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Abstract We present a new implementation of a widely used swap-based local search proce-
dure for the p-median problem, proposed in 1968 by Teitz and Bart. Our method produces the
same output as the best alternatives described in the literature and, even though its worst-case
complexity is similar, it can be significantly faster in practice: speedups of up to three orders
of magnitude were observed. We also show that our method can be easily adapted to handle
the facility location problem and to implement related procedures, such as path-relinking and
tabu search.
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1 Introduction

The p-median problem is defined as follows. Given a set F of m facilities, a set U of n users (or
customers), a distance functiond : U x F — R, and an integer p < m, determine which
p facilities to open so as to minimize the sum of the distances from each user to the closest
open facility. In other words, given p, we want to minimize the cost of serving all customers.

Since this problem is NP-hard (Kariv and Hakimi, 1979), a polynomial-time algorithm
to solve it exactly is unlikely to exist. The most effective algorithms proposed in the lit-
erature (Avella, Sassano, and Vasil’ev, 2003; Beasley, 1985; Briant and Naddef, 2004;
Cornuéjols, Fisher, and Nemhauser, 1977; Galvao, 1980; Rosing, ReVelle, and Rosing-
Vogelaar, 1979; Senne, Lorena, and Pereira, 2005) use branch-and-bound, with lower bounds
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obtained from some linear programming relaxation of the problem. In the worst case, all these
methods are exponential, but they can be quite fast in practice (the recent algorithm by Avella,
Sassano, and Vasil’ev (2003) is particularly effective). Also, similar techniques can be made
to work as heuristics only, producing close-to-optimal solutions in reasonable time (Avella,
Sassano, and Vasil’ev, 2003; du Merle et al., 1999; Senne and Lorena, 2000, 2002).

There are also simpler heuristics that use no duality (linear programming) information at
all. The most natural options are constructive heuristics, methods that build solutions from
scratch, usually in a greedy fashion (Cornuéjols, Fisher, and Nemhauser, 1977; Kuehn and
Hamburger, 1963; Whitaker, 1983). A step further is to use a local search procedure, which
takes an existing solution as input and tries to improve it (Goodchild and Noronha, 1983;
Hodgson, 1978; Maranzana, 1964; Rosing, 1997; Taillard, 2003; Teitz and Bart, 1968). It
does so in an iterative fashion, examining neighboring solutions, those that differ from the
original one by a small (problem- and algorithm-specific) modification. Finally, there are
metaheuristics, procedures that aim at exploring a large portion of the search space in an
organized fashion to obtain close-to-optimal solutions (possibly using constructive algo-
rithms and local search as subroutines). Recent examples in the literature include variable
neighborhood search (Hansen and Mladenovié¢, 1997), variable neighborhood decomposi-
tion search (Hansen, Mladenovi¢, and Perez-Brito, 2001), tabu search (Rolland, Schilling,
and Current, 1996; VoB, 1996), heuristic concentration (Rosing and ReVelle, 1997), scat-
ter search (Garcia-Lopez et al., 2003), and a GRASP-based hybrid algorithm (Resende and
Werneck, 2004).

This study concerns the local search proposed by Teitz and Bart (1968), based on
swapping facilities. In each iteration, the algorithm looks for a pair of facilities (one to
be inserted into the current solution, another to be removed) that would lead to an im-
proved solution if swapped. If such a pair exists, the swap is made and the procedure is
repeated.

Arya et al. have shown (Arya et al., 2001) that, in a metric setting, this algorithm al-
ways finds solutions that are within a factor of at most 5 from the optimum. However, for
practical, non-pathological instances the gap is usually much smaller, just a few percentage
points (Rosing, 1997; Whitaker, 1983). This has made the algorithm very popular among
practioners, often appearing as a key subroutine of more elaborate metaheuristics (Garcia-
Lépez et al., 2003; Hansen and Mladenovié¢, 1997; Resende and Werneck, 2004; Rolland,
Schilling, and Current, 1996; Rosing and ReVelle, 1997; Vo8, 1996).

Our concern in this paper is not solution quality—the reader is referred to Rosing (1997)
and Whitaker (1983) for insights on that matter. Our goal is to obtain the same solutions Teitz
and Bart would, only in less time. We present an implementation that is significantly (often
asymptotically) faster in practice than previously known alternatives.

The paper is organized as follows. In Section 2, we give a precise description of the
local search procedure and a trivial implementation. In Section 3, we describe the best
alternative implementation described in the literature, proposed by Whitaker (1983). Our
own implementation is described in Section 4. We show how it can be adapted to handle the
facility location problem and to handle related operations (such as path-relinking and tabu
search) in Section 5. Experimental evidence to the efficiency of our method is presented in
Section 6. Final remarks are made in Section 7.

Notation and assumptions. Before proceeding to the study of the algorithms themselves, let
us establish some notation. As already mentioned, F is the set of potential facilities and U the
set of users that must be served. The basic parameters of the problem are n = |U|, m = |F|,
and p, the number of facilities to open. Although 1 < p < m by definition, we will ignore
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trivial cases and assume that 1 < p < m and that p < n (if p > n, we just open the facility
that is closest to each user). We assume nothing about the relationship between n and m.

We use u to denote a generic user, and f a generic facility. The cost of serving u with
fis d(u, f), the distance between them, which is always nonnegative. (We do not make
any other assumption about the distance function; in particular, we do not assume that the
triangle inequality is valid.) A solution S is any subset of F with p elements, and represents
the set of open facilities. Every user u is assigned to the closest facility f € S (the one that
minimizes d(u, f)). This facility will be denoted by ¢;(u). Our algorithm often needs to
access the second closest facility to u in S as well; it will be denoted by ¢, (u). To simplify
notation, we will abbreviate d(u, ¢(u)) as d;(u), and d(u, ¢>(u)) as da(u).! We often deal
specifically with a facility that is a candidate for insertion; it will be referred to as f; (by
definition f; & S); similarly, a candidate for removal will be denoted by f, (f, € S, also by
definition).

Throughout this paper, we assume the distance oracle model, in which the distance be-
tween any customer and any facility can be determined in O(1) time. In this model, all values
of ¢ and ¢, for a given solution S can be straighforwardly computed in O (pn) total time: for
each of the n customers, we explicitly find the distances to the p open facilities and pick the
smallest. Problems defined by a distance matrix clearly fall into the distance oracle model,
but an explicit matrix is not always necessary. If users and facilities are points on the plane,
for example, distances can also be computed in constant time. There are cases, however, in
which that does not happen, such as when the input is given as a sparse graph, with distances
determined by shortest paths. In such situations, one must precompute the corresponding
distance matrix in order to apply our method with the same worst-case running time.

2 The swap-based local search

Introduced by Teitz and Bart (1968), the standard local search procedure for the p-median
problem is based on swapping facilities. For each facility f; ¢ S (the current solution), the
procedure determines which facility f. € S (if any) would improve the solution the most if f;
and f, were interchanged (i.e., if f; were inserted and f, removed from the solution). If any
such “improving” swap exists, the best one is performed, and the procedure is repeated from
the new solution. Otherwise we stop, having reached a local minimum (or local optimum).
Arya et al. have recently proven (Arya et al., 2001) that this procedure is guaranteed to
produce a solution whose value is at most 5 times the optimum in the metric setting (i.e., when
the triangle inequality holds). On non-pathological instances (those more likely to appear
in practice), empirical evidence shows that the algorithm is often within a few percentage
points of optimality (and often does find the optimal solution), being especially successful
when both p and n are small (Rosing, 1997).

Our main concern is not solution quality, but the time it takes to run each iteration of the
algorithm. Given a solution S, we want to find an improving neighbor S’ (if it exists) as fast
as possible.

A straighforward implementation takes O(pmn) time per iteration. Start by determining
the closest and second closest open facilities for each user; this takes O(pn) time. Then, for
each candidate pair (f;, f,), compute the profit that would result from replacing f, with f;.

! More accurate representations of ¢ (u), ¢2(u), di (), and da(u) would be ¢ (), ¢35 (), d; (u), and d5 (u),
respectively, since each value is a function of S as well. Since the solution will be clear from context, we prefer
the simpler representation in the interest of readability.
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To do that, one can reason about each user u independently. If the facility that currently serves
u is not f, (the facility to be removed), the user will switch to f; only if this facility is closer,
otherwise it will remain where it is. If u is currently assigned to f,, the user will have to be
reassigned, either to ¢, (u) (the second closest facility) or to f; (the facility to be inserted),
whichever is closest. The net effect is summarized by following expression:

profirCfis fy =3 max{0, [dy@) —d(w, £} — Y [min{da), d(u, £)} — dy@)l.
u:p1 (u)# fr u:p(u)=f,

The first summation accounts for users that are not currently assigned to f, (these can
only gain from the swap), and the second for users that are (they can gain or lose something
with the swap). In the distance oracle model, the entire expression can be computed in O (n)
time for each candidate pair of facilites. There are p candidates for removal and m — p for
insertion, so the total number of moves to consider is p(m — p) = O(pm). Each iteration
therefore takes O(pmn) time.

Several papers in the literature use this basic implementation, and others avoid using
the swap-based local search altogether mentioning its intolerable running time (Rolland,
Schilling, and Current, 1996; Rosing and ReVelle, 1997; Vo8, 1996). These methods would
greatly benefit from asymptotically faster implementations, such as Whitaker’s or ours.

3 Whitaker’s implementation

In Whitaker (1983), describes the so-called fast interchange heuristic, an efficient implemen-
tation of the local search procedure defined above. Even though it was published in 1983,
Whitaker’s implementation was not widely used until 1997, when Hansen and Mladenovi¢
(1997) applied it as a subroutine of a Variable Neighborhood Search (VNS) procedure. A
minor difference between the implementations is that Whitaker prefers a first improvement
strategy (a swap is made as soon as a profitable one is found), while Hansen and Mlade-
novi¢ prefer best improvement (all swaps are evaluated and the most profitable executed).
In our analysis, we assume best improvement is used, even in references to “Whitaker’s
algorithm.”

The key aspect of this implementation is its ability to find in ®(n) time the best possible
candidate for removal, given a certain candidate for insertion. The pseudocode for the function
that does that, adapted from Hansen and Mladenovi¢ (1997), is presented in Fig. 1.2 Function
findout takes as input a candidate for insertion (f;) and returns f,, the most profitable
facility to be swapped out, as well as the profit itself (profit).

Given a certain candidate for insertion f;, the function implicitly computes profit( f;, f;)
for all possible candidates f,. What makes this procedure fast is the observation (due to
Whitaker) that the profit can be decomposed into two components, which we call gain and
netloss.

Component gain accounts for all users who would benefit from the insertion of f; into
the solution. Each is closer to f; than to the facility it is currently assigned to. The difference
between the distances is the amount by which the cost of serving that particular user will be
reduced if f; is inserted. Lines 4 and 5 of the pseudocode compute gain.

The second component, netloss, accounts for all other customers, those that would not
benefit from the insertion of f; into the solution. If the facility that is closest to u is removed,

2 In the code, an expression of the form a < b means that the value of a is incremented by b units.
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function f£indout (S, fi,§1,92)

1 gain «— 03 /* gain resulting from the addition of f; */

2 forall (f € S) do netloss(f) < 0; /* loss resulting from removal of f */
3 forall (u € U) do

4 if (d(u, f;) <d;(u)) then /* gain if f; is close enough to u */
5 gain < |dy (u) —d(u, f;)]:

6 else /* loss if facility that is closest to u is removed */

7 netloss(91(u)) <~ min{d(u,f;),d>(u)} —dy (u);

8 endif

9 endforall

10 fr < argmin g g{netloss(f)};

11 profit — gain — netloss(f;);

12 return (f,,profit);

end findOut

Fig.1 Function to determine, given a candidate for insertion ( f; ), the best candidate for removal ( f,). Adapted
from Hansen and Mladenovié (1997)

u would have to be reassigned either to ¢, (u) (its current second closest facility) or to f; (the
new facility), whichever is closest. In both cases, the cost of serving u will either increase or
remain constant. Of course, this reassignment will only be necessary if ¢;(«) is the facility
removed to make room for f;. This explains why netloss is an array, not a scalar value: there
is one value associated with each candidate for removal. All values are initially set to zero
in line 2; line 7 adds the contributions of the relevant users.

Given this O(n)-time function, it is trivial to implement the swap-based local search
procedure in O(mn) time per iteration: simply call £indOut once for each of the m — p
candidates for insertion and pick the most profitable one. If the best profit is positive, perform
the swap, update the values of ¢; and ¢,, and proceed to the next iteration. Updating ¢; and
¢, requires O(pn) time in the worst case, but the procedure can be made faster in practice,
as mentioned in Whitaker (1983). Since our implementation uses the same technique, its
description is deferred to the next section (Section 4.3.1).

4 An alternative implementation

Our implementation has some similarity with Whitaker’s, in the sense that both methods per-
form the same basic operations. However, the order in which they are performed is different,
and in our case partial results are stored in auxiliary data structures. As we will see, with
this approach we can use values computed in early iterations of the local search procedure
to speed up later ones.

4.1 Additional structures

Before we present our algorithm, let us analyze Whitaker’s algorithm from a broader perspec-
tive. Its ultimate goal is to determine the pair (f;, f;) of facilities that maximizes profit(f;, f;).
To do so, it computes gain( f;) for every candidate for insertion, and netloss( f;, f.) for every
pair of candidates. (In the description in Section 3, gain is a scalar and netloss takes as input
only the facility to be removed; however, both are computed inside a function that is called
for each f;, which accounts for the additional dimension.) Implicitly, what the algorithm
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does is to compute profits as

profi( fi, fr) = gain(fi) — netloss(f;, fr).

Our algorithm defines gain( f;) precisely as in Whitaker’s algorithm: it represents the total
amount gained if f; is added to S, regardless of which facility is removed:

gain(f;) =y max{0, di(u) — d(u, f,)}. M

uel

Our method differs from Whitaker’s in the computation of netloss. While Whitaker’s
algorithm computes it explicitly, we do it in an indirect fashion. For every facility f, in the
solution, we define loss( f;) as the increase in solution value that results from the removal of
[ from the solution (assuming that no facility is inserted). This is the cost of transferring
every customer assigned to f, to its second closest facility:

loss(f) =Y lda(u)—dy(w)). (@)
w:p(w=f,

As defined, gain and loss are capable of determining the net effect of a single insertion or
a single deletion, but not of a swap, which is nothing but an insertion and a deletion that occur
simultaneously. Whitaker’s algorithm can handle swaps because it computes netloss instead
of loss. To compute netloss from loss, we use yet another function, extra( f;, f,), defined so
that the following is true for all pairs (f;, f;):

netloss(f;, fy) = loss(f,) — extra(f;, f;). 3)

From the pseudocode in Fig. 1, it is clear that netloss(f;, f,) is actually defined as

netloss(fi, f)= Y [min{d(u, f;), da(u)} — di w)]. “

w:lgpr(u)=f 1N
[d(u, fi)>di(u)]

Substituting the values in Egs. (2) and (4) into Eq. (3), we obtain an expression for extra:

extra(fy, )= Y I —di@l— Y [min{d(u, f;), da(w)} — diw)].
wh=1: wlgr 0= f,1
[d(u, fi)>di(u)]

It is possible to simplify this expression. First, consider a user u for which
min{d(u, f;), d>(u)} = d>(u). It has no net contribution to extra: whatever is added in the
first summation is subtracted in the second. Therefore, we can write

extra(fi. f)= Y lda(w) —di(w)] — > [d(u, f) — dy(w)).
w:lgw)=fIn wlgr(w)=frIn
[d(u, fi)<d>(w)] [di(w)<d(u, fi)<da(u)]
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Note that the range of the first summation contains that of the second. We can join both into
a single summation,

extra(fi, )= Y [da(u) — di(w) — max{0, d(u, f;) — di(w)}],
w:lgr = fr1n
[d(u, fi)<dx(u)]

which can be further simplified to

extra(fi, f)= Y ld(u) — max{d(u, f;), d@)]. Q)
w1 (w)=fr1n
[d(u, fi)<dy(w)]

This is our final expression for extra. We derived it algebraically from simpler expressions,
but it is possible to get it directly with a bit of case analysis. This alternative approach was
used in an earlier version of our paper (Resende and Werneck, 2003).

Given the expressions of gain, loss, and extra (Egs. (1), (2), and (5)), we can find the profit
associated with each move in a very simple manner:

profi(fi, fr) = gain(f;) — loss(f,) + extra( f;, fr). (©)

The interesting aspect of this decomposition of profit is that the only term that depends
on both the facility to be inserted and the one to be removed is extra. Moreover, this term
is always nonnegative (see Eq. 5). This will be relevant in the implementation of the local
search itself, as the next section will make clear.

4.2 Local search

Our implementation of the local search procedure assumes that all necessary values (loss,
gain, and extra) are stored in appropriate data structures: one-dimensional vectors for loss
and gain, and a two-dimensional matrix for extra.’ Once these structures are computed, one
can easily find the best swap in O(pm) time: just use Eq. (6) to determine the profit for each
candidate pair of facilities and pick the minimum.

To compute gain, loss, and extra, we note that every entry in these structures is a summation
over some subset of users (see Eqgs. (1), (2), and (5)). The contribution of each user can
therefore be computed independently. Function updateStructures, shown in Fig. 2,
does exactly that. Given a user u and its two closest facilities in solution S (given by ¢; and
¢»), it adds u’s contribution to loss, gain, and extra. The total running time of the procedure
is O(m — p) = O(m), since it is essentially a loop through all the facilities that do not
belong to the solution. Given this function, computing gain, loss, and extra from scratch is
straightforward: first reset all entries in these structures, then call updateStructures
once for each user. Together, these n calls perform precisely the summations defined in
Egs. (1), (2), and (5).

We now have all the elements necessary to build the local search procedure with O (mn)
operations. In O(pn) time, compute ¢;(-) and ¢,(-) for all users. In O(pm) time, reset loss,

3 Note that gain and loss could actually share the same m-sized vector, since they are defined for disjoint sets
of facilities.
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Fig. 2 Pseudocode for updating
arrays in the local search function updateStructures (S,u,loss, gain,extra,¢1,0)
procedure L fr=01(u):
2 loss(fy) < da(u) —dy ()]
3 forall (f; Z S) do
4 if (d(u, f;) < d>(u)) then
5 gain(f;) < max{0,dy () — d(u, f}) }:
6 extra(fi, £,) < lda () — max{d(u, £;), 1 () }):
7 endif
8 endfor
end updateStructures

gain, and extra. With n calls toupdateStructures, each taking in O (m) time, determine
their actual values. Finally, in O(pm) time, find the best swap using Eq. (6).

4.3 Acceleration

At first, our implementation seems to be merely a complicated alternative to Whitaker’s; after
all, both have the same worst-case complexity. Furthermore, our implementation has the clear
disadvantage of requiring an O (pm)-sized matrix, whereas ©(n + m) memory positions are
enough for Whitaker’s. The additional memory, however, allows for significant accelerations,
as this section will show.

When a facility f, is replaced by a new facility f;, certain entries in gain, loss, extra, ¢y,
and ¢, become inaccurate. The straighforward way to update them for the next local search it-
eration is to recompute ¢; and ¢, reset the other arrays, and then call updateStructures
again for all users.

A downside of this approach is that no information gathered in one iteration is used in
subsequent ones. As a result, unnecessary, repeated computations are bound to occur. In fact,
the actions performed by updateStructures depend only on u, ¢;(u), and ¢,(u); no
value is read from other structures. If ¢;(«) and ¢»(u) do not change from one iteration to
another, u’s contribution to gain, loss, and extra will not change either. This means there is
no need to call updateStructures again for u.

To deal with such cases, we keep track of affected users. A user u is affected if there is a
change in either ¢; (1) or ¢, (u) (or both) after a swap is made. Sufficient conditions for u to
be affected after a swap between f; and f, are:

1. either ¢ (u) or ¢o(u) is f;, the facility removed; or
2. f; (the facility inserted) is closer to u than the original ¢, (u) is.

Contributions to loss, gain, and extra need only be updated for affected users. If there happens
to be few of them (which is often the case, as Section 6.2.1 shows) significant gains can be
obtained.

Note, however, that updating the contributions of an affected user u requires more than
a call to updateStructures. This function simply adds new contributions, so we must
first subtract the old contributions made by u. To acomplish this, we use a function similar to
updateStructures, with subtractions instead of additions.* This function (undoUp-
dateStructures) must be called for all affected users before ¢; and ¢, are recomputed.

4 This function is identical to the one shown in Fig. 2, with all occurrences of < replaced with <—: instead of
incrementing values, we decrement them.
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procedure LocalSearch (S,01,02)

1 A« U, /* Aisthe set of affected users */
2 resetStructures (gain, loss, extra);

3 while (TRUE) do

4 forall (u € A) do updateStructures (S, u, gain, loss, extra, 01, §7);
5 (fr, fi,profit) < findBestNeighbor (gain, loss, extra);

6 if (profit < 0) then break; /* no improvement, we are done */

7 A — 0',

8 forall (u € U) do /* find out which users will be affected */

9 if ((01(u) = f;) or (2(u) = fr) or (d(u, fi) < d(u,02(u)))) then
10 A—AU{u}

11 endif

12 endforall;

13 forall (z € A) do undoUpdateStructures (S, u, gain, loss, extra, o1, §2);
14 insert(S, f;);

15 remove(S, f+);

16 updateClosest(S, fi, fr,01,02);

17 endwhile

end localSearch

Fig. 3 Pseudocode for the local search procedure

Figure 3 contains the pseudocode for the entire local search procedure, already taking into
account the observations just made. Apart from the functions already discussed, three other
nontrivial ones appear in the code. Function resetStructures sets all entries in gain,
loss, and extra to zero. Function findBestNeighbor runs through these structures and
finds the most profitable swap using Eq. (6). It returns which facility to remove ( f;), the one
to replace it ( f;), and the profit itself (profir). Finally, updateClosest updates ¢, and ¢y,
possibly using the fact that the facility recently opened was f; and the one closed was f,
(Section 4.3.1 explains how this is done).

Restricting updates to affected users can result in significant speedups in the algorithm,
as Section 6.2.1 shows. There are, however, other accelerations to exploit. The pseudocode
reveals that all operations in the main loop run in linear time, with three exceptions:

e updating closeness information (calls to updateClosest);

¢ finding the best swap to be made (calls to findBestNeighbor);

e updating the auxiliary data structures (calls to updateStructures and undoUpdate
Structures).

These are the potential bottlenecks of the algorithm, since they all run in quadratic time in
the worst case. The next three subsections analyze how each of them can be dealt with.

4.3.1 Closeness

Updating closeness information, in our experience, has proven to be a relatively cheap opera-
tion. Deciding whether the newly inserted facility f; becomes either the closest or the second
closest facility to each user is trivial and can be done in O(n) total time. A more costly
operation is updating closeness information for customers who had f, (the facility removed)
as either the closest or the second closest element. With a straighforward implementation,
updating each such affected user takes O(p) time. Since there are usually few of them, the
total time spent tends to be a small fraction of the entire local search procedure.
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The whole update procedure could actually be performed in O (n log p) worst-case time.
It suffices to keep, for each user u, the set of open facilities in a heap with priorities given
by their distances to u. Since this solution requires O(np) additional memory positions
and is not significantly faster, we opted for using the straighforward implementation in our
code.

It is also important to mention that finding the set of closest and second closest elements
from scratch is itself a cheap operation in some settings, even in the worst case. For example,
when distances between customers and facilities are given by shortest paths on an underlying
graph, this can be accomplished in O(|E|) time (Thorup, 2001), where | E| is the number of
edges in the graph.’

In practice, the generic approach above seems to be good enough. Section 6.2.5 shows
that there is not much to gain from accelerating this part of the algorithm; together, other
procedures already dominate the running time of the local search. We therefore do not use
specialized routines in this paper; we always assume we are dealing with arbitrary distance
matrices.

4.3.2 Best neighbor

Given a solution, the straighforward way to find the most profitable swap is to compute
profit(f;, f+) (as defined in Eq. (6)) for all candidate pairs of facilities and pick the best.
Since each profit computation takes constant time and there are p(m — p) potential swaps,
the entire procedure requires ®(pm) operations. In practice, however, the best move can be
found in less time.

It is convenient to think of extra(f;, f;) as a measure of the interaction between the
neighborhoods of f, and f;. After all, Eq. (5) shows that only users that have f, as their
current closest facility and are also close to f; (i.e., have f; closer than the second closest
open facility) contribute to extra( f;, f,). In particular, if there are no users in this situation,
extra(f;, f,) will be zero. Section 6.2.2 shows that this occurs rather frequently in practice,
especially when p is large (and hence the average number of users assigned to each f, is
small).

Therefore, instead of storing extra as a full matrix, one may consider representing only
nonzero elements explicitly: each row becomes a linked list sorted by column number. A
drawback of this sparse representation is the impossibility to make random accesses in O(1)
time. Fortunately, this is not necessary for our purposes. All three functions that access the
matrix (updateStructures, undoUpdateStructures, and bestNeighbor) can
be implemented so as to go through each row sequentially.

In particular, consider the implementation of bestNeighbor. First, it determines the
facility f* that maximizes gain(f;) and the facility f* that minimizes loss(f;). Since all
values in extra are nonnegative, the pair (f7*, f,) is at least as profitable as any pair ( f;, f;)
for which extra( f;, f,) is zero. Then, the procedure computes the exact profits (given by
Eq. (6)) for all nonzero elements in extra.

The whole procedure takes O(m + Apm) time, where A is the fraction of pairs whose
extra value is nonzero. As already mentioned, this value tends to be smaller as p increases,
thus making the algorithm not only faster, but also more memory-efficient (when compared
to the “full matrix” representation).

3 The O(-) notation hides polylogarithmic terms.
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4.3.3 Updates

As we have seen, keeping track of affected users can reduce the number of calls to
updateStructures. We now study how to reduce the time spent in each of these
calls.

Consider the pseudocode in Fig. 2. Line 5 represents a loop through all m — p facilities
outside the solution, but line 6 shows that we can actually restrict ourselves to facilities that
are closer to u than ¢, (u) is. This is often a small subset of the facilities, especially when p
is large.

This suggests a preprocessing step that builds, for each user u, a list of all facilities sorted
by increasing distance to u. During the local search, whenever we need the set of facilities
whose distance to u is less than d,(u), we just take the appropriate prefix of the precomputed
list, potentially with much fewer than m — p elements.

Building these lists takes O(nm log m) time, but it is done only once, not in every iteration
of the local search procedure. This is true even if local search is applied several times within
a metaheuristic (such as in Hansen and Mladenovi¢ (1997), Resende and Werneck (2003),
and Rosing and ReVelle (1997)): a single preprocessing step is enough.

A more serious drawback of this approach is memory usage. Keeping n lists of size
m in memory requires ®(mn) space, which may be prohibitive. An alternative is to keep
only relatively small prefixes, not the full list. They would act as a cache: when ds(u) is
small enough, we just take a prefix of the candidate list; when d,(u) is larger than the
largest distance represented, we explicitly look at all possible neighbors (each in constant
time).

In some circumstances, the “cached” version may be faster than the “full” version of the
algorithm, since preprocessing is cheaper. After all, instead of creating sorted lists of size m,
we create smaller ones of size k (for some k < m). Each list can be created in O (m + k log k)
time: first we find the k smallest elements among all m in O(m) time (Cormen et al., 2001),
then we sort them in O (k log k) time. For small values of k, this is an asymptotic improvement
over the O(m log m) time required (per list) in the “full” case.

4.3.4 The reordering problem

There is a slight incompatibility between the accelerations proposed in Sections 4.3.2 and
4.3.3. On the one hand, the sparse matrix data structure proposed in Section 4.3.2 guarantees
efficient queries only when each row is accessed sequentially by column number (facility
label). Section 4.3.3, on the other hand, assumes that facilites are accessed in nondecreas-
ing order of distance from the user. Functions updateStructures and undoUpdat-
eStructures use both data structures: they take a list of facilities sorted by distance, but
must process them in nondecreasing order of label. We need to make these two operations
compatible.

The simplest solution is to take the list of facilities sorted by distance and sort it again by
label. If the list has size k, this takes O(k logk) time. In the worst case k is O(m), so this
introduces an extra logm factor in the complexity of the algorithm. In practice, however,
k is rather small, and the overhead hardly noticeable. In fact, we used this approach in a
preliminary version of our paper (Resende and Werneck, 2003).

Even so, one would like to do better. Recall that the original list is actually a prefix of the
list of all facilities (sorted by distance). Even though the prefix varies in size, the underlying
sorted list does not: it is a fixed permutation of facility labels. This means we need to solve
the following generic problem:
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Let  be a fixed permutation of the labels {1, 2, ..., m}, and let ;, be the size-k prefix
of w,for 1 <k < n (w, = m, by definition). Given any k, sort 77; by label in O (k) time.
At most O(m) preprocessing time is allowed.

To solve this, we use an algorithm that mimics insertion sort on a list, but takes advice
from an “oracle” built during preprocessing. Assume we need to sort ., for some k. One
way to do it is to take each element of 7; and insert it into a new list, ordered by label. With
standard insertion sort, this would take O(k?) time. However, if we knew in advance where
to insert each element, the procedure would take O (k) time. The oracle will give us exactly
that.

Let 7 (i) be the i-th element of 7. We define pred(i) to be the predecessor of m (i), the
element after which 7 (i) should be inserted during the algorithm above. The oracle will give
us pred(i) for every i.

The values of pred(i) are set in the preprocessing step. Initially, it creates an auxiliary
doubly-linked list L containing 0, 1, 2, ..., m, in this order (element O will act as a sentinel).
This can be trivially done in O(m) time. Then, it removes elements from L one by one in
reverse order with respect to . In other words, the first element removed from L is 7 (m),
then 7w (m — 1), and so on, until 7 (1) is removed; in the end, only O (the sentinel) will remain
in L. Upon removing element 7 (i) from L, the algorithm sets pred(i) to be the predecessor
of (i) (in L itself) at that particular moment. This procedure takes O(m) time for each of
the n lists.

Note that this procedure is in fact a simulation of insertion sort, but in reverse order. List
L originally has all the elements of r,,; after one removal, we are left with 7,,_;, and so on.
At all times, L is sorted by label; if it has size k, it represents what the sequence looks like
after the k-th element is inserted during insertion sort.

Given all the pred(-) values, sorting 7y is simple. We start with a list L’ containing only
a sentinel (0); it can be singly-linked, with forward pointers only. We then access the first
i elements of 7 (following 7’s own order), inserting each element 7 (i) into L’ right after
pred(i). Eventually, L’ will contain all the elements of 7 (k) sorted by label, as desired. The
running time is only O (k).

5 Generalization

Section 4 presented our algorithm as a local search procedure for the p-median problem.
In fact, with slight modifications, it can also be applied to the facility location problem.
Moreover, the ideas suggested here are not limited to local search: they can also be used
to accelerate other important routines, such as path-relinking and tabu search. This section
details the adaptations that must be made in each case.

5.1 Facility location

The input of the facility location problem consists of a set of users U, a set of potential
facilities F, a distance functiond : U x F — R, and a setup cost function ¢ : F — R,.
The first three parameters are the same as in the p-median problem. The difference is that
here the number of facilities to open is not fixed; there is, instead, a cost associated with
opening each facilty, the setup cost. The more facilities are opened, the greater the setup cost
will be. The objective is to minimize the total cost of serving all customers, considering the
sum of the setup and service cost (distances).
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Any valid solution to the p-median problem is a valid solution to the facility location
problem. To use the local search procedure suggested here for this problem, we have to
adjust the algorithm to compute the cost function correctly. As it is, the algorithm computes
the service costs correctly, but assumes that the setup costs are zero. But including them is
trivial: the service cost depends only on whether a facility is open or not; it does not depend
on other facilities. Consider a facility f; that is not in the solution; when evaluating whether
it should be inserted or not, we must account for the fact that its setup cost will increase the
solution value by c(f;). Similarly, simply closing a facility f, that belongs to the solution
saves us c( f;). To take these values into account, if suffices to initialize gain and loss with the
symmetric of the corresponding setup costs, and not with zero as we do with the p-median
problem. In other words, we initialize gain( f;) with —c( f;), and loss( f,;) with —c(f;).

This is enough to implement a swap-based local search for the facility location problem.
Note, however, that there is no reason to limit ourselves to swaps—we could allow individual
insertions and deletions as well. This is not possible with the p-median problem because the
number of facilities is fixed, but there is no such constraint in the facility location problem.

No major change to the algorithm is necessary to support individual insertions and dele-
tions. As already mentioned, gain( f;) is exactly the amount that would be saved if facility f;
were inserted into the solution (with no corresponding removal). Similarly, loss( f,) repre-
sents how much would be lost if the facility were removed (with no corresponding insertion).
Positive values of gain and negative values of loss indicate that the corresponding move is
worth making. The greater the absolute value, the better, and we can find the maximum in
O(m) time. Furthermore, we can continue to compute the costs associated with swaps if we
wish to. In every iteration of the local search, we could therefore choose the best move among
all swaps, insertions, and deletions. So we essentially gain the ability to make insertions and
deletions with barely any changes to the algorithm.

We observe that the idea of a swap-based local search for the facility location problem is,
of course, not new; it was first suggested in the literature by Kuehn and Hamburger (1963).

5.2 Other applications

It is possible to adapt the algorithm to perform other routines, not only local search. (In this
discussion, we will always deal with the p-median problem itself, although the algorithms
suggested here also apply to facility location with minor adaptations.)

Consider the path-relinking operation (Glover, 1996; Glover, Laguna, and Marti, 2000;
Laguna and Marti, 1999; Resende and Ribeiro, 2005). It takes two solutions as inputs, S
and S, and gradually transforms the first (the starting solution) into the second (the guiding
solution). It does so by swapping out facilities that are in S;\S, and swapping in facilities
from $,\S;. In each iteration of the algorithm, the best available swap is made. The goal of
this procedure is to discover some promising solutions on the path from S to S,. The precise
use of these solutions varies depending on the metaheuristic using this procedure.

This function is remarkably similar to the swap-based local search procedure. Both are
based on the same kind of move (swaps), and both make the cheapest move on each round.
There are two main differences:

1. Candidate moves: In path-relinking, only a subset of the facilities in the solution are
candidates for removal, and only a subset of those outside the solution are candidates
for insertion—and these subsets change (i.e., get smaller) over time, as the algorithm
advances into the path.
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2. Stopping criterion: Whereas the local search procedure stops as soon as a local minimum
is found, non-improving moves are allowed in path-relinking: it continues until the guiding
solution is reached.

As long as we take these differences into account, the implementation of the local search
procedure can also handle path-relinking. We need to define two functions: one to return the
appropriate set of candidates for insertion and deletion, another to check if the move chosen
by bestNeighbor should be made or not (i.e., to determine if the stopping criterion was
met). In Section 4, these functions were defined implicitly: the candidates for insertion are
all facilities outside the solution, the candidates for deletion are those in the solution, and the
stopping criterion consists of testing whether the profit associated with a move is positive.
Defining them explicitly is trivial for both local search and path-relinking.

In fact, by redefining these two functions appropriately, we can implement other routines,
such as a simple version of tabu search. At all times, we could have two lists: one for elements
that are forbidden to be inserted into the solution, another for elements that cannot be removed.
The candidate lists would contain the remaining facilities, and the stopping criterion could
be any one used for tabu search (number of iterations, for instance).

6 Empirical analysis

This section has two main goals. One is to present some empirical data to back up some
of the claims we have made to guide our search for a faster algorithm. The other goal is
to demonstrate that the algorithms suggested here are indeed faster than previously existing
implementations of the local search procedure for the p-median problem. To keep the analysis
focused, we will not deal with the extensions proposed in Section 5.

6.1 Instances and methodology

We tested our algorithm on four classes of problems. Three of them, TSP, ORLIB and ODM,
have been previously studied in the literature for the p-median problem. The fourth, RW, is
introduced here as a set of instances that benefit less from our methods.

Class TSP contains three sets of points on the plane (with cardinality 1400, 3038, and
5934), originally used in the context of the traveling salesman problem (Reinelt, 1991). In
the p-median problem, each point is both a user to be served and a potential facility, and
distances are Euclidean. Following (Hansen, Mladenovi¢, and Perez-Brito, 2001), we tested
several values of p for each instance, ranging from 10 to approximately n/3, when comparing
our algorithm to Whitaker’s.

Class ORLIB, originally introduced in Beasley (1985), contains 40 graphs with 100 to 900
nodes, each with a suggested value of p (ranging from 5 to 200). Each node is both a user
and a potential facility, and distances are given by shortest paths in the graph.

The instances in class ODM, proposed by Briant and Naddef (2004), model the optimal
diversity management problem. In this problem, one must assemble a certain product that
appears in a large number of configurations, each defined by the presence or absence of a
certain number of features. Briant and Naddef give as an example the electrical wiring in cars.
Assuming that setting up an assembly line for every possible configuration is not economically
viable, only p configurations are actually produced. Requests for other configurations will
be fulfilled by the least costly alternative that is compatible (i.e., contains all the necessary
features) among those produced. The goal is to decide which p configurations to produce,
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given the demand and the unit cost for each existing configuration. To model this as a
p-median problem, we make each configuration both a user and a facility. The cost of serving
user u with facility f is the demand of u times the unit cost of f, as long as configuration
f is compatible with configuration u; otherwise, the cost is infinity. We tested our algorithm
on the four instances cited in Briant and Naddef (2004), with 535, 1284, 3773, and 5535
configurations. As in Briant and Naddef (2004), we tested values of p from 5 to 20 in each
case.®

In class RW, each instance is a square matrix in which entry (u, f) is an integer taken
uniformly at random from the interval [1, n] and represents the cost of assigning user u to
facility f. Four values of n were tested (100, 250, 500, and 1000), each with values of p
ranging from 10 to /2, totaling 27 combinations.” The random number generator we used
when creating these instances (and in the algorithm itself) was Matsumoto and Nishimura’s
Mersenne Twister (Matsumoto and Nishimura, 1998).

Recall that the algorithms tested here use the distance oracle model, which assumes that
retrieving the distance between any user and any facility takes O(1) time. This can be trivially
achieved for intances in RW (with a table look-up) and TSP (from the Euclidean coordinates).
For ORLIB, we compute the all-pairs shortest paths in advance, as it is usually done in the
literature (Hansen and Mladenovi¢, 1997; Hansen, Mladenovié, and Perez-Brito, 2001).
These computations are not included in the running times reported in this section, since
they are the same for all methods (including Whitaker’s). For ODM, to compute the distance
between a user and a facility we need to know whether the user is covered by that facility
or not. To answer this question in O(1) time, we precompute an n X m boolean incidence
matrix with this information. The same expected complexity could be achieved with a hash
table, which potentially uses less space but has higher overhead for accessing each element.
The time to build the incidence matrix is also not included in the times reported here.

All tests were performed on an SGI Challenge with 28 196-MHz MIPS R10000 processors
(with each execution of the program limited to one processor) and 7.6 GB of memory. All
algorithms were coded in C++- and compiled with the SGI MIPSpro C++ compiler (v. 7.30)
with flags -03 -OPT:01imit=6586.The source code is available from the authors upon
request, as are the RW instances.

All running times shown in this paper are CPU times, measured with the getrusage
function, whose precision is 1/60 second. In some cases, actual running times were too small
for this precision, so each algorithm was repeatedly run for at least 5 seconds. Overall times
were measured, and averages reported here.

When comparing different local search methods, we applied them to the same initial
solutions. These were obtained by two different algorithms. The first is greedy (Whitaker,
1983): starting from an empty solution, we insert one facility at a time, always picking the
one that reduces the solution cost the most. The second algorithm is random: we just pick a
set of p facilities uniformly at random as the initial solution. All tests with random solutions
were repeated five times for each method, using five different random seeds.

Running times mentioned in this paper refer to the local search only, and they do not
include the cost of building initial solution (which is the same for all methods).

6 In Briant and Naddef (2004), the authors do not show results for p greater than 16 in the instance with 3773
nodes. We include results for 17 to 20 as well, for symmetry.

7 More precisely: for n = 100, we used p = 10, 20, 30, 40, and 50; for n = 250, p = 10, 25, 50, 75, 100, and
125; for n = 500, p = 10, 25, 50, 100, 150, 200, and 250; and for n = 1000, p = 10, 25, 50, 75, 100, 200,
300, 400, and 500.
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6.2 Results

This section presents an experimental comparison of several variants of our implementation
and Whitaker’s method, fast interchange (we will use Fl for short). We implemented Fl based
on the pseudocode in Hansen and Mladenovi¢ (1997) (obtaining comparable running times);
the most important function was presented here in Fig. 1.

6.2.1 Basic algorithm (FM)

We start with the most basic version of our implementation, in which extra is represented
as a full (non-sparse) matrix. This version (called FM, for full matrix) already incorporates
some acceleration, since calls to updateStructures are limited to affected users only.
However, it does not include the accelerations suggested in Sections 4.3.2 (sparse matrix)
and 4.3.3 (preprocessing).

To demonstrate that keeping track of affected users can lead to significant speedups, we
devised the following experiment. We took one instance from each class: 0dm1284 (class
0DM, 1284 nodes), pmed40 (class ORLIB, 900 nodes), fl1400 (class TSP, 1400 nodes), and
w1000 (class RW, 1000 nodes). Note that they all have a similar number of nodes. Each
instance was tested with 99 different values of p, from 1% to 99% of m. Since for very large
values of p the greedy algorithm almost always finds local optima (thus rendering the local
search useless), the initial solutions used in this experiment are random.

For each run, we computed how many calls to updateStructures and to undoUp-
dateStructures would have been made if we were not keeping track of affected users,
and how many calls were actually made (in both cases, we did not count calls at the start of the
first iteration, which is just the initialization). The ratio between these values, in percentage
terms, is shown in Fig. 4 (each point is the average of five runs).

It is clear that the average number of affected users is only a fraction of the total number
of users, even for small values of p, and drops significantly as the number of facilities to
open increases. In all four instances, the average number of affected users eventually drops
below 1% of n. By exploiting this fact, our implementation definitely has the potential to be
faster than Fl.

To test if this is indeed the case in practice, we ran an experiment with all instances from
the four classes, with the values of p listed in Section 6.1. We used both greedy and random
initial solutions. For each instance, we computed the speedup obtained by our method when
compared to Fl, i.e., the ratio between the running times of Fl and FM. Table 1 shows the best,
the (geometric) mean, and the worst speedups thus obtained considering all instances in each
class.? Values greater than 1.0 favor our method, FM.

The table shows that even the basic acceleration scheme achieves speedups of up to more
than 40. There are cases, however, in which FM is actually slower than Whitaker’s method.
This happens for instances in which the local search procedure performs very few iterations,
insufficent to amortize the overhead of using a matrix. This is more common with the greedy
constructive heuristic, which is more likely to find solutions that are close to being local
optima, particularly when p is very large or very small (the worst case among all instances

8 Since we are dealing with ratios, geometric (rather than arithmetic) means seem to be a more sensible choice;
after all, if a method takes twice as much time for 50% of the instances and half as much for the other 50%, it
should be considered roughly equivalent to the other method. Geometric means reflect that, whereas arithmetic
means do not.
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Table 1 Speedup obtained by
FM (full matrix, no preprocessing)
over Whitaker’s Fl

Solution  Class  Best Mean  Worst

random ODM 41.66  12.67 2.95
ORLIB  21.19 576 1.64
RW 20.96 7.62 251
TSP 2892 1129 195

greedy ODM 20.10 449  0.89
ORLIB  14.20 376 1.07
RW 13.99 550 147
TSP 3196 10.72  1.96

100 T T T

T
odm1284

affected users (percent of total possible)

0.1 1 1 1 1
1 20 40 60 80 929

facilities to open (percent)

Fig. 4 Percentage of users affected during a run of the local search as a function of p (the percentage is taken
over the set of all possible users that could have been affected, considering all iterations). One instance in each
class is represented. Vertical axis is in logarithmic scale

happened with 0dm535 and p = 6). On average, however, FM has proven to be from three to
more than ten times faster than Fl.

6.2.2 Sparse matrix (SM)

We now analyze a second variant of our method. Instead of using a full matrix to represent
extra, we use a sparse matrix, as described in Section 4.3.2. We call this variant SM. Recall
that our rationale for using a sparse matrix was that the number of nonzero elements in
the extra matrix is small. Figure 5 suggests that this is indeed true. For each of the four
representative instances and each value of p (from 1 to 99% of m), it shows what fraction of
the elements are nonzero (considering all iterations of the local search). The algorithm was
run five times for each value of p, from five random solutions.

Although the percentage approaches 100% when the number of facilities to open is small,
it drops very fast when p increases, approaching 0.1%. Note that rw1000, which is random,
tends to have significantly more nonzeros for small values of p than other instances.
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1000 T T T T
odm1284 ——
pmed40Q -------
w1000 --------
fl1400
100 | B

nonzero elements in extra (percent)

001 1 1 1 1
1 20 40 60 80 99

facilities to open (percent)

Fig. 5 Percentage of entries in the extra matrix that have nonzero values as a function of p. One instance of
each class is represented. Vertical axis is in logarithmic scale

Itis clear that the algorithm has a lot to benefit from representing only the nonzero elements
of extra. However, the sparse matrix representation is much more involved than the array-
based one, so some overhead is to be expected. Does it really reduce the running time of the
algorithm in practice?

Table 2 shows that the answer to this question is “yes” most of the time. It represents the
results obtained from all instances in the four classes, and contains the best, mean, and worst
speedups obtained by SM over Fl, for both types of initial solution (random and greedy).

As expected, SM has proven to be even faster than FM on average and in the best case
(especially for the large instances with large values of p in the RW and TSP classes). However,
some bad cases become slightly worse. This happens mostly for instances with small values
of p: with a relatively large number of nonzero elements in the matrix, a sparse representation
is not the best choice.

Table 2 Speedup obtained by )
SM (sparse matrix, no Solution  Class  Best Mean  Worst

preprocessing) over Whitaker’s Fl

random 0obM 26.41 9.28 249
ORLIB 46.88 6.66 1.19
RW 11436 1247 195
TSP 142.84 2628 1.80

greedy ODM 2162 521 099
ORLB 2488 436 1.00
RW 4935 836 122
TSP 13206  24.03 1.87
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100 T T T

odm1284 ——

average prefix size (percent)

0.01 1 1 1 1
1 20 40 60 80 99

facilities to open (percent)

Fig. 6 Percentage of facilities actually visited when updating structures, for several values of p. One instance
of each class is represented. Vertical axis is in logarithmic scale

6.2.3 Sparse matrix with preprocessing (SMP)

The last acceleration we study is the preprocessing step (Section 4.3.3), in which all potential
facilities are sorted according to their distances from each of the users. We call this variant
SMP, for sparse matrix with preprocessing. The goal of the acceleration is to avoid looping
through all m facilities in each call to function updateStructures (and undoUpdat -
eStructures). We just have to find the appropriate prefix of the ordered list.

Figure 6 shows the average size of the prefixes (as a percentage of m) that are actually
checked by the algorithm, as a function of p (which varies from 1 to 99% of n). Initial
solutions are random in this experiment.

As claimed before, the average prefix size is only tiny a fraction of m, for all but very
small values of p. Considering only those prefixes instead of all facilities can potentially
accelerate the local search. Of course, this does not come for free: the cost of preprocessing
must be accounted for.

To determine the overall effect of these two conflicting factors, we tested SMP on all
instances of our set. Table 3 shows the best, mean, and worst speedups obtained with respect
to Fl. Columns 3, 4, and 5 consider running times of the local search procedure only; columns
6, 7, and 8 also include preprocessing times.

The table shows that the entire SMP procedure (including preprocessing) is on average still
much faster than Whitaker’s Fl, but often slightly slower than the other variants studied in
this paper (FM and SM). However, as already mentioned, metaheuristics often need to run the
local search procedure several times, starting from different solutions. Since preprocessing
is run only once, its cost can be quickly amortized. Columns 3, 4, and 5 of the table show that
once this happens, SMP can achieve truly remarkable speedups with respect not only to Fl, but
also to other variants studied in this paper. In the best case (instance 15934 with p = 800),
it is roughly 800 times faster than Fl.

@ Springer



224 Ann Oper Res (2007) 150:205-230

Table 3 Speedup obtained by SMP (sparse matrix, full preprocessing) over
Whitaker’s Fl

Local search only Including preprocessing
Solution  Class  Best Mean Worst ~ Best Mean  Worst
random ODM 46.18 13.77 342 8.26 3.00 0.87

ORLIB 77.44 875 1.28 2242 3.40 0.66
RW 169.59 17.51  1.92 48.37 626 1.05
TSP 812.80 186.81 4.63 128.03 3192 1.89

greedy ODM 33.16 721 133 3.30 0.67 0.15
ORLIB 43.26 640 1.37 6.86 1.10  0.21
RW 91.05 1259  1.34 9.98 2,14 0.20

TSP 695.57 161.86 5.11 7142 1892 145

256 T T T T T T T T
ODM —+—
ORLIB ---x---
L RW ------
128 TSP @ S — T
...... &
e
PO
64 - e & -
32 a» E
o
S
=}
@
®
o
@

1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
iterations

Fig. 7 Speedup of a multistart procedure implemented with SMP with respect to an implementation using
Whitaker’s method (FI)

To evaluate how fast the amortization is, consider what would happen in a simple mul-
tistart procedure. In each iteration, this algorithm generates a random solution and applies
local search to it; the best solution found over all iterations is picked. We can predict the
behavior of such a method (as far as running times are concerned) from the data used to build
Table 3. After only one iteration, the mean speedups obtained when SMP is used instead of FlI
(Whitaker’s method) will be those shown in the seventh column of the table. As the number
of iterations increases, the mean speedups will gradually converge to the values in the fourth
column. Figure 7 shows exactly what happens as a function of the number of iterations.
After only ten iterations, the speedups are already close to those shown in the fourth column
of Table 3:10.1 for ODM, 7.5 for ORLIB, 14.7 for RW, and 124.0 for TSP.
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Table 4 Speedup obtained by SM5 (sparse matrix, with preprocessing, cache
size 5 p/m) over Whitaker’s FlI

Local search only Including preprocessing

Solution  Class  Best Mean Worst  Best Mean  Worst

random ODM 46.12 13.68 3.42 14.48 4.04 0.86
ORLIB 77.42 8.81 1.29 40.14 452 0.66
RW 166.51 17.44  2.01 93.08 9.57 113
TSP 77496 17642  4.49 283.71 6297 220

greedy ODM 32.65 7.16  1.30 6.23 096 0.14
ORLIB 44.31 641 1.33 14.51 1.61 0.20
RW 92.93 1262 1.34 24.73 387 022

TSP 74772 16093  5.07 177.62 40.65 1.73

Apart from the preprocessing time, another important downside of strategy SMP is memory
usage: an array of size m is kept for each of the n customers. As mentioned in Section 4.3.3,
one can use less memory by storing a vector with only a fraction of the m facilities for each
customer. Table 4 shows what happens when we restrict the number of elements per vector
to Smyp; we call this version of the local search SM5. In general, SMq is an algorithm that
associates a list with gmyp facilities with each user. We use myp as a parameter because this
correlates well with the number of facilities each user has to look at to find an open one.

Tables 3 and 4 show that using restricted lists (as opposed to m-sized ones) can make the
algorithm significantly faster when preprocessing times are considered. This is true especially
for large instances. On average, SM5 is roughly twice as fast as SMP. The gains from a faster
preprocessing more than offset the potential extra time incurred during the actual local search.
In fact, the table also shows that the time spent on the main loop is barely distinguishable
from SMP; the partial lists are almost always enough for the algorithm. Local search within
SM5 can actually be slightly faster than within SMP. The possible cause here are cache effects;
since less data is kept in memory, there is more locality to be exploited by the hardware.

6.2.4 Overall comparison

To get a better understanding of the performance of all variants proposed in this paper,
we study in detail the largest instance in our set (115934, with almost 6000 customers and
facilities). Figures 8 and 9 show the running times of several methods (FI, FM, SM, SM1, SM2,
SM3, SM5, and SMP) for different values of p. Times are averages of five runs from different
random solutions (the same set of initial solutions was given to each method). The first figure
considers the local search only, whereas the second accounts for preprocessing times as well.

The figures show that for some methods, such as Whitaker’s Fl and the full-matrix variant
of our implementation (FM), an increase in p leads to greater running times (although our
method is still 10 times faster for p = 1500). For all other methods, which use sparse matrices,
the time spent per iteration tends to decrease as p increases: the effect of swaps becomes
more local, with fewer users affected and fewer neighboring facilities visited in each call to
updateStructures. This latter effect explains why keeping even a relatively small list
of neighboring facilities for each user seems to be worthwhile. The curves for variants SMP
and SM5 are practically indistinguishable in Fig. 8, and both are much faster than SM (which
keeps no list at all).
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Fig. 8 Instance r15934: dependency of running times on p for different methods. Times are in logarithmic
scale and do not include preprocessing
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Fig. 9 Instance r15934: dependency of running times on p for different methods. Times are in logarithmic
scale and include preprocessing where applicable

As a final note, we observe that, because all methods discussed here implement the same
algorithm, the number of iterations does not depend on the method itself. It does, however,
depend on the value of p: in general, these two have a positive correlation for p < m/2, and
negative from this point on, as Fig. 10 shows. This correlates well with the total number of
solutions: there are (’Z) solutions of size p, and this expression is maximized for p = m/2.
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Fig. 10 Number of iterations of the local search procedure as a function of p, starting from random solutions.
One instance from each class is represented

6.2.5 Profile

The results for SMP show that the modifications proposed in this paper can, together, result
in significant acceleration. How much further can we go? Can additional modifications to
the algorithm make it even faster?

These are open questions. However, we argue that small modifications are unlikely to
lead to major gains, particularly when p is large. To support this claim, we devised the
following experiment. For each class, we took the instance with the greatest number of users
(n) and ran SMP with two values of p (0.01n and 0.25n), from five random solutions in each
case. Table 5 shows the percentage of the total local search time (excluding preprocessing)
spent in each section of the algorithm: initialization (which includes allocating the data
structures), calls toupdateClosest, callstoupdateStructures (and undoUpdate

Table 5 Execution profile for method SMP: percentage of time spent on each
of the potential bottlenecks (only the largest instance in each class is shown).
Preprocessing times are not considered

Instance
Update  Update  Best Other

Name n,m p Init.  closest  struct. neigh.  oper.
0dm5535 5535 56 17.7 59 62.3 7.8 6.2
1384 64 19.7 4.5 30.9 38.5

pmed40 900 9 6.7 1.7 89.8 0.6 1.2
225 134 294 13.5 11.2 32.5

w1000 1000 10 3.7 1.4 93.7 0.5 0.7
250 121 26.7 15.1 14.5 31.6

115934 5934 60 122 5.7 74.0 5.0 3.1
1484 10.7 41.0 4.6 22.7 21.0
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Structures), calls to bestNeighbor, and other operations (such as determining which
users are affected).

Note that calls to updateStructures and undoUpdateStructures dominate
the running time for small values of p. This is to be expected: these functions run in O (mn)
time, while bestNeighbor and updateClosest runin O(pn) and O(pm) operations,
respectively. When p increases, the running time for updateStructures and undoUp-
dateStructures actually decreases, since a larger fraction of the elements in the extra
matrix will be zero (and therefore will not need to accessed). As a result, no component took
more than 50% of the running time for p = 0.25x. In this case, even if we could make a
component run in virtually no time, the algorithm would be at most twice as fast. A decent
speedup, but not at all comparable to 800, the factor we were able to achieve in this paper.
To obtain better factors, it seems necessary to work on all bottlenecks at once, or to come up
with a different strategy altogether.

7 Concluding remarks

We have presented a new implementation of the swap-based local search for the p-median
problem introduced by Teitz and Bart. We combine several techniques (using a matrix to store
partial results, a compressed representation for this matrix, and preprocessing) to obtain
speedups of up to three orders of magnitude with respect to the best previously known
implementation, due to Whitaker. Our implementation is especially well suited to relatively
large instances with moderate to large values of p and, due to the preprocessing step, to
situations in which the local search procedure is run several times for the same instance (such
as within a metaheuristic). When the local search has very few iterations, Whitaker’s method
can still be faster if the preprocessing time is considered.

An important test to the algorithms proposed here would be to apply them within more
sophisticated metaheuristics. We have done thatin (Resende and Werneck, 2004). That paper
describes a multistart heuristic for the p-median problem that relies heavily on local search
and path-relinking, both implemented according to the guidelines detailed in this paper. The
algorithm has proved to be very effective in practice, obtaining remarkably good results (in
terms of running times and solution quality) when compared to other methods in the literature.

A possible extension of our work presented would be to apply the methods and ideas
presented here to problems beyond p-median and facility location. Swap-based local search
is a natural procedure to be performed on problems such as maximum set cover, for example.
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