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This paper deals with a generalized version of the capacitated p-center problem. The model takes into ac-

count the possibility that a center might suffer a disruption (being unavailable to serve some demand) and

assumes that every site will be covered by its closest available center. The problem is of interest when the

goal is to locate emergency centers while, at the same time, taking precautions against an unforeseen incident

(natural disaster, labor strike, accident…) which can cause failure of a center. We consider different formu-

lations for the problem and extensive computational tests are reported, showing the potentials and limits of

each formulation in several types of instances. Finally, a preprocessing phase for fixing variables has been

developed and different families of valid inequalities have been proposed to strengthen the most promising

formulations, obtaining in some cases much better resolution times.
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. Introduction

Facility location models have been extensively studied in the liter-

ture. Various kinds of facilities have been modeled, such as routers

r servers in communication networks, warehouses or distribution

enters in a supply chain, hubs or transshipment nodes in passen-

er transport, and hospitals or emergency facilities in a public service

ystem, among many others. In general, the goal of these problems is

o locate the facilities among a set of candidate sites and to assign cus-

omers to the facilities, optimizing some effectiveness measure that

sually depends of the distances between the facilities and the cus-

omers, see for instance Daskin (1995) and Drezner and Hamacher

2002) and the references therein. The p-center problem (pCP) is a

ell-known discrete optimization location problem which consists

f locating p centers out of n sites and assigning (allocating) the re-

aining n − p sites to the centers so as to minimize the maximum

istance (cost) between a site and the corresponding center. It was

hown in Kariv and Hakimi (1979) that pCP is NP-hard. A straight

pplication of pCP is the location of emergency services like ambu-

ances, hospitals or fire stations, since the whole population should

e inside a small radius around some emergency center. pCP has been

xtensively studied, and both exact and heuristic algorithms have

een proposed. Recent articles on this issue are Mladenović, Labbé,

nd Hansen (2003), Elloumi, Labbé, and Pochet (2004), Daskin (2000)
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nd Calik and Tansel (2014). We also refer the reader to Chapter 5 of

askin (1995). A recent survey on location of emergency services can

e consulted in Basar, Aatay, and Unluyurt (2012).

Emergency services have, in practice, a limited capacity. Conse-

uently, capacitated versions of pCP have also received attention in

he literature. In the capacitated p-center problem (CpCP), each site

as a demand and a capacity, and the total demand of the sites as-

igned to a center cannot exceed its capacity. Thus, CpCP is the prob-

em of finding the set of p locations and the assignment pattern that

atisfies the capacity constraints while minimizing the maximum

istance site-closest center. A local search heuristic for CpCP has been

eveloped in Scaparra, Pallotino, and Scutellá (2004). The special case

here all demands are equal has been studied in Bar-Ilan, Kortsarrz,

nd Peleg (1993) and Khuller and Sussmann (2000). To the best of our

nowledge, only in three papers, CpCP has been solved exactly. Jaeger

nd Goldberg (1994), where the special case of an underlying tree

etwork is approached; Özsoy and Pinar (2006), where an algorithm

eveloped in Ilhan and Pinar (2001) for the p-center problem is modi-

ed and extended, succeeding in providing optimal solutions in short

imes for small instances of the problem; and Albareda-Sambola,

íaz, and Fernández (2010) where the authors propose two differ-

nt Lagrangian duals and an exact algorithm able to solve larger in-

tances. In Kalcsics, Nickel, Puerto, and Rodríguez-Chía (2010), the ca-

acitated ordered discrete location problem is studied; among many

thers, CpCP is a particular case obtained by fixing a parameterized

ector used to get the objective function of the model to (0, . . . , 0, 1).

In addition to the capacity constraint of the facilities, there is an

mportant aspect that deserves attention, namely, the possibility of
EURO) within the International Federation of Operational Research Societies (IFORS).
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disruption of the facilities. Although most models in the literature on

Location Theory have treated facilities as if they could never fail, there

is a wide variety of reasons for which facilities can fail in practice

(industrial accidents, natural disaster, labor strikes, et cetera). Some

illustrative examples of real situations of the damage caused in facili-

ties can be seen in the introduction of O’Hanley, Scaparra, and García

(2013). There is some research on discrete location dealing with facil-

ity disruptions, although it is mainly focused on stochastic assump-

tions and reliability issues in supply chain design. In those models,

some known probability of failure is considered for each of the facil-

ities and the goal is to minimize the expected cost; if a facility fails,

customers originally assigned to it have to be reassigned to other fa-

cilities. In Ball and Lin (1993) the authors attempt to increase the sys-

tem availability through redundant coverage. In Snyder and Daskin

(2005) an implicit formulation of the stochastic p-median problem

as a linear integer program is developed, where the facilities are sub-

ject to failure with the same probability. In Zhan, Shen, and Daskin

(2007) the authors provide several heuristics for the stochastic fixed-

charged problem, which is also formulated as a nonlinear mixed inte-

ger program. Heuristics with bounds on the worst-case performance

and the study of asymptotic properties of the solutions of the stochas-

tic p-median problem are carried out in Berman, Krass, and Menezes

(2007). In Cui, Ouyang, and Shen (2010), the uniform failure prob-

ability assumption in Snyder and Daskin (2005) is relaxed and the

failure probabilities are facility-specific. In addition, the authors pro-

pose a mixed-integer formulation and a continuum approximation

formulation to solve large-scale problems. In Shen, Zhan, and Zhang

(2011), the problem is formulated as a two-stage stochastic program

and then as a nonlinear integer program. Several heuristics and a

4-approximation algorithm are provided. Recently, O’Hanley et al.

(2013) extend Berman et al. (2007) and Cui et al. (2010) by propos-

ing an exact linear reformulation of the unreliable p-median problem

given unequal facility disruption probabilities. Unlike the previous

references, some recent papers deal with facility disruption without

considering probabilities. In O’Hanley and Church (2011) the authors

maximize a combination of initial coverage and the minimum cov-

erage level after the loss of the most critical facilities. From a bilevel

point of view, Aksen, Aras, and Piyade (2013) consider the location

of p facilities and, in a second step, the protection of some of these

under budget constraints. A related model that also considers capac-

ity constraints is given in Aksen and Aras (2012). There is even one

more paper in this line that considers the possibility of disruption

in a hub location environment (Parvaresh, Husseini, Golpayegany, &

Karimi, 2014), where some heuristics are developed with the aim

of minimizing the effects of an attacker after designing the hub

network.

Other related research fields are the fortification of reliability of

the service to cover a set of existing facilities and the backup set

covering problems. The interdiction-fortification p-median problem

is generally formulated as a bilevel programming problem, where

the idea is to protect the existing critical facilities under the events

of disruption, see Snyder, Scaparra, Daskin, and Church (2006) and

Scaparra and Church (2008). In Lei and Church (2011), the authors

use explicit closest assignment constraints for a novel multilevel fa-

cility interdiction problem that optimize worst levels of facility dis-

ruptions. A recent paper in this field that takes capacities into con-

sideration (see also references therein) is Liberatore, Scaparra, and

Daskin (2012), where the authors consider the protection of a capaci-

tated median system with a limited amount of protective resources

subject to partial or complete disruption of the facilities involved.

On the other hand, several backup set covering problems have also

appeared in the literature under the common idea of covering the

demand points with several centers in order to guarantee the cover-

age in case of either failure or an overflow into one or some centers

(in this sense, the model proposed in this paper can be considered a

backup problem). In these models there are two natural objectives:
Please cite this article as: I. Espejo et al., Capacitated p-center problem wit
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inimization of the number of open centers and maximization of

he backup coverage. Several times the model is approached from the

oint of view of multiobjective optimization (Storbeck & Vohra, 1988)

nd model BACOP1 in Hogan and ReVelle (1986) are two examples of

uch an approach. At other times, both objectives are combined in a

nique function as in model BACOP2 of Hogan and ReVelle (1986).

n Weaver and Church (1985) the authors take a different approach

ith the Vector Assignment p-Median Model. In their model, a fixed

raction of each node’s demand is allocated among the facilities on

he basis of their proximity, e.g., 70 percent of a node’s demand is

ssigned to the closest facility, 10 percent to the next closest facility,

nd so forth. Very recently, Curtin, Hayslett-McCall, and Qiu (2010)

resent a new backup coverage model that is appropriate for patrol

rea design, see also the references therein.

This paper seeks to generalize the capacitated p-center problem

y considering the possibility that a facility might suffer a disruption,

eing unavailable to serve some demand. These two joint aspects (ca-

acity constraint and failure possibility) make the model we consider

n this paper more fitting for some real situations. What we are going

o consider is that sites must still be assigned to their closest centers

nd so any center j must have enough capacity to satisfy the demands

f the sites which are closer to j than to any other center. In addition,

n unpredictable incident may occur in any of the p centers, forcing it

o be closed. Then each customer allocated to it is re-assigned to an-

ther center, which must be its second closest center. Consequently,

he capacity of any center must be enough to receive also the sites

e-assigned to it in case of failure of any other center. The goal then is

o minimize the second lowest distance from a site to the set of cen-

ers, since in case of an accident which produces a damage in one of

he emergency services, all the sites should still be inside the smallest

ossible radius around an available center. Since we consider emer-

ency services which could be essential for saving lives, increasing

he operation cost (with respect to not considering failure possibil-

ty) to prevent facility disruptions is fully justified. Observe that this

roblem is NP-hard because its uncapacitated 2p-facility version can

e reduced to a pCP. We call our model Capacitated Second p-Center

roblem (CSpCP, in short).

The paper is organized as follows. In the next section, we formal-

ze the problem and illustrate it with an example. In Section 3, dif-

erent integer programming formulations for CSpCP are introduced.

comparison of CSpCP with CpCP with closest assignment and pre-

iminary computational results are given in Section 4. In Section 5, a

euristic approach is developed and then, in Section 6, we use this

euristic to improve the formulations using different variable fixing

trategies and strengthening formulations with new valid inequali-

ies which are computationally compared. We end with some con-

lusions.

. The problem

Let N = {1, . . . , n} be the given set of sites. Throughout the paper

e assume, without loss of generality, that the set of candidate sites

or centers is identical to N. Let hi denote the demand of site i ∈ N, bi

he capacity of a center located at site i ∈ N, and p ≥ 2 be the number

f centers to be located. For each pair (i, j), i, j ∈ N, let dij be the dis-

ance (cost, travel time) from i to j. We assume dii = 0 ∀i ∈ N and dij >

∀i, j ∈ N: i �= j. We do not assume other special properties like satis-

action of triangle inequality, that is to say, strictly speaking d is not a

istance. But we need to make an additional assumption to deal with

he case of ties among several distances from the same site. If this is

he case, in order to break ties we suppose that there are preferences

n the centers such that sites will undoubtedly choose one center be-

ore the others. In practice, ties can be broken by slightly perturbing

he tied distances. Summarizing, we will also assume dia �= dib ∀i, a,

∈ N: a �= b. Then CSpCP is to choose p centers {i1, . . . , ip} among the

sites to minimize the distance from any site to its second closest
h failure foresight, European Journal of Operational Research (2015),
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Fig. 1. Example of how points are allocated to the two closest centers.
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enter while satisfying the capacity limitations. This means that for

ny i ∈ {i1, . . . , ip},

i ≥ max
j∈{i1,...,ip}\{i}

∑
k: i=arg min�∈{i1 ,...,ip}\{ j} dk�

hk

ust hold. We present now an example of the problem for the sake

f clarity.

xample 2.1. Consider eight points in the plane with coordinates

1.1,3.3), (6.4,5.6), (6.3,3.7), (2.7,9.1), (7.0,8.3), (3.7,3.8), (5.9,3.9) and

6.1,6.5), demands 5, 2, 2, 4, 1, 5, 4 and 4 and capacities 6, 7, 13, 11, 15,

3, 15 and 15, respectively. The �1 norm is used to compute distances

etween points. Taking p = 4, the optimal solution of the problem is

iven in Fig. 1 . Centers are drawn inside circles; the closest center to

non-center point is indicated by a segment, and the second closest

enter with respect to a point is depicted with a two tip arrow. For

nstance, point 5 is not a center, its closest center is 8 and its second

losest center is 7.

To see that the solution satisfies the capacity constraints, in the

ollowing table we give for each center j (column 1), the total demand

f points having j as their closest center (column 2), the additional

emand assigned to j in case of failure of either 1, 6, 7 or 8 (columns

–6), the maximum of the last four amounts (column 7), the sum of

olumns 2 and 7 (column 8) and the capacity of center j (column 9).

Center Demand 1 fails 6 fails 7 fails 8 fails Max Total Capacity

1 5 - 0 0 0 0 5 6

6 5 5 − 6 4 6 11 13

7 6 0 5 − 7 7 13 15

8 11 0 0 0 − 0 11 15

For instance, center 7 is the closest center with respect to points

and itself, with a total demand of 2 + 4 = 6. In case of failure of

enter 1, 7 would not receive additional demand. In case of failure

f 6, 7 would receive the demand of point 6, which is 5. In case of

ailure of center 8, 7 would receive the demand of points 2, 5 and 8,

.e., 2 + 1 + 4 = 7. This is the worst case, and then in case of failure of

enter 8, center 7 would need enough capacity to cover the demand

f 6 + 7 = 13. Since the capacity of 7 is 15, the corresponding capacity

onstraint is satisfied.

The objective value is given by the maximum distance from a

oint (in this case point 4) to its second closest center (in this case

), as indicated in the figure by a dashed arrow.
Please cite this article as: I. Espejo et al., Capacitated p-center problem wit
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. Integer programming formulations

The model proposed in this work can be formulated as an inte-

er linear programming problem. In this section we present several

ormulations.

.1. Formulation using variables with three indices

For the first formulation we will define the following two usual

ets of binary variables, which will be used to determine the location

f the centers and the allocation of the sites to the centers (the closest

nd the second-closest ones, respectively).

yj =
{

1, if a center is located at site j,
0, otherwise,

j ∈ N,

i jk =

⎧⎪⎨
⎪⎩

1, if the closest and the second-closest
centers to site i
are j and k, respectively,

0, otherwise,

∀i, j, k ∈ N.

The formulation is

P3) min z (1)

.t.
∑
j∈N

∑
k∈N

k�=i, j

xi jk = 1 ∀i ∈ N, (2)

j∈N

yj = p (3)

∑
�∈N

di�>di j

∑
k∈N

k�=i,�

xi�k +
∑
�∈N

di�<di j

∑
k∈N

dik>di j
k�=i,�

xi�k + yj ≤ 1 ∀i, j ∈ N, (4)

�∈N

∑
k∈N

k�=�, j

h�x� jk +
∑
�∈N
� �= j

h�x�i j ≤ bjy j ∀i, j ∈ N : i �= j, (5)

≥
∑
j∈N

∑
k∈N

dikxi jk ∀i ∈ N, (6)

j ∈ {0, 1} ∀ j ∈ N, (7)

i jk ∈ {0, 1} ∀i, j, k ∈ N. (8)

The objective function (1) together with constraints (6) are used

o get the maximum distance of any site with respect to its second

losest center by means of an additional decision variable z which

s minimized in the objective. Constraints (2) force each site to be

llocated to a pair of different centers. Constraint (3) fixes the number

f centers to p.

In order to ensure that a site is not assigned to centers other than

he two closest ones, constraints (4) are incorporated into the formu-

ation. Given a site i and a center j (i.e., y j = 1), x-variables in the first

erm (forced to take value 0) correspond with routes whose first cen-

er is further from i than j. Similarly, x-variables in the second term

re fixed to 0 if the corresponding route goes first to a center closer to

than j but afterward to a center further to i than j. Both sets of vari-

bles can be aggregated (so producing a stronger formulation) since

n case y j = 0, the resulting constraint is implied by (2).

Constraints (5) have a double mission: preventing sites being as-

igned to sites which are not centers and keeping the demand of sites

ssigned to the same center under the capacity of this center. The de-

and added up on the left hand side splits into
∑

�∈N

∑
k∈N

k �=�, j
h�x� jk,

hich is the demand of sites assigned to j as their first center, and

�∈N
��= j

h�x�i j, which is the demand of sites having j as their second cen-

er and i as their first center. Finally, binarity of all variables is fixed

n constraints (7) and (8).
h failure foresight, European Journal of Operational Research (2015),
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Fig. 2. Illustration of the need for (4).
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In what follows, we show the need for the families of constraints

describing formulation (P3). It is clear that constraints (2), (3), (5) and

(6) are necessary. Regarding family of constraints (4), we again con-

sider the instance given in Example 2.1. After removing constraints

(4), the optimal solution we obtain is depicted in Fig. 2. Here, for in-

stance, site 1 is not allocated first to its closest center. The reason is to

exploit the capacity of further centers in order to reduce the objective

value. Also, site 5 is allocated first to 6 (and then to 8), not to itself.

Similarly, sites 8 and 3 are allocated first to 5 (and then to 3 and 6,

respectively).

Note that xijk-variables with i = k or j = k will never take value 1

at any optimal solution and can be fixed at zero. Several other vari-

ables can be fixed at zero in (P3). The second closest center w.r.t. i will

never be closer to i than the closest center, then

xi jk = 0 ∀i, j, k ∈ N : di j ≥ dik.

Furthermore, y-variables can be removed from the formulation by

taking into account that

yi =
∑
k∈N

xiik ∀i ∈ N.

3.2. Formulation using variables with two indices A

In this formulation we will use the following sets of binary vari-

ables:

x j j =
{

1, if a center is located at site j,
0, otherwise,

j ∈ N,

xi j =
{

1, if the closest center to site i is j,
0, otherwise,

∀i, j ∈ N.

Note that x j j = 1 implies self allocation of site j. Additionally, we in-

corporate into the formulation the set of binary variables

wi j =
{

1, if the second closest center to site i is j,
0, otherwise,

∀i, j ∈ N,

necessary to determine the allocation of sites to their second closest

centers.

Then the formulation we propose is

(P2A) min z

s.t.
∑
j∈N

x j j = p (9)

∑
j∈N

xi j = 1 ∀i ∈ N, (10)
s

Please cite this article as: I. Espejo et al., Capacitated p-center problem wit
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j∈N
j �=i

wi j = 1 ∀i ∈ N, (11)

i j + wi j ≤ x j j ∀i, j ∈ N, (12)

∑
�∈N

di�≤di j

x j� +
∑
�∈N

di�>di j

xi� ≤ 1 ∀i, j ∈ N, (13)

j j +
∑
�∈N

di�>di j

wi� ≤ 1 + xi j ∀i, j ∈ N : i �= j, (14)

�∈N
� �= j

h�x� j +
∑
�∈N

d�i<d� j

h�(w� j + xii − 1)

≤ (bj − hj)x j j ∀i, j ∈ N : i �= j, (15)

z ≥
∑
�∈N

di�wi� ∀i ∈ N, (16)

i j, wi j ∈ {0, 1} ∀i, j ∈ N.

he goal is to minimize the maximum of the distances to the sec-

nd center assigned to each site, given in constraints (16). Constraints

9)–(12) resemble the classical constraints in discrete location prob-

ems. In our formulation they ensure allocation of a site to two dif-

erent centers and fix the number of centers at p. Due to the capac-

ty constraints we need to add closest assignment constraints (CAC)

o the formulation (a recent and complete study of CAC can be con-

ulted in Espejo, Marín, and Rodríguez-Chía, 2012). Constraints (13)

mprove on those proposed in Wagner and Falkson (1975), and force

variable xij to take value one if j is the closest center with respect to

ite i.

Similar constraints are needed to force allocation (by means of w-

ariables) to the second closest center. To this end, constraints (14)

ct as follows. In the cases x j j = 0 and x j j = xi j = 1, (14) reduces to a

rivial constraint due to (11). The case of interest is x j j = 1 and xi j = 0,

.e., j is a center but i is not allocated to j. Then, due to (13), there

ust exist a center closer to i than j, and (14) reads
∑

�∈N
di�>di j

wi� ≤ 0 ⇒

i� = 0 ∀� ∈ N : di� > di j . The effect is that i is not allocated to a sec-

nd closest center further than j. A version of (14) has been also de-

eloped in Lei (2010), see also Lei and Church (2011).

Constraints (15) are the capacity constraints. If x j j = 0, it fol-

ows x� j = w� j = 0 ∀� ∈ N and then
∑

�∈N
d�i<d� j

h�(xii − 1) ≤ 0, which

olds trivially. If x j j = 1, bj bounds the sum of �� ∈ Nh�x�j and

�∈N
d�i<d� j

h�(w� j + xii − 1). The first addend measures the demand of

ites which have j as the closest center. The second addend, for a given

alue of i, is only of interest if xii = 1 (otherwise it is non-positive), in

hich case it counts the demand of the sites with j as the second

losest center which are closer to i than to j. That is to say, the second

ddend measures the demand which will go to j if center i fails.

All variables must be constrained to be 0–1 valued due to the ca-

acity constraints (unsplittable demand). Note that taking i = j in

12) it follows that w j j = 0 ∀j ∈ N. Throughout the rest of the paper,

e will use these identities when required.

In order to show the need for several families of constraints

n formulation (P2A) we consider again the instance given in

xample 2.1. After removing constraints (13), the solution is depicted

n Fig. 3. Note that, in order to reduce the objective value, allocation

s made first to centers which are further than the closest center with

espect to a given site; for instance, site 1 is allocated to 5 instead

f 6. After removing, instead, constraints (14), the obtained solution

s depicted in Fig. 4. Here, for instance, site 3 is not allocated to its

econd closest center. The reason is to exploit the capacity of further

enters in order to reduce the objective value. After removing con-

traints (12), all points would be allocated to themselves by means
h failure foresight, European Journal of Operational Research (2015),
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Fig. 3. Illustration of the need for (13).
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Fig. 4. Illustration of the necessity of (14).
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f w-variables, with an objective value equal to zero. It is clear that

onstraints (9)–(11), (15) and (16) are necessary.

Analogously to (P3), several variables can be fixed at zero in (P2A).

orting the distances from a fixed site i to the rest of the sites by

i
1 ≤ di

2 ≤ · · · ≤ di
n,

ince there are p centers, i will never be assigned to the p − 1 furthest

ites. Then

i j = 0 ∀i, j ∈ N : di j > di
n−p+1.

nalogously, the second closest center w.r.t. i will never be one of the

p − 2 furthest sites and

i j = 0 ∀i, j ∈ N : di j > di
n−p+2.

lso, since i is always the unique closest site with respect to itself,

ii = 0 ∀i ∈ N.

.3. Formulation using variables with two indices B

It is observed in formulation (P2A) that the x-variables play a sec-

ndary role. It is possible, with a complete knowledge of xjj ∀j ∈ N plus

he w-variables, to build capacity constraints and CAC, thus reducing

he size of the formulation. The result of this reduction is called for-

ulation (P2B). Whether this change entails a quality reduction of

he formulation and, in such a case, if the size reduction makes up for

t, will be a matter of forthcoming sections. Formulation (P2B) is as

ollows:

P2B) min z

s.t. (9), (11), (16)

wi j ≤ x j j ∀i, j ∈ N, (17)

∑
�∈N

di�>di j

2wi� +
∑
�∈N

di�≤di j

x�� ≥ 2 ∀i, j ∈ N : i �= j, (18)

∑
�∈N

di�≥di j

(p − 1)wi� ≤
∑
�∈N

di�≥di j

x�� ∀i, j ∈ N : i �= j, (19)

�∈N

∑
q∈N

d� j<d�q

h�(w�q + x j j − 1) +
∑
�∈N

d�i<d� j

h�(w� j + xii − 1)

≤ bjx j j ∀i, j ∈ N : i �= j, (20)

x j j ∈ {0, 1} ∀ j ∈ N,

i j ∈ {0, 1} ∀i, j ∈ N. (21)

t

Please cite this article as: I. Espejo et al., Capacitated p-center problem wit
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Given two different sites i and j, the corresponding constraint (18)

s trivially satisfied when
∑

�∈N
di�≤di j

x�� ≥ 2, i.e., when there are two or

ore centers inside a radius dij around i. Otherwise, if
∑

�∈N
di�≤di j

x�� ∈
0, 1}, constraint (18) forces some of the variables in the first term

o take value 1, that is to say, it forces the distance in the objective

unction to be greater than dij.

To complement (18), and due to the capacity limitations, it is

ecessary to add some other constraints preventing i for being al-

ocated to a center further than the second closest center. Constraints

19) have this effect. The trivial case is
∑

�∈N
di�≥di j

wi� = 0. Otherwise, if

�∈N
di�≥di j

wi� = 1, it means that the reference center of i is not inside

adius dij. Since the total number of center is p, this would only oc-

ur when the number of centers at least at a distance dij, given by the

econd term of (19), is p − 1.

The combination of constraints (18) and (19) produces the desired

llocation to the second closest center. Similar constraints were used

n (Belotti, Labbé, Maffioli, & Ndiaye, 2007) in the context of obnox-

ous location.

In order to establish the limit on the capacity of the centers using

his reduced set of variables, constraints (20) are incorporated into

he formulation. Each constraint in this family takes care of the ca-

acity of center j if center i fails. The first case is when x j j = 0, i.e., j is

ot going to be a center. In such a case, the addends of the first term

ill be w�q − 1, which are less than or equal to 0, and the addend of

he second term will again be xii − 1 less than or equal to 0, and the

onstraint is trivially satisfied. The interesting case is then x j j = 1.

eplacing xjj by 1 in the first term, it becomes
∑

�∈N

∑
q∈N

d� j<d�q

h�w�q.

ince j is now a center, a variable w�q = 1 when q is outside a radius

�j around a site � means that j must be the closest center with re-

pect to �. Then the first term sums up the demand of the sites with

as the closest center, to be taken always into account when limiting

he capacity of j. But the capacity of j must also be enough to cover the

emand of some sites after the failure of another center, represented

n (20) by i. When i is actually a center, variable xii will take value 1

otherwise the second term will be negative). Note that the second

erm only considers those sites � closer to i than to j, and variables

�j taking value 1. The combination of both situations implies that,

n case of failure of i, the demand of � will be satisfied by j, and this

emand given by the second term must be added to that of the first

erm to be bounded by bj.

Although we have introduced (P2B) with all constraints that can

e considered intuitively necessary, not all of them are needed to ob-

ain a correct formulation, as we show in the following result.
h failure foresight, European Journal of Operational Research (2015),
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Fig. 5. Illustration of the need for (18).
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Proposition 3.1. Constraints (17) are implied by constraints (9), (11),

(18), (19) and (21).

Proof. Assume that, for i ∈ N and j ∈ N�{i}, wi j = 1 holds.

Replacing wij by 1 in (11) and using (21) it follows that wi� = 0 ∀�

such that di� > dij. Now, replacing these values in (18),

∑
�∈N

di�≤di j

x�� ≥ 2.

Taking (9) into consideration, the last inequality is equivalent to

∑
�∈N

di�>di j

x�� ≤ p − 2. (22)

On the other hand, replacing wij by 1 in (19) and using (11) again, it

follows that

p − 1 ≤
∑
�∈N

di�≥di j

x��

which, by the assumption of no ties in the distances from the same

point, can be re-written as

p − 1 ≤ x j j +
∑
�∈N

di�>di j

x��. (23)

Finally, bringing together (22) and (23),

p − 1 ≤ x j j +
∑
�∈N

di�>di j

x�� ≤ x j j + p − 2,

and xjj ≥ 1 trivially holds. �

The remaining constraints are not implied by the others. Consider

the instance given in Example 2.1. After removing constraints (18),

the solution obtained is depicted in Fig. 5. Notice that, in order to re-

duce the objective value, second allocation is made to centers which

are closest with respect to a given site. For instance, site 7 is allocated

to center 3. Removing families of constraints (19), we obtain solutions

with wrong allocations. To show this, consider n = 4, p = 3, distance

�1, points in coordinates (2, 9), (1, 1), (7, 6), (10, 7), demands 2, 2, 1,

1 and capacities 8, 6, 6, 7. The solution has opened centers 1, 2 and 3

and w12 = w21 = w31 = w41 = 1, where we can see that site 1 is not

allocated to its second closest center, site 3 (see Fig. 6).

Several variables can be fixed at zero in (P2B). The second clos-

est center w.r.t. i will never be one of the p − 2 furthest sites nor the
Please cite this article as: I. Espejo et al., Capacitated p-center problem wit
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losest one (itself), then

i j = 0, ∀i, j ∈ N : di j > di
n−p+2,

wii = 0, ∀i ∈ N.

Formulations (P2A) and (P2B) are both of interest from a theoret-

cal point of view due to the following result.

roposition 3.2. The linear relaxations of (P3), (P2A) and (P2B) do not

ominate one another.

roof. To prove the thesis it suffices to show two examples of in-

tances in which the linear relaxation of each formulation gives a

arger value than the linear relaxation of the other. For both exam-

les we take a set of six points in the plane, p = 3 and the �1 norm is

sed to compute distances between points.

In the first example, the points are (1, 8), (5, 0), (9, 9), (5, 2), (6, 2)

nd (4, 9), with demands 3, 2, 3, 3, 2, 5 and capacities 16, 3, 11, 14,

, 15 respectively. Centers in the optimal solution are 3, 4 and 6. The

wo closest centers with respect to each site are (6, 3), (4, 6), (3, 6),

4, 6), (4, 6) and (6, 3), respectively. The optimal value is 10 (distance

rom 2 to 6, see Fig. 7, left hand side). The optimal values of the linear

elaxation of (P3), (P2A) and (P2B) are 8, 6.04 and 5.77, respectively.

In the second example, the points are (6, 4), (0, 9), (1, 6), (4, 0), (4,

) and (1, 7), with demands 3, 1, 2, 3, 2, 2 and capacities 11, 3, 13, 15,

4, 5 respectively. Centers in the optimal solution are 1, 5 and 6. The

wo closest centers with respect to each site are (1, 5), (6, 5), (6, 5), (5,

), (5, 1) and (6, 5), respectively. The optimal value is 9 (distance from

to 5, see Fig. 7, right hand side). The optimal values of the linear

elaxation of (P3), (P2A) and (P2B) are 4, 4.59 and 5, respectively. �

. Analysis of the model and formulations

The goal of this section is twofold. On the one hand, to provide the

eaders a better understanding of the model considering a compari-

on between the solutions of CpCP and CSpCP which highlights that

here are significant benefits in using the proposed model in case of

isruption. On the other hand, to compare the three proposed formu-

ations for CSpCP in order to identify which of them is more promis-

ng from the computational point of view.

.1. Comparison between versions of CpCP with and without failure

oresight

It could be argued that the prevention of a disaster that rarely oc-

urs will imply a change in the solution to the problem that leads to

ome sites being allocated to centers further than the reference cen-

ers they would have in the solution of CpCP in order to guarantee

ufficient capacity. But this argument would rapidly lead to the in-

alidation of all kinds of p-center problems, which are based on the

mprovement of the worst case situation at the expense of making the

verage situation worse than in the median models. In contrast, when

he decision maker decides to use the solution to the CpCP instead of

ts counterpart with median objective, the idea is to provide an op-

ortunity to everybody (in particular to the furthest one, although it
h failure foresight, European Journal of Operational Research (2015),
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Fig. 7. Examples of Proposition 3.2.

Fig. 8. Example 4.1.
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ould be a rare case) to reach an emergency center when it is needed.

odel CSpCP is nothing but the widening of this humanitarian point

f view to the case of disruption.

In order to highlight the strengths of taking into account the fail-

re possibility, in the following we provide a comparison of the op-

imal solutions obtained for a set of instances by using both CSpCP

nd CpCP with closest assignment (i.e., when sites are served by their

losest centers). Besides the optimal values of both problems, we

ave computed some illustrative measures of goodness of these so-

utions as follows. In the case of CSpCP, we compute the maximum

istance between each site and its closest center, that is to say, the

bjective value that the optimal solution of CSpCP gives in the CpCP

odel. In the case of the optimal solution to CpCP, we consider the

ailure of one of the centers and distinguish between the cases (i)

here each site previously allocated to the center that failed is allo-

ated to its second closest center and (ii) it is allocated to any center

ith enough capacity (this is done by solving an assignment problem

etween these sites and the remaining centers taking into account

he available capacity of these centers). The maximum distance from

very site to its corresponding new center is then calculated.

We start with an example which shows how inadequate it may

e to simply solve CpCP and then re-assign sites when the failure of

ne of the centers occurs. It is worth mentioning that when an emer-

ency situation occurs, injured people, following a natural and intu-

tive pattern, try to go to the second closest center, since in this type

f situations it is implausible that the information as to which center

as enough capacity to cover their demands is available.

xample 4.1. We are given eight points in the plane with coordinates

0.6, 2.3), (4.4, 4.6), (6.3, 3.7), (2.7, 9.1), (7.0, 8.3), (3.7, 6.8), (5.9, 3.9)

nd (6.9, 6.5), demands 5, 2, 2, 4, 1, 5, 4 and 4 and capacities 6, 7, 13,

1, 15, 13, 25 and 25, respectively. Taking � to measure the distances
1

Please cite this article as: I. Espejo et al., Capacitated p-center problem wit
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nd p = 3, the optimal solution to CSpCP is depicted at the left hand

ide of Fig. 8. The free capacity in each center is indicated between

rackets. The closest center to a non-center point is indicated by a

egment. The optimal value (the furthest second closest center with

espect to a point in the case of failure) is depicted with a dashed line

etween site 4 and center 7.

Consider now the possibility of using the optimal solution to CpCP

nd re-assigning sites in case of failure of some of the centers. The op-

imal solution to CpCP is depicted at the right hand side of the figure.

ow, after a disaster center 1 fails, and the demand of 1 must be al-

ocated to another center with enough free capacity, the only feasible

olution is to choose center 8, which is not the second closest center

ith respect to 1. The situation is still worse if the disaster affects 8,

ince the free capacity of the remaining centers is not enough to sat-

sfy the demand of sites originally allocated to the unavailable center.

Observing the left hand side of Fig. 8, the reader can realize that

he optimal solution of CSpSp requires the system to have a spare

apacity of 29 to accommodate the customers reallocation in case

f failure. Although the fact that a real system can afford more than

00 percent extra capacity to deal with potential disruptions which in

eneral are rare could be considered as excessive, this extra capacity

oes not necessarily have to be too expensive. Nowadays, some hos-

itals have operating rooms or even corridors (areas of rooms for the

atients) that usually are closed and then opened when there is an in-

rease of the demand (epidemics, accidents, etc.). Therefore, the hos-

ital only has to cover the expenses of keeping them in good shape to

e used in case of necessity. In the following we give some alternative

ypes of centers where including extra capacity does not necessarily

mply significant additional costs:

1. The governments have some centers to store oil to address stock-

outs or to fight against the price fluctuations of the oil. These cen-
h failure foresight, European Journal of Operational Research (2015),
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Table 1

Comparison of different optimal solutions for CSpCP and CpCP with closest assignment.

CpCP CSpCP Imp_F (in percent) Wors_F (in percent) Imp_NF (in percent) Wors_NF (in percent)

OV OV_F F_N2C Pos WPos OV OV_NF

L & S 340.4 INF (5) 828.3 2nd 4th 708.6 646.9 14.5 −16.9 47.4 −90.1

Orlib_50 59.4 INF (4) 675.0 5th 5th 593.0 571.2 12.1 −13.8 89.6 −861.0

Orlib_50b 44.4 INF (5) 135.0 3rd 4th 119.7 81.7 11.3 −12.8 45.7 −84.2

Orlib_80 51.9 INF (6) 132.1 3rd 3rd 99.2 74.2 24.9 −33.2 30.1 −43.2

45_5 36.2 INF (3) 80.0 2nd 4th 58.5 49.0 26.8 −36.6 26.0 −35.1

45_10 36.2 INF (3) 80.0 2nd 4th 58.5 43.3 26.8 −36.6 16.2 −19.4

75_5 36.5 INF (4) 95.3 4th 5th 62.1 51.7 34.8 −53.4 29.4 −41.7

75_10 36.5 INF (1) 95.3 4th 5th 57.1 50.5 40.0 −66.8 27.7 −38.3

100_5 33.1 INF (4) 76.3 3rd 4th 53.6 40.3 29.8 −42.4 17.8 −21.7

100_10 33.1 63.8 63.8 2nd 4th 51.9 38.1 18.7 −23.0 13.1 −15.0
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ters could be used to cover the regular demand of a region (gas

stations, airports, etc.), but in addition have an extra capacity to

cover the aforementioned special situations.

2. Centers of staple products, blankets, tents, machines to get

potable water, non perishable food, snowplows etc. that are used

to cover small incidents (like storms) can have an extra capacity

to replace the damaged material of other center in case of a bigger

disaster (like an earthquake or a hurricane).

3. A reservoir to store water for consumption to cover the demand

of a region could also be used to cover the demand of additional

cities if, suddenly, they have supply problems by an unexpected

reason like contamination of the water in the reservoir that ini-

tially cover those cities.

Summarizing, our model could become a useful tool for the

decision-maker or system-planner to evaluate whether it is recom-

mendable to establish a strategy to prevent possible incidents in one

of the centers or on the contrary, it is not feasible from a finan-

cial point of view. Therefore, this model provides the decision-maker

with a quantitative rule to select the best option relative to foresee

emergency situations.

Table 1 reports the results of the comparison between CpCP and

CSpCP for a set of instances. Columns “OV” give the corresponding

optimal values. Given the optimal solution of CpCP, column “OV_F”

provides the maximum distance from each site to their second closest

center. The number in brackets shows the number of times in which

it is not possible to re-assign sites to their second closest centers (be-

cause they do not have enough capacity) when one of the centers in

the optimal solution to CpCP fails. Column “F_N2C” provides the max-

imum distance from sites to a center with enough capacity (not nec-

essarily the second closest one) when the closest one fails. Column

“Pos” reports the position of “F_N2C” in the ordered sequence of dis-

tances between the site for which the maximum distance is achieved

and the centers, whereas “WPos” gives the worst position of the dis-

tance between each site and the center that would cover this site if its

closest one were to fail in the ordered sequence of distances between

this site and the centers. Column “OV_NF” reports the maximum dis-

tance between the sites and their closest center for the optimal solu-

tion of CSpCP (when no center fails).

Column Imp_F gives F_N2C−CSpCP_OV
F_N2C × 100, i.e., the improvement

percentage, with respect to the maximum distance from each client

to its center if one of these centers fails, by considering the optimal

solution of CSpCP (values in column CSpCP_OV) instead of the opti-

mal solution of CpCP (values in column F_N2C; observe that in this

case is not a fair comparison because we have not assumed the clos-

est assignment, otherwise in all the cases except the last one this so-

lution would not be feasible). Conversely, column Wors_F reports the

worsening percentage, with respect to the maximum distance from

each client to its center if one of these centers fails, by considering

the optimal solution of CpCP instead of the optimal solution of CSpCP,

i.e., CSpCP_OV−F_N2C
CSpCP_OV × 100.
Please cite this article as: I. Espejo et al., Capacitated p-center problem wit
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Analogously, column Imp_NF gives CSpCP_OV_NF−CpCP_OV
CSpCP_OV_NF × 100, i.e.,

he improvement percentage, with respect to the maximum distance

rom each client to its closest center, by considering the optimal so-

ution of CpCP (values in column CpCP_OV) instead of the optimal

olution of CSpCP (values in column CSpCP_OV_NF). Conversely, col-

mn Wors_NF reports the worsening percentage, with respect to the

aximum distance from each client to its closest center, by consider-

ng the optimal solution of CSpCP instead of the optimal solution of

pCP, i.e., CpCP_OV−CSpCP_OV_NF
CpCP_OV × 100.

The instances considered in the comparison are L & S (n = 90,

p = 10, where the 10 sites with the largest demand have been re-

oved, see Lorena and Senne, 2004), Orlib_50 (n = 50, p = 5, with all

apacities equal to 150, see Osman and Christofides, 1994), Orlib_50b

this instance is Orlib_50 where one of its points has been re-

oved, i.e., n = 49, p = 5) and Orlib_80 (n = 80, p = 10 where the

0 sites with the largest demand have been removed, see Osman

nd Christofides, 1994) and some instances with points randomly

enerated in the plane (using �1 to measure the distances); de-

ands and capacities are randomly generated as U{6, . . . , 15} and

n/p][(h1 + maxi hi)/2] + [U(0, 10 · type)], respectively, with type =
, 10: 45_5 (n = 45, p = 5, type=5), 45_10 (n = 45, p = 5, type=10),

5_5 (n = 75, p = 5, type=5), 75_10 (n = 75, p = 5, type=10), 100_5

n = 100, p = 7, type=5) and 100_10 (n = 100, p = 7, type=10).

The difference between n_5 and n_10 is simply how the capac-

ty of the centers (type 5 or 10) is generated. It can be observed in

olumn OV_F of CpCP that all the instances except the last one are in-

easible when sites are assigned to their second closest center if the

losest one fails). Columns Pos and WPos show that there are sites

hat should be allocated to centers sorted between the third and the

fth positions.

From column Imp_F we see the clear advantage of considering the

ailure foresight which provides a significant improvement (25 per-

ent on average) of the objective value with respect to the CpCP when

center fails.

Although the comparison between the solutions of CpCP and

SpCP highlights that there are significant benefits in using the pro-

osed model in case of disruption, sometimes this comes at the cost

f a deterioration of the objective if failure does not occur. This could

e measured by comparing columns Imp_F and Wors_NF, but it is

orth mentioning that this is not completely fair, since closest as-

ignment in case of failure was not assumed to obtain the values in

olumn F_N2C (otherwise, this solution would not be feasible). Ig-

oring this point, we can see that the improvement percentages in

ase of disruption (Imp_F) are smaller than the worsening percent-

ges (Wors_NF) in the first five problems and the seventh one, but

uite the opposite in the other cases. Therefore, depending on the

ases, the difference of the maximum distance from the clients to

heir centers for the optimal solution of CpCP and CSpCP when a dis-

uption occurs could be bigger or smaller than the difference of these

alues when no disruption occurs. Just taking into account these
h failure foresight, European Journal of Operational Research (2015),
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Table 2

Number of variables and constraints of formulations (P3), (P2A) and (P2B).

Formulation Number of binary variables Number of constraints

(P3) n3 2n2 + n + 1

(P2A) 2n2 4n2 + n + 1

(P2B) n2 + n 4n2 − n + 1
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ercentages, the prevention against failure of some of the centers

ight not be advisable in the first five examples and the seventh one.

owever, in the other cases, to foresee the failure of one center is

ighly recommendable.

An extreme case of the above comparison could be the second in-

tance in Table 1, Orlib_50. In this case, the largest site-center dis-

ance drops from 675 to 593 when using our model as compared

o a standard p-center model, i.e., an improvement of 12.1 percent

see column Imp_F). However, the maximum distance in normal con-

itions increases from 59.44 to 571.22, i.e., a worsening of 861 per-

ent (see column Wors_NF). A deeper analysis of this data set allows

s to recognize that there is an isolated point, a, which is quite far

way from the remaining points. Indeed, the coordinates of this point

re a = (70, 719) and the 49 remaining points are in the rectangle

4, 100] × [4, 234]. The optimal solution of the CpCP contains a as a

enter; for this reason the optimal objective value of this problem is

elatively small (59.44). However, if we consider the possibility that

center fails, due to the particular configuration of this example, the

aximum distance from a center to its closest available center will

ncrease extremely (we can see that this maximum distance for the

ptimal solution of CpCP increases to 675, even assuming that the

ites are not assigned to the closest available center because other-

ise this solution would not be feasible). Therefore, the reason for

hese large differences of percentages in the improvement and wors-

ning of the objective is due to the particular configuration of this

roblem. Indeed, we have solved the same instance deleting this iso-

ated point, Orlib_50b, and the results are more reasonable, see the

hird row of Table 1.

In addition, from the comparison of columns Imp_NF and Wors_F,

e can see that in the first three problems, the improvement per-

entage (considering the optimal solution of CpCP instead of the one

f CSpCP when no disruptions occurs) is bigger than the worsening

ercentage (considering the optimal solution of CpCP instead of the

ne of CSpCP when a failure occurs). However, the behavior is quite

he opposite in the remaining cases.

In conclusion, taking into account both comparisons of these per-

entages, it seems to be recommendable not to prevent the failure of

ne of the centers for the first three problems. On the other hand, it

s highly recommendable to foresee it in the last five problems except

he seventh one. For the fourth, fifth and seventh problems, depend-

ng on the utility function of the decision-maker for the differences of

hese percentages, it may be advisable one or the other choice. More-

ver, from the comparison we can conclude that considering the pos-

ibility of failure in this kind of model may result in a significant im-

rovement with respect to not considering it. In particular, if failure

oresight is not considered, after a disruption in a center, sites may not

e allocated to their closest centers (with a high social and political

ost, in the case of emergency centers after a natural disaster) result-

ng in a hardly implementable solution (in an emergency situation,

eople demanding attention would not know which center would

e available to attend them). Moreover, from all these reflexions, we

an conclude that independently on whether or not the solution of

he CSpCP is implemented by the system-planner/decision-maker, it

s indubitable that this model provides an objective and quantitative

ule to support his/her decision.

.2. Comparing formulations

Table 2 gives a comparison of the number of binary variables and

onstraints of the three previous formulations. We can observe that

ormulation (P2B) is the one with the lowest number of variables and

onstraints while (P3) has the highest number. Note that, in what

ollows, all possibilities of fixing variables at zero in all formulations

ave been carried out.

Before trying to improve the performance of the previously stud-

ed formulations, we will compare them by means of a simple com-
Please cite this article as: I. Espejo et al., Capacitated p-center problem wit

http://dx.doi.org/10.1016/j.ejor.2015.05.072
utational study. The formulations were implemented, as they have

een presented in the previous sections, in the commercial solver

press IVE 1.22, running on a 3.40 gigahertz PC with 16 gigabytes

f RAM memory. The cut generation option of Xpress was disabled

n order to compare the relative performance of the formulations

leanly.

In order to produce a set of test instances, we generated random

oints in the plane. Demands and capacities were randomly gener-

ted as U{6, . . . , 15} and [n/p][(h1 + maxi hi)/2] + [U(0, 10 · type)],

espectively, where type = 3, 4, 5, 10. The distance considered was �1.

e compared the three formulations on a testbed of five instances for

ach combination of (i) type of capacity, (ii) n in {15, 20, 25, 30, 35, 40,

5} and (iii) different values of p in {3, 5, 8, 10}.

Tables 3 and 4 report the results of formulations (P3), (P2A) and

P2B). For each size n ∈ {15, 20, 25, 30, 35, 40, 45}, the first column

f these tables stands for the different values of p and the second

or each one of these three formulations. The remaining columns are

rouped in five blocks of four columns. The first four blocks provide

he results for the different types of capacity generated (3, 4, 5 and

0) and the last one for the averaged results of these four blocks.

n each block, the column u provides the number of unfeasible in-

tances, t gives the average time in seconds of the overall solution

rocess, gap reports the average gap in the root node, and nod rep-

esents the average number of thousands of nodes (the above aver-

ges refer to the five instances analyzed). The number of instances

hat exceed the time limit (two hours of CPU) is indicated with a su-

erscript and the averaged times in these cases were calculated by

xing the times of these instances to 7200. As expected because of

lower overall capacity, almost all the instances of type 3, 4 and 5

or p = 3 were unfeasible. The symbol “-” in the tables represents

hat either all the instances are unfeasible or, if some of them are

easible, all these instances need more than two hours of CPU to be

olved.

In Tables 3 and 4, we can observe that the running times of formu-

ation (P2A) are much shorter than those of formulation (P2B) and the

imes of formulation (P2B) are much shorter than the ones of (P3). Ac-

ually, the running times of formulation (P3) exceed the time limit for

ome instances of size greater than or equal to 25 and for almost all

nstances of size greater than or equal to 35. Regarding the influence

f the capacity on the running times, as a general trend the running

imes for the instances with type = 10 are smaller than the running

imes of the rest of the values of type, in the cases of small and

edium values of p. On the other hand, for large values of p the

unning times among the instances with different types of capacities

re quite similar.

Concerning the gaps of these three different formulations, we can

ee that the average gaps for (P3) (in the cases where all the instances

re solved before reaching the time limit) are greater than those of

P2A). Moreover, the gaps provided by formulation (P2A) are always

reater than those provided by (P2B). In addition, the average gaps

or each of these formulations over the instances with different types

f capacities are almost identical.

Observe that, although the gaps of formulation (P2A) are worse

han those of (P2B), its running times are smaller. A possible explana-

ion of this is given by column nod which shows that the number of

odes checked by (P2A), in most of the instances, is much lower than

hose of (P2B) and (P3).
h failure foresight, European Journal of Operational Research (2015),
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Table 3

Comparing formulations I.

type = 3 type = 4 type = 5 type = 10 mean

u t gap nod u t gap nod u t gap nod u t gap nod u t gap nod

n = 15

(P3) 4 31 47 35.4 1 12 58 12.3 1 14 57 14.4 0 58 46 91.3 6 30 52 42.8

3 (P2A) 4 2 39 0.3 1 2 49 0.4 1 2 48 0.3 0 2 36 0.4 6 2 43 0.3

(P2B) 4 1 31 1.0 1 2 44 2.4 1 1 43 1.9 0 1 31 0.9 6 1 38 1.6

(P3) 0 8 30 15.2 0 8 30 15.4 0 11 31 20.4 0 12 30 27.0 0 10 30 19.5

5 (P2A) 0 1 29 0.7 0 1 29 0.7 0 1 30 0.7 0 1 30 0.6 0 1 30 0.7

(P2B) 0 1 29 1.2 0 1 29 1.0 0 1 30 1.8 0 1 29 1.2 0 1 29 1.3

(P3) 0 1 3 0.7 0 1 3 0.6 0 1 3 0.7 0 0 3 0.6 0 1 3 0.6

8 (P2A) 0 0 3 0.1 0 0 3 0.1 0 0 3 0.1 0 0 3 0.1 0 0 3 0.1

(P2B) 0 0 3 0.3 0 0 3 0.3 0 0 3 0.3 0 0 3 0.3 0 0 3 0.3

(P3) 0 0 0 0.1 0 0 0 0.1 0 0 0 0.0 0 0 0 0.0 0 0 0 0.1

10 (P2A) 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0

(P2B) 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1

n = 20

(P3) 5 − − − 5 − − − 4 13 65 1.3 0 28932 60 1398.1 14 2413 61 1165.3

3 (P2A) 5 − − − 5 − − − 4 7 46 0.5 0 6 43 0.6 14 7 44 0.6

(P2B) 5 − − − 5 − − − 4 8 41 5.7 0 5 36 2.7 14 5 37 3.2

(P3) 0 750 47 474.6 0 1544 44 1072.6 0 1183 45 833.7 0 1107 44 911.1 0 1146 45 823.0

5 (P2A) 0 6 44 2.5 0 5 41 2.1 0 4 42 1.5 0 4 40 1.8 0 5 42 2.0

(P2B) 0 11 40 20.2 0 6 37 8.6 0 5 38 6.8 0 4 36 5.5 0 7 38 10.3

(P3) 0 22 13 20.2 0 62 13 52.4 0 46 13 44.5 0 39 13 36.7 0 42 13 38.5

8 (P2A) 0 2 13 1.0 0 2 13 1.1 0 2 13 1.1 0 2 13 0.8 0 2 13 1.0

(P2B) 0 2 13 2.5 0 2 13 2.8 0 2 13 2.6 0 2 13 1.8 0 2 13 2.4

(P3) 0 4 5 5.2 0 2 5 2.2 0 3 5 3.4 0 2 5 1.8 0 3 5 3.1

10 (P2A) 0 1 5 0.2 0 1 5 0.3 0 1 5 0.4 0 1 5 0.3 0 1 5 0.3

(P2B) 0 1 5 1.2 0 1 5 0.9 0 1 5 1.0 0 1 5 0.8 0 1 5 1.0

n = 25

(P3) 5 − − − 5 − − − 3 380 69 31.9 0 15831 64 292.4 13 12391 65 218.0

3 (P2A) 5 − − − 5 − − − 3 26 52 1.5 0 16 40 1.1 13 19 44 1.2

(P2B) 5 − − − 5 − − − 3 55 45 25.0 0 21 31 5.3 13 31 35 10.9

(P3) 0 58134 58 1302.3 0 57443 56 1426.6 0 57854 56 1408.4 0 57824 57 1407.1 0 578115 57 1386.1

5 (P2A) 0 20 42 3.9 0 21 42 4.5 0 20 42 4.8 0 17 42 10004.2 0 19 42 4.3

(P2B) 0 31 35 17.8 0 26 35 13.3 0 31 35 16.6 0 22 35 9.2 0 28 35 14.2

(P3) 0 55373 28 2253.2 0 56503 29 2366.5 0 42081 28 1577.9 0 36953 28 1630.3 0 477310 28 1957.0

8 (P2A) 0 11 27 6.2 0 13 27 5.9 0 14 27 7.4 0 12 27 5.9 0 13 27 6.4

(P2B) 0 31 26 31.6 0 32 26 30.2 0 21 26 21.4 0 26 26 24.6 0 27 26 26.9

(P3) 0 6771 16 359.0 0 17951 16 683.1 0 868 16 380.8 0 14501 16 693.8 0 11983 16 529.2

10 (P2A) 0 8 16 6.3 0 7 16 4.0 0 6 16 3.9 0 7 16 5.7 0 7 16 5.0

(P2B) 0 14 16 20.6 0 8 16 11.0 0 18 16 27.4 0 12 16 16.1 0 13 16 18.8

n = 30

(P3) 5 − − − 3 65042 71 355.8 3 47862 53 281.7 0 34132 66 217.3 11 44056 64 262.4

3 (P2A) 5 − − − 3 73 45 2.9 3 73 47 2.5 0 58 45 2.1 11 65 46 2.3

(P2B) 5 − − − 3 160 36 19.5 3 127 38 22.2 0 119 37 15.1 11 130 37 17.7

(P3) 0 72005 51 628.3 0 72005 57 632.7 0 72005 51 778.1 0 72005 64 822.6 0 720020 56 715.4

5 (P2A) 0 62 42 8.5 0 52 42 8.0 0 56 42 6.8 0 54 42 7.5 0 56 42 7.7

(P2B) 0 135 34 32.5 0 104 33 19.2 0 95 33 17.7 0 79 33 14.0 0 103 33 20.9

(P3) 0 49073 38 529.4 0 49703 41 714.1 0 60354 38 866.5 0 48323 36 731.5 0 518613 38 710.4

8 (P2A) 0 41 25 19.8 0 47 25 26.1 0 44 25 27.0 0 56 25 20.2 0 47 25 23.3

(P2B) 0 168 23 65.4 0 300 23 115.0 0 168 23 65.2 0 132 23 46.8 0 192 23 73.1

(P3) 0 47563 24 883.2 0 48263 25 826.4 0 46953 25 888.9 0 47173 25 964.0 0 474812 25 890.6

10 (P2A) 0 44 18 38.2 0 34 17 13.2 0 81 17 44.3 0 42 17 40.1 0 50 17 33.9

(P2B) 0 130 18 73.6 0 83 17 40.7 0 157 17 76.6 0 113 17 65.8 0 121 17 64.2

P
le

a
se

cite
th

is
a

rticle
a

s:
I.E

sp
e

jo
e

t
a

l.,C
a

p
a

cita
te

d
p

-ce
n

te
r

p
ro

b
le

m
w

ith
fa

ilu
re

fo
re

sig
h

t,E
u

ro
p

e
a

n
Jo

u
rn

a
l

o
f

O
p

e
ra

tio
n

a
l

R
e

se
a

rch
(2

0
1

5
),

h
ttp

://d
x

.d
o

i.o
rg

/1
0

.1
0

1
6

/j.e
jo

r.2
0

1
5

.0
5

.0
7

2

http://dx.doi.org/10.1016/j.ejor.2015.05.072


I.E
sp

ejo
et

a
l./E

u
ro

p
ea

n
Jo

u
rn

a
l

o
f

O
p

era
tio

n
a

l
R

esea
rch

0
0

0
(2

0
15

)
1

–
16

11

A
R
T

IC
L
E

IN
P
R
E
S
S

JID
:
E
O

R
[m

5G
;June

18,
2015;16:27]

Table 4

Comparing formulations II.

type = 3 type = 4 type = 5 type = 10 mean

u t gap nod u t gap nod u t gap nod u t gap nod u t gap nod

n = 35

(P3) 5 − − − 5 − − − 4 72001 13 296.0 0 66504 67 167.0 14 67425 58 188.5

3 (P2A) 5 − − − 5 − − − 4 179 45 3.1 0 196 49 3.1 14 193 48 3.1

(P2B) 5 − − − 5 − − − 4 347 35 19.1 0 440 39 35.2 14 425 39 32.5

(P3) 0 − 47 − 0 − 64 − 0 − 46 − 0 − 63 − 0 − 55 −
5 (P2A) 0 355 43 21.4 0 309 43 20.3 0 322 42 22.5 0 236 41 19.9 0 306 42 21.0

(P2B) 0 1453 36 194.4 0 1057 36 110.6 0 772 34 69.5 0 500 33 38.8 0 945 35 103.3

(P3) 0 − 46 − 0 − 42 − 0 − 46 − 0 − 40 − 0 − 44 −
8 (P2A) 0 303 30 119.7 0 294 29 115.9 0 285 29 107.6 0 277 29 111.0 0 290 29 113.5

(P2B) 0 862 25 162.5 0 627 24 139.3 0 587 24 107.2 0 611 24 115.2 0 672 24 131.0

(P3) 0 − 36 − 0 − 30 − 0 − 34 − 0 − 31 416.4 0 − 33 −
10 (P2A) 0 273 22 65.2 0 379 22 101.0 0 536 22 171.6 0 655 22 314.8 0 461 22 163.1

(P2B) 0 393 19 116.7 0 617 19 149.2 0 580 19 134.7 0 568 19 128.5 0 539 19 132.3

n = 40

(P3) 5 − − − 5 − − − 5 − − − 0 − 71 − 15 − 71 −
3 (P2A) 5 − − − 5 − − − 5 − − − 0 582 51 4.6 15 582 51 4.6

(P2B) 5 − − − 5 − − − 5 − − − 0 1486 42 85.3 15 1486 42 85.3

(P3) 0 − 58 − 0 − 65 − 0 − 58 − 0 − 66 − 0 − 62 −
5 (P2A) 0 1011 46 28.4 0 878 46 32.7 0 837 45 26.7 0 637 45 24.3 0 841 46 28.0

(P2B) 0 1677 35 76.3 0 1755 36 84.6 0 1214 34 51.0 0 1261 34 52.6 0 1477 35 66.1

(P3) 0 − 48 − 0 − 55 − 0 − 57 − 0 − 57 − 0 − 54 −
8 (P2A) 0 924 37 223.6 0 940 37 225.1 0 927 37 230.3 0 816 37 215.4 0 902 37 223.6

(P2B) 0 1241 30 84.0 0 1398 30 95.0 0 1757 30 111.9 0 14451 30 91.2 0 14601 30 95.5

(P3) 0 − 52 − 0 − 49 − 0 − 46 − 0 − 48 − 0 − 49 −
10 (P2A) 0 2475 33 997.2 0 2215 33 1006.0 0 2390 33 916.4 0 2145 33 926.9 0 2306 33 961.6

(P2B) 0 34101 30 319.3 0 40912 30 386.6 0 35772 30 386.1 0 36291 30 351.1 0 36776 30 360.8

n = 45

(P3) 5 − − − 5 − − − 5 − − − 0 − 62 − 15 − 62 −
3 (P2A) 5 − − − 5 − − − 5 − − − 0 1282 49 7.6 15 1282 49 7.6

(P2B) 5 − − − 5 − − − 5 − − − 0 3002 39 103.6 15 3002 39 103.6

(P3) 0 − 59 − 0 − 70 − 0 − 68 − 0 − 67 − 0 − 66 −
5 (P2A) 0 1989 46 41.0 0 1988 46 49.8 0 1879 46 42.0 0 1933 46 53.2 0 1947 46 46.5

(P2B) 0 3179 34 78.4 0 3253 34 68.7 0 2744 34 60.0 0 3195 34 59.4 0 3093 34 66.6

(P3) 0 − 64 − 0 − 47 − 0 − 52 − 0 − 54 − 0 − 54 −
8 (P2A) 0 2562 35 300.8 0 2491 35 304.5 0 2373 35 293.5 0 2162 35 299.7 0 2397 35 299.6

(P2B) 0 30231 28 242.8 0 29371 29 246.6 0 35991 29 259.8 0 31191 29 249.0 0 31704 29 249.6

(P3) 0 − 49 − 0 − 43 − 0 − 45 − 0 − 50 − 0 − 47 −
10 (P2A) 0 3997 31 860.1 0 4018 31 619.1 0 4105 31 882.4 0 4669 31 894.3 0 4197 31 814.0

(P2B) 0 52793 28 486.1 0 65864 29 565.0 0 61143 29 493.3 0 61833 30 511.6 0 604013 29 514.0
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Algorithm 1: Heuristic approach.

Initialize L := ∅ (the list of already tested feasible solutions),

cont := 0, iteration := 0, MAXIT , ob j∗ = +∞;

Generate a random solution, CS = {i1, . . . , ip} (current solution);

33 Check feasibility of CS;

while iteration < MAXIT do

iteration:=iteration+1;

if CS is unfeasible then

cont:=1;

88 DO a FEASIBILITY MOVEMENT.

else

cont:=0;

Compute the objective value f (CS);

if f (CS) < ob j∗ then
ob j∗ := f (CS) and S∗ := CS

1414 DO an IMPROVEMENT MOVEMENT.

Let CS′ be the new generated solution;

if CS′ �∈ L then

L := L ∪ CS′. CS := CS′;
GO TO LINE 3

else

if cont=1 then
GO TO LINE 8

else
GO TO LINE 14

Return S∗ and ob j∗; the best solution found and the

corresponding objective value;
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5. A heuristic approach

In this section we develop a heuristic algorithm to address the

problem under consideration. The main idea of this procedure is

to generate new solutions iteratively through local movements. De-

pending on whether the current solution is feasible or not, we make

an improvement movement or a feasibility movement, respectively.

This means that we move from a current solution to another one

in its neighborhood, in such a way that, hopefully, it will have a

lower objective value when the current solution is feasible, or it

could, otherwise, be feasible. The detailed pseudo-code is depicted in

Algorithm 1.

In the improvement movement, given a current feasible solution

with open centers CS = { j1, . . . , jp} and objective value f (CS), we

choose jmin ∈ CS and imin ∈ N such that d(imin, jmin) = f (CS). Then,

we look for j′
min

, the closest node to jmin such that (i) j′
min

�∈ CS,

and (ii) d(imin, j′
min

) < d(imin, jmin). Set CS′ = (CS \ { jmin}) ∪ { j′
min

}.

Hopefully, this movement would decrease the current objective value

whenever this solution was feasible and would not imply an excessive

increase in remaining distances between sites and their correspond-

ing second closest centers.

In the feasibility movement, given a current solution, for instance

(x̂, ŵ) for (P2A), with open centers CS = { j1, . . . , jp}, we choose

jmin ∈ CS maximizing the gap of the capacity constraints, i.e.

jmin := arg max
j∈N

⎛
⎜⎝max

s∈N
js �= j

∑
�∈N

d� js
<d� j

h�(ŵ� j + x̂ js js − 1) +
∑
�∈N
��= j

h�x̂� j − b jx̂ j j

⎞
⎟⎠.

Then we look for j′
min

, the closest node to jmin such that (i) j′
min

�∈
CS, and (ii) b j′

min
> b jmin

, i.e., the closest node with larger capacity.

Set CS′ = (CS \ { jmin}) ∪ { j′
min

}. Hopefully this movement would have

generated a new solution where the maximum gap of the capacity

constraints have decreased and it could be feasible if this gap is less

than or equal to 0 for each pair of centers.
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If one of the previous movements is not possible, we randomly

hoose the new place to locate a center j′
min

. Whenever these local

ovements cannot generate a new solution which has not been gen-

rated previously, a completely new random solution is generated.

We checked the heuristic on the same testbed as the initial com-

utational study. The algorithm needs around 8, 25, 59 and 125 sec-

nds for sizes 45, 75, 100 and 125, respectively, to carry out 1000

terations. Fig. 9 illustrates the efficiency of this heuristic approach.

he three graphs on the left report the instances which are optimal-

ty solved (gap=0) and the numbers at the top of the bars providing

he percentage of instances where the heuristic does not solve opti-

ally the problem (gap > 0) report the average gap. The three on the

ight part show the iteration where the heuristic algorithm reaches

he best solution (using a limit of 5000 iterations). In both cases, the

raphics represent the percentage of instances as a function of n (top),

ypes of capacity (center) and p (bottom), respectively. In the first

ase, we can see that the percentage of instances solved optimally

ecreases when n increases. However, the types of capacity and p do

ot have a large influence. In the right part, we can observe that the

ercentage of instances that find the best result before the first 100

terations is quite high, especially for small values of n. Again, we can

ee that this behavior is quite similar for different types of capacity

nd p. Therefore, we can conclude that the most influential aspect in

he results of the algorithm is the size of the instances analyzed.

. Improvements

This section is devoted to improving the preliminary computa-

ional results obtained in Section 4.2. Since (P3) is not a very efficient

ormulation from the computational time point of view, we concen-

rate on improving the performance of formulations (P2A) and (P2B).

ifferent techniques were studied but we only show those which pro-

ide the best running times. After these improvements, we will see

hat formulation (P2A) again reports the best computational times.

.1. Improving formulation (P2A)

In order to solve our problem using (P2A), we tested several fam-

lies of valid inequalities and a variable fixing strategy based on the

est value found by the heuristic given in Section 5. This will be a suc-

essful approach which, for most of the instances, will significantly

educe the computational times given in Tables 3 and 4.

.1.1. Valid inequalities

The first sets of valid inequalities that we try to use to reinforce

ormulation (P2A) are those coming from formulation (P2B), i.e., (18)–

20). Our first result shows that (20) will not improve formulation

P2A).

roposition 6.1. Constraints (20) are implied by constraints xjj ≤ 1 ∀j

N, (14) and (15).

roof. We consider two cases for j, � ∈ N. First, we assume that there

xists q ∈ N such that d�q > d�j. In such a case, from x j j − 1 ≤ 0 ∀j ∈ N

t follows that∑
q∈N

d� j<d�q

(x j j − 1) ≤ x j j − 1 ⇒ 1 + x� j − x j j +
∑
q∈N

d� j<d�q

(x j j − 1) ≤ x� j.

ow from (14)

∑
q∈N

d� j<d�q

w�q +
∑
q∈N

d� j<d�q

(x j j − 1) ≤ x� j.

his inequality trivially holds in the second case, i.e., d�q ≤ d�j, ∀q ∈ N.
h failure foresight, European Journal of Operational Research (2015),
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Gap Iterations

Fig. 9. Results obtained with the heuristic.
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hus, for all j, � ∈ N it holds that∑
q∈N

d� j<d�q

(w�q + x j j − 1) ≤ x� j.

For a given j ∈ N we can linearly combine these inequalities with

on negative weights h� to obtain

�∈N

∑
q∈N

d� j<d�q

h�(w�q + x j j − 1) ≤
∑
�∈N

h�x� j ≤

from (15)]

jx j j −
∑
�∈N

d�i<d� j

h�(w� j + xii − 1) + (bj − hj)x j j

= −
∑
�∈N

d�i<d� j

h�(w� j + xii − 1) + bjx j j.

he inequality between the first and last terms matches (20). �

Consequently, among the constraints of (P2B) we will only con-

ider (18) and (19) as valid inequalities for (P2A). Additionally, we will

ncorporate the following two families of inequalities:∑
�∈N

di�>di j

xi� +
∑
�∈N

di�≤di j

wi� ≤ 1 ∀i, j ∈ N, (24)

≥
∑
�∈N
� �=i

d̂i�xi� + d̂ jix ji + djiwji ∀i, j ∈ N. (25)

ere d̂i� := min j∈N{di j : di j > di�}, i.e., d̂i� is the distance immediately

arger than d from site i to another site.
i�
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Constraints (24) act as follows. If
∑

�∈N
di�>di j

xi� = 1, it means that i

s allocated to a closest center further than j. Thus, the second closest

enter of i is further than j, or equivalently, wi� = 0 ∀� ∈ N : di� ≤ di j .

f
∑

�∈N
di�≤di j

wi� = 1 it means that i is allocated to a second closest cen-

er no further than j; then, i is not allocated to a center further than j,

r equivalently, xi� = 0 ∀� ∈ N : di� > di j .

The meaning of inequalities (25) is the following. If x ji = 1, then

i� = 0, ∀� �= i and w ji = 0, ∀j ∈ N. Thus, the second closest center

rom site j is at least d̂ ji. If w ji = 1 then x ji = 0 and xi� = 0, ∀� �= i.

hus, the objective function is at least dji. If xi� = 1 for some �( �= i) ∈
then x ji = w ji = 0. Moreover, the second closest center from site i

s at least d̂i�.

In what follows we see that valid inequalities (24) are stronger

han valid inequalities (18) when we consider them to enforce for-

ulation (P2A).

roposition 6.2. Constraints (18) are implied by (11), (12) and (24).

roof. Using (11) and taking into account that w j j = 0 ∀j ∈ N, con-

traints (24) can be rewritten as:∑
�∈N

di�>di j

wi� +
∑
�∈N

di�≤di j

xi� ≥ 1.

ence, applying (12) we obtain∑
�∈N

di�>di j

wi� +
∑
�∈N

di�≤di j

(x�� − wi�) ≥ 1,

nd this is equivalent to (18) �
h failure foresight, European Journal of Operational Research (2015),
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Fig. 10. Example of Proposition 6.3.
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Let then (P2AI) be the formulation resulting from adding con-

straints (19), (24) and (25) to (P2A). We see now that all these con-

straints make a contribution to the lower bound given by the linear

relaxation of (P2AI).

Proposition 6.3. None of the sets of constraints (13)–(15), (19), (24) and

(25) are implied by other constraints in Formulation (P2AI).

Proof. To prove the thesis it suffices to show an instance in which

the linear relaxation gives a larger value without any one of the sets

of constraints (13)–(15), (19), (24) and (25) than the linear relaxation

of the whole set. We take a set of seven points in the plane, p = 3 and

the �1 norm is used to compute distances between points. The points

are (0, 1), (3, 5), (5, 7), (4, 9), (10, 6), (1, 1), (10, 7) with demands 3, 3,

2, 3, 0, 3, 2 and capacities 9, 1, 6, 1, 9, 2, 9, respectively.

Centers in the optimal solution are 1, 5 and 7. The two closest cen-

ters with respect to each site are (1, 5), (1, 5), (7, 5), (7, 5), (5, 7), (1,

5), (7, 5), respectively. The optimal value is 15 (distance from 1 to 5,

see Fig. 10), and the linear relaxation of (P2AI) takes value 7.648. The

optimal values of the linear relaxations of (P2AI) when relaxing (13),–

(15), (19), (24) and (25) are 7.217, 7.63, 6.604, 7.618, 7.39 and 7.026,

respectively. �

6.1.2. Variable fixing

In order to fix wij-variables we will take advantage of our heuris-

tic approach presented in Section 5. Indeed, since this approach gave

very good computational times either to solve the problem or to pro-

vide good solutions, in this section we will use it to obtain feasible

solution and consequently, the upper bounds on the optimal value

of our problem. Hence, it allows us to fix wij-variables as follows. If

vo∗
h

is the best objective value obtained by the heuristic approach, we

can fix at 0 wij-variables and xij-variables such that di j > vo∗
h
. In ad-

dition to this preprocessing phase, in the methodology that we have

developed, every time that a feasible solution is found in the branch-

ing tree, we have again applied a process of fixing variables, such that

if this feasible solution provides a better objective value than those
Please cite this article as: I. Espejo et al., Capacitated p-center problem wit
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btained so far, we can fix at 0 all the wij- and xij-variables such that

ij are greater than this objective value. Thus, the dimension of the

roblem decreases iteratively and, consequently, the process is sped

p.

.1.3. Computational analysis

Table 5 reports the results of the methodology described above

hen some of the families, subfamilies or combinations of valid in-

qualities (19), (24) and (25) are added to formulation (P2A). We have

ttempted cut-and-branch and branch-and-cut methods with all the

nequalities. Only the families of constraints which provided the best

esults are shown. We have fixed the parameter in the Heuristic at

t = 1000 and since the different ways of generating the capacity do

ot make a significant influence in the running times, as shown in

ables 3 and 4 and Fig. 9, in this table we only consider the type of

apacity 5. For each size n ∈ {45, 75, 100, 110, 125}, the first column

f these tables stands for the different values of p. Thus, nine blocks

f two columns provide the average times and the gaps of the five in-

tances solved by adding a family of valid inequalities to formulation

P2A). Namely, block OUR reports the results of solving our problem

ith formulation (P2A) using the above methodology without adding

n additional family of valid inequalities and blocks “19”, “24” and

25” mean that inequalities (19), (24) and (25) are added, respectively.

n the other hand, blocks “19ij”, “24ij” and “25ij” report the results of

olving formulation (P2A) using a Cut & Branch procedure including

he most violated constraint of families (19), (24) and (25) for each

, j ∈ N, respectively. Finally, blocks “19ij& 24ij” and “19ij& 24ij& 25ij”

eport the results of the respective combinations of valid inequalities

n a Cut & Branch procedure. The best running times have been bold-

aced for each n and p. In the particular case of size 125, the number

f instances where the CPU times exceeds two hours is indicated as

uperscripts. As a general rule, to compute the average times of the

ve instances analyzed for each n and p, we have taken 7200 seconds

s the running times of those instances that exceed the time limit.

In Table 5, we observe that the use of this methodology to solve

ur problem has reduced the computational times needed to solve

he instances with n = 45 by more than two orders of magnitude and

e have been able to solve all the checked instances of size lower than

r equal to 110 in less than two hours. Moreover, none of the fam-

lies of valid inequalities analyzed dominates the others. For small-

ized problems, i.e. n = 45 and 75, “19ij&24ij&25ij” and “19ij&24ij”

rovide the best average computational times, respectively. However,

or larger instances it seems that “24” and “24ij” present a better

rend. We can observe that all the approaches provide similar gaps.

inally, in order to check the limit of our solution approach we have

epeated this analysis, taking it = 10, 000 and we have been able to

olve the five instances tested for problems of size 170 in less than

wo hours.

.2. Improving formulation (P2B)

Following the same ideas developed for (P2A), we propose several

mprovements for (P2B). In this case, although the improvements in

ormulation (P2B) are worthwhile from a theoretical point of view,

e have not reported the computational times because the results

btained with (P2A) are much better than those obtained using (P2B)

for instance, for n = 100 these improvements of (P2B) are not able to

olve most of the instances studied in less than two hours, whereas

ith the ones in (P2A) we were able to solve these problems in ap-

roximately 12 minutes).

.2.1. Valid inequalities

We have studied different families of valid inequalities as follows.

1. Consider i, a, t ∈ N(i �= a, t) such that (i) dit < dia and (ii) dtr ≥
max {d , dta} for all r ∈ N such that d > d . We have the following
ti ir ia

h failure foresight, European Journal of Operational Research (2015),
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Table 5

Improving formulation (P2A).

OUR 19 19ij 24 24ij 25 25ij 19ij&24ij 19ij&24ij&25ij

p t gap t gap t gap t gap t gap t gap t gap t gap t gap

n = 45

5 31 27 41 27 33 27 30 23 36 27 39 19 31 27 31 27 25 27

8 15 5 17 5 14 5 18 4 15 5 15 5 15 5 17 5 13 5

10 16 19 19 19 16 19 15 18 15 19 14 9 14 19 16 19 16 19

mean 21 17 26 17 21 17 21 15 22 17 23 11 20 17 21 17 18 17

n = 75

5 641 27 337 27 267 27 281 23 859 27 451 20 722 27 143 27 252 27

8 111 18 137 18 94 18 98 17 101 18 90 16 88 18 84 18 102 18

12 170 28 356 28 174 28 195 25 176 28 226 22 195 28 177 28 188 28

15 168 27 394 27 170 27 196 26 158 27 154 22 197 27 161 27 191 27

mean 273 25 306 25 176 25 193 23 324 25 230 20 301 25 141 25 183 25

n = 100

7 1368 33 1070 33 1254 33 709 28 672 33 411 21 513 33 955 33 719 33

11 1084 32 1791 32 603 32 928 27 870 32 1097 24 518 32 611 32 749 32

16 1021 31 2614 31 1183 31 1152 27 810 31 1372 25 1377 31 1165 31 1433 31

20 675 26 2033 26 712 26 841 24 693 26 1075 21 670 26 583 26 776 26

mean 1037 31 1877 30 938 30 908 27 761 31 989 23 770 31 829 30 919 30

n = 110

7 763 33 1651 33 882 33 841 33 1124 33 751 33 606 33 797 33 827 33

12 1136 36 3425 36 1516 36 1120 36 1571 36 1741 36 1696 36 1504 36 1818 36

18 1278 33 3436 33 1189 33 1015 33 1180 33 1673 33 1509 33 1308 33 1101 33

22 2425 31 5625 31 2361 31 2216 31 2191 31 3444 31 3035 31 2186 31 2577 31

mean 1401 33 3534 33 1487 33 1298 33 1517 33 1902 33 1712 33 1449 33 1581 33

n = 125

8 23811 23 39142 23 2604 23 25871 23 24571 23 34191 23 25701 23 23561 23 25621 23

14 42712 38 59152 38 41312 38 38721 38 40771 38 46882 38 41411 38 36501 38 41762 38

20 47882 37 65994 37 47771 37 50672 37 50552 37 52273 37 55513 37 52323 37 48902 37

25 3662 32 69294 32 3619 32 3672 32 3407 32 57152 32 54582 32 3833 32 48752 32

mean 3776 33 5839 33 3783 33 3800 33 3749 33 4762 33 4430 33 3768 32 4126 33

7
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two sets of constraints

wia + xii − 1 ≤ wta, if dti < dta

wia + xii − 1 ≤ wti, if dti ≥ dta.
(26)

Constraints (26) have an effect only if xii = wia = 1. In this case,

the closest center to site i is itself and the second closest one is a;

this means that x j j = 0 for any j �= i such that dij < dia. Thus, xtt =
0. Moreover, since dtr > max {dti, dta}, for all r ∈ N such that dir > dia

the closest and second closest centers of site t will be, respectively,

(i) i and a if dti < dta and (ii) a and i if dti ≥ dta. Therefore, in the

first case we will have that wta = 1 and in the second case that

wti = 1.

2. Following the same arguments, we can reinforce the second fam-

ily of valid inequalities of (26) as follows:

∑
a∈N: dti≥dta

dit <dia
dtr ≥max{dti ,dta},∀r:dir >dia

wia + xii − 1 ≤ wti, ∀t, i. (27)

3. Constraints (26) have been obtained for any i, a, t ∈ N with i �= a, t

and dit < dia. Now, following similar arguments, we extend these

constraints to the case where dit ≥ dia. Consider i, a, t ∈ N with i �=
a such that (i) dit ≥ dia and (ii) dtr ≥ max {dti, dta} for all r ∈ N such

that dir > dia. We have the following set of constraints:

wia + xii − 1 ≤ wta + wti. (28)

4. The last set of constraints of this family is

xii + wia − 1 ≤ wai +
∑
k∈N

dak<dai ,dik>dia

xkk ∀i, a ∈ N. (29)

Constraints (29) act as follows. If xii = wia = 1, this means that∑
di j<dia

x j j = xii = 1. Then, the second closest center to a should

be either i or a center such that the distance from i is larger than

d . In the latter case, a should be closer to that center than i.
ia
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. Conclusions

Emergency services are vulnerable to disruptions caused by large

atural disasters, terrorist attacks or sabotage. The consequences of a

ailure in this type of services are often disastrous despite their rare

ccurrence. For this reason, it is worth taking into account this as-

ect in the design phase for locating these types of facilities. More-

ver, although most of the existing papers in the literature consider-

ng reliability issues in supply chain design have avoided the capacity

onstraints, because they increase the complexity of the models, in

rder to be more realistic it is relevant to consider these constraints

lso. Therefore, in this paper we have presented several linear inte-

er formulations for the problem of locating emergency services with

apacity constraints taking into account the possibility of a failure.

ome have been improved by means of valid inequalities and prepro-

essing techniques for fixing variables. A heuristic has been devel-

ped which can also be used in the preprocessing phase of a method-

logy that we have provided to obtain an optimal solution. This latter

pproach provided the best results, reducing by more than two or-

ers of magnitude the running times for n = 45 and allowing all the

nstances tested with n ≤ 110 to be solved in under two hours.
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