Chapter 4
p-Center Problems

Hatice Calik, Martine Labbé, and Hande Yaman

Abstract A p-center is a minimax solution that consists in a set of p points that
minimizes the maximum distance between a demand point and a closest point
belonging to that set. We present different variants of that problem. We review
special polynomial cases, determine the complexity of the problems and present
mixed integer linear programming formulations, exact algorithms and heuristics.
Several extensions are also reviewed.

Keywords p-Center * Location in public sector * Minimax facility location

4.1 Introduction

Minimizing the total or average distance that potential users have to travel to reach a
facility may not be the right decision criterion for placing a public facility. Total- or
average distance minimization tends to favor clients who are clustered in population
centers to the detriment of clients who are spatially dispersed. Discrimination of this
kind with regard to accessibility may have a negative impact on remote clients in the
case of an emergency service (ambulances, fire brigades, police stations, etc.). As a
result, decision makers may want to consider a criterion focusing on clients who are
the poorest served.
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The center problem, defined as finding a vertex whose distance to all the other
vertices of a graph is minimum, has been known for a long time in graph theory
(see, for instance, Berge 1967).

Hakimi (1964) introduced the absolute center problem to locate a police station
or a hospital such that the maximum distance of the station to a set of communities
connected by a highway system is minimized. Given a graph G = (V, E) with
V = {vi1,...,v,}, weight w; for node v; € V and length {; for edge {i, j} € E
connecting nodes v; and v;, the aim of the absolute center problem is to find a
point x on the nodes or edges such that max; =y, w;d(v;, x) is minimized, where
d(v;, x) is the length of the shortest path between node v; and point x (referred to
as distance between v; and x). The optimal value is called the absolute radius of
graph G. If x is limited to the nodes of G, then we obtain the center of graph G and
the optimal value is the radius of G. The center of G is not necessarily an absolute
center of G. In other words, the absolute radius can be smaller than the radius. To
see this, consider a very simple example with two nodes of weight 1 and an edge
connecting them with length 1. In this example, the absolute radius is 0.5 whereas
the radius is 1.

Hakimi (1964) proposed a solution method to compute the absolute center of a
graph and motivated further studies of this problem by casting it as a game. Two
people, X and Y, are playing a game on a graph G. First player X chooses a point
x in G, then player Y chooses a point y in G and X pays d(x, y) units to Y. When
X chooses point x, Y chooses a point farthest from x to maximize his gain. Hence,
player X computes the absolute radius of graph G to minimize his loss.

In the conclusion of his subsequent paper on median and covering problems,
Hakimi (1965) mentions the generalization of the absolute center problem to the
p-center problem. Given a set X, = {xi,...,x,} of p points in G, the distance
d(X,,v;) between X, and node v; is computed as min;=;, , d(x;,v;). The
p-center problem is to find a set X, of p points in G such that max;—__,w;d
(v, Xp) is minimized.

As defined above, the p-center problem is a network location problem. The
literature contains several variants. In this chapter, we refer to the following
variants:

* vertex-restricted p-center problem: X , is restricted to be a subset of the node set;

* unweighted p-center problem: all node weights are equal;

* discrete p-center problem: the graph G = (J U I, E) is bipartite and complete
with I denoting the set of possible facility locations and J denoting the set of
demand points.

One can find a discussion of several theoretical results and exact methods for
the p-center problem on general and tree networks in Tansel (2011). A large scale
review of the exact and heuristic methods proposed for the p-center and capacitated
p-center problems is provided by Calik (2013).
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This chapter is organized as follows. We review some polynomial cases, identify
the complexity of the problems in general and present some approximation results
in Sect. 4.2. Section 4.3 is devoted to the mixed integer linear programming models
and algorithms for solving p-center problems. Heuristics are discussed in Sect. 4.4
and some extensions of the p-center problem are considered in Sect. 4.5. Section 4.6
concludes the chapter.

4.2 Polynomial Cases, Complexity and Approximation
Results

An algorithm to compute an absolute center of a graph was proposed by Hakimi
(1964). The idea is to compute, for each edge, an optimal point assuming that
the center is restricted to be on that edge. Such an optimal point is called a local
center of that edge. Then the algorithm finds the best local center. Hence, the
overall complexity is equal to the number of edges multiplied by the complexity
of computing a local center of an edge.

The computation of a local absolute center is based on the observation that the
objective function is piecewise linear on each edge and that local minima correspond
to intersection points and vertices (see Minieka 1970). A point x on edge {vi, v} €
E qualifies as an intersection point if there exist two distinct nodes v;, v; € V such
that x is the unique point on {v, v,, } for which d (v;, x) = d(v;, v) + d (v, x) =
d(x,v;) =d(x,v,) + dVm, vj).

It follows from this definition that the number of intersection points on an edge
is bounded by O(n?). Nevertheless, Kariv and Hakimi (1979) observed that at most
n + 1 such points can be local minima of the objective function. The resulting
algorithm proposed by Kariv and Hakimi (1979) solves the absolute center problem
in O(|E|n + n’logn) time.

An algorithm for finding an absolute center in the weighted case can be derived
along the same lines. First, a solution can also be found in the set of local centers,
i.e., solutions to the problems in which the solution is restricted to be on an edge.
Then, the objective function remains piecewise linear on each edge but the slopes
of the linear pieces depend on the vertex weights w;. Kariv and Hakimi (1979)
showed that, on an edge, at most 3n — 2 intersections points can determine a local
minima. A point x on an edge {vk, v,,} is now an intersection point if there exist
two distinct nodes v;, v; € V such that x is the unique point on {v, v,,} for which
wid (v, x) = wi(d (v, vk) +d (v, x)) = w;d(x,v;) = w;(d(x, V) +d(Vm, v))).
The complexity of the resulting algorithm proposed by Kariv and Hakimi (1979) is
O(| E |nlogn).

Goldman (1972) proposed an O(n?) algorithm to find an absolute center of a tree
in the unweighted case. The algorithm checks whether an edge contains an absolute
center and if not, searches the two subtrees obtained by deleting this edge. Handler
(1973) proposed an O (n) algorithm exploiting the fact that the midpoint of a longest
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path of the tree is an absolute center and that the distance is a convex function along
any path of the tree. Given any node v;, the algorithm first determines the vertex v;
whose distance to v; is maximum, then determines the node v; whose distance to
v; is maximum. The path linking v; and vy is a longest one and the absolute center
is its midpoint.

Kariv and Hakimi (1979) provided an O(nlogn) algorithm for the weighted
center problem on a tree, which was improved to O(n) by Megiddo (1983).

For an arbitrary graph G and p > 2, Kariv and Hakimi (1979) proved that the
p-center problem is NP-hard even on a planar graph where the maximum degree is
3 and all node weights and edge lengths are equal to 1. The result is also true for
the vertex-restricted problem. The authors show that the problem with p > 2 can be
solved in O(n%logn) time when G is a tree.

Hochbaum and Shmoys (1985) developed a two-approximation algorithm for the
unweighted discrete problem with / = J and edge lengths satisfying the triangle
inequality. The algorithm runs in O(|E|log| E|) time. Hsu and Nemhauser (1979)
proved that it is NP-hard to find an approximation with a better guarantee. Dyer and
Frieze (1985) gave an O (np) algorithm with a guarantee of min{3, 1 + «}, where «
is the ratio of the largest weight and the minimum weight. In the unweighted case,
this guarantee is 2.

4.3 Exact Methods for p-Center Problems

We first observe that the different variants of the p-center problem can be trans-
formed into a discrete p-center problem and solved as such.

In the case of the vertex-restricted p-center problem, the set I of possible
locations and the set J of demand points are both equal to the set of vertices V.

The weighted and unweighted absolute p-center problems enjoy the same
property as their single facility counterpart: an optimal solution can always be found
in the set of vertices and intersection points. This follows from the fact that each
point x; of an optimal solution X, must be a local minimizer of the function given
by the maximum (possibly weighted) distance to the vertices that are allocated to
X;i, i.e., which are closer to that x; than to any other point of X,. To transform an
absolute p-center problem into a discrete p-center problem one thus simply sets
I =V U P, where P denotes the set of intersection points, and J = V.

The remainder of this section is now devoted to models and algorithms for
solving the discrete p-center problem.

Several methods based on solving finite series of an auxiliary problem called the
set covering problem are developed. The set covering problem is a kind of covering
problem (see Chap.5), which is closely related to the p-center problem. Given a
zero-one matrix A = [a;], the set covering problem consists of finding a set of
columns at minimum cost that covers the rows of the matrix 4. In order to minimize
the number of facilities required to serve all customers within a given radius value
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r, one can solve a set covering problem with unit column costs by constructing A as
follows:

1,ifd(j,i) <,

= Vjiel,iel.
0, otherwise J !

i

If the optimal value of the set covering problem is greater than p, then the optimal
value of the p-center problem needs to be greater than r; if it is less than or equal to
P, then it means that the optimal value of the p-center problem is less than or equal
tor.

The first set covering based approach was proposed by Minieka (1970). Let r; <
rp < ... < rk be an ordering of the distinct distance values in the distance matrix
D =1[dy] : dy =d(j,i)i €1,j € Jand R = {r1,rs,...,rx}. The method
by Minieka (1970) solves the set covering problem for a smaller value in R not yet
considered at each step by updating the matrix A. The algorithm terminates when
the optimal value of the set covering problem is greater than p. Since the number
of different distance values in D is at most |/|.|J|, the algorithm converges to an
optimal solution in a finite number of steps.

Garfinkel et al. (1977) improved the set covering based approach by Minieka
(1970) by first finding a heuristic solution, then, reducing the search space of the
radius values and eliminating some of the intersection points. They also reduce the
size of the set covering matrix by using standard matrix reductions and heuristic
techniques. For the selection of the radius values at the next step, they proposed
using a bisection or binary search strategy instead of moving to the next smaller
radius value.

The first mixed integer programming (MIP) formulation for the discrete p-center
problem was proposed by Daskin (2013). The following decision variables are
defined: y; = 1 if a facility is placed at node i € I and O otherwise, x; = 1 if
Jj € J is assigned to a facility placed ati € I and O otherwise. The formulation by
Daskin can be stated as follows:

Minimize V4 4.1
subject to Z diixij <z vVjedJ, (4.2)
i€l
Y ox=1 Vjeld, (4.3)
i€l
x;j < Yi Viel,jelJ, (4.4)
Y v <o (4.5)
i€l
y; € 40,1} Viel, (4.6)

x; €40, 13} Viel, jel. 4.7)
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The objective function (4.1) together with (4.2) ensure that the objective value is no
less than the maximum of the distances between demand points and their facilities.
Constraints (4.3) establish the assignment of each demand point to exactly one
facility. Constraints (4.4) avoid assignment of demand points to locations with no
facility. Constraint (4.5) restricts the number of facilities to p. Constraints (4.6)
and (4.7) are the binary restrictions.

Daskin (2013) also proposed a set covering based algorithm, in which the radius
value of the set covering problem is selected from an interval of real numbers
between pre-determined lower and upper bounds. At each step of the algorithm,
the interval is halved and one of the segments is removed depending on whether the
objective value of the set covering problem is greater than p or less than or equal
to p.

Ilhan and Pinar (2001) proposed a two-phase extension of the algorithm devel-
oped by Daskin (2013). In the first phase, they solve the linear programming (LP)
relaxation of the feasibility problem defined by (4.5), (4.6), and

Zaﬁy, >1, Vjel, (4.8)

i€l

iteratively for fixed r values to obtain a relatively tight lower bound for the p-center
problem. In the second phase, they restrict the interval of the radius values with
the lower bound obtained in the first phase and solve the integer programming (IP)
version of the same feasibility problem iteratively to obtain the optimal value of the
p-center problem.

Elloumi et al. (2004) proposed a new IP formulation for the p-center problem.
This formulation utilizes the fact that the optimal value of the p-center problem
is restricted to a finite set of distance values. They introduced additional binary
variables z, k = 2,..., K, with zZ£ = 0 if all demand points can be covered by
p facilities within a radius value of r,—; and Z¥ = 1 otherwise. The formulation is
given below:

K
Minimize  r + Z(rk — i) (4.9)
k=2
subject to 4.5), (4.6),
Y oyizl (4.10)
iel
F+ ) izl Vied k=2, K, 4.11)
itdji<rg

Fef0,1} k=2,....K. (4.12)
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Constraint (4.10) eliminates the solutions with no open facility. Constraints (4.11)
and the objective function (4.9) ensure that all demand points are served by a facility
within the smallest possible distance.

A semi-relaxation of this formulation, which is obtained by removing the
binary restriction on the y variables, provides the best known lower bound for the
p-center problem. This lower bound can be obtained by solving a finite series of LP
problems, which are the LP relaxations of the set covering problems. Elloumi et al.
(2004) also provided an exact algorithm that combines the important properties of
the algorithms of Minieka (1970) and Ilhan and Pinar (2001). Their algorithm uses
the two-phase idea and a binary search strategy similar to the algorithm by Ilhan and
Pinar (2001), but restricts the set of radius values to solve the set covering problems
with the finite radius set R as in Minieka (1970).

Calik and Tansel (2013) developed new IP formulations and a new exact
algorithm based on the decomposition of their models for solving the p-center
problem. They associated a binary variable u; with ry, for each k € {1,..., K}.
In particular, uy is equal to 1 if 7y is selected as the optimal value and O otherwise.
Initially, they proposed the following formulation:

K
Minimize Z Frlte (4.13)
k=1
subject to 4.5), (4.6),
> vizw Vielk=1,...,K, (4.14)
iidji<ri
K
Zuk =1, (4.15)
k=1
we € 40,1} k=1,....K. (4.16)

Constraint (4.15) sets exactly one of the variables u; to 1 and the corresponding
i value is selected as the optimal value according to the objective function (4.13).
Constraints (4.14) ensure that each customer is served within the selected radius
by at least one facility. Constraints (4.16) are binary restrictions. The authors
proposed a tightened formulation by using a relationship between their formulation
and the formulation proposed by Elloumi et al. (2004). In this formulation,
constraints (4.14) are replaced with constraints (4.17) given below:

k
Z yiEZ“q’ VieJk=1,... K. (4.17)
id(i,j)<rg g=1

The semi relaxations of these formulations, in which the binary restriction of
the y-variables are removed, provide the tight lower bound obtained by Elloumi
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et al. (2004). The algorithm developed by Calik and Tansel (2013) solves their
formulations for restricted sets of radius values iteratively to converge to an optimal
solution. They proposed several selection strategies for a two-element specialization
of their algorithm. They also utilize the matrix reduction rules known for the set
covering problem in their restricted formulations when solving large problems.

In the recent studies, instances from the OR-Library (Beasley 1990) and TSPLIB
(Reinelt 1991) have been used for making computational experiments. The data
for the uncapacitated p-median problem found in the OR-Library consists of 40
instances with n = 100 — 900 and p = 5 — (n/3). This data was used in
the experiments conducted by Ilhan and Pinar (2001), Elloumi et al. (2004), and
Calik and Tansel (2013). In addition to these instances, Elloumi et al. (2004) used
the instances ul060, 111323 and ul817 (n = 1060, 1323, and 1817, respectively)
and Calik and Tansel (2013) used the instances ul817, d15112, and pcb3038
(n = 1817, 2500, and 3038, respectively) from the TSPLIB.

4.4 Heuristics

Mladenovié et al. (2003) introduced the first meta-heuristic approaches for finding
approximate solutions to the p-center problem. They proposed a multistart local
search algorithm (M-I), a chain substitution Tabu Search (TS) algorithm, and a vari-
able neighborhood search (VNS) algorithm and conducted large scale experiments
on 40 p-median instances from the OR-Library and instances with up to 3,038
nodes from TSPLIB. These experiments reveal that their algorithms outperform the
algorithm proposed by Hochbaum and Shmoys (1985). Among the three heuristics
proposed, TS and VNS algorithms outperform M-I algorithm, VNS performs the
best on the average in terms of both the solution quality and solution time; however,
TS provides slightly better results for the instances with smaller p values.

Pullan (2008) proposed a memetic genetic algorithm (PBS) for the vertex-
restricted p-center problem, which combines a population based meta-heuristic
with a local search algorithm. By using the phenotype crossover and directed
mutation tools of the genetic algorithm, a wide range of elite starting solutions
are generated and then, these solutions are improved to local optimality by using
a local search algorithm. From the computational experiments using the instances
previously tackled by Mladenovi¢ et al. (2003), an improvement in the CPU times
and in the objective value of some problems is observed when PBS is compared with
the VNS algorithm. The PBS algorithm can be executed also in a parallel processing
mode. The experiments conducted by increasing the number of parallel processors
utilized in the algorithm provide better CPU times.

Salhi and Al-Khedhairi (2010) obtained tight lower and upper bounds by using a
three-level meta-heuristic and integrated these bounds with the algorithm by Daskin
(2013) to solve the vertex-restricted p-center problem. In the first and second
levels of the algorithm, a variable neighborhood strategy is utilized with distinct
neighborhood structures. In the third level, a perturbation mechanism is introduced
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to avoid sticking at local optima. The computational experiments conducted on
the 40 p-median instances of the OR-Library revealed that the utilization of these
bounds decreases the solution times of Daskin’s algorithm.

Other than the meta-heuristic algorithms, Martinich (1988) proposed a vertex
closing approach for the vertex-restricted p-center problem on complete networks
with distance values that satisfy the triangle inequality. Initially, the algorithm places
a facility on each node and considers the problem of finding n — p facilities to
close so that the maximum of the distances between the nodes and their facilities
is minimized. In this study, the optimal solutions were characterized with the
embedded sub-graphs of the original graph. From this analysis, initial lower and
upper bounds were obtained, two polynomial time algorithms were proposed and
procedures to verify the optimality of the solutions for several special cases were
developed. In terms of the number of instances solved to optimality, they outperform
the algorithm by Hochbaum and Shmoys (1985).

Bozkaya and Tansel (1998) showed that there exists a spanning tree of any
connected network such that the optimal absolute p-center of this tree is optimal also
for the network under consideration. They conducted experiments on two classes
of spanning trees to observe how often these trees provide the optimal solution.
They concluded that these two classes of spanning trees do not always include the
optimizing tree, but they do in most of the instances.

Miheli¢ and Robi¢ (2005) solved the vertex-restricted p-center problem by
introducing a heuristic algorithm based on solving a finite series of minimum
dominating set problems. Given a graph G = (V, E), the minimum dominating
set problem aims to find a node subset S C V' of minimum cardinality so that any
node in V \ S is adjacent to some node in S. They assumed that the underlying
network is complete and the distance values satisfy the triangle inequality. The
computational experiments performed on 40 standard test instances indicate that
their algorithm performs much better than the other polynomial time heuristics
found in the literature and competes with the best known non-polynomial time
algorithms.

4.5 Variants

In this section, we briefly discuss some extensions of the p-center problem.

4.5.1 The Capacitated p-Center Problem

One first variant concerns problems with capacitated facilities. There are few studies
on this variant. Bar-Ilan et al. (1993) introduced a ten-approximation algorithm for
the special case of unit demands. The guarantee was improved to 6 by Khuller and
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Sussmann (2000). If multiple centers can be located at the same location, then the
guarantee is further improved to 5.

Jaeger and Goldberg (1994) proposed a polynomial time algorithm for the
capacitated p-center problem when the graph is a tree, capacities are equal, and
multiple facilities can be located at the same location. In this work, the demand of a
node can be split among different facilities.

Ozsoy and Pinar (2006) proposed an exact algorithm to solve the capacitated
p-center problem. The idea is to see if the all nodes can be assigned within a given
distance and update lower and upper bounds on the radius using this information.
In the subproblem solved to see whether it is possible to assign all nodes within a
given distance, the objective is to minimize the number of facilities required.

In addition to the subproblem solved by Ozsoy and Pinar (2006) to obtain bounds
on the optimal radius, Albareda-Sambola et al. (2010) proposed a second approach
where they solved the problem of maximizing the demand covered within a given
distance using at most p facilities. They used bounds from the Lagrangian relaxation
of the two subproblems to eliminate some radius values and concluded that the first
approach for finding the minimum number of required facilities is a better approach.
Based on this conclusion, they proposed an exact algorithm using binary search over
possible values of the optimal radius.

A very large-scale neighborhood heuristic was developed by Scapparra et al.
(2004). Two types of exchanges were considered. In a cyclic exchange, one takes
a sequence of nodes that are served by different facilities and replaces the facility
of each node with the facility of the next node in the sequence (the facility of the
last node in the sequence becomes the facility of the first node). In a path exchange,
we again take a sequence of nodes served by different facilities and replace the
facility of each node with the facility of the next node. The facility of the last node
is replaced by a facility different from the facilities of the nodes in the sequence. A
relocation step that moves the facilities to better locations with respect to the set of
nodes they are serving is also added to the algorithm.

Three data sets were used in the last three papers mentioned. The first data set
contains 20 instances of the capacitated p-median problem from the OR-Library
(Beasley 1990), with 50 and 100 nodes. The second data set is from Lorena and
Senne (2004) and is also for the capacitated p-median problem. Here there are six
instances with the number of nodes ranging from 100 to 402. Finally, Scapparra
et al. (2004) provided a data set with 8 instances containing 100 and 150 nodes.
Additional instances of the p-median problem were used by Albareda-Sambola
et al. (2010). These authors also compared their approach with the one of Ozsoy
and Pinar (2006).

4.5.2 The Conditional p-Center Problem

The second variant is the conditional p-center problem. In this variant, there
are g existing facilities and additional p facilities are to be located so that the
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maximum distance between a node and its facility (among p + ¢ facilities) is
minimized. Minieka (1980) introduced the conditional 1-center problem. Drezner
(1989) showed that the conditional p-center problem can be solved by solving
O(logn) p-center problems. Suppose that the nodes are ranked in non-increasing
order of their distances to their facilities (using the existing ¢ facilities). Then there
exists a node s such that the optimal value of the conditional p-center problem is
equal to the maximum of the optimal value of the p-center problem solved for the
first s nodes and the distance of the s 4 Ist node to its facility using the existing ¢
facilities. The algorithm tries to find the best s using bisection.

Berman and Simchi-Levi (1990) solved the conditional p-center problem by
solving a p 4 1 center problem. They add a dummy demand node and a dummy
possible location. The distance from a demand node to the dummy location is the
distance of that node to its facility considering the existing facilities. The distance
of the dummy demand node to the dummy location is zero and its distance to the
other possible locations is a very large number. As a result, an optimal solution to
the p + 1-center problem includes the dummy facility location and opens p other
facilities. Berman and Drezner (2008) improved this approach and showed that the
conditional p-center problem can be solved by solving a p-center problem where
the distance between a node and a potential facility is set to the minimum of this
distance and the distance between this node and the closest existing facility.

4.5.3 The Continuous p-Center Problem

The next variant is the continuous p-center problem. When demand points are
continuously distributed over the whole graph, a set X, of p points of the graph
minimizing the largest distance from a demand point to a closest point of X, is
called a continuous p-center.

In the single facility case, i.e., when p = 1, the problem can still be solved
by choosing a best solution among all the local continuous centers, i.e., solutions to
continuous center problem in which the location is restricted to an edge. On an edge,
the objective function is again piecewise linear with O(| E|) breakpoints. Based on
these facts, O(|E|*log(| E|) algorithms were proposed by Hansen et al. (1991) and
Tamir (1988).

On a tree, the absolute center coincides with the unweighted absolute center.

For the continuous p-center problem, Tamir (1987) identified a finite set of
rational numbers containing the optimal solution value. Hence, a continuous
p-center can be found by solving a finite number of continuous set covering
problems, i.e., problems in which one looks for the smallest set of facilities needed
to cover all points of the graph (vertices and interior points to edges) within a given
maximum distance.
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4.5.4 The p-Center Problem with Uncertain Parameters

Finally, we consider the variants with uncertain parameters. Averbakh and Berman
(1997) studied the minmax regret version of the problem where the node weights
are uncertain within given intervals. They showed that the robust version of the
problem can be reduced to the resolution of 7 + 1 deterministic problems. Averbakh
(1997) showed that the robust 1-center problem is strongly NP-hard on general
networks when there is uncertainty in edge lengths. Averbakh and Berman (2000)
developed polynomial time algorithms for the robust weighted 1-center problem
with uncertainty in both node weights and edge lengths on a tree network.

4.6 Conclusions

We conclude this chapter with some future research directions. The majority of the
solution methods proposed for the p-center problem are based on either the set
covering or the dominating set problems. Well known optimization methods such
as the cutting plane, branch-and-cut, Benders decomposition, or dynamic program-
ming are rarely used. Recently, Calik (2013) provided a Benders decomposition
method to solve the vertex restricted p-center problem and developed a branch-
and-cut method for the capacitated p-center problem with multiple allocation. The
experimental study conducted by Calik (2013) revealed that the utilization of a
branch-and-cut method enables obtaining optimal solutions of large instances in
small CPU time. The multiple allocation variant, which was previously studied by
Jaeger and Goldberg (1994) on trees, is also an open research area for the capacitated
p-center problem.

Although there are many studies for the p-center problem on trees, the capac-
itated version is not extensively investigated. The only study on this problem
considers facilities with identical capacities and allows multi centers and multiple
allocation. Hence investigating the capacitated p-center problem on tree networks
with non-identical capacities, without multi centers and/or with single allocation
might be a worthwhile undertaking.

Another variant of the p-center problem that has recently attracted the attention
of the researchers is the fault tolerant p-center problem. This is a generalization of
the p-center problem in which each customer is assigned to o different facilities.
The idea is to make back-up services available in case of a failure of some
facilities. The fault tolerance can also be taken into account for the capacitated
p-center problem. Among the existing studies for the fault tolerant p-center and
capacitated p-center problems, Krumke (1995), Khuller et al. (2000), and Chechik
and Peleg (2012) focus on approximation algorithms and a recent study by Chen
and Chen (2013) presents two exact algorithms. Therefore, developing different
exact approaches and meta-heuristic algorithms for this problem might appeal to
the researchers.
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