

s and ˜ r ∈ { 2 , . . . , G ˜ j } . Consider the following subset

f constraints of family (18) , 

k −1 ∑ 

 

′ =1 

˜ u ˜ s k ′ � 

∑ 

i ∈ N 
d i ̃ j <d ˜ s 

(k ) 

y i , k ∈ { l ˜ s 
˜ j , ̃ r −1 + 1 , . . . , l ˜ s 

˜ j ˜ r } . (20)

bserve that 
∑ 

i ∈ N 
d 

i ̃ j 
<d ̃ s 

(l ̃ s 
˜ j , ̃ r −1 

+1) 

y i = · · · = 

∑ 

i ∈ N 
d 

i ̃ j 
<d ̃ s 

(l ̃ s 
˜ j ̃ r 

) 

y i , then since 

l ˜ s 
˜ j ˜ r −1 ∑ 

 

′ =1 

˜ u ˜ s k ′ � . . . � 

l ˜ s 
˜ j ˜ r 

−1 ∑ 

k ′ =1 

˜ u ˜ s k ′ , 

he family of constraints (20) is dominated by 

l ̃ s 
˜ j ̃ r 
−1 ∑ 

k ′ =1 

˜ u ˜ s k ′ ≤
∑ 

i ∈ N 
d 

i ̃ j 
<d ̃ s 

(l ̃ s 
˜ j ̃ r 

) 

y i .

Therefore, the obtained formulation F2’ is equivalent to F2

ith less constraints. In fact, the number of constraints (18) is
 

j∈ N 

∑ 

s ∈S 
ξ s 

j G 

s and the number of constraints (19) is 
∑ 

j∈ N 

∑ 

s ∈S 
ξ s 

j G j . It

s straightforward that for each pair, s ∈ S, j ∈ N 

s , G j ≤ G 

s since, at

east, the distances associated with location j must be among the

istances related to stratum s . 

�

. Formulation using covering variables 

In this section we introduce three formulations making use

f stratum-covering and site-covering variables. The idea behind

hese formulations is to take advantage of the information pro-

ided by considering the ordered sequence of possible assignment

istances. In particular, the variables defined for these formulations

etermine whether the largest assignment distance associated with

 stratum s is at least the one in a certain position of the sorted

ector d s (stratum-covering variables) and whether the allocation

istance associated with a site i is at least the one in a certain po-

ition of the sorted vector d i (site-covering variables). In this sec-

ion we will see that the use of these variables associated with

orted vectors allows to propose new efficient formulations. 
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3.1. Formulation with stratum-covering variables 

In this subsection we present a formulation based on the use

of y -variables described in the previous section and the following

family of variables: 

u sk = 

{ 

1 , if the largest allocation distance for the sites in 

N 

s is at least d s 
(k ) 

, 

0 , otherwise, 

for s ∈ S , k = 2 , . . . , G 

s . 

Observe that we have used the same strategy as in the former

section, so that for each s ∈ S the number of u variables will be

equal to the number of different distances associated with s . The

use of this type of variables for the classical p CP was introduced

by Elloumi et al. (2004) . Inspired in this idea, we provide the fol-

lowing formulation for the S p CP. 

(F3) min 

∑ 

s ∈S 
w s 

( 

G s ∑ 

k =2 

(d s (k ) − d s (k −1) ) u sk 

) 

(21)

s.t. 
∑ 

i ∈ N 
y i = p, (22)

u sk � 1 −
∑ 

i ∈ N 
d i j <d s 

(k ) 

y i , s ∈ S, j ∈ N 

s , k = 2 , . . . , G 

s ,

(23)

y i ∈ { 0 , 1 } , i ∈ N, (24)

u sk ∈ { 0 , 1 } , s ∈ S, k = 2 , . . . , G 

s . (25)

As it can be seen in (21) , the objective function for this formulation

can be expressed using a telescopic sum. Constraint (22) ensures

that there are p open centers. Constraints (23) determine that if

there is not a center at a distance smaller than d s 
(k ) 

from a site

j ∈ N 

s , then u sk = 1 . 

Proposition 3.1. Replacing (23) in F3 by the following families of

constraints 

u s,l s 
jr 

� 1 −
∑ 

i ∈ N 
d i j <d j(r) 

y i , s ∈ S, j ∈ N 

s , r = 2 , . . . , G j , (26)

u sk � u s,k −1 , s ∈ S, k = 3 , . . . , G 

s , (27)

results in an equivalent formulation, F3- (23) + (26) + (27) . 

Proof: 

Let ( ̃  j , ̃  s ) ∈ N × S such that ξ ˜ s 
˜ j

= 1 and ˜ r , ̃  r + 1 ∈ { 2 , . . . , G ˜ j } .
Consider the following subset of constraints of family (23) , 

u ˜ s k � 1 −
∑ 

i ∈ N 
d i ̃ j <d ˜ s 

(k ) 

y i , k ∈ { l ˜ s 
˜ j , ̃ r −1 + 1 , . . . , l ˜ s 

˜ j ˜ r } . (28)

Observe that 
∑ 

i ∈ N 
d 

i ̃ j 
<d ̃ s 

(l ̃ s 
˜ j , ̃ r −1 

+1) 

y i = · · · = 

∑ 

i ∈ N 
d 

i ̃ j 
<d ̃ s 

(l ̃ s 
˜ j ̃ r 

) 

y i , then using (27) ,

the family (28) is dominated by 

u s,l ˜ s 
˜ j ˜ r 

� 1 −
∑ 

i ∈ N 
d i ̃ j <d ˜ s 

(l ̃ s 
˜ j ˜ r 

) 

y i . 
�

emark 3.1. Formulation F3- (23) + (26) + (27) has a smaller number

f constraints than F3 if 

 

s ∈S 

( ∑ 

j∈ N 
ξ s 

j (G 

s − G j ) − G 

s + 2 

) 

� 0 . 

.2. Formulation with site-covering variables 

In this section we propose a new formulation for our problem

sing the following set of variables, inspired in the ones defined

y García et al. (2011) for the p CP: 

 ir = 

{ 

1 , if the allocation distance of 
site i is at least d i (r) , 

0 , otherwise, 
for i ∈ N, r = 2 , . . . , G i . 

ased in this set of variables and θ s -variables defined by (3) , we

ropose the following formulation for our problem: 

F4) min 

∑ 

s ∈S 
w s θ

s 

s.t. 
∑ 

i ∈ N 
z i 2 = n − p, (29)

∑ 

i ∈ N 
d ij <d j ( r ) 

( 1 − z i 2 ) ≥ 1 − z jr , j ∈ N, r = 3 , . . . , G j (30)

θ s � d j(r) z jr , s ∈ S, j ∈ N 

s , r = 2 , . . . , G j , 

(31)

z jr ∈ { 0 , 1 } , j ∈ N, r = 2 , . . . , G j , (32)

θ s � 0 , s ∈ S. (33)

onstraint (29) indicates that there are p centers. Constraints

30) ensure that if z jr = 0 then, there is at least one center at i with

 ij < d j ( r ) , i.e., location j is served by a center at a distance smaller

han d j ( r ) . Finally, constraints (31) ensure that θ s is the largest al-

ocation distance for sites in N 

s . 

roposition 3.2. Formulation F4 is still valid after relaxing the inte-

rality of variables z ir for i ∈ N , r = 3 , . . . , G i . 

Proof: 

Let ( ̃  θ, ̃  z ) be an optimal solution of F4 relaxing z ir for i ∈ N , r =
 , . . . , G i . We distinguish between two cases. 

If 
∑ 

i ∈ N 
d i,i 0 

<d i 0 r 0 

(1 − ˜ z i 2 ) = 0 then ˜ z i 0 r 0 � 1 due to constraints (30) .

herefore, ˜ z i 0 r 0 = 1 . 

If 
∑ 

i ∈ N 
d i,i 0 

<d i 0 r 0 

(1 − ˜ z i 2 ) � 1 , then constraints (30) reduce to z i 0 r 0 � 0 .

ince positive values of ˜ z i 0 r 0 penalize the objective function due to

onstraints (31) , then ˜ z i 0 r 0 = 0 . �
Preliminary computational results show that this relaxation

oes not improve computational times of formulation F4. 

roposition 3.3. Replacing constraints (31) in F4 by 

s ≥
G j ∑ 

r=2 

(d j(r) − d j(r−1) ) z jr , s ∈ S, j ∈ N 

s , (34)

esults in a valid formulation F4- (31) + (34) for the problem with less

onstraints, that dominates F4. 
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Proof: 

Let s ∈ S, j ∈ N 

s . Note that, due to constraints (30) and con-

traints (34) it holds that z jr � z j,r−1 for r ∈ { 3 , . . . , G j } since, ∑ 

i ∈ N 
 i j <d j(r) 

(1 − z i 2 ) � 

∑ 

i ∈ N 
d i j <d j(r−1) 

(1 − z i 2 ) , 

nd z -variables penalize in the objective function through con-

traints (34) . Hence, since z jr ∈ {0, 1} we have that 

s = max 
j∈ N s 

{ 

G j ∑ 

r=2 

(d j(r) − d j(r−1) ) z jr 

} 

nd then the formulation F4- (31) + (34) is valid. Moreover, for the

elaxed problem we have that 

G j 
 

r=1 

(d j(r) − d j(r−1) ) z jr � max 
r=1 , ... ,G j 

d j(r) z jr , ∀ s ∈ S, j ∈ N 

s , 

.e., this formulation dominates F4. Besides, the number of con-

traints (31) is 
∑ 

j∈ N 

∑ 

s ∈S 
ξ s 

j G j and the number of constraints (34) is

 

j∈ N 

∑ 

s ∈S 
ξ s 

j . Then, formulation F4- (31) + (34) has a smaller number of

onstraints than F4. �
We have also studied alternative formulations using a non-

umulative version of the z -variables, i.e., defining 

¯
 ir = 

{ 

1 , if the allocation distance 
of site i is d i (r) , 

0 , otherwise. 
for i ∈ N, r = 2 , . . . , G i . 

evertheless, a preliminary computational analysis of these formu-

ations shows a worse performance with respect to F4. 

.3. Formulation with stratum- and site-covering variables 

The last formulation that we propose combines two families

f covering variables, one associated with the distances from each

tratum s ∈ S ( u -variables) and another one with the allocation of

ach site i ∈ N ( z -variables). The combination of both families of

ariables is inspired in the formulation of Marín et al. (2009) for

he Discrete Ordered Median problem. 

For each s ∈ S, k ∈ { 2 , . . . , G 

s } and i ∈ N we define 

 ̄

s 
ik = 

{
r, if r ∈ { 1 , . . . , G i } exists such that d i (r) = d s 

(k ) 
and ξ s 

i 
= 

0 , otherwise. 

Then, the obtained formulation is 

F5) min 

∑ 

s ∈S 

G s ∑ 

k =2 

w s (d s (k ) − d s (k −1) ) u sk (35) 

s.t. (29) , (30) , 

u sk � z 
i, ̄l s 

ik 

, s ∈ S, i ∈ N 

s , k = 2 , . . . , G 

s : l̄ s ik >0 , 

(36) 

u s,k −1 � u sk , s ∈ S, k = 3 , . . . , G 

s , (37) 

u sk ∈ { 0 , 1 } , s ∈ S, k = 2 , . . . , G 

s , (38) 

z ir ∈ { 0 , 1 } , i ∈ N, r = 2 , . . . , G i . (39) 

onstraints (36) determine the largest allocation distance among

he sites in N 

s . Observe that constraints (37) are valid inequalities

or formulation F5. Indeed, if in a particular solution u sk = b and

 sk −1 = a with b > a , then, a feasible solution with lower objective
alue can be found by taking u sk = a . Constraints (37) are included

n the formulation from the beginning since they provided good

esults in a preliminary computational study. 

Note that constraints (36) can be equivalently written in the fol-

owing way, 

 s,l s 
ir 

� z ir s ∈ S, i ∈ N 

s , r = 2 , . . . , G i . (40)

here l s 
ir 

is the index already defined in Proposition 2.1 . To de-

ive another valid formulation from (F5), we include the following

otation, 

 

′ s 
ik = 

{
min { r : d i (r) � d s 

(k ) 
} , if d s 

(k ) 
� d i (G i ) 

G i + 1 , otherwise. 

roposition 3.4. By replacing (36) in F5 by 

 sk � z 
i,l 

′ s 
ik 

, s ∈ S, i ∈ N 

s , k = 2 , . . . , G 

s , l 
′ s 
ik � G i . (41)

 valid formulation, F5- (36) + (41) , with a larger number of constraints

s obtained. 

Proof: 

First, formulation F5- (36) + (41) is valid, since (41) determine

he largest allocation distance among the sites where stratum s is

resent. 

Observe that family of constraints (36) is a subset of con-

traints (41) since l 
′ s 
ik 

= l̄ s 
ik 

when d i (r) = d s 
(k ) 

for some r ∈ { 2 , . . . , G i }
nd ξ s 

i 
= 1 . Therefore F5- (36) + (41) dominates formulation F5. Con-

retely, the number of constraints (41) is 
∑ 

i ∈ N 

∑ 

s ∈S 
ξ s 

i (G 

s − 1) . The

umber of constraints (36) is 
∑ 

i ∈ N 

∑ 

s ∈S 
ξ s 

i (G i − 1) . As stated before

 i ≤ G 

s for s ∈ S, i ∈ N 

s . Consequently, the number of constraints

41) is larger than the number of constraints (36) . 

�

roposition 3.5. 

i) Constraints (36) can be replaced by their following aggregated

form: 

n sk u sk � 

∑ 

i ∈ N s 
l̄ s 
ik 
� =0 

z 
i ̄l s 

ik 

s ∈ S, k = 2 , . . . , G 

s , (42)

where n sk = |{ i ∈ N 

s and there exists r ∈ { 2 , . . . , G i } such that 

d i (r) = d s 
(k ) 

}| . This yields the new valid formulation, F5- (36) + (42) . 

ii) Constraints (41) can be replaced by their aggregated form that can

be expressed as 

n s u sk � 

∑ 

i ∈ N s 
l ′ s ik � G i 

z 
i,l 

′ s 
ik 

, s ∈ S, k = 2 , . . . , G 

s , (43)

Where n s = | N 

s | . This yields the new valid formulation F5-

(36) + (43) . 

Proof: 

i) Observe that, by (42) , variables u sk take the value 1 if the

maximum distance among the sites in N 

s is at least d s 
(k ) 

. In-

deed, if this allocation distance is at least d s 
(k ) 

then, by (30) ,

there exists a site j ∈ N 

s such that z 
j ̄l s 

jk 

= 1 and then, by (42) ,

u sk = 1 . 

Moreover, (42) are valid since n sk is the maximum value that

the right hand side of constraints (42) can take. 

ii) By an argument analogous to the one discussed in i), we have

that formulation F5- (36) + (43) is valid for the S p CP. 
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Besides, another aggregated version of constraints (36) is: 

∑ 

s ∈S: ξ s 
i 
=1 

l s 
ir 
� 2 

u s,l s 
ir 

� 

(∑ 

s ∈S 
ξ s 

i 

)
z ir i ∈ N, r = 2 , . . . , G i . (44)

Some computational studies have been carried out with formula-

tion F5- (36) + (44) . However, it provides worse running times that

formulations presented in Proposition 3.5 . 

Proposition 3.6. Formulation F5 and all its variants (F5- (36) + (40) ,

F5- (36) + (41) , F5- (36) + (42) , F5- (36) + (43) , F5- (36) + (44) ) remain valid

if integrality of variables z ir is relaxed for i ∈ N , r = 3 , . . . , G i . 

Proof: 

Let ( ̃  u , ̃  z ) be an optimal solution of the model relaxing z ir for

i ∈ N , r = 3 , . . . , G i . If ( ̃  u , ̃  z ) are all binary, we are done. Otherwise,

there is at least one 0 < ˜ z i 0 r 0 < 1 with i 0 ∈ N , r 0 ∈ { 3 , . . . , G i } . For

this variable, Constraint (30) reduces to z i 0 r 0 � 0 , since z i 2 are bi-

nary for i ∈ N . Hence ˜ z i 0 r 0 value can be replaced by 0 without vi-

olating these constraints. Besides, constraints (36), (40), (41), (42),

(43) or (44) (depending on the variant of F5) are not violated if

˜ z i 0 r 0 takes value 0 and the objective value is not worse. �
Computational results in Section 5 show that this relaxation im-

proves the times of formulation F5- (36) + (43) . 

Proposition 3.7. Formulations F5, F5- (36) + (40) and F5- (36) + (41) , re-

main valid if we relax the integrality condition of u sk variables for

s ∈ S, k = 2 , . . . , G 

s and z ir variables for i ∈ N , r ∈ { 3 , . . . , G i } . 
Proof: 

Since z -variables take integer values as observed in

Proposition 3.6 and since u sk for s ∈ S, k = 2 , . . . , G 

s penalize

the objective function, it holds that u sk take integer values due to

constraints (36) (or equivalently, due to constraints (40) or (41) ).

�
Preliminary computational results show that the relaxations in-

troduced in Proposition 3.7 do not improve the running times of

the corresponding models. 

3.4. Reducing the number of covering variables 

Observe that some of z -variables described in formulations of

Sections 3.2 and 3.3 could be fixed. Since p centers are located

in the S p CP, then the distance associated with a client i will not

be among the p − 1 worst possible ones. Then, the following con-

straints allow to fix some variables. 

Let ˜ d i (1) � 

˜ d i (2) � . . . � 

˜ d i ̃ G i 
be the sorted distances of all possi-

ble assignments of site i (observe that this sequence of distances

can contain repeated values), then 

z ir = 0 ∀ i ∈ N, r ∈ { 2 , . . . , G i } such that d i (r) > 

˜ d i (n −p+1) . (45)

Consequently, for each i ∈ N it is only necessary to define z ir for

r = 2 , . . . , G i such that d i (r) � 

˜ d i (n −p+1) . 

Regarding u -variables appearing in formulations F3 and F5, ob-

serve that these are binary variables indicating for each stratum

s ∈ S whether the largest distance associated with stratum s is at

least d s 
(k ) 

or not, where k = 2 , . . . , G 

s . The number of u -variables for

each stratum s ∈ S is G 

s − 1 , i.e, the number of different distances

from sites in N 

s to all candidate locations (excluding distance 0).

In this subsection, we analyze if the number of u -variables can be

reduced for each stratum. 

In fact, the number of u -variables could be reduced if tighter

bounds on the largest allocation distance associated with each

stratum for the S p CP were known. The following proposition ex-

ploits this argument. 
roposition 3.8. For each stratum s ∈ S, let v ( p CP s ) be the optimal

alue of a p-center problem where the set of candidates centers is

 and the set of demand points is N 

s , from now on, denoted with

 CP s . Then, the largest allocation distance associated with s is at least

 ( p CP s ) in the optimal solution of the SpCP. 

Proof: 

Observe that the solution of the S p CP is feasible for the p CP s .

hen, given a solution of S p CP, its objective value for p CP s will be

reater than or equal to v ( pCP s ). �
As a result, if a lower bound or the optimal value of p CP s is

btained, then the number of u -variables associated with stratum

 can be reduced. To reduce the number of variables we can follow

he next scheme for each s ∈ S: 

• Obtain a lower bound on the p CP s or its optimal objective value.

This value can be denoted as LB s . 
• Define u sk variables for all k ∈ { h : 2 � h � G 

s and d s 
(h ) 

> LB s } . 
• For each s ∈ S, given that d s 

(k s ) 
is the largest distance associated

with stratum s such that d s 
(k s ) 

� LB s , the considered objective

function will be: 

∑ 

s ∈S 
w s 

G s ∑ 

k = k s +1 

(
d s (k s ) 

+ (d s (k ) − d s (k −1) ) u sk 

)
Observe that this is equivalent to fix u sk = 1 for k � k s , s ∈ S . 

Several criteria can be used to obtain an adequate bound LB s 
or each stratum. In particular, in the computational experiments

f this work we present two ways for obtaining these bounds. The

rst one uses the linear relaxation of the pCP s using the classic

ormulation of Daskin (1995) . The second one consists in using the

inary algorithm proposed in Calik and Tansel (2013) . 

Observe that the argument described in constraints (45) for z -

ariables could be also useful to fix some of the u -variables. In par-

icular, the following variables can be fixed: 

 sk = 0 , (s, k ) ∈ K, (46)

here K is the set of pairs (s, k ) ∈ S × { 2 , . . . , G 

s } such that for ev-

ry i ∈ N 

s , d s 
(k ) 

> 

˜ d i (n −p+1) . 

Summing up, u -variables can be reduced using the scheme de-

cribed before and constraints (46) . In Section 5 we study the per-

entage of z - and u - variables fixed by applying the former criteria.

.5. Valid inequalities for F5 

Some constraints related to closest assignments could be ap-

lied for this problem. Some of the constraints appearing in

spejo et al. (2012) have been adapted for formulation F5 (the

ost promising formulation as we will see in Section 5 ). However,

he only valid inequality that presents good results is the one de-

cribed below: 

 ir � z j2 i, j ∈ N, r = 2 , . . . , G i : d i (r−1) = d i j , (47)

hese constraints could be considered as derived from the ones

roposed by Dobson and Karmarkar (1987) . As observed, given i,

 ∈ N these constraints restrict the distance associated with i to be

maller than or equal to the distance d ij if a center is located at j . 

In the following we introduce other valid inequalities that take

dvantage of the relationship between two different strata. 

G s 1 
 

k =2 

(d s 1 
(k ) 

− d s 1 
(k −1) 

) u s 1 k � 

G s 2 ∑ 

k =2 

(d s 1 
(k ) 

− d s 1 
(k −1) 

) u s 2 k , s 1 , s 2 ∈ S : N 

s 1 ⊆ N 

s 2 .

(48)

hese constraints state that the largest allocation distance associ-

ted with stratum s 1 will be smaller than or equal to the one asso-

iated with stratum s if stratum s is present in each site of N 

s 1 .
2 2 



M. Albareda-Sambola, L.I. Martínez-Merino and A.M. Rodríguez-Chía / Computers and Operations Research 108 (2019) 213–225 219 

S

u

C  

c  

a  

d  

∑
 

 

s

z  

4

 

p  

r  

h  

b  

e  

c  

p  

s

 

a  

e  

g  

a  

f  

w

 

i  

d  

t  

m  

t  

n  

S

 

w  

g  

s  

N  

�  

r  

e

(

A  

b

(

 

t  

o  

t  

a  

P  

w  

s  

t  

E  

c  

a  

l

 

p  

t  

m  

i  

o  

o  

s

 

o  

h  

f

5

 

m  

u  

i

 

c  

a  

1  

s  

e  

(  

m

 

s  

q  

r

 

X  

c  

4  

a  

f

 

S  

p  

v  

p  

i  

f

5

 

a  

S

1 Electronically available at http://people.brunel.ac.uk/ ∼mastjjb/jeb/orlib/files/ . 
imilarly the next constraints follow: 

 s 1 k � u s 2 l , s 1 , s 2 ∈ S, 

k = 2 , . . . , G 

s 1 , l = 2 , . . . , G 

s 2 : N 

s 1 ⊆ N 

s 2 , d s 1 
(k ) 

= d s 2 
(l) 

, (49) 

onstraints (49) hold since if the largest allocation distance asso-

iated with s 2 is smaller than d 
s 2 
(l) 

and N 

s 1 ⊆ N 

s 2 , then the largest

llocation distance within s 1 cannot be greater than or equal to

 

s 2 
(l) 

= d 
s 1 
(k ) 

. The accumulated version of these valid inequalities is:

G s 1 
 

k =2 

u s 1 k � 

G s 2 ∑ 

k =2 

u s 2 k , s 1 , s 2 ∈ S : N 

s 1 ⊆ N 

s 2 . (50)

Other valid inequalities are those ensuring that z variables are

orted in non-increasing order for each i ∈ N , i.e., 

 ir � z i,r+1 , i ∈ N, r = 2 , . . . , G i − 1 . (51)

All these valid inequalities will be analyzed in Section 5 . 

. Using S p PCP to implement a SAA for solving the P p CP 

Recall from Martínez-Merino et al. (2017) that the Probabilistic

 CP (P p CP) is defined as the variant of the p CP where sites rep-

esent potential demand points, and the locations of the p centers

ave to be decided before the actual subset of sites that need to

e served is revealed. In this problem, the goal is to minimize the

xpected maximum distance between a site with demand and its

losest center. Here, expectation is computed with respect to the

robability distribution of the binary random vector defining the

ubset of sites that have demand. 

Notice that, in fact, when uncertainty is modeled by means of

 set of scenarios, the P p CP can be cast as a S p CP. In this case,

ach stratum would represent the set of sites having demand at a

iven scenario, and the stratum weight would correspond to the

ssociated scenario probability. This suggests exploiting the S p CP

ormulations presented in this paper to solve the P p CP using the

ell-known Sample Average Approximation method (SAA). 

SAA is based on using Monte Carlo Sampling in the probabil-

ty space defined by the random variables involved in a problem

efinition (see Homem-de-Mello and Bayraksan, 2014 ). Although

his idea was already used before for solving stochastic program-

ing problems ( Robinson, 1996; Rubinstein and Shapiro, 1990 ),

he term SAA was formally defined in Kleywegt et al. (2002) . We

ext provide a sketch of this methodology; for more details, see

hapiro (2013) or Linderoth et al. (2006) . 

Consider the two stage program (P) z ∗ = min x ∈ X f (x ) + Q (x ) ,

here the recourse function is defined as Q(x ) = E ξ [ v (x, ξ )] and,

iven a solution x and a realization of the random vector ξ , ξ 0 , the

o-called second stage problem is v (x, ξ0 ) = min y ∈ Y (x,ξ0 ) 
q (y ; x, ξ0 ) .

ote that if ξ is a discrete random vector with a finite support,

, and each scenario s ∈ � has a known probability p s , then, by

eplicating the variables of the second stage problem, (P) can be

quivalently expressed as: 

 P ′ ) z ∗ = min f (x ) + 

∑ 

s ∈ �
p s q (y s ; x, ξ s ) (52) 

s.t. x ∈ X, 

y s ∈ Y (x, ξ s ) , s ∈ �. 

ccordingly, using a random sample �M ⊂�, with M = | �M | , P can

e approximated as 

 P M ) z M = min f (x ) + 

1 

M 

∑ 

s ∈ �M 

q (y s ; x, ξ s ) (53) 

s.t. x ∈ X, 

y s ∈ Y (x, ξ s ) , s ∈ �M . 
Problem P M is often referred to as sample average approxima-

ion problem. It is well known that given M , the expected value

f this problem, E (z M ) , is a lower bound on z ∗ and it converges

o z ∗ as N increases. Moreover, under some mild conditions on X

nd v , the random vector x M , ∗ representing the optimal solution to

 

M becomes arbitrarily close to the set of optimal solutions to P

ith probability 1. A common way to estimate E (z M ) is to solve a

equence of realizations of P M for a given sample size M , and use

he average of the corresponding optimal values as an estimate of

 (z M ) . The sequence is evaluated iteratively, and the termination

riterion is most often related with the convergence of this aver-

ge. The best of the solutions obtained in that sequence of prob-

ems is kept as a good approximation of the optimal solution. 

Compared to other heuristics, the main advantage that SAA

rovides is the theoretical results that ensure the convergence of

he method. In the case of the P p CP, we propose a classical SAA

ethod in which the novelty is that the resulting problem in each

teration is a S p CP. Consequently, we can exploit the characteristics

f the best formulations for the S p CP to enhance the performance

f the SAA method. The pseudocode given in Algorithm 1 de-

cribes the SAA for case of the P p CP. 

In the next section we will show some computational results

f SAA using random samples of size M = 10 . Besides, we will see

ow the use of different formulations of S p CP can affect the per-

ormance of the SAA. 

. Computational results 

This section is devoted to the computational studies of the for-

ulations described along the paper for the S p CP. The instances

sed in this computational experience are based on the p -median

nstances from the ORLIB. 1 

For the smallest instances ( n = 6 , . . . , 75 ), the used matri-

es are submatrices of instances pmed1, pmed2, pmed3, pmed4

nd pmed5 from the ORLIB data. For instances with n =
0 0 , 20 0 , 30 0 , 40 0 , the matrices are those corresponding to in-

tances pmed1-pmed20. In all cases, several p values are consid-

red ranging between p = 2 (for the smallest instances) to p = 60

for the largest instances). Finally, in Table 7 all the ORLIB distance

atrices together with their corresponding p values are studied. 

For each instance, a total of |S| = 10 strata are generated. Be-

ides, each stratum ( s ) is independently created. First, a number

 i ∈ (0, 1) is associated with each i ∈ N . Then a random number in

 ∈ [0, 1) is created. If r < q i , then ξ s 
i 

= 1 . Otherwise, ξ s 
i 

= 0 . 

The formulations are implemented in the commercial solver

press 8.0 using the modeling language Mosel. All the runs are

arried out on the same computer with an Intel(R) Core(TM) i7-

790K processor with 32 GB RAM. We remark that the cut gener-

tion of Xpress is disabled to compare the relative performance of

ormulations cleanly. 

First, we report a comparison of all proposed formulations in

ections 2 and 3 . In this study, we observe that the best results are

rovided by a variant of formulation F5. After that, we analyze if

alid inequalities and the reduction of variables improve the com-

utational times. Finally, Sample Average Approximation for P p CP

s implemented using some of the S p CP formulations presented be-

ore. 

.1. Comparison of formulations 

Before the comparison of the different formulations, we include

n example along with its data that illustrates a solution of the

 p CP for a specific instance. 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
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Algorithm 1: SAA for the P p CP. 

/* K is a maximum number of iterations and, A v last and 
A v new 

are the average of the objective value 
solutions related to the last iterations 
(conveniently initialized to 1 and 2, respectively). 

*/ 
k := 1 , A v last := 1 , A v new 

:= 2 , K := 500 . 

while k < K and | A v new 

− A v last | > 0 . 0 0 05 · A v last do 

/* Step 1:Generation of a random sample �k ∈ �. */ 
for k ′ = 1 to k ′ = M do 

for i = 1 to i = n do 

Create a random number r ∈ [0 , 1) . Let q i be the 

probability of client i to have demand. 

if r < q i then 

ξ k ′ 
i 

:= 1 , 

end 

else 

ξ k ′ 
i 

:= 0 . 

end 

s k 
′ 

:= (ξ k ′ 
1 

, ξ k ′ 
2 

, . . . , ξ k ′ 
n ) 

end 

end 

�k = { s 1 , . . . , s M } . 
/* Step 2: Solving of the sample average 

approximation problem. */ 
Solve the S pCP where S = �k and w 

s k 
′ = 

1 
M 

for 

k ′ = 1 , . . . , M. Use one of the formulations in sections 2 or 

3. Denote by v al the optimal objective value of this 

problem. 

/* Step 3: Evaluation of the solution. */ 
/* A v last and A v new 

allow to compare the average of 
objective values after a number of iterations: */ 

A v last := Average of the optimal objective values in the 

last k − 1 iterations. 

A v new 

:= Average of the optimal objective values in the 

last k iterations. 

Fix the solution of the S pCP in the objective function of 

the P pCP obtaining an upper bound for the P pCP. ( UB ) 

if k = 1 then 

U B best := U B 

end 

else 

if UB < UB best then 

U B best := U B . 

end 

end 

end 
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Table 1 

Strata data for Example 5.1 . 

Sites Weight Sites Weight 

s 1 : {1,2,3,6,7,9} w 1 : 0.05 s 6 : {2,3,6,8,10} w 6 : 0.05 

s 2 : {6,8} w 2 : 0.1 s 7 : {3,4,5,6,8,9,10} w 7 : 0.05 

s 3 : {6,9} w 3 : 0.1 s 8 : {2,5,7} w 8 : 0.05 

s 4 : {6,7} w 4 : 0.1 s 9 : {5,7,8,10} w 9 : 0.1 

s 5 : {2,5,10} w 5 : 0.3 s 10 : {2,6,7,8} w 10 : 0.1 

Table 2 

Largest distance associated with each stratum for the optimal solution (first row) 

and another feasible solution (second row) in Example 5.1 . 

Solution \ stratum s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 10 

{2,5,10} 77 17 17 18 0 62 62 18 18 18 

{1,2,6} 62 30 34 19 37 62 62 19 37 30 
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Example 5.1. Let N be a set of sites with | N| = 10 in which the

distances between each pair of sites are given by the next distance

matrix: 

d = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 77 139 135 157 174 193 204 206 209 

77 0 62 107 129 146 161 150 146 149 

139 62 0 90 112 129 117 106 102 105 

135 107 90 0 22 39 58 69 73 76 

157 129 112 22 0 17 36 47 51 54 

174 146 129 39 17 0 19 30 34 37 

193 161 117 58 36 19 0 11 15 18 

204 150 106 69 47 30 11 0 4 7 

206 146 102 73 51 34 15 4 0 3 

209 149 105 76 54 37 18 7 3 0 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Besides, the demand is divided into ten strata. Each stratum is

resent in a subset of sites as shown in Table 1 . This table also

ncludes the weight associated with each stratum. 

The solution for this example is to open the facilities at sites 2,

 and 10 with an objective value of 19.75. Consequently, demand

oints 1, 2 and 3 will be served by the center in 2, points 4, 5 and

 will be covered by the facility in 5 and the remaining sites will

e served by facility opened in 10. The largest distances associated

ith each stratum will be the ones given in the first row of Table 2 .

Observe that this solution for the Stratified p -center problem

s not an optimal solution for the p -center problem. Particularly,

he optimal solution for the p -center is the location of centers in

ites 1, 2 and 6. The second row of Table 2 shows the largest dis-

ance associated with each stratum when using the optimal solu-

ion of the p -center problem. Note that the maximum distances in

he strata with larger weights ( s 2 , s 3 , s 4 , s 5 , s 9 and s 10 ) are reduced

f the Stratified p -center solution is used. We can conclude that

 p CP is worth it in order to obtain a better average performance

mong the strata. 

Table 3 report s the results of the S p CP formulations proposed in

ections 2 and 3 . As can be observed, some formulations include

everal variants replacing some of the constraints by others. With

hese new constraints, the aim is to improve the running times

f some of these formulations. Table 3 reports two columns for

ach formulation. The first one shows the average running time for

olving the model and the second column reports the average LP

ap (in percentage, %). The LP gap is calculated as 
OP T − LP 

OP T 
· 100 ,

here OPT is the optimal objective value and LP is the objective

alue of its linear relaxation. Observe that OPT is known for all the

nstances used in Table 3 since F5- (36) + (43) ∗ model allows to solve

hem in less than two hours. 

Note that each entry corresponds to the average over five in-

tances of the same size and that the reported average running

ime is the average among the instances that are solved in less

han two hours. The number of unsolved instances after two hours

s reported in parentheses. In the LP gap column, the average fi-

al gaps for those instances that were not solved in two hours is

hown in parentheses. This final gap is obtained as 
UB best −LB best 

UB best 

·
00 where UB best is the objective value of the best feasible solution

btained in two hours and LB best is the best lower bound obtained

n two hours. Besides, observe that formulation F5- (36) + (43) ∗ cor-

esponds to formulation F5 replacing constraints (36) by con-

traints (43) relaxing variables z ir for i ∈ N , r ∈ { 3 , . . . , G i } . 
In terms of running times, observe that for n = 100 some of the

nstances cannot be solved in less than two hours if formulations

1, F2 or F3 are used. However, the reported results of F2’ and F3-

23) + (26) + (27) are much better than those corresponding to F2 or
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Table 3 

Formulations times and LP gap comparison. 

F1 F2 F2’ F3 F3- (23) + (26) + (27) F4 F5 F5- (36) + (41) F5- (36) + (42) F5- (36) + (43) F5- (36) + (43) ∗

n p Time LP Gap Time LP Gap Time LP Gap Time LP Gap Time LP Gap Time LP Gap Time LP Gap Time LP Gap Time LP Gap Time LP Gap Time LP Gap 

6 2 0.00 20.96 0.02 11.12 0.01 11.12 0.02 11.12 0.02 11.12 0.01 33.77 0.02 11.12 0.02 11.12 0.01 24.20 0.01 50.73 0.01 50.73 

10 3 0.02 28.50 0.16 19.20 0.05 19.20 0.19 19.20 0.08 19.20 0.03 40.80 0.08 19.20 0.16 19.20 0.09 26.82 0.05 58.92 0.06 58.92 

10 5 0.01 44.34 0.13 28.72 0.04 28.72 0.15 28.72 0.05 28.72 0.03 52.08 0.05 28.72 0.09 28.72 0.05 43.40 0.05 74.60 0.05 74.60 

13 3 0.06 30.20 0.89 17.60 0.18 17.60 0.61 17.60 0.23 17.60 0.09 47.82 0.23 17.60 0.56 17.60 0.26 29.86 0.12 58.12 0.11 58.12 

13 5 0.04 40.94 0.55 22.38 0.10 22.38 0.37 22.38 0.12 22.38 0.07 49.22 0.12 22.38 0.21 22.38 0.13 35.13 0.09 65.30 0.09 65.30 

13 8 0.03 48.74 0.28 24.11 0.05 24.11 0.19 24.11 0.07 24.11 0.05 51.34 0.06 24.11 0.11 24.11 0.06 39.06 0.05 78.82 0.05 78.82 

15 3 0.10 30.14 1.39 16.08 0.31 16.08 1.40 16.08 0.47 16.08 0.14 48.61 0.38 16.08 0.75 16.08 0.40 27.60 0.17 56.42 0.18 56.42 

15 7 0.06 53.11 0.93 32.47 0.15 32.47 0.68 32.47 0.21 32.47 0.09 58.53 0.16 32.47 0.35 32.47 0.18 42.18 0.14 75.30 0.14 75.30 

15 10 0.04 46.31 0.47 19.74 0.06 19.74 0.29 19.74 0.08 19.74 0.07 49.00 0.06 19.74 0.14 19.74 0.05 38.90 0.07 83.32 0.06 83.32 

20 3 0.25 33.59 6.92 18.87 0.94 18.87 5.12 18.87 1.27 18.87 0.31 51.65 0.85 18.87 2.43 18.87 1.32 28.76 0.47 54.20 0.51 54.20 

20 7 0.21 44.51 3.35 21.66 0.43 21.66 1.80 21.66 0.56 21.66 0.25 52.90 0.38 21.66 0.94 21.66 0.56 32.66 0.29 68.11 0.31 68.11 

20 10 0.14 52.88 2.43 27.43 0.32 27.43 1.88 27.43 0.43 27.43 0.20 58.24 0.28 27.43 0.56 27.43 0.37 40.04 0.29 77.68 0.29 77.68 

25 3 0.54 29.89 17.66 15.68 1.88 15.68 11.86 15.68 2.19 15.68 0.57 50.16 1.23 15.68 4.06 15.68 2.34 26.84 1.02 50.37 1.13 50.37 

25 7 0.56 43.51 15.33 22.04 1.36 22.04 11.27 22.04 1.84 22.04 0.52 53.50 0.95 22.04 3.10 22.04 1.55 32.93 0.65 63.56 0.73 63.56 

25 10 0.53 55.26 12.37 30.77 1.49 30.77 13.65 30.77 1.76 30.77 0.46 61.48 1.13 30.77 2.58 30.77 1.39 43.34 0.80 74.92 0.79 74.92 

30 3 1.03 27.94 47.60 13.29 3.93 13.29 36.80 13.29 4.89 13.29 1.04 48.61 2.15 13.29 6.94 13.29 3.94 28.05 1.66 52.20 1.55 52.20 

30 7 1.17 39.24 25.19 18.52 2.37 18.52 27.59 18.52 2.80 18.52 0.83 51.50 1.70 18.52 5.24 18.52 2.28 35.45 0.97 63.02 0.95 63.02 

30 10 1.14 50.88 34.23 26.21 3.05 26.21 42.51 26.21 3.93 26.21 0.95 58.81 1.67 26.21 5.11 26.21 2.35 42.75 1.14 70.99 1.24 70.99 

40 3 3.12 26.89 148.29 12.97 13.13 12.97 152.82 12.97 7.88 12.97 3.13 48.55 4.85 12.97 11.46 12.97 7.69 31.65 3.25 51.45 2.75 51.45 

40 7 7.41 37.54 146.75 16.74 11.45 16.74 132.06 16.74 12.42 16.74 2.83 51.51 4.65 16.74 20.34 16.74 8.56 34.90 2.62 58.41 2.77 58.41 

40 10 5.85 44.38 123.78 21.11 14.14 21.11 179.14 21.11 11.45 21.11 2.91 55.03 4.09 21.11 17.93 21.11 7.09 37.62 2.28 65.49 2.54 65.49 

50 5 11.72 30.44 314.63 12.63 38.32 12.63 385.67 12.63 19.99 12.63 9.10 49.44 7.86 12.63 34.72 12.63 15.52 38.65 5.46 54.26 5.50 54.26 

50 10 45.50 42.04 565.37 20.25 60.62 20.25 1357.87 20.25 43.47 20.25 18.39 54.50 12.96 20.25 70.69 20.25 17.71 43.19 7.79 62.29 5.94 62.29 

50 15 57.11 47.35 294.64 20.88 32.18 20.88 615.38 20.88 41.99 20.88 9.50 57.07 10.91 20.88 36.25 20.88 15.87 44.26 6.54 69.01 8.80 69.01 

75 5 110.47 28.03 1779.03 11.50 292.01 11.50 1304.42(1) 11.50 (1.3) 131.39 11.50 165.08 48.94 47.01 11.50 442.62 11.50 52.17 48.03 24.48 54.79 18.73 54.79 

75 10 927.58 36.27 2518.22 13.98 416.00 13.98 3519.38(2) 13.98 (9.5) 173.89 13.98 239.72 51.55 100.70 13.98 239.59 13.98 66.51 50.36 26.83 59.35 19.97 59.35 

75 15 1973.03 41.65 1931.90 16.57 380.97 16.57 3567.20(2) 16.57 (8.8) 231.85 16.57 101.01 53.75 59.88 16.57 201.43 16.57 73.25 54.31 28.21 64.43 23.56 64.43 

100 10 5981.32(4) 26.05 (2.7 ) 3443.88(1) 12.15 (7.8) 1090.56 12.15 (5) 12.15 (10.7) 476.64 12.15 457.77 50.15 164.32 12.15 605.83 12.15 186.07 56.74 63.53 59.06 64.09 59.06 

100 15 (5) 37.41 (5.4) 2260.86(2) 13.17 (9.2) 1611.93 13.17 3277.27(4) 13.17 (13.1) 476.51 13.17 958.80 52.14 142.57 13.17 435.76 13.17 271.07 57.95 77.88 61.87 64.12 61.87 

100 25 5098.56(4) 49.16 (14) 4780.63(2) 19.07 (14.7) 1212.76 19.07 2887.83(4) 19.07 (13.3) 968.22 19.07 544.08 58.96 133.52 19.07 674.77 19.07 336.73 61.62 78.34 69.13 64.62 69.13 
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Table 4 

Percentage of z - and u -variables reduced with respect to the 

original ones. 

% z % u 

n p (45) (46) + clas. Rel (46) + Binary alg. 

75 5 6.35 29.47 43.11 

75 10 13.61 23.58 36.63 

75 15 20.21 21.75 32.79 

100 10 10.74 25.44 37.32 

100 15 16.13 23.75 34.84 

100 25 26.01 22.55 31.68 

200 10 9.26 30.23 40.72 

200 20 16.93 25.66 35.33 

200 30 22.88 24.82 33.96 
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F3. Note that times of F4 are similar in many of the cases to those

required by F3- (23) + (26) + (27) and all the instances can be solved

in less than two hours. 

Observe also that F5 seems to provide better results than F4.

Furthermore, it is clear that the best formulation is F5 replacing

constraints (36) by constraints (43) and relaxing the integrality of

variables z ir for i ∈ N , r ∈ { 3 , . . . , G i } . By using this variant of formu-

lation F5, the results show that running times are (in average) not

bigger than 65 s econds in any of the cases. 

In contrast, the LP gaps of F2, F2’, F3, F3- (23) + (26) + (27) , F5

and F5- (36) + (41) , which always coincide, are the smallest ones.

Although F5- (36) + (43) ∗ is the formulation that provides the best

computational times, the reported LP gaps are the largest ones if

we compare them with the remaining formulations. 

Since F5- (36) + (43) ∗ is the best formulation in terms of times,

next subsection is devoted to the computational study of this for-

mulation reducing the number of variables and using valid in-

equalities. 

5.2. Reduction of variables and valid inequalities for F5- (36) + (43) ∗

In this subsection we observe the results of using a preprocess-

ing phase to reduce the number of variables in formulation F5-

(36) + (43) ∗ and we will also report the results when applying valid

inequalities. 

In Section 3.4 a preprocessing phase to reduce the number of

z - and u -variables is described. Concretely, constraints (45) allow

to reduce the number of defined z -variables. Similarly, constraints

(46) decrease the number of u -variables. Besides, a reduction of

u -variables based on obtaining an adequate lower bound of the p -

center objective value considering each stratum independently is

described. 

In particular, we mention two ways to obtain these lower

bounds. The first one is to solve the linear relaxation for the

pCP using the classic formulation of Daskin (1995) . The second

way consists in using the binary algorithm proposed in Calik and

Tansel (2013) . Table 4 reports the percentage of fixed z - and u -

variables in formulation F5- (36) + (43) ∗ when the former criteria for

fixing variables are applied. The first column corresponds to the

percentage of reduced z -variables if constraints (45) are applied.

The second column reports the percentage of fixed u −variables

when using constraints (46) together with the reduction strat-

egy based on the solving of Daskin (1995) relaxed formulation

for each stratum. Finally the last column reports the percent-

age of reduction when (46) and Binary Algorithm specified in

Calik and Tansel (2013) for each stratum are applied. Observe that

between 6.35% and 26.01% of the z -variables could be fixed. In the

case of u -variables the largest number of fixed u -variables (bold-

faced) is obtained when applying the Binary Algorithm. With this

strategy and (46) , more than a 31% of u -variables are fixed in

average. 
Table 5 reports the computational times and LP gaps for n ∈ {75,

0 0, 20 0} if the former preprocessing phase for fixing variables are

sed in order to reduce the number of variables. The first block of

olumns corresponds to the formulation without any preprocessing

hase and the second one corresponds to the formulation relaxing

 ir for i ∈ N , r = 3 , . . . , G i . After these two blocks, different options

or the preprocessing are studied. In those cases, a first column

ndicating the preprocessing time is included in each block. 

Columns in block “classic rel.” report the results if a prepro-

essing using (45) and (46) based on the relaxed formulation from

askin (1995) is used. “Binary” shows the results if Binary algo-

ithm proposed in Calik and Tansel (2013) is used to obtain a lower

ound on the p -center for each stratum and the criteria given by

45) and (46) are applied. In columns under heading “Binary ∗”, the

ame preprocessing is used but, in this case, z ir variables are re-

axed for i ∈ N , r = 3 , . . . , G i . The largest differences in CPU time

mong the variants can be observed in instances with n = 200 .

n this case, the best results regarding CPU time are the ones re-

orted in column “Binary ∗’. It is worth noting that the preprocess-

ng times represent only a small fraction of the overall solution

ime in all the instances reported in this table. Observe also that

he LP gaps are considerably reduced if binary algorithm together

ith (45) and (46) is used. 

Table 6 reports the average times required to solve the same

nstances with formulation F5- (36) + (43) ∗ using Binary Algorithm,

45) and (46) to reduce the number of variables and adding some

f the constraints explained in Section 3.5 . Regarding the reported

esults in Table 6 , the time performance is significantly improved

n some cases if constraints (40) are included as valid inequalities

or the formulation. The remaining valid inequalities appearing in

his table, except maybe for (47) , do not worsen the times in gen-

ral, but they neither provide a significant improvement. 

Finally, Table 7 reports the time results using ORLIB data with

he same p values as in the original instances and using random

trata. For solving these instances, formulation F5- (36) + (43) ∗ was

sed with Binary Algorithm and adding (45) and (46) to reduce the

umber of variables. The results shows that only two instances re-

ain unsolved after two hours using the model with the proposed

reprocessing phase (underlined cpu time). In this table, we give

eparately the time to solve the formulation, under heading t solv ,

he preprocessing time, under t prep and the overall time, t total . Ad-

itionally, we provide the number of nodes explored in the branch

nd bound tree. The LP gap is also provided and, in the cases in

hich the model is not solved in two hours, the LP gap is calcu-

ated as 
UB best − LP 

UB best 

· 100 , where UB best is the best objective value

btained in two hours. In these instances (pmed23 and pmed40),

he final gap after two hours is shown inside the parentheses in

he LP Gap column. Finally, column ‘Obj. Val.’ shows the optimal

bjective value for each instance except for pmed23 and pmed40

here the best obtained solutions for the unsolved instances in

wo hours are reported. 

In this table we observe that varying p has a strong effect

n the CPU times, both, in the preprocessing phase and when

olving the final formulation. Moreover, the effect is different in

oth cases, yielding curious situations, where the preprocessing

ime can be larger than the actual solution time. We can also ob-

erve that the most demanding instances tend to be those with

 � 10% · n . This behavior can be better appreciated in Fig. 1 . 

.3. SAA for P p CP 

In this subsection, the time and gap results of SAA for the P p CP

re analyzed. Table 8 shows the results of SAA in comparison with

 p CP formulation presented in Martínez-Merino et al. (2017) . 
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Table 5 

Times and LP gaps reducing the number of z - and u -variables in formulation F5- (36) + (43) . 

F5- (36) + (43) F5- (36) + (43) ∗ Classic rel Binary Binary ∗

n p Time LP Gap Time LP Gap t prepro t total LP Gap t prepro t total LP Gap t prepro t total LP Gap 

75 5 24.48 54.79 18.73 54.79 1.53 19.53 33.56 0.52 12.50 8.55 0.51 7.95 8.55 

75 10 26.83 59.35 19.97 59.35 1.09 16.60 41.45 0.49 13.56 10.82 0.49 11.04 10.82 

75 15 28.21 64.43 23.56 64.43 0.93 18.85 48.96 0.49 12.87 18.42 0.46 10.95 18.42 

100 10 63.53 59.06 64.09 59.06 2.54 56.19 39.43 1.08 42.19 10.94 1.14 29.22 10.94 

100 15 77.88 61.87 64.12 61.87 2.06 63.73 44.93 0.93 37.41 15.45 0.95 30.26 15.45 

100 25 78.34 69.13 64.62 69.13 1.63 43.27 56.49 0.91 31.84 23.35 0.91 28.95 23.35 

200 10 440(1) 56.86 1248.75 56.86 26.75 739.05 33.83 9.28 368.87 8.95 9.19 275.96 8.95 

200 20 440.19 58.97 436.89 58.97 19.01 267.61 39.59 9.58 118.36 11.04 9.60 82.42 11.04 

200 30 349.71 62.75 503.01 62.75 13.78 199.57 46.25 7.80 111.97 15.28 7.84 89.68 15.28 

Table 6 

Times of F5- (36) + (43) ∗ using binary algorithm to reduce the number of u -variables and dif- 

ferent valid inequalities. 

n p Binary ∗ (47) (48) (49) (50) (51) (40) 

75 5 7.95 12.61 8.02 8.02 7.95 11.95 6.03 

75 10 11.04 13.95 11.08 11.11 11.02 16.25 15.90 

75 15 10.95 12.96 11.09 11.08 11.01 14.24 9.44 

100 10 29.22 37.42 29.21 29.13 29.27 43.85 24.17 

100 15 30.26 45.75 30.29 30.28 30.22 46.58 28.28 

100 25 28.95 37.38 28.82 28.73 28.76 44.35 36.95 

200 10 275.96 539.47 275.58 275.37 276.19 289.21 162.02 

200 20 82.42 161.46 82.49 82.69 82.66 92.31 93.18 

200 30 89.68 176.37 90.28 90.04 90.00 120.44 164.50 

300 15 509.79 1298.54 512.82 513.38 510.10 523.33 271.05 

300 30 315.13 591.42 318.61 316.23 316.46 372.64 228.18 

300 45 535.69 813.88 538.52 533.47 532.62 442.23 610.77 

400 20 1017.28 3305.29 1011.01 1012.90 1014.40 722.30 450.12 

400 40 663.16 1863.28 666.45 660.53 663.98 805.02 954.81 

400 60 475.14 1246.22 474.36 475.05 474.23 735.84 816.77 

Fig. 1. CPU times (circle size) as a function of n and p . 

 

p  

M  

o  

o  

S  

(  

z  

t  

b  

v  

t

 

d  

m  

i  

e  

c  

n  

v  

t  

r  

u

 

p  

t  

f  

2  

t  

t  

u  

g  

b  

2

6

 

t  

p  

a  

e  

t

 

s  

i  

w

 

o  

g  
The first column corresponds to the running time of the

robability chain P p CP formulation described in Martínez-

erino et al. (2017) where we have established a time limit

f 24 h ours. “F1 SAA” shows the results of SAA if formulation F1

f the S p CP is used. “Binary ∗ SAA” resports again the results of

AA but using formulation F5 with constraints (36) replaced by

43) , using Binary Algorithm as a preprocessing phase and relaxing

 ir variables for i ∈ N and r ∈ { 3 , . . . , G i } . For each block of columns,

he gap column reports the gap (in percetage, %) between the

est obtained solution in the SAA heuristic and the P p CP objective

alue. In addition, the time column reports the running time of

he procedures. 

Regarding the running times of SAA, we observe a significant

ifference between SAA when using formulation F1 and the re-

aining SAA columns that use formulation F5. As observed, times

n “Binary ∗ SAA” grow much slower than when using F1 so that,
ven if for the smallest instances they seem to be worse, they be-

ome much better for n > 30. Considering the gaps we see that in

one of the cases, the gaps are bigger than 0.64%. Moreover, both

ersions of the SAA found the optimal solution for at least half of

he instances. As explained in Section 4 , we can find theoretical

esults that guarantee the goodness of the obtained solution when

sing the SAA. 

Table 9 reports the average results of the instances with ( n,

 ) ∈ {(75, 10), (100, 10), (100, 15), (100, 25)}. First column reports

he necessary time for solving the P p CP using the probability chain

ormulation, observe that none of the instances were solved in

4 h ours. “Gap BS ” column reports the gap between the best solu-

ion obtained by SAA method and the best solution of P p CP within

he time limit. Finally, SAA time is reported. Observe that in all

nsolved instances after 24 h ours “Gap BS ” column reports negative

aps. This is due to the fact that the best solution given by SAA is

etter than the best solution provided by P p CP formulation after

4 h ours. 

. Conclusions 

This paper presents an extension of the p -center problem called

he Stratified p -Center Problem (S p CP). This extension could be ap-

lied in cases where the population is divided into different strata

nd the evaluation of the service must be separately measured for

ach stratum. In the model, it is assumed that more than one stra-

um can be present at each demand point. 

Different formulations were introduced together with a detailed

tudy of variants, variable reduction processes and valid inequal-

ties. Regarding the computational results, the best performance

as obtained using a formulation based on covering variables. 

The S p CP allows to implement a heuristic approach based

n the Sample Average Approximation (SAA) method to obtain

ood feasible solutions for the probabilistic p -center problem.
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Table 7 

Results for ORLIB data. 

n p solving prepro Total LP Gap # Nodes Obj. Val. n p solving prepro Total LP Gap # Nodes Obj. Val. 

pmed1 100 5 46.00 1.12 47.66 8.75 8041 116.8 pmed21 500 5 120.12 334.01 466.05 4.86 1387 38.9 

pmed2 100 10 26.08 1.14 28.13 9.91 4783 95.3 pmed22 500 10 253.44 307.79 597.42 7.78 1713 36.9 

pmed3 100 10 11.51 1.09 12.98 8.05 1271 92.2 pmed23 500 50 7200.19 229.07 7447.45 18.36(3.9) 29,644 21.6 

pmed4 100 20 28.27 0.92 29.48 18.50 9463 72.6 pmed24 500 100 1068.26 320.28 1392.83 22.16 18,441 15 

pmed5 100 33 18.61 0.72 19.52 37.80 5843 40.6 pmed25 500 167 1591.44 199.79 1793.49 40.16 81,497 10.6 

pmed6 200 5 75.99 10.02 92.17 6.95 2621 80.5 pmed26 600 5 259.63 677.29 959.90 4.58 1331 36.9 

pmed7 200 10 89.48 8.24 99.64 8.59 4737 60.6 pmed27 600 10 427.28 593.22 1056.32 8.91 2315 31.1 

pmed8 200 20 279.66 8.63 290.36 13.40 10,471 52.4 pmed28 600 60 1784.88 572.43 2371.33 13.53 6377 17.3 

pmed9 200 40 4 8.4 9 8.75 57.95 17.09 4737 34.5 pmed29 600 120 487.86 425.46 918.56 22.71 10,189 12 

pmed10 200 67 47.67 6.26 54.21 33.24 10,931 18.3 pmed30 600 200 188.01 505.15 696.21 32.72 5877 9 

pmed11 300 5 30.98 44.26 78.77 5.05 353 54.6 pmed31 700 5 132.35 1318.46 1470.65 2.73 393 29.2 

pmed12 300 10 57.64 41.64 105.20 6.77 1215 50.9 pmed32 700 10 4250.54 788.62 5104.98 7.09 19,239 28 

pmed13 300 30 786.58 33.21 829.07 17.75 13,347 35.1 pmed33 700 70 2666.15 1024.91 3729.87 13.66 7367 14.9 

pmed14 300 60 338.51 38.84 380.14 19.62 9919 23.4 pmed34 700 140 305.98 752.26 1067.68 16.55 3559 10.3 

pmed15 300 100 60.15 40.86 101.79 27.72 6159 16.1 pmed35 800 5 180.27 1429.91 1647.11 4.18 935 28.5 

pmed16 400 5 47.96 114.38 165.70 3.88 599 45.9 pmed36 800 10 2376.87 1837.73 4283.38 6.03 4411 26.4 

pmed17 400 10 184.14 115.38 309.41 6.19 2399 38.5 pmed37 800 80 5553.53 1353.61 6987.60 14.52 9285 14.7 

pmed18 400 40 384.20 86.96 480.31 9.80 4275 26.7 pmed38 900 5 207.01 2844.10 3109.63 5.43 289 27.5 

pmed19 400 80 3354.26 119.21 3476.32 21.85 64,273 17.4 pmed39 900 10 2993.05 2981.84 6021.92 7.82 6587 22.9 

pmed20 400 133 137.76 93.43 232.63 39.05 10,437 12.7 pmed40 900 90 7205.28 3780.23 11033.40 13.07(3.9) 10,222 12.7 
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Table 8 

SAA results. 

P p CP F1 SAA Binary ∗ SAA 

n p Time Gap Time Gap Time 

6 2 0.01 0.00 0.10 0.00 0.45 

10 3 0.03 0.00 0.54 0.00 0.87 

10 5 0.03 0.00 0.49 0.03 1.49 

13 3 0.07 0.00 0.91 0.00 1.53 

13 5 0.07 0.00 1.10 0.24 2.21 

13 8 0.05 0.00 1.32 0.00 2.20 

15 3 0.10 0.00 1.77 0.00 1.88 

15 7 0.13 0.00 1.73 0.10 3.56 

15 10 0.07 0.00 1.84 0.56 2.65 

20 3 0.32 0.00 3.40 0.00 4.18 

20 7 0.63 0.64 3.67 0.00 8.49 

20 10 0.49 0.10 4.28 0.14 5.62 

25 3 0.84 0.00 6.73 0.00 7.42 

25 7 3.48 0.05 8.96 0.23 9.50 

25 10 5.13 0.02 9.48 0.01 14.34 

30 3 2.01 0.00 13.90 0.00 11.27 

30 7 13.61 0.14 12.78 0.15 9.40 

30 10 22.99 0.00 16.24 0.00 16.54 

40 3 8.28 0.00 40.90 0.00 19.94 

40 7 148.22 0.01 98.39 0.20 19.45 

40 10 295.52 0.01 96.68 0.01 19.52 

50 5 243.17 0.03 162.76 0.00 44.68 

50 10 4083.75 0.01 462.26 0.12 67.74 

50 15 21782.53 0.21 794.07 0.01 71.63 

75 5 4108.22 0.03 1386.77 0.03 150.28 

Table 9 

SAA results for larger instances. 

n p P p CP Time Gap BS SAA Time 

75 10 > 86400 −2.55 200.57 

75 15 > 86400 −5.67 258.32 

100 10 > 86400 −10.25 491.73 

100 15 > 86400 −15.31 449.02 

100 25 > 86400 −20.40 850.55 
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his heuristic approach provides good upper bounds in acceptable

imes. 
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