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Abstract. Given n points, a symmetric dissimilarity matrix D of dimensions n × n, and an
integer p ≥ 2, the p-dispersion problem (pDP) consists of selecting a subset of exactly p
points in such a way that the minimum dissimilarity between any pair of selected points is
maximum. The pDP is 13 hard when p is an input of the problem. We propose a dec-
remental clustering method to reduce the problem to the solution of a series of smaller
pDPs until reaching proven optimality. A k-means algorithm is used to construct and refine
the clusterings along the algorithm’s execution. The proposed method can handle prob-
lems orders of magnitude larger than the limits of the state-of-the-art solver for the pDP for
small values of p.

Keywords: decremental clustering • p-dispersion problem • exact algorithm • k-means

1. Introduction
In the p-dispersion problem (pDP), we are given a set of n points, a symmetric dissimilarity matrix D �
{D(i, j) : 1 ≤ i, j ≤ n} satisfying D(i, j) ≥ 0 for every 1 ≤ i, j ≤ n and D(i, i) � 0 for every 1 ≤ i ≤ n, and an integer
p ≥ 2. The objective is to select p points from the set of n so as to maximize the minimum pairwise dissimilarity
within the selected points. The pDP, as noticed by Erkut (1990), is 13 hard when p makes part of the input
parameters (otherwise, it can be solved in O(np) time by exhaustive enumeration). We denote this problem for
given input parameters D and p (n is implicitly given in the dimensions of D) as pDP(D, p).

The pDP arises in a number of practical contexts. In location analysis, a pDP can help decide the placement
of installations in which proximity may be hazardous—such as is the case of power plants, oil storage tanks, or
ammunition—or the location of retail stores to prevent cannibalization (Kuby 1987). In multiobjective op-
timization, in the presence of multiple solutions for a given optimization problem, one may solve a pDP to
select a subset of those solutions as complementary as possible with respect to the values for each of the
objectives (Saboonchi et al. 2014). In finance, a pDP can be used as a proxy to build diversified portfolios,
which are known to provide low risk (Statman 1987).

The state-of-the-art solver for the pDP (Sayah and Irnich 2017) relies on the solution of an integer program
containing O(n + Δ) variables and constraints, where Δ is the number of distinct entries in the dissimilarity
matrix D. The model remains tractable for medium-sized problems, but memory/time limits may prevent the
solution of problems containing more than a few hundred nodes. The problem size and the large amount of
symmetries impact the model’s performance.

Our article contributes to narrowing this gap by allowing the solution of potentially much larger problems
(in terms of the number of nodes n) under the assumption that parameter p remains low (typically ≤ 10 when
going large scale). To this end, we introduce a decremental clustering scheme that, in a dynamic fashion, forms
clusters of points and constructs instances of the pDP that are smaller in size and with much better numerical
properties (most notably a much smaller amount of symmetries). These smaller instances are shown to
provide upper bounds of the original problem, and they are much more tractable than the original pDP. The
proposed iterative mechanism can scale and solve problems containing up to 100,000 nodes to proven op-
timality within reasonable time limits; this is orders of magnitude larger than the scope of previous methods.
Although clustering techniques are of common use in the development of metaheuristics, this is to the best of
our knowledge the first time that they are embedded within an exact solver for combinatorial optimization
problems arising in location analysis.

The remainder of this article is organized as follows. In Section 2, we present a review of the relevant
scientific literature related to this article. In Section 3, we present the decremental clustering framework. In
Section 4, we present the results of our computational campaign to assess the effectiveness of our method.
Finally, Section 5 concludes the paper.
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2. Literature Review
Applications of the pDP can be found in multiple fields, including location analysis, multiobjective opti-
mization, and portfolio optimization. Kuby (1987) mentions the importance of locating facilities as far as
possible from each other when they represent a potential hazard for the surrounding communities. The same
author also mentions applications in store location. If two stores of the same chain are located too close,
cannibalism may prevent them from selling at full potential. Saboonchi et al. (2014) discuss an application of
the pDP in multiobjective optimization. If the Pareto frontier of a problem contains multiple solutions, one
shall solve a pDP to find p such solutions with distinct features. The same authors also describe an application
in portfolio optimization to—given a set of potential investment opportunities—choose a subset that reduces
the closeness in terms of features between the different investment options so as to reduce the risk associated
with the portfolio. The problem of selecting diversified portfolios has been recognized as most important in
finance (Statman 1987).

The pDP is tightly related to facility location problems (FLPs) (Laporte et al. 2015). In its simplest version, an
FLP corresponds to the problem of, given a set of potential facility locations and a set of customers, selecting a
subset of potential facility locations and allocating the customers to those facilities at minimum total cost.
Facility location problems and applications have been widely studied in the scientific literature, and several
comprehensive surveys have been recently published that take into account several of the latest advances in
the field (Melo et al. 2009, Laporte et al. 2015). The pDP differs from a typical FLP model in the importance of
the notion of customer. Although they are of key importance for the right choice of the facilities in the FLP,
in the pDP they are irrelevant. Only the facility locations are of importance, and their choice must reflect the
objective function to be optimized: to maximize the minimum distance between any two chosen facilities. One
particular variant of FLP, namely the obnoxious p-median problem (OpMP) (Belotti et al. 2006), is closely
related to the pDP. In the OpMP, we are given a set of potential facilities and customers. A planner must select
the location of p facilities in such a way that the sum of the distances from each customer to its closest facility is
maximized. This problem arises in the location of hazardous or obnoxious installations.

The pDP is also related to clustering problems and more specifically, the maximin split clustering problem
(MMSCP). In the MMSCP, we are given a set N of observations, a dissimilarity matrix D, and a target number
of clusters p. One has to group the observations into p groups such that the minimum dissimilarity between
any two observations belonging to different groups is maximized. The MMSCP, unlike the pDP, is poly-
nomially solvable (Delattre and Hansen 1980).

Regarding the methodological contributions to the solution of the pDP, a handful of articles have dealt with
the problem of solving the pDP to proven optimality. Pisinger (2006) introduces a quadratic formulation for
the pDP, which is then partially solved by a series of relaxations, including semidefinite programming, and
reformulation-linearization. The bounds are embedded within a branch-and-bound framework, and the
author reports the solution of problems containing a few hundred nodes. Kuby (1987) introduces a mixed
integer linear formulation of the problem with a series of Big M coefficients. The model can be seen as a
linearization of that of Pisinger (2006), even though it was introduced almost 20 years earlier. The model is
more compact than that of Pisinger (2006) but provides much weaker upper bounds. Sayah and Irnich (2017)
introduce a novel pure binary compact formulation of the problem that the authors solve by branch and cut.
Clique-like inequalities are used to strengthen the model. Problems with up to 1,000 nodes are solved to
proven optimality as reported by the authors. The same authors also mention that linear and binary search
methods may be used with the different formulations to speed up the solution process. Such techniques have
already been studied by Chandrasekaran and Daughety (1981) and Pisinger (2006) for the pDP. For this to be
beneficial, the models need to exploit the availability of lower and upper bounds to fathom nonpromising
branches of the implicit enumeration tree.

The decremental clustering method introduced in this article is tightly related to other decremental re-
laxation mechanisms recently introduced in the literature for the solution of other minimax (or equivalently,
maximin) combinatorial optimization problems to proven optimality. In the vertex p-center problem (VPCP),
for the same input parameters n,D, and p, one has to select p points and allocate the remaining points to their
closest centers in such a way that the maximum dissimilarity between a node and its assigned center is
minimized. Chen and Chen (2009) and Contardo et al. (2019) propose decremental relaxation mechanisms to
ignore some node allocation constraints, which are only added as needed. The relaxed problems can thus be
modeled as smaller VPCPs in an iterative manner. Contardo et al. (2019) report the solution of problems
containing up to 1 million observations to proven optimality. The minimax diameter clustering problem
(MMDCP) is another problem for which the decremental relaxation mechanism has proven useful. In the
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MMDCP, given n points, a dissimilarity matrix D, and an integer k ≥ 2, the objective is to group the ob-
servations into k clusters such as to minimize the maximum intracluster dissimilarity. Aloise and Contardo
(2018) introduced a sampling mechanism to solve the MMDCP as a series of smaller MMDCPs in a dynamic
fashion, allowing the solution to proven optimality of problems containing up to 600,000 observations.

Using clustering mechanisms for finding feasible solutions for hard combinatorial optimization problems is
not something totally new in the operations research literature. Embedding a clustering scheme within a
heuristic solver has been common practice for many years and for multiple classes of problems. In vehicle
routing and scheduling, the so-called cluster-first, route-second (Solomon 1987, Bräysy and Gendreau 2005)
and route-first, cluster-second (Beasley 1983, Prins et al. 2014) paradigms are both based on combining routing
and clustering techniques so as to reduce the computational burden associated with the routing or scheduling
substructures. None of those techniques, however, provide any guarantee of optimality.

3. Decremental Clustering
In this section, we describe the decremental clustering method for the pDP. This section is subdivided in five
subsections. In the first subsection, we provide the theoretical foundations and a high-level description of the
method. The next four sections describe the different procedures of the method.

3.1. High-level Description and Theoretical Foundations
Let us introduce some notation and vocabulary first. A clustering of the n nodes, denoted by #, is a family
{Ci : i � 1 . . .m} such that (i) Ci ∩ Cj � ∅ for every 1 ≤ i< j ≤ m and (ii)

⋃{Ci : i � 1 . . .m} � {1 . . .n}. A clustering
# is said to be sufficiently refined if, for every set Ci ∈ #, D(Ci) :� max{D(u, v) : u, v ∈ Ci,u< v}< z∗, where z∗ is
the optimal value of problem pDP(D, p). For practical purposes, it is sufficient to test the refinement of a
clustering with respect to a lower bound l ≤ z∗. The correctness of the decremental clustering method is
supported on the following result.

Lemma 1. Let # be a sufficiently refined clustering of the nodes of size m. Let D# be a m ×m dissimilarity matrix where
D#(i, j) � max{D(u, v) : u ∈ Ci, v ∈ Cj}. The optimal value ζ∗ of the problem pDP(D#, p) provides an upper bound of problem
pDP(D, p).
Proof of Lemma 1. Let S � {s1 . . . sp} be an optimal solution of problem pDP(D, p) of value z∗. Because the clustering
# is sufficiently refined, it follows that no two nodes in S can be found in the same cluster C ∈ #. For every s ∈ S, let
k(s) denote the cluster index in # where node s lies. By construction of D#, we have that D(s, t) ≤ D#(k(s), k(t)) for
every two nodes s, t ∈ S, s< t, and therefore, z∗ ≤ ζ∗. □

Our method works as follows. A lower bound L ≤ z∗ is computed using a simple heuristic (using procedure
heuristicPDP(D, p); see Section 3.2). An initial upper bound U is also computed as simply the largest dis-
similarity between any two points in the data set. Using the lower bound L, we build an initial sufficiently
refined clustering # and a reduced dissimilarity matrix D# (using procedure initialClustering(D, p, L); see
Section 3.3). We initially let S,W ← ∅, where S represents the set of optimal nonsingleton clusters, and W
represents the complete optimal solution to the restricted pDP. In an iterative fashion, we use the sets S,W to
refine the current clustering, yielding a refined clustering # and dissimilarity matrix D# (using procedure
splitAndAdd(S, W,#, D#); see Section 3.4). The resulting reduced pDP is then solved, yielding an upper bound
U, and its optimal solution is used to update the sets S,W (using procedure solvePDP(D#, p); see Section 3.5), after
which the algorithm iterates. The pseudocode provided in Algorithm 1 formalizes the main steps of our algorithm.

Algorithm 1 (Decremental clustering for pDP(D, p))
Require: D, p
Ensure: Set X � {x1 . . . xp} of optimal locations

L ← heuristicPDP(D, p), U ← max{D(i, j) : 1 ≤ i< j ≤ n}
#,D# ← initialClustering(D, p, L)
S ← ∅,W ← ∅
repeat

#,D# ← splitAndAdd(S, W,#, D#)
U,W ← solvePDP(D#, p)
S ← {w ∈ W : |Cw| ≥ 2}

until S � ∅
return X ← {Cw : w ∈ W}
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The following proposition formalizes the exactness of the decremental clustering procedure.

Proposition 1. The decremental clustering method ends in at most n iterations and produces an optimal solution to problem
pDP(D, p).
Proof of Proposition 1. Let X � {x1 . . . xp} be the optimal solution of problem pDP(D#, p). If the clusters corre-
sponding to the solution X are all singletons, then this is also a feasible solution to problem pDP(D, p) and therefore,
produces a lower bound that matches with the upper bound provided by problem pDP(D#, p). Otherwise, the
method identifies at least one cluster i such that |Ci| ≥ 2 and splits it into two separate groups. This can be done at
most n times when the clusters in # become all singletons. □

In Figure 1, we illustrate by means of an example the result of applying the decremental clustering
mechanism on instance mu1979.tsp from the TSP Library (TSPLIB) for p � 5. On the left side of Figure 1, we
plot all of the 1,979 data points of the data set. On the right side of Figure 1, we plot circles representing the
different clusters at the last iteration of the method, which are only 37 (note that the circles are only for
illustrative purposes, because the clusters themselves are discrete and do not necessarily form circles). This
means that the largest reduced pDP solved by our method contained 37 points, and the associated dis-
similarity matrix was of dimensions 37 × 37; this is orders of magnitude smaller than the sizes of the original
data structures. The extreme points of the edges appearing on the right in Figure 1 represent the optimal
solution of the problem, with the solid red line representing the optimal dissimilarity of 3,845. We would like
to highlight the following key observation. Note the right-most point in the optimal solution to the problem
surrounded by other points that may be even farther from the other four points in the optimal solution.
Therefore, many of those points could be used to replace the one chosen by the algorithm, yielding an equally
good value. This is also true for the point in the bottom left corner chosen by the algorithm. It is only reasonable to
believe that the large amount of symmetries that the pDP presents is at the core of its intractability. Our algorithm
is successful not only at reducing the problem size but also, at reducing the symmetries by a large amount.

Remark 1. When unable to prove optimality, the decremental clustering mechanism can be used to find good-
quality lower bounds by solving (exactly or heuristically) a pDP restricted to the points inside the clusters
appearing in the last solution found by procedure solvePDP(D#, p). The size of this problem will typically be orders
of magnitude smaller than that of the original pDP.

3.2. Procedure heuristicPDP(D, p)
In this section, we describe a simple procedure to compute a nontrivial lower bound L of problem pDP(D, p).
This procedure is far from producing a near-optimal solution to the problem but is sufficient to feed the
procedure initialClustering(D, p, L) to be described later in Section 3.3. We execute a k-means algorithm
using the dissimilarity matrix D to construct p clusters. For each of the p centers in the cluster, we find the node
in each cluster that is closest to its center. Let us call this set of points X � {x1 . . . xp}. We compute
d ← min{D(xi, xj) : 1 ≤ i< j ≤ p}. This procedure is performed not once but multiple times for as long as the
value d keeps increasing. Indeed, we stop after 10 iterations without being able to improve this value. The
highest possible such value d is returned as lower bound L.

3.3. Procedure initialClustering(D, p, L)
In this section, we describe a two-step procedure used to build an initial sufficiently refined clustering of the n
points using the lower bound L as stopping point. In the first step, a p clustering of the nodes is found using a
k-means algorithm with k � p (similar to procedure heuristicPDP(D, p)). This clustering may not be sufficiently

Figure 1. (Color online) Decremental Clustering on Instance mu1979.tsp for p � 5
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refined, and thus, the second step is executed. This second step is iterative and goes as follows. At any given
iteration—say when the number of clusters has reached a value of m ≥ p—we check if, for every cluster, the
maximum dissimilarity between any two nodes is strictly lower than L. If yes, the current clustering # and
dissimilarity matrix D# are returned. Otherwise, we compute i∗ ← argmax{D#(i, i) : i � 1 . . .m} and execute a
k-means algorithm with k � 2 to further divide cluster Ci∗ into two clusters. The dissimilarity matrix D# is then
extended to dimensions (m + 1) × (m + 1). At this point, only the new rows and columns need to be
recomputed to alleviate the computational effort.

3.4. Procedure splitAndAdd(S, W,#, D#)
In this section, we describe a procedure that, given a clustering #, a dissimilarity matrix D#, a family S of
cluster indices with |Ci| ≥ 2 for every i ∈ S, and a set of optimal cluster locations W (with S ⊆ W), selects one
cluster from those indexed in S and splits it into two separate clusters.. The extended clustering and dis-
similarity matrix are returned. By convention, if S � ∅, the procedure returns # and D#. This can only happen
at the first iteration of the proposed mechanism and assures a correct initialization of the method. We first
compute (s∗,w∗) ← argmin{D#(s,w), s ∈ S,w ∈ W}, which is the pair of indices in S ×W with minimum
dissimilarity. This computation excludes on purpose the pairs with both indices in W \ S, because both
associated nodes are—by construction of set S—singletons. If w∗ ∈ S, then for the following, the index with
highest value of D#(u, u) is kept, with u ∈ {s∗,w∗}. For the retained index, we execute a k-means algorithm with
k � 2 similar to the one described in the previous section to split the associated cluster into two separate
clusters. We update and return the clustering # and the dissimilarity matrix D# accordingly.

3.5. Procedure solvePDP(D#, p)
In this section, we introduce a heuristic and an exact solver for problem pDP(D#, p). Without loss of generality
and to alleviate the reading, we will drop the superindex # from the dissimilarity matrix. Therefore, we will
simply denote D to refer to it. It goes without saying that we always execute the heuristic solver before any
attempt at executing the exact one.

3.5.1. Exact Solver. Our exact solver uses the pure integer formulation introduced by Sayah and Irnich (2017)
and solves it by branch and cut embedded within a double-binary search method. This formulation uses m
binary variables—one per row/column of the matrix D—to represent the location decisions and Δ binary
variables z, where Δ is the number of different values appearing in the matrix D. We refer to Sayah and Irnich
(2017) for details of the model and the associated valid inequalities.

Within the decremental clustering scheme, we exploit the existence of a monotonically decreasing upper
bound U and exploit this further within a double-binary search scheme as follows. Let us denote by
exactPDP(D, p, L, U) the solver of problem pDP(D, p) when fed with the additional lower and upper bounds L and
U. These bounds can be exploited in two aspects: first, to reduce the number of binary variables z and second,
to derive cutting planes to strengthen the model. The details of these two accelerating features can be found in
full extent in Sayah and Irnich (2017). Our double-binary search method starts with making l,u ← U. It iterates
by executing exactPDP(D, p, l, u) at every iteration. If no feasible solution exists, the quantities are updated
according to the formulas u ← l − 1, l ← l − 2t, where t is the iteration number. The problem exactPDP(D, p, l, u)
is likely to be infeasible for a few iterations. We abort this procedure as soon as one feasible solution is
identified, and its objective value is used to update the lower bound. At this point, the final quantities l,u are
used to feed another binary search method with the aim of closing the gap between l and u. For as long as u> l,
we make r ← �(l + u)/2� and execute exactPDP(D, p, r, u). If the problem is feasible, we make l ← r; otherwise,
we make u ← r − 1 and repeat.

3.5.2. Heuristic Solver. We have observed that, in a large number of iterations, the optimal value of problem
pDP(D, p) does not decrease from one iteration to the next. This type of dual degeneracy is often observed in
decremental relaxation schemes (Aloise and Contardo 2018, Contardo et al. 2019). Therefore, before resorting
to executing the exact solver described in the previous section, our heuristic scheme checks if it is possible to
select p points out of the p + 1 points identified from the previous iteration—which includes p − 1 optimal
clusters that remain untouched plus the one that has been split into two—as described in Section 3.4. If the
value of this solution equals the upper bound U from the last iteration, the associated solution is then optimal,
and there is no need to execute the exact solver.
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4. Computational Experience
In this section, we provide computational evidence of the effectiveness of the proposed method. Our method
has been coded in Julia v1.1 using the JuMP interface v18.5 with Gurobi v8.1 as multipurpose optimization
solver. It runs on an Intel Xeon E5-2637 v2 @ 3.50 GHz with 128 GB of RAM. Although this machine is capable
of executing code in parallel, for reproducibility purposes, we limit the number of threads to one. We consider
data sets coming from two different sources to assess the effectiveness of our method: (i) instances extracted
from the OR-Library introduced by Beasley (1990) for the p-median problem and containing small-sized
problems with up to 1,000 points and (ii) instances extracted from the TSPLIB data set containing between
1,621 and 104,815 points in the Euclidean plane. In both cases, only integral distances are considered. The OR-
Library data set serves for comparison purposes with other methods from the literature, whereas the TSPLIB
data set has never been used to assess the performance of p-dispersion algorithms owing to the problems’
sizes. We noticed that, in some instances, there exist points with identical coordinates. We proceed to remove
all of the redundant entries from an instance before beginning the optimization.

For each instance in the TSPLIB data set, we consider four values of p, namely p ∈ {5, 10, 15, 20}. In addition
to the algorithm described in this paper, we have also implemented a variant of Sayah and Irnich (2017)’s
algorithm embedded within the same double-binary search method described in Section 3.5. Using the
notation described in our paper, this method resorts to executing procedure solvePDP(D, p) at once. We have
executed both algorithms and given them a maximum CPU time of 86,400 seconds (one day). Our imple-
mentation of the method of Sayah and Irnich (2017) could not handle problems containing 3,000 nodes or more
(it rapidly ran out of memory), and therefore, the comparison between both methods is restricted to the
smaller ones.

In Table 1, we report the performance of our algorithm on some difficult instances from the OR-Library data
set. Namely, we consider the only six instances that the method of Sayah and Irnich (2017) could not solve
within a maximum CPU time of 30 minutes. Five of those instances remain open, because they are reportedly
not solved by earlier methods either. In Table 1, we report the optimal value (in the column labeled OPT) and
the total CPU time elapsed in seconds (in the column labeled CPU). Our method was able to prove optimality
in all six of them.

In Table 2, we report a comparison between our method and our implementation of the method of Sayah
and Irnich (2017) restricted to the problems of the TSPLIB data set containing strictly less than 3,000 nodes. We

Table 1. Method Performance on Some Hard
OR-Library Instances

Instance OPT CPU

pmed29 22 123
pmed30 15 27
pmed33 27 386
pmed34 19 55
pmed37 27 545
pmed40 23 732

Note. OPT, optimal value.

Table 2. Method Comparison on Small Instances

Instance

Sayah and Irnich (2017) This paper

p � 5 p � 10 p � 15 p � 20 p � 5 p � 10 p � 15 p � 20

UB CPU UB CPU UB CPU UB CPU UB CPU UB CPU UB CPU UB CPU

rw1621.tsp 971 206.8 558 163.2 407 474.9 339 582.8 971 16.9 558 18.6 407 21.5 339 33.1
u1817.tsp 1,535 690.6 881 1,897.4 665 7,046.3 1,077 TL 1,535 31.8 881 56.2 665 441.8 559 1,608.8
rl1889.tsp 10,166 4,475.0 5,846 3,630.3 4,478 72,237.8 4,706 TL 10,166 36.2 5,846 69.9 4,478 258.9 3,727 296.9
mu1979.tsp 3,845 1,327.9 2,159 1,100.2 1,562 1,781.7 1,229 2,085.2 3,845 30.0 2,159 30.4 1,562 35.1 1,229 38.2
pr2392.tsp 8,086 9,830.1 4,976 18,112.0 3,788 73,647.6 3,173 TL 8,086 45.0 4,976 156.2 3,788 535.2 3,150 7,489.6
d15112-modif-

2500.tsp
12,217 24,402.8 7,132 22,290.7 5,771 12,580.9 4,776 TL 12,217 49.1 7,132 134.4 5,771 191.4 4,773 733.2

Notes. Bold indicates the upper bounds (UBs) that match a proven optimal value. TL, time limit.
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report, for each method and for each value of p, the final upper bounds (in the column labeled UB in Table 2)
and the elapsed CPU times in seconds (in the column labeled CPU in Table 2). We highlight in bold characters
in Table 2 the upper bounds that match a proven optimal value. As the results show, our method is more
robust, and it is capable of solving to proven optimality all of the problems in this restricted testbed,
something that our implementation of the method of Sayah and Irnich (2017) did not. For the problems solved
by both methods, ours is always substantially faster.

In Tables 3–6, we report the results obtained by our method for the problems of the TSPLIB data set
containing 3,000 or more nodes. We report, in a separate table for each value of p, the final lower and upper
bounds (in the columns labeled LB and UB, respectively, in Tables 3–6), the CPU time in seconds (in the
column labeled CPU in Tables 3–6), the total number of iterations of the method (in the column labeled ITS in
Tables 3–6), the total number of calls to the binary search method (in the column labeled BS in Tables 3–6), the
total number of executions of the mixed-integer program (MIP) solver required to solve problem exactPDP(D, p, L, U)
(in the column labeled MIP in Tables 3–6), the final number of clusters at the final iteration (in the column

Table 3. Decremental Clustering on Large Instances for p � 5

Instance LB UB CPU ITS BS MIP C X

pcb3038.tsp 2,390 2,390 57.6 43 14 43 54 1.0
nu3496.tsp 2,462 2,462 37.1 43 5 43 50 1.0
ca4663.tsp 34,256 34,256 87.3 36 7 36 47 1.0
rl5915.tsp 9,793 9,793 199.9 94 25 94 102 1.0
rl5934.tsp 10,396 10,396 178.9 78 27 78 89 1.0
tz6117.tsp 6,116 6,116 237.6 81 29 81 94 1.0
eg7146.tsp 5,247 5,247 241.9 50 13 50 61 1.0
pla7397.tsp 374,026 374,026 347.3 89 27 89 97 1.0
ym7663.tsp 4,974 4,974 242.4 70 11 70 78 1.0
pm8079.tsp 2,078 2,078 84.6 34 11 34 41 1.0
ei8246.tsp 2,426 2,426 372.5 135 42 135 141 1.0
ar9152.tsp 13,820 13,820 190.5 47 10 47 54 1.0
ja9847.tsp 10,651 10,651 439.8 66 23 66 73 1.0
gr9882.tsp 4,295 4,295 536.3 112 30 112 118 1.0
kz9976.tsp 13,969 13,969 528.6 100 21 100 106 1.0
fi10639.tsp 6,284 6,284 485.8 73 27 73 82 1.0
rl11849.tsp 10,736 10,736 671.3 126 26 126 136 1.0
usa13509.tsp 229,767 229,767 845.0 54 7 54 63 1.0
brd14051.tsp 4,379 4,379 820.6 68 12 68 76 1.0
mo14185.tsp 4,748 4,748 890.4 50 11 50 58 1.0
ho14473.tsp 2,357 2,357 243.1 56 7 56 64 1.0
d15112.tsp 12,348 12,348 1,428.1 154 53 154 163 1.0
it16862.tsp 5,855 5,855 1,289.9 75 19 75 81 1.0
d18512.tsp 4,396 4,396 2,067.9 197 47 197 209 1.0
vm22775.tsp 5,348 5,348 2,075.3 63 9 63 69 1.0
sw24978.tsp 7,128 7,128 2,370.4 59 9 59 71 1.0
fyg28534.tsp 565 565 3,865.9 90 21 90 96 1.0
bm33708.tsp 7,094 7,094 4,732.9 87 32 87 91 1.0
pla33810.tsp 417,437 417,437 7,118.5 154 40 154 162 1.0
bby34656.tsp 623 623 5,888.5 97 23 97 104 1.0
pba38478.tsp 698 698 7,100.7 75 16 75 87 1.0
ch71009.tsp 22,263 22,263 15,256.4 84 24 84 91 1.0
pla85900.tsp 553,829 553,829 41,421.4 142 44 142 151 1.0
sra104815.tsp 1,066 1,066 71,588.8 232 56 232 241 1.0
Optimal 34/34
Average (solved) 5,116 89 23 178 97
Average (unsolved) —

Notes. The final lower and upper bounds are in the columns labeled LB andUB, respectively. The CPU times in seconds are in the column labeled
CPU. The total numbers of iterations of themethod are in the column labeled ITS. The total numbers of calls to the binary searchmethod are in the
column labeled BS. The total numbers of executions of the MIP solver required to solve problem exactPDP(D, p, L, U) are in the column labeled
MIP. The final numbers of clusters at the final iteration are in the column labeled C, and the average numbers of nodes in each cluster appearing
in the optimal solution of the last successful call to procedure solvePDP(D#, p) are in the column labeled X.Wemark in boldwhenever a problem
is solved to proven optimality. In the last three rows, we report the total number of problems solved to proven optimality as well as averages for
the reported data. The averages are computed restricted to the problems solved to proven optimality, except for the average of column X that
makes sense only for the unsolved problems.
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labeled C in Tables 3–6), and the average number of nodes in each cluster appearing in the optimal solution of
the last successful call to procedure solvePDP(D#, p) (in the column labeled X in Tables 3–6). The lower bound
reported in the column labeled LB in Tables 3–6 is computed following the observations raised in Remark 1.
When a problem is not solved to proven optimality, the optimal clusters associated with the last successful
execution of procedure solvePDP(D#, p) are considered, and one point in each such cluster is selected ran-
domly. We perform several random picks while the associated dispersion keeps improving. Once again, we
mark in bold characters in Tables 3–6 whenever a problem is solved to proven optimality. In the last three rows in
Tables 3–6, we report the total number of problems solved to proven optimality as well as averages for the
reported data. The averages are computed restricted to the problems solved to proven optimality, except for
the average of column X in Tables 3–6 that makes sense only for the unsolved problems.

As the results show, our method is robust for solving pDPs for small values of p. Only 1 in 68 problems
could not be solved within the time limit of one day for p ≤ 10. For larger values of p, the method is less robust
but still capable of handling some very large problems. This behavior is not new, and it has already been

Table 4. Decremental Clustering on Large Instances for p � 10

Instance LB UB CPU ITS BS MIP C X

pcb3038.tsp 1,414 1,414 403.2 448 208 448 471 1.0
nu3496.tsp 1,524 1,524 46.2 128 43 128 147 1.0
ca4663.tsp 20,267 20,267 112.7 110 49 110 127 1.0
rl5915.tsp 6,160 6,160 307.2 285 125 285 310 1.0
rl5934.tsp 5,951 5,951 614.7 397 181 397 431 1.0
tz6117.tsp 3,818 3,818 313.3 292 122 292 316 1.0
eg7146.tsp 3,187 3,187 202.2 89 23 89 112 1.0
pla7397.tsp 238,412 238,412 460.9 245 70 245 269 1.0
ym7663.tsp 2,743 2,743 276.9 129 36 129 146 1.0
pm8079.tsp 1,347 1,347 125.7 118 34 118 135 1.0
ei8246.tsp 1,500 1,500 444.2 303 108 303 328 1.0
ar9152.tsp 8,117 8,117 260.2 196 62 196 223 1.0
ja9847.tsp 5,405 5,405 439.6 126 31 126 137 1.0
gr9882.tsp 2,633 2,633 715.5 328 103 328 346 1.0
kz9976.tsp 8,607 8,607 699.9 284 115 284 313 1.0
fi10639.tsp 3,767 3,767 714.9 310 108 310 332 1.0
rl11849.tsp 6,243 6,243 1,344.3 436 172 436 470 1.0
usa13509.tsp 133,500 133,500 1,479.6 363 143 363 390 1.0
brd14051.tsp 2,465 2,465 1,433.7 432 175 432 446 1.0
mo14185.tsp 2,803 2,803 1,182.0 247 104 247 267 1.0
ho14473.tsp 1,427 1,427 388.2 267 123 267 292 1.0
d15112.tsp 7,319 7,319 4,423.0 682 315 682 707 1.0
it16862.tsp 3,407 3,407 1,379.0 170 45 170 188 1.0
d18512.tsp 2,599 2,599 6,114.3 798 380 798 825 1.0
vm22775.tsp 2,789 2,789 2,404.1 162 47 162 180 1.0
sw24978.tsp 4,196 4,196 4,175.5 371 149 371 401 1.0
fyg28534.tsp 340 340 72,442.0 1,292 605 1,292 1,323 1.0
bm33708.tsp 3,867 3,867 6,339.8 261 83 261 281 1.0
pla33810.tsp 262,557 262,557 48,718.0 831 409 831 863 1.0
bby34656.tsp 377 377 15,946.9 1,049 470 1,049 1,086 1.0
pba38478.tsp 407 407 12,191.9 694 300 694 727 1.0
ch71009.tsp 14,353 14,353 32,936.8 580 227 580 608 1.0
pla85900.tsp 268,347 349,188 TL 768 391 768 801 139.8
sra104815.tsp 669 669 84,254.1 656 290 656 690 1.0
Optimal 33/34
Average (solved) 9,191 396 165 509 421
Average (unsolved) 139.8

Notes. The final lower and upper bounds are in the columns labeled LB andUB, respectively. The CPU times in seconds are in the column labeled
CPU. The total numbers of iterations of themethod are in the column labeled ITS. The total numbers of calls to the binary searchmethod are in the
column labeled BS. The total numbers of executions of the MIP solver required to solve problem exactPDP(D, p, L, U) are in the column labeled
MIP. The final numbers of clusters at the final iteration are in the column labeled C, and the average numbers of nodes in each cluster appearing
in the optimal solution of the last successful call to procedure solvePDP(D#, p) are in the column labeled X.Wemark in boldwhenever a problem
is solved to proven optimality. In the last three rows, we report the total number of problems solved to proven optimality as well as averages for
the reported data. The averages are computed restricted to the problems solved to proven optimality, except for the average of column X that
makes sense only for the unsolved problems. TL, time limit.
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observed and reported for other relaxation-based methods for minimax and maximin combinatorial opti-
mization problems (Aloise and Contardo 2018, Contardo et al. 2019); it seems to be related to the dual
degeneracy occurring when a larger number of clusters can be rearranged from one iteration to the next to find
solutions of the same cost. This type of degeneracy occurs at a much smaller scale when the target number of
points p is small. It remains an open question how to mitigate the effect of this dual degeneracy when p goes
large scale. The averages reported across Tables 3–6 also show that, as the value of p increases, the number of
iterations and the number of MIPs required to solve a problem to proven optimality increase, which impacts
negatively on the performance of our method and makes it less robust to scale with p. Once again, this
behavior is not totally new and has already been observed for other relaxation-based methods for related
problems (see, for instance, Aloise and Contardo 2018 and Contardo et al. 2019). In addition, the quality of the
lower bound when optimality is not proven is extremely sensitive to the sizes of the final optimal clusters (as
reported under column X in Tables 3–6). We would like to remark that the largest instance considered in this
study, namely problem sra104815.tsp, would require more than 40 GB of RAM if the full dissimilarity matrix

Table 5. Decremental Clustering on Large Instances for p � 15

Instance LB UB CPU ITS BS MIP C X

pcb3038.tsp 1,075 1,075 4,751.6 783 383 783 823 1.0
nu3496.tsp 1,092 1,092 72.7 274 121 274 311 1.0
ca4663.tsp 15,467 15,467 124.5 191 52 191 220 1.0
rl5915.tsp 4,544 4,544 16,074.0 994 539 994 1,031 1.0
rl5934.tsp 4,576 4,576 3,379.5 697 339 697 731 1.0
tz6117.tsp 2,887 2,887 2,129.6 677 304 677 712 1.0
eg7146.tsp 2,377 2,377 189.4 120 27 120 151 1.0
pla7397.tsp 183,522 183,522 736.2 441 148 441 473 1.0
ym7663.tsp 1,987 1,987 375.1 273 90 273 303 1.0
pm8079.tsp 941 941 175.0 253 98 253 289 1.0
ei8246.tsp 1,113 1,113 4,202.0 856 410 856 904 1.0
ar9152.tsp 6,371 6,371 387.5 346 140 346 382 1.0
ja9847.tsp 3,907 3,907 520.3 210 50 210 233 1.0
gr9882.tsp 1,969 1,969 765.5 483 181 483 523 1.0
kz9976.tsp 6,360 6,360 764.8 381 155 381 426 1.0
fi10639.tsp 2,806 2,806 3,049.2 690 357 690 722 1.0
rl11849.tsp 4,719 4,719 9,661.4 932 489 932 965 1.0
usa13509.tsp 99,689 99,689 9,177.5 700 362 700 735 1.0
brd14051.tsp 1,862 1,862 1,979.7 558 254 558 603 1.0
mo14185.tsp 2,125 2,125 1,596.1 502 222 502 540 1.0
ho14473.tsp 1,104 1,104 466.5 420 188 420 457 1.0
d15112.tsp 5,907 5,907 9,964.9 888 464 888 931 1.0
it16862.tsp 2,468 2,468 1,786.9 405 98 405 442 1.0
d18512.tsp 2,109 2,109 13,913.0 1,088 554 1,088 1,130 1.0
vm22775.tsp 2,237 2,237 2,626.8 331 72 331 365 1.0
sw24978.tsp 3,149 3,149 8,416.1 884 386 884 928 1.0
fyg28534.tsp 276 276 13,926.6 1,044 500 1,044 1,103 1.0
bm33708.tsp 2,876 2,876 16,545.6 1,015 452 1,015 1,053 1.0
pla33810.tsp 164,269 209,038 TL 1,007 530 1,007 1,069 42.87
bby34656.tsp 299 299 24,939.4 1,221 615 1,221 1,268 1.0
pba38478.tsp 311 311 30,705.1 1,324 653 1,324 1,368 1.0
ch71009.tsp 10,845 10,845 53,997.2 1,094 518 1,094 1,134 1.0
pla85900.tsp 233,189 280,536 TL 678 383 678 736 82.67
sra104815.tsp 242 522 TL 891 446 891 961 194.8
Optimal 31/34
Average (solved) 7,658 648 297 675 686
Average (unsolved) 106.8

Notes. The final lower and upper bounds are in the columns labeled LB and UB, respectively. The CPU times in seconds are in the column
labeled CPU. The total numbers of iterations of the method are in the column labeled ITS. The total numbers of calls to the binary search
method are in the column labeled BS. The total numbers of executions of the MIP solver required to solve problem exactPDP(D, p, L, U) are in
the column labeled MIP. The final numbers of clusters at the final iteration are in the column labeled C, and the average numbers of nodes in
each cluster appearing in the optimal solution of the last successful call to procedure solvePDP(D#, p) are in the column labeled X. We mark
in bold whenever a problem is solved to proven optimality. In the last three rows, we report the total number of problems solved to proven
optimality as well as averages for the reported data. The averages are computed restricted to the problems solved to proven optimality,
except for the average of column X that makes sense only for the unsolved problems. TL, time limit.
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had to be stored in RAM, let alone to load and solve the associated integer program required to execute the
method of Sayah and Irnich (2017). Our method avoids this storage and never required more than 2 GB to run
even for the largest problems.

5. Concluding Remarks
We have introduced a decremental clustering method for the solution of the pDP. Our method works by
building an initial clustering of the nodes and refining this clustering in an iterative fashion. In each iteration, a
restricted pDP is solved to compute upper bounds of the problem. In practice, for small values of p, we are
capable of proving optimality within a few iterations for problems containing up to 100,000 nodes; this is
orders of magnitude larger than the limits of previous methods. To the best of our knowledge, this is the first
time that a clustering technique is embedded within an exact solver for location analysis. As an avenue of
further research, we believe that the algorithm could be adapted to solve variants of the pDP or other location
problems with a potential to benefit from clustering techniques. Although this potential is well understood in

Table 6. Decremental Clustering on Large Instances for p � 20

Instance LB UB CPU ITS BS MIP C X

pcb3038.tsp 898 898 20,582.2 1,056 573 1,056 1,123 1.0
nu3496.tsp 926 926 71.4 280 133 280 325 1.0
ca4663.tsp 12,376 12,376 159.6 297 98 297 343 1.0
rl5915.tsp 3,887 3,887 20,738.6 1,002 572 1,002 1,051 1.0
rl5934.tsp 3,817 3,817 26,819.2 1,092 581 1,092 1,151 1.0
tz6117.tsp 2,401 2,401 6,850.7 998 440 998 1,056 1.0
eg7146.tsp 1,833 1,833 279.6 195 58 195 240 1.0
pla7397.tsp 148,000 148,000 1,294.7 633 217 633 685 1.0
ym7663.tsp 1,578 1,578 1,486.7 629 265 629 667 1.0
pm8079.tsp 805 805 250.0 491 181 491 532 1.0
ei8246.tsp 939 939 13,253.2 1,071 583 1,071 1,138 1.0
ar9152.tsp 5,019 5,019 6,108.3 891 420 891 945 1.0
ja9847.tsp 3,055 3,055 596.9 440 101 440 478 1.0
gr9882.tsp 1,625 1,625 1,031.6 611 239 611 657 1.0
kz9976.tsp 5,230 5,230 7,431.4 961 434 961 1,015 1.0
fi10639.tsp 2,322 2,322 17,607.8 1,046 589 1,046 1,103 1.0
rl11849.tsp 3,538 4,005 TL 1,356 697 1,356 1,394 9.15
usa13509.tsp 79,495 83,894 TL 1,233 630 1,233 1,295 2.15
brd14051.tsp 1,569 1,569 6,674.7 975 448 975 1,031 1.0
mo14185.tsp 1,746 1,746 9,122.8 1,029 489 1,029 1,086 1.0
ho14473.tsp 914 914 6,317.5 880 472 880 937 1.0
d15112.tsp 4,494 4,944 TL 1,278 709 1,278 1,338 6.1
it16862.tsp 2,100 2,100 1,921.2 504 192 504 555 1.0
d18512.tsp 1,624 1,769 TL 1,336 738 1,336 1,402 7.35
vm22775.tsp 1,817 1,817 3,166.9 613 199 613 656 1.0
sw24978.tsp 2,681 2,681 23,601.8 1,285 576 1,285 1,343 1.0
fyg28534.tsp 209 230 TL 1,508 869 1,508 1,564 13.75
bm33708.tsp 2,247 2,394 TL 1,366 654 1,366 1,428 10.65
pla33810.tsp 142,534 178,914 TL 796 513 796 868 40.45
bby34656.tsp 226 250 TL 1,486 829 1,486 1,564 16.6
pba38478.tsp 234 267 TL 1,567 811 1,567 1,605 19.2
ch71009.tsp 9,311 9,311 56,126.0 1,409 597 1,409 1,462 1.0
pla85900.tsp 177,323 241,559 TL 619 376 619 686 87.2
sra104815.tsp 347 437 TL 858 434 858 963 311.55
Optimal 23/34
Average (solved) 10,065 799 368 739 851
Average (unsolved) 47.6

Notes. The final lower and upper bounds are in the columns labeled LB andUB, respectively. The CPU times in seconds are in the column labeled
CPU. The total numbers of iterations of themethod are in the column labeled ITS. The total numbers of calls to the binary searchmethod are in the
column labeled BS. The total numbers of executions of the MIP solver required to solve problem exactPDP(D, p, L, U) are in the column labeled
MIP. The final numbers of clusters at the final iteration are in the column labeled C, and the average numbers of nodes in each cluster appearing
in the optimal solution of the last successful call to procedure solvePDP(D#, p) are in the column labeled X.Wemark in boldwhenever a problem
is solved to proven optimality. In the last three rows, we report the total number of problems solved to proven optimality as well as averages for
the reported data. The averages are computed restricted to the problems solved to proven optimality, except for the average of column X that
makes sense only for the unsolved problems. TL, time limit.
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the scientific literature on nonsupervised learning and heuristics for combinatorial optimization, their use
within exact methods is rather new, and its full potential has yet to be understood in more depth.
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