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between a customer and its closest supplier is minimized. Here, we generalize this
problem to the case where each customer possibly needs service from more than one
supplier. Moreover, the selected suppliers should not be too close to each other, i.e.,

Keywords: they need to be dispersed. For the classical k-supplier problem, and its special case the
k-supplier k-center problem, there is a 3- and a 2-approximation respectively. We show that these
k-center guarantees can also be given in the case when customers need service from multiple
Approximation algorithms suppliers, without imposing dispersion constraints. If we generalize the problem to

Inapproximability

Dispersion the dispersed case, without imposing neighboring constraints, we get inapproximability

results depending on the measure of dispersion. We also show (almost) matching upper
bounds. Finally, we show that adding both the neighbor requirement and the dispersion
requirement leads to an inapproximable problem.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we discuss the approximability of a generalization of the k-supplier problem [10]. In this problem, we
are given a metric space containing a set of customers and suppliers. We can choose k suppliers, and each customer will
be served by its closest supplier. The goal is to find a set of suppliers that minimizes the maximum distance between
any customer and its closest supplier. A special case of the k-supplier problem in which there is no distinction between
suppliers and customers, i.e., every point in the metric space is a customer, and at each point a supplier can be selected,
is the well-known k-center problem [9]. Here, the chosen suppliers are usually referred to as centers.

We generalize the k-supplier problem in two ways. We consider the generalization in which customer v needs service
from multiple suppliers, say p,. These neighbor requirements may differ over the customers. The objective now becomes
the maximum distance between any customer v and its p,-closest supplier. We also generalize the problem by adding a
dispersion requirement, i.e., the distance between any two suppliers should be large enough. These two generalizations
result in the dispersed p-neighbor k-supplier and k-center problem, which will be formally defined in the next section.
In this paper, we study to what extend the approximability results for the k-supplier (and k-center) problem can be
generalized when neighbor or dispersion requirements are added.

The problem originates from the following military application. Suppose we are going to deploy several units of special
forces. There are some predefined locations at which a unit can be placed. There is also a set of potential targets, from
which we will engage exactly one. To successfully engage a target, a predefined number of units is needed at the same
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Fig. 1. Illustration of an instance of the dispersed p-neighbor k-supplier problem, and feasible solutions satisfying increasing dispersion requirements,
when we can choose at most five suppliers. There is a dotted line between any customer v and its p, closest suppliers. The objective value is equal

to the maximum distance taken over all dotted lines.

Table 1

Overview of results on upper bounds (UB) and lower bounds (LB) on the approximability.

Non-dispersed Dispersed
k-center k-supplier k-center k-supplier
1-neighbor UB 2 [56,9] 3 [10] max{2, A} (Theorem 4) max{5, A + 1} (Theorem 7)
LB 2 [11] 3 [10] A (Theorem 5) A+ 1 (Theorem 8)
p-neighbor UB 2 [2,16] 3 [2,16] Inapproximable (Theorem 11)
p-neighbor UB 2 (Theorem 1) 3 (Theorem 3)

time. The required number of units may differ over the targets. We want to place the units such that the time (assuming
the units travel at unit speed) to successfully engage any target is minimized. However, if units are placed on locations
close to each other, these units may become a target for the enemy. Therefore, the units should also be dispersed,
i.e,, the distance between any pair of units should be large enough. We can relate this application with the dispersed
p-neighbor k-supplier problem, by interpreting the locations at which the units can be placed as suppliers, and the targets
as customers.

An illustration of an instance and feasible solutions is given in Fig. 1, where dots represent suppliers, and squares
represent customers. The number in a square represents the number of suppliers that is needed to serve a customer. In
Fig. 1, we illustrate feasible solutions (in gray) that satisfy increasing dispersion requirements. Note that the time needed
to serve a customer is determined by the supplier that is farthest (out of the chosen suppliers that will serve this customer)
from the customer. Here, it is clear that increasing the dispersion requirement increases the objective value.

The novelty of the problems considered in this paper lies in two elements. Firstly, the dispersion requirement has not
been considered. Secondly, we consider the case that the number of required suppliers differs per customer. In this paper,
we investigate the consequences of these elements on the approximability of the k-supplier and the k-center problem.
Here, an «-approximation algorithm will, for each instance, produce a feasible solution that has an objective value that
is within a factor « of the optimal value for the instance. It also has to run in polynomial time. Before giving formal
definitions (Section 2) and the main results, we give a brief overview of our results and relevant literature.

1.1. Our results

In Table 1, we show our results on approximation algorithms and inapproximability for problem variations considered
in this paper. In Section 3, we show a 2-approximation for the p-neighbor k-center problem, and a 3-approximation for the
p-neighbor k-supplier problem. This is done by generalizing the results in [2] for the p-neighbor k-center and k-supplier
problem, in which the neighbor requirement is equal for all points and customers respectively. Here, we note that in the
p-neighbor k-center problem the objective is the maximum distance, taken over all points without a center, from a point
to a center. If the objective is the maximum distance, taken over all points, from a point to a center, we speak of the
p-reliable k-center problem, for which we also give a 2-approximation (Theorem 2).

Then, in Section 4, we investigate the approximability of the dispersed k-center and k-supplier problem. We show lower
bounds depending on A, the dispersion requirement, and also give approximation algorithms with (almost) matching
upper bounds. Finally, in Section 5, we show that for the dispersed p-neighbor k-center problem, it is NP-complete
to decide whether there exists a feasible solution. As a corollary, the problem is inapproximable. This also settles the
approximability of the harder problem variations.

We also consider the dispersed k-median problem (Section 4.3). In this problem, the objective is the average distance
of a point to its closest center. For the dispersed k-median problem, we show lower bounds on the approximability of
1.36, 2, and % + %A (Theorems 9 and 10). For simplicity, the results for the p-reliable k-center problem and the dispersed
k-median problem are omitted in Table 1.
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1.2. Related work

The k-center problem is a classical problem in combinatorial optimization. For clarity, we emphasize here that we
consider the discrete version, and that we assume that the distances satisfy the triangle inequality. The problem is
NP-hard, even on Euclidean instances [18]. For general metrics, there are several 2-approximations, for example the ones
obtained by Feder and Greene [5], Gonzalez [6], and Hochbaum and Shmoys [9]. It was shown in [11] that there is no
«o-approximation algorithm for & < 2, unless P = NP.

For the k-supplier problem, Hochbaum and Shmoys [10] gave a 3-approximation, and showed that this result is also
tight. Recently, Nagarajan et al. [19] improved the approximation guarantee on Euclidean instances to 1+ +/3. This was
the first algorithm with a guarantee below 3. For the k-center problem in the Euclidean case the best approximation
guarantee is still equal to 2.

The k-median problem is NP-hard [13], even for Euclidean instances [18]. The approximability of the k-median has not
been settled yet. Currently, the best guarantee is given by Byrka et al. [1], who designed a (2.675 + €)-approximation, for
any given € > 0. It was shown by Jain and Vazirani [12] that the k-median problem cannot be approximated within a
factor 1+ 2/e.

The p-neighbor k-center problem was considered first by Krumke [17]. He gave a 4-approximation by generalizing
the ideas of Hochbaum and Shmoys [10]. Later, Chaudhuri et al. [2] improved this to a 2-approximation. They also gave
a 2-approximation for the p-reliable k-center problem, and a 3-approximation for the p-neighbor k-supplier problem.
Independently, Khuller et al. [ 16] gave a 2-approximation for the p-neighbor k-center problem, a 3-approximation for the
p-reliable k-center problem, and a 3-approximation for the k-supplier problem.

A related problem we like to mention is the (discrete) k-dispersion problem. Here, one has to place k units in a metric
space such that the dispersion, i.e., the distance between any two units, is maximized. The problem was shown to be
NP-hard in both the general and the Euclidean case by Erkut [4]. Both Tamir [21] and Ravi et al. [20] gave an algorithm
that produces a solution with a dispersion of at least half the optimal dispersion. Ravi et al. [20] also showed that
this result is tight. Grigoriev et al. [7] consider the problem of maximizing the number of placed units given a certain
dispersion requirement, where units can also be placed along an edge. They consider the computational complexity for
small dispersion requirements.

2. Formal definitions

In this section, we will formally define our problem variations. We will also mention graph-theoretical notions that
will be needed in this article.

The input of the dispersed p-neighbor k-supplier problem consists of a metric space containing a set of suppliers S and
set of customers C. We denote by d(u, v) the distance between point u and v. We assume that the minimum non-zero
distance is equal to 1, and that the distances satisfy the triangle inequality. Customer v € C has a neighbor requirement
of p,, i.e., we need p, suppliers to serve customer v. The input also contains an integer k, representing the maximum
number of suppliers that can be chosen, and a rational number A > 1, the dispersion requirement. A feasible solution is
a subset of suppliers of size at most k and at least max, p, such that the distance between any two chosen suppliers is
at least A. The objective is the maximum distance, over all v, between a customer v and its p,-closest chosen supplier.
Our goal is to minimize this objective.

Note that instances with a minimum non-zero distance unequal to 1 can be scaled such that the minimum non-zero
distance becomes 1, without influencing the approximation guarantee. In this case, A can be interpreted as the normalized
dispersion requirement. Also note that it is easy to check whether the optimal value, denoted by Oprt, equals 0. Hence,
we assume in the remainder of the paper that OpT > 1.

When the neighbor requirement is equal for all customers, say p, we refer to this problem as the dispersed p-neighbor
k-supplier problem. In case all neighbor requirements equal 1, we refer to the problem as the dispersed k-supplier
problem. If we drop the dispersion constraint, we refer to the problem as the p-neighbor k-supplier problem.

In the dispersed p-neighbor k-center problem there is no distinction between suppliers and customers. The points in the
metric space are now referred to as vertices, and V is the set of all vertices. Any vertex in the metric space can be chosen
as a center. A feasible solution is a set of at most k and at least max, p, centers such that the distance between any two
centers is at least A. The objective is the maximum distance, over all v, between any vertex v, that is not a center, and its
py-closest center. Our goal is to minimize this objective. Special cases with respect to neighbor or dispersion requirement
are addressed similarly as for the dispersed p-neighbor k-supplier problem. We also discuss the approximability of the
p-reliable k-center problem. In this problem, also the centers are considered in the objective value, i.e., the objective is
the maximum distance, over all v, between any vertex v and its p,-closest center. For vertices at which a center is placed,
the closest center of this vertex is the center placed at itself.

We also briefly discuss the dispersed k-median problem in Section 4.3. Here, we have the same input as in the dispersed
k-center problem. The objective is now the average distance between a vertex and its nearest center, and our goal is to
minimize this value.

Finally, we like to mention some basic graph-theoretical notions that will be used in this paper. For a given graph
G = (V,E), we say that a set S C V is independent if (u, v) ¢ E for all u,v € S. A maximum independent set is an
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independent with the highest possible number of vertices. A maximal independent set is an independent set that cannot
be extended by adding vertices, i.e., for all u ¢ S there is some v € S such that (u, v) € E. We say thatasetS C Vis a
vertex cover if at least one of u and v is in S whenever (u, v) € E. Note that when S is an independent set in G, then V' \ S
is a vertex cover in G. We say that a set S C V is a dominating set if for all v, either v € S or there is some u € S such
that (u, v) € E. Note that, by definition, a maximal independent set is also a dominating set.

3. The p-neighbor k-center and k-supplier problem

Here, we give a 2-approximation for the p-neighbor and the p-reliable k-center problem and a 3-approximation for the
p-neighbor k-supplier problem by adjusting the algorithms presented in [2]. Recall that the objective of the p-neighbor
k-center problem is the maximum distance, over all v, between any vertex v, that is not a center, and its p,-closest
center. For the p-reliable k-center problem the objective is the maximum distance, over all v, between any vertex v and
its p,-closest center.

3.1. The p-neighbor k-center problem

We first give some essential definitions. For the algorithm, it is convenient to consider our metric space as a weighted
graph G = (V, E), where edge e € E has weight w,. Rename the edges such that wy < w; < --- < wjg. Now, define G; as
the graph containing only edges with weight at most w;. Further, for a given graph G, define the square of the graph G2
as the graph that contains an edge (u, v) whenever there is a path between u and v in G of at most two edges.

We define p-dominating and p-independent sets as follows. We say that a set S C V is p-dominating if every vertex not
in S satisfies the neighbor requirement, i.e., for all v ¢ S, degs(v) > p,. We say that a set S C V is p-independent if every
vertex in S has a number of neighbors in S that is less than its neighbor requirement, i.e., for all v € S, degg(v) < p, — 1.

We first prove how the size of p-dominating sets in G relates to the size of p-independent sets in G and G2. These will
be used to obtain a 2-approximation. The proofs are generalizations of proofs in [17] and [2]. Hence, the same structure
is used for convenience.

Lemma 1. If G has a p-dominating set D of size |D|, then for any p-independent set I in G*> we have |I| < |D|.

Proof. Let D be a p-dominating set in G, and I a p-independent set in G2. If I € D, then we clearly have |I| < |D|. Thus,
we assume this is not the case, and we let v be a vertex in [ \ D.

Let T; be the vertices in D that are neighbors of v, and T, the vertices in V \ D that are neighbors of the vertices in T;.
Note that v is contained in T,. Further, let T = T; U T». Since each vertex in T is either a neighbor of v in G or v itself,
the set I contains at most p, vertices from T. On the other hand, D contains at least p, vertices from T.

Consider the graph G, which is the graph induced by V \ T. The set D\ T is a p-dominating set in G'. To see this,
consider an arbitrary vertex u in V \ T that is not contained in D \ T. Since D is a p-dominating set in G, u has at least p,
neighbors in D. None of these neighbors can be contained in T, because otherwise u would be contained in T,, and hence
u would not be contained in V \ T.

At the same time, I \ T is clearly a p-independent set in (G')2. Thus, we can repeat the above construction with
p-dominating set D \ T and p-independent set I \ T, until we obtain that there is no vertex in the residual graph that
belongs to the p-independent set but not to the p-dominating set. Since at each step the number of vertices deleted from
I was at most the number of deleted vertices from D, we have that |[I| < |[D|. O

Lemma 2. Given a graph G = (V, E) and an integral vector p, with 1 < p, < |V| — 1 for all v, there exists a p-independent
set S C V that is also p-dominating.

Proof. Let S be a p-independent set that is not p-dominating. In particular, let z € V \ S be such that degg(z) = q < p;.
Let U be the neighbors of z in S that are maximal in S with respect to p-independence, i.e., for all u € U, we have
degs(u) = py — 1. If U # &, we let G[U] be the subgraph induced by U in G. Let I be a maximal independent set in G[U].
Since a maximal independent set is also a dominating set, we know that the set S\ I U {z} is p-independent. If U = @, we
know that the set S U {z} is p-independent.

Define the potential of a p-independent set S as ¥ (S) = > ves Pv — |E(G[S])|, where E(G[S]) denotes the edge set of
the subgraph induced by S in G. Since

Yob= D p=) p-p

ves veS\IU{z} vel

|E(GISD)| — [EGIS\ TU{2}])| = ) (p, — 1) — (g — II])

vel

we have

Y(S)—y(S\1U{z})=q—p, <0
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Given any p-independent set that is not p-dominating we can obtain another p-independent set that has a strictly larger
potential. Therefore the p-independent set with maximum potential is also p-dominating. O

The proof of the lemma above yields a polynomial time algorithm for computing a p-independent set that is also
p-dominating. We start with an arbitrary p-independent set and if it is not p-dominating we select a vertex z that has
less than p, neighbors in the set. Then we delete a maximal independent set of the neighbors of z which are maximal
with respect to p-independence, and add z to the set. Since the potential is at least 0 and at most >, Pv, we will obtain a
p-independent set that is also p-dominating in at most >, by steps. Since ), p, < [V, this algorithm runs in polynomial
time.

Let G; be the first subgraph in the sequence Gy, G, Gs, ... for which the p-independent set found in Gl-2 by using the
algorithm above is of cardinality at most k. It follows from the triangle inequality that the longest edge in G? is of length
at most 2w;. Hence, we have a solution for the p-neighbor k-center problem with value at most 2w;. Since in G,.{] we
found a p-independent set of cardinality more than k, it follows from Lemma 1 that G;_; does not have a p-dominating
set of size at most k. Hence, the optimal value is at least w;, which results in the next theorem.

Theorem 1. There is a 2-approximation for the p-neighbor k-center problem.
3.2. The p-reliable k-center problem

For the p-reliable k-center problem, we slightly adjust the definition of a p-dominating set in such a way that also
vertices in the set need to be dominated. Note that a vertex can also dominate itself in this problem. We say that a set
S C V is p-dominating if every vertex satisfies the neighbor requirement, i.e., for all v ¢ S, degs(v) > p,, and for all v € S,
degs(v) > p, — 1. We need the following lemmas to state our algorithm, and to analyze its performance.

Lemma 3. If G has a p-dominating set of size D|, then any independent set I in G*> has )", _; p, < ID|.

Proof. Let I be an independent set in G2. Each vertex in G can dominate at most one vertex of I. Hence, any p-dominating
set in G has size at least ), _, p,. Since G has a p-dominating set of size |D|, we have ) _, p, < |D|. O

Lemma 4. There exists a p-dominating set S such that any vertex v € S with degg(v) > p, — 1 has a neighbor u € S with
degs(u)=p, — 1.

Proof. For the sake of contradiction, let S be a p-dominating set, and z a vertex in S, not satisfying the lemma. Then,
degs(z) > p, — 1 and degg(u) > p, for every u € S that is a neighbor of z. Let U be the neighbors of z not in S that are
tight with respect to their neighbor requirement, i.e., for all u € U, we have degg(u) = p,. If U # ¢, let I be a maximal
independent set in G[U]. Since I is a dominating set in G[U], the set S U1\ {z} is p-dominating. If U = @, then S \ {z} is
p-dominating.

Define the potential of a p-dominating set S as ¥ (S) = > ves(Po — 1) — [E(G[S])]. Since

Y=Y p-1=) (po—1)—p.—1)

veSUl\{z} ves vel
E(GIS UT\ {z})] — [EGISDI = ) (pe — 1) —q
vel

we have

Y UIN{z}) —¥(S)=q—(p.—1)>0

Given any p-dominating set that does not satisfy the lemma, we can obtain a p-dominating set with strictly larger
potential. Hence, the p-dominating set with maximum potential satisfies the lemma. 0O

Lemma 5. Any p-dominating set S satisfying the statement in Lemma 4 contains an independent set with > ver Pv = IS

Proof. Arbitrarily select a vertex z from S with a degree in S of at most p, — 1, and include it in the independent set I.
Delete the vertex and its neighbors, and proceed in this manner, until no such vertex exists anymore. Since any vertex
v with degree at least p, has a neighbor u with degree p, — 1, we stop only when we have deleted all vertices. When
adding a vertex z to the independent set, we delete at most p, vertices from S. Hence, the independent set I satisfies

2Py z ISl O

Our algorithm starts with a p-dominating set that may not satisfy the statement in Lemma 4. By applying the operations
mentioned in the proof, we obtain a p-dominating set that does satisfy the statement. Since in each step the potential
strictly increases, and since the potential is at least —|E| and at most ), _,,(p, — 1), the maximum number of steps needed
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isatmost Y _,(p,—1)+E| < [V|? 4 |E|. Hence, this procedure only takes polynomial time. If the resulting p-dominating
set contains more than k vertices, we apply the procedure from Lemma 5 to obtain an independent set  with >, _; p, > k.
Now, let G; be the first subgraph in the sequence Gi, Gy, ... for which the p-dominating set in Giz, found by the
procedure above, is of size at most k. Then, we have a feasible solution for the p-reliable k-center problem with value
at most 2w;. Since we found an independent set I with Y~ _, p, > k in G2 ,, it follows from Lemma 3 that there is no
p-dominating set in G;_; of size at most k. Hence, the optimal value is at least w;, and we obtained a 2-approximation.

Theorem 2. There is a 2-approximation for the p-reliable k-center problem.
3.3. The p-neighbor k-supplier problem

For the p-neighbor k-supplier problem, it is again convenient to consider our metric space as a weighted graph
G = (V, E), where V contains both customers and suppliers. Further, we use roughly the same definitions as for the p-
neighbor and p-reliable k-center problem. However, a p-dominating set now is a set of suppliers such that each customer
v has at least p, chosen suppliers as a neighbor. Furthermore, an independent set is an independent set of customers. We
further define the cube of the graph G as the graph that contains an edge (u, v) whenever there is a path between u and
v in G of at most three edges. The next lemma is similar to Lemma 3.

Lemma 6. If G has a p-dominating set of size |D| then any independent set I in G* has y_ _, p, < |DI.

Proof. Let ] be an independent set in G2. Each supplier in G can dominate at most one vertex of I. Hence, any p-dominating
set in G has size at least ), ; p,. Since G has a p-dominating set of size |D|, we have ), p, < |D|. O

Firstly note that if there is a customer v with less than p, neighbors in G;, the optimal value should be larger than wj;.
Hence, we start our algorithm with the smallest ¢ such that each customer v has at least p, neighbors in G,. Then for
each j > ¢, we select a maximal independent set I in G?, where in each step we select the vertex with maximum neighbor
requirement (among the vertices that do not violate independence). In this way, we satisfy > ", _; Py > Pmax, Which ensures
that our solution is feasible. Let G; be the first subgraph in the sequence Gy, G,, ... such that this maximal independent
set I has the property that ) _ p, < k. Since G ; has an independent set I’ such that > _, p, > k, it follows from
Lemma 6 that G;_; does not have a p-dominating set of size at most k. Hence, the optimal value is at least w;.

For each customer v in the maximal independent set I we choose p, suppliers adjacent to it in G;. This can be done
since each customer v has at least p, neighbors in G;. Since ), _, p, < k, the total number of chosen suppliers is at most
k. Moreover, by the construction of our independent set I, every customer v ¢ I has a neighboring customer u € I in Gi2
with neighbor requirement p, > p,. Hence, the chosen suppliers are a p-dominating set in G?. The longest edge in Gf’ has
length at most 3w;. Hence, we obtained a 3-approximation for our problem.

Theorem 3. There is a 3-approximation for the p-neighbor k-supplier problem.
4. The dispersed k-center and k-supplier problem

In this section, we look at the impact of the dispersion constraint on the approximability of the k-center, k-supplier, and
k-median problem. For all problems, we show lower bounds depending on A. For the dispersed k-center and k-supplier
problem, we also provide algorithms with (almost) matching upper bounds.

4.1. The dispersed k-center problem

For the dispersed k-center problem we adjust the algorithm for the k-center problem designed by Gonzalez [6]. The
algorithm, which we call the Greedy algorithm, starts by selecting an arbitrary vertex as our first center. Then, we add a
center at a vertex at maximum distance of the current centers, as long as this does not violate the dispersion constraint.
The obtained solution is feasible, and is proven to be within a factor of max{2, A} of the optimal value. The analysis is
similar to the one in [22].

Algorithm 1 Greedy algorithm.

Place a center at an arbitrary point z, i.e., S = {z}

while |S|< k and maXyey\s Minges d(u, v) > A do
Determine z € V \ S that maximizes minycs d(u, z)
S:=SuU{z}

end while

return S
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A—¢ A—¢€

Fig. 2. Tight instance for Greedy algorithm. Left: the solution returned by the Greedy algorithm (in gray), right: the optimal solution (in gray).

Theorem 4. For A < 2, the Greedy algorithm is a 2-approximation for the dispersed k-center problem. For A > 2, the Greedy
algorithm is a A-approximation for the dispersed k-center problem.

Proof. Firstly, consider the optimal solution. Define ¢ < k to be the number of centers used in the optimal solution, and
denote by OPT the objective value of the optimal solution. By assigning each point to its nearest center (ties are broken
arbitrarily), the optimal solution partitions the points into £ clusters. Within a cluster, each pair of points is within distance
20pr. This follows from combining the fact that each point is within distance OPT of a center and the triangle inequality.

Suppose that the Greedy algorithm uses at least £ centers. We will show that the value of the algorithm is within a
factor 2 of the optimal value. Two cases need to be considered. In the first case, a center is placed in each of the clusters
defined by the optimal solution. Now, as observed above, each point is within distance 20pT of its nearest center. In
the other case, there is a cluster with at least two centers in it. Consider the center chosen latest in time. This center is
within distance 20pPT of the other centers in the cluster. Moreover, when choosing this point as a center, we considered all
remaining points and chose this one because it maximizes the distance to the current centers. This means that all other
points are within distance 20pT of a center. Hence, in both cases we are within a factor 2 of the optimal value.

Now, suppose that the Greedy algorithm uses ¢’ < £ centers. Again, two cases need to be considered. In case there is
a cluster with at least two centers in it, we can use the same reasoning as above to conclude that each point is within
distance 20pT of a center. In the other case, each cluster defined by the optimal solution contains at most one center.
Since ¢’ < k, the Greedy algorithm did not add more centers because adding a center would have violated the dispersion
constraint. Hence, the distance between any point and its nearest center is smaller than A. Since OpT > 1, the value of
the solution produced by the Greedy algorithm is within a factor A of the optimal value. Combining all the above results
in the theorem. O

Observe that if the Greedy algorithm is able to place all k centers, the value of the solution obtained is within a factor
two of the optimal value. Furthermore, for A > 2, the approximation guarantee is A and not 2, because the Greedy
algorithm may fail to place the same number of centers as the optimal solution. We use this observation to show that
the analysis is tight, and there is no polynomial time algorithm with a guarantee smaller than A.

To see that the analysis is tight, consider the cycle in Fig. 2. The cycle contains six vertices and six edges. The edge
weights are 1 or A — € alternatingly, where 0 < ¢ < 1. Consider the instance obtained by taking the metric completion of
this cycle, i.e., the other distances correspond to shortest paths in this weighted cycle graph. The Greedy algorithm may
choose the left-most vertex first. Then, it will choose the right-most vertex next, since this one maximizes the distance
to the left-most vertex. Unfortunately, this solution cannot be extended without violating the dispersion constraint. This
solution has a value of A — €. The optimal solution chooses the left-most vertex, and the two vertices adjacent to the
right-most vertex. This is also a feasible solution, but with a value of 1. Hence, the gap is A — ¢, and the analysis is tight.

Next, we show that there is no polynomial time algorithm for dispersed k-center with an approximation guarantee
smaller than A. This is shown by a reduction from 3-Satisfiability (3-SAT) [14], and is based on a standard reduction from
3-SAT to the independent set problem. In the satisfiability problem, we are given a Boolean formula in conjunctive normal
form. Equivalently, we are given variables x1, .. ., x,, and clauses Cy, ..., Cy. Each clause is a disjunction of literals, where
a literal can be a variable or its negation. The question is whether there exists a truth-assignment to the variables such
that each clause is satisfied. In 3-SAT, each clause contains exactly three literals.

Theorem 5. There is no a-approximation algorithm for the dispersed k-center problem for any a < A, unless P = NP.

Proof. Given an instance of 3-SAT, we create a cycle on three vertices for each clause. The vertices correspond to the
literals, and the distances are set equal to 1. Moreover, we connect each vertex corresponding to a literal to each vertex
corresponding to the negation of this literal by an edge of length A — ¢, where 0 < ¢ < 1. We call this graph H (see
Fig. 3), and assume without loss of generality that it is connected. The instance of dispersed k-center is defined by taking
the metric completion of this weighted graph H. Finally, we set k equal to m, the number of clauses.

Suppose we have a yes-instance of 3-SAT. In each cycle, we can choose one vertex corresponding to a literal with a
true-value in the assignment. This solution is feasible, because the centers form an independent set in the created graph
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Fig. 3. Illustration of created instance for dispersed k-center when the 3-SAT-instance consists of the clauses x; VX, VX3, X1 VX3 VX4, and X1 VX3 V Xs.

H, and hence the distance between each pair of centers is at least A. Moreover, this solution has a value of 1, since we
chose one center in each cycle.

Now, suppose we have a no-instance of 3-SAT. In this case, any solution choosing one vertex in each of the m cycles
will violate the dispersion constraint. This follows because any such solution satisfying the dispersion constraint would
correspond to a satisfying assignment. Hence, any dispersed solution has less than m centers. This implies that there are
vertices at distance at least A — € from their nearest center. So, if there is no satisfying assignment, the value of the
dispersed k-center instance is at least A — €.

We showed that it is NP-complete to decide whether an instance of the dispersed k-center problem has a value of at
most 1 or a value of at least A — €. Hence, there is no «-approximation for any ¢ < A, unless P = NP. O

4.2. Dispersed k-supplier problem

For the dispersed k-supplier problem, we give two algorithms. The first algorithm is a (A + 3)-approximation, but is
within a factor 3 from the optimal value if it succeeds in selecting exactly k suppliers. The second algorithm improves
upon the first one for A > 2. Namely, it is a max{5, A + 1}-approximation. If this algorithm succeeds in selecting exactly
k suppliers, it is within a factor 5 from the optimal value. Later, we show a lower bound on the approximability of A + 1,
which shows that the second algorithm is tight for A > 4.

Our first algorithm runs the Greedy algorithm for the k-center problem (Algorithm 1) on the set of customers,
i.e., choose a customer that maximizes the distance to the already chosen customers. Call this set C = {cy, ..., c}. Then,
for each i, we choose the supplier closest to c;, and call this supplier s;. In this way, we obtain the set S = {sij|c; € C}.
Since the suppliers in S may not be dispersed, we choose a maximal dispersed subset R of S as our solution. Here, a set
is maximal dispersed if adding any vertex not in the set would violate the dispersion requirement. Next, we show that
this algorithm is a (A + 3)-approximation for the dispersed k-supplier problem.

Theorem 6. The algorithm above is a (A + 3)-approximation for the dispersed k-supplier problem.

Proof. Firstly, note that OpPT > d(c;, s;) for all i. Consider an arbitrary customer v € C. We first show that there exists a
customer ¢; € C at distance at most 20PT from v. If v € C, then this clearly holds, so we assume v ¢ C. For the sake of
contradiction, suppose there is no customer ¢; € C at distance at most 20pT from v. Then, by construction of the algorithm,
for any two customers ¢;, ¢; € C we have d(c;, ¢;) > 20pT. But then the set C U {v} consists of k + 1 customers such that
any pair is at distance strictly more then 20pT. This is impossible since in that case at least k + 1 suppliers are needed
for a solution with value OPT.

Hence, there exists a customer c¢; € C at distance at most 20pT from v. If 5; is chosen in the solution, we know by the
triangle inequality that

d(v, s;) < d(v, ¢;) + d(cj, si) < 20PT + OPT = 30PT.

If s; is not chosen in the solution, by the maximality of R, there is some supplier S; that is chosen and is within distance
A of s;. Again, by the triangle inequality we obtain

d(v, s;) < d(v, ¢;) + d(ci, s;) + d(si, S;) < 20PT 4+ OPT 4+ A < (A 4+ 3)OPT. O

Observe that if the algorithm is able to choose all suppliers in S, it is a 3-approximation. For A > 2, we can improve
upon the algorithm above. For this, we first select for each customer a closest supplier, i.e., we select S’ = {s;j|c; € C}.
Then, we perform Algorithm 1 on §’, resulting in a set of suppliers called R'. We show that if the algorithm succeeds in
selecting k suppliers in S’, the algorithm is a 5-approximation. If the algorithm gets stuck, we prove an approximation
guarantee of A + 1. The proof is similar to the proof of Theorem 6.
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Fig. 4. Illustration of created instance for dispersed k-supplier when the 3-SAT-instance consists of the clauses x; VX, VX3, X1 VX3 VX4, and X1 VX3 VXs.
Here, white squares represent customers and black dots represent suppliers.

Theorem 7. For A > 4, the algorithm above is a (A + 1)-approximation for the dispersed k-supplier problem. For A < 4, it
is a 5-approximation.

Proof. Firstly, note that OPT > d(c;, s;) for all i. Consider an arbitrary customer v € C, and name its closest supplier w.
We first show that, if the algorithm is able to choose k suppliers, there exists a supplier s; € R" at distance at most 40pPT
from w. For the sake of contradiction, suppose there is no supplier s; € R" at distance at most 40pT from w. Then, by
construction of the algorithm, for any two chosen suppliers s;, s; we have d(s;, s;) > 40pT. Then, for two customers c;, ¢
corresponding to any two s;, s; respectively, we have d(c;, ¢;) > 20PT. Similarly, because d(w, s;) > 40pT for all 5; € R, we
have that d(v, ¢;) > 20prt for all i. But then there is a set consisting of k + 1 customers such that any pair is at distance
strictly more then 20pt. This is impossible since in that case at least k + 1 suppliers are needed for a solution with value
OpT.

Note that if w is chosen, the distance between v and its closest chosen supplier is within OPT. If w is not chosen, we
consider two cases. If the algorithm is able to choose k suppliers, there exists a supplier s; € R at distance at most 40PT
from w. We know by the triangle inequality that

d(v,s;) < d(v, w)+ d(w, s;) < OPT + 40PT = 50PT.

If the algorithm is not able to choose k suppliers, there is some supplier w that is chosen and is within distance A of w.
Again, by the triangle inequality we obtain

d(v,w) < d(v,w)+dw, w) <0pT+ A < (A+1)0pT. O

It is easy to obtain an instance with gap A + 1 from the instance in Fig. 2. This is done by associating a supplier with
each vertex in the cycle graph, and by adding a customer for each supplier at distance 1 from the supplier. By adjusting
the proof of Theorem 5, we now obtain a (A+ 1)-lower bound on the approximability of the dispersed k-supplier problem.

Theorem 8. There is no a-approximation algorithm for the dispersed k-supplier problem for any o < A + 1, unless P = NP.

Proof. Consider the same reduction as in Theorem 5. We define the vertices in graph H to be suppliers. Now, we add a
client in each cycle at distance 1 of the suppliers in the cycle (see Fig. 4). As in the proof of Theorem 5, if the instance of
3-SAT is satisfiable, then the objective value equals 1. Otherwise, there is at least one client at distance A + 1 — € of its
closest chosen supplier. O

4.3. Dispersed k-median

We show two inapproximability results concerning the dispersed k-median problem. The first is a constant lower
bound obtained by relating the problem to the vertex cover problem. The second result is a lower bound depending on
A, which shows that a linear dependence of A is also unavoidable for the dispersed k-median problem. It also improves
upon the first result for A > 6. In the proofs, we use the total distance as our objective, i.e., the average distance multiplied
by the number of vertices, instead of the average distance.

An instance of the vertex cover problem is a graph G = (V, E), and an integer K. The question is whether there exists
a vertex cover in G of size at most K. This problem is known to be NP-complete [14].

Theorem 9. There is no o-approximation algorithm for dispersed k-median, for any a < 1.36, unless P = NP. Assuming the
Unique Games Conjecture holds, there is no «-approximation algorithm, for any o < 2, unless P = NP.
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Proof. Given is an instance of the vertex cover problem, i.e., a graph G = (V, E), and an integer K. We create an instance
of the dispersed k-median problem as follows. If there is an edge between vertices u and v in G, then the distance between
u and v is set to 1. Otherwise, the distance is 2. Further, we set k = |V|, and we let the dispersion requirement equal 2,
ie, A=2.

Because of the dispersion requirement, any feasible solution for this instance corresponds to an independent set in
G. Also, an optimal solution always corresponds to a maximal independent set. This is true since k = |V|, and the
objective value cannot increase when centers are added. If a set of centers corresponding to a maximal independent
set contains r vertices, then the value of the solution in the dispersed k-median instance is equal to |V| — r. Namely, r
vertices contribute 0, and |V| — r vertices contribute 1, since a maximal independent set is a dominating set. Remember
that the complement of an independent set is a vertex cover. Hence, the value of the solution is equal to the number of
vertices in the corresponding vertex cover. So, the dispersed k-median problem on the created instance is equivalent to
the vertex cover problem on G, i.e., there is a vertex cover of size K if and only if the instance of the dispersed k-median
problem has a solution with value K. The result of the theorem now follows from the inapproximability results obtained
for the vertex cover problem [3,15]. O

For the next theorem, we use the same reduction from 3-SAT as in Theorem 5. However, here we use that, for any
8 > 0, no polynomial time algorithm can distinguish between 3-SAT-instances in which all clauses are satisfiable, and
instances in which at most a (% + 8)-fraction of the clauses are satisfiable, unless P = NP [8].

Theorem 10. For any § > 0, there is no approximation algorithm for dispersed k-median with approximation ratio %—i— % A-S§,
unless P = NP.

Proof. Consider the same reduction as in Theorem 5. If all clauses are satisfiable, we can choose exactly one vertex in
each cycle in our solution. The other two vertices in the cycle each contribute 1 to the objective value. Hence, the solution
has an objective value of 2m. If a (% + §)-fraction of the clauses are satisfiable, then we can choose exactly one vertex
in our solution in (% + 8")m cycles, and no vertex in the other (% — §)m cycles. Cycles without a vertex in the solution
contain three vertices at a distance of at least A — ¢ to their closest center. Hence, the solution has an objective value of
at least 2(% +8')m 4 3(A — €)(3 — 8')m. The ratio of these values is equal to

2Z4+8)M+3A—€)zg—8m (7 3 3 7 3
==+ — ) (A—e)=-4+ =A-35,

2m <8+ >+<16 2>( I=5" 1%
where § = §'(3(A — €)/2 — 1). The hardness result for 3-SAT now gives the desired result. O

5. Dispersed p-neighbor k-center problem

In this section, we show that combining the neighbor and dispersion requirement leads to an inapproximable problem.
That is, we show that the problem of deciding whether there exists a feasible solution for the dispersed p-neighbor (or
p-reliable) k-center problem is NP-complete. Since any «-approximation algorithm should return a feasible solution, the
problem is inapproximable. We give a reduction from the independent set problem. Here, we are given a graph G = (V, E)
and an integer K. The question is whether there is an independent set in G of size at least K. This is a well-known
NP-complete problem [14].

Theorem 11. Deciding whether an instance of the dispersed p-neighbor k-center problem has a feasible solution is NP-complete.

Proof. Given an instance of the independent set problem, we create an instance of the dispersed p-neighbor k-center
problem as follows. Set d(u, v) = 1 if (u, v) € E, and d(u, v) = 2 otherwise. Further, let p = K, A = 2, and k = |V|. We
show that the created instance has a feasible solution if and only if the instance of the independent set problem has an
independent set of size at least K.

If the independent set instance has an independent set of size at least K, we choose the vertices in the independent
set as the solution for the dispersed p-neighbor k-center instance. This is a feasible solution, since every vertex has at
least p = K neighbors, the vertices satisfy the dispersion constraint, and at most k = |V| centers are chosen. Similarly, if
the created instance has a feasible solution, we see that G has an independent set of size at least K. O

6. Conclusion

In this paper, we extended the results of [2] for the p-neighbor k-center, the p-reliable k-center and the p-neighbor
k-supplier problem to the version in which the neighbor requirement differs over the vertices or customers. For the
first two, this gives a 2-approximation, for the last one a 3-approximation. Then, we showed that adding a constraint
on the dispersion of the centers or suppliers gives lower bounds on approximability that depend on A, the dispersion
requirement. This holds for the dispersed k-center, k-supplier, and k-median problem. For the dispersed k-center problem,
we give a tight max{2, A}-approximation. For the k-supplier problem, the approximation guarantee of our algorithm is
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max{5, A + 1}. Finally, we showed that adding both the neighbor and dispersion requirement leads to an inapproximable
problem. That is, we showed that it is NP-complete to decide whether there exists a feasible solution for the dispersed
p-neighbor k-center problem.

The main goal of this paper was to assess the influence of adding neighbor and dispersion requirements on the
approximability of the classical k-center and k-supplier problem. Our results show that adding the dispersion requirement
has enormous effects on the guarantees we can give. On the other hand, we showed that the same approximation
guarantees can be achieved when just the neighbor requirement is added.
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