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implement a heuristic approach based on the Sample Average Approximation method (SAA) for solving
the probabilistic p-center problem in an efficient way.
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1. Introduction

Discrete location problems have been widely studied since the
seminal paper Balinski (1965), where the first MILP formulation for
such a problem was proposed. Among the fundamental problems
in this area, the p-Center Problem (pCP) aims at selecting, from
n given sites, the locations of p service centers that minimize the
maximum distance between any of the sites and its closest ser-
vice center. This model, in contraposition to the p-median prob-
lem, was motivated by the need not to discriminate spatially dis-
persed clients when locating essential or emergency centers (see
Calik et al., 2015; Garfinkel et al., 1977, for more details).

Both, continuous and discrete versions have already been
addressed by several authors. Examples of works concern-
ing the continuous version are Callaghan et al. (2017) and
Elshaikh et al. (2016) where the planar version is analyzed. This
paper focuses on an extension of the discrete pCP. The discrete
pCP, also known as vertex pCP, has been proven to be NP-hard
(Kariv and Hakimi, 1979). However, many efficient exact and
heuristic algorithms have been introduced for this problem. See
for instance, Contardo et al. (2019), Calik and Tansel (2013) or
Irawan et al. (2016).

In the last decades, several extensions of the discrete pCP have
been introduced in the literature. These include variants consid-
ering capacities (Albareda-Sambola et al., 2010; Ozsoy and Pinar,
2006; Quevedo-Orozco and Rios-Mercado, 2015) or pre-existing
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centers, as in the conditional p-center problem (Drezner, 1989).
Other extensions, such as the «-neighbor p-center problem, con-
sider the largest distance of a demand point to its « closest cen-
ters, see Chen and Chen (2013).

In addition, the pCP with uncertain parameters has been
addressed both, from the perspective of robust optimization
(Averbakh and Berman, 1997; Lu and Sheu, 2013) and of stochas-
tic programming (Espejo et al., 2015; Martinez-Merino et al.,
2017; Revelle and Hogan, 1989). In particular, in Martinez-
Merino et al. (2017) the probabilistic p-center problem (PpCP) is
introduced. In this problem, the goal is to minimize the expected
largest distance between any demand point and its corresponding
center. The PpCP considers that the demand can occur indepen-
dently at each demand site with a certain known probability. Ob-
serve, that the pCP is a particular case of this problem where all
sites have demand with probability one. In this paper, we will in-
troduce a heuristic method for the PpCP making use of the formu-
lations of the pCP extension that will be proposed.

A common characteristic of most of the considered problem
variants is that customers are assumed to be homogeneous in the
sense that they are all considered in the same way in the ob-
jective function. The only exception would be the weighted pCP,
where the distances between each site and its closest center are
affected by site-dependent weights. See, for instance, Jeger and
Kariv (1985) where the particular case of this problem defined on
trees is addressed.

In this paper, we consider situations where, for instance, the
population of a region is divided into different strata, and people of
different strata can live together in the same cities. The goal of the


https://doi.org/10.1016/j.cor.2019.04.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.04.013&domain=pdf
mailto:luisa.martinez@uca.es
https://doi.org/10.1016/j.cor.2019.04.013

214 M. Albareda-Sambola, LI. Martinez-Merino and A.M. Rodriguez-Chia/Computers and Operations Research 108 (2019) 213-225

problem is to locate centers in such a way that the weighted sum
of the largest distance associated with each stratum is minimized.
This problem is called the Stratified p-Center Problem (SpCP) and
it could be applied when the evaluation of the service is measured
separately for each stratum due to social or political reasons. The
idea of analyzing demands distributed in a spatially different way
has been used in covering problems (Schilling et al., 1979) but, up
to the best of our knowledge, it has not been applied in the con-
text of the pCP.

A possible real life application could be the location of centers
in an humanitarian relief planning framework. The purpose is to
locate centers that provide different essential services and where
not all demand points need all the services. This is the case of
underdeveloped countries where humanitarian aid centers offering
assistance (medical supplies, basic goods, clothes, etc.) need to be
located. Note that in this context, the opening of many aid cen-
ters could be very costly, for instance, due to safety reasons. The
model that we propose takes into account the largest distance as-
sociated with each of the provided services in contrast with the
pCP, where only the largest distance is considered. Consequently,
the SpCP evaluates the performance of each of the services.

Another application of this model could be the location
of warehouses for different perishable items (fruits, vegetables,
seafood) whose demand sites are not the same for all the items.
In this case, the warehouses should be located in such a way that
the clients of each kind of item could be served as soon as possible
to avoid the damage of the products.

Besides, this model could also be useful to locate social service
centers that offer support to different social minorities needing as-
sistance. The SpCP model allows to minimize the weighted sum of
the largest distance associated with each minority. In all the above
mentioned applications, the weight associated with each stratum
could be related to its importance or its associated cost.

The paper is organized as follows. In Section 2, a formula-
tion for the SpCP based on the Daskin (1995) and Calik and
Tansel (2013) formulations for the pCP is introduced. In Section 3,
some alternative formulations together with some valid inequali-
ties are proposed. Section 4 applies the results in previous sections
for an efficient implementation of a Sample Average Approxima-
tion heuristic for the probabilistic p-center problem (see Martinez-
Merino et al., 2017). Section 5 reports the computational results
comparing all the proposed formulations and the results of using
Sample Average Approximation. Finally, Section 6 gathers the con-
clusions of the paper.

2. Notation and classical formulation

Let N={1,...,n} be a given set of sites and p>2 the num-
ber of facilities to be located. For each pair i, jeN, let d;; be the
distance from location i to j. Besides, d;; =0 for ieN and d;; >0
for i#j. In the following we use the next notation. The sorted dis-
tances associated with pairs of sites are denoted by

OZd(]) <d(2) <... <d(G)~

The sorted distances from a site ie N to the remaining sites are
denoted by

0= di(l) < di(Z) <...< di(G,v)-

In the previous notation G and G; are the number of different dis-
tances between pairs of sites and between i and any other site,
respectively (removing possible multiplicities).

Moreover, the population of each site 1, ..., n is partitioned into
a set of strata, taking into account that more than one stratum
can be present in a site i and not always all the strata are present
in a site. Given S the set of strata in which the population is di-
vided, we consider a family of subsets {NS}scs such that N°CN is

the set of sites where stratum s is present for s € S. Then, the
sorted distances from a stratum, i.e., the sorted sequence of family
{dij}icns jen is denoted by

0= dil) < d?z) <...< diGs),

where G° is the number of different distances of the family
{dij}iens jen-

The problem addressed in this work is based on the classical
pCP. However, in contrast with the pCP, this new problem considers
that population of the sites is divided in different strata depend-
ing on the kind of service that they require. For a given stratum s,
this problem takes into account the largest distance from the sites
where stratum s is present and their corresponding closest service
facility. Recall that in the same site there can be inhabitants be-
longing to more than one stratum.

For each site je N, and each stratum s € S, the following binary
parameter is defined:

1, if j e N’
s;={0 /

otherwise.

Besides, each stratum has an associated weight, (ws, s € S) that
is used to balance the cost related to the different strata in the ob-
jective function. The weights can be interpreted in different ways.
For instance, they can measure the importance given to a certain
stratum.

Given the former parameters, the aim of this problem is to lo-
cate p service facilities minimizing the weighted sum of the largest
assignments within each stratum. Therefore, the problem can be
expressed synthetically in the following way:

1 S

min » S wsd(P.N°). (1)
|Pl=p seS

where P is a subset of facilities to open and d(P, N°) = mil])s( mipn djj.

je ie
For a given site jeN, we will refer to mipndu as the allocation
le

distance of site j, so d(P, N°) is the maximum allocation distance
among the sites with presence of stratum s, or equivalently within
stratum s.

The problem previously described can be formulated using the
classic p-center formulation (see Daskin, 1995). With this purpose,
the following variables are defined:

1, if site j is assigned to center i
ij = 0

otherwise, fori, jeN. (2)

6° = largest allocation distance for the sites where stratums
is present,s € S. 3)
Using these variables, the derived formulation is,
(F1) min ) ws0° (4)
se§
Sty Xi=D. (5)
ieN
inj:1, ]GN, (6)
ieN
Xij < Xij, i,jeN, (7)
0% > Zdjjxij, SGS,]GNS, (8)
ieN
Xjj € {0,1}, i,jEN, (9)
6° >0, ses (10)
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Constraint (5) restricts that there are p centers. Constraints
(6) indicate that each site is associated with only one center. Con-
straints (7) restrict that sites must be assigned to an open center.
Constraints (8) ensure that the largest allocation distance within
stratum s is not smaller than the allocation distance of any site
where stratum s is present. As mentioned before, the objective
function is the weighted sum of the largest distances within each
stratum.

To the best of our knowledge, the most recent formulation for
the p-center problem was given by Calik and Tansel (2013) provid-
ing very good results. We propose a formulation of our problem
inspired in Calik and Tansel (2013) using the following families of
variables.

_ 1,
Usr = 0

seS,r=1,...,G
P 1’
Yi= 0.

Using these families of variables, the new formulation is given
by

otherwise,

if a center is placed at i,

otherwise, for i e N.

G
(F2) min Z ZWSd(k)ask (]1)
seS k=1
st Y yi=p. (12)
ieN

ses, (13)

G
Z L_lsk =1,
Z gy <

k'= ieN

seS, jeN . k=2,...,G,

> i

dij<d
(14)
yi € {0,1}, ieN, (15)
iy € {0,1}, seS,k=1,....,G. (16

Constraint (12) restricts that there are p centers. Constraints
(13) ensure that for each stratum, only one of the distances is
the largest allocation distance. Constraints (14) determine that the
largest allocation distance within a stratum s will be among the
first k distances if there is a center with a distance smaller than or
equal to dy with respect to any site in N°.

Observe that t-variables determine the largest allocation dis-
tance among the sites where each stratum s € S is present. As a
consequence, only the distances associated with sites in N° will be
necessary to obtain the largest distance with respect to s. There-
fore, the number of variables can be reduced defining ii-variables
in the following way,

1, if d(k) is the largest allocation
distance for the sites in N*
0, otherwise,

lige = seS,k=1,...,G.

Observe that in the original formulation F2, the number of -
variables is |S|G. However, by doing this reduction, the obtained
number of variables is ZGS. Taking advantage of this reduction of

se§
the number of variables, the new objective function for the model

is

GS
Z Z Wsdik)ask’ (17)

seS k=1

if d, is the largest allocation distance among the sites in N°,

and constraints (14) can be replaced by

Nag< Y v seSjeN.k=2...C. (18)
k'=1 ieN
d,-j<d(‘k)

Therefore, this new family of ii-variables allows us to provide a
new formulation with a smaller number of variables and con-
straints. Moreover, the following result allows to strengthen this
new formulation.

Proposition 2.1. For s € S and j e N, let l;r e {1,...,G*} be such that
diny = dfls ) Considering formulation F2 with il variables (instead of
jr

u variables), the objective function (17) and replacing (14) by
I-1
Zusk, > yi. seS.jeN.r=2...G; (19)
k=1

ieN
d;; <d(15

results in a valid equivalent formulation F2’ with a smaller number of
constraints.

Proof:

We prove that constraint families (18) and (19) are equivalent.
Let §€8,j e N° and Fe {2,...,G;}. Consider the following subset
of constraints of family (18),

< Y Ve

ieN

d<d

M”

ke{ly+1,.... 15} (20)

E
I
—_

Observe that >~ y;=---= Yy, then since

ieN ieN
d.-<dS . d-<d® .
U@ 4 U
Jj.r=1 Jr
/r 1 157f71

Zu5~k/ <... < Zﬁgku
k'=1

-1
Jr
the family of constraints (20) is dominated by ) " iigo < Y y;.
k=1 ieN
doedf ,
=)
Jr

Therefore, the obtained formulation F2' is equivalent to F2
with less constraints. In fact, the number of constraints (18) is
> > &G and the number of constraints (19) is ) ) &7G;. I
JjeN seS jeN seS
is straightforward that for each pair, s € S, j e N°, G; <G since, at
least, the distances associated with location j must be among the
distances related to stratum s.

O

3. Formulation using covering variables

In this section we introduce three formulations making use
of stratum-covering and site-covering variables. The idea behind
these formulations is to take advantage of the information pro-
vided by considering the ordered sequence of possible assignment
distances. In particular, the variables defined for these formulations
determine whether the largest assignment distance associated with
a stratum s is at least the one in a certain position of the sorted
vector d® (stratum-covering variables) and whether the allocation
distance associated with a site i is at least the one in a certain po-
sition of the sorted vector d; (site-covering variables). In this sec-
tion we will see that the use of these variables associated with
sorted vectors allows to propose new efficient formulations.



216 M. Albareda-Sambola, LI Martinez-Merino and A.M. Rodriguez-Chia/Computers and Operations Research 108 (2019) 213-225

3.1. Formulation with stratum-covering variables

In this subsection we present a formulation based on the use
of y-variables described in the previous section and the following
family of variables:

1, if the largest allocation distance for the sites in
N¢ is at least d5

i (k)*
0, otherwise,
forsesS, k=2,...,G.

Observe that we have used the same strategy as in the former
section, so that for each s € S the number of u variables will be
equal to the number of different distances associated with s. The
use of this type of variables for the classical pCP was introduced
by Elloumi et al. (2004). Inspired in this idea, we provide the fol-
lowing formulation for the SpCP.

Uge =

GS
(F3) min ZWS Z(dfk) — gy Uk (21)
seS k=2
st. Y yi=p, (22)
ieN
ug=>1- > y. seSjeN.k=2,....G,
ieN
d,-]v<dfk>
(23)
yi € {0, 1}, ieN, (24)
ug € {0, 1}, seS k=2,....,G°. (25)

As it can be seen in (21), the objective function for this formulation
can be expressed using a telescopic sum. Constraint (22) ensures
that there are p open centers. Constraints (23) determine that if
there is not a center at a distance smaller than d5,, from a site

. (k)
jeNs, then ug = 1.

Proposition 3.1. Replacing (23) in F3 by the following families of
constraints

us,ljr > 1- Z Yi,

ieN
dij=<djir

seS, jeN,r=2,...,Gj, (26)

seS, k=3,....C, (27)
results in an equivalent formulation, F3-(23)+(26)+(27).

Uge < Us k-1,

Proof: i
Let (7,5) e Nx S such that Ejs =1 and 7 F+1€{2,...,Gy}.
Consider the following subset of constraints of family (23),

uge=1— > v, kel +1,... B (28)
ieN
d,-7<dfk)
Observe that Z Yi=-= Z y;, then using (27),
ieN ieN
d-<ds d.-<d .
U@+ U
-1 Jr

the family (28) is dominated by
g > 1~ > v

=
di; <d® .

J
L)

Remark 3.1. Formulation F3-(23)+(26)+(27) has a smaller number
of constraints than F3 if

Y. E@E-6p-G+2) =0

seS \ jeN

3.2. Formulation with site-covering variables

In this section we propose a new formulation for our problem
using the following set of variables, inspired in the ones defined
by Garcia et al. (2011) for the pCP:

1, if the allocation distance of
site i is at least dj(),
0, otherwise,

Zir = forieN, r=2,...,G.

Based in this set of variables and 6%-variables defined by (3), we
propose the following formulation for our problem:

(F4) min)_ w0°

seS
st. Y zp=n-p, (29)
ieN
Z (1-zp)>1-z,, jeNr=3,...,G; (30)
dijfgjm

QSEdj(r)er, seS,jeNS,r=2,...,Gj,

(31)
zi € {0,1}, jeNr=2,....G;,  (32)
6% >0, ses. (33)

Constraint (29) indicates that there are p centers. Constraints
(30) ensure that if zj, = O then, there is at least one center at i with
dij <dj, i.e., location j is served by a center at a distance smaller
than dj. Finally, constraints (31) ensure that 6° is the largest al-
location distance for sites in N°.

Proposition 3.2. Formulation F4 is still valid after relaxing the inte-
grality of variables z;, forieN,r=3,...,G;.

Proof:
Let (0,Z) be an optimal solution of F4 relaxing z;. for ieN, r =
3,...,G;. We distinguish between two cases.
If Z (1-2Z) =0 then Z, >1 due to constraints (30).
ieN
diig <digrg

Therefore, Z;,, = 1.

If Y (1-2Zp)>1, then constraints (30) reduce to z;,, > O.
ieN
di ig <digro
Since positive values of Z; ,  penalize the objective function due to
constraints (31), then Z;; = 0. O
Preliminary computational results show that this relaxation

does not improve computational times of formulation F4.

Proposition 3.3. Replacing constraints (31) in F4 by

G

J
6% > Z(dj(r) - dj(r,]))er, Se S,] e Ns, (34)
r=2

results in a valid formulation F4-(31)+(34) for the problem with less
constraints, that dominates F4.
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Proof:
Let s € S, j e N°. Note that, due to constraints (30) and con-
straints (34) it holds that z; <zj,_; for r € {3,..., G;} since,

Yo-zp)> Y (1-2zp),

ieN ieN
dij<djr dij<dji—1)
and z-variables penalize in the objective function through con-
straints (34). Hence, since z;, {0, 1} we have that

= max d ; Z;

na Z( i — dje-1))Zjr
and then the formulation F4-(31)+(34) is valid. Moreover, for the
relaxed problem we have that

Gj
Y (i —d
r=1

i.e.,, this formulation dominates F4. Besides, the number of con-
straints (31) is ZZS;Gj and the number of constraints (34) is
jeN se§

ZZSJS Then, formulation F4-(31)+(34) has a smaller number of

jeN seS

constraints than F4. O
We have also studied alternative formulations using a non-

cumulative version of the z-variables, i.e., defining

i—1))Zjr = ,max. d](r)zjr, VseS,jeN,

1, if the allocation distance
of site i is dj),
0, otherwise.

Zir = forieN, r=2,...,G.

Nevertheless, a preliminary computational analysis of these formu-
lations shows a worse performance with respect to F4.

3.3. Formulation with stratum- and site-covering variables

The last formulation that we propose combines two families
of covering variables, one associated with the distances from each
stratum s € S (u-variables) and another one with the allocation of
each site ie N (z-variables). The combination of both families of
variables is inspired in the formulation of Marin et al. (2009) for
the Discrete Ordered Median problem.

Foreachse S, ke {2,..., G%} and ie N we define
gl if r e {1,..., Gj} exists such that d;, = df,, and & =1,
ik 0, otherwise.
Then, the obtained formulation is
GS
(F5)  min Y > ws(d, —df_;))ug (35)
seS k=2
s.t. (29), (30),
Ug>zp.  SeSieN k=2....G:[>0,
(36)
Usp 1 > Uy, S€S,k=3,...,C, 37)
ug e€{0,1}, seS k=2,...,G, (38)
zy€{0,1}, ieNr=2,...,G;. (39)

Constraints (36) determine the largest allocation distance among
the sites in N°. Observe that constraints (37) are valid inequalities
for formulation F5. Indeed, if in a particular solution uy = b and
ug,_1 = a with b> g, then, a feasible solution with lower objective

value can be found by taking ug, = a. Constraints (37) are included
in the formulation from the beginning since they provided good
results in a preliminary computational study.

Note that constraints (36) can be equivalently written in the fol-
lowing way,

us,,isr = Zir SGS,iGNS,TZZ,...,Gi. (40)

Where [ is the index already defined in Proposition 2.1. To de-
rive another valid formulation from (F5), we include the following
notation,

I{S _ min{r . di(r) > dik)}, if d(k) di(G,-)
k=16 +1, otherwise.

Proposition 3.4. By replacing (36) in F5 by

U =7, SeSieN k=2,... .G I <G (41)
*Vik
a valid formulation, F5-(36)+(41), with a larger number of constraints

is obtained.

Proof:

First, formulation F5-(36)+(41) is valid, since (41) determine
the largest allocation distance among the sites where stratum s is
present.

Observe that family of constraints (36) is a subset of con-
straints (41) since l”f = lfk when d;) = d(k) for some r e {2,..., Gi}
and &7 = 1. Therefore F5-(36)+(41) dominates formulation F5. Con-
cretely, the number of constraints (41) is » ) "&°(G° —1). The

ieN se$§
number of constraints (36) is Y > &°(G;—1). As stated before
ieN se§
G; <G* for s e S,ie N°. Consequently, the number of constraints

(41) is larger than the number of constraints (36).
O

Proposition 3.5.

i) Constraints (36) can be replaced by their following aggregated

form:
> zj seS.k=

stS

#0

Ngllgy > (42)

where ng = |{i € N° and there exists re{2,..., G;} such that
digry = d?k)}|. This yields the new valid formulation, F5-(36)+(42).
Constraints (41) can be replaced by their aggregated form that can
be expressed as

sz, seS,k=2,...,G,

ii

-

ng usk (43 )

ieN$

I <G

Where ng = |NS|.
(36)+(43).

This yields the new valid formulation F5-

Proof:

i) Observe that, by (42), variables ug, take the value 1 if the
maximum distance among the sites in N° is at least d?k). In-
deed, if this allocation distance is at least dzk) then, by (30),
there exists a site je N° such that Zﬂ;k =1 and then, by (42),
Ug = 1.

Moreover, (42) are valid since ng, is the maximum value that
the right hand side of constraints (42) can take.

ii) By an argument analogous to the one discussed in i), we have
that formulation F5-(36)+(43) is valid for the SpCP.

O
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Besides, another aggregated version of constraints (36) is:

DU > <Z§f)zir ieNr=2..,G. (44)

sesif=1 seS
5>2

ir=

Some computational studies have been carried out with formula-
tion F5-(36)+(44). However, it provides worse running times that
formulations presented in Proposition 3.5.

Proposition 3.6. Formulation F5 and all its variants (F5-(36)+(40),
F5-(36)+(41), F5-(36)+(42), F5-(36)+(43), F5-(36)+(44)) remain valid
if integrality of variables z;, is relaxed for ieN, r=3,...,G;.

Proof:

Let (ii,Z) be an optimal solution of the model relaxing z;. for
ieN, r=3,...,G. If (iI,2) are all binary, we are done. Otherwise,
there is at least one 0 < Z;,; <1 with igeN, rg € {3,..., G;}. For
this variable, Constraint (30) reduces to z;,, > 0, since z;; are bi-
nary for ieN. Hence Z;,, value can be replaced by 0 without vi-
olating these constraints. Besides, constraints (36), (40), (41), (42),
(43) or (44) (depending on the variant of F5) are not violated if
Z;r, takes value 0 and the objective value is not worse. O

Computational results in Section 5 show that this relaxation im-
proves the times of formulation F5-(36)+(43).

Proposition 3.7. Formulations F5, F5-(36)+(40) and F5-(36)+(41), re-
main valid if we relax the integrality condition of ug, variables for
seS, k=2,...,G° and z;, variables forieN, re {3,...,G;}.

Proof:
Since z-variables take integer values as observed in
Proposition 3.6 and since ug, for seS, k=2,..., G* penalize

the objective function, it holds that ug, take integer values due to
constraints (36) (or equivalently, due to constraints (40) or (41)).
O

Preliminary computational results show that the relaxations in-
troduced in Proposition 3.7 do not improve the running times of
the corresponding models.

3.4. Reducing the number of covering variables

Observe that some of z-variables described in formulations of
Sections 3.2 and 3.3 could be fixed. Since p centers are located
in the SpCP, then the distance associated with a client i will not
be among the p — 1 worst possible ones. Then, the following con-
straints allow to fix some variables.

Let diyy < djpy < ... < dNiGi be the sorted distances of all possi-
ble assignments of site i (observe that this sequence of distances
can contain repeated values), then

Ziy = 0 VieNre {2, AN G,} such that di(r) > Ji(n—p+1)~ (45)

Consequently, for each ie N it is only necessary to define z;. for
r= 2, ey Gi such that di(r) < i(n7p+]).

Regarding u-variables appearing in formulations F3 and F5, ob-
serve that these are binary variables indicating for each stratum
s € S whether the largest distance associated with stratum s is at
least d?k) or not, where k=2,..., G*. The number of u-variables for
each stratum s € S is G° — 1, i.e, the number of different distances
from sites in N° to all candidate locations (excluding distance 0).
In this subsection, we analyze if the number of u-variables can be
reduced for each stratum.

In fact, the number of u-variables could be reduced if tighter
bounds on the largest allocation distance associated with each
stratum for the SpCP were known. The following proposition ex-
ploits this argument.

Proposition 3.8. For each stratum s € S, let v(pCPs) be the optimal
value of a p-center problem where the set of candidates centers is
N and the set of demand points is N°, from now on, denoted with
pCPs. Then, the largest allocation distance associated with s is at least
v(pCPs) in the optimal solution of the SpCP.

Proof:

Observe that the solution of the SpCP is feasible for the pCP.
Then, given a solution of SpCP, its objective value for pCPs will be
greater than or equal to v(pCPs). O

As a result, if a lower bound or the optimal value of pCP; is
obtained, then the number of u-variables associated with stratum
s can be reduced. To reduce the number of variables we can follow
the next scheme for each s € S:

e Obtain a lower bound on the pCP; or its optimal objective value.
This value can be denoted as LBs.

o Define ug, variables for all ke {h:2 <h < G and d?h) > LBs}.

» For each s € S, given that diks) is the largest distance associated
with stratum s such that dfks) < LBs, the considered objective
function will be:

c
2ows Do (di, + (dfy — dip))use)

seS k=ks+1
Observe that this is equivalent to fix ug, =1 for k < ks,s € S.

Several criteria can be used to obtain an adequate bound LBg
for each stratum. In particular, in the computational experiments
of this work we present two ways for obtaining these bounds. The
first one uses the linear relaxation of the pCPs using the classic
formulation of Daskin (1995). The second one consists in using the
binary algorithm proposed in Calik and Tansel (2013).

Observe that the argument described in constraints (45) for z-
variables could be also useful to fix some of the u-variables. In par-
ticular, the following variables can be fixed:

ug =0, (s,k) e K, (46)

where K is the set of pairs (s, k) € S x {2,..., G°} such that for ev-
ery iGNS, dik) > di(n—p+l)-

Summing up, u-variables can be reduced using the scheme de-
scribed before and constraints (46). In Section 5 we study the per-
centage of z- and u- variables fixed by applying the former criteria.

3.5. Valid inequalities for F5

Some constraints related to closest assignments could be ap-
plied for this problem. Some of the constraints appearing in
Espejo et al. (2012) have been adapted for formulation F5 (the
most promising formulation as we will see in Section 5). However,
the only valid inequality that presents good results is the one de-
scribed below:

Zir < Zj l,] eNr=2,...,G: di(r—]) = d,'j, (47)

These constraints could be considered as derived from the ones
proposed by Dobson and Karmarkar (1987). As observed, given i,
jeN these constraints restrict the distance associated with i to be
smaller than or equal to the distance dj; if a center is located at j.
In the following we introduce other valid inequalities that take
advantage of the relationship between two different strata.

G G2
> (G = i) it <Z<d?‘k>— df_1)Us,k S1.52 €S N S N
k=2 k=2

(48)

These constraints state that the largest allocation distance associ-
ated with stratum s; will be smaller than or equal to the one asso-
ciated with stratum s, if stratum s, is present in each site of N1,
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Similarly the next constraints follow:

Us k < Us,y1,S1,52 € S,

k=2,....G1=2,....G" 1 N" C N df) =d,

Constraints (49) hold since if the largest allocation distance asso-
ciated with s, is smaller than d;lz) and N1 € N%2, then the largest
allocation distance within s; cannot be greater than or equal to

(49)

dflz) = di}(). The accumulated version of these valid inequalities is:
G G2
D U <Y Uy 51,52 €S TN S N, (50)
k=2 k=2

Other valid inequalities are those ensuring that z variables are
sorted in non-increasing order for each ieN, i.e,,

Zi >Zir1, 1eNT=2,...,G—1. (51)

All these valid inequalities will be analyzed in Section 5.

4. Using SpPCP to implement a SAA for solving the PpCP

Recall from Martinez-Merino et al. (2017) that the Probabilistic
pCP (PpCP) is defined as the variant of the pCP where sites rep-
resent potential demand points, and the locations of the p centers
have to be decided before the actual subset of sites that need to
be served is revealed. In this problem, the goal is to minimize the
expected maximum distance between a site with demand and its
closest center. Here, expectation is computed with respect to the
probability distribution of the binary random vector defining the
subset of sites that have demand.

Notice that, in fact, when uncertainty is modeled by means of
a set of scenarios, the PpCP can be cast as a SpCP. In this case,
each stratum would represent the set of sites having demand at a
given scenario, and the stratum weight would correspond to the
associated scenario probability. This suggests exploiting the SpCP
formulations presented in this paper to solve the PpCP using the
well-known Sample Average Approximation method (SAA).

SAA is based on using Monte Carlo Sampling in the probabil-
ity space defined by the random variables involved in a problem
definition (see Homem-de-Mello and Bayraksan, 2014). Although
this idea was already used before for solving stochastic program-
ming problems (Robinson, 1996; Rubinstein and Shapiro, 1990),
the term SAA was formally defined in Kleywegt et al. (2002). We
next provide a sketch of this methodology; for more details, see
Shapiro (2013) or Linderoth et al. (2006).

Consider the two stage program (P) z* = minyex f(x) + Q(X),
where the recourse function is defined as Q(x) = ]EE[U(X,E)] and,
given a solution x and a realization of the random vector &, &g, the
so-called second stage problem is v(x, &) = minyeyx g,) GW; X, §o)-
Note that if & is a discrete random vector with a finite support,
2, and each scenario se€ 2 has a known probability p, then, by
replicating the variables of the second stage problem, (P) can be
equivalently expressed as:

(P)) z- = min f(x) + ) p’q(y*; x, £°) (52)
seQ2
st.xeX,

Y eY(x &%),

Accordingly, using a random sample QM c Q, with M = |QM|, P can
be approximated as

(P) 24 = min £ + 1 3 4071, €) (53)

seQM

se Q.

s.t.xeX,

Problem PM is often referred to as sample average approxima-
tion problem. It is well known that given M, the expected value
of this problem, E(zM), is a lower bound on z* and it converges
to z* as N increases. Moreover, under some mild conditions on X
and v, the random vector x™* representing the optimal solution to
PM becomes arbitrarily close to the set of optimal solutions to P
with probability 1. A common way to estimate E(zM) is to solve a
sequence of realizations of PM for a given sample size M, and use
the average of the corresponding optimal values as an estimate of
E(zM). The sequence is evaluated iteratively, and the termination
criterion is most often related with the convergence of this aver-
age. The best of the solutions obtained in that sequence of prob-
lems is kept as a good approximation of the optimal solution.

Compared to other heuristics, the main advantage that SAA
provides is the theoretical results that ensure the convergence of
the method. In the case of the PpCP, we propose a classical SAA
method in which the novelty is that the resulting problem in each
iteration is a SpCP. Consequently, we can exploit the characteristics
of the best formulations for the SpCP to enhance the performance
of the SAA method. The pseudocode given in Algorithm 1 de-
scribes the SAA for case of the PpCP.

In the next section we will show some computational results
of SAA using random samples of size M = 10. Besides, we will see
how the use of different formulations of SpCP can affect the per-
formance of the SAA.

5. Computational results

This section is devoted to the computational studies of the for-
mulations described along the paper for the SpCP. The instances
used in this computational experience are based on the p-median
instances from the ORLIB.!

For the smallest instances (n=6,...,75), the used matri-
ces are submatrices of instances pmed1, pmed2, pmed3, pmed4
and pmed5 from the ORLIB data. For instances with n=
100, 200, 300, 400, the matrices are those corresponding to in-
stances pmed1-pmed20. In all cases, several p values are consid-
ered ranging between p = 2 (for the smallest instances) to p = 60
(for the largest instances). Finally, in Table 7 all the ORLIB distance
matrices together with their corresponding p values are studied.

For each instance, a total of |S| = 10 strata are generated. Be-
sides, each stratum (s) is independently created. First, a number
q;€(0, 1) is associated with each ie N. Then a random number in
re[0, 1) is created. If r <g;, then §° = 1. Otherwise, &’ = 0.

The formulations are implemented in the commercial solver
Xpress 8.0 using the modeling language Mosel. All the runs are
carried out on the same computer with an Intel(R) Core(TM) i7-
4790K processor with 32 GB RAM. We remark that the cut gener-
ation of Xpress is disabled to compare the relative performance of
formulations cleanly.

First, we report a comparison of all proposed formulations in
Sections 2 and 3. In this study, we observe that the best results are
provided by a variant of formulation F5. After that, we analyze if
valid inequalities and the reduction of variables improve the com-
putational times. Finally, Sample Average Approximation for PpCP
is implemented using some of the SpCP formulations presented be-
fore.

5.1. Comparison of formulations
Before the comparison of the different formulations, we include

an example along with its data that illustrates a solution of the
SpCP for a specific instance.

! Electronically available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/.
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Algorithm 1: SAA for the PpCP.

/* K is a maximum number of iterations and, AV and
AVpeyw are the average of the objective value
solutions related to the last iterations

(conveniently initialized to 1 and 2, respectively).
*/
k:=1, Avjgy := 1, AVpew := 2, K := 500.
while k < K and |Avnew — AVjgge| > 0.0005 - Avy,g do
/* Step 1l:Generation of a random sample 2, € Q2. */
for K =1to k=M do

fori=1toi=ndo
Create a random number r € [0, 1). Let g; be the
probability of client i to have demand.
if r < g; then
| & =1,
end
else
‘ gK = 0.
end
S (KL EN 8D
end
end
Qk = {s!, ... M},
/* Step 2: Solving of the sample average
approximation problem. */
Solve the SpCP where S = Q¥ and w, = §; for
k' =1,...,M. Use one of the formulations in sections 2 or
3. Denote by val the optimal objective value of this
problem.
/* Step 3: Evaluation of the solution. x/

/* AvVjgy and AUpew allow to compare the average of
objective values after a number of iteratiomns: */
Avy,s := Average of the optimal objective values in the
last k — 1 iterations.
Avpey := Average of the optimal objective values in the
last k iterations.
Fix the solution of the SpCP in the objective function of
the PpCP obtaining an upper bound for the PpCP. (UB)
if k =1 then
‘ UBpest :=UB
end
else
if UB < UBy,; then
| UBpes :=UB.
end
end
end

Example 5.1. Let N be a set of sites with |[N| = 10 in which the
distances between each pair of sites are given by the next distance
matrix:

0 77 139 135 157 174 193 204 206 209
77 0 62 107 129 146 161 150 146 149
139 62 0 90 112 129 117 106 102 105
135 107 90 0 22 39 58 69 73 76
157 129 112 22 0 17 36 47 51 54
174 146 129 39 17 0 19 30 34 37
193 161 117 58 36 19 0 1M 15 18
204 150 106 69 47 30 11 0 4 7
206 146 102 73 51 34 15 4 0 3
209 149 105 76 54 37 18 7 3 0

Table 1
Strata data for Example 5.1.
Sites Weight Sites Weight
st {1,2,3,6,79}  wy: 0.05 s {2,3,6,8,10} We: 0.05
st {68} wy: 01 s;: {34568910} w;: 005
s3: {69} wsz: 0.1 Sg: {2,5,7} wg: 0.05
S4: (6,7} Wyt 0.1 Sg {5,7,8,10} Wy 0.1
S5t {2,5,10} Ws: 0.3 S10: {2,6,7,8} Wro: 0.1
Table 2

Largest distance associated with each stratum for the optimal solution (first row)
and another feasible solution (second row) in Example 5.1.

Solution\ stratum  §; ) S3 Sa S5 S S7 Sg Sq S10
{2,5,10} 77 17 17 18 0 62 62 18 18 18
{1,2,6} 62 30 34 19 37 62 62 19 37 30

Besides, the demand is divided into ten strata. Each stratum is
present in a subset of sites as shown in Table 1. This table also
includes the weight associated with each stratum.

The solution for this example is to open the facilities at sites 2,
5 and 10 with an objective value of 19.75. Consequently, demand
points 1, 2 and 3 will be served by the center in 2, points 4, 5 and
6 will be covered by the facility in 5 and the remaining sites will
be served by facility opened in 10. The largest distances associated
with each stratum will be the ones given in the first row of Table 2.

Observe that this solution for the Stratified p-center problem
is not an optimal solution for the p-center problem. Particularly,
the optimal solution for the p-center is the location of centers in
sites 1, 2 and 6. The second row of Table 2 shows the largest dis-
tance associated with each stratum when using the optimal solu-
tion of the p-center problem. Note that the maximum distances in
the strata with larger weights (s,, S3, S4, S5, Sg and sqg) are reduced
if the Stratified p-center solution is used. We can conclude that
SpCP is worth it in order to obtain a better average performance
among the strata.

Table 3 reports the results of the SpCP formulations proposed in
Sections 2 and 3. As can be observed, some formulations include
several variants replacing some of the constraints by others. With
these new constraints, the aim is to improve the running times
of some of these formulations. Table 3 reports two columns for
each formulation. The first one shows the average running time for
solving the model and the second column reports the average LP

. . OPT — LP
gap (in percentage, %). The LP gap is calculated as ———— - 100,

where OPT is the optimal objective value and LP is the objective
value of its linear relaxation. Observe that OPT is known for all the
instances used in Table 3 since F5-(36)+(43)* model allows to solve
them in less than two hours.

Note that each entry corresponds to the average over five in-
stances of the same size and that the reported average running
time is the average among the instances that are solved in less
than two hours. The number of unsolved instances after two hours
is reported in parentheses. In the LP gap column, the average fi-
nal gaps for those instances that were not solved in two hours is

shown in parentheses. This final gap is obtained as UBpey LBy .
best

100 where UBy, is the objective value of the best feasible solution
obtained in two hours and LBy, is the best lower bound obtained
in two hours. Besides, observe that formulation F5-(36)+(43)* cor-
responds to formulation F5 replacing constraints (36) by con-
straints (43) relaxing variables z; for ieN, r e {3,...,G;}.

In terms of running times, observe that for n = 100 some of the
instances cannot be solved in less than two hours if formulations
F1, F2 or F3 are used. However, the reported results of F2’ and F3-
(23)+(26)+(27) are much better than those corresponding to F2 or



Table 3

Formulations times and LP gap comparison.

F1 F2 F2’ F3 F3-(23)+(26)+(27) F4 F5 F5-(36)+(41) F5-(36)+(42) [ F5-(36)+(43) |F5-(36)+(43)*
n p |Time LP Gap Time LP Gap Time LP Gap | Time LP Gap Time LP Gap |[Time LP Gap|Time LP Gap|Time LP Gap|Time LP Gap|Time LP Gap|Time LP Gap
6 2 |0.00 20.96 0.02 1112 0.01 1112 | 0.02 1112 0.02 1112 0.01 3377 |0.02 1112 |0.02 1112 | 0.01 2420 |0.01 5073 [0.01 50.73
10 3 |0.02 28.50 0.16 19.20 0.05 19.20 |0.19 19.20 0.08 19.20 0.03 40.80 [0.08 19.20 |0.16 1920 [0.09 26.82 |0.05 5892 |0.06 58.92
10 5 |0.01 44.34 0.13 28.72 0.04 28.72 |0.15 28.72 0.05 28.72 0.03 52.08 |0.05 2872 [0.09 2872 [0.05 4340 |0.05 74.60 |0.05 74.60
13 3 |0.06 30.20 0.89 17.60 0.18 17.60 |0.61 17.60 0.23 17.60 0.09 4782 |023 1760 |0.56 1760 [0.26 2986 |012 5812 |011 5812
13 5 |0.04 40.94 0.55 22.38 0.10 2238 |0.37 22.38 0.12 22.38 0.07 49.22 | 012 2238 |0.21 2238 |0.13 3513 |0.09 6530 [0.09 6530
13 8 |0.03 48.74 0.28 2411 0.05 2411 | 019 2411 0.07 2411 0.05 5134 |0.06 2411 |[0.11 2411 | 006 39.06 |0.05 7882 |0.05 7882
15 3 |0.10 30.14 1.39 16.08 0.31 16.08 | 1.40 16.08 0.47 16.08 0.14 4861 |038 16.08 |0.75 16.08 |[040 2760 |017 5642 |018 56.42
15 7 |0.06 53.11 0.93 3247 0.15 3247 [0.68 3247 0.21 3247 0.09 58.53 |0.16 3247 |0.35 3247 |0.18 4218 (014 7530 [0.14 7530
15 10|0.04 46.31 0.47 19.74 0.06 19.74 |0.29 19.74 0.08 19.74 0.07 49.00 (0.06 19.74 |0.14 19.74 [0.05 3890 |0.07 8332 |0.06 83.32
20 3 |0.25 33.59 6.92 18.87 0.94 18.87 |5.12 18.87 1.27 18.87 0.31 51.65 |0.85 18.87 |[243 18.87 |[1.32 28.76 |0.47 5420 [051 54.20
20 7 |0.21 44.51 335 21.66 0.43 2166 |1.80 21.66 0.56  21.66 0.25 5290 |038 2166 [094 2166 [0.56 3266 |029 6811 |031 6811
20 10|0.14 52.88 243 2743 0.32 2743 |1.88 2743 0.43 2743 0.20 5824 |028 2743 [0.56 2743 [037 40.04 (029 7768 |0.29 7768
25 3 |0.54 29.89 17.66 15.68 1.88 15.68 | 11.86 15.68 2.19 15.68 0.57 50.16 |1.23 15.68 |4.06 1568 [234 2684 |102 5037 |113 50.37
25 7 |0.56 43.51 15.33 22.04 1.36 22.04 |11.27 22.04 1.84 22.04 052 5350 [095 22.04 |3.10 22.04 | 155 3293 |065 6356 [0.73 63.56
25 10|0.53 55.26 12.37 30.77 149 30.77 |13.65 30.77 1.76 30.77 046 6148 |113 3077 |258 3077 139 4334 |0.80 7492 |0.79 74.92
30 3 |1.03 2794 47.60 13.29 3.93 1329 |36.80 13.29 4.89 13.29 1.04 48.61 |215 1329 |6.94 1329 (394 2805 |166 5220 |155 52.20
30 7 |117 39.24 25.19 18.52 237 18.52 | 27.59 18.52 2.80 18.52 083 5150 |1.70 18.52 |5.24 1852 [2.28 3545 |097 63.02 095 63.02
30 10| 114 50.88 3423 26.21 3.05 26.21 |42.51 26.21 393 26.21 095 5881 |167 2621 |5.11 2621 |235 4275 |114 7099 |[124 7099
40 3 |312 26.89 148.29 12.97 13.13 1297 |152.82 12.97 7.88 12.97 313 4855 |4.85 1297 |1146 1297 |7.69 3165 |3.25 5145 |275 5145
40 7 | 741 37.54 146.75 16.74 1145 16.74 | 132.06 16.74 1242 16.74 2.83 51.51 |4.65 1674 [2034 1674 |[8.56 3490 |2.62 5841 |277 5841
40 10|5.85 44.38 123.78 2111 14.14 2111 179.14 211 1145 2111 291 55.03 |4.09 2111 1793 2111 | 7.09 3762 |228 6549 |254 6549
50 5 [11.72 30.44 314.63 12.63 3832 12.63 |385.67 12.63 1999 12.63 9.10 49.44 |7.86 12.63 |34.72 1263 |1552 3865 [546 5426 |[550 54.26
50 10 |45.50 42.04 565.37 20.25 60.62  20.25 |[1357.87 20.25 4347 2025 1839 5450 |1296 2025 [70.69 2025 [17.71 4319 |779 6229 |594 62.29
50 155711 4735 294.64 20.88 3218 20.88 |615.38 20.88 4199 20.88 9.50 5707 |1091 20.88 [36.25 20.88 |[1587 4426 |6.54 69.01 |880 69.01
75 5 |11047 28.03 1779.03 11.50 292.01 1150 |1304.42(1) 11.50 (1.3) |131.39 1150 165.08 48.94 [47.01 1150 |442.62 1150 |5217 48.03 |24.48 5479 |18.73 54.79
75 10|927.58 36.27 2518.22 13.98 416.00 13.98 |3519.38(2) 13.98 (9.5) |173.89 13.98 239.72 5155 |100.70 13.98 |239.59 1398 |66.51 50.36 |[26.83 59.35 [19.97 59.35
75 15(1973.03 41.65 1931.90 16.57 380.97 16.57 |3567.20(2) 16.57 (8.8) |231.85 16.57 101.01 53.75 |59.88 16.57 |[20143 16.57 |[73.25 5431 |2821 6443 |23.56 64.43
100 10 |5981.32(4) 26.05 (2.7)|3443.88(1) 12.15(7.8) [1090.56 12.15 |(5) 12.15 (10.7) | 476.64 12.15 457.77 50.15 |[164.32 1215 |605.83 1215 |186.07 56.74 |63.53 59.06 |64.09 59.06
100 15| (5) 3741 (5.4) | 2260.86(2) 13.17 (9.2) [1611.93 13.17 |3277.27(4) 13.17 (13.1) | 476.51 13.17 958.80 52.14 |142.57 13.17 |435.76 13.17 |271.07 5795 |77.88 6187 |64.12 6187
100 25|5098.56(4) 49.16 (14) | 4780.63(2) 19.07 (14.7)| 1212.76 19.07 |2887.83(4) 19.07 (13.3)|968.22 19.07 544.08 58.96 |133.52 19.07 |[674.77 19.07 |[336.73 61.62 |78.34 69.13 |64.62 69.13
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Table 4
Percentage of z- and u-variables reduced with respect to the
original ones.
%z %u

n p (45) (46)+clas. Rel ~ (46)+Binary alg.

75 5 6.35 29.47 4311

75 10 | 13.61 23.58 36.63

75 15 | 2021 | 21.75 32.79

100 10 | 10.74 | 25.44 37.32

100 15 | 1613 23.75 34.84

100 25 | 26.01 | 22.55 31.68

200 10 | 9.26 30.23 40.72

200 20 | 16.93 | 25.66 35.33

200 30 | 22.88 | 24.82 33.96

F3. Note that times of F4 are similar in many of the cases to those
required by F3-(23)+(26)+(27) and all the instances can be solved
in less than two hours.

Observe also that F5 seems to provide better results than F4.
Furthermore, it is clear that the best formulation is F5 replacing
constraints (36) by constraints (43) and relaxing the integrality of
variables z;. forieN, r € {3, ..., G;}. By using this variant of formu-
lation F5, the results show that running times are (in average) not
bigger than 65 seconds in any of the cases.

In contrast, the LP gaps of F2, F2’, F3, F3-(23)+(26)+(27), F5
and F5-(36)+(41), which always coincide, are the smallest ones.
Although F5-(36)+(43)* is the formulation that provides the best
computational times, the reported LP gaps are the largest ones if
we compare them with the remaining formulations.

Since F5-(36)+(43)* is the best formulation in terms of times,
next subsection is devoted to the computational study of this for-
mulation reducing the number of variables and using valid in-
equalities.

5.2. Reduction of variables and valid inequalities for F5-(36)+(43)*

In this subsection we observe the results of using a preprocess-
ing phase to reduce the number of variables in formulation F5-
(36)+(43)* and we will also report the results when applying valid
inequalities.

In Section 3.4 a preprocessing phase to reduce the number of
z- and u-variables is described. Concretely, constraints (45) allow
to reduce the number of defined z-variables. Similarly, constraints
(46) decrease the number of u-variables. Besides, a reduction of
u-variables based on obtaining an adequate lower bound of the p-
center objective value considering each stratum independently is
described.

In particular, we mention two ways to obtain these lower
bounds. The first one is to solve the linear relaxation for the
pCP using the classic formulation of Daskin (1995). The second
way consists in using the binary algorithm proposed in Calik and
Tansel (2013). Table 4 reports the percentage of fixed z- and u-
variables in formulation F5-(36)+(43)* when the former criteria for
fixing variables are applied. The first column corresponds to the
percentage of reduced z-variables if constraints (45) are applied.
The second column reports the percentage of fixed u—variables
when using constraints (46) together with the reduction strat-
egy based on the solving of Daskin (1995) relaxed formulation
for each stratum. Finally the last column reports the percent-
age of reduction when (46) and Binary Algorithm specified in
Calik and Tansel (2013) for each stratum are applied. Observe that
between 6.35% and 26.01% of the z-variables could be fixed. In the
case of u-variables the largest number of fixed u-variables (bold-
faced) is obtained when applying the Binary Algorithm. With this
strategy and (46), more than a 31% of u-variables are fixed in
average.

Table 5 reports the computational times and LP gaps for n e {75,
100, 200} if the former preprocessing phase for fixing variables are
used in order to reduce the number of variables. The first block of
columns corresponds to the formulation without any preprocessing
phase and the second one corresponds to the formulation relaxing
zy for ieN, r=3,..., G;. After these two blocks, different options
for the preprocessing are studied. In those cases, a first column
indicating the preprocessing time is included in each block.

Columns in block “classic rel.” report the results if a prepro-
cessing using (45) and (46) based on the relaxed formulation from
Daskin (1995) is used. “Binary” shows the results if Binary algo-
rithm proposed in Calik and Tansel (2013) is used to obtain a lower
bound on the p-center for each stratum and the criteria given by
(45) and (46) are applied. In columns under heading “Binary*”, the
same preprocessing is used but, in this case, z;. variables are re-
laxed for ieN, r=3,...,G;. The largest differences in CPU time
among the variants can be observed in instances with n = 200.
In this case, the best results regarding CPU time are the ones re-
ported in column “Binary*'. It is worth noting that the preprocess-
ing times represent only a small fraction of the overall solution
time in all the instances reported in this table. Observe also that
the LP gaps are considerably reduced if binary algorithm together
with (45) and (46) is used.

Table 6 reports the average times required to solve the same
instances with formulation F5-(36)+(43)* using Binary Algorithm,
(45) and (46) to reduce the number of variables and adding some
of the constraints explained in Section 3.5. Regarding the reported
results in Table 6, the time performance is significantly improved
in some cases if constraints (40) are included as valid inequalities
for the formulation. The remaining valid inequalities appearing in
this table, except maybe for (47), do not worsen the times in gen-
eral, but they neither provide a significant improvement.

Finally, Table 7 reports the time results using ORLIB data with
the same p values as in the original instances and using random
strata. For solving these instances, formulation F5-(36)+(43)* was
used with Binary Algorithm and adding (45) and (46) to reduce the
number of variables. The results shows that only two instances re-
main unsolved after two hours using the model with the proposed
preprocessing phase (underlined cpu time). In this table, we give
separately the time to solve the formulation, under heading t,,
the preprocessing time, under tprep and the overall time, tyy. Ad-
ditionally, we provide the number of nodes explored in the branch
and bound tree. The LP gap is also provided and, in the cases in

which the model is not solved in two hours, the LP gap is calcu-

UBpese — LP

lated as - 100, where UBy,, is the best objective value

obtained in tvegSthours. In these instances (pmed23 and pmed40),
the final gap after two hours is shown inside the parentheses in
the LP Gap column. Finally, column ‘Obj. Val." shows the optimal
objective value for each instance except for pmed23 and pmed40
where the best obtained solutions for the unsolved instances in
two hours are reported.

In this table we observe that varying p has a strong effect
on the CPU times, both, in the preprocessing phase and when
solving the final formulation. Moreover, the effect is different in
both cases, yielding curious situations, where the preprocessing
time can be larger than the actual solution time. We can also ob-
serve that the most demanding instances tend to be those with
p =~ 10% - n. This behavior can be better appreciated in Fig. 1.

5.3. SAA for PpCP
In this subsection, the time and gap results of SAA for the PpCP

are analyzed. Table 8 shows the results of SAA in comparison with
PpCP formulation presented in Martinez-Merino et al. (2017).
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Table 5
Times and LP gaps reducing the number of z- and u-variables in formulation F5-(36)+(43).
F5-(36)+(43) F5-(36)+(43)* Classic rel Binary Binary*
n p Time LP Gap | Time LP Gap t prepro t total LP Gap | tprepro t total LP Gap | tprepro t total LP Gap
75 5 24.48 54.79 18.73 54.79 153 19.53 33.56 0.52 12.50 8.55 0.51 7.95 8.55
75 10 | 26.83 59.35 19.97 59.35 1.09 16.60 4145 0.49 13.56 10.82 0.49 11.04 10.82
75 15 | 2821 64.43 23.56 64.43 0.93 18.85 48.96 0.49 12.87 18.42 0.46 10.95 18.42
100 10 | 63.53 59.06 64.09 59.06 2.54 56.19 39.43 1.08 4219 10.94 114 2922 1094
100 15 | 77.88 61.87 64.12 61.87 2.06 63.73 44.93 0.93 37.41 15.45 0.95 3026 1545
100 25 78.34 69.13 64.62 69.13 1.63 43.27 56.49 0.91 31.84 23.35 0.91 28.95 23.35
200 10 | 440(1) 56.86 1248.75  56.86 26.75 739.05  33.83 9.28 368.87 8.95 9.19 27596 895
200 20 | 44019 5897 43689 5897 19.01 26761  39.59 9.58 11836  11.04 9.60 8242  11.04
200 30 | 34971 6275 503.01 62.75 13.78 199.57  46.25 7.80 11197 15.28 7.84 8968 1528
Table 6
Times of F5-(36)+(43)* using binary algorithm to reduce the number of u-variables and dif-
ferent valid inequalities.
n p Binary* (47) (48) (49) (50) (51) (40)
75 5 7.95 12.61 8.02 8.02 7.95 11.95 6.03
75 10 11.04 13.95 11.08 1111 11.02 16.25 15.90
75 15 1095 12.96 11.09 11.08 11.01 14.24 9.44
100 10 2922 37.42 29.21 29.13 29.27 43.85 2417
100 15 3026 4575 30.29 30.28 30.22 46.58 28.28
100 25 2895 37.38 28.82 28.73 28.76 4435 36.95
200 10 275.96 539.47 275.58 275.37 276.19 289.21 162.02
200 20 8242 161.46 82.49 82.69 82.66 92.31 93.18
200 30 89.68 176.37 90.28 90.04 90.00 12044 16450
300 15 50979 129854 51282  513.38 510.10 52333 271.05
300 30 31513 591.42 31861 31623 31646 37264 22818
300 45 53569  813.88 538.52 53347  532.62 44223 610.77
400 20 101728 330529  1011.01 101290 101440 72230  450.12
400 40 66316 186328 66645  660.53  663.98  805.02  954.81
400 60 47514 124622 47436 47505 47423 73584  816.77
209 even if for the smallest instances they seem to be worse, they be-
come much better for n> 30. Considering the gaps we see that in
none of the cases, the gaps are bigger than 0.64%. Moreover, both
201 versions of the SAA found the optimal solution for at least half of
the instances. As explained in Section 4, we can find theoretical
o | results that guarantee the goodness of the obtained solution when
using the SAA.
a Table 9 reports the average results of the instances with (n,
100 | p)e{(75, 10), (100, 10), (100, 15), (100, 25)}. First column reports
. > the necessary time for solving the PpCP using the probability chain
formulation, observe that none of the instances were solved in
s 4 / 24 hours. “Gapgs” column reports the gap between the best solu-
. tion obtained by SAA method and the best solution of PpCP within
° - the time limit. Finally, SAA time is reported. Observe that in all
0 . = : - : . unsolved instances after 24 hours “Gapgs” column reports negative
0 200 400 600 800 1000

n

Fig. 1. CPU times (circle size) as a function of n and p.

The first column corresponds to the running time of the
probability chain PpCP formulation described in Martinez-
Merino et al. (2017) where we have established a time limit
of 24 hours. “F1 SAA” shows the results of SAA if formulation F1
of the SpCP is used. “Binary* SAA” resports again the results of
SAA but using formulation F5 with constraints (36) replaced by
(43), using Binary Algorithm as a preprocessing phase and relaxing
z;, variables for ie N and r € {3, ..., G;}. For each block of columns,
the gap column reports the gap (in percetage, %) between the
best obtained solution in the SAA heuristic and the PpCP objective
value. In addition, the time column reports the running time of
the procedures.

Regarding the running times of SAA, we observe a significant
difference between SAA when using formulation F1 and the re-
maining SAA columns that use formulation F5. As observed, times
in “Binary* SAA” grow much slower than when using F1 so that,

gaps. This is due to the fact that the best solution given by SAA is
better than the best solution provided by PpCP formulation after
24 hours.

6. Conclusions

This paper presents an extension of the p-center problem called
the Stratified p-Center Problem (SpCP). This extension could be ap-
plied in cases where the population is divided into different strata
and the evaluation of the service must be separately measured for
each stratum. In the model, it is assumed that more than one stra-
tum can be present at each demand point.

Different formulations were introduced together with a detailed
study of variants, variable reduction processes and valid inequal-
ities. Regarding the computational results, the best performance
was obtained using a formulation based on covering variables.

The SpCP allows to implement a heuristic approach based
on the Sample Average Approximation (SAA) method to obtain
good feasible solutions for the probabilistic p-center problem.



Table 7
Results for ORLIB data.
n p solving prepro  Total LP Gap  # Nodes  Obj. Val. n p solving prepro Total LP Gap # Nodes  Obj. Val.

pmed1 100 5 46.00 112 47.66 8.75 8041 116.8 pmed21 500 5 120.12 334.01 466.05 4.86 1387 38.9
pmed2 100 10 26.08 114 28.13 9.91 4783 95.3 pmed22 500 10 253.44 307.79 597.42 7.78 1713 36.9
pmed3 100 10 11.51 1.09 12.98 8.05 1271 92.2 pmed23 500 50 720019  229.07 744745 18.36(3.9) 29,644 216
pmed4 100 20 28.27 0.92 29.48 18.50 9463 72.6 pmed24 500 100 | 1068.26  320.28 1392.83 22.16 18,441 15
pmed5 100 33 18.61 0.72 19.52 37.80 5843 40.6 pmed25 500 167 1591.44 199.79 1793.49 40.16 81,497 10.6
pmed6 200 5 75.99 10.02 92.17 6.95 2621 80.5 pmed26 600 5 259.63 677.29 959.90 4.58 1331 36.9
pmed7 200 10 89.48 8.24 99.64 8.59 4737 60.6 pmed27 600 10 42728 593.22 1056.32 8.91 2315 311
pmed8 200 20 279.66 8.63 290.36 13.40 10,471 524 pmed28 600 60 1784.88  572.43 2371.33 13.53 6377 17.3
pmed9 200 40 48.49 8.75 57.95 17.09 4737 345 pmed29 600 120 | 487.86 425.46 918.56 22.71 10,189 12
pmedl0 200 67 47.67 6.26 54.21 33.24 10,931 18.3 pmed30 600 200 | 188.01 505.15 696.21 32.72 5877 9
pmed11 300 5 30.98 44.26 78.77 5.05 353 54.6 pmed31 700 5 132.35 1318.46 1470.65 2.73 393 29.2
pmed12 300 10 57.64 41.64 105.20 6.77 1215 50.9 pmed32 700 10 425054  788.62 5104.98 7.09 19,239 28
pmed13 300 30 786.58 33.21 829.07 17.75 13,347 35.1 pmed33 700 70 2666.15 1024.91 3729.87 13.66 7367 14.9
pmed14 300 60 338.51 38.84 380.14 19.62 9919 234 pmed34 700 140 | 305.98 752.26 1067.68 16.55 3559 10.3
pmed15 300 100 | 60.15 40.86 101.79 27.72 6159 16.1 pmed35 800 5 180.27 1429.91 1647.11 418 935 28.5
pmed16 400 5 47.96 114.38 165.70 3.88 599 45.9 pmed36 800 10 2376.87  1837.73 4283.38 6.03 4411 26.4
pmed17 400 10 184.14 11538  309.41 6.19 2399 38.5 pmed37 800 80 5553.53  1353.61 6987.60 14.52 9285 14.7
pmed18 400 40 384.20 86.96 480.31 9.80 4275 26.7 pmed38 900 5 207.01 284410  3109.63 5.43 289 275
pmed19 400 80 335426  119.21 347632 2185 64,273 174 pmed39 900 10 2993.05 2981.84  6021.92 7.82 6587 229
pmed20 400 133 | 137.76 93.43 232.63 39.05 10,437 12.7 pmed40 900 90 720528 378023  11033.40 13.07(3.9) 10,222 12.7

(44
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Table 8
SAA results.
PpCP F1 SAA Binary* SAA
n p Time Gap Time Gap Time
6 2 0.01 0.00 0.10 0.00 045
10 3 0.03 0.00 054 0.00 0.87
10 5 0.03 0.00 049 0.03 1.49
13 3 0.07 0.00 091 000 153
13 5 0.07 0.00 110 024 221
13 8 0.05 000 132 000 220
15 3 0.10 0.00 177 0.00 188
15 7 013 000 173 0.10 3.56
15 10 | 0.07 000 1.84 056  2.65
20 3 0.32 0.00 3.40 0.00 418
20 7 0.63 0.64 3.67 0.00 849
20 10 | 049 0.10 4.28 0.14 5.62
25 3 0.84 000 6.73 000 742
25 7 348 0.05 8.96 023  9.50
25 10 | 513 0.02 948 0.01 14.34
30 3 2.01 0.00 13.90 000 11.27
30 7 13.61 0.14 12.78 0.15 9.40
30 10 | 22.99 0.00 16.24 0.00 16.54
40 3 8.28 0.00  40.90 000 19.94
40 7 148.22 0.01 98.39 020 1945
40 10 | 295.52 0.01 96.68 0.01 19.52
50 5 24317 0.03  162.76 0.00 44.68
50 10 | 4083.75 0.01 462.26 0.12 67.74
50 15 | 2178253 | 0.21 794.07 0.01 71.63
75 5 4108.22 0.03 1386.77 | 0.03  150.28
Table 9
SAA results for larger instances.

n p PpCP Time  Gapgs SAA Time

75 10 > 86400 -2.55 200.57

75 15 > 86400 —5.67 258.32

100 10 > 86400 -1025 49173

100 15 > 86400 -15.31 449.02

100 25 > 86400 -2040  850.55

This heuristic approach provides good upper bounds in acceptable
times.
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