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THE LOCATION OF EMERGENCY
SERVICE FACILITIES

Constantine Toregas, Ralph Swain
Cornell University, Ithaca, New York
Charles ReVelle
The Johns Hopkins University, Baltimore, Maryland

and

Lawrence Bergman
Dansker Company, New York, N. Y.
(Received October 7, 1970)

This paper views the location of emergency facilities as a set covering prob-
lem with equal costs in the objective. The sets are composed of the po-
tential facility points within a specified time or distance of each demand
point. One constraint is written for each demand point requiring ‘cover,’
and linear programming is applied to solve the covering problem, a single-
cut constraint being added as necessary to resolve fractional solutions.

ETERMINING ‘good’ locations for facilities on a network has re-

ceived a reasonable amount of attention in the last decade. Many
of the approaches to this class of problems are indicated in CaABOT ET AL.,!!
and REVELLE ET AL.1® This paper is concerned with a facility-location
problem with the special aspect that the maximum time or distance that
separates a user from his closest service is a crucial parameter. As such,
the problem is seen as most applicable to the location of emergency services
such as fire stations, although one may equally well apply it to the location
of ordinary services, such as schools, libraries, etc.

If an upper limit is placed on the response time or distance to any user
node, consideration can be given to determining the minimum-cost spatial
arrangement of service facilities that adequately serves the entire user
region. If costs (determined in any manner desired) are identical for all
possible facility locations, then an equivalent problem is to minimize the
total number of service facilities required to meet the response time or
distance standards for each of the users. The solution to this problem will
indicate both the number and location of the facilities that provide the
desired service.

The location of fire stations might be approached according to the struc-

1363

This content downloaded from 161.45.205.103 on Tue, 6 Aug 2013 08:41:28 AM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

1364 Toregas, Swain, ReVelle, and Bergman

ture just described. The limit on response time is imposed to ensure that
no more than a specified time period will elapse before a response will occur
to any fire. In applications, the definition of response time may not be
unique. Clearly, its definition must be such that it indicates the spatial
effects of distributing the emergency service; but, beyond this requirement,
the definition of response time depends primarily upon the available data.
Once a response time s is specified, then for each point of demand there
must be a fire station located within s time units. (It is assumed here that
each facility has response capability at all times.) The desired solution to
this problem locates the minimum number of fire stations that satisfies
the response-time requirement.

In order to achieve a more tractable problem structure, several abstrac-
tions are required. First, it will be assumed that the user demands can be
represented as occurring at a finite set of points and that the potential
locations for service facilities are also a finite set of points. Second, it is
assumed that the minimum distance or minimum response time between
any user-node/service-facility pair is known. Third, it will be assumed that
the user-demand points and the possible facility-location points constitute
the same set of points. As will be seen shortly, this final assumption is not
essential in structuring the solution technique. It has been included here
to bring the formulation in line with earlier work in the same area. Under
these simplifications, the problem has now been reduced to a problem of
‘covering’ each of the user nodes with one of the facility nodes.

Haximvi®4 was the earliest to consider similar problems. A part of
his first study® was directed toward the location of the center of a network,
where the center of a network is the point of the network from which the
distance to the furthest point is a minimum. Hakimi¥ later generalized
the concept of a center, and, using Boolean functions, he sought the mini-
mum number of centers (chosen from a discrete set) that covered all de-
mand points within a specified maximum distance. The resulting method
requires an enumeration of all feasible solutions, and, as problem size grows,
the effort of determining the minimum number of facilities can be expected
to grow rapidly. The technique given in the following section avoids
enumeration, so that the growth in problem size has a less significant effect
upon computational requirements.

PROBLEM FORMULATION AND SOLUTION

REcaLLING THE assumptions that all user points may also be emergency-
facility locations and that the minimum time or distance between any pair
of user nodes is known, the problem will now be structured as an integer
programming problem.

If the maximum response time s has been decided upon, then, for any
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Locating Emergency Facilities 1365

node z, only the set of nodes within s of 7 can provide acceptable emergency
service to 7, this set will be denoted as N,. If dj; is the response time or
distance {from any node j to node ¢, the set N, can be defined as N,;= {j|d;:
=s}. (One may equally well define the set N; as the nodes within s; of
node ¢, where s; may be different for each node 7. Problems with this
feature have been examined and do not appear to add any difficulties to
the solution process.) If there are n user nodes, there will be n sets N,
and each set will have at least one member, if d;; is taken to be zero. It is
important to notice that the definition of N; does not depend on the nature
of the points 7 that may be used to provide emergency service to z. There-
fore, the potential facility locations may be both user and other locations.
The theoretical requirement is that d;; be known and that the number of
potential facility locations be finite; if this number is too enormous, then,
of course, the proposed solution method will not be practicable. The
choice of which points should be taken as potential facility locations is up to
the analyst.

To structure the mathematical program, the following decision varia-
bles are now defined:

__]0, if no facility is established at point j,

xj_{l, if a facility is established at point j. (G=12,--,mn)

Thus, z; is a zero-one integer variable. Values of z; other than zero or one
will not be acceptable in a solution.

As discussed in the first section, any user node ¢ must have at least one
facility within s. Recalling that the set of potential facility locations within
s of 7is N; and using the decision variables, we can write the service require-
ment for user node 7 as

PRI (1)
The objective z that is to be minimized is the total number of facilities used:
e= Tz, (2)

Even if the x;’s are only restricted to be nonnegative, none of them will
be greater than one in an optimal solution to (1) and (2). If any one z;
were not, it could be reduced in value without violating a constraint. This
reduction would cause a corresponding reduction in the objective function,
indicating that the optimum was not at hand. The entire program can be
written:

Minimize z= Tl a; (2)
(I) subject to: D iewi €21, (1=1,2,--+,m) (1)
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The structure is that of the set-covering problem with inequality con-
straints; the set-covering problem has received extensive treatment in the
literature, both as a problem in its own right and as a special class of the
integer programming problem. A recent review of many of the approaches
to the problem is found in GARFINKLE. 2!

Three approaches to this problem seem most favored; these are linear-
programming and cutting-plane techniques, reduction techniques, and
implicit enumeration. Some investigators combine these approaches.
The technique utilized here is linear programming supplemented by the
addition of a single cut constraint. The technique has not yet failed to
yield all zero-one variables.

The simplicity of this program is particularly important. It should be
observed that only one constraint is written for each of the user points to
be served, and it should also be noted that only one variable is associated
with each of the potential facility locations. These two items, coupled
with the capacity of the current mathematical programming systems,
should permit the solution of problems with several hundred or more user
points and potential locations. A second important feature of the model
is the ease with which a facility location can be forced in or out of the solu-
tion by specifying its z; to be either one or zero. This feature may be im-
portant in situations where a facility already exists or where the possibility
of prohibiting a facility at a given location is to be examined.

The actual implementation of (I) requires two steps. The first is
determination of the sets N,(z=1,2, ---,n) for a given value of s and a
given matrix of shortest distances D. The second step is solution of (I)
using the sets established in step one.

We formed the sets using a Fortran program, and they were recorded on
disk storage in a form acceptable for use by MPS/360 (the mathematical
programming code available on IBM S/360 Equipment). The solution
then was obtained using the linear programming algorithm of MPS/360
for the sets produced by the Fortran program. This coupling of procedures
saves the tedious operation of forming and punching the sets. It should be
noted that s is not explicitly contained in (I). Consequently, it is not
possible to obtain a set of solutions parameterized on s using only the
mathematical programming code. Both the set determination and mathe-
matical programming procedures must be used for this operation. The
potential inefficiency of this circumstance is reasonably surmounted by
generating several different-data sets corresponding to a sequence of values
of s, and then solving each of the associated mathematical programming
problems.
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COMPUTATIONAL EXPERIENCE AND THE ELIMINATION OF
FRACTIONAL RESULTS

Tue sorutioN of (I) requires zero-one variables, but the use of a linear-
programming code admits the possibility that fractional solutions may be
produced.

EJ Allocation of a facility at node i

Q Covering set of central facility

i

Fig. 1. Allocation of service facilities in an example problem.

To examine the properties of solutions generated by such a code, a 30-node
problem was examined for many values of s, ranging from the minimum distance
between nodes, 7, to the maximum distance between any two nodes, 275. These
nodes represent major areas in New York State and the distance matrix between
them is shown in Table I.

An example solution, obtained with s =68, is shown in Fig. 1. For a number of
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Locating Emergency Facilities 1369

the user nodes, two service facilities are within s. This feature may be desirable in
many applications.

Figure 2 indicates the number of service facilities required as a function of the
maximum response distance. Notice that, for s =69, the number of centers used
is noninteger, with a value of 815. The corresponding solution is shown in Fig. 3.
Although each user node is covered by at least one service facility, many of the
facilities are at level 14, which is invalid according to the definition of z;. To

A

z
[72]
2
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e 0coo
80 °
S 9 0000000
B 8- °
s T+ oooo
o 6f
£
p= 5-
p=4
E
3
E |
: 7

Y | I | | -
‘55 60 65 70 75 s

Maximum Response Time

Fig. 2. Minimum number of service facilities as a function of maximum
response time s.

achieve a solution with all z; either zero or one, the facility-sharing patterns must
be broken up.

All noninteger solutions observed in execution of the covering problem
have been resolved with the addition of a single cut constraint, which is a
direct result of the integer requirements. Suppose that m’ is the optimal
objective value obtained from a fractional linear programming solution to
(I). If m" is noninteger, then, in any integer solution, the minimum num-
ber of servers must be at least as great as the least integer greater than m".
Therefore, one adds the cut
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2z ml+ 1, (4)
where [m] is the integer part of m’. Although it is possible to have a
fractional solution where m’ is integer, no such condition has yet occurred.
Should such a case ocecur, it appears that (4) may still be useful.

The use of (4) can be illustrated by referring to the noninteger solution already
discussed. In that example, m® had the value 815. The application of (4) indi-

D Allocation of one unit

[ Allocation of % a unit

25
30
8
] 29 28
24 2 ! 20

14

Fig. 3. Noninteger solution of the example problem for the value of s = 69.

cates that any integer solution must have at least 9 facilities. The constraint
’,_33 r;29 was added to (I), and the problem was solved again. The resulting
solution, shown in Fig. 4, is integer, as were all solutions in which (4) was included

to eliminate noninteger results.

Several observations about the properties of solutions to this problem
can be made.

First, if the minimum number of servers is m* for two different values of
s, s1, and sy, then the minimum number of servers is m* for any s in [s1, so].

This content downloaded from 161.45.205.103 on Tue, 6 Aug 2013 08:41:28 AM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

Locating Emergency Facilities 1371

Second, for any s greater than the maximum distance entry in the dis-
tance matrix, only one server is required.

Third, for any s less than the minimum distance d;;(75£7), all nodes
must have a service facility.

We have solved this problem at sizes up to 50 nodes over 150 times with
a standard linear programming code. In the few cases of fractional results,

[] Allocation of one unit for integer optimum

13] 2

25
30
8
19 29 @ o8
” 27 | 20
15
5
10
9 6 3 23
1 22
14

Fig. 4. Integer solution of the example problem for the value of s = 69.

the addition of the cut (4) to the linear program always resulted in an all
zero-one solution.

THE RELATION OF THE PROBLEM TCO THE
MODIFIED p-MEDIAN PROBLEM

THE soLuTIONS provided from (I) can be used to provide valuable informa-
tion for a modified form of the p-median problem.!®
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In the original version of the p-median problem, there is no restriction
on the distance that a user group might be required to travel to the closest
open facility. A limit on the maximum distance any user group may travel
can be imposed in the same manner as it is imposed in (I). The same
definition of N; as given previously is used in this modified version of the
p-median problem.

J

: p is fixed at p*

Average Travel Distance Z

s¥ s
Maximum Distance Travelled

Fig. 5. Average travel distance as a function of the maximal
distance travelled.

Smin

To structure the problem, the following additional definitions are
provided:
x;;=the fraction of population of node ¢ that receives service at node j;
d;j=the distance from node 7 to node j;
a;=the user population at node ¢,
p =the number of facilities to be established.
Model I utilized distances d;; and considered (at least implicitly) move-
ment from facility to user (e.g., fire engines). Here, the orientation of this
model is shifted, reflecting movement from user to facility (e.g., schools),
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hence the use of d;; rather than d;;. The subseript reversal is irrelevant
for the mathematics.
The problem is then written:

Minimize 0 D i, aidiixi, (5)
subject to Doiew; Tij=1, (¢=1,2,---,n) (6)
(IT) T = Tij, (z=1,2, -+, n; jeNi; 15£5) (7)

?2? Tii=D, (8)

2520 forall ,j, and x;=(0,1) forall j.

In this formulation, z;;=1 is taken to indicate that a facility is established
at node j. The objective, as expressed in (5), is to minimize the total user
distance travelled by users to their closest open facilities. The constraints
represented by (6) ensure that the user population of each node is assigned
to a service facility. Constraints (7) require that users are assigned only
to open facilities, and (8) requires that exactly p facilities be established.

It is important to note that for some (s, p) combinations, no feasible
solution to (II) may exist. In addition, given a particular value of p,
there is a maximum value of s beyond which the solution of (II) will not
differ from the solution without distance constraints. Figure 5 indicates
the effect that s has upon the solution of (II) for a particular value of p.

The solutions obtained from the formulation (I) provide the value of
Smin, the lowest feasible limit on maximum distance, for a particular value of
p. For a particular value of p, say p*, smin is the least value of s for which
problem (I) has an objective value of p*. No indication of either s, or
the values of s in [smin, s*] at which the objective of (II) changes, is provided
by the solutions to (I).
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