
Algorithmica
https://doi.org/10.1007/s00453-017-0398-x

Improved Approximation Algorithms for Capacitated
Fault-Tolerant k-Center

Cristina G. Fernandes1 · Samuel P. de Paula1 ·
Lehilton L. C. Pedrosa2

Received: 4 August 2016 / Accepted: 18 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract In the k-center problem, given a metric space V and a positive integer k,
one wants to select k elements (centers) of V and an assignment from V to centers,
minimizing the maximum distance between an element of V and its assigned center.
One of the most general variants is the capacitated α-fault-tolerant k-center, where
centers have a limit on the number of assigned elements, and, if any α centers fail,
there is a reassignment from V to non-faulty centers. In this paper, we present a
new approach to tackle fault tolerance, by selecting and pre-opening a set of backup
centers, then solving the obtained residual instance. For the {0, L}-capacitated case,
we give approximations with factor 6 for the basic problem, and 7 for the so called
conservative variant, when only clients whose centers failed may be reassigned. Our
algorithms improve on the best previously known factors of 9 and 17, respectively.
Moreover, we consider the case with general capacities. Assuming α is constant, our
method leads to the first approximations for this case. We also derive approximations
for the capacitated fault-tolerant k-supplier problem.

Partially supported by CAPES, CNPq (Grants 308523/2012-1, 477203/2012-4, 456792/2014-7, and
308116/2016-0), FAPESP (Grants 2013/03447-6 and 2014/14209-1), and MaCLinC.

B Lehilton L. C. Pedrosa
lehilton@ic.unicamp.br

Cristina G. Fernandes
cris@ime.usp.br

Samuel P. de Paula
samuelp@ime.usp.br

1 Department of Computer Science, University of São Paulo, São Paulo, Brazil

2 Institute of Computing, University of Campinas, Campinas, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0398-x&domain=pdf
http://orcid.org/0000-0003-1001-082X

Algorithmica

Keywords Capacitated k-center · Fault tolerance · Approximation algorithm ·
Non-uniform capacities · Linear Programming · LP rounding

1 Introduction

The k-center is the minimax problem in which, given a metric space V and a positive
integer k, we want to choose a set of k centers such that the maximum distance from
an element of V to its closest center is minimized. More precisely, the goal is to select
S ⊆ V with |S| = k that minimizes

max
u∈V

min
v∈S

d(u, v),

where d(u, v) is the distance between u and v. The elements of set S are usually
referred to as centers, and the elements of V as clients. The decision version of k-
center appears as problemMS9 in Garey and Johnson’s list of NP-complete problems
[1]. It is well known that k-center has a 2-approximation, which is best possible unless
P = NP [2–6].

In a typical application of k-center, set V represents the nodes of a network, and
one may want to install k routers so that the network latency is minimized. Other
applications have additional constraints, so variants of k-center have been considered
as well. For example, the number of nodes that a router may serve might be limited. In
the capacitated k-center, in addition to the set of selected centers,we alsowant to obtain
an assignment from the set of clients to centers such that atmost Lu clients are assigned
to each center u. The number Lu is called the capacity of u. The first approximation for
this version of the problem is due to Bar-Ilan et al. [7], who gave a 10-approximation
for the particular case of uniform capacities, where there is a number L such that
Lu = L for every u in V . This was improved by Khuller and Sussmann [8], who
obtained a 6-approximation, and also considered the soft capacitated case, in which
multiple centers may be opened at the same location, obtaining a 5-approximation,
both results for uniform capacities.

Despite the progress in the approximation algorithms for related problems, such as
the metric facility location problem, the first constant approximation for the (non-
uniformly) capacitated k-center was obtained only in 2012, by Cygan et al. [9].
Differently from algorithms for the uniform case, the algorithm of Cygan et al. is
based on the relaxation of a linear programming (LP) formulation. Since the natu-
ral formulation for k-center has unbounded integrality gap, a preprocessing is used,
which allows considering only instances whose LP has bounded gap. The rounding
uses the notion of transferring fractional values of the LP variables. They also pre-
sented an 11-approximation for the soft capacitated case. Later, An et al. [10] presented
a cleaner rounding algorithm and obtained an improved approximation with factor 9
(while the previous approximation had a large constant factor, not explicitly calcu-
lated). Cygan et al. [11] also presented an algorithm for a variant of the problem with
outliers. As for negative results, it has been shown that the capacitated k-center has
no approximation with factor better than 3 unless P = NP [9].

123

Algorithmica

Another natural variant of k-center comprises the possibility that centers may fail
during operation. This was first discussed byKrumke [12], who considered the version
in which clients must be connected to a given minimum number of centers. In the
fault-tolerant k-center, for a number α, we consider the possibility that any subset of
centers of size at most α may fail, so that a client might have to be connected to the
(α + 1)-th closest center. The objective is thus to minimize the maximum distance
from a client to its α + 1 nearest centers. For the variant in which selected centers
do not need to be served, Krumke [12] gave a 4-approximation, later improved to a
(best possible) 2-approximation by Chaudhuri et al. [13] and Khuller et al. [14]. For
the standard version, in which a client must be served even if a center is installed at
the client’s location, there is a 3-approximation by Khuller et al. [14], who also gave
a 2-approximation for the particular case of α ≤ 2.

Chechik and Peleg [15] considered a common generalization of the capacitated
k-center and the fault-tolerant k-center, where centers have limited capacity and may
fail during operation. They defined only the uniformly capacitated version, presenting
a 9-approximation. Also, they considered the case in which, after failures, only clients
that were assigned to faulty centers may be reassigned. For this variant, called the con-
servative fault-tolerant k-center, a 17-approximation was obtained for the uniformly
capacitated case. For the special case in which α < L , the so called large capacities
case, they obtained a 13-approximation.

1.1 Our Contributions and Techniques

We consider the capacitated α-fault-tolerant k-center problem. Formally, an instance
of this problem consists of a metric space V with corresponding distance function
d : V × V → R≥0, non-negative integers k and α, with α < k, and a non-negative
integer Lv for each v in V . A solution is a subset S of V with |S| = k, such that,
for each F ⊆ S with |F | ≤ α, there exists an assignment φF : V → S \ F with
|φ−1

F (v)| ≤ Lv for each v in S \ F . For a given F , we denote by φ∗
F an assignment

φF with minimum maxu∈V d(u, φF (u)). The problem’s objective is to find a solution
that minimizes

max
u∈V,F⊆V :|F |≤α

d(u, φ∗
F (u)).

We also consider the capacitated conservative α-fault-tolerant k-center. In this
variant, in addition to the set S, a solution comprises an initial assignment φ0. We
require that the assignment φF for a failure scenario F differs from φ0 only for vertices
assigned by φ0 to centers in F . Precisely, given F ⊆ S with |F | ≤ α, we say that an
assignment φF is conservative (with respect to φ0) if φF (u) = φ0(u) for every u ∈ V
with φ0(u) /∈ F . A solution for the problem is a pair (S, φ0) such that, for each F ⊆ S
with |F | ≤ α, there exists a conservative assignment φF . The objective function is
defined analogously.

Our major technical contribution is a new strategy to deal with the fault-tolerant
and capacitated problems. Namely, we solve the considered problems in two phases.
In the first phase, we identify clusters of vertices where an optimal solution must

123

Algorithmica

install a minimum of α centers. For each cluster, we carefully select α of its vertices,
and pre-open them as centers. These α centers will have enough backup capacity
so that, in the case of failure events, the unused capacity of all pre-opened cen-
ters will be sufficient to obtain a reassignment for all clients. While the α guessed
centers of a cluster may not correspond to centers in an optimal solution, we care-
fully select elements that are near to centers of an optimal solution, so that our
choice leads to an approximate solution. In the second phase, we are left with a
residual instance, where part of a solution is already known. For the conservative
case, obtaining the remaining centers of a solution may be reduced to the non-fault-
tolerant variant. For the non-conservative case, we can make stronger assumptions
over the input and the solution so that the task of obtaining a fault-tolerant solution is
simplified.

A good feature of the presented approach is that it can be used in combination
with different methods and algorithms, and can be applied to different versions of
the problem. Indeed, we obtain approximations for both the conservative and non-
conservative variants of the capacitated fault-tolerant k-center. Moreover, each of
the obtained approximations uses novel and specific techniques that are of particular
interest. For the conservative variant, we present elegant combinatorial algorithms that
reduce the problem to the non-fault-tolerant case. For the non-conservative variant,
our algorithms are based on the rounding of a new LP formulation for the problem,
and apply some rounding techniques by An et al. [10]. Interestingly, we use the set
of pre-opened centers to obtain a partial solution for the LP variables with integral
values. We hope that other problems can benefit from similar techniques.

1.2 Obtained Approximations and Paper Organization

The conservative variant is considered in Sects. 3 and 4. In Sect. 3, we present a 7-
approximation for the {0, L}-capacitated conservativeα-fault-tolerant k-center. This is
the special case of the problemwhere the capacities are either 0 or L , for some L . Notice
that this generalizes the uniformly capacitated case, when all capacities are equal to L .
This result improves on the previously known factors of 17 and 13 by Chechik and
Peleg [15], that apply to particular cases with uniform capacities, and uniform large
capacities, respectively. In Sect. 4, we study the case of general capacities, and present
a (9 + 6α)-approximation when α is constant. To the best of our knowledge, this is
the first approximation for the problem with arbitrary capacities.

For the non-conservative variant, our algorithms are based on the rounding of a
new LP formulation, and are described in Sects. 5 and 6. First we consider the case
of arbitrary capacities in Sect. 5. We present the LP formulation, and give a 10-
approximation when α is constant. Once again, this is the first approximation for the
problem with arbitrary capacities. In Sect. 6, the rounding algorithm is adapted for the
{0, L}-capacitated fault-tolerant k-center, for which we obtain a 6-approximation with
α being part of the input. This factor matches the best known factor for the problem
without fault tolerance [8,10], and improves on the best previously known algorithm
for the fault-tolerant version, which achieves factor 9 for the uniformly capacitated
case [15].

123

Algorithmica

Table 1 Summary of the obtained approximation factors for the k-center problem

Version Capacities Value of α Previous This paper

Conservative Uniform Given in the input 17 [15] 7

Conservative Arbitrary Fixed – 9 + 6α

Non-conservative Uniform Given in the input 9 [15] 6

Non-conservative Arbitrary Fixed – 10

In Sect. 7, we apply our technique to the k-supplier problem. This is a generalization
of k-centerwhere one is given a set of clients, a set of candidate locations, and an integer
k, and the goal is to select k of the locations to install facilities and serve each of the
clients. The objective is to minimize the maximum distance between a client and its
assigned facility.

Our strategy for the problems with arbitrary capacities is to reduce them to related
feasibility problems. In Sect. 8, we show that these related feasibility problems are
coNP-hard. The algorithms we have for them run in time |V |Θ(α), so the approxi-
mations for the corresponding variants of k-center or k-supplier are polynomial only
when α is fixed.

A summary of the results for k-center is given in Table 1. A similar table for k-
supplier is given in Sect. 7.

2 Preliminaries

Inwhat follows, wewill write k-center instead of k-center since some of our algorithms
create instances with different values of k, yet all of them refer the same problem.

Let G = (V, E) be an undirected and unweighted graph. We denote by dG the
metric induced by G, that is, for u and v in V , let dG(u, v) be the length of a shortest
path between u and v in G. For given nonempty sets A, B ⊆ V , we define dG(A, B) =
mina∈A,b∈B dG(a, b). Also, for a ∈ V , we may write dG(a, B) instead of dG({a}, B).

For an integer �, we let N �
G(u) = {v ∈ V : dG(u, v) ≤ �}. For a subset U ⊆ V ,

let N �
G(U) = ⋃

u∈U N �
G(u). We may omit the superscript � when � = 1, and the

subscript G when the graph is clear from the context. Thus N (v) is the set of neighbors
of v plus v itself. Also, we define the (power) graph G� = (V, E�), where {u, v} ∈ E�

if v ∈ N �(u) \ {u}. For a directed graph G, we define dG(u, v) as the length of a
shortest directed path from u to v in G, and define N �

G(u) similarly.

2.1 Reduction to the Unweighted Case

As it is standard for the k-center problem, we will use the bottleneck method [5], so
that we can consider the case in which the metric space is induced by an unweighted
undirected graph. Suppose we have an algorithm that, given an unweighted graph,
either produces a distance-r solution for the unweighted problem (that is, one in
which each vertex is assigned to a center at a distance at most r), or a certificate

123

Algorithmica

that no distance-1 solution exists. We may then use this algorithm to obtain an r -
approximation for the general metric case.

Let V be a metric space associated with distance function d : V × V → R≥0. For a
certain number τ inR≥0, we consider the threshold graph defined asG≤τ = (V, E≤τ),
where E≤τ = {{u, v} : d(u, v) ≤ τ }. Next we consider the values of d(u, v) for (u, v)

in V 2, in increasing order. For each τ in this ordering, we obtain G≤τ , and use the
algorithm for the unweighted case; we stop when the algorithm fails to provide a
negative certificate, and return the obtained solution. Notice that there must be a
distance-1 solution forG≤OPT,whereOPT denotes the optimumvalue for the problem.
Since OPT is in the considered ordering for τ , the algorithm always stops, and returns
a solution for some τ ≤ OPT, so we obtain a solution for the original problem of
cost at most r · τ ≤ r · OPT. Hence, from now on, we assume that an unweighted
graph G = (V, E) is given, and that the goal is to either obtain a certificate that no
distance-1 solution exists, or return a distance- r solution.

2.2 Preprocessing and Reduction to the Connected Case

We also may assume without loss of generality that G is connected [8,9,15]. If this
is not the case, we may proceed as follows. Suppose there is an algorithm that, given
a connected graph G̃ and an integer k̃, produces a distance-r solution with k̃ vertices,
or gives a certificate that no distance-1 solution with k̃ vertices exists. Now, con-
sider a given arbitrary unweighted graph G, and a given integer k. We decompose G
into its connected components, say G1, . . . , Gt . For each connected component Gi ,
with 1 ≤ i ≤ t , we run the algorithm for each k̃ = α +1, . . . , k and find the minimum
value ki , if any, for which the algorithm obtains a distance-r solution. As the failure
set is arbitrary, in the worst case all faulty centers might be in the same component.
If, for some Gi , there is no distance-1 solution with k centers or if k1 + · · · + kt > k,
then clearly there is no distance-1 solution for G with k centers; otherwise, conjoining
the solutions obtained for each component leads to a distance-r solution for G with
no more than k centers, and this solution is tolerant to the failure of α centers. From
now on, we will assume that G is connected.

3 {0, L}-Capacitated Conservative Fault-Tolerant k-Center

After the occurrence of a failure, a distance-1 conservative solution has to reassign
each unserved client to an open center in its vicinity with available capacity. This
requires some kind of “local available center capacity”, to be used as backup. The
next definition describes a set of vertices that are good candidates to be opened as
backup centers. This set can be partitioned into clusters of at most α vertices, with
the clusters sufficiently apart from each other. The idea is that failures in the vicinity
of one of these clusters do not affect centers in the other clusters. More precisely, the
vicinities of different clusters do not intersect; therefore, in a distance-1 conservative
solution, any client that is assigned to a center in a certain cluster cannot be reassigned
to a center in the vicinity of any of the other clusters.

123

Algorithmica

Definition 1 Consider a graphG = (V, E) and non-negative integersα and �. A setW
of vertices of G is (α, �)-independent if it can be partitioned into setsC1, . . . , Ct , such
that |Ci | ≤ α for 1 ≤ i ≤ t , and d(Ci , C j) ≥ � for 1 ≤ i < j ≤ t .

In what follows, we denote by (G, k, L , α) an instance of the capacitated conser-
vative α-fault-tolerant k-center as obtained from Sect. 2. We say that (G, k, L , α) is
feasible if there exists a distance-1 solution for it.

Lemma 1 Let (G, k, L , α) be a feasible instance of the capacitated conservative
α-fault-tolerant k-center, and let (S∗, φ∗

0) be a corresponding distance-1 solution.
If W ⊆ S∗ is an (α, 5)-independent set in G, then (G, k − |W |, L ′) is feasible for the
capacitated k-center, where L ′

u = 0 for u in W , and L ′
u = Lu otherwise.

Proof Since W is (α, 5)-independent, there must be a partition C1, . . . , Ct of W such
that d(Ci , C j) ≥ 5 for any pair i, j , with 1 ≤ i < j ≤ t . Also, each part Ci

has at most α vertices, and thus there exists a conservative assignment φ∗
Ci

with

(φ∗
Ci

)−1(Ci) = ∅. Therefore, φ∗
Ci

is a distance-1 solution for the (G, k − |Ci |, Li)

instance of the capacitated k-center problem, where Li
u = 0 for u in Ci , and Li

u = Lu

otherwise. Moreover, as φ∗
0 is conservative, φ∗

Ci
differs from φ∗

0 only in (φ∗
0)

−1(Ci).

So, if a center u in S∗ is such that (φ∗
0)

−1(u)
= (φ∗
Ci

)−1(u), then u ∈ N 2(Ci).

As W is (α, 5)-independent, N 2(Ci) ∩ N 2(C j) = ∅ for every j ∈ [t] \ {i}, where
[t] = {1, 2, . . . , t}. Let ψ be an assignment such that, for each client v,

ψ(v) =
{

φ∗
Ci

(v) φ∗
0 (v) ∈ Ci for some i in [t],

φ∗
0 (v) otherwise.

Therefore, set ψ−1(u) is empty if u ∈ W ; is (φ∗
Ci

)−1(u) if there exists i ∈ [t] such
that u ∈ N 2(Ci) \ Ci ; and is (φ∗

0)
−1(u) otherwise. This means that, for L ′ as in the

statement of the lemma, |ψ−1(u)| ≤ L ′
u for every u, and so (S∗, ψ) is a solution for

the (G, k − |W |, L ′) instance of the capacitated k-center problem. �

A set of vertices A ⊆ V is 7-independent in G if every pair of vertices in A is at

distance at least 7 in G. This definition was also used by Chechik and Peleg [15] and,
as we will show, such a set is useful to obtain an (α, 5)-independent set in G.

Lemma 2 Let A be a 7-independent set in G, for each a in A, let B(a) be any set
of α vertices in N (a), and let B = ⋃

a∈A B(a). If (G, k, L , α) is feasible for the
capacitated conservative α-fault-tolerant k-center, then (G, k − |B|, L ′) is feasible
for the capacitated k-center, where L ′

u = 0 for u in B, and L ′
u = Lu otherwise.

Proof Let (S∗, φ∗
0) be a solution for (G, k, L , α). For each a ∈ A, theremust be at least

α centers in S∗ ∩ N (a). Let W (a) be the union of S∗ ∩ B(a) and other α −|S∗ ∩ B(a)|
centers in S∗ ∩ N (a). Let W = ⋃

a∈A W (a). Since A is 7-independent, N 3(a) and
N 3(b) are disjoint for any two a and b in A, and so N 2(W (a)) ∩ N 2(W (b)) = ∅.
Thus, W is (α, 5)-independent.

Now let L ′′ be such that L ′′
u = 0 if u /∈ S∗, and L ′′

u = Lu otherwise. Observe that the
instance (G, k, L ′′, α) is feasible (as we only set to zero the capacities of non-centers).

123

Algorithmica

By Lemma 1, the instance (G, k − |W |, L ′′′) is feasible, where L ′′′
u = 0 if u ∈ W , and

L ′′′
u = L ′′

u otherwise. Notice that L ′
u ≥ L ′′′

u for every u, and |B| = |W |. Therefore,
since (G, k − |W |, L ′′′) is feasible, so is (G, k − |B|, L ′). �

Now we present a 7-approximation for the {0, L}-capacitated conservative α-fault-
tolerant k-center. For this case, rather than using the capacity function, it is convenient
to consider the subset of vertices with capacity L , that is denoted by V L . We denote by
(G, k, V L , α) and by (G, k, V L) instances of the fault-tolerant and non-fault-tolerant
versions. The steps are detailed in Algorithm 1, where alg denotes an approximation
algorithm for the {0, L}-capacitated k-center.

Algorithm 1: {0, L}-capacitated conservative α-fault-tolerant k-center.

Input: connected graph G, k, V L , and α

1 A ← a maximal 7-independent vertex set in G
2 foreach a ∈ A do
3 if |N (a) ∩ V L | < α then return failure
4 B(a) ← α vertices chosen arbitrarily in N (a) ∩ V L

5 end
6 B ← ⋃

a∈A B(a)

7 if alg(G, k − |B|, V L \ B) returns failure then return failure
8 Let (S, φ) be the solution returned by alg(G, k − |B|, V L \ B)

9 return (S ∪ B, φ)

Theorem 1 If alg is a β-approximation for the {0, L}-capacitated k-center, then
Algorithm 1 is a max{7, β}-approximation for the {0, L}-capacitated conservative
α-fault-tolerant k-center.

Proof Consider an instance (G, k, V L , α) of the {0, L}-capacitated conservative α-
fault-tolerant k-center problem, with G = (V, E). Let A, B(a) for a in A, and B be
as defined in Algorithm 1 with (G, k, V L , α) as input. Assume that (G, k, V L , α) is
feasible. Since A is 7-independent, by Lemma 2, the instance (G, k − |B|, V L \ B),
where we set to zero the capacities of all vertices in B, is also feasible for the {0, L}-
capacitated k-center problem. Thismeans that, if Algorithm 1 executes Line 7, then the
given instance is indeed infeasible. On the other hand, if alg returns a solution (S, φ),
then, since |S| ≤ k − |B|, the size of S ∪ B is at most k, and φ is a valid initial
center assignment. Moreover, φ is such that: (1) each vertex u is at distance at most β
from φ(u); and (2) no vertex is assigned to B.

Let F ⊆ S ∪ B with |F | = α be a failure scenario. We describe a conservative
center reassignment for (S∪ B, φ). We only need to reassign vertices initially assigned
to centers in F \ B (as no vertex was assigned to a vertex in B). Thus, at most L|F \ B|
vertices need to be reassigned. For each such vertex u, we can choose a ∈ A at distance
at most 6 from u (as A is maximal), and let φ̃(u) = a. Then, for each a ∈ A, and
for each u with φ̃(u) = a, reassign u to some non-full center of B(a) \ F . Notice
that B(a) \ F can absorb all reassigned vertices. Indeed, the available capacity of
B(a) \ F before the failure event is L|B(a) \ F | = L|F \ B(a)| ≥ L|F \ B|, where

123

Algorithmica

we used |B(a)| = |F | = α. Since for a reassigned vertex u, d(u, φ̃(u)) ≤ 6, and u is
reassigned to some center v ∈ N (φ̃(u)), the distance between u and v is at most 7.
Also, if a vertex u was not reassigned, then the distance to its center is at most β. �

Now, using the 6-approximation byAn et al. [10] for the {0, L}-capacitated k-center,
we obtain the following.

Corollary 1 Algorithm 1 using as alg the algorithm by An et al. [10, Theorem 11]
for the {0, L}-capacitated k-center is a 7-approximation for the {0, L}-capacitated
conservative α-fault-tolerant k-center.

4 Capacitated Conservative Fault-Tolerant k-Center

In this section, we consider the capacitated conservative α-fault-tolerant k-center.
Recall that this is the case in which capacities may be arbitrary. An instance of this
problem is denoted by (G, k, L , α) for some G = (V, E) and L : V → Z≥0. Under
the assumption that α is bounded by a constant, we present the first approximation for
the problem.

In the {0, L}-capacitated case, each vertex assigned to a faulty center could be
reassigned to a non-faulty center in B(a), for an arbitrary nearby element a of a 7-
independent set A. Each B(a) could absorb all reassigned vertices. With arbitrary
capacities, the set B of pre-opened centers must be obtained much more carefully, as
the capacities of non-zero-capacitated vertices are not necessarily all the same. Once
the set B of backup centers is selected, one needs to ensure that the residual instance
of the capacitated k-center problem is feasible. In Sect. 3, an (α, 5)-independent set is
obtained from A, and Lemma 1 is used. This lemma is valid for arbitrary capacities,
so it is useful here as well. To obtain an (α, 5)-independent set from B, we make sure
that B can be partitioned in such a way that any two parts are at least at distance 7.
This is done by Algorithm 2, where alg denotes an approximation for the capacitated
k-center problem.

Algorithm 2: capacitated conservative α-fault-tolerant k-center, fixed α.

Input: connected graph G = (V, E), k, and L : V → Z≥0

1 foreach u ∈ V do
2 if Lu > |V | then Lu ← |V |
3 end
4 B ← ∅
5 while there is a set U ⊆ V with |U | ≤ α and L(U) > L(B ∩ N 6(U)) do
6 B ← (B \ N 6(U)) ∪ U
7 end
8 foreach u ∈ V do
9 if u ∈ B then L ′

u ← 0 else L ′
u ← Lu

10 end
11 if alg(G, k − |B|, L ′) returns failure then return failure
12 Let (S, φ) be the solution returned by alg(G, k − |B|, L ′)
13 return (S ∪ B, φ)

123

Algorithmica

Algorithm 2 is polynomial in the size of G, k, and L . The test in Line 5 can be imple-
mented by finding a set U ⊆ V with |U | ≤ α that minimizes L(B ∩ N 6(U)) − L(U)

(note that this is a particular case of minimizing a submodular function with cardi-
nality constraint). If, for an arbitrary α, there were a polynomial-time algorithm for
finding such a set U , then Algorithm 2 would be polynomial also in α. In Sect. 8, we
give evidence that such algorithm only exists if P = NP. When α is fixed, we may
enumerate the sets U in polynomial time. In the following, we show that Algorithm 2
is an approximation algorithm for the capacitated conservative fault-tolerant k-center
assuming that α is fixed.

The next lemma is analogous to Lemma 2, but it applies to the case with general
capacities.

Lemma 3 Let B be the set of vertices obtained by Algorithm 2 after the execution
of Lines 4–7. If the instance (G, k, L , α) is feasible for the capacitated conserva-
tive α-fault-tolerant k-center, then the instance (G, k − |B|, L ′) is feasible for the
capacitated k-center, where L ′

u = 0 for u in B, and L ′
u = Lu otherwise.

Proof Recall Definition 1: a set of vertices is (α, �)-independent if it can be partitioned
into sets C1, . . . , Ct such that |Ci | ≤ α for 1 ≤ i ≤ t , and d(Ci , C j) ≥ � for
1 ≤ i < j ≤ t . Let us argue that B is (α, 7)-independent.

Let t be the number of components of G6[B] and take each Ci to be the vertex
set of one of the components of G6[B]. Let us argue that |Ci | ≤ α for every i with
1 ≤ i ≤ t . Suppose, for a contradiction, that |Ci | > α for some i and let U ′ be the
vertices in Ci that were inserted in B in the last iteration of Line 6 when a vertex in Ci

was added to B. Clearly |U ′| ≤ α. Since Ci corresponds to a connected component
in G6[B] and |Ci | > α, there must be a vertex contained in Ci \ U ′ in N 6(U ′) ∩ B
at this execution of Line 6, but then this vertex would have been removed from B, a
contradiction. So B is indeed (α, 7)-independent.

Now, for each i with 1 ≤ i ≤ t , choose an arbitrary element ai in Ci . (Note that
the set A = {a1, . . . , at } is 7-independent in G.)

Consider a solution (S∗, φ∗
0) for (G, k, L , α) and observe that, for each i with

1 ≤ i ≤ t , there must be at least α + 1 centers in S∗ ∩ N (ai). So let Wi be the union
of Ci ∩ S∗ and other |Ci \ S∗| centers in S∗ ∩ N (ai). The set Wi is well defined, as
|Ci | ≤ α < |S∗ ∩ N (ai)|. Moreover, |Wi | = |Ci | and Wi ⊆ N (Ci).

Let W = ⋃t
i=1 Wi and note that |W | = |B|. For each pair i , j with 1 ≤ i < j ≤ t

we have that d(Wi , W j) ≥ 5, because B is (α, 7)-independent and thus d(Ci , C j) ≥ 7.
Hence, W is (α, 5)-independent.

Let L ′′ be such that L ′′
u = 0 if u /∈ S∗, and L ′′

u = Lu otherwise. Observe that the
instance (G, k, L ′′, α) is feasible (as we only set to zero the capacities of non-centers).
By Lemma 1, the instance (G, k − |W |, L ′′′) is feasible, where L ′′′

u = 0 if u ∈ W , and
L ′′′

u = L ′′
u otherwise. Notice that L ′

u ≥ L ′′′
u for every u, and |B| = |W |. Therefore,

since (G, k − |W |, L ′′′) is feasible, so is (G, k − |B|, L ′). �

Theorem 2 If alg is a β-approximation for the capacitated k-center, then Algo-
rithm 2 is a (β +6α)-approximation for the capacitated conservative α-fault-tolerant
k-center with fixed α.

123

Algorithmica

Proof Let (G, k, L , α) be an instance of the capacitated conservative α-fault-tolerant
k-center. No center can have more than |V | clients assigned to it, so Line 2 does not
affect a solution.

Since α is fixed, each execution of Line 5 takes time polynomial in |V |. Also, each
execution of Line 6 increases the value of L(B) by at least one. But L(B) is an integer,
starts from 0, and is at most |V |2, because each vertex capacity is at most |V | after
executing Line 2. Thus, the number of iterations is quadratic in |V |, and each one takes
time polynomial in |V |. Finally, as alg is a polynomial-time algorithm, we conclude
that Algorithm 2 is polynomial.

By Lemma 3, we know that, if alg returns failure in Line 11, then the instance
(G, k, L , α) is infeasible for the capacitated conservative α-fault-tolerant k-center. On
the other hand, if alg returns a solution (S, φ), then (S ∪ B, φ) is a valid set of centers
and initial attribution for our problem, and is such that each vertex u is at distance at
most β from φ(u). To complete our proof, we argue next that, for each failure scenario,
each client u of a faulty center can be reassigned to a center at distance at most β +6α
from u, and no center has its capacity exceeded by the reassignment.

Consider a failure scenario F ⊆ V with |F | = α. We define next a flow network
(H, c, s, t), with source s and sink t , in which a maximum flow from s to t provides
a valid distance-(β+6α) reassignment for the clients of centers in F (see Fig. 1).
Network graph H = (VH , EH) is such that the set VH of vertices is comprised of

– a source s and a terminal t ,
– a copy of each y in φ−1(F),
– a copy of each v in F ,
– a copy of each u in B, denoted by ū.

Denote by B̄ = {ū : u ∈ B}, and F̄ = {w̄ ∈ B̄ : w ∈ F}; also, for ū ∈ B̄, let
Lū = Lu . The set EH of arcs is comprised of

– for each y in φ−1(F), an arc (s, y) with capacity c(s, y) = ∞,
– for each v in F and each y in φ−1(v), an arc (y, v) with c(y, v) = 1,
– for each v in F and each u in B ∩ N 6

G(v), an arc (v, ū) with c(v, ū) = ∞,
– for each u in B \ F , a forward arc (ū, t) with capacity c(ū, t) = Lu , and,
– for each w in B ∩ F , a reverse arc (w̄, w) with c(w̄, w) = ∞.

LetC be aminimumcapacity s–t cut in H and (X, Y) be the corresponding partition
of the vertices, with s ∈ X and t ∈ Y . DefineU = X ∩ F . Since each arc with tail in F
has infinite capacity, we have that NH (U)∩ B̄ ⊆ X ∩ B̄. Also define Q̄ = X ∩ F̄ , and
Q = {w : w̄ ∈ Q̄}. As each arc of the form (w̄, w) has infinite capacity, if w̄ ∈ Q̄,
then w ∈ U , and thus Q ⊆ U .

Since only arcs from φ−1(F) to F and from B̄ \ F̄ to t have finite capacities, they
are the only ones that can be in a minimum cut set, and thus the capacity of C can be
expressed as

c(C) = |φ−1(F \ X)| + L((B̄ \ F̄) ∩ X)

≥ |φ−1(F)| − |φ−1(U)| + L(NH (U) ∩ B̄) − L(Q̄)

≥ |φ−1(F)| − L(U) + L(Q) + L(U) − L(Q̄) = |φ−1(F)|.

123

Algorithmica

s

B̄

t

∞

1

Fφ −1(F)

ū

Lu

∞
v

w̄
w

x̄
x

y

Fig. 1 The flow network defined in terms of L , B, φ, and F

The first inequality comes from the definition of U and Q̄, and from NH (U) ∩ B̄ ⊆
X ∩ B̄. The second inequality holds because φ does not assign any vertex to Q ⊆ U , so
|φ−1(U)| ≤ L(U)− L(Q); and since from the loop starting at Line 5 of Algorithm 2,
we have that L(U) ≤ L(N 6

G(U) ∩ B) = L(NH (U) ∩ B̄).
Hence the value of a maximum integer flow on H is exactly |φ−1(F)|, and thus

every arc from φ−1(F) to F has flow exactly 1. It is straightforward to obtain an
assignment ψ : φ−1(F) → B \ F . For each vertex y in φ−1(F), let ψ(y) = u, where
ū is the center in B̄ \ F̄ that receives the unit of flow going through y (for example, in
Fig. 1, a unit of flow could traverse a path of vertices s, y, v, x̄, x, w̄, w, ū, t , and so
we set ψ(y) = u).

Since each vertex ū, with u ∈ B \ F , can receive at most Lu units of flow, clearlyψ

respects the capacities. Moreover, since there are at most α − 1 elements in B ∩ F ,
each unit of flow leaving a vertex v in F can traverse at most α − 1 reverse arcs in H
(without creating a circle), so it can traverse at most α arcs from F before reaching an
element ū in B̄ \ F̄ . Therefore, dG(v, u) ≤ 6α.

It follows that for every y ∈ φ−1(F)

dG(y, ψ(y)) ≤ dG(y, φ(y)) + dG(φ(y), ψ(y)) ≤ β + 6α.

Now we can define a conservative reassignment φF :

φF (v) =
{

φ(v) if φ(v) /∈ F,

ψ(v) otherwise.

We argue that φF is a valid distance-(β + 6α) conservative reassignment. Let u
be a center opened by the algorithm (that is, u ∈ S ∪ B). If u ∈ F , then
φF (v) = ∅; otherwise, φ−1

F (u) = φ−1(u) if u ∈ S, or φ−1
F (u) = ψ−1(u) if

u ∈ B. Since φ and ψ do not exceed the capacities of the centers to which they
assign clients, neither does φF . Finally, consider a vertex y in V . If φ(y) /∈ F ,
then φF (y) = φ(y) and dG(y, φF (y)) = dG(y, φ(y)) ≤ β. If φ(y) ∈ F , then
dG(y, φF (y)) = dG(y, ψ(y)) ≤ β + 6α. �

123

Algorithmica

Using the approximation for the capacitated k-center by An et al. [10], we obtain
the following.

Corollary 2 Algorithm 2 using the algorithm by An et al. [10] for the capacitated
k-center is a (9+6α)-approximation for the capacitated conservative α-fault-tolerant
k-center with fixed α.

5 Capacitated Fault-Tolerant k-Center

5.1 An Initial LP Formulation

Recall that we are given an unweighted connected graph, and the objective is to decide
whether there is a distance-1 solution (see Sect. 2). As in [9,10], we use an integer
LP that formulates the problem. If, after relaxing the integrality constraints, the LP is
infeasible, then we know that there is no distance-1 solution; otherwise, we round the
solution and obtain an approximate solution.

In the natural formulation for the capacitated k-center, we have opening variables yu

for each vertex u, representing the choice of u as a center, and assignment variables
xuv representing that vertex v is assigned to center u. In the case of the fault-tolerant
k-center, for each failure scenario, that is, for each possible set F ⊆ V of centers that
may fail, with |F | ≤ α, we must have a different assignment from vertices to non-
faulty centers opened by y. One possibility to formulate the fault-tolerant variant is
having different assignment variables for each F . To simplify the formulation, rather
than creating a different set of assignment variables for each failure scenario, we use an
equivalent formulation based on Hall’s condition, which is a necessary and sufficient
condition for a bipartite graph to have a perfect matching [16]. The integer linear
program, denoted by ILPk,α(G), is the following:

∑
u∈V yu = k

|U | ≤ ∑
u∈NG (U)\F yu Lu ∀ U ⊆ V, F ⊆ V : |F | = α

yu ∈ {0, 1} ∀ u ∈ V .

We remark that ILPk,α(G) formulates the capacitated α-fault-tolerant k-center.
The first constraint guarantees that exactly k centers are opened, and the second set
of constraints guarantees that, for each failure scenario, there is a feasible assignment
from clients to opened centers that did not fail. Indeed, notice that, for a fixed F , the
existence of such an assignment is equivalent to the existence of a matching on the
bipartite graph formed by clients and open units of capacity that matches all clients.
Hall’s result, together with the second set of constraints of ILPk,α(G), assures the
existence of such a matching, and thus of such an assignment. Notice that we omit
failure scenarios F with |F | < α in the formulation, as the corresponding inequalities
are implied using inequalities for F ′ with |F ′| = α and F ⊆ F ′.

123

Algorithmica

5.1.1 Integrality Gap

As a first attempt, one can relax ILPk,α(G) directly. When the integrality constraints
are relaxed, however, the total value of fractional openings of the centers in F could
be strictly less than α, that is, y(F) < α. Thus the considered constraints are weaker
than desired. Indeed, consider the following example. Let Cn be a cycle on n vertices,
for n = s2 where s is a positive even integer, and let Gn be the graph obtained from Cn

by adding edges between every two vertices at distance at most s in Cn . Note that any
pair of antipodes in Cn are at distance s/2 in Gn . If Lu = n for every u in Gn, k = s,
and α = k − 1, then the cost of any solution for this instance is s/2, as for any set of k
centers in Gn , all but one center might fail. Now, let y be the vector with yu = 1/s
for every u. We claim that y is feasible for the relaxation of ILPk,α(Gn). Indeed, first
notice that

∑
u∈V yu = s = k. Also, since every vertex has 2s neighbors, for any set of

centers F of size α = k − 1 = s − 1, the second set of constraints is satisfied, because
either U = ∅, and the constraint is trivially satisfied, or the right side is at least n, and
the left side is at most n. So y is feasible, and thus the lower bound obtained from
the relaxation of ILPk,α(Gn) may be arbitrarily small when compared to an optimal
solution, that is, the minimization problem obtained from ILPk,α(Gn) has unbounded
integrality gap.

5.2 Dealing With the Integrality Gap

Suppose that we knew a subset B of the centers of an optimal solution that might fail.
Then we could set yu = 1 for each u in B, that is, we force the LP to open u. This
would avoid the problem in the example with unbounded integrality gap whenever the
failure scenario is F ⊆ B, as in such a case we would have y(F) = |F |. Since we
do not know how to obtain a subset B of centers of an optimal solution, and a failure
scenario F might contain centers not in B, we aim at two more relaxed goals:

(G1) Based on the structure of G, we determine approximate locations of centers in
an optimal solution. This allow us to select a subset of centers B that are close
to distinct centers of such an optimal solution.

(G2) We consider first the case where only centers in B might fail, and carefully
choose B so that this case comprises the worst scenario.

To achieve these goals, we will make use of a standard clustering technique. We
partition the graph so that the elements of each part are close to some centers in an
optimal solution. Locally, the worst-case scenario corresponds to the failure of the
highest capacitated centers in a cluster. The clustering and the selection of pre-opened
centers are described precisely in the following.

5.2.1 Clustering

Clustering has been used by several algorithms for the k-center problem, for both the
capacitated [7,8] and fault-tolerant cases [12–15]. We use the construction introduced
by Khuller and Sussmann [8]. In their algorithm, one first repeatedly selects a new

123

Algorithmica

center at distance exactly 3 from the set of previous selected centers, and then attaches
each vertex to its nearest center (breaking ties arbitrarily). In the end of this process,
each vertex is either a center, or is at distance at most 2 from the attached center. The
relevant result is replicated in next lemma.

Lemma 4 [8]Given a connected graph G = (V, E), one can obtain a set of midpoints
Γ ⊆ V , and a partition of V into sets {Cv}v∈Γ , such that

– there exists a rooted tree T on Γ , with dG(u, v) = 3 for every edge (u, v) of T ;
– NG(v) ⊆ Cv for every v in Γ ; and
– dG(u, v) ≤ 2 for every v in Γ and every u in Cv .

5.2.2 Selecting Pre-opened Centers

We apply Lemma 4 and obtain a clustering of V . Let v in Γ be a cluster midpoint, and
suppose there exists a distance-1 solution for G. Since up to α centers in this solution
may fail, there must be at least α + 1 centers in N (v), as otherwise there would be
a failure scenario for which v would not have a surviving center in its neighborhood.
Thus, the elements of Cv are within distance 3 from at least α + 1 centers in Cv .
Moreover, since sets N (v) are disjoint for v in Γ , there are at least α + 1 centers per
cluster in any distance-1 solution. If |N (v)| ≤ α for a vertex v, then ILPk,α(G) is
trivially unfeasible, and we obtain a certificate that the input graph is a no instance. In
the following, we assume that |N (v)| ≥ α + 1 for every vertex v.

To achieve (G1), we may select, for each cluster, any subset of up to α + 1 vertices
in the cluster. To achieve (G2), we reason on the total capacity that may become
unavailable when failure occurs. For each cluster, the largest amount of capacity that
can be discounted in a given scenario does not exceed the accumulated capacity of the
α most capacitated vertices in the cluster. Thus, we select these vertices as set B.

Formally, for each v in Γ , let Bv ⊆ Cv be a set of α elements of Cv with largest
capacities. This is the set of pre-opened centers for clusterCv . The set of all pre-opened
centers is defined as

B =
⋃

v∈Γ

Bv.

5.3 Modifying the LP Formulation

We pre-open the elements of B by adding to ILPk,α(G) the constraint yu = 1, for
every u ∈ B. Whenwe establish a partial solution in advance, wemay turn the original
linear formulation infeasible, since it is possible that no distance-1 solution opens the
elements of B. However, since in any distance-1 solution there are at least α centers
in NG(v) for a given cluster midpoint v, each such center is within distance 3 to
a distinct element of B of non-smaller capacity. Thus, we can convert a distance-
1 solution into a distance-4 solution by reassigning clients to elements of B, while
preserving most of the structure in the original LP.

123

Algorithmica

v

Cv

t

u

Fig. 2 Dashed lines represent arcs added to the graph G to obtain G′, and solid lines represent duplicated
arcs in opposite directions. Empty circles represent Bv

5.3.1 Fixing Feasibility

To obtain a useful LP relaxation, while pre-opening the set B of centers, wemodify the
supporting graph G. For each cluster Cv , we augment G with edges connecting each
client that could be potentially served by centers in Cv to each vertex in the set Bv .
Precisely, we define the directed graph G ′ = G ′(G, {Cv}v∈Γ) = (V, E ′), where E ′
is the set of arcs (u, w) such that {u, w} ∈ E , or there exist v in Γ and t in NG(v)

such that {u, t} ∈ E and w ∈ Bv (see Fig. 2). We remark that a directed graph is used,
because we want to allow for a reassignment of a client from an arbitrary center in the
cluster to a center in B, but not the other way around.

5.3.2 A New Formulation

In the new formulation, we consider only scenarios F ⊆ B. Thus, in a feasible
solution y, we will have y(F) = |F | for each scenario F . Also, for each cluster
midpoint, we want the total value of fractional openings of non-faulty centers in its
neighborhood to be at least one. For the integer program ILPk,α(G), this was implicit
by the constraints, but when y is not integral, there might be high capacity centers that
satisfy the local demand with less than one open unit. Therefore, we have an additional
constraint for each cluster midpoint v to ensure that there is one unit of (fractional)
opening in NG(v) excluding any opening coming from B. We obtain a new linear
program, denoted by LPk,α(G, {Cv}v∈Γ).

∑
u∈V yu = k

|U | ≤ ∑
u∈NG′ (U)\F yu Lu ∀ U ⊆ V, F ⊆ B : |F | = α

1 ≤ ∑
u∈NG (v)\B yu ∀ v ∈ Γ

yu = 1 ∀ u ∈ B

0 ≤ yu ≤ 1 ∀ u ∈ V .

Notice that, contrary to ILPk,α(G), program LPk,α(G, {Cv}v∈Γ) depends on the
obtained clustering. The following lemma states that LPk,α(G, {Cv}v∈Γ) is a “relax-
ation” of ILPk,α(G), that is, if LPk,α(G, {Cv}v∈Γ) is infeasible, then we obtain a
certificate that no distance-1 solution for G exists.

123

Algorithmica

Lemma 5 If ILPk,α(G) is feasible, then LPk,α(G, {Cv}v∈Γ) is feasible.

Proof Suppose that ILPk,α(G) is feasible. Let y be a feasible solution for ILPk,α(G),
and let R be the set of centers corresponding to y.

First, we define an injection β from R into R ∪ B that covers B. We begin by
defining β(w) = w for each w ∈ R ∩ B. Recall that Γ is the set of midpoints. Now,
for each v in Γ , let u1, . . . , ut be the elements of Bv \ R in non-increasing order
of capacity. Analogously, let w1, . . . , wt , . . . be the elements of (R ∩ NG(v)) \ B in
non-increasing order of capacity (recall that each NG(v) has at least α + 1 centers
in an optimal solution R, and thus |(R ∩ NG(v)) \ B| > |Bv \ R|). For each i with
1 ≤ i ≤ t , we define β(wi) = ui . Finally, for each w in R whose β(w) is not defined
yet, let β(w) = w. Notice that β covers B, Lw ≤ Lβ(w) for every w in R, and the
inverse function β−1 is well-defined on the image of β.

Consider a set U ⊆ V . We claim that β(NG(U)) ⊆ NG ′(U). Indeed, let u ∈ U ,
and t ∈ NG({u}). Then, if β(t) = t , we have β(t) ∈ NG(U) ⊆ NG ′(U). Otherwise,
t must be a neighbor of some midpoint v, and β(t) ∈ Bv . In this case we know that
(u, β(t)) is an edge of G ′, and thus β(t) ∈ NG ′(U).

Let R′ = β(R), and let y′ be the characteristic vector of R′. We claim that y′ is a
feasible solution for LPk,α(G, {Cv}v∈Γ). Let U ⊆ V and F ⊆ B with |F | = α. From
the feasibility of y for ILPk,α(G), and as |β−1(F)| = |F | = α, we have

|U | ≤ ∑
u∈NG (U)\β−1(F) yu Lu = ∑

u∈(NG (U)\β−1(F))∩R Lu

= ∑
u∈(NG (U)∩R)\β−1(F) Lu ≤ ∑

u∈β((NG (U)∩R)\β−1(F)) Lu

= ∑
u∈β(NG (U)∩R)\F y′

u Lu ≤ ∑
u∈NG′ (U)\F y′

u Lu,

where the last inequality holds since β(NG(U)) ⊆ NG ′(U). The verification that the
other constraints also hold for y′ is straightforward. �

ThoughLPk,α(G, {Cv}v∈Γ) has an exponential number of constraints, the following
lemma shows that it has a polynomial-time separation oracle [17, Chap. 14].

Lemma 6 For fixed α, there is an algorithm that, in polynomial time, decides whether
a vector y is feasible for LPk,α(G, {Cv}v∈Γ). If y is not feasible, the algorithm also
outputs a constraint of LPk,α(G, {Cv}v∈Γ) that is violated by y.

Proof We concentrate on the second set of constraints, as there are polynomially
many constraints of the other types. Notice that the number of distinct scenarios F
is O(|V |α), which is polynomial since α is constant. Fix a failure scenario F and
suppose that we can solve the following problem:

min
U⊆V

∑

u∈NG′ (U)\F

yu Lu − |U |. (1)

If this value is non-negative, then all constraints in the second set for this scenario F
are satisfied, otherwise there is a subset U∗ of V for which the constraint is violated,

123

Algorithmica

∞

s

V
V \F

t

1 yuLu

Fig. 3 Flow network with source s and target t . There is a unit-capacity arc from s to each v ∈ V , and an
arc with infinite capacity from v to each neighbor u ∈ NG′ (U) \ F . Moreover, for each u ∈ V \ F , there
is an arc to t with capacity yu Lu

and we are done. We can rewrite the minimization problem above as the following
integer linear program on binary variables au for u in V , and bu for u in V \ F :

min
∑

u∈V \F bu(yu Lu) + ∑
u∈V au − |V |

s.t. au + bv ≥ 1 ∀ (u, v) ∈ E(G ′)
au, bv ∈ {0, 1} ∀ u ∈ V, v ∈ V \ F.

Variable au indicates that u is not in U , and variable bv indicates that there exists
some u in the adjacency list of v that is in U (that is, au = 0). The corresponding
matrix for this problem is totally unimodular, so the relaxation has an integral optimal
solution, which can be found in polynomial time [17, Example 1, p. 273]. Notice that
this problem (excluding the constant −|V | in the objective function) corresponds to
the min-cut formulation for the network flow problem depicted in Fig. 3, so it suffices
to run any max-flow min-cut algorithm. �

Corollary 3 For fixed α, LPk,α(G, {Cv}v∈Γ) can be solved in polynomial time.

If, for an arbitrary α, there were a polynomial-time algorithm for finding a set F
with |F | = α that minimizes the value of (1), then a stronger version of Corollary 3
without the restriction on α being fixed would hold. In Sect. 8, we give evidence that
this algorithm only exists if P = NP.

5.4 Distance-r Transfers

Given a solution y for LPk,α(G, {Cv}v∈Γ), the problem of finding k centers to serve
all clients is now reduced to rounding vector y so that exactly k vertices are integrally
open. Since the total fractional opening of y is k, one might consider “moving” the
fractional opening from one vertex to another so that the opening of some vertices
becomes zero, while the opening of k vertices become one. This idea motivated the
distance-r transfers, introduced by An et al. [10], which we adapt to the fault-tolerant
context.

123

Algorithmica

In a distance-r transfer, the fractional opening of vertices ismoved to verticeswithin
distance at most r . This guarantees that, after performing transfer operations, the cost
of the solution grows in a controlled way. To ensure that the capacity constraints
are not violated, one might consider only transferring fractional opening from a low
capacitated vertex to higher capacitated vertices, so that the “local capacity” does
not decrease. Here, we use a slightly more general definition than the original one to
comprise our requirements, as we might need to ensure that the opening of certain
vertices is never transferred (that is the case for vertices in B), and that transfers follow
certain paths.

Definition 2 Let V be a set of vertices, W be a subset of V, H be a graph on W ,
and L : V → R≥0 be a capacity function on V . A vector y′ : V → R≥0 is an
H -restricted distance-r transfer of a vector y : V → R≥0 if

(a)
∑

v∈V y′
v = ∑

v∈V yv;
(b)

∑
v∈Nr

H (U) Lv y′
v ≥ ∑

v∈U Lv yv for every U ⊆ W ; and

(c) y′
v = yv for every v ∈ V \ W .

If y′ is the characteristic vector of a set R ⊆ V , we will say that R is an integral
H -restricted distance-r transfer of y. If the graph H is clear from the context, then
we might simply say that y′ is a distance-r transfer of y.

An et al. [10] reduced the rounding of an arbitrary graph to the case in which
the graph is a tree that satisfies certain properties. They showed that such trees have
integral distance-2 transfers. This is formalized in the following.

Lemma 7 ([10]) Let T = (W, E) be a tree, and y : W → [0, 1] be a vector such
that

∑
u∈W yu is an integer, and yv = 1 for every internal node v of T . One can find

in polynomial time an integral (T -restricted) distance-2 transfer of y.

For a given solution y for LPk,α(G, {Cv}v∈Γ) and any failure scenario F ⊆ B,
the LP implicitly defines an assignment of clients to non-faulty (fractionally opened)
centers at distance 1 in G ′. Suppose some portion of the opening yv of v /∈ B is
transfered to some other vertex v′ at distance r in G. If a client u is initially served by
v, then the assignment can be transfered to v′ as well, so that u will be (fractionally)
assigned to centers at distance at most r + 1 in G, as (u, v) ∈ E(G). If client u was
initially served by some v ∈ B, then this assignment may be left unchanged, as no
opening of v is transfered; in this case, however, we might have (u, v) /∈ E(G), and
so edge (u, v) in G ′ may correspond to a path of length 4 in G. The worst case of the
obtained assignment happens when the distance is the maximum between r +1 and 4.

5.5 The Algorithm

Our algorithm consists of two parts. In the first, we round a fractional solution y of
LPk,α(G, {Cv}v∈Γ), and obtain a set R of k centers. In the second part, for each failure
scenario F ⊆ R with |F | ≤ α, we have to obtain an assignment from V to R \ F .

123

Algorithmica

5.5.1 Rounding

Since we have pre-opened centers in B, we round only the values associated with
vertices in V \ B. This phase is based on the algorithm of An et al. [10] for the
capacitated (non-fault-tolerant) k-center. The main difference is that we do not allow
transfers fromor to vertices in the set B. The algorithm reduces the problemof rounding
the solution for an arbitrary graph to the particular case of the problemwhose instances
are trees. There are three consecutive transfers. In the first step, we concentrate one
unit of opening in an auxiliary vertex that is added at the same location as the cluster
midpoint. In the second step, we create a tree instance using the auxiliary vertices as
internal nodes, and obtain an integral transfer using Lemma 7. In the last step, the
opening of auxiliary vertices is transferred back to vertices of the original graph. A
detailed description is presented in the following:

Step 1. For each cluster Cv , choose an element mv in the neighborhood of the
midpoint v that is not pre-opened, and has the largest capacity, that is,
mv = argmaxu∈NG (v)\B Lu . Create an auxiliary vertex av at the same location
as v (add an edge to av from each element of NG(v) as in Fig. 4), with capacity
Lav = Lmv , and initial opening yav = 0. Next, aggregate one unit of opening
to av by transferring fractional openings from NG(v) \ B to av . This can be
done as

∑
u∈NG (v)\B yu ≥ 1. The transfer proceeds as follows: for each u in

NG(v)\ B, decrease yu , while increasing yav until yu becomes 0. The process
is interrupted once yav reaches 1. The result is a distance-1 transfer y(1). The
first vertex to have its fractional opening transferred is mv , so that, at the end
of this step, y(1)

mv
= 0.

Step 2. Construct a tree T from the clustering tree by replacing each midpoint v with
av for every v in Γ . Next, for each cluster Cv , select every vertex u in Cv such
that u
= mv and u /∈ B and add a leaf corresponding to u, connected to av .
Finally, apply Lemma 7 to obtain an integral T -restricted distance-2 transfer
y(2) (starting with y(1) restricted to the vertices of T , and then extending the
vector that results from the lemma to include the other vertices with values
unchanged). Notice that dG(w1, w2) = 3 for each edge (w1, w2) of T if both
w1 and w2 are internal nodes; and dG(w1, w2) ≤ 2 if either w1 or w2 is a
leaf. Hence, y(2) can be interpreted as a distance-(2 · 3) transfer of y(1) (on the
basis graph).

Step 3. For each cluster Cv , transfer the opening of the auxiliary vertex av back to the
original vertexmv . This is possible sincemv is not part of T , and thus y(2)

mv
= 0.

Obtain a final integral distance-1 transfer y(3). Open the set of vertices R ⊆ V
that corresponds to the characteristic vector y(3).

5.5.2 Assignment

After opening centers R, up to α failures might occur. Our algorithm must provide a
valid assignment for each failure scenario F ⊆ R.

123

Algorithmica

Cv

mv

av

v

Fig. 4 Auxiliary vertex av is adjacent to each vertex in NG (v). The white vertices represent set Bv

First, we examine the case that F is a subset of B. In this case, LPk,α(G, {Cv}v∈Γ)

assures the existence of an assignment from V to a set of fractionally opened centers
that does not intersect F . Since the rounding algorithm obtains an integral G-restricted
distance-8 transfer (by adding up the three consecutive transfers), this will lead to a
distance-9 solution that does not assign to any element of F .

For the case that F is not a subset of B, we may not rely on the existence of a frac-
tional assignment obtained from the LP. Instead, we will show that, for each F , there
exists a corresponding F ′ ⊆ B, and that a distance-9 solution for failure scenario F ′
can be transformed into a distance-10 solution for failure scenario F . More precisely,
we will show that each element u assigned to a center v ∈ F \ F ′ in the former solution
may be reassigned to a distinct element v′ ∈ F ′ \ F in the latter solution, such that v
and v′ are in the same cluster, and Lv′ ≥ Lv .

A naive analysis of the preceding strategy would yield a 13-approximation, as the
distance between v and v′ might be 4, and thus d(u, v′) ≤ d(u, v)+ d(v, v′) ≤ 9+4.
To obtain a more refined analysis, we will bound the distance between u and the
midpoint associated to v. More precisely, denote by δ(v) the midpoint of the cluster
that contains v. We obtain the following lemma.

Lemma 8 Consider F ⊆ B with |F | = α and let R be the integral transfer obtained
from y by the rounding algorithm above. One can find an assignment φ : V → R \ F
such that dG(u, δ(φ(u))) ≤ 8 and dG(u, φ(u)) ≤ 9 for each u in V .

Proof Let V̄ = V ∪ {av : v ∈ Γ } be the union of the vertices of G and the auxiliary
vertices, and Ḡ be the graph obtained after we add the auxiliary vertices to G. Fix a
subset U ⊆ V .

Recall that the rounding algorithm considers an initial feasible solution y = y(0),
and obtains consecutive transfers y(1), y(2), y(3). In the following, for each transfer
y(i), for 0 ≤ i ≤ 2, and each U ⊆ V , we will consider a set X = X (i)(U) of
nearby vertices whose total installed capacity, excluding faulty elements, exceeds |U |.
That is, we want to obtain X such that the value ic(i)(X) := ∑

u∈X\F y(i)
u Lu ≥ |U |.

Initially, before any transfer is performed, we have that y(0) = y and, by the con-
straints of LPk,α(G, {Cv}v∈Γ), we have that |U | ≤ ∑

u∈NG′ (U)\F yu Lu , so we set
X (0)(U) = NG ′(U).

In the first step, we have a distance-1 transfer. Notice that NG ′(U)\B = NG(U)\B.
Also, recall that the transfer is restricted to vertices in V̄ \ B. We obtain

123

Algorithmica

|U | ≤ ic(0)(X (0)(U)) = ic(0)((NG ′(U) ∩ B) ∪ (NG(U) \ B))

≤ ic(1)((NG ′(U) ∩ B) ∪ (N 2
Ḡ
(U) \ B))

= ic(1)((NG ′(U) ∩ B) ∪ (N 2
Ḡ
(U) ∩ V (T))).

The last equality holds because, if u ∈ N 2
Ḡ
(U) \ B but u /∈ V (T), then u = mv for

some v ∈ Γ , thus y(1)
u = 0.Hencewe set X (1)(U) = (NG ′(U)∩B)∪(N 2

Ḡ
(U)∩V (T)).

In the second step, we have an integral T -restricted distance-2 transfer of y(1). Once
again, since T does not include vertices of B, we obtain

ic(1)(X (1)(U)) = ic(1)((NG ′(U) ∩ B) ∪ (N 2
Ḡ
(U) ∩ V (T)))

≤ ic(2)((NG ′(U) ∩ B) ∪ N 2
T (N 2

Ḡ
(U) ∩ V (T))).

We set X (2)(U) = (NG ′(U) ∩ B) ∪ N 2
T (N 2

Ḡ
(U) ∩ V (T)).

Let R̄ ⊆ V̄ be the set corresponding to vector y(2). First consider a bipartite graph
H = (V ∪ R̄, D), where elements v ∈ V ∩ R̄ appear duplicated: the original in the
first side of the bipartition, and a copy in the second side. There is an edge {u, v} in D
if v ∈ X (2)({u}) \ F . Modify H by replacing each vertex v in R̄ by Lv copies. Notice
that now, for each U ⊆ V , we have |NH (U) \ U | = |⋃u∈U (NH ({u}) \ {u})| =
ic(2)(

⋃
u∈U X (2)({u})) = ic(2)(X (2)(U)) ≥ |U |. This is exactly Hall’s condition for

the existence of a matching in H covering V . We obtain such a matching and a corre-
sponding assignment φ′ : V → R̄ \ F .

Remember that δ(u) is the midpoint of the cluster that contains u ∈ V . For
an auxiliary vertex av with v ∈ Γ , we let δ(av) = v. Now, for every ver-
tex u in V , we show that the distance from u to both φ′(u) and δ(φ′(u)) is
bounded by 8. Recall that φ′(u) ∈ X (2)({u}). We have two cases. First, suppose
that φ′(u) ∈ NG ′({u}) ∩ B. Since we have that dG(u, φ′(u)) ≤ 4, by the construc-
tion of G ′, we obtain that dG(u, δ(φ′(u))) ≤ 6, and we are done. Now, assume that
φ′(u) ∈ N 2

T (N 2
Ḡ
({u})∩ V (T)). In this case, there must be some v in N 2

Ḡ
({u})∩ V (T)

and a shortest path ρ connecting v to φ′(u) in T . We consider two possibilities. If
the length of ρ is 1, then ρ = (v, φ′(u)), and we deduce that dḠ(u, δ(φ′(u))) ≤
dḠ(u, v) + dḠ(v, φ′(u)) + dḠ(φ′(u), δ(φ′(u))) ≤ 2 + 3 + 2 = 7. If the length of ρ

is 2, then there exists w such that ρ = (v,w, φ′(u)), and we get that dḠ(u, φ′(u)) ≤
dḠ(u, v) + dḠ(v,w) + dḠ(w, φ′(u)) ≤ 2 + 3 + 3 = 8. Let z = δ(φ′(u)) be the mid-
point corresponding to φ′(u). If φ′(u) is an internal node of T , then it must be the
auxiliary vertex az , and thus dḠ(u, δ(φ′(u))) = dḠ(u, z) ≤ dḠ(u, φ′(u)) ≤ 8,
because z and φ′(u) = az are at the same location. Otherwise, w must be an
internal node and φ′(u) a leaf of w. Hence w = az, δ(φ

′(u)) = z, and therefore
dḠ(u, δ(φ′(u))) = dḠ(u, z) ≤ dḠ(u, w) ≤ dḠ(u, v) + dḠ(v,w) ≤ 2 + 3 = 5.

To obtain a final assignment φ : V → R \ F , we reassign each vertex u assigned
to an auxiliary vertex av , to the vertex mv , that is, for each u in V , if φ′(u) = av for
some v inΓ , then setφ(u) = mv; otherwise, setφ(u) = φ′(u). Since d(u, δ(φ(u))) =
d(u, δ(φ′(u))) and d(u, φ(u)) ≤ d(u, φ′(u))+1, we conclude that d(u, δ(φ(u))) ≤ 8
and d(u, φ(u)) ≤ 9. �

123

Algorithmica

Now we may obtain the approximation factor.

Theorem 3 There exists a 10-approximation for the capacitated α-fault-tolerant k-
center with fixed α.

Proof Consider a failure scenario F ⊆ R with |F | = α. For each cluster Cv , let
Fv be the set of centers that failed in cluster Cv . Also, let F ′

v be the set of the |Fv|
most capacitated centers in Bv , and F ′ = ⋃

v∈Γ F ′
v . We use Lemma 8, and obtain an

assignmentφ′ : V → R\F ′. In the following,we define an assignmentφ : V → R\F
that respects the capacities, and such that dG(w, φ(w)) ≤ 10 for w ∈ V .

First, letw ∈ V be such that φ′(w) ∈ R \ (F ∪ F ′). In this case, set φ(w) = φ′(w),
and notice that dG(w, φ(w)) = dG(w, φ′(w)) ≤ 9, by Lemma 8. Hence, since φ′
respects the capacities, so does φ for centers in R \ (F ∪ F ′).

Now consider vertices w ∈ V such that φ′(w) ∈ F . For each v in Γ , obtain an
ordering {u1, . . . , ut } of the vertices in F ′

v \ Fv and an ordering {v1, . . . , vt } of the
vertices in Fv \ F ′

v . For every w that is assigned to vi , for some 1 ≤ i ≤ t , reassign it
to ui , that is, for every w such that φ′(w) = vi , set φ(w) = ui . Notice that this leads
to a valid assignment φ, since Lui ≥ Lvi for every 1 ≤ i ≤ t . Since ui and vi are
in the same cluster, dG(δ(vi), ui) ≤ 2, and thus dG(w, φ(w)) ≤ dG(w, δ(φ′(w))) +
dG(δ(φ′(w)), ui) ≤ 8 + 2 = 10. �

6 {0, L}-Capacitated Fault-Tolerant k-Center

For a given L , the {0, L}-capacitated fault-tolerant k-center is the particular version of
the capacitated fault-tolerant k-center in which every vertex has capacity either zero
or L . Vertices with capacity 0 are called 0-vertices and vertices with capacity L are
called L-vertices. For a given set A of vertices, we denote by AL the set containing
all L-vertices of A.

6.1 LP-Formulation

We give a rounding algorithm for the {0, L}-capacitated case. As in Sect. 5, we formu-
late the problem using ILPk,α(G). In this case, however, we may rewrite the program
such that only L-vertices appear in the summation, and all coefficients are equal, that
is, ILPk,α(G) can be written as:

∑
u∈V yu = k

|U | ≤ ∑
u∈(NG (U))L\F yu L ∀ U ⊆ V, F ⊆ V : |F | = α

yu ∈ {0, 1} ∀ u ∈ V .

Notice that the second line in the program above can be simplified. The key obser-
vation is that, in the worst case, the total failed capacity is always the constant αL .
Indeed, consider a feasible integer solution y and a fixed subset U ⊆ V such that
U
= ∅, and let H = {u ∈ (NG(U))L : yu = 1}. We have |H | > α, since otherwise

123

Algorithmica

we would get |U | ≤ ∑
u∈(NG (U))L\H yu L =∑

u∈(NG (U))L\H 0 · L = 0, that is a con-
tradiction since U is not empty. Let F ′ be any subset of H with |F ′| = α. From the
inequality constraint in ILPk,α(G) for F = F ′, we obtain

|U | ≤ ∑
u∈(NG (U))L\F ′ yu L = ∑

u∈(NG (U))L yu L − ∑
u∈(NG (U))L∩F ′ 1 · L

= ∑
u∈(NG (U))L yu L − αL .

Therefore, the following linear program, that is denoted by LPUk,α(G), is a relax-
ation of ILPk,α(G).

∑
u∈V yu = k

|U | ≤ ∑
u∈(NG (U))L yu L − αL ∀ U ⊆ V, U
= ∅

0 ≤ yu ≤ 1 ∀ u ∈ V .

In contrast to LPk,α(G, {Cv}v∈Γ), this program can be separated even if α is part
of the instance. The difference is that, in this formulation, the failure scenarios need
not be enumerated. Given a candidate solution y, we can compute the minimum value
of

∑
u∈N L (U) yu L − |U | over all sets U , and check whether this value is at least

αL . This can be done in polynomial time using a max-flow min-cut algorithm with
arguments very similar to those in the proof of Lemma 6. This means that we can
separate LPUk,α(G) in polynomial time, which implies the following lemma.

Lemma 9 LPUk,α(G) can be solved in polynomial time even if α is part of the input.

6.2 Rounding

For the non-fault-tolerant {0, L}-capacitated k-center, An et al. [10] perform an addi-
tional preprocessing of the input graph to obtain a clustering with stronger properties.
This way, they derive an integral distance-5 transfer. Namely, before the preprocessing
described in Sect. 2, which produces an unweighted connected graph G = (V, E),
they remove any edge connecting two 0-vertices. We apply their rounding algorithm
to a solution of LPUk,α(G), which leads to the following result.

Lemma 10 Suppose G = (V, E) is a connected graph such that each vertex is either
a 0-vertex or an L-vertex, no two adjacent vertices are 0-vertices, and y : V → [0, 1]
is a vector such that

∑
u∈(N (v))L yu ≥ 1 for v ∈ V and

∑
v∈V yv is an integer. Then

there is a polynomial-time algorithm that produces an integral distance-5 transfer y′
of y.

Now we obtain a 6-approximation for the {0, L}-capacitated case.

Theorem 4 There exists a 6-approximation for the {0, L}-capacitated α-fault-
tolerant k-center (with α as part of the input).

Proof Let y be an optimal solution for LPUk,α(G), and y′ be an integral distance-5
transfer of y obtained by the algorithm of Lemma 10. Also, let R be the set of centers

123

Algorithmica

corresponding to the characteristic vector y′. We proceed as in the proof of Lemma 8.
Consider a subset U ⊆ V . Let X (U) = {v : yv > 0 and v ∈ (NG(U))L}, and let
Y (U) = N 5

G(X (U)) ∩ R be the set of all vertices whose y′ values might have been
partially transferred, by the algorithm of Lemma 10, from the y values of vertices in
X (U). By the constraints of LPUk,α(G) and the fact that y′ is an integral transfer, we
get

|U | + αL ≤
∑

u∈X (U)

yu L ≤
∑

u∈Y (U)

y′
u L = |Y (U)|L .

Now consider a failure scenario F ⊆ V with |F | = α. We can create a bipartite
graph (as in Lemma 8) that connects each vertex u ∈ V to vertices Y ({u}) \ F ⊆ R.
Using Hall’s condition, we obtain an assignment φ : V → R \ F that respects the
capacities. Since y′ is a distance-5 transfer, we know that Y ({u}) ⊆ N 6({u}) for
every u, and thus d(u, φ(u)) ≤ 6. �

7 The k-Supplier

In this section, we consider the k-supplier problem. In this problem, one is given a
set C of clients, a set F of candidate locations for facilities, and an integer k. The
goal is to select k of the locations to install facilities to serve each of the clients so that
the maximum distance between a client and its assigned facility is minimized.

It is easy to see that k-center is the special case of k-supplier in which C = F . So,
in particular, any approximation for k-supplier applies also to k-center and achieves the
sameapproximation factor. The sameholds for the capacitated and for the fault-tolerant
versions of the problems. For the basic k-supplier, there is a 3-approximation, whose
factor is the best possible unless P = NP [5]. Also, there exists a 3-approximation
[14] for the fault-tolerant k-supplier, and an 11-approximation for the capacitated
k-supplier [10].

In the capacitated fault-tolerant version of the k-supplier, each client must be
assigned to a facility, even at the failure of up to α facilities, and the assignment
is such that no facility u is assigned more than Lu clients. In the following, we show
that our algorithms for the k-center problem naturally extend to this generalization,
for both the conservative and the non-conservative variants.

Table 2 summarizes the obtained approximation factors.
As in the case of the k-center problem, we reduce the problem to the case of a

unweighted connected graph G and the objective is to obtain a distance-1 solution.

Table 2 Summary of the obtained approximation factors for the k-supplier problem

Version Capacities Value of α Factor

Conservative Uniform Given in the input 7

Conservative Arbitrary Fixed 11 + 8α

Non-conservative Uniform Given in the input 7

Non-conservative Arbitrary Fixed 13

123

Algorithmica

For the k-supplier problem, however, we consider only edges between C andF , that
is, the obtained graph is bipartite. This implies that distances in G between pairs of
clients or between pairs of facilities are even.

7.1 The Non-conservative Capacitated Fault-Tolerant k-Supplier

We first consider the case that capacities are non-uniform. A slightly different formu-
lation from ILPk,α(G) is used: the main difference is that we only have variables yu

for elements u of F , and we only consider constraints corresponding to subsets of
clients U ⊆ C and failure scenarios F ⊆ F .

By adapting the example of Sect. 5.1, the obtained formulation also has unbounded
integrality gap, and thus we consider a relaxation based on a modified graph that
depends on a clustering. In this step, rather than selecting clients at distance 3, we
greedily pick clients whose distance to previously picked elements is exactly 4. This
set of elements Γ (midpoints) induces a clustering of F , and a corresponding tree
of midpoints such that any adjacent midpoints in the tree are at distance 4, and every
facility is associated to a midpoint at distance at most 3.

As in the case of k-center, we select a set Bv of α facilities of largest capacity in
each cluster centered at v ∈ Γ , and construct a graph G ′ by adding arcs from any
client at distance at most 2 from a midpoint v to each facility of Bv . Let B be the union
of all Bv for v ∈ Γ . The obtained LP relaxation is:

∑
u∈F yu = k

|U | ≤ ∑
u∈NG′ (U)\F yu Lu ∀ U ⊆ C , F ⊆ B : |F | = α

1 ≤ ∑
u∈NG (v)\B yu ∀ v ∈ Γ

yu = 1 ∀ u ∈ B

0 ≤ yu ≤ 1 ∀ u ∈ V .

As done in [10], a rounding algorithm similar to that for k-center can obtain an
integral distance-10 transfer of a solution for the previous linear program (the only
difference is that a distance-2 transfer on the tree of midpoints is now interpreted
as a distance-(2 · 4) transfer on the original graph). This transfer implies that, for a
failure scenario F ⊆ B, one may obtain an assignment φ such that d(u, φ(u)) ≤ 11
for every u ∈ C . Moreover, by using the same reasoning as in the proof of Lemma 8,
one may show that d(u, δ(φ(u))) ≤ 10, where δ(φ(u)) is the midpoint associated
with φ(u). Therefore, the distance-11 assignment for a failure scenario F ′ ⊆ B can
be transformed into a distance-13 assignment for a general failure scenario F ⊆ F .

For the uniformly capacitated case, we can also obtain a simplified relaxation as
in Sect. 6. It is possible to adapt the rounding algorithm for the {0, L}-capacitated
k-center by An et al. [10], and obtain an integral distance-6 transfer for the solution
for this relaxation. The key observation is that, since the underlying graph is bipartite,
we can interpret clients as 0-vertices, so that no two such vertices are adjacent. This
leads to the following lemma.

123

Algorithmica

Lemma 11 Suppose G = (C ∪F , E) is a connected bipartite graph such that each
v ∈ F has capacity L, and y : V → [0, 1] is a vector such that

∑
u∈N (v) yu ≥ 1

for v ∈ C and
∑

v∈V yv is an integer. Then there is a polynomial-time algorithm that
produces an integral distance-6 transfer y′ of y.

The reason that the algorithm obtains a distance-6 transfer for the k-supplier, rather
than a distance-5 transfer, is that cluster midpoints are at distance 4 in an instance
of the k-supplier, whist midpoints are at distance 3 in an instance of k-center. Now,
using Lemma 11 and repeating the arguments in the proof of Theorem 4, we obtain a
7-approximation for the uniformly capacitated fault-tolerant k-supplier.

7.2 The Conservative Capacitated Fault-Tolerant k-Supplier

First, we revisit the notion of independent sets for the k-supplier. A set of facilities
W is (α, �)-independent if each connected component of G�−1[W] contains at most
α vertices. Also, a set of clients A is 8-independent if d(u, v) ≥ 8 for every u, v ∈ A
(notice that, in this bipartite setting, requiring that a set of clients is 7-independent
is the same as requiring that it is 8-independent). With these adapted definitions, one
may obtain versions of Lemmas 1 and 2 with analogous statements.

For the uniformly capacitated case, we use Algorithm 1, but with an 8-independent
set A, and assuming that alg is a β-approximation for the capacitated k-supplier
problem. Notice that since A is maximal, for every client u, there is a client v ∈ A,
such that d(u, v) ≤ 6. Now, by repeating Theorem 1, we obtain that this algorithm has
approximation factor max{7, β}. We use the algorithm by An et al. for the uniformly
capacitated case (without failures), for which, as stated above, β = 7, and obtain a
7-approximation.

For the non-uniformly capacitated case, we use Algorithm 2. However, when aug-
menting the set of backup facilities B with a set of facilities U (Line 6), rather than
excluding elements in N 6(U)∩ B, we exclude the elements in N 8(U)∩ B. Recall that,
in the k-center problem, we obtain a 7-independent set A ⊆ B by selecting an element
in each connected component of G6[B] (see the proof of Lemma 3). In the case of the
k-supplier problem, to obtain an 8-independent set A of clients, we must choose from
the neighborhood of the set B of backup facilities (and not directly from B). Thus, for
each connected component Ci of G8[B], we choose a facility bi ∈ Ci , and a neighbor
ai ∈ N (bi) ⊆ C . Notice that, for any pair bi , b j , d(bi , b j) > 8, thus d(bi , b j) ≥ 10,
and hence d(ai , a j) ≥ 8. Therefore, the set A of all ai ’s is an 8-independent set. The
rest of the proof remains unchanged, except that we replace 6 by 8, obtaining a fac-
tor β + 8α. The best known approximation for the capacitated k-supplier has factor
β = 11 [10].

8 Complexity Results

In Algorithm 2, one wants to decide whether or not, for every set of vertices U with
up to α vertices, it is the case that L(U) ≤ L(B ∩ N 6(U)). The next theorem shows
that this problem is coNP-complete when α is part of the input. First, we notice that

123

Algorithmica

we may consider N (U) instead of N 6(U), as there is a reduction from the problem
defined using N (U) to the problem defined using N 6(U).

Lemma 12 Let G be a graph, B ⊆ V (G), α ≥ 0, and Lu ≥ 0 for u ∈ V . Also, let
H be a graph obtained from G by replacing each edge {u, v} by a path of length 6
connecting u to v, and defining Lu = 0 for each added vertex. There exists U ⊆ V (G)

with |U | ≤ α and L(U) > L(B ∩ NG(U)) if and only if there exists U ⊆ V (H) with
|U | ≤ α and L(U) > L(B ∩ N 6

H (U)).

Proof First suppose there exists U ⊆ V (G) with |U | ≤ α and L(U) > L(B ∩
NG(U)). By construction of H , we have L(B ∩ NG(U)) = L(B ∩ N 6

H (U)). It follows
that L(U) > L(B ∩ N 6

H (U)).
For the opposite direction, suppose there exists U ⊆ V (H) with |U | ≤ α and

L(U) > L(B ∩ N 6
H (U)). We obtain L(U ∩ V (G)) = L(U) > L(B ∩ N 6

H (U)) ≥
L(B ∩ N 6

H (U ∩ V (G))) = L(B ∩ NG(U ∩ V (G))). �

Theorem 5 The problem of, given a graph H = (VH , EH), a number Lu for each
u ∈ VH , a set B ⊆ VH , and a number α, deciding whether L(U) ≤ L(B ∩ NH (U))

for every U ⊆ VH with |U | ≤ α is coNP-complete. Moreover, this problem, when
parameterized by α, is W [1]-hard.

Proof This problem is in coNP, because, for an instance (H, L , B, α) whose answer
to the problem is no, that is, a no instance, one can present as a no certificate a set
U ⊆ VH such that |U | ≤ α and L(U) > L(B ∩ NH (U)).

The clique problem is known to be NP-complete [18] and consists in, given a graph
G and a positive integer k, to decide whether there exists a clique in G with at least k
vertices. We present a reduction from the clique problem to our problem so that an
instance (G, k) of the clique problem is a yes instance if and only if the corresponding
instance (H, L , B, α) for our problem is a no instance.

Let (G, k) be an instance of the clique problem with G = (V, E). The main part
of the graph H consists of the bipartite graph with bipartition {V, E} and a vertex v

in V adjacent to an edge e in E if v is an end of e in G. Besides this, graph H has two
disjoint cliques on k + 1 vertices, say CV and CE . A vertex in CV , say s, is adjacent
to each vertex in V while a vertex in CE , say t , is adjacent to each edge in E . This
finishes the description of graph H . See Fig. 5 for an example. The capacity function L
is defined as follows. For each e in E , let L(e) = 1; for each v in V , let L(v) be the
degree of v in G, denoted as dv; for each u in CV , let L(u) = (k

2

) − 1 and, for each
u in CE , let L(u) = |E |. Finally, let B = E ∪ CV ∪ CE and α = k. This concludes
the description of the instance of our problem, which can be obtained from (G, k) in
time polynomial in the size of (G, k). Next we show that (G, k) is a yes instance of
the clique problem if and only if (H, L , B, α) is a no instance of our problem.

First let us prove that, if there exists a clique S of size k in G, then
L(S) > L(B ∩ NH (S)), that is, the answer of our problem for the instance (H, L , B, α)

is no. Indeed, B ∩ NH (S) consists of the special vertex s in CV and the edges incident
to S in G, so L(B ∩ NH (S)) = (k

2

) − 1 + �, where � is the number of edges in G
incident to S. The value of L(S) is

∑
v∈S dv , which is exactly the number of edges

incident to S plus the number of edges in G with both ends in S, that is, the edges in

123

Algorithmica

v1v2

v3

v4

v5

CV

V
E

CE
s t

Fig. 5 The graph on the right is the graph H in the instance of our problem corresponding to the graph G
on the left for k = 3. Squared vertices indicate the set B

the graph G[S] induced by S. As the number of edges in G[S] is exactly (k
2

)
because

S is a clique on k vertices, L(S) = (k
2

) + � > L(B ∩ NH (S)), as we wished.
Second we prove that, if L(U) > L(B ∩ NH (U)) for a set U of up to k ver-

tices of H , then there is a clique with k vertices in G. We start by arguing
that L(U ∩ (CV ∪ CE)) ≤ L((B ∩ NH (U) ∩ (CV ∪ CE)) \ {s, t}). If U ∩ CV
= ∅,
then B ∩ NH (U) ⊇ CV . Moreover, U
= CV since CV has k + 1 vertices and U
has up to k vertices. This means that L(U ∩ CV) ≤ L((B ∩ NH (U) ∩ CV) \ {s}).
Similarly, if U ∩ CE
= ∅, then B ∩ NH (U) ⊇ CE . Again U
= CE , so we
have that L(U ∩ CE) ≤ L((B ∩ NH (U) ∩ CE) \ {t}), completing the proof of the
claimed inequality. Now note that L(U ∩ E) ≤ |E | = L(t). On the other hand,
let S = U ∩ V and note that L(S) = ∑

v∈S dv , which is exactly the number of edges
incident to S plus the number of edges in the graph G[S]. If S is not a clique on k
vertices, then L(S) ≤ L(E ∩ NH (U)) + L(s) and, joining everything, we deduce
that L(U) ≤ L(B ∩ NH (U)), a contradiction. So S must be a clique on k vertices
in G.

To check W [1]-hardness, it suffices to observe that the reduction takes polynomial
time in the size of G, k ≤ |V |, and α = k. Since clique is W [1]-hard [19], the result
follows. �

Analogously, we reduce the separation problem for program LPk,α(G, {Cv}v∈Γ) to
a related problem. In the following theorem, we show that this problem is coNP-hard
when α is part of the input. Thus, to achieve a constant approximation for capacitated
fault-tolerant k-center with general capacities and α as part of input, one is likely to
need a different strategy.

Theorem 6 The problem of, given a graph H = (VH , EH), a number Lu for each
u ∈ VH , and a number α, deciding whether L(NH (U) \ F) ≥ |U | for every U ⊆
VH and F ⊆ VH with |F | = α is coNP-complete. Moreover, this problem, when
parameterized by α, is W [1]-hard.

Proof The proof is similar to that of Theorem 5. It is easy to see that the problem is in
coNP as, for a no instance of the problem, one can present as a certificate subsets U
and F of VH such that |F | = α and L(NH (U) \ F) < |U |.

123

Algorithmica

v1v2

v3

v4

v5

CV

V
E

CE

BE

AE

Fig. 6 The graph on the right is the graph H in the instance of our problem corresponding to the graph on
the left for k = 3

Consider again the NP-complete clique problem: given a graph G and a positive
integer k, decide whether there exists a clique in G with at least k vertices. Next we
present a reduction from the clique problem to our problem so that an instance (G, k)

of the clique problem is a yes instance if and only if the corresponding instance
(H, L , α) for our problem is a no instance.

Let (G, k) be an instance of the clique problem, where G = (V, E). The main part
of the graph H consists of the bipartite graphwith V as one side and E as the other side
of the bipartition. A vertex v in V is adjacent to an edge e in E if v is an end of e in G.
Besides this, H has two disjoint cliques, say, CV on k +1 vertices and CE = AE ∪ BE

on 2k + 1 vertices, with |AE | = k and |BE | = k + 1. Every vertex in CV is adjacent
to each vertex in V and every vertex in AE is adjacent to each edge in E . This finishes
the description of graph H . See Fig. 6 for an example. As for L , for each e in E , let
L(e) = 0; for each v in V , let L(v) = dv , where dv is the degree of v in G; for each u
in CV ∪ BE , let L(u) = |VH |; denoting by a1, . . . , ak the vertices in AE , let L(ai) = i
for i = 1, . . . , k −1 and L(ak) = k −1. Finally, let α = k, concluding the description
of the instance of our problem, which can be obtained from (G, k) in time polynomial
in the size of (G, k). Next we show that (G, k) is a yes instance of the clique problem
if and only if (H, L , α) is a no instance of our problem.

First, suppose that there exists a clique S of size k in G. Let U be the edges in G[S]
and let F = S. Note that |F | = |S| = k = α and |U | = (k

2

)
, as S is a clique on k

vertices. Thus NH (U) \ F = (S ∪ AE) \ F = AE , and L(NH (U) \ F) = L(AE) =(k
2

) − 1 < |U |. Hence the answer of our problem for the instance (H, L , α) is no.
Second, suppose that there are subsets U and F of VH such that |F | = α

and L(NH (U)\ F) < |U |. Observe thatU ∩(V ∪CV) = ∅; otherwise, NH (U) ⊇ CV

and CV \ F
= ∅ because F has k vertices and CV has k + 1 vertices. But this would
mean that L(NH (U)\ F) ≥ |VH | ≥ |U |, a contradiction. Similarly U ∩CE = ∅; oth-
erwise, NH (U) ⊇ BE and, as BE has k + 1 vertices, L(NH (U) \ F) ≥ |VH | ≥ |U |, a
contradiction. Soweknow thatU ⊆ E . Now let S = NH (U)∩V and � = |S∩F |. Thus
NH (U) has at least � vertices in AE \ F , and then L(NH (U)\ F) ≥ L({a1, . . . , a�})+
L(S \ F). Notice that L({a1, . . . , a�}) = (

�
2

)
if � < k, and L({a1, . . . , a�}) = (

�
2

) − 1
if � = k.

123

Algorithmica

LetU ′ be the set of all edges that have both ends in S ∩ F . It follows that every edge
inU \U ′ has at least one end in S\ F . On the one hand, L(S\ F) = ∑

u∈S\F du , which
is the number of edges incident to S \ F plus the number of edges in G[S \ F], thus
L(S \ F) ≥ |U \U ′|. On the other hand, every edge of U ′ is in G[S ∩ F] so, since � =
|S ∩ F |, the graph G[S ∩ F] contains at most

(
�
2

)
edges, and thus |U ′| ≤ (

�
2

)
. We obtain

|U | > L(NH (U) \ F) ≥ L({a1, . . . , a�}) + L(S \ F) ≥ L({a1, . . . , a�}) + |U \ U ′|.
But then

(
�
2

)−1 ≤ L({a1, . . . , a�}) ≤ |U |− |U \U ′|−1 ≤ |U ′|−1 ≤ (
�
2

)−1. Since

L({a1, . . . , a�}) = (
�
2

) − 1, we deduce that � = k. We conclude that |U ′| = (k
2

)
, and

thus G[S ∩ F] is a clique on k vertices.
To check W [1]-hardness, observe that the reduction takes polynomial time in the

size of G, k ≤ |V |, and α = k. �

Acknowledgements We would like to thank the anonymous reviewers for their careful checking of the
manuscript and valuable comments.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness.
Freeman, New York (1979)

2. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, pp. 434–444 (1988). https://doi.org/10.1145/
62212.62255

3. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38,
293–306 (1985). https://doi.org/10.1016/0304-3975(85)90224-5

4. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res.
10(2), 180–184 (1985). https://doi.org/10.1287/moor.10.2.180

5. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck prob-
lems. J. ACM 33(3), 533–550 (1986). https://doi.org/10.1145/5925.5933

6. Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discr. Appl. Math. 1(3),
209–215 (1979). https://doi.org/10.1016/0166-218X(79)90044-1

7. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algorithms 15(3), 385–415
(1993). https://doi.org/10.1006/jagm.1993.1047

8. Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM J. Discr. Math. 13(3), 403–418
(2000). https://doi.org/10.1137/S0895480197329776

9. Cygan, M., Hajiaghayi, M., Khuller, S.: LP rounding for k-centers with non-uniform hard capacities.
In: IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 273–282 (2012). https://
doi.org/10.1109/FOCS.2012.63

10. An, H.C., Bhaskara, A., Chekuri, C., Gupta, S., Madan, V., Svensson, O.: Centrality of trees for capac-
itated k-center. Math. Program. 154(1), 29–53 (2015). https://doi.org/10.1007/s10107-014-0857-y

11. Cygan, M., Kociumaka, T.: Constant factor approximation for capacitated k-center with outliers. In:
31st International Symposium on Theoretical Aspects of Computer Science, vol. 25, pp. 251–262
(2014). https://doi.org/10.4230/LIPIcs.STACS.2014.251

12. Krumke, S.: On a generalization of the p-center problem. Inf. Process. Lett. 56(2), 67–71 (1995).
https://doi.org/10.1016/0020-0190(95)00141-X

13. Chaudhuri, S., Garg, N., Ravi, R.: The p-neighbor k-center problem. Inf. Process. Lett. 65(3), 131–134
(1998). https://doi.org/10.1016/S0020-0190(97)00224-X

14. Khuller, S., Pless, R., Sussmann, Y.J.: Fault tolerant k-center problems. Theoret. Comput. Sci. 242(1–
2), 237–245 (2000). https://doi.org/10.1016/S0304-3975(98)00222-9

15. Chechik, S., Peleg, D.: The fault-tolerant capacitated k-center problem. Theoret. Comput. Sci. 566,
12–25 (2015). https://doi.org/10.1016/j.tcs.2014.11.017

16. Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10(1), 26–30 (1935). https://doi.org/10.
1112/jlms/s1-10.37.26

123

https://doi.org/10.1145/62212.62255
https://doi.org/10.1145/62212.62255
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1145/5925.5933
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.1006/jagm.1993.1047
https://doi.org/10.1137/S0895480197329776
https://doi.org/10.1109/FOCS.2012.63
https://doi.org/10.1109/FOCS.2012.63
https://doi.org/10.1007/s10107-014-0857-y
https://doi.org/10.4230/LIPIcs.STACS.2014.251
https://doi.org/10.1016/0020-0190(95)00141-X
https://doi.org/10.1016/S0020-0190(97)00224-X
https://doi.org/10.1016/S0304-3975(98)00222-9
https://doi.org/10.1016/j.tcs.2014.11.017
https://doi.org/10.1112/jlms/s1-10.37.26
https://doi.org/10.1112/jlms/s1-10.37.26

Algorithmica

17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley Series in Discrete Mathematics &
Optimization. Wiley, New York (1998)

18. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations:
Proceedings of a symposiumon theComplexity ofComputerComputations, pp. 85–103 (1972). https://
doi.org/10.1007/978-1-4684-2001-2_9

19. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness
for W [1]. Theoret. Comput. Sci. 141(1), 109–131 (1995). https://doi.org/10.1016/0304-
3975(94)00097-3

123

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3

	Improved Approximation Algorithms for Capacitated Fault-Tolerant k-Center
	Abstract
	1 Introduction
	1.1 Our Contributions and Techniques
	1.2 Obtained Approximations and Paper Organization

	2 Preliminaries
	2.1 Reduction to the Unweighted Case
	2.2 Preprocessing and Reduction to the Connected Case

	3 {0,L}-Capacitated Conservative Fault-Tolerant k-Center
	4 Capacitated Conservative Fault-Tolerant k-Center
	5 Capacitated Fault-Tolerant k-Center
	5.1 An Initial LP Formulation
	5.1.1 Integrality Gap

	5.2 Dealing With the Integrality Gap
	5.2.1 Clustering
	5.2.2 Selecting Pre-opened Centers

	5.3 Modifying the LP Formulation
	5.3.1 Fixing Feasibility
	5.3.2 A New Formulation

	5.4 Distance-r Transfers
	5.5 The Algorithm
	5.5.1 Rounding
	5.5.2 Assignment

	6 {0,L}-Capacitated Fault-Tolerant k-Center
	6.1 LP-Formulation
	6.2 Rounding

	7 The k-Supplier
	7.1 The Non-conservative Capacitated Fault-Tolerant k-Supplier
	7.2 The Conservative Capacitated Fault-Tolerant k-Supplier

	8 Complexity Results
	Acknowledgements
	References

