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A B S T R A C T

Two integer programming problems are introduced and formulated in this paper, both based on the concepts
of close enough and facility location. Location problems using the notion of close enough allow customers to
pick up their demand at pickup points different from the facilities but that are still not too far from the latter.

Given a discrete set of customers, a discrete set of potential facility locations, and a maximum distance
that each customer is willing to travel free of charge to pick up their order, the Close Enough Facility Location
Problem consists in determining which facilities to open among the candidates, on which points on the plane
to install pickup points, and how to assign customers to both facilities and pickup points, in an optimal way
taking into account different costs. In this work we propose two generalizations of this problem. The first is to
consider that the pickup points have capacities. The second is to consider that the communications network
is restricted to a graph, and that therefore the pickup points cannot be installed on any point on the plane
but only on the network. These problems are named the Capacitated Close-Enough Facility Location Problem
and the Network Capacitated Close-Enough Facility Location Problem, respectively. We propose a column
generation algorithm for the two introduced problems that allows us to obtain better results for large-scale
problems than the CPLEX solver.
1. Introduction and literature review

Location problems have a very important relevance in numerous
contemporary scenarios. Logistics companies and businesses requiring
the establishment of facilities or pickup points often need to devise
optimization models. The main goal of these models is to obtain an op-
timal solution that determines both the ideal facility locations and the
customers they serve. The 𝑝-median problem is one of the most studied
problems in discrete optimization, since it was introduced by Hakimi
(1964). Years later, the capacitated 𝑝-median problem (CPMP) was
introduced and shown to be an NP-hard problem (see Hartmanis,
1982).

In the last decade, consumer behavior has undergone significant
changes. For instance, many consumers now prefer picking up their
orders at a convenient pickup point near their home or workplace,
rather than providing their address and waiting for an alert about the
delivery time. Large distribution companies are increasingly adopting
this approach, utilizing service or collection points in proximity to the
customer. An example of this trend is the self-service points (lockers)
that Amazon is installing in all the cities.

The close enough concept used in facility location or routing prob-
lems allows for the relocation of customers. A plant is close enough to
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a customer if there is an intermediate point between the plant and the
customer to which the customer is willing to travel to be served at no
additional cost. In this case, the location problem consists of deciding
where to install the plants so that all customers have a close enough
plant. A vehicle is close enough to a customer when they are willing
to move to the vehicle route to obtain the vehicle service. Thus, the
problem consists of designing routes so that all customers have a close
enough route.

Some papers about routing problems that use close enough condi-
tions are Gulczynski et al. (2006), Corberán et al. (2019), Corberán
et al. (2021), Hernández-Pérez et al. (2021), Bianchessi et al. (2022a,b),
Di Placido et al. (2023) and Reula and Martí (2023). In Gulczynski
et al. (2006) and Di Placido et al. (2023) the problem studied is the
traveling salesman problem and heuristic approaches are proposed. The
close enough traveling salesman problem is a generalization of the
traveling salesman problem that requires a salesman to just go close
enough to each customer instead of visiting the exact location of each
customer. Over the 17 years between the publication of these two works
on the close enough traveling salesman problem, more than a dozen
works have been published on it. In Corberán et al. (2019), Corberán
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data mining, AI training, and similar technologies. 
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et al. (2021), Bianchessi et al. (2022a,b) and Reula and Martí (2023)
he problem studied is the arc routing problem. The close enough arc

routing problem models the situation in which customers are not neces-
arily nodes of a network and the vehicles must traverse the edges that
re close enough to the customers. Corberán et al. (2019) introduce the

problem and study optimal solutions, whereas the other listed papers on
he close enough arc routing problem introduce other generalizations
s the profitable or the distance-constrained close enough arc routing

problem. In Hernández-Pérez et al. (2021) the problem studied is the
pickup and delivery problem and the authors do not explicitly say that
he reallocation of customers is due to a close enough condition: they
ssume that customers are paid for moving to the vehicle route.

Three papers about location problems that include close enough
conditions are Landete and Laporte (2019), Corberán et al. (2020)
nd Moya-Martínez et al. (2021). In the first paper, customers can

collect their demand from some cooperative customers which act as
ntermediate points, whereas in the last paper customers can do it
rom some general pickup points. In the first paper, the number of

cooperative customers is a finite set while in the latter the number of
all potential candidate pickup points is an infinite set.

In this paper we assume that there is a finite set of potential plant
locations and a finite set of customers who are willing to travel to any
point within a radius to pick up their orders at no additional cost.
We assume that a pickup point may have a capacity that limits the
number of customers allocated to it and we consider two cases: the
pickup points can be installed anywhere on a plane or on a graph.
The problem is to determine where to install the plants and the pickup
points among the potential sets such that all the customers are served,
apacities are not exceeded, and the total cost is minimized. The pickup

points offer an opportunity to reduce transportation costs, as customers
are willing to retrieve goods from a location that is sufficiently close
to the facility that they would have to go to by default. This paper
builds on Moya-Martínez et al. (2021), where the close enough fa-
cility location problem was introduced. The same basic problem is
addressed with two added difficulties: (i) capacities are added to the
ickup points, i.e., the number of customers that can move to a certain

pickup point is restricted, and (ii) pickup points are restricted to be
on a graph, i.e., it is analyzed how the space of feasible solutions
changes when the problem is solved on a graph. The new problems
are named the Capacitated Close-Enough Facility Location Problem
(CCEFLP) and the Network Capacitated Close-Enough Facility Location
Problem (NCCEFLP), respectively.

The application we mentioned before of the decision on the location
f lockers as pickup points fits the description of the problem. It is sen-
ible to assume that the budget manager knows the number of lockers
e can afford to install and that a more detailed budget restriction is
nnecessary. It also fits the fact that the distance traveled by customers
o reach the locker is different in each case, although the price of these
ides is the responsibility of the customers and is not in the manager’s
bjective function. It is also appropriate to assign a capacity to each
ocker. Another application of the problem related to communications
ather than to transportation is the wifi router location for internet
ccessibility. The wifi network and the network cable connection are
he two main options to connect to the network on computers and
aptops. Computers (customers) can be directly served by the cable
onnection (facility) or a wifi router (pickup point). It usually happens
hat the cable service is better than the router service in terms of
ownload/upload speed, which means that the number of devices that
an connect to a router is limited. The acceptable distance between
ustomers and pickup points depends on the quality of the router. In
he event that all the routers installed are of the same quality, we will
ssume the best, the system manager must decide where to locate the
umber of routers that the budget allows.

The main contributions of this work are summarized as follows:
 i

2 
i. Two different extensions of the close enough facility location
problem are introduced, namely, the Capacitated Close-Enough
Facility Location Problem and the Network Capacitated Close-
Enough Facility Location Problem.

ii. An efficient algorithm for discretizing the candidate pickup
points set on a graph is proposed.

iii. A column generation algorithm for solving both the CCEFLP and
the NCCEFLP is detailed.

iv. Extensive computational experiments are conducted. Instances
with a number of nodes ranging from 30 to 100 are solved and
the results are discussed.

The remainder of the paper is organized as follows. Section 2 intro-
duces the CCEFLP and proposes a mathematical programming integer
linear formulation. Section 3 studies the location problem on a graph.
Section 4 proposes a column generation algorithm for both CCEFLP and
NCCEFLP. Finally, Section 5 provides a comprehensive computational
study that reports the performance of our column generation algorithm
both for the CCEFLP on the plane and the CCEFLP on a graph (NCCE-
LP). We conclude with the findings and conclusions of this work in
ection 6.

2. The capacitated close-enough facility location problem

The Close Enough Facility Location Problem (CEFLP) seeks to min-
mize the distance between plants and customers or pickup points,
s detailed in Moya-Martínez et al. (2021). It is assumed that the
ustomers bear the costs between them and pickup points and therefore
o not have to be taken into account in the planning of the distribution

network manager. Precisely, the radius associated with each customer
establishes the limit of how far he can travel at no cost to the network
manager. In this work, we will address the case in which pickup points
re constrained by a capacity that cannot be exceeded. This capacity

restricts the number of customers that can be assigned to a pickup
point. Particularly, the problem here considered involves locating 𝑝
facilities, determining the location of 𝑡 pickup points, assigning all
customers to open facilities or open pickup points, and finally assigning
open pickup points to open facilities.

Set 𝐽 is the set of potential facilities and set 𝐼 is the set of customers.
or all 𝑖 ∈ 𝐼 , ℎ𝑖 is the demand of customer 𝑖 and 𝑅𝑖 is the maximum

distance that customer 𝑖 is willing to travel for picking up their demand.
If 𝑅𝑖 is the same for all the customers, then we simply represent it as 𝑅.
As proved in Moya-Martínez et al. (2021), the set of potential pickup
points in the CEFLP can be reduced to a finite discrete set. Set 𝐾 is the
inite discrete set of these potential pickup points. When the pickup
oints can be placed anywhere in the plane, then 𝐾 is the union of
ircumference intersections and segment-circumference intersections.
n other words, if 𝐶𝑖 is the set of points in the circumference with center
n customer 𝑖 and radius 𝑅𝑖 for all 𝑖 ∈ 𝐼 and 𝑆𝑖𝑗 is the set of points in
he segment joining customer 𝑖 with facility 𝑗, for all 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ,

then 𝐾 =
(

⋃

𝑖∈𝐼 ,𝑗∈𝐽 (𝐶𝑖 ∩ 𝑆𝑖𝑗 )
)

∪
(

⋃

𝑖1 ,𝑖2∈𝐼 𝐶𝑖1 ∩ 𝐶𝑖2

)

. When the pickup
points must be located on a graph, 𝐾 is still the finite discrete set of
potential pickup points but it is obtained with the algorithm described
in Section 3.

Parameter 𝑑𝑡𝑓 represents the distance between points 𝑡 and 𝑓 (cus-
omers/facilities / pickup points). For each 𝑖 ∈ 𝐼 , 𝐾𝑖 is the subset of
lements of 𝐾 that are close enough to 𝑖, i.e., 𝐾𝑖 = {𝑘 ∈ 𝐾 ∶ 𝑑𝑖𝑘 ≤ 𝑅𝑖}.
or the capacitated extension, we consider that there is a capacity 𝑁𝑘
or each 𝑘 ∈ 𝐾. This value is the maximum number of customers that
an be allocated to the pickup point 𝑘.

In the literature there are two known mixed integer linear models
for the non-capacitated CEFLP, a two-index formulation and a three-
index formulation. In Moya-Martínez et al. (2021) it is shown that a
branch-and-price algorithm for the three-index formulation is the best
way of solving the CEFLP. In the capacitated CEFLP that we introduce
n this paper we keep the same notation as in the three index model
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for the CEFLP and we add the capacity constraint. In particular, we
consider three families of binary variables. For each 𝑗 ∈ 𝐽 , 𝑦𝑗 takes
value 1 if and only if facility 𝑗 is open. For each 𝑘 ∈ 𝐾, 𝜈𝑘 takes
value 1 if and only if a pickup point is open at location 𝑘. For each
𝑖 ∈ 𝐼 , 𝑘 ∈ 𝐾 , 𝑗 ∈ 𝐽 , variable 𝑤𝑖𝑘𝑗 takes value 1 if and only if customer 𝑖
goes to pickup point 𝑘 that in turn is allocated to facility 𝑗: 𝑤𝑖𝑖𝑗 = 1
represents that customer 𝑖 does not go to any pickup point and is
allocated to a facility.

Capacity constraints in terms of these binary variables are:
∑

𝑖∈𝐼∶𝑑𝑖𝑘≤𝑅𝑖

∑

𝑗∈𝐽
𝑤𝑖𝑘𝑗 ≤ 𝑁𝑘𝜈𝑘 ∀𝑘 ∈ 𝐾 .

We propose to model the CCEFLP by adding capacity constraints to
he CEFLP three-index formulation, thus obtaining the following model:

(CCEFLP) min
∑

𝑖∈𝐼

∑

𝑘∈𝐾𝑖∪{𝑖}

∑

𝑗∈𝐽
ℎ𝑖𝑑𝑘𝑗𝑤𝑖𝑘𝑗 (1)

𝑠.𝑡.
∑

𝑗∈𝐽
𝑦𝑗 = 𝑝, (2)

∑

𝑘∈𝐾
𝜈𝑘 = 𝑡, (3)

∑

𝑗∈𝐽

∑

𝑘∈𝐾𝑖∪{𝑖}
𝑤𝑖𝑘𝑗 = 1 ∀𝑖 ∈ 𝐼 , (4)

∑

𝑗∈𝐽
𝑤𝑖𝑘𝑗 ≤ 𝜈𝑘 ∀𝑖 ∈ 𝐼 , ∀𝑘 ∈ 𝐾𝑖, (5)

∑

𝑘∈𝐾𝑖∪{𝑖}
𝑤𝑖𝑘𝑗 ≤ 𝑦𝑗 ∀𝑖 ∈ 𝐼 , ∀𝑗 ∈ 𝐽 , (6)

∑

𝑖∈𝐼∶𝑑𝑖𝑘≤𝑅𝑖

∑

𝑗∈𝐽
𝑤𝑖𝑘𝑗 ≤ 𝑁𝑘𝜈𝑘 ∀𝑘 ∈ 𝐾 , (7)

𝑤𝑖𝑘𝑗 ∈ {0.1} ∀𝑖 ∈ 𝐼 , ∀𝑘 ∈ 𝐾𝑖 ∪ {𝑖}, ∀𝑗 ∈ 𝐽 , (8)

𝑦𝑗 ∈ {0.1} ∀𝑗 ∈ 𝐽 , (9)

𝜈𝑘 ∈ {0.1} ∀𝑘 ∈ 𝐾 . (10)

The goal of the CCEFLP is to minimize the total cost. Note that the
objective function does not consider the distance between a customer
and pickup locations (i.e., 𝑑𝑘𝑗), but only from a customer or pickup
point (i.e., 𝑘 ∈ 𝐾𝑖 ∪ 𝑖) to a plant (i.e., 𝑗 ∈ 𝐽 ). Constraints (2)
nd (3) impose the number of open facilities and open pickup points,

respectively. Constraints (4) guarantee that all the customers are served
y one facility or go to a pickup point that is close enough. Constraints
5) and (6) enforce that customers only go to close enough open pickup
oints and are only allocated to open facilities. Capacity constraints
7) limit the number of customers going to an open pickup point.
onstraints (8)–(10) are the domain constraints.

3. The CCEFLP on graphs

The CEFLP is a continuous facility location problem since the pickup
oints can be placed anywhere within a fixed radius from the cus-
omers. A useful property of the CEFLP is that the continuous potential
ickup location feasible set can be reduced to a discrete pickup location
ptimal set. In an optimal solution of the CEFLP some customers may
ave to go the maximum distance that they are willing to go to pick
p their demand. In the CEFLP on a graph (or NCCEFLP), the discrete
otential pickup location set is not the same as in the CEFLP on the
lane. The border set of a customer is not a circumference anymore
ut a set of points over some edges of the graph. In this section we
escribe how to discretize the optimal set of pickup points when the
roblem is solved on a graph.

The formulation for this extension is the formulation for the CEFLP
f capacities do not apply, or the formulation in the previous section if

dealing with the capacitated case. The difficult part is the calculation
of 𝐾.

Church and Meadows (1979) deal with the location set-covering
problem and the maximal covering location problem when facility
lacement is allowed anywhere on a graph. The authors prove that
 c

3 
Fig. 1. Different pickup points on a graph.

for either the first or the second problem at least one optimal solution
xists that is composed entirely of points belonging to a finite set of

points called the graph intersect point set. However, given a graph the
ntersect point set does not coincide with the pickup point set.

A good guess in order to decide where to place the optimal pickup
points would be to place them on the shortest path between customers
and facilities. However, this is not always the correct answer.

Example 1. Let us consider the situation shown in Fig. 1. There are
three customers 𝑖1, 𝑖2, and 𝑖3, with unitary demand and one potential
facility 𝑗. We would like to open one facility (𝑝 = 1) and one pickup
point (𝑡 = 1) with a total minimum cost when customers agree to travel
up to 𝑅 = 4 distance units. We want to illustrate that opening a pickup
oint that is not in any of the shortest paths connecting a customer
ith the facility can be better than opening a pickup point in one of

hese shortest paths. The shortest path from 𝑗 to 𝑖1 is (𝑖1, 𝑗) and the
andidate location for a pickup point in this path (at distance 4 from
1) is 𝑘1. The shortest path from 𝑗 to 𝑖2 is (𝑖2, 𝑖1), (𝑖1, 𝑗) and the candidate
ocation for the pickup point in this path at distance 4 from 𝑖2 is 𝑘3. The
hortest path from 𝑗 to 𝑖3 is (𝑖3, 𝑗) and the candidate location for the

pickup point in this path at distance 4 from 𝑖3 is 𝑘2. 𝑘4 is a candidate
location for a pickup point that does not belong to any of the mentioned
three shortest paths but that can act as a pickup point for the three
customers: it is at distance 2 from 𝑖1, at a distance 4 from 𝑖2 and also
at a distance 4 from 𝑖3. In fact, 𝐾𝑖1 = {𝑘1, 𝑘3, 𝑘4}, 𝐾𝑖2 = {𝑘3, 𝑘4} and
𝐾𝑖3 = {𝑘2, 𝑘4}. If 𝑁1 = 𝑁2 = 𝑁3 = 3, then the manager of the network
will open the pickup point at 𝑘4 because then, his costs will reduce to
the traveling cost from 𝑗 to 𝑘4, i.e., 10. Remind that 𝑖1, 𝑖2 and 𝑖3 bear
the costs between them and 𝑘4.

Following Example 1, in order to calculate all the candidate pickup
points on a network for a customer 𝑖, we need to evaluate all the points
on a network at distance 𝑅𝑖 from customer 𝑖. Algorithm 1 is used for cal-
ulating all the pickup points on a network. First, 𝑃 𝑖𝑐 𝑘𝑢𝑝_𝑃 𝑜𝑖𝑛𝑡𝑠(𝑖, 𝑙 , 𝑅̂𝑖)
s a recursive function that obtains candidate pickup points from node
, that is, all the points on the graph at a distance 𝑅̂𝑖 from node 𝑖. Note
hat node 𝑙 collects the nodes visited by node 𝑖 on its path to the pickup
oint 𝑘, and 𝑅̂ collects the remaining of 𝑅𝑖 from 𝑙 to 𝑗 on the path from

𝑖 to 𝑗. Finally, function 𝐶 𝑟𝑒𝑎𝑡𝑒_𝑃 𝑖𝑐 𝑘𝑢𝑝_𝑃 𝑜𝑖𝑛𝑡(𝑖, 𝑙 , 𝑗 , 𝑑𝑙 𝑘, 𝑑𝑘𝑚) creates the
ickup point 𝑘 and saves its location within the network. Note that 𝑑𝑙 𝑚

is the distance on the graph for edge (𝑙 , 𝑚), and 𝑑𝑖𝑗 is the distance from
to 𝑗 in the graph. In addition, 𝑑𝑙 𝑘 and 𝑑𝑘𝑚 are the distances between

the pickup point generated 𝑘 and the edge nodes (𝑙 , 𝑚). Once the set
of points 𝐾 and the distances on the graph have been calculated we
an solve the CCEFLP. Fig. 2 shows how the algorithm works to obtain
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Fig. 2. Small illustrative example for Algorithm 1 .
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the candidate pickup points from node 2. The algorithm starts from
ode 2 (Fig. 2(a)), traversing all edges incident to this node, until it
eaches the maximum allowed distance for this node (𝑅2=2.2) or until
t encounters another node (Fig. 2(b)). If a node is reached from node 2

(nodes 3 and 5), then the algorithm is repeated from these nodes, with
the maximum distances updated (𝑅3=1.2 and 𝑅5=0.2) (Figs. 2 (c) and
2 (d) from node 3, and 2 (e) for node 4. Fig. 2(f)) shows all the points
generated from node 2 when the algorithm finishes.
Algorithm 1: Calculating pickup points on a network.
1 𝐺 ∶= (𝑉 , 𝐸);
2 𝐾 ∶= ∅;
3 𝑘 = 0;
4 forall 𝑖 ∈ 𝑉 do
5 𝐾𝑖 ∶= ∅;
6 𝑃 𝑖𝑐 𝑘𝑢𝑝_𝑃 𝑜𝑖𝑛𝑡𝑠(𝑖, 𝑖, 𝑅𝑖);
7 Recursive Function Pickup_Points(i,l,𝑅̂)
8 forall 𝑚 ∈ 𝑉 do
9 if (𝑚 ≠ 𝑙 and 𝑚 ≠ 𝑖 and 𝑑𝑙 𝑚 ∶ (𝑙 , 𝑚) ∈ 𝐸) then
10 if 𝑑𝑙 𝑚 ≥ 𝑅̂ then
11 𝑘 + +;
12 𝑑(𝑚,𝑘) ∶= 𝑅̂;
13 𝑑(𝑘,𝑚) ∶= 𝑑𝑙 𝑚 − 𝑅̂;
14 𝐶 𝑟𝑒𝑎𝑡𝑒_𝑃 𝑖𝑐 𝑘𝑢𝑝_𝑃 𝑜𝑖𝑛𝑡(𝑖, 𝑙 , 𝑚, 𝑑𝑙 𝑘, 𝑑𝑘𝑚);
15 else
16 𝑃 𝑖𝑐 𝑘𝑢𝑝_𝑃 𝑜𝑖𝑛𝑡𝑠(𝑖, 𝑚, 𝑅̂ − 𝑑𝑙 𝑚)

17 Function Create_Pickup_Point(𝑖, 𝑙 , 𝑚, 𝑑𝑙 𝑘, 𝑑𝑘𝑚)
18 𝐾 ∶= 𝐾 ∪ {𝑘};
19 𝐾𝑖 ∶= 𝐾𝑖 ∪ {𝑘};
20 pickup point 𝑘 located in (𝑙 , 𝑚) ∈ 𝐸;
21 forall 𝑗 ∈ 𝑉 do
22 𝑑𝑘𝑗 := min{𝑑𝑗 𝑙 + 𝑑𝑙 𝑘, 𝑑𝑚𝑗 + 𝑑𝑘𝑚};

Proposition 3.1. Let (𝑥∗, 𝑦∗) be the coordinates for a pickup point 𝑘 in
n optimal solution for the CCEFLP. There exits a customer 𝑖 which is at
istance 𝑅𝑖 from (𝑥∗, 𝑦∗).
4 
Proof. Let 𝐼𝑘 be the subset of customers in 𝐼 that are close enough to
𝑘, i.e., 𝐼𝑘 = {𝑖 ∈ 𝐼 ∶ 𝑑𝑖𝑘 ≤ 𝑅𝑖}. 𝐼𝑘 ≠ ∅ because 𝑘 belongs to the optimal
solution. We will prove that, if there is not a customer at maximum
distance, then there is a feasible solution cheaper than the optimal,
which cannot be.

Let us suppose that 𝑑𝑖𝑗 < 𝑅𝑖 for all 𝑖 ∈ 𝐼𝑘. Let 𝑖1 be the customer
ith 𝑅𝑖1 −𝑑𝑖1𝑘 = min𝑖{𝑅𝑖−𝑑𝑖𝑘 ∶ 𝑖 ∈ 𝐼𝑘} and let 𝑗 be the facility to which
is allocated. Let 𝑃𝑖1𝑗 = (𝑖1, 𝑘) ∪ (𝑘, 𝑗) be the path connecting 𝑖1 and 𝑗,
here (𝑖1, 𝑘) and (𝑘, 𝑗) are the corresponding shortest paths. Let 𝑘1 be

he point in the path 𝑃𝑖1𝑗 such that 𝑑𝑖1𝑘1 = 𝑅𝑖1 . Then, the solution to
CEFLP that exchanges 𝑘 by 𝑘1 is feasible and cheaper than the optimal.

t is feasible because

𝐼𝑘1 = {𝑖 ∈ 𝐼 ∶ 𝑑𝑖𝑘1 = 𝑑𝑖𝑘 + 𝑅𝑖1 − 𝑑𝑖1𝑘 ≤ 𝑑𝑖𝑘 + 𝑅𝑖 − 𝑑𝑖𝑘 = 𝑅𝑖} = 𝐼𝑘,

and it is cheaper than the optimal because 𝑑𝑗 𝑘1 = 𝑑𝑗 𝑘 − (𝑅𝑖1 − 𝑑𝑖1𝑘) <
𝑑𝑗 𝑘 and the distances between customers in 𝐼𝑘 and 𝑘1 are not in the
objective function. □

Example 2. Let us consider the complete graph (location on the plane
problem) with 20 nodes induced by the example in Moya-Martínez
et al. (2021) and the restricted graph (location on the network) when
he maximum distance between nodes is limited by 35.13 units (20%

of the maximum distance between two nodes on the plane). Fig. 3
illustrates the candidate pickup points on the plane and on the network
in this example. The number of pickup points are 442 and 246 for the
lane and network, respectively. Note that the number of candidate

pickup points on the plane is greater than the number of candidate
pickup points on the network in this example, but, as will be shown
in Section 5, when the number of customers in the problem increases,
his is not necessarily true.

4. Column generation algorithm

The CCEFLP model in Section 2 has a high number of variables with
regard to the number of constraints, although it can be checked that the
linear relaxation gap is usually small. For this reason, a column gen-
eration algorithm is proposed here to solve the problem. The column
generation algorithm in this section allows to solve both CCEFLP and
NCCEFLP on graphs since this fact only affects the calculation of 𝐾.

Let LR-CCEFLP be the linear relaxation of CCEFLP, i.e., the linear
model obtained from CCEFLP when replacing the binary domain
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Fig. 3. Candidate pickup points on the plane and on the network.
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constraints by bound constraints imposing that the values of variables
𝑦, and 𝜈 are in the interval [0.1]. Note that variables 𝑤 are restricted
n the interval [0.1] by the constraint (6). Let (𝛿 , 𝜃 , 𝛼𝑖, 𝛽𝑖𝑘, 𝛾𝑖𝑗 , 𝜏𝑘) be the

dual variables of constraints (2), (3),(4), (5), (6) and (7), respectively;
and (𝑚𝑗 , 𝑛𝑘) the dual variables of the constraints 𝑦, and 𝜈 less than or
qual to one, respectively. The dual problem for LR-CCEFLP is written

as follows:

(D-LR-CCEFLP) max 𝑝𝛿 + 𝑡𝜃 +
∑

𝑖∈𝐼
𝛼𝑖 +

∑

𝑗∈𝐽
𝑚𝑗 +

∑

𝑘∈𝐾
𝑛𝑘

s.t. 𝛼𝑖 + 𝜏𝑘 + 𝛽𝑖𝑘 + 𝛾𝑖𝑗 ≤ ℎ𝑖𝑑𝑘𝑗
∀𝑗 ∈ 𝐽 , ∀𝑖 ∈ 𝐼 ,
∀𝑘 ∈ 𝐾𝑖 ∪ {𝑖},

𝛿 −
∑

𝑖∈𝐼
𝛾𝑖𝑗 + 𝑚𝑗 ≤ 0 ∀𝑗 ∈ 𝐽 ,

𝜃 −𝑁𝑘𝜏𝑘 −
∑

𝑖∈𝐼𝑘

𝛽𝑖𝑘 + 𝑛𝑘 ≤ 0 ∀𝑘 ∈ 𝐾 ,

𝜏𝑘 ≤ 0 ∀𝑘 ∈ 𝐾 ,
𝛽𝑖𝑘 ≤ 0 ∀𝑘 ∈ 𝐾 , ∀𝑖 ∈ 𝐼𝑘,

𝛾𝑖𝑗 ≤ 0 ∀𝑖 ∈ 𝐼 , ∀𝑗 ∈ 𝐽 ,
𝑚𝑗 ≤ 0 ∀𝑗 ∈ 𝐽 ,
𝑛𝑘 ≤ 0 ∀𝑘 ∈ 𝐾 ,
𝛼𝑖 free ∀𝑖 ∈ 𝐼 ,
𝛿 , 𝜃 . free.

Let 𝐾 ⊂ 𝐾 be a subset of pickup points and let Re-D-LR-CCEFLP
be the above dual model D-LR-CCEFLP restricted to 𝐾. Let also Re-LR-
CCEFLP be the primal model LR-CCEFLP restricted to 𝐾. Let (𝛿∗, 𝜃∗, 𝛼∗,
𝛽∗, 𝛾∗, 𝜏∗, 𝑚∗, 𝑛∗) be an optimal solution to Re-D-LR-CCEFLP. For all
𝑘 ∈ 𝐾 ⧵𝐾, the reduced cost 𝑐𝑘 of column 𝜈𝑘 is

𝑐𝑘 = 𝑁𝑘𝜏𝑘 +
∑

𝑖∈𝐼𝑘

𝛽𝑖𝑘 − 𝜃∗ − 𝑛𝑘,

where

𝜏𝑘 + 𝛽𝑖𝑘 ≤ min
𝑗∈𝐽

{ℎ𝑖𝑑𝑘𝑗 − 𝛼∗𝑖 − 𝛾∗𝑖𝑗 , 0} ∀𝑖 ∈ 𝐼𝑘.

Note that, for all 𝑘 ∈ 𝐾 ⧵𝐾, the value of 𝑛𝑘 is equal to zero, because
𝑘 is not part of the basic solution from 𝐾.

The pricing sub-problem for obtaining the maximum value for the
educed cost is:
𝑐𝑘 = max 𝑁𝑘𝜏𝑘 +

∑

𝑖∈𝐼𝑘

𝛽𝑖𝑘 − 𝜃∗ (11)

s.t. 𝜏𝑘 + 𝛽𝑖𝑘 ≤ min{ℎ𝑖𝑑𝑘𝑗 − 𝛼∗ − 𝛾∗ , 0} ∀𝑖 ∈ 𝐼𝑘,
𝑗∈𝐽 𝑖 𝑖𝑗 s

5 
𝜏𝑘 ≤ 0.

𝛽𝑖𝑘 ≤ 0 ∀𝑖 ∈ 𝐼𝑘.

The following proposition gives the optimal value for this pricing
problem. The proof of the proposition shows that this optimal value is
he sum of the 𝑁𝑘 smallest values of a list.

Proposition 4.1. Let (𝛿∗, 𝜃∗, 𝛼∗, 𝛽∗, 𝜏∗, 𝛾∗) be the optimal solution of Re-
D-LR-CCEFLP for 𝑘 ∈ 𝐾 ⊂ 𝐾. For each 𝑘 ∈ 𝐾, let 𝐼𝑘 = {𝑖 ∈ 𝐼 ∶ 𝑑𝑖𝑘 ≤ 𝑅𝑖}
e the set of customers that could go to the pickup point 𝑘. For each 𝑖 ∈ 𝐼 ,
let 𝑎𝑖𝑘 = min𝑗∈𝐽 {ℎ𝑖𝑑𝑘𝑗 − 𝛼∗𝑖 − 𝛾∗𝑖𝑗 , 0}. And let 𝑎̃1𝑘 ≤ 𝑎̃2𝑘 ≤ … ≤ 𝑎̃

|𝐼𝑘|,𝑘 be
values 𝑎𝑖𝑘 sorted in nondecreasing order. Then the maximum reduced cost
𝑐𝑘 of column 𝜈𝑘 is 𝑐𝑘 =

∑min{𝑁𝑘 ,|𝐼𝑘|}
𝑖=1 𝑎̃𝑖𝑘 − 𝜃∗.

Proof. The dual problem of

(𝑃1) max 𝑁𝑘𝜏𝑘 +
∑

𝑖∈𝐼𝑘

𝛽𝑖𝑘,

s.t. 𝜏𝑘 + 𝛽𝑖𝑘 ≤ min
𝑗∈𝐽

{ℎ𝑖𝑑𝑘𝑗 − 𝛼∗𝑖 − 𝛾∗𝑖𝑗 , 0} ∀𝑖 ∈ 𝐼𝑘,

𝜏𝑘 ≤ 0.

𝛽𝑖𝑘 ≤ 0 ∀𝑖 ∈ 𝐼𝑘.

is

(𝑃2) min
∑

𝑖∈𝐼𝑘

𝑎𝑖𝑘𝑣𝑖𝑘

s.t.
∑

𝑖∈𝐼𝑘

𝑣𝑖𝑘 ≤ 𝑁𝑘,

𝑣𝑖𝑘 ≤ 1 ∀𝑖 ∈ 𝐼𝑘.

The optimal value for the latter is the sum of the 𝑁𝑘 smallest 𝑎𝑖𝑘
alues, provided that 𝑁𝑘 ≤ |𝐼𝑘|. In other words, the optimal value
f (𝑃2) is ∑min{𝑁𝑘 ,|𝐼𝑘|}

𝑖=1 𝑎𝑖𝑘. According to the strong duality condition,
t implies that the optimal value of (𝑃1) is the same and thus 𝑐𝑘 is
min{𝑁𝑘 ,|𝐼𝑘|}
𝑖=1 𝑎𝑖𝑘 − 𝜃∗. □

𝑐𝑘 is an estimation of the improvement on the objective function
f pickup point 𝑘 is introduced in Re-LR-CCEFLP. If 𝑐𝑘 ≥ 0 for all
𝑘 ∈ 𝐾 ⧵ 𝐾, then the current solution of Re-LR-CCEFLP is also optimal
or LR-CCEFLP and the column generation approach finishes. Otherwise
ach negative value proposes the addition of a new column (variable).
n each iteration the optimal value of Re-LR-CCEFLP not only gives an
pper bound of the optimal value of LR-CCEFLP, but also a lower bound
f it. The optimal value of LR-CCEFLP cannot be reduced more than the
maller reduced cost 𝑐 for each customer 𝑖 if 𝑘 ∈ 𝐾 , hence
𝑘 𝑖



A. Moya-Martínez et al.

𝑣

c
t

a

Computers and Operations Research 176 (2025) 106957 
Fig. 4. Optimal solution for the uncapacitated problem. The black circles and the gray squares represent the location of the plants and pickup points, respectively. The white and
cross-out circles represent the location of the customers who are served from the plants and the customers who move to the pick up points, respectively.
Fig. 5. Optimal solution for the capacitated problem. The black circles and the gray squares represent the location of the plants and pickup points, respectively. The white and
cross-out circles represent the location of the customers who are served from the plants and the customers who move to the pick up points, respectively.
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𝐿𝐵 = 𝑣∗(Re-LR-CCEFLP) +
∑

𝑖∈𝐼
min
𝑘∈𝐾𝑖

𝑐𝑘 ≤ 𝑣∗(LR-CCEFLP).

Obviously, the solution of Re-LR-CCEFLP is an upper bound of
∗(LR-CCEFLP).

The column generation algorithm that we propose in this section
starts with a small subset of pickup points 𝐾 and adds at most one
pickup point for each customer at each iteration. For each customer 𝑖,
the pickup point within the distance 𝑅𝑖 that is considered to be added
to 𝐾 is the one with smallest reduced cost. If this minimum reduced
ost is non-negative, no pickup point is added. If the same index 𝑘 is
he one with the smallest reduced cost for two different customers, then

it is introduced only once. If 𝑐𝑘 ≥ 0 for all 𝑘 ∈ 𝐾 ⧵𝐾, then the optimal
solution of Re-D-LR-CCEFLP is an optimal solution of D-LR-CCEFLP.
Otherwise, pickup points with negative reduced costs must be included
in 𝐾 and the algorithm continues. The details of the column generation
lgorithm that we propose are given in Algorithm 2.

Algorithm 2 initializes the subset of pickup points as an arbitrary
small set, the relative gap and the upper bound (UB) to infinity. The
6 
threshold for the gap is set to 0.01 and it is represented with 𝜖.
he stop criterion is the gap measured as the relative difference be-
ween the upper and lower bounds. In each iteration of the algo-
ithm, as long as this gap is larger than 𝜖, Re-LR-CCEFLP for 𝐾 ⊂ 𝐾

is solved to optimality and we compute its dual optimal variables
(𝛿∗, 𝜃∗, 𝛼∗, 𝛽∗, 𝛾∗, 𝜏∗). For all 𝑘 in 𝐾 ⧵ 𝐾 the reduced cost is computed
as indicated in Proposition 4.1. For each customer 𝑖, the pickup point
𝑘′𝑖 within its radius with smallest reduced cost is added to 𝐾. Finally,
lower and upper bounds are updated. The optimal value of Re-LR-
CCEFLP, named 𝑣∗(Re-LR-CCEFLP) is an upper bound for LR-CCEFLP,
and, the value 𝑣∗(Re-LR-CCEFLP)+∑

𝑖∈𝐼 𝑐𝑘′(𝑖) is a lower bound for the
ame LR-CCEFLP.

When the algorithm ends, problem CCEFLP restricted to 𝐾 = 𝐾,
hich we will refer to as Re-CCEFLP, is solved and the lower bound of
R-CCEFLP is reported as a lower bound of CCEFLP.

Example 2 (continued). Figs. 4 and 5 present the optimal solution for
CEFLP on the plane or on a graph when the number of facilities and
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Table 1
Average dimensions of the three instances for problems CCEFLP and NCCEFLP.

Instances n CCEFLP NCCEFLP 20% NCCEFLP 30%

#𝐾 n01 m #𝐾 n01 m #𝐾 n01 m

i30 30 1058.00 128 828.00 6247.00 – – – 788.67 88 138.67 4658.33
i35 35 1435.33 227 313.67 9149.00 482.50 79 442.50 4031.50 1700.67 246 210.67 9979.67
i40 40 1882.00 374 028.67 12 825.67 837.00 166 477.00 6656.00 2682.33 481 602.33 16 333.33
i45 45 2407.33 610 012.33 17 979.67 1873.67 475 828.67 14 519.00 4520.33 988 595.33 28 501.67
i50 50 3054.67 1076304.67 27 069.67 3330.00 1046530.00 26 792.00 10 129.67 3207046.33 76 666.00
i55 55 3690.00 1520205.00 34 343.00 4217.50 1468097.50 33 966.50 13 458.33 5105065.00 109 166.00
i60 60 4386.00 2107846.00 43 103.67 6584.50 2747234.50 55 980.00 17 105.38 6995073.08 137 122.85
i65 65 5131.33 2817963.00 52 695.67 11 843.33 6237283.33 111 972.33 24 026.57 11342857.29 202 515.43
i70 70 5952.86 3737092.86 64 224.86 14 492.67 8421212.67 139 626.67 30 296.27 15800990.82 260 629.91
i75 75 6796.00 4683758.50 74 855.50 17 333.93 10832607.14 167 310.57 35 943.78 20082218.78 309 000.44
i80 80 7770.55 6222708.73 91 937.27 24 916.36 17624930.91 251 474.55 51 172.00 32235260.89 460 031.11
i85 85 8783.27 7905661.91 108 997.73 34 731.00 27275335.50 362 601.70 73 211.75 53637321.75 710 770.75
i90 90 9885.00 10376580.00 133 260.50 57 369.80 56171757.80 689 141.00 122 112.00 112363567.71 1377517.29
i95 95 11 040.00 12958067.50 156 444.50 69 124.55 70350884.55 818 145.55 175 195.25 170252167.33 1974692.17
i100 100 12 196.50 15036446.50 172 539.00 130 643.86 151628351.00 1655818.93 198 120.00 183169520.00 2038032.00
Table 2
Average results of the 3 data sets in the 𝑝-median problem.

Instance 𝑝-median 𝑝-median 20% 𝑝-median 30%

Obj Time %GAP Obj Time %GAP Obj Time %GAP

i30 5196,80 1,20 0.00 5292,67 3 0.00
i35 6234,78 25,00 0.03 7500.00 4 0.00 6345,33 4 0.00
i40 7182,95 1,20 0.00 8597,00 1 0.00 7333,33 3 0.00
i45 8165,19 32,60 0.02 8821,67 5 0.00 8436,67 231 0.07
i50 9193,21 1,80 0.00 10403,50 5 0.00 9510.00 12 0.00
i55 10162,58 2,00 0.00 10848,50 5 0.00 10378,00 19 0.00
i60 11117,83 4,00 0.00 11662,00 183 0.24 11322,00 29 0.00
i65 12032,50 4,25 0.00 12291,00 165 0.16 12027,67 42 0.00
i70 12822,83 5,00 0.00 13001,00 32 0.00 12788,00 56 0.00
i75 13807,24 6,67 0.00 14043,67 43 0.00 13883,67 76 0.00
i80 14339,97 8,33 0.00 14751,33 68 0.00 14547,33 134 0.00
i85 15302,05 10.75 0.00 15635,67 114 0.07 15362,33 206 0.00
i90 16149,21 12,67 0.00 16369,33 185 0.00 26979,33 373 0.00
i95 17157,78 15,50 0.00 17278,67 292 0.00 17352,50 295 0.00

i100a 18109,44 17,75 0.00 18597,50 227 0.00

a Out of memory for the 𝑝-median 30% problems.
a

p

pickup points is limited to 2 and 3, respectively. The capacities of the
pickup points are infinity in Fig. 4 and 1 in Fig. 5.

Algorithm 2: Column generation algorithm

23 initialization: 𝐾 = 𝐾0, GAP=1. 𝑈 𝐵 =∞, 𝜖 = 0.01;
24 while 𝐺 𝐴𝑃 > 𝜖 do
25 Solve Re-LR-CCEFLP (Re-D-LR-CCEFLP) for subset 𝐾 ⊂ 𝐾 ;
26 Result: Primal (𝑦∗, 𝜈∗, 𝑤∗) and dual (𝛿∗, 𝜃∗, 𝛼∗, 𝛽∗, 𝛾∗, 𝜏∗)

solutions;
27 forall 𝑘 ∈ 𝐾 ⧵𝐾 do
28 forall 𝑖 ∈ 𝐼 do
29 𝑎𝑖𝑘 = min𝑗∈𝐽 {ℎ𝑖𝑑𝑘𝑗 − 𝛼∗𝑖 − 𝛾∗𝑖𝑗};

30 𝑐𝑘 =
∑min{𝑁𝑘 ,|𝐼𝑘|}

𝑖=1 𝑎̃𝑖𝑘 − 𝜃∗;
31 forall 𝑖 ∈ 𝐼 do
32 𝑘′𝑖 = ar g min𝑘∈𝐾𝑖

{𝑐𝑘 ∶ 𝑐𝑘 < 0} ;
33 Update 𝐾 ∶= 𝐾 ∪ {𝑘′};
34 UB=𝑣∗(Re-LR-CCEFLP);
35 LB=𝑣∗(Re-LR-CCEFLP)+∑

𝑖∈𝐼 𝑐𝑘′𝑖 ;
36 𝐺 𝐴𝑃 = 𝑈 𝐵−𝐿𝐵

𝐿𝐵 ;

37 Solve(Re-CCEFLP);
38 𝐺 𝐴𝑃 = 𝑣∗(𝑅𝑒−𝐶 𝐶 𝐸 𝐹 𝐿𝑃 )−𝐿𝐵

𝐿𝐵 ;

5. Computational results

In this section we present a computational study for CCEFLP and
CCEFLP. The experiment has been coded in C++, using IBM ILOG
7 
CPLEX Optimization Studio v20.0. The characteristics of the computer
re 2 Intel(R) Xeon(R) 3.10 GHz, and 768 GB RAM.

The data were taken from the instances in p-medcap1.txt of the
roblem solved in Osman and Christofides (1994), originally generated

for the 𝑝-median problem. This file includes 60 different problems
and we have selected the first three datasets of size 100. Then, we
have generated 15 instances of each dataset, varying the size of 𝑛
from 30 to 100. increasing by 5 in each case; resulting in a total
number of 45 instances. Each instance has been solved with 5 different
capacities. In all instances 𝐼 = 𝐽 , the customers are potential sites
for locating a facility, and the radius will remain constant. We assume
that customers are willing to go up to 15% of the maximum Euclidean
distance between pairs of points in the data. In order to generate the
instances on a network, the edges with length less than 20% or 30% of
the largest distance in the complete graph have been selected. For all
the cases 𝑝 (number of facilities) and 𝑡 (number of pickup points) are
fixed to 4 and 5 respectively.

Table 1 shows the average number of pickup points generated (#𝐾)
for each set of instances with the same size, the average number of
binary variables (𝑛01), and the average number of constraints (𝑚).
We rule out the three i30 instances in NCCEFLP 20% because the
three are disconnected graphs. The main conclusion we can draw from
Table 1 is that the number of pickup points increases significantly when
considering the problem on a network compared to the plane, and
it also increases significantly with the network density. This increase
in the number of pickup points implies an increase in the number of
variables and constraints, therefore, an increase in the dimension of
the problem.
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Table 3
Average results of the 3 data set in CCEFLP.

Inst Cap CCEFLP 𝑧𝐿𝐵 CCEFLP Algorithm

Obj Time %GAP 𝑃 (𝑥𝑖𝑘𝑗 ) 𝑃 (𝑑𝑖𝑘𝑗 ) z* Iter Time #%𝑘 %𝐺 𝐴𝑃𝐿𝐵 GR

i30 ∞ 2675.31 2.67 2.16 0.60 0.48 2675.30 2608.41 4.33 4.67 9.98 2.26 1.00
i30 10 2675.31 4.33 2.16 0.60 0.48 2675.30 2603.75 4.00 4.67 10.01 2.43 1.00
i30 5 2675.31 4.00 2.07 0.60 0.43 2979.25 2886.48 4.00 4.33 9.87 3.12 0.90
i30 4 2694.13 3.67 1.92 0.59 0.45 2816.53 2748.47 4.00 3.00 9.17 2.24 0.96
i30 3 2816.53 3.67 1.96 0.51 0.52 2390.19 2338.97 4.00 3.33 9.78 1.88 1.18
i35 ∞ 3302.74 9.00 4.22 0.67 0.36 3305.24 3161.05 4.00 16..33 8.12 4.33 1.00
i35 10 3302.74 15.33 4.22 0.67 0.36 3307.84 3177.05 4.33 21.67 8.33 3.88 1.00
i35 5 3307.60 12.00 3.72 0.66 0.36 3302.74 3160.26 4.33 15.67 8.54 4.27 1.00
i35 4 3390.01 11.67 3.80 0.59 0.31 3599.35 3487.69 4.00 9.67 8.17 2.92 0.94
i35 3 3598.59 10.33 2.54 0.47 0.26 3394.00 3250.51 4.00 13.67 8.26 4.06 1.06
i40 ∞ 3943.33 19.67 4.89 0.65 0.22 3943.80 3720.26 4.00 24.00 7.55 5.31 1.00
i40 10 3943.33 44.33 4.89 0.65 0.21 3990.68 3790.39 4.33 29.00 7.56 4.71 0.99
i40 5 3990.20 38.33 3.83 0.57 0.22 3943.80 3765.84 4.33 29.00 7.56 4.29 1.01
i40 4 4134.44 29.33 3.62 0.53 0.14 4402.19 4305.51 3.67 14.33 6.48 2.19 0.94
i40 3 4397.30 24.00 1.97 0.42 0.24 4135.91 3975.44 4.00 20.67 6.99 3.79 1.06
i45 ∞ 4497.22 77.33 3.76 0.62 0.14 4513.81 4303.81 4.33 63.33 6.87 4.44 1.00
i45 10 4497.22 217.67 3.76 0.62 0.14 4620.65 4433.70 4.67 67.67 7.34 3.74 0.97
i45 5 4613.13 129.33 2.54 0.53 0.14 4522.88 4347.79 4.33 71.33 6.58 3.71 1.02
i45 4 4797.00 84.33 2.05 0.46 0.12 5161.92 5076.41 4.00 19.33 5.80 1.53 0.93
i45 3 5157.50 64.00 1.43 0.37 0.18 4838.12 4678.41 4.00 33.00 6.19 2.94 1.07
i50 ∞ 4728.28 193.33 3.82 0.67 0.32 4734.95 4523.43 4.67 149.33 6.64 4.28 1.00
i50 10 4733.28 535.67 3.87 0.66 0.29 5105.11 4928.07 4.33 174.00 5.92 3.26 0.93
i50 5 5143.92 386.00 2.71 0.54 0.15 4767.08 4597.61 4.67 180.00 6.32 3.48 1.08
i50 4 5478.38 390.67 1.42 0.43 0.16 5970.10 5902.85 3.67 62.33 5.37 1.13 0.92
i50 3 5970.04 266.67 0.91 0.33 0.13 5488.83 5356.55 3.67 101.33 5.39 2.35 1.09
i55 ∞ 5135.23 393.33 2.64 0.68 0.27 5167.10 5004.67 4.33 183.33 5.26 3.19 0.99
i55 10 5166.95 1289.33 2.94 0.66 0.24 5666.01 5485.13 4.33 273.33 5.03 3.19 0.91
i55 5 5842.74 816.00 2.84 0.48 0.20 5319.63 5177.88 4.33 220.00 5.39 2.70 1.10
i55 4 6194.33 740.67 1.27 0.39 0.08 6749.96 6677.67 4.00 66.33 4.46 1.03 0.92
i55 3 6743.82 688.00 0.89 0.29 0.10 6194.32 6111.98 4.00 108.00 4.87 1.31 1.09
i60 ∞ 5663.14 1090.33 3.47 0.66 0.24 5711.82 5494.22 4.67 509.33 5.39 3.87 0.99
i60 10 5711.83 2647.33 3.81 0.63 0.21 6300.55 6108.38 4.67 377.67 4.94 3.04 0.91
i60 5 6513.32 1463.33 2.32 0.45 0.21 5881.35 5708.71 5.00 439.67 5.13 3.08 1.11
i60 4 7024.71 1129.67 1.86 0.36 0.15 7643.29 7560.82 3.00 103.00 3.68 1.09 0.92
i60 3 7639.73 1046.67 0.64 0.27 0.11 7030.47 6894.86 4.00 146.67 4.01 1.98 1.09
i65 ∞ 6034.24 3041.67 1.79 0.66 0.23 6083.50 5953.71 4.67 476.00 4.53 2.11 0.99
i65 10 6083.70 7461.00 1.86 0.63 0.19 6861.98 6701.42 4.00 377.33 4.20 2.37 0.89
i65 5 7126.11 3773.67 2.08 0.41 0.20 6315.53 6193.90 4.33 490.33 4.37 1.88 1.13
i65 4 7604.91 3406.00 1.07 0.33 0.10 8307.40 8200.60 3.33 225.00 3.36 1.26 0.92
i65 3 8307.40 3113.00 0.98 0.25 0.09 7604.91 7518.40 3.67 223.00 3.51 1.17 1.09
i70 ∞ 6480.48 6449.00 1.89 0.65 0.21 6574.82 6382.97 4.67 1265.67 4.55 2.78 0.99
i70 10 6564.54 13 131.67 2.27 0.61 0.18 7450.12 7276.67 4.00 937.67 3.98 2.33 0.88
i70 5 7733.52 7269.33 1.25 0.38 0.13 6793.55 6677.64 4.00 892.67 3.88 1.73 1.14
i70 4 8228.14 6187.67 0.45 0.30 0.09 8967.61 8896.28 3.67 248.33 3.39 0.73 0.92
i70 3 8905.55 4469.00 0.52 0.23 0.08 8228.13 8176.21 3.67 403.67 3.38 0.60 1.08
i75 ∞ 8622.19 3220.50 14.38 0.63 0.36 7139.95 6879.16 5.00 2373.00 4.36 3.40 1.21
i75 10 7769.98 6594.00 7.27 0.56 0.15 8128.24 7948.37 4.67 1013.67 3.68 2.19 0.96
i75 5 8790.86 3785.00 2.93 0.34 0.10 7443.63 7324.23 5.00 1344.00 4.01 1.44 1.18
i75 4 9144.44 2805.50 0.32 0.28 0.08 9803.59 9732.64 3.00 361.00 2.96 0.74 0.93
i75 3 9833.62 1078.50 0.08 0.21 0.09 9060.60 9015.39 3.67 584.33 3.18 0.51 1.09
i80 ∞ 8229.74 12 669.00 10.12 0.64 0.32 7233.72 6982.13 5.00 3860.50 4.13 3.47 1.14
i80 10 12 541.87 14 411.50 100.00 0.44 0.25 8692.57 8546.86 4.33 2719.33 3.63 1.71 1.44
i80 5 9144.75 6029.00 0.89 0.33 0.07 9181.13 9064.76 4.00 979.00 3.48 1.25 1.00
i80 4 9666.49 1869.50 0.42 0.26 0.09 10 461.77 10 427.14 3.00 489.33 2.52 0.33 0.92
i80 3 10 461.77 2944.00 0.22 0.20 0.09 9724.90 9678.12 4.00 1007.67 3.30 0.50 1.08
i85 ∞ 12 881.61 14 417.00 100.00 0.58 0.45 8237.29 7786.92 4.67 6282.00 3.89 5.28 1.56
i85 10 27 464.93 14 415.50 100.00 0.35 0.53 9412.95 9121.81 4.00 3855.33 3.50 3.14 2.92
i85 5 12 709.96 11 117.00 67.40 0.26 0.11 8406.44 8225.15 4.67 4705.67 3.77 2.29 1.51
i85 4 10 491.35 2792.50 0.21 0.25 0.12 10 474.71 10 430.64 3.33 450.67 2.79 0.43 1.00
i85 3 11 231.77 4377.50 0.06 0.19 0.10 11 277.93 11 245.27 3.33 141.33 2.70 0.29 1.00
i90 ∞ 20 939.77 14 421.00 100.00 0.35 0.61 8428.48 8146.19 5.00 8046.67 3.81 3.27 2.48
i90 10 14 288.74 14 418.50 100.00 0.51 0.23 9869.53 9681.89 4.33 5698.67 3.30 1.94 1.45
i90 5 10 036.99 10 943.00 50.12 0.29 0.07 8675.32 8586.73 5.33 6523.33 3.88 0.98 1.16
i90 4 10 800.42 1733.50 0.25 0.23 0.09 12 025.43 12 001.13 3.67 2121.67 2.64 0.20 0.90
i90 3 11 737.02 7168.00 0.24 0.17 0.06 11 163.03 11 114.36 3.67 2615.00 2.69 0.44 1.05
i95 ∞ 16 422.09 14 423.50 100.00 0.36 0.14 9084.20 8672.74 5.00 13 001.67 3.51 4.44 1.81
i95 10 18 091.24 14 423.00 100.00 0.48 0.37 10 597.19 10 451.95 4.00 8498.67 2.73 1.42 1.71
i95 5 13 999.86 14 423.50 100.00 0.27 0.20 9142.20 8996.95 5.00 7505.67 3.84 1.61 1.53
i95 4 17 378.09 14 422.50 100.00 0.22 0.29 12 899.95 12 847.30 3.33 1282.00 2.18 0.40 1.35
i95 3 12 698.06 7626.00 50.03 0.16 0.06 12 003.36 11 929.09 3.33 1314.67 2.22 0.62 1.06

(continued on next page)
Table 2 shows the average 𝑝-median results for the different prob-

ems addressed in this paper and for the different data sets. The time

8 
limit was set to 4 h although in general the execution time is negligible.
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Table 3 (continued).
Inst Cap CCEFLP 𝑧𝐿𝐵 CCEFLP Algorithm

Obj Time %GAP 𝑃 (𝑥𝑖𝑘𝑗 ) 𝑃 (𝑑𝑖𝑘𝑗 ) z* Iter Time #%𝑘 %𝐺 𝐴𝑃𝐿𝐵 GR

i100 ∞ 9861.92 9509.05 5.00 13 489.33 3.22 3.52
i100 10 11 737.19 11 529.13 4.00 13 555.00 2.58 1.83
i100 5 10 040.89 9865.10 5.00 7036.00 3.29 1.94
i100 4 14 075.72 13 938.36 3.67 2069.33 2.43 0.97
i100 3 13 160.10 13 029.60 3.67 3027.00 2.39 1.00
Fig. 6. 𝑝-median problem versus NCCEFLP and CCEFLP.
t
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The linear relaxation gap (%GAP) is usually small while the largest
instances in NCCEFLP 30% could not be solved due to memory over-
flow. In general, computational time for solving NCCEFLP is slightly
higher than for solving CCEFLP. Later we use the values in this table
to illustrate the advantages of using the proposed approach compared
to employing a more classical 𝑝-median location problem.

Table 3 shows the average results of the instances presented in
Table 1 for the CCEFLP problem, i.e., the location problem on the
plane. For each instance different capacities have been considered
for each pickup point: 3, 4, 5, 10 and ∞, where a capacity of ∞
means that it is the uncapacitated version. Two different runs have
been carried out, plain use of CPLEX v20.1 for the models and the
Column Generation Algorithm in Algorithm 2. Columns header with
Obj, Time and %GAP give, respectively, the best feasible solution of
he CCEFLP problem, the computational time required or the maximum

time allowed (14400 s), and the optimality gap between the solution
of the CCEFLP and its linear relaxation. Column 𝑃 (𝑥𝑖𝑘𝑗 ) shows the
proportion of customers allocated to pickup points. Note that the
proportion of customers allocated to facilities is the difference up to
1. Column 𝑃 (𝑑𝑖𝑘𝑗 ) shows the proportion of traveled cost due to pickup
allocation, the difference up to 1 is the proportion for facility allocation.
Columns 𝑧∗, 𝑧𝐿𝐵 , 𝐼 𝑡𝑒𝑟, 𝑇 𝑖𝑚𝑒, #%k, %𝐺 𝐴𝑃𝐿𝐵 , and 𝐺 𝑅 show the results
for the column generation algorithm solution: the solution and the
lower bound provided by the algorithm, the number of iterations, the
total computational time, the percentage of pickup points considered
9 
in the last iteration of the algorithm, the GAP between the solution
and its lower bound, and the ratio between the optimal solution 𝑂 𝑏𝑗
and the algorithm solution (Goodness Ratio). The missing values occur
when CPLEX is unable to find a feasible solution within the time limit
of 14400 s.

Looking at Table 3 it can be concluded that the column generation
approach presented in this work is always competitive compared with
he plain use of CPLEX. Our column generation algorithm is signifi-
antly faster than CPLEX in most instances, especially for the last ones.
oreover, values of GR are always close to 1, and in many cases even

reater. Note, for example, that for the instance i85 with capacity=10.
he algorithm obtains an objective value three times smaller than the
PLEX objective value, i.e., GR=2.92. It is notorious that the algorithm
ses a small number of pickup points, i.e., the algorithm consumes
lmost all the time to solve the reduced CCEFLP to optimality. In
erms of GR values, the algorithm performs better for uncapacitated
roblems. In all cases, the optimality gap provided by the algorithm is

small, with the worst result being for instance i85, which has a gap of
5.28%. However, even in this case, the algorithm finds a solution 1.56
times better than CPLEX. The number of connections between pickup
point and facilities decreases with the capacity of the pickup points, as
they can serve fewer customers, and the number of direct connections
between customers and facilities increases. On the other hand, the
relative cost of the two types of connections—direct or through a
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Table 4
Average results for the three data sets in the NCCEFLP problem with 20% network density.

Inst Cap CCEFLP 𝑧𝐿𝐵 CCEFLP Algorithm

Obj Time %GAP 𝑃 (𝑥𝑖𝑘𝑗 ) 𝑃 (𝑑𝑖𝑘𝑗 ) z* Iter Time #%𝑘 %𝐺 𝐴𝑃𝐿𝐵 GR

i35 ∞ 4863.00 90.50 0.72 0.52 0.65 4752.20 4697.46 2.33 4.33 11.61 1.15 1.02
i35 10 4863.00 106.00 0.72 0.52 0.65 4752.20 4704.94 3.00 4.00 12.61 0.99 1.02
i35 5 4863.00 111.00 0.72 0.52 0.65 4752.20 4695.76 2.33 4.00 11.87 1.19 1.02
i35 4 4884.00 124.50 0.72 0.48 0.64 4770.87 4711.64 3.33 3.00 13.13 1.24 1.02
i35 3 5025.50 140.00 1.01 0.42 0.62 4908.03 4848.96 3.00 3.00 10.89 1.20 1.02
i40 ∞ 5775.00 201.00 0.08 0.49 0.59 5775.17 5770.61 2.50 4.00 9.36 0.08 1.00
i40 10 5775.00 199.00 0.08 0.49 0.59 5775.17 5770.12 3.00 5.50 10.11 0.09 1.00
i40 5 5782.50 203.50 0.08 0.47 0.59 5782.46 5775.26 3.00 5.50 10.40 0.12 1.00
i40 4 5827.00 192.00 0.08 0.44 0.58 5827.16 5785.72 2.50 5.50 9.52 0.71 1.00
i40 3 5989.50 186.00 0.00 0.39 0.56 5989.48 5989.47 3.00 5.50 10.13 0.00 1.00
i45 ∞ 5380.00 550.67 0.90 0.56 0.59 5393.38 5299.71 1.67 8.33 5.59 1.74 0.99
i45 10 5380.00 529.67 0.90 0.56 0.59 5393.38 5319.49 3.33 9.00 5.45 1.37 0.99
i45 5 5493.00 739.33 1.19 0.50 0.58 5506.68 5418.92 2.67 9.67 5.10 1.59 0.99
i45 4 5588.33 683.00 0.71 0.45 0.58 5590.46 5524.18 2.00 8.67 5.00 1.19 1.00
i45 3 5938.67 390.33 0.95 0.36 0.46 5938.84 5865.89 2.67 6.33 4.99 1.23 1.00
i50 ∞ 6430.00 2224.00 1.13 0.58 0.23 6430.24 6339.02 2.00 263.00 3.37 1.42 1.00
i50 10 6430.00 2576.50 1.13 0.58 0.23 6430.24 6339.01 2.00 447.00 3.41 1.42 1.00
i50 5 6657.50 2803.50 2.16 0.50 0.24 6667.17 6498.90 3.00 133.00 3.51 2.52 0.99
i50 4 6852.00 1440.50 1.22 0.42 0.23 6852.17 6747.80 1.50 48.00 3.47 1.52 1.00
i50 3 7220.00 1042.50 0.27 0.33 0.18 7219.97 7183.05 2.00 154.50 3.26 0.51 1.00
i55 ∞ 6478.00 2599.00 0.26 0.60 0.32 6492.41 6458.69 2.00 51.00 3.01 0.52 0.99
i55 10 6478.00 2422.00 0.26 0.60 0.32 6492.41 6433.29 1.50 55.00 2.91 0.91 0.99
i55 5 6801.50 2553.50 1.74 0.48 0.30 6801.73 6692.04 3.50 54.00 3.25 1.61 1.00
i55 4 7051.50 1497.50 0.82 0.39 0.15 7051.73 6972.01 2.50 54.50 2.80 1.13 1.00
i55 3 7539.00 1487.50 0.68 0.29 0.10 7538.95 7488.39 1.50 21.00 2.59 0.67 1.00
i60 ∞ 6929.00 4344.00 2.06 0.61 0.27 6928.72 6778.81 2.00 469.00 2.19 2.16 1.00
i60 10 6942.00 4657.00 2.16 0.60 0.26 6941.80 6783.71 3.50 666.00 2.05 2.28 1.00
i60 5 7413.00 5759.00 2.51 0.43 0.08 7425.08 7230.38 2.00 638.00 1.89 2.62 0.99
i60 4 7769.50 5562.50 1.77 0.36 0.19 7769.31 7619.46 1.50 920.00 1.84 1.93 1.00
i60 3 8320.50 3569.00 1.07 0.27 0.16 8331.27 8220.53 1.50 879.50 1.90 1.33 0.99
i65 ∞ 6818.00 8444.33 1.13 0.62 0.37 6818.12 6728.67 2.67 622.33 1.23 1.31 1.00
i65 10 6850.00 7909.67 1.30 0.60 0.37 6849.84 6766.29 2.33 335.00 0.94 1.22 1.00
i65 5 7713.00 6855.67 2.30 0.40 0.30 7724.98 7583.00 2.33 513.33 0.97 1.84 0.99
i65 4 8183.67 5592.00 1.75 0.33 0.25 8183.66 8072.48 1.33 1429.33 1.01 1.36 1.00
i65 3 8784.67 5812.00 1.10 0.25 0.31 8784.76 8694.15 1.00 889.00 0.89 1.03 1.00
i70 ∞ 7363.00 11 383.33 2.98 0.61 0.42 7302.06 7152.52 2.33 1344.67 0.77 2.05 1.01
i70 10 7562.67 12 664.67 8.48 0.57 0.44 7375.78 7239.94 3.00 1438.00 0.83 1.84 1.02
i70 5 8352.33 9407.33 2.10 0.38 0.26 8370.92 8226.93 2.00 1759.33 0.80 1.72 0.99
i70 4 8793.33 8868.00 1.15 0.30 0.28 8793.24 8694.16 2.67 1078.67 0.92 1.13 1.00
i70 3 9359.00 6293.67 0.50 0.23 0.19 9358.77 9329.80 1.00 690.33 0.83 0.31 1.00
i75 ∞ 14 591.00 13 645.50 2.12 0.34 0.23 7971.26 7862.56 2.00 1818.33 0.74 1.36 1.83
i75 10 18 578.33 9027.00 2.62 0.40 0.36 8062.93 7937.64 1.33 2717.67 0.67 1.55 2.30
i75 5 20 406.00 7071.67 0.61 0.28 0.31 9146.93 9072.31 3.33 1261.67 0.75 0.82 2.23
i75 4 23 932.00 7498.67 19.59 0.16 0.23 9673.08 9607.53 3.33 879.67 0.87 0.68 2.47
i75 3 21 997.33 6269.33 26.10 0.17 0.25 10 315.21 10 289.29 2.00 642.00 0.76 0.25 2.13
i80 ∞ 21 602.00 14 427.00 0.08 0.02 8145.71 8087.19 2.00 1988.00 0.49 0.72 2.65
i80 10 32 173.50 7508.50 0.13 0.13 8328.30 8231.79 2.00 3328.33 0.46 1.16 3.86
i80 5 33 583.67 5192.67 0.10 0.22 9772.60 9649.60 2.33 2486.33 0.58 1.26 3.43
i80 4 29 683.00 7491.00 0.10 0.12 10 332.97 10 234.80 2.67 3238.67 0.63 0.95 2.87
i80 3 28 730.00 7486.00 43.71 0.09 0.12 10 988.80 10 950.28 2.00 5201.67 0.58 0.35 2.61
i85 ∞ 58 210.00 510.00 0.02 0.03 8632.50 8517.83 1.00 5204.33 0.42 1.33 6.74
i85 10 51 639.00 633.00 0.09 0.12 8997.57 8755.12 2.67 13 290.33 0.37 2.69 5.73
i85 5 51 517.50 613.50 0.09 0.11 10 844.11 10 703.50 3.00 7520.50 0.43 1.30 4.75
i85 4 52 038.00 372.00 0.06 0.08 11 427.72 11 373.38 3.00 7348.50 0.49 0.48 4.55
i85 3 58 168.00 386.00 78.20 0.01 0.01 12 172.34 12 139.89 2.00 5110.50 0.44 0.27 4.77
i90 ∞ 9094.33 8999.84 2.00 5505.50 0.24 1.04
i90 10 9558.88 9239.94 3.00 13 454.00 0.27 3.34
i90 5 11 498.62 11 225.83 2.50 15 695.00 0.26 2.37
i90 4 12 075.98 11 976.58 2.00 14 115.50 0.30 0.82
i90 3 12 890.85 12 778.96 2.00 17 018.00 0.32 0.87
i95 ∞ 9381.82 9327.83 4.00 23 243.00 0.27 0.58
i95 10 9121.39 8875.08 2.00 33 858.00 0.24 2.70
i95 5 11 423.13 11 408.85 2.00 21 518.00 0.24 0.13
i95 4 12 131.58 12 114.63 2.00 1901.00 0.25 0.14
i95 3 13 077.78 13 045.51 2.00 16 241.00 0.23 0.25

i100 ∞
i100 10 9999.57 9698.67 3.00 3500.00 0.13 1.04
i100 5 12 545.41 12 433.62 3.00 5484.00 0.14 3.34
i100 4 13 293.75 13 292.38 2.00 9236.00 0.13 2.37
i100 3
p

pickup point—decreases and increases, respectively, when the capacity
of the pickup points decreases.
10 
The next computational experience presented is for the location
roblem on a network with densities 20% and 30%. Tables 4 and 5
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Table 5
Average results for the three data sets in the NCCEFLP problem with 30% network density.

Inst Cap CCEFLP 𝑧𝐿𝐵 CCEFLP Algorithm

Obj Time %GAP 𝑃 (𝑥𝑖𝑘𝑗 ) 𝑃 (𝑑𝑖𝑘𝑗 ) z* Iter Time #%𝑘 %𝐺 𝐴𝑃𝐿𝐵 GR

i30 ∞ 3218.67 101.67 2.94 0.42 0.62 3218.55 3105.15 3.33 0.00 1.71 3.52 1.00
i30 10 3218.67 121.33 2.94 0.49 0.59 3218.55 3096.43 3.33 1.00 1.85 3.79 1.00
i30 5 3218.67 113.00 2.94 0.49 0.59 3218.55 3112.37 3.67 0.33 1.91 3.30 1.00
i30 4 3227.67 118.33 2.94 0.47 0.59 3227.44 3115.63 3.33 0.33 1.91 3.46 1.00
i30 3 3243.00 103.67 2.74 0.44 0.58 3243.15 3138.71 3.33 0.33 1.54 3.22 1.00
i35 ∞ 3765.33 240.33 0.39 0.39 0.56 3765.24 3747.86 4.00 2.67 1.23 0.46 1.00
i35 10 3765.33 242.33 0.39 0.56 0.59 3765.24 3751.08 4.00 2.00 1.23 0.38 1.00
i35 5 3773.33 220.33 0.53 0.56 0.59 3773.24 3747.15 3.33 2.00 1.28 0.69 1.00
i35 4 3818.67 226.00 1.09 0.50 0.58 3818.43 3776.12 4.00 2.67 1.27 1.11 1.00
i35 3 3952.33 388.67 1.40 0.45 0.58 3958.31 3897.80 4.00 1.33 1.17 1.53 1.00
i40 ∞ 4257.33 296.00 0.01 0.36 0.46 4256.98 4250.86 3.33 2.00 0.79 0.14 1.00
i40 10 4257.33 315.33 0.01 0.58 0.23 4256.98 4252.97 3.67 2.67 0.83 0.09 1.00
i40 5 4291.00 320.00 0.11 0.58 0.23 4290.82 4278.23 3.67 3.33 0.95 0.29 1.00
i40 4 4381.00 295.00 0.52 0.50 0.24 4380.95 4346.28 3.33 3.00 0.72 0.79 1.00
i40 3 4726.33 300.67 1.25 0.42 0.23 4726.41 4654.66 3.33 3.00 0.71 1.52 1.00
i45 ∞ 4938.00 756.67 0.72 0.33 0.18 4937.78 4896.46 3.33 8.33 0.57 0.84 1.00
i45 10 4938.00 813.33 0.72 0.60 0.32 4937.78 4893.78 3.67 9.33 0.67 0.89 1.00
i45 5 5041.00 736.00 1.00 0.60 0.32 5040.89 4977.75 3.33 11.00 0.52 1.25 1.00
i45 4 5132.67 588.00 0.49 0.48 0.30 5133.03 5107.37 3.33 13.00 0.47 0.50 1.00
i45 3 5580.33 1010.00 0.96 0.39 0.15 5580.37 5516.21 3.33 9.00 0.58 1.15 1.00
i50 ∞ 5282.00 2529.00 0.75 0.29 0.10 5294.49 5238.46 3.67 77.00 0.35 1.06 1.00
i50 10 5287.00 2087.33 0.79 0.61 0.27 5287.17 5236.36 3.67 132.00 0.42 0.96 1.00
i50 5 5613.67 2763.00 1.96 0.60 0.26 5613.95 5491.22 3.33 178.00 0.39 2.19 1.00
i50 4 5829.00 2211.67 0.84 0.43 0.08 5834.97 5772.56 3.33 121.33 0.45 1.07 1.00
i50 3 6266.67 1931.33 0.27 0.36 0.19 6266.56 6250.63 3.33 56.67 0.29 0.25 1.00
i55 ∞ 5862.67 4721.67 0.70 0.27 0.16 5862.55 5794.88 3.33 109.33 0.36 1.15 1.00
i55 10 5894.33 4881.00 1.00 0.62 0.37 5894.27 5833.54 3.67 240.33 0.41 1.03 1.00
i55 5 6302.00 4085.67 1.89 0.60 0.37 6302.09 6179.84 3.33 226.67 0.44 1.94 1.00
i55 4 6546.67 3381.67 0.65 0.40 0.30 6548.17 6471.96 3.00 506.00 0.38 1.16 1.00
i55 3 7098.00 3329.67 0.56 0.33 0.25 7199.68 7138.88 3.00 39.50 0.65 0.84 0.99
i60 ∞ 6621.00 6213.50 0.39 0.25 0.31 6306.43 6265.62 3.33 1476.67 0.37 0.65 1.05
i60 10 6634.00 6566.00 1.04 0.61 0.42 6346.87 6295.26 3.33 1200.67 0.34 0.81 1.05
i60 5 14 251.67 4520.00 26.97 0.57 0.44 6927.06 6821.29 3.33 1323.67 0.33 1.53 2.06
i60 4 16 420.67 4636.33 27.66 0.38 0.26 7347.64 7246.65 3.33 706.33 0.32 1.37 2.23
i60 3 15 796.33 2700.33 25.69 0.30 0.28 7957.75 7854.67 3.00 229.00 0.30 1.30 1.99
i65 ∞ 7189.00 13 542.50 5.20 0.23 0.19 6694.15 6568.72 3.00 2082.00 0.21 1.87 1.07
i65 10 15 631.33 9444.67 44.76 0.34 0.23 6725.87 6584.25 3.00 3152.67 0.18 2.11 2.32
i65 5 15 945.00 5712.67 42.47 0.40 0.36 7563.02 7409.12 3.33 5068.67 0.21 2.03 2.11
i65 4 16 548.67 6019.67 41.71 0.28 0.31 8004.36 7859.51 3.00 5269.33 0.22 1.81 2.07
i65 3 17 092.00 5013.33 40.24 0.16 0.23 8572.72 8488.27 2.67 3222.00 0.20 0.99 1.99
i70 ∞ 40 633.00 373.00 85.01 0.17 0.25 7129.09 7049.63 3.00 6997.67 0.17 1.11 5.70
i70 10 40 705.00 379.00 86.54 0.08 0.02 7202.81 7120.03 3.33 6263.67 0.17 1.15 5.65
i70 5 18 644.67 8551.33 9.64 0.13 0.13 8197.63 8072.23 3.00 5929.67 0.17 1.53 2.27
i70 4 8667.50 12 242.50 5.59 0.10 0.22 8149.86 8089.06 2.50 4355.50 0.26 0.75 1.06
i70 3 19 135.67 5129.33 27.63 0.10 0.12 8708.93 8708.93 2.50 3018.00 0.27 0.00 2.20
i75 ∞ 7816.06 7715.30 3.33 2086.00 0.25 1.29
i75 10 42 966.00 615.00 0.02 0.03 7907.77 7772.39 3.00 2651.67 0.23 1.71 5.43
i75 5 41 549.00 459.00 0.09 0.12 9023.93 8925.09 3.33 13 764.67 0.32 1.10 4.60
i75 4 44 847.50 450.00 0.09 0.11 9548.15 9486.71 3.00 6981.00 0.24 0.64 4.70
i75 3 43 660.50 449.50 74.61 0.06 0.08 10 651.12 10 570.51 2.00 7672.00 0.26 0.76 4.10
i80 ∞ 8001.49 7959.84 3.33 8715.00 0.21 0.52
i80 10 8388.88 8314.51 3.00 45 538.00 0.21 0.89
i80 5 9931.96 9809.74 3.00 14 112.50 0.19 1.23
i80 4 54 538.00 846.00 0.17 0.00 10 525.97 10 480.63 3.00 3055.50 0.19 0.43 5.18
i80 3 11 244.34 11 229.54 3.50 11 333.00 0.20 0.13
i85 ∞ 8680.63 8618.42 3.50 37 878.50 0.11 0.72
i85 10 9032.58 8841.51 3.50 56 828.50 0.10 2.12
i85 5 10 201.62 10 130.30 2.00 30 570.00 0.10 0.70
i85 4 10 819.72 10 808.87 2.00 28 249.00 0.10 0.10
i85 3 11 571.30 11 498.47 2.00 2724.00 0.10 0.63
i90 ∞ 8129.20 8062.36 3.00 5900.00 0.10 0.82
i90 10, 5, 4, 3
i95 ∞
i95 10 10 774.29 1.00 113 228.00 0.07
i95 5 12 582.51 1.00 156 409.00 0.07
i95 4 13 161.10 1.00 79 784.00 0.07
i95 3

i100 ∞, 10, 5, 4, 3
show the results for both densities, respectively. The time limit has been
set to 60.000 s since it has been seen that the problem on a network is
more difficult than its equivalent on the plane. Some instances cannot
be solved due to a memory overflow. As a first observation about the
11 
results, the complexity of the problem increases when the network
density rises. When the network density is 20%, CPLEX plain use does
not obtain feasible solutions for instances of size 90 or greater while
the column generation algorithm can solve all the cases except two
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Fig. 7. Percentage of customers allocated to pickup points in CCEFLP and NCCEFLP depending on capacity.
g

t
S
I

sets of instances with 100 nodes. When the density increases to 30%,
CPLEX cannot solve some instances of size 75, while the algorithm fails
to provide a feasible solution from a network size of 90. The goodness
ratio 𝐺 𝑅 is frequently close to 1 and it is sometimes very large, it is even
6.743 in one case. These numbers illustrate the good performance of
our algorithm. The optimality gap %𝐺 𝐴𝑃𝐿𝐵 of our algorithm is similar
across all solved instances and the number of iterations of our algorithm
goes from 2 to 4. The computing time goes from 1 to 60.000 s However,
CPLEX cannot solve these more difficult instances, even find a feasible
solution. Blank spaces correspond to instances where the computer’s
memory is exceeded.

Finally, Figs. 6 and 7 gather information that appears in different
tables. In particular, Fig. 6 depicts the advantages of using the proposed
approach instead of the 𝑝-median location problem: it shows the ratio
of the optimal value for CCEFLP and NCCEFLP with a capacity equal
o ∞ and the solution of the 𝑝-median problem. This ratio is lower

for the flat problem, i.e. for CCEFLP, and therefore it is in this case
that the use of an appropriate model to reduce costs has the greatest
impact. In any case, for the rest of the models, the ratio is also
satisfactorily small. Fig. 7 depicts the average values in columns 𝑃 (𝑥𝑖𝑘𝑗 )
in Table 3 multiplied by 100 and distinguishing by capacity. It shows
that the percentage decreases with the size of the instance and the line
ssociated with any capacity is above the line associated with another
ower capacity.

6. Conclusions

In this paper, we have formulated two new models from an evolving
line of research. These models help us to obtain an optimal solu-
ion when customers are willing to go to a pickup point. All these

models that have been presented here aim to locate both plants and
pickup points, always minimizing the company’s transportation cost
and satisfying customer demands.

The pickup points generated depend on the type of problem we
are addressing, either on a plane (CCEFLP) or on a network-based
12 
environment (NCCEFLP). In this work we introduce an algorithm to the
eneration of pickup points within a network. These pickup points are

distributed over all possible routes, as they do not need to be limited
to the shortest path between two points.

Finally, in order to improve the results obtained with the 3-index
integer programming models (CCEFLP and NCCEFLP), a column gen-
eration algorithm has been created. Computational results corroborate
the good performance of the new algorithm.
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