Marc Sevaux - Alexandru-Liviu Olteanu -
Eduardo G. Pardo - Angelo Sifaleras -
Salma Makboul (Eds.)

o
LN
N~
<
—
v
)
=
—

Metaheuristics

15th International Conference, MIC 2024
Lorient, France, June 4-7, 2024
Proceedings, Part |

@ Springer

Lecture Notes in Computer Science 14753

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, Purdue University, West Lafayette, IN, USA

Wen Gao, Peking University, Beijing, China

Bernhard Steffen@®, TU Dortmund University, Dortmund, Germany
Moti Yung®, Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Marc Sevaux - Alexandru-Liviu Olteanu -
Eduardo G. Pardo - Angelo Sifaleras -
Salma Makboul

Editors

Metaheuristics

15th International Conference, MIC 2024
Lorient, France, June 4-7, 2024
Proceedings, Part I

@ Springer

Editors

Marc Sevaux

Lab-STICC, UMR 6285, CNRS
Université Bretagne Sud
Lorient, France

Eduardo G. Pardo
Universidad Rey Juan Carlos
Méstoles, Spain

Alexandru-Liviu Olteanu
Lab-STICC, UMR 6285, CNRS
Université Bretagne Sud
Lorient, France

Angelo Sifaleras
University of Macedonia
Thessaloniki, Greece

Salma Makboul
Université de Technologie de Troyes
Troyes Cedex, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-031-62911-2 ISBN 978-3-031-62912-9 (eBook)
https://doi.org/10.1007/978-3-031-62912-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-6247-5269
https://orcid.org/0000-0002-6423-2367
https://orcid.org/0000-0002-5696-7021
https://doi.org/10.1007/978-3-031-62912-9

Preface

Solving computationally hard problems is the everyday challenge of many researchers
and probably all members of the metaheuristics community. Metaheuristics, as powerful
solving tools, are largely used to tackle real-life hard optimization problems and are,
without a doubt, held in high regard for providing good solutions within a short period
of time. In their most basic implementation, metaheuristics can be viewed as simple
tools to provide more quickly better solutions than simple ad-hoc heuristics. However,
improvements, hybridizations, combinations with exact methods (matheuristics) and,
more recently, combinations with artificial intelligence have shown that “metaheuristics”
is in itself a full research discipline.

The first edition of the Metaheuristics International Conference (MIC) was held in
1995 in Breckenridge, Colorado, USA. Since then, every two years, MIC visited Sophia-
Antipolis, France in 1997, Angra dos Reis, Brazilin 1999, Porto, Portugal in 2001, Kyoto,
Japan in 2003, Vienna, Austria in 2005, Montréal, Canada in 2007, Hamburg, Germany
in 2009, Udine, Italy in 2011, Singapore in 2013, Agadir, Tunisia in 2015, Barcelona,
Spain in 2017, Cartagena, Colombia in 2019 and finally, after skipping one year due to
COVID, Syracuse, Italy in 2022.

The 15th edition took place in Lorient, France June 47, 2024. The port-city is located
amid green valleys at the mouth of the Blavet and Scorff rivers, in the Morbihan depart-
ment of France. At the beginning of the 17th century, merchants who were trading with
India had established warehouses in Port-Louis. They later built additional warehouses
across the bay in 1628, at the location which became known as “L’Orient” (the Orient
in French). Later, the French East India Company, founded in 1664 and chartered by
King Louis XIV, established shipyards there, thus giving an impetus to the development
of the city. In 1746 during the War of the Austrian Succession, Britain launched a raid
on Lorient to destroy French shipping. In attempts to destroy German submarine pens
(U-boat bases) and their supply lines, most of this city was destroyed by Allied bombing
during World War II. Thus, today’s Lorient reflects an architectural style of the 1950s
and many architects and city planners visit Lorient for its visionary architecture and
city layout. Its architectural heritage includes beautiful 18th-century mansions, the Quai
des Indes dock, houses from the 1930s, the port enclosure and the Gabriel mansion,
reminders of the French East India Company.

MIC 2024 was also the first time that this event was merged with the 10th edition
of the International Conference on VNS (ICVNS) and the annual meeting of the EURO
Working Group on Metaheuristics (EU/ME) in a unique conference. The organization
of the event was supported by the Université Bretagne Sud and Lab-STICC laboratory.
As for every edition, MIC focuses on the progress of the area of Metaheuristics and
their applications and provides an opportunity to the international research community
to discuss recent research results, to develop new ideas and collaborations, and to meet
old friends and make new ones in a relaxed atmosphere. In 2024, four plenary speakers in

vi Preface

the name of Eric Taillard, University of Applied Sciences and Arts of Western Switzer-
land, Belén Melidn-Batista (ICVNS Plenary Speaker), University of La Laguna, Spain,
Daniele Vigo, University of Bologna, Italy, and Rafael Marti, University of Valencia,
Spain (EURO Plenary Speaker) contributed to the success of the conference. This year
was also the first time that a series of 4 tutorials on the implementation of metaheuris-
tics with the Julia language was launched. As demonstrated during the conference, the
Julia language is particularly well adapted to rapid prototyping and also to large scale
competitive programming.

A total of 100 valid submissions were received. The 70 members of the program
committee made a selection of 36 regular papers, 34 short papers and 30 oral presenta-
tions. Short and regular papers are all included in this LNCS volume (in two parts). The
organizing team is grateful to the PC members for their support, time and efforts to make
this volume a reality. The number of participants to the MIC was 129 and they enjoyed
a program over 4 days with 4 plenary talks, 4 tutorials, 25 parallel sessions, an ICVNS
stream, excellent lunches with local specialties, a welcome reception on the sea shore,
a boat tour and visit of the “Cité de la Voile Eric Tabarly” which invited participants on
a tour of sailing and offshore racing discovery, and an exquisite conference dinner.

This Preface cannot end without extending our heartfelt gratitude to the organiz-
ing committee and local members, together with the sponsors of the Metaheuristics
International Conference (with a special mention to our Platinum Sponsors, Hexaly and
Entanglement Inc). Their dedication made this event an exceptional platform for knowl-
edge exchange and collaboration in the field of metaheuristics. We are truly appreciative
of the meticulous planning and seamless execution that went into every aspect of the
conference. Special thanks to the sponsors whose generous support ensured the success
and impact of this gathering. Their contributions enabled researchers and practition-
ers from around the globe to come together and explore cutting-edge developments in
all aspects of metaheuristic methodologies. The diverse range of sessions, workshops,
and discussions offered valuable insights and fostered meaningful connections among
attendees. It’s through their commitment to advancing the field that such gatherings can
continue to push the boundaries of knowledge and innovation. The exchange of ideas
and experiences facilitated by this conference will undoubtedly inspire future break-
throughs and collaborations. Their support not only enriches the academic community
but also contributes to the advancement of science and technology worldwide. Once
again, thank you for your unwavering support and dedication to promoting excellence
in metaheuristic research.

April 2024 Marc Sevaux
Alexandru-Liviu Olteanu

Eduardo G. Pardo

Angelo Sifaleras

Salma Makboul

Organization

General Chairs

Alexandru-Liviu Olteanu
Marc Sevaux

Université Bretagne Sud, France
Université Bretagne Sud, France

Organizing Committee

Romain Billot

Salma Makboul

Patrick Meyer
Alexandru-Liviu Olteanu
Eduardo G. Pardo

Quentin Perrachon

Marc Sevaux

Angelo Sifaleras

Owein Thuillier

Essognim Richard Wilouwou

IMT Atlantique, France

Université de Technologie de Troyes, France
IMT Atlantique, France

Université Bretagne Sud, France
Universidad Rey Juan Carlos, Spain
Université Bretagne Sud, France

Université Bretagne Sud, France

University of Macedonia, Greece

Université Bretagne Sud, France

Université Bretagne Sud, France

Program Committee Chairs

Marc Sevaux
Alexandru-Liviu Olteanu
Eduardo G. Pardo
Angelo Sifaleras

Université Bretagne Sud, France
Université Bretagne Sud, France

Universidad Rey Juan Carlos, Spain

University of Macedonia, Greece

Salma Makboul Université de Technologie de Troyes, France

MIC Steering Committee

Fred Glover Entanglement, Inc., USA

Belén Melidn-Batista University of La Laguna, Spain

Celso Ribeiro Universidade Federal Fluminense, Brazil
Eric Taillard University of Applied Sciences of Western

Switzerland, Switzerland

Stefan Voss University of Hamburg, Germany

viii Organization

Program Committee

Mohammadmohsen Aghelinejad

David Alvarez Martinez
Claudia Archetti

Ghita Bencheikh
Romain Billot
Christian Blum

Eric Bourreau

Marco Caserta

Sara Ceschia

Marco Chiarandini
Jean-Francois Cordeau
Samuel Deleplanque
Xavier Delorme
Bernabe Dorronsoro
Javier Faulin

Andreas Fink

Frédéric Gardi

Michel Gendreau

Fred Glover

Bruce Golden

Peter Greistorfer
Christelle guéret

Said Hanafi

Jin-Kao Hao

Richard F. Hartl

Colin Johnson

Laetitia Jourdan
Philippe Lacomme
Fabien Lehuédé
Rodrigo Linfati
Manuel Lopez-Ibéiiez
Salma Makboul
Vittorio Maniezzo
Rafael Marti

Antonio Mauttone
Patrick Meyer

Jairo R. Montoya-Torres
Alexandru-Liviu Olteanu
Dimitri Papadimitriou
Eduardo G. Pardo

Université de Technologie de Troyes, France
Los Andes University, Colombia

ESSEC Business School, France

LINEACT Cesi Engineering School, France
IMT Atlantique, France

Spanish National Research Council, Spain
Université de Montpelllier, France
University of Hamburg, Germany
University of Udine, Italy

University of Southern Denmark, Denmark
HEC Montréal, Canada

JUNIA, France

ENSMS-SE, France

University of Cadiz, Spain

Universidad Publica de Navarra, Spain

Helmut-Schmidt-University Hamburg, Germany

LocalSolver, France

Ecole Polytechnique de Montréal, Canada
Entanglement, USA

University of Maryland, USA
Karl-Franzens-Universitit Graz, Austria
Université d’ Angers, France

University of Valenciennes, France
Université d’ Angers, France

University of Vienna, Austria
University of Nottingham, UK
Université de Lille, France

Université Clermont Auvergne, France
IMT Atlantique, France

Universidad del Bio-Bio, Chile
University of Manchester, UK
Université de Technologie de Troyes, France
University of Bologna, Italy

University of Valencia, Spain
Universidad de la Republica, Uruguay
IMT Atlantique, France

Universidad de La Sabana, Colombia
Université Bretagne Sud, France
University of Antwerp, Belgium
Universidad Rey Juan Carlos, Spain

Sophie N. Parragh
Quentin Perrachon
Erwin Pesch

Luciana Pessoa
Jean-Yves Potvin
Caroline Prodhon
Jakob Puchinger
Ellaia Rachid
Giinther Raidl

Celso Ribeiro

Roger Z. Rios

Andrea Schaerf

Marc Sevaux

Patrick Siarry

Angelo Sifaleras
Christine Solnon
Kenneth Sérensen
Thomas Stiitzle
Anand Subramanian
Muhammad Sulaiman
Owein Thuillier
Paolo Toth

Michael Trick

Pascal Van Hentenryck
Daniel Vert

Stefan Voss
Essognim Richard Wilouwou
Mutsunori Yagiura
Xin-She Yang
Nicolas Zufferey

Keynote Speakers

Eric Taillard

Belén Melian-Batista
Daniele Vigo
Rafael Marti

Organization ix

Johannes Kepler University Linz, Austria
Université Bretagne Sud, France
University of Siegen, Germany

PUC-Rio, Brazil

University of Montreal, Canada
Université de Technologie de Troyes, France
EM Normandie Business School, France
EMI, Morocco

Vienna University of Technology, Austria
Universidade Federal Fluminense, Brazil
Universidad Auténoma de Nuevo Ledn, Mexico
University of Udine, Italy

Université de Bretagne Sud, France
Université de Paris 12, France

University of Macedonia, Greece

INSA Lyon, France

University of Antwerp, Belgium
Université Libre de Bruxelles, Belgium
Universidade Federal da Paraiba, Brazil
Abdul Wali Khan University, Pakistan
Université Bretagne Sud, France
University of Bologna, Italy

Carnegie Mellon University, USA
Georgia Tech, USA

Systematic Paris-Region, France
University of Hamburg, Germany
Université Bretagne Sud, France

Nagoya University, Japan

Middlesex University, UK

University of Geneva, Switzerland

University of Applied Sciences and Arts of
Western Switzerland

University of La Laguna, Spain

University of Bologna, Italy

University of Valencia, Spain

X Organization

Tutorial Speakers

Xavier Gandibleux Université de Nantes, France

Jesis-Adolfo Mejia-De Dios Autonomous University of Coahuila, Mexico
Antonio J. Nebro University of Malaga, Spain
Alexandru-Liviu Olteanu Université Bretagne Sud, France

Marc Sevaux Université Bretagne Sud, France

Additional Reviewers

Murat Afsar Yannick Kergosien

Riad Aggoune Yury Kochetov

Rachid Benmasour Damien Lamy

Sergio Cavero Diaz Mariana Londe

José Manuel Colmenar Flavien Lucas

Sergio Consoli Radl Martin Santamaria
Tatjana Davidovié¢ Sergio Pérez-Pel6
Amélia Durbec Florian Rascoussier
Samia Dziri Marcos Robles
Abdelhak El Idrissi Nicolés Rodriguez

Lina Fahed Jesis Sanchez-Oro Calvo
Ke Feng Raca Todosijevic¢

Paolo Gianessi Dragan Urosevié

Sergio Gil-Borras Daniel Vert

Bachtiar Herdianto Margarita Veshchezerova
Alberto Herran Gonzalez Bogdan Vulpescu
Panagiotis Kalatzantonakis Essognim Wilouwou

Panagiotis Karakostas Javier Yuste

Contents — Part I

Advances in Combinatorial Optimization

Breakout Local Search for Heaviest Subgraph Problem
He Zheng and Jin-Kao Hao

A Biased Random Key Genetic Algorithm for Solving the «-Neighbor
p-Center Problem
Sergio Pérez-Pelo, Jesiis Sdnchez-Oro, and Abraham Duarte

A Continuous-GRASP Random-Key Optimizeroo....
Antonio A. Chaves, Mauricio G. C. Resende, and Ricardo M. A. Silva

Adaptive Ant Colony Optimization Using Node Clustering with Simulated
ANNEALING . .o
Nozomi Kotake, Rikuto Shibutani, Kazuma Nakajima,
Takafumi Matsuura, and Takayuki Kimura

Job-Shop Scheduling with Robot Synchronization for Transport Operations .
Jean Philippe Gayon, Philippe Lacomme, and Amine Oussama

Al and Metaheuristics for Routing

SIRO: A Deep Learning-Based Next-Generation Optimizer for Solving
Global Optimization Problems i i
Olaide N. Oyelade, Absalom E. Ezugwu, and Apu K. Saha

Investigation of the Benefit of Extracting Patterns from Local Optima

to Solve a Bi-objective VRPTW
Clément Legrand, Diego Cattaruzza, Laetitia Jourdan,
and Marie-Eléonore Kessaci

A Memetic Algorithm for Large-Scale Real-World Vehicle Routing
Problems with Simultaneous Pickup and Delivery with Time Windows
Ethan Gibbons and Beatrice Ombuki-Berman

Tabu Search for Solving Covering Salesman Problem with Nodes
ANd SEEMENLS . ..ottt ettt e
Takafumi Matsuura

xii Contents — Part [
GRASP with Path Relinking

VNS with Path Relinking for the Profitable Close-Enough Arc Routing

Problem 103
Miguel Reula, Consuelo Parrerio-Torres, Anna Martinez-Gavara,
and Rafael Marti

Meta-Heuristics for Preference Learning

A Simulated Annealing Algorithm to Learn an RMP Preference Model 113
Yann Jourdin, Arwa Khannoussi, Alexandru-Liviu Olteanu,
and Patrick Meyer

New VRP and Extensions

Iterative Heuristic over Periods for the Inventory Routing Problem 123

Katyanne Farias, Philippe Lacomme, and Diego Perdigdo Martino

Combining Heuristics and Constraint Programming for the Parallel Drone
Scheduling Vehicle Routing Problem with Collective Drones 136
Roberto Montemanni, Mauro Dell’Amico, and Andrea Corsini

Operations Research for Health Care

A Re-optimization Heuristic for a Dial-a-Ride Problem

in the Transportation of Patients, 145
Ruan Myller Magalhdes de Oliveira, Manuel lori, Arthur Kramer,
and Thiago Alves de Queiroz

Solving the Integrated Patient-to-Room and Nurse-to-Patient Assignment
by Simulated Annealing 158
Eugenia Zanazzo, Sara Ceschia, and Andrea Schaerf

Enhancing Real-World Applicability in Home Healthcare: A Metaheuristic

Approach for Advanced Routing and Scheduling 164
Sara Ceschia, Luca Di Gaspero, Simona Mancini, Vittorio Maniezzo,
Roberto Montemanni, Roberto Maria Rosati, and Andrea Schaerf

Solving the Two-Stage Robust Elective Patient Surgery Planning Under
Uncertainties with Intensive Care Unit Beds Availability 171
Salma Makboul

Contents — Part I

Extracting White-Box Knowledge from Word Embedding: Modeling

as an Optimization Problem i i

Julie Jacques and Alexander Bassett

A Hybrid Biased-Randomized Heuristic for a Home Care Problem

with Team Scheme Selection,

Ana Raquel de Aguiar, Maria Isabel Gomes, Tania Ramos,
and Helena Ramalhinho

Optimization for Forecasting

Extended Set Covering for Time Series Segmentation

Vittorio Maniezzo

Quantum Meta-Heuristic for Operations Research

Indirect Flow-Shop Coding Using Rank: Application to Indirect QAOA

Gérard Fleury, Philippe Lacomme, and Caroline Prodhon

Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver ...

Vorapong Suppakitpaisarn and Jin-Kao Hao

Addressing Machine Unavailability in Job Shop Scheduling: A Quantum

Computing Approachuuuuun e

Riad Aggoune and Samuel Deleplanque

Solving Edge-Weighted Maximum Clique Problem with DCA Warm-Start

Quantum Approximate Optimization Algorithm

Huy Phuc Nguyen Ha, Viet Hung Nguyen, and Anh Son Ta

Comparing Integer Encodings in QUBO for Quantum and Digital

Annealing: The Travelling Salesman Problem

Philippe Codognet

Solving Quadratic Knapsack Problem with Biased Quantum State

Optimization Algorithm i

Huy Phuc Nguyen Ha, Viet Hung Nguyen, and Anh Son Ta

Quantum Optimization Approach for Feature Selection in Machine

Learningttt

Gérard Fleury, Bogdan Vulpescu, and Philippe Lacomme

xiii

219

Xiv Contents — Part I
International Conference on Variable Neighborhood Search (ICVNS)

Advanced Algorithms for the Reclaimer Scheduling Problem

with Sequence-Dependent Setup Times and Availability Constraints 291
Oualid Benbrik, Rachid Benmansour, Abdelhak Elidrissi,
and Angelo Sifaleras

An Efficient Algorithm for the T-Row Facility Layout Problem 309

Raiil Martin-Santamaria, Alberto Herrdn, Abraham Duarte,
and J. Manuel Colmenar

Interpretability, Adaptability and Scalability of Variable Neighborhood
Search 316

Pierre Hansen, Aidan Riordan, and Xavier Hansen

Exploring the Integration of General Variable Neighborhood Search
with Exact Procedures for the Optimization of the Order Batching Problem 331
Sergio Gil-Borrds and Eduardo G. Pardo

VNS-Based Matheuristic Approach to Group Steiner Tree
with Problem-Specific Node Release Strategyoo.... 344
Tatjana Davidovi¢ and Slobodan Jeli¢

A Basic Variable Neighborhood Search for the Planar Obnoxious Facility
Location Problem 359
Sergio Salazar, Abraham Duarte, and J. Manuel Colmenar

Temporal Action Analysis in Metaheuristics: A Machine Learning
APProach ... 365
Panagiotis Kalatzantonakis, Angelo Sifaleras, and Nikolaos Samaras

A Variable Neighborhood Search Approach for the S-labeling Problem 371
Marcos Robles, Sergio Cavero, and Eduardo G. Pardo

Improving Biased Random Key Genetic Algorithm with Variable

Neighborhood Search for the Weighted Total Domination Problem 377
Alejandra Casado, Jesiis Sanchez-Oro, Anna Martinez-Gavara,
and Abraham Duarte

Optimization of Fairness and Accuracy on Logistic Regression Models 383
Javier Yuste, Eduardo G. Pardo, and Abraham Duarte

A Variable Formulation Search Approach for Three Graph Layout Problems ... 390
Sergio Cavero, J. Manuel Colmenar, and Eduardo G. Pardo

Author Index 397

Contents — Part I1

General Papers

Learning Sparse-Lets for Interpretable Classification of Event-interval
SEQUEIICES . . . vt ettt et e et e e e e e e e e 3
Lorenzo Bonasera, Davide Duma, and Stefano Gualandi

Deep Reinforcement Learning for Smart Restarts in Exploration-Only
Exploitation-Only Hybrid Metaheuristicsooiiina... 19
Antonio Bolufé-Rohler and Bowen Xu

Optimization of a Last Mile Delivery Model with a Truck and a Drone
Using Mathematical Formulation and a VNS Algorithm 35
Batool Madani, Malick Ndiaye, and Said Salhi

An Empirical Analysis of Tabu Listscooiiiiiiiiiiiiiii... 50
Francesca Da Ros and Luca Di Gaspero

Strategically Influencing Seat Selection in Low-Cost Carriers: A GRASP

Approach for Revenue Maximizationoiiiiiiiiin.... 65
Andrés Merizalde, Gustavo Rubiano, Germdn Roberto Pardo,
Alejandra Tabares Pozos, and David Alvarez-Martinez

Behaviour Analysis of Trajectory and Population-Based Metaheuristics

on Flexible Assembly Scheduling 80
Octavian Maghiar, Adrian Copie, Teodora Selea, Mircea Marin,
Flavia Micota, Daniela Zaharie, and lonut Tepeneu

Matheuristic Variants of DSATUR for the Vertex Coloring Problem 96
Nicolas Dupin

Combining Neighborhood Search with Path Relinking: A Statistical
Evaluation of Path Relinking Mechanisms 112
Bachtiar Herdianto, Romain Billot, Flavien Lucas, and Marc Sevaux

A General-Purpose Neural Architecture Search Algorithm for Building
Deep Neural NetwWorks 126
Francesco Zito, Vincenzo Cutello, and Mario Pavone

Xvi Contents — Part IT

A Dynamic Algorithm Configuration Framework Using Combinatorial
Problem Features and Reinforcement Learning 142
Elmar Steiner and Ulrich Pferschy

Large Neighborhood Search for the Capacitated P-Median Problem 158
Ida Gjergji and Nysret Musliu

Experiences Using Julia for Implementing Multi-objective Evolutionary
ALZOTItNMS . oo 174
Antonio J. Nebro and Xavier Gandibleux

A Matheuristic Multi-start Algorithm for a Novel Static Repositioning
Problem in Public Bike-Sharing Systems, 188
Julio Mario Daza-Escorcia and David Alvarez-Martinez

A Disjunctive Graph Solution Representation for the Continuous

and Dynamic Berth Allocation Problemo it 204
Nicolas Cheimanoff, Pierre Fénies, Mohamed Nour Kitri,
and Nikolay Tchernev

Area Coverage in Heterogeneous Multistatic Sonar Networks: A Simulated

Annealing Approachuuuuu 219
Owein Thuillier, Nicolas Le Josse, Alexandru-Liviu Olteanu,
Marc Sevaux, and Hervé Tanguy

The Use of Metaheuristics in the Evolution of Collaborative Filtering
Recommender Systems: A ReVIEWt 234
Marrian H. Gebreselassie and Micheal Olusanya

Modelling and Solving a Scheduling Problem with Hazardous Products

Dynamic Evolution i 249
Thiago J. Barbalho, Andréa Cynthia Santos, Juan L. J. Laredo,
and Christophe Duhamel

Fixed Set Search Matheuristic Applied to the min-Knapsack Problem
with Compactness Constraints and Penalty Values 264
Ahmet Ciirebal, Stefan Vof, and Raka Jovanovic

Improved Golden Sine II in Synergy with Non-monopolized Local Search

8 1 o PP 279
Arturo Valdivia, Itzel Aranguren, Jorge Ramos-Frutos,
Angel Casas-Ordaz, Diego Oliva, and Saiil Zapotecas-Martinez

Contents — Part IT

Population of Hyperparametric Solutions for the Design of Metaheuristic
Algorithms: An Empirical Analysis of Performance in Particle Swarm

OPUMIZALION . . . vttt t ettt et e e e e e e e e e e e e e e

Mario A. Navarro, Angel Casas-Ordaz, Beatriz A. Rivera-Aguilar,
Bernardo Morales-Castarieda, and Diego Oliva

A GRASP Algorithm for the Meal Delivery Routing Problem

Daniel Giraldo-Herrera and David Alvarez-Martinez

Optimization Approaches for a General Class of Single-Machine

Scheduling Problems i

Haitao Li and Bahram Alidaee

What Characteristics Define a Good Solution in Social Influence

Minimization Problems?

Isaac Lozano-Osorio, Jesus Sdnchez-Oro, Abraham Duarte,
and Kenneth Sorensen

A Large Neighborhood Search Metaheuristic for the Stochastic Mixed

Model Assembly Line Balancing Problem with Walking Workers

Joseph Orion Thompson, Nadia Lahrichi, Patrick Meyer,
Mehrdad Mohammadi, and Simon Thevenin

Two Examples for the Usefulness of STNWeb for Analyzing Optimization

Algorithm Behavior

Mehmet Anil Akbay and Christian Blum

Fixed Set Search Applied to the Maximum Disjoint Dominating Sets

Problem

Raka Jovanovic and Stefan Vofs

Extending CMSA with Reinforcement Learning: Application to Minimum

Dominating Stttt

Jaume Reixach and Christian Blum

An Evolutionary Algorithm for the Rank Pricing Problem

Herminia I. Calvete, Carmen Galé, Aitor Herndndez, and José A. Iranzo

STNWeb for the Analysis of Optimization Algorithms: A Short

Introduction

Camilo Chacon Sartori and Christian Blum

Xvii

328

Xviil Contents — Part IT

Multi-Neighborhood Search for the Makespan Minimization Problem

on Parallel Identical Machines with Conflicting Jobs

Roberto Maria Rosati, Dinh Quy Ta, Minh Hoang Ha,
and Andrea Schaerf

Solving an Integrated Bi-objective Container Terminal Integrated Planning

with Transshipment Operationsouiuuiineeeiiineeeennnn.

Marwa Samrout, Abdelkader Sbihi, and Adnan Yassine

Multi-objective General Variable Neighborhood Search for the Online

Flexible Job Shop Problem

Quentin Perrachon, Essognim Wilouwou, Alexandru-Liviu Olteanu,
Marc Sevaux, and Arwa Khannoussi

Author Index

Advances in Combinatorial
Optimization

®

Check for
updates

Breakout Local Search for Heaviest
Subgraph Problem

He Zheng and Jin-Kao Hao(®

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
jin-kao.hao@univ-angers.fr

Abstract. This paper presents a breakout local search (BLS) heuristic
algorithm for solving the heaviest k-subgraph problem - a combinato-
rial optimization graph problem with various practical applications. BLS
explores the search space by alternating iteratively between local search
phase and dedicated perturbation strategies. Focusing on the perturba-
tion phase, the algorithm determines its jump magnitude and perturba-
tion type according to the search history to obtain the most appropriate
degree of diversification. Computational experiments are performed on
a number of large random graphs. The experimental evaluations show
that the results obtained by BLS are comparable to, and in most cases
superior to, those of the current state-of-the-art approaches.

Keywords: Iterated local search - heaviest subgraph problem -
adaptive perturbation

1 Introduction

Given an edge-weighted undirected graph G(V, E), where V is a set of vertices
with |V]| = n and E is a set of edges, the Heaviest k-Subgraph Problem (HSP) is
to determine a subset U of k vertices (k is given) such that the total edge weight
of the subgraph induced by U is maximized. The NP-hard Densest k-Subgraph
Problem (DSP), also known as the k-Cluster Problem [4], is a special case of
HSP when the edge weight equals one. HSP is a relevant model for many impor-
tant applications in areas such as social networks, protein interaction graphs,
and the world wide web, etc. However, solving the problem is computationally
challenging since it generalizes the NP-hard DSP.

Several exact approaches have been proposed to solve the problem [5], but
they can only deal with small and sparse graphs with a small range of k. To solve
large instances, heuristics and metaheuristics have been used to find approximate
solutions in a reasonable time. Macambira proposed a tabu-based heuristic for
solving HSP [6], which is based on three construction strategies and a neighbor-
hood search strategy. Brimberg et al. presented a basic variable neighborhood
search (BVNS) and some variants of the heuristic for the problem, using the swap

We would like to thank the reviewers for their insightful comments. The first author is
supported by a CSC scholarship (No. 202306290083).
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 3-8, 2024.
https://doi.org/10.1007/978-3-031-62912-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_1

4 H. Zheng and J.-K. Hao

Algorithm 1. The BLS algorithm for HSP

: Input: Edge-weighted graph G(V, E), integer k

: Output: The best solution S* found

S« Initializing(Q)

S* «— S and f(S*) «— f(5)

L «— Lpin /* Set initial jump magnitude */

w < 0 /* Set the number for consecutive non-improving local optima */
: prev — f(S) /* Set the best objective value of the last descent phase */
: while stopping condition is not met do

S « LocalSearch(S, H) /* H is a vector with historical search information */
10: if f(S) > f(S*) then

11: S* «— S and f(S*) = f(S)

12: w0

13: else if f(S) # prev then

14: w—w+1

15: end if

16: L — DetermineJumpMagnitude(L, S,w, prev)

17: T «— DeterminePerturbationType(S, w)

18: prev «— f(S)

19: S «— Perturb(S,L,T,w, H)

20: end while

21: return S*

©

neighborhood [3]. Saarinen et al. introduced an opportunistic version of the VNS
heuristic (OVNS) [7], which exploits the characteristics of the problem instance
during the search process. These algorithms have improved the state of the art in
solving HSP. However, their performance often depends on the instances studied.
The VNS algorithms lack stability in their results. BVNS mainly performs well
on sparse graphs, while OVNS is more suitable for dense graphs. In this work, we
present an effective algorithm for HSP based on breakout local search (BLS).

2 Breakout Local Search for HSP

2.1 General Framework

Breakout local search [1,2] follows the basic scheme of the iterated local search
(ILS) approach. In general, BLS repeats a descent-based local search phase to
perform an intensive search in a given region, and an adaptive perturbation phase
to discover new promising regions. Special attention is paid to the design of the
perturbation, which aims to introduce an appropriate degree of diversification
according to the search stage. This is achieved by dynamically and adaptively
determining the number of perturbation moves (the jump magnitude) and the
type of the perturbation moves based on the search information.

The BLS algorithm for HSP (Algorithm 1) starts from an initial solution
S given by the Initializing procedure and then uses the best-improvement
descent LocalSearch procedure to attain a local optimum. At this point, BLS

Breakout Local Search for Heaviest Subgraph Problem 5

tries to escape from the current optimum by setting the jump magnitude L
to an appropriate value and choosing a suitable perturbation type T of a cer-
tain intensity, where L and T are determined by DetermineJumpM agnitude
and DeterminePerturbationType, respectively, based on the search history. The
perturbed solution becomes the new starting point for the next search round of
the algorithm. This process is repeated until the stopping condition (e.g., time
limit, maximum number of iterations...) is met.

2.2 Initial Solution

For a given graph G(V, E) and an integer k, a candidate solution S is represented
by a vector of length n, S = {x1, 9, ..., 2, }, where 2, =1 (1 < v < n) if vertex
v is among the k selected vertices in the current solution; x,, = 0 otherwise.

For each vertex v, the total weight of the edges from v to all the selected
vertices is recorded in o, = Zue{ie\/\xi=l} Wy, Where w,,,, denotes the weight of
edge joining vertices v and u. The vector « is created when constructing an initial
solution and is updated each time a move is performed. We get an initial solution
of reasonable quality using the drop operator. We start by setting x, = 1 for
v =1,2,...,n and compute the «, value for each vertex v. Then we iteratively
drop (n — k) vertices to obtain a solution with k selected vertices, each drop
involving the vertex with the smallest « value. We then update the a vector in
constant time.

2.3 Local Search

To move from one solution S to another in the search space, BLS uses the popular
move operator Swap(v,u), which exchanges a selected vertex v in the solution
(z, = 1) against a non-selected vertex u (2, = 0). Let S & Swap(v,u) denote
the neighboring solution obtained by applying Swap(v,u) to solution S, then
the corresponding neighborhood can be defined as N(S) = {S @ Swap(v,u) :
Ty = Ly = 0,1 < v,u < n}. We use Gy = Qy — @y — Wy, t0 compute the
move gain, i.e., the change in the objective function value if vertex v is replaced
by w in the solution. Each step of the local search with the best improvement
strategy selects, among all neighboring solutions in N(S), the one with the best
(largest) move gain Jyy,.

2.4 Adaptive Perturbation

Jump Magnitude. The basic idea of BLS adaptive perturbation is to increase
the number of perturbation moves (jump magnitude L) to redirect the search
to a new and sufficiently distant area when the search seems to have stalled,
as shown in Algorithm 2. The number of perturbation moves is usually set to a
small value L,,;, at the beginning of the algorithm or when a new local optimum
is found. If L is not large enough to escape the basin of attraction of the current
local optimum, L is increased. Otherwise, it is reduced to its initial value L,,;p.
If the best solution is not improved for M successive search rounds, the jump
magnitude is set to a large number L,,,. to allow for strong perturbations.

6 H. Zheng and J.-K. Hao
Algorithm 2. DetermineJumpMagnitude(L, S, w, prev)

1: Input: Current jump magnitude L, local optimum S, history information w, prev
2: Output: The jump magnitude L for the next perturbation
3: if w > M1 then

4 L — Lpaz

5: w0

6: else if f(S) = prev then

T L—L+1

8: else

10: end if

11: return L
Algorithm 3. DeterminePerturbationType(S, w)

1:

Input: Current local optimum S, constant in (0,1) @, counter of successive non-
improving search rounds w

: Output: The perturbation type T'

Determine probability P of directed perturbation considering w

With probability P, T' < DirectedPerturbation

With probability (1 — P) - Q, T < RecencyBasedPerturbation

: With probability (1 — P) - (1 —Q), T < RandomPerturbation

: return T

Three Types of Perturbation Moves. To introduce different perturbation
intensities, the BLS algorithm adopts three types of perturbations.

Directed Perturbation. The directed perturbation applies a selection rule sim-
ilar to tabu search, which favors swap moves that cause the least decrease in
the objective value, with the constraint that the moves are not forbidden at
the current search stage. A forbidden move involves a vertex v such that v
has been removed from the solution during the last «y iterations (tabu tenure)
(v takes a random value from a given range related to k).

Recency Perturbation. 1t relies only on the historical information stored in a
vector H that counts the number of times each vertex has been moved during
the search. The recency perturbation focuses on the least recently moved
vertices, regardless of the objective degradation of the perturbation moves
performed.

Random Perturbation. The random perturbation introduces the greatest
degree of diversification. It selects the two vertices to be swapped uniformly
at random regardless of the objective degradation of the perturbation move.

These three types of perturbations are selected with different probabilities

depending on the stage of the search (as shown in Algorithm 3). The number

w

of successive non-improving search rounds is used to determine the current

search state, which is reset to zero each time the best solution is improved or
when w reaches the maximum bound. Precisely, when w is small, the search can

Breakout Local Search for Heaviest Subgraph Problem 7

go back to the basin of attraction of the current local optimum solution. To
avoid this, the directed perturbation is applied with a higher probability. If an
increasing w fails to help the algorithm to escape from the current search region,
BLS applies the Recency-based perturbation or the Random perturbation to
introduce a strong degree of diversification. According to [1], the probability
P of applying the directed perturbation is determined by P = e~“/M! Given
P, the probability of applying the recency-based perturbation and the random
perturbation is (1 — P) - @ and (1 — P) - (1 — Q) with the constant Q in (0, 1).

3 Experimental Results

3.1 Test Instances

We used two sets of 129 instances generated from 43 random graphs according
to [3] with integer edge weights uniformly taken in the range [100...1000].

— SET I (81 instances). This set contains 81 instances generated from 27 graphs
with |V| = 1000 vertices, including 16 sparse graphs with an average vertex
degree of 10 to 40, incremented by 2, and 11 dense graphs with an average
vertex degree of 200 to 400, incremented by 20. k is set to 300, 400, 500, giving
81 instances (27 graphs x 3 k values).

— SET II (48 instances). This set has 16 random sparse graphs with |V| = 3000
vertices and an average vertex degree of 10 to 40. For each graph, k is set to
900, 1200, 1500, giving a total of 16 x 3 = 48 instances.

3.2 Results

We ran our algorithm and the two best-performing algorithms BVNS [3] and
OVNS [7] to solve each instance 5 times (3600 s per run). We also ran the Branch
and Bound (BB) algorithm of the CPLEX solver once on each instance with a
cut-off time of 3600s. Table 1 summarizes the comparison results between BLS
and the reference algorithms. #win, #ties, and #losses respectively denote
the number of instances where our BLS algorithm achieves better, equal and
worse values compared to the reference algorithms in terms of the best objective
values. We also give the deviation dev of each algorithm’s average objective
value f®9 from the best objective value f* found by all algorithms, defined as
%dev = (f* — f*9)/f*. The results show that BLS always achieves equal or
better results compared to BVNS and OVNS, with a clear dominance on sparse
graphs. BLS outperforms BVNS on 102 out of the 129 instances, and its results
are better than those of OVNS on 87 instances, resulting in the smallest average
deviation of 0.02% over all instances against 12.44% for BB, 0.16% for BVNS
and 0.11% for OVNS. To check whether the proposed algorithm is statistically
better than the reference algorithms, we applied the Wilcoxon signed-rank test
with a significance level of 0.05 to the best results of the compared algorithms.
The small p-value (< 0.05) confirms that the difference between the results of
BLS and those of each reference algorithm is statistically significant.

8 H. Zheng and J.-K. Hao

Table 1. Comparison between BLS and the reference algorithms BB, BVNS and OVNS

Type k BLS vs BVNS [3] BLS vs OVNS [7] Jdev
H#win | #ties | #losses | p-value | #win | #ties | #losses | p-value |BB | BVNS| OVNS | BLS
SET I - sparse | 300 |14 2 0 - 11 5 0 - 6.27 |0.24 0.12 0.01
400 |15 1 0 - 13 3 0 - 3.15 10.13 0.08 0.01
500 |15 1 0 13 3 0 1.65 [0.08 |0.05 |0.00
SET I - dense |300 |2 9 0 - 0 11 0 - 18.1710.05 0.01 0.00
400 3 0 8 0 13.560.02 |0.01 |0.01
500 |0 11 0 — 10 0 — 10.18 | 0.01 0.00 0.00
SET II - sparse | 900 |16 0 0 14 2 0 26.7110.53 [0.34]0.07
1200 | 16 0 0 — 16 0 0 — 18.950.22 0.26 0.04
1500 | 16 0 0 - 16 0 0 - 13.29/0.12 0.16 0.02
Total 102 |27 0 1.85e—18 | 87 42 0 2.48e—15
Average 12.4410.16 |0.11 0.02

4 Conclusion

A heuristic approach based on breakout local search is developed to solve the NP-
hard heaviest k-subgraph problem. The proposed method is characterized by its
informed perturbation mechanism, which adaptively chooses between directed,
recency-based, and random perturbations to introduce an appropriate degree of
diversification at different search stages. Computational results on different types
of instances demonstrate the effectiveness of the proposed algorithm. However,
in some cases it is still time consuming for the algorithm to obtain high quality
solutions. Additional strategies in combination with learning techniques can be
explored to improve the method.

References

1. Benlic, U., Hao, J.K.: Breakout local search for the quadratic assignment problem.
Appl. Math. Comput. 219(9), 48004815 (2013)

2. Benlic, U., Hao, J.K.: Breakout local search for the vertex separator problem. In:
Proceedings of the Twenty-Third International Joint Conference on Artificial Intel-
ligence, pp. 461-467. AAAT Press (2013)

3. Brimberg, J., Mladenovi¢, N., Urosevi¢, D., Ngai, E.: Variable neighborhood search
for the heaviest k-subgraph. Comput. Oper. Res. 36(11), 2885-2891 (2009)

4. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discret. Appl.
Math. 9(1), 27-39 (1984)

5. Letsios, M., Balalau, O.D., Danisch, M., Orsini, E., Sozio, M.: Finding heaviest k-
subgraphs and events in social media. In: 2016 IEEE 16th International Conference
on Data Mining Workshops, pp. 113-120. IEEE (2016)

6. Macambira, E.M.: An application of tabu search heuristic for the maximum edge-
weighted subgraph problem. Ann. Oper. Res. 117, 175-190 (2002)

7. Saarinen, V.P., Chen, T.H.Y., Kivela, M.: OVNS: opportunistic variable neigh-
borhood search for heaviest subgraph problem in social networks. arXiv preprint
arXiv:2305.19729 (2023)

http://arxiv.org/abs/2305.19729

®

Check for
updates

A Biased Random Key Genetic
Algorithm for Solving the a-Neighbor
p-Center Problem

Sergio Pérez-Pel6®)@®, Jests Sénchez-Oro®, and Abraham Duarte

Universidad Rey Juan Carlos, 28933 Moéstoles, Madrid, Spain
{sergio.perez.pelo, jesus.sanchezoro,abraham.duarte}@urjc.es
https://grafo.etsii.urjc.es/en/

Abstract. In this paper, a Biased Random Key Genetic Algorithm is
proposed to solve the a-neighbor p-center problem. A decoder and a
local search procedure are developed obtaining competitive solutions for
the problem. The objective of the ANPC is to locate p facilities serving
demand points and assign a number « of facilities to each demand point.
The objective function is evaluated as the maximum distance to the
farthest facility assigned to each client, and the goal is to minimize this
maximum distance. The proposed algorithm is compared with the best
method found in the literature. The performance of the algorithm is
evaluated over a large set of instances showing the robustness of the
proposal.

Keywords: BRKGA - Metaheuristics - Facility Location

1 Introduction

Facility Location Problems (FLP) [1] are a set of problems in which it is required
to locate a set of facilities in order to serve a set of demand points. This family
of problems has application in different real-life scenarios, such as humanitarian
emergencies, business decisions, engineering... Depending on the objective func-
tions defined and the constraints considered there are different variants of the
problem: capacitated [5] and uncapacitated [2], etc.

In this work, we focus on solving the a-neighbor p-center problem (ANPC).
In this variant, unlike the classical approach, a client is not assigned to a single
facility but to « facilities. This approach focuses on providing a robust failover
solution so that if the nearest facility assigned to a customer is not available to
meet its demand, the customer can obtain the same service from another facility
that is available. The availability of the facilities is assumed to be information
known a prior: to the client, so the objective is to minimize the maximum

This work has been partially supported by the “Ministerio de Ciencia e Innovacién”
under grant ref. PID2021-1257090A-C22 and PI1D2021-126605NB-100.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 9-14, 2024.
https://doi.org/10.1007/978-3-031-62912-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_2&domain=pdf
http://orcid.org/0000-0002-1915-4160
http://orcid.org/0000-0003-1702-4941
http://orcid.org/0000-0002-4532-3124
https://doi.org/10.1007/978-3-031-62912-9_2

10 S. Pérez-Pel6 et al.

distance a given customer must travel in the worst-case scenario, i.e. when only
one facility is available.

In this work, the problem is tackled from a discrete point of view. It can be
defined as follows: let K be a set of points in a plane with |K| = n; d(a,b) the
distance between points a and b, where a,b € K; and p the number of facilities
that must be opened, with 1 < p < |K]|. It is important to note that, in this
variant, all points in the set K can be both facilities and demand points. The
goal of the ANPC is to select a set Z C K with exactly p points representing the
open facilities and assign « facilities to each client, i.e. those points in K that
have not been selected as facilities (K \ Z), minimizing the maximum distance
between each client and its assigned ath facility. In mathematical terms, the
value of the objective function assigned to a client can be defined as:

a-distance(a, Z) = mingez{mazycsd(a,b)} (1)
where S represents any subset of Z of size a. Therefore, the ANPC objective
function is defined as:

OF(Z, K) = maz ¢\ za-distance(a, Z) (2)
The objective in ANPC is to minimize the defined objective function. More

formally:

minzCK OF(Z, K) (3)
|Z]|=p

Figure1 represents two different feasible solutions Z for the ANPC. In this
case, there are 6 points and the values p = 3 and o = 2 are considered.

y y
& s & s
5 5
4 4
3 3
2 o 2 «
5 1 & & 1 &
65 @321 133 45 654321123 456 x
-2 -2
-3 -3
-4 -4
-5 @& -s{ &
-6 -6
(a) Solution Z; = {C, D, E} (b) Solution Z = {A, D, E}

Fig. 1. Two example solutions for an instance with |K| =6, p =3 and o = 2.

A BRKGA for Solving the a-Neighbor p-Center Problem 11

In these figures, the selected facilities are represented by a red circle and the
clients by a green circle. In Fig. 1la the solution Z; = {C, D, E} is represented,
obtaining a value of the objective function OF(Z;,K) = 7.21. This value is
given by the distance between facility A and facility C, since node A has been
assigned to facilities C' and F and C' is the second closest facility to node A. The
same reasoning is followed to calculate the OF value of Z5, depicted in Fig. 1b:
the value obtained is OF(Z3, K) = 7.62, and it is extracted from the distance
between the client B and its second closest assigned facility: D. Therefore, Z; is
better than Z in terms of the objective function, since OF(Z, K) < OF(Z,, K).
To the best of our knowledge the best method found in the literature to solve the
ANPC is a metaheuristic that combines Greedy Randomized Adaptive Search
Procedure with Strategic Oscillation [7].

2 Biased Random Key Genetic Algorithm

In this work, a Biased Random Key Genetic Algorithm (BRKGA) [3] is pro-
posed to solve the ANPC. BRKGA is a metaheuristic algorithm that is based on
the behavior of classical genetic algorithms: the chromosomes representing the
solutions are encoded in some way; these chromosomes compose a population
and are then combined in a process called crossover, generating new members in
the population. In the case of BRKGA, chromosomes are encoded by vectors of
real numbers in the interval [0, 1]. These numbers are commonly referred to as
alleles, and represent the random keys present in name of the metaheuristic. In
order to compose a solution to the problem being solved, the chromosomes must
be translated into the context of the solution in a decoding phase that translates
an allele into an element of the solution under construction.

The BRKGA starts from a population of size ¢. This initial population is
composed by ¢ chromosomes and a small group of ¢, of them are selected as
elite individuals, which are the best solutions of the population. The evolving
population is produced using an elitist strategy. This means that the ¢, elements
selected as the elite set remain unchanged in the next generation. To avoid
getting stuck at local optima, genetic algorithms introduce new elements in the
population, known as mutants. In BRKGA, these mutants are introduced into
the population in the same way that the initial members of the population were
generated. A number of ¢, mutants is introduced in the population. Finally, to
reach the ¢ elements that must compose the population, ¢t — ¢, — t,, elements
are generated by the crossover technique. This mechanism consist of selecting
elements from one of the elite solutions and elements from one of the non-elite
ones. To decide which element of the solution will be introduced in the new
chromosome, a random choice is made. If the random value generated is greater
than or equal to set value known as crossover or inheritance probability, then
the allele from the elite solution is selected to be part of the chromosome under
construction. Otherwise the allele from the non-elite chromosome is selected.
These steps are repeated until the number of generations is reached, returning
the best solution found during the execution of the algorithm.

12 S. Pérez-Pel6 et al.

In this work, each position in the vector that makes up a chromosome rep-
resents the node with the id equal to this position. This codification allows the
simplification of the decoding phase, which is described in Sect.2.1.

Finally, in order to intensify the search, the solutions belonging to the elite set
at the end of all the generations established are subjected to a local improvement
procedure, consisting of a local search, returning the best solution found after
executing this procedure to all the solutions on which it was applied. This local
search procedure is defined in Sect. 2.2

As can be seen, different parameters must be set here: initial population
size, percentage of elements t., percentage of elements t,, and the crossover
probability p.. In Sect.3 it is explained how all these parameters have been
adjusted.

2.1 Decoder

To translate the information encoded in the chromosomes, it is necessary to
define a method to convert the allele values into elements of the solution of
the problem being solved. It is important to design a computationally efficient
decoding phase, since it is one of the most repeated processes during the execu-
tion of the algorithm. With this goal in mind, the decoder proposed in this work
is straightforward: the alleles of the chromosome being decoded are sorted in a
descending order with respect to their associated random value and the first p
elements of the vector are selected as open facilities in the solution Z being con-
structed. By following this decoding strategy, not only a fast decoding process
is obtained, but also a highly diverse population, which will potentially lead to
better results, since that the exploration of the search space is broader.

2.2 Local Improvement

Once a diverse population is obtained, a local improvement phase is executed
with the objective of finding local optima in the explored neighborhoods. In this
work, a local search procedure is proposed. Let us first define the movement that
generates the explored neighborhood as:

Swap(Z,a,b) — Z U{b}\ {a} (4)

where @ € Z and b ¢ Z, it is, a represents an open facility while b represents a
demand point.

This movement is traditionally known as swap movement. It consists of
removing a facility from one point and placing it at another point that does
not hold a facility in the current solution. Given this definition, the explored
neighborhood for a given solution Z is that made up of all the solutions that can
be reached by performing a swap movement. It is clear that the exploration of
this neighborhood is quite time-consuming. In order to reduce the computational
cost associated with it, in this work we reduce the number of facilities and clients
that are swapped. To perform this reduction in an intelligent way, the facilities

A BRKGA for Solving the a-Neighbor p-Center Problem 13

that are closed are only those that represent the ath closest facility to some
client. For each facility, only those clients whose distance to the facility is less
than that of its ath closest client are candidates to participate in the movement.
These decisions make it possible to considerably reduce the explored region of
the search space. Finally, this neighborhood is explored following a classical first
improvement strategy.

3 Experiments and Results

The experiments performed in this work are devoted to test the actual state of
the proposal in terms of solution quality and computing time. To perform the
experimentation, a subset of 39 instances derived from the TSPLIB [6] has been
used. More specifically, the set of instances used is composed of a subset of the
instances used in [7]. The experiments have been executed on a machine with
an AMD Ryzen 5 3600 (2.2 GHz) CPU with 16 GB RAM. All algorithms have
been implemented using Java 17. The a-values considered are 1, 2 and 3 for
the same subset of instances. The parameters of the algorithms have been set
automatically using the irace package [4]. In this case, the population size has a
fixed value of 100 elements, while the percentages t. and t,, as well as the prob-
ability p. are adjusted by irace. The values tested during the configuration are
those in the ranges proposed by the authors of the metaheuristic in [3]. Table 1
summarizes the obtained results with the following information: « indicates the
a-value; Algorithm includes the name of the algorithm under comparison; Avg.
contains the average of the objective function value obtained by each algorithm
for the evaluated instance set; Time (s) shows the average computing time, in
seconds, required by each algorithm to find a solution; # Best reports the num-
ber of times each algorithm has found the best value obtained in the experiment;
finally, Dev (%) reports the percentage deviation obtained by an algorithm when
it is not able to obtain the best value. All the algorithms executed in the exper-
iment have been time-limited to 1800s, as it has been done in [7]. After running
irace, the best algorithm settings provided are ¢, = 0.17, t,,, = 0.11 p. = 0.79.

Table 1. Table results for the considered a-values.

a | Algorithm | Avg Time (s) | # Best | Dev (%)

1 |BRKGA | 698.52 |720.92 4 9.34%
SO 604.93 |301.29 13 0.00%

2 | BRKGA |1043.71|615.60 5 7.07%
SO 995.42 | 382.08 10 3.85%

3 |BRKGA | 1314.27 530.41 6 5.10%
SO 1211.17 | 414.33 7 2.80%

14 S. Pérez-Pel6 et al.

As it can be derived from the table, the BRKGA algorithm shows a good
performance, but still needs to be improved. In particular, the proposal obtains
results close to the best method found in the literature, but it is still far from
emerging as the state-of-the-art method.

It interesting to note that, the larger the « value, the better the performance
of the algorithm both in terms of objective function value and computational
time. This suggests that new decoders focused on meeting the requirements
of lower alpha values could perform better, reducing the number of iterations
required by the local search procedure to reach a local optimum.

4 Conclusions and Future Work

In this work, a novel approach based on BRKGA is proposed for solving the a-
neighbor p-Center problem. This approach proposes a decoder and a local search
method. The experimental phase shows that the algorithm provides promis-
ing quality and computational time performance. However, it still needs to be
improved to reach the best method found in the literature results. As future
work, new decoders and improvement methods can be proposed. In addition a
parallel version of the algorithm could provide better results in less computing
time, taking advantage of the nowadays processors multi-thread features and
performance.

References

1. Celik Turkoglu, D., Erol Genevois, M.: A comparative survey of service facility
location problems. Ann. Oper. Res. 292, 399-468 (2020)

2. Gendron, B., Khuong, P.-V., Semet, F.: Models and methods for two-level uncapac-
itated facility location problems. In: Contributions to Combinatorial Optimization
and Applications (2023)

3. Gongalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for com-
binatorial optimization. J. Heuristics 17(5), 487-525 (2011)

4. Lépez-Ibanez, M., et al.: The irace package: iterated racing for automatic algorithm
configuration. Oper. Res. Perspect. 3, 43-58 (2016)

5. Maia, M.R.H., et al.: Metaheuristic techniques for the capacitated facility location
problem with customer incompatibilities. Soft. Comput. 27(8), 46854698 (2023)

6. Reinhelt, G.: TSPLIB: a library of sample instances for the TSP (and related
problems) from various sources and of various types (2014). http://comopt.ifi.
uniheidelberg.de/software/TSPLIB95

7. Sachez-Oro, J., et al.: RASP with strategic oscillation for the a-neighbor p-center
problem. Eur. J. Oper. Res. 303(1), 143-58 (2022)

http://comopt.ifi.uniheidelberg.de/software/TSPLIB95
http://comopt.ifi.uniheidelberg.de/software/TSPLIB95

®

Check for
updates

A Continuous-GRASP Random-Key
Optimizer

Antonio A. Chaves'®, Mauricio G. C. Resende?®)®,
and Ricardo M. A. Silva3

! Departamento de Ciéncia e Tecnologia, Universidade Federal de Sao Paulo,
Séao José dos Campos, SP, Brazil
chavesQunifesp.br
2 Industrial and Systems Engineering, University of Washington, Seattle, WA, USA
mgcr@uw.edu, mgcr@berkeley.edu
3 Centro de Informética, Universidade Federal de Pernambuco, Recife, PE, Brazil
rmas@cin.ufpe.br
http://mauricio.resende.info

Abstract. This paper introduces a problem-independent GRASP meta-
heuristic for combinatorial optimization implemented as a random-key
optimizer (RKO). CGRASP, or continuous GRASP, is an extension of the
GRASP metaheuristic for optimization of a general objective function in
the continuous unit hypercube. The novel approach extends CGRASP
using random keys for encoding solutions of the optimization problem in
the unit hypercube and a decoder for evaluating encoded solutions. This
random-key GRASP combines a universal optimizer component with a
specific decoder for each problem. As a demonstration, it was tested on
five NP-hard problems: Traveling salesman problem (TSP); Tree hub
location problem in graphs (THLP); Steiner triple set covering problem
(STCP); Node capacitated graph partitioning problem (NCGPP); and
Job sequencing and tool switching problem (SSP).

Keywords: Continuous-GRASP - Random-Key Optimizer -
Combinatorial Optimization

1 Introduction

In this paper, a problem-independent GRASP metaheuristic is proposed using
the random-key optimizer (RKO) paradigm. GRASP [3,4] (greedy randomized
adaptive search procedure) is a metaheuristic for combinatorial optimization
which repeatedly applies a semi-greedy construction procedure followed by a
local search procedure. The best solution found over all iterations is returned as
the solution of the GRASP. Continuous GRASP (CGRASP) [6] is an extension
of GRASP for continuous optimization in the unit hypercube. A random-key
optimizer (RKO) [12] makes use of a vector of random keys to encode a solu-
tion to a combinatorial optimization problem. It uses a decoder to evaluate
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 15-20, 2024.
https://doi.org/10.1007/978-3-031-62912-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_3&domain=pdf
http://orcid.org/0000-0001-5767-6798
http://orcid.org/0000-0001-7462-6207
https://doi.org/10.1007/978-3-031-62912-9_3

16 A. A. Chaves et al.

a solution encoded by the vector of random keys. A random-key GRASP is
a CGRASP where points in the unit hypercube are evaluated by means of a
decoder. We describe a random key GRASP made up of a problem-independent
component and a problem-dependent decoder. As a proof of concept, three vari-
ants of the random-key GRASP are tested on five NP-hard combinatorial opti-
mization problems: traveling salesman problem, tree of hubs location problem,
Steiner triple covering problem, node capacitated graph partitioning problem,
and job sequencing and tool switching problem.

2 Random-Key Optimizer

Random-key genetic algorithms (RKGA) were first introduced by Bean [2].
In a RKGA, solutions are encoded as vectors of random keys, i.e., randomly-
generated real numbers in the interval (0,1]. A population of p random-key
vectors is evolved over a number of generations. The initial population con-
sists of randomly generated n-vectors. At each iteration, each random-key vec-
tor is decoded and evaluated. The decoder is a deterministic algorithm, usually
a heuristic, that takes as input a vector of random keys and returns a feasi-
ble solution of the problem being solved along the cost of the solution. Biased
random-key genetic algorithms [5] are an extension of RKGA where a bias is
applied in the selection of one of the parents as well as in the mating process.

Both RKGA and BRKGA are problem-independent algorithms in the sense
that there is a clear separation between the solver and the problem being solved
where the connection of the solver with the problem is done by way of a decoder.
For each type of problem to be solved, a new decoder is implemented to serve as
the link between the solver and the problem. These algorithms are example of
Random-Key Optimizers (RKO) [12]. An RKO is an optimization heuristic algo-
rithm that solves a discrete optimization problem indirectly in the continuous
unit n-dimensional hypercube H,,. For each solution x € H,, a decoder D maps x
to the solution D(z) in the solution space of the discrete optimization problem.
With such a separation of solver and decoder, one needs only to implement the
solver once and then it can be reused to solve a number of different problems by
simply devising a decoder for that problem. Examples of APIs for BRKGA are
Toso and Resende [14], Andrade et al. [1], and Oliveira et al. [10].

3 Random-Key GRASP

We now introduce Random-Key GRASP, or RK-GRASP, a problem-independent
GRASP which solves discrete optimization problems through continuous opti-
mization and a decoder. An advantage of using this GRASP is that the user only
needs to implement a decoder since the algorithm-specific components of GRASP
are implemented as an Application Programming Interface or API. When using
a standard GRASP the user needs to tailor both the semi-greedy construction
and the local search for the problem on hand.

GRASP RKO 17

3.1 GRASP

The metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP) [11]
was introduced by Feo and Resende [3,4]. A GRASP is a multi-start procedure
in which at each iteration a semi-greedy solution is constructed and local search
is applied to this solution. The best locally optimal solution visited over all
iterations is returned as the GRASP solution.

3.2 Continuous GRASP

Continuous GRASP, or simply C-GRASP, is an extension of GRASP for solving
continuous optimization problems subject to box or simple bounding constraints
[6,7],
min{f(x) | L, <2z <Up,},
rER™

where L,, and U, are vectors of lower and upper bounds on z, i.e. L, (i) <
x; < Up(i), for i = 1,...,n and f(x) is the cost of solution x. Cost f(z)
can be evaluated in a multitude of ways, e.g. analytically, through simulation,
via a mathematical program, or with a decoder. The objective is to find a
global optimum. Like GRASP, C-GRASP is a multi-start procedure in which
each iteration consists of a construction, or diversification, phase followed by a
local search, or intensification, phase. C-GRASP evaluates points on a dynamic
grid, with grid size initially set to h = hg. Each construction phase starts at
the current solution z (initially a random point © € R™ | L, < z < U,).
To build an RCL C-GRASP performs a line search on f(z) in each direction
e; = (0,0,...,0,1,0,...,0,0), fori = 1,2,...,n, where the only nonzero is a 1 in
position i. For ¢ = 1,2, ..., n, the line search is limited to evaluating f(z+e;-h-k)
for all values of k € {0,1,—1,2,—2,...} such that 0 < z; +¢; - h-k < 1. The
result of line search i is z; with cost g; = f(z;). Let g, = min{g; | i =1,...,n}
and gy = max{g; | i =1,...,n}. The best line search solutions, i.e. those with
9i < (1 —a) - gm+ a-gpy for some a € [0,1] are placed in a RCL and one is
selected at random to be to be fixed in x with x; = z;. Direction e; is flagged
to no longer be explored in this construction iteration. This is repeated until a
solution is constructed.

Once a semi-greedy solution xz* has been constructed, a local search or inten-
sification phase, is applied around z*. Several implementations of local search
have been described. Suppose the current semi-greedy solution is Z. In the first
paper, Hirsch et al. [6] suggest examining a given maximum numbers of points
MaxDirToTry of the form Z + h - {—1,0,1}"™. This local search examines only
grid points. Hirsch, Pardalos and Resende [7] sample a user-defined number of
feasible grid points and projects each one of them onto the surface of the hyper-
sphere of radius h, centered at . Each point is evaluated as it is projected and a
first-improvement policy is applied. If an improving point is found, then Z is set
to this improving solution. If no improving solution is found, then the grid-size
is reduced by a specified factor and the local search continues. See [6,7,13] for
details.

18 A. A. Chaves et al.

3.3 Random-Key-GRASP

We consider the Random-Key Optimization (RKO) Problem of the type
min{ f(z) | © € H,},

where H,, is the unit hypercube in R™ and f(x) is the cost value returned by
a decoder when given as input z € H,,. Random-Key-GRASP, or RK-GRASP
applies the CGRASP algorithm of Sect.3.2 to solve the above-defined RKO
Problem. The first paper to extend the concept of RKO to algorithmic frame-
works other than RKGA and BRKGA was Schuetz et al. [12] where in addition
to a BRKGA for robot motion planning the authors propose a RKO using dual
annealing, an extension of generalized simulated annealing [15,16]. Recently,
RKO has been implemented in simulated annealing, iterated local search, and
variable neighborhood search for the tree hub location problem [9].

The main contribution of this paper is a problem-independent GRASP for
combinatorial optimization. In the classical GRASP, a specially tailored semi-
greedy algorithm as well as a custom-made local search were needed for its
implementation. For any new problem both algorithmic components had to be
developed and tested in the implementation phase of GRASP. CGRASP was
limited to continuous optimization on the unite hypercube and therefore could
not be applied directly to combinatorial optimization problems.

With RK-GRASP, on the other hand, new construction and local search algo-
rithms are not needed. Rather, the practitioner only needs to develop a decoder
for the problem. Decoders are often simple to create, as the vast literature [8] of
Biased Random-Key Genetic Algorithms (BRKGAS) can attest to.

4 Experimental Results

To test the idea presented in this paper we propose three implementations of
RK-GRASP, each using the same greedy randomized construction procedure but
a different local improvement procedure. Pseudo-codes of the algorithms imple-
mented in this paper as well as all instances and experimental results are given
at https://github.com/antoniochaves19/RK-GRASP. The three local improve-
ment procedures implemented are Grid search, Nelder-Mead search, and Random
variable neighborhood descent.

These three variants of RK-GRASP are applied to five combinatorial opti-
mization problems: Traveling salesman problem (TSP); Tree hub location prob-
lem in graphs (THLP); Steiner triple set covering problem (STCP); Node capaci-
tated graph partitioning problem (NCGPP); and Job sequencing and tool switch-
ing problem (SSP).

The RK-GRASP was coded in C++ and compiled with GCC. The computer
used in all experiments was a Dual Xenon Silver 4114 20c/40t 2.2 Ghz processor
with 96 GB of DDR4 RAM and running CentOS 8.0 x64. We tested 20 instances
of the TSP, 36 instances of the THLP, five instances of the STCP, 20 instances
of the NCGPP, and 40 instances of the SSP. The RK-GRASP was run 5 times

https://github.com/antoniochaves19/RK-GRASP

GRASP RKO 19

for each instance. A time limit as a stopping criterion was selected proportional
to the instance size.

The three versions of the RK-GRASP generated effective solutions for the
problems on hand. Notably, no local improvement technique was dominant
regarding solution quality. The RK-GRASP variant with Grid Search emerged
as the most effective, delivering superior solutions for the STCP, SSP, and large-
scale instances of the TSP. Meanwhile, RK-GRASP with Nelder Mead search
found good solutions for TSP, STCP, and NCGPP. However, it exhibited results
with a poor average percentage deviation in the case of THLP. In contrast,
the RK-GRASP version employing RVND demonstrated noteworthy results for
THLP, NCGPP, and MTSP, outperforming state-of-the-art methods, particu-
larly in the case of THLP. In summary, all versions of RK-GRASP demonstrated
efficiency in both solution quality and computational time, showing their effec-
tiveness across diverse problem instances.

References

1. Andrade, C.E., Toso, R.F., Gongalves, J.F., Resende, M.G.: The multi-parent
biased random-key genetic algorithm with implicit path-relinking and its real-world
applications. Eur. J. Oper. Res. 289(1), 17-30 (2021)

2. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154-160 (1994)

3. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set
covering problem. Oper. Res. Lett. 8, 6771 (1989)

4. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Global
Optim. 6(1), 109-133 (1995)

5. Gongalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for com-
binatorial optimization. J. Heurist. 17(1), 487-525 (2011)

6. Hirsch, M., Meneses, C., Pardalos, P., Resende, M.: Global optimization by con-
tinuous GRASP. Optim. Lett. 1, 201-212 (2007)

7. Hirsch, M., Pardalos, P., Resende, M.: Speeding up continuous GRASP. Eur. J.
Oper. Res. 205, 507-521 (2010)

8. Londe, M.A., Pessoa, L.S., Andrade, C.E., Resende, M.G.C.: Biased random-key
genetic algorithms: a review. Technical report 2312.00961, arXiv (2023)

9. Mangussi, A.D., et al.: Meta-heuristicas via chaves aleatérias aplicadas ao
problema de localizagdo de hubs em é&rvore. In: ANAIS DO SIMPOSIO
BRASILEIRO DE PESQUISA OPERACIONAL. Galod, Sao José dos Cam-
pos (2023). https://proceedings.science/sbpo-2023/trabalhos/meta-heuristicas-
via-chaves-aleatorias-aplicadas-ao-problema-de-localizacao-de-h?lang=pt-br

10. Oliveira, B.B., Carravilla, M.A., Oliveira, J.F., Resende, M.G.C.: A C++ appli-
cation programming interface for co-evolutionary biased random-key genetic algo-
rithms for solution and scenario generation. Optim. Methods Softw. 37(3), 1065
1086 (2022)

11. Resende, M.G.C., Ribeiro, C.C.: Optimization by GRASP: Greedy Randomized
Adaptive Search Procedures. Springer, New York (2016). https://doi.org/10.1007/
978-1-4939-6530-4

12. Schuetz, M., et al.: Optimization of robot trajectory planning with nature-inspired
and hybrid quantum algorithms. Phys. Rev. Appl. 18(5) (2022)

https://proceedings.science/sbpo-2023/trabalhos/meta-heuristicas-via-chaves-aleatorias-aplicadas-ao-problema-de-localizacao-de-h?lang=pt-br
https://proceedings.science/sbpo-2023/trabalhos/meta-heuristicas-via-chaves-aleatorias-aplicadas-ao-problema-de-localizacao-de-h?lang=pt-br
https://doi.org/10.1007/978-1-4939-6530-4
https://doi.org/10.1007/978-1-4939-6530-4

20

13.

14.

15.

16.

A. A. Chaves et al.

Silva, R.M.A., Resende, M.G.C., Pardalos, P.M., Hirsch, M.J.: A Python/C library
for bound-constrained global optimization with continuous GRASP. Optim. Lett.
7, 967-984 (2013)

Toso, R., Resende, M.: A C++ application programming interface for biased
random-key genetic algorithms. Optim. Methods Softw. 30(1), 81-93 (2015)
Tsallis, C., Stariolo, D.A.: Generalized simulated annealing. Phys. A 233(1), 395—
406 (1996)

Xiang, Y., Sun, D., Fan, W., Gong, X.: Generalized simulated annealing algorithm
and its application to the Thomson model. Phys. Lett. A 233(3), 216-220 (1997)

®

Check for
updates

Adaptive Ant Colony Optimization Using Node
Clustering with Simulated Annealing

Nozomi Kotake®™@®), Rikuto Shibutani®, Kazuma Nakajima®,
Takafumi Matsuura(®, and Takayuki Kimura

Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro,
Minami-Saitama, Saitama 345-8501, Japan
nozomi52317@gmail.com

Abstract. Multiple fields, including transport, and engineering, require find-
ing the shortest route. This problem is known as the traveling salesman prob-
lems (TSP), which is an AN'P-hard combinatorial optimization problems. As the
number of cities increases, finding the shortest path in TSP, considering all
combinations, becomes challenging. The ant colony optimization (ACO) has
been proposed as a solution to TSP. However, the performance of the ACO
heavily depends on its parameters. In addition, finding appropriate settings of
parameters for each problem is time-consuming. To address this, an adaptive
ant colony optimization with node clustering (AACO-NC) has been proposed.
AACO-NC uses both node clustering and effective pheromone evaporation to find
the shorter route. Despite its strength, our preliminary experiments suggest that
the pheromone updates restrict the solution search range. Consequently, finding a
good solution becomes increasingly difficult as the search progresses. Therefore,
we implement the simulated annealing (SA) method to expand the solution search
space and to escape from the local optimum solution. Numerical experiments
demonstrate that the proposed method outperforms the conventional method on a
variety of benchmark problems, yielding a smaller error rate between the optimal
solution and the mean value.

Keywords: Combinatorial optimization * Ant colony optimization - Simulated
annealing

1 Introduction

To address the traveling salesman problems (TSP) [1], an ant colony optimization
(ACO) was introduced [2]. The performance of ACO heavily relies on evaporation
parameter setting for pheromone. However, findings appropriate settings of evaporation
parameters for each problem can be time-consuming. To tackle these issues, an adaptive
ant colony optimization with node clustering (AACO-NC) was proposed [3]. AACO-
NC uses a node clustering technique, which effectively limits the search range of solu-
tion. By combining both node clustering and pheromone trail, this method finds shorter
routes for numerous TSP benchmark problems [3]. However, our preliminary experi-
ments revealed that the rules for updating the pheromone trail can limit problem-solving
performance. This is because the added pheromone amount depends on the improve-
ment of solutions, leading to on a local minimum trap if the local search method signif-
icantly improves the solution. To overcome this, we introduce the simulated annealing

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 21-27, 2024.
https://doi.org/10.1007/978-3-031-62912-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_4&domain=pdf
http://orcid.org/0009-0000-4260-8776
http://orcid.org/0009-0000-8750-7530
http://orcid.org/0009-0009-1999-3173
http://orcid.org/0000-0002-8007-0556
http://orcid.org/0000-0003-0160-6146
https://doi.org/10.1007/978-3-031-62912-9_4

22 N. Kotake et al.

(SA) [4], which allows pheromone updates stochastically based on solution quality,
thereby expanding the solutions space. Additionally, while AACO-NC uses the modi-
fied k-Opt method [5] as a local search method, we use the 2-Opt method [6] to reduce
the computational time. Numeral experiments indicate that our proposed method has
lower error rates between the average value and optimal solution in various TSP bench-
mark problems [7] compared to the conventional AACO-NC method.

2 Adaptive Ant Colony Optimization

Ant colony optimization (ACO) is a technique inspired by natural behaviour of ants [2].
When ants find food in nature, they leave pheromones along their path. They then con-
struct the shortest route based on this pheromone and distance information. ACO has a
high dependence on parameter, leading to proposal of adaptive ant colony optimization
with node clustering (AACO-NC) [3]. The flowchart of AACO-NC is provided below
(Fig. 1).

— S —
¥

Step 1 | Place an ant at random nodes |
v

Step 2 | Construct the route according to Eq.(1) |

3 VES

The local search method is applied to
the best ant solution

Step 4

v
Step 5 | Update pheromones according to Eq.(2) |

v
Step 6 | Evaporating pheromones according to Eq.(3) |

¥ VES

— End —

Fig. 1. The flowchart of the AACO-NC

AACO-NC uses distance and pheromone information to probabilistically determine
the next visit node by using the following equation:

. Mk .
plk— j) = AL V j € Vunyisiteds (1)

i€Vunvisited ’7%‘ ki
where p(k — j) is a probability of an ant at node k selecting node j as the next visit
node, Viuisied 1S @ set of nodes that have not been visited, 7;; is an inverse distance
between node k and j, and 7y is a pheromone trail between node k and j. After all ants
have generated a route, local search methods are applied to the best ant solution. AACO-
NC uses the modified k-Opt method (O(kn?)) as a local search method, where & is the
number of consecutively selected nodes and » is the number of nodes in the problems,
but this study uses the 2-Opt method (0(n?)) to reduce the computational time. After

Adaptive Ant Colony Optimization Using Node Clustering with Simulated Annealing 23

the solution is updated by the local search method, the pheromone is updated for each
route that each ant takes. The updating equation of pheromone is defined as follows:
T,-,:T,-j+6x,»,% Vi,jeV, 2)
Cants
where 7;; is a pheromone trail between node i and node j, x;; is a decision variable
representing a visit between node i and node j in the best solution of the ant set, J is a
pheromone update coefficient, Cyy is the best solution value before applying the local
search method in one iteration, Cyey is the global best solution value after applying
the local search method, and V is a set of all nodes. After the pheromone is renewed,
the pheromone is evaporated for all edges. The equation of pheromone evaporation is
defined as follows:
ty=(-pry Vi jeV, 3)

where p is a value of the evaporation coefficient. In ACO, setting evaporation coefficient,
p, to a constant low value can yield a shorter route. However, this extends the search
time. On the other hand, if p is a constant high value, a solution can be found quickly but
it may not be the short route. AACO-NC involves increasing p at the start of the solution
search and decreasing it nearing a local solution [3]. This strategy, which adjusts p
based on solution quality, allows for a short route and faster solution time. To achieve
this, pheromone coeflicients for AACO-NC is defined as follows:

(pmax - pmin)(H - Hmin)
Hmax - Hmin ’

where pmin and pmax are the lower and upper limits of the evaporation coefficients, H is
the information entropy, defined as follows:

P = Pmin T (4)

n i-1

H=- Z Z pijlogapi, (5)

i=2 j=1

b
NiMgnts

(6)

where p;; is a proportion of ants that transversed the edge between node i and j, E;;
is the number of times ants have transversed the edges between nodes i and j, n is the
total number of nodes, and myy is the total number of ants. In ACO, the pheromone
converges to a specific solution as the search progresses, reducing diversity of ants. If
the termination condition of ACO is set solely to only the maximum number of itera-
tions, finding a good solution may become challenging. Therefore, a method has been
proposed to reduce the search time by terminating the search when the ant diversity is
low. This scheme is defined by the following equation:

pij =

H < Hpin(1 + w), @)

where w is a coefficient of tolerance relative to the lower limit of information entropy
Hyin- The termination condition for AACO-NC in this study is either when the maxi-
mum number of iterations reaches 10000 or when the Eq. (7) is satisfied. In addition,
we define one iteration as the journey from step 1 to step 7.

24 N. Kotake et al.

3 Simulated Annealing

Our preliminary experiments indicate that AACO-NC combined with 2-Opt method
converges solutions rapidly but tend to fall into local solutions just as quickly. As a
result, it loses the diversity, which is the key advantage of ant colony optimization, and
struggles to search for optimal solution. We believe this issue arises because pheromone
updating is only executed on worthwhile solutions. We suggest resolving this issue
by incorporating simulated annealing (SA) [4] that allows pheromone updates even
for stochastically inferior solutions. Permitting pheromone updates for both superior
and inferior solutions broadens the search space for solutions, thereby enhancing the
diversity of ACO. Our SA technique for pheromone update is defined as follows:

Cselect
Tij = Tij + 0xij , (3
! ! ! Cants
Stest (if Chest = Spest 0r exp (2425) > rand[0, 1),
Cselect = . (9)
Crest (otherwise),
Hold - Hnew
AH = 04~ Pnew (10)
Hnew - Hmin
(Cbest - Cants)
AS = ~best — ants) (11)
Cbest
t
AT = , (12)
Tmax

where Cgect 1S a solution value for pheromone update, S pest is the best solution value
after applying local search method in one iteration, rand[0, 1] is a uniformly distributed
random number from O to 1, Hqyy and H,.,, are the information entropy in the previous
and current searches, # is the count of unsuccessful attempts to update the best solution,
max 18 maximum number of iterations. Our method updates the pheromone for the best
solution in one iteration when Cgeject = S best. It also updates the pheromone if the current
solution value after applying local search method slightly worsens the best solution
value.

4 Numerical Experiment

In this study, we used six benchmark problems from TSPLIB [7], eil51, kroA100, d198,
kroA200, rd400, and pcb442. The parameters were setto @ = 1,8 = 1,0 = 1, Mgy =
96, w = 0.002. In addition, pyi, = 0.001 and ppax = 0.1 when n is smaller than 400,
Pmin = 0.02 and pax = 0.5 when n is greater than or equals to 400. We conducted 30
experiments on a personal computer equipped with Apple M1 Ultra, 3.2 GHz CPU, and
64GB RAM. Each method was run on a single thread, and calculated the best solution.
We also calculated the error rate between the average and the best known solution,
and the average real time from the start of the calculation to the end of the calculation.
There exists a discrepancy in performance between the experimental machine in Ref. [3]

Adaptive Ant Colony Optimization Using Node Clustering with Simulated Annealing 25

Table 1. Comparison of conventional and proposed methods

instance | optimal solution | best solution error rate [%] time [s]

conventional | proposed | conventional | proposed | conventional | proposed
eil51 426 426 426 0.18 0.44 2.58 1.80
kroA100 | 21282 21282 21282 0.06 0.01 11.99 4.59
d19s8 15780 15854 15796 1.00 0.28 200.79 222.87
kroA200 | 29368 29382 29368 0.83 0.25 98.93 37.38
rd400 15281 15458 15353 2.72 1.11 256.40 166.69
pcb442 | 50778 51306 51126 1.99 0.83 656.11 284.25

and the one utilized in this study. In this study, we realized a conventional method
parallel with the proposed method. This approach facilitated comprehensive numerical
experiment, allowing for more robust comparison and analysis.

Table 1 illustrates a comparison between two methods: the “conventional” method
using AACO-NC and “proposed” method employing AACO-NC-SA. The conventional
method applied the modified k-Opt method, a local search method, once every ten iter-
ations. Pheromone updates take place on the best solution prior to executing this local
search method. On the other hand, the proposed method utilizes the 2-Opt method,
a local search method used in every iteration. Pheromone updates were performed by
using Eqgs. (8)—(12). The data in Table 1 shows that the proposed method yields a smaller
best solution value than the conventional method for all problems, and a lower error rate
for five problems. This evidence indicate that the proposed method tends to outperform
the conventional methods on numerous benchmark problems. The proposed method
also shows shorter computational time than the conventional method for five problems.
These results validate that the superior performance of the proposed method over the
conventional method in TSP. However, the results from the table alone do not confirm
whether the SA is functioning correctly. Therefore, we used rd400 problem to investi-
gate the information entropy and the solution transition diagrams for the best solution
and the best solution per one iterations.

135 17000
entropy

16800 [
16600 [

16400 |-

entropy

1

16200 |15l

16000 |- _

10 1 Do
15800 |-
95| 4
15600 |-
ol 4

85 15400
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 400 500 600 700 800 900 1000
iteration iteration

Fig. 2. Information entropy per iteration Fig. 3. Solutions per iteration

26 N. Kotake et al.

Figure 2 confirms that the information entropy converges as the solution search pro-
gresses. Figure 3 verifies that the search range is broad in the initial stages and narrows
down as the search progresses. This suggest that the pheromone update for both supe-
rior and inferior solutions in SA is appropriate. Consequently, the information entropy
of the proposed method converges slower than the conventional method, allowing for
more good solutions to be found. It was noted that the error rate of proposed method
improves more significantly for larger problems compared to the conventional method.
This is likely because the solution search space for larger problems is more extensive
than that for smaller ones.

5 Conclusion

This study proposed ant colony optimization with node clustering with simulated
annealing (AACO-NC-SA), and compared it with the conventional AACO-NC method.
Numerical experiments confirm that the proposed method outperforms the conventional
methods. In addition, we observed a large variation of solutions in the early stages
of the solution search, confirming that the SA is moving in the right direction. These
results suggest that the proposed method performs well because the SA extends the
solution search range. In future work, we aim to extend the application of the proposed
method to a range of problems, including the vehicle routing problem (VRP), the capac-
itated vehicle routing problem with time windows problems (CVRPTW), and additional
benchmark problems in TSP. Furthermore, we intend to address larger instances within
the TSP. These applications will be compared with the state of the art methods, such
as the Lin-Kernighan heuristic [8], the artificial bee colony optimization [9], and the
deer hunting optimization [10]. Additionally, a comprehensive analysis will be con-
ducted to elucidate the reasons of underpinning the superior performance of the pro-
posed method.

Acknowledgment. The research of T.K. and T.M. was partially supported by a Grant-in-Aid for
Scientific Research (C) from JSPS (No. 23K04274, 22K04602).

References

1. Jinger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. Handb. Oper. Res.
Manage. Sci. 7, 225-330 (1995)

2. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. Biosys-
tems 43(2), 73-81 (1997)

3. Stodola, P, Otiisal, P., Hasilovd, K.: Adaptive ant colony optimization with node clustering
applied to the travelling salesman problem. Swarm Evol. Comput. 70, 101056 (2022)

4. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science
220(4598), 671-680 (1983)

5. Stodola, P.: Hybrid ant colony optimization algorithm applied to the multi-depot vehicle
routing problem. Nat. Comput. 19(2), 463475 (2020)

6. Englert, M., Roglin, H., Vocking, B.: Worst case and probabilistic analysis of the 2-opt
algorithm for the TSP. Algorithmica 68(1), 190-264 (2014)

7. tsplib95. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. Accessed 29 Jan 2024

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Adaptive Ant Colony Optimization Using Node Clustering with Simulated Annealing 27

10.

. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman prob-

lem. Oper. Res. 21(2), 498-516 (1973)

. Karaboga, D., et al.: An idea based on honey bee swarm for numerical optimization. Tech-

nical report, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engi-
neering Department (2005)

Brammya, G., Praveena, S., Ninu Preetha, N., Ramya, R., Rajakumar, B., Binu, D.: Deer
hunting optimization algorithm: a new nature-inspired meta-heuristic paradigm. Comput. J.
bxy133 (2019)

q

Check for
updates

Job-Shop Scheduling with Robot
Synchronization for Transport Operations

Jean Philippe Gayon, Philippe Lacomme®™, and Amine Oussama

Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne, Clermont-Auvergne-INP,
LIMOS, 63000 Clermont-Ferrand, France
j-philippe.gayon@uca.fr, philippe.lacomme@isima. fr,
Amine.OUSSAMA@doctorant.uca. fr

Abstract. We consider a Job Shop Scheduling Problem with transport (JSPT)
which consists in jointly scheduling machines and robots. In contrast with the
literature, we assume that a transport operation may involve several robots simul-
taneously, which requires resource synchronization over time. We formulate this
problem as a Mixed Integer Linear Programming (MILP) formulation. Then we
propose a GRASP-ELS meta-heuristic and a local search procedure where we
use a Bierwith’s sequence approach to evaluate a solution. In a numerical study,
we have adapted instances from the literature to our problem. The meta-heuristic
competes with the exact resolution providing high quality solution in reduced
computation time, which lead us to consider that both the modeling and local
search are accurate.

Keywords: Job shop - Synchronization - Scheduling - Transportation -
Disjunctive graph - Meta-heuristic - Mixed integer linear programming

1 Introduction

The job-shop scheduling (JSP) problem has received an enormous amount of attention
in the research literature (see [10] for an introduction). The job-shop scheduling problem
with transport (JSPT) consists in jointly scheduling machine operations and transport
operations (see [15] for a survey on this problem). This problem was first studied in FMS
(Flexible Manufacturing System) literature [2, 13, 14] for the first meta-heuristic). This
problem has also been studied as a flow-shop with transport in [4] and as a job-shop
with transport in [5]. Two data sets have been introduced early [6, 13].

The context for this work is the increasing robotization of manufacturing and logistics
processes. New-generation mobile robots can cooperate to handle or transport heavy or
large objects (see e.g. the Mecabotix Company [9]). For example, small loads can be
transported by a single robot, while bulky or heavy loads require the collaboration of
several robots. A review on modular reconfigurable robotics system can be found in
[12].

The originality of our work lies in the assumption that transport operations may
require the simultaneous intervention of several robots, which means that correct syn-
chronization between robots is necessary. Note that synchronization issues appear in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 28-42, 2024.
https://doi.org/10.1007/978-3-031-62912-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_5

Job-Shop Scheduling with Robot Synchronization 29

other problems including the vehicle routing problem (see [3] for a survey) where the
synchronization can involve, for example, vehicles, drivers or medical staff.

2 Problem Description

In this section, we describe the job-shop scheduling problem with transport and
synchronization.

Jobs, Machines and Robots. We consider a set of N jobs 7 = {/1, ..Jy} that have to be
processed on a set of M machines M = {M{, ..My }. The process of transferring a job
from one machine to another is referred to as a transport operation. Transport operations
are performed by a set of NR robots R = {Ry, .., Ryr}. . A transport operation can
be accomplished either by using a single robot (referred to as a single-robot transport
operation), or by employing multiple robots simultaneously (referred to as a multi-robot
transport operation).

Machine Single-robot
operation transplort
operation
\ Ou Orz Oy Ou O3
\ Du Dy =Tuy v, [/
My R €R M; | R.€R { M
On O Oas O O
o M, R.€R [My *
O3 O3, O35
(My | Ry, Ry [M, } R, €R [My
Multi-robot transport
operation that requires
simultaneously
Ry and R;

Fig. 1. Partial representation of the undirected disjunctive graph used to represent a problem of
3 jobs, 3 machines and 3 robots.

Undirected Graph. We illustrate notations in Fig. 1 for a problem with 3 jobs, 3
machines and 3 robots. The conjunctive (solid) arcs represent the ordered sequence of
operations per job. Two machine operations that must be processed on the same machine
are connected by disjunctive edges (dash lines in Fig. 1). To avoid overloading Fig. 1, we
only show the disjunctive edges for machine M;. Two transport operations that must be
processed by the same robot cannot be executed simultaneously and are also connected
by disjunctive edges. For example, transport operations O3y and O»4 have R; and R3 in
common and are therefore linked by a disjunctive edge.

30 J. P. Gayon et al.

Operations. Without loss of generality, we assume that each job J; consists of a sequence
of NO operations denoted O; = (O;1, ..O; no) defining the precedence constraints. The
J-th operation of job J; is denoted by O;;. A machine operation is followed by a transport
operation, which is in turn followed by a machine operation. Hence, operation O;;, when
index j is odd, corresponds to a machine operation, and to a transport operation when
index j is even. Each Job J; consists of M machine operations and M — 1 transport
operations. Hence, the total number of operations is NO = 2M — 1. For example, in
Fig. 1, operations O11,013 and O15 correspond to the machine operations of job J, while
017 and O14 correspond to its transport operations.

Machine Operations. When Oj;; is a machine operation, we denote by M;; the
corresponding machine. For instance, in Fig. 1, we have M1 = M1, M3 = M>.

Transport Operations. When Oj; is a transport operation, it transfers job J; from
machine M; ;| to machine M; ;1. There are two types of transport operations. A trans-
port operation Oj; can either require a single robot R, chosen in the set of robots R, or
it can be multi-robot, requiring a subset R;; C R of at least two robots. In other words,
the execution of multi-robot transport operations requires the simultaneous involvement
of multiple robots (a minimum of two robots). We illustrate these notations with Fig. 1.
Transport operation O1; requires a robot R, chosen in the set of robots R while transport
operation O3; requires simultaneously robots R; and R3.

Processing Times. The processing time of operation Oj; is denoted by D;; for either
a machine or a transport operation. For a machine operation O;;, D;; is simply the
processing time on machine M;;. We also denote by T, the loaded transportation time
from machine s (source) to machine d (destination). It follows that D;; = TMi_j_], Mijii
for a transport operation O;. Finally, we denote by V, the unloaded transportation time
from machine s to machine d. Let illustrate these notations on Fig. 1. Note that, for the
sake of simplicity, we assume that the transportation times 7z and V4 are independent
of the involved robots. Duration D1 represents the processing time of job J; on machine
M. Duration D12 = Ty, M, represents the loaded transportation time of job J; from
machine M; to machine M;. Let us note that duration D3y + Vi, u, represents the
processing time of operation O3; plus the unloaded transportation time from machine
M> to machine M;.

Objective Function. The objective is to schedule machine operations and transport
operations in order to minimize the makespan, i.e. the time at which all jobs have been
processed.

Binary Variables. We end this section by introducing some binary variables that will
help us formulating the problem. To differentiate between machine operations and trans-
port operations, we introduce the binary variable L;; which is equal to 0 if O;; is a machine
operation, and equal to 1 if it’s a transport operation.

To distinguish between the two types of transport operations, we introduce the binary
variable Y;; which is equal to 0 if Oj; is a single-robot transport operation, and to 1 if it
is a multi-robot transport operation.

Job-Shop Scheduling with Robot Synchronization 31

For a multi-robot transport operation O;;, we represent the robots assigned to this

operation by a vector Ej; of NR binary variables, denoted as (E;) e where El; =

r=1..
1 if robot R, is required for this specific transport operation and E}; = O otherwise.

For any two distinct multi-robot transport operations O;; and Oy, let Fyj, the binary
variable equal to 1 if O; and Oy, share at least one robot, and equal to 0 otherwise.

Note that Fjj,, is the scalar product of Ej; and Ey,: Fijp, = (E,»j)t.Ekp, ie. Fijp =
NR
> Ej X Ep,.

3 Linear Formulation of the Problem

3.1 Data

N: Number of jobs to schedule.

M: Number of machines.

NR: Number of robots.

NO: Total number of operations to schedule for one job (NO =2 x M —
1).

Ly: Binary variable that equals 0 if operation Oj; is a machine operation,
and equals 1 if Oj; is a transport operation. This variable is defined
fori =1..N andj = 1..NO.

M;;: Machine required by machine operationj = 1..NO of jobi = 1..N.
It is defined only if L;; = 0.

Tea: Loaded transportation time for a robot from machine s to machine
V.

Vea: Unloaded transportation time for a robot from machine s to machine
V.

Dj;: Processing time of operation j = 1..NO of job i = 1..N. It is the

processing time on the machine if and only if Ojj is a machine
operation, and it is the loaded transportation time from M;;_; to
M; j 11 if Ojj is a transport operation.

Yy Binary variable that equals 1 if the operation O;; is a multi-robot
transport operation, and equals O if Oj; is a single-robot transport
operation. This variable is defined for i = 1..N,j = 1.NOif L;; =
1.

El’/ Binary variable, that equals 1 if robot R, is required to achieve
the multi-robot transport operation Oj;. This variable is defined for
i=1.N,j=1.NOonlyifL; =Y; = 1.

Ej = (E;) : vector of binary variablesE;.

r=1..NR

Fijp: Binary variable that equals 1 if the two distinct multi-robot transport
operations O;; and Oy, require at least one common robot. This
variable is defined fori = 1..N,j = 1.NO,k = 1..N,p = 1..NO
ifLj=Ly=Yj=Y,=1

H: A large positive number.

32 J. P. Gayon et al.

3.2 Decision Variables

st;j: Starting time of operation j = 1..NO of jobi = 1..N.

Cmax: Finishing time of the last operation on the last machine.

bijxp: Binary variable that equals 1 if the operation Ojj is scheduled before the operation
Oyp, and equals O otherwise. This variable is defined fori = 1..N, j = 1..NO,
k=1.N,p=1.NOifi # korj # p.

a’;: Binary variable that equals 1 if robot R, is allocated to the single-robot transport
operation Oj;, and equals O otherwise. This variable is defined for i = 1..N and
Jj=1.NOifL;=1andY; =0.

wl.’jkp: Binary variable that equals 1 if robot R, is allocated to the two distinct single-
robot transport operations O;; and Oy, and equals 0 otherwise. This variable is
defined fori = 1.N,j = 1.NO, k = 1..N, p = 1.NO andr = 1..NR, if
Lj=Lyp=1Y; =Y, =0.

Wijkp: Binary variable that equals 1 if the two distinct single-robot transport operations
O;; and Oy, require the same robot, and equals O otherwise. This variable is
defined fori = 1.N,j = 1.NO,k = 1.N and p = 1.NOif L;j = Lj, = 1 and
Yij =Yy, =0.

Zirjkp: Binary variable that equals 1 if robot R, is allocated to both the single-robot
transport operation O;; and the multi-robot transport operation Oy, and equals 0
otherwise. This variable is defined fori = 1..N,j = 1..NO,k = 1..N,p = 1.NO
and r = 1.NRif L;j = Ly, = Yjp = 1 and ¥;; = 0.

Zijkp: Binary variable equals 1 if both the single-robot transport operation O;; and the
multi-robot transport operation Oy, require the same robot, and equals O otherwise.
This variable is defined fori = 1..N,j = 1..NO, k = 1..N and p = 1..NO if
L,:/' = Lkp = Ykp =1 anle:,' =0.

3.3 Objective Function
Minimize C,qy
The objective is to minimize the makespan Cj,4y, i.€. the time at which all jobs have

been processed.

3.4 Constraints

Makespan
Fori =1..N:

sti N0 + Dino < Ciax (D

The makespan Cj,,, must be larger than the completion time of the last operation of
each job.

Sequence of Operations
Fori=1..N,j = 1..NO:

stij + Dy < st jy1 (2)

Job-Shop Scheduling with Robot Synchronization 33

The starting time of the operation O; j11 is greater than the finishing time of the
operation Oj;.

Disjunction Between Machine Operations Processed on the Same Machine
Fori = 1.N —1,j = 1.NO,k = (i+1)..N,p = 1..NO such that M;; = My, and
L,’j = Lkp =0:

stij + Djj < sty + H.(l — bijkp) 3)

Sty + Dip < stij + H .bjjip 4)

Machine operations that must be processed on the same machine cannot be executed
simultaneously. Let us consider two machine operations O;; and Oy, (Ljj = Ly, = 0)
where both operations require the same machine (M;; = My,). A disjunction between
the two operations implies that either Oj; is scheduled first, followed by Oy, and in this
case we have st;; + Djj < sty,, or Oy, is scheduled first, followed by O;;, and we have
Styp + Dip < stjj.

Number of Robots Allocated to a Single-Robot Transport Operation
Fori=1.N,j=1.NOsuchthat L; = 1and Y;; = 0O:

NR
Y ap=1 (5)
r=1

For each single-robot transport operation O;; (L;; = 1 and Y;; = 0), we must ensure the
assignment of exactly one robot to the transport operation.

Disjunction Between Single-Robot Transport Operations that Require the Same Robot
Fori=1.N,j=1.NO,k =i+ 1..N,p =1.NO,r = 1..NR such that L;; = Ly, = 1
and Y,'j = Ykp =0:

r r r
r r
Wiy < 4 (7N
r r
Wiikp = %p ®)
NR
D Wiy = Wiikp ©)
r=1

Fori = 1.N,j = 1.NO,k =i+ 1.N,p = 1.NO such that L;; = Ly, = 1 and
Yj =Y, =0:

stij + TMi,j—lyMi.j+1 + VMi.j+1,Mk,p—1 = Sty + H‘(l - blf/kl?) + H'(l - Wlf/kﬂ) (10)

34 J. P. Gayon et al.

Stip + Ty My pys + Vit por iy < St + Hobijp + H.(1 —wip) (1)

Two single-robot transport operations share the same robot R, if and only if a}; =
alzp = 1. This condition can be expressed by the equation a[:r/. X a,ﬁp = 1. Inequalities (6),
(7) and (8) are used to linearly express wi’jkp as the product al.’j X a,ﬁp. Subsequently, Eq. (9)
ensures that the two single-robot transport operations share at least one robot if and only if
wijkp = 1.1f that is the case, then the two operations cannot be processed simultaneously.
The disjunction between the two operations is expressed through inequalities (10) and

(1n).

Disjunction Between Multi-robot Transport Operations that Require at Least One
Common Robot

Fori = 1.N,j = 1.NO,k = 1.N,p = 1.NO such that L;; = Ly, = Y;j = Y, =
Fijip = 1

Stij + TMi‘_j—lxM[,j+1 + VM[<j+1ka.p—l = Sty + H'(l - bl'jkp) (12)

Stkp + TMk,p—]sMk,erl + VMk,erl,Mi.j—l < stj + H-bijkp (13)

Multi-robot transport operations that share at least one robot cannot be processed
simultaneously. Let us consider two distinct multi-robot transport operations O;; and
Owp(Lij = Ly = Y; = Yy = 1) that require at least one common robot (Fj, =
1). These operations are known in advance as Fjjy, is part of the problem data. The
disjunction between the two operations is explicitly expressed through inequalities (12)
and (13).

Disjunction Between a Single-Robot Transport Operation and a Multi-Robot Trans-
port Operation that Require the Same Robot
Fori=1.N,j=1.NO,k=1..N,p=1.NO,r = 1.NRsuchthatL;; = Ly, = Y, =
land Y;; = 0:

Ep, +aj; < 14z, (14)
Zirjkp < al-’j (15)
o < Efy (16)
NR
> Ly = Zijkp (17)
r=1

Fori =1.N,j=1.NO,k =1.N,p = 1.NO such that L;; = Ly, = ¥}, = 1 and
Y,’j =0:

stij + TMi,jflvmi,j+1 + VMi,j+1aMk,p—l = Stip + H'(l - bijkﬁ) + H'(l - Zijk[’) (18)

Sty + T 1 My i1 + Vg i Moy < Stij + H . bijip + H'(l - Zijkp) 19)

Job-Shop Scheduling with Robot Synchronization 35

A multi-robot transport operation Oy, (Lgp = Y, = 1) uses arobot R, if and only if
E]:p = 1, and this is known in advance due to the inclusion of (E £p> | Nk in the problem
r=

data. The same robot R, may also be assigned to a single-robot transport operation (o
(Lij = 1 and Yj; = 0), which is equivalent to al:r/. = 1. In this scenario, both operations
Oj; and Oy, require robot Ry, and this can be expressed by the equation E ,ﬁp X ai’j = 1.
Inequalities (13), (14), and (15) are used to linearly represent zi’jk a8 the product £}, X ai’j.
Subsequently, Eq. (16) ensures that a single-robot transport operation and a multi-robot
transport operation share the same robot if and only if z;, = 1. If that is the case, the
two operations cannot be processed simultaneously. The disjunction between the two

operations is expressed through inequalities (17) and (18).

4 Metaheuristic Based Resolution

4.1 Solution Modeling Based on Disjunctive Graph

The resolution of a JSPT encompasses jointly the sequencing of machine operations,
the assignment of a robot to each single-robot transport operation and the sequencing of
transport operations. The sequencing of both machine operations and transport opera-
tions is accomplished by turning all edges into directed arcs, thereby defining an oriented
disjunctive graph. However, only acyclic oriented disjunctive graphs describe feasible
solutions.

For two consecutive transport operations O;; and Oy, (Lij = Ly, = 1) scheduling
O;; before Oy, entails that Oy, can only be scheduled after R, finishes its transfer of job
J; form machine M; j_; to M; ;1 (with a duration ofT; M) +1)» and once the robot
R, becomes available, Oy, has to wait for its arrival from M; ;.1 to pick up the job Ji
from machine My ,— (with a duration ofVyy, ;. . My,).

This is represented by an arc that goes from O;; to Oy, and gets the weight of
TM;j 1. Mij1 + Vg, - Similarly, scheduling Oy, before Oy is represented by
an arc that goes from Oy, to O;; and gets the weight TMk,,H, My + VMk,p M, as
depicted in Fig. 2.

Oi.j—l Oij Oz.j+1
D;; =Ty
i My j 1, My,
Mij, ——> R, ~——————I2 L Mg
Tty Mign + VM1 My
Ok,p* 1 Okp Ok.p+ 1

Diy = T,y y My

Mk.pf 11— Rr: Ry k,p+1

Fig. 2. Disjunction between two transport operations Oj; and Oy, that require the robot R (Case
when Oj; is scheduled before Oy,)

36 J. P. Gayon et al.

It is important to note that unlike single-robot transport operations that can have at
most one ongoing/outgoing disjunctive arc, a multi-robot transport operation O;; that
requires a subset of r robots R;; = {R1, ..., R,}, can have at most r outgoing/ongoing
disjunctive arc (depending on its position in the vector MTS). For instance, in Fig. 3
below, multi-robot transport operation O, uses robots Ry, R and R3 and is scheduled
before transport operations Oz2, 024 and O3; that require some of the robots used in O3,
so it has 3 outgoing disjunctive arcs, while single-robot transport operations 032, O14
and O34 that use the same robot R; have at most only 1 ongoing/outgoing disjunctive
arcs.

Oy Ou
Myy ——> Ry, Ry, Rs Mg Ry My)
g) -

Ry M5)

My ——> Ry,Ry

Msy — R { Mzs Ry My

Fig. 3. Number of ongoing/outgoing of disjunctive arcs for multi-robot and single-robot transport
operations

Evaluating a solution consists in constructing an acyclic directed disjunctive graph
where a robot is assigned to each single-robot transport operation. Then, by performing a
longest path algorithm to the graph to compute the earliest starting times of each operation
and find the makespan C,,, which is the length of the longest path. Figure 4 gives an
example of an acyclic directed disjunctive graph for the example presented in Sect. 2,
where we consider following order of jobs on machines: M1: J1, J2,J3, M>: J2, J1,J3 and
M3: J3, J2, J1. The following assignments of robots to single-robot transport operations:
Ry for O3, Oy and O34, R3 forO14. The following order of transport operations on
robots: Ry : 032, O, Ry : O12, 022, O34, O4. And R3 : O3p, On4, O14.

Job-Shop Scheduling with Robot Synchronization 37

———————> (Critical path

.............. » Disjunction between machine-operations using the same the machine

Disj! ion between transport-operations using at least one robot in common

Conj ion p i of the same job

Fig. 4. Fully oriented disjunctive graph modeling a solution and the critical path

Figure 5 gives a Gantt representation of this solution.

P3 ~-___I31_—R3(P3) PR P2 | P P1
Rt LTV R o
T . . R1R2./ 1 AT L
i I DR3P D Roempy, © L7
P2 © P P3 Y : R
‘ Repn) 0 N 4
P1: v ‘RPN
‘ 6 0 1 : : oo P 72
18 5 (2% % oM 52
28 38

32

Fig. 5. Gantt representation

4.2 Indirect Representation of a Solution Using Bierwith’s Vector

In this section, we show how to represent a feasible solution with a MTS (machine trans-
port sequence) and a OA (operations assignment) vector defining the assignment of robots
to single-robot transport operations. This representation is adapted from [1] and [7]. The
challenging aspect of the problem consists in avoiding the generation of cyclic directed

38 J. P. Gayon et al.

disjunctive graphs that do not model feasible solutions. Thanks to Bierwith’s proposal
for the job-shop [1] adapted to JSPT [7] it is possible to define the machine and transport
sequence MTS as a vector by repetition [1] MTS is a vector where each job appears
exactly NO times where NO is the total number of operations. Hence a MTS vector has
exactly N xNO components. For example, (1,1,2,1,2,2,3,3,3,3,1,1,2,2,3) is a
MTS vector for a problem with 3 jobs and 3 machines. Jobs 1, 2 and 3 appears 5 times
in this vector as there are 5 operations per job (3 machines operations and 2 transport
operations). The first occurrence of number i in the vector MTS refers to the first machine
operation of job J;, and the second occurrence refers to the first transport operation of
the job, and so forth. Hence the (2k-1)-th occurrence of number i corresponds to the k-th
machine operation of job J; and the 2k-th occurrence of of number i corresponds to the k-
th transport operation. The MTS vector encompasses both the precedence constraints of
a job (occurrences of a job in the vectors) and the ordered sequences of operations using
the same resource (occurrences of operations using the same resource). The vector OA
represents the robot assignment for each single-robot transport operation, where OA;;
represents the robot assigned to the O;; where Oj; is a single-robot transport operation.

Exploration of the search space is currently restricted to solutions that are related to
(MTS, OA) pairs which define acyclic disjunctive graphi.e. a solution. The exploration of
the search space, can be limited to the space of (MTS, OA) vectors and can be delegated
to any metaheuristic-based scheme, such as a memetic algorithm, as emphasized in
(Lacomme et al., 2013), even in the case of the “classical” JSPT, which represents a
special instance of our problem where all transport operations are single-robot. Note
that, (MTS, OA) pair, can be mapped into a solution S O(N x M x N R) where N, M
and NR are respectively the number of jobs, machines and robots. A solution is fully
defined by the earliest starting times of each operation, and the makespan Cj,,, which
represents the length of the longest path (critical path) in the directed disjunctive graph
modeling S.

4.3 Local Search

Since the constructed solution S is not guaranteed to be locally optimal, it is necessary
to perform a local search that simulates a gradient descent in convex optimization to
find a local minima. The local search procedure investigates the neighborhood of this
solution by critical path analysis. The objective is to identify specific blocks of operations
on the critical path and to identify the operation to apply to the (MTS, OA) pair. By
permutation of operations in MTS, or modification of robot assignment in OA, it is
possible to define a new directed disjunctive graph modeling a neighbor solution S’. The
quality of the obtained solution S’ is then compared to that of S, and if it’s better, the
solution is updated. This process is repeated until a locally optimal solution is found.
We distinguish multiple types of blocks defined in Table 1 below.

Job-Shop Scheduling with Robot Synchronization 39

Table 1. The 5 types of blocks on the critical path

Block Definition

MDB A machine-disjunctive-block which is a set of at least two consecutive machine
operations using the same machine on the critical path of S, following the definition
of (Grabowski et al., 1986)

SRCB | A single-robot-conjunctive-block which is a set of two consecutive operations of a
same job on the critical path of S where one of them is a single-robot transport
operation (the other one is necessarily a machine operation)

SRDB | A single-robot-disjunctive-block which is a set of at least two consecutive
single-robot transport operations using the same robot on the critical path of S

MRDB | A multi-robot-disjunctive-block which is a set of at least two consecutive
multi-robot transport operations using at least one robot in common on the critical
path of S

HDB A hybrid-disjunctive-block which is a set of two consecutive transport operations on
the critical path of S, one of these operations is a single-robot transport operation
and the other one is a multi-robot transport operation

For instance in Fig. 4, the two machine operations O3 and O33 define a machine-
disjunctive-block since they use the same operation M, but operation O3 that also uses
machine M> doesn’t belong to the block because the disjunctive arc from O3 to O13
isn’t on the critical path. Furthermore, the first 2 operations of job J; form a single-robot-
conjunctive-block because O1 is a machine operation and O, is a single-robot transport
operation, but O3 and O4 don’t form a conjunctive-block because the conjunctive arc
between the two operations is not in the critical path.

As mentioned previously, the concept of local search involves examining the critical
path from the dummy node * to reach dummy node 0. Whenever one of these 5 blocks
is identified, specific operators tailored to each block are applied to alter the critical path
of the current solution, thereby producing a new directed disjunctive graph representing
a neighboring solution. In Table 2, we outline the permitted operators for each type of
block.

Note that the local search procedure defines operators for MTS and OA vectors,
related to the solution, produce MTS and/or OA vector that define (after modifica-
tion) a new solution. The definition of MTS and OA vectors guarantee that the directed
disjunctive graph modeling the new solution is acyclic.

4.4 Metaheuristic

We finally use the well-known GRASP-ELS metaheuristic introduced by [11] which
provides a good balance between diversification (multi-start) and intensification (further
investigation of the neighborhood of a local optimum).

40

J. P. Gayon et al.

Table 2. Operators per block

Block | Allowed operators
MDB | Permutation of two consecutive machine operations using the same machine. This is
done by swapping the corresponding value in MTS
SRCB | Assignment of a different robot for the single-robot transport operation
SRDB | 1) Permutation of two consecutive single-robot transport operations O;; and Oy,
using the same robot. This is done by swapping the related values in MTS
2) Permutation of a different robot for the single-robot transport operation Oj;. This
is achieved by updating the OA vector
3) Permutation of a different robot for the single-robot transport operation Oy, This
is achieved by updating the OA vector
MRDB | Permutation of two consecutive multi-robot transport operations that require at least
one robot in common. This is done by swapping the two related values in MTS
HDB 1) Permutation of the two consecutive transport operations the use the same robot.

This is done by swapping the related values in MTS
2) Assignment of a different robot for the single-robot transport operation. This is
achieved by updating the OA vector

5 Numerical Experiments

We have tuned instances from the literature [8] by adding transport operations and robot
data. The experiments were carried out using 4 instances with a number of job that vary
from 3 to 10, a number of machines that varies from 3 to 5 and a number of robots that
varies from 3 to 7. To favor fair future research all the instances can be downloaded at:
https://perso.isima.fr/~lacomme/JSSynchro/.

Table 3. Instances characteristic

Instance |N |M |NR | Number of Number of binary | Number of constraints
multi-robot transport | variables
operation
1 3 |3 |3 2 67 141
2 4 |4 |6 5 485 1103
3 5 |5 |3 6 1186 2641
4 6 |6 |6 10 3323 8389
5 10 |5 |3 13 1574 3354
6 10 |5 |3 13 1574 3354
7 10 |5 |5 20 5185 12453
8 10 |5 |7 10 8809 22369

https://perso.isima.fr/%7Elacomme/JSSynchro/

Job-Shop Scheduling with Robot Synchronization 41

The results are reported in Tables 3 and show that the number of jobs, machines, and
robots has a substantial impact on both the quantity of binary variables and constraints.
Moreover, the experimental results demonstrate that the proposed GRASP-ELS meta-
heuristic exhibits effective performance in terms of solution quality and computational
time. It consistently produces near-optimal solutions within remarkably short compu-
tational times, underscoring the effectiveness of the metaheuristic-based approach and
the relevance of the disjunctive graph model (Table 4).

Table 4. Numerical experiments for 60 s

CPLEX MetaHeuristic
(best solution found with 3 runs)
Shest 1t(s) Shest Tpest(S)
1 48%* 1 48%* <1
2 74* 1 74% <1
3 330* 1 330* <1
4 452% 5.81 452%* <1
5 666* 60 666* 6
6 1861 60 1695 8
7 1411 60 1279 4
8 838 60 841 21

(1t: total time, fp,,5: time to best, Sy, : best found solution)

6 Conclusion

This paper represents a significant advancement in the generalization of the disjunctive
graph model to encompass multiple robots engaged in multi-robot transport operations.
The key innovation lies in introducing synchronized actions among multiple robots to
accomplish transportation tasks between machines.

We propose an efficient modeling approach to generalize the job-shop problem by
incorporating transport logistics, leveraging the introduction of a disjunctive graph to rep-
resent both the problem and its solutions. We derive specific properties from the longest
path to generate neighborhoods, facilitating a highly targeted local search methodology
tailored to this problem domain. To favor further research, we have introduced a new set
of problem instances, with all relevant data available on a dedicated web page to favor
fair future investigations.

References

1. Bierwirth, C.: A generalized permutation approach to job shop scheduling with genetic
algorithms. OR Spektrum 17, 87-92 (1995)

42

10.
11.

12.

13.

14.

15.

J. P. Gayon et al.

Bilge, U., Ulusoy, G.: A time window approach to simultaneous scheduling of machines and
material handling system in an FMS. Oper. Res. 43(6), 1058-1070 (1995)

. Drexl, M.: Synchronization in vehicle routing - a survey of VRPs with multiple synchroniza-

tion constraints. Transp. Sci. 46(3), 297-316 (2012)
Hurink, J., Knust, S.: Makespan minimization for flow-shop problems with Bibliographie 214
transportation times and a single robot. Discret. Appl. Math. 112, 199-216 (2001)

. Hurink, J., Knust, S.: A tabu search algorithm for scheduling a single robot in a job-shop

environment. Discret. Appl. Math. 119(1-2), 181-203 (2002)

Hurink, J., Knust, S.: Tabu search algorithms for job-shop problems with a single transport
robot. Eur. J. Oper. Res. 162(1), 99-111 (2005)

Lacomme, P., Larabi, M., Tchernev, N.: Job-shop based framework for simultaneous
scheduling of machines and automated guided vehicles. Int. J. Prod. Econ. 143(1), 24-34
(2013)

Lawrence S.: Resource constrained project scheduling: an experimental investigation of
heuristic scheduling techniques (Supplement). Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, Pennsylvania (1984)

MecaBotiX (2023). https://www.mecabotix.com/

Pinedo, M.: Scheduling - Theory, Algorithms and Systems. Springer, Heidelberg (2012)
Prins, C.: A GRASP x evolutionary local search hybrid for the vehicle routing problem. In:
Pereira, FEB., Tavares, J. (eds.) Bio-inspired Algorithms for the Vehicle Routing Problem.
Studies in Computational Intelligence, vol. 161, pp. 35-53. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-85152-3_2

Seo, J., Paik, J., Yim, M.: Modular reconfigurable robotics. Annu. Rev. Control Robot. Auton.
Syst. 2, 63-88 (2019)

Ulusoy, G., Bilge, U.: Simultaneous scheduling of machines and material handling system in
an FMS. Int. J. Prod. Res. 31(12), 2857-2873 (1993)

Ulusoy, G., Sivrikaya-Serfioglu, F., Bilge, U.: A genetic algorithm approach to the simul-
taneous scheduling of machines and automated guided vehicles. Comput. Oper. Res. 24(4),
335-351 (1997)

Yao, Y.J., Liu, Q.H., Li, X.Y., Gao, L.: A novel MILP model for job shop scheduling problem
with mobile robots. Robot. Comput.-Integr. Manuf. 81 (2023)

https://www.mecabotix.com/
https://doi.org/10.1007/978-3-540-85152-3_2

AI and Metaheuristics for Routing

q

Check for
updates

SIRO: A Deep Learning-Based Next-Generation
Optimizer for Solving Global Optimization
Problems

Olaide N. Oyelade', Absalom E. Ezugwu?®™ @, and Apu K. Saha?

1 School of Electronics, Electrical Engineering and Computer Science, Queen’s University
Belfast, Belfast, UK
2 Unit for Data Science and Computing, North-West University, 11 Hoffman Street,
Potchefstroom 2520, South Africa
absalom.ezugwul@nwu.ac.za
3 Department of Mathematics, National Institute of Technology Agartala, Agartala 799046,
Tripura, India

Abstract. This paper introduces the SIR Optimizer (SIRO), a novel next-
generation learned metaheuristic algorithm inspired by biological systems and
deep learning techniques. The optimizer uses the susceptible-infected-removed
(SIR) epidemiological model to predict the population’s susceptibility, active
infections, and recoveries. To enhance the search process, SIRO incorporates deep
learning into its initialization and parameter tuning components, enabling intelli-
gent and autonomous behaviour. By generating initial solutions based on neural
models, the algorithm achieves efficient, effective, and robust search outcomes. To
validate the effectiveness of SIRO, a set of numerical hybrid test functions from the
CEC 2017 benchmark, each characterized by 30 dimensions were utilized. The
experimental results were compared against various state-of-the-art algorithms,
demonstrating that SIRO outperforms its competitors. Moreso, it delivers high-
quality solutions while utilizing fewer control parameters. The incorporation of a
learning process in SIRO leads to superior precision and computational efficiency
compared to other optimization approaches in the existing literature.

Keywords: SIR-model - SIRO - optimization algorithms - bio-inspired
computing - deep learning - machine learning

1 Introduction

Inrecent years, there has been a growing research interest in the development of efficient,
effective, and robust global search techniques for solving numerical and combinatorial
optimization problems [1]. However, the complexity of real-world optimization prob-
lems has significantly increased over the past decades due to advancements in industrial
processes and societal evolution, posing a challenge for existing optimization techniques,
particularly classical methods [2]. The literature suggests that these optimization tech-
niques have limitations in performing intelligent and robust search operations within

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 45-61, 2024.
https://doi.org/10.1007/978-3-031-62912-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_6&domain=pdf
http://orcid.org/0000-0002-3721-3400
https://doi.org/10.1007/978-3-031-62912-9_6

46 O. N. Oyelade et al.

problem-solution search spaces [3]. Nevertheless, the optimization community contin-
ues to propose new design variants and implementations of optimization techniques to
address these challenges [4].

Metaheuristic algorithms have gained popularity and acceptance as the preferred
optimization technique, despite their inability to generate precise or exact solutions for
candidate optimization problems [5]. While these algorithms provide approximate solu-
tions, they suffer from the requirement of problem-specific information or techniques,
lack of guaranteed optimality in terms of convergence, absence of a theoretical or mathe-
matical basis, reliance on multiple search parameters, stochastic search processes result-
ing in different solutions for the same problem, and the need for stopping criteria dec-
laration. However, metaheuristics offer a valuable alternative to exact or mathematical
optimization methods due to their flexibility, global optimization capability, robustness
to problem size and randomness, and practical applicability to challenging real-world
problems. These algorithms have also found widespread applications in engineering
design problems, deep learning parameter optimization, facility layout problems, medi-
cal image segmentation and classification, parallel machine scheduling, and many others
[6].

Despite the existence of numerous state-of-the-art optimization algorithms in the
literature, the pursuit of new optimization methods remains constant. This need for new
metaheuristic algorithms is driven by the no-free lunch (NFL) theorem of optimization, as
proposed by Wolpert and Macready [7]. The NFL theorem suggests that there is no single
optimization algorithm that works best for all optimization problems. In other words,
there is no “free lunch” or universally superior optimization strategy. Consequently, the
design of a universal, general-purpose optimization strategy is deemed impossible. This
realization has motivated optimization experts to develop new algorithms.

From an intelligent and learning system perspective, the focus has shifted towards
the development of more intelligent metaheuristic algorithms capable of learning from
historical datasets. Extensive research on classical metaheuristic algorithms has high-
lighted that these algorithms generate substantial volumes of datasets during the solution
search process. These datasets may contain valuable knowledge regarding the properties
of good and bad solutions, the performance of different operators at different stages of
the search process, and the precedence of search operators [5]. Surprisingly, classical
optimization algorithms have not effectively utilized the knowledge hidden within these
generated datasets.

Recent studies have demonstrated that machine learning (ML) techniques can com-
plement metaheuristics by extracting useful knowledge from the generated data through-
out the search process [6]. Integrating such knowledge into the search process can guide
metaheuristics to make more informed decisions, enhancing their intelligence and signif-
icantly improving solution quality, convergence rate, and robustness. Thus, the present
study proposes a new metaheuristic optimization algorithm for solving both single-
objective and multi-objective problems. Notably, no classical algorithm has employed
ML techniques in its initial algorithmic design stage.

In this study, a novel next-generation metaheuristic optimization algorithm called
SIRO is proposed. Inspired by the SIR (susceptible-infected-removed) epidemiological
model, the algorithm mimics the propagation of disease to guide the search process. A

SIRO: A Deep Learning-Based Next-Generation Optimizer 47

machine learning component is integrated into SIRO to facilitate the intelligent automa-
tion of the algorithm’s initialization and parameter configuration settings. This learn-
ing component assists the algorithm in selecting optimal initial high-quality solutions,
thereby guiding an intelligent search process within the solution search spaces. The
SIRO algorithm was evaluated using various numerical test functions. To validate the
superior performance of SIRO, its results were compared against other state-of-the-art
metaheuristic techniques.

2 Model Description

This section presents an overview of the proposed SIRO algorithm, including its inspi-
ration and the optimization modeling design steps. Moreover, the section is divided into
two main subsections for a smooth presentation of the various aspects of SIRO: the mod-
eling source of inspiration for the SIRO from the popular SIR model is first discussed,
followed by a description of the SIRO’s implementation.

2.1 SIRO Algorithm Modelling

In this section, the design and model formulation describing the complete procedure for
the proposed SIRO algorithm are discussed. An optimization process of SIRO is first
described using a SIR-based model comprising the three compartments. Secondly, the
mathematical model of the SIRO method is outlined from the concept of population
initialization to the update of the compartment. Furthermore, a pseudocode describing
the algorithmic representation of SIRO and an analysis of the algorithm’s complexity
is also presented in this section. Also, the neural learning method for improving the
population and optimization of the parameter combination is described.

The SIR model applied in this study follows the classical model for modeling disease
propagation so that all redundant compartments are eliminated. In Fig. 1, the combined
representation of the SIR model and its optimization process are illustrated. The three
compartments captured by the model include susceptible (S), infected (I), and recovered
(R) individuals. The initial population of the SIR model is assigned to the S compartment
since all contagious diseases target the susceptible population to generate the infected
population. Considering the generic nature of the classical SIR model, the propagation
pattern of each disease determines the assignment of individuals to the I compartment. In
this study, the transition of individuals from S to I is conditioned on exposure to disease at
a given rate denoted by Sz. Conditions, such as immunity, vaccination, hospitalization,
treatment, and self-recovery, have often reassigned individuals from the I compartment
to the R compartment. The movement of individuals to R follows the order of /g, which
signifies recovery from the disease. At some point, individuals in R transition to S,
thereby making them susceptible individuals that might be recruited into I unless there
is a high influence of immunity that mitigates contagion.

The total duration T for a disease outbreak can be denoted into some ty, ta, ... t,,
which is represented in the figureast =0, t=1, t=2...t=nwheretgport =0is a
notation for showing when the outbreak of the disease is reported in a given population
P. For the SIR model in this study, it is assumed that the population size of P is kept at

48 O. N. Oyelade et al.

become susceptible individual ﬁ
exposed to disease (Szx) — | |—recovered from disease () — R

(X @
[()
(O5) (2 @
@ 000300 ® ® %0
OO...QOOO © o0
t=n O.O.. Sn ! ®o

Fig. 1. Illustration of the SIR model in the process of solving optimization problems.

constant ¢ with the implication that birth or death are variables or events that are frozen
until duration 7 is completed. This keeps the size of the population constant, where the
sum of individuals includes those in S, I, and R. The optimization process of the SIR
models therefore follows that at ty or t = 0, all individuals in P are represented in S
(size(P) = size(S)). At time t = 1, some individuals in S have been exposed to the
disease and now can be infected by the virus, causing the disease after some duration,
which is often peculiar to the nature of the disease. At t = 2, it can be observed that
the exposed individuals in S have now been infected, leading to their reassignment to
the I compartment. Meanwhile, at the same time, it is reported that one of the infected
cases has recovered and is now assigned to the R compartment. As T increases, the
reassignment of individuals across the compartment generates a dynamic process with
each instance of the processes having a formation of allocations to S, I, and R with
different patterns. The optimization process is resumed with the continuous anatomical
changes of each individual whose mutation and displacement within the search space
present a useful search pattern.

Table 1 presents an outline of all the parameters and their corresponding definition
used to describe the SIR model. We take note of the infection rate T, recovery rate g,
contact rate § with infected individuals, and natural death rate G of a population.

Considering the generic nature of the classical SIR model proposed in this study,
setting specific values for each of the parameters is not applicable. Moreover, using
stochastic models to assign values to the parameters assumes the popular approach used
in literature. In this study, we proposed a novel machine learning-based model for the
selection and combination of parameter values for all parameters used for the proposed
SIRO algorithm. Meanwhile, the mathematical model of the algorithm is first presented
and then a description of the learning-based method is also discussed in the following
paragraphs.

SIRO: A Deep Learning-Based Next-Generation Optimizer 49

Table 1. Symbols and definitions of the SIR model parameters

Symbols Descriptions

T Infection rate

% Recovery rate

r Disease-induced death rate
T Natural death rate

B1 Contact rate of infected

Bo Contact rate of recovered

2.2 SIRO Model

The entire population of the SIR model is represented in Eq. (1), where at any time t;,
the summation of all individuals in the S, I, and R yields the total population:

P=S+I+R (1)

We note that the generation of individuals into the S, 7, and R compartments is
dependent on a system differential equation consisting of three sub-models, as captured
in Egs. (2), (3), and (4) respectively:

aS
S,=B—§’)=Sn—lﬁ @)

al
I,:%zl—i—SB—Ig 3)
R=RO _pya 4
(= TRt @

where S;, I;, and R, are the computed number of individuals allocated to S, I, and R
at an arbitrary time t;, respectively. Updates to these compartments are achieved during
every iteration phase of the algorithm during the training or optimization process. Each
time there is an update, it implies that individuals have been reassigned to different
compartments, and therefore, there is a mutation of individuals according to the operation
associated with a compartment. In the population initialization phase, all individuals are
appropriated a certain composition as discussed in the following paragraph.

50 O. N. Oyelade et al.

2.3 Basic and Neural Network-Based Initialization Methods

The population initialization and representation for population-based optimization algo-
rithms often assume a stochastic approach or use some recent methods reported in the
literature. In this study, a stochastic population initialization method is evolved to incor-
porate a deep learning approach. First, the population is initialized and represented by the
matrix representation in Eq. (5) using a two-dimensional approach, where d is equivalent
to the dimension of the optimization problem:

X1,1 X12 -+ X1,d—1 X1,d
X21 X22 +++ X2.d—1 X2,d
X =) (%)
iy b
Xn,1 Xp2 * Xn,d—1 Xnd

The computation for each x; in X is achieved using the stochastic method represented
in Eq. (6), where U and L respectively denote the upper and lower bounds typical in
optimization problems with the optimization problem:

xi =L+ rand(0,1) x (U — L) (6)

The resulting initial solution in X was applied to train a related biology-based and
disease propagation optimization algorithm to obtain some final solution. The trajectory
of solutions obtained was then curated and applied to train a deep learning model so that
the model can learn a suitable solution space that can yield a potential initial solution
for training the proposed SIRO algorithm. A long short-term memory (LSTM), which
is a kind of recurrent neural network (RNN) and generally classified as deep learning
(DL), was considered for this task of learning to generate a suitable initial search space.
The architectural representation of LSTM is shown in Fig. 2.

1LSTM Layer 1 LSTM Layer
1024 RNN units 1024 RNN units
Sequence=True Sequenf:e=True

Input

LSTM Layer

12487 Uapely
12ke asuag

1.304e-1 LSTM Layer

12Ae uoneziE WiONYDEY

12fe7 uonezI|E WIONY2EY
UONEAIOY X W}0S

Fig. 2. The design of the proposed LSTM architecture used for generating suitable and optimal
initial solutions for the proposed SIRO.

The deep learning architecture consists of two LSTM layers, each of which is fol-
lowed by a dropout layer and batch-normalization layer, with each layer equivalent to

SIRO: A Deep Learning-Based Next-Generation Optimizer 51

1024 RNN units. Each layer is followed by flattened and dense layers to produce outputs
typical of a generator G whose sequence represents the initial solution space of SIRO.
The output from the G is denoted by R, which is a sample raw solution that requires
some processing or parsing to allow for it to be used as the search space. This generator
and parser are represented in Eq. (7), where dim(P) denotes the size and dimension of
the population as required by the SIRO algorithm:

R = parse(G(X, dim(P))))

The parsed initial solution is then used to generate the individuals, which are
populated into S in Eq. (8):

S={s, eR$d|0<i <dim(P)} ®)

where ¢is an N-ary operator with a clockwise integral operation on R; and d represents
the delimiter, which indicates the end and beginning of the previous s;_; from next s;
individual in the population. To ensure that each s; is kept within the bounds of the
problem space, Eq. (9) is applied to amend all s; in S, where ub and [b are upper and
lower bounds, respectively:

S = [s,- € [amend (S, 1210 < i < dim(P)} 9)

During iteration for the optimization process, the global best s, individual is obtained
by using Eq. (10), which compares s.p.5; With the previously obtained scpes::

Shest = { Spests fits(Scpest) < fits(Spest) (10)
est =
Schest» Jits (Schest) > fits (Spest)

The position of every s; in the search space is used to discover when the displacement
of the individual has reached a disease-super-spreading point when such an individual
is infected. As a result, at the beginning of every iteration, the current positions of the
individuals in / are computed and used to determine when intensification and explorative
mechanism of the algorithm occur. In Eq. (11), the computation of the positions for each
individual in [is represented:

lpostrl = Ipos’ + rand (0, 1) * p (11)

52 O. N. Oyelade et al.

M (s) = lrate x rand (0, 1) + M (Ind ;) (12)
where p represents the scale factor of displacement of an individual; Iposg‘H and Ipos
are the updated and original position at time t and t + 1, respectively; and rand (0, 1)
randomly yields a value in the range 0 and 1.

The value obtained for Ipos’" is assigned to srate when Ipos'™" < 0.5; otherwise,
it is assigned to Irate.

2.4 SIRO Neural Network-Based Parameter Selection

Compared with other related methods, SIRO uses a few parameters for the control
and optimization process. To take this advantage further, this study proposes a novel
deep learning approach that intelligently combines and selects the best parameter-value
configuration required to yield a state-of-the-art performance. To achieve this, a pool of
parameter-value configurations is generated and applied to optimize some benchmark
functions so that the performance of the image of SIRO for each configuration is collected
as a dataset for the deep learning model. Using a convolutional neural network (CNN),
the datasets are supplied as input for training the model so that the trained model can
be used to predict the best configuration appropriate for yielding the best performance
of the best SIRO algorithm. In Eq. (13), the modeling of the mapping function, which
generates the pool of configurations used in the experimentation, is described:

pv(m, g, B, G) =pv : {p1,p2,p3,pa} = {v1,v2, v, v4} (13)

where pv represents a mapping function whose output is a set C of a unique
combination of the SIRO parameters. The elements of C are described as
{c € pv(z, g, B, G);|0 < i < N}. Each c is equivalent to a combination of parameters
and their corresponding generated values so that such mapping of parameter-value is
applied for partial training SIRO, and the convergence of the graph is generated and
collected as a dataset for training the CNN. The architecture of the CNN used for this
training is illustrated in Fig. 3, whereby the completely trained network is then used to
predict which best ¢; is suitable for fully training SIRO.

The CNN architecture consists of six blocks of convolution-pooling units, where
each block contains two convolution layers, one zero-padding layer, and one max pooling
layer. A 3 x 3 filter size is used for all layers of convolution in the architecture, though
the filter count for each block of convolution-pooling follows 2¥ where k ranges between
[5, 10]. The architecture is completed using a flattened layer, Dense layer, and Dropout
layer, and the SoftMax activation function is used for classification purposes.

SIRO: A Deep Learning-Based Next-Generation Optimizer 53

2 Convo Layers
2 Convo Layers 4,1 zeropadding
2 Convo Layers 2 Convo Layers 1x1 Zeropadding 549 MaxPool

1x1 Zeropadding X1 Zeropadding 2x2 MaxPool
2 Convo Layers p: g 252 MaxPool 512 kemels 1024 kemels

2 Convo Layers 1x1 Zeropadding ~ 2x2 MaxPool 3 filters
1x1 zgmpadydmg 2x2 MaxPool 128 kemels 256 kemnels 3 fiters 1 stride
2x2 MaxPaal 64 kemels 3 filters 3 filters 1 stride

32 kemnels 3 filters 1 stride 1 stride /_‘_\ e
3filters 1 stride ’_A_‘ ’—‘—‘
1 stride '—‘ﬁ ’—‘—’

TH I B -

Fig. 3. The design of the convolutional neural network (CNN) architecture applied for learning
solution pattern of SIRO to obtain the best configuration and combination of parameter values

12fke uape)q
Jake asuaQ

%]
=1
E
3
D
*x
b
a
S
g
=]
=

2.5 SIRO Algorithms and Computational Complexity

In Algorithm 1, the pseudo-code of the proposed SIRO metaheuristic algorithm is pre-
sented. The algorithm lists all the procedures described in previous paragraphs and
outlines how the optimization process is achieved during the iterative process. Input to
the algorithm includes the number of iterations required for training the model, popula-
tion size N, and dataset required to train the CNN model for obtaining the best c; to be
used for training SIRO. The expected output is the combination of all the best solutions
obtained for each iteration and also the final global best. Line 1 of the algorithm shows
the initialization of the S, I, and R compartments and also the container for storing the
best solutions. In order for the LSTM model to generate the best initial solution for train-
ing SIRO, a stochastically generated initial solution X is supplied as input for training
the LSTM model. Then, the trained LSTM model generates the learned-solution space
for SIRO for full training. Meanwhile, Lines 5-7 display the application of the CNN
model to generate the best configuration of the parameter-value set suitable for obtaining
the values to use on all parameters of SIRO. The fitness values of all individuals in S are
obtained and the global best solution is assigned in Lines 8-9. The iterative training of
the SIRO algorithm is listed in Lines 10-31, and the return values are in Line 32. The
generation and mutation of individuals into the I compartment are seen in Lines 12—
21, and updates of individuals in all three compartments are exhibited in Lines 22-25.
Lastly, the update of the current and global best solution for each iteration is reported in
Lines 26-30.

54 O. N. Oyelade et al.

Algorithm 1: SIRO metaheuristic algorithm

Result: global Best, solutions

Input: iter, N, dataset

Output: sols, gbest

S,I, R, sols + 0

X < createPopulation(N,S) using Eq.6;
Istm = build LST M ();

S = lstm.trainGenS(X,N) using FEq.9;
enn = buildCNN();

model = cnn;

params = Ao {m,I',v, B};

m, ',v, B < apply(cnn, params);

S = fits(S, asc);

gbest, cbest, I[0] + S[0];

while e < iter do

© 00 N O o W N =

=
= O

12 lpos < position(I) using Fq.11;
13 for i < 1 to len(I) do

14 newl <« (;

15 if Ipos; < 0.5 then

16 ‘ tmp < rand(0,Eq.3 x I x srate,~, §);
17 end

18 else

19 ‘ tmp < rand(0,Eq.3 x I x lrate,, B);
20 end

21 newl+ < tmp;

22 end

23 I+ < newl;

24 r < rand(0, Eq4 x I,v), R+ < r;
25 I+« 1—m;

26 S+

27 cbest = fits(S);

28 if cbest > gbest then

29 gbest = cbest;

30 sols + gbest;

31 end

32 end

33 return gbest, sols;

The complexity of the proposed SIRO algorithm can be computed by partitioning
the algorithm into three segments, namely the initialization, optimization, and result
return stages. The first stage, i.e. the initialization stage, has Lines 5, 7, and 8, which
will yield a computational analysis of O(n) and all other lines showing evidence of basic
operations evaluated to O(1). Computationally speaking, it is clear that O(n)+ O(n)+
O(n) = O(n) by the rule of summation algorithm analysis, where 7 is the population size
of the search space. The nested loop seen in Lines 11-31 has a computational analysis
equivalent to O(m = n) for the optimization stage, where m in this case is the number
of iterations during the optimization process. The third stage which returns the result of
the optimization process can be equated to O(1). Therefore, the complexity of the entire
algorithm may be evaluated by summing O(n)+ O(m * n)+ O(1), which in turn yields
O(m = n). Note that for simplification, may be defined as O (n?).

In the next section, detailed experimentation of the proposed SIRO algorithm is pre-
sented along with a thorough discussion of the results. For the implementation of SIRO,

SIRO: A Deep Learning-Based Next-Generation Optimizer 55

we combined the solution-space initialization, parameter fine-tuning, and optimization
process of the SIR model, as described in Algorithm 1.

3 System and Parameter Configuration

The experimentation was conducted using the Google Colab platform, which has 12 GB
memory, 100 GB disk size, Python 3 backend, and a GPU. Additional experiments were
performed on the Google Cloud compute engine with specific configurations. The param-
eter values for the SIRO algorithm were derived from ranges and step variables, with
certain parameters computed from randomly generated models. Each parameter had a
grid of ten candidate values for the deep learning model to select from. The details of the
parameter configurations can be found in Table 2. The parameters and candidate values
were used to train the deep learning model for SIRO. In the next subsection, we discuss
the application of IEEE CEC 2017 functions to rigorously test the resulting SIRO config-
uration. Moreover, various metaheuristic algorithms were considered, spanning human-
based, evolutionary-based, swarm-based, biology-based, physics-based, and math-based
approaches. This includes the Arithmetic Optimization Algorithm (AOA), Artificial Bee
Colony (ABC), Aquila Optimizer (AO), Archimedes Optimization Algorithm (ArchOA),
Ebola Optimization Search Algorithm (EOSA), Firefly Algorithm (FA), Invasive Weed
Optimization (IWO), and Memetic Algorithm (MA).

Table 2. List of SIRO parameters with corresponding notations and range of values

Variable

recruitment_rate

disease_induced_death_rate

contact_rate_infectious

contact_rate_recovered

recovery_rate

natural_death_rate

Notation

b

G

B1

B2

g

t

Parameter range

[0.1,0.9]

randf (0, 1)

[0.1,0.9]

[0.1,0.9]

randf (0, 1)

randf 0, 1)

Step

0.1

N/A

0.1

0.1

N/A

N/A

Size

10

10

10

10

10

10

Training SIRO for each parameter-value configuration was achieved using 50 itera-
tions since the aim was to perform partial training for plotting the convergence curve.
Therefore, the scatter plots representing the convergence of solutions in the solution
space were obtained as an image input for training the CNN model. Figure 4 displays
sample scatter plots for the parameter-value configurations listed in Table 3. It can be
seen that each plot has a unique representation of the distribution of points in the scatter
plot to show how the solutions converge after some training time.

Scatter plot-generated image samples were employed to train the CNN to learn input
convergence patterns. The goal was to predict optimal image representations for fully
training the SIRO method. After the completion of CNN training, a correctly predicted
image with superior convergence was selected, and its corresponding parameter val-
ues were extracted. The optimal parameter-value combination for training SIRO was
identified as m: 0.3, 1: 0.0783, $2: 0.3, I': 0.3, y: 0.1914, and t: 0.1272.

56 O. N. Oyelade et al.

A0 Al8

AllS A199 A237

A264 A307 A359

Fig. 4. Scatter plot illustrating parameter-value configurations used as input for training a CNN
in an image-label solution.

3.1 Results and Discussion

Benchmark functions are traditionally used for evaluating metaheuristic algorithms to
compare their performances. The standard benchmark functions and IEEE CEC func-
tions have been widely accepted and applied for testing the performance of optimization
algorithms. Since the IEEE CEC functions demonstrate some uniqueness and complex-
ity, which are comparable with real-life optimization problems, we focused on the evalu-
ation of the SIRO algorithm using these functions. Ideally, the CEC functions consist of
fourteen (14) functions, offering a comprehensive range of computational capabilities.
‘We experimented with 28 hybrid combinations derived from these 14 fundamental CEC
functions. These hybrids include variants such as C1-C8 and C10, which undergo shifts
(S) relative to their original CEC counterparts. The C9 and C11-C16 represent the shift-
rotate (SR) adaptation of the corresponding CEC functions. The functions C17-C22
represent shift variants of a combination of some CEC functions, whereas C23—-C28 are
hybrids of predefined CEC hybrids. Each of the 28 derived hybrids has 30 dimensions.

Results presented in this section are based on the pre-training of SIRO using deep
learning methods and the training and testing of SIRO using the hybrid CEC functions.
The section is divided into three subsections so that three major issues are addressed:
1) evaluation of the SIRO parameter selection capability as obtained using the CNN; 2)
comparative analysis of SIRO with other similar optimization methods to show if the deep
learning aided method is preferable; and 3) a collection of observations into a discussion
of findings as revealed from the study. The selected parameter-value configuration was
used to fully train SIRO under 500 iterations. In addition to SIRO, other metaheuristic
algorithms such as ABC, AO, AOA, ArchOA, EOSA, FFA, IWO, and MA were trained
for the purpose of comparative analysis.

Based on the experimental results presented in Table 3, the SIRO algorithm demon-
strates exceptional performance across the various hybrid benchmark functions, par-
ticularly surpassing in handling complex real-life problems involving shift and rotate

SIRO: A Deep Learning-Based Next-Generation Optimizer 57

operations. Its competitiveness is evident in outperforming other compared methods
across different hybrid function types, indicating its suitability for addressing a wide
range of optimization challenges. Moreover, SIRO maintains its effectiveness even when
confronted with higher levels of complexity, as observed in functions involving com-
binations of CEC benchmarks. The method’s consistent performance across different
function categories underlines its utility and confirms its status among top optimization
algorithms for tackling complex real-world problems. In summary, it was found that
SIRO returned the best performance among all methods for the C1-C8 hybrid categories,
while the performance is competitively tied among AO, AOA, EOSA, and ArchOA. A
further evaluation of SIRO on C9 and C11-C16 functions also revealed good perfor-
mance. Recall that these functions present a higher level of complexity than the C1-CS8,
notwithstanding, the performance of SIRO with this increasing level of complexity is
highly encouraging.

Figure 5 depicts the analysis of SIRO’s exploration and exploitation patterns. The
ideal curves exhibit a smoothly drawn slanted U-shape, with the exploration curve
descending from the top-left to bottom-right, and the exploitation curve ascending from
bottom-left to top-right. SIRO displayed distinctive and nearly perfect curve patterns,
showcasing its exceptional performance in navigating the solution space. In comparison
to other algorithms, SIRO demonstrated superior abilities in efficiently finding solutions
within both exploration and exploitation phases, affirming its capacity to intelligently
avoid local optima. An effective optimization algorithm is characterized by conver-
gence curves aligning into a straight line over iteration or training time. In contrast, if
these curves scatter without evident convergence as iterations increase, the optimization
method is deemed underperforming. SIRO’s categorization among top-performing meta-
heuristic algorithms, demonstrated by its convergence graph, underscores its suitability
for challenges demanding smooth and desirable convergence in the solution space.

Figure 6 illustrates the computational time needed by the optimization methods,
including the SIRO algorithm, to execute the distinctive C10 benchmark function.
Notably, SIRO outperformed other high-performing algorithms like EOSA and AOA,
completing the task in just 0.05 secs, while EOSA and AOA required an average of 0.30
secs, respectively. This highlights SIRO’s exceptional efficiency compared to similar
methods. The exhaustive experimentation with the SIRO method indicates its compet-
itiveness with state-of-the-art methods in addressing real-life optimization problems.
Notably, the use of deep learning for parameter-value configuration improved SIRO’s
performance, ensuring consistent configuration across instances. This is a significant
contribution to the field of optimization domain. SIRO’s performance on benchmark
CEC functions highlights its utility for real-life optimization problems, especially those
akin to C1-C28 functions. In summary, SIRO competes favorably, demonstrating out-
standing performance and effective balance between exploration and exploitation pro-
cesses. Its convergence graphs affirm its relevance for problems demanding smooth
convergence of the solution space.

3.2 Analysis of Statistical Results

The Anderson-darling test states that if the p-value > 0.05, then the dataset is normally
distributed and the parametric test should be considered, otherwise a non-parametric

58 O. N. Oyelade et al.

Table 3. A comparative analysis of SIRO against other optimization techniques using the hybrid
functions of CEC 2017, each characterized by 30 dimensions.

Func. | Metric | ABC AO AOA ArchOA | EOSA FFA wo MA SIRO

Cl1 best 3.6E+03 | 1.0E+02 | 6.7E+04 | 1.1E+02 | 1.0E+03 | 7.9E+03 | 3.8E+05 |2.2E+06 | 1.1E+02
mean | 2.9E+04 | 5.3E+04 | 6.7E+04 | 1.8E+04 | 4.2E+03 | 1.4E+04 | 3.9E+05 |2.2E+06 | 2.1E+03
std 1.4E4+05 | 1.8E+05 | 1.5E—11 | 6.4E+04 | 2.7E+04 | 2.6E+04 | 4.5E+04 | 6.1E+03 | 1.6E+04
worst | 1.8E+06 | 2.1E+06 | 6.7E+04 | 6.4E+05 | 5.5E+05 | 5.7E+05 | 6.2E+05 |2.3E+06 | 2.6E+05
c2 best 2.9E+05 | 2.7E+02 | 4.0E+06 |2.0E+02 | 7.5E+05 | 5.1E+05 | 3.6E+08 | 1.3E+08 | 2.0E+02
mean | 1.8E+07 | 4.5E+07 | 4.0E+06 | 1.1IE+07 | 1.7E+06 | 1.9E+07 | 3.9E+08 | 1.3E+08 | 1.0E+06
std 1.1E+08 | 1.6E+08 | 0.0E+00 | 1.1E+08 | 5.5E+06 | 1.3E+08 | 1.1E+08 | 4.5E+06 | 5.3E+06
worst | 1.2E+09 | 1.6E+09 | 4.0E+06 | 1.6E+09 | 7.2E+07 | 1.4E+09 | 1.1E+09 | 1.6E+08 | 1.0E+08
c3 best 3.0E+02 | 3.0E+02 | 1.0OE+06 | 3.0E+02 |3.1E+02 | 1.9E+03 | 1.7E+04 | 1.9E+04 | 4.6E+02
mean | 9.6E+02 | 6.9E+03 | 1.0E+06 | 7.0E+02 |2.0E+03 |2.7E+03 | 1.7E+04 | 1.9E+04 | 8.0E+03
std 4.5E+03 | 6.4E+03 | 0.0E+00 | 2.8E+03 | 6.9E+03 | 5.1E+02 | 1.5E+03 | 0.0E+00 | 1.4E+05
worst | 5.1E+04 | 2.6E+04 | 1.0E+06 | 2.4E+04 | 5.9E+04 | 5.2E+03 |24E+04 | 1.9E+04 | 3.1E+06
C4 best 4.0E+02 | 4.0E+02 | 4.0E+02 | 4.0E+02 | 4.0E+02 | 4.0E+02 |4.8E+02 | 4.1E+02 | 4.0E+02
mean | 4.0E+02 | 4.0E+02 | 4.0E+02 | 4.0E+02 | 4.0E+02 | 4.0E+02 | 48E+02 | 4.1E+02 | 4.0E+02
std 5.4E+00 | 1.5E+01 |5.7E—14 | 6.2E+00 | 5.6E+00 | 5.8E+00 |5.7E—14 | 2.0E+00 | 7.5E+00
worst | 4.6E+02 | 55E+02 | 4.0E+02 | 49E+02 | 5.2E+02 | 4.7E+02 | 4.8E+02 | 4.4E+02 | 5.6E+02
Cs5 best 5.0E+02 | 5.0E+02 | 5.0E+02 | 5.0E+02 | 5.0E+02 | 5.2E+02 | 5.2E+02 | 5.2E+02 | 5.0E+02
mean | 5.0E+02 | 5.1E+02 |5.0E+02 |5.1E+02 |5.0E+02 | 5.2E+02 |5.2E+02 | 5.2E+02 | 5.0E+02
std 2.9E+00 | 9.4E+00 | 1.1E-13 | 8.8E+00 | 5.2E—01 | 3.8E—02 | 5.9E—04 | 6.8E—01 | 2.5E+00
worst | 5.2E+02 | 52E+02 | 5.0E+02 | 5.2E+02 | 5.1E+02 | 52E+02 | 52E+02 | 5.2E+02 | 5.2E+02
Cc6 best 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02
mean | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02
std 2.8E-01 | 5.1E-01 | 1.1E-13 | 2.8E—01 | 7.8E—02 | 1.8E—01 | 1.1E—13 | 3.7E—02 | 1.1E-01
worst | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02 | 6.0E+02
C7 best 7.0E+02 | 7.0E+02 | 7.0E+02 | 7.0E+02 | 7.0E+02 | 7.0E+02 | 7.1E+02 | 7.0E+02 | 7.0E+02
mean | 7.0E+02 | 7.0E+02 | 7.0E+02 | 7.0E+02 | 7.0E+02 | 7.0E+02 |7.1E+02 | 7.0E+02 | 7.0E+02
std 2.7E+00 | 3.1E+00 | 1.1IE—-13 | 1.2E+00 | 1.6E+00 | 1.5E+00 | 5.8E—01 | 7.8E—02 | 1.4E+00
worst | 7.3E+02 | 7.3E+02 | 7.0E+02 | 7.1E+02 | 7.2E+02 | 7.2E+02 | 7.2E+02 | 7.0E+02 | 7.3E+02
C8 best 8.0E+02 | 8.0E+02 | 8.0E+02 | 8.0E+02 | 8.0E+02 | 8.1E+02 | 8.3E+02 | 8.1E+02 | 8.0E+02
mean | 8.0E+02 | 8.1E+02 | 8.0E+02 | 8.1E+02 | 8.0E+02 | 8.2E+02 | 8.3E+02 | 8.1E+02 | 8.0E+02
std 3.2E+00 | 3.7E+00 | 0.0E+00 | 7.8E+00 | 2.7E+00 | 2.8E+00 | 8.3E—02 | 6.4E—01 | 2.1E+00
worst | 8.3E+02 | 8.2E+02 | 8.0E+02 | 8.4E+02 | 8.2E+02 | 8.4E+02 | 8.3E+02 | 8.1E+02 | 8.4E+02
C9 best 9.1E+02 | 9.0E+02 | 9.0E+02 | 9.0E+02 | 9.0E+02 | 9.1E+02 | 9.4E+02 | 9.1E+02 | 9.0E+02
mean | 9.1E+02 | 9.0E+02 | 9.0E+02 | 9.0E+02 | 9.0E+02 | 9.1E+02 | 9.4E+02 | 9.1E+02 | 9.0E+02
std 1.8E+00 | 3.9E+00 | 1.1IE—13 | 6.4E+00 | 2.2E+00 | 1.8E+00 | 1.3E—01 | 9.4E—-01 | 2.5E+00
worst | 9.3E+02 | 9.2E+02 | 9.0E+02 | 9.3E+02 | 9.5E+02 | 9.3E+02 | 9.4E+02 | 9.2E+02 | 9.4E+02
CI0 | best 1.3E+03 | 1.0E+03 | 1.1E+03 | 1.0OE+03 | 1.1E+03 | 1.3E+03 | 2.0E+03 | 1.6E+03 | 1.0E+03

mean | 1.3E+03 | 1.2E+03 | 1.1E+03 | 1.1E+03 | 1.1E+03 | 1.3E+03 | 2.0E+03 | 1.6E+03 | 1.0E+03

(continued)

SIRO: A Deep Learning-Based Next-Generation Optimizer 59
Table 3. (continued)

Func. | Metric | ABC AO AOA ArchOA | EOSA | FFA WO MA SIRO
std 6.8E+01 | 1.6E+02 |4.5E—13 | 14E+02 | 4.2E+01 |7.6E+01 | 4.5E—13 |3.5E+01 |9.6E+01
worst | 2.1E+03 | 1.7E+03 | 1.IE+03 | 1.7E+03 | 2.1E+03 | 1.7E+03 | 2.0E+03 | 1.8E+03 | 1.9E+03

CIl |best |12E+03 |11E+03 | 1.2E+03 | 1.1E+03 | LIE+03 | 1.2E+03 | 2.0E+03 | 1.8E+03 | 1.IE+03
mean | 1.3E+03 | 1.3E+03 | 1.2E+03 | 1.3E+03 | 1.1E+03 | 1.3E+03 | 2.0E+03 | 1.8E+03 | 1.1E+03
std 44E+01 | 1.7E+02 | 2.3E—13 | 2.5E+02 | 3.8E+01 | 7.2E+01 |4.6E+00 | 1.7E+01 | 6.8E+01
worst | 1.8E+03 | 2.0E+03 | 1.2E+03 | 2.1E+03 | 1.9E+03 | 1.6E+03 |2.1E+03 | 1.8E+03 | 1.9E+03

CI2 |best |1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03
mean | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1L.2E+03 | 1.2E+03 | 1.2E+03
std 32E-01 | 8.1E-01 |2.3E—13 | 46E—01 | 6.8E—01 | .4E—01 | 5.2E—01 | 0.0E+00 | 7.2E—01
worst | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03 | 1.2E+03

CI3 |best |13E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 13E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03
mean | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03
std 1.5E-01 | 2.6E-01 |4.5E—13 | 1.5E-01 | 3.6E-01 | 1.9E-01 |2.3E—13 | 5.2E—02 | 3.8E—01
worst | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03 | 1.3E+03

Cl4 | best 1.4E+03 | 1.4E+03 | 1.4E+03 | 1.4E+03 | 1.4E+03 | 1.4E+03 | 1.4E+03 | 1.4E+03 | 1.4E+03
mean | 1.4E+03 | 1.4E+03 | 14E+03 | 1.4E+03 | 1.4E+03 | 14E+03 | 14E+03 | 1.4E+03 | 1.4E+03
std 6.8E—02 | 6.3E-01 |2.3E—13 | 3.9E-01 | 6.3E—01 | 6.7E-01 | 2.3E—13 | 1.8E—02 | 1.3E—01
worst | 1.4E+03 | 1.4E+03 | 14E+03 | 1.4E+03 | 1.4E+03 | 1.4E+03 | 14E+03 | 1.4E+03 | 1.4E+03

CI5 |best |1.5E+03 | L5E+03 | 1.SE+03 | 1.5E+03 | 1L5E+03 | 1.5E+03 | 1.5E+03 | 1.5E+03 | 1.5E+03
mean | 1.5E+03 | 1.5E+03 | 1.5E+03 | 1.5E+03 | 1.5E+03 | 1.5E+03 | L.SE+03 | 1.5E+03 | 1.5E+03
std 29E-01 | 6.1E+00 | 0.0E+00 | 6.4E—01 | 1.7E+00 | 3.4E—01 | 4.2E—02 | 2.6E—01 | 5.3E—01
worst | 1.5E+03 | 1L.6E+03 | 1.5E+03 | 1.5E+03 | 1.5E+03 | 1.5E+03 | L.5E+03 | 1.5E+03 | 1.5E+03

C16 |best |1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03
mean | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03
std 74E—02 | 9.9E—02 | 0.0E+00 | 1.5E—01 | 6.3E—02 | 4.1E—02 | 2.3E—13 | 9.3E—02 | 1.6E—02
worst | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03 | 1.6E+03

100 I | —— Solution 1.

T“m S = S

| =t
10

g 60

g —— Exploration %

g —— Exploitation % 0

£ |

20 -10 i
01 -20 : . . .
0 100 200 300 400 500 0 100 200 300 400 500

#lteration

#lteration

Fig. 5. The left plotillustrates the exploration and exploitation of SIRO, while the right plot shows
the convergence trajectory of the first five (5) solutions in the solution space of SIRO.

60 O. N. Oyelade et al.

ABC EHAO EAOA HEArchOA EOSA mFFA IWO mMA mSIRO

' 100,00
)
=
0
0
© 50,00
(<]
:] l] I]]
o
Z 0,00 L4
AOA ArchOA EOSA FFA MA SIRO
Algorithms

Fig. 6. Computational time comparison of SIRO and other optimization methods on benchmark
function C10.

test should be employed. However, the initial test result obtained, with a p-value of
3.53e—25 shows that the data do not follow normal distribution. Therefore, Friedman’s
test which is a non-parametric statistical test was selected for the comparative study
of SIRO with other algorithms. The non-parametric Friedman’s test was conducted to
obtain the rank SIRO in comparison with the other algorithms. According to Friedman’s
test, the algorithms are not equally effective. The proposed algorithm SIRO ranked 1
as the best algorithm, while other well-performing algorithms such as EOSA, ArchOA,
and AOA are ranked, 2, 3, and 4 respectively. In Table 4, the ranks of the compared
algorithms based on Friedman’s rank test with a 95% level of confidence are illustrated.

Table 4. Friedman’s rank test of proposed SIRO with considered algorithms Null hypothesis
(Hp): All the algorithms are equally effective.

Method | Mean rank | Rank | p-value Conclusion

ABC 4.84 5 1.318e—17 | Hyp may be rejected for o = 1% since p-value =

AO 5.02 6 1'318?_17 < 0.01. At 1% leyel of significance,
effectiveness of several algorithms are not equal

AOA 448 4 considering type — I error of 1%

ArchOA |4.23 3

EOSA |3.50 2

FFA 5.13 7

WO 7.45 9

MA 7.13 8

SIRO 323 1

SIRO: A Deep Learning-Based Next-Generation Optimizer 61
4 Conclusion and Future Work

This paper introduces a machine-learning approach to optimize parameter configura-
tions for the SIRO algorithm. It utilizes an LSTM model to broaden the search space and
explores different SIRO-parameter schemes through a parameter grid. SIRO is trained
using permutations of these values, generating image representations for a CNN to iden-
tify optimal parameter values. Fully trained SIRO excels in IEEE CEC 2017 benchmark
test functions, outperforming similar methods. Analysis of exploration-exploitation and
convergence demonstrates SIRO’s competitiveness. The approach enables consistent
parameter values, challenging stochastic methods’ dependency. Future research could
extend benchmarks and assess SIRO’s robustness against challenging functions and real-
world problems. Moreover, SIRO demonstrates versatility in addressing challenging
computer vision problems, including medical image classification, along with complex
machine learning tasks like deep-leaning parameter optimization and feature selection.

References

1. Seyyedabbasi, A.: A reinforcement learning-based metaheuristic algorithm for solving global
optimization problems. Adv. Eng. Softw. 178, 103411 (2023)

2. Talbi, E.G.: Machine learning into metaheuristics: a survey and taxonomy. ACM Comput.
Surv. (CSUR) 54(6), 1-32 (2021)

3. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation
metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)

4. Hussain, K., Mohd Salleh, M.N., Cheng, S., Shi, Y.: Metaheuristic research: a comprehensive
survey. Artif. Intell. Rev. 52(4), 2191-2233 (2019)

5. Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., Zhao, W.: Artificial rabbits optimization: a new bio-
inspired meta-heuristic algorithm for solving engineering optimization problems. Eng. Appl.
Artif. Intell. 114, 105082 (2022)

6. Zhao, S., Zhang, T., Ma, S., Chen, M.: Dandelion Optimizer: a nature-inspired metaheuristic
algorithm for engineering applications. Eng. Appl. Artif. Intell. 114, 105075 (2022)

7. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1(1), 67-82 (1997)

l‘)

Check for
updates

Investigation of the Benefit of Extracting
Patterns from Local Optima to Solve
a Bi-objective VRPTW

(=) 2

, Laetitia Jourdan'®,
1

Clément Legrand! , Diego Cattaruzza

and Marie-Eléonore Kessaci

! Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
{clement.legrand4.etu,laetitia.jourdan,marie-eleonore.kessaci}@univ-lille.fr
2 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
diego.cattaruzza@centralelille.fr

Abstract. Hybridizing learning and optimization often improves exist-
ing algorithms in single-objective optimization. Indeed, high-quality solu-
tions often contain relevant knowledge that can be used to guide the
heuristic towards promising areas. Learning from the structure of solu-
tions is challenging in combinatorial problems. Most of the time, local
optima are considered for this task since they tend to contain more rele-
vant structural information. If local optima generally contain more inter-
esting information than other solutions, producing them requires a time-
consuming process. In this paper, we study the benefits of learning from
local optima during the execution of a multi-objective algorithm. To
this end, we consider a hybridized MOEA /D (a multi-objective genetic
algorithm) with a knowledge discovery mechanism adapted to the prob-
lem solved and we conduct experiments on a bi-objective vehicle rout-
ing problem with time windows. The knowledge discovery mechanism
extracts sequences of customers from solutions. The results show the
benefit of using different strategies for the components of the knowledge
discovery mechanism and the efficacy of extracting patterns from local
optima for larger instances. An analysis of speed-up performance gives
deeper conclusions about the use of local optima.

Keywords: Combinatorial Optimization - Multi-Objective
Optimization + Online Learning - Genetic Algorithm + Local Search

1 Introduction

It is known that optimization and learning have a good synergy [8,21], especially
in combinatorial optimization. Knowledge discovery (KD) mechanisms consist
of an extraction step, where knowledge is discovered from solutions, and an
injection step, exploiting the knowledge to guide the algorithm towards new
regions of the exploration space.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 62-77, 2024.
https://doi.org/10.1007/978-3-031-62912-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_7&domain=pdf
http://orcid.org/0000-0002-4367-4676
http://orcid.org/0000-0002-1814-2547
http://orcid.org/0000-0002-4170-6830
http://orcid.org/0000-0002-4372-5162
https://doi.org/10.1007/978-3-031-62912-9_7

Extracting Patterns from Local Optima to Solve a bVRPTW 63

Due to the success of the use of KD to solve single-objective problems [1], it
seems natural to consider the integration of KD into multi-objective combina-
torial optimization problems (MoCOPs) [7]. Such problems are frequent in the
industry where decision-makers are interested in optimizing several conflicting
objectives at the same time. Each objective reflects a different point of view on
the problem. More precisely, in a MoCOP, the quality of a solution is evaluated
according to multiple criteria that are generally conflicting. In that context, a
solution may not be better than another one.

Moreover, the structure of the solutions themselves is important. In single-
objective problems, the learning tasks are often performed on local optima [1,
2,10], which tend to contain more relevant structural information. Although
obtaining local optima is a time-consuming task, it is known that using a local
search as a mutation operator in evolutionary algorithms improves their per-
formance [11,13]. The local search is commonly applied following a probability
to reduce the computational overhead induced, bringing more diversity to the
solutions found.

In this paper, we investigate the benefit of extracting knowledge from local
optima in a multi-objective context. More precisely, we solve a bi-objective vehi-
cle routing problem with time windows (bVRPTW), where total cost and waiting
time are simultaneously minimized. To that aim, we consider a MOEA /D [2§]
hybridized with a KD mechanism [14], which already proved its efficiency, and
we propose four related variants, each one with a different strategy for extraction
and injection.

The remainder of the paper is organized as follows. In Sect. 2 MoCOPs are for-
malized. Section 3 presents a brief review of existing works on learning from solu-
tions to optimization problems. After an overview of MOEA /D, Sect. 4 presents
how the learning is integrated into MOEA /D and describes four related vari-
ants. Section 5 presents the problem studied, the benchmark, and the tuning of
the variants. Section 7 gives the experimental protocols followed to answer the
following question: Are local optima the only kind of solution from which we
should learn? In Sect.8 our results are presented and discussed. Finally, Sect. 9
concludes and presents perspectives for this work.

2 Multi-objective Optimization

Many logistic problems can easily be considered as multi-objective problems
since many challenges have to be tackled simultaneously. These challenges may
be linked to economic or environmental issues. Formally, Multi-objective Combi-
natorial Optimization Problems (MoCOPs) are defined as follows [7].

(MoCOP) = { Op“m;'f: 5 (gf)D: (f1(x), f2(2), -, ful2)))

where n is the number of objectives (n > 2), x is the vector of decision variables,
D is the (discrete) set of feasible solutions and each objective function f;(x) has
to be optimized (i.e. minimized or maximized). In multi-objective optimization,

64 C. Legrand et al.

the objective function F' defines a so-called objective space denoted by Z. Each
solution z € D is associated with a unique point F(z) in Z.

The notion of dominance is defined as follows: a solution z dominates a solu-
tion g, in a minimization context, if and only if for all ¢ € [1...n], fi(x) < fi(y)
and there exists j € [1...n| such that f;(z) < f;(y). This criterion induces a
partial order on the set of feasible solutions since two solutions can be incompa-
rable (i.e. no one dominates the other one).

Then a set of non-dominated solutions is called a Pareto front. A feasible
solution x* € D is called Pareto optimal if and only if there is no solution z € D
such that x dominates x*. Resolving a MoCOP involves finding all the Pareto
optimal solutions that form the Pareto optimal set. The true Pareto front of the
problem is obtained by plotting the objective function values corresponding to
the solutions in the Pareto optimal set.

Over the years, many metaheuristics based on local search techniques or using
evolutionary algorithms [5,9,28] have been designed to solve multi-objective
problems. Moreover, many tools [17] have been developed to assess and com-
pare the performance of multi-objective algorithms. In this paper, we consider
the unary hypervolume (HV) [29]. It is a metric defined relatively to a reference
point Z,.s, generally (1.001,...,1.001), and requires that the objectives of the
solutions are normalized between 0 and 1. A value slightly higher than 1 (like
1.001) is often preferred for computational issues. This indicator evaluates the
accuracy, diversity, and cardinality of the front. Moreover, the HV can be used
without knowing the true Pareto front of the problem. Geometrically, it reflects
the volume covered by the members of a non-dominated set of solutions. The
larger the hypervolume, the better the set of solutions.

3 Learning and Multi-objective Optimization

Hybridizing machine learning methods and metaheuristics is recently quite com-
mon to solve combinatorial problems. Indeed the survey [21] reviews different
kinds of hybridizations and proposes to classify the different methods according
to where the hybridization is performed: at a problem level, a low level, or a
high level. When learning is integrated at a low level, the knowledge is extracted
from solutions to the problem. This is the integration we are interested in.

Moreover, the hybridization can be realized either online or offline [8]. The
learning is said online when it uses resources generated during the execution.
Otherwise, the learning is said offline.

Most of the KD mechanisms are composed of an extraction step, where
something is learned, and an injection step, which uses the extracted knowl-
edge to find new promising solutions. A study of existing works in machine
learning and its hybridization with metaheuristics [21] leads to four questions:
What/ Where/ When / How is the knowledge extracted/injected?

Question What is problem-dependent, since each problem may have a spe-
cific relevant knowledge. In our case, this question is related to the structure
of the solutions obtained, since we learn patterns present inside them. Question

Extracting Patterns from Local Optima to Solve a bVRPTW 65

Where is algorithm-dependent, since the extraction and injection steps have to
be integrated into the process of the algorithm. More precisely, the position of
the extraction step in the algorithm highly influences what is learned. Indeed,
suppose the extraction is performed after a local search. In that case, solutions
will have a more interesting structure relevant to the learning, which will lead
to an overall improvement of the following iterations. This strategy has been
successfully applied to solve single-objective routing problems [1,3]. However,
it could also be interesting to learn about solutions that are not local optima
to bring more diversity to the search. Question When is algorithm-dependent
as well and deals with the frequency of applying the extraction and injection
steps. Question How corresponds to the design of the extraction and injection
steps considering the nature of the problem (multi-objective in our case). While
question What is considered in Sect. 5.2, once the problem has been presented,
Sect. 4.2 addresses the three other questions.

4 Hybridization Between Learning and MOEA /D

41 MOEA/D

MOEA/D [28], is a genetic algorithm that approximates the Pareto front by
decomposing the multi-objective problem into several scalar objective subprob-
lems, as illustrated in Fig.1. Each iteration of the algorithm optimizes one of
the subproblems, by applying a genetic step composed of crossover and muta-
tion operators. The mutation is commonly replaced by a local search [11,13], to
intensify the search in a region of the space. Consequently, it generates better
solutions for the next crossover step. However, the local search is time-consuming
and increases the time allocated to each generation. Thus, given the same time
of execution, fewer generations are performed, and consequently, less crossover,
leading to potentially less diversity. MOEA/D is a simple algorithm that has
already been widely studied in the literature [27]. Moreover, it has already been
successfully hybridized with an opposition-based learning mechanism [16], mak-
ing it a good candidate for our study.

Here, we consider scalar problems defined with a weighted sum of the objec-
tives. More precisely a convex combination of the n objectives is defined by
attributing a weight w; € [0,1] to the objective f; such that >_"" ; w; = 1. Then
the fitness of a solution is the following quantity: g(z|w) = i, w; - f;(z). Thus
to generate different Pareto optimal solutions one can use M different weight
vectors w', ..., w™. However, in practice, not all the Pareto optimal solutions
can be obtained with such aggregations.

MOEA/D solves the i-th subproblem, by using the solutions of its clos-
est neighbors. Indeed, the neighborhood, of size m, of a weight vector w® is
defined as the set of its m closest (for the euclidean distance) weight vectors
in {w!,...,w™}. Then the neighborhood N,,(i) of the i-th subproblem simply
consists of the m subproblems defined with a weight vector belonging to the
neighborhood of w®. In the following, we consider a uniform distribution on the
weight vectors, and we assume that is enough to obtain diverse subproblems.

66 C. Legrand et al.

During the execution of MOEA /D, only the best solution found is kept for
each subproblem. When a subproblem ¢ is optimized, the genetic step generates
a new solution. The crossover occurs with probability p.., and the mutation with
probability p,,..:. Note that, the crossover is realized between two randomly cho-
sen solutions from subproblems of A, (7). Moreover, an external archive stores
non-dominated solutions found during the search. These solutions are returned
once the termination criterion is reached. In MOEA/D, the crossover applied is
the partially mapped crossover (PMX) [12]. Only one solution is randomly kept
after the crossover, to reduce the computation time. The mutation is a local
search, briefly described in Sect.5.1. In the remainder of the paper, this version
of MOEA/D is called A.

Objective 2
— — — unknown front
Q . aggregation
\
\ [5) solution
b \
¥ e
N
"é N
N (e} ~
2
3 ce -
' 5 ~==0
w
Objettive 1

Fig. 1. Decomposition of a bi-objective problem into five scalar problems with weight
vectors w',...,w® in MOEA/D. Each subproblem is associated with its current best
solution.

4.2 Learning Within A and Variants

Firstly, we present How the KD mechanism works. The KD mechanism inte-
grated within A is based on the following assumption: close solutions in the
objective space share a similar structure. Note that, the closeness between two
solutions is evaluated according to their objective vector with the Euclidean dis-
tance. We present now the notion of knowledge groups, as introduced by Legrand
et al. [14].

Each knowledge group G is associated with one of the subproblems defined
in A. More precisely G, is associated with the subproblem of weight vector w?.
Thus, there are as many knowledge groups as subproblems. Moreover, since the
neighborhood of each subproblem is already defined in A, we keep the same
neighborhood for the knowledge groups. In other words, if each subproblem has
m neighbors, then each solution will belong to m knowledge groups. With this
construction, each knowledge group focuses on a part of the objective space.

Once the knowledge groups are defined, they can be used for the extraction
and the injection steps. In the following, we answer questions where and when
presented in Sect. 3. The knowledge discovery MOEA /D is presented in Algo-
rithm 1. Briefly, the algorithm follows the MOEA /D framework as described in

Extracting Patterns from Local Optima to Solve a bVRPTW 67

.~ 7 7~ _ Setof solutions Knowledge Group
7
4 °
! . o
v Y
\ * .
N L 2 L
~ - _

! I
| [° ° |
: 0 o ® . o ® . ° ® ° . :
R E——a
° " °
| b o Disconnection o Reconnection ® ¥ |
| b ° hd . b . |
| *-—o ° o e o |
| Initial solution Final solution |

Fig. 2. For each solution belonging to a set of solutions, its patterns are extracted and
added to the corresponding knowledge group. A frequent pattern (here of size 3) is
selected and injected into a VRPTW solution.

Sect. 4.1. During the initialization phase, an archive is created to keep track of
non-dominated solutions found during the execution. An initial random solution
is associated with each subproblem, providing an initial population P. For each
subproblem ¢, its A/(7) neighboring subproblems are computed, its initial solu-
tion z’ undergoes a LS step with probability p,.:, and is then evaluated. The
associated knowledge group G; is initially empty. Then, while the termination
criterion is not achieved, the subproblems are iteratively solved. Considering
subproblem 4, two neighboring subproblems are selected and their associated
solutions undergo a partially mapped crossover to generate a new solution for
the subproblem. If the crossover is not applied, the current associated solution
is kept. The injection step occurs, with a probability p;y;, and the LS is applied
to the resulting solution, with probability p.¢-

More precisely, to perform the injection step we distinguish between two
different strategies S = {int,div}. The first one is an intensification strategy
(s = int), where the search is focused on a specific part of the exploration space.
In this case, only one knowledge group is chosen for the injection. More precisely,
if the solution z. is obtained after the crossover for the subproblem i (line 11
of Algorithm 1), then it receives knowledge contained in the knowledge group
G; that is to say the knowledge group associated with its own subproblem. The
other strategy concerns diversification (s = div), where the knowledge of all the
groups can be used, to favor a larger exploration of the space. More precisely,
the solution x. receives knowledge contained in a randomly chosen knowledge
group among all the existing groups.

The extraction step is performed after the genetic step (after line 13 of Algo-
rithm 1), but at some conditions and following a probability pe,:. Since we inves-
tigate the importance of local optima during learning, we consider two strategies

68 C. Legrand et al.

q € Q = {lo,all}, that is the extraction is realized on local optima only or on
every solution. If the extraction is performed on local optima only (¢ = lo), then
the condition allow Extraction is verified if and only if the local search occurred.
Otherwise, allowExtraction is always verified, so that the extraction can occur
on every solution (¢ = all) meaning that knowledge is extracted from all poten-
tial solutions found. Note that in both cases, the probability of extraction is
considered once the condition has been verified.

The last step concerns the update of the associated solutions of neighboring
subproblems if the final solution found is better for them. Once the termination
criterion is reached, the archive is returned.

Finally, our design leads to four variants of A, which will be compared in
the following: AL, Al =~ A% and A%l These variants are called KD variants.

int’ div? n div*
Each variant has its specificity concerning the injection and the extraction step.

5 Problem and Related Knowledge

5.1 Vehicle Routing Problems with Time Windows (VRPTW)

The VRPTW [23] is defined on a graph G = (V, E), with the set of vertices
V={0,1,...,N}and E = {(i,7)|4,j € V} the set of arcs. The travel from i to j
incurs a travel cost ¢;; and a travel time ¢;;. Usually, the cost is computed as the
Euclidean distance between the customers, and t;; = ¢;;. A fleet of K identical
vehicles with limited capacity Q is based at the depot, represented by vertex 0.
The other vertices represent the customers to be served. Each customer has a
demand g¢;, a time window (TW) [a;,b;] during which service must occur, and
a service time s; estimating the required time to perform the delivery. Arriving
later than b; is not allowed here. We recall that a route r is an elementary
cycle on G that contains the depot and is expressed as a sequence of vertices
r = (Vo, V1, .., Vjp[,V|r|+1) Where vg = vj,j41 = 0 and vertices vy,...,v), are
distinct. The cost ¢, of a route r is then given as the sum of traveling costs
on arcs used to visit subsequent vertices, that is ELTZ‘O Co;vis1- A solution z is
represented as a set of K (possibly empty) routes, that is z = {r1,...,7x}, and
its cost is expressed as:

K
file) =) e, (2)
k=1

When vehicles arrive before a;, the driver has to wait until a; to accom-
plish service incurring a waiting time. We formalize the notion of waiting time
as follows. The waiting time W; at a customer i is given as the maximum
between 0 and the difference between the opening of the TW a; and the arrival
time T; at location 4, that is W; = max{0,a; — T;}. Note that each route
r = (V0,V1,. .., V|, V|r|+1) IS associated with a feasible (i.e., consistent with
traveling times and TWs) arrival time vector T, = (Tvo,Tvl,...,Tv‘r‘,th‘Hl)
and the total waiting time W,.(T;) on route r, with respect to 7, is given by
W (T,) = Zml W,,. Thus the total waiting time of a solution z = {ry,...,7x}

1=

Extracting Patterns from Local Optima to Solve a bVRPTW 69

Algorithm 1: The generic A¢ framework.

Input: M weight vectors w?, ..., w™ and the size m of each neighborhood. s
denotes the strategy followed for the injection. ¢ refers to the nature of
the solutions that undergo the extraction.

Output: The external archive A

/* Initialization */

1 A1
2 P « random initial population (z* for the i-th subproblem)
3 forie{l,...,M} do

4 N (i) « indexes of the m closest weight vectors to w"
5 zt — LS(z")
6 Obj* « F(z*)
7 Gi—0
/* Core of the algorithm */
8 while not stopping criterion satisfied do
9 forie {1,...,M} do
10 (k,1) « select randomly two indexes from N (7)
11 z, « Crossover(z”, z!)
12 Zinj <— Injection(z., s)
13 $/ — LS(winj)
14 if allowEztraction(z’,q) then
15 K « Extraction(z’)
16 Gi,...,Gm < update with I
/* Updating the neighbors */
17 for j € N (i) do
18 if g(2'|w?) < g(27|w’) then
19 e
20 Obj? — F(2)
21 A «+ Update(A, z')

22 return A

on a graph G, given a time arrival vector for each route in the solution, i.e.,
T, =(Ty,...,Try), is given by the following formula:

K
k=1

The VRPTW calls for the determination of at most K routes such that the
traveling cost is minimized and the following conditions are satisfied: (a) each
route starts and ends at the depot, (b) each customer is visited by exactly one
route, (c¢) the sum of the demands of the customers in any route does not exceed
Q, (d) time windows are respected. In the remainder of the paper, the problem
considered is a Bi-Objective VRPTW (bVRPTW), where functions f; (Eq.2)
and f> (Eq.3) are simultaneously minimized.

70 C. Legrand et al.

Usually, when dealing with the VRPTW, the number of vehicles is minimized
first and then the total transportation cost is minimized. However, considering
these objectives leads to the creation of a Pareto front with few solutions, which
is not an interesting situation for the KD mechanism described. Furthermore,
the number of vehicles and the total transportation cost tend to be positively
correlated, while it is the opposite for the total waiting time and the total trans-
portation cost [6]. Hence, we decided to minimize the total waiting time instead
of the number of vehicles.

A solution to the problem is represented as a permutation of the customers.
To evaluate such a solution, we use the algorithm split developed by [26]. The
evaluation always provides a feasible solution (i.e. respecting capacities and time
windows).

Concerning the LS performed in A (cf. Sect. 4.1), we implemented the same
operators as described in [18]: Relocate, Swap, and 2-opt*. These simple oper-
ators are largely used in local search algorithms for routing problems since they
can produce a large neighborhood. The Relocate operator moves customer ¢
from its current position to another location (possibly on the same route). The
Swap operator exchanges in the solution the position of two customers. The
2-opt* operator generalizes the 2-opt (that is an exchange of two arcs in the
same route), by involving different routes. Note that, a move is accepted only
if the solution remains feasible. A Randomized Variable Neighborhood Descent
is applied for exploration [20], where the order of the neighborhood operators
is kept during descent but shuffled each time the LS is applied. For each opera-
tor, customers are shuffled, and iteratively, all the moves involving the current
customer are tried until the best one is found. The moves considered for one cus-
tomer are reduced using a granularity parameter § [22]. The granularity defines
the furthest (for the Euclidean distance) possible neighbor to consider in a move.
Finally, the operator is iterated until no customers can be moved, and the next
operator is applied similarly. Once the three operators have been applied, the
solution is returned. To perform an efficient exploration of the neighbors, we use
incremental evaluation as defined in [25].

5.2 Pattern Injection Local Search

This section is dedicated to answering question What from Sect. 3. In the field
of routing problems, a learning mechanism called Pattern Injection Local Search
(PILS) has recently been introduced by Arnold et al. [1]. This mechanism is an
optimization strategy that uses frequent patterns from high-quality solutions, to
explore high-order local-search neighborhoods. PILS has been hybridized with
the Hybrid Genetic Search (HGS) of Vidal et al. [26] and the Guided Local Search
(GLS) of Arnold and Sorensen [2] to solve the Capacitated Vehicle Routing
Problem (CVRP) with good results.

PILS is based on an extraction step, focused on the patterns of the current
solution, and an injection step, which brings diversity to the solution by adding
some patterns learned.

Extracting Patterns from Local Optima to Solve a bVRPTW 71

Given a solution x of the problem, patterns are sequences of consecu-
tive customers in a route and PILS extracts all the patterns of z with a
size between 2 and MaxSize, a user-defined parameter. For instance, a route
r = (0,v1,...,v},,0), contains max(|r|—k+1,0) patterns of size k (e.g. (v1, vz2) is
a pattern of size two). The depot is not considered inside patterns. The extracted
patterns are added to the corresponding knowledge group by incrementing their
frequency of appearance.

At some point, PILS tentatively injects Nipjectea patterns in the current
solution z. Only improving patterns (for the current subproblem) are kept in the
solution, assuming that the solution remains feasible. The selection of a pattern is
performed as follows: first, the knowledge group is selected (at random if several
possibilities are available), then the size of the pattern is randomly chosen among
the possible sizes of patterns, and in the corresponding subset one pattern is
randomly chosen among the Npyequent most frequent patterns of the same size.
When all patterns have been selected, they are injected one by one according
to the steps presented in Fig. 2. Firstly arcs incident to a node of the pattern
are removed to form the pattern. This step creates several pieces of routes, that
are finally reconnected to form a feasible solution. Note that, because of time
windows, we do not consider reversed patterns in our mechanism.

6 Experimental Setup

6.1 The Solomon’s Benchmark

We use Solomon’s instances [19] to evaluate the performances of the five variants
presented in Sect. 4.2. The set contains 56 instances divided into three categories
according to the type of generation used, either R (random), C' (clustered),
or RC (random-clustered). The generation R (23 instances) randomly places
customers in the grid, while the generation C' (17 instances) tends to create
clusters of customers. The generation RC' (16 instances) mixes both generations.
Each category is itself divided into two classes 1 or 2 according to the width of
time windows. Instances of class 2 have wider time windows than instances of
class 1, meaning that instances 1 are more constrained. All 56 instances exist in
three sizes: 25, 50, and 100. However, instances of size 25 and 50 are restrictions
of instances of size 100. For our experiments, we do not consider instances of
size 25 since they are too small. Although this set was created to evaluate single-
objective algorithms, it is also used in the literature to evaluate the performances
of multi-objective algorithms.

6.2 Setup and Tuning

As mentioned above, each algorithm is tuned to find the best setting of the
parameters. However, the instances for this tuning phase have to be different
from the ones used to evaluate the final performance of the tuned algorithms.
Thus, we generated 96 new instances of sizes 50 and 100, by using the method
described by Uchoa et al. [24], to mimic Solomon’s instances.

72 C. Legrand et al.

Up to 10 parameters are used in the variants considered: 5 parameters are
related to A. Those are the number of subproblems to solve (M), the size of the
neighborhood for each subproblem (m), the granularity during the local search
(6), the probability of local search (py,ut), and the probability of crossover (pero)-
The other 5 parameters are specific to the learning. Those are the probability of
extraction (pest), the maximum size of patterns extracted (MaxSize), the prob-
ability of injection (p;y;), and the number of patterns injected (Nppjected) among
the maximum number of most frequent patterns (Npyequent). The configurations
obtained with irace [15] are available as supplementary materials.

The following experiments are performed on two computers “Intel(R)
Xeon(R) CPU E5-2687TW v4 @ 3.00 GHz”, with 24 cores each, in parallel (with
slurm). The variants have been implemented using the jMetalPy framework [4].

7 Experimental Design

In the following, three batches of experiments are considered. The first batch
evaluates the impact of the integration of the KD into A4, by comparing the
variants with the same parameters. The second batch evaluates the performance
of the KD variants with their best parameters. The last batch analyses the
speed-up of the KD variants compared with A to reach a target hypervolume.

For the first batch of experiments, we define a new configuration considering
the configurations obtained for all variants with irace. We take the 5 parameters
of A and for the KD parameters, we compute the mean of the corresponding
parameters of the KD variants, and we round the result, to conserve the same
precision. Each variant is executed 30 times on each instance of Solomon’s bench-
mark (56 instances of size 50, and 56 instances of size 100). For each algorithm,
the k-th run of an instance is executed with the seed 10 x (k — 1), so that, all
algorithms are compared with the same seeds. The termination criterion is fixed
to N x 65, where N is the size of the instance. The results are compared using
the hypervolume, since the true Pareto fronts of the instances are not known.

For the second batch of experiments, we proceed similarly to the first batch,
except that we use the configurations returned by irace for each variant.

Finally, for the third batch of experiments, we evaluate the speed of the
learning variants to reach 95% of the mean hypervolume returned by A. The
termination criterion is slightly different from the other batches since we con-
sider the value of the hypervolume to be reached. Except for that change, the
remaining of the experiment is similar to the previous one. Note that, for all the
experiments, we use the same values to normalize the objectives of all variants.
These values are obtained with the first experiment and are simply the best and
worst values obtained among all the executions. It allows an easy computation
of the hypervolume during the execution of the algorithm.

Extracting Patterns from Local Optima to Solve a bVRPTW 73
8 Experimental Results

This section presents a synthesis of the results obtained. The tables report the
average values calculated over all instances for each class and each size of the
problems. The results for all instances are given as supplementary materials.

Table 1 shows the mean gain, in percentage, obtained with all KD variants
when A is the reference algorithm. First one can see that all gains are strictly
positive, meaning that the KD variants return better results, in general, than
A. Bold results represent the maximum gain. However, when using Friedman
and pairwise Wilcoxon tests, the KD variants are statistically equivalent most
of the times. The KD variants are much more efficient on instances of class 1
since the gain is always higher than the gain for instances of class 2. We recall
that instances of class 2 contain wider TW and thus are less constrained.

Table 1. Mean gain (%) obtained with Table 2. Mean gain (%) obtained with
the KD variants with respect to A, the KD variants with respect to A,
when they all have the same parame- when the parameters are given by irace.
ters.

Class | Size A | A3l | Ale, | Al Class | Size | A% | A3l | A, | Ak
C1 |50 |52.6 |52.3 |52.2 |52.2 C1 |50 |55.1|55.1|53.1 |53.3
R1 50 |24.4 125.5 |25.1 |26.3 R1 50 [35.9 [36.5 30.5 [26.2
RC1 |50 |43.1 |43.1 |43.9 |43.7 RC1 |50 |58.1 [59.6 |53.5 [50.8
Cc2 |50 [12.2 |11.8 |12.8 |12.7 Cc2 |50 |16.0 |16.5|10.4 7.8
R2 |50 |5.7 (6.3 6.5 |5.7 R2 |50 |14.0 (139 |9.7 (9.2
RC2 |50 |20.5 |20.7 |21.2 |21.3 RC2 |50 [28.6 {29.0 (26.1 |24.4
C1 100 [232.21234.9|234.2|234.2 C1 100 [227.21239.1/235.0/249.3
R1 100 [83.9 |85.1 83.2 |85.3 R1 100 |126.1]143.0/140.9/144.1
RC1 |100 |145.0/148.0/143.3|145.9 RC1 100 |164.1|203.2|209.6|222.6
C2 100 |70.9 |70.5 [69.7 |70.3 C2 100 |41.6 |61.7 |69.9 |72.4
R2 100 (254 [25.1 |26.7 |25.0 R2 100 43.0 |56.0 |58.4 |60.7
RC2 100 [34.2 |38.0 [36.1 |35.7 RC2 100 |35.2 |57.2 |65.9 |72.7

Table 2 shows the mean gain obtained when the parameters are chosen by
irace for each variant. It leads to an overall improvement of the results of
Table1 (except for the algorithms learning on local optima on some C2 and
R1 instances). More importantly, we see that learning on local optima is mainly
beneficial for instances of size 100 (on average the variant AL returns the best
results on these instances). However, it is outperformed by the other KD vari-
ants on instances of size 50. On instances of size 50, it seems more interesting to
learn from any solutions found. Indeed the algorithm may be easily get stuck on
the same local optima, since the instance is easier to solve, which does not add

74 C. Legrand et al.

useful information to the mechanism. Table 3 gives the gaps with the best-known
solutions for the total cost objective. The results highlight that our KD variants
return much better results than .A. However, in some instances (e.g., RC1 of size
100), the gaps obtained are still high (> 2%), meaning that in a multi-objective
context, it is harder to find the optimal value of each objective. Moreover, larger
gaps are obtained on instances of size 100, showing scalability issues.

Table4 shows the speed-up of the KD variants to reach 95% of the mean
hypervolume returned by 4. The table shows that we reach an average speed-up
of 73.5% (resp. 64.1%) on instances of size 50 (resp. 100) compared to A, leading
to a significant improvement. By considering the results in Table 2, we observe
that A%l reaches good results faster than A%, on instances of size 100, but
then slows down and is outperformed by A%, . On instances of size 50, it is the

intensification variant A% which is the fastest variant on average.

Table 3. Mean gap (%) obtained regard- Table 4. Mean gain (%) obtained,

ing the total cost objective. The gaps are in terms of speed-up, with the

computed with the optimal value known for learning-variants with respect to A,

each instance. to reach 95% of the mean hypervol-
ume returned by A.

Class|Size| A | Ay |AGl | Alne AR, Class|Size| A% | A2 | Ale, [Ak,
C1 |50 10.86/0.07 |0.08 [0.40 |0.40 Cl |50 |85.0/79.9 84.4 80.8
R1 |50 3.09 [0.90 |0.92 [1.23|1.43 R1 |50 |73.770.4 |76.774.3
RC1 (50 |7.41 |1.72 |1.56 |2.17 |2.54 RC1 |50 |84.7/81.7 |83.5 |83.9
C2 |50 |2.15 0.35 10.35 0.58 0.55 C2 |50 164.5 |64.7/59.2 55.5
R2 |50 |4.56 |2.37 |2.40 |2.66 [2.65 R2 |50 |65.8 58.9 |65.6 |63.6
RC?2 (50 |7.31 |1.52 |1.22|1.97 |1.95 RC2 |50 |78.6 |72.6 |78.9/77.9
C1 100 |35.03/5.13 |3.79 |4.02 |2.22 C1 |100 |73.4 |81.2/76.2 [69.9
R1 100 10.44|5.15 |4.43 |4.51|4.37 R1 |100 |55.7 |65.9(62.6 |54.4
RC1 100 18.84[10.31|8.11 |7.67 |7.03 RC1 100 168.1 |75.6/73.5 68.6
C2 100 |5.67 |2.64 |1.240.540.38 C2 1100 159.9 |70.0/68.0 |62.5
R2 100 |9.58 |7.81 6.58 |6.15|5.71 R2 100 |53.4 |58.2/56.4 46.6
RC?2 (100 12.02/11.00|7.61 |6.24 |5.04 RC?2 100 |57.0 |61.9 |62.7/57.0

9 Conclusion

Exploiting knowledge in multi-objective optimization requires taking into
account the absence of order between incomparable solutions. In this paper,
we presented a MOEA /D algorithm enhanced with a knowledge discovery step
that extracts knowledge from the representation of solutions and integrates this

Extracting Patterns from Local Optima to Solve a bVRPTW 75

knowledge within other solutions. The question raised and discussed in this paper
concerns the impact of extracting knowledge from local optimum solutions only.
It led to the design of four variants of MOEA/D, depending on the strategy
followed during the injection step and depending on the solutions used during
extraction. In particular, the variant A% (resp. AL) extracts the knowledge
from all potential (resp. local optima) solutions found, and follows a diversifica-
tion strategy during the injection, meaning that we use knowledge from all groups
to favor larger exploration of space. We conducted experiments on Solomon’s
instances of the bi-objective VRPTW and we showed the benefit of exploiting
knowledge to better optimize solutions. Additionally, extracting patterns from
local optima (A!°), especially for larger instances, is preferable to obtain better
solutions. The investigation of the speed-up reveals that A%! converges faster
towards good solutions (i.e., when the learning is not focused on local optima
only). In practice, it means that focusing on local optima solutions only is not
a necessity to quickly achieve good performances. Future works should consider
an adaptive mechanism to control the learning on local optima only or not.
Finally, other combinatorial problems should be considered like the bi-objective
flow-shop, to know if similar conclusions are reached.

Supplementary Materials

The detailed results for each instance and the source code, can be found here:
https://gitlab.univ-lille.fr/clement.legrand4.etu/knowledge-discovery.

References

1. Arnold, F., Santana, f., Sorensen, K., Vidal, T.: PILS: exploring high-order neigh-
borhoods by pattern mining and injection. Pattern Recogn. 116, 107957 (2021)

2. Arnold, F., Sorensen, K.: Knowledge-guided local search for the vehicle routing
problem. Comput. Oper. Res. 105, 3246 (2019)

3. Barbalho, H., Rosseti, I., Martins, S.L., Plastino, A.: A hybrid data mining grasp
with path-relinking. Comput. Oper. Res. 40(12), 3159-3173 (2013)

4. Benitez-Hidalgo, A., Nebro, A.J., Garcia-Nieto, J., Oregi, 1., Del Ser, J.: jMetalPy:
a python framework for multi-objective optimization with metaheuristics. Swarm
Evol. Comput. 51, 100598 (2019)

5. Blot, A., Marmion, M., Jourdan, L.: Survey and unification of local search tech-
niques in metaheuristics for multi-objective combinatorial optimisation. J. Heuris-
tics 24(6), 853-877 (2018)

6. Castro-Gutierrez, J., Landa-Silva, D., Pérez, J.M.: Nature of real-world multi-
objective vehicle routing with evolutionary algorithms. In: 2011 IEEE International
Conference on Systems, Man, and Cybernetics, pp. 257-264. IEEE (2011)

https://gitlab.univ-lille.fr/clement.legrand4.etu/knowledge-discovery

76

7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

C. Legrand et al.

. Coello Coello, C.A., Dhaenens, C., Jourdan, L.: Multi-objective combinatorial opti-
mization: problematic and context. In: Coello Coello, C.A., Dhaenens, C., Jourdan,
L. (eds.) Advances in Multi-Objective Nature Inspired Computing. SCI, vol. 272,
pp. 1-21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11218-
81

. Corne, D., Dhaenens, C., Jourdan, L.: Synergies between operations research and
data mining: the emerging use of multi-objective approaches. Eur. J. Oper. Res.
221(3), 469-479 (2012)

. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182-197 (2002)

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-

mization algorithms over graphs. In: Advances in Neural Information Processing

Systems, vol. 30 (2017)

Knowles, J.D.: Local-search and hybrid evolutionary algorithms for Pareto opti-

mization. Ph.D. thesis, University of Reading Reading (2002)

Kora, P., Yadlapalli, P.: Crossover operators in genetic algorithms: a review. Int.

J. Comput. Appl. 162, 10 (2017)

Land, M.W.S.: Evolutionary algorithms with local search for combinatorial opti-

mization. University of California, San Diego (1998)

Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, M.-E.: Improving neighborhood

exploration into MOEA /D framework to solve a bi-objective routing problem. Int.

Trans. Oper. Res. (2023)

Lépez-Ibanez, M., Dubois-Lacoste, J., Céceres, L.P., Birattari, M., Stiitzle, T.:

The irace package: iterated racing for automatic algorithm configuration. Oper.

Res. Perspect. 3, 43-58 (2016)

Ma, X., et al.: MOEA/D with opposition-based learning for multiobjective opti-

mization problem. Neurocomputing 146, 48—64 (2014)

Riquelme, N., Von Liicken, C., Baran, B.: Performance metrics in multi-objective

optimization. In: 2015 Latin American computing conference (CLEI), pp. 1-11.

IEEE (2015)

Schneider, M., Schwahn, F., Vigo, D.: Designing granular solution methods for

routing problems with time windows. Eur. J. Oper. Res. 263(2), 493-509 (2017)

Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with

time window constraints. Oper. Res. 35(2), 254-265 (1987)

Subramanian, A., Uchoa, E., Ochi, L.S.: A hybrid algorithm for a class of vehicle

routing problems. Comput. Oper. Res. 40(10), 2519-2531 (2013)

Talbi, E.-G.: Machine learning into metaheuristics: A survey and taxonomy. ACM

Comput. Surv. (CSUR) 54(6), 1-32 (2021)

Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle-

routing problem. INFORMS J. Comput. 15(4), 333-346 (2003)

Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. STAM

(2014)

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New

benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper.

Res. 257(3), 845-858 (2017)

https://doi.org/10.1007/978-3-642-11218-8_1
https://doi.org/10.1007/978-3-642-11218-8_1

25.

26.

27.

28.

29.

Extracting Patterns from Local Optima to Solve a bVRPTW 77

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows. Comput. Oper. Res. 40(1), 475-489 (2013)

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework
for multi-attribute vehicle routing problems. Eur. J. Oper. Res. (2014)

Xu, Q., Xu, Z., Ma, T.: A survey of multiobjective evolutionary algorithms based on
decomposition: variants, challenges and future directions. IEEE Access 8, 41588—
41614 (2020)

Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712-731 (2007)

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117-132 (2003)

)

Check for
updates

A Memetic Algorithm for Large-Scale

Real-World Vehicle Routing Problems

with Simultaneous Pickup and Delivery
with Time Windows

Ethan Gibbons and Beatrice Ombuki-Berman &)

Department of Computer Science, Brock University, St. Catharines, Canada
bombuki@brocku.ca

Abstract. The vehicle routing problem with simultaneous pickup and
delivery with time windows (VRPSPDTW) is an important variant of the
vehicle routing problem which has received considerable attention among
researchers in the last decade. The vast majority of solution method-
ologies for the VRPSPDTW have been applied to synthetic problem
instances that bear little resemblance to routing problems found in the
real world. Recently, 20 large-scale VRPSPDTW instances based on real
customer data from the transportation company known as JD Logistics
became publicly available as a new benchmark VRPSPDTW problem
set.

In this paper, a memetic algorithm (MA), referred to as MA-BCRCD,
is proposed for use on these real-world instances. The MA prioritizes
efficient search and utilizes a crossover method which is shown to be
more effective than that of the previous MA approach (known as MATE)
applied to this set. MA-BCRCD finds new best known solutions for all
20 instances. It also performs better on average for all instances in com-
parison to the performance of MATE. The results and analysis provided
in this study suggest that further improvements on this problem set are
possible both in terms of solution quality and search efficiency.

Keywords: Vehicle routing problem - Memetic algorithm -
Combinatorial optimization - Industrial application

1 Introduction

The vehicle routing problem with simultaneous pickup and delivery with time
windows (VRPSPDTW) is a variant of the well-established vehicle routing prob-
lem which features two common constraints faced by various industries involved
with the transportation of goods. In many instances it is required as part of a
delivery service that drivers not only deliver required goods to customers, but
also pick up goods held by customers which may be wasted or unusable [12].
A common scenario is the picking up of empty, reusable containers which com-
panies can collect, process, and reuse for later deliveries [4]. For this reason, as

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 78-92, 2024.
https://doi.org/10.1007/978-3-031-62912-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_8

MA for Large-Scale VRPSPDTW 79

companies seek to operate with environmentally-friendly goals in mind, research
into practical solution methods for the vehicle routing problem with simultane-
ous pickup and delivery (VRPSPD) becomes more relevant [10].

Another common constraint in transportation logistics is the requirement
that goods be delivered to customers within a given time window [6]. This con-
straint arises in many situations where customers cannot feasibly receive their
deliveries outside their given time window or where customer satisfaction may
be impacted by early and late deliveries. As a result, the vehicle routing problem
with time windows (VRPTW) is one of the most popularly researched variants of
the VRP [5]. The VRPSPDTW combines the problem features of the VRPSPD
and the VRPTW. Over the last decade, the VRPSPDTW has received a fair
amount of attention in the literature. Though the problem was first introduced
by Angelelli and Mansini [2] in 2002, most of the attention to this problem came
after Wang and Chen [22] released publicly available VRPSPDTW instances
which were derived from the popular Solomon instances [20] for the VRPTW.
Following Wang and Chen’s work, many follow-up studies proposed new meta-
heuristics which were able to find improved solutions for their instances (for
some examples, see [8,11,19,21]).

One such work by Liu et al. [12] proposed a memetic algorithm approach for
the VRPSPDTW in 2021. This MA, referred to as MATE, currently outperforms
all existing approaches both in terms of number of current best-known-solutions
found as well as when compared to each approach one-on-one. As an additional
contribution, Liu et al. made the source code of MATE publicly available. More
importantly, they released 20 new large-scale VRPSPDTW instances which were
derived from real customer data from the company JD Logistics. They applied
MATE to these instances to provide initial benchmark solutions and noted that
these instances should be more difficult to solve and relevant for researchers,
since realistic problem instances are not commonly found in the literature.

More recent approaches to the VRPSPDTW have been published [11,13,23].
Each of these studies attempt to optimize for the Wang and Chen instances
and compare their results with previous works. However, the instances from JD
Logistics (referred to as the jd instances) have not received any attention since
their release despite their practical utility. Thus, to close this gap, a primary
aim of this paper is to follow up on the approach by Liu et al. by providing a
memetic algorithm (referred to as MA-BCRCD) for the real-world jd instances.
The remainder of this paper is organized as follows: a literature review sum-
marizing previous research on the VRPSPDTW is given in Sect.2. Section 3
provides required notation and a formulation of the problem at hand. Section 4
describes the components of MA-BCRCD, including the crossover which is a
new alteration to the popular Best-Cost-Route-Crossover (BCRC) [16] referred
to in this paper as BCRC with route destruction (BCRCD). Simple but effective
components and heuristics are also introduced which reduce the number of local
searches performed during the search. In Sect. 5, a computational study using
both MA-BCRCD as well as the open-source code of MATE on the jd instances
is reported. As a result of this study, BCRCD is shown to be an improvement

80 E. Gibbons and B. Ombuki-Berman

over the unaltered BCRC, and MA-BCRCD is shown to outperform MATE on
all instances. Section 6 concludes the paper by summarizing the significance of
the computational study performed as well as providing possible future direc-
tions for research into this problem.

2 Related Works

As mentioned above, most of the studies dealing with the VRPSPDTW have
employed their metaheuristics on the instances released by Wang and Chen
[22]. For these instances, a multi-objective problem is assumed, where priority is
always given to solutions requiring fewer vehicles. Solutions with the same num-
ber of vehicles are then judged by the combined total distance of all the routes,
and the solution with less total distance is considered better. The few approaches
which were not based on these instances only attempt to minimize the total dis-
tance. They include the work by Angelelli and Mansini [2] who first introduced
the problem and developed a branch-and-cut-and-price algorithm which was able
to solve the VRPSPDTW for problem sizes of up to 20 optimally. Mingyong and
Erbao [15] approached the problem with a differential evolution method. They
successfully used a decimal coding method to adapt DE to this combinatorial
problem. Kassem and Chen [9] used a sequential route construction heuristic to
build a solution and then applied a simulated annealing approach to improve on
the initial solution.

Wang and Chen [22] introduced their co-evolutionary algorithm to tackle the
VRPSPDTW using their benchmark problem instances. The GA maintained
two populations, one which promoted diversity, while the other housed stronger
solutions. They compared their co-evolutionary GA against a typical GA to val-
idate their approach. Wang et al. [21] used the Residual Capacity and Radial
Surcharge (RCRS) [7] heuristic to construct an initial solution, followed by a sim-
ulated annealing method which is parallelized to allow for a wider search in less
time. Hof and Schneider [8] used an adaptive large neighborhood search app-
roach with path-relinking. Their approach is quite intricate, involving several
large neighborhood search methods, a number of customer removal and rein-
sertion methods, learned values which measure the past effectiveness of these
operators, and a memory of elite solutions that are used to improve the current
solution through path re-linking. The authors applied their algorithm to several
variants of the VRPSPD, including that with time windows. Shi et al. [19] used
a two-stage hybrid approach with variable neighborhood search and tabu search.
Due to the multi-objective nature of the Wang-Chen instances, they proposed
a unique evaluation function for the purpose of reducing the number of vehicles
first before attempting to reduce travel distance.

As already mentioned, Liu et al. [12] developed MATE for the VRPSPDTW.
They applied the RCRS heuristic for constructing initial solutions using evenly
distributed parameter configurations in order to increase initial population diver-
sity. For crossover, they applied the method used by Wang and Chen and origi-
nally developed in [1] while altering the crossover’s reinsertion phase by imple-
menting regret insertion [18]. They dubbed their crossover the route-assembly

MA for Large-Scale VRPSPDTW 81

with regret-insertion crossover, or RARI. For a local search procedure, they
applied typical local search operators such as or-opt, swap, two-opt, and two-opt*.
In addition, they applied the relatedness-removal large neighborhood operator
[8] to perturb solutions once the local search had reached a local minimum.

More recent approaches include Wu and Gao [23], who developed the first
ant colony algorithms for the VRPSPDTW where one ant solution is con-
structed using typical solution construction methods, and the remaining solu-
tions are built using various neighborhood generating operators. Liu, F. et al.
[11] employed a late acceptance hill climbing strategy with a multi-armed bandit
algorithm for intelligent neighborhood selection. Liu, Z. et al. [13] applied a spar-
row search algorithm which is a swarm intelligence paradigm wherein different
population members serve different roles to guide the search. The approaches in
[11] and [13] contribute several new best known solutions for the Wang and Chen
instances. However, none of these studies tested their approach on the realistic
instances introduced in [12].

3 VRPSPDTW Problem Formulation

The following formulation is equivalent to the formulation given by Liu et al. in
their paper [12], though the notation is somewhat different.

Given a set of customers N = {1,2,...,n}, a depot 0, a set of J identical
vehicles with a cargo capacity of). The objective of the VRPSPDTW is to
assign routes to each vehicle such that each customer in NV is visited and serviced
by exactly one vehicle in an efficient manner. The problem can be represented
using a complete graph G with vertex set V = {0} |J N. Each customer i € V
has the following attributes: p; denotes the amount of goods to be picked up at
customer ¢, d; denotes the amount of goods to be delivered from the depot to
customer i, a; is the earliest time that customer 7 can begin being serviced by a
vehicle, b; is the latest time ¢ can begin being serviced, and s; is the length of
time it takes for a vehicle to service i. The pair [a;, b;] denotes the time window
of each customer. E denotes the arc set of G, where each arc has two values ¢; ;
and t¢; ;. The former represents the distance a vehicle must travel to get from
node ¢ to 7 in V while the latter represents the time it takes to travel from node
i to j.

A solution to the VRPSPDTW, denoted with S = {R1, Ra, ..., Rk }, consists
of K routes, where K < J. A route Ry = (ig,%1,%2, ..., 9H,, H,+1) is an ordered
sequence of customers to be visited by vehicle k, where Hj is the number of
customers assigned in route k and where iy = iz, +1 = 0. For convenience when
talking about a single route, the k subscript is omitted from the notation. Each
route has a cost associated with it, which is the sum of the edges in the route,

H
CrR= Cipins- (1)
h=0

A feasible route requires that the sum of the delivery request quantities (denoted
as Dp) is less than the capacity of the vehicle, i.e. D = Zthl di, < @Q. The

82 E. Gibbons and B. Ombuki-Berman

load IR, i, (Ir.,) of a vehicle just after servicing customer 4, consists of the
remaining deliverable goods to be delivered after customer i;, as well as the
goods which have already been picked up by the vehicle. Thus we have

h H
lpi, =Y pi, + Y di,. (2)
x=1

rx=h-+1

For a route to be feasible, the load of a vehicle at any point in the route must
never be higher than the vehicle capacity, i.e., lg;, <Q for 1 <h < H.

In addition to the capacity constraints, routes also must be feasible with
regards to time constraints. Let Bg, ; (Bgr;) be defined as the time that a
vehicle k would start servicing customer 4 given a complete solution. A feasible
route requires that all customers be visited before their closing time window, i.e.
Bpg,,; < b; for all customers in route k. The opening time window has slightly
different properties. A vehicle may arrive at a customer i before its opening
time window a;, but if it does, it must wait until the time a; before it can start
servicing the customer. The sequential values of Bg, ; must be calculated using
these potentially required waiting times and the time it takes to service each
customer. For a route Ry, the values of By ; can be calculated as follows:

BR,’L'U = 07
BR,iHJrl = BR7iH T Siy T tiH;iH+1’ (3)
BRJ;L = max (BR;ih—l + Sy T+ tih—hilﬂa’ih) forh=1,....H

The time window for the depot is a special case where ag = 0, bg = T, and
where T is the length of the working day. All vehicles must return to the depot
before the depot’s closing time window 7.

The instances from [12] are weighted multi-objective problem instances. The
two objectives are to reduce the number of vehicles used in a solution and to
reduce the total distance travelled by all the vehicles. The weights for these
objectives are denoted as u; and wus, respectively. For the sake of the problem
formulation, let xf ; be a binary variable which equals 1 if customer j is visited
by vehicle k£ immediately after customer ¢ in route Ry, and 0 otherwise.

For all possible solutions S and their corresponding K routes, the objective
is the following;:

K
mSin<u1 K 4 ug - Z Cm) (4)

k=1

such that:

MA for Large-Scale VRPSPDTW 83

K<J)

19 = iHR+1 =0 VRe S (6)
K

2> wy =1 vjeN (7)
i€V k=1

Dg, <Q Vke{l,2,... K} ®)

; < vk e {1,2,...,K}, (©)

fowtn = Vhe{l,2,...,Hp}
vk e {1,2,...,K},
ai, < Bpry.i, < by, he 1,2 i} (10)
9Ly K
BRk,in+1 <T vk e {1,2,...,K}. (11)

The objective function 4 seeks to minimize the weighted sum of the NV and
TD, with the weights to be determined for the instance at hand. Constraint 5
implies that there is a maximum number of routes that a solution can have.
Constraint 6 ensures that each route begins and ends at the depot. Constraint
7 ensures that each customer is visited by exactly one vehicle exactly one time.
Constraint 8 requires that the required amount to be delivered to a route does not
exceed a vehicle’s capacity. Constraint 9 ensures that the load of a vehicle never
exceeds its capacity throughout its route, with Eq.2 being used to determine
the current load of each vehicle. Constraint 10 ensures that the servicing of
every customer begins within that customer’s time window, with Eq. 3 used to
determine the start of the service time for each customer in a route. Finally,
constraint 11 requires that all vehicles return to the depot before the end of the
day.

4 Memetic Algorithm for the VRPSPDTW

Memetic algorithms are a class of population-based metaheuristics which imi-
tate the evolutionary concept of natural selection, where good solutions are more
likely to survive and influence or participate in the production of new solutions.
A population of solutions are initialized with some heuristic, and the solutions
improve via local search or are replaced by new solutions constructed through
a crossover method. This occurs over several generations until further improve-
ments cannot be found. A memetic algorithm may or may not have a muta-
tion operator, which perturbs a solution in an unpredictable fashion in order to
improve population diversity.

Our proposed MA was developed with the intention of reducing the use
of computationally expensive construction heuristics and local search operators
while still performing an effective search. Algorithm 1 provides the overall frame-
work of the MA. There are three parameters for this MA: n,,, which determines
the population size, fseqrcn Which determines how many generations pass before

84 E. Gibbons and B. Ombuki-Berman

a local search step is applied, and pgseqrern Which determines the proportion of
solutions which undergo the local search step. The changing of these parameters
has a large affect on the run time of the MA.

Algorithm 1: Memetic Algorithm for the VRPSPDTW
Input: VRPSPDTW Instance, npop, fsearch, Psearch-

1 U « set of nyop empty solutions.

2 Initialize solutions in U.

3 Perform local search on npop * Pscarch solutions in U.

4 Maintain elitism.

5 g« 1.

6 while termination condition is not met do

7 Unew < perform k-tournament selection on U (k = 3).
8 for each pair of solutions (P1, P2)in Upew do

9 01, O2 « perform crossover using solutions (Pi, P).
10 01 and Oq replace P1 and Ps in Upew.
11 end
12 U — Upew-
13 if g mod fscarch = 0 then
14 ‘ Perform local search on npop * Psearch solutions in U.
15 end
16 Maintain elitism.
17 g—g+1.
18 end
19 return Best solution found.

4.1 Solution (Chromosome) Representation and Initialization

For GAs, some crossover and mutation methods which are well-suited for a
single-route VRP (TSP) cannot sensibly work on a VRP solution unless the
solution is represented as a long tour with [3] or without [17] route delimiters.
If route delimiters are not used, then some decoding method must be applied to
partition the tour into separate routes [16].

The crossover used in this MA works intuitively with a direct solution rep-
resentation as described in the problem formulation. Thus, each solution in the
population is a collection of discrete routes where the order of routes does not
matter. After the initialization process, each route maintains feasibility through-
out the search.

Since some of the instances for the problem at hand are large, a simple
initialization process is used to save time. For a population U of n,,, empty
solutions, a single solution is built using a Nearest Neighbor (NN) method which
works as follows: as long as there are customers needing to be assigned to a
route, create an empty route and append the depot to it. Append the unrouted
customer which is nearest to the previous customer (or depot) to the end of the
current route and repeat until the nearest customer cannot be appended feasibly.
Once this happens, repeat the process with a new route. The remaining (1,0, —1)

MA for Large-Scale VRPSPDTW 85

solutions get initialized using a Random Neighbor (RN) method, which works
similarly to NN except that random neighbors are appended to routes instead
of nearest neighbors. For RN, a new route is started each time the randomly
chosen customer cannot be appended to the end of the current route.

4.2 Crossover

The crossover used in this MA is based on the Best-Cost-Route-Crossover
(BCRC) originally introduced by Ombuki et al. in [16]. Given two parent solu-
tions P; and P,, BCRC works by choosing a random route R' from P; and a
random route R? from parent P,. The customers which are in R' are removed
from P, and vice versa. Then, the incomplete solutions are completed by insert-
ing the missing customers in some order back into the solutions using cheapest
insertion. That is, for the next customer ¢ to be reinserted, every possible posi-
tion in every route (including the route and position from which ¢ was removed)
is checked to see if ¢ can be feasibly inserted, and the route and position which
increases the cost of the solution the least is chosen as the new position for c. If
¢ cannot be placed anywhere, a new route is created containing only c.

We propose a new alteration of the BCRC for use in this MA. In addition to
removing the customers in R' from P, and vice versa, also remove the entirety of
R! from Py (and R? from P;). We refer to this altered crossover as BCRC with
route destruction (BCRCD). Since part of the weighted objective function of the
jd instances is to have fewer vehicles, this route destruction step was added with
the hope that completed offspring would have fewer routes than their parents.

In addition to the route destruction step, another alteration is made to ensure
solutions remain feasible throughout the search. Since the jd instances do not
always satisfy the triangle inequality, removing customers from routes can render
them infeasible with regards to time windows. Thus, if the removal of a customer
from a route would render that route infeasible, that customer is not removed.
Figure 1 shows an example of these alterations to the BCRC.

It should be noted that the order of which customers should be reinserted first
via cheapest insertion is not specified in [16]. There are a number of heuristics
which could be used to decide the order of customer insertions [8], but for this
implementation of BCRCD, the order of insertion is randomized for simplicity.

4.3 Local Search

Because exhaustive local search descents are very computationally expensive,
two parameters are used to limit how often the local search step is performed.
First, since BCRCD performs a neighborhood search and is less expensive than
a full local search descent, it may be beneficial to have a higher frequency of
crossover steps in comparison to local search steps. Thus fseqren 1S proposed
as a user-defined parameter to find a better balance between these two compo-
nents. That is, after every fscarch generations of crossover occur, a greedy local
search descent is applied to a proportion of the population. The second user-
defined parameter pseqrcn determines the proportion of solutions which undergo

86 E. Gibbons and B. Ombuki-Berman

local search descent at every local search step. Three common local neighbor-
hood generators are used in the local search step: swap, relocate, and two-opt*
[8,12,19,21,23]. The relocate operator (sometimes referred to as or-opt [12])
involves removing a customer ¢ and reinserting that customer somewhere else
in the solution. For this implementation, relocate is also used for a subsequence
of two consecutive customers, where the subsequence is removed and reinserted
elsewhere in the solution. The swap operator involves two subsequences of cus-
tomers. Similarly to relocate, either subsequence can be of length 1 or 2. The
two subsequences of customers are swapped in the solution. Either of these two
operators can be applied to alter either one or two routes. Finally, two-opt* is
employed which always involves two different routes R' and R?. In two-opt*, the
two routes are split into two, and the earlier part of R' is attached to the later
part of R?, and vice versa.

Py P2
Ry: 0 (10|15] 1 1310 Ry: 0 5 7 2 (13 (10| 9 6 0
Ry: 0 5 3 8 (14|12 | 7 0 Ry: 0 (14| 3 1 4 |15 |12 | 0
Ra: o|4|2|e6|1]9]o0 Ra: o|11]| 8]0
Randomly Randomly
choose choose
R'=R; R%=R;3
Remove

’ 0 |1o I 15| 1 I 13 I 0 ‘ customers in R’ nnn
from P, where

possible and
Remove vice versa. Remove
R' from R2 from
P, P,

0 5 3 14 (12 | 7 0 ‘ 0 5 7 2 |13 9 6 0
0 4 2 6 9 0 0 (14| 3 4 1210
Rebuild both
offspring using
cheapest
04 insertion. 0,

Ry: 0 5110 | 3 |14 |12 | 7 0 Ry: 0 5 711 2 (1839 8 6 0
Ry: 0 (15| 4 1 2 6 9 0 Ry: 0 1 14 110 (15| 3 4 1120
Ry: o|1]|8|13]0

Fig. 1. An example of Best-Cost-Route-Crossover with Route Destruction (BCRCD)
with guaranteed feasibility for the VRPSPDTW. In this example, customer 13 in P, is
not removed, since its removal would cause the remaining partial route to be infeasible.

The greedy local search descent works as follows: for a solution undergoing
local search, generate all neighboring solutions possible from applying any of
the above operators once. Whichever neighboring solution has the best improve-
ment, keep the corresponding changes to the solution. Repeat this process until
no further improvements can be made. The feasibility and cost-savings of each

MA for Large-Scale VRPSPDTW 87

generated neighborhood are evaluated in constant time using the method pro-
posed by Liu et al. [12] for the VRPSPDTW.

To determine which members of the population get to undergo local search
descent, three simple heuristics are used. With ngearch = Mpop * Psearch, one of
the following three heuristics is chosen with equal probability to choose ngeqrch
solutions for local search every fseqrch generations:

1. Pick the best ngeqren solutions in terms of objective function,

2. Pick ngeqren solutions randomly,

3. Sort solutions by fitness score, then pick every (npop/nsearch)-th solution in
the sorted list.

5 Computational Study and Experimental Analysis

5.1 Problem Instances from JD Logistics

Liu et al. describe the derivation of the jd instances introduced in [12]. The
distribution operations of JD Logistics involves both the delivery of purchased
goods to customers, but also the collection of defective goods or goods in need
of maintenance within a predefined time window per customer. To derive these
instances, 3000 real customer requests were collected and then sampled to gener-
ate instances with customer sizes of either 200, 400, 600, 800, or 1000 customers.
4 instances of each size were generated for a total of 20 instances. The instances
all have tight capacity and time window constraints, so solutions will consist of
many small routes. For example, in our experimentation, final solutions usually
consisted of around 40 routes for the 200 customer instances and around 200
routes for the 1000 customer instances.

The objective function for these instances is a weighted-sum objective, where
both reducing the total number of vehicles used and reducing the distance trav-
elled are objectives. The specific weights u; and us were chosen to accurately
reflect operational costs faced by JD Logistics.

A major complicating factor of these instances is that the distances and times
between customers are given explicitly. This is in contrast to many classic VRP
benchmark instances which map each customer on a 2D euclidean plane, where
for any two customers ¢ and j, the distance between them is equal to the time
it takes to travel from one to the other, i.e. ¢; ; = t; ;. In addition, these values
are calculated using euclidean distance, so the triangle inequality always holds.
However, these assumptions are obviously not realistic, and solution methods
which rely on these assumptions may not do so well in real-world applications.

5.2 Experimental Setup

The computational experiments reported in this section involve both the MA
introduced in this paper (referred to as MA-BCRCD) as well as the open source
code for MATE released by Liu et al. The source code for MA-BCRCD was
written in Java, while the code for MATE was written in C++.

88 E. Gibbons and B. Ombuki-Berman

All reported runs were run using on Linux machines using an Intel i7-9700
CPU at 3.00 GHz. Since the jd instances are large, algorithm can run a long time
before converging. Liu et al. set a time limit of 2h for each run in their experi-
ments with MATE. We adopt this time limit as the only stopping criteria for all
experiments shown. Each combination of algorithm configuration and problem
instance is run 30 times. The average fitness scores shown are the average of the
final solutions found in the 30 runs, while the best scores shown are the best
found solutions out of all the runs.

5.3 Comparing BCRCD with Other Crossovers

In order to introduce BCRCD, we compare its performance to BCRC without
the route destruction step as well as two other state-of-the-art crossovers. One
is RARI, which was used in MATE. The other is referred to as RCX, which
was used recently in a many-to-many bike-sharing re-balancing problem [14].
These two crossovers were implemented in our MA as described in [12] and [14],
respectively.

During initial experimentation, it was found that changes the population
Npop and proportion of population searched pgeqrcn caused similar changes to
performance regardless of the crossover used, and a small value for pseqrcn, Was
crucial to the success of the MA, especially for the larger instances. However,
the frequency of search fseqrecn Was very sensitive both to the crossover used as
well as the size of the instance. Only BCRCD was found to benefit from this
feature regardless of instance size, while BCRC and RCX only benefited from
an increase in fgeqren for larger instances. Thus the parameter values used in
the crossover comparison are as follows: ny,, = 50 for all crossovers and all
instances, pseqarch = 0.1 for instances of size 600 or less, and pgseqren, = 0.06 for
larger instances. For BCRCD, fseqren = 20 for all instances. All other crossovers
have fsearen = 1 with the following exceptions: BCRC has fseqren = 20 for
instances with 1000 customers, and RCX has fseqrecn = 20 for instances with 800
and 1000 customers.

The results in Table 1 show the excellent performance of BCRCD compared
to the other crossovers. The MA using BCRCD had the best average score and
the best found solution for every instance. Importantly, these results show that
BCRCD reliably outperforms BCRC without the route destruction step. By
examining the percent difference in average score, it can be seen that BCRC
starts off weak for the smaller instances, but the gap between its performance
and BCRCD narrows for the larger instances. However, both RCX and RARI
become less competitive as instance sizes grow. These crossovers tend to require
a large number of customer re-insertions to complete offspring solutions, while
BCRCD only removes at most two routes from each parent for reinsertion. For
the jd instances, two routes is a very small proportion of each solution. Thus, it
is likely the case that RARI and RCX change too much of each parent solution
and run too slowly to be competitive for the larger jd instances.

MA for Large-Scale VRPSPDTW

89

Table 1. The average and best final scores for the jd instances using the proposed MA
using different crossovers. For BCRC, RARI and RCX, the difference of the average
run compared to that of BCRCD is given as a percentage. The best average solution
is highlighted in grey, while the best solution found is bolded.

| BCRCD BCRC RCX RARI
Instance ‘ Avg Std Best Avg % Diff. Std Best Avg % Diff. Std Best Avg % Diff. Std Best
200_1 65363 368 64413 | 66933 2.4 520 65950 | 66206 1.29 640 65051 | 66769 2.15 561 65756
2002 65322 330 64753 | 67085 2.7 727 65685 | 65811 0.75 395 64935 | 67213 2.89 606 66132
200_3 66442 329 65679 | 68530 3.14 651 67371 | 66916 0.71 523 65791 | 67944 2.26 642 66917
2004 65188 296 64620 | 67032 2.83 590 65641 | 65223 0.05 233 64776 | 66611 2.18 733 65365
400-1 118972 501 117812 | 121790 2.37 1097 119310 | 122318 2.81 784 120398 | 122153 2.67 1024 120155
4002 124312 685 123110 | 126853 2.04 759 125116 | 126850 2.04 827 125135 | 127391 2.48 1452 125002
4003 118207 500 117043 | 120982 2.35 923 119164 | 120880 2.26 1153 119112 | 121195 2.53 1133 118996
4004 121321 647 120255 | 123739 1.99 925 122275 | 124222 2.39 922 122621 | 124227 24 1306 122540
600_1 179504 967 178113 | 182571 1.71 1218 180001 | 187127 4.25 1171 184902 | 184680 2.88 1784 180463
600_2 184160 1227 182052 | 187904 2.03 1575 185292 | 191778 4.14 1359 188772 | 190155 3.26 1510 186025
600-3 182760 926 180797 | 187303 2.49 1268 185058 | 191053 4.54 1276 188814 | 187697 2.7 1690 184935
6004 183431 857 182006 | 186347 1.59 1177 183850 | 191121 4.19 1510 187411 | 187866 2.42 2057 184204
800_1 213206 954 211125 | 215719 1.18 1592 212677 | 218199 2.34 1170 216020 | 220226 3.29 1568 217185
8002 210938 711 209559 | 214664 1.77 980 212602 | 217643 3.18 1289 215467 | 217964 3.33 1179 214567
8003 213562 1193 211602 | 216623 1.43 1304 214025 | 217788 1.98 1317 215256 | 220115 3.07 1517 215023
800_4 208114 1064 205902 | 211335 1.55 1503 208539 | 214449 3.04 1260 211921 | 215940 3.76 1426 212844
1000-1 312110 1385 309891 | 316273 1.33 1787 311856 | 321706 3.07 1593 318993 | 322824 3.43 2241 319716
1000-2 | 309818 1910 306018 | 313684 1.25 1551 311364 | 319431 3.1 1499 315752 | 320988 3.61 2321 316747
1000_3 | 310085 1612 307275 | 316150 1.96 1659 313016 | 320529 3.37 1684 316459 | 322499 4 2569 317852
10004 307405 1412 304769 | 312512 1.66 2192 308259 | 318281 3.54 1172 316323 | 318925 3.75 2417 316166
Median: | 1.98% 2.93% 2.89%

Table 2. The average and best final scores using MA-BCRCD compared against our
own re-runs of MATE with and without the use of crossover. Asterisks indicate which
MATE re-run performed better on average and in terms of the better solution found.
The published results of MATE in [12] are

included for reference.

‘ MA-BCRCD MATE Re-run MATE Re-run without Crossover | MATE
Instance ‘ Avg Std Best Avg % Diff Std Best Avg % Diff Std Best Avg % Diff Std Best
200-1 65363 368 64413 | 66196 1.27 288 65479 65991*% 0.96 241 65411* 66097 1.12 292 65106
2002 65322 330 64753 | 65956% 0.97 392 65002* | 66171 1.3 505 65002* 66038 1.1 422 65012
2003 66442 329 65679 | 67141% 1.05 176 66625* | 67190 1.13 254 66625* 67090 0.98 332 65980
2004 65188 296 64620 | 65921 1.12 365 65113*% | 65898* 1.09 198 65390 65851 1.02 326 64747
400-1 118972 501 117812 | 123085 3.46 335 122413 | 122892% 3.29 423 121901%* | 123261 3.61 446 122319
4002 124312 685 123110 | 127832% 2.83 332 127169% | 127962 2.94 366 127169* | 128091 3.04 410 126887
400_3 118207 500 117043 | 122163 3.35 459 121260 |121905% 3.13 429 121023* | 122306 3.47 682 120130
4004 121321 647 120255 | 124928 2.97 360 124098* | 124910% 2.96 310 124265 125242 3.23 359 124517
600_1 179504 967 178113 | 183648* 2.31 525 182442% | 183862 2.43 606 182837 | 184119 2.57 608 182504
600-2 184160 1227 182052 | 188546% 2.38 684 187221*% | 188681 2.45 672 187221* | 188891 2.57 645 187236
600_3 182760 926 180797 | 188083 2.91 664 186546* | 187847* 2.78 519 186546* | 188050 2.89 621 186644
600_4 183431 857 182006 | 187832% 2.4 603 186805* | 187881 2.43 549 186958 188110 2.55 790 186289
800_1 213206 954 211125 | 215260 0.96 695 213410 | 214985% 0.83 630 213181* | 214634 0.67 561 213661
8002 210938 711 209559 | 213916 1.41 493 213148 | 213646% 1.28 717 211664* | 213276 1.11 292 212752
800_3 213562 1193 211602 | 215315*% 0.82 685 213358* | 215548 0.93 572 214467 | 214870 0.61 318 214126
8004 208114 1064 205902 | 211164* 1.47 564 209702* | 211302 1.53 496 210026 | 210845 1.31 429 209431
1000_1 312110 1385 309891 | 314526 0.77 791 312171 | 314444* 0.75 1062 311087* | 314914 0.9 1096 312606
1000-2 | 309818 1910 306018 | 311419 0.52 845 309249 | 311081* 0.41 899 308205* | 311718 0.61 1153 309158
1000-3 310085 1612 307275 | 313201* 1 867 311449* | 313424 1.08 669 311640 | 313989 1.26 981 311377
1000_4 307405 1412 304769 | 310574* 1.03 971 307707 | 310610 1.04 1131 306263* | 311415 1.3 943 308816
Median: | 1.34% 1.29% 1.28%
Total: | 10% 12% 10% 13%

90 E. Gibbons and B. Ombuki-Berman

5.4 Comparing MA-BCRCD with MATE with and Without
Crossover

Since MATE is open source, it is easy to perform follow-up experiments on the
results from Liu et al. [12]. We took advantage of this code in two ways. First,
since the only stopping criteria for both algorithms is the 2h time limit, the
environment in which the algorithm runs might significantly affect the quality
of the final solutions found. Running on a slower machine may result in worse
solutions. Because of this, we ran MATE in the same environment as we did
MA-BCRCD to provide as fair a comparison as possible.

Second, it is possible that the poor results of using RARI in our MA is due
to other algorithmic components in the MA such as the simple initialization
procedure, and that RARI might work well in a different memetic algorithm.
Luckily, the source code of MATE includes a configurable setting where crossover
is not applied at all during the search. To further test the effectiveness of RARI,
we also ran MATE without the use of crossover to see if there would be any
significant difference in solution quality.

For MA-BCRCD, the parameters used in the comparison against MATE are
the same values as what were used for the crossover comparison. MATE has
three user-defined parameters: The parameters wy and ws determine the lower
and upper bounds of the number of customers which are removed during MATE’s
large search operator, and N in this case is the population size. We ran MATE
using the same parameter choices as was used for the jd instances in [12], which
are: N = 36, w; = 0.2, and wy = 0.4.

Table 2 shows all the experiments run with the source code of MATE, and
the results are compared to MA-BCRCD. For reference, the published results
from [12] are included as well. Both the comparison between MA-BCRCD and
the MATE re-run as well as the comparison between MATE with and without
crossover need to be examined.

From these results, we see that MA-BCRCD outperformed the MATE re-
run on all instances, with some improvements reaching up to more than 3% on
average. For more than half of the instances, the average score of MA-BCRCD
was better than the best score found by MATE.

When comparing MATE with and without crossover, no clear advantage can
be detected when using RARI. In terms of number of better average solutions,
the runs with crossover has 10 better averages, while the runs without crossover
also has 10 better averages. Comparing the best solutions found, the results
show that using RARI yielded 12 better solutions while using no crossover gave
13 better. In addition, the median percent average difference from MA-BCRCD
was slightly worse for MATE with crossover at 1.34% against the 1.29% median
difference from the runs without crossover.

It is important to note that MATE currently outperforms all existing
approaches which have been applied to the popular Wang and Chen instances
both when compared one-on-one and in terms of number of best-known solutions
found. This fact in conjunction with the results discussed above suggest that the
ways in which these instances differ from the Wang and Chen instances (size,

MA for Large-Scale VRPSPDTW 91

objective function, road network complexity, etc.) warrant special consideration
from researchers if they are to be solved effectively.

6 Conclusion

In this study, the vehicle routing problem with simultaneous pickup and deliv-
ery with time windows was discussed, and a memetic algorithm was proposed
for tackling the problem. The proposed MA was designed to address properties
specific to the large real-world jd instances from Liu et al. [12]. In particular,
the MA was designed with search efficiency in mind by employing a simple ini-
tialization procedure, a fast yet effective crossover based on the popular BCRC,
and judicious use of a local search procedure. The altered BCRC was shown to
be well suited for these instances, and the MA was able to strongly outperform
the previous solution method applied to them.

Further work should be done to be able to solve the jd instances more effi-
ciently. Because distances and times between customers are given explicitly, more
intelligent clustering techniques should be applied to allow for efficient divide-
and-conquer approaches which could greatly reduce algorithm run times. Some
characteristics of the jd instances were not exploited in this study, but for exam-
ple, taking advantage of tight time window constraints could simplify the search
further.

Acknowledgement. This research was supported financially by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

References

1. Alvarenga, G.B., Mateus, G.R., De Tomi, G.: A genetic and set partitioning two-
phase approach for the vehicle routing problem with time windows. Comput. Oper.
Res. 34(6), 1561-1584 (2007)

2. Angelelli, E., Mansini, R.: The vehicle routing problem with time windows and
simultaneous pick-up and delivery. In: Klose, A., Speranza, M.G., Van Wassenhove,
L.N. (eds.) Quantitative Approaches to Distribution Logistics and Supply Chain
Management. LNE, vol. 519, pp. 249-267. Springer, Heidelberg (2002). https://
doi.org/10.1007/978-3-642-56183-2_15

3. Baker, B.M., Ayechew, M.: A genetic algorithm for the vehicle routing problem.
Comput. Oper. Res. 30(5), 787-800 (2003)

4. Battarra, M., Cordeau, J.F., Iori, M.: Pickup-and-delivery problems for goods
transportation, chapter 6. In: Vehicle Routing: Problems, Methods, and Appli-
cations, 2nd edn., pp. 161-191. SIAM (2014)

5. Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem:
state of the art classification and review. Comput. Ind. Eng. 99, 300-313 (2016)

6. Desaulniers, G., Madsen, O.B., Ropke, S.: The vehicle routing problem with time
windows, chapter 5. In: Vehicle Routing: Problems, Methods, and Applications,
2nd edn., pp. 119-159. SIAM (2014)

https://doi.org/10.1007/978-3-642-56183-2_15
https://doi.org/10.1007/978-3-642-56183-2_15

92

7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

E. Gibbons and B. Ombuki-Berman

. Dethloff, J.: Vehicle routing and reverse logistics: the vehicle routing problem
with simultaneous delivery and pick-up: Fahrzeugeinsatzplanung und redistribu-
tion: Tourenplanung mit simultaner auslieferung und riickholung. OR-Spektrum
23, 79-96 (2001)

. Hof, J., Schneider, M.: An adaptive large neighborhood search with path relink-
ing for a class of vehicle-routing problems with simultaneous pickup and delivery.
Networks 74(3), 207-250 (2019)

. Kassem, S., Chen, M.: Solving reverse logistics vehicle routing problems with time

windows. Int. J. Adv. Manuf. Technol. 68(1-4), 5768 (2013)

Kog, C., Laporte, G., Tiikenmez, I: A review of vehicle routing with simultaneous

pickup and delivery. Comput. Oper. Res. 122, 104987 (2020)

Liu, F., et al.: A hybrid heuristic algorithm for urban distribution with simultane-

ous pickup-delivery and time window. J. Heuristics 1-43 (2023)

Liu, S., Tang, K., Yao, X.: Memetic search for vehicle routing with simultaneous

pickup-delivery and time windows. Swarm Evol. Comput. 66, 100927 (2021)

Liu, Z., et al.: A new hybrid algorithm for vehicle routing optimization. Sustain-

ability 15(14), 10982 (2023)

Lu, Y., Benlic, U., Wu, Q.: An effective memetic algorithm for the generalized

bike-sharing rebalancing problem. Eng. Appl. Artif. Intell. 95, 103890 (2020)

Mingyong, L., Erbao, C.: An improved differential evolution algorithm for vehicle

routing problem with simultaneous pickups and deliveries and time windows. Eng.

Appl. Artif. Intell. 23(2), 188-195 (2010)

Ombuki, B., Ross, B.J., Hanshar, F.: Multi-objective genetic algorithms for vehicle

routing problem with time windows. Appl. Intell. 24, 17-30 (2006)

Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing

problem. Comput. Oper. Res. 31(12), 1985-2002 (2004)

Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transp. Sci. 40(4), 455-472 (2006)

Shi, Y., Zhou, Y., Boudouh, T., Grunder, O.: A lexicographic-based two-stage

algorithm for vehicle routing problem with simultaneous pickup-delivery and time

window. Eng. Appl. Artif. Intell. 95, 103901 (2020)

Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with

time window constraints. Oper. Res. 35(2), 254-265 (1987)

Wang, C., Mu, D., Zhao, F., Sutherland, J.W.: A parallel simulated annealing

method for the vehicle routing problem with simultaneous pickup-delivery and

time windows. Comput. Ind. Eng. 83, 111-122 (2015)

Wang, H.F., Chen, Y.Y.: A genetic algorithm for the simultaneous delivery and

pickup problems with time window. Comput. Ind. Eng. 62(1), 84-95 (2012)

Wu, H., Gao, Y.: An ant colony optimization based on local search for the vehicle

routing problem with simultaneous pickup-delivery and time window. Appl. Soft

Comput. 110203 (2023)

®

Check for
updates

Tabu Search for Solving Covering
Salesman Problem with Nodes
and Segments

Takafumi Matsuura(®)
Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-machi,
Minamisaitama-gun, Saitama 345-8501, Japan
matsuura@nit.ac.jp

Abstract. We have already mathematically formulated a Covering
Salesman Problem with Nodes and Segments (CSPNS). In CSPNS, a
node distribution is given. In CSPNS, some nodes are selected from the
given set, and a tour is constructed that visits these nodes. An objective
of CSPNS is to identify the shortest tour that covers all given nodes by
segments and nodes in the tour. In this study, to find good near-optimal
solutions within a reasonable time frame, we propose a heuristic method
using tabu search.

Keywords: Covering Problem - Tabu Search - Heuristic Method

1 Introduction

Large-scale natural disasters have occurred almost every year in Japan. Efforts
are being made to protect lives and minimize damage by strengthening river
embankments, improving sewage systems, and seismic retrofitting. However, pre-
venting all damage is impossible. Therefore, to rescue as many people as possible
in a disaster, it is important to quickly assess the damage and identify those in
need of rescue as soon as possible.

In recent years, the performance of drones has significantly improved. Com-
pared to traditional aircraft and helicopters that were used for information gath-
ering, drones require less preparation time. Therefore, drones are widely used for
gathering information on damage situations. However, drones have a shorter con-
tinuous flight time than airplanes and helicopters, thus, it is necessary to conduct
efficient search activities within a limited flight time.

To decide efficient flight route of a drone, we have already proposed a com-
binatorial optimization problem called “Covering Salesman Problem with Nodes
and Segments (CSPNS).” In the CSPNS, a node distribution is provided. The
objective of the CSPNS is to identify the shortest tour constructed by a subset
of the given nodes set such that a node not on the tour is within a radius r of
any node or segment on the tour. When the number of nodes is less than 50, an
optimal solution of CSPNS is found by general purpose mixed integer solver such
as Gurobi Optimization [1,3] However, when the number of nodes increases, the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 93-99, 2024.
https://doi.org/10.1007,/978-3-031-62912-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_9&domain=pdf
http://orcid.org/0000-0002-8007-0556
https://doi.org/10.1007/978-3-031-62912-9_9

94 T. Matsuura

optimal solution of CSPNS cannot be found in a reasonable time frame. Thus,
we have already propose local search methods [1]. Although the method quickly
constructs the solutions, the obtained solutions are local optimal solutions.

To find good near-optimal solutions for combinatorial optimization problems,
various meta-strategies have been proposed such as the simulated annealing [4],
the genetic algorithm [5], and the tabu search [6-8]. In this study, we propose
a heuristic method by using the tabu search. In the method, the tabu search
controls an execution of three local search methods: removing method, adding
method, and two types of swapping methods. From results of numerical simula-
tion, the proposed method shows good performances for CSPNS.

2 Covering Salesman Problem with Nodes and Segments

A set of a depot and nodes N = {0, 1, ..., n}, euclidean distance d;; between node
7 and node j, perpendicular distance c¢;;, between node i and segment jk, and
a covering distance r > 0 are given. In the set IV, node 0 is the depot where the
drone takes off and lands. If the distance d;; is less than or equal to r, the node
i can cover the node j. If the perpendicular distance c;jx, is less than or equal to
r, the edge j-k can cover the node i. The constraint conditions of CSPNS are as
follows:

1. The drone starts from the depot (node 0) and goes back to the depot.
2. The drone can visit each node at most once.
3. All nodes must be covered by either nodes or edges on the tour.

An objective of CSPNS is to identify the shortest tour time which satisfies the
constant conditions. Figure 1 shows a graphical example of CSPNS. In CSPNS,
nodes included on the tour are referred to as visited nodes, while nodes not
included in the tour are called unvisited nodes.

One of the problems that is most similar to CSPNS is covering salesman
problem (CSP) [2]. The CSP is also given a set of nodes, and the goal is to find
the shortest tour that covers all the given nodes. In CSPNS, the given nodes
can be covered by both visited nodes and segments within the tour. In CSP,
however, the given nodes can only be covered by visited nodes.

3 Proposed Method

To quickly find good near-optimal solutions, we propose a heuristic method by
using tabu search. The procedure of the proposed method is as follows:

1. CSPNS is solved as a TSP. That is, a tour that visits all given nodes is
constructed. The construction method constructs an initial tour by randomly
visiting nodes.

2. The initial tour is improved by Lin-Kernighan algorithm.

3. If a node on the tour can be removed and still cover all nodes, it is removed
from the tour.

Tabu Search for Solving Covering Salesman Problem 95

4. Until a local optimal solution is obtained, the travel time of tour is improved
by five local search methods.
5. To find good near-optimal solutions, tabu search explores the solution space

of CSPNS.

3.1 Local Search Method

To find local optimal solutions of CSPNS, the proposed method uses five local
search methods.

The removing method removes a visited node from a tour if all nodes are
covered by a new tour after removing the visited node. The inserting method
inserts a visited node between an edge in the tour. The swapping method swaps
visited nodes in the tour. The exchanging nodes method exchanges a visited
node with an unvisited node. The exchanging edges method exchanges an edge
in the tour with an edge constructed by unvisited nodes. The adding method
inserts an unvisited node between an edge in the tour. When an unvisited node is
inserted between edges in the tour, the travel time increases. However, when the
number of nodes in the tour is small, it is difficult to generate feasible neighboring
solutions, or the number of such solutions decreases. To address this issue, the
adding method is used only when executing the tabu search.

3.2 Tabu Search

Tabu search is one of the powerful meta-strategies for solving combinatorial opti-
mization problems. In the proposed method by using tabu search, the neighbor-
hood solutions of the current solution are generated by six local search methods
described in Sect.3.1. Then, to prevent periodic solution search, five tabu lists
are used (Table1).

The procedure of the proposed method by using tabu search is described as
follows:

m:depot @ :visited nodes ® :unvisited nodes

Fig. 1. Covering Salesman Problem with Nodes and Segments (n = 150 and r = 50)

96 T. Matsuura

. : Depot . : Visited node . : Unvisited node
j T_.<_. T_. .‘/b\.
a) Removing method (b) Inserting method

[-

»

o 1 f‘\.f*
Lo~ o Lo o

(c) Swapping method (d) Exchanging nodes method
0—0— o—0 E’H E’Q\ 40—
r 00 - r’ 0 -
T_.‘—‘* T_.‘—. T—.<—.<— T—.<—.<—
(e) Exchanging edges method (f) Adding method

Fig. 2. Local search methods used in the proposed method

Step 1: Exchanging nodes method by tabu search The neighborhood
solutions of the current tour is generated by the exchanges nodes methods.
If visited node ¢ and unvisited node j is exchanged, visited node ¢ is listed in
additional tabu list and unvisited node j is listed in removal tabu list (Fig. 2).

Step 2: Inserting method by tabu search The neighborhood solutions of
the current tour is generated by the inserting method. If visited node i is
inserted into an edge, visited node ¢ is listed in insertion tabu list.

Step 3: Swapping method by tabu search The neighborhood solutions of
the current tour is generated by the inserting method. If visited node i is
inserted into an edge, visited node i is listed in node exchanged tabu list.

Table 1. Tabu list used in the proposed method

Additional tabu list The nodes in the list cannot be add in the tour for a
duration of 7. iteration

Removal node tabu list | The nodes in the list cannot be removed from the tour
for a duration of 7., iteration

Removal edge tabu list | The edges in the list cannot be removed from the tour
for a duration of 7 iteration

Insertion tabu list The nodes in the list cannot be inserted into the edge in
the tour for a duration of 7; iteration

Node exchange tabu list | The pairs of nodes in the list cannot be exchanged for a
duration of 7, iteration

Tabu Search for Solving Covering Salesman Problem 97

Step 4: Exchanging edges method by tabu search The neighborhood
solutions of the current tour is generated by the exchange edges method. If
edge i-j in the tour and edge k-l not in the tour are exchanged, edge k-l is
listed in removal edge tabu list.

Step 5: Adding method by tabu search The neighborhood solutions of the
current tour is generated by the adding method. If node & is added into edge
i-7, node k is listed in additional tabu list.

Step 6: Removing method by tabu search The neighborhood solutions of
the current tour is generated by the removing method. If node 7 is removed
from the tour, node ¢ is listed in removal tabu list.

The proposed method repeats Steps 1 to 6 until the termination condition is
satisfied. If the new best solution is found in each step, the local search methods
described in Sect. 3.1 are applied until a local optimal solution is obtained.

4 Simulations and Results

To investigate performances of the proposed method, we generate benchmark
instances by using DIMACS [9] which is one of the benchmark problems for the
traveling salesman problem. The number of nodes including the depot is 101 and
151. The nodes are uniformly distributed in the 10%[m] x 104[m] square and seed
for making the instances is set to 1. The covering range r is set to 25 and 50 m.
The speed of the drone is s = 30[km/h]. The travel time ¢;;[s] between nodes %
and j is calculated by the following equation:

PN P 3,600[s]
Y Y T s % 1,000[m] |
The tabu tenure is set to several values. In the simulation, we used a Mac

Stdio (Apple M1 Ultra) with 64 GB of memory running Mac OS X 12.6. The
termination condition is after n/10[s| from the start of the propose method.

Table 2. Results of the proposed method

n |r |OPT | Local Search | Tabu Search

Ave. Best | Ave. Best | IR tabu tenure

100 1251957]990.25 963 977.35 961 |1.32% | Ton = 14, Ta, Tre, Ti, Tn = 4
50820 |885.40 |860 |848.38 |828 |4.36% | Ten = 14, Ta, Tre, Tiy Tn = 7
150 | 251089 | 1135.72 | 1115 | 1117.30 | 1100 | 1.65% | Ten = 15, Ta, Tre, Tiy Tn = 2
50888 |972.48 |937 |923.17 904 |5.34% | Ten = 13, Ta, Tre, Ti, Ta = 9

Table 2 shows the results of the proposed method. The column of OPT shows
the optimal travel time. By using the formulation of the CSPNS [1] and a mixed-
integer programming solver, such as Gurobi Optimization [3], we can obtain an

98 T. Matsuura

optimal solution. By using 16 threads, the CPU time required to obtain the
optimal solution was 2330.43 s for 100 nodes and 27864.00s for 150 nodes when
the covering range is 50 m. “Local Search” shows the results obtained by up to
step 4 of the proposed method described in Sect.3. “Tabu Search” represents
the results of the proposed method after executing tabu search. The columns
of Ave. and Best represent the average and best results obtained in 30 trials,
respectively. The column of IR represents an improvement rate of the average
travel time by the proposed method compared to the average travel time of the
local search methods. The column of tabu tenure indicates the tenures at which
the average and best travel times were obtained.

From Table 2, although the proposed method cannot find the optimal solu-
tion, the good near-optimal solutions can be found. The gaps between the opti-
mal solution and the best solution obtained by the proposed method are approx-
imately 1%.

From the results of IR, it is observed that the improvement rate is higher
when the covering distance r is larger. This results suggests that the proposed
method is effective for CSPNS, where the coverage factor is important.

In this simulation, 7., 7ye, 73, and 7, are set to the same value and only 7y
was set to a different value because the proposed method has many tabu lists.
From the results of tabu tenure, it can be observed that better solutions are
obtained when the tabu tenure is longer for 7., 7., and 7; compared to 7.

5 Conclusion

This study proposed a heuristic method by using tabu search for find good
near-optimal solutions for covering salesman problem with nodes and segments.
From the computational results, although the proposed method uses simple local
search methods and the tabu search, it obtains good solutions. In the future
work, it is important to develop an effective adjustment method of tabu tenure.
It is also important to compare the performance of other meta-strategies, such
as genetic algorithms, ant colony algorithms, simulated annealing methods, and
others.

Acknowledgments. This study was funded by JSPS KAKENHI (grant number
JP22K04602).

References

1. Takafumi, M., Takayuki, K.: Covering salesman problem with nodes and segments.
Am. J. Oper. Res. 7(4), 249-262 (2017)

2. Current, J.R., Schilling, D.A.: The covering salesman problem. Transp. Sci. 23(3),
208-213 (1989)

3. Gurobi Optimization. https://www.gurobi.com/

4. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671-680 (1983)

https://www.gurobi.com/

o

Tabu Search for Solving Covering Salesman Problem 99

Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor (1975)

Glover, F.: Tabu search I. ORSA J. Comput. 1(3), 190-206 (1989)

Glover, F.: Tabu search II. ORSA J. Comput. 2, 4-32 (1990)

Glover, F., Taillard, E.: A user’s guide to tabu search. Ann. Oper. Res. 41(1), 1-28
(1993)

8th DIMACS Implementation Challenge: The Traveling Salesman Problem. http://
dimacs.rutgers.edu/archive/Challenges/ TSP/

http://dimacs.rutgers.edu/archive/Challenges/TSP/
http://dimacs.rutgers.edu/archive/Challenges/TSP/

GRASP with Path Relinking

®

Check for
updates

VNS with Path Relinking
for the Profitable Close-Enough Arc
Routing Problem

Miguel Reula®)@®, Consuelo Parrefio-Torres®, Anna Martinez-Gavara®,
and Rafael Marti

University of Valencia, Valencia, Spain
miguel.reula@uv.es

Abstract. Arc Routing Problems typically deal with traversing a set
of connecting edges or arcs in a network at the minimum possible cost.
In this paper, we target the close enough model in which clients can be
served from relatively close arcs, addressing some practical situations,
such as inventory management or automated meter reading. We pro-
pose a heuristic to maximize the sum of profits of the clients served
(penalized with the distance traveled). Our solving procedure, based on
the VNS methodology, incorporates efficient search strategies to obtain
high-quality solutions in short computational times, as required in prac-
tical applications. We study its improvement by coupling the method
with Path Relinking as a post-processing. Our experimentation over a
benchmark of previously reported instances shows the good performance
of the heuristics as compared with a previous GRASP.

Keywords: Metaheuristics - Logistics - Inventory Management -
Close-Enough - Arc Routing

1 Introduction

In the dynamic field of logistics and operations research, Arc Routing Problem
(ARP) continuously evolve, mainly driven by new methods and technologies.
This paper deals with a specific variant of the classical ARP, based on the inter-
play between profit maximization and service delivery, that addresses the modern
needs where service provision does not require on-site presence but is achieved
by being sufficiently close to the customer.

Recent advancements in radio frequency identification (RFID) technology
have significantly transformed the traditional ARP framework. These advance-
ments enable remote execution of tasks that previously required direct interac-
tion, thus redefining the concept of “service” in ARP models. In this context,
servicing clients is possible by traversing specific arc families assigned to them,
a concept known as the Close-Enough Arc Routing Problem (CEARP). Fur-
thermore, these new models typically optimize a balance between incurred costs
(related to distance or time) and profits (associated to the provided service). An
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 103-109, 2024.
https://doi.org/10.1007/978-3-031-62912-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_10&domain=pdf
http://orcid.org/0000-0002-6978-6780
http://orcid.org/0000-0001-9311-7504
http://orcid.org/0000-0001-9995-010X
http://orcid.org/0000-0001-7265-823X
https://doi.org/10.1007/978-3-031-62912-9_10

104 M. Reula et al.

ARP is deemed “profitable” when it strategically maximizes the net difference
between the profits from service provision and the associated travel costs.

Our study focuses on the Profitable Close-Enough Arc Routing Problem
(PCEARP), where the required arcs for traversal are not predetermined. In
this model, servicing a client involves traversing any one of a set of predefined
arcs that are sufficiently close to the client’s location. This approach provides a
flexible framework to meet the evolving needs of remote services. The PCEARP
selectively targets clients offering higher profits and does not necessitate servicing
all clients. This flexibility introduces additional complexity to the problem’s
resolution.

Given a strongly connected digraph G = (V, A), where V is the set of vertices,
and A the set of arcs, we consider d;; > 0 as the distance (or length) of arc
(i,4) € A, and vertex 1 denotes the depot. The set of clients H, is not necessarily
located in the vertices or arcs of the graph. Each client ¢ € H receives service
if any of its associated arcs (H. C A) is traversed. We also define the profit
pe > 0 of client ¢. This profit is collected (only once) if the client is serviced. The
Profitable Close-Enough Arc Routing Problem (PCEARP) consists in finding a
route on G that starts and ends at the depot. Its objective is to maximize the
difference between the sum of the profits collected in the route, and its total
length.

The PCEARP encompasses elements of both the CEARP—applicable when
all client-associated profits are substantial—and the Profitable Routing Prob-
lem with Profits (PRPP)—relevant when each required arc corresponds to an
individual client. The PCEARP is an NP-hard problem, suitable for a variety
of practical applications. One of the most important applications is found in
the supply chain management; in particular in inventory management in ware-
houses. The application of PCEARP models in this setting optimizes drone
routes for inventory checks, enhancing efficiency, accuracy, and safety. Another
practical application is in automatic meter reading, where RFID technology
enables remote data collection for utility meters [7,9].

2 Previous GRASP Approaches

The PCEARP was initially approached using a branch-and-price algorithm for
a related problem, with the variant focusing on profit generation identified by
[1] in their pricing problem. This led to the development of a GRASP heuris-
tic [6], named GRASP _BP, tailored for solving the minimization component of
the pricing challenge. This method is noteworthy for its rapid computational
times, a critical feature for algorithms repeatedly applied in branch-and-price
frameworks. In GRASP _BP, a constructive algorithm is utilized in each iter-
ation to build a solution, which is then improved upon using a local search
algorithm, with the best-profit route being the final output. Building upon the
foundation laid by GRASP _BP, in [2] the authors developed and implemented
the GRASP _IT, a modified version of the original heuristic. This GRASP _IT,
while slightly slower, significantly outperforms GRASP _BP in terms of solution
quality. A short description of the general method follows.

VNS with PR for the PCEARP 105

Construction Phase: At each step the method computes, for each required arc
a not in the route, its value v,, as the change in the objective function if a is
inserted in route r (in the best possible position). It is expected that new clients
are now served and therefore the sum of profits will probably increase, but at
a price that comes from the increment in the total distance to visit them (to
traverse the arcs serving them). In mathematical terms, f(r') = f(r) + ¢q.

The Restricted Candidate List (RCL) is built with arcs with good evaluation,
specifically those with the highest 1), values. The method then randomly selects
one of these arcs. Let ¥4 and ¥,,,;, be the maximum and minimum respectively
of the 1), values for all the required arcs not in the current route. Then,

RCL = {a € AR \ AR(T) : 'l/)a > a(¢mam - 1/}mzn) + 1/}mzn}a

where the parameter a = 0.9 balances the greediness and the randomization
in the selection from RCL. The selected arc is added to the route, and its value
updated.

Improvement Phase: The method applies a post-processing procedure to improve
each constructed solution by exploring its neighborhood. In particular, it consists
of a destroy-and-repair method [3] that first removes some arcs from the route,
and then add new arcs to improve the resulting solution. It is indeed more
complex than the standard local search usually applied in GRASP, in an effort
to obtain improved outcomes.

3 A New Heuristic Algorithm Based on VNS

We propose a MultiStart Variable Neighborhood Search (MS-VNS) algorithm
that extends the Variable Neighborhood Search (VNS) metaheuristic, integrating
it into a multi-start framework to enhance its ability to diversify the search
process. MS-VNS employs four different neighborhood structures, each based on
swap mechanisms where required arcs in a route are exchanged with others not
in the solution. The neighborhoods are: Nj_;, swapping one required arc with
another not in the solution; No_1, swapping two required arcs with one not in
the solution; N7_o, swapping one required arc with two not in the solution; and
Na_o, exchanging two arcs with two different arcs. These neighborhoods use a
first improvement strategy and incorporate shortest paths to potentially serve
non-served clients.

The core of MS-VNS is the Variable Neighborhood Descendent (VND) algo-
rithm, which systematically changes the neighborhood structure. VND begins
with a solution and explores different neighborhoods in a predefined order. If an
improvement is found in a neighborhood, the search returns to the first neighbor-
hood; otherwise, it proceeds to the next. This process continues until no further
improvements can be found in any neighborhood, indicating that the solution is
locally optimal across all considered neighborhoods.

The MS-VNS algorithm itself starts with an initial best solution and iterates
over a set time limit. Each iteration generates a new solution using a constructive

106 M. Reula et al.

algorithm, which is then locally improved through VND. The Shake method, a
key component of MS-VNS, diversifies the search by randomly altering parts of
the current solution. This method selects a random arc in the route and removes
a percentage of consecutive arcs, then reconstructs the route. The percentage
of removed arcs increases iteratively if no improvements are found, up to a
maximum limit. The VND algorithm is then applied to improve the shaken
solution. We refer the reader to [8] for a detailed description of this component.

As expected, the algorithm’s performance is influenced by the maximum time
allowed for the search and the largest neighborhood to be explored. The time
limit is reactive and is adjusted based on the improvements found during the
search. Initially set at 60 s, the time limit increases if a better solution is found,
allowing more time for further improvements.

3.1 The Path Relinking Post-processing

Path Relinking (PR) was initially proposed as a mechanism for long-term mem-
ory within tabu search, but it can be applied as a post-processing to improve the
solutions obtained with any metaheuristic [5]. This strategy intensifies the search
by generating new solutions through paths in the neighborhood space, starting
with an initiating solution and moving towards the guiding solutions. PR selects
moves to introduce attributes from the guiding solutions. The moves chosen
during the relinking process are different from those moves during a ‘normal”
local search because the relinking moves do not use the change of the objective
function as the guiding principle.

Path relinking can be thought of as a constrained neighborhood search,
where the search is limited to explore the solutions in the neighborhood with
characteristics of the guiding solution. The selected neighborhood will deter-
mine the set of solutions visited by path relinking. For example, consider a
solution represented by a permutation and consider two neighborhoods, swap

and insert. In swap (7',..., 7%, ..., 7/, ..., 7%) and (7},..., 7%, ... 7% ..., 7"
are neighbors because 7' and 7/ swap their positions whereas in insert
(rb, . m w7 and (7, ..., 7w b w0 wt L w™) are neighbors since

7 is inserted in position 7. In line with the VNS methodology described in the
previous section, we consider these two neighbors in our PR for the PCEARP.

4 Computational Experiments and Conclusions

In our computational testing, we consider the 396 PCEARP benchmark instances
[2] categorized into Albaida, Madrigueras, and Random of up to 400 vertices,
available at [4]. Three profit scenarios were defined for each instance, based on
servicing 60%, 80%, and 90% of clients, respectively. All the algorithms have
been implemented in C++ and run on an OpenStack virtualization platform,
supported by several blade servers with two 18-core Intel Xeon Gold 5220 pro-
cessors, running at 2.2 GHz, and has 384 GBytes of RAM.

VNS with PR for the PCEARP 107

We compare our proposal, MS-VNS, with two previous GRASP heuristics,
namely GRASP BP [1], designed for the pricing part of the min-max close
enough arc routing problem, adapted for PCEARP as a maximization problem,
and GRASP _IT [2], is an iterative algorithm that combines constructive and
local search heuristics, improving the construction of solutions for better quality
bounds in branch-and-cut algorithms, particularly effective for smaller instances.
We do not include in the tables the PR results due to the space limitations,
and considering that in its current implementation it only provides a marginal
improvement in the VNS results.

Table 1. Solutions on 30 runs (with 60s per instance).

#Inst. MS-VNS GRASP _IT GRASP_ BP

0favg | CPU(s) | 0favg | CPU(s)| o0favg | CPU(s)

Albaida 72| 851.3 2.5 848.1 1.7] 7153 0.0
Madrigueras 72| 1201.6 13.9| 1163.8 4.6 829.8 0.1
Random50 36| 1024.4 9.2 1018.9 17.8| 901.5 0.1
Random75 36| 1470.5 19.7 | 1463.7 23.8| 1296.0 0.5
Random100 36| 1679.6 26.5| 1629.2 32.4| 1286.8 0.9
Random150 36| 2245.8 39.1| 2141.9 37.7| 1653.8 3.2
Random?200 36| 2451.3 43.7| 2262.7 46.4| 1894.1 9.3
Random300 36 | 2554.6 48.8 | 2231.6 49.2 | 1746.2 18.8
Random400 36| 3611.6 54.0| 3304.7 55.7 | 2887.3 30.1
1740.3 24.9/1643.3 25.1/1341.4 5.7

Table 1 shows the average objective function values and the average running
time over the 30 replicates conducted with each algorithm on each instance. The
MS-VNS heuristic clearly outperforms GRASP IT and GRASP BP in solution
quality, with an average value of 1740.3, significantly better than the 1643.3 of
GRASP_IT and 1341.4 of GRASP_BP.

Although not reported in the tables here, it is worth mentioning that MS-
VNS average worst value across replications is 1656.2, improving the best mean
scores of both GRASP IT and GRASP_BP. Its robustness is further indi-
cated by lower standard deviations (40.5) compared to GRASP IT (50.3) and
GRASP_BP (86.9). Despite GRASP _BP being the fastest with an average time
of 5.7s, MS-VNS and GRASP _IT, averaging around 25 s, offer a better balance
between solution quality and computational time.

In Table 2, we conduct a comparison of the top performers in terms of the
objective function, focusing on the mean time, the GAP(%) relative to the
best known solution, and the number of best known solutions obtained. The
effectiveness of the MS-VNS is further validated through its comparison with
GRASP _IT across 9 benchmark datasets. Indeed, MS-VNS secures the best
solutions in 287 out of the 396 instances tested, markedly outdoing GRASP IT,

108 M. Reula et al.

Table 2. Comparison of MS-VNS and GRASP _IT w.r.t best known solutions.

#Inst. MS-VNS GRASP _IT

GAP(%) | # BestSol | GAP(%) | # BestSol

Albaida 72 0.00 72 0.01 71

Madrigueras 72 0.15 69 1.10 50

Randomb0 36 0.01 35 0.26 29

Random75 36 0.00 36 1.16 22

Random100 36 0.10 33 1.16 17
Random150 36 0.50 20 3.67

Random?200 36 1.62 12 7.01 5
Random300 36 5.71 7 13.76
Random400 36 10.74 3 15.17

1.72 287 4.04 204

which achieves only 204 best known solutions. Additionally, MS-VNS demon-
strates superior performance in terms of the average gap relative to the best
known solution, recording a significantly lower gap of 1.72%, compared to
GRASP _IT’s 4.04%. Additionally, considering the 362 instances with optimum
known, our MS-VNS is able to match the optimal value in around 80% of them.

As a final conclusion, we can state that our experimentation with VNS clearly
shows its superiority with respect to previous heuristics, and additionally allowed
us to identify its limitations in terms of matching the optimal (or best known)
value in large instances, which motivated the inclusion of PR as a post-processing
to refine the results. We are working on some promising PR variants to further
improve our results. This research is partially supported by ERDF -A way of
making Europe- PID2021-1257090B-C21 MCIN/AEL

References

1. Bianchessi, N., Corberan, A., Plana, I., Reula, M., Sanchis, J.M.: The min-max
close-enough arc routing problem. Eur. J. Oper. Res. 300(3), 837-851 (2022)

2. Bianchessi, N., Corberan, A., Plana, I., Reula, M., Sanchis, J.M.: The profitable
close-enough arc routing problem. Comput. Oper. Res. 140, 105653 (2022)

3. Corberan, A., Plana, 1., Reula, M., Sanchis, J.M.: A matheuristic for the distance-
constrained close-enough arc routing problem. TOP 27, 312-326 (2019)

4. Corberan, A., Plana, I., Reula, M., Sanchis, J.M.. PCEARP Instances. https://
www.uv.es/plani/instancias.html. Accessed May 2023

5. Laguna, M., Marti, R.: GRASP and path relinking for 2-layer straight line crossing
minimization. INFORMS J. Comput. 11(1), 44-52 (1999)

6. Laguna, M., Marti, R., Martinez-Gavara, A., Pérez-Pelo, S., Resende, M.: 20-years
of GRASP with path relinking. Eur. J. Oper. Res. (2024, forthcoming)

7. Renaud, A., Absi, N., Feillet, D.: The stochastic close-enough arc routing problem.
Networks 69, 205-221 (2017)

https://www.uv.es/plani/instancias.html
https://www.uv.es/plani/instancias.html

VNS with PR for the PCEARP 109

8. Reula, M., Marti, R.: Heuristics for the profitable close-enough arc routing problem.
Expert Syst. Appl. 230, 120513 (2023)

9. Sinha Roy, D., Defryn, C., Golden, B., Wasil, E.: Data-driven optimization and
statistical modeling to improve meter reading for utility companies. Comput. Oper.
Res. 145, 105844 (2022)

Meta-Heuristics for Preference Learning

®

Check for
updates

A Simulated Annealing Algorithm
to Learn an RMP Preference Model

Yann Jourdin®) | Arwa Khannoussi2, Alexandru-Liviu Olteanu?,

and Patrick Meyer! (=)

L IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238 Brest, France
{yann.jourdin,patrick.meyer}@imt-atlantique.fr
2 IMT Atlantique, LS2N, UMR CNRS 6004, 4430 Nantes, France
arwa.khannoussi@imt-atlantique.fr
3 Lab-STICC, UMR 6285, CNRS, Université Bretagne Sud, Lorient, France
alexandru.olteanu@univ-ubs.fr

Abstract. Multiple Criteria Decision Aiding (MCDA) provides pref-
erence models and algorithms to assist decision-makers (DMs) in their
decision-making tasks. The preference models are characterized by pref-
erence parameters which can be learned through preference learning algo-
rithms from holistic judgments given by the DM. Here, we use Simulated
Annealing (SA) to learn the parameters of the Ranking based on Multiple
Reference Profiles (RMP) model and its simpler variant SRMP. Exten-
sive experiments demonstrate that our proposal outperforms existing
methods in terms of both calculation time and accuracy.

Keywords: multi-criteria decision aiding - reference profiles -
preference learning - simulated annealing

1 Introduction

Multiple Criteria Decision Aiding (MCDA) helps decision-makers (DMs) make
more informed decisions among a set of alternatives through the use of preference
models. This work focuses on “ranking” problems, whose objective is to order
the alternatives from the most preferred to the less preferred. More precisely,
we study a specific preference model, namely Ranking based on Multiple Refer-
ence Profiles (RMP) [8] and its simpler variant Simple RMP (SRMP). Both use
reference profiles to compare alternatives two by two to build a total preorder.

The model parameters must be chosen to best represent the DM’s preferences
expressed through pairwise comparisons of alternatives, requiring preference elic-
itation algorithms. For RMP models, a SAT (Boolean satisfiability problem) for-
mulation [1] has been proposed, while a mixed integer linear program [7] and
evolutionary metaheuristics [4,6] have been proposed to learn SRMP models.
However, computation time for the SAT formulation of [1] increases exponen-
tially with the number of criteria, making it hard to handle large instances. Next
to that, to the best of our knowledge, metaheuristics have not been applied to the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 113-119, 2024.
https://doi.org/10.1007/978-3-031-62912-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_11&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_11

114 Y. Jourdin et al.

elicitation of the more generic RMP model. Finally, the evolutionary algorithms
used in [4] and [6] require the calibration of a lot of hyperparameters.

To address these issues, we propose in this article a simulated annealing
algorithm [5] to learn both RMP and SRMP models. Results show that the
proposed method outperforms the genetic algorithm (GA) of [4] on SRMP mod-
els, especially on large instances, while handling larger problems than the SAT
formulation on RMP models.

2 Ranking Based on Multiple Reference Profiles (RMP)

As a ranking model, the RMP preference model yields a total preorder - (>
(resp. ~) represents the asymmetric (resp. symmetric) part of =) on the set .4
of n alternatives, each described through a set of m criteria C = {1,...,m}.
Let a; € R be the performance of a € A on criterion j € C, i.e., a = (a;);cc.
Without loss of generality, we suppose here that higher performances correspond
to preferred evaluations. The preference parameters of an RMP model are:

~ P ={p",1 <i <k}, aset of k reference profiles, p* = (p});ec, where pj is
the performance of profile p* on criterion j. Profiles dominate each other, i.e.,
Py > pitlvjec.

— B>, the importance relation on criteria coalitions, i.e., a total preorder on the
powerset 2¢ of C and monotonic with respect to set inclusion. This parameter
is equivalent to a capacity p (a non-negative set function monotonic with
respect to set inclusion), with A > B <= u(A) > u(B) VA, B € 2°¢ [1].

— 0, a permutation of the indexes of the profiles, representing a lexicographic
order on the profiles which stands for the importance of the reference points.

In the RMP model, at first, for every alternative a € A and every profile
p' € P, the set of criteria c(a,p’) = {j € Cla; > p;} containing all criteria
on which a is at least as good as p’ is computed. Then, given these criteria
coalitions, an outranking relation »-; for each profile p’ € P is created as follows:
azib <= cla,p’) > c(b,p')Va,b € A. Finally, the alternatives are ranked
through a total pre-order 7, defined by taking into account the k outranking
relations 7—; according to the lexicographic order o, i.e., a = b <= ', Vi < ¥,
a ~y(;y b and a =,y b, otherwise a ~ b.

A particular case of RMP is SRMP, in which the importance relation > is
defined using additive weights, i.e., for A, B €26, A> B < Y w; > Y wj,

JjeA JEB
where w; is the weight of criterion j, and) w; = 1.
jec

3 A Simulated Annealing Algorithm to Learn
RMP/SRMP Models

The goal of the preference inference algorithm that we propose is to determine
the parameters of RMP and SRMP models, given holistic judgments expressed

A Simulated Annealing Algorithm to Learn an RMP Preference Model 115

by a DM on pairs of alternatives. These take the form of strict preference (>)
and indifference (~) statements on pairs of alternatives from A. Let D be the
set of such statements. Our proposal, described in 1, follows the classical steps
of a simulated annealing algorithm which takes as input D, along with an initial
and final temperature Ty and 7', a cooling factor o and an initial model M (in
the form of its parameters), and returns the best known model Mpes;.

For each type of parameters, we design a specific neighborhood. For the pro-
files (P), we pick a random profile p and a random criterion j, and replace p,
randomly with one of the precomputed midpoints between two consecutive alter-
natives’ evaluations on that criterion. For the lexicographic order, we randomly
switch 2 profiles in o. For the importance relation >, if the sought model is RMP,
we pick randomly a subset of criteria A and replace the value of p(A) with a
random value between 0 and 1 from a uniform distribution, while respecting
the monotonic property of o with respect to set inclusion. If however the model
is SRMP, we pick randomly a criterion j and replace w; with a value from a
uniform distribution on [w; — A, w; + A], where X is a hyperparameter.

The fitness of a model M is the ratio of pairwise comparisons from D which
are correctly rendered by M to the size of D. Note that at each iteration, in
line 4 of Algorithm1 a neighborhood is randomly chosen, with a probability
proportional to the size of the considered neighborhood.

Algorithm 1: Simulated annealing for RMP/SRMP learning
Input: D, Ty, T}, o, Mo
Output: Mpest

1 M — My ; Mpest — Mo # Initialize current and best known model
2 T—1Tp # Initialize temperature

3 while T'> Ty do # Check stopping condition

4 N « pick_random neighborhood|() # Pick a neighborhood

5 M’ < neighbor(M, N) # Create a neighbor model
6 if exp((fitness(M’, D) — fitness(M, D))/T) > random(0, 1) then

7 M «— M'; Myess «— M’ # Update current and best known model
8 if fitness(Mpest, D) = 1 then # Check 1007 fitness

9 ‘ return My # Return best known model
10 T — ol # Update temperature

11 return Mpest # Return best known model

4 Numerical Analysis

We choose to study problems with m € {3,4,5,6, 7,11, 15} criteria. For each
of those problem sizes, 50 pairs of train AY%" (|A%"| = 500) and test A5
(J A3 = 500) datasets are generated (i € {1,...,50}). The performances of the

alternatives on the m criteria are drawn randomly from a uniform distribution

116 Y. Jourdin et al.

on [0,1]. Next to that, we consider both RMP and SRMP ground truth models
with 1 < k* < 4 reference profiles. For each k* and each problem size m we
randomly generate 50 such models M/,

The parameters of a ground truth model M;,, are randomly generated as
follows: for the profiles, for each criterion, we draw randomly k* floats from a uni-
form distribution on [0, 1], and sort them to respect the dominance constraint on
the profiles; o is generated by performing a random permutation on (1,...,k*);
for an RMP model, the capacities are generated in a uniform way accordmg to
[3], and, in case of an SRMP model, weights are generated according to [2].

For each of those 7-50-2-4 = 2,800 problems, M/, is used to generate the
ground truth pairwise comparisons D”‘”” drawn randomly among the w =
124,750 possible pairwise comparisons. For |D}"%"| sizes between 100 and 1,000

are tested with an increment of 100, as well as 2,000. D}%™ is used by the

simulated annealing algorithm to train Z/\Zi,m (with the same number of profiles
as M;,,). M;,, is then applied on A}"%™ to evaluate its fitness. Finally, M

,mM

and M, ,, are applied on A’;e,ff, and pairwise comparisons from both rankings
are compared, to evaluate Ml)m s generalization ability on unseen data.
To determine optimal hyperparameters of Algorithm 1 we perform a hyper-

parameter optimization leading to Ty = |Dtﬂ“"\ Ty = OTO, A=0.1. @ =0.9999

is chosen so that the computation time is comparable to state-of-the-art methods.

Train accuracy (m = 15) Test accuracy (m = 15) Time (s) (m = 15)
— i g
2
=] =) <
(=]
2
% %
(==} (=)
(=)
888 = Gl gg8 = Gl
— M — M0
|DTRAI\I | |DTR/\IN | |DTR1\II\' ‘
|[— k" =1k =4(GA) —k =1k =4 (ours) |

Fig. 1. Average train accuracy, test accuracy and execution time of the GA of [4]
(orange) and our proposal (blue) for SRMP models as a function of |Drran| for m = 15
and k™ € {1,4}. Bars represent the limits of the 95% confidence intervals. (Color figure
online)

Figure 1 shows, for the learning of SRMP models, the performance of our pro-
posal compared to that of the GA of [4], for a fixed number of criteria (m = 15)
and two values for k*. Compared to the GA, we observe that, for our proposal,

A Simulated Annealing Algorithm to Learn an RMP Preference Model 117

Train accuracy (k™ = 3) Test accuracy (k™ = 3)
— —
o
o
[2e]
@ @
=] e 8
(]
: el
0 ol =)
S S| =
!
o OO 4 4 o O O 4 4 [A4 4
[cNeNe] — [a\} (e eNe] — [a\} [eNeNe] — [a\}
— M0 — M0 — M0
‘DTRAIN | ‘DTRAIN | ‘DTR,AIN |

Fig. 2. Performances of our proposal for SRMP models as a function of |Drpan| for
m € {7,11,15} and k™ = 3. Bars represent the limits of the 95% confidence intervals.

first, average train accuracy is less affected when |Dypay| increases and second,
both average accuracies are higher. Third, for our proposal only, both aver-
age accuracies decrease as k*. Finally, computation times increase with k*, but
depend less on |Dipan| for our proposal than for the GA. These observations
still hold for the other tested values of m. Figure 2 shows the same indicators for
our proposal only, while varying m and setting £* = 3. It appears that accuracy
decreases with more criteria, while computation time is only slightly affected.
For RMP models, we cannot compare ourselves in every detail to the SAT
formulation of [1], as only smaller instances (m < 6) are used by the authors,
and they evaluate their approach using SRMP models. Figure 3 shows the perfor-

Train accuracy (m =7) Test accuracy (m =7) Time (s) (m =7)
— —
_ :
< @ =
(=) (==}
(==}
=}
0 0 ™
[[}
o OO 4 - o OO 4 - [l 4 4
o oo — [} o OO — [} o oo — [a\}
— M0 — M0 — M0
‘DTR,\IN | ‘DTR/\IN | ‘DTR/\]N |

— Kkt =1--- k" =2]{:*:3‘

Fig. 3. Performances for an RMP model as a function of |Drpaw| for m = 7 criteria
and k* € {1,4}. Bars represent the limits of the 95% confidence intervals.

118 Y. Jourdin et al.

Train accuracy (k* = 3) Test accuracy (k™ = 3)

o
[=J
i - 3
A e
[=2] CT) - s
o N S 8
R TP A '_r
* 0
e [=)
(=]
e =3
,,,,,,,,,,,,,,,,,,, Y=y
5 | e ///
i S
333 = i~ 288 4 x Y =
— M0 i Y S22
| Drrars] | Drram| |Drs |
T ———y

Fig. 4. Performances for RMP models as a function of |Drgan| for m € {7,11} criteria
and k* = 3. Bars represent the limits of the 95% confidence intervals.

mance evolution for RMP models with m = 7 for different £*. First, both accu-
racies decrease as k* increases. Also, as expected, computation time increases
with k*. Figure 4 shows the same indicators, for different m when setting k* = 3.
We observe that both train and test accuracies decrease as m increases. Com-
putation time is about three times higher with m going from 7 to 11.

5 Conclusion and Future Work

In this article, we proposed a simulated annealing adapted to the elicitation of
parameters of both RMP and SRMP models, and tested it on large instances.
Compared to state-of-the-art methods, it has greater generalization power for
SRMP, and is able to process larger instances for RMP. Moreover, since compu-
tation time is smaller, the proposed method is well suited for large problems.
To go further, the proposed method will be tested on noisy data and we will
study how the algorithm can recover an SRMP model from RMP data, and vice
versa. Also, we plan on performing a more in-depth hyperparameter tuning.

References

1. Belahcene, K., Mousseau, V., Ouerdane, W., Pirlot, M., Sobrie, O.: Ranking with
multiple reference points: efficient SAT-based learning procedures. Comput. Oper.
Res. 150, 106054 (2022). https://doi.org/10.1016/j.cor.2022.106054

2. Butler, J., Jia, J., Dyer, J.: Simulation techniques for the sensitivity analysis of
multi-criteria decision models. Eur. J. Oper. Res. 103(3), 531-546 (1997). https://
doi.org/10.1016,/S0377-2217(96)00307-4

3. Grabisch, M., Labreuche, C., Sun, P.: An approximation algorithm for random gen-
eration of capacities. Order (2023). https://doi.org/10.1007/s11083-023-09630-0

https://doi.org/10.1016/j.cor.2022.106054
https://doi.org/10.1016/S0377-2217(96)00307-4
https://doi.org/10.1016/S0377-2217(96)00307-4
https://doi.org/10.1007/s11083-023-09630-0

A Simulated Annealing Algorithm to Learn an RMP Preference Model 119

. Khannoussi, A., Olteanu, A.L., Meyer, P., Pasdeloup, B.: A metaheuristic for infer-
ring a ranking model based on multiple reference profiles. Ann. Math. Artif. Intell.
(2024). https://doi.org/10.1007/s10472-024-09926-w

. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671-680 (1983). https://doi.org/10.1126/science.220.4598.
671

. Liu, J., Ouerdane, W., Mousseau, V.: A metaheuristic approach for preference learn-
ing in multicriteria ranking based on reference points. In: Proceeding of the 2nd
DA2PL Workshop, pp. 76-86 (2014)

. Olteanu, A.L., Belahcene, K., Mousseau, V., Ouerdane, W., Rolland, A., Zheng,
J.: Preference elicitation for a ranking method based on multiple reference profiles.
40OR 20(1), 63-84 (2022). https://doi.org/10.1007/s10288-020-00468-5

. Rolland, A.: Reference-based preferences aggregation procedures in multi-criteria
decision making. Eur. J. Oper. Res. 225(3), 479-486 (2013). https://doi.org/10.
1016/j.ejor.2012.10.013

https://doi.org/10.1007/s10472-024-09926-w
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s10288-020-00468-5
https://doi.org/10.1016/j.ejor.2012.10.013
https://doi.org/10.1016/j.ejor.2012.10.013

New VRP and Extensions

®

Check for
updates

Iterative Heuristic over Periods
for the Inventory Routing Problem

Katyanne Farias, Philippe Lacomme, and Diego Perdigdo Martino(®)
Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Mines Saint-Etienne,
LIMOS, 63000 Clermont-Ferrand, France
katyanne.farias_de_araujoQuca.fr, philippe.lacomme@isima.fr,
diego.perdigao_martino@doctorant.uca.fr

Abstract. Inventory Routing Problems are specially designed to solve
transportation problems with inventory management constraints associ-
ated. The objective is to serve a set of customers over a finite time hori-
zon, performing product deliveries to meet the demands of customers
taking into account constraints regarding inventory levels authorized as
well as production capacity. We propose a heuristic method based on
an iterative approach that decomposes the original problem into sub-
problems according to the length of the time horizon. The proposed
method is iterative and follows the sequence of periods of the time hori-
zon from the beginning to the end. Therefore, the resolution of a sub-
problem (with all initial constraints but considering only a part of the
time horizon) starts from the resolution of the subproblems for previous
periods. The method limits the modification of the solution for periods
that has already been considered at an earlier iteration, thus accelerating
the resolution. Results shown that our approach is competitive in terms
of solution quality and execution time and can provide good solutions
for the set of instances considered.

Keywords: Inventory Routing Problem - Iterative algorithm -
Heuristic

1 Introduction

The Inventory Routing Problem (IRP) is a multi-period vehicle routing and
inventory management problem. The IRP considers a set of customers with
deterministic demands per period, a set of homogeneous vehicles with a given
capacity and a finite time horizon. The objective is to define the quantities to
deliver to the customers, the moment (period) in which the deliveries will take
place and the order of visiting customers per period using the available vehicles
in such a way that the customer demands are satisfied and that the inventory
levels, the capacity of vehicles and supplier production capacity are respected at
a minimum-cost total inventory and routing solution cost.

Supervised by authors 1 and 2.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 123-135, 2024.
https://doi.org/10.1007/978-3-031-62912-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_12

124 K. Farias et al.

A summary of works dealing with the IRP is presented in [6] and a classical
version of the IRP is described by [1]. In our paper, we propose an iterative
heuristic over periods based on a Mixed Integer Linear Programming (MILP)
model, that is capable of solving the IRP by decomposing its structure in sub-
problems according to the time periods in order to facilitate the exploration of
the search space and provide high-quality solutions in a reasonable computa-
tional time.

An explanation on the Inventory Routing Problem including its mathematical
formulation is given by Sect. 2. Then, in Sect. 3, the iterative heuristic approach
is introduced and the computational experiments are presented in Sect.4 as
well as the set of instances and parameters used and the results obtained are
discussed. Finally, conclusion and perspective work is in Sect. 5.

2 The Inventory Routing Problem

The Inventory Routing Problem is defined on a graph G = (N’, A) in which A/
corresponds to the set of n customers A' = {1,...,n} and the node 0 standing
for the supplier, with N7 = {0} UN. Therefore, A = {(i,7) : 4,7 € N",i # j} is
the set of arcs. A time horizon 7 = {1,..., H} with H periods is considered and
consequently 7/ = {0} U 7. A homogeneous fleet of m vehicles is considered,
where each presents a capacity B. The cost to travel from 4 to j is given by ¢; ;
and respect triangular inequalities.

An initial inventory level s;, Vi € N7, is known in advance for the customers
and supplier at period 0. The inventory holding costs are given by h!, with i € N/
and t € 7'. Each customer has a period-independent demand d; and a maximum
and minimum inventory levels allowed [L;, U;] per period t € 7.

The sets, variables and data are summarized in Table 1.

The corresponding formulation is presented below and was inspired on the

formulation presented by [2].

Objective Function. The objective function (1) aims to minimize the total
inventory and transportation cost.

min Y BGI+ Y0 DRI+ YD Y cigal; (1)

teT’ ieEN teT’ (4,7)€AtET

Inventory Level Constraints. Initially (at period 0), the supplier and cus-
tomers inventory levels variables I, Vi € N’ and t € 7', are set to their initial
inventory level s; according to Constraints (2). Then, in Constraints (3), the sup-
plier inventory level is calculated considering the inventory level at the previous
period I(t)_l, Vt € T, added of its production capacity r¢,vt € 7. In Constraints
(4), inventory level for each customer i € A" and period ¢ € T considers its prece-
dent inventory level I ;:71 and the amount of products delivered by the supplier

Iterative Heuristic over Periods for the Inventory Routing Problem 125

Table 1. Sets, data and variables

Sets/Data | Description

N Set of customers

N’ Set of customers and the supplier

A Set of arcs (4,7), where i,j € N’ with i # j
T Set of T discrete time periods from 1 to | 7|
T’ Set of T' discrete time periods from 0 to |7 |
m Number of vehicles available

B Capacity of the vehicles

Cij Distance from i € N to j € N, i # j

rt Supplier production at time period t € 7
d; Demand of customer i € A/

L; and U; | Lower and upper inventory level limits, respectively, for customer i € N
Si Initial inventory level of ¢ € N
ht Inventory holding cost of i € N” at time period t € 7'

Variables | Description
¢

x; Binary variable equal to 1 if arc (¢,j) € A is chosen at t € 7, 0 otherwise
ai ; Freight flow passing through arc (i,5) € A at period t € T

qt Quantity delivered to customer ¢ € N at period t € T

It Inventory level of i € N’ at time period t € T’

and the demands for the current period.

0 =s; Vie N (2)

=114 =) g vie T (3)
ieN

II=I""+4¢ -4 Vie N (4)

Delivery Quantity Constraints. The quantity ¢!, Vi € N,t € T to be
delivered must respect the remaining space available at the customer which is
the difference between its previous inventory level and its maximum/minimum
storage capacity (L; — I}"',U; — I!™' Vi € N,t € T) as in Constraints (5)
and (6). Constraints (7) requires that the customer receiving products at a time
period be visited on one of the routes at the same period.

¢t >L;—1/7! Vie N, teT (5)

¢ <U —1171 VieN,teT (6)

¢! <min{B,U;} Z af VieN,teT (7)
JEN'

J#i

126 K. Farias et al.

Flow Constraints. Also referred to as degree constraints, these ensure that
the entering and leaving flow at each node is equal (Constraints 8). Constraints
(9) impose that the number m of available vehicles is respected by regarding the
first arc f; Vi € N,t € T in a given route. Constraints (10) ensure that each
customer is visited at most once per period since split deliveries are not allowed.

Z i = Z h, VieN'teT (8)
(i,5)€A (4,5)€EA

Z x4, <m teT 9)
ieEN

d oat; <1 VieN,teT (10)

JEN'
J#i

Sub tour Elimination Constraints. In order to avoid sub-tours, variables

at j» Vi,j € At € T, are introduced and serve as an increasing counter to
ensure that a route starts and ends at node 0, which represents the supplier.
All the variables aio, Vi € N,t € T returning to the supplier are set to 0 as
in constraints (11). Then, the vehicle load along each route is bounded by the
vehicle capacity B as expressed in constraints (13).

a0 =0 V(i,j) e AteT (1)
Za;,i*Qf: Zaf,j VieN,teT (12)
JeN’ jeN’
jséi J#i
a;; < Bxj V(i,j) e AteT (13)

Variables Domain. Lastly, the domain of variables are given by Constraints

(14)-(17).

zt. e {0,1} V(i,j)e AteT (14)
al; >0 V(i,j) e AteT (15)
¢ >0 VieN,teT (16)
Il >0 VieN' teT (17)

3 The Iterative Heuristic over Periods

The iterative approach consists of a hybrid heuristic based on the formulation
presented in Sect.2. The method iterates over the time horizon, solving the
subproblem composed by all constraints until the current period, and starting
the resolution from the partial solution of the previous iteration. Furthermore,
the number of modifications to the predefined partial solution is limited by a
fixed method parameter.

Iterative Heuristic over Periods for the Inventory Routing Problem 127

Let P be the IRP and P*, Vt € 7, the t*" subproblem over the |7 | possible
subproblems. Solving P! means starting the resolution from the previous values
found for the routes composition expressed by the variables xfj from periods
1 to t — 1 to the current subproblem P? and solve it by allowing a degree of
freedom for the variables = over the algorithm execution of P?.

The overall idea is illustrated by Fig. 1.

t=1 |s(Ph)

- i)

=3 a(P) = a(P) | [s(P)

t=T s(P") s(P*) s(P*) e (P s(P7)

Fig. 1. Iterative heuristic idea

In Fig. 1, we can see the dependance among the subproblems given a period .
For example, when ¢ = 2, there is a dependance on subproblem P! since it carries
a partial solution given as an starting point for P2. When ¢ = 3, subproblem
P3 receives information on P? which depends implicitly on P!. The algorithm
iterates over all the time horizon.

It is pertinent to state that subproblems dimension increase according to the
iterations over the periods of time, i.e., [P} < |P?| < ... < [PT7} < |P7] as
shown in Fig. 2.

subproblem
dimension

periods

Fig. 2. The iterative heuristic search space evolution

The idea behind that is to explore partially at each iteration the neighbour-
hood that is expressed by the variables representing each period of the time

128 K. Farias et al.

horizon. It allows the solver to know implicitly a logical sequence based on the
chronological period order. This practice is usually explored by constraint pro-
gramming algorithms [3,4].

To do so, for a given period t € 7, we consider variables ;Ef] as the values
obtained when solving the subproblem P*~!. Then, the distance from their cor-
responding variables z! ; in subproblem P! is calculated by Eqs. (18). Therefore,

Z’j
Egs. (18) are linearized by Constraints (19).

8 =zl —at,| VijeN te{l,..t—1} (18)
oy 2 oty —af;
st o> gt gt

n=<q %~ W Vi,je N, t' e {1,....t — 1} (19)
ot <zt 4+t
1,7]]
Oi; <2-; —

Only z variables are considered due to the fact that deactivating or activating
an arc in a given period means removing completely or adding a quantity ¢ at
a customer. Also, once the resolution of P! is started from known values of
variables x until the ¢ — 1, the ¢ values can be more easily defined whether an
arc is used or not in a route. Nevertheless, from the subproblem P*~! to P?, a
starting point on the ¢ variables is added without a degree of freedom.

Then, the degree of freedom is expressed by

> Y s (20)

(i,j)eAt €{l,....t—1}

in which & corresponds to the number of non-zero variables z} ; obtained from
subproblem P*~1, i.e., all variables for which xf ;=1and A to the percentage
of changes allowed at each subproblem P! based on previous activated arcs. In
other words, when A = 0, no tolerance is allowed whereas in case when A = 100,
all the previous activated arcs could be changed.

Algorithm 1 provides the steps for the iterative approach.

Algorithm 1 starts by defining the sets X and @Q and setting them to empty
(line 1) as well as initialyzing the elapsed time elpTime to zero (line 2). Then,
the first subproblem P! is created taking into account only the problem data for
the first period (line 3) and by solving it (line 4) by an MILP solver for model
(1)—(17). Next, the elapsed time is updated (line 5). If a feasible solution exists
(lignes 6 to 24), the associated x and ¢ variables are added to sets X and Q,
respectively (lines 8 and 9).

From the second period until the last period of the time horizon, the loop
from lines 10 to 24 adds at each iteration the solution obtained previously. The
t'" subproblem is created (line 11) and since the previous solution found at
period ¢t — 1 is available (note that for the first period, no previous solution can
be added to subproblem P!), Constraints (19) are added taking into account
the A ratio and the set of linear constraints n given by Inequalities 19 (line 12).

Iterative Heuristic over Periods for the Inventory Routing Problem 129

Algorithm 1: Iterative algorithm

Data: problem data from Section 2
degree of freedom A
solver time limit timeM ax
Result: a feasible solution s(P7) for the P* subproblem

1 X s Q —
2 elpTime — 0
3 Create the first subproblem P!
4 s(P') « solve(data, P, timeMazx)
5 Update elapsed time elpTime
6 if s(P!) is feasible then
7 Z};,q — getValues(s(P'))
8 X — a‘:}}j
°o | Q—aq
10 for each period t € 7 \{1} do
11 Create the t" subproblem P!
12 P!+ addHint(X,Q,n, A)
13 timeMax «— timeMax — elpTime
14 s(P") « solve(data, P*, timeMazx)
15 Update elapsed time elpTime
16 if s(P") is feasible then
17 z} ;,q; — getValues(s(P"))
18 X —Xuzt,
19 Q—QuUg
20 else
21 ‘ stop
22 end
23 X, Qo
24 end
25 else
26 | stop
27 end

28 return s(P)

Here, the hint concerns adding the x variables according to the degree of freedom
provided by A and a starting point for g values.

The timeMax is updated according to the previous iterations elapsed time
(line 13). Then, the t** subproblem is solved and the elapsed time elpTime is
updated (line 15). If a feasible solution exists (lines 16 to 19), the solution is
extracted (line 17) and added to X (line 18) and Q (line 19).

At last, the solution found for the last subproblem P¥ is returned (line 28).

4 Computational Experiments

The experiments were conducted on a AMD EPYC 7452 32-Core processor com-
puter with 512GB of RAM memory using C++ programming language and the

130 K. Farias et al.

MILP solver IBM ILOG CPLEX Optimization Studio version 22.1.1.0 was used
to solve the model.

The experiments were conducted on a set of classical IRP instances proposed
by [1,5] and several experiments varying the maximum authorized distance for
the = variables were also explored and are presented below.

For each instance and method, an one-hour time limit was set to the solver.
It means that for the iterative method, solving an instance up to a given period
t means accumulating the elapsed time from period 1 to ¢ since the subproblem
P! reuses information from the previous subproblems solved. The same is not
valid for the classical approach since there is no period-dependence to solve the
subproblems and then the time limit is set to one hour for each instance.

A values were set to A = {0, 10, 20, ...,90,100} in order to analyse the per-
formance to solve the problem. These values do not change over the algorithm
execution.

4.1 Instances

The set of instances was initially provided by [1] for the single vehicle IRP and
later, [5] adapted these instances to contemplate the multi-vehicle homogeneous
vehicle case up to 5 per period.

In total, the set is composed of 160 instances that are characterized by a
time horizon with 3 (100 instances) or 6 (60 instances) periods of time and low
(50/30 instances) or high (50/30 instances) inventory holding costs. For those
with 3 periods, customers are up to 50 and for 6 periods, at most 30 customers
are considered. For each dimension and type, 5 different instances are presented.
Table 2 gives the instances classification.

Table 2. Classical IRP instances classification

Size N T h
160 | 100 |50 | {5, 10, ..., 50} | 3 |[0.01; 0.05]
50| {5, 10, ..., 50} '3 |[0.1; 0.5]
60 |30/ {5, 10, ..., 30} 6 |[0.01; 0.05]
30 | {5, 10, ..., 30} | 6 |[0.1; 0.5]

The instances files are available at https://perso.limos.fr/~diperdigao/
MIC2024 /instances. File names are identified by absAnB.dat in which A corre-
sponds to the instance type and B to its number of customers.

4.2 Results

Tables 3, 4, 5 and 6 present the results fo a specific set of instances when A = 50
and 2 and 3 vehicles. These were selected due to their performance among the

https://perso.limos.fr/~diperdigao/MIC2024/instances
https://perso.limos.fr/~diperdigao/MIC2024/instances

Iterative Heuristic over Periods for the Inventory Routing Problem 131

Table 3. Results for A = 50 and 3 vehicles

instance Tterative heuristic | MILP model gap(%) | ratioTime
type | name n |H|UB time(s) |UB time(s)
low |abslnb.dat |5 |3 |1826.67 |0 1430.51 |0 22 1
low |abslnlO.dat| 10|3 |2894.32 |1 2732.61 |6 6 5
low |abslnl5.dat| 153 |3073.35 |10 2783.77 |90 9 9
low |absln20.dat|20 |3 |3913.45 |146 3605.72 | 3600 8 25
low |absln25.dat|25|3 |4312.25 |107 3503.3 | 3600 19 34
low |absln30.dat|30 |3 |4764.89 |434 4252.9 | 3600 11 8
low |absln35.dat|35|3 |4836.19 |3600 4099.58 | 3600 15 1
low |absln40.dat |40 3 |5459.64 |3600 4624.12 | 3600 15 1
low |absln45.dat|45 |3 |5309.61 |1891 4537.3 | 3600 15 2
low |abslnb0.dat |50 3 | 5769 2178 5430 3600 6 2
high | abslnb.dat |5 |3 [2695.15 |0 2298.73 |0 15 3
high | abslnl0.dat | 10 | 3 |5666.43 |1 5506.09 | 4 3 4
high | abslnl5.dat | 15| 3 | 6480.80 |10 62429 |112 4 11
high | abs1n20.dat | 20 | 3 | 8506 92 8165.42 | 3600 4 39
high | absln25.dat | 25 3 |9711.60 |71 8893.88 | 3600 8 51
high | absln30.dat | 30 | 3 | 13464.80 | 891 12908.9 | 3600 4 4
high | absln35.dat | 35| 3 | 13125.20 | 2604 12445 | 3600 5 1
high | abs1ln40.dat |40 | 3 | 15045.40 | 3600 14229.8 | 3600 5 1
high | absln45.dat |45 |3 |15443.10 | 1539 14771 | 3600 4 2
high | absln50.dat | 50 | 3 | 16292.90 | 1384 15926 | 3600 2 3
average | 9 10.28

whole instances set. We compare the values obtained with [7] that, for the best
of our knowledge, provide the best bounds for the classical instances.

The results from Table 3 indicate that on average, the iterative method is
10 times faster than direct resolution, with an average gap of 9%. However, a
detailed analysis of the results on a per-instance basis reveals significant dif-
ferences among instances. There are 5 instances (instances low absln20, low
abs1n25, high abslnl15, high absIn20, high absIn25) that exhibit a 10-fold accel-
eration in computation time, and one of them (instance absln25.dat) shows a
19% gap. The most unfavorable case is observed for the instance low absln5.dat,
for a time horizon with 3 periods, with a 22% cost gap and a ratio of 1 in terms of
computation time. Conversely, the most favorable instance is high abs1n20.dat,
for a time horizon with 3 periods, with only a 4% cost gap and a computation
time ratio of 39. On Tables4 and 6, when we compare the Iterative approach
with the best known literature Upper bounds from [7], we note that the results
are competitive in terms of time convergence even if a gap is observed in some
cases.

132 K. Farias et al.

Table 4. Results for A = 50 and 3 vehicles

instance Iterative heuristic | Manousakis et al. (2021) | gap(%) | ratioTime
type | name n (H UB time(s) |UB time(s)
low |absln5.dat |5 |3 |1826.67 |0 1430.51 |1 22 1
low |abslnlO.dat |10 3 |2894.32 |1 2732.61 |21 6 21
low |abslnl5.dat|15|3 |3073.35 |10 2783.77 |23 2
low |absln20.dat |20|3 |3913.45 | 146 3605.72 | 196 1
low |absln25.dat|25|3 |4312.25 |107 3503.38 |83 19 1
low |absln30.dat |30 |3 |4764.89 |434 4251.64 | 1069 11 2
low |absln35.dat|35|3 |4836.19 |3600 4080.60 | 2463 16 1
low |absln40.dat |40 |3 |5459.64 |3600 4532.84 | 13369 17 4
low |absln45.dat|45|3 |5309.61 | 1891 4537.30 | 29437 15 16
low |abslnb0.dat|50|3 |5769 2178 6017.66 |42832 —4 20
high | absIn5.dat |5 |3 |2695.15 |0 2298.73 |0 15 1
high | absInlO.dat | 10 | 3 |5666.43 |1 5506.09 |13 3 13
high | abslnl5.dat | 15 |3 | 6480.80 |10 6242.90 |16 4 2
high | abs1n20.dat | 20 | 3 | 8506 92 8165.42 | 229 4 2
high | absln25.dat | 25|3 |9711.60 |71 8893.82 | 53 8 1
high | abs1n30.dat | 30 |3 | 13464.80 | 891 12098.90 | 2409 10 3
high | absIn35.dat | 35 |3 |13125.20 | 2604 12396.00 | 3380 6 1
high | absIn40.dat |40 | 3 | 15045.40 | 3600 14224.10 1 9173 5 3
high | absln45.dat |45 |3 | 15443.10 | 1539 14771 34500 4 22
high | absIn50.dat | 50 | 3 | 16292.90 | 1384 16115.80 | 43101 1 31
average 9 7
Table 5. Results for A = 50 and 2 vehicles
instance Iterative heuristic | MILP model gap(%) | ratioTime
type | name n | H | cost time(s) | cost time(s)
low |abslnb.dat |5 |6 |3776.52 | 0.61 3775.68 | 5.56 0 9
low |absln20.dat|20|6 |7392.19 |3503.28 7669.81 | 3600 —4 1
low |absln25.dat|25|6 |8233.73 |3328.81 | 7464.18 | 3600 9 1
high | absln5.dat |5 |6 |6379.56 |0.54 6379.56 | 2.73 0 5
high | abslnl5.dat |15 |6 |13105.10 | 137.734 | 12624.7 | 3600 4 26
high | absln20.dat | 20 | 6 |15583.90 | 3373.58 | 15551.4 | 3600 0 1
high | absln25.dat | 25| 6 |16222.10 | 2516.93 | 16012.1 | 3600 1 1
average | 2 6.40

Tables 7 and 8 summarize the results obtained for the classical IRP instances
with 3 and 6 periods, respectively. We consider here only the first instance type
(abs1nB.dat). Column type indicates the type of inventory holding costs consid-
ered, gapX (%) the average gap among all the instances up to the X*" period,

Iterative Heuristic over Periods for the Inventory Routing Problem 133
Table 6. Results for A = 50 and 2 vehicles
instance Iterative heuristic | Manousakis et al. (2021) | gap(%) | ratioTime
type | name n | H |cost time(s) | cost time(s)
low |abslnb.dat |5 |6 |3776.52 |0.61 3775.68 |8 0 13
low |absln20.dat |20|6 |7392.19 |3503.28 | 7388.80 | 2276 0 1
low |absln25.dat |25|6 |8233.73 |3328.81|7461.55 | 735 9 0
high | absInb.dat |5 |6 |6379.56 |0.54 6379.56 |8 0 15
high | abslnl5.dat | 15| 6 |13105.10 | 137.734 | 12624.70 | 148 4 1
high | absIn20.dat |20 | 6 | 15583.90 | 3373.58 | 15540.40 | 3232 0 1
high | absIn25.dat |25 |6 |16222.10 | 2516.93 | 15954.80 | 197 2 0
average 2 4
Table 7. Results for |7| =3
type | A | gap2(%) | gap3(%) | timeRatio | o
low |0 0 20 100.69 202.33
10 |0 19 61.06 168.77
20 |0 17 18.45 40.07
30 |0 13 6.64 19.54
40 |0 15 5.77 16.11
50 |0 12 5.22 15.86
60 |0 12 4.81 15.22
70 |0 12 4.56 15.11
80 |0 11 5.00 16.80
90 |0 10 4.89 17.52
100|0 10 8.08 25.00
high | 0 0 8 78.49 204.18
10 |0 8 57.29 239.40
20 |0 7 22.55 74.27
30 |0 5 5.73 14.85
40 |0 5 4.71 11.19
50 |0 5 4.13 9.30
60 |0 5 3.87 9.04
70 |0 4 3.78 9.53
80 |0 4 3.86 10.80
90 |0 4 4.04 11.66
100|0 4 5.66 9.18
avg |0 10 19.06 52.53

timeRatio the ratio between the time required to solve the last period by the
classical approach and the accumulated time for the iterative heuristic and at
last, o gives the standard deviation of the timeRatio values given a specified A.

In Tables7 and 8, note that the gap values can be calculated only from
the second period since for the first, both iterative and classical approach are

134 K. Farias et al.

Table 8. Results for |7| =6

type | A | gap2(%) | gap3(%) | gapd(%) | gap5(%) | gap6(%) | timeRatio | o
low |0 0 18 21 17 18 402.81 491.65
10 |0 19 12 12 10 36.17 32.06
20 |0 17 11 7 8 15.01 11.51
30 |0 16 8 5 11.13 10.97
40 |0 15 6 2 4.37 3.58
50 |0 15 0 7 —2 3.94 3.64
60 |0 14 -1 6 —4 2.77 2.93
70 |0 12 -1 4 —4 1.72 1.27
80 |0 12 -3 -1 -2 2.03 1.37
90 |0 10 —4 2 —6 1.57 0.67
100 0 9 —4 -1 -7 1.43 0.84
high | 0 0 7 8 11 11 692.68 1264.34
10 |0 8 4 6 5 33.75 43.56
20 |0 4 1 5 15 17.13 28.21
30 |0 7 2 1 0 8.14 11.55
40 |0 6 —1 4 -2 4.83 6.63
50 |0 6 -1 3 -2 5.43 8.06
60 |0 5 -1 2 -5 3.60 6.88
70 |0 4 -2 2 -5 2.66 4.20
80 |0 4 —1 1 —4 2.08 2.41
90 |0 3 —4 0 -5 1.61 2.11
100 0 3 -5 -2 -5 1.23 1.42
avg 0 10 2 4 1 57.09 88.18

exactly the same since no previous information is available to be added to the
first subproblem in the iterative method.

In the first period, for the majority of the instances considered, no routes
are scheduled since customers have enough products in their inventory and,
consequently, no quantities are delivered. For the second period, gap values are all
equals to zero since the problem dimension is easy to solve due to the information
provided from the first period. From gap3 and on, the problem dimension may
increase significantly and it is harder to get optimal solutions.

No matter the instance type and dimension, we can clearly state that when
increasing the A value, a tendance of reducing the gap is observed since we give
to the subproblem associated more possibilities on the arc changes. However, the
time grows because the search espace get bigger with the A value increase. Note
that even in the worst case regarding the time, our iterative approach performs
better in average when compared to the classical approach.

Detailed results are available at https://perso.limos.fr/~diperdigao/
MIC2024 /results.

https://perso.limos.fr/~diperdigao/MIC2024/results
https://perso.limos.fr/~diperdigao/MIC2024/results

Iterative Heuristic over Periods for the Inventory Routing Problem 135

5 Conclusion

An iterative approach to solve the Inventory Routing Problem was presented in
this paper. The method combines the exact resolution based on an MILP for-
mulation for the IRP embedded with an iterative exploration of the search space
based on the periods available. At each iteration, the subproblem associated
with the current time period is defined, starting from the solution obtained for
the precedent subproblem. The experiments were conducted in a set of classical
instances from the literature and the method has shown a competitive advantage
when comparing the execution time and the gap provided within an one-hour
time limit of execution. As future works, we intend to consider incorporating
other mechanisms that can take advantage of the problem structure and guide
the search exploration towards the optimal solutions.

Acknowledgements. This work was sponsored by a public grant overseen by the
French National Research Agency as part of the “Investissements d’Avenir” through
the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016) and the IDEX-ISITE ini-
tiative CAP 20-25 (ANR-16-IDEX-0001).

References

1. Archetti, C., Bertazzi, L., Laporte, G., Speranza, M.G.: A branch-and-cut algorithm
for a vendor-managed inventory-routing problem. Transp. Sci. 41(3), 382-391 (2007)

2. Archetti, C., Bianchessi, N., Irnich, S., Speranza, M.G.: Formulations for an inven-
tory routing problem. Int. Trans. Oper. Res. 21(3), 353-374 (2014)

3. Bourreau, E., Gondran, M., Lacomme, P., Vinot, M.: De la programmation linéaire
a la programmation par contraintes, p. 360. Ellipses (2019)

4. Bourreau, E., Gondran, M., Lacomme, P., Vinot, M.: Programmation Par Con-
traintes: démarches de modélisation pour des problémes d’optimisation. Ellipses
(2020)

5. Coelho, L.C., Cordeau, J.F., Laporte, G.: Consistency in multi-vehicle inventory-
routing. Transp. Res. Part C: Emerg. Technol. 24, 270-287 (2012)

6. Coelho, L.C., Cordeau, J.F., Laporte, G.: Thirty years of inventory routing. Transp.
Sci. 48(1), 1-19 (2014)

7. Manousakis, E., Repoussis, P., Zachariadis, E., Tarantilis, C.: Improved branch-and-
cut for the inventory routing problem based on a two-commodity flow formulation.
Eur. J. Oper. Res. 290(3), 870-885 (2021)

)

Check for
updates

Combining Heuristics and Constraint

Programming for the Parallel Drone

Scheduling Vehicle Routing Problem
with Collective Drones

Roberto Montemanni® @, Mauro Dell’Amico®, and Andrea Corsini

University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
{roberto.montemanni,mauro.dellamico,andrea.corsini}@unimore.it

Abstract. Last-mile delivery problems where trucks and drones collab-
orate to deliver goods to final customers are considered. We focus on
settings where a fleet with several homogeneous trucks work in paral-
lel to collaborative drones, able to combine with each other to optimize
speed and power consumption for deliveries. A heuristic for the min-max
vehicle routing problem is coupled with constraint programming models,
leading to an effective method able to provide several state-of-the-art
solutions for the instances commonly adopted in the literature.

Keywords: Vehicle Routing - Constraint programming - Heuristics

1 Introduction

The first optimization problems involving distribution with trucks and drones
were introduced in Murray and Chu [5], where the concept of a new distribu-
tion problem where a truck and a drone make deliveries in a collaborative way,
was introduced. In the Parallel Drone Scheduling Traveling Salesman Problem
(PDSTSP) there is a truck making a tour to service some customers. In parallel,
a set of drones is also employed, and each drone can leave the depot, serve a cus-
tomer, return to the depot, and repeating several times for different customers.
The objective of the optimization is to minimize the makespan required to ser-
vice all the customers and having all the vehicles back to the depot. Models,
exact and heuristic algorithms for the problem have been discussed, e.g., in [3]
and [7]. Recently, Amazon Technologies Inc. filed a patent [8] where a new distri-
bution paradigm, taking advantage of a so-called “Collective Drone” (c-drone), is
introduced. Multiple drones can be connected and fly as a single drone, to serve a
customer. The c-drone is able to transport larger and heavier goods with respect
to the single drone, and can also modulate its speed more flexibly in order to
increase its range [4]. In the work [6], the authors optimized a problem where
collective drones and a truck are used to distribute goods, and the resulting
problem is named the PDSTSP-c, where ¢ stands for collective. An extension
of the problem, where multiple trucks are considered, called PDSVRP-c, was

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 136-142, 2024.
https://doi.org/10.1007/978-3-031-62912-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_13&domain=pdf
http://orcid.org/0000-0002-0229-0465
http://orcid.org/0000-0002-3283-6131
http://orcid.org/0000-0002-2747-4244
https://doi.org/10.1007/978-3-031-62912-9_13

Combining Heuristics and Constraint Programming for the PDSVRP-c 137

recently introduced in [4]. An example of a PDSVRP-c instance is provided in
Fig. 1. Without considering the use of the drones, the problem reduces to a clas-
sic Vehicle Routing Problems (VRP) [10] characterized by a min-maz objective
function calculated over the lengths of the different tours, which translates into
completing all the deliveries in the shortest possible time. Both exact and heuris-
tic methods have been presented for this problem, that is normally more difficult
than a traditional VRP [1].

We investigate how two Con-
straint Programming models recently
proposed for the PDSVRP-c perform
once a solution only using trucks
(VRP) is fed to the solver as a hint-
solution.

2 Problem Description

Given a graph G(V. E) with a set of Fig. 1. Example of a PDSVRP-c instance.
vertices V= {0,1,...,n}, where ver- Node 0 s the depot, while the other nodes
tex 0 is the depot and the remaining are customers. The black and grey continu-
vertices represent the customers (set ous arcs represent the tours of the two trucks
C = V\{0}). A customer i requests a (0,2,3,0) and (0,6,5,0). The dashed arcs
parcel of weight w; to be delivered to depict instead the missions of the drones,
its address from the depot. A set S with each colour representing a different one.
of s driver-operated delivery trucks, Notice how for some of the missions mul-
each with unlimited range and capac- tipl‘e drones are collaborating (Color figure
ity, and a set D of m homogeneous online).

drones form the fleet available for deliveries. All the vehicles are based at the
depot and the drones have batteries of a given capacity that is installed before
each mission. Each truck performs a single delivery tour and no collaboration
among trucks is implemented. The deterministic travel time between two vertices
1,7 € V is given as ¢;; for the trucks. The drones instead operate in a back-and-
forth fashion from the depot, delivering one parcel at a time. Travel times and
maximum ranges of drone missions depend on factors such as the number of
drones cooperating and the traveling speed selected. The energy consumption
model from [9] is adopted here to calculate battery draining and discharge peaks
in order to estimate feasible mission settings. In the configuration considered,
characterized by collaborative drones, the weight carried is evenly distributed
among the k drones participating in the mission. As described in [6], given a
number of drones involved k and a target customer j, the optimal cruise speed
that minimizes the time required for the mission itself, while fulfilling the con-
straints on the batteries (power consumption is used here) can be pre-calculated
by inspection. The time T]’»“ required to service customer j with k drones can
therefore be pre-calculated as described in [6], with 7 = +oo if it is not possible
to service customer ¢ with k drones. The set of customers that cannot be ser-
viced by drones is referred to as Cr+ C C. Let Cx = C\Ct be the set of customers

138 R. Montemanni et al.

that can be served by drones, and let ¢; and p; be the minimum and maximum
number of drones that can be used to serve j € Cx. The target of the PDSVRP-c
is to find truck tours and drones scheduling that minimize the makespan, i.e.
to complete all the deliveries in the shortest possible time, given the resources
available.

3 Constraint Programming Models

We present two Constraint Programming models introduced in [4], based on the
Google OR-Tools CP-SAT solver [2] and representing the state-of-the-art.

Model M2: The model revolves on the following variables: z;; is 1 if edge (¢, j),
with 4, j € V, is traveled by a truck, 0 otherwise. If z;; = 1 means that customer
J is served by drones; ij is 1 if k£ drones serve customer j € Cr, 0 otherwise; y;; is
1 if vertex a drone serves vertex i right before vertex j by one drone, 0 otherwise;
fi; € Z* indicates the number of drones serving vertex i right before vertex j;
T; € R* is the time at which the mission at customer j € Cx is completed if the
visit is operated by drones; it is the time the truck reaches the customer and the
service is started in case the visit is operated by a truck.; « is the completion
time of all missions. The model is the following one:

(M2) mina (1) > fu= Y fwieCzu{0} (9)

i€CrU{0},i#j 1eCrU{0},l#]

st.a>T;+tjoxjo,j €C 2 . ..

’ JIS ?O J () fljgmylj7z7jecfu{0}7l¢.] (10)

zii= Y, %,j€Cr 3) o Lk 1€CFU{0},

q;<k<p; Yij =15 > Ti+z7'j Zj, . Cr idti

i,jev, wingy; JECT IR
MultipleCircuit| z;5:1 # 0V j # 0, (11)
(4) Tij € {07 1}717] ev (13)
> woy < (5) % €{01}jeCria;<k<p; (14)
jec yij € {0;1},4,5 € CFU{0},i#£5 (15)
wij=T;>Ti+tiy,icV,jeCi#j (6) T,>0jeV (16)
Z foj <m (M ma> Z Z k:sz;-c (17)

JeCF JECF a;<k<p;

Z fij = Z sz,] eCr (8)

i€CrU{0} i) a;<k<p,

Constraints (2) state that the total time o to be minimized according to
(1), has to be as large as to the time required by the truck and drone mis-
sions. Constraints (3) relate z and z variables for each drone-eligible customers;
Constraint (4) uses MultipleCircuit command of CP-SAT to impose truck tours,
while constraint (5) set tos the maximum number of truck tours. Constraints (6)

Combining Heuristics and Constraint Programming for the PDSVRP-c 139

align timing (T variables) to tours. Constraints (7)-(9) regulate synchronization
among drones (see [4] for details). Constraints (10) and (11) connect y variables
with f and z variables, respectively. The remaining constraints (12)-(16) define
the domain of the variables. The inequality (17) is not necessary for the validity
of the model, but it contributes significantly to tighten the lower bounds, so it is
added. The interested reader can refer to [4] for an explanation of the inequality
and a formal proof of its validity.

Model M3: The variables of the model are defined starting from those of model
M2. Here the x variables are changed to a set of variables w such that wfj =1
if edge (i, j) is traveled by truck k € S, 0 otherwise. Moreover, wf, = 1 implies
that truck k is not used in the current solution. Variables T are substituted
by the following variables: T; represents the completion of the drone-mission to
customer j € Cx. The resulting model is as follows:

(M3) mina (18) D fu= D _fueCru{0}
stoa> Z Z tijwfj,k cs (19) i€CrU{0},i#j 1eCrU{0},l#£]

i€V jeV,i#j (27)
a>Tj,j€Cr (20) fig <myij,i,5 € CrU{0},i#5 (28)

s - N v 1 1ECFU{0},
dDU—wi)+ > =1j€Cx vii=1i2 T+ZT7 D jecr it]
k=1 q;<k<p; 45 <k<p;

s . 0< fi; <m,i,j € CrU{0},i#j (30)
;wjj:s—l,]GCT (22) wl € {0;1}, k€ S,i,j €V (31)
Circuit(w?; 14,5 € V), ke § (23) % €{01}jeCrg<k<p (32
wfj < 1— ’wlgo,k' c S,’i,j cC (24) Yij € {07 1}7Z7J € C}' U {0}7Z 76.7 (33)

T; > 0,5 € CrU{0} (34)
> foj<m (25) . &
jecr mao > Z Z kT z; (35)

D fu= Y kyjecr (26) IS ks

i€CFU{0}, i) q;<k<p;

The constraints follow the meaning already described for the model M2 in
Sect. 3. The changes are as follows. Equalities (21) are used to force any each
drone-eligible customer has to be services by drones or by a truck. The new
constraints (22) is required to force customers in Cr to be service by a truck.
Constraints (23), adopting the Circuit command from CP-SAT, are defined for
each truck k, since the concept of giant-tour seen in the model C'P2 does not
exist here. The constraints (24) state that a truck k can be used only if wf, = 1.

Hint-start: One of the features of CP-SAT is the possibility of passing a (par-
tial) solution to the solver through some values for the variables of the model.
The solver takes these settings as suggestions (hints) and potentially improves its

140 R. Montemanni et al.
Table 1. Experimental results.
2 Trucks 3 Trucks
VRP | Model M2 Model M3 New bounds | VRP | Model M2 Model M3 New bounds
[4] Hint-start | [4] Hint-start [4] Hint-start | [4] Hint-start

Instances| UB | [LB, UB] |[LB, UB] ||LB, UB|] |[LB, UB| |[LB,UB] |UB |[LB,UB|] |[LB,UB| |[LB,UB| |[LB, UB| |[LB,UB]
50-r-e 128 |[65,116] |[61,116] |[63,120] |[69, 112] |[69,112] |112 |[48,112] |[62, 104] |[47,112] |[52, 108] |[62, 104]
53 128 |[77,112] |[65,116] |[82, 128 |[78,112] | [82,112] 12 | [56, 96] [64,96] | [51,112] |[56, 104] | [64, 96]
66-re-e 128 | [72,112] |[47,124] |[73.136] |[63, 116] | [73,112] 112 |[53,108] | [47,100] |[38,116] |[57,104] |[57,100]
67-c-c |56 |[38,52 20, 48] 31, 52| 119, 52| 38, 48] 56 | [27,52] [21,52] |19, 52 12,52 | [27,52]
68-re-c 120 | [50, 56] 136, 104] | [52, 104] | [47, 84] 52, 56] 84 (39, 56] 136, 60] | [34,104] |[42,76] | [42, 56]
T6-c-c |40 | [26, 36] 16, 36] [16, 40] 16, 36] 26, 36] 28 |[18, 24] [12,24] | [12, 52 [16,24] | [18, 24]
82-c-e |64 |[32,64] 26, 64] 17, 64] [12, 64] 32, 64] 64 | [22, 64 126, 64] | [8, 64] [10,64] | [26, 64]
82rc-c 108 |[62,116] |[32,100] |[56,132] |[54,100] | [62,100] |88 |[47, 80] [34,84] | [38,128] |[48,84] | [48, 80]
88-c-e |84 | [54,84] 18, 84] 58, 112] | [0, 84] 58, 84] 80 | [36, 76] [18,76] | [32,104] |[39,80] |[39, 76|
9lr-c 152 |[75,152] |[33,140] |[75,160] |[63,124] |[75,124] | 108 |[56,120] |[34,104] |[42, 148] |[54,100] |[56, 100]
99-r-c 152 | [63, 96] 26, 136] [47, 136] | [63, 96] 96 | [47, 64] 126,92] | [20,128] |[41,88] | [47,64]
101-r-c | 176 |[71,164] |[20, 160] 55, 152] | [71, 152] 104 |[52,128] | [20,96] | [36, 144] | [44,100] |[52, 96]
103re-c | 128 |[69,124] | [34, 124] [49, 128] |69, 124] |88 | [49, 96] 135, 88] | [32,136] | [41,88] |[49, 88]
105-rc-e | 140 | [65, 136] [27, 128] |52, 128] | [65, 128] 112 | [49, 120] [27, 104] |[34, 132] [40, 108] | [49, 104]
108-rc-e | 160 |[79,172] | [22, 152] [57, 160] | [79,152] |128 |[58,184] | [23,124] |[37,160] |[54, 124] | [58, 124]
1ldre-c 120 |[58,124] | [27, 104] [47,104] |[58,104] |88 | [44, 80] [26,72] | [32,112] |[0,80] | [44, 72|
121re-e | 144 |[70, 156] | [25, 140] [57,182] |[70,132] |96 |[52,124] | [28,96] | [40,152] | [44,96] |[52, 96|
126-rc-e | 160 |[87,220] | [18, 152] (63, 152] | [87,152] |116 |[63,136] | [20,108] |[44,164] |[48, 100] |[63, 100]
126-c | 172 |[78,160] | [26, 136] [58,1836] | [78,136] 108 |[56, 140] | [24,116] |[38,148] |[48, 116] |[56, 116]
drec | 132 |[67,272] |[21, 128] [43,116] | [67,116] | 120 |[50, 132] |[23,116] |[35,160] | [41, 120] |[50, 116]
154-c-c |40 |[35,-] 14, 40] 12, 40] 35, 40] 36| [24, 36] [14,36] |8, 68] 8, 36] 24, 36]
165-r-c | 200 |[88, -] 16, 192] (68, 184] | [88,184] | 140 |[68, -] [15,136] | [50, 212] |[50, 182] |[68, 132]
167-r-e | 196 |[100, -] [16, 188] | [74,256] |[75,180] |[100, 180 | 140 |[73,-] [16,132] | [54,204] |[56, 182] |[73, 132]
173r-c 196 |[85,204] | [16, 188] |[59,240] |[60,176] |[85,176] | 136 |[65, -] [16,132] | [45, 212] |[47, 128] |[65, 128]
173-re-c | 152 |[79, -] [21, 148 | [48,180] |[50, 144] |[79,144] |120 |[58,172] | [20,116] |[37,168] |[40,120] | [58, 116]
181re 102 |[112, -] [18,188] |[78,252] |[79,180] |[112,180] |152 |[82,-] [18,152] | [55,216] | [62, 152 |[82, 152]
185-c-c |60 |[48, -] 20, 60] 24, 96] 24, 60] 48, 60] 48 [[32, -] [22, 48] | [14, 96] [24, 48] | [32, 48]
187-rc-e | 176 |[100, 308] | [27,172] (65, 212] |[67, 160] | [100, 160] |132 |[74, -] 126, 124] | [46, 212] |[50, 128] | [74, 124]
198cc |36 | [32,-] 16, 36] [12, 64] [12, 36] 32, 36] 36 | [22, 36] [16,36] |8, 68] [13,36] | [22, 36]
200---e 224 |[105,] [16, 216] | [68,324] |[69,220] | [105, 216] | 152 |[77,-] [16, 152] | [48,252] | [50, 148] |[77, 148]
Average | 131.5|[68.1, 138.0] | [26.0, 124.0] | [52.8, 150.0] | [50.2, 120.3] | [68.6, 117.2] |99.7 |[49.9, 97.2] |[26.2, 94.7]| [34.4, 137.9] | [40.9, 95.9] | [51.1, 92.7]

4 Trucks 5 Trucks

VRP | Model M2 Model M3 New VRP | Model M2 Model M3 New

4] Hint-start | [4] Hint-start | bounds [4] Hint-start | [4] Hint-start | bounds

Instances| UB | [LB, UB| ||LB, UB| |[LB,UB|] |[LB,UB|] |[LB,UB] |UB |[LB, UB|] |[LB,UB| |[LB, UB] |[LB, UB| |[LB, UB]
50-r-e |116 | [46,104] |[62,100] |[35,112] |[37,100] |[62,100] | 116 |[47,100] |[61,100] |[30,112] |[34,112] |[61, 100]
53r-e 112 |[50, 96] (64, 96] 38, 112] (39, 100] | [64, 96] 12 | [50, 92| [64,92] | [32,112] |[36,112] |[64,92]

108 | [41,104] |[44,100] |[34,108] |[35,104] |[44,100] 100 |[35,100] | [46, 100] |[24,120] |[32,100] |[46, 100]

56 |[21, 48] 20, 52] 8, 52] [11, 52] [21, 48] 56| [18, 52 [21,52] |8, 52] [11,52] |21, 52|

64 |[32,52] 36, 60] 29, 88] 30, 60] 36, 52| 60 |[28, 44] 185,56] | [23, 80] [27,56] | [35, 44]

28 |[14, 24 [12, 24] [12, 56] (16, 24] [16, 24] 28 | [12, 24] [12,24] | [12, 40] [14,24] | [14, 24]

64 |18, 64] 26, 64] 8, 64] 10, 64] 26, 64] 64 | [15, 64 126, 64] | [6, 64] 9, 64] 26, 64]

72 |38, 68) 32, 68] 31,124 |[32, 60] 38, 60] 64 (32,68 133,60 | [24,112] |[28,60] (33, 60]

76| [28, 76] 18, 72| 32,108 |[39, 76] 39, 72| 76 (23,72 [18,72] | [32,108] |[38,76] (38,72

92 | [45, 96] 33, 88] 132, 156] | [35, 76] 45, 76] 72 (38, 88] 132, 68] | [28,124] |[32,68] |[38, 68]

76 | [37, 68] 26, 72] 124,120 |[26, 64] 37, 64] 60 | [32, 64 [27,60] | [20,108] |[26,64] | [32, 60]

84 | [42, 76] [21, 80] 30, 144] (31, 80] 42, 76] 72 [36,112] | [22,68] |[26,144] |[28,68] | [36, 68|
103-rc-c |76 | [39, 80] 135, 76] 126, 140] | [30, 76] 39, 76] 72 |[32,80] [37,68] | [22,120] |[25,68] | [37.68]
105-rc-e | 116 |[39, 116] | [27, 104] | [26,132] |[26, 108] | [39,104] |104 |[33,112] | [26,104] |[21,124] |[24, 104] |[33, 104]
108rce 120 | [46,124] |[22,120] |[28,152] |[36,120] | [46,120] | 128 |[39,120] | [23,120] |[24,136] | [31,124] |[39, 120]
ldrce |72 |[35, 88 28, 72| [26,120] | [26, 72| 35, 72] 80 |[30, 64] [28,64] | [22, 96] [22,72] | [30, 64]
121re-e |96 |[42,104] | [34, 92] 120, 144] | [31, 96] 42, 92| 96 | [34,116] |[30,92] | [24,128] |[24,96] | [34, 92
126rc-e | 112 [[50,132] | [19, 84] 35, 164] | [34, 84] 50, 84] 124 |[41,120] |[17,76] | [29, 148 |[30,76] | [41, 76]
126--c |88 | [45,116] |[23,112] |[28,140] |[30,112] |[45,112] |80 |[37,116] | [26, 112] |[24, 144] |[24,112] |[37, 112]
14d-re-c |80 |[40,128] |[27, 76] 125, 144] | [26, 72] 40, 72| 172 (34,104 | [20,92] | [22,136] | [23,148] |[34,92]
15d-c-c |36 |[18, 40] 14, 36] 8, 72] 8, 36] 18, 36] 36| [15, 36] (14, 36] | [6, 68] [12,36] | [15, 36]
165-r-c | 108 [[54,192] |[14,108] | [40,192] |[40,108] |[54,108] |88 |[47,220] |[14,88] |[34,212] |[34,84] | [47,84]
167-r-e | 124 [[58,176] | [16, 120] | [42,196] |[43,124] |[58,120] |120 |[49,204] | [16,116] |[34,204] |[35,120] | [49. 116]
173-c | 104 |[54,352] | [16, 96] [36,192) |37, 104] | [54, 96] 100 | [43,] [16,92] | [32,196] |[31,96] | [43, 92|
173rc-c |88 |[46,116] |[21, 88] [20, 164] |[29, 84] 46, 84] 88 |[39,116] |[21,80] |[24,164] |[24,88] |[39, 80|
18l-r-e | 128 |[65,268] |[19,124] | [42,208] |[42,128] |[65, 124] | 132 |[54,204] | [20,120] |[35,204] |[36,132] | [54, 120]
185-cc |48 |[24, 48] 20, 44] (14,100 |[24, 48] 24, 44] 48 [[20, 48] 120, 44] | [12, 60| [24, 48] | [24, 44]
187-rc-e 248 | [58,216] |[27,148] |[37,204] |[37,180] |[58,148] | 248 |[48,128] | [28,136] |[32,192] | [32, 176] | [48, 128]
198cc |36 | [16,] 16, 36] 8, 68] 13, 36] 16, 36] 36 |[16, 36] 116, 36] |8, 68] [13,36] | [16, 36]
200-r-e 124 | [60,308] |[16,120] |[38,228] |[39,124] |[60,120] |120 |[52,288] |[17,120] |[32,216] |[34,120] |[52, 120]
Average |91.7 | [40.0, 120.0] | [26.3, 84.4] |[27.7, 133.5] | [20.7, 85.7] | [42.0, 82.7] |91.7 |[34.3, 103.2] | [26.5, 80.4] | [23.4, 126.4] | [26.4, 86.4] | [37.2, 79.6]

Combining Heuristics and Constraint Programming for the PDSVRP-c 141

performance if the information received is valuable. In the experiments reported
in [4], it emerges that both the model have scalability issues on large instances,
likely due to the difficulties of the Circuit and Multicircuit commands of CP-SAT
of dealing with VRP problems with more than a few tens of customers. In this
paper, we evaluate whether hinting a solution can make the models more effec-
tive.

In the solution considered, we will ignore the drones and solve each instance
as a min-max VRP problem. The solution, using only trucks is then passed to
the solver, that might benefit from this because solutions using drones can in
principle be obtained by taking away some customers from the tours of the truck.

4 Experimental Results

All the models presented in previous sections have been coded in Python 3.11.2.
The Constraint Programming models discussed in Sect. 3 have been solved via
the CP-SAT solver of Google OR-Tools 9.6 [2], while the heuristic method
adopted for retrieving min-max VRP solutions was the Route solver, again from
OR-Tools. All the experiment reported have been carried out on a computer
equipped with A CPU Intel Core i7 12700F, and 32 GB of RAM and with a
maximum computation time of 1h. The instances originally introduced in [6] for
the PDSTSP-c, and available at http://orlab.com.vn/home/download are con-
sidered. The number n of customers varies from 50 to 200, the number m of
drones available is between 5 and 10 and the number s of trucks is between 2
and 5. The interested reader can find all the details of the instances in [6].

The models M2 and M3, without hint-start (from [4], state-of-the-art at the
time of writing) and with hint-start, are considered in Table 1. The upper and
lower bounds (when available) found in the given time by each method are
reported.

The experiments suggest that hint-starting the solver with a solution is ben-
eficial when considering both lower bounds and (especially) heuristic solutions.
Given that the hinted solution is only based on trucks, this was not obvious.
Passing an initial solution optimized externally — even without drones — shapes
up the truck tours. The CP-SAT solver appears to benefit from such information
and seems more effective in taking customers out of the truck tours to assign
them to drones, then to design tours from scratch. Finally, a consideration about
the use of (collaborative) drones is that they allow an average time-saving in the
order of 10% (comparison against the column VRP).

References

1. Bertazzi, L., Golden, B., Wang, X.: Min-max vs. min-sum vehicle routing: a worst-
case analysis. Eur. J. Oper. Res. 240(2), 372-381 (2015)

2. Google: OR-Tools (2023). https://developers.google.com/optimization/. Accessed
03 Mar 2023

3. Montemanni, R., Dell’Amico, M.: Solving the parallel drone scheduling traveling
salesman problem via constraint programming. Algorithms 16(1), 40 (2023)

http://orlab.com.vn/home/download
https://developers.google.com/optimization/

142

10.

R. Montemanni et al.

Montemanni, R., Dell’Amico, M., Corsini, A.: Parallel drone scheduling vehicle
routing problems with collective drones. Comput. Oper. Res. 163, 106514 (2024)
Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: Opti-
mization of drone-assisted parcel delivery. Transp. Res. Part C: Emerg. Technol.
54, 86-109 (2015)

Nguyen, M.A., Ha, M.H.: The parallel drone scheduling traveling salesman problem
with collective drones. Transp. Sci. 4(57), 866-888 (2023)

Nguyen, M.A., Luong, H.L., Ha, M.H., Ban, H.B.: An efficient branch-and-cut
algorithm for the parallel drone scheduling traveling salesman problem. 40R 21,
609-637 (2023)

Paczan, N.M., Elzinga, M.J., Hsieh, R., Nguyen, L.K.: Collective unmanned aerial
vehicle configurations (2022). Patent US 11,480,958 B2

Raj, R., Lee, D., Lee, S., Walteros, J., Murray, C.: A branch-and-price approach
for the parallel drone scheduling vehicle routing problem. SSRN Electron. J. 1-47
(2021)

Toth, P., Vigo, D.: The Vehicle Routing Problem. STAM (2002)

Operations Research for Health Care

Ruan Myller Magalhaes de Oliveira

1

A Re-optimization Heuristic
for a Dial-a-Ride Problem
in the Transportation of Patients

3
and Thiago Alves de Queiroz?*(&)

! Institute of Mathematics and Technology, Federal University of Cataldo,

Catalao, GO 75708-560, Brazil
ruanmyller@discente.ufcat.edu.br
2 Department of Sciences and Methods for Engineering,
University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
manuel.iori@unimore.it

Institut Henri Fayol, F-42023 Saint—Etienne, France
arthur.kramerQemse.fr

4 Institute of Mathematics and Technology, Federal University of Cataldo,

Catalao, GO 75704-020, Brazil
taq@ufcat.edu.br

Abstract. In this paper, we handle the problem of picking and deliv-
ering patients among the distinct units of a hospital. This problem is
found in hospitals with several (specialized) units covering a large area,
and it emerges from a real situation faced by a hospital in northern
Italy. Patient transportation requests arrive dynamically during the day,
and the hospital transportation department must service them all using
capacitated and homogeneous vehicles. Each request is associated with
a patient urgency level (weight) and a time window. The objective is
to design vehicle routes to serve all requests and minimize the total
weighted tardiness. To solve the problem, we propose a re-optimization
heuristic based on two policies that mimic the patients’ and hospital’s
decision-making processes. We then improve the solutions obtained with
the policies using a tabu search. Computational results show that we can
obtain high-quality solutions using the tabu search compared with the
policies and a simulated annealing-based heuristic from the literature.

Keywords: dynamic transportation of patients - dial-a-ride problem -
re-optimization heuristic - tabu search

Introduction

, Manuel Iori?®, Arthur Kramer

3

3 Mines Saint—Etienne, Univ. Clermont Auvergne, CNRS, UMR 6158 LIMOS,

®

Check for
updates

The number of people requesting hospital services has grown significantly in
the last few years, especially during the COVID-19 pandemic. At the same time,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 145-157, 2024.
https://doi.org/10.1007/978-3-031-62912-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_14&domain=pdf
http://orcid.org/0009-0008-6977-465X
http://orcid.org/0000-0003-2097-6572
http://orcid.org/0000-0002-1991-5046
http://orcid.org/0000-0003-2674-3366
https://doi.org/10.1007/978-3-031-62912-9_14

146 R. M. M. de Oliveira et al.

some hospitals offer specialized services in many care units (pavilions) occupying
large areas. Pavilions, floors, and buildings are part of the same environment in
these institutions. Thus, the distance between them cannot be ignored, especially
considering the patients’ well-being and satisfaction.

The problem addressed in this work concerns the dynamic transportation
of patients between the care units of a hospital. According to Beaudry et al.
[3], medical diagnosis, care, and treatment units are among the most visited by
patients. Transporting patients between care units and service areas is usually
under the responsibility of the hospital transportation department. In smaller
hospitals, patients are commonly transported on stretchers and wheelchairs.
Instead, in larger hospitals, patients can be transported by ambulances or spe-
cific vehicles of different capacities. This transport may affect hospital services,
as delivering a patient after her planned time window can delay other services,
cause dissatisfaction, and worsen the patient’s situation.

As requests arrive dynamically, decisions should be made accordingly, con-
sidering the current routes and vehicle availability. Decisions related to requests
are not simple, as they depend on the vehicle’s current position, its capacity,
and its status (e.g., whether it is responding to a request or it is waiting), as
well as on complicating factors related to the patient urgency and time window
[11]. Therefore, the transportation department defines which vehicle will service
each request under a rolling time horizon approach.

Problems that consider the transportation of people and objects can be
regarded as variants of the vehicle routing problem (VRP), as in the case of
the pickup and delivery problem (PDP) [5]. Doerner and Salazar-Gonzalez [6]
surveyed PDPs related to the transportation of people. The authors detailed the
literature’s contributions to transporting elderly and disabled people, aiming to
minimize costs and improve the quality of the service. A PDP variant concerning
the transportation of people is the Dial-a-Ride Problem (DARP). In the DARP,
the human perspective is considered, and hence, costs are optimized, as well as
factors related to the passengers’ satisfaction and well-being [14].

In this paper, we handle a Dynamic DARP that arises in the transportation
of patients between hospital units. We solve the problem using a re-optimization
heuristic that uses two policies that mimic the patients’ and hospital’s decision-
making processes. To improve the decisions, we also propose a tabu search-based
heuristic. The good performance of the tabu search is confirmed by an extensive
computational comparison with a re-optimization heuristic based on a simulated
annealing from the recent literature [8].

The remained of this paper is organized as follows. Section 2 provides a brief
literature review. Section 3 describes the problem under consideration. Section 4
presents the idea behind the re-optimization heuristic, providing details of the
two policies and the tabu search. Section5 contains the experimental results,
comparisons, and discussions on the solutions. Finally, Sect. 6 presents the con-
cluding remarks and perspectives for future works.

A Re-optimization Heuristic for a Dial-a-Ride Problem 147

2 Literature Review

Part of the VRP (and its variants) literature has assumed problems whose infor-
mation is all known and available in advance (i.e., static problems. On the other
hand, the number of contributions considering problems of dynamic nature has
grown over the years [15]. In a static problem, we can plan all routes as all
information is precisely known. In a dynamic problem, new information arrives
under a rolling time horizon in addition to having some known initial informa-
tion. According to Pillac et al. [10], dynamic problems are often solved with
re-optimization-based approaches, that is, as sequences of static subproblems.
Optimization starts with the set of already known requests, producing an initial
set of routes to be executed by the vehicles. With new information arriving over
time, routes are re-optimized accordingly.

Battarra et al. [2] discussed about the different PDPs variants. The first
is related to “many-to-many” (M-M) problems, where objects/people can be
transported among multiple delivery and pickup nodes. The second involves
“one-to-many-to-one” (1-M-1) problems, in which deliveries and pickups involve
two distinct sets: objects/people are picked from a depot/hospital and delivered
to many different nodes, or they can be picked from these nodes and then deliv-
ered back to the depot. The third involves the “one-to-one” problems (1-1), in
which each object/person has a specific pickup and delivery node. This is the
case for mail operations, door-to-door transport services, and the problem under
consideration in this paper.

Problems concerning the transportation of people (e.g., patients) involve
requests containing the person’s information, such as the pickup location, the
delivery location, when the person will be ready to receive transportation, and
the time window, if any. Respecting time windows is essential in limiting the
person’s waiting time. In a hospital environment, additional information from
each person may be necessary, such as urgency level (weight), which can impact
the time window size.

Beaudry et al. [3] handled the problem of transporting patients between dis-
tinct units of the same hospital by using a heterogeneous fleet of vehicles. Trans-
port requests arrive dynamically, meaning they are unknown until the patient
is released for transport. The authors provided a detailed problem description
and then proposed a two-phase heuristic. In the first phase, a simple insertion
heuristic generates a feasible solution. Next, this solution is improved with a
tabu search with only two neighborhood structure types. The proposed heuris-
tic solved instances provided by a German hospital. Kergosien et al. [9] con-
sidered the transportation of patients inside a large complex hospital in France.
They also assumed a heterogeneous fleet of vehicles, besides handling constraints
related to disinfection operations for contagious patients. The problem objective
concerns minimizing transportation costs and patients’ tardiness. The problem
is solved with a tabu search heuristic that uses an adaptive memory to save
routes and a cross-exchange operator to generate new solutions.

In Schmid and Doerner [12], the routing of vehicles is integrated with
the scheduling of rooms for patients who undergo different examinations.

148 R. M. M. de Oliveira et al.

Patients are transported on stretchers, beds, wheelchairs, or simply by foot. The
authors were concerned with optimizing the patients’ inconvenience and hospital
resources, such as porters and rooms. They proposed a hybrid metaheuristic: a
shifting bottleneck heuristic was used to optimize the patients’ waiting times
and idle times in the rooms, while a large neighborhood search solved a multi-
depot VRP with time windows. Computational experiments were performed on
a randomly generated set of 130 instances based on realistic assumptions.

Elmbach et al. [7] handled the problem of transporting patients without using
motorized vehicles. They considered three groups: hospital managers, who take
care of the transport system with sufficient porters to avoid tardiness in surgeries
or exams; patients, where the waiting time for picking and delivering should not
be long; porters, who take care of the physical transportation of patients within
the hospital. The authors integrated the needs of these three groups and proposed
a tabu search as a solution method.

Coté et al. [4] solved the dynamic patient transportation problem from a
hospital in northern Italy. The objective is to service all requests to minimize
the total weighted tardiness using a heterogeneous vehicle fleet. The authors
studied the impact of positioning vehicles after servicing one request: wait in
the unit floor, wait in the unit parking, or return and wait in the main building.
They proposed a large-adaptive neighborhood search and embedded it into a
re-optimization framework. Results showed that positioning vehicles at the unit
parking to wait for the next decisions is the best strategy overall.

Following the problem handled in [4], Fonseca [8] implemented a simu-
lated annealing and five decision-making policies. The policies are based on the
patient’s time window, release time, urgency level, and vehicle arrival time to
service the request. Recently, Aziez et al. [1] extended the work in [4] by solving a
dynamic multi-trip pickup and delivery problem with time windows and a hetero-
geneous fleet. The authors proposed a branch-and-regret, aiming at minimizing
the total weighted lateness of the delivery and the travel time of all vehicles.
The simulated annealing generates new solutions by four operators that swap or
insert requests in the same or different vehicles.

This paper is motivated by the problem tackled in [4] and [8], aiming to
minimize the total weighted tardiness related to patient transportation. This
is an important key performance indicator to assess patient satisfaction and
well-being, especially when servicing urgent patients. It also directly impacts
the staff schedule (e.g., doctors, nurses, and technicians) and material resources
(e.g., rooms and specialized equipment). Differently from the cited literature,
we assume a homogeneous fleet of vehicles and develop two policies and a tabu
search within a re-optimization framework. Our tabu search comprises 12 opera-
tors based on swap and insertion movements, returning high-quality solutions in
low computing times, as one decision-maker could expect for dynamic problems.

3 Problem Description

The DARP variant handled in this work considers a hospital containing several
distinct care units. Requests for transportation arrive during the day when the

A Re-optimization Heuristic for a Dial-a-Ride Problem 149

patient is ready to be transported. A complete directed graph G = (N, A) mod-
els the transport network of the hospital and its units. The set N represents
the hospital units, which are the nodes for picking up and delivering patients
by a fleet of homogeneous vehicles. The set A contains the arcs that connect
the hospital units. Each arc is characterized by information on the travel time
required to traverse it. In our work, this travel time directly corresponds with
the travel distance, so large distances imply large travel times.

The problem considers a set with £ homogeneous vehicles. Initially, vehicles
are positioned at the main hospital unit (i.e., at node 0) and move between
units to service requests. Each request is associated with a patient, providing
the following information: identification (id), release time (rd), the time window
in which the patient should receive care, starting at rd and having due date
et, the urgency level or weight (w), the pickup node (¢) and the delivery node
(e). If a patient is delivered after her due date, it will incur a tardiness. We
aim to minimize the total weighted tardiness by transporting all patients and
thus servicing all requests. This objective follows the previous literature on the
problem in which attention is given to the patient’s satisfaction and well-being
(see, e.g., [3,4]). Moreover, traveling times impact, to some extent, the moment
when a request is serviced, which in turn may impact the patient’s tardiness.

The requests are serviced on a rolling time horizon, which starts at time zero
and ends at time 7. This horizon is discretized in minutes. Additionally, the
transportation department only becomes aware of a request when the patient is
released for transportation. A feasible solution for the problem, as illustrated in
Fig. 1, respects the following constraints:

— The number of patients in a vehicle cannot exceed its capacity;

— The vehicle can only operate within the time horizon;

— Each patient must be first picked up and then delivered;

— The picking of a patient can only be done after the patient is released for
transport;

— The patient may be delivered after her due date; however, this will result in
a weighted tardiness;

— The service time for picking up or delivering a patient is assumed to be
negligible.

4 Re-optimization Heuristic

Proposing a heuristic approach is one way to deal with hard combinatorial opti-
mization problems, such as the dynamic DARP, in a practical way and quickly
produce satisfactory solutions. The heuristics that we implemented work with a
vector of vehicles representing the solution. Each vehicle is then associated with
another vector containing the service requests and the performed actions (pick
up or delivery). Requests are sent dynamically to the transportation department
according to released patients. These requests are added to a pickup list; thus,
patients remain awaiting service. Once a patient is picked up, the request is

150 R. M. M. de Oliveira et al.

Each vehicle starts R(2)

waiting at node 0

R(0) R(1)) Future request
+ [———
o0 o0
Time horizon | } — ——1 ———
o 1 2 3 4 5 6 7 8 9 10
Current instant time
Q Units
\ \, ick Up:
\ \ R(0) . Pick Up: Py
YONUN Delivery: Py
NOP2,
s, . '\‘\/I A Hi) Pick Up: P3
et of units Nl peiiery: s
- .@ / .
P1 ’ Pick Up: P2
Q - R2) @ petivery: p
i e _ v: Po

—— Patient being transported

Fig. 1. Example of a solution. The vehicle starts at unit pp and waits until time ¢ = 2
when request R(0) is revealed. Then, it departs to pick up the patient of R(0) at unit
pa, and next decides to deliver her at unit p» where the patient of request R(2) has
already been released. It continues to deliver the patient of R(2) at unit po and to,
finally, service request R(1).

removed from the pickup list and added to a delivery list associated with the
same vehicle.

The vector associated with each vehicle contains all its pickup and delivery
actions, from those already executed or in progress to those already assigned but
to be executed in the future. Vehicles with an ongoing action cannot be notified
to start another action immediately. Indeed, a vehicle must finish its current
action before starting another action (we assume it keeps on hold at the last
visited node). Executed or ongoing actions cannot be modified or rearranged in
the solution vector. However, the same does not apply to future actions. In this
sense, as new requests emerge, it is said that an event occurs. Thus, to optimize
and define the routes of each vehicle, we propose a re-optimization heuristic in
which decisions can be made using two policies or a tabu search-based heuristic.

The re-optimization heuristic with tabu search (TS-D) is detailed in Algo-
rithm 1. Initially, the pickup list L, is created (line 1) and remains empty
until the loop representing the time horizon starts. Over time, new requests
are revealed, and patients are released for transportation. Thus, the pickup list
is updated (line 3) as patients wait for pickup, raising an event. Attention now
turns to the vehicles and their routes. In line 4, re-optimization may occur if a
vehicle is available (i.e., on hold). In this case, a policy (i.e., a greedy heuristic)
is applied (line 5) to provide a prior feasible solution before applying the tabu
search to improve it (line 6). Other two versions of the re-optimization heuristic

A Re-optimization Heuristic for a Dial-a-Ride Problem 151

are proposed, where the tabu search is not used (line 6 is disregarded) but only
policies R1 or R2 (line 5).

Algorithm 1. Re-optimization heuristic with tabu search
1: Let L, and Lg be two initially empty lists of requests awaiting pickup and delivery,
respectively
2: for t from 0 to the end time T do
3 Update L, with the available requests if rd <t
4 if there is at least one vehicle v on hold then
5: Use a policy to update the solution with the requests in L, and Lq
6: Apply the tabu search to optimize the solution
7
8
9:

end if
Perform the actions to each vehicle and update lists L, and Lq
end for

We develop two policies to define the sequence of requests to be served with
a pickup or delivery action. For each available request j in L, and L4, among all
possible requests available in the pickup (L,) and delivery (Lq) lists, each policy
selects the most promising i¢d to be performed next as follows:

— R1: we obtain the traveling time ¢¢; from the node where the vehicle is to the
node where j is; we obtain the due date et;; now, we calculate the product:
tt; x et;, and select the request id = j with the minimum product value to
be performed next. Figure 2 illustrates an example of this policy.

— R2: we obtain the urgency level w;; we calculate the difference between the
current moment in the time horizon ¢ and release time rd;; we calculate the

difference between the due date et; and the release time rd;; we divide these
t—rd

et; —erj
value indicates the request with id = j to be performed next.

two differences () and multiply the result by w;; the minimum resulting

The tabu search metaheuristic behaves similarly to the local search heuris-
tics when exploring the search space. However, one of its main features is using
(short/long-term) memories. This characteristic is an attempt to escape from
local optima solutions since repeated movements/solutions are avoided for a
while. In this way, the metaheuristic can obtain a different solution, improv-
ing the probability of getting better solutions. Our tabu search implementation
follows the framework in [13].

Different operators can be used to explore the neighborhood of a solution
and then create new solutions. We can modify a vehicle route by applying two
operators: N1 and Ny. We consider the application of swaps (V1) and insertions
(N2) in the vector of requests associated with the vehicles. Performing these
operations can result in an infeasible solution (e.g., not respecting the pickup
and delivery order). Therefore, the resulting solution must remain valid at the
end of an operation. We only accept an operation that results in a feasible
solution.

152

R. M. M. de Oliveira et al.

| Delivery List
Delivery List [T RD___ET__ Pickup Delivery Policy1 |
Cua ET___Pickup Delivery] > 7 8 68 1 2 68
— > 7 o 1 6 1 7 1 4 198
[Pickup List Pickup List
[ra RD ET__ Pickup _Delivery _ Policy1 | [Cma RD ET___Pickup _Delivery _Policy 1]
17 3 78 0 a 936 17 3 78 o a4 1326
3 4 /9 0 0 ond 3 4 79 0 0 1343
2 7 2 3 2 351
2 7 27 3 2 108
— 7 8 68 1 2 0
9 14 9 29 3 a 3717 14 9 29 3 4 116
4 10 30 3 2 390 B m 5) Py Y
—-> W 2 : 4 o — 8 15 60 2 3 0
Pickup List >
d RD __ET _ Pickup Delivery) J
—_—— 1 7 7 o I ——
® Nodeo | Node 1 I (" ®Nodez
+
_* v J
Time Horizon . @9 e
0o 2 14 15
I I Delivery List
o Nodes y & ot 1d RD ET__ Pickup_Delivery Policy 1|
& & 6 14 74 1 4 838
<« 0 1 2 3 4 < 0 1 2 3 4 s 15 60 2 3 240
0 0 12 17 6 19 0 0 12 17 6 19
1 1 0 1 13 2 1 I o - 13 2
P @
= 7 1 L] 4 12 % 2 17 1 0 4 12
HERE 53
z z |
3 6 13 4 o 4 3 6 13 4 [4
4 19 12 4 0 4 19 2 12 4 0

Fig. 2. Example of policy R1. The vehicle starts on hold until time ¢ = 2 when the
request id = 1 is known. The pickup list L, is updated. As id = 1 is the only available
option, this patient is picked up at node 0 (the same node where the vehicle is on hold),
the delivery list L4 is updated with her, and then the vehicle departs to deliver her
(the only action available after the pick up). The vehicle finishes the delivery action
at time ¢ = 14 when the pickup list L, contains seven requests (id = 17,3,2,7,14,
4, and 6) and L4 is empty. Policy R1 is applied to calculate the product tt; X et; for
each id = j in L, (the resulting values are in the last column of the pickup list table).
The minimum product is 0 for id = 7 and id = 6 since these patients are at the same
node where the vehicle is on hold (node 1). Both patients are picked up, and lists L,
and Ly are updated. Next, applying policy R1, the most promising id is 7 due to the
list Lq, with the action of delivery her to node 2 (the minimum product is 68). After
completing the delivery at ¢ = 15, the most promising id is 8 due to the list L,, with
the action of picking up this id.

Operator N; randomly selects a vehicle and then randomly chooses two posi-
tions, represented by ¢ and j, in the vector of requests. The contents of these
positions are swapped. Different cases may arise from the choices of 7 and j. Pairs
(I) pickup-pickup, (II) pickup-delivery, (III) delivery-pickup, and (IV) delivery-
delivery may be selected. For example, an infeasible solution may emerge by not
respecting the order of pickup and delivery for a patient in cases I, II, and TV.

Operator No, in turn, is responsible for randomly selecting a vehicle and
then choosing two random positions ¢ and j in the vector of requests. Next, it
inserts the content of position ¢ immediately before position j and after position
j—1. Similarly to operator N7, depending on the content of each position, some
cases naturally arise, and the resulting solution may be infeasible. For example,
suppose we have ¢ > j, the vehicle reaches full capacity when performing the
action at j (a pickup), and ¢ is associated with another pickup action. Inserting

A Re-optimization Heuristic for a Dial-a-Ride Problem 153

¢ immediately before j will make the vehicle reach its full capacity when per-
forming the action at i. In this way, it cannot perform the action at j since there
is no capacity for another pickup action.

Operators N7 and Ny are used as the basis to create ten others, which are
presented next. These operators perform in a best-improvement strategy (i.e.,
each tries all options and then performs the one leading to the best improvement,
if any):

— Nj3: similar to V7 but assuming two different vehicles selected at random;
— Ny: similar to Ny but assuming two different vehicles selected at random;
— Nj: uses Ny where all positions of a given vehicle are tested.

— Ng: uses Ny where all positions of a given vehicle are tested.

— Ny: uses N3 where all positions of two vehicles are tested.

— Ng: uses N, where all positions of two vehicles are tested.

— Ng: similar to N5 but it is performed for all vehicles.

— Nig: similar to Ng but it is performed for all vehicles.

— Ni;: similar to N7, but it is performed for all combinations of two vehicles.
— Njpo: similar to Ng, but it is performed for all combinations of two vehicles.

5 Numerical Experiments

This section details the experiments and results obtained with the re-
optimization heuristic. The objective is to show the competitiveness of our pro-
posed heuristic, comparing its results with the simulated annealing heuristic
proposed by [8]. Our algorithms were implemented in the Python programming
language, and the numerical tests were conducted on a computer equipped with
an Intel Xeon E3-1245 3.50 GHz processor, 32 GB of RAM, and Ubuntu 18.04
LTS as the operating system.

The comparison is performed on 50 instances randomly generated and made
available by [8]. These instances assume a hospital (H) with five units, while the
number of requests (O) can be 20, 40, 60, 80, and 100. They also consider an
arrival rate (R), which represents the frequency at which a patient is released:
0.2 (closer to each other); 0.4; 0.6; 0.8; 1.0; 1.25; 1.50; 1.75; 2.0; 3.0 (farther from
each other). For each number of requests, ten distinct instances were generated,
one for each arrival rate. The traveling time between any pair of hospital units
was uniformly generated in the interval [1; 20] minutes. More information can
be obtained from the original publication [8].

To solve these instances, a fleet of two vehicles, each with a maximum capac-
ity to transport up to two patients simultaneously, is considered. Other combi-
nations tested in Fonseca [8] were not considered in this work and are part of
future research. We use a short-term memory in the tabu search. This way, each
time a neighborhood operator is applied, the chosen positions ¢ and j and their
requests are stored in the tabu list. Then, these moves are forbidden from repeat-
ing twice until they are removed from the tabu list and can occur again. We use
a maximum number of iterations as the stopping criterion of the tabu search.

154 R. M. M. de Oliveira et al.

After preliminary experiments using a trial-and-error methodology, we set this
value to 150, recalling the tabu search is invoked by the re-optimization heuristic
on each event occurrence (e.g., the release of a new request). We obtained high-
quality solutions with this value, as seen in Table 1. Moreover, the preliminary
experiments indicated better solutions when setting the probability of 20% to
select any of the operators N1, Na, N3, and Ny, and 2.5% to the remaining ones
(N5 to ng).

Table 1 presents the best (b-SOL) and average (m-SOL) solutions obtained
with the tabu search for five runs with different seeds (this is the same configura-
tion considered in [8]). As the two policies, R1 and R2, are greedy heuristics and
do not depend on random choices, they were run only a single time. The table
rows have the solutions (SOL) and computing time in seconds (Time) obtained
after solving each instance. These results are compared with the re-optimization
heuristic with simulated annealing (SA-D) proposed in [8], where this author
reported the best solution among five runs of SA-D. At the same time, TS-D
represents the re-optimization heuristic with the proposed tabu search using
policy Ry to generate the initial /first solution.

The results in Table 1 show that policy R1 has an average computing time of
0.007 s and an average solution value equal to 608.36. Instead, policy R2 has an
average time of 0.011 s and 1283.22 as the average total weighted tardiness. These
values for the re-optimization heuristic with tabu search, TS-D, are 56.08 s and
130.8 (column b-SOL), respectively. If column m-SOL (average solution for each
instance) of T'S-D is observed, the overall average solution increases to 281.8. It
is worth noting that the best solution value for 12 out of 50 instances equals 0,
meaning no tardiness, with the proposed TS-D. On the other hand, there are
also relatively low-quality solutions, e.g., for instance O99 — Hs — R obtained
with policy R2.

The values in the last row of Table 1 show that the best overall performance
in solution quality is due to the proposed TS-D, with an overall average value of
130.8 as the best total weighted tardiness. On the other hand, this value equals
593.66 with the re-optimization heuristic with simulated annealing, SA-D, in
[8]. The latter is slightly inferior to the value obtained with policy R1, which is
608.36, showing this policy is somehow competitive with the literature.

Comparing the performance of the proposed TS-D with the one of SA-D, we
notice T'S-D obtains equal solutions to a single instance (see O49 — Hs — R7),
worse solutions to a single instance (see Ogg — Hs — R3), and better solutions
to all other 48 instances. This difference can be explained by the number and
quality of the operators TS-D has. While SA-D limits itself to operators Ny, Na,
N3, and Ny, TS-D covers a much larger set of movements, with operators N5 to
Ni5 performing a more accurate local search.

The re-optimization heuristic with tabu search requires much more comput-
ing time than the two policies. We recall that the tabu search is applied each time
an event occurs. On average, it is invoked the following number of times: 16.7,
27, 35.1, 35.6, and 42.3 to the instances with 20, 40, 60, 80, and 100 patients,
respectively. Besides that, the tabu search has some operators that may be very

Table 1. Results obtained for 50 instances with the hospital having 5 units.

A Re-optimization Heuristic for a Dial-a-Ride Problem

Instance SA-D R1 R2 TS-D

Time | b-SOL | Time | SOL |Time |SOL Time |b-SOL | m-SOL
Oz — Hs — R1 2254 |33 0.001 | 160 0.001 | 180 4.67 0 43.10
Oz — Hs — Ry 275 112 0.001 | 561 0.003 | 469 7.34 32 49.60
Oz — Hs — Rz | 34.1 104 0.005 | 399 0.001 |12 1.75 0 7.80
Oz — Hs — Ry |43.46 |18 0.005 | 196 0.006 | 36 2.02 16 24.40
Oz — Hs — Rs | 37.06 |80 0.003 | 80 0.005 | 76 1.46 8 24.00
Oz — Hs — Rs | 41.94 |53 0.003 | 38 0.008 | 76 1.42 32 32.00
Oz — Hs — Ry | 38.73 |40 0.002 | 4 0.003 |8 1.35 4 4.00
O — Hs — Rg 4394 |84 0.003 | 28 0.005 |28 1.46 4 4.00
Oz — Hs — Ry | 43.7 36 0.002|0 0.006 |0 1.46 0 0.00
O20 — Hs — Rio | 42.29 |76 0.003| 0 0.002 |0 1.04 0 0.00
O40 — Hs — R1 | 133.74 | 985 0.006 | 1123 | 0.006 | 1615 5241 |130 256.40
O40 — Hs — Ry | 156.14 | 435 0.008 | 595 0.006 | 971 26.97 |104 179.40
O40 — Hs — Rs | 162.27 | 103 0.005 | 322 0.009 | 130 10.75 |32 73.90
O40 — Hs — Ry | 165.37 | 104 0.008 | 295 0.008 | 196 9.27 12 125.70
O40 — Hs — Rs | 166.14 | 132 0.008 | 84 0.014 | 104 5.99 48 62.40
O40 — Hs — Rg | 163.09 |372 0.006 | 220 0.016 |321 541 44 101.60
O40 — Hs — Ry |171.5 |120 |0.009 | 144 0.017 | 124 4.28 120 120.00
O40 — Hs — Rg | 168.05 | 348 0.002 | 44 0.006 |48 2.23 32 32.00
Os0— Hs — Ry | 174.13 |8 0.005 | 8 0.008 |12 2.70 4 4.00
O40 — Hs — Rio | 176.94 | 156 0.001|0 0.008 |0 0.77 0 0.00
Ogo — Hs — Ry | 325.49 1018 |0.014|1638 |0.008 | 4794 228.83 | 296 667.10
O¢o — Hs — R> | 401.68 | 682 0.011 | 798 0.013 | 2949 99.88 |211 363.30
O¢0 — Hs — Rz |396.57 |33 0.011 | 297 0.011 | 304 23.69 |64 89.20
O¢o — Hs — Ry | 333.04 | 448 0.025 | 163 0.016 | 150 18.72 |32 77.80
O¢o — Hs — Rs | 292.18 | 280 0.011 | 480 0.016 | 256 7.55 80 181.77
O¢o — Hs — Rg | 322.09 | 164 0.002 | 76 0.008 | 68 5.34 32 43.60
O¢o — Hs — Ry |370.12 |84 0.005 | 16 0.013 |16 3.24 0 0.00
O¢o — Hs — Rs | 3429 | 156 0.006 | 48 0.006 |88 3.13 8 16.00
O¢o — Hs — Ry | 360.01 | 280 0.003 | 40 0.009 |28 2.31 0 0.00
Ogo — Hs — Rio | 384.96 | 272 0.001 | 44 0.003 |48 0.86 44 48.90
Ogo — Hs — Ry | 625.69 6114 [0.022]6233 0.016 |12319 |662.51 |1302 |3015.70
Ogo — Hs — Ry | 704.15 | 712 0.019 1180 |0.023 | 5405 99.68 | 382 581.30
Ogo — Hs — Rs | 731.57 | 479 0.006 | 931 0.028 | 1410 51.10 |316 425.22
Ogo — Hs — Ry | 736.29 | 286 0.011 | 211 0.009 | 336 14.09 |52 98.78
Ogo — Hs — Rs | 758.52 | 228 0.008 | 131 0.017 | 346 7.91 4 17.80
Ogo — Hs — R | 754.17 | 496 0.008 | 160 0.013 | 213 4.52 112 146.20
Ogo — Hs — Ry | 773.88 | 144 0.005 |0 0.011 |0 3.07 0 2.67
Oso — Hs — Rg | 748.04 | 124 0.003 | 28 0.011 |28 2.18 4 4.40
Ogo — Hs — Ry | 658.13 | 264 0.003 |4 0.005 |4 2.23 0 0.00
Oso — Hs — Rio | 686.42 | 260 0.003|0 0.009 |0 1.05 0 0.00
O100 — Hs — Ry | 930.49 |8720 |0.014|10562 |0.022 |25531 |1158.02 1990 |5792.00
O100 — Hs — Ry | 1097.17|1046 | 0.017 | 1174 | 0.030 | 2852 160.56 | 258 359.22
O100 — Hs — Rs | 1308.06 | 1344 | 0.022|1083 |0.028 | 1421 55.30 |361 529.77
O100 — Hs — Ry | 1251.41 | 638 0.008 | 72 0.020 |370 13.25 |36 79.10
O100 — Hs — Rs | 1361.84|416 0.009 | 223 0.013 | 308 15.26 |56 105.77
O100 — Hs — Re | 1242.74 | 536 0.009 | 112 0.027 | 104 6.36 56 82.22
O100 — Hs — R7 | 1097.14 | 208 0.006 | 121 0.009 | 107 2.90 0 20.55
O100 — Hs — Rg | 1083.77 | 496 0.003 | 56 0.014 | 60 3.22 56 62.22
O100 — Hs — Ro | 1107.65 | 164 0.003 | 184 0.011 |188 2.74 56 72.80
O100 — Hs — R1p | 1107.38 | 192 0.001 | 52 0.003 |52 1.84 0 48.88
Average 486.12 | 593.66 | 0.007 | 608.36 | 0.0112 | 1283.22 | 56.08 | 128.60 | 281.83

155

156 R. M. M. de Oliveira et al.

time-consuming, such as Ny to Njo that try all possible swap and insertion
movements.

6 Conclusions and Future Works

This paper develops a re-optimization heuristic that uses a tabu search-based
heuristic to optimize decisions regarding a dynamic Dial-a-Ride Problem. This
problem emerges from a real situation involving the picking and delivering of
patients between units of the same hospital. The problem objective requires
minimizing the total weighted tardiness. In addition to the tabu search, we pro-
pose two greedy heuristics (policies R1 and R2) and evaluate their performance
on instances of different sizes.

Computational experiments on 50 instances from the literature show that
the proposed re-optimization heuristic with tabu search is much superior in
solution quality. It allows decreasing the average total weighted tardiness value
by 78.34% compared to the value obtained by [8]. Its result is even better than
the two heuristic policies, with an average improvement of around 78.86% over
R1 and 89.98% over R2. It is worth noting that its computing time may increase
when solving large instances, especially those with many requests and a small
value of arrival rate.

The work in this paper can continue in different directions. The first could
concern the consideration of a heterogeneous vehicle fleet. This opens the pos-
sibility of solving realistic instances from a hospital in Italy and comparing the
results with the solution methods in [1]. Second, the tabu search can be improved
by defining new operators (e.g., selecting sequences of positions) and new types
of memories (e.g., long-term ones). Investigating each operator’s influence on the
final solution could also help reduce computing time. Another direction for future
research could consider multiple objectives besides the weighted total tardiness,
such as minimizing travel time or distance.

Acknowledgement. The authors thank the financial support provided by the
National Council for Scientific and Technological Development (CNPq) [grant num-
bers 405369/2021-2, 408722/2023-1, and 315555/2023-8], the State of Goids Research
Foundation (FAPEG), the National Recovery and Resilience Plan (NRRP), Mission
04 Component 2 Investment 1.5-NextGenerationEU, Call for tender n. 3277 dated
30/12/2021, Award Number: 0001052 dated 23/06/2022.

Disclosure Statement. No potential conflict of interest was reported by the authors.

References

1. Aziez, 1., Coté, J.F., Torkhani, M.Z., Landa, P., Coelho, L.C.: Healthcare dynamic
and stochastic transportation (2023). https://doi.org/10.2139 /ssrn.4622857

https://doi.org/10.2139/ssrn.4622857

10.

11.

12.

13.

14.

15.

A Re-optimization Heuristic for a Dial-a-Ride Problem 157

Battarra, M., Cordeau, J.F.; Iori, M.: Chapter 6: pickup-and-delivery problems
for goods transportation. In: Vehicle Routing: Problems, Methods, and Appli-
cations, Second Edition, pp. 161-191. SIAM (2014). https://doi.org/10.1137/1.
9781611973594.ch6

Beaudry, A., Laporte, G., Melo, T., Nickel, S.: Dynamic transportation of patients
in hospitals. OR Spectrum 32(1), 77-107 (2010)

Coté, J.F., Queiroz, T.A., Tori, M., Vignoli, M.: Tranporte dindmico de pacientes
dentro de um hospital. Anais do LII SBPO Simpdsio Brasileiro de Pesquisa Opera-
cional, 1-12 (2020)

Coté, J.F., Queiroz, T.A., Gallesi, F., Tori, M.: A branch-and-regret algorithm for
the same-day delivery problem. Transportation Research Part E: Logistics and
Transportation Review 177, 103226 (2023)

Doerner, K.F., Salazar-Gonzalez, J.J.: Chapter 7: Pickup-and-delivery problems
for people transportation. In: Vehicle Routing: Problems, Methods, and Appli-
cations, Second Edition, pp. 193-212. SIAM (2014). https://doi.org/10.1137/1.
9781611973594.ch7

von Elmbach, A.F.; Scholl, A., Walter, R.: Minimizing the maximal ergonomic
burden in intra-hospital patient transportation. European Journal of Operational
Research 276(3), 840-854 (2019)

Fonseca, G.S.: Heuristicas para o transporte dindmico de pacientes dentro de hos-
pitais (2023). Master thesis in Modelling and Optimization. Federal University of
Catalao, Catalao, Brazil

Kergosien, Y., Lente, C., Piton, D., Billaut, J.C.: A tabu search heuristic for the
dynamic transportation of patients between care units. European Journal of Oper-
ational Research 214(2), 442-452 (2011)

Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle
routing problems. European Journal of Operational Research 225(1), 1-11 (2013)
Queiroz, T.A., Tori, M., Kramer, A., Kuo, Y.H.: Dynamic scheduling of patients in
emergency departments. European Journal of Operational Research 310(1), 100—
116 (2023)

Schmid, V., Doerner, K.F.: Examination and operating room scheduling including
optimization of intrahospital routing. Transportation Science 48(1), 59-77 (2014)
Talbi, E.G.: Metaheuristics: From Design to Implementation. John Wiley & Sons,
New Jersey (2009)

Toth, P., Vigo, D.: Vehicle Routing: Problems, methods, and applications, 2nd edn.
Siam, Philadelphia (2014)

Vidal, T., Laporte, G., Matl, P.: A concise guide to existing and emerging vehicle
routing problem variants. European Journal of Operational Research 286(2), 401—
416 (2020)

https://doi.org/10.1137/1.9781611973594.ch6
https://doi.org/10.1137/1.9781611973594.ch6
https://doi.org/10.1137/1.9781611973594.ch7
https://doi.org/10.1137/1.9781611973594.ch7

)

Check for
updates

Solving the Integrated Patient-to-Room
and Nurse-to-Patient Assignment
by Simulated Annealing

Eugenia Zanazzo®™) | Sara Ceschia@®, and Andrea Schaerf:

Polytechnic Department of Engineering and Architecture, University of Udine,
Via delle Scienze 206, 1-33100 Udine, Italy

{eugenia.zanazzo,sara.ceschia,andrea.schaerf}@uniud.it

Abstract. We consider a recently-proposed integrated healthcare prob-
lem that deals with the assignment of patients to suitable rooms in wards
(Patient-to-Room) and the assignment of nurses to patients to balance
their workload (Nurse-to-Patient), in one single stage.

For this problem, we designed a local search approach that uses the
union of two distinct neighborhoods and is guided by a Simulated Anneal-
ing metaheuristic.

We tuned our search method, ran it on the available dataset, and
validated it using the available solution checker. Finally, we report our
results for different running times, to show how the scores evolve based
on the granted time.

Keywords: Healthcare - Problem integration - Simulated Annealing

1 Introduction

Optimization in healthcare aims to enhance efficiency, reduce costs, and ulti-
mately improve patient outcomes and staff well-being, and it has been stud-
ied in the optimization literature for decades [3|. The integration of healthcare
optimization problems involves applying optimization techniques to simultane-
ously improve different aspects of healthcare delivery, resource allocation, and
decision-making processes. This is of paramount importance for healthcare insti-
tutions given that the flow of patients involves multiple resources and decisions
at different levels [8].

The integrated approach is quite recent, and the contributions to its applica-
tion have been recently surveyed by Rachuba et al [6]. In particular, the authors
identify three levels of increasing integration, which go from solving one prob-
lem while incorporating the constraints coming from the others (level 1), to the
sequential solution of two or more problems using the output of one problem as
input for the next one (level 2), and finally to the simultaneous solution in one
single stage of two or more problems (level 3).

A recent proposal for a level 3 integration comes from Brandt et al [1]
and aims at the concurrent solution of the Patient-to-Room Assignment (PRA)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 158-163, 2024.
https://doi.org/10.1007/978-3-031-62912-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_15&domain=pdf
http://orcid.org/0000-0003-1191-1929
http://orcid.org/0000-0001-6965-0536
https://doi.org/10.1007/978-3-031-62912-9_15

Solving the IPRNPA by SA 159

and the Nurse-to-Patient Assignment (NPA) problems. The resultant integrated
problem, called IPRNPA, consists of assigning patients to rooms on each day
of their stay and nurses to patients during each shift of their stay, spanning
a given planning period of several weeks. In this problem, both the patient’s
admission and discharge dates and the nurse’s working shifts are assumed as
fixed and known at the beginning of the planning period. The objective func-
tion of the IPRNPA comprises objectives coming from both single problems as
well as objectives that are expressed and evaluated at the level of the integrated
problem. In particular, they regard transfers of patients between rooms, room
heterogeneity concerning the age and gender of roommates, and missing room
equipment for the PRA problem; minimal number of distinct nurses that take
care of a patient during his/her stay (continuity of care), required nurse skill
level, workload distribution for the NPA problem; and minimal nurses per room
and walking distance of nurses for the interaction of the two problems.

Brandt et al. [1] provide both a mixed integer programming model and an
efficient heuristic, obtained by extending the heuristic designed for PRA alone
by Schifer et al. [7]. Furthermore, they provide a dataset, written in JSON, that
comprises both real-world and artificial instances. Finally, they make available
a solution checker, which allows other researchers to validate their solutions and
compare the obtained scores.! The solution checker is a Python program that
receives as parameters the instance and the solution and delivers all the costs
and possible violations.

In this work, we propose an alternative solution technique based on local
search for the IPRNPA problem. Specifically, we design two neighborhood oper-
ators that work on the variables of each atomic problem, and we combine them
in a multi-neighborhood setting. The search is guided by Simulated Annealing,
which draws moves at each iteration from the union of the two neighborhoods.

This is an ongoing work and the preliminary results show that we have been
able to solve to feasibility all instances of all sizes, with different levels of quality
depending on the running time.

2 Search Method

In this section, we describe our solution approach. For the sake of brevity, we
leave out the problem definition and we refer to Brandt et al [1] for the precise
formulation and the mathematical model.

The search space is defined by two distinct data structures. The first is an
integer-valued matrix, of size patients per days, that stores the room in which
the patient is hosted on that day; for the days before the admittance and after
the discharge, the cell contains the dummy value —1. The second structure is an
integer-valued matrix, of size patients per shifts (there are three shifts per day),
that stores the nurse who takes care of the patient during that shift. Similarly to

! The instance generator and the solution checker are available online at
https://github.com/TLKTOM/IPRNPA instance generator and https://github.
com/TLKTOM/IPRNPA solution check, respectively.

https://github.com/TLKT0M/IPRNPA_instance_generator
https://github.com/TLKT0M/IPRNPA_solution_check
https://github.com/TLKT0M/IPRNPA_solution_check

160 E. Zanazzo et al.

the previous matrix, when the patient is not present, the cell contains the dummy
value —1. The solver also stores many additional redundant data structures,
such as room occupancy and nurses’ workload, that are used to accelerate delta
evaluations of moves.

The initial solution is built by assigning to each patient a random room with
available capacity for the admission day, and then keeping it for the subsequent
days of the stay as long as its availability holds. Whenever a transfer becomes
necessary, a new room is drawn, repeating this process until the discharge day.
Afterward, for each shift within the patient’s stay, a random nurse is selected,
among those working on that shift.

We consider two neighborhood relations that operate on the two distinct data
structures:

— ChangeRoom: Change the room assigned to a patient on a specific day, select-
ing among those that have available residual capacity.

— ChangeNurse: Change the nurse assigned to a patient in a specific shift, select-
ing among those working in that shift.

We consider the union of these two neighborhoods, and the selection of a random
move is done in two stages: first, we select the atomic neighborhood (ChangeRoom
or ChangeNurse) and then the specific move inside the neighborhood. The first
selection is based on a parameter p, in such a way that at each step the neigh-
borhoods ChangeRoom and ChangeNurse are drawn with probabilities p and
1 — p, respectively. Within the selected atomic neighborhood, the specific move
is drawn uniformly.

The construction of the initial solution and the preconditions of the moves
guarantee that the hard constraints (capacity of rooms and availability of nurses)
are always satisfied. Therefore, the cost function that guides the local search
coincides with the objective function of the problem itself. This includes twelve
components that are thoroughly described by Brandt et al. [1] and that we do
not discuss here for the sake of brevity.

The metaheuristic that guides the search is the classic Simulated Annealing
[4], with Metropolis acceptance criterion and geometric cooling scheme. As a
termination criterion, we use the reaching of the minimum temperature. To have
approximately the same running time for all parameter settings, we fix the total
number of iterations and compute the number of iterations at each temperature
based on the initial and final temperature and the cooling rate.

To speed up the early stage of the search, we include a cut-off mechanism that
moves to the new (lower) temperature when either a given number of iterations
has been performed or a fixed number of moves have been accepted. Iterations
saved by the cut-off mechanisms are distributed among all subsequent temper-
atures. For a comprehensive introduction to Simulated Annealing see the work
by Franzin and Stiitzle [2].

3 Preliminary Results

We tested our solution method on the dataset of artificial instances, because, as
stated by Brandt et al. [1], they are more challenging than the real-world ones.

Solving the IPRNPA by SA 161

Our search method has several parameters, which are the typical ones of
Simulated Annealing plus p, which represents the rate of the ChangeRoom neigh-
borhood, with respect to the ChangeNurse one. We tuned our parameters using
irace [5] and the winning configuration is: start temperature = 680.116, final
temperature = 0.855, cooling rate = 0.991, cut-off threshold = 0.889, p = 0.115.

The dataset of artificial instances consists of 12 different groups, each one
composed of 10 instances. The distinctive features of each group are reported
in Table1, in terms of number of weeks, rooms, beds, and nurses. In addition,
Brandt et al [1] designed three different room configurations: variation 1 cor-
responds to only double rooms; variation 2 corresponds to only triple rooms,
and variation 3 corresponds to a room balance of 23% single rooms, 38% double
rooms, 23% triple rooms and 16% quadruple rooms (e.g., for 13 rooms, 3 single
ones, 5 double ones, 3 triple ones, and 2 quadruple ones).

Table 1. Features of the groups of instances.

Group | # weeks | # rooms | variation | # beds | # nurses
G1 2 10 2 30 21
G2 2 13 3 30 21
G3 2 15 1 30 21
G4 2 20 2 60 31
GH 2 26 3 60 31
G6 2 30 1 60 31
G7 4 10 2 30 21
G8 4 13 3 30 21
G9 4 15 1 30 21
G10 |4 20 2 60 31
Gl1 |4 26 3 60 31
G12 |4 30 1 60 31

Table 2 shows our results aggregated by instance group for 30 repetitions on
each instance with the winning configuration with 40M iterations. It reports the
average total cost, the percentage value of each separate objective with respect
to it and the average running time in seconds.

Given that no detailed numerical results but only average loss w.r.t. the opti-
mal solution are provided by Brandt et al. [1], as their paper is still a preliminary
version, we could not compare our results with theirs. Nonetheless, our solutions
have been validated using the solution checker made available by Brandt et al.
[1], and the scores can be used for future comparisons.

The results demonstrate that the objective with the largest impact on the
total cost (about 25%) is the one related to the number of different nurses that
are assigned to the same room. The other objectives with a high contribution

162 E. Zanazzo et al.

Table 2. Impact (%) of objectives, average total cost and running time.

Inst. |transfers age |gender | missing | cont. missing | work nurses X | walking | total time [s]
group diff. | mix equip. | of care |skill load room distance | cost

G1 1.03 5.74 |1.04 2.32 20.82 7.60 26.37 24.67 10.41 3922.44 |91.27
G2 1.65 5.07 |1.18 3.62 19.53 6.97 24.78 24.39 12.81 4174.19 | 88.00
G3 1.98 3.94 10.70 3.80 18.43 6.41 21.81 27.01 15.92 4450.56 | 90.63
G4 3.10 5.40 |1.26 2.65 20.08 8.83 17.02 25.05 16.61 8845.65 | 97.81
G5 4.16 4.69 |1.38 3.32 18.01 7.99 17.20 23.07 20.18 9951.02 | 96.04
G6 5.72 3.89 0.90 3.25 17.10 7.62 15.12 24.25 22.15 10469.18 | 99.18
G7 1.51 598 |1.24 3.13 21.36 8.31 20.94 26.23 11.30 7571.14 | 92.97
G8 2.35 5.52 | 1.48 3.95 20.14 7.58 20.03 25.47 13.48 8061.36 | 92.92
G9 2.75 4.22 0.89 3.99 18.82 7.35 17.64 27.84 16.50 8686.72 | 94.70
G10 |4.58 5.52 | 1.46 2.63 19.68 9.03 13.52 25.77 17.81 18062.50 | 103.54
Gl11 5.98 5.01 |1.71 3.08 18.08 8.26 11.96 24.18 21.74 19812.79 | 102.40
Gl2 |7.51 4.10 |1.05 3.63 17.13 7.84 10.84 24.79 23.11 20870.22 | 103.75

are related to the continuity of care, the work balance, and the walking of the
nurses. This reveals that the most critical part in terms of penalty regards the
assignment of the nurses to patients rather than the assignment of patients to
rooms.

We then investigated the performance of SA with different running times,
with 4M, 40M, and 400M iterations, corresponding to approximately 10, 100,
and 1000 s in our machine. The outcome is illustrated in Fig. 1, where we further
gathered instance groups with similar behavior.

"
oss
L :

Normali
Improvement (%)

am a0m a00m Groups 1-2:3 Groups 456 Groups 789 Groups 10-11-12

——Groups 1:2:3 —mGroups 4-5-6 Groups 7:89 Groups 10-11-12 ——M-AOM e dOM-400M e dV-400M

(a) Normalized cost (b) Relative improvement (%)

Fig. 1. Comparative results for 4M, 40M, and 400M iterations.

From Fig. 1a, we can see that for all groups the scores continue to improve as
the number of iterations increases, without any flattening effect. Figure 1b plots
the percentage improvement between 4M and 40M, 40M and 400M, and 4M
and 400M. As expected, the improvement between 4M and 40M (green line) is
greater than for 40M and 400M (purple line), with average values of about 10%
and 7% respectively. We also noticed that the improvement is more significant for
instances with 60 beds (groups 4-5-6, 10-11-12), probably because the difficulty
level of an instance depends more on the number of beds than on other features.

Solving the IPRNPA by SA 163

4 Conclusions

We designed a metaheuristic approach to solve a novel integrated healthcare
problem and we tested it on the publicly available dataset. Even though at
present a fair comparison with previous results is not viable, our solutions have
been validated with the official solution checker of the problem, and can be used
as a baseline for future comparisons.

For the future, we plan to try to improve our results by designing additional
neighborhoods and adding them to our search method. For example, we are
currently working on two operators that swap assignments, rather than changing
one single assignment.

In addition, we plan to work on the design and solution of a new formulation
of the problem that could also include the management of the operating rooms,
which are generally the most critical resource in hospitals.

Acknowledgements. We thank Fabian Schéifer and Tom Klein for kindly answering
all our questions about their work.

This work has been funded by the project “Models and algorithms for the opti-
mization of integrated healthcare management” (no. 2020LNEZYC) supported by the
Italian Ministry of University and Research (MUR) under the PRIN-2020 program.

References

1. Brandt, T., et al.: Integrated patient-to-room and nurse-to-patient assignment in
hospital wards (2023). arXiv preprint 2309.10739

2. Franzin, A., Stiitzle, T.: Revisiting simulated annealing: a component-based analy-
sis. Comput. Oper. Res. 104, 191-206 (2019)

3. Hulshof, P.J., Kortbeek, N., Boucherie, R.J., Hans, E.W., Bakker, P.J.: Taxonomic
classification of planning decisions in health care: a structured review of the state
of the art in OR/MS. Health Syst. 1, 129-175 (2012)

4. Kirkpatrick, S., Gelatt, D., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220, 671-680 (1983)

5. Lopez-Ibaniez, M., Dubois-Lacoste, J., Caceres, L.P., Birattari, M., Stiitzle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Oper. Res.
Perspect. 3, 43-58 (2016)

6. Rachuba, S., Reuter-Oppermann, M., Thielen, C.: Integrated planning in hospitals:
a review (2023). arXiv preprint 2307.05258

7. Schéfer, F., Walther, M., Hiibner, A., Kuhn, H.: Operational patient-bed assignment
problem in large hospital settings including overflow and uncertainty management.
Flex. Serv. Manuf. J. 31, 1012-1041 (2019)

8. Vanberkel, P., Boucherie, R., Hans, E., Hurink, J., Litvak, N.: A survey of health care
models that encompass multiple departments. Int. J. Health Manag. Inf. (IJHMI)
1(1), 37-69 (2010)

)

Check for
updates

Enhancing Real-World Applicability
in Home Healthcare: A Metaheuristic
Approach for Advanced Routing
and Scheduling

Sara Ceschia!®, Luca Di Gaspero!®, Simona Mancini?

Vittorio Maniezzo®

K
, Roberto Montemanni*®, Roberto Maria Rosati'®,

and Andrea Schaerf!®)

! Polytechnic Department of Engineering and Architecture,
University of Udine, Via delle Scienze 206, 1-33100 Udine, Italy
{sara.ceschia,luca.digaspero,robertomaria.rosati,andrea.schaerf}@uniud.it

Department of Engineering, University of Palermo,
Viale delle Scienze, I-90128 Palermo, Italy
simona.mancini@unipa.it
3 Department of Computer Science, University of Bologna,
Via dell’Universita 50, 1-47521 Cesena, Italy
vittorio.maniezzo@unibo.it
4 Department of Sciences and Methods for Engineering,
University of Modena and Reggio Emilia,

Via Amendola, 2, [-42122 Reggio Emilia, Italy
roberto.montemanni@unimore.it

Abstract. We consider the home healthcare scheduling and rout-
ing problem, and we extend the classic formulation introduced by
Mankowska et al, by adding several real-world features. For this novel
problem, we created a new realistic dataset, and we developed a meta-
heuristic approach based on a combination of neighborhoods guided by
a Simulated Annealing procedure. Our solver, properly engineered and
tuned, is able to solve all instances in a short time. Our experimental
results highlight the relative importance of the various (original and new)
cost components.

Keywords: Homecare - Routing with time windows - Route
synchronization

1 Introduction

Home healthcare (or simply homecare) refers to providing healthcare services
and assistance to individuals in their homes rather than in a hospital or other
healthcare facilities. Homecare offers a range of benefits, including personalized
care, cost-effectiveness, comfort, and the promotion of independence. Depending
on the individual’s health needs and preferences, it can be a valuable alternative
or complement to institutional care.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 164-170, 2024.
https://doi.org/10.1007/978-3-031-62912-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_16&domain=pdf
http://orcid.org/0000-0003-1191-1929
http://orcid.org/0000-0003-0299-6086
http://orcid.org/0000-0001-5287-2255
http://orcid.org/0000-0002-1220-1235
http://orcid.org/0000-0002-0229-0465
http://orcid.org/0000-0001-9560-6301
http://orcid.org/0000-0001-6965-0536
https://doi.org/10.1007/978-3-031-62912-9_16

A Metaheuristic Approach for Homecare Routing and Scheduling 165

Providing homecare services is an optimization problem involving scheduling
and routing issues. Many problem formulations have been proposed in the liter-
ature, depending on the different settings and horizons. For an overview of the
available formulations and solution techniques, we refer to the following surveys
[3,4,9].

We consider here the well-known formulation proposed by Mankowska et al.
[8], which comes along with a large and challenging dataset that has attracted
the attention of many researchers, which dealt with it mainly using metaheuris-
tics (see [1,2,5-7]). Although this formulation is interesting and challenging from
a computational point of view, it lacks some specific features that would make
the problem more attractive in reality. For this reason, we introduce hereby an
extended formulation that comprises additional real-world features, i.e., mul-
tiple departure points for caregivers, incompatibilities between patients and
caregivers, and working shifts for caregivers. In addition, the objective func-
tion penalizes caregiver waiting times and overtime and unbalanced workload
distribution. For this novel formulation, we propose a new dataset and a search
method based on Simulated Annealing, obtained by extending our previous work
on the original problem [1,2]. For the formulation obtained, we created a new
artificial dataset by using real road distances and sampling the relevant loca-
tions, considering the area’s actual population distribution. Our search method,
properly tuned, has been tested on the new dataset, highlighting which are the
most impactful components of the objective function.

2 Problem Formulation

We introduce the formulation in two steps. First, we recall the basic one by
Mankowska et al. [8], and then we illustrate the extensions we introduced.

2.1 Basic Formulation

The most relevant elements of the Home Health Care Routing and Scheduling
Problem (HHCRSP) are:

Patients: Patients are categorized as single service (requiring one service) or
double service (requiring two services, either simultaneous or sequential).
Sequential double service patients require a specific minimum and maximum
time gap between services. Additionally, each patient has a designated time
window for starting the (first) service.

Services: Each service duration, in minutes, varies by patient.

Caregivers: FEach caregiver is qualified for a specific subset of services. They
begin and end their workday at the central office.

The planning horizon consists of a single day. Distances represent the travel time
(in minutes) from one location to another (either a patient’s home or the central
office). The hard constraints of the problem are:

166 S. Ceschia et al.

— Each patient must be visited during the planning horizon (either by one or
two caregivers).

— A service cannot be provided by a caregiver who is not qualified for it.

— For each double service patient, the minimum and maximum time separations
between the first and the second service have to be respected. In the case of
simultaneous services, the separation is strictly equal to 0.

— Each double service patient needs two separate caregivers.

— A service cannot start before the beginning of the patient time window. In
case of early arrival, the caregiver has to wait until the time window starts.

Conversely, it is permissible for a patient to be served late (after the end of
the time window), but this tardiness contributes to the objective function.

The objective function to be minimized includes three components: i) the
total travel time, i) the total tardiness encompassing all services, and #ii) the
highest tardiness. In cases of double service patients, each service contributes
separately to the total tardiness.

2.2 Extended Formulation

We now discuss the extensions that we introduced, along with their motivations
from a practical point of view.

Multidepot: In some cases, it is rather unrealistic to assume that all caregivers
move to the central office at the beginning of their shift. For this reason, we
assume that a caregiver departs either from the central office or from their
home and returns to the same place at the end of their shift. This decision
is fixed in the input data and cannot be changed based on the route. In
this situation, the distance matrix is extended to include the locations of all
caregivers who depart from home.

Compatibility: It may happen that, for various reasons, some caregivers
are not acceptable to some patients. To deal with this limitation, some
patient/caregiver pairs are fixed as incompatible so that the given caregiver
cannot serve that patient.

Waiting times: When a caregiver arrives early at a patient’s home, she/he
waits until the time window of the patient starts. This situation is rather
inconvenient for the caregiver, but since it receives no penalty in the basic
formulation, it actually occurs quite often in the solutions. For this reason, we
introduce a cost component for the total waiting time spent by all caregivers
in this specific situation.

Work shift and overtime: Caregivers are assumed to be available within the
full horizon. This is rather unrealistic, as they normally work in specific shifts,
which can span over the entire day (full-time), or be set either on the morning
or the afternoon (part-time). Therefore, we introduce the working shift of the
caregivers, so that each caregiver leaves their location at the beginning of
the shift (or later) and should return by the end of the shift. If the return
time is after the end of the shift, this accounts for overtime, which should be
minimized and contribute to the objective function.

A Metaheuristic Approach for Homecare Routing and Scheduling 167

Work balance and fairness: In the basic formulation, there is no notion of
work balance, causing situations in which one caregiver visits very few patients
(even zero in some cases), while others visit up to ten patients. To fix this
unfair situation, we introduce a measure of balance in the objective function.
To this aim, we introduce the idle time of a caregiver, which is defined as
the length of the caregiver’s shift minus their working time, which in turn is
measured as the service time plus the traveling time. In other words, the idle
time is the waiting time defined above, plus the time before going out to the
first patient, plus the time between the return to the starting point and the
end of the shift (the latter only if bigger than zero). We count as fairness cost
the highest idle time among all caregivers.

According to these extensions, we move from the three-component objective
function of the original formulation to a six-component one for the new formu-
lation, by adding waiting times, overtime and highest idle time (fairness).

These objectives might have different impacts on the quality of the solution,
determining whether we give more importance to the point of view of patients or
the one of caregivers and the company. In the original formulations, in order to
keep the objective function simple, all components were given identical weights,
thus assuming that one minute of traveling time costs as much as one minute of
tardiness. We maintain this approach, applying the same weight to additional
components, and defer a detailed cost analysis to future work.

3 Solution Technique

For the solution of this problem, we extend the multi-neighborhood Simulated
Annealing approach proposed for the original formulation in our previous work
[1,2]. This approach works on an indirect search space composed of the permu-
tations of the patients and the assignments of the caregivers to the patients.
The actual schedule is obtained by a forward greedy procedure that processes
the patients one at a time according to the permutation and adds the patient at
the end of the route(s) of their caregiver(s) at the earliest time.

The neighborhood relation is the combination of three atomic neighborhoods:

MovePatient: Reposition one patient in the global ordering and assign new care-
giver(s) to the patient.

SwapPatients: Swap both the positions of two patients in the global order-
ing and the caregiver(s) assigned to them. A swap is possible only between
patients with the same number of services and with current caregivers with
the required abilities for the other patient.

InRouteSwap: Swap the positions of two patients within the route of a given
caregiver. If one or both patients are double-service ones, the route of the
side caregiver(s) serving the patient(s) are modified accordingly.

In order to draw a random move, first we perform a biased random selection
to establish which of the three atomic neighborhoods should be sampled, and

168 S. Ceschia et al.

then a uniform selection within the chosen neighborhood. For the first selection,
we use two parameters called osp and ojrs, so moves of the three types are drawn
with probability 1 — osp — gjrs, osp and ojrs, respectively.

As the metaheuristic that guides the search, we make use of the classic Sim-
ulated Annealing (SA). The SA procedure starts from a random initial solution
and then, at each iteration, draws a random move. This is always accepted if it
is improving or sideways, whereas worsening moves are accepted based on the
time-decreasing exponential distribution (known as Metropolis Acceptance).

SA starts with an initial high temperature Ty, which is decreased after a
fixed number of samples are drawn according to the geometric cooling scheme
with rate a. The search is stopped when the final temperature Ty is reached.
In order to speed up the early stages of the search, we add the customary cut-
off mechanism, such that the temperature also decreases if a fraction p of the
moves has been accepted. The iterations saved by the cut-off are redistributed
uniformly to all the remaining temperatures.

4 Experimental Results

We adapted the generator developed for the basic problem [1] and we created 500
training instances for the tuning phase plus 10 validation ones. They are avail-
able at https://github.com/iolab-uniud/hhersp, along with their best solutions.
The tuning procedure on the training instances has been done using RACE in
two stages: first the parameters of SA and then the two rates o.. The winning
configuration turned out to be: Ty = 28.77, Ty = 0.94, o = 0.987, p = 0.138,
osp = 0.2 and ojrs = 0.08. Table 1 reports average and minimum results of 30
runs on the validation instances with the above configuration and with 100M
total iterations. The table also reports the average percentage cost for each com-
ponent: total distance (TD), total tardiness (TT), highest tardiness (HT), total
waiting time (TWT), total overtime (TOT), and highest idle time (HIT).

Table 1. Results on the validation instances

Inst | Patients | Caregivers | avg min |time(s) | TD |TT |HT |TWT | TOT |HIT
0 220 42 29829.8 127763 | 532.3 | 34.31|48.33|1.61|2.14 | 12.74|0.87
1 68 13 13776.3 13550 | 181.3 | 13.19|63.70 | 4.23|4.39 |11.582.90
2 261 50 35113.6 | 32535 |652.5 |33.34/41.91|1.26|1.76 |21.42|0.30
3 304 54 11119.3 10547 | 723.1 |62.38|16.55 |1.372.85 |13.813.03
4 493 96 23628.1 21999 1 1349.6 | 51.95|36.34|1.39/2.85 |6.78 |0.70
) 233 36 25278.6 | 24265 | 518.6 | 22.80|59.69|1.60|1.39 |14.13|0.40
6 490 87 45648.6 | 41273 | 1277.3 | 34.86 | 50.41 1 0.98 | 1.47 |12.14|0.14
7 217 43 6196.4 6022 |500.4 |84.20/1.18 [0.23|3.33 |5.22 |5.84
8 136 22 26517.3 1 256475|326.6 |16.02|61.12|3.42{4.21 |13.73|1.50
9 |159 30 14816.3 | 13827 | 389.0 | 34.35 | 35.45|2.79|2.29 | 22.82|2.30

https://github.com/iolab-uniud/hhcrsp

A Metaheuristic Approach for Homecare Routing and Scheduling 169

The results show that there is big variability among different instances, in
terms of total cost and distribution of the cost among the various components.
In particular, in some cases, the traveling cost is dominant (instances 3 and
7); in others, the tardiness component is dominant (instances 1, 5, 6, and 8).
Unsurprisingly, when the tardiness is high, also overtime is relevant because
some services are postponed after both the time window of the patient and the
working shift of the caregiver. This reveals the presence of either a significant
understaffing or a bad matching between patient needs and caregiver skills.

5 Conclusions and Future Work

We have extended a classic formulation of the homecare routing and scheduling
problem, creating a novel, more realistic problem, for which we created a new
dataset, properly split into training and validation instances, and a metaheuristic
method based on our previous work on the original formulation [1,2].

This is a preliminary work and for the future we plan to further refine the
general formulation, the cost components, and their weights, in order to capture
real-world situations. In parallel, we plan to improve our metaheuristic and to
hybridize it with exact methods, bringing forth a matheuristic approach.

Acknowledgements. This research has been partly funded by the European Union -
NextGenerationE U, under the project “Modeling and solving a real-world home health-
care routing and scheduling problem”.

References

1. Ceschia, S., Di Gaspero, L., Rosati, R.M., Schaerf, A.: Multi-neighborhood simu-
lated annealing for the home healthcare routing and scheduling problem (2023).
https://doi.org/10.21203 /rs.3.rs-4086164 /v1. preprint available at Research Square

2. Ceschia, S., Di Gaspero, L., Schaerf, A.: Simulated annealing for the home healthcare
routing and scheduling problem. In: Dovier, A., Montanari, A., Orlandini, A. (eds.)
AIxIA 2022. LNCS, vol. 13976, pp. 402—412. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-27181-6 28

3. Cissé, M., Yalgindag, S., Kergosien, Y., Sahin, E., Lenté, C., Matta, A.: OR problems
related to home health care: a review of relevant routing and scheduling problems.
Oper. Res. Health Care 13, 1-22 (2017)

4. Fikar, C., Hirsch, P.: Home health care routing and scheduling: a review. Comput.
Oper. Res. 77, 86-95 (2017)

5. Kummer, A.: A study on the home care routing and scheduling problem. Ph.D.
thesis, Universidade Federal do Rio Grande do Sul (2021)

6. Kummer, A., de Aratujo, O., Buriol, L., Resende, M.: A biased random-key genetic
algorithm for the home health care problem. Int. Trans. Oper. Res. 31(3), 1859-1889
(2024)

https://doi.org/10.21203/rs.3.rs-4086164/v1
https://doi.org/10.1007/978-3-031-27181-6_28
https://doi.org/10.1007/978-3-031-27181-6_28

170 S. Ceschia et al.

7. Lasfargeas, S., Gagné, C., Sioud, A.: Solving the home health care problem with tem-
poral precedence and synchronization. In: Talbi, E.-G., Nakib, A. (eds.) Bioinspired
Heuristics for Optimization. SCI, vol. 774, pp. 251-267. Springer, Cham (2019).
https://doi.org/10.1007/978-3-319-95104-1 16

8. Mankowska, D., Meisel, F., Bierwirth, C.: The home health care routing and schedul-
ing problem with interdependent services. Health Care Manag. Sci. 17(1), 15-30
(2014)

9. Soares, R., Marques, A., Amorim, P., Parragh, S.N.: Synchronisation in vehicle
routing: classification schema, modelling framework and literature review. Eur. J.
Oper. Res. 313(3), 817-840 (2024)

https://doi.org/10.1007/978-3-319-95104-1_16

®

Check for
updates

Solving the Two-Stage Robust Elective
Patient Surgery Planning Under
Uncertainties with Intensive Care Unit
Beds Availability

Salma Makboul (&)

LIST3N, Université de Technologie de Troyes, Troyes, France
salma.makboulQutt.fr

Abstract. This paper explores the intricate challenges of the elective
surgery scheduling problem, considering uncertainties in both surgery
duration and length of stay in the intensive care unit. We present a
novel two-stage robust approach employing the column-and-constraint
generation algorithm to address the master surgical schedule and surgery
case assignment problems under these uncertainties. Our approach dif-
fers from traditional methods by incorporating a specific modeling of
uncertainty using independent uncertainty sets and accounts for surgical
teams and resource availability. Comparative analysis with the cutting-
plane method demonstrates the effectiveness of our approach, offering
valuable insights for the enhanced management of uncertainties in elec-
tive surgery planning.

Keywords: Downstream Resource Constraint + Operating Rooms
Planning - Robust Optimization + Column-and-Constraint Generation

1 Introduction and Related Works

Surgical suites, comprising Operating Rooms (ORs), Post-Anesthesia Care Units
(PACU), and Intensive Care Units (ICU), play a crucial role in determining the
costs and revenues of a hospital facility [4,15]. The scheduling of elective patients
(those whose surgeries are anticipated in advance) poses a challenge due to var-
ious factors, including resource availability, limited capacity, and the stochastic
nature of surgeries and patients’ length of stay (LOS) in the ICU. Most literature
papers tend to concentrate on upstream resources, often overlooking the capac-
ity of post-surgery units. Surgery duration and LOS in the ICU, if post-surgery
units are considered, are typically treated as deterministic or, when considered
stochastic, follow a lognormal distribution. Our emphasis is on the limited lit-
erature that addresses approaches utilizing free probability distributions [3]. To
tackle the uncertainty, there are three primary frameworks: Stochastic Program-
ming (SP), Robust Optimization (RO) [12], and Distributionally Robust Opti-
mization (DRO) [13]. Recently, the two-stage modeling has gained particular
attention due to its efficiency, where the first-stage decision must be finalized
before the uncertainty is revealed. In contrast, the second stage, often referred

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 171-177, 2024.
https://doi.org/10.1007/978-3-031-62912-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_17

172 S. Makboul

to as recourse decisions, is decided after the first stage. Unlike a static app-
roach, the two-stage framework allows adjustments based on the information
received about uncertain data. Some papers in the literature have addressed the
advance scheduling using SP such as [6,7,17]. While other authors used static
RO, as referenced in [1,9,10]. [11] introduced the first and only two-stage RO
model for the Surgical Case Assignment Problem (SCAP), specifically focusing
on uncertainty in surgery duration and LOS in the ICU. The proposed approach
enables Operating Theater (OT) managers to adjust risk levels. They employed
an adapted Column-and-Constraints Generation (C&CG) algorithm to obtain
exact solutions. Due to the uncertainty set defined for LOS, which depends on
the first-stage decisions, the Cutting-Plane (CP) [8] and the standard C&CG
algorithm cannot be applied. Therefore, they have used an adapted C&CG to
solve the problem. Regarding DRO for SCAP, [14] proposed a Distributionally
Robust Elective Surgery Scheduling (DRESS) model to optimize elective surgery
assignments under uncertainties. They minimized costs in worst-case scenarios,
addressing issues like surgery delays, overtime, and ICU capacity limitations.
Numerical experiments demonstrated the effectiveness of employing DRO over
traditional stochastic programming, offering insights into managing uncertainties
with ambiguous probability distributions. The C&CG algorithm was introduced
by [16], inspired by Benders’ decomposition. It consists of identifying all the
scenarios and formulating the Master Problem (MP) by adding deterministic
constraints for every scenario, instead of using dual variables for the recourse
as proposed by [8]. C&CG has proven its efficiency compared to CP in solving
robust two-stage problems [16]. In this paper, we propose a two-stage robust
approach to address the elective OR planning under uncertainty associated with
surgery duration and LOS. We use a modeling of uncertainty that generates
optimal valid constraints. Subsequently, we tackle the problem using the C&CG
algorithm [16] and compare the results obtained with those from the CP algo-
rithm, using the symmetry breaking inequalities proposed by [14].

2 Solving the Two-Stage Robust Elective Surgery
Planning

To handle uncertainties, the OT manager can flexibly decide the number of
surgeries with deviations in duration and LOS. This approach, employing poly-
hedral uncertainty sets [2] and constrained by robustness budgets I’y and ;. The
uncertain surgery duration for each patient i of s € S (set of surgical spec1alt1es)
belongs to the range [ds, d;s + dls] (d;s is the nominal duration and dzs 1s the
lICU lICU + ZICU]

7718

maximum deviation), and the uncertain LOS to the range [/}

(If€U is the nominal LOS and IV is the maximum deviation), such as \;s and
7;s are the normalized deviations for surgery duration and LOS, respectively.
The uncertainty sets are explicitly defined as follows:

:d = {dzs e R" ‘ dis :ais +£Z\is)\i3az Z /\is < Fd70 <)\z’s < 1} (1)

SES €L,

Solving the Two-Stage Robust Elective Patient Surgery Planning 173

=ICU ICU IcU IcU
‘:j = Zis ERn‘ lis :liISCU"‘liISCUniSvZZnisSFhOST]is Sl
seSiely

~—
[\
~

Algorithm 1: C&CG algorithm for the robust elective planning

Initialization:
LB=—o00,UB= 400, K=0,0=2
Master: Solve the Master Surgical Schedule (MSS) (Master Problem)

min Z Z Z Z XisrjPisr + 1

SESIE€ELs reRU{r'}JET

s.t. > Z Z crjoifj + Z p]‘z;C Vk € O ; /* c: overtime cost, p: cost for denied ICU
reERFET JjeET
bed */

ST S Xie=1 VseS Viel.
reRU{r/'}JET
Add specialty-to-OR restrictions constraints
Add Limits on specialty parallelism constraints
Add OR sessions-per-specialty restrictions constraints

ST dfxiar; SO 40k, VreR VieJ VE<K; /* OR capacity */
SESIETs
J
SS3N 3 TisXisrjt SV 28 Vi€T VELK; /* ICU capacity */
SESIEIsTER ileT
j/>j7111SCU k
Xisrj € {0,1} VseS VieI, VreR VjeJVkE<K; /* +other MSS variables */

Obtain the optimal solution (X741, M5k 15 or*, . of 2t L zK*)

Set LB = ¢i57‘X;{+1 + "7;<+1
Recourse:
Solve the sub-problems that tackle uncertainty and get objective values Oj,, and Dy 4
Update UB = min{UB, qb,isrx}}Jrl + O;(Jrl + D}}Jrl}
if UB— LB < e then
| The optimal solution is found
else
Add-Cut:

Add variables offrl and zf+1 and the following constraints to the MP

K+1 K+1
S S SLRI Ny o
rERJET Ji€T
ST df M xiar SO 4SS WreR Vied
SES €Ty

J
K+1 .
220 DL TisXie S¥itE vied
sESIELs TER _7'/6.7
j’>j—l{SCU K+1

end

where df§+1 and lfSCU KF1 are the optimal scenarios solving the O% 11 and Die 4y
Update K +— K + 1,0 «— OU{K + 1} and go to Master.

Algorithm 1 provides the pseudo-code of C&CG for solving the two-stage
robust elective surgery planning under uncertainty. x;sr; is a decision variable
set to 1 if surgery i € Z, is assigned to day j € J (set of days) in room r € R
(set of ORs) and 0 otherwise, ' is a dummy OR for postponed patients. ¢;s, is
the assignment cost of patient i to OR r. O™2* is the capacity of the OR session,
and v; represents the number of available ICU beds on day j. r;s is 1 if patient
i € Z, requires an ICU bed and 0 otherwise. o,; is a decision variable capturing
the overtime in the OR session on day j € J and OR r € R, and z; is a decision
variable capturing the extra beds required in the ICU on day j. In each iteration,
the algorithm solves the MP, minimizing the cost assignment of patients to the

174 S. Makboul

OR while accounting for penalties related to uncertain parameters. The first-
stage decisions are obtained and used to derive the worst-case realization of
uncertain parameters through recourse formulations. This information is then
fed back into the MP by introducing new variables and constraints, leading to
an updated solution. The process continues until convergence, where the gap
between upper and lower bounds is within a specified value.

We solve the recourse problem O(Iy) to capture the worst-case cost under
surgery duration uncertainty. The model is a bilinear bi-level optimization prob-
lem. The outer problem maximizes over the uncertainty set (1) to find the
worst-case overtime scenario for surgery duration, while the inner level mini-
mizes overtime costs based on actual surgery duration. LOS recourse problem
D(I) is resolved with the same strategy as O(Iy).

max min Crjot (3)
S A< I0< A, <1 R
SESIEL,

Z Z(azs + C/Z\is)\is)Xisrj S Omax + Orj VreR V] € j (4)
seSicl,

orj >0 VreR VjeTg (5)
We reformulate O(Iy) as a MILP. Using strong duality, the linear inner-problem
(since is known in the second stage) can be written as a maximization problem.

Let u be the dual variable associated to constraint (4). (3-5) can be written as
a maximization problem as follows:

max} > {Z > (s + disXis)isrj — O™ [ur; (6)

reRjedJ s€eS i€l
SN N <Iu (7)
sES €L,
0 <upj <cpy VreR VjieJ (8)
0< N\ <1 VseS Viel, (9)

If I'y is an integer, then A* is binary (proof in [5]). Consequently, using the big-M
method, we define Tjs,; = Ajsttr;. The sub-problem O(I;) can be reformulated
as follows:

max Z Z Z Z (aiinsrjurj + C/l\iSXiS’I‘jESTj - Omazurj) (10)

reR jET s€S €T,
> D A<l (11)

s€Siel,
Uy <cj VreR VjeJ (12)
Tisri < MMAis VseS Viel, VreR VjeJ (13)

Solving the Two-Stage Robust Elective Patient Surgery Planning 175

Tisrj < Urj VseS VieZ, YreR VjeJ (14)

Tisrj > urj — (1 — Xis) M VseS Viel, YWreR VjeJ (15)
u; >0 VreR VjeJ (16)

Ais € {0,1} VseS Viel, (17)

Tisrj >0 Vse€S VieI, YreR VjeJ (18)

3 Computational Experience

In this section, we presents the results obtained using C&CG and CP with two
instances with 99, 124 patients and 10 ORs.

Table 1. Comparison between C&CG and CP algorithms for solving the two-stage
robust elective surgery planning problem

CLCG 3

instance Tu| 1] Obj value | # of Tter | Run time (s) | Gap (%) | # Sess| # of Cancel | Obj value | # of Tter| Run time (s) | Gap (%) | # of Sess | # of Cancel

(P99,R.10) [0 |0 | 7866 1 370 0 22 3.99 7866 3 430 0 22 3.95
2 |2 |8044 5 990 0 21 3.37 8044 8 1202 0 21 3.45
4 |4 8596 30 - 0.66 21 3.74 8654 583 - 2233 |20 3.56
6 6 | 8567 101 - 1.41 22 1.74 8693 2171 - 16.30 20 3.43
8 |8 [s612 75 - 0.70 22 1.56 8837 2063 |- 1336 |21 2.96
10 |10 | 8781 87 - 0.07 22 1.36 9055 2311 |- 1053 |22 2.14

(P.124, R.10) | O 0 |10536 3 305 0 28 5.42 10536 4 450 0 28 5.38
2 |2 |10598 |105 - 0.09 30 |421 10654 2072 |- 0.29 26 1.89
4 |4 10694 |74 - 0.94 28 13.60 10796 1354 |- 113 2 4.02
6 6 10767 71 - 1.48 29 2.80 10988 1420 - 2.18 26 3.42
8 |8 |10843 |60 - 1.53 30 |263 1099|2122 |- 271 2 3.52
10 |10 10945 |65 - 1.70 30 |231 1212|2345 |- 213 26 2.96

We use real-world data from five surgical specialties, focusing on instances
with 99 and 124 patients and 10 ORs. Tests are limited to 1h. The C&CG
and CP algorithms are implemented in the Julia programming language, using
the CPLEX solver for solving the MILPs. The dataset is available at https://
github.com/SMAKBOUL/RMSS. Results, presented in Table 1, highlight algo-
rithm performance metrics. (-) means that the run time reached one hour. Objec-
tive values increase with the Budget of Robustness (BOR), and both algorithms
maintain consistently low optimal gaps across different I'; and I} values. Can-
cellations are calculated following a Monte Carlo simulation, providing an idea
of planning risk and how much additional resources may be required. The risk
is lower as the BOR increases because of providing a more robust planning,
and expect a continuous decrease until reaching 0 cancellations with a very
high budgets in the worst case (in the extended results). The imposed Gap is
(e = l.e — 5). C&CG demonstrates efficiency with minimal objective values,
number of iterations and a lower gap, emphasizing its effectiveness and ability
to provide near-optimal solutions. Sensitivity to BOR parameter variations is
evident, impacting objective values. These findings contribute insights into OR
planning algorithmic performance and sensitivity to parameter tuning for OT
managers.

https://github.com/SMAKBOUL/RMSS
https://github.com/SMAKBOUL/RMSS

176 S. Makboul

4 Conclusion and Perspectives

Our paper introduces a robust two-stage approach using the C&CG algorithm for
elective surgery scheduling under uncertainties in surgery duration and LOS. The
method, emphasizing downstream resources, outperforms CP algorithm, provid-
ing valuable insights for enhanced risk management. The real-world experiments,
validate the effectiveness of our C&CG algorithm, providing near-optimal solu-
tions, with a maximum gap of (1.70%). Our work highlights the robustness of the
approach across different levels of BOR and sensitivity to parameter variations.
In future work, we plan to extend our analysis to more instances and budgets,
evaluating various metrics such as overtime, OT utilization rate, and additional
ICU using the C&CG algorithm. This expanded investigation aims to offer OT
managers more comprehensive information about risks, further improving elec-
tive surgery operational planning.

Acknowledgments. The author acknowledges the financial support for the
exploratory project “Research on robust optimization and its application FRORA”
provided by the Département de I’Aube, Troyes Champagne Métropole, and Univer-
sité de Technologie de Troyes under the grant [OPE-2024-0045].

References

1. Addis, B., Carello, G., Tanfani, E.: A robust optimization approach for the
advanced scheduling problem with uncertain surgery duration in operating room
planning - an extended analysis (2014)

2. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35-53 (2004)

3. Denton, B., Viapiano, J., Vogl, A.: Optimization of surgery sequencing and schedul-
ing decisions under uncertainty. Health Care Manag. Sci. 10(1), 13-24 (2007)

4. Denton, B., Miller, A., Balasubramanian, H., Huschka, T.: Optimal allocation of
surgery blocks to operating rooms under uncertainty. Oper. Res. 58(4-part-1),
802-816 (2010)

5. Horst, R., Tuy, H.: Special Problems of Concave Minimization. In: Global Opti-
mization: Deterministic Approaches, pp. 447-515. Springer, Heidelberg (1996).
https://doi.org/10.1007/978-3-662-03199-5_9

6. Jebali, A., Diabat, A.: A stochastic model for operating room planning under
capacity constraints. Int. J. Prod. Res. 53(24), 7252-7270 (2015)

7. Jebali, A., Diabat, A.: A chance-constrained operating room planning with elective
and emergency cases under downstream capacity constraints. Comput. Ind. Eng.
114, 329-344 (2017)

8. Kelley, J., James, E.: The cutting-plane method for solving convex programs. J.
Soc. Ind. Appl. Math. 8(4), 703-712 (1960)

9. Lalmazloumian, M., Baki, M., Ahmadi, M.: A robust multiobjective integrated
master surgery schedule and surgical case assignment model at a publicly funded
hospital. Comput. Ind. Eng. 163, 107826 (2022)

10. Makboul, S., Kharraja, S., Abbassi, A., El Hilali Alaoui, A.: A two-stage robust
optimization approach for the master surgical schedule problem under uncertainty
considering downstream resources. Health Care Manag. Sci. 25, 63-88 (2022)

https://doi.org/10.1007/978-3-662-03199-5_9

11.

12.

13.

14.

15.

16.

17.

Solving the Two-Stage Robust Elective Patient Surgery Planning 177

Neyshabouri, S., Berg, B.: Two-stage robust optimization approach to elective
surgery and downstream capacity planning. European J. Oper. Res. 260(1), 21-40
(2017)

Poss, M.: Robust combinatorial optimization with variable cost uncertainty. Euro-
pean J. Oper. Res. 237(3), 836-845 (2014)

Shehadeh, K.: Data-driven distributionally robust surgery planning in flexible oper-
ating rooms over a wasserstein ambiguity. Comput. Oper. Res. 146, 105927 (2022)
Shehadeh, K., Padman, R.: A distributionally robust optimization approach for
stochastic elective surgery scheduling with limited intensive care unit capacity.
European J. Oper. Res. 290(3), 901-913 (2020)

Shehadeh, K., Padman, R.: Stochastic optimization approaches for elective surgery
scheduling with downstream capacity constraints: models, challenges, and oppor-
tunities. Comput. Oper. Res. 137, 105523 (2022)

Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-
and-constraint generation method. Oper. Res. Lett. 41(5), 457-461 (2013)
Zhang, J., Dridi, M., El Moudni, A.: A two-level optimization model for elective
surgery scheduling with downstream capacity constraints. European J. Oper. Res.
276(2), 602-613 (2019)

q

Check for
updates

Extracting White-Box Knowledge
from Word Embedding: Modeling
as an Optimization Problem

Julie Jacques®)® and Alexander Bassett

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
{julie.jacques,alexander.bassett.etu}@univ-lille.fr

Abstract. Explainability is crucial to building the confidence of the
medical team to adopt natural language processing (NLP) techniques.
In the majority of recent studies in medical informatics, Deep Learn-
ing performed better than other machine learning (ML) techniques for
natural language processing (NLP) on medical documents. However, the
generated models are black-box models difficult to explain. One of these
models is word embedding which allows a representation of text and
words as vectors, which makes them more exploitable by machines. This
paper proposes a new method to add explainability to word embedding.
We propose a modelization as an optimization problem. The first results
on the text8 dataset and 5 target words show the local search can obtain
explanations with an improvement of cosine similarity by 11% to 30%.

Keywords: Word Embedding - Optimization Problem - Local
Search - Explainable Artificial Intelligence

1 Introduction

Deep neural networks have led to many advances in computer science in recent
years. In the majority of recent studies in medical informatics, Deep Learn-
ing performed better than machine learning (ML) for natural language process-
ing (NLP) on medical documents [8]. In recent years, different methods have
been proposed to perform word embedding, including neural networks. Word
embedding allows words and text documents to be represented more richly, by
vectorizing them. This vector representation makes the texts more exploitable
by machines. Several word embedding techniques have been proposed such as
Word2Vec [5], BERT [2] which works in word sub-units, or GPT-3. Despite a
growing interest in XAI (explainable AI) in medicine [1], models generated by
a majority of ML methods - including word embedding - are black-box models
that are difficult to explain. However, explainability is fundamental to building
the confidence of the medical team to adopt NLP techniques [7].

Meta-heuristics have often been used to solve NP-hard problems, such as big
data problems [3]. They allow high flexibility in the modeling of the repre-
sentation of a solution and its evaluation, which is particularly adapted to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 178-183, 2024.
https://doi.org/10.1007/978-3-031-62912-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_18&domain=pdf
http://orcid.org/0000-0001-6260-9629
https://doi.org/10.1007/978-3-031-62912-9_18

Local Search for Word Embedding Explanations Extraction 179

generate explainable solutions. One strength of word embedding is the abil-
ity to express semantic analogies using simple arithmetic on vectors, such as
king — man + woman ~ queen. This capacity has been verified on real data,
such as medical data [4]. We propose to add explainability by exploring the vec-
tor representation using combinatorial optimization. This is preliminary work
on non-medical data, before an extension on clinical documents.

The main contribution of this paper is to propose a novel method to extract
white-box knowledge from word embedding. We approach the problem as an
optimization problem. The paper is organized as follows: first, we present some
background on word embedding and the associated vector representation. Sec-
ondly, we detail our proposed modeling and the associated components for a
resolution with a local search. Finally, we present several first results obtained
by our proposed method on text§ dataset.

2 Background on Word Embedding

1) Textual o 3)
Documents = fos-s-eew z. g. g
— 5 g 2
— E 3 g : = 3 king
=—|| [man | [-08[-09[08].. [095 |
=
] woman | [07 [-09[07[.. [094 man queen
= |||[2Werdavec ‘
E;:' [king | o9 |03 |o6|.. |092 woman
S e—)
= lqueen | [085]02 [07].. [0.93
E=—V |] 0 J | J
-_— word vector representation 2D projection of vector

representation

Fig. 1. Representation of words, their corresponding word vector, and projection in
2D

In 2013, Mikolov et al. introduced Word2Vec: a new method to learn high-quality
word vectors for datasets composed of billions of words [5]. Each word is repre-
sented by a vector of a fixed dimension (from 50 to 600 dimensions, depending
on their experiments). One of the aims of this representation is that two words
with a similar meaning should be represented in a close way. It turns out that
the resulting representation is even richer, as it allows algebraic operations to be

performed on vectors. As an illustration, King — Man + Woman is the closest

180 J. Jacques and A. Bassett

representation of Queen. Moreover, this representation preserves semantic rela-
tionships between words: the relation between France to Paris is the same as
Germany is to Berlin. Figure 1 shows an illustration of the process. Word2Vec
is trained on a set of documents (steps 1) and 2)) which generates the word
vectors (step 3). Step 3 illustrates the obtained text embedding: some words and
their associated vector representation (here 4 dimensions are illustrated). Each
dimension can be associated with meaning, for example queen and king have a
strong positive association to the royalty dimension. Each dimension has been
labeled for illustration purposes, but the word embedding discovery process does
not give any clue to the interpretation of the dimensions. On the 2D projection
on the right, we can observe that the relations between the words are preserved:
it is the same between man and woman than between king and queen.

Senel et al. proposed an approach called Bilmp to train word embedding
with interpretable dimensions [10]. Since word embedding can be costly to train,
we want to propose a method that can be plugged into the pre-trained word
embedding such as Word2Vec (or BERT [2] in the future). Zhang and Ogasawara
proposed an interesting approach based on Grad-CAM that highlights the words
the model pays attention to when making predictions [9]. However, it needs to
be plugged into a supervised classification task, which is not the case with the
method we propose in this paper.

3 A Combinatorial Optimization Model to Extract
White-Box Knowledge from Word Embedding

3.1 Solution Modeling

Our proposed method is applied after step 3) in Fig. 1. After training Word2Vec
on a set of textual documents, a set of vectors V (01, vs, . .., v,) is obtained. Each
v; € V is matching a distinct word of the textual documents. We formulate the
knowledge extraction from word embedding for a given target word T eV as
finding 5 defined as 5 = Zv_’sevs,ﬁeva Vo — v. where § is a combination of
words to add (V,, C V) and words to remove (Vs C V) from the vocabulary V'
that maximize cosine_similary(?,?) As an illustration, on Rouen University
Hospital data with 641 279 documents, Word2Vec generates a vocabulary V of
355 597 words [4]. This represents 1,51 x 1027 candidate solutions 5" of 5 words.

Solution Representation. A solution S can be seen as variable-length sets of
tokens to add (tokeng;) or remove (token,;) to approximate a target token T':

+{token,1,tokengs, ..., tokeny, } — {token,1, token,a, ..., token,,, } ~ target
As an illustration, the analogy presented previously can be represented as:

+{king, woman} — {man} ~ queen

Local Search for Word Embedding Explanations Extraction 181

Evaluation Function. In text mining, cosine similarity is frequently used to
determine the proximity between two text documents [6]. It can be used on text
vectors as well. A value close to 1 indicates that the two vectors are collinear
and therefore have a similar meaning. A value close to —1 indicates the texts are
opposite. In our case, we want to maximize the similarity between the solution
S and the target T

S-T
cosine similarity (S, T') = W

3.2 Resolution with a Local Search

Neighborhood. The vocabulary V is the set of all tokens for which we have a
vector in Word2Vec representation. The neighborhood ensures that every token
contained in V' can be introduced into a solution S. The neighborhood of S is the
set of all solutions with a 1-token difference from S. To avoid bloat we ordered
the neighbors to prioritize token suppression and token replacement:

— suppression: remove a token from the set of tokens to add, or tokens to sub-
tract. ie : +{king, woman} ~ queen or +{king} — {man} ~ queen

— replacement: replace a token from the solution S by another token from the
vocabulary V. i.e.: +{king, woman} — {cat} ~ queen

— addition: add a token from the vocabulary V to solution S. i.e.:
+{king, woman} — {man, cat} ~ queen

Local Search. We choose a simple Hill Climbing approach with a first improve
strategy: the first encountered enhancing neighbor is chosen as the next solution.
The associated algorithm is given in Algorithm 1. The algorithm is initialized
with a random solution of 6 tokens, distributed in the two sets of tokens to
add or subtract. At each iteration, the neighborhood of the current solution
is generated. It is scanned in order until an improving neighbor is found. The
stopping criterion is when all the neighborhood of the current solution have been
visited without an improvement of the cosine similarity.

Algorithm 1. Local Search for Word Embedding Explanations
Require: vocabulary V, target token T'
S « selects 6 random tokens from V
N « generate neighbors of S
while len(N) > 0 do
if cosine_similarity(N[0],T) > cosine_similarity((S,T) then
S «— N[0]
N « generate neighbors of S
else {next neighbor}
remove N|[0] from N
end if
end while

182 J. Jacques and A. Bassett

4 Experiments and Results

This experiment aims to investigate if the proposed algorithm could find better
semantic analogies than those suggested in Word2Vec paper. We create 5 seman-
tic analogies inspired by relations presented in the Word2Vec paper. They are in
Tab 1 with the cosine similarity obtained with their associated target. For each
target, the local search is executed 50 runs. The training of the Word2Vec is
done using Python Gensim Library, on the dataset text§ which is an extraction
of the first 10® bytes of Wikipedia. The default parameters are used: vector_size
= 100, epoch = 5, window = 5. After training, the vocabulary is composed of
71290 tokens. The experiments are carried out on an Apple M1 Pro with 32 GB
of ram.

Table 1. Average and standard deviation of cosine similarity (CS), iterations, and
seconds obtained by Local Search over 50 runs for each of the 5 targets

Example Analogy Local Search
CS CS iterations seconds

queen king-man+woman 0.731 | 0.827 £0.017| 9.560 =£1.643|53.228 +74.508
berlin paris-france+germany 0.797 || 0.811 +0.019| 9.980 +1.363|46.543 +11.025
brother | sister-woman-+man 0.706 || 0.847 £0.011 | 9.680 £1.91139.697 +8.912
euro dollar-usa-+europe 0.556 || 0.838 £0.019|10.240 =£1.813|46.560 =+14.015
athens | oslo-norway-+greece 0.635| 0.831 £0.015|10.420 =£1.401 | 50.697 +43.576

Table 2. Best solutions obtained by Local Search (with maximum cosine similarity
with target)

queen 0.887 king +lord +-elizabeth +princess -freiherr

berlin 0.867 german +-city +works +germany +boulder +hobhouse -tortilla
brother 0.884 son +brothers +sister +nephew

euro 0.891 currency +european +standard +dollar -detective

athens 0.871 city +age +greek +bethlehem -cd -gene

Table 1 gives for each target the average and standard deviation of cosine
similarity, number of iterations, and elapsed time in seconds obtained by the
local search. Local search obtains solutions with better cosine similarity than
the initial solutions, in a reasonable time and number of iterations, with gains
from 11% to 33% (except for target berlin where the proposed solution does
not improve cosine similarity more than 1%). Table 2 gives the best solution in
terms of cosine similarity obtained by the local search over the 50 runs. For
reasons of space we will not detail all the solutions obtained, but among all
the solutions obtained by LS, the ones with the best cosine similarity sometimes
introduce strange associations, like “-detective” for “euro”. It could be caused by

Local Search for Word Embedding Explanations Extraction 183

the cosine similarity which may not be the best-adapted measure for this task.
Another hypothesis is that the dataset used for training Word2Vec is too small:
some words are not very frequent, which can lead to irrelevant associations.

5 Conclusion and Further Research

In this paper, we proposed a novel method to extract white-box knowledge from
word embedding, with modeling as an optimization problem. The first results
on the text8 dataset and 5 target words show that the proposed method can
improve the cosine similarity by 11% to 33% by finding better explanations. One
perspective of this work would be to apply it to larger datasets, particularly in
healthcare, to assess whether it can generate new hypotheses or explanations
for specific patient profiles or diseases. Evaluation criteria other than cosine
similarity can also be considered, to see if a multi-objective approach can find
interesting solutions. Since Word2Vec, more complex methods like BERT [2] and
GPT have been proposed, in which a word can have multiple vectors, depending
on the context: it could be interesting to study how to adapt the modeling.

References

1. Combi, C., et al.: A manifesto on explainability for artificial intelligence in
medicine. Artif. Intell. Med. 133, 102423 (2022)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding (2019)

3. Dhaenens, C., Jourdan, L.: Metaheuristics for data mining: survey and opportuni-
ties for big data. Ann. Oper. Res. 314(1), 117-140 (2022)

4. Dynomant, E., et al.: Word embedding for the French natural language in health
care: comparative study. JMIR Med. Inform. 7(3), 12310 (2019)

5. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Rep-
resentations in Vector Space (2013)

6. Singhal, A., et al.: Modern information retrieval: a brief overview. IEEE Data Eng.
Bull. 24(4), 35-43 (2001)

7. Sobanski, V., Lescoat, A., Launay, D.: Novel classifications for systemic sclerosis:
challenging historical subsets to unlock new doors. Curr. Opin. Rheumatol. 32(6),
463-471 (2020)

8. Wu, S., et al.: Deep learning in clinical natural language processing: a methodical
review. J. Am. Med. Inform. Assoc.: JAMIA 27(3), 457-470 (2020)

9. Zhang, H., Ogasawara, K.: Grad-CAM-based explainable artificial intelligence
related to medical text processing. Bioengineering 10(9), 1070 (2023)

10. Senel, L.K., Sahinug, F., Yiicesoy, V., Schiitze, H., Cukur, T., Kog, A.: Learn-
ing interpretable word embeddings via bidirectional alignment of dimensions with
semantic concepts. Inf. Process. Manag. 59(3), 102925 (2022)

)

Check for
updates

A Hybrid Biased-Randomized Heuristic
for a Home Care Problem with Team
Scheme Selection

1(x) 2 1

Ana Raquel de Aguiar , Maria Isabel Gomes*@®, Téania Ramos"®),

and Helena Ramalhinho?

! Centre of Management Studies for Instituto Superior Técnico (CEGIST),
Universidade de Lisboa, Lisbon, Portugal
a.raquel.aguiar@tecnico.ulisboa.pt
2 Center for Mathematics and Applications (NOVA Math) and Department
of Mathematics, NOVA SST, Caparica, Portugal
3 Department of Economics and Business, Universitat Pompeu Fabra,
Barcelona, Spain

Abstract. The increasing demand for home care services imposes effec-
tive human resource management. The problem concerns the creation of
teams of one or two caregivers, serving patient requiring one or two care-
givers. The number of teams of each type makes up the team scheme. A
single-caregiver team can synchronize for tasks requiring two caregivers.
Introducing a novel methodology, we employ a biased-randomized greedy
constructive algorithm for route design, comparing it with its hybridiza-
tion with a local search algorithm. Then, the performance of the hybrid
method is compared with that of a mixed integer linear program model
and a biased random-key genetic algorithm implementation.

Keywords: Heuristic - home care - VRPTW - synchronization

1 Introduction

This study is focused on the home care routing and scheduling, specifically how
synchronization can be used to better assign caregivers to teams and serve more
patients [1]. Previous approaches, such as biased random-key genetic algorithms
(BRKGA) [2], failed to balance solution quality and computational time when
extended into multi-period. This led to a search for a better solution methodology
and improved characterization of component performance.

A novel biased-randomized greedy constructive (BR-GC) algorithm is intro-
duced, enhanced with a swap local search (LS) algorithm (hBR-GC), to address
these shortcomings. It aims to improve solution quality and computational effi-
ciency compared to existing methods. In doing so, we aim to answer the following
research questions: 1) What are the solution quality and computational perfor-
mance variations resulting from hybridizing the BR-GC with LS?, 2) How does
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 184-189, 2024.
https://doi.org/10.1007/978-3-031-62912-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_19&domain=pdf
http://orcid.org/0000-0002-4381-0981
http://orcid.org/0000-0003-2033-7367
http://orcid.org/0000-0002-2321-2431
http://orcid.org/0000-0003-3174-3432
https://doi.org/10.1007/978-3-031-62912-9_19

A HBR-GC for a Home Care Problem with Team Scheme Selection 185

hBR-GC’s performance measure against a mixed integer linear program (MILP)
model’s solution? and 3) How does hBR-GC compare to the BRKGA?

The plan is for the hBR-GC to become the component for generating initial
solutions for an implementation of an Iterated Local Search (ILS) algorithm,
justifying the characterization of this component.

2 Solution Methodology

A set of patients requires one daily task provided at home, i € N¢, associated to
a duration, W;, a time-window, [e;, l;]. Tasks requiring one caregiver are placed
by semi-dependent (SD) patients, i € Ng whereas bedridden (BR) patients’ tasks
require two, ¢ € Ng. All tasks are classified as either SD or BR: Ng = NgUNGg.

The care is provided by a homogeneous set of A® caregivers, with a maximum
shift length, H, starting and finishing their routes at the day-care center. There
are () cars available. The organization assigns the caregivers to teams, k € V, of
either one or two caregivers, denominated single, k € Vg, and double, k € Vp,
teams respectively Set V' = VsUVp, where |Vs| = min{Q, A°} and |Vp| =
min{Q, |4~ J} The number of teams on the solution is at most equal to Q.
Parameter M, represents the number of caregivers in each team.

The decisions concern task allocation to teams, selecting the team scheme,
when to synchronize, and visiting sequence. The choice of team scheme is influ-
enced by factors like the ratio between SD and BR services and their geographical
distribution. The objective function is given by Eq. 1. If an SD service is assigned
to a double team, the objective function will incur a penalty since the service
duration is multiplied by the caregivers assigned to the task. The parameter
T;; represents the travel time between two locations, and decision variable x;;
equals 1 if team k travels from node ¢ to node j, and 0 otherwise.

mm Z Z ij + Wi) My (1)

keV i,jeEN

Exact Approach (MILP) - One of the solution methodologies tested is the
MILP implementation of the mathematically formulated model available in [1],

corresponding to scenario with synchronization and without continuity of care
(wSyn_woCC), using the modeling software GAMS 34.2 and CPLEX 20.1.

BRKGA - The BRKGA encodes solutions using a vector of random-key val-
ues ranging from 0 to 1, with each value corresponding to a gene’s allele. A
decoder translates these keys into solutions, which are categorized into Elite
and Non-Elite groups. Evolutionary operations, including mutation and uniform
crossover, generate offspring, with one parent selected from each group. Offspring
inherit alleles from Elite parents with a higher probability. Then, the BRKGA
explores the solution space by iteratively evolving the population, until meeting
a stopping criterion. Its modular design distinguishes the problem-independent
evolutionary routine from the problem-dependent fitness evaluation, facilitating
adaptation to different problems and simplifying implementation.

186 A. R. de Aguiar et al.

The initial population and the decoder are the relevant components of the
BRKGA in [2]. The initial population is homogeneous, with allele values uni-
formly distributed between 0 and 1, sequentially assigned based on increasing
values of e;. The decoder is a deterministic GC algorithm. It inserts tasks into
routes with the least-cost insertion. For each task, it determines the insertion
strategy (insertion stg) by applying function insertion _strategy. It begins by
checking if it’s SD or BR. For SD tasks, insertion is tested in every route; for
BR tasks, insertion is tested in double routes or a pair of single routes for syn-
chronization. If feasible insertions are found, the solution is updated with the
least-cost insertion. The insertion _strategy function ensures compliance with
time window and shift length constraints, returning oo if constraints are not
respected. update sol function updates the partial solution by inserting the
new task and updating the solution attributes. The algorithm iteratively checks
team availability during insertions until all caregivers are assigned (see line 3),
then fixes the team scheme. Function final update adds the costs between the
last task in each route and the day-care center.

Algorithm 1 : The Greedy Constructor

Require: O, ¢

1: current_solution = initialize_solution(A, Q)

2: for task € O do

3 if check _teamScheme__ feasibility(current _solution) then
4: insertion stg= insertion_strategy(task, current solution)
5: if feasible(inserion stg) then
6.

7

8

current _solution < update sol(current solution, insertion _stg, task)
else return None

: end if
9: end if
10: end for

11: current solution <« final update(current solution)
12: return Least-cost Solution

BR-GC and hBR-GC - The BR-GC method extends the GC of the BRKGA
with a new routine to enhance solution diversity. Its framework is displayed in
Algorithm 2. The routine adds biased randomness when constructing the task list
OF fed to the GC. Tasks are randomly selected from the § remaining tasks with
earliest e;. This step promotes diversity compared to BRKGA’s homogeneous
initial population, exploring a broader range of team schemes and accelerating
feasible solution discovery. After the CG application a feasible solution is added
to the sol list, until reaching o applications, then sorting the feasible solutions
and returning the best. The hBR-GC applies LS after the GC phase (between
lines 8 and 9). The LS algorithm involves swapping two tasks within the same
route. A feasible move must secure dependencies resulting from synchronization.

A HBR-GC for a Home Care Problem with Team Scheme Selection 187

Algorithm 2 : The framework of the BR-GC
Require: o, § , task_list

1: sol list «Initialize solutions list; £k =1

2: while k£ <o do

3: Initialize list O®

4: while task list not empty do

5: i +— Randomly select one of the § tasks with the lowest e; from task list
6: Append i to OF; Remove i from task_list

7 end while

8: new_sol «— greedyConstructor(OT)

9: Append new _sol to sol_list; k+ =1

10: end while
11: Sort sol_list by cost return Least-cost Solution

3 Results

The results presented in this section for the exact method were obtained in a
workstation with an Intel(R) Core(TM) i9-10850K CPU @ 3.60 GHz 3.60 GHz
and with a RAM of 128 GB, whereas the results for the heuristic method were
obtained on a computer with Intel(R) Core(TM) i5-8500 CPU @ 3.00 GHz 3.00
GHz processor and 8 GB of RAM. The instances used are the same as in [2]. For
each of the instances, the methodology is implemented from scratch in Python
and run for 5 seeds.

1) What are the solution quality and computational performance vari-
ations resulting from hybridizing the BR-GC with LS? The parameter
settings for size-25 instances are o = 3000 and § = 4, and for size-50 instances,
o = 6000 and § = 8. The average OF performance variation between BR-GC
and hBR-GC for size-25 instances is —1.1%, and for size-50 instances, it’s —1%
Table 1. Regarding runtime, both algorithms take 2s for size-25 and 18s for
size-50 instances, with hBR-GC showing a negligible increase. The application
of hBR-GC increases runtime by 1.5% for size-25 and 0.7% for size-50. Including
LS after BR-GC yields an average OF improvement of around 1%, with negligible
impact on runtime, which diminishes relatively with instance size. Consequently,
subsequent analysis focuses on hBR-GC.

2) How does hBR-GC'’s performance measure against a traditional
MILP solution? The comparison between the MILP model and hBR-GC
focuses on size-25 instances due to the inability to obtain solutions for size-
50 instances within two hours using the exact method. For size-25 instances,
hBR-GC found optimal solutions in 5 instances and reached the memory limit
in the rest Table 2. On average, hBR-GC solutions had a 6.9% higher objective
function (OF) value than MILP. However, hBR-GC required only 2s on average,
while MILP took 9.4k times longer (18 772s). The best solution from multiple
hBR-GC runs was around 5.3% worse than the MILP method. Running hBR-
GC five times to initiate an ILS would yield good starting points with an average
runtime of 10s. More time would be required for larger instances.

188 A. R. de Aguiar et al.

Table 1. Objective Function results for size-25 and size-50 instances. avg-average, min-
minimal OF value within 5-seed runs. Avg - average performance over all instances.

Size-25 Size-50

BR-GC hBR-GC variation(%) | BR-GC hBR-GC variation(%)
Id |min |avg min |avg | min avg min avg min avg min avg
1 762 | 770.9 |755.5|763.8| —0.9% —0.9% | 1414.9 | 1423.8 | 1407.0 | 1415.3 | —0.6% | —0.6%
2 740.2|749.64 | 725.5 | 740.2 | —2.0% | —1.3% | 1232.5|1245.1 | 1212.7| 1230.1 | —=1.6% | —1.2%
3 822.1/830.02 | 802.3 | 818.0 | —2.4% | —1.4% | 1509.6 | 1524.5 | 1502.7 | 1514.7 | —0.5% | —0.6%
4 877.9|885.92|866.7|879.0 —1.3% | —0.8% | 1561.7 | 1568.1 | 1544.2 | 1557.4 | —1.1% | —0.7%
5 657 |662.96 | 638.7|653.1 | —2.8% | —1.5% | 1198.2|1208.1 | 1161.5 | 1187.9| -3.1% | —1.7%
6 919.3]935.04 | 918.6 | 928.8 | —0.1% | —0.7% | 1730.4 | 1748.1|1709.7 | 1730.6 | —1.2% | —1.0%
7 693.3]699.28 | 677.2 | 683.1 | —2.3% | —2.3% | 1269.6 | 1282.8 | 1242.3 | 1261.9 | —2.2% | —1.6%
8 714 | 729 707.9|722.8| —0.9% | —0.8% | 1323.4 | 1333.0 | 1295.3 | 1313.0 | —2.1% | —1.5%
9 888 1902.62|880.3|898.7| —0.9% | —0.4% | 1637.2 | 1650.5 | 1626.5 | 1633.3 | —0.7% | —1.0%
10 845 |859.62|845.0851.4|0.0% | —1.0% |1475.1|1485.0 1461.2 | 1478.4| —0.9% —0.4%
Avg |791.9|802.5 | 781.8/793.9 —1.3% | —1.1% 1435.3 | 1446.9 | 1411.3 | 1427.1 | —1.4% | —1.0%

Table 2. Comparison between hBR-GC and Exact method (MILP). avg-average, min-
minimal OF value within 5-seed runs. Avg - average performance over all instances.
Bolt OF for MILP represents optimality.

hBR-GC MILP Variation(%)
OF RT
Size |Id |min |avg | min|avg| OF RT min_OF |avg_ OF |avg RT
25 |1 |755.5/763.8/2.2 |2.2 |742.7/13094 |1.7% 3% —100.0%
7725.5 740.2 2.1 | 2.1 |651.2 11301 |11.4% 14% —100.0%
'3 802.3818.0 /1.5 1.6 766.1 918 4.7% 7% —99.8%
4 866.7 879.0 1.8 |1.8 825.2 21346 5.0% | 7% —100.0%
5 638.7 653.1 /2.7 2.7 | 604.9 7546 5.6% 8% —100.0%
6 | 918.6 928.8 2.4 2.4 888.7 20887 | 3.4% 5% —100.0%
7 677.2/683.1/1.4 | 1.4 | 620.1 2407 9.2% 10% —99.9%
'8 |707.9 722.8 1.7 | 1.7 688.6 20516 | 2.8% 5% —100.0%
9 880.3 898.7 2.3 2.3 852.9 48415 | 3.2% 5% —100.0%
ﬁ845,0 851.42.2 2.2 |798.1 (41292 |5.9% 7% —100.0%
Avg 781.81793.9(2.0 | 2.0 |743.9 |18772.2|5.3% 6.9% —100.0%

3) How does hBR-GC compare to the BRKGA? For comparison between
hBR-GC and BRKGA, see Table 3 for summarized results. Due to space con-
straints, the full table isn’t provided, but [2] contains BRKGA results. Objective
function values are similar on average, with a negligible variation of about 0%
for size-25 and 2% for size-50. This difference between instance sizes may relate

A HBR-GC for a Home Care Problem with Team Scheme Selection 189

to parameter settings; § = |0.15|N¢|| and o proportional to the reasonable
value of 3000 found for size-25. Increasing o could improve solution quality for
size-50 but also affect runtime. Despite this, hBR-GC achieves solutions close to
BRKGA quality with about 90% less runtime on average. A slightly higher o
could significantly improve solution quality with a small impact on RT.

Table 3. Summary of results comparing the hBR-GC and BRKGA

Average Variation(%)
Objective Funtion | Runtime OF RT
size | hBR-GC | BRKGA | hBR-GC | BRKGA | min | avg |\ min | avg
25 |793.9 795.0 2.0 23.0 0% 0% | —91% | —91%
50 |1427.1 1409.0 |18.3 187.2 1% 2% | —90% | —90%

4 Conclusions and Future Work

In conclusion, including LS after BR-GC yields an average OF improvement of
around 1%, with negligible impact on runtime. Notably, the hBR-GC achieves
solutions close to the MILP method with significantly less runtime. Comparison
with BRKGA shows similar objective function values, with hBR-GC requiring
about 90% less runtime on average. Adjusting parameter o could further improve
solution quality with minimal impact on runtime. Overall, hBR-GC presents a
promising solution for solving the routing and scheduling optimization, warrant-
ing its exploration as a component of an ILS metaheuristic within a methodology
to solve a rich VRPTW with synchronization and team-scheme selection.

Acknowledgments. This study was funded by: Ph.D. Grant SFRH/BD/148773/
2019; UIDB/00297/2020; UIDP/00297/2020; UIDB/00097/2020.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. de Aguiar, A.R.P., Ramos, T., Gomes, M.I.: Home care routing and scheduling
problem with teams’ synchronization. Socioecon. Plann. Sci. 86, 101503 (2023).
https://doi.org/10.1016/j.seps.2022.101503

2. Aguiar, A.R., Ramos, T., Gomes, M.I.: A biased random-key genetic algorithm for
the home care routing and scheduling problem: exploring the algorithm’s configu-
ration process. In: Almeida, J.P., Geraldes, C.S., Lopes, I.C., Moniz, S., Oliveira,
J.F., Pinto, A.A. (eds.) IO 2021. Springer Proceedings in Mathematics & Statis-
tics, vol. 411, pp. 1-21. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
20788-4 1

https://doi.org/10.1016/j.seps.2022.101503
https://doi.org/10.1007/978-3-031-20788-4_1
https://doi.org/10.1007/978-3-031-20788-4_1

Optimization for Forecasting

®

Check for
updates

Extended Set Covering for Time Series
Segmentation

Vittorio Maniezzo®)

Department of Computer Science, University of Bologna, Via dell’Universita 50,
47521 Cesena, Italy

vittorio.maniezzo@unibo.it

Abstract. Time series analysis plays a critical role in data analytics, an
effective modeling of nonlinear trends is essential for obtaining action-
able results, notably for forecasting and missing values imputation. The
segmentation of time series and the corresponding detection of change
points stand out for their practical implications. This paper presents
preliminary results of a study on the applicability of mathematical pro-
gramming, and in particular matheuristics, to time series segmentation.

Keywords: Time series - Set covering - matheuristics - segmentation -
change point detection

1 Introduction

Time series analysis plays a critical role in the field of data analytics, revealing
patterns, trends, and anomalies in a variety of fields ranging from finance and
healthcare to environmental monitoring and industrial processes. The inherent
sequential nature of time series data requires specialized techniques for effective
analysis and interpretation. Time series segmentation and the associated change
point detection are key tools in this context, providing a means to decompose
complex temporal data into meaningful segments for in-depth analysis.

The process of time series segmentation [5] involves dividing a continuous
time series into distinct, non-overlapping segments, each characterized by homo-
geneous patterns or behaviors. This decomposition not only facilitates a clearer
understanding of the underlying structure within the data, but also enables the
application of targeted analytical methods to each segment, potentially increas-
ing the accuracy of predictions and insights.

Segmenting a time series involves identifying points of change in the series
[1,8]. Time series often exhibit temporal shifts, transitions, or abrupt changes
that carry critical information. The process of change point detection serves as
a central tool for uncovering these moments, enabling a deeper understanding of
the underlying dynamics and facilitating timely responses to emerging patterns.
Change points identify events in a time series where the statistical properties of
the data undergo a significant change. These changes can manifest themselves
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 193-199, 2024.
https://doi.org/10.1007/978-3-031-62912-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_20&domain=pdf
http://orcid.org/0000-0002-1220-1235
https://doi.org/10.1007/978-3-031-62912-9_20

194 V. Maniezzo

as shifts in mean, variance, or other structural characteristics, and thus indicate
transitions in the underlying processes. Effective change-point detection methods
therefore contribute not only to the understanding of evolving trends, but also
to the prediction of future behavior and the identification of anomalous events.

The identified segments can correspond to any pattern of interest, but
because of its computational efficiency and immediacy of understanding, linear
regression plays a predominant role. Segmentation into linear intervals is known
as piecewise linear regression [4]. Unlike traditional linear regression models,
piecewise linear regression recognizes the presence of distinct segments in the
data, each characterized by its own linear trend. This approach is particularly
valuable because it can capture nonlinear components, such as shifts, abrupt
changes, or varying slopes, that may exist within the evolution of a phenomenon.

The importance of time series segmentation becomes apparent when deal-
ing with real-world applications, where the complexity of temporal patterns
often requires nonlinear models. Because of its importance, several approaches
have been proposed for time series segmentation and change point detection,
including classical statistical techniques, Bayesian approaches, machine learn-
ing algorithms, and hybrid models. This paper presents a new possibility, using
Mixed-Integer Programming (MIP) to derive a model for optimal segmentation.
Given the non-polynomial nature of the method, a Lagrangian matheuristic is
also derived.

Through the presentation of real-world applications and case studies, the
paper illustrates the versatility of MIP-based change point detection in address-
ing domain-specific challenges. Applications ranging from financial markets to
epidemiology to environmental modeling are presented, and challenges and com-
mon obstacles such as noise, irregularities, and the curse of dimensionality are
briefly addressed. This research is still in progress, so its strengths and weak-
nesses cannot yet be fully determined, but current results already testify to the
viability of the approach.

The paper introduces the MIP model and its Lagrangian relaxation in Sect. 2,
some obtained computational results in Sect.3 and provisional conclusions in
Sect. 4.

2 An Extended Set Covering Model

The core idea of the model presented here is to list all subsequences of series
values that satisfy specific structural constraints, in the following denoted as fea-
sible runs of values, quantify a quality measure of each run, and select the subset
of runs that collectively cover the entire series while minimizing a cost of the
difference between actual and model data (the model residuals) or maximizing
a model fitness measure. This is the core of the model, further constraints can
be added to accommodate specific desiderata on the model, taking advantage of
the modeling flexibility of mixed-integer programming and the effectiveness of
state-of-the-art general MIP solvers [2].

A Set Partitioning Problem (SPP) is at the core of the model, where the
objective is to minimize the cost of the residuals and the constraints ensure that

Extended Set Covering for Time Series Segmentation 195

each point of the series has a corresponding one in the model. Note that no
assumption is made about the nature of the model of the segments, it can be
linear regression, giving rise to piecewise linear regression, but also any other
nonlinear model. It is also possible to use different models for different runs at
no cost to the optimization process. The SPP is defined over a set X = [z;], j =
1,...,nruns of binary decision variables, each associated with one of the runs,
i.e., of the segments. The generation of feasible runs can already implement some
dominance, e.g. avoiding the generation of runs with too few or too many values.
The cost ¢; of each run can be computed according to any of the fitness measures
proposed in the literature, including R?, SER, x2, RMSE, simple variance etc.
The constraints ensure that each point of the series is covered by a selected run.

Unfortunately, the number of feasible runs for a real-world application can
be very large, and the SPP can take an unacceptable amount of time to solve.
Therefore, we relax the equality constraints into inequalities, transforming the
problem into a Set Covering Problem (SCP), which can typically be solved in
much higher dimensions, at the cost of having multiple runs covering some of the
series points, therefore requiring a postprocessing to get a feasible segmentation.
The resulting TSSC (standing for Time Series Set Covering) model is the follow-
ing, where coefficients a;; are 0/1 coefficients taking the value of 1 if and only if

run j covers the i-th series point, i € {1,...,npoints} and j € {1,... nruns}.
nruns
(TSSC) zrssc = min Z CiT; (1)
j=1
nruns
s.t. Z a;jxr; > 1, t=1,...,npoints
j=1
)
nruns
Z zj < mazxruns (3)
j=1
z; € {0,1}, j=1,...,nruns

(4)

State-of-the-art MIP solvers are very effective on SCP, but very large
instances can still require high computational times. We have therefore also
implemented a Lagrangian matheuristic [6] on the TSSC problem, relaxing all
constraints (2) by associating a Lagrangian penalty \; to each i-th constraint,
1 < i < npoints, and keeping only constraint (3) in the model. This results in
model LTSSC (standing for Lagrangian TSSC) and we solved it by a subgra-
dient algorithm, where the subproblem is very easy to solve, requiring to select
at most the maxruns most negative variables at each subgradient iteration. A
simple fixing heuristic takes the incumbent subproblem solution at each itera-
tion, which can be infeasible because it does not cover all relaxed constraints,
and adds selected variables until it becomes feasible.

196 V. Maniezzo

3 Computational Experience

We implemented models TSSC and LTSSC in C++ and ran them on a Windows
11 Intel i7 machine equipped with 32 Gb of RAM. The MIP solver used was
CPLEX 22.11. All codes and data are available from the project repository.

The computational results reported here, still to be considered as prelimi-
nary, are mainly obtained on environmental monitoring data series, which ini-
tially prompted this research. The series were produced in the context of the
SMARTLAGOON project, an EU H2020 project, born with the primary objec-
tive of developing a tool to allow real-time monitoring, analysis, to predict socio-
environmental evolution of the vulnerable area Mar Menor, which is the largest
saltwater coastal lagoon in Europe. [7]. Within the framework of the project,
smart buoys were deployed in the lagoon and their sensors generated series on
12 attributes.

The sensed variables used here are: the steam pressure (Vapor-Pressure-Avg),
the average wind speed (WS-ms-Avg), water temperature measured by a thermis-
tor at the depth of 0.5 m (ThermTempl-Avg), water temperature measured by
oximeter at different depths (1 m - Wtemp-C1-Avg, 3m - Wtemp-C2-Avg), water
temperature measured by conductimeter at the depth of 1m (SDI-Temp-1m),
minimum current in the battery (IBatt-Min), average and maximum tempera-
ture obtained by a datalogger panel temp thermocouple (PTemp-C-Avg, PTemp-
C-Max) and average charging voltage (V-in-chg-Avg). The overall dataset was
recorded from August 2022 to April 2023. We complemented these datasets with
two others from different domains: economics (bitcoin-US dollar exchange rate,
BTC-USD) and healthcare (COVID infections in Italy, Covid-Italia-22) to get a
first indication of the generality of the approach across domains.

Table 1. Data series results

Dataseries npoints | nruns | nsegm | truns | tsolve | QMSE | QMSE1 | QMSE2
Vapor-Pressure-Avg | 194 15400 |6 0 1 0.90 1.14 1.03
Vapor-Pressure-Avg-2 | 1139 618828 | 7 30 832 2.85 3.26 3.32
WS-ms-Avg 1139 618828 | 2 30 1136 | 162 193.03 |210.80
ThermTempl-Avg 194 15400 |8 0 1 5.12 5.98 na*
Wtemp-C1-Avg 1139 618828 | 19 30 1212 | 13.89 22.63 na*
Wtemp-C2-Avg 194 15400 |8 0 1 50.75 68.15 na*
SDI-Temp-1m 1139 618828 | 21 30 1354 | 15.06 25.06 na*
IBatt-Min 194 15400 0 1 3.19¢-3 | 5.29¢-3 | 3.27e-3
PTemp-C-Avg 194 15400 0 1 46.40 68.56 58.12
PTemp-C-Max 194 15400 0 1 114.24 |139.61 |125.09
V-in-chg-Avg 194 15400 |2 0 1 9.20 9.38 9.38
BTC-USD 366 60378 |12 3 4 1.88e7 | 7.51e7 |2.42e7
Covid-Italia-22 507 109746 | 5 - 11 5070.95 | na na

Extended Set Covering for Time Series Segmentation 197

The results are summarized in Table 1. The columns show the name of the
series (Dataseries), the number of data points (npoints), the number of generated
runs (nruns), the number of chosen segments (nsegm), the CPU time in seconds
to generate all runs (truns), the CPU time in seconds to generate all runs (truns),
the CPU time to solve the extended SCP model (t¢solve), and a quasi RMSE
quality measure of the solutions obtained by the algorithm described in Sect. 2,
QMSE, and, for comparison, the same measure for the solutions obtained by the
codes of [3], QMSE1, and of [4], QMSE2. A comparison with the results from
Ruptures [8] is being finalized and will be presented at the conference. Data with
asterisks require special comments, which are incompatible with the page limit
of this note, but will be presented at the conference and in the full version of
the paper, na’s mean that no feasible solution was produced.

3) PTemp_C_Avg - costVar

2) IBatt_Min - costVar

* Original data —-0.34
—— OLS segments . + Original data

30
— OLS segments

-0.36
-0.38
254
-0.40
204 -0.42

-0.44

154

—0.46

-0.48

101

0 50 100 150 200 0 50 100 150 200

(a) Average temperature (b) Minimum battery current

Fig. 1. Environmental dataseries

Not surprisingly, the set partitioning model could always produce the better
solution, as it was the only algorithm that explicitly used the proposed cost
function for optimization. More interesting is the limited computational time
needed to solve instances with up to a few hundred variables, while the “curse
of dimensionality” becomes apparent when solving instances with more than
1000 variables. The healthcare instance, here only a validation case, proves that
the approach is also effective for nonlinear segmentation, but the search for
optimal fitting parameters requires a very high CPU time. The Figs. 1 show the
solution for two environmental data series, while the Figs.2 show the two non
environmental data series.

198 V. Maniezzo

1) BTC-USD - costVar

« Original data Negative binomial fit

— - runl
OLS segments j 175000

run2

35000
m— run3

150000 — rund
= run5

30000 4 . m* . 125000 m—actual data
o t
5 }M‘ ,"ﬁﬁa} 100000
k)
25000 4 : ? d
AX 75000

“ 50000
20000 . ¢
25000

15000 4 o

0 50 100 150 200 250 300 350 400

(a) Bitcoin - USD exchange rate (b) Covid Italy 2022

Fig. 2. Economics and healthcare dataseries

4 Conclusions

The paper presents an MIP-based approach, both a Lagrangian matheuristic
and an exact model, to time series segmentation. The underlying mathematical
model is able to adapt to different requirements on the resulting model, making
it more tolerant to residuals or more representative of short trends. The analysis
imposes no constraints on the model associated with each segment, which can be
linear, polynomial, or defined on any distribution function of interest. It can even
be a combination of different models, allowing for linearity on some segments
and, for example, exponential increases on others.

This flexibility comes at the cost of having to solve a NP problem on large size
instances. The increase in effectiveness of general MIP solvers allows to consider
the solution of real-world instances to optimality, and it also provides the basis
for the design of mathematically grounded heuristics. We report preliminary
results on sensor data series obtained in an environmental monitoring, but also
two experiments on financial and healthcare use cases.

The results so far provide only a first indication of the possibilities offered
by mathematical models, but also of the difficulties to be overcome. Besides
the obvious limit imposed by the NP-hardiness of the problem (the “curse of
dimensionality”), which is only partially alleviated by heuristic solving, there are
problem-specific issues to be faced, such as which cost function to use or which
constraint to impose on the runs. In fact, the final result is only indirectly deter-
mined by our model, and there are still cases where results are unsatisfactory
to the eye, even though they are numerically satisfying. Current results have
already proven useful in the motivating application domain, both for missing
value imputation and for short-term forecasting, obtained by decomposing the
series down to the last segment and using the identified components to extend
it into the near future. Moreover, these results do not seem to be affected by the
application domain.

Extended Set Covering for Time Series Segmentation 199

Acknowledgements. This work has been supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No 101017861,
SMARTLAGOON project (smartlagoon.eu).

References

1. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point
detection. Knowl. Inf. Syst. 51, 339-367 (2017)

2. Fischetti, M., Lodi, A., Salvagnin, D.: Just MIP it!. In: Maniezzo, V., Stiitzle, T.,
VoB, S. (eds.) Matheuristics. Annals of Information Systems, vol. 10, pp. 39-70.
Springer, Boston, MA (2009). https://doi.org/10.1007/978-1-4419-1306-7 _2

3. Keogh E.J., Chu S., Hart D.M., Pazzani M.J.: An online algorithm for segmenting
time series. In: Proceedings of the 2001 IEEE International Conference on Data
Mining, San Jose, CA, USA, 2001, pp. 289-296 (2001)

4. Keogh E.J., Chu S., Hart D.M., Pazzani M.J.: Segmenting Time Series: A Survey
and Novel Approach (2002). https://api.semanticscholar.org/CorpusID:8365617

5. Lovri¢, M., Milanovié¢, M., Stamenkovié¢, M.: Algorithmic methods for segmentation
of time series: an overview. J. Contemp. Econ. Bus. Issues 1(1), 31-53 (2014). ISSN
1857-9108. Skopje

6. Maniezzo, V., Boschetti, M.A., Stiitzle, T.: Matheuristics, Algorithms and Imple-
mentations. EATOR, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
70277-9

7. The Smartlagoon project. https://www.smartlagoon.eu/. Accessed December 2023

8. Truong, C., Oudre, L., Vayatis, N.: Selective review of offline change point detection
methods. Signal Process. 167, 1-20 (2020)

https://doi.org/10.1007/978-1-4419-1306-7_2
https://api.semanticscholar.org/CorpusID:8365617
https://doi.org/10.1007/978-3-030-70277-9
https://doi.org/10.1007/978-3-030-70277-9
https://www.smartlagoon.eu/

Quantum Meta-Heuristic for Operations
Research

q

Check for
updates

Indirect Flow-Shop Coding Using Rank:
Application to Indirect QAOA

Gérard Fleury', Philippe Lacomme! ™, and Caroline Prodhon?

1 Université Clermont Auvergne, Clermont Auvergne INP, UMR 6158 LIMOS, 1 rue de la
Chebarde, 63178 Aubiere, France
{gerard.fleury,philippe.lacomme}@isima.fr
2 Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex,
France
caroline.prodhon@utt. fr

Abstract. The Flow-Shop Scheduling Problem (FSSP) is one of the most famous
scheduling problems. The Flow-Shop scheduling problem is a disjunctive prob-
lem, meaning that a solution is fully described by an oriented disjunctive graph
where the earliest starting times are computed with a longest path algorithm. We
propose a new approach based on Quantum Approximate Optimization Algorithm
(QAOA) to find high quality solutions to FSSP instances using a vector represen-
tation. This approach permits to solve the well-known Carlier’s instances with 64
operations to schedule. All the experiments have been achieved using the Qiskit
library and carried on the IBM simulator. Presently, quantum methods cannot
compete with classical ones because we lack quantum computers capable of solv-
ing large instances, and we have yet to figure out how to integrate the vast body
of research results accumulated in flow-shop resolution over the last few decades
into quantum algorithms. The ability of quantum approaches to effectively solve
optimization problems in the future depends both on technical advancements in
quantum machines and on the capacity to incorporate theoretical findings from
scheduling into quantum optimization strategies.

Keywords: QAOA - IQAOA - Flow-Shop - Indirect representation - rank

1 Introduction

The Flow-Shop Scheduling Problem (FSSP) stands as a well-known optimization chal-
lenge extensively applied in manufacturing scheduling scenarios. It involves a collection
of n jobs (i = 1, n) to be processed across m machines (j = 1, m). Each job comprises a
sequence of tasks associated with specific machines, defining the problem’s dimensions
as typically represented by n x m. Additionally, the FSSP adheres to several constraints:
(1) prohibiting concurrent execution of multiple tasks within a job; (ii) restricting each
machine to handle only one operation simultaneously; (iii) mandating job operations to
follow a predetermined sequence without interruptions once initiated. Every operation
Oj;, associated with job i and rank j, has a designated duration, p;;. The primary objec-
tive revolves around scheduling these operations, considering precedence constraints,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 203-218, 2024.
https://doi.org/10.1007/978-3-031-62912-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_21&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_21

204 G. Fleury et al.

to minimize the total makespan (Cj,4;). Notably, the problem complexity escalates to
NP-hard status when m > 3, as verified in [1]. While the sequence of operations on
machines remains independent of jobs, the durations p;; vary based on the jobs. An
effective problem representation is the disjunctive graph model introduced by Roy and
Sussmann [2] and applied to scheduling in 1978 [16].

The utilization of the disjunctive graph model enables the visualization of any job
shop problem instance via a directed graph denoted as G = (V, A, E). Here, V signifies
the set of nodes, A represents conjunctive arcs, and E denotes pairs of disjunctive arcs.
The node set encompasses elements for each operation Oy, a source node (0) linked to the
initial operation of each job, and a sink node () connected to the final operation of each
job. Conjunctive arcs depict the scheduling of operations within jobs, linking consecutive
operations in the same job. Disjunctive arcs, on the other hand, connect operations from
different jobs, designated to be handled on the same machine. A solution can be depicted
by an acyclic subgraph encompassing all conjunctive arcs and one disjunctive arc for
each pair within the set of disjunctive arcs. An optimal solution is derived from the
feasible subgraph that minimizes the makespan.

The classical flob-shop scheduling problem makes the following assumptions:

A job comprises a finite number of operations.

The processing time for each operation on a specific machine is predefined.

The sequence of machines used by the operations is the same for all job.

Each machine executes each job only once.

A machine can handle only one job at a time.

Interruptions are not permitted until the completion of every operation within each
job.

e Interruption or preemption is prohibited.

e No due date constraints are specified.

e There are no setup or tardiness costs associated.

A solution is fully defined by.

o the definition of the earliest starting times s7; ; that meet the Job-shop constraints;
o the definition of the same sequence of jobs on all the machines.
e An optimal solution is modeled by a feasible subgraph with the minimal makespan

Cmcuc .

The flow-shop problem received a lot of attention for decades and recent publica-
tions focus on flow-shop extensions including for example maintenance and release time
[10], delay [11], due-date [12]. Depending on both objective and constraint, numerous
review exists in the literature including but not limited to [13] for distributed permuta-
tion flow-shop, [14] for multi-objective hybrid flow-shop, [15] for the multi-objective
permutation flow-shop [16]. The fundamental principles of modeling and solving the
flow-shop problem were introduced very early in J. Carlier’s publication in 1978 [16].

The mathematical formulation of the Flow-Shop is based on x;; a binary variable
that value one if the job i is schedule before the job j and O if not and on St;; variable
that model the starting time of operations O;; which refers to the j™ operations of job i.
The classical MILP model (that is a special case of the Manne’s formulation [24]) is as

Indirect Flow-Shop Coding Using Rank 205

follow with M is a large integer value that must be an upper bound of the makespan.

min Cpuy
ey
Vi=1.nVj=1.m Sl‘,:/' > St,',j_l + pij—1
Vi=1.n,Vk =1.n, Stj > Stij+pij+M.(xg —1) ?)
Vji=1..mlk #i Stij > Sty j + pi,j + M xig
Vi=1.nVk =1..n,Vj=1l.mlk #i xjx +xp; =1 3)
Vi=1.n Cpax > Stim + Pim 4)

Numerous alternative formulations have been introduced for the flow-shop [22, 23]
and tackle numerous objective and additional constraints including for example the flow-
time, batch or assembly operations. The major considerations on MILP for scheduling
come from the early publication of Wagner [25]. The paper is organized into two sections.
Section 2 introduces the method of resolution based on the rank (indirect representation
of solution) and the Indirect QAOA approaches used to solve the Flow-Shop. Numer-
ical experiments are presented at the end of the Sect. 2 including resolution of several
instances of Carlier. Section 3 is a conclusion.

2 Indirect Flow-Shop Coding Using Rank

2.1 Graph Modeling

Let’s explore a Flow-Shop instance comprising 3 jobs and 3 operations as detailed in
Table 1. This table presents the operations set for each job, along with the corresponding
machine (mp, mp, or m3) and the processing duration on that specific machine. The
order of operations establishes an identical sequence on the machine (independent of
the job), yet with varying processing times. For instance, Job 1 necessitates 10 time units
on Machine M1, while Job 2 requires 15 time units on Machine M 1. The modelization
of a flow-shop takes advantages of the disjunctive graph commonly used in flow shop
and are based on the same construction rules using disjunctive arcs to model resource
constraint. The job-shop modelization is described in numerous publications including
for example [9].

Table 1. Example of FSSP instance data

Jobs Operation 1 Operation 2 Operation 3
i=1 (my, 10) (my, 35) (m3, 25)
i=2 (mq, 15) (my, 8) (m3, 14)
i=3 (m1, 100) (mp, 1) (m3, 10)

206 G. Fleury et al.

A disjunctive graph that depicts the problem is composed of solid-line arc linking two
consecutive operations (Oi, i3 Oi, j+1) that symbolizes the sequential constraint within job
i. These arcs are weighted by the minimum time delay between the starting times of two
consecutive operations: st; j11 > st; ; + p; ;. Every set of disjunctive arcs is commonly
represented by a dashed line, defining the constraint between two operations planned to
be processed on the same machine.

Fig. 1. Oriented disjunctive graph.

One acyclic conjunctive graph is given in Fig. 1 where all operations in disjunction
(one set per machine) are reduced to disjunctives arcs modeling the sequencing of opera-
tions processed on the same machine. The left-shifted solution (semi-active) is obtained
by execution of one longest-path algorithm that permits to compute the earliest starting
times of operation st; ;. The starting time of operation * is 136 and the full solution is
defined by the starting time of all operations.

2.2 Quasi-Direct Representation

A solution can be derived from the full order of job that defines a quasi-direct repre-
sentation of a solution. The solution of Fig. 3 is derived from the order Job 1 first, Job
2 s and Job 3 last. The significance of establishing a specific and direct solution rep-
resentation has long been emphasized. Notably, in the subsequent publication of [3],
the authors explicitly outlined that a quasi-direct representation allows definition of:
(1) a coding space and (2) a solution space. As stressed by [3], an effective mapping
function should associate any element within the coding space with a solution that meet
constraints. Whatever the mapping function used, a flow-shop solution is defined by a
directed disjunctive graph. Computing the longest path within this graph determines the
earliest starting times of operations, defining a semi-active solution.

2.3 Indirect Representation of Solutions

Resolution of scheduling problem based on quantum approaches focus on problems that
are the corner stone of the scheduling theory. In 2016, the resolution of the job-shop

Indirect Flow-Shop Coding Using Rank 207

introduced in [18] is based on a time-indexed quadratic unconstrained binary optimiza-
tion problem (QUBO). The potential resolution is evaluated in the scientific report of
Carughon, Dacrema and Cremonesi in [19]. The experiments have been achieved on
Dwave. QUBO formulation are well-known to require a set of appropriate weighted
terms for each constraint included in the objective function. The recent publication [20]
focuses on Quantum Annealing and include both job-shop and flow-shop instances for
the experiments taking advantages of one Hamiltonian formulation. In [21] the authors
demonstrate how to efficiently apply QAOA to the Job-Shop and introduce numeri-
cal experiment proving that JSPP resolution on gate-based computer remains possi-
ble. Research related to the application of quantum approaches to scheduling problems
encompasses both modeling and implementation aspects. Scheduling problems stand out
as a favored domain for quantum technology application, primarily due to their highly
combinatorial nature most of the time. Our proposition is a methodological proposal
aiming to define a new resolution perspective based not on modeling as a Hamiltonian
of the function to minimize, but on the rank of solutions. The objective is to achieve
compact circuits using few gates that can be used on current machines for classical
instances found in literature. This is why we will utilize the concept of rank as defined
in [4] and an approach resembling IQAOA (Indirect QAOA). The indirect representa-
tion of a solution can harness the inherent one-to-one relationship between permutations
and a concept known as subexceedant functions, ultimately simplifying the modeling of
permutation ranks using a single integer. Various methods exist for establishing this one-
to-one correspondence, with the most renowned being the Lehmer code, also referred to
as the inversion table. An algorithmic description of this approach is initially presented
in Knuth’s work from 1981 [5].
f is the subexceedant [6, 7] function defined by:

f (@) is the number of indices j < i such that 0; < o;
Obviously the following remarks holds (subexceedant function):
Vi=1.n0<f@G) <i

Let a permutation o in f. The subexceedant function f related to o can be obtained
by iteratively scanning o and by assigning f[i] = o[i] at each iteration. The remaining
elements of o that occurs on the right of i, such that o []] > f (i), have to be decreased of
one unit, to ensure that at the position i+1 to n the number are in the interval [0; n — i]. A
algorithm description of both computation of f from one permutation o and computation
of a permutation o from f has been provided lately in [4].

208 G. Fleury et al.

Algorithm 1. Compute_f£f ()

Input parameters:
o : a permutation of nm element
[n] : the interval

Output parameters:
f : the subexceedant function

Begin
For i=n—1 to 1 do
flil = ali]
For j=i—1 to 0 do
If (o[j] >i) then
aljl=oljl -1
Endif
EndFor
EndFor
Return f
End

Algorithm 1. Conversion of o into a subexceedant function f

Algorithm 2. Compute Permutation ()
Input parameters: -

f : a subexceedant function

[n] : an interval
Output parameters:

o : a permutation of n elements
Local parameters:

v : an ordered list of n elements beginning at 0
Begin
v=[n—-1n-2,..,10]
o=l
For i=n—1 to 0 do
x=f(i)
y=v(x)
ofi] =y
v=v-{y}
EndFor
Return o
End

Algorithm 2. Computation of gy where f is subexceedent.

The total number of solutions is n! and represents the total number of job-
permutations with one job-permutation that fully defined a disjunctive oriented graph
that models a solution. Let us consider x € [0; n! — 1] a rank in the list of permutations.
To any rank x € [0; n! — 1], it is possible to defined the subexceedant f composed of
decomposition in the factorial basis and by consequence the permutation o and finally
a solution [6].

Contrary to QAOA [8] that requires a Hamiltonian that defines the function to min-
imize and that required potentially a large number of gates, IQAOA only required a
Hamiltonian that models the ranks leading to very compact circuit with a very low num-
ber of gates and qubits. The IQAOA algorithm uses ,5 and y weights parametrized a

. . 2
quantum state ‘go (ﬁ ,)7)> that defines a solution rank x with probability ‘<x|¢ (,B ,)‘/’)))

and an expectation value <<p (E ,)7) |CP|gp (B ,)7)) evaluated by sampling. Each shot gives
a rank in the list of Flow-Shop solution list that can be evaluated by transforming the

Indirect Flow-Shop Coding Using Rank 209

rank into the corresponding permutation and the permutation into a fully oriented dis-
junctive graph. For a fixed E , ¥, the quantum computer is to defined the state ‘(p (,5 ,)7))
and a measure in the computational basis is required to obtain a string x that permits to
evaluate <g0 <,§ ,)7) |CP|e (B ,)7)) The main interest lies in simultaneously manipulating

all ranks (i.e., indirectly over all solutions) through the associated probability distribu-
tion. Traditional resolution of scheduling problems requires traversing a portion of the
solution space, with common operators defined to transform one solution into another
(consider, for instance, mechanisms like operation permutations situated on the critical
path to generate neighbors). The challenge of exploring a subset of the solution space
vanishes with quantum approaches: the difficulty lies in modeling it as a Hamiltonian
and determining the angles associated with the probability distribution.
The binary representation of rank is

n)
rank =) x;.2 with x;

j=0)
e {0; 1}
with
1 & ;
Hp =5 ; (ld — 7). (6)

The algorithm principle is illustrated on Fig. 2. IQAOA efficiency relies on the
following key-points:

%
e The capability to give a good ratio between the estimation C”(B, 7) as regards as

the number of shots required that have to tuned carefully.
- —
e The best found distribution ‘w(,B*, y*)) must be estimated on a small subset of

solutions as regards as the total number of solutions to avoid a costly enumerations,
i.e. the algorithm must converged to the optimal and quasi solutions meaning that a
large part of probabilities are on the optimal or high quality solutions.

= =
e The availability of a dedicated method to computed the (/3* , y*).
e The number of qubits p such that 27 > n! and the circuit required a small number

of gates to encode a permutation on the quantum circuit as regards the circuit length
required using the classical QAOA approach.

- —
The best parameters (B, y*) are computed using the C_GRASP x ELS introduced
in [4] with the following parameters:

e Minimization of the expectation value of the decile plus the expectation value of the
distribution meeting the remark of [4];

e The parameters np = 10, ne = 10, nd = 5 for the first C_GRASP x ELS execution
to optimize simultaneously B and y with np the number of GRASP iteration (restart),
ne number of ELS iterations and nd number of neighborhoods.

210 G. Fleury et al.

Iterations

1) Define p i.e. the number of
alternations between Hp
and Hp
2) Define trl? initial weight

(Bo,70)

Hamiltonian definition Quantum circuit

H=Hp+ Hp

Best found weight (3',7;)

A4

One permutation One qubit string a Be?t found)
mapped into I ZEEEEEE——— Sampling a“rzﬂwimgffi','
One rank p y

> —

8,7

Fig. 2. IQAOA principles [4].

e The parameters np = 10, ne = 10, nd = 5 for the first C_GRASP x ELS execution
to optimize 7 only with np the number of GRASP iteration (restart), ne number of
ELS iterations and nd number of neighborhoods.

e During the local search both A E and Ay vary from 0.1 to 0.001 but the value 0.001
is slowly decreased (divided by 10) at each iteration neighborhood generation.

e The quantum circuit is used with p = 2.

e 80 shots are used to evaluate the probability distribution.

e at the end of the optimization, 1000 shots are used to estimate the probability
distribution.

The C_GRASP x ELS is an adaptation of the GRASP x ELS to non-discrete function
and the GRASP x ELS is a hybridization between a GRASP (Greedy Adaptative Search
Procedure) introduced early by [26] with an ELS (Evolutionary Local Search) introduced
in [27]. Note that the results introduced in this paper are not strongly method dependent
since similar outcomes have been achieved using a genetic algorithm, pushing us to

- =
consider the possibility that numerous methods could be employed to compute (B*, v*).

Nevertheless, this study does not concentrate on the optimization method, which is a
highly specialized research domain. Typically, in QAOA-based approaches, parameter
optimization is accomplished using somewhat of a black-box method. We did not perform
any specific optimization of the method’s parameters: the parameters were set following
a simple experimental study. Determining the parameters and designing a dedicated
method is a separate and distinct subject.

The experiments have been achieved using the Carlier’s instances that are available
in the OR Library:

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

2.4 Resolution of the Carlier 7 Jobs 7 Machines Instance

The Carlier 7 x 7 is a flow-shop (with 7 jobs and 7 machines) defining a total of 49
operations to schedule. The total number of permutations is 7! = 5040 but there is only
1693 different costs (Table 2).

http://people.brunel.ac.uk/%7Emastjjb/jeb/info.html

Indirect Flow-Shop Coding Using Rank 211

Table 2. Instance Carlier 7 jobs — 7 machines

MO M1 M2 M3 M4 M5 M6
692 310 832 630 258 147 255
581 582 14 214 147 753 806
475 475 785 578 852 2 699
23 196 696 214 586 356 877
158 325 530 785 325 565 412
796 874 214 236 896 898 302
542 205 578 963 325 800 120

A sampling of permutations proves the high quality solutions have a very low prob-
ability (Fig. 3) and we note that, for example, the optimal solution 6590 [17] has a
probability of about 0.019.

0.2

0.18

0.16
014 0,04
0.12
0,02
0,1
0.08 0 - =
0.06 6590 7090 7590

0,04

0.02

0 sl o o

6590 7090 7590 8090 8590 9090 9590

Fig. 3. Initial distribution (Car_7_7)

After the IQAOA execution, the sampling with 1000 shots gives 6550 with 194 shots
(Table 3) meaning that about 19.4% of the probabilities is now on the optimal solution:
the amplification is about 900 times (Table 3). These results prove that IQAOA succeeds
into transforming the amplitude of an initial distribution into that of a target state (Fig. 4).

The rank 3281 correspond to the permutation

o =1[54,2,67731]

with a makespan of 6590. Note that the final distribution shows that the optimal solution
which values 6590 has a probability about 19% .

The partial representation of the solution introduced in Fig. 5 shows the operations
scheduled at each machine, where the jobs are executed in the order defined by o. Each
starting time is defined as the maximal value between the previous operation of the job
and the previously scheduled operation on the machine.

The job 4 on the machine M 1 starts at 483 where 483 = max (158 + 325; 158 + 23)
since:

212

G. Fleury et al.

03

0.2
0.15

0.1

0 ..u..xL N P AT A | el

6590 7090 7590

8090 8590 9090 9590

Fig. 4. Final distribution of solutions (Car_7_7)

Table 3. Instance Carlier 7 jobs — 7 machines

Cost Number of shots Probabilities (%)
6590 194 19.4
6772 6 0.6
6878 1 0.1
6905 0.5
6917 0.5
6972 104 10.4
7010 10 1.0
e the job P4 cannot start before the end of P5 on M1 i.e. not before 158 (earliest starting

time of PS5 on M1) plus the processing time of P5 on M1 that values 325.

the job P4 cannot start before the end of P4 on MO i.e. not before 158 (earliest starting

time of P4 on MO) plus the processing time of P4 on MO that values 23.

Indirect Flow-Shop Coding Using Rank 213

483 1013

P5

P2 5 1 P6

158 762

Fig. 5. Partial representation of the optimal solution

2.5 Resolution of the Carlier 8 Jobs 8 Machines Instance

The Carlier 8 x 8 is a flow-shop with 8 jobs and 8 machines defining a total of 64
operations to schedule. The total number of permutations is 8! = 40320 but there is only
1996 different costs.

Similarly to the previous Carlier’s instance, a sampling of permutations leads to a
very similar conclusion (Fig. 6): we have only a probability of 1.47% to find a solution
with a makespan lower than 8866 meaning that we have only 1.47% of chance to be at
less of 6% of the optimal solution.

After the IQAOA execution, the sampling with 1000 shots gives 8366 [17] with
17 shots meaning that about 1.7% of the probabilities is now on the optimal solution:
the amplification is about 685 times. These results prove that IQAOA succeeds into
transforming the amplitude of an initial distribution into that of a target state (Fig. 7).

The numerical experiments push us to consider that it is possible to define a proba-
bility distribution that focuses on high-quality solutions, as emphasized, for instance, in
Fig. 8.

It is important to note that the parameters have been fixed after a brief numerical
study and should require a specific attention. All the experiments have been achieved
using Qiskit (IBM) using the simulator.

214 G. Fleury et al.

008 0.02
0.07
0.06 O'Ol
005
0 N .JJ
004 8366 8866

[l ll.l..LJLLu_[PR

L

assss 8866 9366 9866 10366 10866 11366
100
90
80
70
60
50
40
30
20
10
0

8366 8866 9366 9866 10366 10866 11366

Fig. 6. Initial distribution (Car_8_8) and cumulative function

8366 8866 9366 9866 10366 10866 11366

Fig. 7. Final distribution of solutions (Car_8_8)

2.6 Resolution of the Carlier 8 Jobs 9 Machines Instance

The Carlier 8 x 9 is a flow-shop with 8 jobs and 8 machines defining a total of 72
operations to schedule. The total number of permutations is 8! = 40320 but there is only
1996 different costs.

Indirect Flow-Shop Coding Using Rank

120

100
cumulative probabilities after
optimization

80

60

40

20

8366 8866 9366 9866

distribution

10366

10866

cumulative probabilities for initial

11366

Fig. 8. Cumulative probabilities (comparison)

50

40

30

20

8230 8730 9230 9730 10230

Fig. 9. Initial cumulative distribution (Car_8_9)

10730

11230

11730

11866

12230

215

The cumulative distribution of Fig. 9 proves that the probability to have a solution

with a cost lower that 8730 is about 0.002%.

0.18
0.16
0.14
0.12

0.1
0.08
0,06
0,04

0.02

0 AR T

8230 8730 9230 9730 10230

Fig. 10. Final distribution of solution (Car_8_9)

10730

11230

11730

12230

216 G. Fleury et al.

100 .

vl "
90 P e
final cumulative function " yd
80 4 ,/
! /
70 J‘ /
~ / initial cumulative function
60
i J 7/
f
50] //
40 ~ /
/
/
30 a
a /
2 ,/
‘ /
P
10 S
I~

0 o=

8230 8730 9230 9730 10230 10730 11230 11730 12230

Fig. 11. Final cumulative function (Car_8_9) as regards the initial one

After the IQAOA execution, the sampling with 1000 shots gives a probability of
27% (Fig. 10 and Fig. 11) to have a solution with a cost lower than 8730 proving the
IQAOA capability in transforming the amplitude of an initial distribution into that of a
target state. Note that the optimal solution is 8505 [17] meaning that a probability to
obtain a solution with a gap lower that 2.64% of the optimal solution, is about 27%.

3 Conclusion

We have assessed [QAOA’s ability to solve the flow-shop problem, and the results demon-
strate that Carlier’s instances can be successfully addressed using this approach. To the
best of our knowledge, this is the first quantum resolution of Carlier’s instances. This
approach is suitable for all problems where the indirect representation boils down to
computing a rank on one hand, and having a suitable method for optimizing the angles
on the other. We have evaluated the efficacy of IQAOA in tackling the flow-shop problem,
and the results demonstrate its capability in effectively solving the Carlier’s instances.
As far as we know, this stands as the first quantum resolution of Carlier’s instances,
signifying that instances used in the OR community could be now addressed with quan-
tum approaches. This method proves its applicability across problems where the indirect
representation entails computing a rank while also necessitating a suitable approach for
optimizing angles. To the best of knowledge, this represents the first resolution of Car-
lier’s flow-shop instance through a QAOA-based approach that is an extension of the
QAOA algorithm. The limitation on the number of qubits using the simulator does not
permit to make intensive experiments and IQAOA capacity in solving larger instances
has not been evaluated.

References

1. Garey, M.R., Johnson, D.S., Seth, R.: The complexity of flowshop and jobshop scheduling.
Math. Oper. Res. 1, 117-129 (1976)

2. Roy, B., Sussmann, B.: Les problemes d’ordonnancement avec contraintes disjunctives. In:
Note DS N°9 bis. SEMA, Paris (1964)

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Indirect Flow-Shop Coding Using Rank 217

. Cheng, A., Gen, M., Tsumjimura, Y.: A tutorial survey of job-shop scheduling problems using

genetic algorithms — representations. Comput. Ind. Eng. 30(4), 983-997 (1996)

. Bourreau, E., Fleury, G., Lacomme, P.: Indirect quantum approximate optimization algo-

rithms: application to the TSP (2023). arXiv:2311.03294

. Knuth, D.: The Art of Computer Programming - Volume 3. Sorting and Searching. 2nd edn.

Addison-Wesley, Reading (1981)

. Laisant, C.A.: Sur la numération factorielle, application aux permutations. Bull. de la S.M.F.

tome 16, 176-173 (1888)

. Mantaci, R., Rakotondrajao, F.: A permutation representation that knows what Eulerian

means. Discrete Math. Theor. Comput. Sci. 4, 101-108 (2001)

. Hadfield, S.: Quantum algorithms for scientific computing and approximate optimization.

Submitted in partial fulfillment of the requirements for the degree of doctor of Philosophy in
the Graduate School of Arts and Sciences. Columbia University (2018)

. Chassaing, M., Fontanel, J., Lacomme, P., Ren, L., Tchernev, N., Villechenon, P.: A GRASP x

ELS approach for the job-shop with a web service paradigm packaging. Expert Syst. Appl.
41(2), 544-562 (2014)

Anunay, F.A., Pandey, A., Kumar, S.K.: Mathematical models for multi-stage hybrid assembly
flow-shop scheduling with preventive maintenance and release times. Comput. Ind. Eng. 186,
109719 (2023)

Khatami, M., Salehipour, A., Cheng, T.C.E.: Flow-shop scheduling with exact delays to
minimize makespan. Comput. Ind. Eng. 183, 109456 (2023)

Geng, X.-N., Sun, X., Wang, J., Pan, L.: Scheduling on proportionate flow shop with job
rejection and common due date assignment. Comput. Ind. Eng. 181, 109317 (2023)

Mraihi, T., Driss, O.B., EL-Haouzi, H.B.: Distributed permutation flow shop scheduling prob-
lem with worker flexibility: review, trends and model proposition. Expert Syst. Appl. 238,
121947 (2023)

Neufeld, J.S., Schulz, S., Buscher, U.: A systematic review of multi-objective
hybrid flow shop scheduling. Eur. J. Oper. Res. 309, 1-23 (2023)

. Yenisey, M.M., Yagmahan, B.: Multi-objective permutation flow shop scheduling problem:

literature review, classification and current trends. Omega 45, 119-135 (2014)

Carlier, J.: Ordonnancements a contraintes disjonctives. RAIRO. Recherche opérationnelle.
12(4), 333-350 (1978)

Ren, J., Ye, C., Yang, F.: Solving flow-shop scheduling problem with a reinforcement learning
algorithm that generalizes the value function with neural network. Alex. Eng. J. 60,2787-2800
(2021)

Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop
scheduling (2016). arXiv:1506.08479v2

Carugno, C., Dacrema, M.F., Cremonesi, P.: Evaluating the job shop scheduling problem on
a D-wave quantum annealer. Sci. Rep. 12, 6539 (2022)

Schworm, P., Wu, X., Glatt, M., Aurich, J.C.: Solving fexible job shop scheduling problems
in manufacturing with Quantum Annealing. Prod. Eng. Res. Devel. 17, 105-115 (2023)
Kurowski, K., Pecynaa, T., Slysz, M., Rézycki, R., Waligéra, G., Weglarz, J.: Application of
quantum approximate optimization algorithm to job shop scheduling problem. Eur. J. Oper.
Res. 310(2), 518-528 (2023)

Wilson, J.M.: Alternative formulations of a flow-shop scheduling problem. J. Opl. Res. Soc.
40(4), 395-399 (1989)

Seda, M.: Mathematical models of flow-shop and job-shop scheduling problems. World
Academy of Science, Engineering and Technology. 31 (2007)

Manne, A.S.: On the job-shop scheduling problem. Oper. Res. 8, 219-223 (1960)

Wagner, H.M.: An integer linear-programming model for machine scheduling. Nav. Res.
Logist. Q. 6(2), 131-140 (1959)

http://arxiv.org/abs/2311.03294
http://arxiv.org/abs/1506.08479v2

218 G. Fleury et al.

26. Feo, T.A., Resende, M.G.C.: Greedy adaptative search procedures. J. Glob. Optim. 6(2),
109-133 (1995)

27. Wolf, S., Merz, P.: Evolutionary local search for the super-peer selection problem and the
p-hub median problem. In: Bartz-Beielstein, T., et al. (eds.) HM 2007. LNCS, vol. 4771,
pp. 1-15. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75514-2_1

https://doi.org/10.1007/978-3-540-75514-2_1

®

Check for
updates

Utilizing Graph Sparsification
for Pre-processing in Max Cut QUBO
Solver

Vorapong Suppakitpaisarn!®)® and Jin-Kao Hao?

! The University of Tokyo, Tokyo, Japan
vorapong@is.s.u-tokyo.ac. jp
2 University of Angers, Angers, France
jin-kao.haoQuniv-angers.fr

Abstract. We suggest employing graph sparsification as a pre-
processing step for max cut programs using the QUBO solver. Quantum(-
inspired) algorithms are recognized for their potential efficiency in
handling quadratic unconstrained binary optimization (QUBO). Vari-
ous meta-heuristic approaches, including those based on the Quantum
Approximate Optimization Algorithm, have been suggested for address-
ing QUBO challenges in this context. Given that max cut is an NP-hard
problem and can be readily expressed using QUBO, it stands out as an
exemplary case to demonstrate the effectiveness of quantum(-inspired)
QUBO approaches. Here, the non-zero count in the QUBO matrix corre-
sponds to the graph’s edge count. Given that many quantum(-inspired)
solvers operate through cloud services, transmitting data for dense
graphs can be costly. By introducing the graph sparsification method,
we aim to mitigate these communication costs. Experimental results on
classical and quantum-inspired solvers indicate that this approach sub-
stantially reduces communication overheads and yields an objective value
close to the optimal solution.

Keywords: quantum-inspired optimization * max cut problem -
pre-processing - graph sparsification - quadratic unconstrained binary
optimization (QUBO)

1 Introduction

Quantum and quantum-inspired computing are considered to have the potential
to enhance the efficiency of solving various computational problems [17,22,49].
Consequently, many meta-heuristics have been proposed for solving QUBO on
both quantum and quantum-inspired computers [10]. These methods include

We are grateful to the reviewers, Prof. Philippe Codognet, and Prof. Hiroshi Imai for
their comments and suggestions, which helped us to improve the paper. This work was
partially supported by the Japanese-French cooperation project JST SICORP Grant
Number JPMJSC2208, Japan.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 219-233, 2024.
https://doi.org/10.1007/978-3-031-62912-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_22&domain=pdf
http://orcid.org/0000-0002-7020-395X
http://orcid.org/0000-0001-8813-4377
https://doi.org/10.1007/978-3-031-62912-9_22

220 V. Suppakitpaisarn and J.-K. Hao

those based on quantum annealing [47] and the Quantum Approximate Opti-
mization Algorithm [39]. Given that several combinatorial and network opti-
mization problems can be reformulated as QUBO, numerous researchers are
actively exploring the most proficient methods for addressing these optimization
problems with the aid of quantum(-inspired) QUBO solvers [8,9].

Researchers are particularly drawn to the maximum cut problem (max cut)
[30,41] because it is an NP-hard problem [26] that can be easily expressed within
the QUBO framework [11,46]. It has been observed that pre-processing the input
before feeding it to QUBO solvers can yield good solutions more efficiently than
using the original data directly. As a result, various studies have introduced pre-
processing strategies specifically designed for the max cut problem to enhance
the solution process [13,14,31].

Although minimizing computation time is important for solving the max
cut problem, there is an additional challenge in addressing the problem with
quantum or quantum-inspired QUBO solvers. Since quantum-inspired computers
will not be commercially available for the next several decades, we are compelled
to utilize these solvers through cloud services. This requires us to transmit our
problems to the service providers, a step which often results in communication
becoming a significant bottleneck [28,43]. Therefore, our focus in this paper is
on diminishing the costs associated with this communication.

1.1 Owur Contributions

The communication cost of the max cut problem is strongly related to the num-
ber of edges in the input graph. We therefore propose to use the graph sparsifi-
cation technique by the effective resistance edge sampling [2,25,50] to reduce the
communication cost. The effective resistance technique has been demonstrated
to significantly reduce the number of edges in a graph while preserving the cut
size [50].

Let the symbol |V| represent the total number of nodes in our input graph.
Building upon the theoretical foundations presented in [50], we demonstrate that
for any chosen € > 0, the outcome of our sampling method can yield a solution for
the max cut problem that approximates within a factor of 1+ €. Simultaneously,
this approach manages to decrease the edge count to O (W)

While a graph with O (%) edges is typically considered sparse in
many applications, our experimental findings with both classical and quantum-
inspired solvers demonstrate that setting the number of edges to fewer than
5|V can still yield a viable approximate solution. Our study encompassed tests
on 17 distinct networks, with node counts ranging from 100 to 12912 and edge
numbers varying from 2124 to 807535. Moreover, these networks have a variety
of topological structures. Remarkably, we have been able to reduce the number
of edges — and consequently, the communication cost — by as much as 90%,
while consistently achieving solutions where the cut size is at most 10% smaller
than the maximum cut. Furthermore, we extracted subgraphs of varying sizes
from two of the networks and verified that similar experimental outcomes are

Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver 221

achievable in each of these subgraphs. This consistently suggests that our findings
can be scaled up to larger networks, for which it is not feasible to upload all
information to the cloud service.

We have also noticed a decrease in computation time when using classical
QUBO solvers like Gurobi [20] on max cut instances where the edges have been
sparsified using our sampling technique. For instance, while Gurobi could not
complete the task on the original, dense max cut problem within two hours, it
was able to finish in under two seconds after the sparsification has eliminated
90% of the edges. However, we do not consider this improvement as significant,
because these solvers can still quickly find a reasonably good solution for both
the original and the sparsified max cut instances. The reason Gurobi does not
terminate with dense input graphs is primarily due to the extensive time required
to prove the optimality of its solution.

As a pre-processing, our technique can benefit all solvers for max cut. The
solvers which would have the biggest benefit from our pre-processing is the algo-
rithm designed for addressing max cut on sparse graphs such as McSparse [7].
We believe that our pre-processing technique could improve the computation
time of the McSparse algorithm, particularly when applied to dense graphs.

1.2 Related Works

The max cut problem has garnered widespread interest among researchers, lead-
ing to the development of numerous approximation and exact algorithms. Promi-
nent among these are the well-known SDP relaxation algorithm [6,18,37] and
algorithms for specific graph types [19,36,40,48]. In this paper, however, our
focus is not on the algorithms for solving the max cut problem itself, but rather
on its pre-processing. Consequently, our algorithm is designed to be compatible
with all these various algorithms.

As outlined in [45], several pre-processing techniques for QUBO solvers have
been developed. Among the most significant are those based on autarkies and
persistencies, which enable the determination of some binary variable values
in the optimal solution [21,42]. Additionally, there are methods that utilize the
upper bound of the relaxed program to enhance solver efficiency [5,12], as well as
approaches centered around variable fixing [3]. These methods have been shown
to yield smaller QUBO instances that can exactly solve the original problems.
In contrast, our paper introduces a pre-processing technique aimed at generat-
ing approximate QUBO instances. Importantly, our approach is designed to be
compatible with these existing pre-processing methods.

The graph sparsification by edge sampling technique has been introduced
to give an efficient algorithm for the maximum flow problem and the sparsest
cut problem [27]. Also, it has been used as a pre-processing of the maximum
cut problem in [1]. The goal of using the sparsification in that paper is not to
reduce the communication cost as in this paper but to increase the precision
of publishing the maximum cut results under differential privacy. Consequently,
the sampling technique in [1] is different from the effective resistance sampling,
which we have used in this paper.

222 V. Suppakitpaisarn and J.-K. Hao

2 Preliminaries

2.1 Max Cut Problem

Consider a weighted graph (V, E,w), where V represents the set of nodes in
the graph. The set of edges is denoted as E C {{u,v} : u,v € V,u # v}, and
w : E — R is the weight function assigning a non-negative weight w(e) to each
edge e € E. A cut in graph G is defined as any subset S C V', with the weight of

the cut S being wg(S) = > w({u,v}). The max cut problem aims
{u,v}eE:wES,vES
to find the cut in G that has the highest weight.

2.2 QUBO Formulation for the Max Cut Problem

The quadratic unconstrained binary optimization (QUBO) is the following math-
ematical programming problem

maxg E QuvTyuZy
u v

subject to x; € {0,1} for all i.

To express the max cut problem stated in the previous section using QUBO,
we let 2, = 1if u € S and z, = 0 otherwise. Also, let w’'({u,v}) = w({u,v})
when {u,v} € E and w'({u,v}) = 0 otherwise. Since 22 = z,, when x,, € {0, 1},
the weight of a cut S is then

w(S) = > w{uoh) = Y wluohza(l —a)

{u,v}€E:x,=1,2,=0 {uv}eE

= Zw’({u,w})xu(l —Ty)

_Z[Zw ({u, v}] = " w'({u, v} zuz,

uFv

_Z[Zw ({u, U}} Zw ({u, v}) Ty 2y.

uFv
By defining Qq., = > w'({u,v}) and @, = —w’({u, v}) for u # v, we establish

that the objective Vl;ilue of the QUBO corresponds to the cut size, which is
also the objective value of the max cut problem. Consequently, maximizing this
objective value leads to an optimal solution for the max cut problem.

In the context of solving the max cut problem with QUBO solvers available
through cloud services, it becomes necessary to transmit the values of @, , for
every pair of u,v. Consequently, the quantity of real numbers required to be
sent is on the order of O(|V|?). This count becomes substantially large for large
graphs, turning the communication cost into a critical bottleneck for the max
cut solver.

Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver 223

By opting to submit only the non-zero entries of @, ., we can significantly
reduce the communication cost. This means sending the QUBO problem in the
format (u,v, Qu.) where @y, # 0. From our definition of @, ,, it is evident
that for u # v, Qv is non-zero if and only if {u,v} € E. Therefore, the commu-
nication cost with this method of submission is O(|E|), which is substantially
more efficient for scenarios where |E| < |V'|2, or in other words, when the input
graph is sparse.

2.3 Graph Sparsification by Effective Resistances [50]

In this section, we explore the concept of graph sparsification through effective
resistances. Consider the input graph denoted as G = (V, E, w). Our objective
is to construct a graph G = (V,&,w) in such a way that for any cut S C V,
the relationship wg(S) = wg(S) holds true. This approach aims to ensure that
the weight of any given cut S in the original graph G closely approximates the
weight of the same cut in the sparsified graph G.

Given a parameter g, this method begins with an initially empty set £. The
process involves selecting edges from the graph G a total of ¢ times to be added
to £. During each selection, every edge e € F has a chance of being chosen, with
this probability denoted as p. and to be detailed in the following paragraph.
If an edge e that is not already in £ is selected, we assign its weight in G
as w(e) = w(e)/(q - pe). In cases where e is already in &, we increase w(e)
by w(e)/(q - pe). This approach ensures that each edge’s contribution to the
total weight is adjusted based on its probability of selection and the number of
selections, thereby maintaining the graph’s structure in G.

To establish the probability distribution (p.)ecr, we start by defining the
concept of effective resistance for each edge e in E, denoted as R.. We treat
the graph G as if it was an electrical circuit, where each edge e is equivalent
to a resistor, the resistance of which is inversely proportional to the weight of
the edge, given as 1/w.. In this analogy, the effective resistance R, of an edge
e = {u,v} is understood as the electrical resistance experienced between nodes
u and v.

Subsequently, the probability p. for each edge e is defined as

Pe = weRe/ Z (weRe’)~

e'ck

This formulation assigns higher probabilities to edges with greater effective resis-
tance, reflecting their relative importance in the electrical flow analogy of the
graph.

The following theorem is shown in [50].

Theorem 1. If ¢ = 9|V| - log|V|/€?, then, for all S C V, wg(S) < wg(S)
(1+ e)wa(S).

We have from the theorem that we would obtain a sparse graph with |€] =
O(|V'|1og |V']) that preserves the cut size by the sparsification technique.

IN

224 V. Suppakitpaisarn and J.-K. Hao

3 Proposed Method

Our approach is depicted in Fig.1. Rather than directly sending the original
graph G to the QUBO solver provided by cloud services, we initially apply effec-
tive resistance sampling to sparsify the graph. The resultant sparsified graph,
denoted as G, is then submitted to the solver.

Effective
Resistance
Sampling

Communication
to QUBO solvers

Sparse Matrix .
» (1, Quy) N :()‘ Max cut solution §

[Spielman and
Srivastava 2008]

Fig. 1. Outline of our proposal

The following theorem is directly followed from Theorem 1.

Theorem 2. Given that S’ is a cut derived from the QUBO solver using our
method, and S* represents the optimal mazximum cut, we can establish that:

wa(9") <we(S*) < (14 ewa(S).

Consequently, our algorithm is a (1 + €)-approzimation algorithm for the max
cut problem.

Proof. Because S’ is the optimal max cut solution for the graph G, we have that
wg(S") > wg(S*). Applying Theorem 1, we obtain

! 1 ! 1 * *
> > > .
wg(S") > 1 e wg(S') > +€w9(5) 6w(;(S)

Hence, wg(S*) < (14 €)wg(S').

Theorem 1 reveals that |€] = O(|V]log|V]), indicating that the communica-
tion cost associated with sending the sparsified graph G to cloud servers is also
O(|V]log |V|). Therefore, our method can achieve an asymptotic improvement
in communication costs for dense input graphs where the number of edges is
on the order of O(|V|?). However, when dealing with sparse input graphs, our
approach does not yield a significant reduction in communication costs.

In Theorem 2, we assume that our QUBO solver is exact, meaning it always
delivers the optimal solution. However, this result can be extended to scenar-
ios where the solver is approximate. If the QUBO solver functions as an a-
approximation algorithm, then the outcome produced by our method can be
demonstrated to be an «(1 + ¢)-approximation.

Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver 225

4 Experimental Results

We conduct experiments on the proposed method and give the experimental
results in this section.

All experiments were carried out on a personal computer running Windows
11, equipped with an 11th Gen Intel(R) Core(TM) i7-1165G7 @2.80 GHz CPU
and 16 GB of RAM. The code for these experiments was written in Python.
Furthermore, we utilized publicly available datasets as provided in [38]. How-
ever, as it is assumed by the effective resistance samplings that all weights are
non-negative, the weights used in our experiments are absolute values of those
provided in the publicly available datasets. The values presented in this paper
represent the mean of ten separate replications.

72000

70000

68000
nnnnn

62000

;;;;; 0000

e~ Objective Value. —e— Objective Value
-~ Optimal Value 58000 --- Optimal Value

72 e~ Objective Value
-~ Optimal value

1000 2000 3000 4000 5000

Fig. 2. Comparisons of the optimal values derived from the original max cut instances
against the objective values from the sparsified graphs for (a) bel120.3.1, (b) be250.1,
and (c) mannino_k487.c

4.1 Gap in Solutions Due to Graph Sparsification

In this subsection, we examine the extent to which the optimal solutions are
changed by effective resistance sampling. While our primary focus is on devel-
oping an algorithm suitable for quantum-inspired optimization, for these exper-
iments, we have opted to use a classical solver, specifically Gurobi [20]. The
rationale behind this choice is Gurobi’s ability to guarantee the optimality of
the solutions it generates. We employ the QUBO optimization feature available
in Gurobi Optimods of Gurobi version 10.0.3.

226 V. Suppakitpaisarn and J.-K. Hao

200 400 600 800 1000 200 00 00 800 1000 1200 1400
. value

1000 2000 3000 4000 5000

Fig. 3. Comparisons of the computation time of Gurobi when the inputs are sparsified
graphs for (a) bel120.3.1, (b) be250.1, and (¢) mannino_k487.c

We initially evaluated our proposed methods using three distinct instances,
each varying in node count and type. These instances are “bel120.3.1”, “be250.1”,
and “mannino_k487c”. The datasets “bel20.3.1” and “be250.1” are synthetic
and were utilized in [3]. They were created using generators described in [44].
Specifically, “be120.3.1” comprises 121 nodes and 2242 edges, whereas “be250.1”
contains 251 nodes and 3269 edges. The “mannino_k487c” dataset, on the other
hand, is rooted in real-world data concerning radio frequency interferences
among major Italian cities, as detailed in [4]. This dataset features 487 nodes
and 8511 edges.

In these experiments, we focus on the variable ¢, which represents the number
of times edges are sampled from the input graph. We experiment with varying
the value of ¢. It is crucial to understand that ¢ does not directly correspond to
the number of edges in the sparsified graph, denoted as ||, since an edge can be
selected multiple times during sampling. However, it is evident that |£] < ¢, and
generally, a larger ¢ tends to result in a higher number of edges in the sparsified
graph.

Theorem 1 suggests setting ¢ to w. While this value is theoretically
smaller than the edge count for dense graphs in an asymptotic sense, the sizeable
constant factor 6% can lead to a ¢ that exceeds the actual number of edges,
especially when the input graph G is relatively small. Take, for instance, when € is
0.1, this results in approximately 522261 for “be120.3.1”7, 1248200 for “be250.1”,
and 2712316 for “mannino_k487c”. Because of this, we have opted to use a
reduced ¢ value for our experimental evaluations.

Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver 227

Figure2 presents the outcomes for the three specified instances. Examina-
tion of the figure reveals that the objective function improves as more edges
are sampled and the value of ¢ increases. Our method achieves a cut size that
exceeds 90% of the optimal cut size for ¢ > 500 in “be120.3.1”, for ¢ > 1500 in
“be250.17, and for ¢ > 2000 in “mannino_k487¢”. Correspondingly, these thresh-
olds yield edge counts of 424 for “bel20.3.1”7, 1092 for “be250.1”, and 1231 for
“mannino_k487c”. These results indicate that our approach not only secures a
0.9-approximation to the solution but also facilitates a substantial reduction
in communication costs-81% for “bel20.3.17, 67% for “be250.1”, and 86% for
“mannino_k487c”.

Table 1. The reduction in communication costs and the approximation ratios achieved
by our algorithms across various graph types are detailed in [38§]

Dataset Name V] |E| €] Reduction Optimal Value Our Objective Value Approx. Ratio
in Comm. Cost
bqgp250-1 251 3339 1163.6 0.65151 143669 129863 0.90390
gkale 201 2124 810.7 0.61831 48263 42829 0.88741
ising2.5-150.6666 150 10722 387.3 0.96388 9067341 8502808 0.93774
£05.100.0 100 2475 452.3 0.81725 1430 1309 0.91538
w05.100.0 100 2343 4323 0.81549 7737 7033.9 0.90912
G_1 800 19176 3598.3 0.81235 11624* 10412.3 0.89576

#Since the optimal value of G_1 is currently unknown, we instead use the best
known objective value here.

Our experiment results with these three datasets yield a 0.9-approximation
solution when setting ¢ to roughly 5|V|. Consequently, we extrapolate this find-
ing to additional instance types in [38]. As demonstrated in Table 1, a similar
approximation ratio is achieved for all tested instance types with ¢ set at 5|V|.
Notably, there is a substantial decrease in communication cost particularly when
the original graph G is dense.

4.2 Computation Time in Classical Solver

Because graph sparsification techniques are often employed to reduce compu-
tation time, it is worth investigating whether our sparsification method also
reduces the computational times for classical solvers.

Figure 3 demonstrates that sparsification does indeed have a significant effect
on reducing the computational time for Gurobi. For the original “be120.3.1” and
“be250.1” inputs, the solver requires more than three hours to find a solution,
whereas with the sparsified graphs at ¢ ~ 5|V, the computation times drop
dramatically to 2.18s and 16.6 s, respectively. There is also a clear pattern where
larger values of ¢ and increased edge counts correlate with longer computation
times.

Despite this, it is noteworthy that Gurobi is able to quickly find reasonably
good solutions for denser graphs. In every test conducted, solutions surpassing

228 V. Suppakitpaisarn and J.-K. Hao

those of the sparsified graphs were obtained in under five seconds using the orig-
inal graphs. A large part of the time that the solver spends on the dense graphs
is devoted to proving that its solutions are optimal. This leads us to conclude
that reduced computation time may not be a decisive advantage of sparsifica-
tion techniques. Gurobi is capable of providing viable solutions for larger graphs.
Nevertheless, given our focus on quantum-inspired solvers in this paper, we opt
to limit our experiments with Gurobi to cases where it can assure the optimality
of its results.

4.3 Experiments on Quantum-Inspired Solvers

We employed the Fixstars Amplify Annealing Engine [16] to corroborate our
findings with QUBO quantum-inspired solvers. For all instances, whether orig-
inal or sparsified, we imposed a solver time constraint of 10s. Consistent with
the methodology outlined in the preceding section, we set the value of ¢ to be
5|V| in this experiment.

Table 2. Reduction in communication cost and changes in objective value by the graph
sparsification technique when conducting experiments on QUBO quantum-inspired
solver

Dataset Name Reduction in Comm. Cost | Changes in Objective Value
bel20.3.1 0.779 0.911

be250.1 0.704 0.891

mannino_k487.c |0.835 0.92

bap250-1 0.71 0.895

gkale 0.65 0.909

ising2.5-150_6666 | 0.964 0.947

£05.100.0 0.816 0.908

w05.100.0 0.812 0.902

G.1 0.812 0.897

Table 2 shows that the outcomes obtained using quantum-inspired solvers
align closely with those presented in Table 1, confirming consistency across all
datasets tested with the classical solver.

We also conducted experiments to test the effectiveness of our pre-processing
methods on large graphs and real-world social networks. Our findings, presented
in Table 3, demonstrate that our approach yields consistent results even with
graphs exceeding 100,000 edges. We used graphs generated by a tool given in
[24]. Specifically, rnd_graph1000.10_1 is a randomly generated graph with 1,000
nodes, a 10% connection density, and seed = 1. The leap_xx_y_z graphs repre-
sent leap graphs on y-dimensional chessboards of size xx, with the “z” param-
eter indicating the graph type: root graphs for z = 1 and bishop graphs for z

Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver 229

= 2. Additionally, “facebook”, “congress”, and “wiki_vote” were sourced from
the Stanford large network dataset collection, representing real social networks
[33]. These networks have been previously analyzed in several notable studies
on social network behavior and characteristics [15,32,34]. The graph labeled
“gplus_100000” represents a subgraph of the gplus network, induced by the
initial 100,000 edges listed in the file. Given that this selection includes some
repeated edges, the resulting graph comprises 12,912 nodes and 807,535 edges.
This specific subset was chosen because the basic package of the Fixstars Amplify
Annealing Engine supports a maximum of 16,000 nodes.

Table 3. Reduction in communication costs and changes in objective values by the
graph sparsification technique when conducting experiments on QUBO quantum-
inspired solver

Dataset Name vl IE| £l Reduction Objective Value Obtaining Our Objective Value Reduction

in Comm. Cost from Original Graph in Obj. Value
rnd_graph1000_10.1 1000 49950 4752 0.90486 28387 26019.8 0.91020
leap_302_1 900 26100 401 0.98464 202500 178281.6 0.88040
leap_30_2.2 900 17110 3739.8 0.78143 101250 89984.5 0.88874
leap_10_3_1 1000 13500 3982.2 0.70502 37500 32921.9 0.87792
leap-10.3.2 1000 17100 4148.1 0.75742 31284 27711.2 0.88579
facebook 4039 88234 15874.2 0.82009 50600 16368.3 0.91637
congress 475 13280 19405 0.85398 38.98 0.88173
wiki_vote T115 103689 22078.7 0.78707 3 67675.3 0.92192
gplus_1000000 12912 807535 56175.7 0.93043 563656 400932.1 0.71131

Moreover, experiments were carried out on subgraphs of varying sizes derived
from wiki_vote. These subgraphs were obtained through random walks to main-
tain the integrity of the network’s structure. The data presented in Table4 indi-
cates that across all subgraph sizes tested, the cost reduction and approximation
ratios achieved were consistent. This consistency leads us to posit that compa-
rable outcomes are attainable for substantially larger graphs. Consequently, our
pre-processing technique has the potential to markedly diminish communication
costs in such scenarios.

Table 4. Reduction in communication costs and changes in objective values of sub-
graphs of the wiki_vote graph obtained from random walks on QUBO quantum-inspired

solver
Random Walk |V |E| €] Cost Optimal Our Objective Approx.
Length Reduction Solution Value Ratio
500 411 6523 1640.8 74.85% 4371 3749.4 85.78%
1000 755 18703 3208.6 82.84% 12563 10658.3 84.84%
1500 985 25812 4169.4 83.85% 17295 14861.8 85.93%
2000 1206 34352 5154 85.04% 23352 201004 86.08%
2500 1411 43040 6087.5 85.86% 29164 25123.8 86%
3000 1524 47535 6544.3 86.23% 32296 27871.2 86.30%
3500 1653 51371 7099.4 86.18% 35361 30478.3 86.19%
4000 1807 56964 7742.6 86.41% 39199 34066.9 86.91%
4500 1928 61425 8207.1 86.64% 42419 37179.1 87.65%

5000 2038 63534 8679.2 87.26% 43846 38260.9 87.26%

230 V. Suppakitpaisarn and J.-K. Hao

Table 5 displays the results for the Facebook network’s subgraphs. It is evi-
dent that there’s a variation in cost reduction among these subgraphs. This
variation is likely a consequence of the network’s multi-cluster structure, with
each cluster possessing a distinct edge density, leading to differing levels of cost
reduction. The random walk method does not uniformly sample nodes across
clusters, resulting in varied cost reduction outcomes for the graphs generated by
the algorithm. Although the cost reduction figures exhibit some fluctuation, they
consistently fall within the range of 75% to 90%. On the other hand, despite the
varied structures of each subgraph, the approximation ratio remains consistent
across all experiments, lying within the 91% to 93% bracket.

Table 5. Reduction in communication costs and changes in objective values of sub-
graphs of the facebook graph obtained from random walks on QUBO quantum-inspired
solver

Random Walk |V/| |E| €] Cost Optimal Our Objective Approx.
Length Reduction Solution Value Ratio
500 312 13305 1390.1 89.55% 7298 6772.1 92.79%
1000 684 12186 2715.3 77.72% 7043 6452.4 91.61%
1500 882 25028 3658.2 85.38% 14029 12948.9 92.30%
2000 1022 16441 4045.3 75.40% 9600 8775.5 91.41%
2500 982 35349 4238.3 88.01% 19685 18181.6 92%
3000 1355 42222 5799 86.26% 23689 21843.5 92.21%
3500 1465 30107 5968.2 80.20% 17375 15889.8 91.45%
4000 1709 50934 7285.1 85.70% 28637 26409.1 92.22%
4500 1898 47302 7949.8 83.19% 26859 24618.1 91.66%
5000 1828 57824 7851.5 86.42% 32543 29918 91.93%

4.4 Discussions on Results on Classical and Quantum-Inspired
Solvers

The argument could be made that similar or even superior approximation ratios
to those achieved in our research might be attainable using an approximation
algorithm based on semi-definite programming, as demonstrated in previous
studies [18,37]. This algorithm is indeed capable of providing polynomial-time
approximation solutions for max cut problems. However, a notable limitation of
semi-definite programming is its computational intensity, particularly for prob-
lems involving over 100,000 nodes [29], where local execution becomes impracti-
cal. In such scenarios, our method proves advantageous, offering a viable solution
by enabling the processing of these large instances through cloud services.

In these experiments, our primary objective is to demonstrate that edge
sampling can yield reasonable approximation ratios. Therefore, we confined our
experimentation to smaller instances (with |V| < 12912) where obtaining opti-
mal solutions is feasible. Nonetheless, given the consistent results across all tested
instance sizes, we are confident that similar outcomes would be achievable with
larger graphs.

Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver 231

5 Conclusion and Future Works

We introduce the application of graph sparsification as a pre-processing step
for solving the maximum cut problem in cloud-based environments. Our exper-
imental results demonstrate that this approach, when applied to classical and
quantum-inspired solvers, consistently yields solutions with an approximation
ratio of about 0.9, while simultaneously achieving a significant reduction in com-
munication costs to cloud servers, ranging between 60% and 95%.

In our future research, we plan to expand our experiments to include quan-
tum solvers. At present, quantum solvers are limited to addressing small-scale
max cut instances. As a result, the communication overhead required to send
the max cut problem to the solvers is not significantly high at this point. On
the other hand, it is understood that a sparser graph results in shallower quan-
tum circuits, thereby reducing the noise in quantum computations. The graph
sparsification technique has already been used for solving max cut for the noisy
data published under differential privacy [1]. Additionally, a recent work [23]
highlights that an increased number of edges may result in higher complexity
during circuit optimization processes. A dense input graph reduces the likelihood
of achieving an efficient quantum circuit. In summary, we hypothesize that the
graph sparsification could improve solution quality and simplify the process of
optimizing quantum circuits.

Pre-processing techniques for combinatorial optimization problems utilizing
machine learning algorithms have been proposed in previous studies [35,51].
However, our initial experiments suggest that directly applying these methods
to the max cut problem may not yield the best results. We observed that a
machine learning model trained on small graphs does not effectively transfer to
larger graphs within this problem domain. As a result, our future work aims to
develop a machine learning-based sparsification technique specifically tailored
for the max cut problem.

References

1. Arora, R., Upadhyay, J.: On differentially private graph sparsification and appli-
cations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

2. Bencziir, A.A., Karger, D.R.: Approximating s-t minimum cuts in O(n?) time. In:
STOC 1996, pp. 47-55 (1996)

3. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver
for the unconstrained quadratic 0-1 problem. Math. Program. 109, 55-68 (2007)

4. Bonato, T., Jiinger, M., Reinelt, G., Rinaldi, G.: Lifting and separation procedures
for the cut polytope. Math. Program. 146, 351-378 (2014)

5. Boros, E., Crama, Y., Hammer, P.L.: Upper-bounds for quadratic 0—1 maximiza-
tion. Oper. Res. Lett. 9(2), 73-79 (1990)

6. Burer, S., Monteiro, R.D., Zhang, Y.: Rank-two relaxation heuristics for max-cut
and other binary quadratic programs. SIAM J. Optim. 12(2), 503-521 (2002)

7. Charfreitag, J., Jinger, M., Mallach, S., Mutzel, P.: McSparse: exact solutions
of sparse maximum cut and sparse unconstrained binary quadratic optimization
problems. In: ALENEX 2022, pp. 54-66 (2022)

232

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

V. Suppakitpaisarn and J.-K. Hao

. Codognet, P.: Constraint solving by quantum annealing. In: ICPP Workshops 2021,

pp. 1-10 (2021)

. Codognet, P.: Domain-wall/unary encoding in QUBO for permutation problems.

In: QCE 2022, pp. 167-173 (2022)

Dahi, Z.A., Alba, E.: Metaheuristics on quantum computers: inspiration, simula-
tion and real execution. Future Gener. Comput. Syst. 130, 164-180 (2022)
Dunning, I., Gupta, S., Silberholz, J.: What works best when? A systematic evalu-
ation of heuristics for max-cut and QUBO. INFORMS J. Comput. 30(3), 608-624
(2018)

Elloumi, S., Faye, A., Soutif, E.: Decomposition and linearization for 0—1 quadratic
programming. Ann. Oper. Res. 99(1-4), 79-93 (2000)

Ferizovic, D.: A practical analysis of kernelization techniques for the maximum cut
problem. Ph.D. thesis, Karlsruher Institut fur Technologie (KIT) (2019)
Ferizovic, D., Hespe, D., Lamm, S., Mnich, M., Schulz, C., Strash, D.: Engineering
kernelization for maximum cut. In: ALENEX 2020, pp. 27-41 (2020)

Fink, C.G., et al.: A centrality measure for quantifying spread on weighted, directed
networks. Phys. A 626, 129083 (2023)

Fixstars: About Amplify AE (2023). https://amplify.fixstars.com/ja/docs/
amplify-ae/about.html

Gharibian, S., Le Gall, F.: Dequantizing the quantum singular value transforma-
tion: hardness and applications to quantum chemistry and the quantum PCP con-
jecture. In: STOC 2022, pp. 19-32 (2022)

Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115-1145 (1995)

Grotschel, M., Nemhauser, G.L.: A polynomial algorithm for the max-cut problem
on graphs without long odd cycles. Math. Program. 29(1), 28—40 (1984)

Gurobi Optimization, LLC: Gurobi optimizer reference manual (2021)

Hammer, P.L., Hansen, P., Simeone, B.: Roof duality, complementation and per-
sistency in quadratic 0-1 optimization. Math. Program. 28, 121-155 (1984)
Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number genera-
tors. Rev. Mod. Phys. 89(1), 015004 (2017)

Ito, T., Kakimura, N., Kamiyama, N., Kobayashi, Y., Okamoto, Y.: Algorithmic
theory of qubit routing. In: Morin, P., Suri, S. (eds.) WADS 2023. LNCS, vol.
14079, pp. 533-546. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
38906-1_35

JRT: Rudy: a rudimental graph generator by JRT (2023). https://web.stanford.
edu/~yyye/yyye/Gset/

Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In: SODA 1993, pp. 21-30 (1993)

Karp, R.M.: Reducibility among combinatorial problems. In: Jiinger, M., et al.
(eds.) 50 Years of Integer Programming 1958-2008, pp. 219—241. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-540-68279-0_8

Khandekar, R., Rao, S., Vazirani, U.: Graph partitioning using single commodity
flows. J. ACM 56(4), 1-15 (2009)

Kikuchi, S., Togawa, N., Tanaka, S.: Dynamical process of a bit-width reduced
Ising model with simulated annealing. IEEE Access 11, 95493-95506 (2023)
Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization
problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26, 143-154
(2003)

https://amplify.fixstars.com/ja/docs/amplify-ae/about.html
https://amplify.fixstars.com/ja/docs/amplify-ae/about.html
https://doi.org/10.1007/978-3-031-38906-1_35
https://doi.org/10.1007/978-3-031-38906-1_35
https://web.stanford.edu/~yyye/yyye/Gset/
https://web.stanford.edu/~yyye/yyye/Gset/
https://doi.org/10.1007/978-3-540-68279-0_8

Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver 233

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

King, R.: An improved approximation algorithm for quantum max-cut. Quantum
7, 1180 (2022)

Lamm, S.: Scalable graph algorithms using practically efficient data reductions.
Ph.D. thesis, Karlsruher Institut fiir Technologie (KIT) (2022)

Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links
in online social networks. In: WWW 2010, pp. 641-650 (2010)

Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection
(2014). http://snap.stanford.edu/data

Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. In:
Advances in Neural Information Processing Systems, vol. 25 (2012)

Li, M., Tu, S., Xu, L.: Generalizing graph network models for the traveling salesman
problem with Lin-Kernighan-Helsgaun heuristics. In: NeurIPS 2023, pp. 528-539
(2023)

Liers, F., Pardella, G.: Partitioning planar graphs: a fast combinatorial approach
for max-cut. Comput. Optim. Appl. 51(1), 323-344 (2012)

Mahajan, S., Ramesh, H.: Derandomizing approximation algorithms based on
semidefinite programming. SIAM J. Comput. 28(5), 1641-1663 (1999)

Mallach, S., Junger, M., Charfreitag, J., Jordan, C.: (Prototype of a) maxcut and
BQP instance library (2021). http://bgp.cs.uni-bonn.de/library /html/index.html
Mazumder, A., Sen, A., Sen, U.: Benchmarking metaheuristic-integrated quan-
tum approximate optimisation algorithm against quantum annealing for quadratic
unconstrained binary optimization problems. arXiv preprint arXiv:2309.16796
(2023)

McCormick, S.T., Rao, M.R., Rinaldi, G.: Easy and difficult objective functions
for max cut. Math. Program. 94, 459-466 (2003)

Mirka, R., Williamson, D.P.: An experimental evaluation of semidefinite program-
ming and spectral algorithms for max cut. ACM J. Exp. Algorithmics 28, 1-18
(2023)

Nemhauser, G.L., Trotter, L.E., Jr.: Vertex packings: structural properties and
algorithms. Math. Program. 8(1), 232-248 (1975)

Oku, D., Tawada, M., Tanaka, S., Togawa, N.: How to reduce the bit-width of
an Ising model by adding auxiliary spins. IEEE Trans. Comput. 71(1), 223-234
(2020)

Pardalos, P.M., Rodgers, G.P.: Computational aspects of a branch and bound
algorithm for quadratic zero-one programming. Computing 45(2), 131-144 (1990)
Punnen, A.P.: The Quadratic Unconstrained Binary Optimization Problem: The-
ory, Algorithms, and Applications. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-04520-2

Rehfeldt, D., Koch, T., Shinano, Y.: Faster exact solution of sparse MaxCut and
QUBO problems. Math. Program. Comput. 15(3), 445-470 (2023)

Rosenberg, G., Vazifeh, M., Woods, B., Haber, E.: Building an iterative heuristic
solver for a quantum annealer. Comput. Optim. Appl. 65, 845-869 (2016)

Shih, W.K., Wu, S., Kuo, Y.S.: Unifying maximum cut and minimum cut of a
planar graph. IEEE Trans. Comput. 39(5), 694-697 (1990)

Shor, P.W.: Introduction to quantum algorithms. In: Proceedings of Symposia in
Applied Mathematics, vol. 58, pp. 143-160 (2002)

Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. In:
STOC 2008, pp. 563-568 (2008)

Tayebi, D., Ray, S., Ajwani, D.: Learning to prune instances of k-median and
related problems. In: ALENEX 2022, pp. 184-194 (2022)

http://snap.stanford.edu/data
http://bqp.cs.uni-bonn.de/library/html/index.html
http://arxiv.org/abs/2309.16796
https://doi.org/10.1007/978-3-031-04520-2
https://doi.org/10.1007/978-3-031-04520-2

)

Check for
updates

Addressing Machine Unavailability in Job
Shop Scheduling: A Quantum Computing
Approach

Riad Aggoune'® and Samuel Deleplanque?(®)

L ITIS Department, Luxembourg Institute of Science and Technology,
Esch-sur-Alzette Luxembourg, Luxembourg
riad.aggoune@list.lu
2 CNRS, Centrale Lille, JUNIA, Univ. Lille, Univ. Valenciennes, UMR 8520 IEMN,
41 boulevard Vauban, 59046 Lille Cedex, France
samuel .deleplanque@junia.com

Abstract. We consider solving the Job Shop Scheduling Problem
(JSSP) with machine unavailability constraints using an analog quan-
tum machine and running the quantum annealing metaheuristic. We pro-
pose a technique to handle these new constraints, whether the unavail-
ability periods are known or variable, in order to integrate them into
the same type of disjunctive model processed by the analog machine:
Binary, Unconstrained, and Quadratic. We present results on small-scale
instances corresponding to what these quantum machines can handle.

Keywords: JSSP - non-availability constraints - quantum computing -
QUBO - quantum annealing

1 Introduction

Quantum optimization, leveraging quantum computers and algorithms to
address complex optimization issues, stands as a highly promising area in quan-
tum computing. As in the classical domain, two principal strategies are utilized
to solve combinatorial problems in quantum optimization: exact methods like
Grover’s search algorithm [10] and meta-heuristics such as Quantum Annealing
(QA) [11] and the Quantum Approximate Optimization Algorithm (QAOA) [8].
Exact and variational methods like QAOA can be processed on universal gate-
based quantum computers, such as IBM machines. In contrast, QA is tailored
for analog quantum computers, notably those produced by D-Wave.

Quantum Annealing, a key metaheuristic in quantum optimization, is par-
ticularly designed for combinatorial optimization problems, drawing from the
principles of quantum mechanics and emulating the process of simulated anneal-
ing [12]. It utilizes quantum phenomena, such as superposition and quantum
tunneling, to efficiently navigate through local minima and target the global
minimum of a cost function. For heuristic approaches like QA, it is often nec-
essary to transform the optimization problem into a format compatible with

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 234-245, 2024.
https://doi.org/10.1007/978-3-031-62912-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_23&domain=pdf
http://orcid.org/0000-0003-2622-7097
http://orcid.org/0000-0003-4119-6006
https://doi.org/10.1007/978-3-031-62912-9_23

Addressing Machine Unavailability in Job Shop Scheduling 235

quantum computers. Quadratic Unconstrained Binary Optimization (QUBO) is
generally the preferred format for mapping problems to quantum computers.

In this work, we study the resolution of the job shop scheduling problem
with availability constraints by the quantum annealing metaheuristic. We first
describe the problem in the following section and review the quantum-based
solution methods recently proposed in the literature. Then, the QUBO formula-
tion of the JSSP adapted from [1] is presented. Through minor modifications, we
show how this QUBO can be adapted to integrate both fixed and flexible avail-
ability constraints. The paper concludes with numerical results obtained using
D-Wave’s quantum annealing machines and overall conclusions. This synthe-
sis merges the concept of quantum annealing’s efficacy with broader quantum
optimization approaches and their application to specific problems like JSSP,
highlighting the diverse methodologies and quantum computing platforms in
use.

2 Problem Definition

The Job Shop Scheduling Problem with Availability Constraints (JSSP-AC) can
be stated as follows: A set of n jobs J = {Jy, Jo, ..., J,} has to be processed on a
set of m machines M = {My, ..., M,,}. Each job J; consists of a linear sequence
of n; operations (O;1, O;a, ..., O;y,). Each machine can process only one opera-
tion at a time and each operation O;; with a processing time of p;; time units
needs exactly one machine. Each job visits the machines according to its own
predefined routing. This problem generalizes the flow shop scheduling problem,
in which all the jobs are processed following the same routing (M;, Ms, ..., M,,).
There are k unavailability periods {h;1, hj2, ..., hj;} on each machine M;. Two
cases are considered in the paper: either the starting date S;; of unavailability
period hjj, of duration p;.k is known in advance and fixed, or it is flexible and
can vary within a time window. The objective is to determine the starting date
of each operation O;; so that the makespan noted Cy,q. is minimized. The job
shop scheduling problem with availability constraints is strongly NP-hard since
the 2-machine flow shop scheduling problem is strongly NP-hard [4].

In what follows we first focus and the Job shop scheduling problem, then we
generalize the approach to integrate the availability constraints.

The traditional solution approaches to solve JSSP include heuristics and
meta-heuristics as well as exact methods, such as branch-and-bound and con-
straint programming [5]. The linear disjunctive model [15] for the JSSP can be
expressed as follows. The starting times are represented by the integer variable
vector, denoted by xz. We use z to denote the binary variable vector, which
satisfies the following conditions:

R 1 if the job j precedes job k on machine i,
% 7 0 otherwise.

We note by (U{, e O’i, ..., 0J.) the processing order of job j through the
machines. The minimization of the objective function (1) forces all the jobs to
be finished as soon as possible.

236 R. Aggoune and S. Deleplanque

> ot (1)
jeJ
Another objective extensively discussed and utilized within the literature is
the concept of makespan. By adding constraint (2) to the model and replacing
the objective function (1) with the minimization of the C,, 4, variable, in order
to ensure that the last job finishes as early as possible.

Cmam Z Z(mdfnj +p02nj) (2)
j€J
Constraints (3) forbid consecutive operations of one job to start before the
previous one is finished.

Toij > T

i eraﬁ,lj VieJ, h=2.m (3)
Big M constraints (4) and (5) forbid to have more than one operation at a
time on a given machine.

Tij > Tig + Pik — Mz Vi, ke d,j<kieM (4)
:z:zkzx,] +pijf./\/l(lfzijk) Vj,kGJ,j<k,i€M (5)

3 Related Works

In the literature, the number of papers dedicated to quantum solutions for hard
combinatorial optimization problems is growing fast. In particular, the job shop
scheduling problem and its extensions is attracting more and more research
works involving quantum computing. Those works can be classified according
to the types of quantum computers and algorithms used to solve the problems:
analog, universal computers, and simulators. In general, the solution approaches
consist in first mapping the decision variables of the considered problems to the
qubits of the quantum computer. Then, quantum algorithms are applied to make
the qubits value evolve until solutions are found. Solving optimization problems
with quantum computers is therefore strongly limited by the number of qubits
available, among other hardware constraints.

Since the number of qubits is smaller in universal quantum computers, the
studies of the JSSP involving those computers are scarce. The first one was devel-
oped by [2]. The authors have proposed four variational quantum heuristics for
solving a JSSP with early and late delivery as well as production costs, adapted
from a steel manufacturing process. They have compared the performance of the
heuristics on two-machine flow shop instances using IBM gate-based computers
with 5 to 23 qubits.

Recently, [14] have proposed a QAOA approach to the JSSP with a particular
method for updating the parameters of the algorithm. The authors have also
investigated the relationship between makespan and energy minimzation.

Addressing Machine Unavailability in Job Shop Scheduling 237

The number of research works involving quantum annealers and simulators
is significantly higher. The first quantum computing approach for solving the
JSSP was proposed by Venturelli et al. [19]. The authors proposed a time-
indexed QUBO formulation and a quantum annealing solution for the makespan
minimization. The method was implemented on a D-Wave quantum annealer,
with 509 working qubits. The authors also proposed variable pruning techniques,
through window shaving and immediate selections, to reduce the number of nec-
essary qubits. The proposed QUBO model has been re-used in several studies,
as listed below.

In [13] the authors have developed a hybrid quantum annealing heuristic to
solve a particular instance of the job shop scheduling problem on the D-Wave
2000Q quantum annealing system that consists of 2041 qubits and a maximum of
6 connections between qubits. The proposed approach includes variable pruning
techniques and a processing window heuristic. In [6], job shop instances with uni-
tary operations have been tested on the D-Wave Advantage machine, built upon
5640 qubits and 15 possible connections between qubits. Extensive experiments
with the reverse annealing procedure and comparisons with simulated annealing
are also described. In [1], we have proposed a QUBO formulation for the min-
imisation of the total completion time in a job shop. The model was solved using
the D-Wave hybrid solver and Advantage quantum annealing computer.

The flexible job shop, which is a generalization of the job shop problem with
pools of parallel machines available for processing operations was considered in
[7]. The authors proposed a QUBO derived from the one of [19] and an iterative
procedure to solve relatively large size instances on a specialized hardware ([3]).
Using the QUBO formulations proposed in [7], the authors in [18], also tackle
the flexible job shop scheduling problem with the D-Wave solvers comparing
various input models. Another QUBO formulation is proposed in [16] for assign-
ing dispatching rules to the machines and scheduling the operations in a flexible
job shop system. The problem is solved using the leap hybrid solver. In [17], the
authors propose a QUBO formulation for the job shop scheduling with worker
assignment considerations. Possible ways to approximate the makespan are dis-
cussed and instances solved with the Fujitsu Digital Annealer are described.
In the same environment, the authors in [20] efficiently solve large instances
of JSSP with a hybrid approach that combines constraints programming and
QUBO models for one-machine problems.

The present paper also aims at extending the job shop scheduling model and
solution approach, in particular the one proposed in [1], by considering additional
constraints that are important in practice. To the best of our knowledge, it is
the first study in the quantum optimization literature that integrates availability
constraints on the machines of both fixed and flexible types.

4 QUBO Formulation

The QA metaheuristic, as executed on a D-Wave quantum machine, takes as
input an unconstrained binary model, which can be quadratic. Either an Ising

238 R. Aggoune and S. Deleplanque

model ({—1;41} variable values) or a QUBO model ({0;1} variable values)
can be provided. Since both models are isomorphic, and the machine is capable
of converting QUBO into Ising, we focus on the classical binary variables in
computing to more easily establish a connection with known MILP models.

We add some notations to those used in the linear formulation of the previous
section. We use x to denote the binary variable vector, which, for each i, 7 and
t, with ¢ = 1.n;, j = 1..n, t = 1..T, satisfies the following conditions:

w { 1 if the operation ¢ of the job j starts in period ¢,

iJ 7 1 0 otherwise.

The minimization of the Objective function f(x) forces the last operations of
all jobs to start globally as soon as possible (see expression (6)). Here, we adapt
the objective function (1) from the integer formulation to a binary formulation
that we develop for the QUBO:

= Z ;t.x;ij. (6)

For optimizing the makespan, it is sufficient to add a virtual job consisting
of a single operation that is executed instantly which will be connected to the
last operations of the non-virtual jobs by precedence constraints ((10)). It then
only remains to exclusively minimize the execution date of the virtual job as in
function (7), where n; of the virtual job n + 1 is equal to 1 since there is only
one operation.

z) = Ztifn(nﬂ)- (7)
t

To force each operation to start exactly once through a relaxed constraints
into the objective function, we apply a penalty P1 such that Pl(z) = 32,3,
P1(z,4,j) where each element is given by the expression (8).

1(z,1,7) Z:L’ i=1.n;,j=1mn. (8)

We note M;;,% = 1..n;,j = 1..n, the required machine for the operation ¢ of
the job j. P2(x) is the penalty that forbids to have more than one operation at a
time on a given machine, such that P2(x) is the sum of each element calculated
by the quadratic expression (9).

P2(x,i,4,t,i,5',t') = xfsz/] ,
(6,5,) U (&, 5,) viyi = 1, 3, §" = Lo, (i, 5) # (i, 57), 9)
M;j = My, (t,t) € T?,0 <t —t < py;.

The last Penalty which is noted P3(z) forbids consecutive operations to start
before the previous one is finished. Each element of P3(x) is calculated by the
quadratic expression (10).

Addressing Machine Unavailability in Job Shop Scheduling 239

P3(w,i,j,t,t") = aljalyy;,

(10)
i=1.(ni—1),j =1, (L) €T t+pj; >t.

We can finally express the JSSP quadratically and without constraints
through the QUBO formulation of the JSSP with its penalties balanced by 3
multipliers, A1, A2, and A3 (see expression 11) and its detailed form of equality
(12).

fOUBO(2) = f(z) + M P1(z) + Ao P2(z) + \3P3(z). (11)

FOUBO () Zthn]HlZZ Zfﬂ

+ Ao Z x”xm, + A3 Z xﬁjxiﬂj.
(4,5,6)U(3’ 5, t')ET1 (4,4,t,t")ET2
with: (12)
T1=(i,j,t) U (@, 5, t') +i,i" = 1ong, 5, 5" = 1.n, (i, 5) # (¢,),
M;j = My, (t,8') € T2,0 <t —t < pyj.

T2 = (i,5,t,t') i =1..(n; — 1),j = L.n, (t,t') € T* t +pi; > t'.

5 Non Fixed Resource Availability Constraints

Let’s consider the problem of resource constraints due to unavailability, whether
these are fixed or variable. The management of these resources proves to be
intuitive when the problem is formulated as a QUBO. The UML activity diagram
shown in Fig. 1 illustrates the methodology for developing the QUBO, with a
particular emphasis on non-availability constraint management.

When a resource’s unavailability is constant over time, it can be treated as a
single operation already scheduled. Thus, it becomes possible to spread this con-
straint throughout all the other operations that cannot simultaneously use the
resource. This consideration is expressed through elementary quadratic expres-
sions of the form z! Jarl, j-» where ¢ and j denote the fictive operation representing
the resource’s unavailability during a certain period p;;. For any ¢ included in
this period, and for all operations characterized by i’ and j’ that use the same
resource, we impose the constraint x” ¢ 1 = 0 with the related penalty.

When a resource’s unavailability has to be scheduled, it should be consid-
ered as a unique operation of a project that can be scheduled at any time. If
the objective is to minimize the makespan, the virtual operation related to the
resource non-availability is integrated in the calculation of this makespan as a
last operation of a job. Hence, the unavailability constraints, regardless of their
nature, can be sequentially incorporated into the QUBO. We finally obtain a
JSSP problem with additional jobs comprising single operations. The QUBO

240 R. Aggoune and S. Deleplanque

shop with resource

act QUBO model for the job
avallability constraints

¢

each resource availability constrain

. * 7 <<teratives> B
’ ‘ A
‘ — [non-availability to be .
[non-availability fixed] scheduled) \
Any expressions of the Any expressions of the
QUBO related to the QUBO related to the
resource and periods

. ’ X
2 ‘<<iterative>> . s <<iterative>> Y

Transform the
resource availability

Fix to 0 any variable
value in relation with

the resource

constraint into one
job with one
operation

constraint in the
related and extented
time window

- - - -
[
- ———-------
[Y U U

Fig. 1. The non-availability constraints are divided into two subsets: those whose
unavailability window is already known, and those where this window is variable. In
both cases, we consider each unavailability as a unique operation of a new Job. In the
first case, it involves fixing the variables corresponding to these specific operations, and,
in the second case, it involves considering the new operations as any other activities
where optimization will lead them to finish globally as soon as possible.

model used is thus the same f@UBO(z) as the one given by expression (12) in
the previous section.

In Fig. 2, we present an example of the Job Shop Scheduling Problem (JSSP)
incorporating various types of unavailability constraints. The period labeled "U1’
denotes a time during which Machine 1 is unavailable, specifically in period
3. Conversely, the ‘U2’ period represents a variable unavailability duration.
It is noteworthy that this variable unavailability period is strategically opti-
mized prior to commencing the first operation of Job 3. As depicted, minimizing
the makespan necessitates careful scheduling around the ends of these variable
unavailability periods.

Addressing Machine Unavailability in Job Shop Scheduling 241

Machines makespan
|
|
l
3
U2 3
2
2 3 1
1
EE =
0 - Periods

0 1 2 3

Fig. 2. A solution to JSSP with unavailability constraints, featuring three jobs and a
total of six operations. Unavailability constraint Ul is associated with a fixed period
of non-availability, whereas the period for U2 is variable.

6 Computational Experiments

In [1], we studied the impact that the number of periods in a JSSP instance
has on its resolution. We noticed that iterating different experiments with a
reduction in the number of periods until an infeasible solution is obtained showed
a significant improvement in results, more than what could be expected from
classical calculations, due to the narrowing of the solution space. In this study,
we directly considered a relatively small number of periods. We achieved this
result empirically and quickly, thanks to a small number of replications initially
performed on a QUBO related to the same instance but with a larger number
of periods.

We opted for the quantum quadratic unconstrained binary solver, which is
non-hybrid, in contrast to the method of resolution discussed in [1], which relied
on D-Wave’s hybrid solution for solving constrained binary quadratic problems.
The experiment was conducted on an initial instance of the JSSP with 3 jobs
for a total of 7 operations. The size of the base instance was chosen to enable
processing by the D-Wave Advantage machine, while also considering the ability
to achieve optimality. The instance with a fixed period of unavailability is distin-
guished by the stopping of machine 2 during the second time period. The third
case concerns a variable unavailability of machine 3 over a single time period. We
aimed to minimize the makespan by adding a job with only a virtual operation
at the beginning and another at the end of the experiment. This was done by
adding precedence constraints, focusing the objective on minimizing the start
date of the last virtual operation.

For these preliminary results, we achieved the optimal solution in all three
cases, where each time 3 periods were necessary to meet all the constraints
of the 3 problems. The figures respectively represent the optimal solutions for
the JSSP case and for the case with variable unavailability. In the latter, the
unavailability period was placed after all other operations, without affecting the

242 R. Aggoune and S. Deleplanque

makespan. Figure3 and Fig. 4 correspond respectively to Figs.5 and 4. We can
observe the impact that the embedding process (mapping of the QUBO graph to
the qubit graph) can have on the problem addressed by the quantum machine.
This experiment shows that the number of qubits increases from 122 to 208
when moving from the JSSP instance to the instance with variable machine
unavailability, where such unavailability is represented by an additional job with
a single operation (Fig.6).

Machines makespan Machines makespan
| |
! !
| |
4 ! 4
4 1 4
|
3 3
3 4 1 3 4 1
2 2
| |
2 1 ! 2 1 !
1 ! 1 |
1 2 3 1 3 2
0 Periods 0 Periods
0 1 2 3 0 1 2 3

Fig.3. JSSP without unavailability Fig. 4. JSSP with variable unavailabil-
constraints solution obtained. ity constraints solution obtained.

Fig. 5. Representation of the QUBO graph (left), corresponding to a scenario where
all machines are continuously available, and its embedding (right) into the qubit graph
of a the Advantage machine. This particular case involves 4 jobs and a total of 9
operations. The QUBO model has 48 variables, while the embedding on the QPU
requires 122 qubits. (Visualization created using D-Wave Inspector).

Addressing Machine Unavailability in Job Shop Scheduling 243

Fig. 6. Representation of the QUBO graph (left) illustrating a scenario in which a
machine is unavailable during a specific period, and its corresponding embedding (right)
into the qubit graph of the Advantage machine. This instance involves managing 4
jobs with a total of 9 operations. The QUBO model comprises 60 variables, and its
embedding into the QPU utilizes 208 qubits. (Visualization created using D-Wave
Inspector).

7 Discussion

In our study, we conducted an analysis of recent quantum computing strate-
gies for the JSSP, particularly emphasizing QUBO models and their role in
effectively incorporating practical constraints. We apply this method to a JSSP
with machine unavailability constraints. These constraints can be either vari-
able or fixed. Starting from a QUBO that models the JSSP and is well-suited
for quadratic modeling, we treat these new constraints as unique operations of
jobs that are added to the initial ones. Thus, the same QUBO formulation could
be implemented to describe instances for the quantum machine.

Our research included the development and testing of this QUBO model
using D-Wave’s quantum annealing technology. We noted that current quantum
hardware has limitations in managing the volume of variables produced by such
models. Despite this, it’s crucial to continue refining the modeling of real-world
problems, as quantum approaches, while not currently outperforming classical
methods, hold potential for future advancements, especially with the anticipated
increase in available qubits. Our future research aims to explore methods to
minimize variable count while still efficiently embedding necessary constraints.
Additionally, the recent increase in the number of qubits, surpassing the 1000-
qubit threshold in machines from IBM or Atom Computing, now allows for the
consideration of solving small-scale instances like those addressed in this work.
This is made possible through quantum algorithms such as QAOA implemented
on these discrete (gate-based) machines.

244

R. Aggoune and S. Deleplanque

References

10.

11.

12.

13.

14.

15.

16.

. Rao, P.U., Sodhi, B.: Scheduling with multiple dispatch rules: a quantum comput-

ing approach. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya,
V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science — ICCS 2022.
ICCS 2022. LNCS, vol. 13353, pp. 233-246. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-08760-8 20

Amaro, D., Rosenkranz, M., Fitzpatrick, N., Hirano, K., Fiorentini, M.: A case
study of variational quantum algorithms for a job shop scheduling problem. EPJ
Quantum Technol. 9, 100-114 (2022)

Aramon, M., et al.: Physics-inspired optimization for quadratic unconstrained
problems using a digital annealer. Front. Phys. 7, 48 (2019)

Blazewicz, J., Breit, J., Formanowicz, P., Kubiak, W., Schmidt, G.: Heuristic algo-
rithms for the two-machine flowshop Problem with limited machine availability.
Omega J. 29, 599-608 (2001)

Da Col, G., Teppan, E.C.: Industrial-size job shop scheduling with constraint pro-
gramming. Oper. Res. Perspect. 9 (2022)

. Carugno, C., Ferrari Dacrema, M., Cremonesi, P.: Evaluating the job shop schedul-

ing problem on a D-wave quantum annealer. Sci. Rep. 12, 6539 (2022). https://
doi.org/10.1038/s41598-022-10169-0

Denkena, B., Schinkel, F., Pirnay, J., Wilmsmeier, S.: Quantum algorithms for
process parallel flexible job shop scheduling. CIRP J. Manuf. Sci. Technol. 12142
(2020)

Farhi, E., Goldstone, J., Gutmann, S.: A Quantum Approximate Optimization
Algorithm, 2014. https://doi.org/10.48550/arxiv.1411.4028

Michael, G.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., USA (1979)

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212-219 (1996)

Tadashi, K., Nishimori, H.: Quantum annealing in the transverse ising model. Phys.
Rev. E 58(5), 5355 (1998)

Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated anneal-
ing science vol. 220, p. 4598 (1983)

Kurowski, K., Weglarz, J., Subocz, M., Rézycki, R., Waligora, G.: Hybrid quan-
tum annealing heuristic method for solving job shop scheduling problem. In:
Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 502-515.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5 39
Kurowski, K., Pecyna T., Slysz R., Rozycki, R., Waligora, G., Weglarz, J.: Appli-
cation of quantum approximate optimization algorithm to job shop scheduling
problem. Eur. J. Oper. Res. 310, 518-528 (2023). https://doi.org/10.1016/j.ejor.
2023.03.013

Manne, A.S.: On the job-shop scheduling problem. Oper. Res. 8(2), 219-223 (1960).
https://doi.org/10.1287 /opre.8.2.219

Rao, P.U., Sodhi, B.: Scheduling with multiple dispatch rules: a quantum comput-
ing approach. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya,
V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science — ICCS 2022.
ICCS 2022. LNCS, vol. 13353, pp. 233-246. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-08760-8 20

https://doi.org/10.1007/978-3-031-08760-8_20
https://doi.org/10.1007/978-3-031-08760-8_20
https://doi.org/10.1038/s41598-022-10169-0
https://doi.org/10.1038/s41598-022-10169-0
https://doi.org/10.48550/arxiv.1411.4028
https://doi.org/10.1007/978-3-030-50433-5_39
https://doi.org/10.1016/j.ejor.2023.03.013
https://doi.org/10.1016/j.ejor.2023.03.013
https://doi.org/10.1287/opre.8.2.219
https://doi.org/10.1007/978-3-031-08760-8_20
https://doi.org/10.1007/978-3-031-08760-8_20

17.

18.

19.

20.

Addressing Machine Unavailability in Job Shop Scheduling 245

Shimada, D., Shibuya, T., Shibasaki, T.: A decomposition method for makespan
minimization in job-shop scheduling problem using ising machine. In: 2021 IEEE
8th International Conference on Industrial Engineering and Applications, pp. 307—
314 (2021)

Schworm, P., Wu, X., Glatt, M., Aurich, J.C.: Solving flexible job shop scheduling
problems in manufacturing with Quantum Annealing.. Prod. Eng. Res. Dev. 17,
105-115 (2023). https://doi.org/10.1007/s11740-022-01145-8

Venturelli, D., Marchand, D.J., Rojo, G.: Quantum annealing implementation of
job-shop scheduling, 2015. arXiv preprint: 1506.08479

Zhang, J., Lo Bianco, G., Beck, J.C.: Solving job-shop scheduling problems with
QUBO-based specialized hardware. In: Proceedings of the International Conference
on Automated Planning and Scheduling, vol. 32, no. 1, pp. 404—412 (2022)

https://doi.org/10.1007/s11740-022-01145-8

)

Check for
updates

Solving Edge-Weighted Maximum Clique
Problem with DCA Warm-Start Quantum
Approximate Optimization Algorithm

Huy Phuc Nguyen Ha', Viet Hung Nguyen?, and Anh Son Ta!(®)

1 School of Applied Mathematics and Informatics, Hanoi University of Science
and Technology, Hanoi, Dai Co Viet, Vietnam
son.taanh@hust.edu.vn
2 Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne,
Clermont Auvergne INP, LIMOS, Clermont-Ferrand, France

Abstract. The Quantum Approximate Optimization Algorithm is a
hybrid quantum-classic algorithm used for solving combinatorial opti-
mization. However, this algorithm performs poorly when solving the con-
strained combinatorial optimization problem. To deal with this issue, we
consider the warm-start Quantum Approximate Optimization Algorithm
for solving constrained problems. This article presents a new method for
improving the performance of the Quantum Approximate Optimization
Algorithm, with the Difference of Convex Optimization. Our approach
focuses on the warm-start version of the algorithm and uses the Differ-
ence of Convex optimization to find the warm-start parameters. To show
our method’s efficiency, we do several experiments on the edge-weighted
maximum clique problem and see a good result.

Keywords: Maximum edge-weighted clique + QAOA - warm-start -
DCA

1 Introduction

The Quantum Approximate Optimization Algorithm [8] is the hybrid classical-
quantum algorithm for solving combinatorial optimization problems. This algo-
rithm has many applications in solving real-life problems: portfolio optimization
[14], schedule problem [17], wireless scheduling [18], artificial neural network [19],
feature selection [1]|, and many other applications. The QAOA is computing the
expectation from solutions generated from the quantum circuit and the opti-
mization of this function is the NP-hard problem [10]. There are many recent
improvements of the algorithm in many aspects: initial parameters method [2]
and [21], mixer operator [9] and [22] for constraint preservation, finding the opti-
mal solution of the expectation [6] and CVaR optimization [5]. These methods
improve the performance of the QAOA in solving combinatorial optimization
problems, especially the maximum cut problem. However, the improvement of
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 246-261, 2024.
https://doi.org/10.1007/978-3-031-62912-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_24&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_24

Solving Edge-Weighted Maximum Clique Problem 247

the initial parameters [2] and the improvement of finding the optimal solution
of the expectation [6] do not assure that the probability of the optimal solutions
is greater than 0 because it considers all solutions with the same probability
when these methods are used to solve the constrained problems. Furthermore,
the CVaR optimization method in [5] is a bottleneck when choosing a suitable
probability tail value. The QAOA limitation on solving constrained problems
is also proved in [3] by showing that the QAOA can produce optimal solutions
with negligible probability. The warm-start method can help us to improve the
QAOA significantly because the relaxed version of the combinatorial optimiza-
tion problems is close to the solution, and the probability of optimal value will
be greater than 0. [9] introduces 2 warm-start methods: continuous value warm-
start and rounded warm-start. The continuous value warm-start is shown for
satisfying the adiabatic quantum computing theorem [8], which is shown for
converging with an infinite number of layers. In contrast, the rounded warm-
start method does not satisfy the adiabatic quantum computing theorem [8]. To
find warm start parameters, [9] use the CPLEX solver for the portfolio optimiza-
tion problem with a convex relaxed problem with box constraints for continuous
value warm-start and use SDP for the maximum cut problem with a non-convex
relaxed problem and use a regularized method for the solution from SDP for
rounded warm-start. However, the box-constrained relaxed problem with indef-
inite quadratic programming is NP-hard [15]. In this article, we consider the
relaxation problem with the feasible solution space approximated by a sphere.
This problem can be solved quite efficiently by some available algorithms and
the DCA shows its efficiency when solving this problem globally [12]. This arti-
cle concentrates on improving the mixer and the initial state of the QAOA by
using the Difference of Convex Algorithm (DCA), and our method is suitable
for improving the performance of the warm start QAOA.

An effective method for nonconvex continuous optimization is DC program-
ming and DCA, which Le Thi Hoai An and Pham Dinh Tao proposed in 1984
and significantly improved since 1994 (see [11-13] and references therein). They
deal with a standard DC program of the following:

a=inf{{(z) :==g(x) — h(z) : € R"} (Py)

where g and I are lower semi-continuous proper convex functions on IR"™. The
concept of DCA, based on the DC duality and the local optimality conditions, is
straightforward: each iteration k& of DCA approximates the concave part —h by
its affine majorization (that is, taking y* € 9h(2*)) and minimizes the resulting
convex function:

min{g(z) — h(z¥) — (x — 2%, 9y*) : 2 € R"} (Py)

to obtain z**!. The convex DC components g and h, but not the DC function f
itself, are used in the building of DCA. Additionally, a DC function f has an infi-
nite number of DC decompositions g—h, which significantly influence the charac-
teristics of DCA (such as the rate of convergence, robustness, efficiency, globality

of computed solutions, etc.). In numerous applied sciences disciplines, the DCA

248 H. P. N. Ha et al.

has been effectively applied to non-convex real-world applications (e.g., [11-13]).
It is one of the few effective non-smooth non-convex programming methods that
enables the solution of large-scale DC programs. The constrained combinatorial
optimization problem we consider in this article is the edge-weighted maximum
clique [24]. This problem is to find a subset of vertices inducing a complete
subgraph with the maximum total sum of edge weights. The maximum edge-
weighted problem has many applications including computer vision and pattern
recognition, bioinformatics, and retail industry. First, we transform the problem
into the Ising model and use DCA optimization for the relaxed problem with
sphere constraint to find the mixer and initial state with Egger’s warm-start [9].
Next, we use the classical optimizer for optimizing QAOA circuit parameters.
Finally, we determine the probability of optimal value to the maximum edge-
weighted clique problem. To see the effectiveness of this method, we test with
benchmark data on graph instances in [28] and compare with the Graph Neural
Network [20] for continuous warm-start which is recently developed. The paper is
organized as follows: Sect. 2 provides preliminary information about QAOA, the
warm-start method for QAOA, and Trotterized Quantum Annealing. In Sect. 3,
we introduce the DCA warm-start method with the sphere relaxed problem, and
Sect. 4 reports numerical simulations using benchmark data to demonstrate the
efficiency of our proposed method. Finally, we conclude our findings in Sect. 5.

2 Introduction to QAOA and Warm-Start Method

2.1 Introduction to QAOA

The Quantum Approximate Optimization Algorithm (QAOA) was first intro-
duced in 2014 by Fahri [8]. QAOA is a hybrid classical-quantum algorithm for
solving optimization problems with quadratic form f(z) = Z” Qijziz;. It is
designed to run on near-term quantum computers and works by encoding the
problem as a cost function minimized via the use of a series of quantum gates
and measurements. The algorithm alternates between classical optimization of
parameters that control the quantum gates and quantum evolution under those
gates. The algorithm’s output is a quantum state that approximates the solution
to the optimization problem. QAOA has been used for various optimization prob-
lems, including graph partitioning, MaxCut, portfolio optimization, and many
other combinatorial optimization problems. The state function is defined as

10(3,7)) = U(B)U (1)U (Be)U (33,) [+)® "

with U(8) = e ™58 and U(y) = e ™57, U(B) and U(y) are parameterized
quantum gates with Hy is problem Hamilton operator

n n
Hy = Z ai}jaiZUjZ —i—ZbiaiZ +c
i=1

ij=1

Solving Edge-Weighted Maximum Clique Problem 249

with o7 is the Pauli Z matrix and Hy corresponds to the objective function of
combinatorial optimization problem, Hpg is mixer Hamiltonian operator

n
HB: E O'iX
i=1

with 0¥ is Pauli X matrix. Generally, the mixer Hamiltonian is the operator
used for preparing the initial state of the adiabatic quantum algorithm in solving
combinatorial optimization and representing the transitions between quantum
states when we consider the solution of the combinatorial optimization problem
as quantum states. It helps explore the solution space efficiently. The vector |+)
is defined by:

Loy + 1)

=5

. 1 o s
with |0) =] and |1) = are 2 qubits in a quantum computer. The initial

0
0 1
state represents the initial probability of the solutions. The QAOA objective
function is defined as follows:

min ,v) [H , . 1
g i (W0, 7) [He(8,7) 1)
This means that to find the parameter for the QAOA circuit, we have to repeat
the optimization algorithm many times [23]. The expectation can be represented
as follows:

(W(B,7) [Hs| ¥ (8,7) ZAI (B)i, (2)

with x; is the feasible solution represented by bitstring which is encoded in the
quantum computer, \; is the value of objective function corresponding to x;,
[(p(B,7)|r;)|? is the probability of z; appears in the output of the algorithm. It
is noticeable all of the solutions are encoded into columns of the identity matrix
with size 2™ x 2™ with n as the bitstring length corresponding to the feasible solu-
tions of the combinatorial optimization problem and the values of the objective
function is the eigenvalue of Hy. This algorithm makes use of classical com-
puters to optimize the expectation function. It uses gradient and gradient-free
optimizers such as gradient descent, COBYLA, SPSA, etc. with initial param-
eters (5o, 70)- Set |¢(5,7)) = |¢). We have the following relation between the
expectation and the optimal solution probability when H; eigenvalues are posi-
tive:

1 <w|Hf|¢>Af f(xopt) < Z ‘<77Z1‘I>|2 <1- <T/1Hf|?7iaw f(xopt)

f(m):f(ajupt)

With A is the spectral gap and fp,q, is the maximum value of f(x) with = €

{0,1}".

250 H. P. N. Ha et al.

Proof. We have the following formula:

(W [Helg) = > fla)|(wl)

zeBn

= Y f@@RP+ Y f@)|@l)?

f(x)zf(xopt) f(x)?éf(zopt)
> Y f@IRP D (f@ep) + Q)| (@)

f(l):f(wom) f(’f)#f(l'om)

> f(zopt) +A|1- Z |<1/J|33>‘2
f@)=f(zopt)
We can indicate that:

Yo Wl =1 (W |Hy|¥) — f(@opt)
f@)=f(@opt) A

Furthermore, we can see that:

(W[Hflw) =Y f@)|[()?

zeBn"

= Y @i+ Y f@)ll)?

f(@)=f(zopt) f(@)#f (wopt)

< N @I+ Y el @)

f(w)zf(xopt) f(-l')#f(fopt)

S f(xopt) + fmaw 1-—- Z ‘<¢|$>|2
F(@)=f(2opt)

We can see that:

S @) <1 (W |Hf|) = f(@opt)

F@)=f(zopt) fmax

This bound works when the error between the expectation and the optimal value
is smaller than the spectral gap. We also can transform all H- with the arbitrary
sign to a positive sign by adding Zi7j|Qij‘. Furthermore, the upper bound can
go to zero when the difference between the expectation and the optimal value is
close to fiaz-

The Difference Between QAOA and Quantum Annealing

In this section, we compare QAOA with Quantum Annealing [29] since although
they are used to solve the combinatorial optimization and theoretical frame-
work is adiabatic quantum computing, they have many differences when we

Solving Edge-Weighted Maximum Clique Problem 251

implement. First, Quantum Annealing [29] and QAOA use the same theoret-
ical framework as adiabatic quantum computing but the quantum computer
of Quantum Annealing does not use quantum gates while the QAOA depends
strongly on quantum gates. From the fact that QAOA uses the quantum gate,
the state function it uses is the Trotter decomposition of Quantum Annealing
[2] and QAOA uses the variational optimization to find a quantum state with
classical optimization instead of depending on time as Quantum Annealing state
function:

il) Hi b 1)

with T is the time length of Quantum Annealing.

Trotterized Quantum Annealing

The Trotterized Quantum Annealing is introduced in [2] for initializing parame-
ters for QAOA. This method uses the Trotter formula for the Quantum Anneal-
ing state function:

e—i[(l—%)AtHB+%AtHf] ~ e—i(l—%)AtHBe—i%AtHf + O(AtQ), (3)

and the initial parameters of the QAOA are v; = %At, By =(1- %)At for each

layer with At = % is the time step, T is the time that Quantum Annealing has
the highest approximate ratio. This method shows its advantage in solving the
maximum cut problem. The TQA produces suitable initial parameters when the
Trotter error O(At?) is very small. This means that T' < p. However, this can
increase the complexity of calculating the parameters of the QAOA circuit. The
TQA convergence depends on the initial state and the mixer of QAOA. If the
initial state is close to the optimal solution superposition, the time of Trotterized
Quantum Annealing will be shorter.

2.2 Introduction to the Warm-Start Method in Quantum
Optimization

The quadratic unconstrained binary optimization has been studied in Combi-
natorial Optimization since the 1960s. The formulation of this problem can be
seen as follow:

min 27 Az + bx
z€{0,1}™
with x as the vector of decision variables. This problem belongs to the NP-hard
class. If A is a positive semidefinite matrix, the relaxed version of QUBO is a
convex optimization problem and can be solved easily by a classical optimizer.
The relaxed version solution initializes the QAOA by replacing the initial states
and operators instead of using the original QAOA mixer. The original QAOA
mixer considers the transition of a solution by changing 1 bit in the solution’s

252 H. P. N. Ha et al.

binary string. This mixer is similar to the regular graph adjacency matrix and
uses spectral graph theory, we can indicate that the original QAOA considers
all solutions with equal initial probabilities. This can lead to a high cost of
computing and can lead to non-optimal solutions. The warm-start method [9]
helps the QAOA find a favorable biased initial state with the corresponding
mixer operator such that the QAOA converges to the optimal solution quickly.
As a result, we replace the equal superposition state |+)®™ by :

1) = R By (6:)[0)..
1=0

This state corresponds to the relaxed QUBO solution. Ry (6;) is corresponding to
the rotation of qubit 7 around the Y-axis of Bloch sphere with 6; = 2 arcsin(,/c;),
¢; € [0,1] is the solution of relaxed QUBO problem. We can see that the warm-
start initial state represents the new initial probability of the solutions. Further-
more, the initial mixer is replaced by Z?;OI Hyy g with Hyy; is:

HWSi _ 262* -1 -2 Ci(l — Ci)
’ -2 Ci(l - Ci) 1-— QCi.

This warm-start mixer Hamiltonian [9] helps to prepare the initial state. Further-
more, it helps the solutions transition to optimal solutions faster since the transi-
tion is decided based on the relaxed solution being close to the optimal solution.
The warm-start mixer helps the QAOA optimization process more effectively
from the biased initial state instead of equal superposition. If a component of
the relaxed solution vector is equal to 0 or 1, we can initiate it with |0) or |1).
This can lead to nonoverlap of continuous solution on discrete version. In this
case, we use [9]’s regularization method with € € [0,0.5].

3 Warm Start Method for QAOA with Non-convex
Relaxed Quadratic Binary Optimization Problem

3.1 General Warm-Start Method with DCA

Considering the following quadratic binary optimization:

min f(z) = 27 Qx + px + ¢ (4)
stxe{0,1}" (5)

with @ is an indefinite or not semi-positive definite matrix. In general, solv-
ing a box-constrained problem with an indefinite quadratic function is NP-hard
and it has many local optimal solutions [15] that can worsen the warm-start
QAOA. Instead of considering the box-constrained problem, we consider the
relaxed problem with sphere constraint. The sphere constraint contains the box
constraints and the non-convex optimization problem with sphere constraint can
be solved easily with DCA. We use the warm-start method for QAOA with the

Solving Edge-Weighted Maximum Clique Problem 253

relaxed version of the problem with sphere constraint. First, we transform the
problem into the Ising model instance by using x = de with e = [1 1... 1] . We
have the following formulation:

min 2T Az +bz+c
ze{—1,1}"

with A = %Q, b= %Qe + %p. The relaxed problem we consider is the quadratic
minimization over a sphere. The relaxed version of this problem can be written
as follows:

minzT Az + bz + ¢

1] = n.

This problem is a non-convex optimization problem. Let E is the constraint
|2]|> = n. We can decompose the objective function as follow:

1 1
§ZTAZ + T2 4 c+xp(z) = §ZT(A +pl — pl)z + xp(2) + b7z + ¢

1 1
Pl 072+ e+ xp(2) = 527 (ol - A)2.

From this decomposition, we can apply the DC algorithm by solving the following
problem in every iteration:

. 1 1
st = min { Sollsl 457 + e xe(2) - 357 (1 -)2 |

with p is the positive number such that (pl— A) is positive definite. This problem
is equivalent to

min
zeFE

2
” (pH—A)Zk—bH .
p

This problem show that zj; is the projection of %)Z’“_b on E:

I— A —b
ZkH:pE((P)Zk)_

p
In this algorithm, we can execute in two ways with zg € R™:
— if ||(pI — A)z, — b|| < pv/n take zp41 = %)%—b

— Otherwise 241 = \/HHEPPM

pl—A)z —b[|*

The algorithm with stop if ||zx+1 — 2x|| < €. To find the global solution to the
relaxed problem with sphere constraint, we use the restart method introduced

254 H. P. N. Ha et al.

in [12]. This method finds the suitable initial point for the quadratic problem
with sphere constraint. After solving the relaxed problem with sphere constraint,
we transform the problem’s solution to x = Z—;e The relaxed problem with
sphere constraint result may have some component that is out of range [—1,1]
and we use the regularization method by using a function to map 2! value
from outside range [—1,1] to inside [—1,1]. We use the Gaussian error function
erf(z) = % Iy e=*" dt before transform the solutions back to [0, 1]:
FIFL e %
% if zf < —1
r=qxiif0<zi <1
erfCOFL i o > 1

This method can make z from outside [—1, 1] to a value close to —1 or 1 which
can make the warm-start state function overlap with the optimal solution super-
position. After this step, we transform the component of z} to the quantum
circuit by using the equation «; = 2arcsin (y/z7) and we have the following

3
initial state and the mixer operator:

1) = @) Ry (a)]0)n.
1=0

n—1

Hws =Y _ Hws,
=0

*_ N

WithHWS,i:[) 227 — 1 2¢/x; (1 —z)

zi(1 —x¥) 1—2x}.

This regularization method helps the initial state overlap with the optimal solu-
tion superposition since all the warm-start parameters are in the range (0, 1).
Furthermore, we see that the warm-start QAOA also has another role is rounding
the solution from sphere constrained relaxed problem since the mechanic of the
QAOA takes advantage of superposition to find the optimal solution with the
regularized relaxed problem’s solution embedded into warm-start QAOA param-
eters and the quantum circuit measure the probability of the optimal solution.

3.2 Quadratic Formulation of Edge-Weighted Max Clique Problem

The edge-weighted max clique problem is finding the clique of a graph with the
maximum weight. The formulation of this problem can be written as follows:

1
max inAGx
z; +x; < 1with (4,5) ¢ E(G)
z; €{0,1}, i € V(G).

Solving Edge-Weighted Maximum Clique Problem 255
In this section, we consider the penalized quadratic version of this problem:

max %xT(AG —MAgz)x
ze{0,1}",

with Ag is the adjacency matrix of G, M is a very large number and Ags is the
complement graph G adjacency matrix. In the relaxed version of the weighted
quadratic max clique with sphere constraint, we use the DCA method [12]. We
transform z into z by x = % The relaxed problem with sphere constraint
problem is:

max é(z +e)T(Ag — MAg)(z +e)

I]]> = n

with e = [1 11... 1], n is the number of nodes in a graph. After finding the
solution from the DCA for the relaxed problem with sphere constraint, we have
the solution z*. After this step, we apply the process in Sect. 3.1 to solve the
maximum edge-weighted clique problem.

4 Numerical Simulation

Comparative Algorithm. We compare our method with the Graph Neural
Network warm-start method for the QAOA [20] showing its recent efficiency in
solving the maximum cut problem. This method uses the Graph Neural Network
with an unsupervised learning process to predict the probability of the nodes in
a graph. The loss function of the Graph Neural Network has the following form:

1
floss = §xT(_AG + MA(‘;)LI}
z € [0,1]"

with x as the probability vector of nodes in the graph, and M as an arbitrarily
large number. The probability from the prediction is used to warm-start the
QAOA with the continuous warm-start method. Furthermore, we compare our
method with the original QAOA with original mixer.

Data. In this section, we utilize graphs from the data provided in Fuchs et al.’s
work [28] to demonstrate the algorithm’s advantages concerning edge-weighted
maximum clique. The graphs utilized encompass weighted graphs featuring 14

256 H. P. N. Ha et al.

nodes, encompassing a variety of Erdos-Renyi graphs, Barabasi-Albert graphs,
and Watts-Strogatz graphs. Our experiment is conducted on the Qiskit-aer sim-
ulator.

Metric. To measure the method’s efficiency, we use 2 main metrics as follows:

— Optimal solution probability: Measure the probability of warm-start QAOA
to obtain the optimal solution. This metric has the following formula:

DRI CRTEN

f@)=f(zopt)

The probability of optimal solution also represents the fidelity of the quantum
state to the optimal solution superposition.

— Run time of the algorithm: Measure the warm start QAOA runtime. This
metric can show how long it takes to solve the problem.

Result. Initially, we focus on the probability of optimal value for QAOA with
random parameters with a single layer, as outlined in Tablel for the maxi-
mum edge weight clique. We can see that 2 warm-start methods and the original
QAOA can find the optimal value for every instance. We consider the probability
and time of finding the optimal solution. A noteworthy observation from these
tables is that DCA warm-start QAOA exhibits higher probabilities of optimal
value in the edge-weighted maximum clique compared to the GNN warm-start
QAOA and original QAOA when utilizing the same initial parameters. Addi-
tionally, the runtime for warm-start QAOA is consistently lower than that of
the GNN warm-start QAOA and original QAOA across all graphs. This differ-
ence can be attributed to warm-start QAOA’s ability to generate a variational
state close to the state with the lowest energy of the problem Hamiltonian, in
contrast to the GNN warm-start QAOA and original QAOA, beginning with
an initial state far from the minimum energy state. These results are consistent
across various instances. Furthermore, some instances employing GNN warm-
start QAOA display a probability of optimal value close to zero due to the per-
formance of the Graph Neural Network on the edge-weighted maximum clique.
The Graph Neural Network predicts the nodes in the graph with low accuracy,
reducing the probability of attaining optimal value. Subsequently, we compare
the outcomes of Trotterized Quantum Annealing for DCA warm-start QAOA,
GNN warm-start QAOA, and original QAOA, as depicted in Table2. Our app-
roach consistently demonstrates a higher probability of optimal value than GNN
warm-start QAOA with Trotterized Quantum Annealing initialization and orig-
inal QAOA. The Graph Neural Network’s poor prediction on every node can
lead to the acceptance of non-feasible solutions leading to the decrease of opti-
mal solution probability. Additionally, our method exhibits lower computation

Solving Edge-Weighted Maximum Clique Problem 257

times in every case presented in Table 2 compared to the GNN warm-start QAOA
with TQA initialization because the GNN inference process repeats thousands
of times and takes a long time to complete. Furthermore, it also produces the
initial state for the warm-start QAOA is far from the optimal solution superpo-
sition which makes the warm-start QAOA take more time to find the optimal
solution. Furthermore, the original QAOA considers all solutions with equal ini-
tial probability and the transition between feasible and non-feasible solutions
which makes the algorithm use more time to find the optimal value with low
probability. We show the probability distribution of our method in Fig. 1 and
Fig. 2. In 2 figures, we group all non-feasible solutions into 1 label. We can see
that our method brings high probability for optimal solution. Especially in Fig.
2, the probability of non-feasible solution is less than the feasible solutions.

Table 1. Comparision between DCA warm-start and standard QAOA with the maxi-
mum edge weight clique

Graph Opt value | DCA warm-start GNN warm-start [20] | Original QAOA
Opt sol prob | Run time | Opt sol prob | Run time | Opt sol prob | Run time
w.ba.n14.k4.4 | 3.7088 0.0543 59 0.0002 135 2.3e—05 240
w.ba.n14.k4.3 | 5.9049 0.0520 17 7.15e—05 106 0.0002 257
w.ba.n14.k4.2 | 2.8242 0.0162 17 0.0002 98 5.2e—05 180
w.ba.n14.k4.0 | 4.3356 0.0770 28 0.0002 104 1.1e—05 90
w.ba.n14.k2.1 | 2.0473 0.0902 46 0.0006 114 0.0006 55
w.ba.n14.k2.2 | 2.8433 0.0261 52 0.0008 110 0.0002 62
w.ba.n14.k2.3 | 1.9396 0.0471 49 0.0007 122 0.0015 52
w.er.nl4.k2.0 | 2.2057 0.0210 12 0.0009 121 6.1e=5 90
w.er.nl4d.k2.1 |2.0843 0.0550 20 0.0007 115 6.1e—5 s
w.er.nl4.k2.3 | 2.7976 0.4000 51 0.0008 118 6.1e—5 s
w.er.nl4.k2.4 | 0.8850 0.0060 27 0.0019 117 6.1le—5 s
w.er.nl4d.k4.3 |2.9713 0.0500 8 0.0002 105 6.1e—5 s
w.er.nld.k4.4 | 2.4563 0.0210 24 0.0006 109 6.1e—5 240
w.ws.n14.k2.0 | 1.4297 0.2310 18 0.0007 100 6.1e—5 s
w.ws.nl4.k2.1|0.9782 0.0060 9 0.0020 114 6.1le—5 s
w.ws.n14.k2.2 | 0.7848 0.0270 10 0.0023 115 6.1e—5 s
w.ws.nl14.k2.30.9184 0.0110 9 0.0021 107 6.1le—5 71
w.ws.n14.k4.0 | 2.4070 0.0060 31 0.0007 115 6.1le—5 71
w.ws.nl4.k4.1|2.0749 0.0064 66 0.0008 120 0.0010 56
w.ws.nl4.k4.4 | 2.3099 0.0100 70 0.0007 118 6.1le—5 600

258

H. P. N. Ha et al.

Table 2. Comparision between DCA warm-start and standard QAOA with the maxi-
mum edge weight clique with Trotterized Quantum Annealing initial parameters

Graph Opt value | DCA warm-start GNN warm-start [20] | Original QAOA
Opt sol prob | Run time | Opt sol prob | Run time | Opt sol prob | Run time
w.ba.n14.k4.4 | 3.7088 0.0042 12 0.0021 96 0 1020
w.ba.n14.k4.3 | 5.9049 0.0720 39 0.0011 87 0 1443
w.ba.n14.k4.2 | 2.8242 0.0039 9 0.0015 83 0 1380
w.ba.n14.k4.0 | 4.3356 0.0767 23 0.0026 86 1.44e—05 1454
w.ba.n14.k2.1 | 2.0473 0.2011 40 0.0046 85 0.0002 65
w.ba.n14.k2.2 | 2.8433 0.0941 45 0.0066 100 2.1530e—06 | 62
w.ba.n14.k2.3 | 1.9396 0.1223 43 0.0078 100 0.0007 66
w.er.nl14.k2.0 | 2.2057 0.0044 7 0.0044 89 0.0038 1200
w.er.nl4.k2.1 |2.0843 0.0290 14 0.0050 79 0 1435
w.er.nl14.k2.3 | 2.7976 0.1609 118 0.0055 86 0 1391
w.er.nl14.k2.4 | 0.8850 0.0892 60 0.0072 86 0.0007 1380
w.er.nl4.k4.3 |2.9713 0.0840 24 0.0016 86 0.0003 1378
w.er.nl4d.k4.4 | 2.4563 0.0323 31 0.0053 86 0.0001 1366
w.ws.n14.k2.0 | 1.4297 0.1826 6 0.0038 76 0.0113 1375
w.ws.nl14.k2.10.9782 0.0330 32 0.0115 78 0 s
w.ws.n14.k2.2 | 0.7848 0.0788 57 0.0109 83 0.0010 1434
w.ws.n14.k2.30.9184 0.0318 27 0.0106 91 0.0001 710
w.ws.n14.k4.0 | 2.4070 0.0276 9 0.0047 85 2.2867e—06 | 1411
w.ws.nl4.k4.1|2.0749 0.0057 59 0.0047 118 0.0007 65
w.ws.nl4.k4.4 | 2.3099 0.0651 22 0.0046 85 0.0003 1417
0.6
0.5 1
L 04
g 03
02
0.1
0.0 Il_,_.,Jl--
888355888888 :28388883§8¢8¢233z¢¢83s88888¢8¢s23z8:
SoS383s88ss58582388888¢8;838:¢33388g888382;3¢8¢:¢883
S523888382882838028822003888883838238838888820888888¢
28828888888828888888888889288SSSSSSSSSSSSSSE
bitstrings "

Fig. 1.

DCA warm-start QAOA with random initial point of instance w.ba.n14.k2.1

Solving Edge-Weighted Maximum Clique Problem 259

0.25

0.20

=}
-
v

probability

o
=
o

0.05 -

0 1 S P (s S Jh e i o (R R [RN R O PR N G R [L KR e s B i i e FR S SN CR s e S s K PR f Co PR e o e

solution

10010010000000
00010001010000
00110001000000
10110000000000
00101100000000
00111000000000
10010000000000
00010010000000
00100000001000
00000100000010
00011000000000
00100001000000
00001100000000
10000000000001
00000001010000
00000000010100
01100000000000
00000010001000
00000001000001
00010001000000
00100000000100
00100100000000
00010000010000
00110000000000
00000001000010
00101000000000
10100000000000
10000000100000
10000010000000
00001000100000
00000000000000
10000000000000
01000000000000
00100000000000
00010000000000
00001000000000
00000100000000
00000010000000
00000001000000
00000000100000
00000000010000
00000000001000
00000000000100
00000000000010
00000000000001

£

nor

bitstrings

Fig. 2. DCA warm-start QAOA with TQA of instance w.ba.n14.k2.1

5 Conclusion and Feature Work

In this article, we have proposed a new method for warm-starting the QAOA
by using the DCA for the relaxed problem with sphere constraint. This method
provides the initial state and mixer operator for the QAOA by solving the relaxed
problem with sphere constraint and shows a good result when compared with
the GNN warm-start method and original QAOA. To see the DCA warm-start
method advantages, we do the numerical simulation carefully with graphs from
the previous article. The DCA warm-start method shows its effectiveness in time
and the optimal solution probability. In the future, we will test this algorithm
on large-scale problems and other real-life problems.

Acknowledgement. This research is funded by Hanoi University of Science and Tech-
nology (HUST) under project number T2023-TDH-001.

References

1. Gloria, T., Dacrema, M.F., Cremonesi, P.: Feature selection for classification with
QAOA. In: 2022 IEEE International Conference on Quantum Computing and Engi-
neering (QCE). IEEE (2022)

2. Sack, S.H., Serbyn, M.: Quantum annealing initialization of the quantum approx-
imate optimization algorithm. Quantum 5, 491 (2021)

3. Anshu, A., Metger, T.: Concentration bounds for quantum states and limitations
on the QAOA from polynomial approximations. Quantum 7, 999 (2023)

260

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

H. P. N. Ha et al.

Lucas, A.: Ising formulations of many np problems. Front. Phys. 5 (2014)
Barkoutsos, P.K., et al.: Improving variational quantum optimization using CVaR.
Quantum 4, 256 (2020)

Acampora, G., Chiatto, A., Vitiello, A.: Genetic algorithms as classical optimizer
for the quantum approximate optimization algorithm. Appl. Soft Comput. 142,
110296 (2023)

Wang, Z., et al.: X y mixers: analytical and numerical results for the quantum
alternating operator ansatz. Phys. Rev A 101(1), 012320 (2020)

Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1411.4028 (2014)

Egger, D.J., Marecek, J., Woerner, S.: Warm-starting quantum optimization.
Quantum 5, 479 (2021)

Bittel, L., Kliesch, M.: Training variational quantum algorithms is np-hard. Phys.
Rev. Lett. 127(12), 120502 (2021)

An, L.T.H., Tao, P.D.: The DC (difference of convex functions) programming and
DCA revisited with DC models of real world non convex optimization problems.
Ann. Oper. Res. 133(2), 23-46 (2005)

Tao, P.D., An, L.T.H.: A DC optimization algorithm for solving the trust-region
subproblem. SIAM J. Optim. 8(2), 476-505 (1998)

Hoai An, L.T., Ta, A.S., Tao, P.D.: An efficient DCA based algorithm for power
control in large scale wireless networks. Appl. Math. Comput. 318(1), 215226
(2018)

Brandhofer, S., et al.: Benchmarking the performance of portfolio optimization
with QAOA. Quantum Inf. Process. 22(1), 25 (2022)

Pardalos, P.M.: Global optimization algorithms for linearly constrained indefinite
quadratic problems. Comput. Math. Appl. 21(6-7), 87-97 (1991)

An, L.T.H., Tao, P.D.: A branch and bound method via DC optimization algo-
rithms and ellipsoidal technique for box constrained nonconvex quadratic prob-
lems. J. Global Optim. 13(2), 171-206 (1998)

Kurowski, K., Pecyna, T., Slysz, M., Rozycki, R., Waligora, G., Wglarz, J.: Appli-
cation of quantum approximate optimization algorithm to job shop scheduling
problem. Eur. J. Oper. Res. 310(2), 518-528 (2023)

Choi, J., Oh, S., Kim, J.: Quantum approximation for wireless scheduling. Appl.
Sci. 10(20), 7116 (2020)

Torta, P., Mbeng, G.B., Baldassi, C., Zecchina, R., Santoro, G.E.: Quantum
approximate optimization algorithm applied to the binary perceptron. Phys. Rev.
B 107(9), 094202 (2023)

Jain, N.; Coyle, B., Kashefi, E., Kumar, N.: Graph neural network initialisation of
quantum approximate optimisation. Quantum 6, 861 (2022)

Shaydulin, R., Safro, 1., Larson, J.: Multistart methods for quantum approximate
optimization. In: 2019 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1-8. IEEE (2019)

Hadfield, S., Wang, Z., O’gorman, B., Rieffel, E.G., Venturelli, D., Biswas, R.:
From the quantum approximate optimization algorithm to a quantum alternating
operator ansatz. Algorithms 12(2), 34 (2019)

Grange, C., Poss, M., Bourreau, E.: An introduction to variational quantum algo-
rithms for combinatorial optimization problems. 40R, 21(3), 363-403 (2023)
Hosseinian, S., Fontes, D.B.M.M., Butenko, S.: A nonconvex quadratic optimiza-
tion approach to the maximum edge weight clique problem. J. Global Optim. 72,
219-240 (2018)

http://arxiv.org/abs/1411.4028

25.

26.

27.

28.

29.

Solving Edge-Weighted Maximum Clique Problem 261

Buchheim, C., et al.: An exact algorithm for nonconvex quadratic integer mini-
mization using ellipsoidal relaxations. STAM J. Optim. 23(3), 1867-1889 (2013)
Pham Dinh, T., Nguyen Canh, N., Le Thi, H.A.: An efficient combined DCA and
B&B using DC/SDP relaxation for globally solving binary quadratic programs. J.
Global Optim. 48, 595-632 (2010)

Ta, A.S., Khadraoui, D., Tao, P.D., et al.: Solving partitioning-hub location- rout-
ing problem using DCA. J. Ind. Manag. Optim. 8(1), 87-102 (2011)

Fuchs, F.G., Kolden, H.Q., Aase, N.H., Sartor, G.: Efficient encoding of the
weighted max k-cut on a quantum computer using QAOA. SN Comput. Sci. 2(2),
89 (2021)

Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Phys. Rev. E 58(5), 5355 (1998)

)

Check for
updates

Comparing Integer Encodings in QUBO
for Quantum and Digital Annealing: The
Travelling Salesman Problem

Philippe Codognet ™)

JFLI - CNRS, Sorbonne University, University of Tokyo, Tokyo, Japan
codognet@is.s.u-tokyo.ac. jp

1 Introduction

In the domain of combinatorial optimization problems and decision science, the
use of quantum computers to solve concrete problems has started to raise inter-
est, in particular with the use of quantum and quantum-inspired annealing sys-
tems. Quantum Annealing (QA) has been proposed by [7] and [4] and incorpo-
rated as the core computational mechanism in so-called Ising Machines [13] such
as D-Wave quantum computers and quantum-inspired/digital systems such as
Fujitsu Digital Annealer. In QA, problems are encoded in quantum Hamiltoni-
ans (energy functions) and quantum dynamics is used to find solutions (ground
states of minimal energy). From a metaheuristic viewpoint, QA can be seen as
similar to simulated annealing but with a different manner to escape local min-
ima. Indeed, if in simulated annealing escaping from local minima is done by
accepting with a certain probability non-decreasing moves, this is performed in
QA by the phenomenon of quantum tunnelling which makes it possible to tra-
verse energy potential barriers in the energy landscape as long as they are not
too large, i.e. high and narrow peaks do not cause a problem.

Interestingly, the formulation of problems as Ising models in the QA paradigm
is related to the Quadratic Unconstrained Binary Optimization (QUBO), a mod-
elling paradigm rooted in pseudo-Boolean optimization which became a general
modelling language for combinatorial problems in the last two decades.

Although classical graph-based combinatorial problems are naturally and
rather univocally modelled in Ising/QUBO [10], more complex constrained opti-
mization problems are sometimes difficult to formulate. Indeed, two things have
to be taken care of: the encoding of integers by Boolean variables and the rep-
resentation of constraints in QUBO. It is therefore important to compare the
performance of different QUBO models of the same problem, in order to inves-
tigate the path towards the most efficient QUBO formulation.

The Travelling Salesman Problem (TSP) is a classical constraint optimization
problem that can be modelled in QUBO and solved by quantum annealing or
quantum-inspired annealing. Several models of the TSP are possible in QUBO,
and we will consider here those based on the so-called permutation formulation.
This can be done by first choosing an encoding for integer variables and then by
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 262-267, 2024.
https://doi.org/10.1007/978-3-031-62912-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_25&domain=pdf
http://orcid.org/0000-0002-6254-6389
https://doi.org/10.1007/978-3-031-62912-9_25

Comparing Integer Encodings in QUBO for Quantum and Digital Annealing 263

encoding the permutation constraint in the objective function as a penalty, as
constraints have to be represented in QUBO by (quadratic) penalty expressions,
value of which will be minimal when the constraint is satisfied. Two main schemes
exist for encoding integers in QUBO: the classical one-hot encoding and the
recently proposed domain-wall encoding [2]. Each encoding will lead to very dif-
ferent penalty terms in the objective function, and will produce different QUBO
matrices. We experimented with several TSP instances from TSPLIB, and we
will present and compare in this paper the results for one-hot and domain-wall
models that have been implemented for two quantum-inspired annealing QUBO
solvers based on clusters of GPUs: the Fixstars Amplify Annealer Engine and
the ABS QUBO solver.

2 Quantum Annealing and QUBO

In the Quantum Annealing paradigm, combinatorial optimization problems can
be described by Ising models and Ising Hamiltonians, the ground states of which
correspond to the minimal solutions of the original problem, see for instance [10].
Ising models are indeed equivalent to formulations in Quadratic Unconstrained
Binary Optimization (QUBO), a paradigm which is conceptually very simple
but has shown to be quite powerful at modelling various types of combinatorial
problems, see for instance [5,9]. Therefore QUBO has become in the last years
the standard input language for all quantum and quantum-inspired annealing
hardware and software solvers.

Consider n Boolean variables 1, ..., z,, a QUBO problem consists in mini-
mizing an objective function defined by a quadratic expression: Zig ; Qi TiT;

It is therefore usual to represent a QUBO problem by a vector z of n binary
decision variables and a square n X n matrix ¢ with coefficients g;;, as the
problem can be written: minimize y = x* Q x, where z' is the transpose of =.

Observe that, as x; are Boolean variables, 2 = x;, thus this quadratic for-
mulation also includes a linear part: the diagonal of the () matrix.

3 The Travelling Salesman Problem in QUBO

The Travelling Salesman Problem (TSP) [6] is one of the most well-known com-
binatorial problem and it was one of the first problems to be proven NP-hard.
Let us consider a graph < G, E > with a set of n nodes G and a set of undirected
labelled edges E, the TSP consists in finding an hamiltonian cycle of minimal
cost in G. For the sake of simplicity, we consider that G is defined by a n x n
distance matrix D, with possibly arbitrary large coefficients.

An Ising or QUBO model for the TSP is easily derived from the classical
integer linear programming formulation, cf. [10], consisting of an objective func-
tion representing the cost of the tour and a set of constraints ensuring that the
tour indeed forms a cycle, that is, that each node is visited exactly once. It is
equivalent to require that the nodes in the tour form a permutation of {1,...,n},
if nodes are represented by integers in {1,...,n}. Representing such a constraint

264 P. Codognet

in QUBO will depend on the way integers are encoded by Boolean variables, for
which two schemes are mainly used in the QA community: the classical one-hot
encoding and the more recent unary/domain-wall encoding.

In the one-hot encoding formulation of the TSP, we consider n? Boolean
variables x;; which have value 1 if node i is visited at time ¢t and 0 otherwise.
The objective function (tour cost) to minimize is then expressed by:

n—1 n
E D;; E Tit Tjt41 T E Dp1 zpn
k=1

(i,j)EGXG t=1

The permutation constraint will be enforced by encoding in QUBO the set
of constraints Y. | x;; = 1 and Z?:l 245 = 1. To encode such constraints in
QUBO, we remark that > ,_, zx =1 < (> ,_, zxr —1)? = 0, which gives the
(quadratic) penalty expression: — Y)| @ + 23, s TrThy

This expression is minimal when the constraint is satisfied.

Adding together the penalties for the 2 x n pseudo-Boolean constraints gives
a quadratic penalty term corresponding to the permutation constraint in QUBO:

n n n n
E E Tijlij + E E TijTij *E E Tij

i=1 j<j’ j=1i<i’ i=1j=1

Another integer encoding, the domain-wall encoding has been proposed in
[2] in an Ising setting, and uses n— 1 Boolean variables to encode an integer with
domain {0,...,n — 1}. Converted to a Boolean setting, domain-wall reduced to
the well-known unary encoding on a fixed number of bits: a number n is encoded
by n bits set to 1, followed by zeros. This is also called thermometer encoding,
and gives a unique unary encoding for each integer.

In the unary/domain-wall encoding formulation of the TSP, we consider each
node of the graph to be represented by an integer x; with domain {0,...,n—1}
and we consider n x (n — 1) Boolean variables x;; where z;,...,%; ,—2 is the
unary/domain-wall encoding of z;. To be a valid unary/domain-wall encoding,
we need to enforce the following constraint [3]:

i € {0,...,77,— 1},Vj S {0,...,71—3} Tij > Ti j4+1-

For instance, 11100 is a valid unary/domain-wall encoding and represents
the integer value 3, while 11011 and 00011 are not valid unary/domain-wall
encodings. As the Boolean constraint > y can be represented in QUBO by the
(quadratic) penalty y — xy, this corresponds to the following penalty, for each
original integer variable z;: Z;:OB (@i jp1 — Tij Tij41)

To represent the objective function of the TSP, we also need to define the
fact that a node z; is visited by the tour at time ¢, which can be done in
unary/domain-wall encoding by considering the Boolean formula: x;; — @ 41 -

With the convention that x; _1 = 1, the objective function (tour cost) to
minimize is then expressed by:

n—2

n
Z Dy; Z(l’z‘,t—l — i) (@i — Tieq1) ZDk,l Thn—1
k=1

(i,))€GX G t=0

Comparing Integer Encodings in QUBO for Quantum and Digital Annealing 265

The quadratic penalty corresponding to the permutation constraint on n
integer variables x; with domains {0,...,n—1} and unary/domain-wall encoded
by Zi0 ... ;n—2 has been defined in [3] by remarking that the following property
holds: Vj € {0,n—2}, > jzij=(n—-1)—j

We thus have n — 1 pseudo-Boolean linear equations (one for each index j),
for which the quadratic penalty can be defined as a generahzatlon of the trans-
formation for the one-hot constraint: (2(j —n) + 3) Zz 0 Tij + 2D i TijTirg

The quadratic penalty corresponding to the permutation constraint is then
just the sum of all the penalties corresponding to these n — 1 equations:

((2(j—n)+3) lej—i—QZx”x”

i<’

|
N

n

<.
I
<)

4 Experimental Results

The QUBO model for the TSP with one-hot encoding is well-known, but the
QUBO model with unary/domain-wall encoding is new. We will compare their
characteristics and performances in this section.

When integrating penalties in the objective function to represent constraints
in QUBO, one has to consider multiplicative coefficients in order to make the
penalty part compatible with the original objective part to minimize. Indeed,
penalty coefficients have to be large enough to ensure that no feasible solution
is lost [8,15]. For the TSP model with one-hot encoding, a standard method
consists in taking the maximal value in the distance matrix as penalty coefficient.
We decided to use this method for the one-hot QUBO model because, although
other methods have been proposed, they usually result in larger coefficients with
no clear improvement on the performance [1].

For the unary/domain-wall encoding, choosing correct penalty coefficients is
a bit more complicated , as we have two different term parts in the penalty:
S (@i g1 — iy wigia) and U8 (205 —n) +3) Yoy @i +2 30 g i)
The term coefficients of the first part are -1 and +1, while for the second part
they range up to 2n. Therefore we need to multiply the penalty terms coming
from the first part by an additional 2n factor. Then, as for one-hot, all penalty
terms should be multiplied by the maximum value in the distance matrix.

The charateristics of the QUBO upper-diagonal matrices obtained with both
models are presented in the table below, for several instances taken from the
TSPLIB library!. We can observe than the unary/domain-wall matrices are
smaller and more sparse (even proportionally), but have larger coefficients.

These problems are too large for being solved directly by the quantum pro-
cessing unit (QPU) of D-Wave Advantage system [12], which have up to 5600
qubits but do not implement a complete connection graph between qubits (only
a 15-node connectivity). Using the Hybrid Solver of the D-Wave quantum com-
puter, which is mixing classical decomposition of larger problems and execution

! http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95// .

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

266 P. Codognet

of smaller problems on the QPU, makes it possible to find the optimal solution
for very small TSP instances (up to size 13, in a few seconds of computation
time) but it cannot find the the optimal solution for the smallest instances that
we consider here (grl7 and ulysses16), even after 60 s of computation time which
is the overall time-limit that we take for all solvers.

one-hot encoding unary encoding

instance |vars |max coef|min coef|number of coefs. <> 0f|vars |max coef|min coef|number of coefs <> 0
ulysses16(256 |5579 —5578 7936 = 24.12% 240 (85521 —89248 [5624 = 19.45%
ulysses22|484 |5579 —5578 |20812 = 17.73% 462 (119139 |—122716|14817 = 13.85%
erl7 289 1490 —1490 |9537 = 22.76% 272 (24335 25330 6409 = 17.26%
gr2l 441 |1730 —1730 |18081 = 18.56% 420 |35745 —36330 {12495 = 14.13%
gr24 576 |778 —778 27072 = 16.29% 552 18141 —18672 18756 = 12.29%
grd8 2304(2166 —2166 218880 = 8.24% 2256(102389 |—103968(152520 = 5.99%
ri26 676 |560 —560 34476 = 14.07% 650 |14388 —14560 [22607 = 10.69%
att48 2304|5324 —5324 218880 = 8.24% 2256(253752 | —255552(160872 = 6.32%
hk48 2304 (5468 —5468 218880 = 8.24% 2256(257502 |—262464]160680 = 6.31%
eil51 2601{172 —172 262701 = 7.76% 2550(8660 —8772 |278512 = 7.62%
berlin52 |2704|3432 —3432 |278512 = 7.62% 2652|177610 | —178464(203086 = 5.77%

We thus decided to use so-called “quantum-inspired” or “digital” annealing
systems which are GPU-based QUBO solvers that somehow simulate the quan-
tum annealing process: Fixstars Amplify Annealing Engine (AE), which is a
commercial product with no real description of its internal computation model
[11] and ABS QUBO Solver, whose solving algorithm is described in [14,16]. The
table below presents, for each solver, the annealing time (in seconds) to reach
the optimal solution (Time-To-Solution) or the best non-optimal solution found
within the timeout of 60s (when numbers are postfixed with a “*’).

Amplify AE ABS Solver

(TTS/Best sol) (TTS/Best sol)
instance |optimal solution|one-hot encoding|unary encoding|one-hot encoding|unary encoding
ulysses16 |6859 0.315 2.013 0.070 0.495
ulysses22 |7013 4.350 7114%* 0.146 7036*
grl7 2085 0.262 6.807 0.052 0.651
gr2l 2707 0.208 23.34 0.053 0.997
gr24 1272 0.255 1294%* 0.083 1278*
gr4d8 5046 16.25 7296* 7.446 6078*
fri26 937 3.089 0.851 0.363 0.124
att48 10628 10705* 15507* 10661* 12745%
hk48 11461 11479* 16513* 25.89 13959*
eil51 426 430* 611* 17.19 527*
berlin52 |7542 7694* 10898* T7679* 10826*

5 Conclusion

We have presented two models of the TSP in QUBO: one with one-hot encoding
(already well-known) and one with unary /domain-wall encoding (new), together

Comparing Integer Encodings in QUBO for Quantum and Digital Annealing 267

with their performance on two quantum-inspired annealing solvers. Experiments
on various instances from TSPLIB show that the one-hot encoding is clearly more
performant than the unary/domain-wall encoding, with both solvers.

References

10.
11.

12.

13.

14.

15.

16.

. Ayodele, M.: Penalty weights in QUBO formulations: permutation problems. In:

Pérez Céceres, L., Verel, S. (eds.) EvoCOP 2022. LNCS, vol. 13222, pp. 159-174.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04148-8_11
Chancellor, N.: Domain wall encoding of discrete variables for quantum annealing
and QAOA. Quantum Sci. Technol. 4, 045004 (2019)

Codognet, P.: Domain-wall / unary encoding in QUBO for permutation problems.
In: IEEE Quantum Computing and Engineering (QCE), pp. 167-173 (2022)
Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A
quantum adiabatic evolution algorithm applied to random instances of an np-
complete problem. Science 292(5516), 472-475 (2001)

Glover, F.W., Kochenberger, G.A., Du, Y.: Quantum bridge analytics I: a tutorial
on formulating and using QUBO models. Ann. OR 314, 141-183 (2022)

Jinger, M., Reinelt, G., Rinaldi, G.: Chapter 4 the traveling salesman problem.
In: Network Models, Handbooks in Operations Research and Management Science,
vol. 7, pp. 225-330. Elsevier (1995)

Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Phys. Rev. E 58, 5355-5363 (1998)

Kochenberger, G., Glover, F., Alidaee, B., Rego, C.: A unified modeling and solu-
tion framework for combinatorial optimization problems. OR Spectrum 26, 237-
250 (2004)

Kochenberger, G.A., et al.: The unconstrained binary quadratic programming
problem: a survey. J. Comb. Optim. 28(1), 58-81 (2014)

Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2 (2014)
Matsuda, Y.: Research and development of common software platform for ising
machines. In: 2020 IEICE General Conference (2020). (in Japanese)

McGeoch, C., Farré, P.: The Advantage system: Performance update (2021). Tech-
nical report, D-Wave Inc., 01-10-2021

Mohseni, N., McMahon, P., Byrnes, T.: Ising machines as hardware solvers of
combinatorial optimization problems. Nat. Rev. Phys. (2022). published online
04/05,/2022

Nakano, K., et al.: Diverse adaptive bulk search: a framework for solving QUBO
problems on multiple GPUs. In: 2023 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE (2023)

Verma, A., Lewis, M.: Penalty and partitioning techniques to improve performance
of QUBO solvers. Discret. Optim. 44, 100594 (2022)

Yasudo, R., et al.: GPU-accelerated scalable solver with bit permutated cyclic-
min algorithm for quadratic unconstrained binary optimization. J. Parallel Distrib.
Comput. 167, 109-122 (2022)

https://doi.org/10.1007/978-3-031-04148-8_11

)

Check for
updates

Solving Quadratic Knapsack Problem
with Biased Quantum State Optimization
Algorithm

Huy Phuc Nguyen Ha', Viet Hung Nguyen?, and Anh Son Ta!(®)

1 School of Applied Mathematics and Informatics, Hanoi University of Science
and Technology, Hanoi, Dai Co Viet, Vietnam
son.taanh@hust.edu.vn
2 Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne, Clermont Auvergne
INP, LIMOS, Clermont-Ferrand, France

Abstract. The Quantum Approximate Optimization Algorithm is the
hybrid classic-quantum algorithm that is used for solving the combina-
torial optimization problem. However, the algorithm performs poorly in
the constrained combinatorial optimization problem because it considers
all solutions with the same initial probability. In this article, we propose
a new quantum state that improves the QAOA performance and does
not require slack variables for inequality constraints. We also introduce
some properties of our new quantum state in solving a constrained com-
binatorial optimization problem. To see our method’s efficiency, we use
our method to solve the quadratic knapsack problem and compare it
with the quantum state method of Hao et al. [5] which is one of the most
recent and effective methods for solving the constrained combinatorial
optimization.

Keywords: Quadratic knapsack problem + QAOA - biased quantum
state

1 Introduction

The Quantum Approximate Optimization Algorithm (QAOA) [9] is the hybrid
quantum-classical algorithm used for solving the combinatorial optimization
problem. QAOA addresses the optimization challenge by creating a parameter-
based quantum state through a series of quantum circuit layers. These layers
alternate phase and mixing operations, adjusting parameters to maximize a spe-
cific measure of solution effectiveness. QAOA shows potential in various fields
like optimization, finance, and machine learning, and efforts have been made
to adapt it for quantum chemistry applications. However, QAOA has poor per-
formance in constrained optimization problems since it considers all solutions
including infeasible solutions with the same initial probability. From this dis-
advantage, many methods have been used for improving the performance of
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 268-280, 2024.
https://doi.org/10.1007/978-3-031-62912-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_26&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_26

Solving Quadratic Knapsack Problem 269

the QAOA in the constrained binary optimization problem including Quantum
Alternating Operator Ansatz [15], QAOA with Grover Mixer [16]. The Quantum
Alternating Operator Ansatz is the QAOA’s improvement with the mixer opera-
tor’s change. The new mixer operator in Quantum Alternating Operator Ansatz
is used to restrict the initial state of the constrained problem into feasible solu-
tion space. Quantum Alternating Operator Ansatz is used for many problems
including maximum independent set [1], minimum exact cover problem [2]. The
Grover mixer is the method using the feasible solution representation matrix
for the initial operator. This method restricts the initial state of the constrained
problem into a feasible solution space with the same probability for every feasible
solution. These methods depend heavily on the structure of the problem’s con-
straints to find a suitable mixer operator. To overcome this dependence Hao et
al. [5] introduce an in-constrained state function. This method does not require
finding a suitable mixer for the problem using the original quantum state of the
QAOA and calculating the solutions in a feasible set. The main advantage of
this state function is that it does not depend on the structure of the problem’s
constraints. The disadvantage of the three methods is that converging to the
optimal value with a low-depth circuit is hard to obtain since it considers all the
feasible solutions with the same initial probability as the original QAOA state
function. Furthermore, finding the optimal value of expectation of the QAOA is
an NP-hard problem. One of the approaches to solve this problem is to find an
initial state of the QAOA to reduce the non-feasible solutions and improve the
approximate ratio of the QAOA with a low-depth circuit with a biased quan-
tum state [4]. This method has been applied with good results for the maximum
cut problem with positive weight on edges [4] and job shop scheduling prob-
lems [12]. However, [12]| considers the problem with equality constraints which
is easy to transform to QUBO, and [4] considers the maximum cut problem
that has no constraint. However, many constrained combinatorial optimization
problems have inequality constraints. In general, the inequality constraints can
be transformed into the equality constraints by using the slack variables which
can increase the complexity of the problem. The penalty method also distracts
the QAOA from finding the optimal value because of the penalty term. In this
article, we introduce a new quantum state for the QAOA that is suitable for
inequality constraints and does not require additional variables to transform
the problem into QUBO. We apply our state function to the quadratic knap-
sack problem. The quadratic knapsack problem can be solved by many methods,
including heuristic and exact methods [18,19] on classical computers. To the best
of our knowledge, our article is the first article to apply QAOA in solving the
quadratic knapsack problem. This article focuses on solving the quadratic knap-
sack problem with the QAOA with a new quantum state that helps the algorithm
converge to the optimal value with a low-depth quantum circuit. The paper is
organized as follows: Sect. 2 provides preliminary information about QAOA, the
quadratic knapsack problem. In Sect. 3, we introduce the biased quantum state
for constrained problems and show the convergence of the biased quantum state.
Section 4 reports numerical simulations using randomly generated data methods

270 H. P. N. Ha et al.

in [13] and compares with [5] state function to demonstrate the efficiency of
our proposed method. We choose the [5] state function since it does not depend
on the problem structure, unlike Quantum Alternating Operator Ansatz and
QAOA with Grover mixer that depend on instances. Finally, we conclude our
findings in Sect. 5.

2 Preliminary

2.1 Introduction to QAOA

Quantum Approximate Optimization Algorithm (QAOA) was first introduced
in 2014 by Fahri [9]. QAOA is a hybrid classical-quantum algorithm for solving
optimization problems. It is designed to run on near-term quantum computers
and works by encoding the problem as a cost function minimized via the use of
a series of quantum gates and measurements. The algorithm alternates between
classical optimization of parameters that control the quantum gates and quan-
tum evolution under those gates. The algorithm’s output is a quantum state that
approximates the solution to the optimization problem. QAOA has been used for
various optimization problems, including graph partitioning, MaxCut, portfolio
optimization, and many other combinatorial optimization problems. The state
function is defined as

10(3,7)) = U(B)U (1)U (Be)U (33,) [)"

with U(8) = e ™88 and U(y) = e7™s7. U(B) and U(y) are parameterized
quantum gates with Hy is problem Hamilton operator

n n
z_z z
Hy = g a;jo; o5 + g bioi + ¢
i=1

i,7=1

with o7 is the Pauli Z matrix and Hy corresponds to the objective function of
combinatorial optimization problem, Hpg is mixer Hamiltonian operator

with 03X is Pauli X matrix. The vector |+) is defined by:
1

)= 7510 + 1)

with |0) = and |1) = 0} are 2 qubits in a quantum computer. The QAOA

of =,

objective function is defined as follows:

wmin (¢p(5,7) [H|1(8,7))- (1)

B,7v€[0,27]

Solving Quadratic Knapsack Problem 271

The expectation can be represented as follows:

(W(B,7) [Hy|(8,7) ZM (8,)|z) I, (2)

with x; is the feasible solution represented by bitstring which is encoded in
the quantum computer, A; is the value of objective function corresponding to
x;, [(¥(B3,7)|z;:)|? is the probability of x;. It is noticeable all of the solutions
are encoded into columns of the identity matrix with size 2" x 2" with n as
the bitstring length corresponding to the feasible solutions of the combinatorial
optimization problem and the values of the objective function is the eigenvalue of
Hy. This algorithm makes use of classical computers to optimize the expectation
function. It uses gradient and gradient-free optimizers such as gradient descent,
COBYLA, SPSA, etc. with initial parameters (5g,v0). The disadvantage of the
QAOA can be seen in the initial state which considers all the solutions with the
same initial probability. This can lead to the low performance of this algorithm
when it is used to solve a constrained problem.

2.2 Introduction to Quadratic Knapsack Problem and Its
Reformulations for QAOA

In this article, we introduce the quadratic knapsack problem (QKP): n items are
given where item j has a positive integer weight w;. In addition, we are given a
cost matrix @ = {Q;;} that Q;; is the profit when we select item i and Q;; +Q;;
when we select item ¢ and j. The QKP calls for selecting an item subset whose
overall weight does not exceed a given knapsack capacity W, so as to maximize
the overall profit:

max z! Qz
stwlz <WwW
z € {0,1}"

with w is the vector of item size,) is the cost matrix with Q);; is the cost of
taking item ¢ and j. The problem we consider is the quadratic knapsack problem
which has many applications: finance, logistics, and telecommunications [17]. The
quadratic knapsack problem can be transformed into QUBO problem by 6 ways
[14]:

— Method 1:
N M 2
—2Qx +) (W - Zwixi - Z 2k_1yk> (3)
i=1 k=1

with yy, is additional variable, M = [loga(W +1)] is the number of additional
variables. This method encodes the capacity with binary variables.

272 H. P. N. Ha et al.

— Method 2:

M-1 N 2
—2TQz + A ((W +1=2M Ny 4 Y 2y — Zwm) (4)

k=1 i=1

Unlike Method 1, we adopt a different strategy by employing slack variables
to represent the remaining capacity instead of encoding the total weight of the
items. To facilitate this, an offset of 2~ —1 is incorporated, along with a set
of binary auxiliary variables. In this scenario, M = [loga(W + 1)] auxiliary
binary variables are once again necessary.

— Method 3:

N M 2
—2TQx + A (W - szxz - Z(k - 1)yk> (5)

=1 k=1

This QUBO formulation resembles Type 1, but it incorporates a one-hot
encoding instead of a binary one. In this context, M = max]. ; w; auxiliary
variables are imperative. It’s noteworthy that any solution exhibiting a dis-
crepancy between the total weight and capacity greater than M is suboptimal,
as one can include additional items without violating the capacity constraint.
It is essential to highlight that this QUBO formulation is effective only when
all Q;; values are non-negative. If any @;; is non-positive, adjusting M to
W 4 1 becomes necessary. Additionally, it is pertinent to acknowledge that
strict enforcement of the one-hot encoding is not mandatory in this case.
— Method 4:

M N 2
—z"Quz + A (Z(W —k+ 1y, — Z wﬂh‘) (6)
k=1 i—1

This expression closely resembles Method 2 but with a deviation in the encod-
ing method. Instead of utilizing a binary encoding, a one-hot encoding is
employed. In this context, we introduce M = max] , w; auxiliary variables,
employing a similar technique. It is essential to emphasize that for this app-
roach to be effective, all Q);; must be non-negative. If this condition is not met,
M = W + 1 auxiliary variables become necessary. Notably, the enforcement
of the one-hot encoding remains flexible in this scenario.
— Method 5:

2
N
—2TQx + A (W — Wotfset — Z wixi> (7)
i=1

with Wogset is the difference between the capacity and the total weight of
the solution. This formulation does not require additional binary variables,
but it has the Wy sse; which is hard to determine.

Solving Quadratic Knapsack Problem 273

— Method 6:

N M 2 M 2
—xTQx + M\ (W — Zwixi — Z(k — 1)yk> + Ao (Z Yk — 1) (8)

i=1 k=1 k=1

This category represents an expansion of Method 3 by incorporating an
additional penalty term with a weight of Ay to ensure the implementation
of one-hot encoding as per Method 3. The initial penalty term carries a
weight of A;. Similar to the previous type, if all Q);; values are non-negative,
M = max]_; w; auxiliary variables are required; otherwise, M = W + 1
auxiliary variables are necessary.

We can see that 6 methods require more than n qubits to transform the problem
into QUBO. This increases the complexity of the quantum optimization algo-
rithm when transforming the problem into a QUBO instance. Furthermore, they
also distract the algorithm from finding optimal solutions because of the penalty
terms. To solve the problem without additional slack variables, we use the Hao et
al. [5] in-constraint quantum state function. The in-constrained quantum state
function is suitable for constrained problems. This state function is introduced
based on the fact that employing the expectation value of the objective func-
tion (alternatively, the energy of the Hamiltonian encoding the objective) as the
optimization objective proves effective for unconstrained problems in variational
quantum algorithms. However, when addressing constrained problems, incorpo-
rating constraints into the Hamiltonian via penalty terms presents a challenge.
In such cases, optimizing the energy may fail to accurately represent the original
problem’s objective. The state function has the following form:

_ SacrlBB)le)
IR PRk

with F as the feasible space of the problem, x; is the binary bitstring representing
the problem’s solution. The state function involves the straightforward process
of eliminating the amplitudes of infeasible bases and subsequently normalizing
the remaining state. We can compute the expectation value using post-processed
samples when executing this process on a quantum device. This can be achieved
either by iterating over the Pauli terms in the Hamiltonian or by preparing a
state that closely approximates the samples. Furthermore, the advantages of this
state function are not requiring the penalty function and requiring the number of
qubits equal to the dimension of the problem. In the next section, we introduce
the biased quantum state function for solving the quadratic knapsack problem.

[¥)

9)

3 Introduction to Biased Quantum State for Constrained
Quadratic Binary Optimization

In this section, we introduce the instruction of the quantum state based on
QAOA for constrained quadratic binary optimization. The good quantum state

274 H. P. N. Ha et al.

has to boost the optimal solution probability and decrease the non-feasible solu-
tion. In general, we consider the cost operator Heo has the following form:

Ho= Y flwi)la) (| (10)

IiE{O,l}"

with eigenstate |z;), x; is the binary string, and eigenvalue f(z;) with f(xy) >
f(ze) > ... > f(xg) with k is the number of feasible solutions. We want to
use a function such that it increases the overlap of the state function with the
superposition of the optimal value. First, we consider the penalty function of the
constrained problem as follows:

9(x) = f(z) — xr(z) (11)
with yp(z) is the indicator function:
0, ifzeF
xr(x) = { o (12)
00, otherwise

If x ¢ F, g(x) goes to —oco. The aim of our method and penalty function for
QAOA have the same role is to define which solution is not in the feasible
space. Next, we construct the diagonal matrix H that represents the value of
the objective function with the indicator as follows:

Hii = g(x;)
Hij=0ifi# j

This matrix is similar to the Ho matrix with feasible solutions. The difference
between H and H¢ is the non-feasible solutions are set as minus infinity. Without
losing generality, we consider the following order of the H eigenvalues f(zopt) =
g(x1) > g(xe) > ... > g(zan). Let h(H) is the operation on the state function
introduce the following state:

W(H)G(B,7) =D hlg(@:))((8,7)|x:)|2:) (13)
=1

whose normalized state function has the following form:

RE)(B.) S Mly(ea)) (8 7)lei)les) 14)

IRE)SBN 3220 hlg(@a) (W (B,7)|2:)]2

In this article, we introduce the new initial state for the QAOA by using its cost
operator with the function h(H) = e. We have the following state:

09(i)/2| .
|wnew(ﬁ77)> = Z dic |xl>

. (15)
z;E€B™ \/ZmiEB” |ai|2€9(ﬂfi) |.’L‘l>

Solving Quadratic Knapsack Problem 275

with a; is equal to (x;|¥(8,7)), and B = {0,1}. This function is suitable for
every problem, including the constrained problem since it considers the bias of
the solutions depending on their value. The higher the value, the higher the
probability. If z ¢ F, g(x) goes to —oo which can indicate that e9(*) goes to 0.
This leads to the elimination of the non-feasible solutions in the initial probabil-
ity since the original quantum state contains all solutions based on the quantum
entanglement and the Hadamard gate considers every qubit with the same prob-
ability. We can see that this state function focuses on the solutions that are
near the optima rather than considering all solutions with the same probability.
This can help the QAOA to converge the optimal solutions. To see our method
convergence, we consider the following propositions:

Proposition 1. Suppose |1)1) and |1p2) are 2 vectors such that |||v1)]], |||2)]]
< a and |||¥1) — |[¥2)|| < b and A is the bounded linear operator with ||A|| is the
mazimal eigenvalue in absolute value of A, then we have the following inequality:

|1 A1) — (Y] Alepa)| < 2[[Al|ab. (16)

Proof. Applying the triangle inequality, we have:

(1] A1) — (2] Alb2)| < [(W1] A1) — (1] Alb2)| + (2] A1) — (2] Altb2)]
< W1l A1) — [92))|] + (2] A([1h1) — [¥2))]]
< 2{[Al|ab

From proposition 1, we have to find the Euclidean distance of the QAOA state
to the superposition of the optimal solutions since it represents the conver-
gence speed of the state function to the superposition of the optimal solu-
tions. The algorithm can converge after finite steps if the Euclidean distance
is small. We can see that the |10, (8,7)) eliminates all the non-feasible solu-
tions which leads to the reduction of the problem Hamiltonian from 2" values
to k values such that satisfies the constraints of the problem. From that fact,
the Hamiltonian we consider the values correspond to the feasible solutions.
Without losing generality, we consider the following order of the H’s eigenval-
ues f(zopt) = g(x1) > g(x2) > ... > g(x2n). We have to estimate the distance
of the |tnew(0,7)) and the superposition of the optimal solution. We set the
superposition of the optimal solution by vector |z,p), the distance we consider
is:

[new(B,7)) = [zopt)|| < €, (17)

we have to estimate the e to indicate the convergence of the state function
|Ynew(B,7)) after being optimized. Set the coefficient of the optimal solution
superposition in the state e[1)(3,7)) as a with a = e9@ort) [()(B,)|z opt) |2
We notice that

oo = 18, Il = lllezope) || =l v (B, < €22, (18)

276 H. P. N. Ha et al.

As a result, we have the following estimation:

(Bopt) — e y(8,7)) H H| . le(ﬁﬁ»' n MpB,7) e"w(s H
P e [(8,7 " & & e ¥ (8,)|
2¢9(z2) B 2¢e(9(x2)—g(x1))

a @B, |wopt)

With g(z2) — g(z1) < —1, we can have the following inequality:

(B, 7) H
)]

“rOPt> ||€H|¢ Ba (19)

Furthermore, considering the expectation difference between the optimal value
superposition and the quantum state, we have:

|<~Topt‘HC‘xapt> - <wnew(/87’y)|HC|wnew(/Ba ’7)>| < 2||HC|HH¢new(6 ’7)> - |x0pt>||
2¢e(9(z2)—g(z1))

{8 V)| opt) [?

We can assume that all the feasible solution to the problem has a positive value
because we can transform the arbitrary sign eigenvalue of the cost operator
into positive by adding a value that makes all the values positive. We have the
following inequality:

= 2[[Hcl|

4f(x1)e(g($z)fg(z1))
[(8, %)@ ope) |2

g(x2) — g(x1) = f(x2) — f(x1) if 2 € F which is also known as spectral gap
of Ho. We can assume that we can find a parameter such that the probability
|((B,7)|zopt)|? is greater than 0 significantly and the difference can go to 0 and
g(x1) —g(x2) > 1. In other words, the algorithm converges to the optimal value.
To conclude, our quantum state function for QAOA has 2 advantages from the
previous articles [4] and Hao et al. in-constraint quantum state function:

|<xopt‘HC‘$opt> - <wnew(/67’7)|HC|wnew(ﬂa7)>| < (20)

— The state of the optimal solution has the highest bias in the quantum state,
which can lead to the convergent of the QAOA [4]. In this section, we have
proved the convergent with spectral gap condition.

— The number of qubits required for this function equals the number of cost
function variables without using the penalty method similar to Hao et al. in-
constraint quantum state function. We compare the number of qubits using in
our methods with 6 QUBO formulations when solving the quadratic knapsack
problem from Sect. 3: Our biased state function requires n qubits, Method 1
requires n + [logs(W + 1)], Method 2 requires n + [loga(W + 1)], Method
3 requires n + W + 1 in worst cases, Method 4 requires n + W 4+ 1 in worst
cases, Method 5 requires n qubits but finding W f5c; is hard and Method 6
requires n + W + 1 in worst cases. With small-scale quantum computers, the
QAOA can not be implemented for 6 reformulations.

Solving Quadratic Knapsack Problem 277

4 Numerical Simulation

Comparative method. In this section, we compare our method with Hao et
al. in-constraint quantum state function:

_ SacrlBB)l)
1, cr (BB

This state function is suitable for solving constrained combinatorial optimization
problems. It considers only the solutions in the feasible space. We use this state
function to compare with our state function because both of them use the same
number of qubits and this state function does not depend on problem structure.

[¥) (21)

Data. In this section, our data is generated by method from [13]. We consider
the elements in @ to be in [—5,5] and [—10,5] and the weight vector w has the
component in [1,50], capacity W is chosen equal to anle The dimension of
the problem we consider is 20. We divide them into 2 types: Type 1 and Type
2. Type 1 with the elements in @ to be in [—5,5] and Type 2 with the elements
in @ to be in [—10,5]. Every instance is named as QK P — i with i as the order
of the instance.

Metric. In this article, we consider 2 metrics to compare the performance of
2 methods: optimal solution probability and approximate ratio. The optimal
solution probability represents the probability of optimal solution when using
2 methods and it can be understood as the fidelity of the quantum state with
optimal solution superposition

Opt solution prob = [{(Zopt|Vnew (5, 7)>|2. (22)

The approximate ratio represents the ratio between the expectation and the
optimal value when using 2 methods.

(Vnew (B, VI He | Ynew(B,7))
f(@opt) .

Backend and Optimizer for Quantum Circuit. The backend we use is
qiskit-aer simulator and the classical optimizer we use is differential evolution.
This method is suitable for optimizing continuous functions. The initial parame-
ters for the quantum circuit are found by using the method based on Trotterized
Quantum Annealing [3].

approx ratio = (23)

Result. In Table1l and Table2, we compare our method with Hao et al. in-
constraint quantum state function on instances. We can see that our quantum
state has a better approximate ratio and fidelity than the Hao et al. in-constraint
quantum state function. Furthermore, some instances of our method have the
probability of the optimal solution being less than 1 because the spectral gap of
the problem operator is not larger than 1 significantly. Most instances use the
Hao et al. in-constraint quantum state function have a low approximate ratio

278 H. P. N. Ha et al.

and the optimal solution probability equal to 0. This can be indicated by the
fact that even though the Hao et al. in-constraint quantum state function has
feasible solutions, the value is too far from the optimal value which distracts
the in-constraint state function from finding the optimal solution. Furthermore,
the performance of the in-constraint state function [5] depends heavily on the
QAOA state function. Our state function can overcome this issue because our
state function focuses on finding optimal solutions.

Table 1. Comparision between 2 quantum states for quadratic knapsack problem with
Type 1 instance

Graph | Biased quantum state In constrained quantum state [5]
Opt solution prob | Approx ratio | Opt solution prob | Approx ratio
QKP-1 |0.8092 0.9894 0 —0.0186
QKP-2 |0.9983 0.9997 0 -0.3197
QKP-3 |0.8805 0.9972 0 0.2770
QKP4 |1 1 0.0013 —0.3058
QKP-5 |1 1 0 0.1631
QKP-6 |1 1 0 —0.3758
QKP-7 |1 1 0 0.0896
QKP-8 |1 1 0 0.1184
QKP-9 |1 1 0.0048 0.0928
QKP-10|1 1 0 0.1966
QKP-11|0.6015 0.9829 0 0.0937
QKP-120.9998 0.9999 0 —0.3609
QKP-13 |1 1 0.0009 —0.2551
QKP-14 |1 1 0 0.0003
QKP-15|1 1 0 —0.6909

Solving Quadratic Knapsack Problem 279

Table 2. Comparision between 2 quantum states for quadratic knapsack problem with
Type 2 instance

Graph | Biased quantum state In constrained quantum state [5]
Opt solution prob | Approx ratio | Opt solution prob | Approx ratio
QKP-16 | 1 1 0 -9.2341
QKP-17/0.9374 0.9900 0 —7.6625
QKP-18|0.8491 0.9745 0 -13.6539
QKP-19 |1 1 0 —22.4807
QKP-20 |1 1 0.0019 —0.7900
QKP-21 | 0.9993 0.9995 0 -16.5703
QKP-22 |1 1 0 -3.4833
QKP-23 |1 1 0.0019 —6.1926
QKP-24 | 0.5559 0.9596 0 —6.9568
QKP-25 |1 1 0 -12.3328
QKP-26 |1 1 0 -13.1611
QKP-27|0.9965 0.9983 0 —0.7308
QKP-28 | 1 1 0 -12.0275
QKP-29 |1 1 0 —-17.1578
QKP-30 |1 1 0 -13.6090

5 Conclusion and Feature Work

In this article, we propose a new quantum state for constrained problems that
do not require slack variables and increase the approximate ratio of the quantum
optimization algorithm. We also point out when the state function is close to
the optimal solution superposition. Our state is close to the optimal solution
superposition when the spectral gap is significantly large and the probability of
optimal solution with QAOA state function is larger than 0 significantly. We also
see that the two main advantages of our state function in solving constrained
problems are reducing the number of qubits and creating a high bias for the
optimal solution state. To show our state function efficiency, we use randomly
generated data with the method in [13]. Furthermore, we compare our state
function with the in-constraint state function [5] and show that our state function
performs better in both approximate ratio and optimal solution probability.

Acknowledgement. This research is funded by Hanoi University of Science and Tech-
nology (HUST) under project number T2023-TDH-001.

280 H. P. N. Ha et al.
References
1. Saleem, Z.H.: Max-independent set and the quantum alternating operator ansatz.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Int. J. Quantum Inf. 18(04), 2050011 (2020)

. Wang, S.-S., Liu, H.-L., Song, Y.-Q., Gao, F., Qin, S.-J., Wen, Q.-Y.: Quantum

alternating operator ansatz for solving the minimum exact cover problem. Phys.
A 626, 129089 (2023)

Sack, S.H., Serbyn, M.: Quantum annealing initialization of the quantum approx-
imate optimization algorithm. Quantum 5, 491 (2021). 11

. Amaro, D., Modica, C., Rosenkranz, M., Fiorentini, M., Benedetti, M., Lubasch,

M.: Filtering variational quantum algorithms for combinatorial optimization.
Quantum Sci. Technol. 7(1), 015021 (2022)

Hao, T., Shaydulin, R., Pistoia, M., Larson, J.: Exploiting in-constraint energy in
constrained variational quantum optimization. In: 2022 IEEE/ACM Third Inter-
national Workshop on Quantum Computing Software (QCS), pp. 100-106. IEEE
(2022)

Barkoutsos, P.K.l., et al.: Improving variational quantum optimization using
CVaR. Quantum 4, 256 (2020)

Acampora, G., Chiatto, A., Vitiello, A.: Genetic algorithms as classical optimizer
for the quantum approximate optimization algorithm. Appl. Soft Comput. 142,
110296 (2023)

Wang, Z., et al.: X y mixers: analytical and numerical results for the quantum
alternating operator ansatz. Phys. Rev. A 101(1), 012320 (2020)

Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo
rithm. arXiv preprint arXiv:1411.4028 (2014)

Egger, D. J., Marecek, J., Woerner, S.: Warm-starting quantum optimization.
Quantum 5, 479 (2021)

Bittel, L., Kliesch, M.: Training variational quantum algorithms is NP-hard. Phys.
Rev. Lett. 127(12), 120502 (2021)

Amaro, D., Rosenkranz, M., Fitzpatrick, N., Hirano, K., Fiorentini, M.: A case
study of variational quantum algorithms for a job shop scheduling problem. EPJ
Quantum Technol. 9(1), 5 (2022)

Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Rev. 45(1), 3-49 (2003)

Punnen, A.P., Pandey, P., Friesen, M.: Representations of quadratic combinatorial
optimization problems: a case study using quadratic set covering and quadratic
knapsack problems. Comput. Oper. Res. 112, 104769 (2019). 9

Hadfield, S., et al.: From the quantum approximate optimization algorithm to a
quantum alternating operator ansatz. Algorithms 12(2), 34 (2019)

Bartschi, A., Eidenbenz, S.: Grover mixers for QAOA: shifting complexity from
mixer design to state preparation. In: 2020 IEEE International Conference on
Quantum Computing and Engineering (QCE), pp. 72-82. IEEE (2020)

Fomeni, F.D., Kaparis, K., Letchford, A.N.: A cut-and-branch algorithm for the
quadratic knapsack problem. Discret. Optim. 44, 100579 (2022)

Kellerer, H., et al.: Multidimensional Knapsack Problems. In: Knapsack Problems.
Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24777-7 9
Pisinger, D.: The quadratic knapsack problem-a survey. Discret. Appl. Math.
155(5), 623648 (2007)

http://arxiv.org/abs/1411.4028
https://doi.org/10.1007/978-3-540-24777-7_9

q

Check for
updates

Quantum Optimization Approach for Feature
Selection in Machine Learning

Gérard Fleury?, Bogdan Vulpescu!, and Philippe Lacomme?®)

I Laboratoire de Physique de Clermont, Campus Universitaire des Cézeaux, 4 Avenue Blaise
Pascal, 63178 Aubiere, France
bogdan.vulpescu@clermont.in2p3. fr
2 LIMOS - UMR CNRS 6158, Université Clermont Auvergne, 1 rue de la Chebarde, 63177
Aubiere, France

{gerard.fleury,phiilppe.lacomme}@isima.fr

Abstract. This is intended to be a technical companion presenting some achieve-
ments recently published about the usage of quantum algorithms for the selection
of relevant features in a given data set. Based on the paradigm of machine learning,
such methods use the concept of mutual information between pairs of observables
and between observables and the inferred class, in the special case of a simple
classification task. Those probabilistic quantities have been discussed a number
of times in several works on information theory. Starting from the paper (Miicke
et al., 2023), we provide some further inside about the technical details of their
work, with an additional test done on a gate processor using the same binary
quadratic approximation model.

Keywords: QUBO - feature selection - machine learning - QAOA - quantum
annealing

1 Feature Selection

1.1 State of the Art

Dimensionality reduction is a data strategy management that consists in identifying
the minimum features to reduce as far as possible the input data dimensions with the
objective to favor resolution of numerous machine learning models. Feature selection
consists in keeping only a subset of the available features and it is especially relevant
for data coming from sources producing redundant or unnecessary features.

Feature selection has received attention for years and a specific trend of researches is
concerned by the reduction to the minimal number of features referred to as dimension-
ality reduction by (Van Der Maaten et al., 2009). Recently, (Miicke et al., 2023) showed
how to express the problem of feature selection in the form of a quadratic unconstrained
binary optimization problem (QUBO). This was then implemented on a quantum anneal-
ing system (D-Wave), showing promising results in comparison with other ways to select
the features.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 281-288, 2024.
https://doi.org/10.1007/978-3-031-62912-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_27&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_27

282 G. Fleury et al.

1.2 QUBO Feature Selection

In a simple binary classification problem (supervised), the data set is described by the X;
variables, or attributes (the features), withj = 1, ..., N (N = 10 in this example) and the
target class variable Y. The data set is composed of n observations (samples, n = 10000
in this example) denoted by () withi =1, .n where x = (xl, . xN) represents
one single observation which is classified in the y' class. The goal is to find a subset S
of features (x*, y*) with k € S and S C [N] (with [N] = {1,2,..., N}), such that the
inference capability of a classification tool which learns from this data set will show at
least the same performance, although an improvement should be in general expected.

Reducing the number of features used for the training means less hardware computing
resources for less complex deep layer networks, for instance, but it can also improve
the performance of the generalization by extracting only essential information from a
smaller number of uncorrelated features.

In (Miicke et al., 2023) it is explained that the binary decision variables of the
corresponding QUBO model are chosen to be the indicators for those selected features,
0 if the feature is not selected and 1 if it is. A matrix Q is constructed from the mutual
information, both the relevance of the individual features for the classification decision
(called I;, , corresponding to the diagonal elements of the matrix) and between pairs of
different features (called R;;, , for the non-diagonal elements of the matrix). A tuning
parameter between those two contributions can finally determine how many features we
want to keep in the data set.

Let us note that R;; and /; are conditional probabilities that can be computed in
different way. In this paper R;; and /; have been computed using the same (Miicke et al.,
2023) proposal, which is basically a Kullback-Leibler divergence. In a previous study
(Nguyen, 2014) the Shannon entropy was used, the two approaches being mathematically
equivalent and leading to the same results.

In the QUBO model, the features to be selected will be indicated by the decision
variable x = (x1, ..., xy) withx; € {0; 1}, N = 10, such that x; = 1ifi € S (the feature
is selected) and x; = 0 if i ¢ S (the feature is not selected).

The objective function is a weighted sum between the relevance of the features,
expressed by the quantities /; and the feature pairs redundancies, expressed by R;; (see
the referenced paper), with some weighting parameter o, which will determine how
many features will be selected at the end. The goal is to find a vector of decision values
x = (x1, ..., X;) which minimizes this objective function:

rr&inQ(x,a) mln[a. Zl X+ (1 —). ZZR,, XX]

i=1 j=1

which is obviously a quadratic unconstrained binary optimization problem (QUBO).

A QUBO problem can be mapped on a system of n qubits whose states “0” and
“1” correspond to the two states of the computational basis of the Z Pauli operator. The
objective (or cost) function will be given by the expectation value of an operator built
with products of Z operators which describe the coupling between pairs of qubits (the
redundancy between pairs of features) and single qubit interaction with some external
field (expressing the relevance of the individual features). This complex operator is the

Quantum Optimization Approach 283

Hamiltonian of the system of qubits and it is used to build the evolution operator in order
to make the initial random quantum states evolve towards the states which correspond
to the minimum of the expectation value of the Hamiltonian, or the energy of the system
of interacting qubits.

2 Hamiltonian Modelization and Resolution

2.1 The Hamiltonian

The binary variables of the QUBO model take values {0, 1}, while measuring qubits in
the computational basis corresponding to the Pauli Z operator projects a state of a single
qubit in one of the Z eigenstates |0) or |1), corresponding to the eigenvalues +1 and —1,
respectively. Therefore it is necessary to do the transformation x — %Id - %Z which
assigns to a binary variable a one-qubit operator having the eigenvalues {0, 1}. In this
way, we can calculate the total Hamiltonian as follows.

n
For the linear part of the problem Hamiltonian we have Hp | = —a. Y _ I;.x; leading
i=1
to:

N N N
1 o o
Hp | = —a. E I,'.z(]d — 7)) = 5 E I;.1d + 5 E I;.7;
i=1 i=1 i=1

and after considering only the non-constant terms:

N
o
Hp | = +§. X;Ii.zi
i=

For the quadratic part of the Hamiltonian we have

N N
Hpo = (1 —a). Zi:l i Rijxig

leading to:

N N
Hpo=(1—a).) Y Ry.5Ud = Z)3(ld — Z)
i=1j=1

N N
Hpo="32% Y Rj.(ZZ — 2 — 2+ Id)

N N
(22— 2 —) + 1323 Y Ryld
i=1j=1 i=1j=1

=
Q

|
T

2
s
M= -
g:

and considering only the non-constant terms:

N

N
1_
Hpo = (4a).ZZRij.(ZiZj ~Zi-7)

i=1 j=1

284 G. Fleury et al.

The complete problem Hamiltonian will therefore be:

N N
D SS Ry (22— 7 - 7)
i=1 j=1

which can be further arranged in order to separate single and quadratic terms in the Z;
operators:

o l -« l -«
Hp=)" (-1,» —~ R — R§°l> ;
—\2 4 4

where we have introduced notations for the sums:

R = Zj Rj, R = Zj Rji.

N
o (1
Hp =Hp 1+ Hpg = 7 E I.7; +
=

o
LEL
ij

2.2 Finding the Optimal Solution

The approach in (Miicke et al., 2023) is to use the quantum adiabatic evolution method
which can be implemented on the D-Wave quantum processors. The idea is to start from
a ground state of a rather simple Hamiltonian Hp and to “slowly” evolve towards the
final Hamiltonian describing our problem, Hp. According to the adiabatic theorem of
quantum mechanics, under this conditions there is a good chance that at the end of this
time evolution the system will be still in the ground state of the final Hamiltonian, which
now represents the solution we were looking for.

The adiabatic quantum optimization has been proven to be equivalent to standard
computation (Aharonov, 2007) and if the evolution is “infinitely slow” it can be shown
that the optimal solution is always found. In practice, “infinitely slow” depends on the
energy spectrum of the problem Hamiltonian and is related to the time constant of the
quantum transition to the next lower energy level, assuming there is no crossing of the
energy levels during the adiabatic evolution. The main difference from the classical
simulated annealing is that escaping from a local minimum is “naturally” obtained by
the quantum tunneling of the system of qubits through an energy barrier towards a
neighboring lower minimum.

In 2014 (Farhi et al., 2014) introduced the QAOA method (Quantum Approximate
Optimization Algorithm), which alternates the application of Hp (the problem Hamilto-
nian) and Hp (the diffusion or mixing Hamiltonian) as evolution operators Up = e~ivHp
and Up = e IPHD geveral times, with parameter values expressed by the vectors y and
B, respectively:

‘1/,()7’ B>> — [e*iﬂk»HD.e*i~77k~HP.e*i~Ek—1-HD'e*i'?k—l.HP o .e*iﬂl.HD'e*i.?l.HP] Is)

In one version of the Hp operator (called the mixing operator), the initial state
|s encodes an equal superposition of all possible solutions, i.e. |s) = J27 Zz “Hi,

where 7 is the number of qubits and |j) = |x;,1x;,2 . .. xj v) withxj, € {0, 1}, k = 1.. .N
(where N is the number of features).

Quantum Optimization Approach 285

This algorithm is called hybrid, in the sense that it requires a classical optimization
method after each application of the evolution operators (gradient descent, genetic algo-

rithm or any other method) to act on the pair of vectors ()7, B) and find the values which
minimize the expectation value of the problem Hamiltonian, obtained from quantum

measurements, <1p()7 ,5) |Hp|1p(;7, B)>

3 Numerical Experiments

3.1 Preliminaries

The original data and results from (Miicke et al., 2023) are available at the following
web address:

https://github.com/Castle-Machine-Learning/feature-selection-data

A binary classified “synthesized” data set with 10 features sampled 10000 times is
extracted and is available as a CSV file here:

https://www.isima.fr/~lacomme/feature/

The conditional probabilities R;; and /; are combined in a single matrix stored in
a plain text file MLtxt (MI from Mutual Information), which is available at the same
address and can be used for future researches on the topic. The code that extracts from
the data the conditional probabilities used to calculate the mutual information matrix is
also provided as a Python script.

3.2 Numerical Experiments
Two solving methods have been used for this optimization problem:

e Experiments on the D-Wave quantum annealer (like in the original work) using the
hybrid_binary_quadratic_model_version2 solver.

e Experiments on the IBM Quantum platform with a QAOA circuit, programmed with
Qiskit.

Previous to the real quantum sampler from D-Wave, we have checked the solu-
tion with the simulated annealer provided by the “dwave-neal” implementation and
with an exact solver available through the “dimod” shared API for the D-Wave sam-
plers. As our problem was formulated as a BQM model (binary quadratic model),
we have queried the D-Wave system for the available real samplers for our common
user account with a 60 s/1 month trial credit. The only available sampler was the
“hybrid_binary_quadratic_model_version2”.

The latter numerical experiments have been carried out considering an objective func-

tion that is composed of two terms. Let us note g, the estimator (w <J7, E) |Hp |y ()7, B>>
S
using s shots and d the estimator of the average <1ﬂ()7, ,é) |Hp|1p<;7, ,é)> y of the
j=1,
distribution lower than d, where d is the lower decile of the total distribution of the final
state energy obtained in the measurements. In the minimization procedure the function
passed to be minimized is the sum:

(v (7. B)etrtv (7. B)) + (v (7. B) el (7. B)),

=1,d

https://github.com/Castle%2DMachine%2DLearning/feature%2Dselection%2Ddata
https://www.isima.fr/%7Elacomme/feature/

286 G. Fleury et al.

The classical minimization part of the algorithm used a genetic algorithm imple-
mented with the Python Generic Algorithm from the PyGAD library, parametrized for
50 generations, 25 solutions per population and a tournament based procedure for parent-
selection. All the experiments have been carried out with a QAOA circuit depth p = 2
and with a balance between the feature relevance and redundancy o = 0.7 and used a
Qiskit noiseless quantum simulator.

The D-Wave processor uses a continuous evolution of the state vector, starting with
one well defined state and finishing, hopefully, in the desired state which minimizes the
energy (or cost) function. QAOA starts with an equal superposition of all possible states
and finishes in another superposition, having the optimal state appearing with higher
probabilities among other feasible states (Table 1).

Table 1. Comparison between the best solutions found with both D-Wave and QAOA

Selected Features
D-Wave solution 0000110101, § = {5, 6, 8, 10}
QAOA solution (Qiskit) 0000110101, § = {5, 6, 8, 10}

The total number of features is 10 meaning that we have a total of 1024 possible
selections in the problem (from no feature at all to all 10 features): the optimal feature
selection is coming out as 0000110101, with a cost of —0.527796 and has a probability
of 0.09% to be found just by a random sampling. At the end of the optimization, QAOA
produces a probability distribution of the feasible selections where about 0.37% of the
distribution is concentrated on 0000110101.

The convergence of QAOA can be analyzed considering the ()7, B) evolution during

the optimization. Table 2 pushes us into considering we have a strong convergence during
the optimization.

A large part of the distribution has been shifted towards lower values of the energy
and larger probabilities are now concentrated to the best solutions: Fig. 1 and Fig. 2

allow to estimate the difference between frequencies using the initial ()7 B) parameters

(Fig. 1) and the frequencies using the final parameters ()7 ,E) at the end of the genetic
algorithm (Fig. 2).

After optimization, the experiments show that 10% of the distribution is now concen-
trated in the energy range [—0.527796; —0.516076] and the decile is at about 2.22% of
the optimal solution having the value —0.527796. The quartile has the value —0.498029
and is about 5.63% of the optimal solution. Before optimization, the decile has the
value —0.492178 and is about 6.7% of the optimal solution and the quartile is -0.42971,
meaning that we have a gap about of 18.58% within the optimal solution.

The weighting parameter « allows to tune the relative importance of I; and R;;, larger
values of « leading to solutions with a larger number of retained features, as shown in
Table 3.

Quantum Optimization Approach 287

Table 2. Example of convergence curve for QAOA (p = 2 and o = 0.7)

Iterations B1 B 1 %)

1 4.45341296 6.18663462 5.60029776 3.34755873
0.97346632 5.43377067 0.07123081 3.43671716
3.07716687 4.5265709 0.92788789 3.7159407
0.53259607 3.93097723 7.81304791 5.54586062
5.40755342 3.93097723 7.86559953 5.54586062
6.60296413 3.93097723 8.06180695 5.51719293
7.51464180 3.93097723 8.06668202 5.5959680

20 7.41270086 3.93543961 8.06180695 3.97896011

number
of shots

0.6 0.2 04

Fig. 1. Initial distribution of shots for random
()7, 5) parameters (10000 shots for sampling
of the final state), withp =2 and o = 0.7

Fig. 2. Final distribution of shots after QAOA
optimization (10000 shots for the sampling),
withp =2and o = 0.7

Table 3. Evolution of the solution found with «

o Selected Features Solution cost
0.3 0000010001, S = {6, 10} —0.1780446
0.7 0000110101, S = {5, 6, 8, 10} —0.5277972
0.9 1010110101, S = {1, 3,5, 6, 8, 10} —0.7463387

It is possible to conclude that QAOA su

cceeds in concentrating a large part of the

distribution on high quality solution, increasing significantly the probability to find either
the optimal one or a solution close to the optimal one.

288 G. Fleury et al.
4 Concluding Remarks

In this article we solve the QUBO problem which finds an optimal selection of features
from a data set used for supervised machine learning, both on a D-Wave annealer as in
the original paper (Miicke et al., 2023) and on a quantum gate processor from IBM. The
results prove that it is possible to solve the feature selection problem using a QAOA based
approach, which offers the possibility to solve any Hamiltonian which is not limited to
only quadratic terms: quantum gates processor offer a larger field of problems to be
solved.

Disclosure of Interests. Authors have no conflict of interest and do not received financial support
of both D-Wave and IBM.

References

Van Der Maaten, L., Postma, E., Van den Herik, J., et al.: Dimensionality reduction: a comparative.
J. Mach. Learn. Res. 10(66-71), 13 (2009)

Miicke, S., Heese, R., Miiller, S., Wolter, M., Piatkowski, N.: Feature selection on quantum
computers. Quantum Physics (quant-ph); Machine Learning (2023). arXiv:2203.13261

Nguyen, X.V., Chan, J., Romano, S., Bailey, J.: Effective global approaches for mutual information
based feature selection. In: Proceedings of the 20th AKM SIGKDD International Conference
(2014). https://doi.org/10.1145/2623330.2623611

https://github.com/dwave-examples/mutual-information-feature-selection

Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum
computation is equivalent to standard quantum computation. SIAM J. Comput. 37(1), 166—194
(2007). arXiv:quant-ph/0405098

Albash, T., Lidar, D.A.: Adiabatic quantum computing. Quantum Physics (quant-ph) (2018).
arXiv:1611.04471 [quant-ph]

Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E.G., Venturelli, D., Biswas, R.: From the quantum
approximate optimization algorithm to quantum alternating operator ansatz. Quantum Physics
(quant-ph) (2019). arXiv:1709.03489

Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014).
arXiv:1411.4028

http://arxiv.org/abs/2203.13261
https://doi.org/10.1145/2623330.2623611
https://github.com/dwave%2Dexamples/mutual%2Dinformation%2Dfeature%2Dselection
http://arxiv.org/abs/quant%2Dph/0405098
http://arxiv.org/abs/1611.04471
http://arxiv.org/abs/1709.03489
http://arxiv.org/abs/1411.4028

International Conference on Variable
Neighborhood Search (ICVNS)

Advanced Algorithms for the Reclaimer
Scheduling Problem
with Sequence-Dependent Setup Times
and Availability Constraints

Oualid Benbrik!®)@®, Rachid Benmansour'2®, Abdelhak Elidrissi®
and Angelo Sifaleras?

1 SI2M Laboratory INSEA, Rabat, Morocco
{obenbrik,r.benmansour}@insea.ac.ma

)

2 LAMIH CNRS UMR 8201, INSA Hauts-de-France, Polytechnic University

France

Rabat, Morocco
abdelhak.elidrissi@uir.ac.ma
4 Department of Applied Informatics, School of Information Sciences,
University of Macedonia, 156 Egnatias Str., 54636 Thessaloniki, Greece
sifalera@uom.gr

Abstract. Scheduling of reclaimers activities in dry bulk terminals sig-
nificantly impact terminal throughput, a crucial performance indicator
for such facilities. This study addresses the Reclaimer Scheduling Prob-
lem (RSP) while considering periodic preventive maintenance activities
for reclaimers. These machines are integral for reclaiming dry bulk mate-
rials stored in stockyards, facilitating their loading onto vessels via ship-
loaders. The primary aim of the objective function entails the mini-
mization of the overall completion time, commonly referred to as the
makespan. Since this problem is A'P-hard, we propose a novel greedy
constructive heuristic. The solutions obtained from this heuristic serve
as the starting point for an efficient General Variable Neighborhood
Search (GVNS) algorithm to handle medium-scale instances resembling
real stockyard configurations. Computational experiments are conducted
by comparing the proposed methods across various problem instances.
The results demonstrate that the developed GVNS, coupled with the con-
structive heuristic for initial solution finding, efficiently improves schedul-
ing efficacy. Thus, it emerges as a new state-of-the-art algorithm for this
problem.

Keywords: Reclaimer Scheduling - Bulk Ports + Sequence-Dependent
Setup Times - Availability Constraints + Machine Eligibility
Restrictions - Variable Neighborhood Search - Heuristic

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 291-308, 2024.
https://doi.org/10.1007,/978-3-031-62912-9_28

of Hauts-de-France (UVHC), Campus Mont Houy, 59313 Valenciennes Cedex 9,

3 Rabat Business School, International University of Rabat, Parc Technopolis,

®

Check for
updates

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_28&domain=pdf
http://orcid.org/0009-0009-3404-4136
http://orcid.org/0000-0003-2553-4116
http://orcid.org/0000-0002-5024-6610
http://orcid.org/0000-0002-5696-7021
https://doi.org/10.1007/978-3-031-62912-9_28

292 O. Benbrik et al.

1 Introduction and Literature Review

Bulk terminals play a pivotal role in global trade by facilitating the efficient
handling and storage of large quantities of commodities, such as coal, minerals,
grains, raw materials, and so on. These terminals serve as crucial nodes in the
logistics chain, ensuring the seamless flow of goods between various modes of
transportation. The importance of bulk terminals cannot be overstated, given
their pivotal role in maritime transport, which handles approximately 80% of the
world’s trade volume, as reported by the United Nations Conference on Trade
and Development (UNCTAD 2022) [15]. Despite their indispensable contribution
to global trade, bulk terminals have not received proportionate attention in
the research literature when compared to container terminals. While container
terminals have been extensively studied, the operational challenges specific to
bulk terminals have been relatively understudied. However, recent research is
placing a growing emphasis on understanding and addressing the distinctive
challenges faced by bulk terminals.

The overall configuration of dry bulk terminals involves a designated berth
area where vessels anchor for the loading or unloading of materials, utilizing
shiploaders or cranes. Complementing this, the terminal features a yard where
bulk cargoes are managed, either through addition as stockpiles using stacker
machines or complete reclamation using reclaimer machines, facilitating subse-
quent delivery to ships at the berths. The research at hand is prompted by a keen
interest in the operational intricacies of bulk ports, with a specific emphasis on
the Newcastle Coal Infrastructure Group (NCIG) terminal, a notable coal export
terminal in Australia [7]. The NCIG stockyard incorporates diverse stockpads,
each tailored with specific positions for unloaded coal. Rail tracks are strate-
gically positioned between parallel stockpads, accommodating stacker-reclaimer
(SR) machinery for effective material handling.

The effective scheduling of reclaimers constitutes crucial aspects of resource
management in dry bulk terminals, directly influencing terminal throughput—a
key performance indicator for these facilities. Despite its paramount significance,
research on this subject is relatively underdeveloped, with a limited number of
papers addressing the RSP. To the best of our knowledge, Hu and Yao [10]
were the pioneers in addressing the SR scheduling problem at an iron ore termi-
nal. They concentrated on minimizing the makespan for a given set of handling
operations using a genetic algorithm (GA). Similarly, Angelelli et al. [1] con-
ducted a study on bulk material reclamation in stockyards. They presented and
analyzed multiple variants of an abstract scheduling problem for the reclaiming
operations and demonstrated the N"P-hardness of these variants. Kalinowski et
al. [11] extended the work presented by Angelelli et al. [1], relaxing the assump-
tion that all stockpiles must be stacked at the beginning of the planning period.
They further investigated the dynamic version of the problem, although they
did not consider the setup times (i.e., traveling time) of reclaimers. Recently,
Unsal [16] delved into the RSP within a realistic world setting. He posited that
the problem is a variant of the parallel machine scheduling problem and pre-
sented two versions—one with stacking operations and one without. The author

Advanced Algorithms for the Reclaimer Scheduling Problem 293

developed an arc-time indexed Mixed Integer Programming (MIP) formulation
to solve the problem.

The loading and unloading process at the yard-side presents risks to critical
equipment like the SR, necessitating periodic preventive maintenance to prevent
breakdowns and accidents [2]. This maintenance, including inspections, lubrica-
tion, and safety testing, is essential for terminal reliability but leads to downtime
affecting stockpile handling. Benbrik et al. [3] pioneered the integration of pre-
ventive maintenance into reclaimer scheduling, developing mathematical formu-
lations for the RSP. They explored two cases: one with two stockpads and one
reclaimer, resulting in two novel formulations, and another with three stockpads
and two reclaimers, leading to a unique model. Their formulations, solved using
CPLEX, successfully handled small instances but struggled with medium ones.
Therefore, this paper extends the scope of the second case of the configuration
addressed in [3], with the primary objective of solving this problem with a real
configuration of the stockyard involving multiple stockpads.

The main contributions of this paper are as follows:

e Investigation of a real configuration of a coal export terminal involving the
minimization of the makespan.

e Development of a novel and innovative greedy constructive heuristic. Addi-
tionally, the design of an efficient GVNS metaheuristic for solving medium-
sized instances of the problem within a reasonable computational time.

e Provision of empirical results from numerical experiments for reasonable com-
puting times, considering both the literature and industrial practices.

The remaining sections of this paper are organized as follows. Section 2
presents the problem addressed in this study. Section 3 introduces a version of the
MIP model previously developed for solving the problem. In Sect. 4, we describe
the proposed greedy constructive heuristic procedures. Sectionb presents the
GVNS approach employed in this research. Numerical experiments are conducted
in Sect. 6. Finally, Sect. 7 concludes the paper by summarizing the findings and
discussing future perspectives.

2 Problem Description

This paper addresses the scheduling problem related to the reclama-
tion of stockpiles using a set of identical reclaimer machines, denoted as
M = {My,Ms5...,M,}. The operational layout consists of parallel stock-
pads on the yard-side of a dry bulk export terminal, represented by
P = {P1,P2,...,Pmy1}. Each reclaimer machine is mounted on a rail track
between two adjacent stockpads. Let P, = {n(._1)+1,...,n.} represent the set
of stockpiles in stockpad P,, with ng = 0 and n, denoting the number of stock-
piles in P,. The set N' = {Ji, J2,...,J,} encompasses all stockpiles across all
stockpads, where n = Z’znjll n.. Each stockpile i, where ¢ € [1,n], possesses a
length denoted by L;. The time required to reclaim a stockpile, p;, is determined
as the ratio of its length to the reclamation speed s (i.e., p; = L;/s). Intro-
ducing sequence-dependent setup times, denoted as ¢; ;, accounts for the travel

294 O. Benbrik et al.

time between two consecutive stockpiles. The setup time is the duration between
completing the reclamation of J; € N and commencing the reclamation of the
subsequent stockpile J; € N. We assume ¢ ; = 0, signifying no setup before
processing the first reclaiming job. Additionally, the triangle property holds for
setup times, ensuring ¢;; + ¢;; > t;; for any three distinct jobs J;, J;, and
Jj. Furthermore, strict adherence to the eligibility restrictions of the machines is
enforced; each machine possesses the capability to pivot its boom, facilitating the
processing of adjacent stockpiles along the rail track, while reclamation of stock-
piles from other stockpads is not allowed. On a reclaimer machine My, stockpile
reclamation occurs during the interval between consecutive preventive periodic
maintenance activities, with the length denoted as Tj. Each maintenance activ-
ity has a duration of o. Reclaiming tasks are prohibited during maintenance
activities, and no breakdowns occur after maintenance. The problem is denoted
as Reclaimer Scheduling Problem with Preventive Periodic Maintenance Activi-
ties (RSP-PPMA), with the objective of finding a feasible schedule to minimize
the makespan. In this problem, we refer to each reclaimer as a machine, and
each operation of reclaiming stockpile as a job.

Importantly, this paper expands upon the previous work conducted by Ben-
brik et al. [3]. The main notations used to describe the problem are listed in
Table 1.

Figure1l displays a graphical representation of a feasible solution to the
addressed RSP-PPMA. In the figure, green rectangles represent T}, indicat-
ing the duration between two consecutive maintenance activities on machine
My, € M. The maintenance activities are denoted by PM in yellow rectangles,
with o representing the duration of a maintenance activity. Jobs are sched-
uled within batches denoted as { By, Ba, ..., B, ..., Bp}, each having a duration
of Ty, + o Vk € [1,m].

Table 1. Notations.

Sets and Indices

m Number of machines

n, Number of jobs in stockpad z

n Number of jobs (n = 370 n.)

M Set of machines (M1, Ma, ..., My, ..., My,)

P Set of stockpads (P1,P2,..., Pz, ..., Pm+1)

P Set of jobs in stockpad z (P, = {n(z-1) +1,...,n.} with no = 0)
N Set of jobs in all stockpads (N = {J1, J2,...,JJn})

Parameters

A Large positive integer

Di Processing time of job J; € N

tij Travel time of machine between stockpile J; and stockpile J;, i.e., setup time
T Time interval between two consecutive maintenance activities

o Duration of a maintenance activity

Decision variables
C;kx The completion time of job J; € N on machine M € M
Craz Maximum completion time (makespan)

Advanced Algorithms for the Reclaimer Scheduling Problem 295

Machines
B, 1 B, i 1 By 1
P Mmoo s > | »
- i \
T 2T+0 ! ' b(T+0)-0 '
| ! | ! | 1 i
sl el I sl
et — — o
i P P! P
My | T, time to produce | PM | Ty time to produce | PM . | PM ’ T, time to produce | PM
a g o a
= = o= =
] [[|
L — I I
I [P [
M,,,| Tptimetoproduce | PM | T, time to produce | PM PM | T, time to produce | PM
Time

Fig. 1. Graphical representation of a feasible solution. (Color figure online)

3 Mathematical Formulation

This section introduces a complex version of the MIP formulation previously
proposed by Benbrik et al. [3], tailored for addressing the RSP-PPMA. The
model is specialized for scenarios involving three parallel stockpads and two
reclaimer machines. The scheduling strategy involves grouping jobs into batches
denoted as B = {B1,Bs,...,By,...,B,} for the two reclaimer machines, with
the overarching objective of minimizing the makespan. Each batch on machine
My, € M has a capacity constraint denoted as T}, and the time allocated for
each maintenance activity is represented by o. Throughout this formulation, the
assumption T, = T,Vk € [1,m] is adopted, where the notation [X,Y] is used
to indicate the interval of all integers between X and Y included. This problem
can be seen, as a variant of the parallel machine scheduling problem [16].
The binary decision variables in this formulation are denoted as follows:

. {1 if job J; follows job J; in the sequence
ij =

0 otherwise

1 if job J; is processed on machine M}, € M
Yik = .
0 otherwise

1 if job J; is in batch b € B on machine M; € M
0 otherwise

296 O. Benbrik et al.

(MIP)min Crmag (1)
s.t. Cmaaz > Ci Vi € [1,n],Vk € [1,m] (2)
yi1 =1 Vi€ Py (3)
Yi2 =1 Vi € P3 (4)
Yi, 1l +yi2 =1 Vi € Po (5)
Cik 2 PiYi,k Vi € [1,n],Vk € [1,m] (6)
Tij + Zji 2 Yik T Yj6— 1 Vi, j € [1,n],i # j,Vk € [1,m]
(7)
Cik < Ayik Vi € [1,n],Vk € [1,m] (8)

Cik+AB—zij —yix —yjk) > Cip+tiy+p; Vi,je[l,n],i<jVkel[l,m]
9)

Cir+tji+pi <Cip+AR—vik—yjk+xij) Vi,je[l,n],i<jVkel[l,m]
(10)

> ok =vin Vie[1,n],vk e [1,m] (11)
b=1

Vi € [1,n],Vb € [2,n],

Cik > (b— 1)015’5(,1—‘]9 +o)+ tn+1,iaﬁb + DiYi,k vk € [1,m] (12)
Cik Sbal T+ (b—1)o —tinp1 + A(L—af,) Vibe[1,n],Vke[1,m] (13)
Cix >0 Vi€ [1,n],Vk € [1,m] (14)
z;,; € {0,1} Vi,j € [1,n] (15)
yik € {0,1} Vi€ [1,n],vk € [1,m] (16)
af, €40,1} Vi,b € [1,n],Vk € [1,m] (17)

The objective function (1) aims to minimize the makespan of each reclaimer
machine. Constraint set (2) ensures that the makespan of an optimal schedule
is not less than the completion time of all jobs that have been executed on each
machine. The sets of constraints (3)—(5) impose eligibility restrictions on the
reclaimer machines. Constraints (3) and (4) specify that all jobs in the stockpad
P; and the last stockpad Ps are processed on machines M; and M, respectively.
Constraint set (5) guarantees that each job J; in stockpad Ps is assigned to
exactly one reclaimer machine. Constraint set (6) calculates the completion time
of job J; on each machine. Constraint set (7) ensures that no two jobs J; and
J; can overlap in time. Constraints (8)—(10) specify that a job can be processed
only if the machines are available. Constraints (9) and (10) indicate that no two
jobs J; and J; scheduled on the same reclaimer machine (i.e., y; 1 = y;1 = 1) can
overlap in time. Constraint set (11) ensures that each job J; is assigned to exactly
one batch on a corresponding machine Mj. Constraints (12) and (13) guarantee
that every job J; processed by machine M} must be executed within batch By
of this machine. Constraint (12) ensures that in batch By of machine M}, with
b € [2,n], the scheduling of any job J; in this batch is performed after the end
of preventive maintenance and the setup time ¢, 1) ; spent after maintenance.
Additionally, constraint (13) requires that each job J; processed by machine Mj,
should be finished before the starting time of preventive maintenance activity

Advanced Algorithms for the Reclaimer Scheduling Problem 297

and its related setup time ¢; (,,41). Constraint set (14) defines the completion
time of job J; on machine M} as a positive continuous variable. Constraints
(15), (16), and (17) define the variables ; ;, y; &, and aﬁb as binaries.

4 Greedy Constructive Heuristic Procedure

In this section, we present a novel constructive heuristic algorithm tailored for
solving the RSP-PPMA (Algorithm 1). Constructive methods, widely used for
generating feasible solutions from scratch in optimization problems, serve as the
foundation for our innovative approach. The algorithm begins with an initial-
ization phase, assigning jobs from the first and last stockpads, P; and P41, to
machines M7 and M,,, respectively. The core of our constructive heuristic proce-
dure (Phase 2) is an iterative process that traverses each intermediate stockpad
P., where z € [2,m]. Within this phase, a job J; is selected from a specific
position (pos;) within stockpad P,. The selected job is simultaneously allocated
to both the current machine M, and the preceding machine M, i, adhering
to eligibility constraints. Allocation decisions depend on the comparison of the
last completion times for jobs assigned to M, and M,_;. Based on this evalua-
tion, the job either remains at M, or is transferred to M,_1, striving for a locally
optimal job-machine allocation. This iteration continues until all positions within
the stockpad have been considered. Moving to Phase 3, the algorithm generates
prioritized job sequences 7y, for each machine My, where k € [1,m]. This prior-
itization is achieved by sorting jobs using the Longest Processing Time (LPT)
rule. The resulting prioritized sequences 7; are then concatenated, forming an
ordered list that guides the creation of the final schedule 7 as a feasible solution
to the RSP.

The preventive maintenance assignment scheduler algorithm (PMAS) (Algo-
rithm 2) is devised to incorporate Preventive Maintenance (PM) considerations
into the initial job sequence 7 generated by the constructive heuristic procedure.
In Phase 4 of the Algorithm 1, PMAS is applied to seamlessly integrate PM and
calculate the makespan with the final sequence wpy. The input includes the
initial sequence 7 and the batch duration representing the time between two
consecutive preventive maintenance activities (i.e., T'). The algorithm iterates
through each machine My, applying the Algorithm 1 to generate individual
sequences 7. Subsequently, the completion times for each job in m are calcu-
lated, and jobs exceeding the batch duration are moved to the next batch. The
algorithm maintains track of completion times, and the last completion time of
each machine is reported (i.e., makespan). The final sequence mpy is generated
by incorporating the PM strategy, ensuring that jobs are appropriately scheduled
within batches. This is achieved by updating wpy; through the union operation
with the sequences 7 py for each machine M. The output includes mpy and
the makespan C,,,,, providing a feasible solution to the RSP that seamlessly
integrates both job sequencing and PM considerations.

298 O. Benbrik et al.

Algorithm 1. Constructive heuristic algorithm (Constructive)

Input: z,n.,P., m

Phase 1: Initialization

if z =1 then
Assign(M7y, P1)

end if

if z=m + 1 then
Assign(Mm,; P(m41))

end if

for k =2 tom —1do
——

. end for

. Phase 2: Constructive Heuristic Procedure
Dz« 2,pos 1

. while (pos < nz) do

for each z € [2, m] do

Choose the job J; situated at the position pos within the stockpad P.

Assign(M, _1, J;)
Assign(M., J;)
if (Crmaw(M2) < Craz (M. 1)) then
Assign(M,, J;)
Remove(M,_q, J;)
else
Assign(M, _1, J;)
Remove(M,, J;)
end if
end for
pos «<— pos + 1

. end while

. Phase 3: Schedule jobs using the LPT rule
Lw— 0

. for each k € [1,m] do

T, — Sort(My, LPT)
T T Umy

. end for

Output: 7pn, Crnax

>z € [2,m]

> Local search procedure

. Phase 4: Integration of preventive maintenance and makespan calculation using PMAS
! (mpM> Cmaz) < PMAS(w, T)

Algorithm 2. Preventive maintenance assignment scheduler algorithm (PMAS)

1:
2:

19:
20:

Input: =, T > Initial sequence and batch duration
mpM — O > Initialize final sequence
for k =1 to m do

7 < Constructive(N, P, M) > Individual sequences for each My,

Cmaz — 0

batchy — 1

for each J; € w, do
Calculate the completion time C; i of job J;
if C; 1 > batchy x Ty then
Move the current job J; to the next batch
Update the completion time C;
batchy « batchy + 1
end if
end for
Report the last completion time C; j of machine My
if Ci x > Ciaz then
Update Ciae with the last completion time Cj g
end if
TPM < TPM U Tk PM
end for
Output:
Final sequence mpy and Makespan Copax

> Sequence with PM

Advanced Algorithms for the Reclaimer Scheduling Problem 299

5 General Variable Neighborhood Search

Advanced optimization techniques, such as Simulated Annealing (SA), Tabu
Search (TS), and Variable Neighborhood Search (VNS), constitute sophisticated
metaheuristic approaches. These methods are strategically crafted to navigate
beyond local optima within the search space while steering other heuristics.
The VNS is a metaheuristic method initially introduced by Mladenovi¢ and
Hansen [12]. It incorporates a local search procedure and dynamically adjusts
neighborhood structures throughout the solution process. Over time, VNS has
transcended its status as just a metaheuristic, transforming into a general frame-
work for heuristic development. Numerous variants have emerged from the orig-
inal schema [9], rendering this methodology a robust and potent tool in the
optimization context. The VNS method has been widely employed in a diverse
set of optimization problems (see Sifaleras and Konstantaras [14]; Benmansour
and Sifaleras [5]; Benmansour et al. [4]; Benmansour et al. [6]; Elidrissi et al. [8]).

In this paper, we utilize the primary framework of the methodology known as
GVNS. However, as mentioned earlier, various well-known variants exist along-
side the general design. Some of the classical and widely adopted ones include
Basic VNS (BVNS), Reduced VNS (RVNS), and Variable Neighborhood Descent
(VND). For a recent survey on VNS, we direct the reader to the work by Hansen
et al. [9]. The GVNS proposed in this paper for the RSP-PPMA generally incor-
porates advanced local search procedures, such as pipe VND, sequential VND,
cyclic VND, and others, in the algorithm’s improvement phase (cf. Hansen et
al., [9]).

5.1 Neighborhood Structures

The efficiency of the GVNS metaheuristic relies on defining suitable neighbor-
hood structures. In this paper, we categorize permutation-based neighborhoods
into two types: intra-machine and inter-machine. Intra-machine neighborhoods
concentrate on single-reclaimer machine impacts, comprising the Intra-machine
exchange (N7), Intra-machine insert (N2), and Intra-machine reverse (N3) neigh-
borhoods. The Intra-machine exchange involves swapping positions of two jobs
w,‘ngM and ﬂ,;IfPM on a single machine M) € M. Intra-machine insert moves a job
within the same machine, which involves taking a job from its current position
and inserting it into another position within the same machine M} € M. Intra-
machine reverse chooses two jobs W,;]fPM and W,;]fPM and reverses the order of the
jobs between them on a machine. Inter-machine neighborhoods, affecting two
machines, consist of the Inter-machine exchange (N4) and Inter-machine insert
(N5). The Inter-machine exchange chooses jobs ﬂ,;]'i_LPM and W,iil,PM7 where
Ji,J; € P U Ppqq, and exchanges them, while Inter-machine insert removes a
job from one machine and inserts it into another, adhering to eligibility restric-
tions.

300 O. Benbrik et al.

5.2 Variable Neighborhood Descent

We propose incorporating the neighborhood structures detailed in Sect. 5.1 col-
lectively within the context of a VND heuristic to locally refine a given solution
mpMm.- The general framework of the VND is delineated in Algorithm 3. It initiates
with an initial solution 7py; derived from a constructive heuristic, extensively dis-
cussed in Sect. 4. Subsequently, the algorithm persistently endeavors to construct
an improved solution from the current state wpy; by exploring its neighborhood
Ny(mpym). Thus, the effectiveness of the VND variants proposed in this study
relies on the sequence of five neighborhood structures (N7, No, N3, Ny, N5) and
the chosen search strategy (first or best improvement), known as the neigh-
borhood change step. The approach chosen for transitioning between neigh-
borhoods is the pipe strategy. The steps of this strategy are outlined in Algo-
rithm 4. Following preliminary tests, we opted for the best improvement in the
search strategy, and in our proposed GVNS, the selected neighborhood order is
Ny(mpm), Ns(mpm), Na(mpa), Ni(mpm), Na(mpwm)-

Algorithm 3. Variable Neighborhood Descent VND

Data: mpm, lmax
Result: mpnm
: while There is no improvement do
I —1
while | < l,,4, do
mpy — Local Search(mp, Np)
ChangeNeighborhood-Pipe(mpu, Tpys)
end while
. end while
return mwpn

QRNIDCUR

Algorithm 4. ChangeNeighborhood-Pipe (mpu, mpys{)

if (Cmaw(ﬂ{)M) < C’mam(ﬂ'pM)) then
TPM — Tpy

else
l—1+1

end if

return mpy

5.3 Shake Strategy

The shaking phase, pivotal for escaping local optima during convergence, is inte-
gral to the algorithm’s effectiveness (Mladenovié and Hansen, [12]). This phase
systematically generates k random jumps from the current solution wpy;. Based
on our experiments, we adopted a diversification approach involving the random
selection from a set of predefined neighborhood structures, namely N3, Ny, and

Advanced Algorithms for the Reclaimer Scheduling Problem 301

Ns. Subsequently, we apply the selected structure k& times, where 1 < k < kpyqz-
It’s worth noting that introducing additional neighborhood structures in the
shaking method has been observed to detrimentally impact result quality. The
procedures of the shaking phase are outlined in Algorithm 5.

Algorithm 5. Shaking

Data: TPM, k
1: p « randomInteger(1, 3)
2: for j =1 to k do

3: if (p = 1) then

4: Generate a random 7\'{;M € N3 (mpm)
5: end if

6: if (p = 2) then

7: Generate a random mpy; € Ni(mpm)
8: end if

9: if (p = 3) then

10: Generate a random 7py; € Na(mpn)
11: end if

12: end for

13: return mpy;

5.4 GVNS for the RSP-PPMA

In this section, we present the overall pseudocode of GVNS as it is implemented
to solve the RSP-PPMA, which is presented in Algorithm 6. This scheme has
three input parameters: the initial solution (7wpy), the maximum perturbation
level (kpaz), and the maximum computing time (7},,4,). The parameters (T),,q.)
and (kmaz), determined after preliminary experimentation, will be provided in
Sect. 6.2. The diversifcation and intensifcation ability of GVNS relies on the
shaking phase and VND, respectively. Shaking step of GVNS consists of three
neighbohood structures N3, N1, and N5. In the VND step, the five proposed
neighborhood structures are used. The stopping criterion is a CPU time limit
Tinaz- It is worth noting that the construction of the initial solution lies out-
side the GVNS framework. Typically, this initial solution can be generated ran-
domly, following the common practice in the VNS community. However, a more
sophisticated constructive procedure, as supported by literature (see Sanchez-
Oro et al. [13]), can significantly enhance the quality of the best solution. A well-
designed starting point is often more promising than a simple random solution.
In Sect. 4, we detailed the constructive procedures proposed for the RSP-PPMA |
which furnish the initial solutions for the GVNS.

302 O. Benbrik et al.

Algorithm 6. General variable neighborhood search GVNS

Data: mpM, kmaz, Tmaz
Result: mpnm
while CPU < T4, do
k—1
while k < kypq. do
Ty < Shaking(mpum, k)
Ty — VND(mpy)
if (cmw(w;ﬁM) < Cmam(ﬂ'PM)) then
TPM — TPy
k—1
else
k+—k+1
end if
12: end while
13: end while
14: return 7py

o000 O gukwioe

6 Computational Results

To evaluate and showcase the effectiveness of the proposed algorithm on problem
instances of different sizes, extensive computational experiments were carried
out. The MIP model for the RSP-PPMA, as employed in a prior study by Benbrik
et al. [3], was implemented using the CPLEX 22.1 MIP solver with default
configurations. Simultaneously, all other algorithms were coded in C++.

During the experiments, a personal computer with an Intel(R) Core(TM)
i7-7700HQ CPU operating at 2.8 GHz and 8 GB of RAM was used. The MIP
formulations are analyzed based on the following metrics: the objective value
(Opt) of the test instances solved to optimality within 1800 s, the time required
for solving these optimally solved instances (CPU) in seconds (s), the objective
function value of the instances unsolved within 1800 s (instances with feasible
solutions), denoted as Best Integer, and the optimality gap for the test instances
which could not be solved within 1800 s, denoted as Gap(%). Importantly, opti-
mal solutions were only achievable for small instances with n = 15 jobs and
m = 2 stockpads due to the N'P-hard nature of the RSP-PPMA. As a result, the
constructive heuristics and GVNS versions were adapted for medium instances.
It is crucial to emphasize that, to mitigate the influence of stochastic variations,
10 runtime executions of the GVNS were performed for each problem instance.
Consequently, the Best (Best.), Maximum (Max.), and Average (Avg.) objective
function values were determined from these 10 runs and reported. Additionally,
the average computation times (CPU) were calculated based on the 10 runs,
with each run’s computation time corresponding to the moment when the best
solution encountered during that specific run was identified.

6.1 Benchmark Instances

The characteristics of the test instances derived from the scheduling environ-
ment of the NCIG terminal in Australia. These instances possess the following
characteristics:

Advanced Algorithms for the Reclaimer Scheduling Problem 303

e The processing times of reclaiming stockpiles p;, the setup times ¢; ;, the
time interval T, and the duration of a maintenance activity o are gen-
erated following the approach proposed by Benbrik et al. [3]. Specifically,
pi ~ U(60,140), t; ; = Sxmin(p;, p;), where § ~ U(0.05,0.15), o ~ U(20,90),
and T = max (max;en pi, 4 X >y pi/n).

e The number of jobs in the stockpads is categorized into two sets of test
problem instances. For small problem instances, the number of jobs n is chosen
from {10, 15}, while the number of machines m is fixed at 2 (i.e., P = Ps3). In
the case of medium problem instances, the number of jobs n varies from 30
to 100. Specifically, n takes values from {30, 40, 50,60} when m equals 3 (i.e.,
P = Py). It is essential to note that, for each combination of values (n,m), a
total of 10 distinct problem instances were generated for both the small and
medium-scale cases.

e In total, 60 unique problem instances were generated for every combination
of values (n,T, o, P). These instances were evenly distributed across the two
problem categories, with 20 instances designated for the small problem set,
and 40 instances assigned to the medium problem set.

6.2 Tuning Parameters

A series of experiments were conducted to identify optimal parameter values
for the GVNS algorithm. The algorithm relies on two key tuning parameters:
kmaz denotes the maximum perturbation level, and T,,,, represents the maxi-
mum time allotted to the GVNS. After preliminary experimentation, a thought-
ful selection was made for the parameter configuration. Specifically, k.o, is
set to 20, chosen for its ability to strike a balance between solution quality
and computational time (CPU). For small-sized instances (n € {10,15}, T, o,
P = ’Pg)7 Trnae is set to the computation time required to find an optimal solu-
tion using the CPLEX solver. For medium-sized instances, T}, 4, is determined
by the formula T},,, = (n X m) /5, indicating a polynomial increase in time with
the growth of jobs and machines.

6.3 An Analysis of the Effectiveness of the Proposed Constructive
Heuristic for Small Problems

In this section, we conduct an analysis of the performance of the developed
greedy constructive heuristics for small-scale instances. For this heuristic, we
calculate the percentage deviation for every problem instance from its optimum
using the following formula:

H _
Dev = 100 x <CM€)
opt

Here, CH represents the makespan achieved by the greedy constructive
heuristic, and opt denotes the optimum value obtained through the MIP formu-

lation proposed in Benbrik et al. [3].

304 O. Benbrik et al.

As anticipated, the computational experiment results presented in Table 2
demonstrate that the Dev values of the proposed greedy constructive heuris-
tic, aimed at minimizing the makespan for small problem instances, gener-
ally fall within the range of 1.78 % to 13.29 % for the combination of values
(n = 10,T,0,P = P3), and 7 % to 22.72 % for the combination of values
(n=15,T,0,P = P3).

In addition to evaluating the efficacy of heuristic based on their performance
in addressing medium problem instances, the obtained outcomes for small-scale
problems are deemed reasonably satisfactory and promising. This heuristic, fur-
thermore, can be regarded as a robust initial solution for the GVNS metaheuris-
tics.

Table 2. Evaluation of the heuristic algorithm for the RSP-PPMA in small scale
instances for P = Ps.

Problem Instance MIP Constructive Heuristic
P |n |T o | Objective value Gap (%) | CPU (sec)|CH_ —~— | CPU (sec)| Dev (%)
Opt Best integer

Ps|10/370.00 |22 |550.70 | — 0.0 1.36 583.70 |0.001 5.99
10[378.00 |54 |627.90 |- 0.0 2.87 639.90 |0.001 1.91
10 366.61 |31 |557.45 | — 0.0 7.07 602.45 |0.001 8.07
10[378.61|47/612.40 |- 0.0 1.40 639.60 |0.001 4.44
10/295.20|60|525.10 |- 0.0 0.69 594.90 |0.001 13.29
10(355.40|87|672.90 |- 0.0 0.83 684.90 |0.001 1.78
10/323.80|65|580.50 |- 0.0 2.02 627.50 |0.001 8.10
10/ 339.80 |81 |606.80 | — 0.0 1.01 664.00 |0.001 9.43
10/424.40 |22 |650.10 |— 0.0 1.41 684.30 |0.001 5.26
10/404.00 |60 | 582.45 | — 0.0 1.27 621.90 |0.001 6.77
15/321.00 |87 |813.00 | — 0.0 3.51 952.85 |0.001 17.20
15/395.86 |31 |837.11 | — 0.0 87.20 1003.21|0.001 19.84
15/397.43 |22 |920.51 |— 0.0 145.25 984.91 |0.001 7.00
15/349.71 |60 | 893.03 | — 0.0 824.38 1025.83/0.001 14.87
15/416.43 |31 |874.23 |— 0.0 54.61 1052.41{0.001 20.38
15/394.00 | 58 | 880.20 | — 0.0 120.50 1063.85|0.001 20.86
15/365.29 |65 |859.58 | — 0.0 1050.22 946.82 |0.001 10.15
15/393.43 |22 |804.98 | - 0.0 56.23 986.11 |0.001 22.50
15/396.29 |58 | 884.69 | — 0.0 28.75 1085.67|0.001 22.72
15/402.14 |47 |870.94 | — 0.0 370.20 1039.74/0.001 19.38
Avg. 730.23 |— 0.0 138.04 824.22 |0.001 11.99

6.4 Assessing the Efficiency and Impact of GVNS Metaheuristics
for Small Problems

The performance evaluation of the GVNS algorithm applied to solving the RSP-
PPMA in small-scale instances is presented comprehensively in Table 3.

To quantify the percentage deviation for every problem instance from its
optimum, we compute the percentage deviation (Dev) using the formula:

CGVNS _ s
Dev = 100 x (”M>
opt

Advanced Algorithms for the Reclaimer Scheduling Problem 305

Here, CSYINS represents the Best makespan obtained by the modified

algorithm—GVNS (i.e., GVNS with the constructive heuristic as the initial solu-
tion), while opt denotes the optimum value obtained through the MIP formu-
lation proposed by Benbrik et al. [3]. The objective of this analysis is to gain
insights into the efficacy of this algorithm in finding optimal or near-optimal solu-
tions. A detailed examination of the objective function values reveals that the
GVNS algorithm demonstrates competitive performance across the considered
problem instances. These results underscore the superior effectiveness of GVNS
in identifying optimal solutions for the RSP-PPMA in small-scale instances.
Additionally, it is crucial to highlight the computational time aspect. While the
MIP formulation provides optimal solutions, the associated CPU times are con-
siderably longer compared to the GVNS approaches. For instance, in the case
of the problem instance (n = 15,7 = 365.29,0 = 65, P = P3), the MIP model
took 1050.22s to find the optimal solution, whereas GVNS identified the same
solution in 3.67s. The deviation column (Dev) also provides valuable insights
into the optimality of the solutions. Notably, the last row of the table indicates
the average performance across all problem instances, revealing consistently low
deviations from the optimum solution, with an average deviation of 0.13 %. This
indicates that the solutions produced by GVNS are highly reliable and close to
optimality, further affirming its effectiveness in solving small-scale instances of
the BWRS problem.

Table 3. Evaluation of the GVNS algorithm for the RSP-PPMA in small-scale
instances for P = Ps.

Problem Instance | MIP GVNS
P |n |T o | Objective value Gap (%) | CPU (sec) | Best. Max. |Avg. |CPU (sec) | Dev (%)
Opt Best integer

P3| 10| 370.00 | 22 | 550.70 | — 0.0 1.36 550.70 | 550.70 | 550.70 | 1.63 0.0
10 | 378.00 | 54 | 627.90 0.0 2.87 627.90 | 627.90 | 627.90 | 0.67 0.0
10 | 366.61 | 31 | 557.45 | — 0.0 7.07 557.45 | 557.45 | 557.45 | 0.44 0.0
10| 378.61 | 47 | 612.40 | — 0.0 1.40 612.40 | 612.40 | 612.40 | 0.14 0.0
10| 295.20 | 60 | 525.10 | — 0.0 0.69 525.10 | 546.10 | 527.20 | 0.58 0.0
10| 355.40 | 87 | 672.90 0.0 0.83 672.90 | 674.90 | 673.30 | 0.15 0.0
10 | 323.80 | 65 | 580.50 | — 0.0 2.02 580.50 | 590.50 | 585.04 | 1.14 0.0
10| 339.80 | 81 | 606.80 | — 0.0 1.01 606.80 | 615.90 | 607.71 | 0.62 0.0
10| 424.40 | 22 | 650.10 | — 0.0 1.41 650.10 | 665.10 | 651.60 | 0.31 0.0
10 | 404.00 | 60 | 582.45 0.0 1.27 582.45 | 582.45 | 582.45 | 0.67 0.0
15| 321.00 | 87 | 813.00 | — 0.0 3.51 825.20 | 926.41 | 903.86 | 9.54 1.48
15| 395.86 | 31 | 837.11 | — 0.0 87.20 837.11 | 837.11 | 837.11 | 4.34 0.0
15| 397.43 | 22 | 920.51 | — 0.0 145.25 920.51 | 923.96 | 921.20 | 3.29 0.0
15| 349.71 | 60 | 893.03 0.0 824.38 893.03 | 893.03 | 893.03 | 7.22 0.0
15| 416.43 | 31 | 874.23 | — 0.0 54.61 874.23 | 874.23 | 874.23 | 5.65 0.0
15| 394.00 | 58 | 880.20 | — 0.0 120.50 880.20 | 891.95 | 887.10 | 3.00 0.0
15| 365.29 | 65 | 859.58 | — 0.0 1050.22 859.59 | 946.82 | 876.57 | 3.67 0.0
15| 393.43 | 22 | 804.98 | — 0.0 56.23 804.98 | 817.03 | 806.89 | 5.31 0.0
15| 396.29 | 58 | 884.69 | — 0.0 28.75 884.69 | 993.67 | 921.44 | 3.66 0.0
15| 402.14 | 47 | 870.94 | — 0.0 370.20 877.24 | 880.99 | 879.11 | 1.98 0.72
Avg. 730.23 0.0 138.04 731.15 | 750.43 | 738.81 | 2.70 0.13

306 O. Benbrik et al.

6.5 Evaluating the Enhancement of Solutions from the Proposed
Constructive Heuristic with Metaheuristics for Medium-Scale
Problems

In our computational analysis, we integrated a greedy constructive heuristic
to generate initial solutions for the GVNS algorithm. This integration aimed
to explore potential improvements in the heuristic’s effectiveness when utilized
within the metaheuristic framework.

To quantify the enhancement achieved, we compute the percentage improve-
ment (Imp) using the formula:

Imp = 100 x (W)

(GVNS
max
Here, CH represents the makespan obtained by the constructive heuristic,

while CGVNS denotes the Best makespan achieved by the modified algorithm-
GVNS incorporating the constructive heuristic.

The comprehensive results are presented in Table 4. The table illustrates the
average values obtained across all problem instances. Based on the observed
variation in the average Imp values across different problem instances, ranging
from 8.83 % to 14.40 %, it can be concluded that the modified algorithm—
GVNS, effectively enhances the solutions derived from the constructive heuristic.
Notably, the last row of the table demonstrates an average improvement (Imp)
of 12.11 %, providing a benchmark for the effectiveness of GVNS in enhancing
solutions derived from the constructive heuristic, especially for medium-sized
instances. Additionally, it’s noted that the average Imp values tend to decrease
as the number of jobs increases. This trend suggests that the proposed heuristic
remains quite competitive when compared to the metaheuristic approach.

Table 4. Average Imp values for enhancing solutions from the proposed constructive
heuristic with metaheuristic

Problem Instance | Constructive Heuristic | GVNS

P n cH CPU (sec) Best. Max. Avg. CPU (sec) | Imp (%)

P4 | 30 1299.35 | 0.001 1146.44 | 1180.8 1160.38 | 14.09 13.38
40 1828.26 | 0.001 1599.15 | 1649.38 | 1616.26 | 15.65 14.40
50 2390.59 | 0.001 2138.20 | 2179.92 | 2153.14 | 22.50 11.84
60 2689.82 | 0.001 2476.98 | 2536.86 | 2501.34 | 29.53 8.83
Avg. 2052.01 | 0.001 1840.19 | 1886.74 | 1857.78 | 20.44 12.11

7 Conclusion

In this paper, we addressed the problem of scheduling stockpile reclamation con-
sidering the PPMA in bulk ports. The objective function considered was to find
a feasible schedule which minimizes the latest completion time (i.e., makespan).

Advanced Algorithms for the Reclaimer Scheduling Problem 307

Given the A'P-hard nature of the problem, a novel greedy constructive heuristic
has been devised. This heuristic relies on iterative job allocation to machines and
prioritized sequencing, all while considering the integration of PPMA into the
scheduling process. Consequently, it ensures the appropriate scheduling of jobs
within batches. The solutions generated through constructive procedures serve
as excellent initial foundations for GVNS algorithm, tailored to handle medium-
sized instances with up to 60 jobs and 3 machines (i.e., P = P4). Computational
experiments conducted on 60 new instances demonstrate that for small-sized
instances, GVNS algorithm outperform the MIP formulation in terms of the
computing time required to find an optimal solution. Furthermore, for medium-
sized instances, GVNS consistently yields superior solutions compared to the
proposed constructive heuristic.

Potential future research directions could involve several aspects. Firstly,
there is a need to develop further metaheuristic algorithms to allow for a compre-
hensive comparison and evaluation of the proposed GVNS algorithm. Secondly,
exploring the stochastic version of the problem would be relevant. Lastly, explor-
ing the integration of advanced optimization techniques, such as multi-objective
optimization methods, could offer valuable insights into addressing the complex-
ities of the RSP-PPMA problem. Moreover, it would be beneficial to develop
lower and upper bounds for this problem to facilitate a more thorough compar-
ison of the effectiveness of the proposed algorithms.

References

1. Angelelli, E., Kalinowski, T., Kapoor, R., Savelsbergh, M.W.: A reclaimer schedul-
ing problem arising in coal stockyard management. J. Sched. 19, 563-582 (2016)

2. Belov, G., Boland, N.L., Savelsbergh, M.W., Stuckey, P.J.: Logistics optimization
for a coal supply chain. J. Heuristics 26(2), 269-300 (2020)

3. Benbrik, O., Benmansour, R., Elidrissi, A.: Mathematical programming for-
mulations for the reclaimer scheduling problem with sequence-dependent setup
times and availability constraints. Procedia Comput. Sci. 232, 2959-2972 (2024).
https://doi.org/10.1016/j.procs.2024.02.112

4. Benmansour, R., Braun, O., Hanafi, S., Mladenovic, N.: Using a variable neighbor-
hood search to solve the single processor scheduling problem with time restrictions.
In: Sifaleras, A., Salhi, S., Brimberg, J. (eds.) ICVNS 2018. LNCS, vol. 11328, pp.
202-215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15843-9 16

5. Benmansour, R., Sifaleras, A.: Scheduling in parallel machines with two servers:
the restrictive case. In: Mladenovic, N., Sleptchenko, A., Sifaleras, A., Omar, M.
(eds.) ICVNS 2021. LNCS, vol. 12559, pp. 71-82. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-69625-2 6

6. Benmansour, R., Todosijevi¢, R., Hanafi, S.: Variable neighborhood search for the
single machine scheduling problem to minimize the total early work. Optim. Lett.
17(9), 2169-2184 (2023)

7. Boland, N.L., Savelsbergh, M.W.P.: Optimizing the Hunter Valley coal chain. In:
Gurnani, H., Mehrotra, A., Ray, S. (eds.) Supply Chain Disruptions: Theory and
Practice of Managing Risk, pp. 275-302. Springer, London (2011). https://doi.org/
10.1007/978-0-85729-778-5 10

https://doi.org/10.1016/j.procs.2024.02.112
https://doi.org/10.1007/978-3-030-15843-9_16
https://doi.org/10.1007/978-3-030-69625-2_6
https://doi.org/10.1007/978-3-030-69625-2_6
https://doi.org/10.1007/978-0-85729-778-5_10
https://doi.org/10.1007/978-0-85729-778-5_10

308

10.

11.

12.

13.

14.

15.

16.

O. Benbrik et al.

Elidrissi, A., Benmansour, R., Sifaleras, A.: General variable neighborhood search
for the parallel machine scheduling problem with two common servers. Optim.
Lett. 17(9), 2201-2231 (2023)

Hansen, P., Mladenovié¢, N., Todosijevi¢, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5(3), 423-454 (2017)

Hu, D., Yao, Z.: Stacker-reclaimer scheduling in a dry bulk terminal. Int. J. Com-
put. Integr. Manuf. 25(11), 1047-1058 (2012)

Kalinowski, T., Kapoor, R., Savelsbergh, M.W.: Scheduling reclaimers serving a
stock pad at a coal terminal. J. Sched. 20, 85-101 (2017)

Mladenovié, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097-1100 (1997)

Sénchez-Oro, J., Pantrigo, J.J., Duarte, A.: Combining intensification and diversifi-
cation strategies in VNS. An application to the vertex separation problem. Comput.
Oper. Res. 52, 209-219 (2014)

Sifaleras, A., Konstantaras, I.: A survey on variable neighborhood search methods
for supply network inventory. In: Bychkov, I., Kalyagin, V.A., Pardalos, P.M.,
Prokopyev, O. (eds.) NET 2018. SPMS, vol. 315, pp. 71-82. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-37157-9 5

UNCTAD: Review of maritime transport. United Nations Conference on Trade
and Development (2022). http://www.unctad.org

Unsal, O.: Reclaimer scheduling in dry bulk terminals. IEEE Access 8, 9629496303
(2020)

https://doi.org/10.1007/978-3-030-37157-9_5
http://www.unctad.org

®

Check for
updates

An Efficient Algorithm for the T-Row
Facility Layout Problem

Rail Martin-Santamaria®, Alberto Herrdn@®, Abraham Duarte®),
and J. Manuel Colmenar(®)

Universidad Rey Juan Carlos, Calle Tulipén s/n, Mdéstoles, Madrid, Spain
{raul .martin,alberto.herran,abraham.duarte, josemanuel.colmenar}@urjc.es

Abstract. Facility layout problems represent a challenge to the oper-
ations research community. These problems are closely related to real-
world scenarios in industry and society, such as the design of production
factories or the layout of facilities in medical centers, to name a few.
These scenarios have been studied from the theoretical point of view
as different optimization problems. Among them, we have studied the
T-Row Facility Layout Problem, which considers a layout formed by
two orthogonal rows where facilities have to be placed minimizing the
material handling cost. To efficiently solve this problem we propose a
Variable Neighborhood Search algorithm which is able to reach all the
optimal solutions reported in the literature spending a fraction of the
execution time of the previous algorithm.

Keywords: Variable Neighborhood Search - Facility Layout Problem -
T-row FLP

1 Introduction

One of the families of problems with more real-world applications is the Facility
Layout Problems (FLP) [6]. In brief, this family involves the task of arranging
a given set of facilities in a particular layout trying to optimize an objective
function which is usually related to the pairwise relationship among the facilities.
A single row, two rows, cells or multiple bays are some of the possible layouts
for the arrangement usually studied in the literature. Material handling cost or
closeness ratio are two different objective functions that respectively represent
the cost of moving products from one facility to another, and the need to be
nearby due to electricity demand or safety reasons. We refer the reader to the
literature for an detailed review [8].

In this context, we have tackled the T-Row Facility Layout Problem
(TRFLP), which aims to minimize the total material handling cost (MHC),

This work has been partially supported by the Spanish Ministerio de Ciencia e Inno-
vacién (MCIN/AEI/10.13039,/501100011033) under grant refs. RED2022-134480-T and
PID2021-126605NB-100, and by ERDF A way of making Europe; and Generalitat
Valenciana with grant ref. CIAICO/2021/224.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 309-315, 2024.
https://doi.org/10.1007/978-3-031-62912-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_29&domain=pdf
http://orcid.org/0000-0002-9396-5375
http://orcid.org/0000-0003-0348-0313
http://orcid.org/0000-0002-4532-3124
http://orcid.org/0000-0001-7490-9450
https://doi.org/10.1007/978-3-031-62912-9_29

310 R. Martin-Santamaria et al.

defined as the weighted sum of the center-to-center distances between each pair
of facilities in the layout. Specifically, the TRFLP considers a layout with two
orthogonal rows, spaced U’Z;ath units, as in the shape of a T letter (see Fig.1).
This problem was introduced in a recent thesis [2], and a mixed-integer linear
programming approach is presented to solve this problem in [1]. The layout is
inspired by orthogonal aisles in buildings like hospitals, where the sun impacts
differently in the two orthogonal aisles with windows in only one side, and the
MHC corresponds to the distance to be walked by nurses to attend patients.

Row

Fig. 1. Example layouts for the TRFLP. On the left, the intersection point c; is placed
at the center of F3 (c3), and the discontinuous lines in each row represent the reference
point from where distances are calculated. On the right c; is placed at ca.

More formally, given a set F' of n facilities, n = |F|, where each i € F has
an associated length [;; a weight w;; between each pair of facilities 7, j € F'; and
a layout with two orthogonal rows, row 1 (horizontal) and row 2 (vertical); the
TRFLP consists in finding an assignment of facilities to rows r : F — {1,2},
together with a vector ¢ € R("*1) with the center positions of all the facilities
(measured from a fixed left border if r; = 1, or a fixed upper border if r; = 2) plus
the position (from the fixed left border) of the vertical row (c;). Mathematically:

min F(r,c) = Y, w;jd;;

i,jEF
i<J
Lt . S
s.t. |ci—cj\2 JQFJ ,jEF, 1<], Ty =Tj (1)
dij:|0i*6j| i,jEF, i<y, Ty =Tj

dij:|C7;—C[|+Cj+w;1;ath 7;7j€F, 7"7;:]., Tj:2

The mixed-integer linear programming approach presented in [1] is able to
obtain many optimal solutions, but spending long execution times. In this work
we propose a Variable Neighborhood Search algorithm able to get all verified
optimal solutions, and solve those instances where the exact model reached the
time limit. As it will be shown in the experiments, our proposal requires less
than 2s on average to solve any instance, which is several orders of magnitude
less computing time than those of the previous work.

2 Variable Neighborhood Search Approach

We decided to tackle this problem using a classical Variable Neighborhood
Search (VNS) approach [4]. Therefore, we have defined the three typical ele-

Effective Algorithm for the T-Row FLP 311

ments required by this scheme: construction method, improvement phase and
perturbation procedure.

For the construction, we designed a procedure which randomly selects the
intersection point and an initial facility, following a Greedy Randomized Adap-
tive Search Procedure (GRASP) to include new facilities [3]. The greedy function
is defined as the contribution to the objective function by any of the non-selected
facilities in any position, in either the first or the second row.

Regarding the improvement phase, three neighborhoods have been consid-
ered in this work. Two of them are well known in this family of problems, which
are those based on the insert and exchange moves. These neighborhoods are
generated by all possible insertions of any facility, and all possible exchanges of
two facilities in a given solution, respectively [5]. The third neighborhood cor-
responds to adjusting the intersection point ¢; between the two rows. Although
this point can be located at any arbitrary place in the row, the previous work
demonstrated that there is always an optimal layout where c; is located at the
center of a facility in the first row. Therefore, this neighborhood will only test
the facilities centers in the first row as candidate locations for c¢;. Since this is
a first approach to the problem, we have considered an improvement process
where a best improvement local search selects the best move taking into account
the three neighborhoods as an extended neighborhood local search.

Lastly, our shake procedure randomly applies k£ * 5 moves from either the
insert or the exchange neighborhoods.

Algorithm 1 shows the pseudo-code of this approach, where F' is the set of
facilities, « is the parameter for the GRASP constructive method and k., is the
maximum neighborhood size required by VNS. Notice that a solution S includes
the assignment r and the location of the centers ¢, as defined in Sect. 1.

Algorithm 1: VNS(F, o, kmaz)

1: S «— GraspConstructive(a, F')
2t k1

3: while k£ < kpmar do

4: S' « Shake(F,k,S)

5: S" « ExtendedLocalSearch(S’, F)
6: if F(S”) < F(S) then

7: S8 k1
8.

9

10:

else
kE—k+1
return S

3 Computational Experiments

Experiments were run using a single thread on a PC with a Ryzen 1700 (3.7 GHz)
CPU, limiting the memory available to the Java Virtual Machine (JVM) to 4 GB.
The algorithm has been implemented using Java 21.

312 R. Martin-Santamaria et al.

In order to perform a fair comparison, we will follow a similar methodology
to the state-of-the-art proposal, where instances are divided in two groups. The
first group contains instances already existing in the FLP literature, and they
will be solved using wgath = 3 and wgath = 10. The second group contains
the randomly generated star instances from [1], and they will be solved using
wgath = 0. All instances have 20 or less facilities.

Since the VNS proposal heavily depends on stochastic factors, in order to
guarantee that results are statistically significant, experiments were repeated
100 times, where each experiment consists on 20 iterations of the VNS. Results
are summarized using the following metrics. For the VNS, the minimum (Min)
and average (Awvg) values of the objective function are reported. Moreover, as the
experiment is repeated multiple times, the percentage of executions that reach
the best known value is reported (%best), and the average time needed for each
repetition (T(s)). For the state of the art work, labeled as Model, the optimal
value, if found by the model, is reported (Min), along with the execution time
needed (T(s)).

Tables 1 and 2 compare the performance of the VNS proposal and the state
of the art model, using the first set of instances, when w! ,, =3 and w ,, = 10,
respectively. The VNS proposal reaches the best known value for all instances
in a fraction of the time required by the state of the art model. Notably, the
results are consistent, and not due to random factors. The best value is found in
most of the executions, as shown by the %best metric, and the average value is
extremely close to the best known value. The state of the art model is executed
with a time limit of 8 hours, and fails to find the optimal value for instances
P18a and P18b, where the VNS obtains solutions quickly.

Table 3 compares the performance of the state-of-the-art model and the VNS
proposal using the second set of instances. Again, the VNS reaches all optimal
known values, using at most two seconds of computing time on average, while
the model requires more than half an hour on average, failing to find the optimal
value for the 20b instance in the 8 hours time limit.

Additionally, we have analyzed the performance profile of our VNS algorithm
following the methodology proposed in [7]. Specifically, Fig. 2 shows the evolution
of the gap to the best known value of the objective function, plotted against the
execution time, and averaged for all instances and experiment repetitions. On
average, the VNS proposal is able to obtain solutions whose gap is less than 10%
to the best known values in less than 10 milliseconds. The gap is further reduced
to 1% in 100 milliseconds, and is nearly 0% for execution times longer than 1s.
Therefore, the efficiency of the method is proven. Note the logarithmic scale of
the horizontal axis in the figure.

Table 1. Comparison for the first
set of instances and w;‘fath =3.

w;;ih =3 VNS Model
Instance Min Avg T(s) %best Min T(s)
Amlla 8902 8904.8 0.09 61 8902 28
Amllb 6118.5 6119.9 0.09 92 61185 16
Aml2a 2552 2552.0 0.13 100 2552 51
Aml2b 2740.5 2741.0 0.14 94 2740.5 40
Aml3a 4077 4077.0 0.26 98 4077 121
Aml13b 4581.5 4581.7 0.32 98 4581.5 104
Aml4_1 4642 4643.2 0.30 54 4642 533
Amlda 4751 47533 0.34 90 4751 335
Amldb 4739.5 4739.8 0.39 93 4739.5 407
Amlba 5378 5378.2 0.51 88 5378 953
HK_15b 26446 26448.2 0.50 72 26446 784
P16a 12381 12381.2 0.59 97 12381 4728
P16b 9882.5 9886.7 0.59 46 9882.5 4324
P17a 11956.5 11959.0 0.76 84 11956.5 14250
P17b 12779 12782.1 0.77 70 12779 11200
P17c 7767.5 T767.9 0.84 94 T767.5 8452
P18a 12993.5 12998.5 1.09 38 - 28800
P18b 14542 14551.6 1.05 40 - 28800
P18c 8911.5 8916.9 1.11 36 8911.5 20517

Table 2. Comparison for

the first
set of instances and w;‘fath =10.

Effective Algorithm for the T-Row FLP 313
Table 3. Comparison for the second
set of instances and wz;ath =0.
w;;,nh =0 VNS Model
Instance Min Avg T(s) %best Min T(s)
11a 1702 17022 0.16 98 1702 0
11b 2847.5 2847.9 0.11 98 28475 2
1lc 2301 2302.3 0.10 97 2301 1
11d 2878 28782 0.10 99 2878 2
1le 3098.5 3100.7 0.10 91 3098.5 4
12a 5540 5547.1 0.14 86 5540 13
12b 3911 39139 0.14 63 3911 6
12¢ 2529 2531.1 0.15 92 2529 2
12d 4027.5 4028.0 0.14 88 40275 8
12e 5583 5583.3 0.14 99 5583 15
13a 3823.5 3824.8 0.19 86 38235 11
13b 3290.5 3290.5 0.20 100 3290.5 4
13c 4040.5 4041.0 0.20 98 4040.5 20
13d 4036 40404 0.25 68 4036 27
13e 3266 32665 0.30 99 3266 8
14a 5276.5 5277.8 0.47 89 5276.5 61
14b 5640 5644.0 0.34 91 5640 48
14c 4150 4155.9 0.33 35 4150 23
14d 4884 4889.7 0.31 91 4884 26
14e 4935.5 4943.6 0.33 54 49355 49
15a 5312 5322.8 0.53 61 5312 91
15b 5298.5 5329.3 0.53 47 52985 96
15¢ 4225 4229.8 047 72 4225 87
15d 4609.5 4617.5 0.53 65 4609.5 48
15e 4643 4659.5 0.46 33 4643 217
16a 6564 6603.9 0.63 68 6564 234
16b 8356 8361.7 0.66 58 8356 615
16¢ 8082.5 8104.1 0.63 39 80825 387
16d 5521.5 5528.0 0.63 44 5521.5 203
16e 5561 5568.9 0.63 66 5561 289
17a 7853 7869.4 081 58 7853 827
17b 9876.5 99154 0.80 63 9876.5 2074
17c 7640 7657.4 0.83 73 7640 726
17d 6823 6842.3 0.80 59 6823 599
17e 6736.5 6765.9 0.83 44 6736.5 577
18a 11108.5 11125.3 1.10 36 11108.5 2168
18b 7037.5 7083.8 1.01 17 7037.5 1532
18¢ 9264.5 9288.2 1.03 27 9264.5 2316
18d 6464 6492.2 1.12 25 6464 1271
18¢ 8538 8566.0 1.09 34 8538 1936
19a 10046.5 10093.9 1.45 30 10046.5 6054
19b 10203.5 10258.2 1.51 24 10203.5 4755
19¢ 6637 6666.3 1.52 20 6637 1556
19d 8848 8898.4 1.49 14 8848 7096
19e 9495 9537.1 1.50 24 9495 9430
20a 8257 83004 1.84 25 8257 5264
20b 11234.5 11340.7 1.90 22 - 28800
20c 9826 9888.6 1.87 17 9826 12532
20d 11540.5 11578.3 1.90 23 11540.5 13896
20e 8097.5 8157.1 1.77 16 8097.5 9565

Wiaen = 10 VNS Model
Instance Min Avg T(s) %best Min T(s)
Amlla 9852.5 9854.1 0.09 82 9852.5 26
Amllb 6930.5 6930.5 0.08 100 6930.5 12
Aml2a 2793.5 2793.5 0.12 99 2793.5 37
Aml2b 3081.5 3089.4 0.12 69 30815 38
Aml3a 4517.5 4517.6 0.28 99 4517.5 124
Am13b 4999 5000.2 0.28 94 4999 114
Amil4.1 5169.5 5169.8 0.30 98 5169.5 617
Amlda 5327.5 5329.7 0.29 88 5327.5 310
Aml4b 5323 5325.0 0.34 94 5323 465
Amlba 5946.5 5948.0 0.45 96 5946.5 1046
HK_15b 27180 27182.8 0.47 88 27180 724
P16a 13233 13242.8 0.57 90 13233 4401
P16b 10627.5 10644.6 0.57 58 10627.5 3912
P17a 12871 12879.4 0.75 52 12871 13713
P17b 13761 13777.5 0.77 50 13761 18542
P17c 8590 8602.3 0.78 50 8590 6708
P18a 14009.5 14031.1 1.06 54 - 28800
P18b 15616.5 15629.7 1.03 34 - 28800
P18c 9807.5 9811.9 1.12 65 9807.5 20945

314 R. Martin-Santamaria et al.

).001 0.01 0.1 1 T(s)

Fig. 2. Runtime behavior of the VNS proposal. The X axis represents the execution
time, using a logarithmic scale. The Y axis represents the gap to the best known value,
averaged among all instances and all experiment repetitions, for each instant.

4 Conclusions and Future Work

In this work, we have proposed a VNS approach for the T-Row Facility Layout
problem. The proposal is based on a GRASP constructive method and a best
improvement local search over an extended neighborhood which combines one
specific neighborhood for the solved problem, which adjusts the intersection
point, and the well-known insert and ezchange neighborhoods. As seen in Sect. 3,
combining this simple algorithm components using the VNS metaheuristic allows
us to easily outperform the previous approach spending a fraction of its execution
time.

The promising results obtained in this work suggest that the existing
instances are not challenging enough for an effective comparison, as all opti-
mal values are reached in extremely short computing times. To this end, we will
study the application of this ideas to larger instances with up to 120 facilities,
as well as different VNS proposals.

References

1. Dahlbeck, M.: A mixed-integer linear programming approach for the T-row and the
multi-bay facility layout problem. Eur. J. Oper. Res. 295(2), 443-462 (2021)

2. Dahlbeck, M.: Solution approaches for facility layout problems. Ph.D. thesis, Dis-
sertation, Gottingen, Georg-August Universitat (2021)

3. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Glob.
Optim. 6, 109-133 (1995)

4. Hansen, P., Mladenovié¢, N., Todosijevi¢, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5(3), 423-454 (2017)

5. Herrdn, A., Colmenar, J.M., Duarte, A.: An efficient variable neighborhood search
for the space-free multi-row facility layout problem. Eur. J. Oper. Res. 295(3),
893-907 (2021)

Effective Algorithm for the T-Row FLP 315

6. Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S.M.T., Fakhrzad, M.B.: Clas-
sification of facility layout problems: a review study. Int. J. Adv. Manuf. Technol.
94, 957-977 (2018)

7. Lépez-Ibanez, M., Stiitzle, T.: Automatically improving the anytime behaviour of
optimisation algorithms. Eur. J. Oper. Res. 235(3), 569-582 (2014)

8. Pérez-Gosende, P., Mula, J., Diaz-Madroniero, M.: Facility layout planning. An
extended literature review. Int. J. Prod. Res. 59(12), 3777-3816 (2021)

l‘)

Check for
updates

Interpretability, Adaptability
and Scalability of Variable Neighborhood
Search

Pierre Hansen!, Aidan Riordan®®) and Xavier Hansen!»?
1 GERAD and Ecole des Hautes Etudes Commerciales, Montreal, QC, Canada
pierre.hansen@gerad.ca
2 College of Charleston, Charleston, SC, USA
riordanaa@g.cofc.edu

Abstract. Variable Neighborhood Search (VNS) has reached its 25th
anniversary as an effective and accessible metaheuristic for combinato-
rial optimization. This paper explores how VNS’s ingenious method to
escape local optima exhibits the properties of interpretability, adaptabil-
ity and scalability, making it well-suited for tackling large and complex
real-world problems. We first outline how the simple, modular design of
VNS lends itself to insightful problem analysis and systematic formula-
tion of the search space. We then discuss how VNS organically integrates
with other methods as a hybrid and readily leverages parallelization and
AI/ML capabilities for scalability. Finally, we propose recommendations
to further advance VNS through establishing public code repositories and
problem libraries, documenting challenges and successes with real-world
implementations, actively engaging across metaheuristics, and popular-
izing VNS as an accessible optimization technique.

Keywords: Variable Neighborhood Search + Metaheuristic - Heuristics

1 Introduction

Variable Neighborhood Search has reached its 25-year milestone as a performant
and efficient metaheuristic. Since the initial insights that led to its formulation
(Mladenovic, 1995) [47] and since the VNS methodology was first formalized
in a general framework (Mladenovic and Hansen, 1997) [48], a generation of
researchers explored and developed the field. As we mourn the passing of Nenad
Mladenovic, we celebrate his foundational contributions and, as he did through-
out his distinguished career, we look ahead to the bright future of VNS and to
the next generation of researchers that will continue to advance the field in years
to come.

Recent survey papers confirm that VNS is thriving. The number of VNS
peer-reviewed publications continues to rise year after year [34] and covers a
growing range of disciplines (network design, location theory, chemistry, biology,
graph theory, engineering, healthcare management, data mining, cluster analysis,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 316-330, 2024.
https://doi.org/10.1007/978-3-031-62912-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_30&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_30

Interpretability, Adaptability and Scalability of VNS 317

artificial intelligence) [35,43]. VNS has demonstrated strong performance for
classical combinatorial problems (Traveling Salesman Problem, Vehicle Routing
Problem, Knapsack Problem) [31,33] and delivered competitive solutions for
a wide range of real-world problems [6,19,44,60]. VNS has also spawned many
variants and hybrids to solve specific problems [10], with some research reporting
competitive results when compared to commercial optimization software (see, for
example, a parallel multi-objective VNS hybrid solution compared to commercial
optimization packages used for the post-sales network design problem [23] or a
parallel VNS algorithm compared to the GAMS software when applied to the
dynamic facility layout problem [1]).

This paper explores how the properties of interpretability, adaptability and
scalability emerge from VNS’s insightful method to escape local optima by sys-
tematically shifting local search using neighborhood structures, as shown in the
growing number of implementations of VNS for hybrid, parallel and AI/ML
optimization.

This paper is organized as follows: 1) Introduction; 2) Interpretability, Adapt-
ability and Scalability of VNS; 3) Hybrid, Parallel and AT/ML VNS implementa-
tions; and 4) A proposal for a programme of exploration for the next generation
of researchers.

2 Interpretability, Adaptability and Scalability of VINS

VNS’s method to avoid the trap of the local optima is simple yet powerful.
Through familiarization with a problem, researchers devise and construct neigh-
borhood structures in the solution space to explore a search space systematically.
VNS proceeds with a local search in the first neighborhood. If no improvement
is found, it performs a perturbation move (the shake) to the next structured
neighborhood where the local search process begins anew, starting from the
incumbent solution. If a better solution is found, VNS returns to the first neigh-
borhood structure and the entire process loops again, until a defined ending
criterion has been met. In General VNS, the neighborhood structure approach
is utilized in the local search phase as well.

In their most recent survey paper, Brimberg et al. characterize VNS’s inno-
vative approach “for evading the local optimum trap” as its “principal contribu-
tion.” [10]. We concur and recall from An Introduction to Variable Neighborhood
Search (1999) that “[c]ontrary to other metaheuristics based on local search
methods, VNS does not follow a trajectory but explores increasingly distant
neighborhoods of the current incumbent solution, and jumps from this solution
to a new one if and only if an improvement has been made. In this way often
favorable characteristics of the incumbent solution, e.g. that many variables are
already at their optimal value, will be kept and used to obtain promising neigh-
boring solutions.” [30].

VNS can explore the solution space extensively and efficiently because it
introduces teleportation (the “shake”) as it jumps to intelligently-designed neigh-
borhoods. This teleportation move is not a perturbation of last resort upon

318 P. Hansen et al.

reaching a dead end in a trajectory; it is a systematic process for structured
exploration via strategically-dispersed local searches. Its efficiency does not come
at the cost of severe constraints reducing the search space nor does it require the
significant computing resources consumed by population-based metaheuristics.

Further, this systematic and structured approach to the search space affords
VNS an additional strength: when a proven global optimum or best solution is
known (from prior optimization research), researchers can measure how far the
results of their VNS algorithm are from this global optimum for each neighbor-
hood and triangulate the most promising moves to improve their results. This
continuous improvement capability is built into the VNS scheme.

The originality of VNS’s approach to exploration and exploitation has been
noted in the literature by Crainic, Gendreau, Hansen and Mladenovic (2004):
“VNS is not a trajectory method (as Simulated Annealing or Tabu Search) and
does not specify forbidden moves.” [17]; M.A. Akbay et al. (2020): “Unlike most
of the local search-based algorithms, VNS uses a set of neighborhood struc-
tures instead of a single one. The main idea behind using multiple neighborhood
structures is the fact that a local minimum within a neighborhood may not be
so for another one. Furthermore, VNS systematically changes the neighborhoods
during the search. Thus, it ensures diversification in the search space and over-
comes the problem of getting stuck into local optima frequently encountered in
local search-based heuristics.” [4]; Queiroz dos Santos et al. (2014): “VNS grad-
ually explores neighborhoods more “distant” from the current solution rather
than other local search strategies that follow a path.” [55]; and Taillard (2023):
“Variable neighborhood search (VNS) implements an idea called strategic oscil-
lations. The search alternates intensification and diversification phases.” [65].

The essential Variable Neighborhood Search Tutorial (2003) [32] listed eight
“desirable properties” of metaheuristics to which VNS could attribute its early
success: Simplicity, Precision, Coherence, Efficiency, Effectiveness, Robustness,
User-friendliness, and Innovation. The present paper explores three additional
emergent properties that VNS has demonstrated empirically over the past two
decades and that speak to its present and future value as an integrable meta-
heuristic, namely: Interpretability, Adaptability and Scalability.

2.1 Interpretability

Each step in VNS can readily be understood as a functional component of a
systematic search process that dynamically alternates exploration and exploita-
tion, making VNS highly interpretable. The ease with which users understand
the coherence of VNS steps facilitates the diagnosis and resolution of issues in
a given implementation and simplifies adapting or altering steps while retaining
comprehensibility.

From the outset VNS requires researching and thinking about the problem
at hand to define the structure of the search space, i.e. to apprehend the nature
of the solution space for the given problem and to design a number of solution
neighborhoods of various sizes and types for a systematic search process. As
explained in VNS: Principles and Applications, “[t]o construct different neigh-
borhood structures and to perform a systematic search, one needs to have a way

Interpretability, Adaptability and Scalability of VNS 319

for finding the distance between any two solutions, i.e. one needs to supply the
solution space with some metric (or quasi-metric) and then induce neighbor-
hoods from it.” [31].

VNS anchors the neighborhood structuring process with three facts:

Fact 1. A local minimum with respect to one neighborhood structure is not
necessarily a local minimum for another neighborhood structure.

Fact 2. A global minimum is a local minimum with respect to all possible
neighborhood structures.

Fact 3. For many problems local minima with respect to one or several
neighborhoods are relatively close to each other.

The third fact is an empirical observation. It implies that “often favorable
characteristics of the incumbent solution, e.g. that most variables are already
at their optimal value, will be kept and used to obtain promising neighboring
solutions. Moreover, a local search routine is applied repeatedly to get from these
neighboring solutions to local optima.” [31].

By asking what and how many neighborhood structures should be used and in
what order, as well as what strategy should be used in changing neighborhoods,
researchers design a systematic approach to explore and exploit the search space
in clearly-defined steps that can readily combine deterministic and stochastic
elements. A detailed step-by-step procedure for VNS implementation can be
found in VNS: Methods and Applications, which further states “Unlike many
other metaheuristics, the basic schemes of VNS and its extensions are simple and
require few, and sometimes no parameters. Therefore, in addition to providing
very good solutions, often in simpler ways than other methods, VNS gives insight
into the reasons for such a performance, which, in turn, can lead to more efficient
and sophisticated implementations.” [35].

The intuitive modular design of VNS can readily be adjusted based on the
landscape of the problem being solved. This facilitates the creation of concisely-
defined variants that retain the interpretability of the original VNS scheme while
delivering robust results across a wide range of problems. A recent survey of
VNS variants can be found in [10]. The interpretability of VNS also encourages
collaboration and adoption by other metaheuristic fields, as well as knowledge
transfer to similar or even new problems, as discussed in Sect. 3 of the present

paper.

2.2 Adaptability

As pointed out by Raidl in his presentation at ICVNS 3 (2014), the modu-
lar scheme of VNS facilitates “embedding different improvement methods” as is
“explicitly expressed” in the original distinction between Variable Neighborhood
Descent, Reduced VNS, VNS and General VNS. With initialization, neighbor-
hood structuring, perturbation and local search selection, VNS presents dis-
tinct insertion points for integration and provides a “natural basis for most
hybridization patterns”, whether using an integrative or collaborative strategy,
a sequential or parallel order of execution, weak or strong coupling or more

320 P. Hansen et al.

specialized approaches combining problem-specific algorithms or AI/ML tech-
niques [56]. Raidl provides a comprehensive review of the various taxonomies for
metaheuristic hybrids in [57].

Section 3 references a variety of VNS applications that underscore the adapt-
ability of VNS for hybrids with other metaheuristics, mathematical programming
and AT/ML methods.

2.3 Scalability

The modular scheme of VNS also facilitates parallelization to run tasks concur-
rently rather than sequentially for added scalability and can readily combine par-
allelization and hybridization while retaining interpretability. For extremely large
and complex real-world problem instances that become intractable for standard
metaheuristic approaches, VNS offers a blueprint for problem decomposition
[56]. The adaptable scheme of VNS offers multiple paths to approach such large
and complex problems and delivers competitive performance at manageable cost
and within feasible timeframes. For the largest and most intractable instances,
the VNS scheme can be adapted to break down problems into component parts
with a “successive approximations decomposition method” [36]. Variable Neigh-
borhood Decomposition Search (VNDS) strategies have been explored for a vari-
ety of large-scale real-world problems such as continuous location-allocation [9],
power plant cable layout [15] and supply chain management [44]. As with VNS,
VNDS has been integrated with hybrid, parallel and/or machine learning in
attempts to combine capabilities for improved performance for specific combina-
torial problems. Section 3 references a variety of VNS applications that under-
score the scalability of VNS with parallelization and decomposition.

References to the emergent properties of VNS as an interpretable, adaptable
and scalable metaheuristic can be found in metaheuristic literature [4,21,34,37]
and in papers on VNS implementations in a variety of fields [25,40,62,68].

3 Hybrid, Parallel and AI/ML Implementations of VNS

The VNS Tutorial previously cited [32] identified three sets of promising areas
of research: 1) enhancements of the VNS basic scheme (initialization, inventory
of neighborhoods, distribution of neighborhoods, ancillary tests); 2) changes to
the basic scheme of VNS (use of memory, parallel VNS, hybrids); and 3) new
aims (‘non-standard uses’) for VNS (solutions with bounds on the errors, mixed-
integer programming, artificial intelligence). These promising areas of research
point to requisite capabilities to take on larger and more difficult challenges rep-
resentative of the real world which sees an unlimited demand for solving increas-
ingly complex problems. Although much remains to be explored, substantial
research over the past two decades has highlighted how VNS is purpose-fit for
parallel, hybrid and “non-standard” uses such as integration with AI/ML, show-
ing much promise for scaling optimization methods to solve large and complex
combinatorial problems [10,35].

Interpretability, Adaptability and Scalability of VNS 321

Hybrid integration, parallelization and AI/ML remain promising areas of
research for VNS to augment its capabilities and scale up its performance (includ-
ing enhancements to the VNS scheme). The interpretability, adaptability and
scalability of VNS also position VNS to leverage recent advances in computing
to take on larger and more complex real-world problems, including challenging
demand-driven, real-time optimization at scale.

3.1 Hybrids

A steadily growing number of published hybrid metaheuristic solutions include
a VNS component. The simple modular scheme of VNS facilitates its integra-
tion, both for exploration and exploitation of the search space. At its most basic,
Reduced VNS delivers strong performance for a modest investment of resources,
making it a cost-efficient addition to a hybrid [14,58,73]. The variable neighbor-
hood descent component of VNS, for its part, is an efficient local search that
can easily be integrated as a subroutine [29,42,75]. With few parameters to tune
and a highly adaptable scheme, VNS has proven a well-suited component in
emerging hybrid metaheuristic approaches. Interpretable VNS hybrids can also
be enhanced with parallelization and/or with methods from Machine Learning
and Artificial Intelligence [28,52,61,74,76].

Figure 1 confirms the growing popularity and utility of VNS as a value-adding
component in highly-performant hybrids.

350
300
250
200
150

100

Publications Per Year

50

Fig. 1. Publications per year including “Variable Neighborhood Search” and “Hybrid”.
Made with Scopus Search Tool

Empirical evidence indicates that combining metaheuristics into hybrids to
leverage different purpose-fit properties that optimize flexibility and scalabil-
ity can significantly improve performance for previously intractable real-world
problems involving vast quantities of data (including noisy data and data loss)

322 P. Hansen et al.

[26,45,71,72,77). This is an increasingly important area of research since the
recent explosive growth of Big Data opened up new opportunities to take on
highly complex real world problems, including a growing set of business and con-
sumer combinatorial problems that require rapid and continuous optimization,
such as massive on-demand consumer applications and sophisticated just-in-time
industrial production.

3.2 Parallelization

VNS has demonstrated its adaptability to optimize performance for different
problem categories while maintaining robust performance as problems get larger
and more complex [13,59]. As with all metaheuristics however, performance
degrades as the problems get extremely large (the “curse of dimensionality”).
The versatility of VNS’s modular scheme facilitates parallelization to expand
and/or speed up the systematic exploration of the search space [27,46]. VNS
can leverage multi-core CPUs (and GPUs) to search neighborhoods concurrently
rather than sequentially, with best results thus far provided via asynchronous
cooperative sharing of information [38,53]. Such a distributed approach also
facilitates the implementation of memory functions to improve solutioning as
with reinforcement learning or reactive search [39,55]. For a comprehensive pre-
sentation of VNS parallelization approaches, see Crainic et al. [18].

The powerful new capabilities of high-performance computing systems should
support further VNS experimentation with parallelization on a larger scale.
These opportunities are increasingly being pursued by a new generation of
researchers as can be seen in Fig. 2, showing the steady increase of parallelization
in new VNS publications. For more insights on the impact of improvements in
computing capacity and architectures on the performance of parallelization for
metaheuristics, see [16,24].

3.3 AI/ML and Improvements to the VNS Scheme

It is broadly acknowledged that VNS requires substantial research of the prob-
lem being solved, its domain, and prior algorithms applied to it. This familiar-
ization process is a prerequisite to structuring neighborhoods intelligently for
the exploration of the solution space. As noted above, this can be considered a
strength of VNS as it encourages an analytical approach to the search space. It
is also a drawback however, as the research process has proven labor-intensive
and time-consuming, often requiring extensive searches for dispersed information
and sometimes elusive guidance from domain experts.

The search tools recommended 20 years ago in the VNS Tutorial to assist
with familiarization, initialization and neighborhood structuring, such as the
ISI Web of Knowledge, NEC Research’s Citeseer or the Google search engine
offered limited capabilities. The new AI tools deployed in the past few years
to manage Big Data show transformative potential: massive online databases
supply rich structured data, vector databases greatly reduce the effort and time
required to locate information, machine learning models and Al algorithms scale

Interpretability, Adaptability and Scalability of VNS 323

(o]
o

Publications Per Year
[e)}
o

40
20

Fig. 2. Publications per year including “Variable Neighborhood Search” and “Parallel”.
Made with Scopus Search Tool

and accelerate pattern recognition, and the newly-released commercial Large
Language Models (LLMs) deliver rapid natural language interactions for ini-
tial familiarization with a remarkably wide range of real world phenomena. Big
Data’s exponential growth has also spurred and enabled the training and lever-
aging of machine learning to identify complex patterns and relationships, which
can be used to enhance optimization. Metaheuristics have in return demon-
strated their utility for optimizing machine learning and artificial intelligence
capabilities [11,25,50,70].

Although metaheuristics researchers have long experimented with AT and ML
approaches, those endeavors required considerable effort, cost, and specialization
that limited use and constrained potential. With the drastic reduction in the cost
of computational processing and the proliferation of affordable ML models and
AT tools in the past few years, metaheuristics can suddenly leverage a range of
augmented capabilities to enhance all facets of optimization [8,20,41,66,67).

Pursuing this promising area of research for VNS could involve experimenta-
tion with automated, dynamic structuring of neighborhoods, further implemen-
tations of learning and memory processes, and the development of real-world
problem data repositories with fine-tuned LLMs to transform domain research
and problem formulation from laborious isolated efforts into an Al-assisted meta-
heuristic collaboration at scale. VNS, thanks to its simple, versatile modular
scheme and its analytical approach to structuring the search space, is purpose-
fit for AI/ML experimentation, as shown by the growing number of published
works on VNS implementations including automated programming [22], adap-
tive memory functions [12], reinforcement learning [5], reactive search [55], auto-
mated metaheuristic generation [2], ML-assisted neighborhood selection [54],
neural networks [3], as well as VNS applications to improve machine learning
[7,64].

324 P. Hansen et al.

4 Proposal for a Programme for Variable Neighborhood
Search

The broader community of VNS researchers has an opportunity to encourage
practices that benefit the field of optimization as a whole and that may be over-
looked by individual researchers when solving a specific problem. The recommen-
dations below aim to overcome the tradeoff between general interoperability and
problem-specific performance, highlighting how best practices to enhance inter-
pretability, adaptability and scalability can benefit both the results of particular
implementations and the performance of metaheuristics in general. These recom-
mendations also aim to answer the growing calls for increased transparency and
verifiable comparative performance assessment across metaheuristics [51,63,69).

4.1 Establish Public Repositories for Shared Code, Frameworks
and Libraries

Reusability and replicability of prior implementations are critical to assess the
performance of the most promising approaches and to enhance their further
development. The field of VNS should encourage all practitioners to share results,
code, libraries, frameworks and architectures by establishing and maintaining
public repositories easily accessed online. Such repositories could be indexed to
facilitate experimentation and exploration of hybrids, parallelization and AI/ML
integrations that retain interpretability, adaptability and the ability to scale per-
formance for larger and more complex problems. An intentional program to pro-
mote transparency and collaborative knowledge-sharing will reduce redundant
efforts and costs of implementation while fostering new insights.

4.2 Document the Challenges and Performance of VNS for Solving
Large and Complex Real-World Problems and Support
Exploration of the Latest Advances in Computing

The VNS field should document the interpretability, adaptability and scalabil-
ity of VNS and emphasize demonstrable results for solving large and complex
combinatorial problems. This endeavor should explore options to close the gap
between many promising theoretical formulations and the still limited number of
successful real-world implementations (aka the “Death Valley”) via partnerships
between academia and business. In collaboration with the broader discipline
of optimization, the VNS field should increase experimentation with the evolv-
ing capabilities of high-performance computing, Big Data and AT/ML tools to
improve performance when taking on previously intractable real-world problems.

4.3 Continue to Engage Proactively with Other Metaheuristics

The VNS field should continue to engage proactively with other metaheuristic
fields and with optimization disciplines such as AI/ML to encourage the use of

Interpretability, Adaptability and Scalability of VNS 325

VNS in hybrid approaches to solve large and complex combinatorial problems.
Sponsoring joint conferences and actively seeking the participation of researchers
from other metaheuristic fields that have implemented VNS components in their
hybrids will benefit the growth of VNS as well as experimentation with enhance-
ments to the VNS scheme. Frequent communication and collaboration between
practitioners across a broad range of metaheuristic approaches will benefit the
field of optimization with informed combinations of respective strengths required
to deliver performant solutions, all while facilitating continued interpretability
and adaptability.

4.4 Popularize VNS and Further the Development of Optimization
as a Public Utility

In the tradition of the VNS Tutorial and of Nenad Mladenovic’s Introduction
to VNS at ICVNS 8, [49] the VNS field should continue to popularize the sim-
plicity and efficiency of VNS with the broadest audience, especially with new
researchers entering the field of optimization. Such a project should also con-
sider new capabilities delivered by the latest advances in visualization tools,
LLMs and low-code applications to develop basic optimization utilities for the
general public, especially for small business and nonprofit entities that may be
priced out of costly commercial optimization solutions.

References

1. Abedzadeh, M., Mazinani, M., Moradinasab, N., Roghanian, E.: Parallel variable
neighborhood search for solving fuzzy multi-objective dynamic facility layout prob-
lem. Int. J. Adv. Manuf. Technol. 65, 197-211 (2013)

2. Adamo, T., Ghiani, G., Guerriero, E., Manni, E.: Automatic instantiation of a
variable neighborhood descent from a mixed integer programming model. Oper.
Res. Perspect. 4, 123-135 (2017). https://doi.org/10.1016/j.0orp.2017.09.001

3. Adibi, M., Zandieh, M., Amiri, M.: Multi-objective scheduling of dynamic job shop
using variable neighborhood search. Expert Syst. Appl. 37(1), 282-287 (2010).
https://doi.org/10.1016/j.eswa.2009.05.001

4. Akbay, M.A., Kalayci, C.B., Polat, O.: A parallel variable neighborhood search
algorithm with quadratic programming for cardinality constrained portfolio opti-
mization. Knowl.-Based Syst. 198, 105944 (2020). https://doi.org/10.1016/j.
knosys.2020.105944

5. Alicastro, M., Ferone, D., Festa, P., Fugaro, S., Pastore, T.: A reinforcement learn-
ing iterated local search for makespan minimization in additive manufacturing
machine scheduling problems. Comput. Oper. Res. 131, 105272 (2021). https://
doi.org/10.1016/j.cor.2021.105272

6. Aloise, D.J., Aloise, D., Rocha, C.T., Ribeiro, C.C., Ribeiro Filho, J.C., Moura,
L.S.: Scheduling workover rigs for onshore oil production. Discrete Appl. Math.
154(5), 695-702 (2006). https://doi.org/10.1016/j.dam.2004.09.021

7. Aratjo, T., Aresta, G., Almada-Lobo, B., Mendonga, A.M., Campilho, A.: Improv-
ing convolutional neural network design via variable neighborhood search. In: Kar-
ray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 371—
379. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5_41

https://doi.org/10.1016/j.orp.2017.09.001
https://doi.org/10.1016/j.eswa.2009.05.001
https://doi.org/10.1016/j.knosys.2020.105944
https://doi.org/10.1016/j.knosys.2020.105944
https://doi.org/10.1016/j.cor.2021.105272
https://doi.org/10.1016/j.cor.2021.105272
https://doi.org/10.1016/j.dam.2004.09.021
https://doi.org/10.1007/978-3-319-59876-5_41

326

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

P. Hansen et al.

Balas, V.E., Kumar, R., Srivastava, R. (eds.): Recent Trends and Advances in Arti-
ficial Intelligence and Internet of Things. ISRL, vol. 172. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-32644-9

Brimberg, J., Hansen, P., Mladenovié¢, N.: Decomposition strategies for large-scale
continuous location-allocation problems. IMA J. Manag. Math. 17(4), 307-316
(2006). https://doi.org/10.1093/imaman/dpl002

Brimberg, J., Salhi, S., Todosijevi¢, R., Urosevié¢, D.: Variable neighborhood search:
the power of change and simplicity. Comput. Oper. Res. 155, 106221 (2023).
https://doi.org/10.1016/j.cor.2023.106221

Calvet, L., de Armas, J., Masip, D., Juan, A.A.: Learnheuristics: hybridizing
metaheuristics with machine learning for optimization with dynamic inputs. Open
Math. 15(1), 261-280 (2017). https://doi.org/10.1515/math-2017-0029

Cao, L., Ye, C.M., Cheng, R., Wang, Z.K.: Memory-based variable neighborhood
search for green vehicle routing problem with passing-by drivers: a comprehen-
sive perspective. Complex Intell. Syst. 8(3), 2507-2525 (2022). https://doi.org/10.
1007/s40747-022-00661-5

Cazzaro, D., Pisinger, D.: Variable neighborhood search for large offshore wind
farm layout optimization. Comput. Oper. Res. 138, 105588 (2022). https://doi.
org/10.1016/j.cor.2021.105588

Cheimanoff, N., Fontane, F., Kitri, M.N., Tchernev, N.: A reduced VNS based
approach for the dynamic continuous berth allocation problem in bulk terminals
with tidal constraints. Expert Syst. Appl. 168, 114215 (2021). https://doi.org/10.
1016/j.eswa.2020.114215

Costa, M.C., Monclar, F.R., Zrikem, M.: Variable neighborhood decomposition
search for the optimization of power plant cable layout. J. Intell. Manuf. 13, 353—
365 (2002)

Crainic, T.: Parallel metaheuristics and cooperative search. In: Gendreau, M.,
Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 419-451.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_-13

Crainic, T.G., Gendreau, M., Hansen, P., Mladenovi¢, N.: Cooperative parallel
variable neighborhood search for the p-median. J. Heuristics 10(3), 293-314 (2004).
https://doi.org/10.1023/B:HEUR.0000026897.40171.1a

Davidovié, T., Crainic, T.G.: Parallelization strategies for variable neighborhood
search. Research report CIRRELT-2013-47, Interuniversity Research Centre on
Enterprise Networks, Logistics and Transportation (CIRRELT), Montréal, Canada
2013

](De Aimas, J., Melidn-Batista, B.: Variable neighborhood search for a dynamic
rich vehicle routing problem with time windows. Comput. Ind. Eng. 85, 120-131
(2015). https://doi.org/10.1016/j.cie.2015.03.006

De Curto, J., De Zarza, 1., Roig, G., Cano, J.C., Manzoni, P., Calafate, C.T.: LLM-
informed multi-armed bandit strategies for non-stationary environments. Electron-
ics 12(13), 2814 (2023). https://doi.org/10.3390/electronics12132814

Duarte, A., Pantrigo, J.J., Pardo, E.G., Mladenovic, N.: Multi-objective variable
neighborhood search: an application to combinatorial optimization problems. J.
Global Optim. 63(3), 515-536 (2015). https://doi.org/10.1007/s10898-014-0213-z
Elleuch, S., Jarboui, B., Mladenovic, N.: Variable neighborhood programming -
a new automatic programming method in artificial intelligence. Technical report
G-2016-21, GERAD, Montreal, Canada (2016)

Eskandarpour, M., Zegordi, S.H., Nikbakhsh, E.: A parallel variable neighborhood
search for the multi-objective sustainable post-sales network design problem. Int.
J. Prod. Econ. 145(1), 117-131 (2013). https://doi.org/10.1016/j.ijpe.2012.10.013

https://doi.org/10.1007/978-3-030-32644-9
https://doi.org/10.1093/imaman/dpl002
https://doi.org/10.1016/j.cor.2023.106221
https://doi.org/10.1515/math-2017-0029
https://doi.org/10.1007/s40747-022-00661-5
https://doi.org/10.1007/s40747-022-00661-5
https://doi.org/10.1016/j.cor.2021.105588
https://doi.org/10.1016/j.cor.2021.105588
https://doi.org/10.1016/j.eswa.2020.114215
https://doi.org/10.1016/j.eswa.2020.114215
https://doi.org/10.1007/978-3-319-91086-4_13
https://doi.org/10.1023/B:HEUR.0000026897.40171.1a
https://doi.org/10.1016/j.cie.2015.03.006
https://doi.org/10.3390/electronics12132814
https://doi.org/10.1007/s10898-014-0213-z
https://doi.org/10.1016/j.ijpe.2012.10.013

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Interpretability, Adaptability and Scalability of VNS 327

Essaid, M., Idoumghar, L., Lepagnot, J., Brévilliers, M.: GPU parallelization
strategies for metaheuristics: a survey. Int. J. Parallel Emergent Distrib. Syst.
34(5), 497-522 (2019). https://doi.org/10.1080/17445760.2018.1428969

Fuksz, L., Pop, P.C.: A hybrid genetic algorithm with variable neighborhood search
approach to the number partitioning problem. In: Pan, J.-S., Polycarpou, M.M.,
Wozniak, M., de Carvalho, A.C.P.L.F., Quintidn, H., Corchado, E. (eds.) HAIS
2013. LNCS (LNATI), vol. 8073, pp. 649-658. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40846-5_65

Garcia-Guarin, J., et al.: Smart microgrids operation considering a variable neigh-
borhood search: the differential evolutionary particle swarm optimization algo-
rithm. Energies 12(16), 3149 (2019). https://doi.org/10.3390/en12163149
Garcia-Loépez, F., Melidn-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: The
parallel variable neighborhood search for the p-median problem. J. Heuristics 8(3),
375-388 (2002). https://doi.org/10.1023/A:1015013919497

Garcia-Torres, M., Goémez-Vela, F., Becerra-Alonso, D., Melidn-Batista, B.,
Moreno-Vega, J.M.: Feature grouping and selection on high-dimensional microar-
ray data. In: 2015 International Workshop on Data Mining with Industrial Appli-
cations (DMIA), pp. 30-37 (2015). https://doi.org/10.1109/DMIA.2015.18

Guo, H., Zhang, L., Ren, Y., Li, Y., Zhou, Z., Wu, J.: Optimizing a stochastic disas-
sembly line balancing problem with task failure via a hybrid variable neighborhood
descent-artificial bee colony algorithm. Int. J. Prod. Res. 61(7), 2307-2321 (2023).
https://doi.org/10.1080/00207543.2022.2069524

Hansen, P., Mladenovié, N.: An introduction to variable neighborhood search. In:
Vo8, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization, pp. 433-458. Springer,
Boston (1999). https://doi.org/10.1007/978-1-4615-5775-3-30

Hansen, P., Mladenovié, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130(3), 449-467 (2001). https://doi.org/10.1016/S0377-
2217(00)00100-4

Hansen, P., Mladenovié¢, N.: A tutorial on variable neighborhood search. Les
Cahiers du GERAD G-2003-46, Groupe d’études et de recherche en analyse des
décisions, GERAD, Montréal QC H3T 2A7, Canada (2003)

Hansen, P., Mladenovié¢, N.: Variable neighborhood search methods. In: Floudas,
C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 3975-3989. Springer,
Boston (2008). https://doi.org/10.1007/978-0-387-74759-0_694

Hansen, P., Mladenovié¢, N., Brimberg, J., Pérez, J.A.M.: Variable neighbor-
hood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics.
ISORMS, vol. 272, pp. 57-97. Springer, Cham (2019). https://doi.org/10.1007/
978-3-319-91086-4_3

Hansen, P., Mladenovié, N., Moreno Pérez, J.A.: Variable neighbourhood search:
methods and applications. Ann. Oper. Res. 175(1), 367-407 (2010). https://doi.
org/10.1007/s10479-009-0657-6

Hansen, P., Mladenovic, N., Perez-Brito, D.: Variable neighborhood decomposition
search. J. Heuristics 7, 335-350 (2001)

Hansen, P., Mladenovié¢, N., Todosijevi¢, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5(3), 423-454 (2017).
https://doi.org/10.1007/s13675-016-0075-x

Kalatzantonakis, P., Sifaleras, A., Samaras, N.: Cooperative versus non-cooperative
parallel variable neighborhood search strategies: a case study on the capacitated
vehicle routing problem. J. Glob. Optim. 78(2), 327-348 (2020). https://doi.org/
10.1007/s10898-019-00866-y

https://doi.org/10.1080/17445760.2018.1428969
https://doi.org/10.1007/978-3-642-40846-5_65
https://doi.org/10.1007/978-3-642-40846-5_65
https://doi.org/10.3390/en12163149
https://doi.org/10.1023/A:1015013919497
https://doi.org/10.1109/DMIA.2015.18
https://doi.org/10.1080/00207543.2022.2069524
https://doi.org/10.1007/978-1-4615-5775-3_30
https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/10.1007/978-0-387-74759-0_694
https://doi.org/10.1007/978-3-319-91086-4_3
https://doi.org/10.1007/978-3-319-91086-4_3
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s13675-016-0075-x
https://doi.org/10.1007/s10898-019-00866-y
https://doi.org/10.1007/s10898-019-00866-y

328

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

P. Hansen et al.

Kalatzantonakis, P., Sifaleras, A., Samaras, N.: A reinforcement learning-variable
neighborhood search method for the capacitated vehicle routing problem. Expert
Syst. Appl. 213, 118812 (2023). https://doi.org/10.1016/j.eswa.2022.118812
Karakostas, P., Sifaleras, A.: A double-adaptive general variable neighborhood
search algorithm for the solution of the traveling salesman problem. Appl. Soft
Comput. 121, 108746 (2022). https://doi.org/10.1016/j.as0c.2022.108746
Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M.,
Talbi, E.G.: Machine learning at the service of meta-heuristics for solving com-
binatorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. 296(2),
393-422 (2022). https://doi.org/10.1016/j.ejor.2021.04.032

Kyriakakis, N.A., Sevastopoulos, I., Marinaki, M., Marinakis, Y.: A hybrid Tabu
search - variable neighborhood descent algorithm for the cumulative capacitated
vehicle routing problem with time windows in humanitarian applications. Comput.
Ind. Eng. 164, 107868 (2022). https://doi.org/10.1016/j.cie.2021.107868

Lan, S., Fan, W., Yang, S., Pardalos, P.M., Mladenovic, N.: A survey on the applica-
tions of variable neighborhood search algorithm in healthcare management. Ann.
Math. Artif. Intell. 89(8), 741-775 (2021). https://doi.org/10.1007/s10472-021-
09727-5

Lejeune, M.: A variable neighborhood decomposition search method for supply
chain management planning problems. Eur. J. Oper. Res. 175(2), 959-976 (2006).
https://doi.org/10.1016/j.ejor.2005.05.021

Liang, Y.L., Kuo, C.C., Lin, C.C.: A hybrid memetic algorithm for simultaneously
selecting features and instances in big industrial IoT data for predictive main-
tenance. In: 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), vol. 1, pp. 1266-1270 (2019). iSSN: 2378-363X. https://doi.org/10.1109/
INDIN41052.2019.8972199

Menéndez, B., Pardo, E.G., Sdnchez-Oro, J., Duarte, A.: Parallel variable neigh-
borhood search for the min-max order batching problem. Int. Trans. Oper. Res.
24(3), 635-662 (2017). https://doi.org/10.1111/itor.12309

Mladenovic, N.: A variable neighborhood algorithm — a new metaheuristic for
combinatorial optimization. In: Abstracts of Papers Presented at Optimization
Days, p. 112. Montréal (1995). Available as an abstract only

Mladenovié, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097-1100 (1997). https://doi.org/10.1016/S0305-0548(97)00031-2
Mladenovic, N.: ICVNS2021: Tutorial by Prof. Mladenovic, Introduction to vari-
able neighborhood search metaheuristic. YouTube Video (2021), tutorial presented
at the 8th International Conference on Variable Neighborhood Search (ICVNS
2021), Abu Dhabi, United Arab Emirates

Naidu, A., Mittal, A., Kreucher, R., Zhang, A.C.,; Ortmann, W., Somsel, J.: A
systematic approach to develop metaheuristic traffic simulation models from big
data analytics on real-world data. Technical report, SAE International (2021).
https://doi.org/10.4271/2021-01-0166

Osaba, E., et al.: A tutorial on the design, experimentation and application of
metaheuristic algorithms to real-world optimization problems. Swarm Evol. Com-
put. 64, 100888 (2021). https://doi.org/10.1016/j.swevo.2021.100888

Pan, J.-S., Polycarpou, M.M., Wozniak, M., de Carvalho, A.C.P.L.F., Quintidn,
H., Corchado, E. (eds.): HAIS 2013. LNCS (LNAI), vol. 8073. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40846-5

Polat, O.: A parallel variable neighborhood search for the vehicle routing prob-
lem with divisible deliveries and pickups. Comput. Oper. Res. 85, 71-86 (2017).
https://doi.org/10.1016/j.cor.2017.03.009

https://doi.org/10.1016/j.eswa.2022.118812
https://doi.org/10.1016/j.asoc.2022.108746
https://doi.org/10.1016/j.ejor.2021.04.032
https://doi.org/10.1016/j.cie.2021.107868
https://doi.org/10.1007/s10472-021-09727-5
https://doi.org/10.1007/s10472-021-09727-5
https://doi.org/10.1016/j.ejor.2005.05.021
https://doi.org/10.1109/INDIN41052.2019.8972199
https://doi.org/10.1109/INDIN41052.2019.8972199
https://doi.org/10.1111/itor.12309
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.4271/2021-01-0166
https://doi.org/10.1016/j.swevo.2021.100888
https://doi.org/10.1007/978-3-642-40846-5
https://doi.org/10.1016/j.cor.2017.03.009

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Interpretability, Adaptability and Scalability of VNS 329

Pugliese, L.D.P., Ferone, D., Festa, P., Guerriero, F., Macrina, G.: Combining vari-
able neighborhood search and machine learning to solve the vehicle routing prob-
lem with crowd-shipping. Optim. Lett. (2022). https://doi.org/10.1007/s11590-
021-01833-x

Queiroz Dos Santos, J.P., De Melo, J.D., Duarte Neto, A.D., Aloise, D.: Reactive
search strategies using reinforcement learning, local search algorithms and variable
neighborhood search. Expert Syst. Appl. 41(10), 4939-4949 (2014). https://doi.
org/10.1016/j.eswa.2014.01.040

Raidl, G.R.: Variable neighborhood search hybrids. In: Proceedings of the 3rd
International Conference on Variable Neighborhood Search. Vienna University of
Technology, Djerba (2014). Presentation

Raidl, G.R., Puchinger, J., Blum, C.: Metaheuristic hybrids. In: Gendreau, M.,
Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 385-417.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_-12

Rettl, M., Pletz, M., Schuecker, C.: Evaluation of combinatorial algorithms for
optimizing highly nonlinear structural problems. Mater. Des. 230, 111958 (2023).
https://doi.org/10.1016 /j.matdes.2023.111958

Roshanaei, V., Naderi, B., Jolai, F., Khalili, M.: A variable neighborhood search for
job shop scheduling with set-up times to minimize makespan. Future Gener. Com-
put. Syst. 25(6), 654-661 (2009). https://doi.org/10.1016/j.future.2009.01.004
Sevkli, A.Z., Giiler, B.: A multi-phase oscillated variable neighbourhood search
algorithm for a real-world open vehicle routing problem. Appl. Soft Comput. 58,
128-144 (2017). https://doi.org/10.1016/j.as0c.2017.04.045

Shao, Y., Wang, K., Shu, L., Deng, S., Deng, D.J.: Heuristic optimization for
reliable data congestion analytics in crowdsourced eHealth networks. IEEE Access
4, 9174-9183 (2016). https://doi.org/10.1109/ACCESS.2016.2646058

Sitahong, A., Yuan, Y., Ma, J., Lu, Y., Mo, P.: Effective and interpretable rule
mining for dynamic job-shop scheduling via improved gene expression program-
ming with feature selection. Appl. Sci. 13(11), 6631 (2023). https://doi.org/10.
3390/app13116631

Swan, J., et al.: Metaheuristics “in the large”. Eur. J. Oper. Res. 297(2), 393-406
(2022). https://doi.org/10.1016/j.ejor.2021.05.042

Syed, M.N.: Feature selection in machine learning via variable neighborhood search.
Optim. Lett. 17(9), 2321-2345 (2023). https://doi.org/10.1007/s11590-023-02003-
X

Taillard, E.D.: Design of Heuristic Algorithms for Hard Optimization: With Python
Codes for the Travelling Salesman Problem. GRTOPR, Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-13714-3

Talbi, E.G.: Machine learning into metaheuristics: a survey and taxonomy. ACM
Comput. Surv. 54(6), 129:1-129:32 (2021). https://doi.org/10.1145/3459664
Tkatek, S., Bahti, S., Lmzouari, Y., Abouchabaka, J.: Artificial intelligence for
improving the optimization of NP-hard problems: a review. Int. J. Adv. Trends
Comput. Sci. Eng. 9(5), 7411-7420 (2020). https://doi.org/10.30534/ijatcse/2020/
73952020

Todosijevi¢, R., Mladenovié¢, M., Hanafi, S., Mladenovi¢, N., Crévits, I.: Adaptive
general variable neighborhood search heuristics for solving the unit commitment
problem. Int. J. Electr. Power Energy Syst. 78, 873-883 (2016). https://doi.org/
10.1016/j.ijepes.2015.12.031

Turgut, O.E., Turgut, M.S., Kirtepe, E.: A systematic review of the emerging meta-
heuristic algorithms on solving complex optimization problems. Neural Comput.
Appl. 35(19), 14275-14378 (2023). https://doi.org/10.1007/s00521-023-08481-5

https://doi.org/10.1007/s11590-021-01833-x
https://doi.org/10.1007/s11590-021-01833-x
https://doi.org/10.1016/j.eswa.2014.01.040
https://doi.org/10.1016/j.eswa.2014.01.040
https://doi.org/10.1007/978-3-319-91086-4_12
https://doi.org/10.1016/j.matdes.2023.111958
https://doi.org/10.1016/j.future.2009.01.004
https://doi.org/10.1016/j.asoc.2017.04.045
https://doi.org/10.1109/ACCESS.2016.2646058
https://doi.org/10.3390/app13116631
https://doi.org/10.3390/app13116631
https://doi.org/10.1016/j.ejor.2021.05.042
https://doi.org/10.1007/s11590-023-02003-x
https://doi.org/10.1007/s11590-023-02003-x
https://doi.org/10.1007/978-3-031-13714-3
https://doi.org/10.1145/3459664
https://doi.org/10.30534/ijatcse/2020/73952020
https://doi.org/10.30534/ijatcse/2020/73952020
https://doi.org/10.1016/j.ijepes.2015.12.031
https://doi.org/10.1016/j.ijepes.2015.12.031
https://doi.org/10.1007/s00521-023-08481-5

330

70.

71.

2.

73.

74.

75.

76.

7.

P. Hansen et al.

Wang, G.G., Tan, Y.: Improving metaheuristic algorithms with information feed-
back models. IEEE Trans. Cybern. 49(2), 542-555 (2019). https://doi.org/10.
1109/TCYB.2017.2780274

Wang, K., Shao, Y., Shu, L., Zhu, C., Zhang, Y.: Mobile big data fault-tolerant
processing for ehealth networks. IEEE Netw. 30(1), 36-42 (2016). https://doi.org/
10.1109/MNET.2016.7389829

Wang, L., Meng, F., Min, X., Chu, D.: A multi-objective task-driven vehicle rout-
ing problem with recirculating delivery and its solution approaches. In: 2021 4th
International Conference on Artificial Intelligence and Big Data (ICAIBD), pp.
687-694 (2021). https://doi.org/10.1109/ICAIBD51990.2021.9459022

Xiong, F., Xing, K.: Meta-heuristics for the distributed two-stage assembly schedul-
ing problem with bi-criteria of makespan and mean completion time. Int. J. Prod.
Res. 52(9), 2743-2766 (2014). https://doi.org/10.1080,/00207543.2014.884290
Yuan, Z., Gao, J.: Dynamic uncertainty study of multi-center location and route
optimization for medicine logistics company. Mathematics 10(6), 953 (2022).
https://doi.org/10.3390/math10060953

Zhang, B., Pan, Q.K., Meng, L.L., Zhang, X.L., Jiang, X.C.: A decomposition-
based multi-objective evolutionary algorithm for hybrid flowshop rescheduling
problem with consistent sublots. Int. J. Prod. Res. 61(3), 1013-1038 (2023).
https://doi.org/10.1080/00207543.2022.2093680

Zhang, H., He, Z., Man, Y., Li, J., Hong, M., Tran, K.P.: Multi-objective optimiza-
tion of flexible flow-shop intelligent scheduling based on a hybrid intelligent algo-
rithm. In: Tran, K.P. (ed.) Artificial Intelligence for Smart Manufacturing: Meth-
ods, Applications, and Challenges. RELIABILITY, pp. 97-119. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30510-8_6

Zhao, F.; Qin, S., Zhang, Y., Ma, W., Zhang, C., Song, H.: A hybrid biogeography-
based optimization with variable neighborhood search mechanism for no-wait flow
shop scheduling problem. Expert Syst. Appl. 126, 321-339 (2019). https://doi.
org/10.1016/j.eswa.2019.02.023

https://doi.org/10.1109/TCYB.2017.2780274
https://doi.org/10.1109/TCYB.2017.2780274
https://doi.org/10.1109/MNET.2016.7389829
https://doi.org/10.1109/MNET.2016.7389829
https://doi.org/10.1109/ICAIBD51990.2021.9459022
https://doi.org/10.1080/00207543.2014.884290
https://doi.org/10.3390/math10060953
https://doi.org/10.1080/00207543.2022.2093680
https://doi.org/10.1007/978-3-031-30510-8_6
https://doi.org/10.1016/j.eswa.2019.02.023
https://doi.org/10.1016/j.eswa.2019.02.023

®

Check for
updates

Exploring the Integration of General
Variable Neighborhood Search with Exact
Procedures for the Optimization
of the Order Batching Problem

Sergio Gil-Borras'®) and Eduardo G. Pardo?

! Dept. Sistemas Informéticos, Universidad Politécnica de Madrid, Madrid, Spain
sergio.gil@upm.es
2 Dept. Computer Science, Universidad Rey Juan Carlos, Madrid, Spain
eduardo.pardo@urjc.es

Abstract. This paper studies the influence of combining exact algo-
rithms with heuristic procedures for the optimization of the Order Batch-
ing Problem. The problem looks to minimize the time that an operator
needs to pick all items from a set of orders within a warehouse, when all
orders are known before starting the picking process. It involves solving
different tasks, such as batching the orders in groups or routing the picker
through the warehouse. In this proposal a previous General Variable
Neighborhood Search proposal for the batching task has been integrated
with exact algorithms for the routing task. Several experiments have
been designed to test the performance of the constructed algorithms.

Keywords: Order Batching Problem - General Variable Neighborhood
Search - Exact algorithms

1 Introduction

The growth of e-Commerce and online sales has led companies to develop and
improve their supply chain management processes. The evolution of supply chain
models, which can be traced in the literature from the early 1980s to the present
day, has contributed to increased productivity in supply chain companies. In the
last decade, there has been a significant increase in the number of articles related
to supply chain management.

This article focuses on the activities that occur within logistics warehouses,
specifically the item picking process. Multiple factors can affect the picking pro-
cess [29]. Different metrics can be used to analyze the quality and productivity
of a service, such as balancing operator workload, meeting delivery deadlines,
saving energy, or reducing picker travel time. Particularly, we study the Order
Batching Problem, which consists of optimizing the picking process when the
picking policy is based on the concept of batching. This means that a group of
orders are packed together before the picking starts. Then, all items in the same

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 331-343, 2024.
https://doi.org/10.1007/978-3-031-62912-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_31&domain=pdf
https://doi.org/10.1007/978-3-031-62912-9_31

332 S. Gil-Borras and E. G. Pardo

batch are picked on a single route. Orders cannot be divided into more than one
batch, and batches cannot exceed a predefined maximum capacity, which may
be based on weight and/or volume restrictions. The picking strategy discussed
in this paper falls into the picker-to-part category. The influence of other factors,
such as storage policy, batch size, time window, or batch selection, is not studied
here.

This article addresses the Order Batching Problem with a single order picker
in a rectangular shape, one-block warehouse. To solve this variant of the Order
Batching Problem, it is necessary to solve two main tasks: The Batching Task
and the Routing Task. The batching task consists of pre-grouping the orders
into batches for the picker to pick. The routing task consists of defining a route
for the picker to collect the order items that make up each generated batch. The
objective is to minimize the time required to pick up all items from the orders
received. This objective function is also known as minimizing the picking time.

The warehouse studied here is a rectangular layout. It consists of a variable
number of parallel aisles, crossed by two perpendicular aisles, one front cross aisle
and one back cross aisle. Additionally, the warehouse has only one input/output
point, denoted as depot. In Fig.1, we show an example of the layout of the
studied warehouse.

Back cross aisle

Parallel Parallel Parallel Parallel Parallel
Aisle Aisle &P| Aisle Aisle Aisle
E 1":
Shelves Shelves Shelves Shelves

Front cross aisle Front cross aisle

' Depot ‘

Fig. 1. Warehouse layout.

In order to evaluate the performance of the combination of GVNS with exact
procedures, exact algorithms are applied to specific tasks parts of the problem.

Exploring the Integration of General Variable Neighborhood Search 333

Particularly, we compare the use of exact and heuristic algorithms to construct
the initial solution provided to the GVNS. Also, we evaluate the performance of
the GVNS when using exact and heuristic algorithms for the routing task. It is
important to note that the routing task is used to assess the objective function
of the solutions obtained within the search process performed by the GVNS,
thus highlighting the close relationship between them. Through the experiments
performed, we have observed that the use of exact algorithms for either con-
structing and routing, in combination with GVNS for batching, produces better
results than previous approaches in both cases.

The main contribution of this work is to determine the most effective combi-
nation of algorithms that work best with GVNS, when it is used as a batching
algorithm to solve the OBP problem. To achieve this task we evaluated both,
exact and heuristic algorithms, for solving other tasks within the OBP that are
different from the batching task. Our findings demonstrate that the use of exact
algorithms yields the best results for these tasks. To achieve our objective, we
conducted two experiments. The first experiment aims to determine the most
effective constructive algorithm to provide initial solutions to the GVNS for the
batching task. The second experiment aims to identify the most effective routing
algorithm to be combined with GNVS to evaluate the solutions provided.

The rest of the paper is organized as follows. In Sect. 2, we present the state
of the art of the order batching family of problems, and focus our attention on
the offline variant of the OBP with a single picker. Here, we also review the
most outstanding heuristic routing procedures in the literature. In Sect. 3, we
present the algorithms for dealing with the batching task of the problem consid-
ered. Section4 compiles the computational results obtained with the proposed
algorithms in some well-known data sets. Finally, our conclusions are presented
in Sect. 5.

2 State of the Art

OBP is a family of optimization problems related to the picking of goods from a
warehouse. It uses a picking policy based on the order batching strategy. Within
this family of problems, we review the literature on the classical Order Batching
Problem (OBP), the most well-known and simple variant of the family. Theoret-
ical studies of the OBP indicate that the problem is N'P-difficult. Following the
need to find solutions to the problem in a short time, heuristics and metaheuris-
tics have been applied to tackle the problem, although we can also find exact
solutions in the literature [25]. The First-Come-First-Served (FCFS) strategy
was one of the first heuristic strategies proposed and used in practice to assign
orders to batches in a warehouse. This strategy has been widely used for its
simplicity. The first approach to OBP was proposed in [7]. In this case, the rout-
ing task was handled by an automated storage and retrieval system (AS/RS),
while the batching task was handled by simple heuristics. Other widely used
heuristic methods in this problem are SEED methods [8] and Saving methods
[34]. A study in which the authors compare the efficiency of several of these

334 S. Gil-Borras and E. G. Pardo

first methods can be found in [3]. The first metaheuristic algorithm applied to
classical OBP was based on a Genetic Algorithm (GA) and was proposed in
[19]. Subsequently, in [1] a method based on the Variable Neighborhood Search
(VNS) methodology was presented; in [17] an Iterated Local Search (ILS) and in
[18] a Tabu Search (TS). In [27] the authors proposed a new ILS algorithm with
a Tabu Threshold (TT). Since 2017, an explosion of papers have been published
dealing with different variants of the problem, among which we highlight those
dealing with the classical OBP. In [21] a Multi-Start VNS is presented. In [26]
several heuristics and metaheuristics are compared, among which GA, TS, and
Simulated Annealing (SA) stand out. Hybrid metaheuristics have also been used
for the problem, among which the Hybrid Genetic Algorithm (HGA) in [36]; and
the Adaptive Large Neighborhood Search (ALNS) hybridized with TS in [37].

3 Algorithmic Proposal

This section presents the algorithmic proposal used for each task of the OBP
tackled in the article. In Sect. 3.1 we present a GVNS algorithm for the batching
task. In Sect. 3.2 several methods are introduced as an initial solution of the
GVNS algorithm. Finally, in Sect. 3.3, different routing methods are proposed.

3.1 Batching Algorithms

This section introduces the General Variable Neighborhood Search framework
[14,24] as the fundamental algorithm used in our experimental approach to
address the batching task within the Order Batching Problem. GVNS, an off-
shoot of the Variable Neighborhood Search (VNS) methodology, was introduced
by Mladenovic and Hansen [24]. It represents a versatile approach that aims to
solve complex optimization challenges. Central to its operation is the principle of
dynamically changing the neighborhood structure to navigate away from local
optima. The VNS paradigm encompasses a spectrum of variations that differ
in their use of stochastic or deterministic exploration techniques, or a combi-
nation of both. For an in-depth exploration of VNS and its variants, interested
readers are referred to seminal works such as [13,15,24]. Notable among the
alternative adaptations of the VNS methodology are the Variable Formulation
Search (VFS) [28], the Multi-objective Variable Neighborhood Search [4], and
the Parallel Variable Neighborhood Search [5,23], each of which offers a different
perspective on addressing optimization challenges.

In Algorithm 1 we present a schema of the GVNS method proposed in
this paper. The method receives three input parameters: i) an initial solution
(solution); ii) the largest neighborhood to be explored (kmax); and iii) the max-
imum time (fmax). The initial solution will be calculated using an external
method. One of the purposes of this work is to study the best algorithm to
generate this initial solution by comparing exact and heuristic methods, which
are described in Sect. 3.2.

Exploring the Integration of General Variable Neighborhood Search 335

Algorithm 1. General Variable Neighborhood Search

1: function GVNS(solution, kmax, tmax)
2: repeat
k1
while k£ < kpnax do
solution’ « Shake(solution, k)
solution’ « VND(solution')
k « NeighborhoodChange(solution, solution” k)
end while
9: until ¢ < ¢ty
10: return solution
11: end function

GVNS includes three different procedures to explore the current neighbor-
hood and determine whether there has been improvement. First, the method
Shake, performs a perturbation of the solution to escape from local optima. In
particular, the proposed shake procedure is based on random swaps of orders
between different batches. The method VND runs an improvement procedure
based on the exploration of several neighborhoods through one or more local
search procedures, the result of which is a local optimum with respect to all
the neighborhoods explored. This method is detailed in Algorithm 2. Third, the
procedure NeighborhoodChange, determines if there has been any improvement
in the solution.

Algorithm 2. Variable Neighborhood Descent
1: function VND(solution)

2: N1, N2, N3]

3: k—1

4: kmaz — 3

5: best < solution

6: repeat

T: solution’ + LocalSearch(best, N)
8: if eval(solution’) < eval(best) then
9: best «— solution’

10: k=1

11: else

12: k=Fk+1

13: end if

14: until £ > knas

15: return best

16: end function

The proposed VND procedure [6] includes three neighborhood structures
[V1, N2, N3]: a swap move that exchanges two orders belonging to different
batches (denoted as A7), a swap move that exchanges two orders belonging

336 S. Gil-Borras and E. G. Pardo

to one batch with one order belonging to a different batch (denoted as N53),
and finally a shift move that removes an order from a batch and inserts it into
another batch (denoted as N3).

3.2 Constructive Procedure

The constructive method provides an initial solution to the GVNS algorithm.
We have compared several algorithms as a constructive method. The algorithms
compared are two First Come First Served (FCFS) methods, a SEED aisle-based
algorithm, a classical Mixed-Integer Linear Programming (MILP) model where
the objective function is to minimize the number of batches of the solution, and
a combination of FCFS with a new GVNS (denoted as FCFS+GVNS) which
tries to minimize the number of batches of the solution. The solution provided
by FCFS+GVNS algorithm is then utilized as the initial solution for the main
GVNS studied in this paper.

The MILP algorithm is executed using Gurobi, a well-known mathematical
optimization solver. The MILP model used minimizes the number of batches in
the solution. The following model is described in detail below. The necessary
parameters and variables for the definition of the problem are introduced in
Table 1.

Table 1. Parameters and variables for the OBP.

Parameters

n — Number of customer orders available at the system

m — Upper bound of the number of batches (a straightforward value is m = n)

w; — Number of items of order o; for 1 <7 <n

W — Maximum number of articles that can be included in a batch (device capacity)
Variables

{1, if order o; is assigned to batch b,
T —

0, otherwise.

1, if batch b; contains some order o,
v — !
J 0, otherwise.

The objective function of the model is to minimize the number of batches of
the solution, and it is given by:

miny "y, (1)
j=1

Exploring the Integration of General Variable Neighborhood Search 337

The set of feasible solutions, in both cases, is given by the following con-
straints:

Constraints in (2) guarantee that each order is assigned only to one batch:

Y ap=1, Vie{l,...n} (2)
j=1

Constraints in (3) guarantee that the maximum capacity of each batch is not
exceeded:

n
> wir <W, Vie{l,...,m}. (3)
i=1
— Constraints in (4) guarantee that y; is activated if batch; contains some order
o:

Yj szﬁ, V]E{l,,m} (4)
i=1

Constraints in (5) state that the variables xj; are binary:

zj; € {0,1}, Vje{l,...,m}andVie {1,...,n}. (5)

Finally, the constraints in (6) state that the variables y; are binary:

Yj € {Oal}a v] € {1a~~'7m}' (6)

3.3 Routing Algorithms

The picking operation is a critical and resource-intensive process in warehouses.
Optimizing both batching and picking tasks together can reduce picking time,
up to 35% [2].

In this paper, we study rectangular warehouses which have been widely
studied in the literature. In particular, many algorithms have been developed
to design efficient routes in this type of warehouse. Several routing heuristics
have been introduced in the literature [12,30,31,33], among which the S-Shape,
Largest Gap, and Combined algorithms stand out as particularly significant and
widely used. Some exact methods have also been published. An exact method
based on dynamic programming [32] accurately generates the optimal path in
this context. In addition, a MILP model implemented in Cplex was presented
n [35]. Among the previous algorithms, we compare 3 routing algorithms. The
Combined heuristic, and two exact methods, one based on dynamic program-
ming [32], and the other on the MILP model implemented in Cplex [35].

338 S. Gil-Borras and E. G. Pardo

4 Experiments

This work presents two experiments that evaluate the use of exact and heuristic
algorithms in various OBP tasks. The first experiment focuses on batch genera-
tion and compares different constructive algorithms to provide an initial solution
to the GVNS metaheuristic. The second experiment compares various exact and
heuristic algorithms for route generation.

All heuristic methods compared in this section, including those of the state
of the art, were coded in Java 8 and run on an Intel (R) Core (TM) 2 Quad
CPU Q6600 2.4 Ghz computer, with 4 GB DDR2 RAM memory and Ubuntu
20.04.1 64 bit LTS operating system.

In Sect.4.1, we present the sets of instances used in both experiments. In
Sects. 4.2 and 4.3 we present the experiments conducted and analyze the results
obtained.

4.1 Instances

For this study, we have selected two datasets commonly used in the state of
the art to study different variants of order batching problems. These datasets
are available at https://grafo.etsii.urjc.es/optsicom/oobp/. Both datasets consist
of instances of rectangular single-block warehouses with two cross-aisles and a
single depot. The Dataset #1 includes 80 instances corresponding to four distinct
warehouses (labeled W1, W2, W3, and W4). This dataset was first introduced
in [1] and has since been utilized in various related works, such as [9-11,21-23].
The Dataset #2 consists of 64 instances that correspond to a single warehouse
(labeled W5). It was originally proposed in [16] and has also been used in several
related publications, including [11,20,21].

4.2 Experiment #1

The objective of this initial experiment is to evaluate the effect of the construc-
tive procedure on the performance of GVNS + S-Shape. The results presented in
this experiment are based on the final solution provided by the whole method,
including GVNS for the batching algorithm and S-Shape as the routing algo-
rithm, rather than just the initial solution generated by the constructive algo-
rithms. Specifically, in this experiment, we evaluate two constructive algorithms
that attempt to minimize the number of solution batches to provide a good ini-
tial solution. Two algorithms were tested: a MILP model run on Gurobi and a
new GVNS that works as a constructive algorithm. Additionally, we included in
the comparison several simple heuristics, such as First Come First Served, and
aisle-based SEED algorithms.

It is important to note that the goal of this experiment is to find the most
effective constructive algorithm to reduce picking time when combined with
GVNS in the batching task. However, it should be noted that when the con-
structive algorithm selected is executed in isolation, it may not achieve a good
picking time itself.

https://grafo.etsii.urjc.es/optsicom/oobp/.

Exploring the Integration of General Variable Neighborhood Search 339

Table 2 reports the results of Experiment #1. As it is possible to observe,
the exact MILP model achieved the best deviation, improving with the next
algorithm compared to SEED by 0.23%. Furthermore, the exact MILP model
achieved the best average time, improving on the next algorithm compared to
SEED by 92s. However, the SEED algorithm achieved a better number of best-
known values.

Table 2. Comparison based on the picking time of the influence of the constructive
procedures when combined with GVNS for batching task, and S-Shape for the routing
task.

FCFS | FCFS C.| SEED | F+GVNS MILP
AVG (s) 31,374 31,194 30,967 | 31,133 30,875
Dev. (%) 1.63% 1.31% 0.90% | 0.94% 0.67%
CPU time (s) 191 | 191 191 195 194
Best 24/144 | 17/144 | 50/144 24/144 | 42/144

4.3 Experiment #2

The objective of this group of experiments is to evaluate the effect of different
routing strategies and their influence on the performance of the GVNS used for
the batching.

In the first experiment, reported in Table3, we compare the influence of
three routing algorithms: an MILP model run in Cplex [35] (Valle), a Dynamic
Programming algorithm [32] (Ratliff), and a popular heuristic algorithm called
Combined (Combined), when using a simple heuristic such as FCFS for the
batching task.

Table 3. Comparison of several algorithms for the routing task when using a simple
heuristic as FCFS for batching task.

Valle Ratliff Combined
AVG (s) 31,247 31,247 |32,051
Dev. (%) |0.00% 0.00% 2.41%
CPU t. (s) | 118.462 |0.005 0.001
Best 144/144 1 144/144 1 0/144

In the next two experiments, we consider the previous algorithms: an MILP
model running in Cplex [35] (Valle), a Dynamic Programming algorithm [32]
(Ratliff), and a well-known heuristic algorithm called “Combined” (Combined),

340 S. Gil-Borras and E. G. Pardo

by comparing six routing algorithms. Particularly, we proposed some hybrid com-
binations among them, including two hybrid algorithms of a Dynamic Program-
ming with Combined denoted as “Combined+Ratliff” and “Combined>Ratliff”,
and two hybrid algorithms of an MILP with “Combined” denoted as “Com-
bined+Valle” and “Combined>Valle”. In these cases where the “+” symbol
appears, it means that the “Combined” algorithm is utilized in the local search
procedure, while the Neighborhoodchange procedure uses either Ratliff or Valle.
Additionally, when the “>” symbol is present, the “Combined” algorithm is used
to evaluate the solutions provided by the GVNS during the search process, while
Ratliff or Valle is used only to evaluate the best solution found by GVNS at the
end of the process, in search for a further improvement.

Table 3 reports first part of the results of Experiment #2, which used a
simple heuristic as the batching method. Here, we observe that Valle and Ratliff
obtained the best deviation and average time. In addition, they certify an exact
solution. The main difference here is the CPU time. The Combined algorithm
obtained the best time with 1 ms, after which we can find Ratliff with 5ms, and
finally Valle with almost 2 min. It is worth mentioning that having a short CPU
time is crucial when using the routing method within the GVNS metaheuristic,
since many evaluations are performed.

Table 4. A comparison study of several routing algorithms when using the FCFS as
constructive algorithm and GVNS metaheuristic for batching task without time limit.

Ratliff | Combined | Combined | Combined | Combined | Combined
+ > > +
Ratliff Ratliff Valle Valle
AVG (s) 28,170 | 28,234 28,312 28,312 28,709 31,198
Dev. (%) 10.31% |0.84% 1.08% 1.08% 2.06% 13.21%
CPU t. (s) | 430 123 124 461 124 461
7 Best 95/144 | 33/144 11/144 11/144 0/144 0/144

Tables4 and 5 present the second part of the results of Experiment #2. In
this case GVNS metaheuristic was used as the batching method. The difference
between the results reported in both tables is the time limit. Particularly, in
Table 4 there is not time limit for the batching task, while in Table 5 the execution
of the VND algorithm within the GVNS used for the batching task is truncated
after 120s.

In Table4, it can be observed that Ratliff achieved the best deviation by
improving the Combined+Ratliff algorithm in 0.53% and reducing the average
time in 64s. However, it should be noted that the Ratliff algorithm takes 307s
longer than the Combined+Ratliff algorithm in terms of CPU time. In these
results, the execution of the VND algorithm used in the batching method was
not truncated, then VND algorithm does not have a limit on the execution time.

Exploring the Integration of General Variable Neighborhood Search 341

Table 5. A comparison study of several routing algorithms when using the FCFS as
constructive algorithm and GVNS metaheuristic for batching task when limiting the
batching task to 120s.

Ratliff |Combined | Combined |Combined |Valle |Combined | Combined
+ > > +
Ratliff Ratliff Valle Valle

AVG (s) |31,131|31,132 31,141 31,145 31,185 |31,198 31,921
Dev. (%) |0.31% |0.30% |0.32% 0.32% 0.45% |0.51% 2.63%
CPU t. (s)|120 120 120 333 350 461 120

Best |57/144 68/144 |36/144 |48/144 |34/144/30/144 |0/144

In Table 5, it can be seen that Ratliff improves the average time of the “Com-
bined+Ratliff” algorithm in only 1s. However, the “Combined+Ratliff” algo-
rithm achieves better deviation scores in 0.01%, and the number of best scores
is improved by 11 best scores compared to the “Ratliff” algorithm. For these
values, the “Ratliff” and “Combined+Ratliff” algorithms produce very similar
results with no significant differences. In these results, the execution of the VND
algorithm used in the batching method was truncated after 120s.

5 Conclusions

This paper studies the combination of a GVNS with several exact algorithms to
solve the Order Batching Problem. As a first conclusion, we observed that the
combination of exact algorithms for tasks such as construction of the initial solu-
tion or routing, with heuristic algorithms for the batching task, can substantially
improve current state-of-the-art results.

Particularly, we propose to use a GVNS method in the state of the art for
the batching task, together with two exact procedures. The first exact procedure
is to construct the solution provided to the GVNS as a starting point. In this
case, the use of a MILP model, which tries to minimize the number of batches
of the solutions, performed the best. As far as the second exact procedure is
concerned, it is devoted to the routing task. In this case, the best combination
includes the use of an exact algorithm based on dynamic programming.

Future research lines can be derived from this work. The proposed config-
uration of exact and heuristic procedures can be applied to other proposals,
substituting the GVNS used for the batching task. Furthermore, the next step
in this investigation is to compare our proposed GVNS configuration with the
current state-of-the-art algorithms for the problem.

Acknowledgments. This research has been partially supported by grants PID2021-
1257090A-C22 and RED2022-134480-T, funded by MCIN/AEI/10.13039/
501100011033 and by “ERDF A way of making Europe”; grant CIAICO/2021/224
funded by Generalitat Valenciana; grant M2988 funded by “Proyectos Impulso de
la Universidad Rey Juan Carlos 2022”; and “Céatedra de Innovacién y Digitalizacion
Empresarial entre Universidad Rey Juan Carlos y Second Episode” (Ref. ID MCAQ6).

342 S. Gil-Borras and E. G. Pardo
References
1. Albareda-Sambola, M., Alonso-Ayuso, A., Molina, E., De Blas, C.S.: Variable

10.

11.

12.

13.

14.

15.

16.

17.

neighborhood search for order batching in a warehouse. Asia-Pac. J. Oper. Res.
26(5), 655-683 (2009)

De Koster, R.B.M., Roodbergen, K.J., Van Voorden, R.: Reduction of walking time
in the distribution center of De Bijenkorf. In: Speranza, M.G., Stéhly, P. (eds.) New
Trends in Distribution Logistics. LNE, vol. 480, pp. 215-234. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-642-58568-5_11

De Koster, R.B.M., Van Der Poort, E.S., Wolters, M.: Efficient order batching
methods in warehouses. Int. J. Prod. Res. 37(7), 1479-1504 (1999)

Duarte, A., Pantrigo, J.J., Pardo, E.G., Mladenovié, N.: Multi-objective variable
neighborhood search: an application to combinatorial optimization problems. J.
Glob. Optim. 63(3), 515-536 (2015)

Duarte, A., Pantrigo, J.J., Pardo, E.G., Sdnchez-Oro, J.: Parallel variable neigh-
bourhood search strategies for the cutwidth minimization problem. IMA J. Manag.
Math. 27(1), 55-73 (2013)

. Duarte, A., Mladenovic, N., Sdnchez-Oro, J., Todosijevi¢, R.: Variable neighbor-

hood descent (2018)

FElsayed, E.A.: Algorithms for optimal material handling in automatic warehousing
systems. Int. J. Prod. Res. 19(5), 525-535 (1981)

Gibson, D.R., Sharp, G.P.: Order batching procedures. Eur. J. Oper. Res. 58(1),
57-67 (1992)

Gil-Borrés, S., Pardo, E.G., Alonso-Ayuso, A., Duarte, A.: New VNS variants for
the online order batching problem. In: Sifaleras, A., Salhi, S., Brimberg, J. (eds.)
ICVNS 2018. LNCS, vol. 11328, pp. 89-100. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-15843-9_8

Gil-Borrés, S., Pardo, E.G., Alonso-Ayuso, A., Duarte, A.: Basic VNS for a variant
of the online order batching problem. In: Benmansour, R., Sifaleras, A., Mladen-
ovié, N. (eds.) ICVNS 2019. LNCS, vol. 12010, pp. 17-36. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-44932-2_2

Gil-Borrés, S., Pardo, E.G., Alonso-Ayuso, A., Duarte, A.: GRASP with variable
neighborhood descent for the online order batching problem. J. Glob. Optim. 78(2),
295-325 (2020)

Hall, R.W.: Distance approximations for routing manual pickers in a warehouse.
IIE Trans. 25(4), 76-87 (1993)

Hansen, P., Mladenovié, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130(3), 449-467 (2001)

Hansen, P., Mladenovié¢, N., Brimberg, J., Pérez, J.A.M.: Variable neighbor-
hood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics.
ISORMS, vol. 272, pp. 57-97. Springer, Cham (2019). https://doi.org/10.1007/
978-3-319-91086-4_3

Hansen, P., Mladenovié, N., Moreno-Pérez, J.A.: Variable neighbourhood search:
methods and applications. Ann. Oper. Res. 175(1), 367-407 (2010)

Henn, S.: Algorithms for on-line order batching in an order picking warehouse.
Comput. Oper. Res. 39(11), 2549-2563 (2012)

Henn, S., Koch, S., Doerner, K.F., Strauss, C., Wiascher, G.: Metaheuristics for the
order batching problem in manual order picking systems. Bus. Res. 3(1), 82-105
(2010)

https://doi.org/10.1007/978-3-642-58568-5_11
https://doi.org/10.1007/978-3-030-15843-9_8
https://doi.org/10.1007/978-3-030-15843-9_8
https://doi.org/10.1007/978-3-030-44932-2_2
https://doi.org/10.1007/978-3-319-91086-4_3
https://doi.org/10.1007/978-3-319-91086-4_3

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Exploring the Integration of General Variable Neighborhood Search 343

Henn, S., Wascher, G.: Tabu search heuristics for the order batching problem in
manual order picking systems. Eur. J. Oper. Res. 222(3), 484-494 (2012)

Hsu, C.M., Chen, K.Y., Chen, M.C.: Batching orders in warehouses by minimizing
travel distance with genetic algorithms. Comput. Ind. 56(2), 169-178 (2005)
Menéndez, B., Bustillo, M., Pardo, E.G., Duarte, A.: General variable neighbor-
hood search for the order batching and sequencing problem. Eur. J. Oper. Res.
263(1), 82-93 (2017)

Menéndez, B., Pardo, E.G., Alonso-Ayuso, A., Molina, E., Duarte, A.: Variable
neighborhood search strategies for the order batching problem. Comput. Oper.
Res. 78, 500-512 (2017)

Menéndez, B., Pardo, E.G., Duarte, A., Alonso-Ayuso, A., Molina, E.: General
variable neighborhood search applied to the picking process in a warehouse. Elec-
tron. Notes Discrete Math. 47, 77-84 (2015)

Menéndez, B., Pardo, E.G., Sdnchez-Oro, J., Duarte, A.: Parallel variable neigh-
borhood search for the min-max order batching problem. Int. Trans. Oper. Res.
24(3), 635-662 (2017)

Mladenovié, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097-1100 (1997)

Muter, I., Oncan, T.: An exact solution approach for the order batching problem.
IIE Trans. 47(7), 728-738 (2015)

Nicolas, L., Yannick, F., Ramzi, H.: Order batching in an automated warehouse
with several vertical lift modules: optimization and experiments with real data.
Eur. J. Oper. Res. 267(3), 958-976 (2018)

Oncan, T.: MILP formulations and an iterated local search algorithm with tabu
thresholding for the order batching problem. Eur. J. Oper. Res. 243(1), 142-155
2015

%ardo), E.G., Mladenovié, N., Pantrigo, J.J., Duarte, A.: Variable formulation
search for the cutwidth minimization problem. Appl. Soft Comput. 13(5), 2242—
2252 (2013)

Pardo, E.G., Gil-Borrés, S., Alonso-Ayuso, A., Duarte, A.: Order batching prob-
lems: taxonomy and literature review. Eur. J. Oper. Res. 313(1), 1-24 (2023).
https://doi.org/10.1016/j.ejor.2023.02.019

Petersen, C.G.: Routeing and storage policy interaction in order picking operations.
Decis. Sci. Inst. Proc. 31(3), 1614-1616 (1995)

Petersen, C.G.: An evaluation of order picking routeing policies. Int. J. Oper. Prod.
Manag. 17(11), 1098-1111 (1997)

Ratliff, H.D., Rosenthal, A.S.: Order-picking in a rectangular warehouse: a solvable
case of the traveling salesman problem. Oper. Res. 31(3), 507-521 (1983)
Roodbergen, K.J., Petersen, C.G.: How to improve order picking efficiency with
routing and storage policies. In: Progress in Material Handling Practice, vol. 1, pp.
107-124 (1999)

Rosenwein, M.B.: A comparison of heuristics for the problem of batching orders
for warehouse selection. Int. J. Prod. Res. 34(3), 657-664 (1996)

Valle, C.A., Beasley, J.E., Da Cunha, A.S.: Optimally solving the joint order batch-
ing and picker routing problem. Eur. J. Oper. Res. 262(3), 817-834 (2017)

Yang, J., Zhou, L., Liu, H.: Hybrid genetic algorithm-based optimisation of the
batch order picking in a dense mobile rack warehouse. PLoS ONE 16(4), 0249543
2021

(Zulj, I)., Kramer, S., Schneider, M.: A hybrid of adaptive large neighborhood search
and tabu search for the order-batching problem. Eur. J. Oper. Res. 264(2), 653-664
(2018)

https://doi.org/10.1016/j.ejor.2023.02.019

)

Check for
updates

VNS-Based Matheuristic Approach
to Group Steiner Tree
with Problem-Specific Node Release
Strategy

Tatjana Davidovi¢!®) @ and Slobodan Jeli¢?

! Mathematical Institute of the Serbian Academy of Sciences and Arts,
Kneza Mihaila 36, 11000 Belgrade, Serbia
tanjad@mi.sanu.ac.rs
2 Faculty of Civil Engineering, University of Belgrade, Bulevar kralja Aleksandra 73,
11000 Belgrade, Serbia

sjelic@grf.bg.ac.rs

Abstract. For a given undirected graph G = (V, E) with a non-negative
weight function w : E — R4 and subsets G1,...,Gk of V| the Group
Steiner Tree (GST) problem consists of constructing a tree T' = (Vr, ET)
with minimal cost, where Vo C V, Er C E, and T spans at least one
node from each of the groups. We develop a VNS-based metaheuristics
approach for solving the GST problem. Our main contribution is that
we propose a new problem-specific node release strategy that mimics
the steps of a VNS-based heuristic. Instead of exploring different neigh-
borhoods by combinatorially enumerating neighboring solutions, as in
classical local search, we use a provably good Integer Linear Program-
ming (ILP) formulation to solve a sequence of subproblems of the original
problem. Our approach leads to an improvement over the state-of-the-
art Gurobi solver both in terms of quality and runtime of the instances
available in the literature.

Keywords: integer programming formulation - subtour elimination -
metaheuristic methods - hybrid heuristic - decomposition strategy

1 Introduction

The Group Steiner Tree (GST) is a well-known NP-hard combinatorial optimiza-
tion problem that was introduced in [26] and is studied in both theoretical and
applied computing societies. Given an undirected graph G = (V, E), |V| = n,

This research was partially supported by Serbian Ministry of Science, Technological
Development, and Innovations, Contract No. 451-03-66/2024-03/200029. The funds
were also provided by the Science Fund of the Republic of Serbia, Green program of
cooperation between science and industry, project: EO and in-situ based information
framework to support generating Carbon Credits in forestry.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 344-358, 2024.
https://doi.org/10.1007/978-3-031-62912-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_32&domain=pdf
http://orcid.org/0000-0001-9561-5339
http://orcid.org/0000-0002-2134-3112
https://doi.org/10.1007/978-3-031-62912-9_32

VNS-Based Matheuristic for GST 345

|E| = m, with edge-weight function w : E — R, and a family of subsets of V,
G ={Gy,...,Gi}, k € N, G; # (), which are called groups, the problem is to
find such a tree T'= (Vr, Er) that Vr N G; # 0 for each i = 1,2,...,k and

is minimized.

The first application of GST comes from the problem of routing in VLSI
design [26,30]. Interesting applications also arose in the team formation problem
in social networks [20], where the goal is to find a cohesive subnetwork of experts
who collectively have all the necessary skills to complete a predefined project
represented as a set of skills. Motivated by the team formation problem, GST
can also be applied to other problems in the social sciences, e.g., the government
formation problem [16]. The database and data mining communities are also
interested in GST as there are interesting applications for keyword search in
relational databases [4,5].

Due to its NP-hardness, GST is also very popular in the society of approx-
imation algorithms and heuristics. In the seminal paper by Garg et al. [9] a
polylogarithmic approximation ratio algorithm with randomized rounding tech-
nique is presented. Duin et al. [7] presented heuristic algorithms based on the
reduction of GST to the Steiner tree problem on graphs. Ant colony and genetic
algorithms for heuristic solutions are also studied [25]. The latest result involv-
ing the general VNS algorithm for the GST problem is proposed by Matijevié
et al. in [22]. There are also experimental studies on exact and approximation
algorithms for the node-weighted and edge-weighted group Steiner tree problem
[28]. However, this problem variant is out of the scope of this paper.

The transformation from GST to Steiner tree described in [7] can be used to
obtain a Steiner tree instance that is solvable with the exact solver [19]. Unfor-
tunately, this transformation uses a big-M strategy that introduces a terminal
connected by expensive edges to all nodes in a given group. The LP relax-
ation proposed in [19] for such Steiner tree instances has a large integrality gap,
implying a large gap between lower and upper bounds during the branch-and-cut
process. We are motivated to give stronger formulations that are extended by
additional isolated node inequalities and work well in practice. In this paper, we
use the subtour elimination formulation as it has stronger relaxation than the
natural cuts-based formulation [24]. It is not a rooted formulation, but has an
exponential number of constraints. Therefore, to improve its efficiency, we use
a simple constraint generation procedure that successively creates only violated
constraints.

In this paper, we focus on a matheuristic algorithm with a node release strat-
egy that mimics the VNS concept of searching over different neighborhood struc-
tures. One of the most important aspects of our approach is the Integer Linear
Programming (ILP) formulation for GST. Starting from a polyhedral approach,
different ILP formulations for GST have been investigated in several papers
[8,10,24]. In [24] an overview of all GST formulations is given together with

346 T. Davidovié¢ and S. Jelié¢

the comparisons of the strength of their relaxations. We compare our solutions
on three types of randomly generated GST instances available in the literature
[7,22], with solutions obtained by Gurobi [11] when solving subtour elimina-
tion formulations with and without a given initial feasible solution. One of the
most specific parts of our algorithm is the problem-specific node release strat-
egy, which follows the VNS-based rules to define the number and order of node
release with respect to the current solution.

Having in mind that all the methods considered in this paper are based on an
ILP formulation of the GST problem, we present the subtour elimination formu-
lation with a brief literature review. We propose a matheuristic algorithm, named
SUBTYVNS, that uses the subtour elimination formulation with a distance-based
node release strategy. Our method is compared with the branch-an-cut algorithm
applied to the subtour elimination formulation. Specifically, we consider the vari-
ant with and without initial solution. The first variant, called SUBTINIT, uses
an initial feasible solution found with the algorithm by Ihler in [15]. The second
variant, called SUBT, does not use an initial feasible solution, i.e., it is not given
any potential help in the initialization phase.

Contributions. The main contributions of this work can be summarized as
follows:

— a matheuristic algorithm for GST with problem-specific node release strategy
(SUBTVNS) is developed;

— the number of instances solved to optimality with SUBTVNS is improved
compared to SUBTINIT and SUBT;

— the quality of the feasible solution provided by SUBTVNS is improved com-
pared to the solution found by the other two methods under the same settings;

— SUBTVNS required significantly less runtime for instances solved to opti-
mality with both SUBTVNS and SUBTINIT.

All three methods use the branch-and-cut procedure implemented in Gurobi
[11] and the subtour elimination formulation [10,24]. Therefore, SUBT refers to
the Gurobi solver running branch-and-cut procedure with default parameters,
while SUBINIT additionally uses an initial feasible solution computed with the
procedure from [15]. On the other hand, SUBTVNS uses VNS-based rules to
generate subproblems of the original problem, which are solved by Gurobi within
a given time limit.

Notation. Here we provide a brief overview of notations used in the paper.
For n € N, [n] = {1,2,...,n}. Let G = (V,E), H C V, then E(H) = {e =
{s,t} e E:se€ Hte H}. ForveV,dowv) ={ueV:{uv} € E} and
Aw) = {e € E : e = {v,u},u € V} denote the node-based and edge-based
neighborhoods of v in the graph G, respectively. For the tree T = (Vr, Er) in
the graph G, v € T means v € Vp. If w : E — R, is a non-negative weight
function given as part of the GST instance and T = (Vp, Er) is a tree with
Vr CV, Er CE, then ¢(T) =} _ .. w(e).

Paper Organization. Our paper is structured as follows. In Sect. 2 we describe
matheuristic algorithms in general, especially the ones related to the VNS meta-

VNS-Based Matheuristic for GST 347

heuristic, together with a relevant literature overview. The explored mathemat-
ical model in the form of the integer programming formulation is described
in Sect.3. In Sect.4, the main part of the paper, the proposed matheuristic
(SUBTVNS) with problem-specific node release strategy is presented. Section 5
describes the experimental environment, the instances, and the results of the
experiments performed with the considered methods. Summary of the presented
results and the possible directions of future work are provided in Sect. 6.

2 Matheuristics

Matheuristics [29] are optimization methods obtained by hybridizing exact
solvers with metaheuristics. The main idea is to use metaheuristic rules for
creating subproblems to be treated by the exact solvers. The popularity of
matheuristics constantly grows during the last decade [2,3]. In the majority of
the cases, matheuristics are general-purpose optimization algorithms, i.e., they
do not explore a priori knowledge about the considered problem. That enables
their application to the wide spectrum of problems.

The decomposition of the original problem into subproblems can be done
by fixing values of some (binary) variables using metaheuristic rules [17,21].
Then, exact solver is invoked to determine values of the remaining variables.
More precisely, the definition of subproblems refers to the exploration of variable
states. Each (binary) variable can be in one of the two possible states: fixed or
released. The fixed state means that the exact solver is not allowed to change
the value of this variable during the optimization process. Therefore, the main
goal is that the solver finds the best value of the variables in released state.

An alternative way to create subproblems controls the number of variables
allowed to change the value [14]. Namely, it is not important which variables
would change values, it is just specified how many of them could be modified.
There are also some other approaches as can be seen from [2,3]. However, it
is important to note that sometimes, matheuristics can be considered as exact
algorithms, i.e., given enough resources (unlimited memory and running time)
they can provide optimal solution.

Usually, the exact solvers work on mathematical programming formulation
of the considered problem. More precisely they explore Mixed Integer Linear
Programming, (MILP) formulations. The logical question that arises is how the
mathematical model influences the performance of the resulting matheuristic
method and it is investigated in [1]. However, there are also matheuristic that
operate solely on the combinatorial formulations, for example, the Fixed Set
Search method applied in [18].

We are particularly interested in the neighborhood based metaheuristics com-
bined with mathematical programming optimization techniques to design effec-
tive matheuristics. We review three state-of-the-art matheuristics based on Vari-
able Neighborhood Search (VNS) [12,13,23]: Variable Neighborhood Branching
(VNB) [14], Variable Neighborhood Decomposition Search for 0-1 MIP prob-
lems (VNDS-MIP) [21], and Variable Intensity Neighborhood Search (VINS)

348 T. Davidovié¢ and S. Jelié¢

[17]. These matheuristics rely on Mixed Integer Linear Programming, (MILP)
formulation and operate exclusively on binary variables. This fact should not
be considered as a major drawback as the reformulation of a model containing
integer variables into a model with binary variables only is straightforward.
When employing the binary variables, the Hamming distance can be used to
measure the diversity of the solutions and to introduce neighborhood structures.

For two solutions © = (z1,...,2,) and o’ = (4, ...,2]), Hamming distance is
defined as
dH(LU,(E/)ZZ‘l'Z‘—IEQ |7 (1)
ieB

where B denotes the subset of binary variables. Now, the neighborhood struc-
tures can be defined as:

Ni(z) ={2" € X | dy(x,2") < k}. (2)

More precisely, neighborhood N, () contains all the solutions that have at most
k different values for binary variables. It is worth noting that A (z) C Nyy1(z),
which means that if neighborhood Ny11(z) is completely explored, there is no
need to search in neighborhood N (z).

Local search in the space of binary variables applied in the VNB method
[14] is realized by invoking exact solver on a subproblem obtained by adding
the set of neighborhood-defining constraints to the original model. At the same
time, the constraints are imposed to the objective function value such that only
solutions improving it become feasible.

The other two methods, VNDS-MIP [21] and VINS [17], use the more gen-
eral distance function defined between a feasible solution x and the solution of
the linear relaxation y. The difference between each pair of corresponding vari-
ables can take any value from the interval [0, 1]. The variables are sorted in the
non-decreasing order according this distance and various criteria are used to
fix/release a subset of them. Although the reviewed matheuristic are general-
purpose methods, they were inspiration for the development of the proposed
SUBTVNS method, a matheuristic with problem-specific node release strategy
that we describe in more detail in Sect. 4.

3 Integer Programming Formulations

There are three integer programming formulations for the GST problem that
have been studied in the literature [24]. The cut-based formulation is a natural
ILP formulation based on the idea of covering all cuts separating a group from
a given root to satisfy connectivity requirements. As a solution of the relaxation
of the natural cut-based formulation is the weakest lower bound of the optimal
solution [24], it is reasonable to use the other two formulations. The flow-based
formulation is a compact version of the cut-based formulation, where at least
one unit of flow must be sent from each group to the root. Although the flow-
based formulation has polynomial number of constraints, it is impractical to

VNS-Based Matheuristic for GST 349

solve instances with a large number of groups with any modern ILP solver.
On the other hand, both the cut-based and flow-based formulations are root
formulations, which means that we need to solve one instance of the problem
for each possible choice of designated root. Therefore, we consider the subtour
elimination formulation because it is not a root formulation, it has a better lower
bound for the optimal solution compared to the cut-based formulation, and does
not require a list of explicitly created constraints. This formulation requires a
constraint generation procedure that creates violating constraints and iteratively
adds them to the constraint pool. The idea is to eliminate subtours by removing
cycle edges, which ensures that the generated subgraph is a tree.

In addition to the edge variables z. € {0,1}, e € E that decide which edges
are included in the solution, we introduce vertex variables y, € {0,1}, v € V.
If it is decided that the vertex v € V is included in the solution, y, is set to
1, otherwise to 0. We start with the subtour elimination formulation that is
presented in [24].

ecE
Sy =1, ielk] (3)
veG;
erzzyv_L (4)
ecE veV
S e <D Yoy WCVGCWVieklueW (5
eeE(W) veEW
Z mGSZyU—l, WCV:G; CW, for some i € [k], (6)
ecE(W) veEW
Te,yo €{0,1} e€ E,veV. (7)

Constraints (3) ensure that each group is covered by at least one node in
the solution tree. The solution tree is characterized as an acyclic graph whose
number of edges is equal to the number of nodes minus one. The constraints (4)
and (5) require that the number of edges is (at most) one less than the number of
nodes for each subset that is selected as part of the solution. The constraints (6)
are stronger versions of the constraints (5) for all cases where W C V contains a
group Gj, @ € [k]. In these cases, we know from the constraints (3) that at least
one of the nodes in W must be part of the solution. The constraints (4), (5)
and (6) are also called subtour elimination constraints, because they prevent the
existence of cycles in any subgraph of the solution graph [10,27]. We consider
some additional cut inequalities that could strengthen the relaxation of this ILP
obtained by omitting the integrality in constraints (7).

To improve the quality of the lower bounds in the branch-and-cut process,
we add a set of cutting planes given by inequalities which remove isolated nodes
during the branch-and-cut process. The formulation from [10,24,27] starts with
the empty pool of constraints (5) and (6). During the branching process, some

350 T. Davidovié¢ and S. Jelié¢

of the solutions that violate (5) and (6) may contain nodes that are not incident
to any of the currently selected edges. To strengthen the formulation, we add
the following inequality constraints:

Z Te 2 Yy, UVE V. (8)
e€A(v)

This formulation is used in all the methods presented in this paper within the
Gurobi framework.

4 The Proposed Matheuristic Algorithm SUBTVNS

The main idea of our algorithm is to mimic VNS-based metaheuristic methods,
where the enumerative traversal over a given neighborhood is replaced by an
ILP solver (using a specific ILP formulation of the problem) that finds the best
possible solution in a given time. The size of the neighborhood is controlled by
the release factor p, which determines the percentage of the total number of nodes
whose model variables are released, i.e., these nodes can be added to or removed
from the solution. A pseudocode of the algorithm is shown in Algorithm 1. The
input arguments are as follows:

— G - input graph,

— G - a family of groups,

— « - step size of the release factor, typically a = 0.1,

— tmaz - global time limit for the solver,

— ts - time limit for the subproblem (typically t5 = tynq./10).

The total execution time is measured and saved as the value of the variable ¢.
It is used to check the stopping criterion for SUBTVNS. The variable start is
initialized by calling TIME() in the line 4. To measure the total elapsed time at
any execution point, the value of end is updated at that point and the difference
end — start is calculated. In the line 5, the subroutine ALLPAIRSSHORTHEST-
PATHS is called to calculate the distance matrix D using Dijkstra’s algorithm.
The matrix D contains the length of the shortest paths between the individual
node pairs. As the distance matrix D is used in the two subroutines IHLER and
NODEPRIORITY, it is calculated once in the preprocessing phase. In addition to
the entries of the matrix D, the value J, a diameter of the graph G that is cal-
culated as the maximum of the distances between any two nodes in G, is also
computed in the preprocessing phase.

The initialization of SUBTVNS algorithm is performed in lines 7 to 12.
First, the initial feasible solution is computed using the subroutine IHLER that
implements the algorithm proposed in [15]. The best found solution Sp is ini-
tialized with the initial feasible solution S¢, the node priorities with respect to
Sc are calculated and nodes are sorted in ascending order by priorities p, and
the release factor p is set to 0, because all node variables y,, v € V, are set to
1/0, depending on whether v is spanned by the initial solution or not. In line 12,
the Gurobi model is initialized based on the solution found in step 7.

VNS-Based Matheuristic for GST

351

Algorithm 1. SUBTVNS matheuristic

1

2:

: pr

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

ocedure SUBTVNS(G, G, ts, tmaz, @)
thest < 0
solved < False
start «— TIME()
D «— ALLPAIRSSHORTHESTPATHS(G, w)
0 «— maxy,v D[u, v]
Sc < IHLER(G, G, D)
Sp «— Sc
p < NODEPRIORITIES(G, G, D, Sg,)
sort nodes in ascending order by priorities p
p<—0
initialize model based on S¢
end «— TIME()
t «— end — start

tbest —t
while (¢ < tmaz) A (—solved) do
if p <1 then
p—pta
ts — min(tmaz — ¢, ts)
else

ts < tmaz — ¢
release last p - n variables in the model
optimize model to find S¢ with time limit ¢4
end «— TIME()
t «— end — start
if S¢ is optimal to current subproblem and p = 1 then
S «— Sc
solved — True
thest <t
else
if ¢(Sc) < ¢(SB) then
Sp +— Sc
thest <
p < NODEPRIORITIES(G, G, D, Sg)
add constraint ¢(S) < ¢(SB)
p—0
sort nodes in ascending order by priorities p
end — TIME()
t <+ end — start
return Sp, tpest

The algorithm for calculating the initial solution [15] is not presented as
a separate subroutine as it would go beyond the scope of this paper. It is a
greedy algorithm that iteratively expands the solution tree until all groups are
covered. Although this greedy approach leads to a solution whose cost is at most
k times optimal, it is easy to implement and produces high-quality solutions in

352 T. Davidovié¢ and S. Jelié¢

most cases. From line 16 to 39 we improve the current solution S¢ while total
execution time is not exceeded and the optimal solution is not found. If the
release factor p is less than 1, it is increased by « and the time limit for the
subproblem is updated. Otherwise, the solver uses the time limit 5, which is set
to the remaining time to solve the original problem. After updating p and ¢, the
last p - n variables in the model are released and S¢ is recalculated by running
the solver with the time limit ¢5. The current solution is optimal if, after the
optimization of a current subproblem (line 23), the status of the Gurobi solver
is OPTIMAL and the release factor is equal to 1. Otherwise, if the current solution
Sc is better (i.e. with lower cost) than Spg, it becomes the newly found best
solution and the node priorities must be recalculated. In addition, the release
factor p is reset to the initial value 0 and the nodes are sorted in ascending order
with respect to the priorities pg(v), v € V. The while loop is terminated when
the total time ¢ has exceeded t,,,, or the optimal solution has been found. In
the former case, the algorithm returns the best feasible solution found.

4.1 Node Priorities

Here we explain the calculation of node priorities, used to determine the order
of node release in Algorithm 1. By incrementally release nodes, the SUBTVNS
algorithm searches in different neighborhoods of the current solution. The pro-
posed strategy to determine the priority of a node in the list, takes into account
two properties of that node with respect to the current solution: proximity and
coverage. We believe that a node should be a part of the improved solution
if it is close to the current solution and covers as many groups as possible. We
introduce the proximity of node v to the current solution S as follows:
d(v,S)
prox(v, S) = dam (@)’ (9)

where d(v, S) is the length of the shortest path from v to the current solution S
(i.e., length of the shortest path from v to the closest node in), and diam(G)
is a diameter of the graph G. Diameter of G is used as a normalizing term.

The value for coverage of node v with respect to solution S, denoted by
cov(v,S) depends on the fact whether v is in S or not. If v € S, then the
coverage is the number of groups exclusively covered by this node (i.e., it does
not count the groups covered by other nodes in the solution S) divided by the
total number of groups k. Otherwise, if v € S, then the coverage is calculated as
the total number of groups covered by v divided by k. Finally, the priority of v
with respect to S is calculated as follows:

ps(v) = prox(v, S) — cov(v, S). (10)

From the Eq. (10) it follows that ps(v) can take values from the interval [—1, 1].
The node v has a higher priority if it is closed to S and covers a large num-
ber of groups. The procedure to calculate priority vector pg is summarized in
Algorithm 2.

VNS-Based Matheuristic for GST 353

Algorithm 2. Node priorities calculation

1: procedure NODEPRIORITIES(G, G, D, S,)
2: for v € V do

3: d(v, S) « minyes D[v, u]

4: prox(v, S) « L%’&

5: if v € S then

6: cov(v, S) «— ‘{QEQZUEQAE“ES’“E"H
T else

8: cov(v, S) «— 7‘{96%;”69}‘

9: ps(v) « prox(v, S) — cov(v, S)

10: return pg

5 Experiments

5.1 Implementation

All methods are implemented with the programming language C++ and Gurobi
v9.5.0 C++ APIL. The experiments are carried out on a workstation with an Intel
Xeon E7-4850 v3 processor at a standard frequency of 2.2 GHz, 8 GB RAM and
the operating system Ubuntu 16.04.4 LTS.

The formulation used has an exponential number of constraints, and it is
impractical to generate the entire pool of constraints in advance. Instead, we
have implemented a constraint generation procedure to find the set W that
violates one of the constraints in (5) and (6). This procedure is implemented
using breath-first search traversal to find a cycle with minimum length. At each
node of the branch-and-cut procedure, the values of the variables z., e € E and
Yy, v € V induce a subgraph H of G. An inequality in (5) or (6) is violated if and
only if there is a W C V(H) such that E(W) contains a cycle in H. From this
characterization it follows that it is sufficient to find a cycle of minimal length
and construct a violated inequality in (5) and (6) by using the set of nodes and
edges in this cycle. If there are no cycles, then there are no violated inequalities.
The procedure for calculating the minimum length cycle at the branch-and-cut
node can be efficiently implemented by inheriting the C++ Gurobi API class
GRBCallback. We have implemented this procedure in such a way that violating
inequalities are included in the pool of lazy constraints.

5.2 Instances

The procedure for generating instances is described in [22] and is presented in the
study [7]. Compared to [22], we considered a larger set of instances by extending
the range of the number of nodes (n). We generated instances with 100, 200,
300, 400, 500, 600, 700, 800, 900, 1000 and 2000 nodes, where the parameters m
and k were determined using the same procedure as in [22]. We generated a total
of 990 instances with three types of distances between nodes. In all experiments,
tmaz 1S set to 600 s, t; =60 s, and o = 0.1.

354 T. Davidovié¢ and S. Jelié¢

5.3 Results

In Table 1 we have indicated the number of instances in which an optimal solu-
tion was found in the column four, the number of instances in which a feasible
solution was found (whose optimality is not proven) in the column 5, and the
number of instances in which the method found no feasible solutions at all (in
the last column). SUBTVNS found the largest number of optimal solutions for
all instance types compared to SUBTINIT and SUBT. Approximately 90% out
of 330 instances for each instance type were solved optimally. SUBT had poor
performance because it needed to spend a considerable amount of time finding
the initial feasible solution that was not given. In some cases, SUBT was not
even able to find the first feasible solution.

Table 1. Method - three methods considered: SUBTVNS - our matheuristic method,
SUBTINIT - branch-and-cut algorithm applied to the subtour formulation with a given
initial solution, SUBT - branch-and-cut algorithm applied to the subtour formulation
without an initial solution, Instance type - one of three instance groups based on the
type of distance between nodes, Total - number of instances in a group, # Optimal
- number of instances where an optimal solution was found, # Feasible - number of
instances where a feasible solution was found, # Feasible not found - number of
instances where no feasible solution was found.

Method Instance type | Total | # Optimal # Feasible # Feasible not
Found
SUBTVNS | EUCLID 330 294 36 0
(89.09%) (10.91%) (0.00%)
GRID 330 | 296 34 0
(89.70%) (10.30%) (0.00%)
RANDOM 330 | 302 28 0
(91.52%) (8.48%) (0.00%)
SUBTINIT | EUCLID 330 |225 105 0
(68.18%) (31.82%) (0.00%)
GRID 330 |234 96 0
(70.91%) (29.09%) (0.00%)
RANDOM 330 | 266 64 0
(80.61%) (19.39%) (0.00%)
SUBT EUCLID 330 | 209 111 10
(63.33%) (33.64%) (3.03%)
GRID 330 213 106 11
(64.55%) (32.12%) (3.33%)
RANDOM 330 | 257 70 3
(77.88%) (21.21%) (0.91%)

As SUBTVNS outperforms SUBTINIT and SUBT in terms of the number
of instances in which an optimal solution was found, in Table 2 we have included

VNS-Based Matheuristic for GST 355

only instances in which both SUBTVNS and SUBTINIT found feasible solu-
tions that are not proved to be optimal. As can be seen in Table 1, out of the
three instance types, EUCLID instances had the lowest number of optimal solu-
tions found. However, looking at the improvement of the objective function value
for non-optimal solutions (Table 2), the improvement is achieved in the majority
of EUCLID instances, i.e., in 87.5% of the considered instances. In addition, the
average relative improvement of 3.89% is the largest also for EUCLID instances.
This means that SUBTVNS reduced the objective function value of the feasible
solutions found by 3.89% on average (considering only the instances where the
solution was improved).

Table 2. Instance type - one of three instance groups based on the type of dis-
tance between the nodes, # of improvements - total number of instances in which
SUBTYVNS found a feasible solution with objective function values smaller than SUB-
TINIT, Total - total number of instances in which both SUBTVNS and SUBTINIT
found a feasible solution, % of improvements - # of improvements in percent of
Total, Average relative improvement % - average ratio between the difference of
the objective function values found by SUBTINIT and SUBTVNS for all instances
in which SUBTVNS found a better solution.

Instance type | # of Total | % of Average
improvements improvements relative
improvement
(%)
GRID 12 16 75.00 % 2.71 %
RANDOM 9 16 56.25 % 1.98 %
EUCLID 14 16 87.50 % 3.89 %

If both SUBTVNS and SUBTINIT have found optimal solutions, it makes
sense to compare the total time it took to find these optimal solutions. Based
on previous experimental studies in [22], it has been shown that the number
of groups k is a parameter that significantly affects the problem hardness. Even
basic theoretical work on the Steiner tree problem [6] can be easily applied to the
group Steiner tree problem and it leads to the conclusion that the group Steiner
tree problem becomes solvable in polynomial time as soon as the number of
groups is fixed to a constant. Figure 1 shows the dependence of speedup factor
on the number of groups k. The speedup factor is calculated as the ratio of the
running times of SUBTINIT and SUBTVNS for the instances in which both
algorithms provide optimal solutions. The average speedup factors calculated for
all instances with the same number of groups k are presented and compared in
Fig. 1. It can be seen that, on average, the running time on EUCLID instances
shows the greatest improvement as the value of k increases.

356 T. Davidovié¢ and S. Jelié¢

Emm RANDOM EUCLID mm GRID

k (# of groups)

Speedup factor

Fig. 1. Dependence of speed-up factor on the number of groups. Speed-up
factor is the ratio between SUBTINIT and SUBTVNS. The numbers in the horizontal
bars indicate the average speedup of SUBTVNS compared to SUBTINIT, calculated
for instances of certain types for which both methods have found optimal solutions.
The Instance types, based on the type of distances, are indicated by different colors.
(Color figure online)

6 Conclusion

The biggest challenge in solving GST with approximation algorithms and heuris-
tics is dealing with instances containing a large number of groups. This is the
critical parameter for the GST problem, which significantly affects both the the-
oretical and practical hardness of this problem. In this work, we have proposed a
VNS-based matheuristic method (SUBTVNS) that is able to provide solutions of
higher quality than exact Gurobi solver for the same mathematical programming
formulation and within the same global time limit. The most interesting result
was the increase of the speed-up factor with increasing number of groups for all
instance types considered. The remaining challenges for future work go in two
directions. First, it is interesting to investigate and possibly improve the asymp-
totic behavior of the proposed SUBTVNS when solving even larger instances.
Along this path, future work will involve the implementation of metaheuristics
approach where the size of the VNS-based neighborhood is controlled by adding
constraints that limit the number of nodes added to and/or removed from the
current feasible solution instead of specifying nodes themselves. Second, it is
also interesting to extend this approach to more general versions of the GST
problem, e.g., node-weighted and prize-collecting versions. Because the node-
weighted version has important practical applications, it will be possible to test
our approach on real-world instances.

VNS-Based Matheuristic for GST 357

References

10.

11.

12.

13.

14.

15.

16.

17.

Ahmed, M.B., Hvattum, L.M., Agra, A.: The effect of different mathematical for-
mulations on a matheuristic algorithm for the production routing problem. Com-
put. Oper. Res. 155, 106232:1-106232:19 (2023). https://doi.org/10.1016/j.cor.
2023.106232

Boschetti, M.A., Letchford, A.N., Maniezzo, V.: Matheuristics: survey and synthe-
sis. Int. Trans. Oper. Res. 30(6), 2840-2866 (2023). https://doi.org/10.1111/itor.
13301

Boschetti, M.A., Maniezzo, V.: Matheuristics: using mathematics for heuristic
design. 40R 20(2), 173-208 (2022). https://doi.org/10.1007/s10288-022-00510-8
Coffman, J., Weaver, A.C.: An empirical performance evaluation of relational
keyword search techniques. IEEE Trans. Knowl. Data Eng. 26(1), 30-42 (2014).
https://doi.org/10.1109/TKDE.2012.228

Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost
connected trees in databases. In: 2007 IEEE 23rd International Conference on Data
Engineering, pp. 836-845 (2007). https://doi.org/10.1109/ICDE.2007.367929
Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195—
207 (1971). https://doi.org/10.1002/net.3230010302

Duin, C.W., Volgenant, A., Vof}; S.: Solving group Steiner problems as Steiner
problems. Eur. J. Oper. Res. 154(1), 323-329 (2004). https://doi.org/10.1016/
S0377-2217(02)00707-5

Ferreira, C.E., de Oliveira Filho, F.M.: Some formulations for the group Steiner
tree problem. Discrete Appl. Math. 154(13), 1877-1884 (2006). https://doi.org/
10.1016/j.dam.2006.03.028

Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. J. Algorithms 37(1), 66-84 (2000). https://doi.
org/10.1006 /jagm.2000.1096

Goemans, M.X.: The Steiner tree polytope and related polyhedra. Math. Program.
63(1), 157-182 (1994). https://doi.org/10.1007/BF01582064

Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://
www.gurobi.com

Hansen, P., Mladenovié¢, N., Brimberg, J., Pérez, J.A.M.: Variable neighbor-
hood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics.
ISORMS, vol. 272, pp. 57-97. Springer, Cham (2019). https://doi.org/10.1007/
978-3-319-91086-4_3

Hansen, P., Mladenovié, N., Todosijevi¢, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5(3), 423-454 (2017).
https://doi.org/10.1007 /s13675-016-0075-x

Hansen, P., Mladenovi¢, N., UroSevi¢, D.: Variable neighbourhood search and
local branching. Comput. Oper. Res. 33(10), 3034-3045 (2006). https://doi.org/
10.1016/j.cor.2005.02.033

Thler, E.: Bounds on the quality of approximate solutions to the group Steiner
problem. In: Mohring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 109-118. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-53832-1_36

Jelié, S., Severdija, D.: Covernment formation problem. CEJOR 26(3), 659672
(2018). https://doi.org/10.1007/s10100-017-0505-8

Jovanovi¢, P., Davidovi¢, T., Lazié¢, J., Mitrovi¢ Mini¢, S.: The variable intensity
neighborhood search for 0-1 MIP. In: Proceedings of the 42nd Symposium on Oper-
ations Research, SYM-OP-IS 2015, Srebrno jezero, Serbia, pp. 229-232 (2015)

https://doi.org/10.1016/j.cor.2023.106232
https://doi.org/10.1016/j.cor.2023.106232
https://doi.org/10.1111/itor.13301
https://doi.org/10.1111/itor.13301
https://doi.org/10.1007/s10288-022-00510-8
https://doi.org/10.1109/TKDE.2012.228
https://doi.org/10.1109/ICDE.2007.367929
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1016/S0377-2217(02)00707-5
https://doi.org/10.1016/S0377-2217(02)00707-5
https://doi.org/10.1016/j.dam.2006.03.028
https://doi.org/10.1016/j.dam.2006.03.028
https://doi.org/10.1006/jagm.2000.1096
https://doi.org/10.1006/jagm.2000.1096
https://doi.org/10.1007/BF01582064
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-319-91086-4_3
https://doi.org/10.1007/978-3-319-91086-4_3
https://doi.org/10.1007/s13675-016-0075-x
https://doi.org/10.1016/j.cor.2005.02.033
https://doi.org/10.1016/j.cor.2005.02.033
https://doi.org/10.1007/3-540-53832-1_36
https://doi.org/10.1007/s10100-017-0505-8

358

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

T. Davidovié¢ and S. Jelié¢

Jovanovic, R., Vof3, S.: Matheuristic fixed set search applied to the multidimen-
sional knapsack problem and the knapsack problem with forfeit sets. OR Spectrum
(2024, in press). https://doi.org/10.1007/s00291-024-00746-2

Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Net-
works 32(3), 207-232 (1998). https://doi.org/10.1002/(SICI)1097-0037(199810)32:
3(207::AID-NET5)3.0.CO;2-0O

Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2009, pp. 467-476. Association for Computing
Machinery, New York (2009). https://doi.org/10.1145/1557019.1557074

Lazié, J., Hanafi, S., Mladenovié¢, N., Urosevié¢, D.: Variable neighbourhood decom-
position search for 0-1 mixed integer programs. Comput. Oper. Res. 37(6), 1055—
1067 (2010). https://doi.org/10.1016/j.cor.2009.09.010

Matijevié, L., Jelié¢, S., Davidovié¢, T.: General variable neighborhood search app-
roach to group Steiner tree problem. Optim. Lett. 17(9), 2087-2111 (2023).
https://doi.org/10.1007/s11590-022-01904-7

Mladenovié, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097-1100 (1997). https://doi.org/10.1016/S0305-0548(97)00031-2
Myung, Y.S.: A comparison of group Steiner tree formulations. J. Korean Inst.
Ind. Eng. 37(3), 191-197 (2011). https://doi.org/10.7232/JKIIE.2011.37.3.191
Nguyen, T.D.: A fast approximation algorithm for solving the complete set packing
problem. Eur. J. Oper. Res. 237(1), 62-70 (2014). https://doi.org/10.1016/j.ejor.
2014.01.024

Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI oriented generalization.
In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 196-210. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52292-1_14

Salazar, J.J.: A note on the generalized Steiner tree polytope. Discrete Appl. Math.
100(1), 137-144 (2000). https://doi.org/10.1016/S0166-218X(99)00200-0

Sun, Y., Xiao, X., Cui, B., Halgamuge, S., Lappas, T., Luo, J.: Finding group
Steiner trees in graphs with both vertex and edge weights. Proc. VLDB Endow.
14(7), 1137-1149 (2021). https://doi.org/10.14778/3450980.3450982

Voss, S., Stutzle, T., Maniezzo, V.: MATHEURISTICS: Hybridizing Metaheuristics
and Mathematical Programming. Springer, New York (2009). https://doi.org/10.
1007/978-1-4419-1306-7

Zachariasen, M., Rohe, A.: Rectilinear group Steiner trees and applications in VLSI
design. Math. Program. 94(2), 407-433 (2003). https://doi.org/10.1007/s10107-
002-0326-x

https://doi.org/10.1007/s00291-024-00746-2
https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.CO;2-O
https://doi.org/10.1145/1557019.1557074
https://doi.org/10.1016/j.cor.2009.09.010
https://doi.org/10.1007/s11590-022-01904-7
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.7232/JKIIE.2011.37.3.191
https://doi.org/10.1016/j.ejor.2014.01.024
https://doi.org/10.1016/j.ejor.2014.01.024
https://doi.org/10.1007/3-540-52292-1_14
https://doi.org/10.1016/S0166-218X(99)00200-0
https://doi.org/10.14778/3450980.3450982
https://doi.org/10.1007/978-1-4419-1306-7
https://doi.org/10.1007/978-1-4419-1306-7
https://doi.org/10.1007/s10107-002-0326-x
https://doi.org/10.1007/s10107-002-0326-x

®

Check for
updates

A Basic Variable Neighborhood Search
for the Planar Obnoxious Facility
Location Problem

Sergio Salazar@®, Abraham Duarte®, and J. Manuel Colmenar®)

Universidad Rey Juan Carlos, Calle Tulipdn s/n, Mdéstoles, Madrid, Spain
{sergio.salazar,abraham.duarte, josemanuel.colmenar}Qurjc.es

Abstract. Obnoxious facility location problems are devoted to choose
the best location for a given set of facilities considering that, despite they
should not be close to population communities, their service is needed,
like the case of airports, paper factories or nuclear plants. In this paper
we study the planar multiple obnoxious facility location problem. Our
approach is based on a first discretization of the instance where a Basic
Variable Neighborhood Search algorithm is applied. Our results improve
the state of the art spending less than a third of the execution time of
the second best algorithm.

Keywords: Basic Variable Neighborhood Search - Obnoxious Facility
Location Problem - Greedy Randomized Adaptive Search Procedure

1 Introduction

The family of problems devoted to facility location is wide, and their applications
range from the different variants of the distribution problem [2] to the facility
location considering capacity planning for pandemics [7]. In this family we can
also find problems where the facilities to be located generate a negative impact
around them, maybe due to noise, pollution or associated heavy traffic. These
obnoxious facilities like landfills, smelly factories or airports are needed by the
society, since they provide service to the population, but they should be located
not too close to residential neighborhoods, according to different objective func-
tions and requirements. These are the obnoxious facility location problems [1].

One of the problems that belongs to this family is the planar multiple obnox-
ious facility location problem which, as defined in [3], consists in locating a given
number of facilities in the plane, considering the continuous space. The objective
in this problem is to maximize the shortest distance between facilities and com-
munities, taking into account that the minimum distance between two facilities
must be greater or equal to a given value D.

This work has been partially supported by the Spanish Ministerio de Ciencia e Inno-
vacién (MCIN/AEI/10.13039/501100011033) under grant refs. RED2022-134480-T,
PID2021-126605NB-100 and by ERDF A way of making Europe; and Generalitat Valen-
ciana with grant ref. CIAICO/2021/224.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 359-364, 2024.
https://doi.org/10.1007/978-3-031-62912-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_33&domain=pdf
http://orcid.org/0009-0007-3492-2221
http://orcid.org/0000-0002-4532-3124
http://orcid.org/0000-0001-7490-9450
https://doi.org/10.1007/978-3-031-62912-9_33

360 S. Salazar et al.

More formally, let S be a solution formed by p points a; in the continuous
space limited by the unit square, a; € [0,1] x [0, 1], let C be the set of n commu-
nities, and let d(a;, a;) be the distance between points a; and a;. The objective
function is defined in Eq. (1), where D is the minimum separation distance,
which, as in the case of p and C, are given as data of the instance.

max F(S) = min d(a;,z;)
a; €S
z; €C (1)
st. d(ai,a;) > D Vaj,a; € Si#j
This problem has been previously studied, proposing a mathematical model
and some heuristics based on Voronoi diagrams [6], representing the state of
the art of the problem previous to this paper. In this work, we propose a Basic
Variable Neighborhood Search (BVNS) approach which, supported by a first step
which performs a discretization of the instance, is able to improve the previous
results spending less than a third of the execution time of the previous proposals.

2 Algorithmic Proposal

In this work, we propose an algorithmic approach based on three main steps: an
initial discretization of the instance, moving the problem from the continuous
to the discrete domain, a simple process to create new solutions, and a BVNS
process which improves this initial solution. Next, these phases are described.

2.1 Discretization of the Instance

As stated before, this problem is defined in the continuous space. Therefore, in
order to apply our metaheuristic proposal, we have first defined a discretization
of the instance. This process will be the first step of the algorithm, and it will
determine the candidate positions where the facilities can be located.

To this aim, we follow a strategy already studied in the literature, where
the Voronoi points are calculated for the given communities [3]. However, the
Voronoi edges still belong to the continuous domain. Therefore, we propose to
create a grid of points belonging to the Voronoi edges, separated by a certain
distance (. This way, the number of initial candidate points is greatly reduced by
both the Voronoi edges and the separation distance. Figure 1 shows an example
with n = 15 and 8 = 0.1. As seen, the number of candidate locations, shown as
blue points, is very small in relation to the continuous space.

2.2 Construction of Solutions

Any Variable Neighborhood Search proposal requires an initial solution to begin
the exploration [8]. In this work, we decided to build initial solutions following
a Greedy Randomized Adaptive Search Procedure (GRASP) strategy [4]. This
process uses as greedy function the distance from each point to the closest com-
munity. The GRASP selection, using a = 0.5, is repeated until p points are
selected. This initial solution is sent to the BVNS process.

Basic VNS for the Planar OFLP 361

Fig. 1. Example of Voronoi discretization with n = 15 and 8 = 0.1. (Color figure
online)

2.3 Basic Variable Neighborhood Search

Since this is a first approach to the problem using the VNS metaheuristic, we
have selected one of the simplest implementations, which is the Basic VNS [5].

Algorithm 1 shows the pseudo-code of our method, which receives an initial
solution Sy provided by the constructive method, a set of candidate points as a
result of the discretization of the instance, Ip, and a maximum value for the k
parameter, k... The algorithm begins setting the value of k to 1 and starting
the main loop. A new solution S’ is generated in step 3 by the Shake process. In
this case, we implemented a perturbation which removes the worst point, that
is, the one with the shortest distance to a community and, if k is greater than
1, randomly removes k — 1 different points. The improving phase begins in step
5, where a LocalSearch process obtains a new solution S” from S’ in step 6.
This method is a typical best improvement local search based on an exchange
move of a selected point and a non-selected point in Ip. The rest of the code is
the customary BVNS implementation of the acceptation of better solutions and
management of k depending on the improvements. Finally, the best solution is
returned in step 20.

3 Computational Experiments

Following the previous work, we have dealt with two sets of communities, with
sizes n = 100 and n = 1000 [6]. Considering two different distances, D = 1/,/p
and D = 1/4/2p, and 19 values for p, from 2 to 20, a total number of 76 instances
are studied. For each instance, we compare the results from our BVNS proposal
with the three algorithms described in [6]. These algorithms are denoted in the
original work as Algorithm 1, Algorithm 2 and Algorithm 3. We denote them as
A1, A2 and A3 in our results. For each instance, the final BVNS algorithm has
been executed 10 times for the n = 100 instances and 100 times for n = 1000.
The accumulated results are next reported.

Table 1 shows the average values obtained for the objective function for each
value of n and D. As seen, the average values reached by BVNS are the best in
3 out of the 4 groups of instances, while algorithm A2 reaches the best value in
the resulting one. The best values are highlighted in bold font. Therefore, the

362 S. Salazar et al.

Algorithm 1: BVNS(So, Ip, kmax)

1: k1
2: while k < ke do

3: S'« Shake(Ip,k,S)

4: improve «— true

5: while improve do

6: S"" « LocalSearch(S’, Ip)
T: if F(S"”) > F(S’) then

8: S — 8"

9: else

10: improve «— false

11: end if

12: end while
13: if F(S") > F(S) then

14: S« S
15: k—1

16: else

17: k—k+1
18: end if

19: end while
20: return S

average behavior of the BVNS algorithm is better than the previous proposals,
followed by algorithm A3. Notice that, despite the improvement of the values is
achieved after the third decimal figure, this is not an unusual result since the
space defined by the instance is the unit square.

Table 1. Average objective function values for the algorithms under study.

n D BVNS Al A2 A3

100 |[1/\/p 0.101978 | 0.099460 | 0.101149 |0.101475
1/v/2p 10.111155|0.110095 | 0.110907 |0.110937
1000 |1/\/p 0.040822 | 0.040862 | 0.040989 | 0.041000
1/v/2p |0.044043 | 0.043939 | 0.044004 |0.044010
Average | 0.074499 0.073589 | 0.074262 | 0.074355

Table 2 shows the number of instances where each algorithm reached the best
value in the experiment. As seen, BVNS reaches 57 out of the 76 instances, being
dominant in the instances with n = 100. Notice that A3 obtains 56 best values,
reaching the highest results in the larger instances where n = 1000.

Table 3 shows the average deviation for each group of instances in relation
to the best result. In this case, our BVNS proposal reaches the best values in 3
out of the 4 groups of instances. These results prove that our algorithm is the
most stable, followed again by A3.

Basic VNS for the Planar OFLP 363

Table 2. Number of instances each studied algorithm reached the best solution.

n D BVNS Al A2 A3
100 [1/p 14 |8 |11 12
1/v2pl18 |11 |12 12
1000 1//p | 11 13 (17 17
1/v2p 14 14 13 |15
Sum |57 46 53 56

Table 3. Average deviation values for the algorithms under study.

n D BVNS Al A2 A3

100 |1/\/p 0.008238 | 0.036808 | 0.019194 | 0.016187
1/4/2p 10.000169 | 0.010142 | 0.002681 | 0.002391
1000 |1/\/p 0.006140 | 0.005024 | 0.001682 0.001326
1/4/2p 10.000702 | 0.002823 | 0.001681 | 0.001527
Average | 0.003812 | 0.013699 | 0.006309 | 0.005358

Finally, Table4 shows the average execution time, in seconds, for each algo-
rithm. Notice that the execution time of BVNS is calculated as the average of
the sum of the execution time of each experiment run. The execution times for
algorithms Al, A2 and A3 were obtained from the previous paper [6]. As seen,
Al obtains the best values, showing impressive execution times, although the
algorithm is not getting the best results in the previously studied metrics. Our
BVNS proposal is the second best performer, spending less than a third of the
time compared to the second best performer in terms of objective function and
number of best values, which is A3.

It is worth noticing that our BVNS proposal was run on a laptop computer
with an Intel i7 7500 processor with 16 Gb of RAM on a Manjaro Linux operating
system. According to the authors, the executions of A1, A2 and A3 algorithms
were run on a PowerEdge R720 server machine provided with an Intel E5 2650
processor with 128 Gb of RAM, which is a much more powerful environment
than our laptop computer.

Table 4. Average execution times (in seconds) for the algorithms under study.

n D BVNS Al A2 A3

100 |1/\/p 0.571053 | 0.000155 | 0.588421 |0.925263
1/4/2p |0.625158|0.000088 | 1.860000 |2.594737
1000 | 1/\/p 6.126316 | 0.003648 | 1.412105 |2.197895
1//2p |6.123316 | 0.001288 | 27.015263 | 34.679474
Average | 3.361461 | 0.001295 | 7.718947 | 10.099342

364 S. Salazar et al.

As seen, our BVNS proposal is able to obtain the best average objective
function value, the highest number of best results and the lowest deviation,
spending a very short execution time. Considering that this is an initial work
where the BVNS proposal is simple, we are confident on obtaining better results
in the future using more complex VNS variants.

4 Conclusions and Future Work

In this work we propose a Basic Variable Neighborhood Search approach for
the planar multiple obnoxious location problem. Since the algorithm is based
on discrete solutions, we propose a discretization of the instance following a
grid approach guided by Voronoi points. From this point on, new solutions are
constructed using a Greedy Randomized Adaptive Search Procedure, which are
improved by means of the BVNS using a shake method which randomly removes
selected points, and a best improvement local search based on an exchange move.

Our results show that the BVNS proposal is able to get a better average value
for the objective function than the previous method, obtaining the best result
in 57 out of the 76 studied instances. In addition, our proposal reaches these
figures being the most stable proposal, and spending a third of the computation
time of the second best performer in terms of quality.

Currently, we are working on different local search strategies that will take
advantage of the continuous space, being more flexible than the proposed dis-
cretization. In addition, some other VNS variants are studied.

References

1. Church, R.L., Drezner, Z.: Review of obnoxious facilities location problems. Comput.
Oper. Res. 138, 105468 (2022)

2. Davoodi, M., Rezaei, J.: Bi-sided facility location problems: an efficient algorithm
for k-centre, k-median, and travelling salesman problems. Int. J. Syst. Sci. Oper.
Logist. 10(1), 2235814 (2023)

3. Drezner, Z., Kalczynski, P., Salhi, S.: The planar multiple obnoxious facilities loca-
tion problem: a Voronoi based heuristic. Omega 87, 105-116 (2019)

4. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Glob.
Optim. 6, 109-133 (1995)

5. Hansen, P., Mladenovié¢, N., Todosijevi¢, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5(3), 423-454 (2017)

6. Kalczynski, P., Drezner, Z.: Extremely non-convex optimization problems: the case
of the multiple obnoxious facilities location. Optim. Lett. 16, 1153-1166 (2022)

7. Liu, K., Liu, C., Xiang, X., Tian, Z.: Testing facility location and dynamic capacity
planning for pandemics with demand uncertainty. Eur. J. Oper. Res. 304(1), 150
168 (2023)

8. Mladenovié¢, N.; Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097-1100 (1997)

®

Check for
updates

Temporal Action Analysis
in Metaheuristics: A Machine Learning
Approach

Panagiotis Kalatzantonakis®, Angelo Sifaleras®™)@®, and Nikolaos Samaras

Department of Applied Informatics, School of Information Sciences,
University of Macedonia, 156 Egnatia Str., 54636 Thessaloniki, Greece
pkalatzantonakisQuom.edu.gr, {sifalera,samaras}@uom.gr

Abstract. This study explores the use of Autoregressive Integrated
Moving Average (ARIMA) and Long Short-Term Memory (LSTM)
machine learning models in metaheuristic algorithms, with a focus on a
modified General Variable Neighborhood Search (GVNS) for the Capaci-
tated Vehicle Routing Problem (CVRP). We analyze the historical chain
of actions in GVNS to demonstrate the predictive potential of these
models for guiding future heuristic applications or parameter settings in
metaheuristics such as Genetic Algorithms (GA) or Simulated Anneal-
ing (SA). This “optimizing the optimizer” approach reveals that, the
history of actions in metaheuristics provides valuable insights for predict-
ing and enhancing heuristic selections. Our preliminary findings suggest
that machine learning models, using historical data, offer a pathway to
more intelligent and data-driven optimization strategies in complex sce-
narios, marking a significant advancement in the field of combinatorial
optimization.

Keywords: Intelligent Heuristic Decision-Making - Data-Driven
Metaheuristic Strategies - Machine Learning Enhanced Combinatorial
Optimization - Offline Metaheuristic Algorithm Configuration

1 Introduction

1.1 Metaheuristics in Combinatorial Optimization

Metaheuristic algorithms have evolved significantly to address complex and NP-
hard challenges in combinatorial optimization [12,13], such as the CVRP [4].
Historically, these algorithms have evolved from simple solution-seeking methods
to sophisticated adaptive frameworks capable of intelligently navigating complex
solution spaces. This evolution reflects a continuous effort to enhance efficiency
and effectiveness in finding near-optimal solutions, especially in computationally
demanding scenarios.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 365-370, 2024.
https://doi.org/10.1007/978-3-031-62912-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_34&domain=pdf
http://orcid.org/0000-0002-0729-6583
http://orcid.org/0000-0002-5696-7021
http://orcid.org/0000-0001-8201-7081
https://doi.org/10.1007/978-3-031-62912-9_34

366 P. Kalatzantonakis et al.

1.2 Machine Learning Integration in Metaheuristics

The integration of machine learning into metaheuristics marks the latest
advancement in this field, representing a significant leap in computational intel-
ligence. Building upon historical progress, our research incorporates ARIMA [5]
and LSTM models [7] into the GVNS for the CVRP, aiming to capture and
leverage temporal dynamics in optimization processes. This integration is not
just an innovation, but a response to the growing need for more precise predic-
tive capabilities in dynamic environments. Based on recent studies in parallel
execution [1,8,9], learning-based neighborhood search [10,14], and large neigh-
borhood search adaptations [6], our approach seeks to harness the potential of
machine learning to further refine and improve metaheuristic strategies.

2 Methodological and Experimental Setup

In this section, we outline our comprehensive methodological framework, which
begins with the innovative reconfiguration of the GVNS [2,11] for the CVRP.
This approach is crucial for generating a robust dataset, essential for the subse-
quent training and optimization of ARIMA and LSTM models.

2.1 GVNS-Driven Data Collection and Analysis

The proposed modification of the GVNS metaheuristic consists of a different
neighborhood selection step, and it is tailored towards generating unbiased data
across CVRP instances. Through multithreaded data collection and extensive
preprocessing, including normalization and structuring, we prepare the data set
for pattern analysis using ARIMA and LSTM models. This strategic approach
seeks to evolve traditional metaheuristic algorithms into intelligent, adaptive
systems.

Data collection during GVNS iterations involves tracking each heuristic’s
application and outcome, quantified as binary values (success or failure) and
continuous values (degree of solution improvement). This detailed data collec-
tion is crucial for a robust analysis. The data set is then preprocessed for anal-
ysis. ARIMA models are used for regression analysis to identify linear trends,
while LSTM networks address classification issues, adept in processing sequen-
tial data. This combination allows for a comprehensive analysis of patterns in
decision making. We used CVRP instances from CVRPLIib [3] (sets A, B, and
X), which offer various complexities, to validate our methodology in a structured
environment.

2.2 Model and Parameter Optimization

In our study, both ARIMA and LSTM models underwent meticulous optimiza-
tion processes to enhance their predictive accuracy for the GVNS algorithm.

Temporal Action Analysis in Metaheuristics: A Machine Learning Approach 367

ARIMA’s role was to forecast the “reward” value, with our analysis reveal-
ing some seasonality potentially influenced by GVNS’s cyclic phases. The Aug-
mented Dickey-Fuller and KPSS tests, combined with Fourier Transform and
Seasonal Decomposition, confirmed the time series’ stationarity, leading us to
favor ARIMA over SARIMA. We explored a range of parameters, evaluated the
models on Akaike Information Criterion (AIC) and Mean Squared Error (MSE),
and settled on the ARIMA (5, 1, 5) model for its optimal balance of AIC and
high PRAUC, indicating its effectiveness in predicting heuristic improvements.
In optimizing the ARIMA model, specific parameters are pivotal: “p” repre-
senting the order of autoregression, “d” the degree of differencing, and “q” the
moving average window, that together define the model’s structure. The perfor-
mance of ARIMA (5, 1, 5) was evaluated using the Mean Squared Error (MSE)
and Akaike Information Criterion (AIC), with lower values in both indicating
better model fit. AIC was particularly crucial for comparing the quality of dif-
ferent models. Additionally, the Precision-Recall Area Under Curve (PRAUC)
metric was utilized to assess the binary classification effectiveness of ARIMA,
an important aspect given the imbalanced nature of our dataset.

Hyperparameter tuning of the LSTM model was conducted using the Hyper-
band method, targeting key parameters such as LSTM units, dropout rate, and
learning rate, which unveiled a preference for a BILSTM structure to better cap-
ture temporal dependencies. The optimization involved systematic exploration
of critical hyperparameters. LSTM units affect the model’s complexity and its
ability to discern data patterns, with higher units offering greater complexity
at the cost of computational resources. Dropout rate mitigates overfitting by
omitting units during training, while the learning rate is vital for effective model
training, avoiding minima overshoots. The choice of loss function (MSE, MAE,
Binary Cross-Entropy) influences error quantification, and activation functions
(sigmoid, ReLU, tanh) affect data signal processing, crucial for learning. Bil-
STM'’s bidirectional approach improves predictive accuracy by utilizing past and
future data. Batch size and epochs set the training sample size and cycles, and
the optimizer (SGD, RMSprop, Adam) impacts learning speed and efficiency.
The attention mechanism further refines the model by concentrating on par-
ticular input sequence segments, boosting performance on complex time-series
tasks.

Table 1 details the models that perform the best. Also, the final hyperparame-
ter configuration for the BiLSTM model, as detailed in Table 2, was strategically
chosen to strike a balance between computational resources and predictive accu-
racy. This resulted in an optimized BiLSTM model. Both the ARIMA and LSTM
models were meticulously fine-tuned to complement each other, thus providing
comprehensive predictive insights within the GVNS framework.

368 P. Kalatzantonakis et al.

Table 1. Top 3 ARIMA Models Table 2. LSTM Model Hyperparameters

Rank l p l d l a ‘ AIC l MSE Hyperparameter | Range Best Value
Top 3 Models Based on AIC LSTM Units 32 to 512 (step: 32) 256
1 5 0 5 | 470.7783 | 2.0643 Dropout Rate 0.0 to 0.5 (step: 0.1) 0.1
2 5 1 5 471.748 1.8388 - -
5 3 Learning Rate le-d to le-2 0.0079
(sampling="log”)
3 5 1 6 | 472.6345 1.8477
. Mean
Top 3 MSE-based models Loss Functions MSE, MAE, Binary Squared
Cross-Entropy o
1 3 1 6 495.4785 1.8168 rror
2 5 1 2 487.4079 1.8381 Activation sigmoid, relu, tanh tanh
Functions
3 6 1 6 | 475.7171 1.8388 Bidirectional
ldirectiona True/False True
setting
Batch Size 32 to 512 256
Epochs 10 to 100 100
Optimizers SGD, RMSprop, Adam
Adam
Attention
Mechanism True/False True

3 Results and Analysis

Our study showcases the potential of machine learning, particularly ARIMA and
LSTM, in interpreting the sequence of actions in metaheuristic algorithms such
as GVNS, GA and SA. By analyzing historical data from heuristic applications,
we demonstrate how these models can predict and influence future heuristic
choices, thus optimizing the decision-making process within these algorithms.

The selection of ARIMA and LSTM models in our study illustrates the com-
plexity of decision-making in forecasting actions. ARIMA effectively predicts
continuous outcomes such as “reward”, providing linear insights, while LSTM
excels in binary classification, crucial for different decision-making scenarios. The
ARIMA(5, 0, 5) model, with its high AIC, accurately predicts “reward” values.
This suggests that maintaining a focus on recent historical actions, up to five
steps back, could be crucial to accurately forecasting outcomes in metaheuristic
processes. Despite its limitations in accuracy and PRAUC, its ability to capture
short-term historical trends is notable.

Conversely, the BiLSTM model significantly surpasses ARIMA in both accu-
racy and PRAUC, demonstrating its superior capability in binary classification
and effective handling of sequential data. This highlights its potential as a robust
tool for guiding heuristic decisions in metaheuristic algorithms. For a detailed
comparison of the performance of the models, particularly highlighting their
respective strengths in predictive accuracy, readers are encouraged to refer to
Table 3, which presents a comprehensive overview of the performance metrics of
the top models.

In conclusion, the findings of this study have far-reaching implications for the
broader field of optimization and algorithm design. The successful integration
of ARIMA and LSTM models within metaheuristics such as GVNS, GA, and
SA demonstrates a promising path toward more intelligent, data-driven decision-
making processes. This approach can be extended to other complex optimization

Table 3. Top Models Performance (ARIMA & LSTM)

Temporal Action Analysis in Metaheuristics: A Machine Learning Approach

AIC
Accuracy

PRAUC

470.7783
0.52658

0.57666

495.4785
0.53291

0.48160

Metric Best Model Best Model LSTM Model
based on based on
AIC (5, 0, 5) MSE (3, 1, 6)
MSE 2.06431 1.81686

0.788956

0.673414

369

scenarios, opening up new avenues for research in algorithm efficiency and effec-
tiveness. Future studies might explore the integration of different machine learn-
ing models or delve into real-time data adaptation, further advancing the field
of combinatorial optimization. By leveraging historical data to inform heuristic
choices, this research contributes to the ongoing evolution of metaheuristic algo-
rithms, moving them toward more adaptive, predictive, and efficient frameworks.

4 Exploring the Future of Machine Learning
in Metaheuristics

Our study, focused on analyzing data generated by a modified VNS approach
for CVRP, indicates the potential of machine learning models like ARIMA and
LSTM in enhancing metaheuristic algorithms. While our research is specific to
VNS, the principle can be extended to other metaheuristics such as Genetic Algo-
rithms and Simulated Annealing. For example, in GA, the history of genetic
operations could be analyzed to predict their effectiveness, while in SA, the
sequence of temperature adjustments and their outcomes could inform future
adjustments. Integrating ML into these algorithms involves challenges such as
adapting to unique operational frameworks, ensuring data quality, and managing
computational demands. Future research should explore the broad application
of machine learning models in various optimization contexts, integrate real-time
data for adaptive strategies, and investigate advanced machine learning method-
ologies. This trajectory aims to significantly enhance the problem-solving capa-
bilities of metaheuristics, leading to more optimized solutions in diverse and
complex optimization scenarios.

5 Conclusions

This study represents a pioneering effort to blend machine learning with
metaheuristics, specifically through the lens of time-series analysis. Integrating
ARIMA and LSTM models into the VNS framework for the CVRP demon-
strated the potential to significantly enhance the algorithm’s decision-making
process. Our preliminary findings pave the way for future research in this
direction, promising more efficient and effective solutions in combinatorial

370 P. Kalatzantonakis et al.

optimization’s vast and challenging domain. The generalization of this approach
to other metaheuristics holds substantial promise, heralding a new era in the
development of optimization strategies.

References

1. Abdelhafez, A., Luque, G., Alba, E.: Parallel execution combinatorics with meta-
heuristics: comparative study. Swarm Evol. Comput. 55, 100692 (2020)

2. Brimberg, J., Salhi, S., Todosijevié, R., Urosevié¢, D.: Variable neighborhood search:
the power of change and simplicity. Comput. Oper. Res. 155, 106221 (2023)

3. CVRPLIB - all instances. http://vrp.atd-lab.inf.puc-rio.br/index.php/en.
Accessed 01 Feb 2024

4. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1),
80-91 (1959)

5. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time
series with a unit root. J. Am. Stat. Assoc. 74(366a), 427-431 (1979)

6. Hendel, G.: Adaptive large neighborhood search for mixed integer programming.
Math. Program. Comput. 14(2), 185-221 (2022)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (1997)

8. Kalatzantonakis, P., Sifaleras, A., Samaras, N.: Cooperative versus non-cooperative
parallel variable neighborhood search strategies: a case study on the capacitated
vehicle routing problem. J. Glob. Optim. 78(2), 327-348 (2020)

9. Kalatzantonakis, P., Sifaleras, A., Samaras, N.: On a cooperative VNS paralleliza-
tion strategy for the capacitated vehicle routing problem. In: Matsatsinis, N.F.,
Marinakis, Y., Pardalos, P. (eds.) LION 2019. LNCS, vol. 11968, pp. 231-239.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38629-0-19

10. Kalatzantonakis, P., Sifaleras, A., Samaras, N.: A reinforcement learning-variable
neighborhood search method for the capacitated vehicle routing problem. Expert
Syst. Appl. 213, 118812 (2023)

11. Mladenovié¢, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097-1100 (1997)

12. Monteiro, A.C.B., Franca, R.P., Arthur, R., Iano, Y.: The fundamentals and poten-
tial of heuristics and metaheuristics for multiobjective combinatorial optimization
problems and solution methods. In: Multi-Objective Combinatorial Optimization
Problems and Solution Methods, pp. 9-29. Academic Press (2022)

13. Talbi, E.G.: Machine learning into metaheuristics: a survey and taxonomy. ACM
Comput. Surv. (CSUR) 54(6), 1-32 (2021)

14. Thevenin, S., Zufferey, N.: Learning variable neighborhood search for a scheduling
problem with time windows and rejections. Discrete Appl. Math. 261, 344-353
(2019)

http://vrp.atd-lab.inf.puc-rio.br/index.php/en
https://doi.org/10.1007/978-3-030-38629-0_19

®

Check for
updates

A Variable Neighborhood Search
Approach for the S-labeling Problem

Marcos Robles®) @, Sergio Cavero®, and Eduardo G. Pardo

Universidad Rey Juan Carlos, Madrid, Spain
{marcos.robles,sergio.cavero,eduardo.pardo}@urjc.es

Abstract. The S-labeling problem is a graph layout problem that
assigns numeric labels to the vertices of a graph. It aims to minimize the
sum of the minimum numeric label assigned to each pair of adjacent ver-
tices. In this preliminary work, we propose the use of the Variable Neigh-
borhood Search (VNS) framework to test different Shake procedures and
Local Search methods for the problem. We compare our VNS variants
with the state-of-the-art Population-based Iterated Greedy algorithm on
a set of benchmark instances. The results show that our VNS methods
can obtain competitive solutions with a low deviation, but they are not
able to improve the best-known values. We discuss the strengths and
weaknesses of our proposal and suggest some future research directions.
This work lays the groundwork for future research into the S-Labeling
problem using Variable Neighborhood Search.

Keywords: Graph labeling - Variable Neighborhood Search -
S-labeling

1 Introduction

The S-labeling problem is a Graph Layout Problem (GLP) [2] originally related
to the problem of packaging (0,1)-matrices [8]. This problem has been studied
from practical and theoretical perspectives. Particularly, several lower bounds
and intrinsic properties of optimal labelings have been proposed [3]. Additionally,
we can find in the literature exact solutions based on mixed integer programming
[7], and approximate methods like the Population-based Iterated Greedy (PIG)
algorithm proposed in [6], which is currently the state of the art of the problem.

Formally, given an undirected graph G = (V, E) where V and F are the set of
vertices and edges respectively, we define a labeling ¢ by assigning a unique label
(i.e., a number) [€ Z, s.t. 1 <1 < |V|, to each vertex. This relationship is done
by the bijective function ¢ which, for a given vertex v, returns its corresponding
label. Given embedding ¢ of a graph G, to evaluate the objective function of the
solution, denoted as S-labeling number (SL), we compute for each edge e, the
minimum label associated to the pair of vertices which are endpoints of e. Then
we sum all the minimum labels previously computed. Formally, the objective
function is defined as SL(¢, G) = >_,, ,)ep min{d(u), ¢(v)}.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 371-376, 2024.
https://doi.org/10.1007/978-3-031-62912-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_35&domain=pdf
http://orcid.org/0000-0002-8376-6209
http://orcid.org/0000-0002-5258-5915
http://orcid.org/0000-0002-6247-5269
https://doi.org/10.1007/978-3-031-62912-9_35

372 M. Robles et al.

For instance, let us consider the graph G1(V, Ey) depicted in Fig. 1 with ver-
tices V1 = {A, B, C,D,E} and edges E, = {(A,B), (A, C),(B,C),(C,D), (D,E)}.
Additionally, let ¢; be a labeling where ¢1(A) = 2, ¢1(B) = 3, ¢1(C) = 1,
¢1(D) = 4, and ¢1(E) = 5. For this labeling, the S-labeling number is computed
as follows:

SL(¢1,G1) = min(¢1(A), ¢1(B)) + min(¢1(A), ¢1(C)) 4+ min(¢1(B), ¢1(C))
+ min(¢1(C), ¢1(D)) + min(¢1(D), ¢1(E))
= min(2,3) 4+ min(2,1) + min(3, 1) + min(1,4) + min(4, 5)
=24+1+14+1+4=9

The goal of this problem is to identify the embedding ¢* that minimizes the
S-labeling number for the given graph.

Fig. 1. Example of the labeling of a graph.

In our pursuit of a novel perspective on the S-labeling problem, we advo-
cate the adoption of trajectory-based metaheuristics. Specifically, in this paper
we propose multiple variants of Variable Neighborhood Search (VNS) [1,4]. To
evaluate our proposal, we conduct a comparative analysis with respect to the
best solutions found for the S-labeling in [6].

2 Algorithmic Proposal

VNS is a metaheuristic approach that consists of three key steps: Shake, Local
Search, and NeighborhoodChange [4]. The Local Search is an intensification
strategy that explores neighborhoods looking for better solutions. The Shake is a
diversification strategy commonly used to escape from local optima. Finally, the
NeighborhoodChange is a mechanism to explore different solution spaces. Among
the different variants of VNS, Basic Variable Neighborhood Search (BVNS)
involves a Local Search and a Shake procedure, Variable Neighborhood Descent
(VND) entails the iteration of different Local Search procedures, and General
Variable Neighborhood Search (GVNS) is a modification of BVNS where the
Local Search is substituted with a VND. See [4,5] for a detailed description of
the methods.

In this proposal, we set the NeighborhoodChange to be a Sequential Neigh-
borhoodChange [5]. Therefore, our focus turns to exploring variations in the

A VNS Approach for the S-labeling Problem 373

Shake and Local Search phases. Specifically, we present different strategies for
three VNS variants: BVNS, VND, and GVNS.

We propose the definition of two neighborhoods based on two classic moves
in the context of combinatorial optimization problems. The first one is the swap
movement. This operation involves two vertices, u, and v, with labels [; and I,
respectively. The labels are exchanged, resulting in a new labeling ¢’ such that
¢'(u) = lp and ¢'(v) = l;. The second movement studied is the insert move,
which can be viewed as a series of consecutive swap moves to the closest label
in the solution. Given a vertex u and a label [such that ¢(u) # [, the vertex u
is exchanged with the vertex ¢(u) + 1 if I > ¢(u) or ¢(u) — 1 if ¢(u) > I, for a
number of iterations until the label [is assigned to u obtaining a new labeling.

To explore these two neighborhoods, we use a Local Search procedure. A
Local Search can follow a first- or best-improvement strategy. In this proposal,
the swap neighborhood is explored following a first improvement strategy, i.e.,
the first exchange that improves the current solution, is performed. On the other
hand, the insert Local Search, uses the best insertion for the first vertex that
enhances the current solution quality. This method follows a first-improvement
strategy for the selected vertex and a best-improvement strategy for determining
the position.

Moving to the Shake step, we propose three strategies. All of them are influ-
enced by a diversification parameter k that determines the number of labels that
are affected by the shake procedure. The first variant, named ShuffleShake,
consists of randomly shuffling the label of a subset of vertices. The subset of
affected vertices is formed by those whose label is in the range [1, k]. The second
variant, denoted as NeighborhoodShake, executes k random movements from
both the neighborhood swap and the insertion neighborhood. If & is odd, a move
is chosen from the swap neighborhood, otherwise from the insert neighborhood.
The third variant, named InverseShake, consists of selecting a subset of k ver-
tices from the range [1, k| and assigning the highest labels to the vertices with
the lowest initial labels, and vice versa. For example, given a value k = 4 and the
example depicted in Fig. 1, this strategy would result in the labeling ¢ (A) = 3,

¢"(B) =2, ¢"(C) =4, ¢"(D) =1, and ¢"(E) = 5.

3 Preliminar Experimentation

In this section, we conduct a comprehensive experimentation to identify the
most effective combination of Shake and Local Search for each VNS variant
in the context of S-labeling. We establish a time limit of 300s as the stopping
criterion for each method. New iterations are initiated continuously starting from
a random initial solution, which is then improved with a VNS variant, until the
time limit is reached. We test our proposal over a subset of 20 instances, drawn
from the state-of-the-art paper for the problem [6]. The algorithms were coded
in Java 17 and all experiments were conducted on a system equipped with an
Intel Xeon Gold 6226R processor running at 2.90 GHz and supported by 119
GB of RAM. We used several metrics to evaluate the performance, including the

374 M. Robles et al.

average objective function (O.F.), the computation time (CPU.T.) measured
in seconds, the deviation (Dev.) to the optimal/best-known solutions, and the
percentage of best solutions discovered.

In Table 1 we introduce the different VNS configurations tested, obtained as
the result of combining the previously proposed Shake and Local Search (LS)
methods presented in the previous section.

Table 1. Configurations of VNS tested.

VNS Variant | Shake LS

BVNS; InverseShake Insert
BVNS, NeighborhoodShake

BVNS3 ShuffleShake

BVNS4 InverseShake Swap
BVNSs NeighborhoodShake

BVNSg ShuffleShake

VND;, - Insert+Swap
VND, - Swap-+Insert
GVNS, InverseShake VND;
GVNS, NeighborhoodShake

GVNS;3 ShuffleShake

GVNS4 InverseShake VND»
GVNS5 NeighborhoodShake

GVNSg ShuffleShake

In Table 2 we report the results of testing the BVNS variants. Generally, using
a swap-based Local Search leads to superior results. This could be attributed to
the more aggressive nature of swap operations, enabling substantial changes to
the solution within a shorter timeframe. In terms of Shakes, it is evident that
BVNS variants that use NeighborhoodShake produce inferior solutions compared
to other variants. On the contrary, ShuffleShake gives slightly improved results.
Consequently, BVNSg emerges as the most effective variant in this experiment.

Table 2. Comparision of the BVNS variants.

BVNS; |BVNS, |BVNS; |BVNS, |BVNS; |BVNSs

O.F. 1539906.25 | 1687174.65 | 1548403.20 | 1489568.65 | 1576198.70 | 1489481.00
CPU.T. (s) 300.00 300.00 300.00 300.00 300.00 300.00
Dev. (%) 1.77 10.58 1.95 0.04 4.48 0.04
% Best 0 0 0 45 0 55

Next, we examine the VND variants. As shown in Table3, VND;, which
begins the exploration with the insertion neighborhood, consistently produces

A VNS Approach for the S-labeling Problem 375

superior solutions in all the instances. Based on these observations, we conclude
that VND; is the most effective variant among those studied.

Table 3. Comparison of the VND variants.

VND;, VND»
O.F. 1606570.90 | 1629959.80
CPU.T. (s) 303.30 301.20
Dev. (%) 0.00 1.15
% Best 100 0

Finally, we perform an evaluation of the GVNS variants. The results are
shown in Table4. As we can observe, GVNSy and GVNS5 consistently have
a higher deviation than the others. GVNSg demonstrates a better result in the
percentage of best solutions found, deviation, and the average objective function.
This remarkable performance positions GVNSg as the most effective variant
among the methods studied.

Table 4. Comparison of the GVNS variants.

GVNS || GVNS [GVNS 3 GVNS L4 GVNS |5 GVNS 6
O.F. 1505096.60 | 1524217.00 | 1496944.45 | 1508176.85 | 1531479.30 | 1488297.65
CPU.T. (s) 300.05 300.25 300.15 300.00 300.00 300.00
Dev. (%) 0.67 1.57 0.25 0.74 1.93 0.02
% Best 10 0 15 0 0 75

4 Final Results

In our study, we found that although the state-of-the-art method outperformed
others in the comparison, the performance of our proposed VNS variants was
remarkably close. A statistical analysis using the Wilcoxon test was conducted to
compare the VNS variants against the state-of-the-art method. At a significance
level of 0.05, we obtained p-values of 0.0001, 0.00008, and 0.00012 for BVNSg,
VND; and GVNSg, respectively. These p-values indicate statistically significant
differences between the performances of the VNS variants and the state-of-the-
art method.

Furthermore, within the VNS framework, VND; was the least effective, with
BVNSg and GVNSg emerging as stronger alternatives. This observation leads
us to propose that the development of a more sophisticated BVNS or GVNS
algorithm could be beneficial. Specifically, innovative approaches to constructing
and perturbing the initial solution may prove to be more critical than the mere
presence of multiple neighborhood structures for diversification (Table 5).

376 M. Robles et al.

Table 5. Comparison of the best VNS variants with the state-of-the-art results in [6].

PIG [6] BUNS s VND || GVNS g
O.F. 1477107.65 | 1489481.00 | 1606570.90 | 1488297.65
CPU.T.(s) 200.00 300.00 303.30 300.00
Dev. (%) 0.00 0.72 6.17 0.60
% Best 95 5 0 0

5 Conclusions

In this research, we present 14 different variants of VNS tailored for the S-labeling
problem. Each variant starts from a random solution and incorporates a unique
combination of Shake and Neighborhood exploration in a VNS configuration.
Among the evaluated variants, the GVNS approach emerged as the most effective
one. The solutions obtained by our BVNS and GVNS variants resulted in a
deviation under 1% with respect to those obtained with the best state-of-the-art
method. Therefore, a proposal based on VNS could be competitive with further
improvements.

To improve the effectiveness of VNS for S-labeling, several promising avenues
for future research are proposed. First, exploring novel neighborhoods, especially
for the GVNS variant, could lead to significant improvements. Second, the intro-
duction of memory-based mechanisms, could further improve the performance
of the algorithm. Finally, the investigation of alternative construction methods
might be crucial for further progress.

References

1. Cavero, S., Pardo, E.G., Duarte, A.: A general variable neighborhood search for the
cyclic antibandwidth problem. Comput. Optim. Appl. 81(2), 657-687 (2022)

2. Diaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput.
Surv. (CSUR) 34(3), 313-356 (2002)

3. Fertin, G., Rusu, 1., Vialette, S.: The S-labeling problem: an algorithmic tour. Dis-
cret. Appl. Math. 246, 49-61 (2018)

4. Hansen, P., Mladenovi¢, N., Brimberg, J., Pérez, J.A.M.: Variable Neighborhood
Search. Springer, Cham (2019)

5. Hansen, P., Mladenovi¢, N., Todosijevié¢, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5(3), 423-454 (2017)

6. Lozano, M., Rodriguez-Tello, E.: Population-based iterated greedy algorithm for the
S-labeling problem. Comput. Oper. Res. 155, 106224 (2023)

7. Sinnl, M.: Algorithmic expedients for the S-labeling problem. Comput. Oper. Res.
108, 201-212 (2019)

8. Vialette, S.: Packing of (0, 1)-matrices. RAIRO-Theor. Inf. Appl. 40(4), 519-535
(2006)

®

Check for
updates

Improving Biased Random Key Genetic
Algorithm with Variable Neighborhood

Search for the Weighted Total
Domination Problem

Alejandra Casado'®, Jests Sdnchez-Oro , Anna Martinez-Gavara?®,

and Abraham Duarte!

1(9)

! Universidad Rey Juan Carlos, 28933 Mdstoles, Madrid, Spain
{alejandra.casado, jesus.sanchezoro,abraham.duarte}Qurjc.es
2 Universitat de Valéncia, 46100 Burjassot, Valencia, Spain
gavaraQuv.es
https://grafo.etsii.urjc.es/en/

Abstract. The Weighted Total Domination Problem (WTDP) belongs
to the family of dominating set problems. Given a weighted graph, the
WTDP consists in selecting a total domination set D such that the sum
of vertices and edges weights of the subgraph induced by D plus, for
each vertex not in D, the minimum weight of its edge to a vertex in D
is minimized. A total domination set D is a subset of vertices such that
every vertex, is at least adjacent to one vertex in D. This problem arises
in many real-life applications closely related to covering and independent
set problems, however it remains computationally challenging due to its
NP-hardness. This work presents a Variable Neighborhood Search pro-
cedure to tackle the WTDP. In addition, we develop a Biased Greedy
Randomized Adaptive Search Procedure that keeps adding elements once
a feasible solution is found in order to produce high-quality initial solu-
tions. We perform extensive numerical analysis to look into the influence
of the algorithmic components and to disclose the contribution of the
elements and strategies of our method. Finally, the empirical analysis
shows that our proposal outperforms the state-of-art results, supported
by an statistical analysis.

Keywords: Weighted Total Domination Problem - Graph
Domination - Metaheuristics - Variable Neighborhood Search

1 Introduction

The Weighted Total Domination Problem belongs to the family of graph domi-
nation problems. Domination problems aims to select a subset of nodes from a

This work has been partially supported by the “Ministerio de Ciencia e Innovacién”
under grant ref. PID2021-1257090A-C22 and PI1D2021-126605NB-100.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 377-382, 2024.
https://doi.org/10.1007/978-3-031-62912-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_36&domain=pdf
http://orcid.org/0000-0003-3417-6859
http://orcid.org/0000-0003-1702-4941
http://orcid.org/0000-0001-9995-010X
http://orcid.org/0000-0002-4532-3124
https://doi.org/10.1007/978-3-031-62912-9_36

378 A. Casado et al.

given input graph in such a way that all the nodes in the graph are dominated,
where the domination criterion usually depends on the problem variant.

Given a weighted and undirected graph G = (V, E), where V is the set of
vertices and FE is the set of edges, let us define the neighborhood N (v) of a vertex
v as the adjacent vertices to v, i.e., N(v) = {u € V : (u,v) € E}. Similarly, the
closed neighborhood of a vertex v is defined as N[v] = N(v)U{v}. As a weighted
graph, each vertex and edge have an associated weight, which is represented by
w(v) and w(u,v), respectively.

A dominating set S over a graph G = (V, E) is a subset S C V where every
vertex v € {V \ S} is adjacent to a vertex in S. In WTDP, the word total
indicates that not only vertices in {V \ S} must be adjacent to a vertex in S,
but all the vertices in V must be adjacent to at least one vertex in S. Then, the
WTDP consists of selecting a total dominating set which minimizes the following
objective function:

F8) = w(s)+ Y wle)+ > min{w(s,v):ue N(v)nS}

sesS e€E(S) veV\S

where E(S) represents the set of edges in which both endpoints belongs to S.
WTDP has not been widely studied in the literature. The problem was orig-
inally proposed in [4], together with three integer linear programming formula-
tions which are able to solve instances up to 50 vertices within a 1800s time
horizon. Then, [1] proposed two new mixed-integer programming models, as
well as a genetic algorithm and a greedy randomized adaptive search procedure,
solving instances up to 125 vertices. It is interesting to propose new methods for
dealing with more complex instances which are closer to real-life scenarios.

2 Variable Neighborhood Search

In this research, an algorithm based on Variable Neighborhood Search (VNS)
is proposed for providing high-quality solutions for the WTDP. VNS is a meta-
heuristic [5] designed for considering neighborhood changes for avoiding getting
stuck in local optima.

Among the wide variety of VNS schemes, this work is focused on Basic VNS
(BVNS), which balances diversification and intensification during the neighbor-
hood changes. The scheme of BVNS is presented in Algorithm 1.

BVNS requires from two input parameters: kpax, the maximum neighbor-
hood to be explored, and S, the initial solution,. The former is an input param-
eter that must be configured, while the latter is the solution used as starting
point of the search. Although VNS methodology suggests that a random initial
solution lead to high quality solutions, it has been experimentally tested that
a good starting point usually reduces the computational effort of the complete
algorithm [8,9]. The proposed method for generating initial solutions is depicted
in Sect. 3.

Improving BRKGA with VNS for the WTDP 379

Algorithm 1. VNS(kpax, S)
t k1
while k < knax do
S’ « Shake(S, k)
S" « Improve(S")
k « NeighborhoodChange(S, S" , k)
end while return S

The method starts in the first neighborhood (step 1), and iterates until
reaching the maximum predefined neighborhood kpyax (steps 2-6). In each itera-
tion, three phases are performed: Shake (step 3), responsible for diversification;
Improve (step 4), focused on intensification; and NeighborhoodChange (step 5),
which selects the next neighborhood to explore.

The shake procedure perturbs the incumbent solution .S by randomly select-
ing a solution in the neighborhood under exploration. In the context of WTDP,
this solution is selected by removing k vertices from S and then incorporating
new ones until it becomes feasible again. In order to favor diversity, both the
removed and added nodes are selected at random.

The resulting solution S’ is not a local optimum due to the random selection
of the vertices involved in the process. Therefore, a local improvement method is
applied, based on the exchange move operator. In particular, this move operator
consists of removing one or more nodes from the incumbent solution, replacing
them with new ones. In the context of WTDP, a single exchange is consid-
ered, which removes a vertex and replace it with another one. Then, the local
improvement explores the neighborhood conformed by all the solutions that can
be reached by a single exchange move. This neighborhood is explored following
a first improvement strategy to reduce the computational effort, which has been
successfully applied in graph domination problems [2]. Only feasible moves are
accepted, so in order to try a movement, it is necessary that all the vertices
that are dominated only by the removed node are also dominated by the newly
included one. Including this constraint in the local search procedure drastically
reduces the number of evaluations of the objective function, thus reducing the
computational effort of the procedure. The method stops when no improvement
is found when exploring the neighborhood of the incumbent solution.

3 Biased Greedy Randomized Adaptive Search Procedure

Biased Greedy Randomized Adaptive Search Procedure (Biased GRASP) differs
from traditional GRASP scheme in the function for selecting the next vertex to
be included in the solution. Traditional GRASP schemes randomly select the
vertex from a restricted candidate list conformed with the most promising ver-
tices which have not been selected yet. Instead of this random function, Biased
GRASP consider other probability functions that incorporate bias in the con-
struction of the solutions [7], which will eventually lead to increase the quality
of the constructed solutions.

380 A. Casado et al.

In this research, the biased randomization of GRASP proposed in [3] is con-
sidered, which used an empirical non-uniform probability distribution. The orig-
inal biased randomization are memory-less techniques which do not consider
information from previous iterations. The proposed constructive procedure adds
a frequency memory function for leveraging the information generated in previ-
ous iterations [6]. The associated greedy function for selecting the next vertex is
then evaluated as a combination of quality (Q) and diversity (D), weighted by
a (8 € [0, 1] parameter which indicates the relevance of each component:

gu)=p6-D+(1-p)-Q

In the context of WTDP, the quality metric is evaluated as the first part of
the objective function evaluation, i.e., >° cgw(s) + > .cp(s) w(e). The second
part of the objective function evaluation is not considered since it is the most
computationally demanding part.

The diversity metric is based on evaluating the number of solutions in which
the node has not appeared, prioritizing the selection of nodes which have not
been included in the solutions for a large number of iterations.

The selection of the next candidate differs from the traditional GRASP in
the set of available candidates. In Biased GRASP, the restricted candidate list
is not considered, since the method selects the next vertex using a discrete non-
uniform distribution based on the probabilities evaluated for each element in
the candidate list. The roulette selection method is implemented to increase
the efficiency of the procedure, using the accumulated probabilities to randomly
select the next vertex.

Since the randomness increases diversity, it is interesting to generate more
than a single solution to leverage the potential of the Biased GRASP constructive
procedure. As it is customary in the literature, 100 independent constructions
are considered, using the best one as initial solution for BVNS.

4 Experiments and Results

The proposed algorithm has been developed using Java 17 and all the exper-
iments have been performed in an AMD Ryzen 9 5950x (3.4 GHz) with 128
GB RAM. The dataset used is the one proposed in the best work found in the
literature, conformed with 135 instances with vertices ranging from 100 to 125.

All the tables reports the following metrics: Avg., the average objective func-
tion value obtained by the algorithm; Time (s), the computing time in seconds
required by the algorithm; Dev. (%), the average deviation with respect to the
best solution found in the experiment; and # Best, times that the algorithm
reaches the best solution in the experiment.

The experiments are designed to compare the proposed algorithm with the
best method found in the state of the art [1]. In particular, it proposes four
mathematical models which are able to optimally solve the smallest instances
and a genetic algorithm named GA1 where the initial population is generated
using a traditional GRASP algorithm.

Improving BRKGA with VNS for the WTDP 381

The first experiment evaluates BVNS when comparing it with GA1 over the
set of instances considered. Table 1 shows the performance of BVNS in this set
of instances with the results grouped by number of nodes.

Table 1. Comparison of BVNS and GA1 over the set of large instances presented in
the original research.

n | Algorithm | Avg. | Time (s) | Dev. (%) | #Best
75 | BVNS 421.78 | 4.43 0.02 43
GAl 423.87| 9.91 0.34 39
100 | BVNS 525.53 | 11.14 0.05 42
GAl 526.51 | 23.13 0.23 36
125 | BVNS 611.31122.83 0.12 39
GAl 611.80 | 47.76 0.20 37

The results show how BVNS is able to outperform GA1 in every group of
instances, requiring half of the computing time on average. The deviation of
BVNS is close to zero, so it is able to reach high-quality solutions in those
cases in which it does not match the best one. In order to confirm that there
are statistically significant differences between the results of both algorithms,
we have conducted the well-known pairwise Wilcoxon statistical test, obtaining
a p-value smaller than 0.01. This result indicates that the differences between
BVNS and GA1 are statistically significant, emerging BVNS as a competitive
algorithm for solving the WTDP

Finally, we have extended the set of instances with a set of more challenging
ones conformed with graphs where nodes are ranging from 200 to 500. The results
obtained with both BVNS and GA1 are depicted in Table 2.

Table 2. Comparison of BVNS and GA1 in the set of more challenging instances.

n | Algorithm | Avg. Time (s) | Dev. (%) | #Best

200 | BVNS 871.40 1 100.73 0.00 45
GAl 937.08 | 962.77 | 6.72 1

350 | BVNS 1332.04 | 616.34 0.00 45
GA1l 1794.06 | 1824.58 | 29.79 0

500 | BVNS 1776.40 | 1164.68 | 0.00 45
GAl 2539.57 1 1900.48 | 37.56 0

The results show that the proposed algorithm maintains the trend of requir-
ing half of the computing time than GA1, probing the scalability of BVNS.
In terms of quality, BVNS continues obtaining consistently better results than

382 A. Casado et al.

GALl. In this case, GA1 is not able to reach any best solution when considering
instances with 350 and 500 nodes. Therefore, these size of instances appears to
be the limit of the previous proposal.

5 Conclusions and Future Work

This research presents a BVNS algorithm for solving the Weighted Total Dom-
ination Problem. The initial solution for BVNS is constructed using Biased
GRASP, a combination which is not common in the associated literature, result-
ing in an effective but efficient algorithm for solving this hard combinatorial
optimization problem.

The algorithm is tested over a set of instances where the optimal value is
known, showing its efficacy and, then, over a set of more challenging instances
comparing it with the best proposal found in the literature. Again, BVNS is able
to reach the best solutions requiring half of the computing time, emerging as a
competitive method for solving the WTDP.

References

1. Alvarez—Miranda, E., Sinnl, M.: Exact and heuristic algorithms for the weighted
total domination problem. Comput. Oper. Res. 127, 105157 (2021)

2. Casado, A., et al.: An iterated greedy algorithm for finding the minimum dominating
set in graphs. Math. Comput. Simul. 207, 41-58 (2023)

3. Ferone, D., et al.: Enhancing and extending the classical GRASP framework with
biased randomisation and simulation. J. Oper. Res. Soc. 70(8), 1362-1375 (2019)

4. Ma, Y., Cai, Q., Yao, S.: Integer linear programming models for the weighted total
domination problem. Appl. Math. Comput. 358, 146-150 (2019)

5. Mladenovié¢, N.; Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097-1100 (1997)

6. Napoletano, A., et al.: Heuristics for the constrained incremental graph drawing
problem. Eur. J. Oper. Res. 274(2), 710-729 (2019)

7. Mauricio, G.C.R., Celso, C.R.: Optimization by GRASP - Greedy Randomized
Adaptive Search Procedures. Springer Nature, Cham (2016)

8. Séanchez-Oro, J., Mladenovié, N., Duarte, A.: General variable neighborhood search
for computing graph separators. Optim. Lett. 11, 1069-1089 (2017)

9. Sanchez-Oro, J., et al.: Variable neighborhood scatter search for the incremental
graph drawing problem. Comput. Optim. Appl. 68, 775-797 (2017)

®

Check for
updates

Optimization of Fairness and Accuracy
on Logistic Regression Models

Javier Yuste®)®, Eduardo G. Pardo®, and Abraham Duarte

Universidad Rey Juan Carlos, Méstoles, 28933 Madrid, Spain
{javier.yuste,eduardo.pardo,abraham.duarte}@urjc.es

Abstract. Decision-making software is used to automatically make
informed decisions by leveraging large amounts of data. Advances in
machine learning have extended the implementation of these systems
to processes that have a significant impact on the lives of people, such
as credit scoring, employment applications, or insurance rates. Due to
their impact, these systems must guarantee fairness from social and legal
points of view, operating in a non-discriminatory manner. Several meth-
ods have been studied in the literature to improve the fairness of these
systems, but often at the cost of accuracy. In this work, we propose two
methods based on the Variable Neighborhood Search scheme to opti-
mize the fairness of machine learning models after the training phase. In
particular, we apply the proposed approaches to optimize Linear Regres-
sion models, which are frequently used in decision-making software. The
proposed methods are competitive with a state-of-the-art Hill Climbing
algorithm, using a set of publicly available instances.

Keywords: Search-Based Software Engineering * Fairness
optimization - Variable Neighborhood Search

1 Introduction

Decision-making software is increasingly being used to automatically make deci-
sions in systems that have a significant impact on the lives of people [6]. Due
to the importance of such decisions, these systems must guarantee fairness from
both a social and a legal point of view [10]. That is, these systems must operate
in a non-discriminatory manner [6]. Discrimination is defined as “treating a per-
son or particular group of people differently, especially in a worse way from the
way in which other people are treated, because of their race, gender, sexuality,
etc.” [1]. Due to the importance of software fairness in decision-making software
systems, several researchers have investigated this issue [3,4,8].

In recent times, advances made in the area of Machine Learning (ML) have
extended the use of ML models for decision-making systems. In this context,
perhaps the simplest approach to mitigate biased decisions is the removal of
sensitive attributes from the training data. However, this method is not effective
in mitigating bias, due to indirect relations between different attributes [9]. This

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 383-389, 2024.
https://doi.org/10.1007/978-3-031-62912-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_37&domain=pdf
http://orcid.org/0000-0002-5956-9977
http://orcid.org/0000-0002-6247-5269
http://orcid.org/0000-0002-4532-3124
https://doi.org/10.1007/978-3-031-62912-9_37

384 J. Yuste et al.

phenomenon is known as the red-lining effect [5] or indirect discrimination [13].
As an alternative, other more sophisticated methods have been proposed to apply
bias mitigation at different stages: before training ML models (pre-processing),
during the training process (in-processing), or after the training phase (post-
processing) [8]. Regardless of the stage at which bias mitigation methods are
applied, most of the proposed approaches reduce bias at the cost of accuracy, a
trade-off known as the price of fairness [4].

In this work, we propose an approach based on the Variable Neighborhood
Search (VNS) scheme to optimize the fairness of ML models after the train-
ing phase. In particular, we apply the proposed approach to Linear Regression
models. These models are widely used in decision-making processes due to their
explainability, which is critical in these scenarios. We favorably compare the
proposed approach with a recent method based on Hill Climbing [8] over six
different instances that are publicly available [3].

2 Problem Definition

Linear Regression (LR) is a statistical model used for classification that esti-
mates the probability that an event occurs on the basis of a set of variables. An
LR model is made up of n variables or coefficients, represented by a vector of
dimension n (bo, b1, ..., bp—1). In Eq. (1), we represent the computation of the
prediction of an LR model with five variables that receives four values as input
(1‘1, T, T3, 1‘4).

Linear(zl,zg,xg,x4) = bo + b1 X1+ bg - X9 + bg T3 + b4 +Tg (1)

The result obtained from Eq. (1), which will be denoted as Y, is then used to
make a prediction using a sigmoid function, represented in Eq. (2). In a binary
classification context, predictions greater than or equal to 0.5 are labeled 1, while
predictions less than 0.5 are labeled 0.

1
— N 2
1+eY (2)

To measure the performance of the model, we use two metrics: Accuracy and
Statistical Parity Difference (SPD). Accuracy is a metric that evaluates the fre-
quency with which a model makes a correct classification. It is calculated as the
number of correct predictions divided by the total number of predictions. The
higher its value, the better the model. Therefore, the accuracy should be maxi-
mized. SPD analyzes the independence of protected attributes from predictions.
That is, the fairness of the model. The calculation of this metric is shown in Eq.
(3), where P(Y') represents the prediction of the LR model (see Eq. (2)) and D
denotes a privileged or unprivileged group. This metric computes the difference
between the rate of favorable outcomes received by the unprivileged group and
the favorable outcomes received by the privileged group. The best value for this

P(Y)

Optimization of Fairness and Accuracy on Logistic Regression Models 385

metric is zero, where there is no bias. The higher the absolute value of the met-
ric, the greater the bias towards one of the groups (and the less fair the model).
Therefore, the absolute value of SPD should be minimized.

SPD =Probability(P(Y) > 0.5 | D = unprivileged)

s I 3)
— Probability(P(Y) > 0.5 | D = privileged)

3 Algorithmic Proposal

In this work, we propose two different methods based on the VNS scheme [11].
In particular, we propose an approach based on Basic Variable Neighborhood
Search (BVNS) and an approach based on Variable Neighborhood Descent
(VND). In the BVNS approach, three input parameters are received: an ini-
tial solution x, a maximum perturbation size k., and a maximum time ¢,
The method tries to improve the solution iteratively until the maximum compu-
tational time ¢,,,, is reached. At each iteration, the solution x is first perturbed
by a shake procedure and then improved by a local search. The size of the per-
turbation introduced by the shake procedure is guided by the value of a variable
k, which is initially set to one. If the resulting solution z’, obtained at the end
of an iteration, is better than x, then z’ is saved as the new best solution z and
k is reset to one. Otherwise, k is incremented by one unit. If k£ is greater than
Kmaz, then its value is reset to one. Once the maximum time has been reached,
the method returns the best solution found during the search process.

In the VND approach, two input parameters are received: an initial solution
z and a set of neighborhood structures N. The method tries to improve the
solution iteratively by exploring the different neighborhood structures in NV until
the current solution is a local optimum within all the neighborhoods. First, a
variable [is set to one. At each iteration, the solution x is improved by performing
a local search within the neighborhood structure N;. If the resulting solution z’
is better than x, then 7’ is saved as the new best solution x and [is reset to one.
Otherwise, [is incremented by one unit. When all neighborhood structures have
been explored without finding a better solution than the current best solution z
(I > |N|), then the method returns the best solution found during the search.

For the aforementioned methods, we use three neighborhood structures pre-
viously proposed by Hort et al. [8]. The first neighborhood structure, named
Reduction, consists of multiplying a coefficient of the LR model by a random
value within the range [-0.1, 0.1]. The second neighborhood structure, named
Adjustment, consists of multiplying a coefficient of the LR model by a random
value within the range [0.9, 1.1]. The third neighborhood structure, named Vec-
tor, consists of multiplying all coefficients of the LR model by a random value
within the range [0.9, 1.1]. For the BVNS method, the Reduction neighborhood
structure is used both as the shake procedure and within the local search. For
the VND method, all neighborhood structures are explored. In particular, they

386 J. Yuste et al.

are explored in the following order: Reduction, Adjustment, and Vector. All local
search procedures follow a first improvement approach. For the BVNS method,
the parameters t,,4, and k., have been experimentally set to 10.

4 Experimental Results

For the experiments, we used four publicly available real-world datasets previ-
ously used [8]: Adult Census Income (adult) [2], Bank Marketing (bank) [12],
Correctional Offender Management Profiling for Alternative Sanctions (COM-
PAS) [14], and Medical Expenditure Panel Survey (MEPS19) [7]. In total, these
datasets contain six protected attributes. We compared the performance of the
proposed methods with a Hill-Climbing (HC) approach recently proposed by
Hort et al. [8]. First, we split the data into three sets (training, validation, and
test) as described in [8] and train the LR model on the training data. The trained
model is then optimized using the methods under comparison. To account for
the stochastic behavior of the optimization methods under comparison, we run
them 30 times for each instance. Importantly, the same initial trained model is
used for every method. Therefore, the differences obtained are only due to the
optimization process carried out by each method, not to the training process
of the LR model. All experiments have been performed in the same computing
environment, an Ubuntu 20.04.1 LTS with an AMD EPYC 7643 CPU with 16
cores and 32 GB RAM, using Python 3.7.17. In the case of the HC method
mentioned above, we use the original implementation crafted by the authors [8].

In Table 1, we present the results obtained. For each method and instance of
the comparison, we report the average improvement in accuracy (A Accuracy)
and the average reduction in SPD (V SPD), which represents the fairness of the
resulting model. For each metric, we highlight the best result in bold font
with gray background and the second-best result in bold font. As it can be
observed, the BVNS and VND approaches are able to simultaneously improve
both accuracy and fairness in all cases. Regarding the accuracy metric, both the
BVNS and VND methods achieve better or at least equal values than HC in all
cases. With respect to SPD, the VND method is able to obtain better results for
all instances. In Table 2, we present the average CPU time consumed (CPU?t (s)).

Again, we highlight the best result in bold font with gray background and
the second-best result in bold font. As it can be observed, the VND method is
the fastest in four out of six cases, while the HC approach is the fastest in the
other two cases.

Optimization of Fairness and Accuracy on Logistic Regression Models 387

Table 1. Comparison of the results obtained with an HC [8] method, a BVNS approach,
and a VND procedure.

A Accuracy V SPD
Dataset Attribute HC [§] BVNS VND HC [8] BVNS VND
adult race 0.0010 0.0010 0.0012 0.0073 0.0073 0.0081
sex 0.0012 0.0009 0.0016 0.0027 0.0022 0.0054
bank age 0.0015 0.0044 0.0037 0.0038 0.0146 0.0153
COMPAS race 0.0141 0.0141 0.0141 0.0256 0.0256 0.0256
sex 0.0151 0.0130 0.0357 0.0350 0.0431 0.2071
MEPS19 race 0.0098 0.0124 0.0103 0.0276 0.0323 0.0357

Table 2. Comparison of the computational time consumed by an HC [8] method, a
BVNS approach, and a VND procedure.

CPUt (s)
Dataset Attribute HC [8] BVNS VND
adult race 10.23 11.56 5.69
sex 10.46 10.19 7.26
bank age 7.18 14.37 1.95
COMPAS race 4.53 19.76 9.29
sex 4.57 17.43 21.95
MEPS19 race 5.41 13.12 3.58

5 Conclusions

In this paper, two different methods, based on the BVNS and VND schemes,
have been proposed to optimize the fairness (in terms of SPD) and accuracy
of LR models. In both cases, the same neighborhood structures proposed in a
recent state-of-the-art HC method have been explored. As it has been shown in
the experimental results, the BVNS and VND methods are able to obtain better
overall results than the state-of-the-art HC algorithm, thanks to the diversifica-
tion introduced by a shake procedure in the case of BVNS and the systematic
exploration of different neighborhood structures in the case of VND.

The problem described in this work needs to be further explored to find
better optimization strategies. First, additional neighborhood structures must
be studied that better explore the continuous values of the decision variables of
the problem. Additionally, we believe that this problem should be tackled in a
multi-objective approach by using dominance criteria to build non-dominated

388 J. Yuste et al.

sets of solutions. Following this line of research, the problem could then easily
include additional quality metrics to measure the solutions obtained in terms of
both accuracy and fairness.

Acknowledgments. This research has been partially supported by grants PID2021-
1257090A-C22 and PID2021-126605NB-100, funded by MCIN/AEI/10.13039/
501100011033 and by “ERDF A way of making Europe”; grant CIAICO/2021/224
funded by Generalitat Valenciana; grant M2988 funded by “Proyectos Impulso de
la Universidad Rey Juan Carlos 2022”; and “Céatedra de Innovacién y Digitalizacién
Empresarial entre Universidad Rey Juan Carlos y Second Episode” (Ref. ID MCAO06).

References

1. “Discrimination”. In: Cambridge Dictionary. Cambridge Dictionary (2024).
https://dictionary.cambridge.org/dictionary /english /discrimination. Accessed 29
Jan 2024

2. Becker, B., Kohavi, R.: Adult. UCI machine learning repository (1996). https://
doi.org/10.24432/C5XW20

3. Bellamy, R.K., et al.: AI fairness 360: an extensible toolkit for detect-
ing, understanding, and mitigating unwanted algorithmic bias. arXiv preprint:
arXiv:1810.01943 (2018)

4. Berk, R., et al.. A convex framework for fair regression. arXiv preprint:
arXiv:1706.02409 (2017)

5. Calders, T., Verwer, S.: Three Naive Bayes approaches for discrimination-free clas-
sification. Data Min. Knowl. Disc. 21, 277-292 (2010)

6. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamil-
ton, E.P., Roth, D.: A comparative study of fairness-enhancing interventions in
machine learning. In: Proceedings of the Conference on Fairness, Accountability,
and Transparency, pp. 329-338 (2019)

7. for Healthcare Research, A., Quality: medical expenditure panel survey (2018).
https://meps.ahrq.gov/mepsweb/. Accessed 29 Jan 2024

8. Hort, M., Zhang, J.M., Sarro, F., Harman, M.: Search-based automatic repair for
fairness and accuracy in decision-making software. Empir. Softw. Eng. 29(1), 36
(2024)

9. Kamiran, F., Calders, T.: Classifying without discriminating. In: 2009 2nd Inter-
national Conference on Computer, Control and Communication, pp. 1-6. IEEE
(2009)

10. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with
prejudice remover regularizer. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.)
Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Com-
puter Science(), vol. 7524, pp. 35-50. Springer, Berlin (2012). https://doi.org/10.
1007/978-3-642-33486-3_3

11. Mladenovié¢, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097-1100 (1997)

12. Moro, S., Cortez, P., Rita, P.: A data-driven approach to predict the success of
bank telemarketing. Decis. Support Syst. 62, 22-31 (2014)

https://dictionary.cambridge.org/dictionary/english/discrimination
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C5XW20
http://arxiv.org/abs/1810.01943
http://arxiv.org/abs/1706.02409
https://meps.ahrq.gov/mepsweb/
https://doi.org/10.1007/978-3-642-33486-3_3
https://doi.org/10.1007/978-3-642-33486-3_3

Optimization of Fairness and Accuracy on Logistic Regression Models 389

13. Pedreshi, D., Ruggieri, S., Turini, F.: Discrimination-aware data mining. In: Pro-
ceedings of the 14th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 560-568 (2008)

14. Propublica: Data and analysis for ‘Machine Bias’ (2023). https://github.com/
propublica/compas-analysis/. Accessed 29 Jan 2024

https://github.com/propublica/compas-analysis/
https://github.com/propublica/compas-analysis/

q

Check for
updates

A Variable Formulation Search Approach
for Three Graph Layout Problems

Sergio Cavero®®, J. Manuel Colmenar®, and Eduardo G. Pardo

Universidad Rey Juan Carlos, C/Tulipdn S/N, Mdéstoles, 28922 Madrid, Spain
{sergio.cavero, josemanuel.colmenar,eduardo.pardo}@urjc.es

Abstract. This paper studies the relationship between three linear lay-
out problems: minimum linear arrangement, cutwidth minimization, and
bandwidth minimization. Our research suggests that, given their corre-
lation, optimizing one problem could optimize the others. The Variable
Neighborhood Search metaheuristic can take advantage of this, especially
by switching problem formulations during the search process. The paper
presents experiments analyzing different strategies and provides insights
about their effectiveness. Our findings indicate that the proposed variant
of Variable Neighborhood Search outperforms traditional single-process
optimization methods in terms of both solution quality and computa-
tional efficiency.

Keywords: graph layout problems - bandwidth - cutwidth - variable
neighborhood search

1 Introduction

This paper studies graph layout problems (GLP), a family of combinatorial
optimization problems that aim to find an optimal arrangement of graph vertices
in a metric space, typically represented by a host graph [2]. The goal of GLP is to
optimize a particular function that depends on the properties of the graph, such
as edge length, edge crossing, or other graph-related metrics that may reflect real-
world applications. In particular, the most studied functions in the literature are
the bandwidth and cutwidth functions. On one hand, the bandwidth measures
the distance of an edge, i.e., the separation of two adjacent vertices in a host
graph. The bandwidth is usually the maximum distance between any two vertices
in a host graph. On the other hand, the cutwidth measures the maximum number
of edges traversing a limited area or region of space and tries to minimize it.
In the area of GLP, regardless of the objective function being studied,
researchers have traditionally focused on graph embedding problems in host

This research has been supported by the Grant Refs.: PID2021-1257090A-C22/0B-
C21 and PID2021-126605NB-100, funded by MCIN/AEI/10.13039/501100011033 and
by ERDF, a way of making Europe. CIAICO/2021/224, funded by Generalitat Valen-
ciana. M2988 and MCAO06, funded by Universidad Rey Juan Carlos.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 390-396, 2024.
https://doi.org/10.1007/978-3-031-62912-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62912-9_38&domain=pdf
http://orcid.org/0000-0002-5258-5915
http://orcid.org/0000-0001-7490-9450
http://orcid.org/0000-0002-6247-5269
https://doi.org/10.1007/978-3-031-62912-9_38

A VFS Approach for Three GLP 391

graphs that have a known or regular structure. Among others, the most com-
mon structures are paths, cycles, grids, tori, hypercubes [1,2]. Similarly, most of
the papers in the literature focus on problems with a single objective function.
This specialization allows researchers to delve into individual problem charac-
teristics.

In this paper we explore the connections between the aforementioned func-
tions to provide a fresh perspective on graph layout issues. The research goal is to
investigate how solutions to different problems are related, and whether optimiz-
ing one objective improves the quality of the others. Based on this, we propose
an algorithm based on the Variable Neighborhood Search (VNS) methodology,
to exploit these observations. Particularly, we focus on a subset of GLP known
as Linear Layout Problems (LLP). LLP involve the embedding of graphs into a
path host graph and, specifically, we concentrate on the Bandwidth Minimization
Problem (BMP) [3], the Minimum Linear Arrangement Problem (MinLA) [5],
which is also referred to as the Bandwidth Sum Minimization, and the Cutwidth
Minimization Problem (CMP) [4].

2 Formal Description of Graph Layout Problems

Let G = (Vg, Eg) represent the input graph, where Vi denotes the set of vertices
and F¢g denotes the set of edges. Similarly, let H = (Vy, E'y) represent the host
graph, where Vy denotes the set of vertices and Fy denotes the set of edges.
Let (u,v) be an undirected edge that joins the vertices u and v. Finally, let
p(u,v) be the set of paths that connect the vertices (u,v) in Eg. s.t. p(u,v) =
(u,ur), (w1, u2), ..., (wi—1, u;), (ug,v).

Given the input graph G and the host graph H, an embedding of G in H
is defined by the mathematical functions ¢ and 1. The function ¢ assigns each
vertex of the input graph to a vertex of the host graph and it is mathematically
expressed in Eq. (1). The function ¢ maps each edge of Eg to a set of paths in H
whose endpoints are ¢(u) and ¢(v). For the considered problems, the function
assigns the path between ¢(u) and ¢(v) with the smallest possible cardinality,
as it is presented in Eq. (2).

Vo=V, ViueVg::veVy:|:pu)=v (1)
(s, u,v) = argmin |p(p(u), ¢(v))], (2)
p(w,z)EP
where the operator | - | computes the cardinality of a path.

With these definitions established, we introduce the formulation of the con-
sidered problems. The BMP and the MinLA involve the computation of the
bandwidth function: bw(ep, (u,v)) = (v, u,v)|, while the CMP computes the
cutwidth function: cut(p, (w, 2)) = |{(u,v) € Eq : (w, 2) € ¥(p,u,v)}|.

Considering that @ represents the entire set of feasible solutions to a problem.
The formal definitions of the considered problems are stated as follows:

392 S. Cavero et al.

BMP = argmin max bw(yp, (u,v)) (3)
pcd (u,v)EEG
MinLA = arg min Z buw(ep, (u,v)) (4)
pEP (u,w)EEqG
CMP = argmin max cut(p, (w, 2)) (5)

ped (w,2)EEH

3 Algorithmic Proposal

This paper presents an algorithm based on a variant of VNS, named Variable
Formulation Search (VFS). This variant exploits the similarities between the
three studied problems by considering different problem formulations. It is typ-
ically used when multiple solutions of equal value exist in the solution space [4].
Initially, VF'S was designed to optimize equivalent formulations, where optimal
solutions are mutually optimal. However, in our methodology, the formulations
may not be equivalent because they represent different but related problems.

Algorithm 1 presents the proposed VFS algorithm. It starts with an initial
solution s and a set of ¢ problem formulations F7, Fo, ..., F;. The algorithm sys-
tematically explores the formulations, initializing a set of ¢ solutions s1, so, ..., S;
with the current solution s (step 1). The outer loop continues until the prede-
fined stopping criterion is met (step 2). Within each formulation, the inner loop
(step 4) evaluates the improvement of the current solution obtained as the result
of a local search procedure using the current formulation Fy (step 5). If a better
solution s’ is found, it replaces the current solution s and updates the solution
s corresponding to that formulation (steps 6 to 8). Otherwise, the algorithm
proceeds to the next formulation, incrementing k (step 9). This iterative pro-
cess continues until the stopping condition is satisfied, eventually yielding a set
of optimal solutions for each formulation (step 11). Using randomly generated
solutions, this VFS metaheuristic adeptly navigates diverse problem formula-
tions, dynamically adapting the optimization process and effectively traversing
flat areas of the landscape.

4 Experimental Results

In this section, we examine the interconnections among the addressed prob-
lems, and subsequently compare our proposed VFS algorithm with the tradi-
tional single-process optimization. Our experiment uses a dataset of 40 rep-
resentative graphs from the Harwell-Boeing collection (https://math.nist.gov/
MatrixMarket /).

The first experiment used Pearson’s coefficient to examine the correlation
among the three problems (BMP, MinLA, and CMP) based on the quality of
100 random solutions for each instance. We found a significant positive correla-
tion between the studied problems. Specifically, there was a correlation of 0.94

https://math.nist.gov/MatrixMarket/
https://math.nist.gov/MatrixMarket/

A VFS Approach for Three GLP 393

Algorithm 1: Variable Formulation Search (VFS)

Data: Initial solution s, problem formulations Fi, Fa,...,F;
81,82,...,8; < §;

while stopping criterion is not met do

k—1;

while k£ <i do

s' « LocalSearch(s, Fy);

if Fi(s") < Fr(sk) then

’
s« 8

S — 8’3

© 0N O Ok W N

else
10 L k—k+1;

11 return si,s2,...,Sk;

between BMP and MinLLA, a correlation of 0.8 between BMP and CMP, and a
correlation of 0.95 between CMP and MinLA.

In the second experiment, we implemented a local search algorithm using a
swap neighborhood. Simultaneously, we evaluated the performance of the other
two problems. Figurel shows the evolution of each problem and the quality
of the others throughout the optimization process. The Y-axis represents the
normalized average quality (ranging from 0 to 1) for all instances, while the X-
axis represents the number of iterations, providing a perspective of the size of the
solution space. The first insight from the experiment is that we can confirm the
initial hypothesis: optimizing one of the three problems significantly improves
the quality of the other two since the functions are all descendant. Another
insight that can be gained from the figure is related to the number of moves
performed in each local search. The optimization of BMP (Fig. 1la) required on
average 9.15 moves to reach a local optimum. In contrast, the optimization of
CMP (Fig. 1b) required an average of 1760.9 moves, and the MinLA (Fig. 1c)
required 3889.47 moves. Therefore, it seems that BMP and CMP, whose objective
functions are based on the maximum function, exhibit a flat landscape in the
search space where many different solutions have the same objective function
value. As a result, local search algorithms tend to get stuck [4]. On the other
hand, MinLA’s sensitivity to the objective function implies that minor variations
in the solution can lead to different optimal solutions in the solution space.

Next, we ran the VFS algorithm for 99 iterations (33 optimizations per prob-
lem). Figure 2a shows the quality convergence, indicating the best solution found
for each problem in each iteration, while Fig. 2b shows the solution quality across
iterations for the three problems. The amalgamation of these methods is effec-
tive because it allows both diversification and, at the same time, intensification
in a different, albeit related, direction. This allows for intelligent diversification
since it may deteriorate momentarily in relation to a specific objective, but may
lead to potential improvement in the future.

394 S. Cavero et al.

LS BMP LS CMP

— BMP

° ° [

® © °
s
%

Normalized value of the objective function
Normalized value of the objective function
o
3

0.6
0.5
0.4
1 2 3 4 5 6 7 8 9 0 25 50 75 100 125 150 175
Iterations Iterations

a b

LS MinLA

109 — BMP

0.4

Normalized value of the objective function

e T

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

C

Fig. 1. Optimization of the la BMP, 1b CMP, and 1c MinLA, illustrating solution
quality across the three considered problems

Convergence evolution Iteration evolution

1.0 —— BMP 1.0 — BMP
< === MinLA < ~== MinLA
£ —- cMP £ —-- CMP
Sos Sos
o o
z z
° kel
4 o
So6 So6
@ o
s s
s s
04 204
3 3
g s
s 3
3 g
8 5
02 ® 02
£ £
s s 1A
2 N 2 gy L

oo e e 00 NAIASAN L LIS G s h A ASA NNt r A,

0 20 40 60 80 100 0 20 20 60 80 100
Iterations Iterations

a b

Fig. 2. 2a Objective function convergence; 2b evolution during the optimization of
BMP, CMP, and MinLA through the VFS algorithm.

A VFS Approach for Three GLP 395

Table 1. Comparison of the results obtained by the different local search procedures,
and the VFS, for the studied problems (BMP, MinLA, CMP).

LS BMP | LS MinLA | LS CMP | VFS
BMP | OF 364.90 235.25 386.85 190.50
Dev. (%) 135.33 31.46 142.00 1304
#Best 0 17 0 23
MinLA OF 256343.70 40108.75 | 166560.30 | 38031.63
Dev. (%) 719.91 32.62 450.63 16.49
#Best 0 20 1 19
CMP |OF 659.68 110.15 349.93 108.90
Dev. (%) 651.11 26.98 319.95 21.78
#Best 0 23 1 18
CPU Time (s) 110.71 1482.03 2210.57 906.95

In the last experiment, we compared each problem’s optimization (LS BMP,
LS MinLA, LS CMP) with VFS. The methods ran for 1 h or 99 iterations. Table 1
shows the objective function value (OF), deviation (Dev. (%)), the number of
best solutions found from the experiment (#Best), and run time for each method
and problem. On average, the VFS method achieves the best results in terms of
solution quality. In addition, the VFS method is the fastest of the four methods,
demonstrating its computational efficiency. It is worth highlighting the ability
of LS MinLA to find quality solutions for other problems.

5 Conclusion

Our research focuses on three well-known linear layout problems: the bandwidth
minimization, the minimum linear arrangement and the cutwidth minimization.
We propose an algorithm based on the Variable Formulation Search methodol-
ogy, motivated by the hypothesis that optimizing one problem can simultane-
ously optimize others. The algorithm alternates among different problem formu-
lations to optimize solutions. The experimental results indicate that the Variable
Formulation Search algorithm is effective in improving the quality of the solu-
tion for all three problems, including those with flat landscapes and constrained
search spaces. Future research could extend these findings to other graph layout
problems.

References

1. Cavero, S., Pardo, E.G., Duarte, A.: Efficient iterated greedy for the two-dimensional
bandwidth minimization problem. Eur. J. Oper. Res. 306(3), 1126-1139 (2023)

2. Diaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput.
Surv. (CSUR) 34(3), 313-356 (2002)

396 S. Cavero et al.

3. Lim, A., Lin, J., Rodrigues, B., Xiao, F.: Ant colony optimization with hill climbing
for the bandwidth minimization problem. App. Soft Comp. 6(2), 180-188 (2006)

4. Pardo, E.G., Mladenovié, N., Pantrigo, J.J., Duarte, A.: Variable formulation search
for the cutwidth minimization problem. App. Soft Comp. 13(5), 2242-2252 (2013)

5. Petit, J.: Experiments on the minimum linear arrangement problem. J. Exp. Algo-
rithmics (JEA) 8 (2003)

Author Index

A

Aggoune, Riad 1-234

Akbay, Mehmet Anil 1I-341

Alidaee, Bahram 1I-321

Alvarez—Martl’nez, David 1I-65, 11-188,
11-306

Alves de Queiroz, Thiago [-145

Aranguren, Itzel 11-279

B

Barbalho, Thiago J. 11-249

Bassett, Alexander 1-178

Benbrik, Oualid 1-291

Benmansour, Rachid 1-291

Billot, Romain II-112

Blum, Christian 11-341, I1-354, 1I-367
Bolufé-Rohler, Antonio 1I-19
Bonasera, Lorenzo 1I-3

C

Calvete, Herminia I. 11-360
Casado, Alejandra 1-377
Casas-Ordaz, Angel 11-279, 11-292
Cattaruzza, Diego 1-62

Cavero, Sergio 1-371, 1-390
Ceschia, Sara 1-158, I-164
Chacén Sartori, Camilo 11-367
Chaves, Antonio A. 1-15
Cheimanoff, Nicolas 11-204
Codognet, Philippe 1-262
Colmenar, J. Manuel 1-309, I-359, 1-390
Copie, Adrian 1I-80

Corsini, Andrea 1-136

Ciirebal, Ahmet 1I-264

Cutello, Vincenzo II-126

D

Da Ros, Francesca 1I-50
Davidovi¢, Tatjana 1-344
Daza-Escorcia, Julio Mario 1I-188
de Aguiar, Ana Raquel 1-184

de Oliveira, Ruan Myller Magalhdes 1-145

Deleplanque, Samuel 1-234

Dell’ Amico, Mauro 1-136

Di Gaspero, Luca 1-164, 11-50

Duarte, Abraham 1-9, 1-309, 1-359, 1-377,
1-383, 11-328

Duhamel, Christophe 11-249

Duma, Davide 1I-3

Dupin, Nicolas 1I-96

E
Elidrissi, Abdelhak 1-291
Ezugwu, Absalom E. 1-45

F

Farias, Katyanne 1-123
Fénigs, Pierre 11-204
Fleury, Gérard 1-203, I-281

G

Galé, Carmen 11-360
Gandibleux, Xavier 1I-174
Gayon, Jean Philippe 1-28
Gebreselassie, Marrian H. 11-234
Gibbons, Ethan 1-78
Gil-Borrds, Sergio 1-331
Giraldo-Herrera, Daniel 1I-306
Gjergji, Ida 1I-158

Gomes, Maria Isabel 1-184
Gualandi, Stefano 11-3

H

Ha, Huy Phuc Nguyen 1-246, 1-268
Ha, Minh Hoang 11-373

Hansen, Pierre 1-316

Hansen, Xavier 1-316

Hao, Jin-Kao 1-3,1-219

Herdianto, Bachtiar 1I-112
Hernandez, Aitor 11-360

Herran, Alberto 1-309

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2024

M. Sevaux et al. (Eds.): MIC 2024, LNCS 14753, pp. 397-399, 2024.

https://doi.org/10.1007/978-3-031-62912-9

https://doi.org/10.1007/978-3-031-62912-9

398

I
Tori, Manuel 1-145
Iranzo, José A. 11-360

J

Jacques, Julie 1-178

Jeli¢, Slobodan 1-344

Jourdan, Laetitia 1-62

Jourdin, Yann 1-113
Jovanovic, Raka 11-264, 11-347

K

Kalatzantonakis, Panagiotis 1-365
Kessaci, Marie-Eléonore 1-62
Khannoussi, Arwa 1-113, II-387
Kimura, Takayuki [-21

Kitri, Mohamed Nour 1I-204
Kotake, Nozomi 1-21

Kramer, Arthur 1-145

L
Lacomme, Philippe 1-28, I-123, 1-203, I-281
Lahrichi, Nadia II-334

Laredo, Juan L. J. 1I-249
Le Josse, Nicolas 11-219
Legrand, Clément [-62

Li, Haitao 1I-321
Lozano-Osorio, Isaac
Lucas, Flavien 1I-112

I1-328

M

Madani, Batool 1I-35

Maghiar, Octavian 1I-80

Makboul, Salma 1-171

Mancini, Simona 1-164

Maniezzo, Vittorio 1-164, 1-193
Marin, Mircea 1I-80

Marti, Rafael 1-103
Martinez-Gavara, Anna 1-103, I-377
Martino, Diego Perdigdo 1-123

Martin-Santamaria, Rail 1-309
Matsuura, Takafumi 1-21, 1-93
Merizalde, Andrés 11-65

Meyer, Patrick 1-113, 11-334

Micota, Flavia 1I-80

Mohammadi, Mehrdad 11-334
Montemanni, Roberto 1-136, I-164
Morales-Castafieda, Bernardo 11-292
Musliu, Nysret 1I-158

Author Index

N
Nakajima, Kazuma [-21

Navarro, Mario A. 11-292
Ndiaye, Malick 1I-35
Nebro, Antonio J. 1I-174

Nguyen, Viet Hung [-246, I-268

(0]

Oliva, Diego 11-279, 11-292

Olteanu, Alexandru-Liviu 1-113, II-219,
11-387

Olusanya, Micheal 11-234

Ombuki-Berman, Beatrice 1-78

Oussama, Amine [-28

Oyelade, Olaide N. 1-45

P

Pardo, Eduardo G. 1-331, 1-371, 1-383, 1-390
Pardo, German Roberto 11-65
Parrenio-Torres, Consuelo 1-103

Pavone, Mario 1I-126

Pérez-Pelo, Sergio 1-9

Perrachon, Quentin 11-387

Pferschy, Ulrich 1I-142
Pozos, Alejandra Tabares
Prodhon, Caroline 1-203

11-65

R

Ramalhinho, Helena 1-184
Ramos, Tania 1-184
Ramos-Frutos, Jorge 11-279
Reixach, Jaume 1I-354
Resende, Mauricio G. C. I-15
Reula, Miguel 1-103
Riordan, Aidan 1-316
Rivera-Aguilar, Beatriz A.
Robles, Marcos 1-371
Rosati, Roberto Maria 1-164, II-373
Rubiano, Gustavo 1I-65

11-292

S

Saha, Apu K. 145

Salazar, Sergio 1-359

Salhi, Said 1I-35

Samaras, Nikolaos 1-365

Samrout, Marwa 11-380
Séanchez-Oro, Jests 1-9, 1-377, 11-328
Santos, Andréa Cynthia 11-249
Sbihi, Abdelkader 1I-380

Author Index

Schaerf, Andrea 1-158, I-164, 11-373
Selea, Teodora 1I-80

Sevaux, Marc II-112, 11-219, I1-387
Shibutani, Rikuto 1-21

Sifaleras, Angelo 1-291, I-365

Silva, Ricardo M. A. 1-15

Sorensen, Kenneth 11-328

Steiner, Elmar 11-142
Suppakitpaisarn, Vorapong 1-219

T

Ta, Anh Son 1-246, I-268

Ta, Dinh Quy 1I-373

Tanguy, Hervé 1I-219
Tchernev, Nikolay 11-204
Tepeneu, Ionut I1-80
Thevenin, Simon 11-334
Thompson, Joseph Orion 11-334
Thuillier, Owein 1I-219

399

\Y

Valdivia, Arturo 11-279

Vo8, Stefan 11-264, 11-347
Vulpescu, Bogdan 1-281

w
Wilouwou, Essognim 1I-387

X
Xu, Bowen II-19

Y
Yassine, Adnan 1I-380
Yuste, Javier 1-383

V/

Zaharie, Daniela 1I-80
Zanazzo, Eugenia [-158
Zapotecas-Martinez, Sadl I1-279
Zheng,He 1-3

Zito, Francesco 1I-126

	 Preface
	 Organization
	 Contents – Part I
	 Contents – Part II
	Advances in Combinatorial Optimization
	Breakout Local Search for Heaviest Subgraph Problem
	1 Introduction
	2 Breakout Local Search for HSP
	2.1 General Framework
	2.2 Initial Solution
	2.3 Local Search
	2.4 Adaptive Perturbation

	3 Experimental Results
	3.1 Test Instances
	3.2 Results

	4 Conclusion
	References

	A Biased Random Key Genetic Algorithm for Solving the -Neighbor p-Center Problem
	1 Introduction
	2 Biased Random Key Genetic Algorithm
	2.1 Decoder
	2.2 Local Improvement

	3 Experiments and Results
	4 Conclusions and Future Work
	References

	A Continuous-GRASP Random-Key Optimizer
	1 Introduction
	2 Random-Key Optimizer
	3 Random-Key GRASP
	3.1 GRASP
	3.2 Continuous GRASP
	3.3 Random-Key-GRASP

	4 Experimental Results
	References

	Adaptive Ant Colony Optimization Using Node Clustering with Simulated Annealing
	1 Introduction
	2 Adaptive Ant Colony Optimization
	3 Simulated Annealing
	4 Numerical Experiment
	5 Conclusion
	References

	Job-Shop Scheduling with Robot Synchronization for Transport Operations
	1 Introduction
	2 Problem Description
	3 Linear Formulation of the Problem
	3.1 Data
	3.2 Decision Variables
	3.3 Objective Function
	3.4 Constraints

	4 Metaheuristic Based Resolution
	4.1 Solution Modeling Based on Disjunctive Graph
	4.2 Indirect Representation of a Solution Using Bierwith’s Vector
	4.3 Local Search
	4.4 Metaheuristic

	5 Numerical Experiments
	6 Conclusion
	References

	AI and Metaheuristics for Routing
	SIRO: A Deep Learning-Based Next-Generation Optimizer for Solving Global Optimization Problems
	1 Introduction
	2 Model Description
	2.1 SIRO Algorithm Modelling
	2.2 SIRO Model
	2.3 Basic and Neural Network-Based Initialization Methods
	2.4 SIRO Neural Network-Based Parameter Selection
	2.5 SIRO Algorithms and Computational Complexity

	3 System and Parameter Configuration
	3.1 Results and Discussion
	3.2 Analysis of Statistical Results

	4 Conclusion and Future Work
	References

	Investigation of the Benefit of Extracting Patterns from Local Optima to Solve a Bi-objective VRPTW
	1 Introduction
	2 Multi-objective Optimization
	3 Learning and Multi-objective Optimization
	4 Hybridization Between Learning and MOEA/D
	4.1 MOEA/D
	4.2 Learning Within A and Variants

	5 Problem and Related Knowledge
	5.1 Vehicle Routing Problems with Time Windows (VRPTW)
	5.2 Pattern Injection Local Search

	6 Experimental Setup
	6.1 The Solomon's Benchmark
	6.2 Setup and Tuning

	7 Experimental Design
	8 Experimental Results
	9 Conclusion
	References

	A Memetic Algorithm for Large-Scale Real-World Vehicle Routing Problems with Simultaneous Pickup and Delivery with Time Windows
	1 Introduction
	2 Related Works
	3 VRPSPDTW Problem Formulation
	4 Memetic Algorithm for the VRPSPDTW
	4.1 Solution (Chromosome) Representation and Initialization
	4.2 Crossover
	4.3 Local Search

	5 Computational Study and Experimental Analysis
	5.1 Problem Instances from JD Logistics
	5.2 Experimental Setup
	5.3 Comparing BCRCD with Other Crossovers
	5.4 Comparing MA-BCRCD with MATE with and Without Crossover

	6 Conclusion
	References

	Tabu Search for Solving Covering Salesman Problem with Nodes and Segments
	1 Introduction
	2 Covering Salesman Problem with Nodes and Segments
	3 Proposed Method
	3.1 Local Search Method
	3.2 Tabu Search

	4 Simulations and Results
	5 Conclusion
	References

	GRASP with Path Relinking
	VNS with Path Relinking for the Profitable Close-Enough Arc Routing Problem
	1 Introduction
	2 Previous GRASP Approaches
	3 A New Heuristic Algorithm Based on VNS
	3.1 The Path Relinking Post-processing

	4 Computational Experiments and Conclusions
	References

	Meta-Heuristics for Preference Learning
	A Simulated Annealing Algorithm to Learn an RMP Preference Model
	1 Introduction
	2 Ranking Based on Multiple Reference Profiles (RMP)
	3 A Simulated Annealing Algorithm to Learn RMP/SRMP Models
	4 Numerical Analysis
	5 Conclusion and Future Work
	References

	New VRP and Extensions
	Iterative Heuristic over Periods for the Inventory Routing Problem
	1 Introduction
	2 The Inventory Routing Problem
	3 The Iterative Heuristic over Periods
	4 Computational Experiments
	4.1 Instances
	4.2 Results

	5 Conclusion
	References

	Combining Heuristics and Constraint Programming for the Parallel Drone Scheduling Vehicle Routing Problem with Collective Drones
	1 Introduction
	2 Problem Description
	3 Constraint Programming Models
	4 Experimental Results
	References

	Operations Research for Health Care
	A Re-optimization Heuristic for a Dial-a-Ride Problem in the Transportation of Patients
	1 Introduction
	2 Literature Review
	3 Problem Description
	4 Re-optimization Heuristic
	5 Numerical Experiments
	6 Conclusions and Future Works
	References

	Solving the Integrated Patient-to-Room and Nurse-to-Patient Assignment by Simulated Annealing
	1 Introduction
	2 Search Method
	3 Preliminary Results
	4 Conclusions
	References

	Enhancing Real-World Applicability in Home Healthcare: A Metaheuristic Approach for Advanced Routing and Scheduling
	1 Introduction
	2 Problem Formulation
	2.1 Basic Formulation
	2.2 Extended Formulation

	3 Solution Technique
	4 Experimental Results
	5 Conclusions and Future Work
	References

	Solving the Two-Stage Robust Elective Patient Surgery Planning Under Uncertainties with Intensive Care Unit Beds Availability
	1 Introduction and Related Works
	2 Solving the Two-Stage Robust Elective Surgery Planning
	3 Computational Experience
	4 Conclusion and Perspectives
	References

	Extracting White-Box Knowledge from Word Embedding: Modeling as an Optimization Problem
	1 Introduction
	2 Background on Word Embedding
	3 A Combinatorial Optimization Model to Extract White-Box Knowledge from Word Embedding
	3.1 Solution Modeling
	3.2 Resolution with a Local Search

	4 Experiments and Results
	5 Conclusion and Further Research
	References

	A Hybrid Biased-Randomized Heuristic for a Home Care Problem with Team Scheme Selection
	1 Introduction
	2 Solution Methodology
	3 Results
	4 Conclusions and Future Work
	References

	Optimization for Forecasting
	Extended Set Covering for Time Series Segmentation
	1 Introduction
	2 An Extended Set Covering Model
	3 Computational Experience
	4 Conclusions
	References

	Quantum Meta-Heuristic for Operations Research
	Indirect Flow-Shop Coding Using Rank: Application to Indirect QAOA
	1 Introduction
	2 Indirect Flow-Shop Coding Using Rank
	2.1 Graph Modeling
	2.2 Quasi-Direct Representation
	2.3 Indirect Representation of Solutions
	2.4 Resolution of the Carlier 7 Jobs 7 Machines Instance
	2.5 Resolution of the Carlier 8 Jobs 8 Machines Instance
	2.6 Resolution of the Carlier 8 Jobs 9 Machines Instance

	3 Conclusion
	References

	Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries
	2.1 Max Cut Problem
	2.2 QUBO Formulation for the Max Cut Problem
	2.3 Graph Sparsification by Effective Resistances ch22spielman2008graph

	3 Proposed Method
	4 Experimental Results
	4.1 Gap in Solutions Due to Graph Sparsification
	4.2 Computation Time in Classical Solver
	4.3 Experiments on Quantum-Inspired Solvers
	4.4 Discussions on Results on Classical and Quantum-Inspired Solvers

	5 Conclusion and Future Works
	References

	Addressing Machine Unavailability in Job Shop Scheduling: A Quantum Computing Approach
	1 Introduction
	2 Problem Definition
	3 Related Works
	4 QUBO Formulation
	5 Non Fixed Resource Availability Constraints
	6 Computational Experiments
	7 Discussion
	References

	Solving Edge-Weighted Maximum Clique Problem with DCA Warm-Start Quantum Approximate Optimization Algorithm
	1 Introduction
	2 Introduction to QAOA and Warm-Start Method
	2.1 Introduction to QAOA
	2.2 Introduction to the Warm-Start Method in Quantum Optimization

	3 Warm Start Method for QAOA with Non-convex Relaxed Quadratic Binary Optimization Problem
	3.1 General Warm-Start Method with DCA
	3.2 Quadratic Formulation of Edge-Weighted Max Clique Problem

	4 Numerical Simulation
	5 Conclusion and Feature Work
	References

	Comparing Integer Encodings in QUBO for Quantum and Digital Annealing: The Travelling Salesman Problem
	1 Introduction
	2 Quantum Annealing and QUBO
	3 The Travelling Salesman Problem in QUBO
	4 Experimental Results
	5 Conclusion
	References

	Solving Quadratic Knapsack Problem with Biased Quantum State Optimization Algorithm
	1 Introduction
	2 Preliminary
	2.1 Introduction to QAOA
	2.2 Introduction to Quadratic Knapsack Problem and Its Reformulations for QAOA

	3 Introduction to Biased Quantum State for Constrained Quadratic Binary Optimization
	4 Numerical Simulation
	5 Conclusion and Feature Work
	References

	Quantum Optimization Approach for Feature Selection in Machine Learning
	1 Feature Selection
	1.1 State of the Art
	1.2 QUBO Feature Selection

	2 Hamiltonian Modelization and Resolution
	2.1 The Hamiltonian
	2.2 Finding the Optimal Solution

	3 Numerical Experiments
	3.1 Preliminaries
	3.2 Numerical Experiments

	4 Concluding Remarks
	References

	International Conference on Variable Neighborhood Search (ICVNS)
	Advanced Algorithms for the Reclaimer Scheduling Problem with Sequence-Dependent Setup Times and Availability Constraints
	1 Introduction and Literature Review
	2 Problem Description
	3 Mathematical Formulation
	4 Greedy Constructive Heuristic Procedure
	5 General Variable Neighborhood Search
	5.1 Neighborhood Structures
	5.2 Variable Neighborhood Descent
	5.3 Shake Strategy
	5.4 GVNS for the RSP-PPMA

	6 Computational Results
	6.1 Benchmark Instances
	6.2 Tuning Parameters
	6.3 An Analysis of the Effectiveness of the Proposed Constructive Heuristic for Small Problems
	6.4 Assessing the Efficiency and Impact of GVNS Metaheuristics for Small Problems
	6.5 Evaluating the Enhancement of Solutions from the Proposed Constructive Heuristic with Metaheuristics for Medium-Scale Problems

	7 Conclusion
	References

	An Efficient Algorithm for the T-Row Facility Layout Problem
	1 Introduction
	2 Variable Neighborhood Search Approach
	3 Computational Experiments
	4 Conclusions and Future Work
	References

	Interpretability, Adaptability and Scalability of Variable Neighborhood Search
	1 Introduction
	2 Interpretability, Adaptability and Scalability of VNS
	2.1 Interpretability
	2.2 Adaptability
	2.3 Scalability

	3 Hybrid, Parallel and AI/ML Implementations of VNS
	3.1 Hybrids
	3.2 Parallelization
	3.3 AI/ML and Improvements to the VNS Scheme

	4 Proposal for a Programme for Variable Neighborhood Search
	4.1 Establish Public Repositories for Shared Code, Frameworks and Libraries
	4.2 Document the Challenges and Performance of VNS for Solving Large and Complex Real-World Problems and Support Exploration of the Latest Advances in Computing
	4.3 Continue to Engage Proactively with Other Metaheuristics
	4.4 Popularize VNS and Further the Development of Optimization as a Public Utility

	References

	Exploring the Integration of General Variable Neighborhood Search with Exact Procedures for the Optimization of the Order Batching Problem
	1 Introduction
	2 State of the Art
	3 Algorithmic Proposal
	3.1 Batching Algorithms
	3.2 Constructive Procedure
	3.3 Routing Algorithms

	4 Experiments
	4.1 Instances
	4.2 Experiment #1
	4.3 Experiment #2

	5 Conclusions
	References

	VNS-Based Matheuristic Approach to Group Steiner Tree with Problem-Specific Node Release Strategy
	1 Introduction
	2 Matheuristics
	3 Integer Programming Formulations
	4 The Proposed Matheuristic Algorithm SUBTVNS
	4.1 Node Priorities

	5 Experiments
	5.1 Implementation
	5.2 Instances
	5.3 Results

	6 Conclusion
	References

	A Basic Variable Neighborhood Search for the Planar Obnoxious Facility Location Problem
	1 Introduction
	2 Algorithmic Proposal
	2.1 Discretization of the Instance
	2.2 Construction of Solutions
	2.3 Basic Variable Neighborhood Search

	3 Computational Experiments
	4 Conclusions and Future Work
	References

	Temporal Action Analysis in Metaheuristics: A Machine Learning Approach
	1 Introduction
	1.1 Metaheuristics in Combinatorial Optimization
	1.2 Machine Learning Integration in Metaheuristics

	2 Methodological and Experimental Setup
	2.1 GVNS-Driven Data Collection and Analysis
	2.2 Model and Parameter Optimization

	3 Results and Analysis
	4 Exploring the Future of Machine Learning in Metaheuristics
	5 Conclusions
	References

	A Variable Neighborhood Search Approach for the S-labeling Problem
	1 Introduction
	2 Algorithmic Proposal
	3 Preliminar Experimentation
	4 Final Results
	5 Conclusions
	References

	Improving Biased Random Key Genetic Algorithm with Variable Neighborhood Search for the Weighted Total Domination Problem
	1 Introduction
	2 Variable Neighborhood Search
	3 Biased Greedy Randomized Adaptive Search Procedure
	4 Experiments and Results
	5 Conclusions and Future Work
	References

	Optimization of Fairness and Accuracy on Logistic Regression Models
	1 Introduction
	2 Problem Definition
	3 Algorithmic Proposal
	4 Experimental Results
	5 Conclusions
	References

	A Variable Formulation Search Approach for Three Graph Layout Problems
	1 Introduction
	2 Formal Description of Graph Layout Problems
	3 Algorithmic Proposal
	4 Experimental Results
	5 Conclusion
	References

	Author Index

