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The discrete 𝛼-neighbor p-center problem (d-𝛼-pCP) is an emerging variant of the

classical p-center problem which recently got attention in literature. In this problem,

we are given a discrete set of points and we need to locate p facilities on these points

in such a way that the maximum distance between each point where no facility is

located and its 𝛼-closest facility is minimized. The only existing algorithms in litera-

ture for solving the d-𝛼-pCP are approximation algorithms and two recently proposed

heuristics. In this work, we present two integer programming formulations for the

d-𝛼-pCP, together with lifting of inequalities, valid inequalities, inequalities that

do not change the optimal objective function value and variable fixing procedures.

We provide theoretical results on the strength of the formulations and convergence

results for the lower bounds obtained after applying the lifting procedures or the

variable fixing procedures in an iterative fashion. Based on our formulations and

theoretical results, we develop branch-and-cut (B&C ) algorithms, which are further

enhanced with a starting heuristic and a primal heuristic. We evaluate the effective-

ness of our B&C algorithms using instances from literature. Our algorithms are able

to solve 116 out of 194 instances from literature to proven optimality, with a runtime

of under a minute for most of them. By doing so, we also provide improved solution

values for 116 instances.
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1 INTRODUCTION

The 𝛼-neighbor p-center problem (𝛼-pCP), proposed by Krumke [25], is an emerging variant of the classical p-center problem

(pCP ) [18] which recently got attention in literature [6,10,31]. In this problem, we are given a set of points and we need to locate

p facilities. The goal is to locate the facilities in such a way that the maximum distance between each point and its 𝛼-closest

facility is minimized. We note that both a continuous and discrete version of the 𝛼-pCP exist. In the continuous version, the

facilities can be located anywhere on the plane, while in the discrete version the given points are also the potential facility

locations. In the discrete version all the points where a facility gets located are not considered in the objective function. The

𝛼-pCP can be seen as a robust variant of the pCP , where customers do not need to go to their closest facility, but also have

additional 𝛼 − 1 facilities nearby. Thus, the 𝛼-pCP can be a useful modeling approach for applications which are traditionally

modeled as pCP , such as emergency service locations and relief actions in humanitarian crisis [5,22,27], where robust solutions

are highly relevant.
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A formal definition of the discrete 𝛼-pCP (d-𝛼-pCP) is as follows [25,29,31]: We are given a set of points N, a positive

integer p < |N|, and a positive integer 𝛼 ≤ p. For each pair of points i, j ∈ N we are given a distance 𝑑ij ≥ 0. A feasible solution

consists of a subset P ⊆ N of |P| = p facilities, indicating which facilities are opened. Given a feasible solution P, that is, a set

of open facilities P, the set of demand points is defined as N ⧵P, that is, the set of demand points depends on the chosen feasible

solution and consists of all points that are not opened. The 𝛼-distance 𝑑𝛼(P, i) for a feasible solution P and a given demand point

i ∈ N ⧵ P is defined as

𝑑𝛼(P, i) = min
A⊆P,|A|=𝛼

max
j∈A

{𝑑ij},

so the 𝛼-distance 𝑑𝛼(P, i) gives the distance of i to the 𝛼-nearest open facility for the feasible solution P. The objective function

value f𝛼(P) of a feasible solution P is defined as

f𝛼(P) = max
i∈N⧵P

𝑑𝛼(P, i).

Using these definitions, the d-𝛼-pCP can be formulated as

min
P⊆N,|P|=p

f𝛼(P).

We note that the discrete pCP (d-pCP , also known as vertex pCP ) is obtained by setting 𝛼 = 1, if we assume that the distances

𝑑ii = 0 for all i ∈ N, that is, if we assume that each demand point i is covered if the same facility i is opened. Moreover, instead

of assuming that distances between all pairs of points i, j are given, the problem can also be defined on a (non-complete) graph

and the distances are defined as the shortest-path distances on this graph. With respect to this, [23] show that the d-pCP is

NP-hard in general, but there are some classes of graphs such as trees, where the problem can be solved in polynomial time [21].

In this work, we present exact solution approaches for solving the d-𝛼-pCP. So far, solution approaches for the 𝛼-pCP focused

mostly on the continuous version of the problem. For this version, an iterative exact algorithm based on the connection to a

version of the set cover problem is proposed in [10]. We note that for the classical pCP such set cover-based approaches are

well established (for both the continuous and discrete version of the problem), going back to the seminal work of Minieka [28].

Recent set-cover based approaches for the classical pCP include Chen and Chen [9]; Contardo et al. [11].

In [6] such a set cover-based approach is used for the continuous version of both the pCP and the 𝛼-pCP. For the d-𝛼-pCP

the only existing solution approaches in literature are approximation algorithms [8,24,25] and heuristics [29,31]. More details

on these approaches and on the pCP and other related problems are given in Section 1.2.

1.1 Contribution and outline
In this work, we present two different integer programming formulations for the d-𝛼-pCP. We also present valid inequalities,

(iterative) lifting procedures for some of the inequalities, inequalities that do not change the optimal objective function value

and (iterative) variable fixing procedures. We denote the inequalities that do not change the optimal objective function value

as optimality-preserving inequalities. The lifting procedures are based on lower bounds to the problem and can be viewed as

extension of previous results for the d-pCP in Gaar and Sinnl [16]. We show that the lower bounds converge to a certain fractional

set cover solution when applying the lifting procedure or the variable fixing procedure in an iterative fashion. We also show that

we can obtain the optimal objective function value of the semi-relaxation (in this semi-relaxation, one set of binary variables

of our formulation is kept binary and the other set of binary variables is relaxed) of our second formulation in polynomial time

using iterative variable fixing. This can be seen as an extension of a result obtained by Elloumi et al. [14] for the d-pCP and a

fault-tolerant version of the pCP . Moreover, we provide polyhedral comparisons between the formulations.

Based on these formulations and our theoretical results, we develop branch-and-cut (B&C ) algorithms to solve the d-𝛼-pCP.

These algorithms also contain a starting heuristic and a primal heuristic. We evaluate the effectiveness of our B&C algorithms

using instances also used in Sánchez-Oro et al. [31] and Mousavi [29]. Our algorithms are able to solve 116 out of 194 instances

from literature to proven optimality. We also provide improved solution values for 116 out of these 194 instances. Note that these

instances are not all the same as the instances for which we manage to prove optimality, as for some instances, the heuristics

from literature already found the optimal solution (but of course could not prove optimality, as they are heuristics).

The article is structured as follows: In the remainder of this section, we discuss previous and related work in more detail.

Section 2 presents our first integer programming formulation together with valid inequalities, lifted versions of inequalities,

optimality-preserving inequalities and variable fixings. Section 3 contains the same for our second formulation. In Section 4,

we provide a polyhedral comparison of the formulations and convergence results for the lower bounds after applying the lifting

procedure or the variable fixing procedure in an iterative fashion. In Section 5 we describe the implementation details of our

B&C algorithm, including the starting heuristic and the primal heuristic and separation routines. In Section 6 the computational

study is presented. Finally, Section 7 concludes the article.
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GAAR and SINNL 373

1.2 Previous and related work
The pCP is a fundamental problem in location science, dating back to 1965 [18], which has spawned many variations over the

years, see, for example, the book-chapter by [4].

The seminal work of Minieka [28] presented the first exact approach for the pCP and also created a blueprint of a solution

algorithm which over the years many other algorithms for either the pCP or also variants of it including the continuous 𝛼-pCP,

used as a starting point. Minieka [28] showed that the question whether there exists a feasible solution to the pCP with a given

objective function value can be posed as a certain set cover problem. As a consequence the pCP can be solved by iteratively

solving such set cover problems. Over the years, many authors [1, 7, 9, 11, 17, 19, 20] have expanded on this idea to present

algorithms to solve the pCP .

Aside from these set cover-based approaches, there also exist several integer programming formulations for solving the

d-pCP to proven optimality. The classical textbook formulation of the problem (see e.g., [13]) uses facility opening variables

and assignment variables and is known to have a bad linear programming relaxation (see, e.g., [33]). In Elloumi et al. [14]

an alternative integer programming formulation is presented and the authors show that there are instances where the linear

relaxation bounds are provably better than the bounds obtained by the classical textbook formulation. In Ales and Elloumi [2]

a modification of this formulation is presented. Regarding our second formulation, which we present in Section 3, we note

that there exists a variant of the d-𝛼-pCP, in which every point i must be covered 𝛼-times, even if there is a facility opened

at i. This variant is sometimes called fault-tolerant pCP (see, e.g., section 6 of Elloumi et al. [14]), although this name has

also been used for other problems in literature, including d-𝛼-pCP. In section 6 of Elloumi et al. [14] a formulation for the

fault-tolerant pCP extending their formulation for the d-pCP is sketched. Our second formulation, can be seen as an adaption

of this formulation, taking also into account the modification proposed in Ales and Elloumi [2]. In Elloumi et al. [14] it is also

shown that a so-called semi-relaxation of their formulation, where one of the two sets of binary variables is relaxed, can be

solved in polynomial time. They also briefly discuss such a result for their formulation of the fault-tolerant pCP . We prove a

similar result for our second formulation for the d-𝛼-pCP in Section 4.3. In Çal𝚤k and Tansel [5] another formulation for the

d-pCP is presented and the authors show that the linear programming relaxation of it has the same strength as the relaxation of

the formulation of Elloumi et al. [14].

In Gaar and Sinnl [16] the classical textbook formulation was used as starting point for a projection-based approach, which

projected out the assignment variables to obtain a new integer programming formulation for the d-pCP . Moreover, an iterative

lifting scheme for the inequalities in the new formulation was presented. This lifting scheme is based on the lower bound obtained

from solving the linear programming relaxation, in which then the lifted inequalities are included and everything is resolved in

an iterative fashion. Gaar and Sinnl [16] showed that this procedure converges and the lower bound at convergence is the same

lower bound as the one of the semi-relaxation considered in Elloumi et al. [14]. Furthermore, Gaar and Sinnl [16] also showed

that the solution at convergence solves a certain fractional set cover problem. Our first formulation for the d-𝛼-pCP, which we

present in Section 2, is based on the classical textbook formulation for the d-pCP and is also suitable for the ideas of Gaar and

Sinnl [16] regarding lifting.

For d-𝛼-pCP the only existing algorithms with computational results are the GRASP proposed by Sánchez-Oro et al. [31]

and the local search by Mousavi [29]. Aside from these heuristics, there are also works on approximation algorithms [8,24,25]

which do not contain computations. The best possible approximation factor of two is obtained by the algorithms presented in

Chaudhuri et al. [8]; Khuller et al. [24] under the condition that the distances fulfill the triangle inequalities. We note that in

principle set cover-based approaches such as the one of Chen and Chen [10] also work for the d-𝛼-pCP, but [10] focuses on the

continuous 𝛼-pCP and presents no computations for the d-𝛼-pCP.

2 OUR FIRST FORMULATION

In this section we present our first integer programming formulation for the d-𝛼-pCP. First, we describe the formulation in

Section 2.1. Then we derive valid inequalities, valid inequalities that are based on lower bounds, and optimality-preserving

inequalities in Section 2.2. Next, we detail conditions which allow to fix some of the variables in the linear relaxation in

Section 2.3. Finally, we provide some insight on what happens if we relax one set of binary variables of our formulation in

Section 2.4.

2.1 Formulation
Our first integer programming formulation of the d-𝛼-pCP can be viewed as extension of a classical formulation of the

d-pCP (see, e.g., [12] and [16]). We refer to this classical formulation of the d-pCP as (PC1) following the notation of Gaar
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374 GAAR and SINNL

and Sinnl [16]. The formulation (PC1) as well as any other formulations of the d-pCP which are mentioned in the remainder of

this work can be found in the Appendix.

Let the binary variables yj for all j ∈ N indicate whether a facility is opened at point j. Let the binary variables xij for all

i, j ∈ N with i ≠ j indicate whether the point i is assigned to the open facility j. Let the continuous variables z measure the

distance in the objective function. Then the d-𝛼-pCP can be formulated as

(APC1) min z, (1a)

s.t.

∑

j∈N
yj = p, (1b)

∑

j∈N⧵{i}
xij = 𝛼(1 − yi) ∀i ∈ N, (1c)

xij ≤ yj ∀i, j ∈ N, i ≠ j, (1d)

𝑑ijxij ≤ z ∀i, j ∈ N, i ≠ j, (1e)

xij ∈ {0, 1} ∀i, j ∈ N, i ≠ j, (1f)

yj ∈ {0, 1} ∀j ∈ N, (1g)

z ∈ R. (1h)

The constraints (1b) ensure that exactly p facilities are opened. The constraints (1c) make sure that for each point i ∈ N, the

point is either used for opening a facility, or it is assigned to 𝛼 other open facilities. The constraints (1d) ensure that if a point i
is assigned to a facility at point j, then the facility at point j is opened. The constraints (1e) ensure that z takes at least the value

of the distance from i to j if i is assigned to j. Thus, z will take at least the maximum distance for assigning i to 𝛼 facilities, since

constraints (1c) ensure the assignment of i to 𝛼 facilities in case it is not opened. The objective function (1a) minimizes z, that

is, it minimizes the maximum assignment distance. The formulation (APC1) has O(|N|2) variables and O(|N|2) constraints.

Note that in the formulation (PC1) for the classical formulation of the d-pCP , the constraint (1e) is included in an aggregated

fashion as
∑

j∈N 𝑑ijxij ≤ z for all i ∈ N. Furthermore, in the classical d-pCP also open facilities are included in the demand

points. Thus, in (PC1) the variables xij are required also for i = j, and the right hand-side is 𝛼 and not 𝛼(1 − yi) in (1c).

2.2 Strengthening inequalities
Due to the fact that (PC1) is typically considered to have bad linear programming bounds (see, e.g., [33]) for the d-pCP , it

could be expected that also (APC1) has a linear relaxation that provides a poor bound. In fact, we confirmed this in preliminary

computations, see also Section 6.2. In Section 4.2 we present some theoretical results on the effect of adding the inequalities

described in this section to (APC1).

2.2.1 Valid inequalities

The next theorem presents two sets of valid inequalities for (APC1).

Theorem 1. The inequalities
∑

j∈N⧵{i}
𝑑ijxij ≤ 𝛼z ∀i ∈ N, (2a)

yi + xij ≤ 1 ∀i, j ∈ N, i ≠ j (2b)

are valid inequalities for the formulation (APC1) for the d-𝛼-pCP, that is, when adding (2a) and (2b) to (APC1),
the set of feasible solutions does not change.

Proof. Clearly (2a) holds for any feasible solution for (APC1), as in this case
∑

j∈N⧵{i} 𝑑ijxij is either zero (in case

i is opened) or the sum of the distances of the closest, second-closest, … , 𝛼-closest facility to point i, which is at

most 𝛼 times the distances of the 𝛼-closest facility measured as z.

Furthermore, it is obvious that (2b) holds for any feasible solution for (APC1), as i cannot be assigned to any

point j ∈ N ⧵ {i} if i is opened. ▪

2.2.2 Valid inequalities based on lower bounds

Given a lower bound on the optimal objective function value of the d-𝛼-pCP, the inequalities (1e) and (2a) can be lifted, as we

show next. The lifting is based on a similar idea recently proposed in [16] for the d-pCP .
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GAAR and SINNL 375

Theorem 2. Let LB be a lower bound on the optimal objective function value of the d-𝛼-pCP. Then

LByi +max{LB, 𝑑ij}xij ≤ z ∀i, j ∈ N, i ≠ j, (3a)

max{LB, 𝑑ij}xij ≤ z ∀i, j ∈ N, i ≠ j, (3b)

𝛼LByi +
∑

j∈N⧵{i}
max{LB, 𝑑ij}xij ≤ 𝛼z ∀i ∈ N (3c)

are valid inequalities for the formulation (APC1) for the d-𝛼-pCP, that is, when adding (3c), (3a), and (3b) to
(APC1), the set of feasible solutions does not change.

Proof. For the inequalities (3a), we note that due to constraints (1c) at most one of yi and xij can take the value one

in any feasible solution of (APC1). Thus, the left hand-side can be at most max{LB, 𝑑ij}, which is clearly a valid

lower bound for z.

Clearly the inequalities (3b) are just a relaxation of (3a) and therefore also valid. The validity of the inequalities

(3c) follows from combining the arguments from the proof of the validity of inequalities (2a) with the proof for the

validity of the inequalities (3a). ▪

Theorem 2 allows us to add new valid inequalities to the linear relaxation of (APC1), as soon as we have a lower bound

LB. We present an iterative scheme exploiting this fact in Section 4.2, where we also analyze the convergence behavior of this

scheme.

2.2.3 Optimality-preserving inequalities

Next we consider optimality-preserving inequalities. These inequalities may cut off some feasible solutions of (APC1), but do

not change the optimal objective function value. In other words, there exists at least one optimal solution to (APC1) which

fulfills all these inequalities.

To present the inequalities, let Sij = {j′ ∈ N ∶ (𝑑ij′ < 𝑑ij) or (𝑑ij′ = 𝑑ij and j′ < j)}, that is, Sij is the set of points j′ such

that j′ is closer to i than j, or such that j′ and j are at the same distance to i and j′ has a smaller index than j. Thus, for any point

i, the sets Sij induce an ordering of all points according to their distance to i and their index. We denote this order with 𝜎i.

Theorem 3. The inequalities
∑

j∈N
𝛼

yj +
∑

j∈N⧵
⋃

j′∈N
𝛼

(Sij′ ∪{i,j′})
xij ≤ 𝛼 ∀i ∈ N,∀N𝛼 ⊆ N, |N𝛼| = 𝛼 (4a)

and, if UB is the objective function value of a feasible solution of the d-𝛼-pCP, the inequalities
∑

j∈N⧵{i}∶𝑑ij≤UB
yj ≥ 𝛼(1 − yi) ∀i ∈ N (4b)

are optimality-preserving inequalities for the formulation (APC1) for the d-𝛼-pCP, that is, when adding (4a) and
(4b) to (APC1), the optimal objective function value does not change.

Proof. Note that the set N ⧵
⋃

j′∈N
𝛼

(Sij′ ∪ {i, j′}) that appears in (4a) can alternatively be described as the set

{j ∈ N ⧵ {i} ∶ (𝑑ij > maxj′∈N
𝛼

{𝑑ij′ }) or (𝑑ij = maxj′∈N
𝛼

{𝑑ij′ } and j > max{j′ ∈ N𝛼 ∶ 𝑑ij = 𝑑ij′ })} and is the set

of facilities j that are further away to i than the furthest facility in N𝛼 according to 𝜎i.

The inequality (4a) ensures that if a certain number 𝛽 of facilities, that are at most as far away from i than the

furthest facility in N𝛼 , are opened (and thus, i can be assigned to these 𝛽 facilities), the point i is assigned at most

𝛼 − 𝛽 times to facilities that are further away from i than the furthest facility in N𝛼 . Clearly this is fulfilled for any

optimal solution of (APC1), where every facility i is assigned to those 𝛼 opened facilities, that are the 𝛼 closest

facilities to i according to 𝜎i. Thus, adding (4a) to (APC1) does not change the optimal objective function value.

Next consider the inequalities (4b). If yi is one in an optimal solution of (APC1), the inequality (4b) is clearly

satisfied and thus it does not cut off any optimal solution. Now suppose yi is zero, so location i is not opened. As

we know that a feasible solution with objective function value UB exists, it follows that i must be assigned to 𝛼

facilities at distance at most UB to location i and these 𝛼 facilities must be opened. Therefore, also in this case (4b)

is fulfilled. ▪

Note that the inequalities (4a) from Theorem 3 force an assignment of any location i to those 𝛼 opened facilities, that are the

𝛼 closest opened facilities to i according to 𝜎i. They do so, even when also other assignments would not change the objective

function value. Thus, in a sense (4a) are symmetry breaking constraints that forbid certain similar solutions.
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376 GAAR and SINNL

2.3 Variable fixing
Next, we present a variable fixing condition which can be utilized whenever a feasible solution to the d-𝛼-pCP is known. This

fixing of variables cuts off feasible solutions, but it does not cut off any optimal solution, that is, it is optimality-preserving.

Theorem 4. Let UB be the objective function value of a feasible solution of the d-𝛼-pCP. Then when adding the
constraints

xij = 0 ∀i, j ∈ N, i ≠ j, 𝑑ij > UB (5a)

to (APC1), no optimal solution is cut off .

Proof. Clearly in an optimal solution no point i can be assigned to a point j that is further away than UB, thus (5a)

is satisfied for any optimal solution. ▪

2.4 Relaxing the assignment variables
We now turn our attention to an interesting aspect of (APC1). The classical formulation (PC1) of the d-pCP has the fol-

lowing nice property: When relaxing the x-variables in (PC1), that is, replacing xij ∈ {0, 1} with 0 ≤ xij for all i, j ∈ N,

then the optimal objective function value does not change. Hence, it is not necessary to force the x-variables to be binary in

order to obtain the optimal objective function value of (PC1). This is for example exploited by Gaar and Sinnl [16]. Inter-

estingly, this is not the case anymore for the d-𝛼-pCP. To investigate this in detail, let (APC1 – Rx) be the formulation

(APC1) with relaxed x-variables, that is, (APC1-Rx) is (APC1) without (1f) and with the constraints 0 ≤ xij for all i, j ∈ N
with i ≠ j.

We first consider an example to get some insight. The example is illustrated in Figure 1.

Example 5. Let N = {1, 2, 3, 4}, p = 3, 𝛼 = 2, 𝑑1,2 = 2, 𝑑1,3 = 𝑑1,4 = 4, 𝑑2,3 = 𝑑2,4 = 𝑑3,4 = 42 and 𝑑ij = 𝑑ji for

all i, j ∈ N with i ≠ j.
In this example, it is easy to see that one optimal solution (x∗, y∗, z∗) for the formulation (APC1) of the d-𝛼-pCP

is given as y∗
1
= 0, y∗

2
= y∗

3
= y∗

4
= 1, x∗

1,2
= x∗

1,3
= 1, all other values of x∗ij are equal to 0, and z∗ = 4. Thus, the

optimal objective function value of (APC1) is z∗ = 4.

Next consider the solution (x′, y′, z′), where y′ = y∗, x′
1,2
= 1, x′

1,3
= x′

1,4
= 0.5, all other values of x′ij are equal

to 0, and z′ = 2. Clearly, (x′, y′, z′) is feasible for (APC1-Rx) and therefore the optimal objective function value of

(APC1-Rx) is at most 2. Indeed, the optimal objective function value of (APC1-Rx) is 2 and thus not equal to the

optimal objective function value of (APC1).

It is easy to see, that the solution (x′, y′, z′) is not feasible anymore for (APC1-Rx) when the inequal-

ities (2a) are added, as (x′, y′, z′) does not fulfill (2a) for i = 1. However, the solution (x′′, y′′, z′′) with

x′′ = x′, y′′ = y′ and z′′ = 3 is feasible. So the optimal objective function value of (APC1-Rx) with (2a)

is at most 3, and indeed it is exactly 3. Thus, it is again not equal to the optimal objective function value

of (APC1).

(A) (B) (C)

FIGURE 1 Illustration of Example 5, in which p = 3 and 𝛼 = 2. The value in the nodes in (A) is the index of the node and the values near the arcs are the

distances. The values in the nodes in (B,C) are the values of the y-variables in the optimal solution, and the values near the arcs are the values of the

x-variables in the optimal solution. If an arc is not drawn in a solution, this means the corresponding x-variable takes value zero.
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GAAR and SINNL 377

Finally, (x′′, y′′, z′′) is not feasible for (APC1-Rx) with (4a), as (x′′, y′′, z′′) does not fulfill the inequality y′′
2
+

y′′
3
+ x′′

1,4
≤ 𝛼, which is (4a) for i = 1 and N𝛼 = {2, 3}. Indeed, the optimal objective function value of (APC1-Rx)

with (4a) coincides with the optimal objective function value of (APC1).

Example 5 shows that (APC1-Rx) does not necessarily give the same optimal objective function value as (APC1), but there

exist instances where after adding (4a), the optimal objective function values coincide. The next result shows that this behavior

is not a coincidence.

Theorem 6 (APC1-Rx). With (4a) has the same optimal objective function value as (APC1).

Proof. Let (x∗, y∗, z∗) be an optimal solution of (APC1-Rx) with (4a). Because of Theorem 3, the optimal objective

function value of (APC1) is at least z∗, so it is enough to show that z∗ is at least the optimal objective function of

(APC1).

To do so, we construct a solution (x◦, y◦, z◦) that is feasible for (APC1) with z∗ ≥ z◦. Towards this end consider

some i ∈ N. If y∗i = 1, then let Ni
𝛼 = ∅. Otherwise, so if y∗i = 0, let ji,k be such that

∑
j∈Sijik⧵{i}

x∗ij ≤ k − 1 and such

that
∑

j∈(Sijik∪{jik})⧵{i}
x∗ij > k − 1 for all k ∈ {1, 2, … , 𝛼}. Clearly such ji,k exist because of (1c) and y∗i = 0. Let

Ni
𝛼 = {ji,k ∶ k ∈ {1, … , 𝛼}}. Due to the fact that x∗ij ≤ 1 for all j ∈ N ⧵ {i}, all ji,k are distinct for different values

of k by construction, so |Ni
𝛼| = 𝛼. Furthermore,

y∗j = 1 ∀j ∈ Ni
𝛼, (6)

because for such j by construction x∗ij > 0 and y∗j ≥ x∗ij because of (1d). As a consequence, (4a) for N𝛼 = Ni
𝛼 implies

that
∑

j∈N⧵
⋃

j′∈Ni
𝛼

(Sij′ ∪{i,j′})
x∗ij ≤ 0 and hence x∗ij = 0 for all j ∈ N ⧵

⋃
j′∈Ni

𝛼

(Sij′ ∪ {i, j′}). This, together with (1c) and

the fact that ji,𝛼 is the facility in Ni
𝛼 furthest away from i according to 𝜎i, implies that

∑
j∈(Siji,𝛼∪{ji,𝛼})⧵{i}

x∗ij = 𝛼. Due

to the definition of ji,𝛼 this implies that x∗iji,𝛼 = 1. Thus

z∗ ≥ 𝑑iji,𝛼 = max
j∈Ni

𝛼

{𝑑ij} (7)

because of (1e).

Finally, let y◦ = y∗, z◦ = z∗ and let x◦ij = 1 if j ∈ Ni
𝛼 and x◦ij = 0 otherwise. Clearly, x◦ and y◦ are binary and

y◦ satisfies (1b). Furthermore, by construction of Ni
𝛼 , also (1c) and, in particular because of (6), (1d) are satisfied.

Furthermore, (1e) is fulfilled because of (7). As a consequence, (x◦, y◦, z◦) is feasible for (APC1) with z∗ = z◦,
which finishes the proof. ▪

As a consequence of Theorem 6, relaxing the x-variables in (APC1) without changing the optimal objective function is

possible, whenever the inequalities (4a) are added. Example 5 shows that sometimes these inequalities are indeed necessary to

preserve the optimal objective function value.

Note that also additionally including (2a) and (2b) into (APC1-Rx) with (4a) does not change the optimal objective function

value, as these inequalities are valid for (APC1).

3 OUR SECOND FORMULATION

In this section we detail our second integer programming formulation of the d-𝛼-pCP. First, we present the formulation in

Section 3.1. Then we derive a set of valid inequalities in Section 3.2. Finally, we present conditions which allow to fix some of

the variables in the linear relaxation in Section 3.3.

3.1 Formulation
Our second formulation can be viewed as an extension of the formulation for the d-pCP proposed by [2], which in turn is a

refinement of a formulation of [14] with less constraints and the same linear relaxation bound. We denote the formulation of

the d-pCP by [14] as (PCE) in the same fashion as [16]. Moreover, we denote the formulation of the d-pCP by [2] as (PCA).

Both (PCE) and (PCA) can be found in the Appendix.

Let D = {𝑑ij ∶ i, j ∈ N, i ≠ j} denote the set of all possible distances and let 𝑑1, … , 𝑑K be the values in D, that is,

D = {𝑑1, … , 𝑑K}. It is easy to see that the optimal objective function value of the d-𝛼-pCP is in D and there are at most

(|N| − 1)|N| potential optimal values. Furthermore, let Di =
(⋃

j∈N⧵{i}{𝑑ij}
)

⧵ {𝑑1}, so Di is the set of all distances that are

relevant for point i, except for the smallest overall distance.
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378 GAAR and SINNL

In this formulation, we have a binary variable uk for each k = 2, … ,K. This variable indicates whether the optimal objec-

tive function value of the d-𝛼-pCP is greater than or equal to 𝑑k, that is, uk is one if and only if the optimal objective function

value of the d-𝛼-pCP is at least 𝑑k. Aside from the u-variables, we also have the binary variables yj for all j ∈ N to indi-

cate whether a facility is opened at point j similar to the previous formulation. The formulation is denoted as (APC2) and

reads as

(APC2) min 𝑑1 +
K∑

k=2

(𝑑k − 𝑑k−1)uk, (8a)

s.t.

∑

j∈N
yj = p, (8b)

uk−1 ≥ uk ∀k ∈ {3, … ,K}, (8c)

𝛼uk +
∑

j∈N⧵{i}∶𝑑ij<𝑑k

yj ≥ 𝛼(1 − yi) ∀i ∈ N,∀𝑑k ∈ Di, (8d)

uk ∈ {0, 1} ∀k ∈ {2, … ,K}, (8e)

yj ∈ {0, 1} ∀j ∈ N. (8f)

The constraints (8b) ensure that exactly p facilities are opened. The constraints (8c) make sure that if the variable uk is

one, indicating that the optimal objective function value is at least 𝑑k, then also all variables with smaller index are one. These

constraints ensure that the objective function (8a) measures the objective function value correctly: in (8a), the coefficient of uk
is always the distance-increment from 𝑑k−1 to 𝑑k. Thus, we need that all uk′ with k′ ≤ k are set to one in order to get a value of

𝑑k in the objective function. Finally, constraints (8d) model that for each i ∈ N, the u-variables are set in such a way that uk is

one, if i is not opened and the 𝛼-nearest open facility to i has distance at least 𝑑k: In case a facility is opened at point i, that is,

yi is one, the constraints are trivially fulfilled. In case no facility is opened at point i, that is, yi is zero, the constraints force uk
to be one, or that at least 𝛼 facilities closer than distance 𝑑k to i are opened. The formulation (APC2) has O(|N|2) variables and

O(|N|2) constraints.

In comparison to the formulation (PCA) for the d-pCP , we have several modifications in (APC2) for the d-𝛼-pCP.

First, we have the right hand-side 1 − yi instead of just 1 and the sum over all j ∈ N ⧵ {i} instead of over all j ∈
N in (8d) as a consequence of the fact that in the d-𝛼-pCP opened facilities do not serve as demand points. Further-

more, we have a coefficient 𝛼 for uk and 1 − yi in (8d). Finally, we do not include K into the set Di, independent from

whether there is a facility j with distance 𝑑ij = 𝑑K or not. This does not influence the correctness of the model, as in

the case that there is no facility j with 𝑑ij = 𝑑K for some i, then for (8d) for i and k = K, the sum
∑

j∈N⧵{i}∶𝑑ij<𝑑k
yj is

equal to p − yi. This implies that the constraint becomes 𝛼uK ≥ 𝛼(1 − yi) − (p − yi), which is always satisfied because

1 ≤ 𝛼 ≤ p holds. Therefore the constraint does not impose a restriction on uK , and K can be omitted when defining

the set Di.

3.2 Strengthening inequalities
We have the following valid inequalities.

Theorem 7. The inequalities

uk + yi ≥ 1 ∀i ∈ N, 𝑑k ∈ Di, |{j ∈ N ⧵ {i} ∶ 𝑑ij < 𝑑k}| < 𝛼 (9)

are valid inequalities for the formulation (APC2) for the d-𝛼-pCP, that is, when adding (9) to (APC2), the set of
feasible solutions does not change.

Proof. In any optimal solution of (APC2), if a point i is such that it does not have 𝛼 locations at distance smaller

than 𝑑k, then any feasible solution either has objective function value at least 𝑑k (so uk = 1) or i is opened

(so yi = 1). ▪

We observe the following for the inequalities of Theorem 7.

Observation 8. For any i and 𝑑k ∈ Di such that |{j ∈ N ⧵ {i} ∶ 𝑑ij < 𝑑k}| < 𝛼, the inequalities (8d) are
dominated by the inequalities (9), because the former are the latter multiplied by 𝛼 with additional non-negative
terms in the sum on the left hand-side. Thus, it is not necessary to include (8d) for any such i and 𝑑k, if (9) is
included.
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GAAR and SINNL 379

3.3 Variable fixing
Next we present some conditions which allow the fixing of variables. In contrast to (APC1), for which we only have a condition

based on an upper bound on the optimal objective function value, for (APC2) we also have a condition which can be utilized

with any known lower bound on the optimal objective function value of the d-𝛼-pCP.

Theorem 9. Let LB be a lower bound on the optimal objective function value of the d-𝛼-pCP. Then

uk = 1 ∀k ∈ {2, … ,K}, 𝑑k ≤ LB (10)

are valid equalities for the formulation (APC2) for the d-𝛼-pCP, that is, when adding (10) to (APC2), the set of
feasible solutions does not change.

Proof. Consider any optimal solution for (APC2). If LB is a lower bound on the optimal objective function value

of the d-𝛼-pCP, then this optimal value is at least 𝑑k for any k such that 𝑑k ≤ LB. Therefore, uk = 1 in this case. ▪

In Section 4.3 we present an iterative scheme for variable fixing based on the optimal solution of the linear programming

relaxation of (APC2) which can be seen as extension of Theorem 9.

Theorem 10. Let UB be the objective function value of a feasible solution of the d-𝛼-pCP. Then when adding

uk = 0 ∀k ∈ {2, … ,K}, 𝑑k > UB (11)

to (APC2), no optimal solution is cut off .

Proof. Consider any optimal solution for (APC2). If UB is an upper bound on the optimal objective function value

of the d-𝛼-pCP, then this optimal value is at most 𝑑k for any k such that 𝑑k ≥ UB. As a consequence, this optimal

value it not greater or equal to any 𝑑k > UB and hence uk = 0 in this case. ▪

4 POLYHEDRAL STUDY

In this section we provide a polyhedral study of our two integer programming formulations for the d-𝛼-pCP. We start by com-

paring the basic linear relaxations of the two formulations in Section 4.1. Next, we detail how to obtain the best lower bound

based on (APC1), which can be computed in polynomial time, in Section 4.2 and also give a combinatorial interpretation of

this best bound. In Section 4.3 we do the same for (APC2). Finally, we compare the two best lower bounds in Section 4.4.

4.1 Comparison of basic linear relaxations
Whenever several integer programming formulations of a problem are available, it is an interesting question to compare the cor-

responding linear relaxations. We note that for the d-pCP, [2] proved that the objective function values of the linear relaxations

of (PCE) and (PCA) coincide. Furthermore, [14] showed that the objective function value of the linear relaxation of (PCE) is

always as least as good as the one of the linear relaxation of (PC1), and they demonstrated that the dominance might be strict

by providing an instance where this is the case. Thus, in case of the d-pCP , both (PCA) and (PCE) dominate (PC1).

Let (APC1 – R) be the linear relaxation of (APC1), that is, (APC1-R) is (APC1) without (1f) and (1g) and with the constraints

0 ≤ xij for all i, j ∈ N with i ≠ j and 0 ≤ yj ≤ 1 for all j ∈ N. Let (APC2 – R) be the linear relaxation of (APC2), that

is, (APC2-R) is (APC2) without (8e) and (8f) and with the constraints 0 ≤ uk ≤ 1 for all k ∈ {2, … ,K} and 0 ≤ yj ≤ 1

for all j ∈ N. To study (APC1-R) and (APC2-R), we start by considering the following examples, which are illustrated in

Figures 2 and 3.

Example 11. Let N = {1, 2, 3}, p = 2, 𝛼 = 2, 𝑑1,2 = 0, 𝑑1,3 = 𝑑2,3 = 1 and 𝑑ij = 𝑑ji for all i, j ∈ N with i ≠ j.
In the formulation (APC2-R) we have D = {0, 1} and D1 = D2 = D3 = {1}, so K = 2. An optimal solution of

(APC2-R) is y1 = y2 = 4

7
, y3 = 6

7
and u2 = 1

7
. Thus, the optimal objective function value of (APC2-R) is equal to

1

7
≈ 0.143.

This solution is not feasible anymore when adding (9) to (APC2-R), as u2 + y1 = 5

7
< 1, which violates (9) for

i = 1 and 𝑑k = 1. An optimal solution of (APC2-R) with (9) is given as y1 = y2 = y3 = 2

3
and u2 = 1

3
. Therefore,

the optimal objective function value of (APC2-R) with (9) is equal to
1

3
≈ 0.333, which is larger than the optimal

objective function value of (APC2-R).
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380 GAAR and SINNL

(A)
(B)

(C) (D)

FIGURE 2 Illustration of Example 11, in which p = 2 and 𝛼 = 2. The value in the nodes in (A) is the index of the node and the values near the arcs are the

distances. The values in the nodes in (B–D) are the values of the y-variables in the optimal solution, and the values near the arcs in (D) are the values of the

x-variables in the optimal solution.

(A) (B)

(C) (D)

FIGURE 3 Illustration of Example 12, in which p = 2 and 𝛼 = 2. The value in the nodes in (A) is the index of the node and the values near the arcs are the

distances. The values in the nodes in (B–D) are the values of the y-variables in the optimal solution, and the values near the arcs in (B,C) are the values of the

x-variables in the optimal solution.
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GAAR and SINNL 381

An optimal solution for (APC1-R) is y1 = y2 = 0.6, y3 = 0.8, x1,2 = x2,1 = 0.6, x1,3 = x2,3 = x3,1 = x3,2 = 0.2,

and z = 0.2, so the optimal objective function value of (APC1-R) is equal to 0.2. As a consequence, for this instance

(APC1-R) gives a better bound for the d-𝛼-pCP than (APC2-R).

Example 12. Let N = {1, 2, 3}, p = 2, 𝛼 = 2, 𝑑1,2 = 1, 𝑑1,3 = 2, 𝑑2,3 = 3 and 𝑑ij = 𝑑ji for all i, j ∈ N with i ≠ j.
For (APC1-R) an optimal solution is given as x12 = x21 = 6

11
, x13 = x31 = 3

11
, x23 = x32 = 2

11
, y1 = 13

22
,

y2 = 14

22
, y3 = 17

22
and the optimal objective function value of (APC1-R) is z = 6

11
≈ 0.545. This solu-

tion remains feasible when adding (2a), so also for (APC1-R) with (2a) the optimal objective function value is

z = 6

11
≈ 0.545.

However, this solution is not feasible anymore when adding (2b) to (APC1-R), as y1 + x12 = 25

22
> 1, which

violates (2b) for i = 1 and j = 2. An optimal solution of (APC2-R) with (2b) is given as x12 = x13 = 3

7
, x21 = x23 =

x31 = x32 = 2

7
, y1 = 4

7
, y2 = y3 = 5

7
, and z = 6

7
≈ 0.857. This solution is feasible also when adding (4a). Therefore,

the optimal objective function value of (APC1-R) with (2a) and (2b), and also of (APC1-R) with (2a), (2b), and

(4a) is equal to
6

7
≈ 0.857.

In the formulation (APC2-R) we have D = {1, 2, 3}, D1 = {2}, D2 = {3}, D3 = {2, 3} and K = 3. An optimal

solution of (APC2-R) is y1 = 0.4, y2 = y3 = 0.8, u2 = 0.2 and u3 = 0. Thus, the optimal objective function value

of (APC2-R) is equal to 1.2, which is larger than the optimal objective function value of (APC1-R), even when

adding the inequalities (2a), (2b), and (4a) to (APC1-R). As a consequence, for this instance (APC2-R) gives a

better bound for the d-𝛼-pCP than (APC1-R).

Example 11 shows that the linear relaxation of (APC1) might give strictly better bounds than the linear relaxation

of (APC2). In turn, Example 12 shows that the linear relaxation of (APC2) might give strictly better bounds than the

linear relaxation of (APC1). Thus, in the case of the d-𝛼-pCP the linear relaxations of (APC1) and (APC2) are not

comparable.

Furthermore, Example 11 also demonstrates the existence of an instance of the d-𝛼-pCP, where including (9) into (APC2-R)

yields a strictly better bound than the one of (APC2-R). Moreover, Example 12 also shows that there exists an instance where

adding (2b) to (APC1-R) improves the linear relaxation bound.

4.2 Best lower bound based on (APC1)
The aim of this section is to derive the best possible bound for (APC1) when utilizing all inequalities derived in Section 2.2.

To do so, we investigate Theorem 2 in more detail. In particular, it allows us to add new valid inequalities to the lin-

ear relaxation of (APC1), as soon as we have a lower bound LB. Our hope is that including the new valid inequalities

for the lower bound LB will give us a new, even better lower bound, with which we can include new, stronger valid

inequalities. This leads to an iterative approach to improve the lower bound on the optimal objective function value of

the d-𝛼-pCP, which is analogous to the approach [16] have developed for the d-pCP . They proved that their approach

for the d-pCP converges (i.e., including the valid inequalities for a given lower bound LB does not give a better lower

bound, but only LB again) if and only if there is a fractional set cover solution with radius LB that uses at most

p sets.

In the following, we investigate a similar iterative approach for the d-𝛼-pCP by iteratively adding the inequalities from

Theorem 2. Let LB be a lower bound on the optimal objective function value of the d-𝛼-pCP and let

(APCLB) 𝛼(LB) =min z, (12a)

s.t. (1b), (1c), (1𝑑), (12b)

(2b), (3a), (3c), (12c)

0 ≤ xij ∀i, j ∈ N, i ≠ j, (12d)

0 ≤ yj ≤ 1 ∀j ∈ N, (12e)

z ≥ LB. (12f)

It follows from Theorem 1–3 that 𝛼(LB) is again a lower bound on the optimal objective function value of the d-𝛼-pCP.

Furthermore, it is easy to see that 𝛼(LB) ≥ LB holds. We now want to establish a condition for the case that adding inequal-

ities from Theorem 2 for a lower bound LB to (APCLB) does not improve the obtained bound 𝛼(LB) anymore, that is, a

convergence-condition. It turns out that the following holds.

Theorem 13. Let LB be a lower bound on the optimal objective function value of the d-𝛼-pCP.
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382 GAAR and SINNL

Then 𝛼(LB) = LB holds if and only if there is a feasible solution for

min

∑

j∈N
yj, (13a)

s.t.

∑

j∈N⧵{i}∶𝑑ij≤LB
yj ≥ 𝛼(1 − yi) ∀i ∈ N, (13b)

∑

j∈N⧵(N
𝛽
∪{i})∶𝑑ij≤LB

yj ≥ (𝛼 − 𝛽)(1 − yi) ∀i ∈ N,∀𝛽 ∈ {1, … , 𝛼},∀N𝛽 ⊆ N ⧵ {i}, |N𝛽| = 𝛽, (13c)

0 ≤ yj ≤ 1 ∀j ∈ N (13d)

with objective function value at most p.

Proof. We prove each of the two sides of the equivalence in a separate part for the sake of clarity.

Part 1: Assume LB is such that 𝛼(LB) = LB holds. Let (x∗, y∗, z∗) be an optimal solution of (APCLB) in this

case, so 𝛼(LB) = z∗ = LB. We will finish this part of the proof by showing that y∗ is a feasible solution for (13)

with objective function value at most p.

It is easy to see that (13d) is satisfied because of (12e) and that the objective function value (13a) of y∗ is p
because of (1b).

In order to show that y∗ fulfills (13b), we can exploit (3c) and get that

𝛼LBy∗i +
∑

j∈N⧵{i}
max{LB, 𝑑ij}x∗ij ≤ 𝛼LB ∀i ∈ N

holds, which, when splitting the x∗ij according to their distance 𝑑ij, is equivalent to

𝛼LBy∗i + LB
∑

j∈N⧵{i}∶𝑑ij≤LB
x∗ij +

∑

j∈N⧵{i}∶𝑑ij>LB
𝑑ijx∗ij ≤ 𝛼LB ∀i ∈ N.

Now we can use (1c) for the first sum with x∗ij and obtain

𝛼LBy∗i + LB
⎛
⎜
⎜
⎝

𝛼(1 − y∗i ) −
∑

j∈N⧵{i}∶𝑑ij>LB
x∗ij
⎞
⎟
⎟
⎠

+
∑

j∈N⧵{i}∶𝑑ij>LB
𝑑ijx∗ij ≤ 𝛼LB ∀i ∈ N,

which can be simplified to ∑

j∈N⧵{i}∶𝑑ij>LB
(𝑑ij − LB)x∗ij ≤ 0 ∀i ∈ N.

On the left hand-side this is a sum of non-negative terms, because x∗ij ≥ 0 due to (12d) and for each term in the

sum (𝑑ij − LB) > 0 holds. Thus, the only way that this can be satisfied is that x∗ij = 0 for all j ∈ N ⧵ {i} such that

𝑑ij > LB. This, together with (1c) and (1d) implies that

𝛼(1 − y∗i ) =
∑

j∈N⧵{i}
x∗ij =

∑

j∈N⧵{i}∶𝑑ij≤LB
x∗ij ≤

∑

j∈N⧵{i}∶𝑑ij≤LB
y∗j ∀i ∈ N, (14)

so y∗ fulfills (13b).

What is left to show is that y∗ satisfies (13c). Towards this end, we can use (1d), (14), and (2b) to obtain

∑

j∈N⧵(N
𝛽
∪{i})∶𝑑ij≤LB

y∗j ≥
∑

j∈N⧵(N
𝛽
∪{i})∶𝑑ij≤LB

x∗ij ≥
∑

j∈N⧵{i}∶𝑑ij≤LB
x∗ij −

∑

j∈N
𝛽

x∗ij

≥ 𝛼(1 − y∗i ) − |N𝛽|(1 − y∗i )
= (𝛼 − 𝛽)(1 − y∗i ) ∀i ∈ N,∀𝛽 ∈ {1, … , 𝛼},∀N𝛽 ⊆ N ⧵ {i}, |N𝛽| = 𝛽,

so y∗ fulfills (13c). Thus, y∗ is a feasible solution for (13) with objective function value at most p.

Part 2: Assume LB is such that there is a feasible solution y◦ for (13) with objective function value of at

most p. We will finish this part of the proof in four steps. In the first step we utilize y◦ to construct y∗, which

is feasible for (13) and has an objective function value p. In the second step we use y∗ to construct y◦,i for each

i ∈ N and show that y◦,i has a particular property. In the third step we use y◦,i to construct x∗. In the fourth

step we show that (x∗, y∗, z∗) with z∗ = LB is a feasible solution for (APCLB), which implies that 𝛼(LB) = LB
holds.

We start with the first step by constructing y∗. Let p◦ be the objective function value (13a) of y◦, so p◦ =
∑

j∈N y◦j .

It follows that p◦ ≤ p, as y◦ has objective function value at most p. We now construct y∗ as y∗j = y◦j +(1−y◦j )
p−p◦

|N|−p◦
for
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GAAR and SINNL 383

all j ∈ N. We have that 0 ≤
p−p◦

|N|−p◦
< 1 because p◦ ≤ p and p < |N|. As a consequence, y∗j fulfills 0 ≤ y◦j ≤ y∗j ≤ 1

for all j ∈ N because y◦ fulfills (13d). Furthermore, it holds that

∑

j∈N
y∗j =

∑

j∈N

(

y◦j + (1 − y◦j )
p − p◦
|N| − p◦

)

=
∑

j∈N
y◦j +

p − p◦
|N| − p◦

∑

j∈N
(1 − y◦j ) = p◦ + p − p◦

|N| − p◦
(|N| − p◦) = p.

Thus, y∗ is feasible for (13) and has objective function value p.

We proceed with the second step by constructing y◦,i. For all i ∈ N we define y◦,i in such a way that y◦,ij =
min{y∗j , 1 − y∗i } for all j ∈ N, so in particular y◦,i is the component-wise minimum of y∗ and (1 − y∗i ) and y◦,i ≤ y∗
holds. We will now show that y◦,i fulfills

∑

j∈N⧵{i}∶𝑑ij≤LB
y◦,ij ≥ 𝛼(1 − y∗i ) ∀i ∈ N. (15)

To do so, let N◦
i = {j ∈ N ⧵ {i} ∶ 𝑑ij ≤ LB and y◦,ij < y∗j }, so N◦

i is the set of indices j that appear in the sum on

the left hand-side of (15) and fulfill y∗j > 1 − y∗i = y◦,ij .

If |N◦
i | = 0, then y◦,ij = y∗j for each term in the sum of (15) and thus (15) is satisfied because y∗ fulfills (13b).

If |N◦
i | ≥ 𝛼, then y◦,ij = 1 − y∗i for all j ∈ N◦

i implies that

∑

j∈N⧵{i}∶𝑑ij≤LB
y◦,ij ≥

∑

j∈N◦
i

y◦,ij =
∑

j∈N◦
i

(1 − y∗i ) = |N◦
i |(1 − y∗i ) ≥ 𝛼(1 − y∗i ),

so also in this case (15) is fulfilled.

If 0 < |N◦
i | < 𝛼, then (13c) for 𝛽 = |N◦

i | and N𝛽 = N◦
i together with the fact that y◦,ij = 1−y∗i for all j ∈ N𝛽 = N◦

i
shows that

∑

j∈N⧵{i}∶𝑑ij≤LB
y◦,ij =

∑

j∈N⧵(N
𝛽
∪{i})∶𝑑ij≤LB

y◦,ij +
∑

j∈N
𝛽

y◦,ij

≥ (𝛼 − 𝛽)(1 − y∗i ) + 𝛽(1 − y∗i ) = 𝛼(1 − y∗i ),

so also in this case (15) is fulfilled. As a consequence, y◦,i satisfies (15) in all cases, so for all i ∈ N.

We continue with the third step, that is, we now construct x∗. To do so, we first fix a point i ∈ N. Then let ji
be such that

∑
j∈Siji⧵{i}

y◦,ij < 𝛼(1 − y∗i ) and such that
∑

j∈(Siji∪{ji})⧵{i}
y◦,ij ≥ 𝛼(1 − y∗i ). Clearly such a ji exists and

𝑑iji ≤ LB because of (15). Then we set x∗ij = y◦,ij if j ∈ Siji ⧵ {i}, we set x∗ij = 𝛼(1 − y∗i ) −
∑

j′∈Siji⧵{i}
y◦,ij′ if j = ji and

we set x∗ij = 0 otherwise. Note that this construction implies that x∗ij = 0 for all j such that 𝑑ij > LB.

Finally, we are able to do the fourth step, that is, we show that (x∗, y∗, z∗) with z∗ = LB is feasible for (APCLB).

By construction, x∗ij ≥ 0, x∗ij ≤ y◦,ij ≤ y∗j and x∗ij ≤ y◦,ij ≤ 1 − y∗i for all i, j ∈ N with j ≠ i, so (x∗, y∗, z∗)
fulfills (12d), (1d), and (2b). Also

∑
j∈N⧵{i} x∗ij = 𝛼(1−y∗i ) by construction, so (1c) holds. Moreover, by construction

y∗ is a feasible solution of (13) and has objective function value p, so it fulfills (12e) and (1b). Furthermore z∗ = LB,

so clearly (12f) is satisfied.

The inequality (3a) is fulfilled if 𝑑ij > LB, because then x∗ij = 0 and thus LBy∗i ≤ LB = z∗ is satisfied as we have

already shown that (12e) holds. If 𝑑ij ≤ LB, then the inequality is LB(y∗i + x∗ij) ≤ LB = z∗, which is fulfilled because

we already know that (2b) is satisfied. Thus, in any case (x∗, y∗, z∗) fulfills (3a).

Finally, we consider (3c). We can utilize x∗ij = 0 whenever 𝑑ij > LB and the already shown (1c) to obtain

𝛼LBy∗i +
∑

j∈N⧵{i}
max{LB, 𝑑ij}x∗ij = 𝛼LBy∗i + LB

∑

j∈N⧵{i}∶𝑑ij≤LB
x∗ij = 𝛼LBy∗i + LB

∑

j∈N⧵{i}
x∗ij

= 𝛼LBy∗i + LB𝛼(1 − y∗i ) = LB𝛼 = 𝛼z∗,

so (3c) holds for (x∗, y∗, z∗). Therefore, (x∗, y∗, z∗) with z∗ = LB is a feasible solution for (APCLB), which implies

that 𝛼(LB) = LB holds. ▪

When comparing Theorem 13 to the corresponding result for the d-pCP , it becomes obvious that (13) is closely related to

a fractional set cover problem, where every set has to be covered 𝛼 times.

We note that the right hand-side of (13b) is 𝛼(1 − yi), instead of 𝛼, which would be the generalization of the result of [16].

This is caused by the fact that i does not need to be covered if it is opened in the d-𝛼-pCP, while in the d-pCP each point needs

to be covered. Moreover, the inequalities (13c) are completely new. They make sure that a set cover property is fulfilled not

only for all points at most LB away, but also for subsets of these points when removing at most 𝛼 points. Note that (13b) can be

interpreted as (13c) for 𝛽 = 0.
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384 GAAR and SINNL

Interestingly, we can pin point which of the inequalities of (APCLB) are responsible for the existence of (13c). To do so, let

(AFSC)𝛿 min

∑

j∈N
yj, (16a)

s.t.

∑

j∈N⧵{i}∶𝑑ij≤𝛿

yj ≥ 𝛼(1 − yi) ∀i ∈ N, (16b)

0 ≤ yj ≤ 1 ∀j ∈ N, (16c)

denote the fraction set cover problem for the d-𝛼-pCP for a given 𝛿 ∈ R. Note that (AFSC)LB is a relaxation of (13). Furthermore,

let LB be a lower bound on the optimal objective function value of the d-𝛼-pCP and let

(APCLB
′) 

′
𝛼(LB) =min z,

s.t. (1b), (1c), (1𝑑),
(3b), (3c),
(12𝑑), (12e), (12f ).

Note that when in (APCLB) the constraint (3a) is relaxed to (3b) and (2b) is removed, then one obtains (APCLB’), so (APCLB’)

is a relaxation of (APCLB). We are also able to give an interpretation of when the new lower bound ′𝛼(LB) does not improve

the previous lower bound LB in the following theorem.

Theorem 14. Let LB be a lower bound on the optimal objective function value of the d-𝛼-pCP.

Then ′𝛼(LB) = LB holds if and only if there is a feasible solution for (AFSC)LB with objective function value
at most p.

Proof. The proof of Theorem 14 is a straight-forward simplified version of the proof of Theorem 13, where the

construction of y◦,i in the second part is replaced by using y◦,i = y∗ for all i ∈ N. Thus, we omit the proof for the

sake of brevity. ▪

If we combine the knowledge of Theorem 13 and 14, then we can deduce that the inequalities (2b) and (3a) in (APCLB)

(instead of the weaker version (3b) in (APCLB’)) are responsible for the existence of (13c) in (13). Thus, the inequalities (13c),

which are not present in a straight-forward generalization of the results of [16] for the d-pCP to the d-𝛼-pCP, are caused by the

inequalities (2b) and (3a).

Furthermore, with the help of Theorem 13 and 14 it is easy to see that whenever 𝛼(LB) = LB and ′𝛼(LB) = LB holds for

some lower bound LB, then also 𝛼(LB′) = LB′ and ′𝛼(LB′) = LB′ holds for any LB′ > LB, that is, if the lower bound LB
cannot be improved by adding the valid inequalities from Theorem 2, then also no larger lower bound can be improved this way.

Thus, it makes sense to define the largest possible lower bounds one can obtain with iteratively adding the valid inequalities

from Theorem 2. Let LB#𝛼 = min{LB ∈ R ∶ 𝛼(LB) = LB} and let LB#𝛼
′ = min{LB ∈ R ∶ ′𝛼(LB) = LB}. Our results imply

the following relationship.

Corollary 15. It holds that LB#𝛼 ≥ LB#𝛼
′
.

Proof. This is a consequence of Theorem 13 and 14. ▪

Next, we point out that both LB#𝛼 and LB#𝛼
′

can be computed efficiently.

Theorem 16. LB#𝛼 and LB#𝛼
′ can be computed in polynomial time.

Proof. A trivial lower bound LB on the optimal objective function value of the d-𝛼-pCP is given by 𝑑1, the smallest

element of D. For any given lower bound LB, the computation of 𝛼(LB) requires to solve a linear program with a

polynomial number of variables and constraints, and thus can be done in polynomial time. Furthermore, there are

only a polynomial number of potential values for LB#𝛼 , as clearly LB#𝛼 ∈ D holds, because only for values in D the

included variables in the sum in the left hand-side of (13b) and (13c) change. Thus, whenever we have obtained

some new lower bound LB#𝛼 , we we know that also min𝑑k∈D{𝑑k ≥ LB#𝛼} is a lower bound. Therefore, it is possible

to compute LB#𝛼 in polynomial time.

By same arguments also LB#𝛼
′ ∈ D and LB#𝛼

′
can be computed in polynomial time. ▪

Thus, not only for the d-pCP , but also for the d-𝛼-pCP the iterative improvement of the lower bound leads to an ultimate

lower bound LB#𝛼 , which can be computed in polynomial time.
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GAAR and SINNL 385

Finally, we want to discuss another interesting aspect about LB#𝛼 and LB#𝛼
′
. We have seen in Example 5 that adding the

optimality-preserving inequalities (4a) to a relaxed version of (APC1) improved the bound obtained from the relaxation. Thus,

it is a natural question if the bounds LB#𝛼 and LB#𝛼
′

could be further improved by adding (4a) to (APCLB) and (APCLB’),

respectively. It turns our that this is not the case.

Theorem 17. Let LB be a lower bound on the optimal objective function value of the d-𝛼-pCP and let UB be
the objective function value of a feasible solution of the d-𝛼-pCP. Let (APCLB◦) be (APCLB) with (4a) and (4b),
and denote the optimal objective function value with ◦𝛼(LB). Let (APCLB′◦) be (APCLB’) with (4a) and (4b), and
denote the optimal objective function value with ′◦𝛼 (LB).

Then

(a) ◦𝛼(LB) = LB if and only if 𝛼(LB) = LB, and
(b) ′◦𝛼 (LB) = LB if and only if ′𝛼(LB) = LB.

Proof. To prove (a), it is enough to show that ◦𝛼(LB) = LB if and only if there is a feasible solution for (13) with

objective function value at most p, because of Theorem 13. To do so, we can follow the proof of Theorem 13. In

particular, Part 1 can be used without modifications. Also steps one, two and three of Part 2 can be used without

changes. Only in step four we have to additionally show that (x∗, y∗, z∗) fulfills (4a) and (4b). Clearly (x∗, y∗, z∗)
satisfies (4b) due to (13b) and the fact that LB ≤ UB.

To show that also (4a) is fulfilled we fix some i ∈ N and some N𝛼 ⊆ N with |N𝛼| = 𝛼. Let j𝛼 ∈ N𝛼 be the

maximum entry of N𝛼 according to 𝜎i, that is, such that N𝛼 ⊆ (Sij
𝛼

∪ {j𝛼}). Then (4a) can be reformulated to

∑

j∈N
𝛼

yj +
∑

j∈N⧵(Sij
𝛼

∪{i,j
𝛼
})

xij ≤ 𝛼, (17)

so it is enough to show that (17) holds for (x∗, y∗, z∗).
If ji ∈ (Sij

𝛼

∪ {j𝛼}), that is, if ji is before j𝛼 according to the order 𝜎i and thus ji is closer or at the same distance

to i than j𝛼 , then we can deduce that x∗ij = 0 for all j ∈ N ⧵ (Sij
𝛼

∪ {i, j𝛼}) by construction, because all of these j are

further away from i than ji is. Thus, this implies that (17) is fulfilled in this case, as |N𝛼| = 𝛼 and y∗j ≤ 1 for all j ∈ N.

If ji ∉ (Sij
𝛼

∪ {j𝛼}), that is, if ji is further away to i than j𝛼 is, then x∗ij = y◦,ij = min{y∗j , 1 − y∗i } holds for all

j ∈ N𝛼 by construction. Thus, we can define 𝜀j such that y∗j = x∗ij + 𝜀j for each j ∈ N𝛼 , because either y∗j = x∗ij and

𝜀j = 0, or y∗j > x∗ij = 1 − y∗i and 𝜀j = y∗j − (1 − y∗i ). In any case, 0 ≤ 𝜀j and 𝜀j ≤ y∗i , as y∗j ≤ 1. This, together with

the already shown (1c), implies that

∑

j∈N
𝛼

y∗j +
∑

j∈N⧵(Sij
𝛼

∪{i,j
𝛼
})

x∗ij =
∑

j∈N
𝛼

(x∗ij + 𝜀j) +
∑

j∈N⧵(Sij
𝛼

∪{i,j
𝛼
})

x∗ij

≤

∑

j∈N
𝛼

𝜀j +
∑

j∈N⧵{i}
x∗ij ≤ 𝛼y∗i + 𝛼(1 − y∗i ) = 𝛼,

so (17) holds also in this case. Thus (x∗, y∗, z∗) fulfills (4a), which finishes the proof of (a).

The proof of (b) can be done analogously with the help of Theorem 14 and is therefore skipped. ▪

Theorem 17 shows that adding the optimality-preserving inequalities (4a) and (4b) to the iterative lifting does not improve

the best lower bounds obtained LB#𝛼 and LB#𝛼
′
.

4.3 Best lower bound based on (APC2)
Next, we analyze (APC2) for the d-𝛼-pCP in a similar way [14] and [2] have done with (PCE) and (PCA) for the d-pCP . To

do so, we introduce a semi-relaxation (APC2 – Ry) of (APC2) which is defined as (APC2) with relaxed y-variables, that is,

(APC2-Ry) is (APC2) without (8f) and with the constraints 0 ≤ yj ≤ 1 for all j ∈ N instead. In the same fashion, let (PCE – Ry)

be the formulation (PCE) without the constraints yj ∈ {0, 1} and with the constraints 0 ≤ yj ≤ 1 for all j ∈ N. In case of the

d-pCP , the semi-relaxation (PCE-Ry) of [14] has several interesting properties, which we now investigate in analogous form

for the d-𝛼-pCP.

4.3.1 Computation in polynomial time

First, for the d-pCP the optimal objective function value of the semi-relaxation (PCE-Ry) can be computed in polynomial time as

shown by [14]. Our next aim is to present a procedure for the d-𝛼-pCP to compute also the optimal value of the semi-relaxation

(APC2-Ry) in polynomial time. To do so, we first need the following result.
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386 GAAR and SINNL

Lemma 18. Let k′ be such that

uk = 1 ∀k ∈ {2, … ,K}, k ≤ k′ (18)

are valid equalities for both (APC2) and (APC2-Ry). Let (y∗, u∗) be an optimal solution of (APC2-R) with (18). If
u∗ is binary, let k∗ be the largest k such that u∗k = 1. If u∗ is not binary, let k∗ be the smallest k such that u∗k < 1,

that is, u∗k∗ is the first fractional entry of u∗. Then the constraints

uk = 1 ∀k ∈ {2, … ,K}, k ≤ k∗ (19)

are valid equalities for both (APC2) and (APC2-Ry), that is, when adding (19) to (APC2) and (APC2-Ry), the
respective sets of feasible solutions do not change.

Proof. If u∗ is binary, k∗ is chosen in such a way that the optimal objective function value of (APC2-R) with (18)

is 𝑑k∗ . If u∗ is not binary, then k∗ is chosen in such a way that the optimal objective function value of (APC2-R)

with (18) is larger than 𝑑k∗−1. Thus, in any case, the optimal objective function value of (APC2-R) with (18) is

larger than 𝑑k∗−1.

Assume that (19) is not a valid equality for (APC2). Then there is a feasible solution (u◦, y◦) of (APC2) and

there is a k◦ ≤ k∗ such that u◦k◦ = 0. Then u◦k = 0 for all k ≥ k◦ because of (8c) and u◦k ≤ 1 for all k < k◦. Thus, the

objective function value of (u◦, y◦) for (APC2-R) with (18), which is equal to 𝑑1 +
∑K

k=2
(𝑑k − 𝑑k−1)u◦k , is at most

𝑑k◦−1 and therefore it is at most 𝑑k∗−1. Furthermore, (u◦, y◦) is feasible for (APC2-R) with (18), because (APC2-R)

with (18) is a relaxation of (APC2). Thus, the optimal objective function value of (APC2-R) with (18) is at most

𝑑k∗−1, a contradiction. Therefore, the assumption was wrong and (19) is a valid equality for (APC2).

The fact that (19) is a valid equality for (APC2-Ry) can be shown analogously. ▪

As a consequence, by applying Lemma 18 in an iterative fashion, we can compute (APC2-Ry) in polynomial time, as the

next results shows.

Theorem 19. An optimal solution of the semi-relaxation (APC2-Ry) can be computed in polynomial time.

Proof. We can compute an optimal solution of (APC2-Ry) as follows. First, we set k′ = 1. Then we solve (APC2-R)

with (18), which is equivalent to (APC2-R) in the case that k′ = 1 holds. Let (y∗, u∗) be the obtained optimal

solution. If u∗ is binary, it is an optimal solution of (APC2-Ry). Otherwise, we can apply Lemma 18 to obtain k∗,
update k′ = k∗ and solve (APC2-R) with (18) again. We repeat this, until we obtain a binary u∗.

Note that k′ increases at least by one in each iteration, and there are O(|N|2) many potential values of k′. Fur-

thermore, in each iteration a linear program with a polynomial number of variables and constraints has to be solved.

Thus, this procedure computes an optimal solution of (APC2-Ry) in polynomial time. ▪

4.3.2 Combinatorial interpretation

A second interesting property of the semi-relaxation (PCE-Ry) for the d-pCP is that [16] proved that it is connected to the

optimal solution of a set cover problem. In particular, the optimal objective function value of (PCE-Ry) is equal to 𝑑
∗ ∈ D if

and only if there is a fractional set cover solution with radius 𝑑
∗

that uses at most p sets. It turns out that the following analogous

result is also true for (APC2) for the d-𝛼-pCP.

Theorem 20. Let 𝑑∗ ∈ D. Then the optimal objective function value of (APC2-Ry) is equal to 𝑑∗ if and only if 𝑑∗
is the smallest possible value of 𝛿 such that there is a feasible solution for (AFSC)𝛿 with objective function value
at most p.

Proof. As (APC2-Ry) requires the u-variables to be binary and (8c) has to hold, it is clear that the optimal objective

function value of (APC2-Ry) is a value from D. Furthermore, it is clear that the smallest possible value of 𝛿 such

that there is a feasible solution for (AFSC)𝛿 with objective function value at most p is a value from D, because only

for such values the problem (AFSC)𝛿 changes. Thus, in order to prove the result it is enough to show that for any

𝛿 ∈ D there is a feasible solution for (APC2-Ry) with objective function value 𝛿 if and only if there is a feasible

solution for (AFSC)𝛿 with objective function value at most p. We will finish the proof by showing each side of this

equivalence in a separate part.

Part 1: Let (u∗, y∗) be a feasible solution of (APC2-Ry) with objective function value 𝛿 ∈ D. We will finish

this part of the proof by showing that y∗ is a feasible solution for (AFSC)𝛿 with objective function value at most p.
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GAAR and SINNL 387

Towards this end, let 𝓁 be such that 𝛿 = 𝑑𝓁 . Then (8c) together with (8e) imply that u∗k = 1 for all k ∈ {1, … ,𝓁}
and u∗k = 0 for all k ∈ {𝓁 + 1, … ,K}. Now we fix some i ∈ N and distinguish two cases.

If there is an element in Di that is larger than 𝑑𝓁 , then let 𝑑𝓁′ = mink∈{1,… ,K}{𝑑k ∈ Di ∶ 𝑑k > 𝑑𝓁}, that is, 𝑑𝓁′

is the smallest entry of Di that is larger than 𝑑𝓁 . By construction u∗𝓁′ = 0 holds, so (8d) for 𝑑k = 𝑑𝓁′ implies that

𝛼(1 − y∗i ) ≤
∑

j∈N⧵{i}∶𝑑ij<𝑑𝓁′

y∗j =
∑

j∈N⧵{i}∶𝑑ij≤𝑑𝓁

y∗j =
∑

j∈N⧵{i}∶𝑑ij≤𝛿

y∗j ,

so in this case (16b) is satisfied for i.
If there is no element in Di that is larger than 𝑑𝓁 , then 𝑑ij ≤ 𝑑𝓁 for all j ∈ N ⧵ {i} and with (8b) and 1 ≤ 𝛼 ≤ p

this implies that
∑

j∈N⧵{i}∶𝑑ij≤𝛿

y∗j =
∑

j∈N⧵{i}∶𝑑ij≤𝑑𝓁

y∗j =
∑

j∈N⧵{i}
y∗j = p − y∗i ≥ 𝛼(1 − y∗i ),

so also in this case (16b) is satisfied for i.
As a result, the inequality (16b) is satisfied by y∗ in any case. Furthermore, y∗ fulfills (16c) because it satisfies

the relaxation of (8f). The objective function value (16a) of y∗ is equal to p because of (8b). Thus, y∗ is feasible for

(AFSC)𝛿 with objective function value at most p.

Part 2: Assume 𝛿 ∈ D is such that there is a feasible solution y◦ for (AFSC)𝛿 with objective function value at

most p. We will finish this part of the proof by constructing a feasible solution (u∗, y∗) for (APC2-Ry) with objective

function value 𝛿.

Towards this end, let u∗
1
= 1 if 𝑑k ≤ 𝛿 and let u∗k = 0 otherwise. Furthermore, we construct y∗ from y◦ in the

same fashion as in Part 2 of the proof of Theorem 13. In particular, let p◦ be the objective function value (16a) of

y◦, so p◦ =
∑

j∈N y◦j and construct y∗ as y∗j = y◦j + (1 − y◦j )
p−p◦

|N|−p◦
for all j ∈ N. With the same arguments as in the

proof of Theorem 13 it follows that y∗ is feasible for (AFSC)𝛿 and has objective function value p.

By construction, u∗ fulfills (8c) and (8e). Furthermore y∗ fulfills the relaxation of (8f) because of (16c), and

it satisfies (8b) because it has objective function value p for (AFSC)𝛿 . Next we consider the inequalities (8d) for

some i ∈ N. This inequality is clearly satisfied for any 𝑑k such that u∗k = 1. If 𝑑k ∈ Di is such that u∗k = 0, then by

construction 𝑑k > 𝛿. This together with (16b) implies that

𝛼(1 − y∗i ) ≤
∑

j∈N⧵{i}∶𝑑ij≤𝛿

y∗j ≤
∑

j∈N⧵{i}∶𝑑ij<𝑑k

y∗j =
∑

j∈N⧵{i}∶𝑑ij<𝑑k

y∗j + 𝛼u∗k ,

so (8d) holds in any case.

As a consequence, (u∗, y∗) is feasible for (APC2-Ry). By construction, and because 𝛿 ∈ D, it follows that the

objective function value of (u∗, y∗) for (APC2-Ry) is 𝛿, which closes this part of the proof. ▪

4.4 Comparison of the best lower bounds
Finally, we compare the best lower bounds obtainable with the two formulations. For the d-pCP , [16] proved that iteratively

using the lower bound information for (PC1) yields a bound, which coincides with the bounds obtained by the semi-relaxation

(PCE-Ry).

It turns out that this may not the case anymore for the d-𝛼-pCP. Towards this end, let LB∗𝛼 be the optimal objective function

of (APC2-Ry). Then we can deduce the following result.

Theorem 21. It holds that LB#𝛼 ≥ LB#𝛼
′ = LB∗𝛼 .

Proof. This is a consequence of Corollary 15 and Theorem 14 and 20. ▪

As a consequence, for the d-𝛼-pCP, when all our valid inequalities are included, the model (APC1) produces as least as

good bounds as the semi-relaxation of (APC2), and might produce better bounds.

5 IMPLEMENTATION DETAILS

Since both formulations are of polynomial size, they could be directly given to an integer programming solver for

moderately-sized instances. However, we have implemented B&C approaches based on them which incorporate our valid

inequalities and the lifted versions of it, our optimality-preserving inequalities, a starting heuristic and a primal heuristic, and
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388 GAAR and SINNL

variable fixing procedures. Moreover, for both formulations, we do not start the solution process with all the inequalities of the

formulation, but add some of them on-the-fly when needed using separation procedures.

We first describe the starting heuristic and the primal heuristic, which are used by both B&C algorithms in Section 5.1.

Then, we give a description of our B&C based on (APC1) in Section 5.2, and a description of our B&C based on

(APC2) in Section 5.3. We evaluate the effects of the different ingredients of the B&C algorithms on the performance in

Section 6.2.

5.1 Starting heuristic and primal heuristic
Our starting heuristic is a greedy heuristic. We initialize the (partial) solution P by randomly picking a location j ∈ N to open a

facility. We then grow P by iteratively adding additional locations to P in a greedy fashion until |P| = p. As a greedy criterion

to choose the location to add to P, we take the location j ∈ N ⧵P which has the largest 𝛼-distance to |P|. We note that if |P| < 𝛼
this criterion is not well-defined, and thus in this case we use the |P|-distance. We run this heuristic startHeur times before

we start with the B&C and initialize the B&C with the best solution found.

Our primal heuristic is a greedy heuristic driven by the values y∗ of the y-variables of the linear relaxation at the nodes of

the B&C tree. The heuristic simply sorts the locations j ∈ N in descending order according to y∗j and picks the p-largest ones

as a solution. The primal heuristic is implemented within the HeuristicCallback of CPLEX, which is the mixed-integer

programming solver we are using.

5.2 Implementation details of the branch-and-cut based on (APC1)
5.2.1 Variable fixing

We use the solution value UB from the solution obtained by the starting heuristic to fix the x-variables to zero as described

in Theorem 4 at initialization. During the B&C we continue with this variable fixing procedure by adding these fixings

in the UserCutCallback of CPLEX in case an improved primal solution found during the B&C allows additional

fixings. This callback gets called by CPLEX whenever the solver encounters a fractional solution during the solution

process.

5.2.2 Overall separation scheme

We separate the following inequalities in the branch-and-cut, where the order below gives the order in which we do the

separation.

1. Valid inequalities (2a)/their lifted version (3c),

2. Inequalities (1e)/their lifted version (3a) from the original formulation,

3. Inequalities (1d) from the original formulation,

4. Optimality-based inequalities (4b),

5. Optimality-based inequalities (4a).

The inequalities listed above are separated within theUserCutCallback. Inequalities (1e) and (1d) from the formulation,

which are needed for the correctness of our algorithm, are also separated within the LazyConstraintCallback, which

gets called by CPLEX for each integer solution (i.e., each potential new feasible solution). We perform at most maxSepRoot
separation-rounds at the root-node and at most maxSepTree separation-rounds at the other nodes of the B&C tree. In the

root-node, we add at most maxIneqsRoot violated inequalities in a separation-round and at the other nodes, we add at most

maxIneqsTree violated inequalities. The parameter-values we used in our computations are given in Section 6. Note that

depending on the setting selected, in the computational study not all the inequalities above are actually used. For more details

see Section 6.2.

5.2.3 Details about the separation procedures

All inequalities except (4a) are separated by enumeration. We note that the lifted inequalities (3c) and (3a) depend on the current

lower bound LB and the inequalities (4b) depend on the current upper bound UB. Thus, these inequalities can potentially be

added again in a stronger version for fixed i and j or for a fixed i, when an improved bound becomes available. For this reason,

we add them with the CPLEX-option purgeable, which allows CPLEX to remove added inequalities if they are deemed no

longer useful by CPLEX. Moreover, during the B&C tree, we can use the local lower bounds from the nodes of the B&C tree as

LB for the inequalities (3a) and (3c). Naturally, the inequalities are then only valid for the subtree starting at this node. CPLEX
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GAAR and SINNL 389

allows to add such locally valid inequalities with the method addLocal.
1

When separating the inequalities (1d) and (1e), for

each point i we add the ones corresponding to the numInitAPC1 nearest locations j at initialization.

The separation routine for the inequalities (4a) is a heuristic. For a given location i ∈ N, our goal is to find a set X ⊆ N ⧵ {i}
and a set N𝛼 ⊆ N ⧵ (X ∪ {i}), with |N𝛼| = 𝛼 and such that N𝛼 contains only j ∈ N ⧵ (X ∪ {i}) with 𝑑ij < minj′∈X 𝑑ij′ . For any

such X and N𝛼

∑

j∈N
𝛼

yj +
∑

j∈X
xij ≤ 𝛼 (20)

is a relaxation of the valid inequality (4a), and hence also (20) is a valid inequality. Thus, we want to heuristically find such sets

X and N𝛼 which maximize
∑

j∈N
𝛼

y∗j +
∑

j∈X x∗ij, where (x∗, y∗) is the solution of the linear programming-relaxation at the nodes

of the B&C tree. Then, if we have that
∑

j∈N
𝛼

y∗j +
∑

j∈X x∗ij > 𝛼, we have obtained a violated inequality (20) and thus also a

violated inequality (4a).

The heuristic proceeds as follows: Let Ni be the locations j ∈ N⧵{i} sorted in descending order according to 𝑑ij. We initialize

X with the first entry of Ni. Based on X, all potential candidates of N𝛼 are all j ∈ N ⧵ (X ∪ {i}) with 𝑑ij < minj′∈X 𝑑ij′ . To obtain

N𝛼 , we sort all candidates j according to their y∗j -value in descending order, and take the 𝛼 largest ones. If the inequality (20)

implied by X and N𝛼 is violated, we stop and add (20) for N𝛼 and this X, if not, we continue by adding the next entry from Ni
to X and repeat the procedure.

5.2.4 Branching priorities

CPLEX allows to set branching priorities on the variables, which it then takes into account during the B&C . We set the

priorities of the y-variables to 100
2

and the priorities of the x-variables are left at the default value of zero in order to force

CPLEX to branch on the y-variables first. This is done, as fixing y-variables is likely to have more structural impact on the

linear programming relaxations compared to fixing x-variables.

5.3 Implementation details of the branch-and-cut based on (APC2)
5.3.1 Variable fixings

Similar to our approach for (APC1), we use the solution value UB from the solution obtained by the starting heuristic for variable

fixing, that is, we fix the u-variables to zero as described in Theorem 10 at initialization. Moreover, we also continue these

fixings in the UserCutCallback whenever an improved incumbent is found.

Furthermore, we also fix the u-variables to one in the UserCutCallback using the available (local) lower bound LB
at the current branch-and-cut node and the theory provided in Lemma 18. Note that Lemma 18 allows us to fix one fractional

u-variable in each separation round. Thus, to speed-up the fixing, we first check if there are k such that uk is fractional and

𝑑k ≤ LB, that is, we check if there are u-variables that we can fix according to Theorem 9. If yes, under all the u-variables

fulfilling the conditions, we fix the one corresponding to the largest distance. By constraints (8c) this setting will also set all

variables corresponding to smaller distances to one. If there is no variable fulfilling this condition, then we use Lemma 18 for

fixing. As we use the local lower bound for fixing, we add the fixing with the method addLocal.

5.3.2 Details about the separation scheme

We have implemented a separation routine for the inequalities (8d). This allows us to dynamically add them when needed

instead of adding all of them at initialization. This is an attractive option due to the structure of the formulation (in particular

constraints (8d)) in combination with Lemma 18. As this lemma provides results to fix u-variables to one, we may not need to

add all inequalities (8d) to correctly measure the objective function value.

Our separation routine is based on enumeration. However, we add at most one violated inequality (8d) per location i ∈ N
in each round of separation. In order to determine which inequality we add, if there is more than one inequality (8d) vio-

lated for a location i, we compute violation(u∗, y∗, i, k) = 𝛼u∗k +
∑

j∈N⧵{i}∶𝑑ij<𝑑k
y∗j − 𝛼(1 − y∗i ), where (u∗, y∗) is the solution

of the linear programming-relaxation at the nodes of the B&C tree. All inequalities with violation(u∗, y∗, i, k) < 0 are vio-

lated. Then we calculate the score s = −violation(u∗, y∗, i, k) ⋅ 𝑑ik. With the score, we try to find a k which gives a good

balance between violation and effect on the objective function value. When we apply the separation-approach, we initialize our

1
Unfortunately it is not possible to combine addLocal with purgeable. Thus, outside of the root-node, the linear programs solved within the B&C tree

can contain redundant inequalities.
2
Every nonnegative value should already be fine to give higher priority, the documentation is unfortunately not very clear about this, see https://www.ibm.com/

docs/en/icos/20.1.0?topic=cm-setpriority-method.
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390 GAAR and SINNL

B&C with all the inequalities (8d) corresponding to the nInitAPC2 smallest distances of the instance. Since the inequalities

(8d) are needed for correctness of the formulation, we call the separation routine both in the UserCutCallback and also the

LazyConstraintCallback.

Regarding the number of separation rounds and the number of added violated inequalities, we use the same strategy as

described in Section 5.2.

5.3.3 Branching priorities

Similar to the B&C for (APC1), we set the values of the branching priorities of the y-variables to 100, and the priorities of the

u-variables are left at the default value of zero.

6 COMPUTATIONAL RESULTS

We implemented our B&C algorithms in C++ using CPLEX 20.1. The runs were made on a single core of an Intel Xeon

E5-2670v2 machine with 2.5GHz and 6GB of RAM, and all CPLEX settings were left on their default values, except the

branching priorities which we set as described in Section 5. We have set a time limit of 1800 seconds.

6.1 Instances
We considered two sets of instances from the literature in our computational study. The details of these sets are given below.

• TSPLIB: This instance set is based on the TSP-library [30] and was used in Sánchez-Oro et al. [31] with 𝛼 = 2, 3.

In particular, the instances att48, eil101, ch150, pr439, rat575, rat783, pr1002 and rl1323 were used

with p ∈ {10, 20, … , 130,140}. The number in the instance-name gives the number of locations |N|. In these instances

all locations are given as two-dimensional coordinates, and the Euclidean distance is used as a distance function. The

instance set contains 154 instances.

We note that Sánchez-Oro et al. [31] did not use all values of p for all instances. In our computational study we

considered the same combinations of instances and p as Sánchez-Oro et al. [31]. For the used values of p for each instance

see for example, Tables 1 and 2.

• pmedian: This instance set is based on the OR-library [3]. It was used in Mousavi [29] with 𝛼 = 2. Each instance is

given as a graph, and to obtain the distances between all the locations N (nodes in the graph) an all-pair shortest-path

computation needs to be done. In these instances, all the distances are integer. The number of locations |N| is between

100 and 900, and p is between 5 and 200. Each of these instances has a value of p encoded in the instance. For the concrete

values of |N| and p for each instance see Table 5. The instance set contains 40 instances.

6.2 Analysis of the ingredients of our branch-and-cut algorithms
To analyze the effect of the ingredients of our B&C algorithms, we performed a computational study on a subset of the instances,

namely the instances att48, eil101, ch150. We compare the following different settings for the B&C based on (APC1):

• 1: Directly solving (APC1) without any additional ingredients

• 1H: Adding the starting heuristic, the primal heuristic and the variable fixing based on the upper bound according to

Theorem 4

• 1HS: Setting 1Hwith separation of the inequalities (1d) and the inequalities (1e) (instead of adding them in the beginning)

as described in Section 5.2

• 1HSV: Setting 1HS together with the valid inequalities (2a) and (2b)

• 1HSVL: Setting 1HSV together with the lifted version (3a) of the inequalities (1e) and also the lifted version (3c) of the

inequalities (2a)

• 1HSVLO: Setting 1HSVL together with the optimality-preserving inequalities (4a) and (4b)

For the B&C based on (APC2) the following settings are considered:

• 2: Directly solving (APC2) without any additional ingredients

• 2H: Adding the starting heuristic, the primal heuristic and the variable fixing based on the upper bound according to

Theorem 10

• 2HV: Setting 2H with the valid inequalities (9) replacing the corresponding inequalities (8d) according to Observation 8
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GAAR and SINNL 391

TABLE 1 Detailed results for instance set TSPLIB with 𝛼 = 2, part one.

1HSVL 2HVSL [31]

Name |N| p UB LB t[s] nBC UB LB t[s] nBC UB t[s]

att48 48 10 1592.12 1592.12 1.08 1 1592.12 1592.12 0.26 0 1592.12 5.14

att48 48 20 1061.69 1061.69 0.51 0 1061.69 1061.69 0.08 0 1130.85 1.21

att48 48 30 729.90 729.90 0.34 0 729.90 729.90 0.09 0 936.38 0.42

att48 48 40 485.06 485.06 0.07 0 485.06 485.06 0.02 0 532.08 0.07

eil101 101 10 21.21 21.21 30.29 85 21.21 21.21 1.79 13 21.21 68.12

eil101 101 20 13.60 13.60 49.58 576 13.60 13.60 2.07 35 14.14 28.27

eil101 101 30 11.05 11.05 20.66 364 11.05 11.05 1.90 358 12.00 10.63

eil101 101 40 9.06 9.06 7.59 50 9.06 9.06 0.54 68 9.43 6.19

eil101 101 50 8.06 8.06 8.48 340 8.06 8.06 0.19 0 8.60 3.19

eil101 101 60 7.07 7.07 0.84 0 7.07 7.07 0.14 0 8.25 1.94

eil101 101 70 6.32 6.32 0.78 0 6.32 6.32 0.10 0 7.28 0.96

eil101 101 80 5.10 5.10 0.63 0 5.10 5.10 0.08 0 6.32 0.43

eil101 101 90 4.12 4.12 0.67 1 4.12 4.12 0.08 0 5.00 0.11

eil101 101 100 2.24 2.24 0.14 0 2.24 2.24 0.12 0 2.83 0.05

ch150 150 10 205.66 205.66 1276.32 1364 205.66 205.66 4.27 0 205.66 223.16

ch150 150 20 138.69 138.69 465.80 3235 138.69 138.69 7.83 297 141.53 94.75

ch150 150 30 108.03 108.03 353.45 5441 108.03 108.03 22.43 3614 112.51 55.58

ch150 150 40 92.67 92.67 226.43 5596 92.67 92.67 6.02 932 96.42 31.74

ch150 150 50 82.11 82.11 42.61 935 82.11 82.11 2.71 746 87.69 18.10

ch150 150 60 70.71 70.71 12.19 29 70.71 70.71 0.73 0 78.42 12.24

ch150 150 70 64.45 64.45 3.90 1 64.45 64.45 0.55 0 68.23 8.20

ch150 150 80 58.37 58.37 2.80 0 58.37 58.37 0.50 0 64.45 5.57

ch150 150 90 51.50 51.50 2.08 0 51.50 51.50 0.35 0 62.04 3.63

ch150 150 100 46.49 46.49 1.48 0 46.49 46.49 0.30 0 53.21 2.35

ch150 150 110 43.77 43.77 1.29 0 43.77 43.77 0.31 0 51.65 1.36

ch150 150 120 39.32 39.32 0.98 0 39.32 39.32 0.27 0 50.30 0.72

ch150 150 130 36.02 36.02 0.52 0 36.02 36.02 0.28 0 46.63 0.31

ch150 150 140 29.69 29.69 0.48 0 29.69 29.69 0.29 0 42.30 0.14

• 2HVS: Setting 2HV with separation of the inequalities (8c) (instead of adding them in the beginning) as described in

Section 5.3

• 2HVSL: Setting 2HVS with the variable fixing based on the lower bound according to Theorem 9 and Lemma 18 as

described in Section 5.3

The following parameter values were used for the B&C algorithms, they were determined in preliminary computations:

startHeur: 10, maxIneqsRoot: 50, maxIneqsTree: 20, maxSepRoot: 100, maxSepTree: 1, numInitAPC1: 10,

numInitAPC2: 100 for the instance set TSPLIB and 10 for the instance set pmedian. We have used a different parameter

for numIntiAPC2 depending on the instance set, as the distance-structure of the instances is quite different. In particular, for

TSPLIB the distances are essentially unique (as they are Euclidean distances) while for pmedianmany are similar (as they are

shortest path distances on a graph). Thus, for pmedianwe would often add all inequalities (8d) at initialization for a parameter

value of 100, as there are usually less than 100 different distances in an instance.

In Figure 4A,B, we show a plot of the runtimes. We see that for both formulations the largest positive effect is achieved by

adding the heuristics with the associated variable fixing based on the upper bound. This can be explained by the fact that with

the variable fixing the linear programs which are needed to be solved are getting much smaller. Moreover, the lifting procedures

for (APC1) and the variable fixing based on the lower bound for (APC2) also have a discernible (incremental) effect. This is in

line with both the computational results in Gaar and Sinnl [16] for a similar lifting procedure for the d-pCP , and the theoretical

result provided in Section 4.

Starting to use separation of inequalities which are needed in the formulations (i.e., settings 1HS and 2HVS) instead of

adding all of these inequalities at initialization has a rather neutral effect on the selected instances. This can be explained by the

fact that these instances are quite small, for the larger instances in our sets, preliminary computations showed that we cannot
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392 GAAR and SINNL

TABLE 2 Detailed results for instance set TSPLIB with 𝛼 = 2, part two.

1HSVL 2HVSL [31]

Name |N| p UB LB t[s] nBC UB LB t[s] nBC UB t[s]

pr439 439 10 4134.01 1944.76 TL 606 3146.63 3146.63 12.29 0 3146.63 TL

pr439 439 20 2579.00 1337.89 TL 809 2177.44 2177.44 27.75 136 2226.26 TL

pr439 439 30 1950.00 1020.79 TL 1082 1475.85 1475.85 7.73 0 1500.21 TL

pr439 439 40 1614.00 865.38 TL 1097 1185.59 1185.59 12.41 10 1253.99 TL

pr439 439 50 1308.63 722.83 TL 1182 984.89 984.89 9.58 0 1068.00 1327.63

pr439 439 60 1116.08 653.73 TL 1201 883.88 867.64 TL 32210 975.00 918.13

pr439 439 70 976.28 596.96 TL 1288 726.72 726.72 1050.05 18676 905.54 639.50

pr439 439 80 855.13 554.50 TL 1629 637.38 637.38 178.91 2513 731.86 509.87

pr439 439 90 742.04 516.31 TL 1121 583.10 575.54 TL 43141 715.89 405.64

rat575 575 10 160.80 43.39 TL 293 116.10 116.10 24.75 0 116.87 1773.45

rat575 575 20 97.45 37.73 TL 328 72.62 72.62 265.55 1572 74.25 988.02

rat575 575 30 76.03 34.82 TL 433 59.14 56.38 TL 8426 60.67 666.00

rat575 575 40 64.14 32.93 TL 396 50.25 47.71 TL 9941 51.40 565.12

rat575 575 50 55.15 31.31 TL 491 45.88 41.79 TL 9826 46.52 402.00

rat575 575 60 49.25 30.40 TL 468 41.15 37.48 TL 12053 41.59 290.62

rat575 575 70 44.55 29.24 TL 376 37.48 34.41 TL 13237 37.70 268.17

rat575 575 80 41.01 28.45 TL 354 34.99 32.02 TL 19747 35.90 221.25

rat575 575 90 37.59 27.54 TL 357 32.45 29.70 TL 23787 33.60 158.91

rat575 575 100 36.00 26.68 TL 300 30.00 27.86 TL 27393 31.38 122.60

rat783 783 10 193.26 41.83 TL 45 135.25 135.25 34.92 0 138.60 TL

rat783 783 20 109.42 38.17 TL 141 83.10 83.10 25.68 0 86.38 TL

rat783 783 30 92.05 34.79 TL 134 67.88 66.21 TL 2819 70.84 1717.02

rat783 783 40 75.72 32.85 TL 160 57.43 55.60 TL 4464 60.14 1695.86

rat783 783 50 65.19 31.76 TL 100 55.04 49.20 TL 2802 52.80 1212.41

rat783 783 60 56.59 31.17 TL 151 49.04 44.05 TL 3872 48.75 1044.99

rat783 783 70 53.23 30.48 TL 90 44.20 40.31 TL 4542 44.41 1038.25

rat783 783 80 49.65 29.97 TL 107 41.68 37.36 TL 5300 42.43 748.93

rat783 783 90 46.39 29.26 TL 99 40.36 35.00 TL 6154 39.20 722.81

rat783 783 100 42.64 28.76 TL 99 37.64 32.98 TL 7309 37.48 536.23

pr1002 1002 10 5481.79 1223.80 TL 0 3853.89 3853.89 48.07 0 3853.89 TL

pr1002 1002 20 3479.22 1130.48 TL 0 2593.26 2543.32 TL 3359 2710.17 TL

pr1002 1002 30 2731.30 1009.07 TL 0 2059.73 2008.76 TL 4002 2150.58 TL

pr1002 1002 40 2214.16 992.40 TL 18 1746.42 1702.84 TL 7920 1811.77 TL

pr1002 1002 50 1990.60 949.95 TL 3 1523.15 1478.03 TL 3555 1619.41 TL

pr1002 1002 60 1733.49 914.11 TL 0 1403.57 1315.17 TL 6229 1431.78 TL

pr1002 1002 70 1555.63 851.41 TL 0 1372.95 1204.16 TL 5818 1346.29 TL

pr1002 1002 80 1443.09 825.63 TL 3 1253.99 1104.54 TL 6891 1253.00 TL

pr1002 1002 90 1365.65 803.99 TL 22 1131.37 1033.32 TL 9010 1170.47 1696.72

pr1002 1002 100 1270.99 777.90 TL 0 1070.05 982.98 TL 15670 1079.35 1337.80

rl1323 1323 10 6657.78 1138.05 TL 0 4554.09 4554.09 660.59 0 4694.15 TL

rl1323 1323 20 4025.01 1020.45 TL 0 3055.56 3016.84 TL 252 3227.00 TL

rl1323 1323 30 3209.07 737.33 TL 0 2913.42 2372.10 TL 224 2563.30 TL

rl1323 1323 40 2592.84 916.48 TL 0 2039.56 1972.47 TL 482 2166.96 TL

rl1323 1323 50 2248.99 888.87 TL 0 1958.61 1745.58 TL 1390 1907.69 TL

rl1323 1323 60 2027.10 861.87 TL 0 1710.60 1566.59 TL 867 1735.40 TL

rl1323 1323 70 1868.99 823.70 TL 0 1647.07 1415.82 TL 1425 1595.20 TL

rl1323 1323 80 1702.98 802.17 TL 0 1536.00 1302.31 TL 1300 1440.89 TL

rl1323 1323 90 1576.08 782.66 TL 0 1329.66 1210.04 TL 1833 1374.72 TL

rl1323 1323 100 1468.95 768.94 TL 0 1278.10 1126.16 TL 2060 1293.63 TL
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GAAR and SINNL 393

(A) (APC1)

(B) (APC2)

FIGURE 4 Runtime for different settings of our B&C algorithms on a subset of the instances.

TABLE 3 Detailed results for instance set TSPLIB with 𝛼 = 3, part one.

1HSVL 2HVSL [31]
Name |N| p UB LB t[s] nBC UB LB t[s] nBC UB t[s]
att48 48 10 2081.57 2081.57 10.41 31 2081.57 2081.57 0.89 103 2186.31 6.72

att48 48 20 1283.35 1283.35 3.47 14 1283.35 1283.35 0.53 48 1374.48 1.61

att48 48 30 949.29 949.29 1.53 0 949.29 949.29 0.10 0 1011.66 0.54

att48 48 40 645.88 645.88 0.13 0 645.88 645.88 0.06 0 675.00 0.08

eil101 101 10 29.43 29.43 368.66 1338 29.43 29.43 15.66 1092 29.43 92.44

eil101 101 20 17.80 17.80 363.10 3745 17.80 17.80 18.45 2253 18.03 43.73

eil101 101 30 13.15 13.15 405.18 9499 13.15 13.15 14.06 1567 14.14 19.37

eil101 101 40 11.18 11.18 179.44 6421 11.18 11.18 3.39 800 12.04 9.71

eil101 101 50 9.43 9.43 20.20 424 9.43 9.43 1.15 449 10.63 4.74

eil101 101 60 8.06 8.06 6.01 156 8.06 8.06 0.45 220 9.06 2.22

eil101 101 70 7.28 7.28 2.28 0 7.28 7.28 0.22 25 8.54 1.06

eil101 101 80 6.40 6.40 0.84 0 6.40 6.40 0.12 0 7.28 0.44

eil101 101 90 5.00 5.00 0.43 0 5.00 5.00 0.09 0 6.08 0.11

eil101 101 100 2.83 2.83 0.14 0 2.83 2.83 0.07 0 2.83 0.05

ch150 150 10 297.96 205.79 TL 1556 297.96 297.96 30.88 828 298.56 398.03

ch150 150 20 178.21 143.05 TL 3732 176.47 176.47 90.44 4446 179.71 150.94

ch150 150 30 140.06 121.29 TL 11797 137.46 137.46 1128.29 75456 146.41 78.08

ch150 150 40 114.58 108.32 TL 30854 114.47 111.55 TL 157239 119.22 52.10

ch150 150 50 100.34 96.71 TL 38009 100.47 98.04 TL 244637 108.03 26.70

ch150 150 60 90.58 86.79 TL 55403 90.58 89.09 TL 379556 97.46 17.78

ch150 150 70 83.19 79.80 TL 78518 83.33 81.91 TL 475149 92.82 13.10

ch150 150 80 74.93 74.93 182.44 6308 74.93 74.93 1784.19 621412 83.38 8.34

ch150 150 90 67.73 67.73 18.17 487 67.73 67.73 39.35 27266 79.81 4.75

ch150 150 100 63.42 63.42 8.67 19 63.42 63.42 1.34 517 69.35 3.23

ch150 150 110 59.04 59.04 13.41 424 59.04 59.04 2.39 1753 67.22 1.85

ch150 150 120 52.97 52.97 2.33 0 52.97 52.97 0.55 0 61.29 0.95

ch150 150 130 44.46 44.46 1.09 0 44.46 44.46 0.33 0 57.50 0.41

ch150 150 140 38.56 38.56 0.55 0 38.56 38.56 0.30 0 52.20 0.16
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394 GAAR and SINNL

TABLE 4 Detailed results for instance set TSPLIB with 𝛼 = 3, part two.

1HSVL 2HVSL [31]

Name |N| p UB LB t[s] nBC UB LB t[s] nBC UB t[s]

pr439 439 10 5997.08 2410.47 TL 582 4050.31 4050.31 53.02 179 4076.23 TL

pr439 439 20 3505.89 1548.18 TL 769 2683.28 2683.28 79.62 786 2726.03 TL

pr439 439 30 2520.17 1209.18 TL 1111 2065.49 2065.49 1082.90 7280 2231.73 TL

pr439 439 40 2102.38 1014.28 TL 897 1600.78 1600.78 1304.52 24066 1644.88 TL

pr439 439 50 1760.86 899.70 TL 1108 1350.00 1350.00 302.98 4413 1467.35 TL

pr439 439 60 1550.00 753.42 TL 1040 1150.27 1120.79 TL 19888 1340.01 TL

pr439 439 70 1308.63 707.85 TL 985 1006.23 982.66 TL 20694 1231.11 1316.50

pr439 439 80 1129.71 651.34 TL 1396 915.49 873.76 TL 18587 1217.58 955.74

pr439 439 90 1025.91 603.73 TL 1421 813.94 752.26 TL 17207 986.47 723.38

rat575 575 10 220.06 44.70 TL 242 138.85 138.85 19.41 0 140.52 TL

rat575 575 20 137.20 39.93 TL 300 93.43 93.43 705.69 2335 94.64 TL

rat575 575 30 94.94 36.76 TL 396 72.09 71.31 TL 8725 74.52 1101.33

rat575 575 40 82.04 34.21 TL 387 66.61 59.49 TL 4803 64.88 950.51

rat575 575 50 73.00 32.58 TL 490 57.25 51.90 TL 6189 56.94 717.39

rat575 575 60 63.29 31.91 TL 489 53.74 46.82 TL 4661 51.35 595.10

rat575 575 70 55.15 30.95 TL 597 47.42 42.44 TL 7099 47.85 494.17

rat575 575 80 50.96 30.29 TL 309 45.28 39.05 TL 7689 44.29 448.23

rat575 575 90 48.30 29.73 TL 493 44.69 36.25 TL 9866 41.11 319.13

rat575 575 100 44.27 29.16 TL 409 40.79 34.13 TL 10831 38.63 247.96

rat783 783 10 254.92 42.13 TL 0 163.68 163.68 54.58 0 166.23 TL

rat783 783 20 162.75 40.00 TL 46 109.57 109.57 841.93 1016 112.70 TL

rat783 783 30 111.57 37.33 TL 83 83.55 83.49 TL 3938 88.57 TL

rat783 783 40 97.00 35.01 TL 77 76.90 70.18 TL 2296 76.03 TL

rat783 783 50 86.58 33.37 TL 67 68.66 60.76 TL 2219 66.10 TL

rat783 783 60 74.33 32.64 TL 161 61.40 54.92 TL 2864 60.02 1617.55

rat783 783 70 65.37 31.94 TL 70 59.03 50.25 TL 2403 55.44 1642.05

rat783 783 80 60.61 31.34 TL 91 56.14 46.10 TL 3000 51.66 1420.24

rat783 783 90 56.04 30.95 TL 70 50.49 43.09 TL 4618 48.47 1211.55

rat783 783 100 53.14 30.47 TL 65 47.76 40.36 TL 4175 45.88 1019.60

pr1002 1002 10 6435.06 1251.44 TL 0 5202.16 5202.16 107.49 0 5331.28 TL

pr1002 1002 20 4606.52 1169.60 TL 0 3170.57 3170.57 135.59 44 3290.14 TL

pr1002 1002 30 3431.11 1073.20 TL 0 2631.54 2502.77 TL 2470 2644.33 TL

pr1002 1002 40 2983.29 1042.25 TL 0 2210.20 2140.22 TL 3850 2304.89 TL

pr1002 1002 50 2562.23 996.93 TL 11 2015.56 1841.90 TL 3006 2013.08 TL

pr1002 1002 60 2241.09 952.64 TL 0 1874.17 1681.42 TL 3965 1838.48 TL

pr1002 1002 70 2015.56 935.16 TL 15 1732.77 1507.48 TL 2889 1710.26 TL

pr1002 1002 80 1860.78 899.33 TL 3 1565.25 1391.70 TL 3657 1518.22 TL

pr1002 1002 90 1718.28 862.03 TL 9 1431.36 1283.52 TL 5200 1442.22 TL

pr1002 1002 100 1569.24 842.84 TL 9 1414.21 1208.88 TL 5803 1353.70 TL

rl1323 1323 10 8524.65 1470.07 TL 0 6229.60 6193.80 TL 0 6313.82 TL

rl1323 1323 20 5699.21 1041.99 TL 0 3845.66 3832.86 TL 440 4032.83 TL

rl1323 1323 30 3992.96 973.42 TL 0 3906.16 2984.30 TL 111 3204.16 TL

rl1323 1323 40 3375.04 923.26 TL 0 2652.14 2502.04 TL 388 2774.72 TL

rl1323 1323 50 2963.63 913.79 TL 0 2308.32 2198.20 TL 766 2430.27 TL

rl1323 1323 60 2505.42 848.05 TL 0 2495.02 1947.60 TL 407 2149.14 TL

rl1323 1323 70 2317.57 876.96 TL 0 1918.35 1778.52 TL 1047 1997.22 TL

rl1323 1323 80 2144.00 863.91 TL 0 1973.72 1646.13 TL 1105 1842.10 TL

rl1323 1323 90 2025.01 835.69 TL 0 1751.21 1530.92 TL 1031 1745.58 TL

rl1323 1323 100 1890.05 811.18 TL 0 1624.22 1429.61 TL 1185 1620.92 TL
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GAAR and SINNL 395

TABLE 5 Detailed results for instance set pmed with 𝛼 = 2.

1HSVL 2HVSL [29]

Name |N| p UB LB t[s] nBC UB LB t[s] nBC UB t[s]

pmed1 100 5 150 150 24.16 103 150 150 0.34 0 150 0.01

pmed2 100 10 121 121 20.73 12 121 121 0.31 0 121 0.20

pmed3 100 10 121 121 55.80 325 121 121 0.54 32 121 0.26

pmed4 100 20 97 97 51.19 545 97 97 0.91 345 97 8.19

pmed5 100 33 63 63 4.83 0 63 63 0.23 0 63 0.02

pmed6 200 5 99 99 1009.08 2451 99 99 0.37 0 99 0.03

pmed7 200 10 85 74 TL 4207 80 80 0.91 7 80 0.09

pmed8 200 20 70 66 TL 3839 70 70 1.10 63 70 0.03

pmed9 200 40 49 49 1725.43 3205 49 49 0.89 54 49 0.73

pmed10 200 67 28 28 22.72 7 28 28 0.51 0 28 0.62

pmed11 300 5 73 55 TL 1793 68 68 0.59 0 68 0.00

pmed12 300 10 72 53 TL 1851 60 60 1.16 0 60 0.27

pmed13 300 30 47 41 TL 1760 43 43 2.38 70 43 2.07

pmed14 300 60 38 33 TL 3177 34 34 2.99 148 34 0.93

pmed15 300 100 24 23 TL 4287 23 23 1.85 156 23 6.86

pmed16 400 5 56 46 TL 894 52 52 0.94 0 52 0.24

pmed17 400 10 56 39 TL 499 45 45 3.00 48 45 0.04

pmed18 400 40 44 32 TL 903 34 34 4.25 75 34 17.76

pmed19 400 80 29 23 TL 1242 24 24 12.88 836 25 0.17

pmed20 400 133 22 18 TL 1941 19 19 3.88 273 19 1.24

pmed21 500 5 59 34 TL 310 45 45 1.96 4 45 1.20

pmed22 500 10 52 34 TL 247 44 44 4.22 10 44 0.42

pmed23 500 50 36 25 TL 399 27 27 7.08 52 27 11.18

pmed24 500 100 23 19 TL 511 19 19 27.88 1081 20 0.54

pmed25 500 167 19 15 TL 559 15 15 15.84 1501 15 33.68

pmed26 600 5 57 35 TL 202 43 43 2.21 0 43 0.24

pmed27 600 10 44 29 TL 198 36 36 3.42 0 36 0.09

pmed28 600 60 28 21 TL 199 22 22 7.46 30 22 0.59

pmed29 600 120 22 16 TL 301 17 17 11.25 78 17 0.32

pmed30 600 200 17 13 TL 494 13 13 11.08 500 13 2.89

pmed31 700 5 47 28 TL 0 34 34 3.26 0 34 0.05

pmed32 700 10 46 26 TL 0 33 33 5.59 3 33 0.21

pmed33 700 70 24 17 TL 131 19 19 13.94 40 19 10.28

pmed34 700 140 18 13 TL 158 14 14 54.78 981 14 97.77

pmed35 800 5 43 26 TL 0 34 34 4.37 0 34 0.54

pmed36 800 10 49 0 TL 0 31 31 9.74 3 31 0.25

pmed37 800 80 24 17 TL 25 18 18 35.20 210 19 0.12

pmed38 900 5 54 23 TL 0 33 33 7.89 0 33 0.09

pmed39 900 10 39 21 TL 0 26 26 11.40 13 26 0.18

pmed40 900 90 22 14 TL 0 16 16 19.91 44 16 3.04

even solve the root-relaxation (for both (APC1) and (APC2)) due to either running into the time limit or due to exceeding the

available memory.

The valid inequalities (9) also have no visible effect. A potential explanation of this is that modern mixed-integer program-

ming solvers like CPLEX are quite effective in strengthening given inequalities and may already transform (8c) into (9) auto-

matically whenever it is possible. Finally, adding the optimality-preserving inequalities for (APC1) has a negative effect. This is

consistent with Theorem 17, which shows that at convergence the inequalities (4a) and (4b) are not further improving the bound.

6.3 Comparison with approaches from the literature
In this section we provide a detailed comparison with the existing approaches from literature, namely the GRASP of

Sánchez-Oro et al. [31] and the local search of Mousavi [29] on the instances used in the respective works. We compare the
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396 GAAR and SINNL

existing approaches with the best settings for both of our B&C algorithms, that is, 1HSVL for the one based on (APC1) and

2HVSL for the one based on (APC2).

In Tables 1–4 we give the comparison with Sánchez-Oro et al. [31]. For our approaches we report the runtime (columns t[s]

with entry TL indicating that the time limit of 1800 seconds was reached), the obtained upper bound (i.e., the objective function

value of the best obtained solution, columns UB) and lower bound (columns LB) and the number of nodes in the B&C tree

(columns nBC). Since the approach of Sánchez-Oro et al. [31] is a heuristic, only upper bounds and runtime can be reported

for their approach. We note that the runs in Sánchez-Oro et al. [31] were made on a AMD Ryzen 5 3600 with 2.2 GHz and

16GB RAM. The best values for UB, LB and runtime are indicated in bold in the tables. For the runtime, we just consider our

branch-and-cut approaches, while for the UB we consider all three approaches to determine these best values.

The tables show that for 114 out of 154 instances our approaches improve on the best solution value obtained in Sánchez-Oro

et al. [31] and additionally for 7 instances, we match the best solution value. Our approaches manage to solve 76 instances to

proven optimality. For some of the instances, our approaches are more than two orders of magnitude faster than the GRASP

(e.g., instance pr439with p = 30 and 𝛼 = 2). Comparing 1HSVLwith 2HVSL, we can see that 2HVSL performs better overall,

in particular for larger instances. This can be explained by the fact that due to the structure of the formulations, the variable

fixing procedures can fix much more variables when using (APC2) compared to (APC1). We can also see that for 𝛼 = 3 the

problem is harder than for 𝛼 = 2.

In Table 5 we provide a comparison with the local search of [29]. The runs in [29] were made on an Intel Core i5-6200 with

2.3 GHz CPU and 8 GB of RAM. We note that [29] presents runtimes for different version of their developed heuristics, in the

table we show the fastest runtime and the best objective function value found by the heuristics. The results show that 2HVSL

can solve all instances to optimality under one minute, while for two of the instances the heuristics of [29] do not manage to

find the optimal solution. Similar to the instance set TSPLIB, the setting 1HSVL performs worse than 2HVSL.

7 CONCLUSIONS

In this work, we present two integer programming formulations for the discrete version of the 𝛼-neighbor p-center problem

(d-𝛼-pCP), which is an emerging variant of the classical discrete p-center problem (d-pCP ), which recently got attention in litera-

ture. We also present lifting procedures for inequalities in the formulations, valid inequalities, optimality-preserving inequalities

and variable fixing procedures. We provide theoretical results on the strength of the formulations and convergence results for

the lower bounds obtained after applying the lifting procedures or the variable fixing procedures in an iterative fashion. These

results extend results obtained by Elloumi et al. [14] and Gaar and Sinnl [16] for the d-pCP . Based on these results we provide

two branch-and-cut algorithms, namely one based on each of the two formulations.

We assess the efficacy of our branch-and-cut algorithms in a computational study on instances from the literature. The

results show that our exact algorithms outperforms existing algorithms for the d-𝛼-pCP. These existing algorithms are heuristics,

namely a GRASP by Sánchez-Oro et al. [31] and a local search by Mousavi [29]. Our algorithms manage to solve 116 of 194

instances from literature to proven optimality within a time limit of 1800 seconds, in fact many of them are solved to optimality

within 60 seconds. They also provide improved best solution values for 116 instances from literature. Note that these 116

instances are not the same instances as the instances where optimality is proven, as for some of the latter instances the existing

heuristics already manage to find the optimal solution (but of course can not prove optimality, as they are heuristics).

There are various directions for further work. One direction could be to try to derive further valid inequalities. In particular

it could be interesting to investigate if there are inequalities which ensure that the best possible bounds of both formulations

coincide, that is, if the second formulation can be further strengthened, as our current results show that the best bound of the

first formulation could be better for some instances. Another interesting avenue could be the development of a projection-based

approach similar to the one of Gaar and Sinnl [16] for the d-pCP , in which a lower number of variables suffices to model the

problem and which is therefore better suited for large scale instances.

Furthermore, trying to extend the approaches including the lifting schemes to other variants of the d-pCP such as robust

versions (see, e.g., [27]), capacitated versions (see, e.g., [32]) or the p-next center problem (see, e.g., [26]) could be fruitful.

Moreover, while we managed to improve many of the best known solution values for the instances from literature, there are

also some instances where the existing heuristic work better. Thus further developments of heuristics can also be interesting,

including matheuristics such as local branching (see, e.g., [15]) which could exploit our formulations.
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APPENDIX A: FORMULATIONS FOR THE d-pCP FROM THE LITERATURE

A formal definition of the d-pCP is as follows. Given an integer p, a set of customer demand points I with cardinality |I| = n, a

set of potential facility locations J of cardinality |J| = m ≥ p and a distance 𝑑ij from a customer demand point i to the potential

facility location j for every i ∈ I and j ∈ J, find a subset S ⊆ J with cardinality |S| = p of facilities to open such that the maximum

distance between a customer demand point and its closest open facility is minimized, that is, such that maxi∈I minj∈S{𝑑ij} is

minimized. We note that in the d-𝛼-pCP, we have N = I = J by definition of the problem. This is necessary as the set of demand

points (i.e., customers) in the d-𝛼-pCP depends on a given feasible solution and is defined as all points where no facility is

opened in the solution. Due to this difference, slightly modified definitions of D and Di are necessary for the d-pCP below as

compared to the ones of d-𝛼-pCP above.

Let the binary variables yj for all j ∈ J indicate whether a facility is opened at location j. Let the binary variables xij

for all i ∈ I, j ∈ J indicate whether the customer i ∈ I is assigned to the open facility j. Let the continuous variables z
measure the distance in the objective function. The classical textbook formulation of the d-pCP (see e.g., Daskin [13]) is

as follows.

(PC1) min z, (A1a)

s.t.

∑

j∈J
yj = p, (A1b)

∑

j∈J
xij = 1 ∀i ∈ I, (A1c)

xij ≤ yj ∀i ∈ I,∀j ∈ J, (A1d)

∑

j∈J
𝑑ijxij ≤ z ∀i ∈ I, (A1e)

xij ∈ {0, 1} ∀i ∈ I,∀j ∈ J, (A1f)

yj ∈ {0, 1} ∀j ∈ J, (A1g)

z ∈ R. (A1h)

In [14] another formulation was introduced: let D = {𝑑ij ∶ i ∈ I, j ∈ J} denote the set of all possible distances and

let 𝑑1, … , 𝑑K be the values contained in D, so D = {𝑑1, … , 𝑑K}. Furthermore there is a binary variable for each value in

D that indicates whether the optimal value of the d-pCP is less or equal than this value. Towards this end let uk = 0 if all

customers have an open facility with distance at most 𝑑k−1, otherwise uk = 1 for all k ∈ {2, … ,K}. Then the formulation reads

as follows.

(PCE) min 𝑑1 +
K∑

k=2

(𝑑k − 𝑑k−1)uk, (A2a)

s.t.

∑

j∈J
yj ≤ p, (A2b)

∑

j∈J
yj ≥ 1, (A2c)

uk +
∑

j∶𝑑ij<𝑑k

yj ≥ 1 ∀i ∈ I,∀k ∈ {2, … ,K}, (A2d)

uk ∈ {0, 1} ∀k ∈ {2, … ,K}, (A2e)

yj ∈ {0, 1} ∀j ∈ J. (A2f)
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Let Di = {𝑑ij ∶ j ∈ J} ⧵ {𝑑1} for i ∈ I. The modified variant of (PCE) proposed by Ales and Elloumi [2] is

as follows.

(PCA) min 𝑑1 +
K∑

k=2

(𝑑k − 𝑑k−1)uk, (A3a)

s.t.

∑

j∈J
yj ≤ p, (A3b)

∑

j∈J
yj ≥ 1, (A3c)

uk−1 ≥ uk ∀k ∈ {3, … ,K}, (A3d)

uk +
∑

j∈J∶𝑑ij<𝑑k

yj ≥ 1 ∀i ∈ I,∀𝑑k ∈ Di ∪ {K}, (A3e)

uk ∈ {0, 1} ∀k ∈ {2, … ,K}, (A3f)

yj ∈ {0, 1} ∀j ∈ J. (A3g)
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