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count the possibility that a center might suffer a disruption (being unavailable to serve some demand) and
assumes that every site will be covered by its closest available center. The problem is of interest when the
goal is to locate emergency centers while, at the same time, taking precautions against an unforeseen incident
(natural disaster, labor strike, accident...) which can cause failure of a center. We consider different formu-
lations for the problem and extensive computational tests are reported, showing the potentials and limits of
each formulation in several types of instances. Finally, a preprocessing phase for fixing variables has been
developed and different families of valid inequalities have been proposed to strengthen the most promising

formulations, obtaining in some cases much better resolution times.
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1. Introduction

Facility location models have been extensively studied in the liter-
ature. Various kinds of facilities have been modeled, such as routers
or servers in communication networks, warehouses or distribution
centers in a supply chain, hubs or transshipment nodes in passen-
ger transport, and hospitals or emergency facilities in a public service
system, among many others. In general, the goal of these problems is
to locate the facilities among a set of candidate sites and to assign cus-
tomers to the facilities, optimizing some effectiveness measure that
usually depends of the distances between the facilities and the cus-
tomers, see for instance Daskin (1995) and Drezner and Hamacher
(2002) and the references therein. The p-center problem (pCP) is a
well-known discrete optimization location problem which consists
of locating p centers out of n sites and assigning (allocating) the re-
maining n — p sites to the centers so as to minimize the maximum
distance (cost) between a site and the corresponding center. It was
shown in Kariv and Hakimi (1979) that pCP is NP-hard. A straight
application of pCP is the location of emergency services like ambu-
lances, hospitals or fire stations, since the whole population should
be inside a small radius around some emergency center. pCP has been
extensively studied, and both exact and heuristic algorithms have
been proposed. Recent articles on this issue are Mladenovic, Labbé,
and Hansen (2003), Elloumi, Labbé, and Pochet (2004), Daskin (2000)
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and Calik and Tansel (2014). We also refer the reader to Chapter 5 of
Daskin (1995). A recent survey on location of emergency services can
be consulted in Basar, Aatay, and Unluyurt (2012).

Emergency services have, in practice, a limited capacity. Conse-
quently, capacitated versions of pCP have also received attention in
the literature. In the capacitated p-center problem (CpCP), each site
has a demand and a capacity, and the total demand of the sites as-
signed to a center cannot exceed its capacity. Thus, CpCP is the prob-
lem of finding the set of p locations and the assignment pattern that
satisfies the capacity constraints while minimizing the maximum
distance site-closest center. A local search heuristic for CpCP has been
developed in Scaparra, Pallotino, and Scutella (2004). The special case
where all demands are equal has been studied in Bar-Ilan, Kortsarrz,
and Peleg (1993) and Khuller and Sussmann (2000). To the best of our
knowledge, only in three papers, CpCP has been solved exactly. Jaeger
and Goldberg (1994), where the special case of an underlying tree
network is approached; Ozsoy and Pinar (2006), where an algorithm
developed in [lhan and Pinar (2001) for the p-center problem is modi-
fied and extended, succeeding in providing optimal solutions in short
times for small instances of the problem; and Albareda-Sambola,
Diaz, and Fernandez (2010) where the authors propose two differ-
ent Lagrangian duals and an exact algorithm able to solve larger in-
stances. In Kalcsics, Nickel, Puerto, and Rodriguez-Chia (2010), the ca-
pacitated ordered discrete location problem is studied; among many
others, CpCP is a particular case obtained by fixing a parameterized
vector used to get the objective function of the model to (0, ...,0,1).

In addition to the capacity constraint of the facilities, there is an
important aspect that deserves attention, namely, the possibility of
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disruption of the facilities. Although most models in the literature on
Location Theory have treated facilities as if they could never fail, there
is a wide variety of reasons for which facilities can fail in practice
(industrial accidents, natural disaster, labor strikes, et cetera). Some
illustrative examples of real situations of the damage caused in facili-
ties can be seen in the introduction of O’Hanley, Scaparra, and Garcia
(2013). There is some research on discrete location dealing with facil-
ity disruptions, although it is mainly focused on stochastic assump-
tions and reliability issues in supply chain design. In those models,
some known probability of failure is considered for each of the facil-
ities and the goal is to minimize the expected cost; if a facility fails,
customers originally assigned to it have to be reassigned to other fa-
cilities. In Ball and Lin (1993) the authors attempt to increase the sys-
tem availability through redundant coverage. In Snyder and Daskin
(2005) an implicit formulation of the stochastic p-median problem
as a linear integer program is developed, where the facilities are sub-
ject to failure with the same probability. In Zhan, Shen, and Daskin
(2007) the authors provide several heuristics for the stochastic fixed-
charged problem, which is also formulated as a nonlinear mixed inte-
ger program. Heuristics with bounds on the worst-case performance
and the study of asymptotic properties of the solutions of the stochas-
tic p-median problem are carried out in Berman, Krass, and Menezes
(2007). In Cui, Ouyang, and Shen (2010), the uniform failure prob-
ability assumption in Snyder and Daskin (2005) is relaxed and the
failure probabilities are facility-specific. In addition, the authors pro-
pose a mixed-integer formulation and a continuum approximation
formulation to solve large-scale problems. In Shen, Zhan, and Zhang
(2011), the problem is formulated as a two-stage stochastic program
and then as a nonlinear integer program. Several heuristics and a
4-approximation algorithm are provided. Recently, O’'Hanley et al.
(2013) extend Berman et al. (2007) and Cui et al. (2010) by propos-
ing an exact linear reformulation of the unreliable p-median problem
given unequal facility disruption probabilities. Unlike the previous
references, some recent papers deal with facility disruption without
considering probabilities. In O’'Hanley and Church (2011) the authors
maximize a combination of initial coverage and the minimum cov-
erage level after the loss of the most critical facilities. From a bilevel
point of view, Aksen, Aras, and Piyade (2013) consider the location
of p facilities and, in a second step, the protection of some of these
under budget constraints. A related model that also considers capac-
ity constraints is given in Aksen and Aras (2012). There is even one
more paper in this line that considers the possibility of disruption
in a hub location environment (Parvaresh, Husseini, Golpayegany, &
Karimi, 2014), where some heuristics are developed with the aim
of minimizing the effects of an attacker after designing the hub
network.

Other related research fields are the fortification of reliability of
the service to cover a set of existing facilities and the backup set
covering problems. The interdiction-fortification p-median problem
is generally formulated as a bilevel programming problem, where
the idea is to protect the existing critical facilities under the events
of disruption, see Snyder, Scaparra, Daskin, and Church (2006) and
Scaparra and Church (2008). In Lei and Church (2011), the authors
use explicit closest assignment constraints for a novel multilevel fa-
cility interdiction problem that optimize worst levels of facility dis-
ruptions. A recent paper in this field that takes capacities into con-
sideration (see also references therein) is Liberatore, Scaparra, and
Daskin (2012), where the authors consider the protection of a capaci-
tated median system with a limited amount of protective resources
subject to partial or complete disruption of the facilities involved.
On the other hand, several backup set covering problems have also
appeared in the literature under the common idea of covering the
demand points with several centers in order to guarantee the cover-
age in case of either failure or an overflow into one or some centers
(in this sense, the model proposed in this paper can be considered a
backup problem). In these models there are two natural objectives:

Minimization of the number of open centers and maximization of
the backup coverage. Several times the model is approached from the
point of view of multiobjective optimization (Storbeck & Vohra, 1988)
and model BACOP1 in Hogan and ReVelle (1986) are two examples of
such an approach. At other times, both objectives are combined in a
unique function as in model BACOP2 of Hogan and ReVelle (1986).
In Weaver and Church (1985) the authors take a different approach
with the Vector Assignment p-Median Model. In their model, a fixed
fraction of each node’s demand is allocated among the facilities on
the basis of their proximity, e.g., 70 percent of a node’s demand is
assigned to the closest facility, 10 percent to the next closest facility,
and so forth. Very recently, Curtin, Hayslett-McCall, and Qiu (2010)
present a new backup coverage model that is appropriate for patrol
area design, see also the references therein.

This paper seeks to generalize the capacitated p-center problem
by considering the possibility that a facility might suffer a disruption,
being unavailable to serve some demand. These two joint aspects (ca-
pacity constraint and failure possibility) make the model we consider
in this paper more fitting for some real situations. What we are going
to consider is that sites must still be assigned to their closest centers
and so any center j must have enough capacity to satisfy the demands
of the sites which are closer to j than to any other center. In addition,
an unpredictable incident may occur in any of the p centers, forcing it
to be closed. Then each customer allocated to it is re-assigned to an-
other center, which must be its second closest center. Consequently,
the capacity of any center must be enough to receive also the sites
re-assigned to it in case of failure of any other center. The goal then is
to minimize the second lowest distance from a site to the set of cen-
ters, since in case of an accident which produces a damage in one of
the emergency services, all the sites should still be inside the smallest
possible radius around an available center. Since we consider emer-
gency services which could be essential for saving lives, increasing
the operation cost (with respect to not considering failure possibil-
ity) to prevent facility disruptions is fully justified. Observe that this
problem is NP-hard because its uncapacitated 2p-facility version can
be reduced to a pCP. We call our model Capacitated Second p-Center
Problem (CSpCP, in short).

The paper is organized as follows. In the next section, we formal-
ize the problem and illustrate it with an example. In Section 3, dif-
ferent integer programming formulations for CSpCP are introduced.
A comparison of CSpCP with CpCP with closest assignment and pre-
liminary computational results are given in Section 4. In Section 5, a
heuristic approach is developed and then, in Section 6, we use this
heuristic to improve the formulations using different variable fixing
strategies and strengthening formulations with new valid inequali-
ties which are computationally compared. We end with some con-
clusions.

2. The problem

Let N = {1, ..., n} be the given set of sites. Throughout the paper
we assume, without loss of generality, that the set of candidate sites
for centers is identical to N. Let h; denote the demand of site i € N, b;
the capacity of a center located at site i € N, and p > 2 be the number
of centers to be located. For each pair (i, j), i, j € N, let d;; be the dis-
tance (cost, travel time) from i to j. We assume d;; = 0Vi € N and d;; >
0Vi,j e N:i#j. We do not assume other special properties like satis-
faction of triangle inequality, that is to say, strictly speaking d is not a
distance. But we need to make an additional assumption to deal with
the case of ties among several distances from the same site. If this is
the case, in order to break ties we suppose that there are preferences
on the centers such that sites will undoubtedly choose one center be-
fore the others. In practice, ties can be broken by slightly perturbing
the tied distances. Summarizing, we will also assume d;, # d;;, Vi, q,
b e N:a # b. Then CSpCP is to choose p centers {iy. ..., ip} among the
n sites to minimize the distance from any site to its second closest
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Fig. 1. Example of how points are allocated to the two closest centers.

center while satisfying the capacity limitations. This means that for
anyie {iy,....ip}.

b; > max h
"7 i ip\ i} Z ‘

ke i=argminge (i, ip) () die

must hold. We present now an example of the problem for the sake
of clarity.

Example 2.1. Consider eight points in the plane with coordinates
(1.1,3.3), (6.4,5.6), (6.3,3.7), (2.7,9.1), (7.0,8.3), (3.7,3.8), (5.9,3.9) and
(6.1,6.5), demands 5, 2, 2, 4, 1, 5, 4 and 4 and capacities 6, 7, 13, 11, 15,
13, 15 and 15, respectively. The ¢; norm is used to compute distances
between points. Taking p = 4, the optimal solution of the problem is
given in Fig. 1. Centers are drawn inside circles; the closest center to
a non-center point is indicated by a segment, and the second closest
center with respect to a point is depicted with a two tip arrow. For
instance, point 5 is not a center, its closest center is 8 and its second
closest center is 7.

To see that the solution satisfies the capacity constraints, in the
following table we give for each center j (column 1), the total demand
of points having j as their closest center (column 2), the additional
demand assigned to j in case of failure of either 1, 6, 7 or 8 (columns
3-6), the maximum of the last four amounts (column 7), the sum of
columns 2 and 7 (column 8) and the capacity of center j (column 9).

Center Demand 1fails 6fails 7fails 8fails Max Total Capacity
1 5 - 0 0 0 0 5 6

6 5 5 - 6 4 6 1 13

7 6 0 5 - 7 7 13 15

8 1 0 0 0 - 0 11 15

For instance, center 7 is the closest center with respect to points
3 and itself, with a total demand of 2 + 4 = 6. In case of failure of
center 1, 7 would not receive additional demand. In case of failure
of 6, 7 would receive the demand of point 6, which is 5. In case of
failure of center 8, 7 would receive the demand of points 2, 5 and 8,
i.e, 2+ 1+ 4 = 7. This is the worst case, and then in case of failure of
center 8, center 7 would need enough capacity to cover the demand
of 6 + 7 = 13. Since the capacity of 7 is 15, the corresponding capacity
constraint is satisfied.

The objective value is given by the maximum distance from a
point (in this case point 4) to its second closest center (in this case
6), as indicated in the figure by a dashed arrow.

3. Integer programming formulations

The model proposed in this work can be formulated as an inte-
ger linear programming problem. In this section we present several
formulations.

3.1. Formulation using variables with three indices

For the first formulation we will define the following two usual
sets of binary variables, which will be used to determine the location
of the centers and the allocation of the sites to the centers (the closest
and the second-closest ones, respectively).

1,
yj = 0’

1, if the closest and the second-closest
centers to site i

if a center is located at site j,

otherwise, JeN.

Xijke = are j and k, respectively, VijkeN.
0, otherwise,
The formulation is
(P3) min z (1)
s.t. Z injk =1 Vie N, (2)
jeN ’f:’NJ
> yi=p 3)
jeN
DO X+ Y. Y Xw+yj<1 VijeN, (4)
teN keN teN keN
di=dij kit diy<dyj  dye-di
ki e
DO Thixg+ > hexyj < bjy; Vi jeN: i ], (5)
N P
zZ> Z Zdikxij,< VieN, (6)
jeN keN
yj€{0.1} VjeN, (7)
Xijk € {0, 1} Vl, j, k e N. (8)

The objective function (1) together with constraints (6) are used
to get the maximum distance of any site with respect to its second
closest center by means of an additional decision variable z which
is minimized in the objective. Constraints (2) force each site to be
allocated to a pair of different centers. Constraint (3) fixes the number
of centers to p.

In order to ensure that a site is not assigned to centers other than
the two closest ones, constraints (4) are incorporated into the formu-
lation. Given a site i and a center j (i.e., y; = 1), x-variables in the first
term (forced to take value 0) correspond with routes whose first cen-
ter is further from i than j. Similarly, x-variables in the second term
are fixed to 0 if the corresponding route goes first to a center closer to
i than j but afterward to a center further to i than j. Both sets of vari-
ables can be aggregated (so producing a stronger formulation) since
in case y; = 0, the resulting constraint is implied by (2).

Constraints (5) have a double mission: preventing sites being as-
signed to sites which are not centers and keeping the demand of sites
assigned to the same center under the capacity of this center. The de-
mand added up on the left hand side splits into ),y Zkkszj heXy i,

which is the demand of sites assigned to j as their first center, and
> cen x5, which is the demand of sites having j as their second cen-
)

ter and i as their first center. Finally, binarity of all variables is fixed
in constraints (7) and (8).
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Fig. 2. Illustration of the need for (4).

In what follows, we show the need for the families of constraints
describing formulation (P3). It is clear that constraints (2), (3), (5) and
(6) are necessary. Regarding family of constraints (4), we again con-
sider the instance given in Example 2.1. After removing constraints
(4), the optimal solution we obtain is depicted in Fig. 2. Here, for in-
stance, site 1 is not allocated first to its closest center. The reason is to
exploit the capacity of further centers in order to reduce the objective
value. Also, site 5 is allocated first to 6 (and then to 8), not to itself.
Similarly, sites 8 and 3 are allocated first to 5 (and then to 3 and 6,
respectively).

Note that x;j-variables with i = k or j = k will never take value 1
at any optimal solution and can be fixed at zero. Several other vari-
ables can be fixed at zero in (P3). The second closest center w.r.t. i will
never be closer to i than the closest center, then

Xijk=0 Vi, jkeN: dj>dy.

Furthermore, y-variables can be removed from the formulation by
taking into account that

yi= inik VieN.
keN

3.2. Formulation using variables with two indices A

In this formulation we will use the following sets of binary vari-
ables:

X 1, if acenter is located at site j, cN
77710, otherwise, ’
1, if the closest center to site i is j .
I S : Y .
Xij {0, otherwise, LjeN

Note that x;; = 1 implies self allocation of site j. Additionally, we in-
corporate into the formulation the set of binary variables

1,
Wij = 0

necessary to determine the allocation of sites to their second closest
centers.
Then the formulation we propose is

if the second closest center to site i is j,

otherwise, VijeN,

(P2A) min z
S.t. ZX]']' =D (9)
jeN
> xj=1 VieN, (10)
jeN

ZWij:] ViGN, (11)
jeN
i
ij+Wij§ij Vi,jEN, (12)
S oxe+ Y xe=1 VijeN, (13)
“i?silzij di:i,;ij
ij-i-ZWile‘*‘Xij VI,]ENI#], (14)
di:i’\dlij
D o hexgi+ Y he(wyj+xi—1)
& e
< (bj—hj)ij Vi,jENi l;ﬁ], (15)
z>Y diwy VieN, (16)
teN

Xij, Wjj € {0, 1} Vl,] eN.

The goal is to minimize the maximum of the distances to the sec-
ond center assigned to each site, given in constraints (16). Constraints
(9)-(12) resemble the classical constraints in discrete location prob-
lems. In our formulation they ensure allocation of a site to two dif-
ferent centers and fix the number of centers at p. Due to the capac-
ity constraints we need to add closest assignment constraints (CAC)
to the formulation (a recent and complete study of CAC can be con-
sulted in Espejo, Marin, and Rodriguez-Chia, 2012). Constraints (13)
improve on those proposed in Wagner and Falkson (1975), and force
a variable x;; to take value one if j is the closest center with respect to
site i.

Similar constraints are needed to force allocation (by means of w-
variables) to the second closest center. To this end, constraints (14)
act as follows. In the cases x;; = 0 and x;; = x;; = 1, (14) reduces to a
trivial constraint due to (11). The case of interestis x;; = 1 and x;; = 0,
i.e,, j is a center but i is not allocated to j. Then, due to (13), there
must exist a center closer to i than j, and (14) reads ) L wj <0=

ie>dij
wj, =0Vt eN: dj > d;;. The effect is that i is not allocatjed to a sec-
ond closest center further than j. A version of (14) has been also de-
veloped in Lei (2010), see also Lei and Church (2011).

Constraints (15) are the capacity constraints. If x;; =0, it fol-

lows x,j =w,; =0 V¢ € N and then )~ .y he(x; —1) <0, which

0i=fej
holds trivially. If x;; =1, b; bounds the slum of ¥, cnhex,; and
Zd e he(wyj +x;; — 1). The first addend measures the demand of
ei=%j

sites wflich havej as the closest center. The second addend, for a given
value of i, is only of interest if x; = 1 (otherwise it is non-positive), in
which case it counts the demand of the sites with j as the second
closest center which are closer to i than to j. That is to say, the second
addend measures the demand which will go to j if center i fails.

All variables must be constrained to be 0-1 valued due to the ca-
pacity constraints (unsplittable demand). Note that taking i = j in
(12) it follows that w;; = 0 Vj e N. Throughout the rest of the paper,
we will use these identities when required.

In order to show the need for several families of constraints
in formulation (P2A) we consider again the instance given in
Example 2.1. After removing constraints (13), the solution is depicted
in Fig. 3. Note that, in order to reduce the objective value, allocation
is made first to centers which are further than the closest center with
respect to a given site; for instance, site 1 is allocated to 5 instead
of 6. After removing, instead, constraints (14), the obtained solution
is depicted in Fig. 4. Here, for instance, site 3 is not allocated to its
second closest center. The reason is to exploit the capacity of further
centers in order to reduce the objective value. After removing con-
straints (12), all points would be allocated to themselves by means
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Fig. 3. Illustration of the need for (13).

of w-variables, with an objective value equal to zero. It is clear that
constraints (9)-(11), (15) and (16) are necessary.

Analogously to (P3), several variables can be fixed at zero in (P2A).
Sorting the distances from a fixed site i to the rest of the sites by

dy<d,<---
since there are p centers, i will never be assigned to the p — 1 furthest

sites. Then

Xj=0 VijeN:dj>di_,.,.

<d,

Analogously, the second closest center w.r.t. i will never be one of the
p — 2 furthest sites and

Wij = 0 Vl,] eN: dij > dii1—p+2'
Also, since i is always the unique closest site with respect to itself,

Wi = 0 VieN.
3.3. Formulation using variables with two indices B

It is observed in formulation (P2A) that the x-variables play a sec-
ondary role. It is possible, with a complete knowledge of x;; Vj € N plus
the w-variables, to build capacity constraints and CAC, thus reducing
the size of the formulation. The result of this reduction is called for-
mulation (P2B). Whether this change entails a quality reduction of
the formulation and, in such a case, if the size reduction makes up for
it, will be a matter of forthcoming sections. Formulation (P2B) is as
follows:

(P2B) min z
s.t. (9), (11), (16)
W,'j fij Vi,jEN, (17)

D 2wy + Y Xe=2 Vi jeN:i#] (18)
diji,:lfij dxjsflzij
Z(P—Uwizf ZXM Vi,jeN:i#]j (19)
’jij;,;ij dijg;ij
DY hwig+xi— 1)+ Y he(wg+x; — 1)
teN P Llfl;l ‘ iel‘\il

tj=tq =%

ij € {0,1} V] eN,
w;j e {0,1} Vi, jeN. (21)

Fig. 4. Illustration of the necessity of (14).

Given two different sites i and j, the corresponding constraint (18)
is trivially satisfied when de,z Xge > 2, i.e,, when there are two or
ie=djj
more centers inside a radius d,-j .Jaround i. Otherwise, if Y (v X €
ie=dij
{0, 1}, constraint (18) forces some of the variables in the ﬁrsé term
to take value 1, that is to say, it forces the distance in the objective
function to be greater than dj;.

To complement (18), and due to the capacity limitations, it is
necessary to add some other constraints preventing i for being al-
located to a center further than the second closest center. Constraints
(19) have this effect. The trivial case is Zd cen Wy, = 0. Otherwise, if

ie=0ij
Zd teN wj, = 1, it means that the reference éenter of i is not inside
ie=4ij
radius Jd,] Since the total number of center is p, this would only oc-
cur when the number of centers at least at a distance dj;, given by the
second term of (19),is p — 1.

The combination of constraints (18) and (19) produces the desired
allocation to the second closest center. Similar constraints were used
in (Belotti, Labbé, Maffioli, & Ndiaye, 2007) in the context of obnox-
ious location.

In order to establish the limit on the capacity of the centers using
this reduced set of variables, constraints (20) are incorporated into
the formulation. Each constraint in this family takes care of the ca-
pacity of center j if center i fails. The first case is when x;; = 0, i.e., jis
not going to be a center. In such a case, the addends of the first term
will be wyq — 1, which are less than or equal to 0, and the addend of
the second term will again be x; — 1 less than or equal to 0, and the
constraint is trivially satisfied. The interesting case is then x;; = 1.
Replacing x;; by 1 in the first term, it becomes ",y Zd ach hewyq.

0j <%

Since j is now a center, a variable wyg = 1 when q is outsiiie Z\ radius
d,; around a site ¢ means that j must be the closest center with re-
spect to ¢. Then the first term sums up the demand of the sites with
j as the closest center, to be taken always into account when limiting
the capacity of j. But the capacity of j must also be enough to cover the
demand of some sites after the failure of another center, represented
in (20) by i. When i is actually a center, variable x;; will take value 1
(otherwise the second term will be negative). Note that the second
term only considers those sites ¢ closer to i than to j, and variables
w,; taking value 1. The combination of both situations implies that,
in case of failure of i, the demand of ¢ will be satisfied by j, and this
demand given by the second term must be added to that of the first
term to be bounded by b;.

Although we have introduced (P2B) with all constraints that can
be considered intuitively necessary, not all of them are needed to ob-
tain a correct formulation, as we show in the following result.
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Fig. 5. Illustration of the need for (18).

Proposition 3.1. Constraints (17) are implied by constraints (9), (11),
(18), (19) and (21).

Proof. Assume that, fori e N and j e N\{i}, w;; = 1 holds.
Replacing w;; by 1in (11) and using (21) it follows that w;, = 0 V¢
such that d;, > dj;. Now, replacing these values in (18),

Z Xpe = 2.

teN

djp=djj

Taking (9) into consideration, the last inequality is equivalent to

> xu<p-2. (22)
teN

dig>djj

On the other hand, replacing w;; by 1 in (19) and using (11) again, it

follows that

p—-1< qu

teN
djp=d;j

which, by the assumption of no ties in the distances from the same
point, can be re-written as

p—-1=xj+ Y Xu. (23)
difi‘zij

Finally, bringing together (22) and (23),

P-T<Xj+ ) Xu<Xj+p-2
teN

dig>dij

and x> 1 trivially holds. O

The remaining constraints are not implied by the others. Consider
the instance given in Example 2.1. After removing constraints (18),
the solution obtained is depicted in Fig. 5. Notice that, in order to re-
duce the objective value, second allocation is made to centers which
are closest with respect to a given site. For instance, site 7 is allocated
to center 3. Removing families of constraints (19), we obtain solutions
with wrong allocations. To show this, consider n = 4, p = 3, distance
¢4, points in coordinates (2, 9), (1, 1), (7, 6), (10, 7), demands 2, 2, 1,
1 and capacities 8, 6, 6, 7. The solution has opened centers 1, 2 and 3
and wiy = Wy = W31 = Wy = 1, where we can see that site 1 is not
allocated to its second closest center, site 3 (see Fig. 6).

Several variables can be fixed at zero in (P2B). The second clos-
est center w.r.t. i will never be one of the p — 2 furthest sites nor the

Fig. 6. Illustration of the need for (19).

closest one (itself), then
W,‘j=0, Vi,jGN: d,‘j >d£1—p+2’
Wi = 0, VieN.

Formulations (P2A) and (P2B) are both of interest from a theoret-
ical point of view due to the following result.

Proposition 3.2. The linear relaxations of (P3), (P2A) and (P2B) do not
dominate one another.

Proof. To prove the thesis it suffices to show two examples of in-
stances in which the linear relaxation of each formulation gives a
larger value than the linear relaxation of the other. For both exam-
ples we take a set of six points in the plane, p = 3 and the ¢; norm is
used to compute distances between points.

In the first example, the points are (1, 8), (5, 0), (9, 9), (5, 2), (6, 2)
and (4, 9), with demands 3, 2, 3, 3, 2, 5 and capacities 16, 3, 11, 14,
4, 15 respectively. Centers in the optimal solution are 3, 4 and 6. The
two closest centers with respect to each site are (6, 3), (4, 6), (3, 6),
(4, 6), (4, 6) and (6, 3), respectively. The optimal value is 10 (distance
from 2 to 6, see Fig. 7, left hand side). The optimal values of the linear
relaxation of (P3), (P2A) and (P2B) are 8, 6.04 and 5.77, respectively.

In the second example, the points are (6, 4), (0, 9), (1, 6), (4, 0), (4,
4) and (1, 7), with demands 3, 1, 2, 3, 2, 2 and capacities 11, 3, 13, 15,
14, 5 respectively. Centers in the optimal solution are 1, 5 and 6. The
two closest centers with respect to each site are (1, 5), (6, 5), (6, 5), (5,
1),(5,1) and (6, 5), respectively. The optimal value is 9 (distance from
2 to 5, see Fig. 7, right hand side). The optimal values of the linear
relaxation of (P3), (P2A) and (P2B) are 4, 4.59 and 5, respectively. O

4. Analysis of the model and formulations

The goal of this section is twofold. On the one hand, to provide the
readers a better understanding of the model considering a compari-
son between the solutions of CpCP and CSpCP which highlights that
there are significant benefits in using the proposed model in case of
disruption. On the other hand, to compare the three proposed formu-
lations for CSpCP in order to identify which of them is more promis-
ing from the computational point of view.

4.1. Comparison between versions of CpCP with and without failure
foresight

It could be argued that the prevention of a disaster that rarely oc-
curs will imply a change in the solution to the problem that leads to
some sites being allocated to centers further than the reference cen-
ters they would have in the solution of CpCP in order to guarantee
sufficient capacity. But this argument would rapidly lead to the in-
validation of all kinds of p-center problems, which are based on the
improvement of the worst case situation at the expense of making the
average situation worse than in the median models. In contrast, when
the decision maker decides to use the solution to the CpCP instead of
its counterpart with median objective, the idea is to provide an op-
portunity to everybody (in particular to the furthest one, although it
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Fig. 8. Example 4.1.

could be a rare case) to reach an emergency center when it is needed.
Model CSpCP is nothing but the widening of this humanitarian point
of view to the case of disruption.

In order to highlight the strengths of taking into account the fail-
ure possibility, in the following we provide a comparison of the op-
timal solutions obtained for a set of instances by using both CSpCP
and CpCP with closest assignment (i.e., when sites are served by their
closest centers). Besides the optimal values of both problems, we
have computed some illustrative measures of goodness of these so-
lutions as follows. In the case of CSpCP, we compute the maximum
distance between each site and its closest center, that is to say, the
objective value that the optimal solution of CSpCP gives in the CpCP
model. In the case of the optimal solution to CpCP, we consider the
failure of one of the centers and distinguish between the cases (i)
where each site previously allocated to the center that failed is allo-
cated to its second closest center and (ii) it is allocated to any center
with enough capacity (this is done by solving an assignment problem
between these sites and the remaining centers taking into account
the available capacity of these centers). The maximum distance from
every site to its corresponding new center is then calculated.

We start with an example which shows how inadequate it may
be to simply solve CpCP and then re-assign sites when the failure of
one of the centers occurs. It is worth mentioning that when an emer-
gency situation occurs, injured people, following a natural and intu-
itive pattern, try to go to the second closest center, since in this type
of situations it is implausible that the information as to which center
has enough capacity to cover their demands is available.

Example 4.1. We are given eight points in the plane with coordinates
(0.6, 2.3), (44, 4.6), (6.3, 3.7), (2.7, 9.1), (7.0, 8.3), (3.7, 6.8), (5.9, 3.9)
and (6.9, 6.5), demands 5, 2, 2, 4, 1, 5, 4 and 4 and capacities 6, 7, 13,
11, 15, 13, 25 and 25, respectively. Taking ¢; to measure the distances

and p = 3, the optimal solution to CSpCP is depicted at the left hand
side of Fig. 8. The free capacity in each center is indicated between
brackets. The closest center to a non-center point is indicated by a
segment. The optimal value (the furthest second closest center with
respect to a point in the case of failure) is depicted with a dashed line
between site 4 and center 7.

Consider now the possibility of using the optimal solution to CpCP
and re-assigning sites in case of failure of some of the centers. The op-
timal solution to CpCP is depicted at the right hand side of the figure.
Now, after a disaster center 1 fails, and the demand of 1 must be al-
located to another center with enough free capacity, the only feasible
solution is to choose center 8, which is not the second closest center
with respect to 1. The situation is still worse if the disaster affects 8,
since the free capacity of the remaining centers is not enough to sat-
isfy the demand of sites originally allocated to the unavailable center.

Observing the left hand side of Fig. 8, the reader can realize that
the optimal solution of CSpSp requires the system to have a spare
capacity of 29 to accommodate the customers reallocation in case
of failure. Although the fact that a real system can afford more than
100 percent extra capacity to deal with potential disruptions which in
general are rare could be considered as excessive, this extra capacity
does not necessarily have to be too expensive. Nowadays, some hos-
pitals have operating rooms or even corridors (areas of rooms for the
patients) that usually are closed and then opened when there is an in-
crease of the demand (epidemics, accidents, etc.). Therefore, the hos-
pital only has to cover the expenses of keeping them in good shape to
be used in case of necessity. In the following we give some alternative
types of centers where including extra capacity does not necessarily
imply significant additional costs:

1. The governments have some centers to store oil to address stock-
outs or to fight against the price fluctuations of the oil. These cen-
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Table 1
Comparison of different optimal solutions for CSpCP and CpCP with closest assignment.

CpCP CSpCP Imp_F (in percent) ~ Wors_F (in percent)  Imp_NF (in percent) =~ Wors_NF (in percent)

ov OV_F F_N2C Pos WPos oV OV_NF
L&S 3404 INF(5) 8283 2nd  4th 708.6 6469 14.5 -16.9 47.4 -90.1
Orlib_50 594 INF(4) 675.0 5th  5th 593.0 571.2 121 -13.8 89.6 —861.0
Orlib_50° 444 INF(5) 135.0 3rd  4th 119.7 81.7 1.3 -12.8 45.7 —84.2
Orlib_80 519 INF(6) 1321 3rd  3rd 99.2 74.2 249 -332 30.1 —43.2
455 36.2 INF(3) 80.0 2nd  4th 58.5 49.0 26.8 —36.6 26.0 -351
45_10 36.2 INF(3) 80.0 2nd  4th 58.5 433 26.8 -36.6 16.2 -19.4
75_5 36.5 INF(4) 95.3 4th  5th 62.1 51.7 34.8 -53.4 294 —41.7
75_10 36.5 INF(1) 95.3 4th  5th 57.1 50.5 40.0 —66.8 27.7 -383
100_5 331  INF(4) 76.3 3rd  4th 53.6 40.3 29.8 —424 17.8 -21.7
100_10 331 638 63.8 2nd  4th 51.9 38.1 18.7 -23.0 13.1 -15.0

ters could be used to cover the regular demand of a region (gas

stations, airports, etc.), but in addition have an extra capacity to

cover the aforementioned special situations.

2. Centers of staple products, blankets, tents, machines to get
potable water, non perishable food, snowplows etc. that are used
to cover small incidents (like storms) can have an extra capacity
to replace the damaged material of other center in case of a bigger
disaster (like an earthquake or a hurricane).

3. A reservoir to store water for consumption to cover the demand
of a region could also be used to cover the demand of additional
cities if, suddenly, they have supply problems by an unexpected
reason like contamination of the water in the reservoir that ini-
tially cover those cities.

Summarizing, our model could become a useful tool for the
decision-maker or system-planner to evaluate whether it is recom-
mendable to establish a strategy to prevent possible incidents in one
of the centers or on the contrary, it is not feasible from a finan-
cial point of view. Therefore, this model provides the decision-maker
with a quantitative rule to select the best option relative to foresee
emergency situations.

Table 1 reports the results of the comparison between CpCP and
CSpCP for a set of instances. Columns “OV” give the corresponding
optimal values. Given the optimal solution of CpCP, column “OV_F”
provides the maximum distance from each site to their second closest
center. The number in brackets shows the number of times in which
it is not possible to re-assign sites to their second closest centers (be-
cause they do not have enough capacity) when one of the centers in
the optimal solution to CpCP fails. Column “F_N2C” provides the max-
imum distance from sites to a center with enough capacity (not nec-
essarily the second closest one) when the closest one fails. Column
“Pos” reports the position of “F_N2C” in the ordered sequence of dis-
tances between the site for which the maximum distance is achieved
and the centers, whereas “WPos” gives the worst position of the dis-
tance between each site and the center that would cover this site if its
closest one were to fail in the ordered sequence of distances between
this site and the centers. Column “OV_NF” reports the maximum dis-
tance between the sites and their closest center for the optimal solu-
tion of CSpCP (when no center fails).

Column Imp_F gives W x 100, i.e., the improvement
percentage, with respect to the maximum distance from each client
to its center if one of these centers fails, by considering the optimal
solution of CSpCP (values in column CSpCP_OV) instead of the opti-
mal solution of CpCP (values in column F_N2C; observe that in this
case is not a fair comparison because we have not assumed the clos-
est assignment, otherwise in all the cases except the last one this so-
lution would not be feasible). Conversely, column Wors_F reports the
worsening percentage, with respect to the maximum distance from
each client to its center if one of these centers fails, by considering

the optimal solution of CpCP instead of the optimal solution of CSpCP,

CSpCP_OV-F_N2C _ 1.

L€, —Cspcrov

- CSpCP_OV_NF—CpCP_OV .
Analogously, column Imp_NF gives R oo 1V 100, i.e.,

the improvement percentage, with respect to the maximum distance
from each client to its closest center, by considering the optimal so-
lution of CpCP (values in column CpCP_OV) instead of the optimal
solution of CSpCP (values in column CSpCP_OV_NF). Conversely, col-
umn Wors_NF reports the worsening percentage, with respect to the
maximum distance from each client to its closest center, by consider-

ing the optimal solution of CSpCP instead of the optimal solution of

; CpCP_OV—CSpCP_OV_NF
CpCP, i.e, PLOLGREOVNE 100,

The instances considered in the comparison are L & S (n = 90,
p = 10, where the 10 sites with the largest demand have been re-
moved, see Lorena and Senne, 2004), Orlib_50 (n = 50, p = 5, with all
capacities equal to 150, see Osman and Christofides, 1994), Orlib_50"
(this instance is Orlib_50 where one of its points has been re-
moved, i.e.,, n =49, p=>5) and Orlib_80 (n = 80, p = 10 where the
10 sites with the largest demand have been removed, see Osman
and Christofides, 1994) and some instances with points randomly
generated in the plane (using ¢; to measure the distances); de-
mands and capacities are randomly generated as U{6, ..., 15} and
[n/p][(hy + max; h;)/2] + [U(0, 10 - type)], respectively, with type =
5,10: 45_5 (n =45, p=5, type=5),45_10 (n = 45, p = 5, type=10),
75_5(n =75, p=>5, type=5),75_10 (n = 75, p = 5, type=10), 100_5
(n =100, p=7, type=5) and 100_10 (n = 100, p = 7, type=10).

The difference between n_5 and n_10 is simply how the capac-
ity of the centers (type 5 or 10) is generated. It can be observed in
column OV_F of CpCP that all the instances except the last one are in-
feasible when sites are assigned to their second closest center if the
closest one fails). Columns Pos and WPos show that there are sites
that should be allocated to centers sorted between the third and the
fifth positions.

From column Imp_F we see the clear advantage of considering the
failure foresight which provides a significant improvement (25 per-
cent on average) of the objective value with respect to the CpCP when
a center fails.

Although the comparison between the solutions of CpCP and
CSpCP highlights that there are significant benefits in using the pro-
posed model in case of disruption, sometimes this comes at the cost
of a deterioration of the objective if failure does not occur. This could
be measured by comparing columns Imp_F and Wors_NF, but it is
worth mentioning that this is not completely fair, since closest as-
signment in case of failure was not assumed to obtain the values in
column F_N2C (otherwise, this solution would not be feasible). Ig-
noring this point, we can see that the improvement percentages in
case of disruption (Imp_F) are smaller than the worsening percent-
ages (Wors_NF) in the first five problems and the seventh one, but
quite the opposite in the other cases. Therefore, depending on the
cases, the difference of the maximum distance from the clients to
their centers for the optimal solution of CpCP and CSpCP when a dis-
ruption occurs could be bigger or smaller than the difference of these
values when no disruption occurs. Just taking into account these
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percentages, the prevention against failure of some of the centers
might not be advisable in the first five examples and the seventh one.
However, in the other cases, to foresee the failure of one center is
highly recommendable.

An extreme case of the above comparison could be the second in-
stance in Table 1, Orlib_50. In this case, the largest site-center dis-
tance drops from 675 to 593 when using our model as compared
to a standard p-center model, i.e., an improvement of 12.1 percent
(see column Imp_F). However, the maximum distance in normal con-
ditions increases from 59.44 to 571.22, i.e., a worsening of 861 per-
cent (see column Wors_NF). A deeper analysis of this data set allows
us to recognize that there is an isolated point, a, which is quite far
away from the remaining points. Indeed, the coordinates of this point
are a = (70,719) and the 49 remaining points are in the rectangle
[4, 100] x [4, 234]. The optimal solution of the CpCP contains a as a
center; for this reason the optimal objective value of this problem is
relatively small (59.44). However, if we consider the possibility that
a center fails, due to the particular configuration of this example, the
maximum distance from a center to its closest available center will
increase extremely (we can see that this maximum distance for the
optimal solution of CpCP increases to 675, even assuming that the
sites are not assigned to the closest available center because other-
wise this solution would not be feasible). Therefore, the reason for
these large differences of percentages in the improvement and wors-
ening of the objective is due to the particular configuration of this
problem. Indeed, we have solved the same instance deleting this iso-
lated point, Orlib_50°, and the results are more reasonable, see the
third row of Table 1.

In addition, from the comparison of columns Imp_NF and Wors_F,
we can see that in the first three problems, the improvement per-
centage (considering the optimal solution of CpCP instead of the one
of CSpCP when no disruptions occurs) is bigger than the worsening
percentage (considering the optimal solution of CpCP instead of the
one of CSpCP when a failure occurs). However, the behavior is quite
the opposite in the remaining cases.

In conclusion, taking into account both comparisons of these per-
centages, it seems to be recommendable not to prevent the failure of
one of the centers for the first three problems. On the other hand, it
is highly recommendable to foresee it in the last five problems except
the seventh one. For the fourth, fifth and seventh problems, depend-
ing on the utility function of the decision-maker for the differences of
these percentages, it may be advisable one or the other choice. More-
over, from the comparison we can conclude that considering the pos-
sibility of failure in this kind of model may result in a significant im-
provement with respect to not considering it. In particular, if failure
foresight is not considered, after a disruption in a center, sites may not
be allocated to their closest centers (with a high social and political
cost, in the case of emergency centers after a natural disaster) result-
ing in a hardly implementable solution (in an emergency situation,
people demanding attention would not know which center would
be available to attend them). Moreover, from all these reflexions, we
can conclude that independently on whether or not the solution of
the CSpCP is implemented by the system-planner/decision-maker, it
is indubitable that this model provides an objective and quantitative
rule to support his/her decision.

4.2. Comparing formulations

Table 2 gives a comparison of the number of binary variables and
constraints of the three previous formulations. We can observe that
formulation (P2B) is the one with the lowest number of variables and
constraints while (P3) has the highest number. Note that, in what
follows, all possibilities of fixing variables at zero in all formulations
have been carried out.

Before trying to improve the performance of the previously stud-
ied formulations, we will compare them by means of a simple com-

Table 2
Number of variables and constraints of formulations (P3), (P2A) and (P2B).

Formulation =~ Number of binary variables ~ Number of constraints
(P3) n? 2 +n+1
(P2A) 2n? 4n% +n+1
(P2B) n’+n 4n? —n+1

putational study. The formulations were implemented, as they have
been presented in the previous sections, in the commercial solver
Xpress IVE 1.22, running on a 3.40 gigahertz PC with 16 gigabytes
of RAM memory. The cut generation option of Xpress was disabled
in order to compare the relative performance of the formulations
cleanly.

In order to produce a set of test instances, we generated random
points in the plane. Demands and capacities were randomly gener-
ated as U{6,...,15} and [n/p][(h; + max; h;)/2]+ [U(0, 10 - type)],
respectively, where type = 3, 4, 5, 10. The distance considered was ¢;.
We compared the three formulations on a testbed of five instances for
each combination of (i) type of capacity, (ii) nin {15, 20, 25, 30, 35, 40,
45} and (iii) different values of p in {3, 5, 8, 10}.

Tables 3 and 4 report the results of formulations (P3), (P2A) and
(P2B). For each size n € {15, 20, 25, 30, 35, 40, 45}, the first column
of these tables stands for the different values of p and the second
for each one of these three formulations. The remaining columns are
grouped in five blocks of four columns. The first four blocks provide
the results for the different types of capacity generated (3, 4, 5 and
10) and the last one for the averaged results of these four blocks.
In each block, the column u provides the number of unfeasible in-
stances, t gives the average time in seconds of the overall solution
process, gap reports the average gap in the root node, and nod rep-
resents the average number of thousands of nodes (the above aver-
ages refer to the five instances analyzed). The number of instances
that exceed the time limit (two hours of CPU) is indicated with a su-
perscript and the averaged times in these cases were calculated by
fixing the times of these instances to 7200. As expected because of
a lower overall capacity, almost all the instances of type 3, 4 and 5
for p =3 were unfeasible. The symbol “-” in the tables represents
that either all the instances are unfeasible or, if some of them are
feasible, all these instances need more than two hours of CPU to be
solved.

In Tables 3 and 4, we can observe that the running times of formu-
lation (P2A) are much shorter than those of formulation (P2B) and the
times of formulation (P2B) are much shorter than the ones of (P3). Ac-
tually, the running times of formulation (P3) exceed the time limit for
some instances of size greater than or equal to 25 and for almost all
instances of size greater than or equal to 35. Regarding the influence
of the capacity on the running times, as a general trend the running
times for the instances with type = 10 are smaller than the running
times of the rest of the values of type, in the cases of small and
medium values of p. On the other hand, for large values of p the
running times among the instances with different types of capacities
are quite similar.

Concerning the gaps of these three different formulations, we can
see that the average gaps for (P3) (in the cases where all the instances
are solved before reaching the time limit) are greater than those of
(P2A). Moreover, the gaps provided by formulation (P2A) are always
greater than those provided by (P2B). In addition, the average gaps
for each of these formulations over the instances with different types
of capacities are almost identical.

Observe that, although the gaps of formulation (P2A) are worse
than those of (P2B), its running times are smaller. A possible explana-
tion of this is given by column nod which shows that the number of
nodes checked by (P2A), in most of the instances, is much lower than
those of (P2B) and (P3).

http://dx.doi.org/10.1016/j.ejor.2015.05.072

Please cite this article as: I. Espejo et al., Capacitated p-center problem with failure foresight, European Journal of Operational Research (2015),



http://dx.doi.org/10.1016/j.ejor.2015.05.072

oL

Table 3
Comparing formulations I.
type =3 type =4 type=5 type =10 mean
u t gap nod u t gap nod u t gap nod u t gap nod u t gap nod
n=15
(P3) 4 31 47 354 1 12 58 123 1 14 57 144 0 58 46 913 6 30 52 42.8
3 (P2A) 4 2 39 03 1 2 49 0.4 1 2 48 0.3 0 2 36 0.4 6 2 43 03
(P2B) 4 1 31 1.0 1 2 44 24 1 1 43 1.9 0 1 31 0.9 6 1 38 1.6
(P3) 0 8 30 15.2 0 8 30 154 0 1 31 204 0 12 30 27.0 0 10 30 19.5
5 (P2A) 0 1 29 0.7 0 1 29 0.7 0 1 30 0.7 0 1 30 0.6 0 1 30 0.7
(P2B) 0 1 29 12 0 1 29 1.0 0 1 30 1.8 0 1 29 1.2 0 1 29 13
(P3) 0 1 3 0.7 0 1 3 0.6 0 1 3 0.7 0 0 3 0.6 0 1 3 0.6
8 (P2A) 0 0 3 0.1 0 0 3 0.1 0 0 3 0.1 0 0 3 0.1 0 0 3 0.1
(P2B) 0 0 3 03 0 0 3 0.3 0 0 3 0.3 0 0 3 03 0 0 3 03
(P3) 0 0 0 0.1 0 0 0 0.1 0 0 0 0.0 0 0 0 0.0 0 0 0 0.1 —
10 (P2A) 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 %’
(P2B) 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1 &
n=20 N >
(P3) 5 - - - 5 - - - 4 13 65 13 0 28932 60 1398.1 14 2413 61 1165.3 g
3 (P2A) 5 - - - 5 - - - 4 7 46 0.5 0 6 43 0.6 14 7 44 0.6 E ;U
(P2B) 5 - - - 5 - - - 4 8 41 5.7 0 5 36 2.7 14 5 37 3.2 g _I
(P3) 0 750 47 474.6 0 1544 44 1072.6 0 1183 45 833.7 0 1107 44 9111 0 1146 45 823.0 < _—
5 (P2A) 0 6 44 25 0 5 41 21 0 4 42 1.5 0 4 40 1.8 0 5 42 2.0 §
(P2B) 0 1 40 20.2 0 6 37 8.6 0 5 38 6.8 0 4 36 5.5 0 7 38 10.3 = n
(P3) 0 22 13 202 0 62 13 52.4 0 46 13 44.5 0 39 13 36.7 0 42 13 385 § I_
8 (P2A) 0 2 13 1.0 0 2 13 1.1 0 2 13 11 0 2 13 0.8 0 2 13 1.0 =Y
(P2B) 0 2 13 25 0 2 13 2.8 0 2 13 2.6 0 2 13 1.8 0 2 13 24 i<} m
(P3) 0 4 5 52 0 2 5 22 0 3 5 3.4 0 2 5 1.8 0 3 5 31 % -
10 (P2A) 0 1 5 0.2 0 1 5 03 0 1 5 0.4 0 1 5 0.3 0 1 5 0.3 g
(P2B) 0 1 5 1.2 0 1 5 0.9 0 1 5 1.0 0 1 5 0.8 0 1 5 1.0 'g. Z
n=25 3
(P3) 5 - - - 5 - - - 3 380 69 319 0 15831 64 2924 13 1239! 65 218.0 ij -U
3 (P2A) 5 - - - 5 - - - 3 26 52 1.5 0 16 40 11 13 19 44 12 %
(P2B) 5 - - - 5 - - - 3 55 45 25.0 0 21 31 53 13 31 35 10.9 2 m
(P3) 0 58134 58 1302.3 0 57443 56 1426.6 0 57854 56 1408.4 0 57824 57 14071 0 578113 57 1386.1 S
5 (P2A) 0 20 42 3.9 0 21 42 4.5 0 20 42 4.8 0 17 42 10004.2 0 19 42 43 8 m
(P2B) 0 31 35 17.8 0 26 35 133 0 31 35 16.6 0 22 35 9.2 0 28 35 14.2 =2 m
(P3) 0 55373 28 22532 0 56503 29 2366.5 0 4208! 28 1577.9 0 36953 28 1630.3 0 477310 28 1957.0 §
8 (P2A) 0 1 27 6.2 0 13 27 59 0 14 27 74 0 12 27 59 0 13 27 6.4 ) m
(P2B) 0 31 26 31.6 0 32 26 30.2 0 21 26 214 0 26 26 24.6 0 27 26 26.9 n
(P3) 0 677! 16 359.0 0 1795! 16 683.1 0 868 16 380.8 0 1450! 16 693.8 0 11983 16 529.2 >
10 (P2A) 0 8 16 6.3 0 7 16 4.0 0 6 16 3.9 0 7 16 5.7 0 7 16 5.0
(P2B) 0 14 16 20.6 0 8 16 11.0 0 18 16 274 0 12 16 16.1 0 13 16 18.8
n=30
(P3) 5 - - - 3 65042 71 355.8 3 4786 53 281.7 0 34132 66 2173 11 44056 64 262.4
3 (P2A) 5 - - - 3 73 45 29 3 73 47 25 0 58 45 21 11 65 46 23
(P2B) 5 - - - 3 160 36 19.5 3 127 38 222 0 119 37 151 1 130 37 17.7
(P3) 0 7200° 51 628.3 0 7200° 57 632.7 0 7200° 51 7781 0 7200° 64 822.6 0 7200%° 56 715.4
5 (P2A) 0 62 42 8.5 0 52 42 8.0 0 56 42 6.8 0 54 42 7.5 0 56 42 7.7
(P2B) 0 135 34 32.5 0 104 33 19.2 0 95 33 17.7 0 79 33 14.0 0 103 33 20.9
(P3) 0 49073 38 529.4 0 49703 41 7141 0 60354 38 866.5 0 48323 36 731.5 0 5186"3 38 7104
8 (P2A) 0 41 25 19.8 0 47 25 26.1 0 44 25 27.0 0 56 25 20.2 0 47 25 233
(P2B) 0 168 23 65.4 0 300 23 115.0 0 168 23 65.2 0 132 23 46.8 0 192 23 731
(P3) 0 47563 24 883.2 0 4826° 25 826.4 0 46953 25 888.9 0 47173 25 964.0 0 474812 25 890.6
10 (P2A) 0 44 18 38.2 0 34 17 13.2 0 81 17 443 0 42 17 40.1 0 50 17 339
(P2B) 0 130 18 73.6 0 83 17 40.7 0 157 17 76.6 0 113 17 65.8 0 121 17 64.2



http://dx.doi.org/10.1016/j.ejor.2015.05.072

Table 4
Comparing formulations II.

type =3 type =4 type =5 type =10 mean
u t gap nod u t gap nod u t gap nod u t gap nod u t gap nod
n=35
(P3) 5 — - — 5 — — — 4 7200' 13 296.0 0 6650* 67 167.0 14 67425 58 188.5
3 (P2A) 5 — — — 5 — — — 4 179 45 3.1 0 196 49 31 14 193 48 31
(P2B) 5 - - - 5 - - - 4 347 35 19.1 0 440 39 352 14 425 39 325
(P3) 0 — 47 — 0 — 64 - 0 - 46 — 0 — 63 — 0 - 55 -
5 (P2A) 0 355 43 214 0 309 43 203 0 322 42 225 0 236 41 19.9 0 306 42 21.0 ;
(P2B) 0 1453 36 194.4 0 1057 36 110.6 0 772 34 69.5 0 500 33 38.8 0 945 35 103.3 '§
(P3) 0 - 46 - 0 - 42 - 0 - 46 - 0 - 40 - 0 - 44 - s >
8 (P2A) 0 303 30 119.7 0 294 29 115.9 0 285 29 107.6 0 277 29 111.0 0 290 29 113.5 §
(P2B) 0 862 25 162.5 0 627 24 1393 0 587 24 107.2 0 611 24 115.2 0 672 24 131.0 = m
(P3) 0 - 36 - 0 - 30 - 0 - 34 - 0 - 31 416.4 0 - 33 - g _|
10 (P2A) 0 273 22 65.2 0 379 22 101.0 0 536 22 171.6 0 655 22 314.8 0 461 22 163.1 -§ —_—
(P2B) 0 393 19 116.7 0 617 19 149.2 0 580 19 134.7 0 568 19 128.5 0 539 19 1323 8 n
n =40 T
(P3) 5 _ - - 5 - - - 5 - - - 0 _ 71 — 15 - 71 - 5 |mm
3 (P2A) 5 — - — 5 — — — 5 - — — 0 582 51 4.6 15 582 51 4.6 §- m
(P2B) 5 - - - 5 - - - 5 — - - 0 1486 42 85.3 15 1486 42 85.3 3
(P3) 0 - 58 - 0 - 65 - 0 - 58 - 0 - 66 - 0 - 62 - 3 —
5 (P2A) 0 1011 46 284 0 878 46 32.7 0 837 45 26.7 0 637 45 243 0 841 46 28.0 é_ Z
(P2B) 0 1677 35 76.3 0 1755 36 84.6 0 1214 34 51.0 0 1261 34 52.6 0 1477 35 66.1 §
(P3) 0 - 48 - 0 - 55 - 0 — 57 - 0 - 57 - 0 - 54 - o -U
8 (P2A) 0 924 37 223.6 0 940 37 2251 0 927 37 2303 0 816 37 2154 0 902 37 223.6 §
(P2B) 0 1241 30 84.0 0 1398 30 95.0 0 1757 30 111.9 0 1445 30 91.2 0 1460! 30 95.5 § x
(P3) 0 - 52 — 0 - 49 - 0 - 46 — 0 - 48 - 0 — 49 - g I-I-I
10 (P2A) 0 2475 33 997.2 0 2215 33 1006.0 0 2390 33 916.4 0 2145 33 926.9 0 2306 33 961.6 3
(P2B) 0 3410' 30 319.3 0 40912 30 386.6 0 35772 30 386.1 0 3629! 30 351.1 0 36776 30 360.8 g (n
n=45 = (N
(P3) 5 - - - 5 - - - 5 - - - 0 - 62 - 15 - 62 - =
3 (P2A) 5 - - - 5 - - - 5 - - - 0 1282 49 7.6 15 1282 49 7.6 =
(P2B) 5 - - - 5 - - - 5 — — — 0 3002 39 103.6 15 3002 39 103.6
(P3) 0 - 59 - 0 - 70 - 0 - 68 - 0 - 67 - 0 — 66 -
5 (P2A) 0 1989 46 41.0 0 1988 46 49.8 0 1879 46 42.0 0 1933 46 53.2 0 1947 46 46.5
(P2B) 0 3179 34 78.4 0 3253 34 68.7 0 2744 34 60.0 0 3195 34 59.4 0 3093 34 66.6
(P3) 0 - 64 - 0 - 47 - 0 — 52 - 0 - 54 - 0 — 54 -
8 (P2A) 0 2562 35 300.8 0 2491 35 304.5 0 2373 35 293.5 0 2162 35 299.7 0 2397 35 299.6
(P2B) 0 3023! 28 242.8 0 29371 29 246.6 0 35991 29 259.8 0 3119' 29 249.0 0 31704 29 249.6
(P3) 0 - 49 - 0 - 43 - 0 — 45 - 0 - 50 - 0 - 47 -
10 (P2A) 0 3997 31 860.1 0 4018 31 619.1 0 4105 31 882.4 0 4669 31 894.3 0 4197 31 814.0
(P2B) 0 52793 28 486.1 0 65864 29 565.0 0 6114° 29 493.3 0 61833 30 511.6 0 60401 29 514.0

48
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Algorithm 1: Heuristic approach.

Initialize £ := ¢ (the list of already tested feasible solutions),
cont := 0, iteration := 0, MAXIT, obj* = +ooc;
Generate a random solution, CS = {iy, ..., ip} (current solution);
3 Check feasibility of CS;
while iteration < MAXIT do
iteration:=iteration+1;
if CS is unfeasible then
cont:=1;
8 DO a FEASIBILITY MOVEMENT.
else
cont:=0;
Compute the objective value f(CS);
if f(CS) < obj* then
| obj* := f(CS) and S* :=CS
14 DO an IMPROVEMENT MOVEMENT.

Let CS’ be the new generated solution;
if CS' ¢ £ then
L:=LUCS.CS:=CS;
GO TO LINE 3
else
if cont=1 then
| GOTOLINE8
else
L GO TO LINE 14

Return S* and obj*; the best solution found and the
corresponding objective value;

5. A heuristic approach

In this section we develop a heuristic algorithm to address the
problem under consideration. The main idea of this procedure is
to generate new solutions iteratively through local movements. De-
pending on whether the current solution is feasible or not, we make
an improvement movement or a feasibility movement, respectively.
This means that we move from a current solution to another one
in its neighborhood, in such a way that, hopefully, it will have a
lower objective value when the current solution is feasible, or it
could, otherwise, be feasible. The detailed pseudo-code is depicted in
Algorithm 1.

In the improvement movement, given a current feasible solution
with open centers CS = {jj. ..., jp} and objective value f(CS), we
choose ji, € CS and i, € N such that d(ipin, jmin) = f(CS). Then,
we look for ji . . the closest node to jn, such that (i) j.. ¢&CS,
and (ii) d(imin i) < d(mins Jmin)- Set CS"= (CS\ {JminH U {J;nm}
Hopefully, this movement would decrease the current objective value
whenever this solution was feasible and would not imply an excessive
increase in remaining distances between sites and their correspond-
ing second closest centers.

In the feasibility movement, given a current solution, for instance
(x.w) for (P2A), with open centers CS={jj,..., jp}, we choose
Jmin € CS maximizing the gap of the capacity constraints, i.e.

Jmin = argmax | max D he(ig +Rigge — 1)+ D heRej — biRjj |-
js#j  teN teN
df}s <d“ t#£]
Then we look for ji . . the closest node to jy;, such that (i) ji, ¢
CS, and (ii) by > bjmin, i.e., the closest node with larger capacity.
min
Set CS" = (CS \ {jmin}) U {J/;,,}- Hopefully this movement would have
generated a new solution where the maximum gap of the capacity
constraints have decreased and it could be feasible if this gap is less

than or equal to O for each pair of centers.

If one of the previous movements is not possible, we randomly
choose the new place to locate a center ji . . Whenever these local
movements cannot generate a new solution which has not been gen-
erated previously, a completely new random solution is generated.

We checked the heuristic on the same testbed as the initial com-
putational study. The algorithm needs around 8, 25, 59 and 125 sec-
onds for sizes 45, 75, 100 and 125, respectively, to carry out 1000
iterations. Fig. 9 illustrates the efficiency of this heuristic approach.
The three graphs on the left report the instances which are optimal-
ity solved (gap=0) and the numbers at the top of the bars providing
the percentage of instances where the heuristic does not solve opti-
mally the problem (gap > 0) report the average gap. The three on the
right part show the iteration where the heuristic algorithm reaches
the best solution (using a limit of 5000 iterations). In both cases, the
graphics represent the percentage of instances as a function of n (top),
types of capacity (center) and p (bottom), respectively. In the first
case, we can see that the percentage of instances solved optimally
decreases when n increases. However, the types of capacity and p do
not have a large influence. In the right part, we can observe that the
percentage of instances that find the best result before the first 100
iterations is quite high, especially for small values of n. Again, we can
see that this behavior is quite similar for different types of capacity
and p. Therefore, we can conclude that the most influential aspect in
the results of the algorithm is the size of the instances analyzed.

6. Improvements

This section is devoted to improving the preliminary computa-
tional results obtained in Section 4.2. Since (P3) is not a very efficient
formulation from the computational time point of view, we concen-
trate on improving the performance of formulations (P2A) and (P2B).
Different techniques were studied but we only show those which pro-
vide the best running times. After these improvements, we will see
that formulation (P2A) again reports the best computational times.

6.1. Improving formulation (P2A)

In order to solve our problem using (P2A), we tested several fam-
ilies of valid inequalities and a variable fixing strategy based on the
best value found by the heuristic given in Section 5. This will be a suc-
cessful approach which, for most of the instances, will significantly
reduce the computational times given in Tables 3 and 4.

6.1.1. Valid inequalities

The first sets of valid inequalities that we try to use to reinforce
formulation (P2A) are those coming from formulation (P2B), i.e., (18)-
(20). Our first result shows that (20) will not improve formulation
(P2A).

Proposition 6.1. Constraints (20) are implied by constraints x;; < 1 Vj
e N, (14) and (15).

Proof. We consider two cases for j, ¢ € N. First, we assume that there
exists q € N such that deq > dy;. In such a case, from x;; -1 <0VjeN
it follows that

Z (ij—l) fij—l =1 +ng—ij+ Z (ij—l) EX“‘.

qeN qeN
dyj<dyq dyj=<diq
Now from (14)

oWt Y (R —1) <Xy

qeN qeN
dgj=deg dyj=deq

This inequality trivially holds in the second case, i.e., d¢q < d;j, Vq € N.

http://dx.doi.org/10.1016/j.ejor.2015.05.072
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Fig. 9. Results obtained with the heuristic.

Thus, for all j, ¢ € N it holds that
Z (Wyq +Xjj — 1) < Xyj-

qeN
dyj<deg

For a given j € N we can linearly combine these inequalities with
non negative weights h, to obtain

DD hWig+xj5—1) <> hexyj <

¢eN geN teN
dyj=dygq

[from (15)]

hixjj = D he(Wej +Xi — 1) + (bj — hj)x;;
ayd,

=_ Z he(wej + % — 1) + bjxj;.
teN
dzi<dzj

The inequality between the first and last terms matches (20). O

Consequently, among the constraints of (P2B) we will only con-
sider (18) and (19) as valid inequalities for (P2A). Additionally, we will
incorporate the following two families of inequalities:

D X+ Y wy <1 VijeN, (24)
difilzij di/fef';ij
Z> Zd}me + inin + djiWﬁ Vi, jeN. (25)

teN
oA

Here dj, := minjen{d;; : djj > dj,}. i.e, d;, is the distance immediately
larger than d;, from site i to another site.

Constraints (24) act as follows. If deN X, = 1, it means that i
ie=Y%j
is allocated to a closest center further than j. Thus, the second closest
center of i is further than j, or equivalently, w;, =0 V¢ e N : d;, < d;j.
Ify N Wi = 1 it means that i is allocated to a second closest cen-
ie=dij

ter no further than j; then, i is not allocated to a center further than j,
or equivalently, x;, = 0V¢ € N : dj, > djj.

The meaning of inequalities (25) is the following. If x;; = 1, then
X =0, Ve #iand wj; =0, Vj e N. Thus, the second closest center
from site j is at least cfﬁ. If wj; =1 then xj; =0 and X;, =0, V¢ # i.
Thus, the objective function is at least d;;. If x;, = 1 for some £( #1) €
N then xj; = wj; = 0. Moreover, the second closest center from site i

is at least dj,.

In what follows we see that valid inequalities (24) are stronger
than valid inequalities (18) when we consider them to enforce for-
mulation (P2A).

Proposition 6.2. Constraints (18) are implied by (11), (12) and (24).

Proof. Using (11) and taking into account that w;; = 0 Vj € N, con-
straints (24) can be rewritten as:

Dowie+ Y xe=1

teN teN
djp>d;j djp=d;j

Hence, applying (12) we obtain

Z Wig + Z (Xee = wye) > 1,

teN teN
djp>d;j djp=d;j

and this is equivalent to (18) O
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Fig. 10. Example of Proposition 6.3.

Let then (P2AI) be the formulation resulting from adding con-
straints (19), (24) and (25) to (P2A). We see now that all these con-
straints make a contribution to the lower bound given by the linear
relaxation of (P2AI).

Proposition 6.3. None of the sets of constraints (13)-(15),(19), (24) and
(25) are implied by other constraints in Formulation (P2AI).

Proof. To prove the thesis it suffices to show an instance in which
the linear relaxation gives a larger value without any one of the sets
of constraints (13)-(15), (19), (24) and (25) than the linear relaxation
of the whole set. We take a set of seven points in the plane, p = 3 and
the ¢; norm is used to compute distances between points. The points
are (0,1),(3,5),(5,7),(4,9),(10,6),(1, 1), (10, 7) with demands 3, 3,
2,3,0, 3,2 and capacities 9, 1, 6, 1,9, 2, 9, respectively.

Centers in the optimal solution are 1, 5 and 7. The two closest cen-
ters with respect to each site are (1, 5), (1, 5), (7, 5), (7, 5), (5, 7), (1,
5), (7, 5), respectively. The optimal value is 15 (distance from 1 to 5,
see Fig. 10), and the linear relaxation of (P2AI) takes value 7.648. The
optimal values of the linear relaxations of (P2AI) when relaxing (13),-
(15), (19), (24) and (25) are 7.217, 7.63, 6.604, 7.618, 7.39 and 7.026,
respectively. O

6.1.2. Variable fixing

In order to fix wj;-variables we will take advantage of our heuris-
tic approach presented in Section 5. Indeed, since this approach gave
very good computational times either to solve the problem or to pro-
vide good solutions, in this section we will use it to obtain feasible
solution and consequently, the upper bounds on the optimal value
of our problem. Hence, it allows us to fix wj;-variables as follows. If
voj is the best objective value obtained by the heuristic approach, we
can fix at 0 wy-variables and x;-variables such that d;; > voj. In ad-
dition to this preprocessing phase, in the methodology that we have
developed, every time that a feasible solution is found in the branch-
ing tree, we have again applied a process of fixing variables, such that
if this feasible solution provides a better objective value than those

obtained so far, we can fix at 0 all the w;;- and x;;-variables such that
d;; are greater than this objective value. Thus, the dimension of the
problem decreases iteratively and, consequently, the process is sped

up.

6.1.3. Computational analysis

Table 5 reports the results of the methodology described above
when some of the families, subfamilies or combinations of valid in-
equalities (19), (24) and (25) are added to formulation (P2A). We have
attempted cut-and-branch and branch-and-cut methods with all the
inequalities. Only the families of constraints which provided the best
results are shown. We have fixed the parameter in the Heuristic at
it = 1000 and since the different ways of generating the capacity do
not make a significant influence in the running times, as shown in
Tables 3 and 4 and Fig. 9, in this table we only consider the type of
capacity 5. For each size n € {45, 75, 100, 110, 125}, the first column
of these tables stands for the different values of p. Thus, nine blocks
of two columns provide the average times and the gaps of the five in-
stances solved by adding a family of valid inequalities to formulation
(P2A). Namely, block OUR reports the results of solving our problem
with formulation (P2A) using the above methodology without adding
an additional family of valid inequalities and blocks “19”, “24” and
“25” mean that inequalities (19), (24) and (25) are added, respectively.
On the other hand, blocks “19;", “24;" and “25;;" report the results of
solving formulation (P2A) using a Cut & Branch procedure including
the most violated constraint of families (19), (24) and (25) for each
i,j € N, respectively. Finally, blocks “19;;& 24;;” and “19;& 24;& 25;"
report the results of the respective combinations of valid inequalities
in a Cut & Branch procedure. The best running times have been bold-
faced for each n and p. In the particular case of size 125, the number
of instances where the CPU times exceeds two hours is indicated as
superscripts. As a general rule, to compute the average times of the
five instances analyzed for each n and p, we have taken 7200 seconds
as the running times of those instances that exceed the time limit.

In Table 5, we observe that the use of this methodology to solve
our problem has reduced the computational times needed to solve
the instances with n = 45 by more than two orders of magnitude and
we have been able to solve all the checked instances of size lower than
or equal to 110 in less than two hours. Moreover, none of the fam-
ilies of valid inequalities analyzed dominates the others. For small-
sized problems, i.e. n =45 and 75, “19;;&24;&25;" and “19;;&24;"
provide the best average computational times, respectively. However,
for larger instances it seems that “24” and “24;" present a better
trend. We can observe that all the approaches provide similar gaps.
Finally, in order to check the limit of our solution approach we have
repeated this analysis, taking it = 10, 000 and we have been able to
solve the five instances tested for problems of size 170 in less than
two hours.

6.2. Improving formulation (P2B)

Following the same ideas developed for (P2A), we propose several
improvements for (P2B). In this case, although the improvements in
formulation (P2B) are worthwhile from a theoretical point of view,
we have not reported the computational times because the results
obtained with (P2A) are much better than those obtained using (P2B)
(for instance, for n = 100 these improvements of (P2B) are not able to
solve most of the instances studied in less than two hours, whereas
with the ones in (P2A) we were able to solve these problems in ap-
proximately 12 minutes).

6.2.1. Valid inequalities
We have studied different families of valid inequalities as follows.

1. Consider i, a, t € N(i # a, t) such that (i) d;; < d;; and (ii) dy >
max {dy;, diq} for all r € N such that d;, > d;,. We have the following
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Constraints (26) have an effect only if x; = w;, = 1. In this case,
the closest center to site i is itself and the second closest one is a;
this means that x;; = 0 for any j # i such that djj < d;,. Thus, Xt =
0. Moreover, since d¢- > max {dy;, diq}, for all € N such that d;, > dj,
the closest and second closest centers of site t will be, respectively,
(i)iand a if dy < diq and (ii) a and i if d;; > dyq. Therefore, in the
first case we will have that wy, = 1 and in the second case that
Wy = 1.

. Following the same arguments, we can reinforce the second fam-
ily of valid inequalities of (26) as follows:

2

aeN: dy;=deq

Wig + X — 1 <wy, Ve, i (27)

1t a
dey=max{dy;.deq . Vrid; >d;g

. Constraints (26) have been obtained for any i, a, t e Nwithi#a, t
and d;; < dj;. Now, following similar arguments, we extend these
constraints to the case where d;; > d;,. Consider i, a, t € N with i #
a such that (i) d;; > d;, and (ii) dr > max {d;;, d¢q} for all r € N such
that d;, > d;,. We have the following set of constraints:

Wig + X — 1 < Wra + Wy (28)
4. The last set of constraints of this family is
Xii + Wig — 1 < wg; + Z X Vi,aeN. (29)

keN
g <dgj-dige>diq
Constraints (29) act as follows. If x; = w;, = 1, this means that
Zdij<dia xjj = x; = 1. Then, the second closest center to a should
be either i or a center such that the distance from i is larger than
dj,. In the latter case, a should be closer to that center than i.
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Table 5
Improving formulation (P2A).
OUR 19 19; 24 24; 25 25 19;&24;; 19;&24;;&25;
p t gap ¢ gap ¢ gap ¢ gap ¢ gap ¢ gap ¢ gap ¢ gap ¢ gap
n=45
5 31 27 a1 27 33 27 30 23 36 27 39 19 31 27 31 27 25 27
8 15 5 17 5 14 5 18 4 15 5 15 5 15 5 17 5 13 5
10 6 19 19 19 16 19 15 18 15 19 14 9 14 19 16 19 16 19
mean 21 17 26 17 21 17 21 15 2 17 23 11 20 17 21 17 18 17
n=75
5 641 27 337 27 267 27 281 23 859 27 451 20 722 27 143 27 252 27
8 m 18 137 18 94 18 98 17 101 18 90 16 88 18 84 18 102 18
12 170 28 356 28 174 28 195 25 176 28 226 22 195 28 177 28 188 28
15 168 27 394 27 170 27 196 26 158 27 154 22 197 27 161 27 191 27
mean 273 25 306 25 176 25 193 23 324 25 230 20 301 25 141 25 183 25
n=100
7 1368 33 1070 33 1254 33 709 28 672 33 an 21 513 33 955 33 719 33
1 1084 32 1791 32 603 32 928 27 870 32 1097 24 518 32 611 32 749 32
16 1021 31 2614 31 183 31 152 27 810 31 1372 25 1377 31 1165 31 1433 31
20 675 26 2033 26 712 26 841 24 693 26 1075 21 670 26 583 26 776 26
mean 1037 31 1877 30 938 30 908 27 761 31 989 23 770 31 829 30 919 30
n=110
7 763 33 1651 33 882 33 841 33 124 33 751 33 606 33 797 33 827 33
12 136 36 3425 36 1516 36 1120 36 1571 36 1741 36 1696 36 1504 36 1818 36
18 1278 33 3436 33 1189 33 1015 33 1180 33 1673 33 1509 33 1308 33 1101 33
22 2425 31 5625 31 2361 31 2216 31 2191 31 3444 31 3035 31 2186 31 2577 31
mean 1401 33 3534 33 1487 33 1298 33 1517 33 1902 33 1712 33 1449 33 1581 33
n=125
8 2381" 23 39142 23 2604 23 2587' 23 2457" 23 3419 23 2570 23 2356' 23 2562' 23
14 42712 38 59152 38 41312 38  3872' 38  4077' 38 46882 38 4141' 38 3650' 38 41762 38
20 47882 37 6599* 37 4777 37  5067> 37 5055 37 5227 37  5551% 37 52323 37 4890 37
25 3662 32 6929% 32 3619 32 3672 32 3407 32 57152 32 54582 32 3833 32 48752 32
mean 3776 33 5839 33 3783 33 3800 33 3749 33 4762 33 4430 33 3768 32 4126 33
two sets of constraints 7. Conclusions
Wig +Xjj — 1 < Wy,  ifdy < diq (26) Emergency services are vulnerable to disruptions caused by large
Wig + X — 1 <wyg,  ifdy > dra. natural disasters, terrorist attacks or sabotage. The consequences of a

failure in this type of services are often disastrous despite their rare
occurrence. For this reason, it is worth taking into account this as-
pect in the design phase for locating these types of facilities. More-
over, although most of the existing papers in the literature consider-
ing reliability issues in supply chain design have avoided the capacity
constraints, because they increase the complexity of the models, in
order to be more realistic it is relevant to consider these constraints
also. Therefore, in this paper we have presented several linear inte-
ger formulations for the problem of locating emergency services with
capacity constraints taking into account the possibility of a failure.
Some have been improved by means of valid inequalities and prepro-
cessing techniques for fixing variables. A heuristic has been devel-
oped which can also be used in the preprocessing phase of a method-
ology that we have provided to obtain an optimal solution. This latter
approach provided the best results, reducing by more than two or-
ders of magnitude the running times for n = 45 and allowing all the
instances tested with n < 110 to be solved in under two hours.
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