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Abstract

We consider a generalization of the classical facility location problem, where we require the
solution to befault-tolerant In this generalization, every demand pojhimust be served by;
facilities instead of just one. The facilities other than the closest one are “backup” facilities for that
demand, and any such facility will be used only if all closer facilities (or the links to them) fail. Hence,
for any demand point, we can assign nonincreasing weights to the routing costs to farther facilities.
The cost of assignment for demayds the weighted linear combination of the assignment costs to
itsr; closest open facilities. We wish to minimize the sum of the cost of opening the facilities and the
assignment cost of each demahd/Me obtain a factor 4 approximation to this problem through the
application of various rounding techniques to the linear relaxation of an integer program formulation.
We further improve the approximation ratio tdl8 using randomization and to4A using greedy
local-search type techniques.
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1. Introduction

The facility location problem has been used as a model in network design and
location theory: placement of routers or caches [11,21], plants or warehouses [1,17,26],
agglomeration of traffic or data [2,12], among others (refer to [9] for a more exhaustive
list). The problem, given a set of demand and facility locations, tries to minimize the sum
of the cost of building facilities at a subset of facility locations and the cost of assigning
every demand to a built facility. It models the tradeoff of developing resources (facilities)
and the utility (reduction in assignment cost) accruing from such. In several applications,
caching on a network, for example, fault tolerance is also a facet. The placement of caches
should be resistant to failures of nodes and links. The facility location problem does not
provide any guarantee about the second closest facility to any node. In a fault-tolerant
situation, the cost of a location that requires a “backup” would be a combination of the
costs of assigning a demand location to the two facilities. A natural choice could be a
weighted linear combination.

In this paper we consider the problem of fault-tolerant facility location in which every
locationj specifies to be assignedtpfacilities. The cost of assignment of this location is
a weighted combination of thesg assignments. Recently Jain and Vazirani [15] provided
a primal dual approximation whose approximation ratio is logarithmic in the largest
requirement;. In their algorithm, even for all requirements being 1, the approximation
is at least 3. In contrast the fault-tolerant variant of kheenter problem, which is closely
related to the facility location problem, has constant factor approximation algorithms [6,
18,20,25]. We resolve this issue by providing a constant factor approximation for the
fault-tolerant facility location problem. Our result improves on [15] even if the maximum
requirementis 1.

Our algorithm is based on rounding the relaxation of an integer linear program. We use
filtering in a fashion similar to [22,26], however we combine it with scaling and uncrossing
steps. These steps allow us to ensure that while we are considering a filtered neighborhood,
if a demand point is assigned, we will round in such a way that the entire assignment can
be rearranged to maintain feasibility.

Finally, we demonstrate another facet in which fault tolerance does not impact
approximability of facility location. This is the idea of local improvement heuristics. We
use greedy local improvement similar to [10] to construct a solution of integrality gap
2.408. The core of the similarity is that once a set of facilities are fixed, the assignment costs
are also determined. However, the similarity does not seem to extend to allow us to delete
facilities as in the combinatorial facility location algorithms in [4,19]. Very recently [27]
obtain stronger results adapting other paradigms of approximating uncapacitated facility
location to the fault-tolerant case.

2. Problem statement
In the fault-tolerant facility location problem, we are given a finite meffie= (V, E)

with a distance function, a set of possible facility locations C V, and a set of demand
points D € V. The subscripts, j will be used to denote facilities and demand points
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respectively throughout this paper. The cost of opening a facility at locai®f;. Every
demandj must be connected tg open facilities.
For demandj, let the weights corresponding to assignifngo the r; facilities be

wg.l) >w? > > w’. Naturally this would ensure that the open facilities to whjdk
connected to, would be ordered according to the (increasing) distance fiohe goal is
to optimize the sum of the cost of open facilities and the weighted sum of the routing costs
of each demand to the closest open facilities. We assumitedemands. The algorithm
remains exactly the same for general demands, since the demands can be incorporated in
the weightsw ™.

This problem can be formulated as an integer program. Hedenotes whether facility
i is open, andcl.(f) denotes that demandis assigned to facility and facilityi is therth
closest open facility tg. The distance betweerand; is c;;.

Minimize YY" cijw”x D+ fiyi,
i j r i

in(;)El vj,r,

i

YoxD <y Vi,
.
vi<1l Vi,
x . yie(0.1) Vi j.r

The relaxation will involve relaxing the last constraints t&(}g), yi < 1. The upper
bound is only relevant foy; and ensures that more than one facility is not built at a location.
Define C* to be the optimal fractional assignment cost afitl to be the optimal

fractional facility cost. That is

S e =c" and Eivi=
i j o i

where (x, y) denotes the optimal fractional solution of the above linear programming
relaxation.

2.1. Previous results

Classical facility location is MAX-SNP hard [10], and several constant factor approx-
imations [4,16,26] are known. Since the problem we study is a generalization of this
problem, the hardness results carry over. Many variants of the facility location problem
have been studied. The more well known ones include capacitated facility location [16,
26], multi-level facility location [1,11]k-center [13], and-median [4,5,16,22]. All these
problems have constant factor approximation algorithms.

Jain and Vazirani [15] defined the fault-tolerant facility location problem. They assign
equal weights to all the facilities a demand is connected to. They preggfibgmax; r;)
primal-dual approximation algorithm for this problem. Constant factor approximation
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algorithms are known for the fault-toleraktcenter problem [6,18,20,25], where each
demand poiny is required to have; centers within a fixed distandefrom it.

2.2. Subsequent work

There has been a lot of interesting work on the facility location problem and its variant
thek-median [3,14,23,24].

In [27] a factor 2.07 approximation algorithm was provided for the problem considered
here starting from the algorithms of [7,8]. They further improve the factor3@ for the
uniform requirement case ( values are 0 or for some fixedr) adapting techniques of
[14].

3. Constructing a structured fractional solution

The linear relaxation of the above-mentioned integer program gives us a fractional
solution. We will convert the solutiotx, y) to a solution(x, y) such that the cost of the
new solution does not increase, and the new solution satisfies certain useful properties.

We will treat a demand poinf as having-; copies under the constraint that no two
copies of any demand point are assigned to the same facility. In the fractional setting this
reduces to the conditiop, xl.(;) < yi < 1. The converted solution will ensure that the set
of facilities to which a copyj "7 is fractionally assigned to are closertohan any facility
to which the copyj "2 is assigned to fractionally for, < ro.

For every demand point, we reassign it to facilities, fractionally, as follows. Order
the facilities in nondecreasing distance frgmbreaking ties arbitrarily. The ordering for
a specific demand pointis fixed throughout the rest of the algorithm. The first demand
copy j, is assigned to the initial set of facilities that sum up to 1 fractionally. The last
facility i in this set can be incompletely assigned, v?éjl) < y;. For the second copy, we

start from this facilityi, settingil.(jz) =y — )El.(jl). After that we again pick up one unit of

facility fractionally, so that) ", )El.(jz) = 1. We repeat this process for all the copies of the
demand point.

Definition 3.1. DefineCE’) =), )El.(;)c,-j. DefineC(.”(ﬁ) to be the distance at which thth
copy of the demand point picks up at leasp flraction of a facility; therefore we have,
ey ®ap=c.

The following are true by construction:

Proposition 3.2. The cost of the solution does not increale,; wﬁ.’)CE’) =C*.

Proposition 3.3. For any facilityi and demand, there exist at most two valuesosuch
thatil.(;) > 0. Further, if two such values exist they must be consecutive.
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Once the (fractional) facilities are fixed, it is simple to see that the above reassignment is
(one of) the best possible. Intuitively, the copies of the demandth larger weightw;.
(and thus smaller) go to the closer open facilities.

4. Thealgorithm

The algorithm rounds the fractional solution in two phases. The algorithm uses the
filtering technique of Lin and Vitter [22] combined with reassignment of the fractional
demands, such that each copy of the demand goes to a different facility. As in the previous
section, we treat the different copies of a demand as separate, and dendtedbpy of
demand;j by ;. Fix @ € (0, 1), to be determined later.

4.1. Phase 1: Filtering and scaling

In this section we will modify the fractional solutiofx, y) to create a new solution
(x, ), which we will round in the next phase. This phase uses the filtering technique
of [22].

Let us fix a demand point. We will perform the following operations for the copies
7™ inincreasing order of = 1, 2. ... For every demang™, we consider the facilities to
which it is fractionally assigned in increasing order of distance (the same ordering used in
the previous section).

Leti be the first facility in the ordering of") (thereforexi(;) > 0) such that

Y i1
J

il o L)
i’ c,-/j(c_,,,xi,j)o

In other wordsj is the nearest facility tg such that within the distanasg;, 7 picks up
1 — « fraction of a facility.

For alli’ appearing beforein our ordering, we se%l.(,’j) - )El.(/’j). We setfcl.(;) so that the
total assignment of ") is exactlyl — «. For alli’ appearing after in the ordering, we set
&) =0,

We scale the?l.(;) by 1/(1 — a) so that}"; )2[.(;) =1 for all ;. Subsequently for all
we sety; = min{y; /(1 — «), 1}.

Lemma4.1[22].If £ > 0, thenc;; < ¢!,

We first show thatx, y) is feasible. For this, it is enough to show the following lemma:
Lemma4.2. For all i, j, we have)_, )21.(;) < ;.
Proof. Before filtering, by Proposition 3.3, we knew that at most two copies of a demand

went to any one facility. Suppose we are considering facilignd demand. If exactly
one copy, say is assigned to, the inequality trivially holds, aél.(j’) <.
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We therefore assume that two copiesjofire assigned to. Let ;@) and j"+D be
assigned ta. Note that by the construction in Sectioni3s the furthest assigned facility
to ;) and the closest tg” b,

The interesting case is > 1 — «, otherwised_, x;.” < y; was true before scaling, and
the lemma follows as we scale both the left- and nght-hand sides by the same amount.

Let us look at thex A(’) values before scaling (but after filtering). Therefore we need to
show) ", A,(I’) <l-a, then scaling could not have increased this value beyond 1. When
we were considering) for filtering, we must have se;( = max(0, x(” —a), asi is the
furthest assigned facility tg"”). We now consider two cases:

Casel: x A(’) =0. Then,f(’“) < 1— « because of filtering ot " 1.

(0 R SR gD

A(r)

Case2: x] xi(]) a. This |mpI|eSx —a<1l—q, as

_(jr)—l—x(rH) Vi gl
This completes the proof.O

Lemma4.3. Letry < rp. For any demand, the furthes{ from ;) facility to which j 2 is
assigned td fractionally) is at a distance no greater than the closéfbm j) facility to
which j 2 is assigned td fractionally) in the filtered and scaled solution.

Proof. The rearrangement from Section 3 guarantees this on the un-filtered solution;
filtering does not change the ordering of the edges.

4.2. Phase 2: Rounding

In this phase we will round the fractional solutigf, y) as produced in the previous
phase. We will perform a rounding similar to [22,26], and preservex; A(’) < y; as an
invariant.

The scheme from [26] cannot be applied directly, since the distinct copies of a demand
need to be assigned to distinct facilities. The way we ensure this is to pick just enough
fractions of facilities to merge so that one copy of the demand can be completely satisfied.
We then perform uncrossing of neighborhoods so that the other copies of that demand are
assigned to facilities outside the set of facilities we picked for rounding.

StepA: Ordering the demand#rrange all copies of all demand points in increasing
order of the distance to the farthest fractional facility serving it. We will process the copies
in this order, and repeatedly apply Steps B—E. Note that copigswaifl be picked in
increasing order.

StepB: Choosing a facilityAssume we are considerig§’, therth copy of the demand
point j. Let the set of facilities serving it bE(’)

We will build a facility at the cheapest facmtzyln P(’)

StepC: Merging facilities We now specify a seP of (fractional) facilities which will
be closed down in exchange for the facility to be opene&d lat other words, we can view
this set as a set of fractional facilities to be merged intbhe set will have the property

thatzl/epﬁl/ =1.
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(1) We select facilities’ with A(,’,) > 0 starting withi (order does not matter) until the
total fraction by which selected facilities are openis at least 1YLet) ", i > 1 be
the total fraction by which these facilities are open.

(2) If Y > 1 we will have to use the last selected facility, $aypartially. Make two copies,
i1 andip, of facility i”. Sety;,, =Y — 1, andy;, = y» — ¥i,. For any other demand

j7) the aSS|gnmenf(,f ) is distributed arbitrarily between the two facility copias

A(r

andiz; maintaining_, &,/ < 3 for bothi’ = i1 andi’ = i». The facility (copy)i1 is
selected and is not. Denote the set of picked facilities Ib?y“

We open a facility completely dt and close the rest of the facilities in the get

StepD: Assignment of demandSor any demang’ (inclusive of j), consider its copies
ri,r2, ..., served at least fractionally b§ If P serves any copy of’ fractionally, we
assign the smallest numbered copy) (of ;' to be completely served hy Note that the
assignment distance fgf’Y has at most tripled as comparedﬂé{)(l — «), see proof of
Lemma 4.6. '

StepE: Uncrossing neighborhood$Ve now reassign the remaining copies;ofi.e.,
jr2 . j0) completely to facilities outside the sét by performing an uncrossing
step.

For j/, we computeX(}) =) EPx(,’l,), andx@, .. X(k) likewise. These quantltles
denote the fractions to Whlch the coplespfare aSS|gned to the facilities iR. Define
Yj(l) =), /¢Px(,’l,) =1- X(}), and S|m|IarIyY(2) (k) . These quantities denote the
fractions by which the copies gf are aSS|gned to faC|I|t|es outside the S'etrespectlvely
The following is achieved by the construction:

Proposition 4.4. For any j’ which is fractionally assigned to the facilities in sBt we
have

X(t)+Y(t) 1 forall1<r<k, and ZX(” Zy,/—l
i'eP

We have assigned the cop$"? toi. But in this process it may be thmﬁ.’,/) > O thatis

P serves some other cop¥’” of j’. If we use the fractional facility oP (which amounts
to 1) then we need to ensure that the cqﬁfﬁ gets assigned (fractionally) to facilities

outsideP; and the fraction ig(ﬁf/)_ Notice that in this case from Proposition 4.4,
X0 4 x P <1=xD 4y D,

We consider the fractlom’( D by which the copy;’’?’ was assigned to facilities not

in P, and reassign this to the other copiesjbfvhich were originally assigned to the set
P as follows: Consider the fraction by whigh"? was assigned to the facility closest to

4 We havei; € P andis ¢ P. Note that since a facility is being built atwe can build a facility later at’ # ;.
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j but not in P. We assign this fraction tg'2 until either ;"2 is completely satisfied,
or we have assigned the fraction completely. In the former case, we mg¥&stpin the
latter case, we consider the next closest facility naPithat was previously connected to
7'V and repeat.

During uncrossing, we maintain the mvananZs,x(f’,) =1 andz,ﬁ(f’? < yp for all
1<t <k,

Lemma4.5. For anyj’, we can always reassign the copiesrs, . ..., rx completely outside
setP by the uncrossing step.

Proof. Note that since we use the assignmentg;ofandr; was the smallest numbered
copy), by Lemma 4.3, the cost of the solution can only reduce. R
Consider the total fraction by which demayds assigned outside the skt This was

originally Z, ", We have to show that after reassignment, the final total fraction is no
more than thls We remove fractldﬁl) (because we assigii"? completely in seP) and
add), X(’) X(l) because of the uncrossmg Therefore, the final fraction is:

Z Yo 4 Z X0 (r® 4 xP).

Invoking Proposition 4.4, the final fraction is clearly at mds Y(’) This means that
the reassignment is always possiblel

At the end of one iteration of Steps B—E, we have opened faciltgmpletely. For
every demand fractionally assigned to the Bethe smallest assigned copy is completely
assigned ta. Every other copy is fractionally reassigned completely outsidePsate
drop the sef? and the copieg’"V from further consideration.

Using arguments similar to [22,26], it follows:

Lemma 4.6. Therth copy of a demand pointis assigned within a distancgcﬁ’), thus
the service cost is at mo$tC*. The facility cost of the above solution is at mest F*.

Proof. Since) ;.5 y; = 1, and we charge this to the cheapest facility, the facility cost
cannot go up in this step. But since we scaled hén Phase 1, our cost could go up

by 1/(1 — «). Since the distances form a metric, and we are using the demand with the
smaIIestCA.(’)(l — «a), the distance cannot have more than tripled. Note that since we use
the assignments of (andr; was the smallest numbered copy), by Lemma 4.3, the new
assignments introduced in uncrossing can only decrease. This, combined with the distance
bound from Lemma 4.1 completes the proofi

Settinge = 3/4 we have:
Theorem 4.1. Fault-tolerant facility location has a factot approximation in polytime.

The rounding phase requir€s|D|?|F|?) = O (n*) steps.
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4.3. Atighter analysis

Recall from Definition 3.1 tha(tﬁ.”(ﬁ) is the distance fronj such that at leagt fraction
of the demand for copy of j is satisfied. Thu§§” = CE’)(l).
For a particular choice af, the cost of the solutior§(«), is:

1 . ") ()
S <7——F +3ij 1l -a). (1)
7,r
We present the analysis of the algorithnuifwere chosen at random from the interval
(0, 1—x). Since there are at moP||F| = O (n?) values ofx for which the rounding can
be different; the algorithm can be derandomized. Following analysis from [26], the average
cost evaluates to:

3 In1l/x
c* F
1—x +1—x

The above expression is minimized foe= €2, resulting in the following:

*

Theorem 4.2. Fault-tolerant facility location has &3.16 approximation algorithm in
polytime.

4.4. Facility location revisited

In this section, we will show how to improve the approximation factor, and demonstrate
the similarities between uncapacitated facility location and the fault-tolerant version.
Consider the heuristic that repeatedly chooses a facility to add while the total cost reduces.
The heuristic is known as the ‘add’ heuristic in the facility location literature. [4,10,19]
analyze the heuristic (with some variations specific to the analysis) from a standpoint of
approximation algorithms. We follow the analysis of [10].

Define the Gaiti) of a facility i to be the decrease total cost(decrease in assignment
cost minus the facility cost of) of the solution on addition of facility to the solution.

The facility with the best gain ratio is the facilify, with the ratio maxGain(i)/f;. If the
Gain(i,,) is positive, the heuristic addg and repeats; and stops otherwise.

The computation of the assignment cost is easy following the observation that once the
set of facilities are fixed, every demand point chooses the facilities serving it in increasing
order of distance. The improvement of the solution depends on the quality of gain we can
guarantee at every step; the following lemma can be proved:

Lemma 4.7. If the current costs of facility and assignment a@eand C, respectively, and
there exists a fractional solution with codt§ and C* satisfyingC > F* 4+ C* , then there
exists a node with ratio Gain(i)/f; > (C — F* — C*)/F*.

Proof. Consider the fractional solutiofix, y) with facility and assignment costg™
andC*. Without loss of generality we can assume that (a copy of) a demand point either
uses a fractional facility completely or not at all. This can be achieved by replicating a
facility as in Step C in the previous subsection.
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Now consider a facilityi in the fractional solution which is open with fractign. In
the fractional solution consider the set §a= {j )} of the copies of the demand point
assigned ta. By the assumption that a copy of a demand uses a (fractional) facility
completely or not at all in the fractional solution—we are guaranteed that the st cal
does not contain two copigié” and ;" of the same demand point

Consider (for the purpose of proof only) adding this facilityegrally to our current
solution and change the assignment of the demand copie$s talthe newly added
facility i. Define Gaifi) as

Gaif(i) = —f; + Z wﬁ’) (“current assignment distance gf” — ¢;;).
jMecals;

We can interpret Gaig) easily if i were not already open, i.e.,¢ F. In this case
Gairl (i) is the change if the facility were opened and all demand copiesS;alerved by
i in the fractional solutior(x, y) were to be assigned integrally tolf i is in the current
set of open facilitieg”, then the cost of the facility is paid again.

Observe that since the facilitycannot serve two copies of the same demand pgint
the solution as interpreted above is a feasible solution.

Notice at this step we may be making possibly suboptimal assignments to this fgcility
and thus Gaifii) < Gain(i). This is true since once we fix the set of facilities, we compute
the best possible assignment solution and Gairs the maximum over all possible
reassignments.

Now consider the last equation multiplied wighand summed up asranges over the
facilities in the fractional solution. We get

Y osiGady ==Y 5fi-y. Y. wwe
i i i j"ecals;
+Y ) wﬁ.”y,- current assignment distance ©f .
i jecals;

The first term sums te- F* which is the fractional facility cost. The second term is the cost
of fractional assignment of all the demand copies and ‘. For the last term the sum
can be rewritten, switching the order of summations, as

> wi.’) “current assignment distance o >~ 3.
i ij"ecals;
In the fractional solution the SUR;. ;¢ ccqis, Vi has to be 1, or in other words the demand

copy is fractionally assigned to a total of 1. Thus the term sums to exactly the current
assignment cost. Thus

C—C*—F*=7) 5 Gairl(i) =Zy"ﬁea?(i)
Y max{O, maXGalf(i) }
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Now if C > C* + F* then there must exist oriesuch that Gaifti) is positive. Moreover
in that case if,, is the facility with maximum positive Galiti)/f; then

L Gairl (in)
fin
Since Gaiiti) > Gairi (i) for all i, the lemma is proved. O

C—C*—F*<F

The above argument is exactly the same for the original facility location problem, as
proved in [4]. This is because in the fractional solution the assumption that a fractional
facility serves a demand point completely or not at all allows us to treat the copies of a
demand point as separate demand points.

Thus the complete algorithm is as follows: We solve the linear program and perform
the rounding as described in Section 4.2. We then repeatedly choose a facility to add to our
solution which gives us the best gain. We stop when adding no other facility gives us any
gain. The post-processing after the rounding phase takesQiti||F|?) = O (n°®) since
we add at mosF more facilities.

The next lemma follows from the above lemma and the analysis in [10], or a simpler
one in [4].

Lemma 4.8. If the initial cost of facilities isF and of assignment cost & > F* + C*,
then at the end of the heuristic the cosEis- F*+ C*+ F*In(C — C*)/F*, if there exists
a (possibly fractiona) solution of facility costF* and assignment cost*.

The details of the proof are exactly the same as in [4,10], and we omit it.

Theorem 4.3. The fault-tolerant facility location problem has 2408 approximation
algorithm in polytime.

It is interesting to note that the combinatorial algorithms proposed in [4,19] do not
extend since deletion of a node cannot be allowed—since it may render a solution
infeasible. Both these algorithms employ a pure delete operation—where the number of
facilities decreases. A combinatorial algorithm employing only addition of facilities and
pure exchanges would very likely extend to the fault-tolerant case.
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