
ELSEVIER Information Processing

On a generalization of the p-Center Problem

LJ~WS 56 (1995) 67-71

Information
Processing
Letters

S.O. Krumke l
Department of Computer Science, Universiry of Wiirzburg, Am Hubland, 97074 Wiirzburg. Germany

Received 7 March 1995; revised 31 July 1995

Communicated by H. Ganzinger

Abstract

We study a generalization of the p-Center Problem, which we call the cu-Neighbor p-Center Problem (~-CENTER(~)).
Given a complete edge-weighted network, the goal is to minimize the maximum distance of a client to its cy nearest neighbors
in the set of p centers. We show that in general finding a 0(2 PO’Y(l”I))-approximation for ~-CENTER(*) is NP-hard, where
[VI denotes the number of nodes in the network. If the distances are required to satisfy the triangle inequality, there can
be no polynomial time approximation algorithm with a (2 - E) performance guarantee for any fixed E > 0 and any fixed
(Y 6 p, unless P = NP. For this case, we present a simple yet efficient algorithm that provides a 4-approximation for (Y 2 2.
If LY = 1, our algorithm basically falls back to the algorithm presented in [21 and has a relative performance guarantee of 2.

Keywords: Algorithms; Approximation algorithms; Location problems

1. Introduction and basic definitions

The p-Center Problem (P-CENTER for short) is
one of the classical location problems. The objective

is to select a set of p centers such that the maximum
distance of a non-center to its nearest center is mini-
mized. The problem is used e.g. to model the place-
ment of emergency facilities such as fire stations or
hospitals, where the aim is to have a minimum guar-
anteed response time between a client and its center.

In this paper, we study a generalization of p-
CENTER, which we call the a-Neighbor p-Center
Problem (~-CENTER(~)). Given again an edge-
weighted network, the target is now to minimize the
maximum distance of a client to its cy nearest neigh-
bors in the set of p centers. For cy = 1, ~-CENTER(~)
is identical to ~-CENTER.

’ Email: krumke@informatik.uni-wuerzburg.d4OO.de.

Recall that an approximation algorithm A for a min-
imization problem is said to have a performance guar-
antee of K > 0, if given any instance I of the problem
it returns a solution A(I) of value at most K times the

optimal function value, i.e. if A(I) /OpT(1) 6 K for
any instance I.

We show that in general finding a O(2P“‘Y(l”I)) ap-
proximation for ~-CENTER(“) is NP-hard. If the dis-
tances are required to satisfy the triangle inequality,
there can be no polynomial time approximation algo-
rithm with a (2 - E) performance guarantee for any
fixed E > 0 and any fixed (Y 6 p, unless P = NP.

Hochbaum and Shmoys [21 have developed an ap-
proximation algorithm for ~-CENTER for the case
when the distances in the graph obey the triangle
inequality. Their algorithm has performance ratio 2.
Moreover, it is shown in [2] that this is the best ap-
proximation ratio possible, i.e., that there can be no
polynomial time approximation algorithm with a per-

OOZO-0190/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved

SSDiu!OOZO-0190(95)00141-7

68 S.O. Krumke/lnformation Processing Letters 56 (1995) 67-71

formance guarantee of (2 - a) for any E > 0 unless
P=NP.

We show that the techniques of Hochbaum and

Shmoys can be extended to obtain a simple yet ef-

ficient polynomial time approximation algorithm for

p-CENTER%

Let G = (YE) be a graph. We will use S(e) for the

weight of the edge e E E. If the endpoints of e are

known, i.e. e = {u, v}, we will use 6(u, v) for the edge

weight for the sake of a shorter notation. As usual,

we say that a nonnegative distance 6 on the edges

of G satisfies the triangle inequality, if 6(U, w) <
S(v, U) + S(z4, w) for all U, w, c4 E V. We are now

ready to state the problem formally:

Definition 1. (a-Neighbor p-Center Problem (p-

CENTER(~))

Input: An undirected complete graph G = (YE,)
with nonnegative edge weights 6(e) (e E EC) and

two integers 2 < (Y < p 6 IVI.
Output: A set P 2 V of p nodes such that

R’“‘(P) = max #a)(~, P)
L’EV-P

is minimized, where

Sca)(u,P) = min max&s 0).
’ scp, ISl=n XES

The subset of instances such that the distances

obey the triangle inequality will be denoted by p-
CENTER(~)-TI. Notice that for any subset P s V of

p nodes we have that R(l) (P) < R(*) (P) 6 e + . <
R”“(P).

The following definitions are mainly taken from
[2]. For a given number A, the bottleneck gruph
Bottleneck(G, A) of G is defined to be the edge-
subgraph containing those edges of the original graph

G, which have weight at most A. The t-closure G’ =
(VE’) of G contains an edge from u to u if and only
if there is a path of length at most t edges in G con-
necting u and U. For any subset V’ & V, we use G[V’]
to denote the subgraph induced by the nodes in V’.

Ifv E Visanynode,weletNo(v) :={w 1 {v,w} E
E} be the set of neighbors of v in G. Moreover, for
any set S C V we define No(S) := &_s N(V).

Recall that a set U C V is called independent, if
for any pair u, v of nodes from U there is no edge
connecting u and v.

a u
%

V 2

Y

Fig. 1.

Definition 2. A k-independent set is a subset U C V
such that every node u E U has at most k - 1 neighbors
in 7-J.

Consequently, a l-independent set is a classical in-

dependent set. We use the term maximal k-independent
set to denote a k-independent set that is maximal with
respect to inclusion. Given a graph G, we can always

find a maximal k-independent set in polynomial time,

simply by choosing a node and then adding nodes re-

peatedly, until any further addition of a single node

would destroy the k-independence of our set.
As the definition of k-independence extends the

classical notation of independence, there is a parallel

for dominating sets. Recall that a set D s V is called

a dominating set, if any node in V either belongs to D
or has a neighbor in D.

Definition 3. A k-dominating set is a set D C V such

that each node v E V-D has at least k neighbors in D.

2. The basic lemmas

It is easy to see that a maximal independent set U
is also a dominating set. For k > 1, in general it is
not true that a maximal k-independent set is also k-
dominating; see e.g. the simple example in Fig. 1:

The set U = {x, y, z} is maximal 3-independent,

because u cannot be added without destroying the 3-
independence, but not 3-dominating, for u has only
one neighbor in U.

We will now show that, although a maximal k-
independent set need not be k-dominating in G, it will
be k-dominating in the square graph G*:

Lemma 4. Let U be a maximal k-independent set
such that [UI 3 k. Then U is a k-dominating set in G*.

Proof. We show that each node v E V - U has a

S.O. Krumke/lnformation Processing Letters 56 (1995) 67-71 69

Procedure test(G)
1 U +- maximal a-independent set in G*
2 if (1 C/I > p) then return “certificate of failure”
3 else
4 begin
5 if ICI < p then add nodes arbitrarily to make I(11 = p
6 return CJ
I end

Fig. 2. Test procedure for the a-Neighbor p-Center Problem.

neighbor WI in U such that this neighbor is adjacent
to k- 1 nodes WZ,..., wk in U. It follows that the
nodeswl,..., wk will be neighbors of u in G2 and this
establishes the claim.

In fact, if there existed a node u that is not adja-
cent to any node in U with k - 1 neighbors in U, we
could add u to U without destroying the property of
k-independence contradicting the fact that U is maxi-
mal. 0

Now we will establish a key relation between the
k-dominating sets in G and the k-independent sets in
the square G2:

Proposition 5. Let Vi be a k-dominating set in G.
Then IUI < IV’1 for any k-independent set U in G2.

Proof. If U C V’ then the claim of the proposition is
trivial.

If U is not contained in V’, then choose an arbitrary
node u E U - V’ and let S := NG(u) n V’. Clearly
ISI > k, because V’ is a k-dominating set. Define C :=
NG(S) n (V - V’) to be the set of vertices in V - V’
that are adjacent to the set S. Then any node in C U S

is adjacent to u in G2 and thus U can contain at most k
vertices from C U S. On the other hand, we have seen
thatIV’n(CL-JS)I=ISI >k.

Now consider the graph c := G[V - (C U S)] .
We claim that v’ 3 V’-(CUS) =V’-Sisak-
dominating se& in G. To see this consider an arbitrary
node u from G that is not contained in ^vl. Then v E
V - V’. The node u has at least k neighbors in G that
are contained in V’, since again V’ is a k-dominating
set in G. None of these neighbors can be contained
in S, because otherwise we would have u E NC(S):
(V - V’) = C and thus u were not contained in G.
Hence NG (o) n V’ C V’ - S = v’ and all the neighbors
of u in S xz still present in P.

The set U := U - (C U S) is clearly k-independent

in &. Thus we can repeat the above construction for
V’ := ?’ and U := fi until we obtain that 6 C ?‘. Since
in each step we delete at most k nodes from U and at
least k nodes from V’ it follows that IUJ 6 I V’j. 0

3. The algorithm

In this section we will present the algorithm and
use the results from Section 2 to analyze its perfor-
mance guarantee. The techniques that are used, were
introduced in [21.

Let P* C V be an optimal placement of p nodes and
denote the optimal solution value by 6* = Rca) (P*) .
The idea behind the algorithm is the following: By
definition of the objective function R(“), the optimal
function value S* must equal the weight of an edge. We
will present a relaxed test procedure test that, given
a number A either tells us that iY > A or delivers a
solution of cost at most 44 (24 for (Y = 1) .

We now sort the edges of G in nondecreasing
order, say 6(el> < 6(e2> < ... < &e(;)), and,
using the output of the procedure test, perform a
binary search to locate the minimum i such that
test(Bottleneck(G, S(ei))) returns a solution. It fol-
lows by the properties of test that S(ei) < 6*. The
test procedure is shown in Fig. 2, the main procedure
is shown in Fig. 3.

First we will establish the following:

Lemma 6. Zf the procedure test(Gi) returns a “cer-
tificate of failure”, then S* > 6(ei) .

Proof. Assume that test returns a “certificate of
failure”, but nonetheless 6* < S(ei>. Let P* =

{UT,. . . , u;I} be a set of p centers in G such that

R(“) (P*) = 6*. By definition of the solution value
S*, it follows that P* is an a-dominating set in Gi.

The procedure test can only return a “certificate
of failure”, if it finds an a-independent set U in G?
that contains more than p elements. But according to
Proposition 5 such a set cannot exist in GF. 0

Theorem 7. Let I be any instance O~P-CENTJZR(~) -

TI and denote by Heur(I) the solution value of the so-
lution found by the procedure Bottleneck-Main. Then
OPT(I)/Heur(l) < 4, where OPT(I) denotes the
optimal solution value for I. If a = 1 we have the bet-

70 X0. Krumke/lnformation Processing L..etters 56 (1995) 67-71

Procedure Bottleneck-Main(G,&p)
1 Sort the edges of G such that

&el) < a(& < ... <&et;))

2 low&k-1;hightIVI
3 while (high - low) > I do

4 begin

5 i + [(high + low)/21
6 G; + Bottleneck(G,&ei))
7 out.test +- test(G;)
8 if out.test is a “certificate of failure” then low + i
9 else high +- i
10 end

11 output test(Bonleneck(G,6(ebj~~)))

Fig. 3. Main Bottleneck procedure.

ter following estimate: OPT(I) /Heur(I) < 2.

Proof. Let OPT(l) = 6% = S(ej) and consider the
call to the test procedure, when i = j. By Lemma 6
the procedure test must deliver a solution. Let this
solution be P, where by construction P contains a
maximal independent set in G;. If (Y = 1, it follows

that V is a dominating set in G; as was remarked at
the beginning of the last section.

If cy > 2, we can use Lemma 4 to deduce that P is
an a-dominating set in (G;)* = Gj.

By definition of the bottleneck graph Gj =
Bottleneck(S(ej)) each edge weight in Gi is at most
6(ej). Consequently, by the triangle inequality Gf

and G; do not contain any edge of weight more than
26(ej) = 2S* or 4S(ej) = 4S* respectively. Thus the
claimed performance guarantee follows. 0

4. Hardness results

Theorem 8. Unless P = NP, foranyfied a < p Now suppose that G does not have a dominating set
there can be no polynomial time approximation for p- of size d. We claim that in this case any selection of
CENTER(“) with a relative performance guarantee of p’=d+(a-l)lVI centers will have radius f (I VI) +
0(2P0’Y(lv~)). Moreover, p-CENTER(~)-TI cannot be E’. To see this, assume that P is a set of p’ centers with
approximated in polynomial time within a factor of solution value 1. First observe that P must include all
(2-E)foranyE>O. the nodes from lJvEV N,.

Proof. Assume that A is an algorithm with a rela-
tive performance guarantee of 0(2P“‘Y(l”I)). Without
loss of generality we can assume that the performance
guarantee of A is M . 24(l”l), where q is a suitable
polynomial. Thus given an input of length R (1 VI) the

function f (IV/) := M.24(lq) is polynomial time com-
putable.

We will show that A can be used to decide DOM-
INATING SET, a well known NP-complete problem

(cf. ill>.
Let Z be any instance of DOMINATING SET, given

by a graph G = (YE) and an integer d. We now con-
struct an instance I’ of ~-CENTER(~) in the follow-
ing way: We choose IV1 pairwise disjoint sets N, :=
{w(1), . . .
let “VI

,w(“-*)}(u~V)withN,flV=Q).Wethen
:=V”iJu,,N,,p’ :=d+(a- l)IVI,cu’ :=(Y

and define G’ = (V’, E’) to be a complete graph on
IV’/ nodes. The edge-weights 6’(e) are given by

(

1 ifu,uEVand{u,u}EE,

8(&V) := 1 if u E V and u E No or vice versa,

f (jV[) + E’ otherwise,

where we choose E’ > 0 arbitrary. Fig. 4 illustrates the
transformation from G to G’. All edges shown have
weight 1, the edges not drawn in the figure have weight

f(lVl) +d.
Observe that by definitionof the edge-weights in G’,

any set P of p’ centers has either radius 78”‘) (P) = 1
or f(lVl) +E’.

Observe further that in the special case when f is
the constant function f = (2 -8) for some E > 0, we
can choose E’ := E and obtain the distances 1 and 2 in
G’, as a consequence of which the triangle inequality
will be satisfied by the distances defined above.

First, assume that G has a dominating set D of size
d. Then P := DUU,,, N,isasetofd+(cu-1) =p’
centers with solution value 7Z.c”) (P) = 1. In that case,
because A has a performance guarantee of f (1 VI) , the
radius of the set of centers returned by A must also
be 1.

If (Y = 1, the claim is trivially satisfied, because in
that case N, = 0 for all u E V. Hence it suffices to
consider the case LY > 2. Any node w E N, has u as
the only neighbor in V’, which is within a distance of
1 and, if not included in the set of centers, must be
covered by at least cy servers within a distance of 1.

X0. Krumke/lnformation Processing Letters 56 (1995) 67-71 71

G G’

Fig. 4. Transformation of G to G’.

up
WI”
wl”’

‘(o-1)
W”

Hence w must be included in the set of centers.
It follows that PV := P n V G V consists of IPI -

((Y - 1) 1 VI = d nodes. We will now show that F’v is
a dominating set in V. If we take u E V - Pv, then u
must have at least (Y nodes from P within a distance
of 1. Only (Y - 1 from these nodes can be from N,.
Thus by definition of the distances in G’, there must
be w E PV such that a’(~, w) = 1, i.e. {u, w} E E.

Hence PV is a dominating set of size d in G as a
contradiction to the assumption that G does not contain
any dominating set of size at most d.

We have seen that A delivers a solution of value 1
if and only if G has a dominating set of size d. Con-
sequently, A can be used to decide the given instance
I of DOMINATING SET in polynomial time. 0

It should be noted that in the proof of the last theo-
rem f E 0(2P0’Y(lq)) is the largest we can do in poly-
nomial time, since otherwise the length of the binary
representation for f(1 VI > is no longer polynomially
bounded in the input size.

References

[11 M.R. Gauzy and D.S. Johnson, Computers and Intractability
(Freeman, New York, 1979).

[2] D.S. Hochbaum and D.B. Shmoys, A unified approach to
approximation algorithms for bottleneck problems, J. ACM
33 (3) (1986) 533-550.

