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In this paper, we employ the less is more approach to develop a Parallel Variable Neighborhood Search (VNS)
algorithm for the a-neighbor p-center problem (aNpCP) and the a-neighbor p-median problem («NpMP). The
aNpCP and the aNpMP are generalizations of the p-center (pCP) and p-median (pMP) problems, respectively.

gasmuvll\l\st In the a-neighbor problems, one seeks to open p facilities and assign each of the n customers to their closest
aralle NI R . . . s
i a ones. The objective is to minimize the maximum distance of a customer to its ath facility, in the case of

the aNpCP, and the sum of the distances from each customer to their a nearest facilities, in the case of the
aNpMP. Our VNS adapts simple but efficient algorithms and data structures from the pCP and pMP literature
to the aNpCP and aNpMP context. We also introduce an updated objective function for the aNpCP, which adds
more information to the solution cost and helps the VNS to escape from local optima. Several experimental
tests show that our VNS outperforms more complex state-of-the-art algorithms. Regarding the aNpCP, on 120
instances derived from the OR-library set, our algorithm improved best-known solutions for 22, with an average
improvement of 34.26%; the overall gap on the 120 instances is 6.18% in favor of our algorithm. Moreover, on
231 instances derived from the TSPLIB set, we improved the solutions for 115, with an average improvement
of 5.30%, and an overall improvement gap of 2.47% for all 231 instances. Considering the aNpMP results,
our heuristic obtained better results than a heuristic from literature in all 80 instances tested, finding optimal
solutions in all these instances.

1. Introduction as medians, but the objective is to minimize the sum of distances of
every vertex to its nearest median. These problems were proven to be
NP-hard (Garey and Johnson, 1979; Kariv and Hakimi, 1979), so one
often relies on heuristics to solve large instances.

In the pCP and pMP, vertices are assigned to a single facility.

Facility location problems are extensively studied and are an im-
portant topic in operations research (Daskin, 1995; Laporte et al.,
2015). In such problems, one seeks to open facilities and assign each
customer’s demand to an opened one, optimizing an objective function
typically composed of an assignment cost. These problems have several
real-world applications, from logistics to data-mining (Ng and Han,

However, in some applications, facilities may be prone to failure and
become unavailable due to unpredictable reasons such as weather and

1994; Hansen et al., 2009; Laporte et al., 2015; Grangier et al., 2016;
Contardo et al., 2019). Among many problems in this research topic,
two of the most known facility location problems are the p-center (pCP)
and the p-median (pMP) problems, both introduced by Hakimi (1964,
1965). Given a graph, the objective in the pCP is to select p vertices,
also known as centers, so the maximum distance between the graph’s
vertices and their respective closest center is minimized, i.e., a min—
max problem. In the pMP case, one also selects p vertices, here known
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electricity problems (Panteli et al., 2021). In such cases, it is important
to ensure the continuity of service to customers assigned to the failed
facility. This is common in critical services, such as hospitals, fire
stations, and computer networks, where backup coverage is needed
(Wang et al., 2009; Aradjo et al., 2020; Panteli et al., 2021). For
instance, during the COVID-19 pandemic, hospitals in highly dense
urban areas that could handle the demand of a regular day were
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facing an overwhelming demand (Miller et al., 2020). An alternative is
assigning excess demand to a temporary healthcare structure or even to
a backup hospital (Aratjo et al., 2020). On the other hand, a hospital
located in a less populated region might not be dealing with a burden
on its system. Therefore, the best solution in this case is to reallocate the
population to the hospital in a less populated area instead of opening
an additional temporary facility.

Other examples arise in computer networks, where some critical
systems must have higher redundancy than others, or more generally
in any context where some entities being served are more critical than
others (Wang et al., 2009). From the provider’s perspective, such as in
the hospital example, facilities may be elected to require extra coverage
for their users. Thus, assigning clients to multiple facilities at a time
becomes useful.

To handle these types of problems, Krumke (1995) generalized the
pCP and introduced the a-neighbor pCP (aNpCP), where vertices are
assigned not just to the nearest center but to their a« nearest ones.
This problem aims to minimize the maximum distance between a non-
facility vertex to its ath closest center. Note that when « = 1, the pCP is
defined. Krumke (1995) also proposed an approximation algorithm for
the aNpCP since it is a NP-hard problem as it generalizes the pCP. Since
then, solution methods have been proposed, especially approximation
and exact algorithms, for either the continuous and discrete versions of
the aNpCP, e.g., the works of Chaudhuri et al. (1998), Khuller et al.
(2000), Chen and Chen (2013), and Callaghan et al. (2019). In the
continuous version of the aNpCP, facilities can be placed anywhere in
the defined space. On the other hand, in the discrete version, facilities
must be vertices in the graph. The latter is the topic of interest in this
work.

We are aware of only two heuristics for the aNpCP, the works
of Sanchez-Oro et al. (2022) and Mousavi (2023). Sanchez-Oro et al.
(2022) proposed a Greedy Randomized Adaptive Search Procedure with
Tabu Search and Strategic Oscillation methodology (GRASP-SO). The
authors tested their algorithm in 37 instances derived from the TSPLIB
(Reinelt, 1991) and compared their results to the exact method of Chen
and Chen (2013). The heuristic of Sdnchez-Oro et al. (2022) obtained
the best results in all tested instances. Mousavi (2023) developed
efficient local search algorithms for the pCP, the aNpCP and the p-
next center problem (pNCP). They tested their aNpCP heuristic, using
a = 2, on the 40 pMP instances from the OR-library (Beasley, 1990),
but did not compare their algorithm with the results of GRASP-SO of
Sanchez-Oro et al. (2022). The author then ran the algorithm for all
40 OR-library instances for 10,000 s, showing that the heuristic can
consistently find the same solutions in a much shorter execution time.

Exploring the multiple assignment feature in the pMP context is
also important. However, this pMP variation has not been explored
as much as the pCP one. Even though the literature related to pMP
is vast (Barbaros et al., 1983; Reese, 2006; Mladenovi¢ et al., 2007;
Daskin and Maass, 2015; Marin and Pelegrin, 2019), to the best of
our knowledge, there are few works concerning variations of these
problems where vertices can be assigned to more than one median.
One of these studies is the work of Wang et al. (2009), who introduced
the backup 2-center problem and the backup 2-median problem. In
these problems, every vertex is served by two medians. Another study
is that of Karatas et al. (2016), where the authors introduced the
requirement of each vertex to be assigned to more than one facility
and compared it under five different criteria. Also, Brimberg et al.
(2021) introduced the distributed pMP, where, given a distribution
function over customers’ demands, multiple medians are used to fulfill
the customers’ demands. However, none of these definitions impose
multiple assignments precisely as in the «NpCP.

To the best of our knowledge, the only work that generalizes the
single assignment requirement to allow multiple assignments, as in the
aNpCP, is the work of Panteli et al. (2021). These authors relaxed the
single vertex-median assignment constraint of the pMP and imposed
that each vertex is allocated to their nearest @ medians. The objective
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is to minimize the total sum of vertices distances to their « facilities.
Again, when a = 1, the pMP is defined, and this problem is NP-hard
as it generalizes the pMP. Panteli et al. (2021) denominated this pMP
variation as the multiple p-median problem. For uniformity, here we
refer to this problem as the a-neighbor pMP (a«NpMP). These authors
also proposed the Biclustering Multiple Median algorithm (BIMM) to solve
the aNpMP and compared it with a commercial solver.

Since both aNpCP and aNpMP are NP-hard, in this work we propose
a simple but effective Basic Parallel Variable Neighborhood Search (BP-
VNS) algorithm; “basic” defines the VNS version originally proposed
by Mladenovi¢ and Hansen (1997). This algorithm is used to produce
high-quality solutions for these problems. This heuristic has been suc-
cessfully applied to many facility location problems, e.g., pMP (Hansen
and Mladenovié¢, 1997), pCP (Mladenovi¢ et al., 2003), capacitated pMP
(Fleszar and Hindi, 2008), probabilistic pCP (Martinez-Merino et al.,
2017), obnoxious pMP (Herré et al., 2020; Mladenovi¢ et al., 2020),
and pNCP problem (Lopez-Sanchez et al., 2019; Ristic¢ et al., 2023).

We have developed our heuristic using the Less is More Approach
(LIMA) (Mladenovi¢ et al., 2016; Brimberg et al., 2023). The LIMA
is a heuristic design methodology focused on simplicity and user-
friendliness rather than developing complex algorithms just for the sake
of proposing a new method, with no solid performance improvement
(Mladenovié¢ et al., 2016). The idea is to use the minimum number
of algorithm components to develop a heuristic as simple as possible
and still be able to find solutions at a state-of-the-art level (Mladenovi¢
et al.,, 2020). Besides the method’s simplicity, another advantage of
using this approach is that it is easier to identify how and why the
algorithm performs the way it does (Mladenovi¢ et al., 2020). As we
will demonstrate, our method can be easily adapted to several classes of
problems and performs very well thanks to the important components
described next.

In our BP-VNS we adapted optimized and well-known algorithms
and data structures from the literature to the aNpCP and aNpMP
context. Also, to take advantage of modern multi-core CPUs, we par-
allelized our BP-VNS due to its simplicity. In addition, we couple to
our heuristic an updated «aNpCP objective function based on the idea
of Torres-Jimenez et al. (2015), which adds more information about the
solution quality and helps guide the VNS to escape from local optima.
Then, the main contributions of our work are:

+ We present a simple and effective BP-VNS for the aNpCP and
aNpMP. Using the LIMA methodology, we adapt well-known
algorithms and data structures from the literature;

» We use a new objective function for the aNpCP, which allows the
heuristic to differentiate solutions with the same cost, improving
the heuristic’s convergence;

» We show that our simple heuristic can find high-quality solutions
and outperform state-of-the-art methods.

This paper is organized as follows. The mathematical formulations
are presented in Section 2. Our BP-VNS is detailed in Section 3. Sec-
tion 4 shows the test results. Our concluding remarks and discussion
about future works are presented in Section 5.

2. Mathematical notation and problems definitions

Let G = (V,E) be an undirected, weighted, and connected graph,
where V is the set of vertices and E is the set of edges, where |V | = n,
|E| = m and to each edge (i,j) € E is associated a weight d;; € R*.
In facility location problems, d;; is often the Euclidean distance or the
shortest path length between vertices i and j, but dissimilarity values
are also common. In all these cases, the triangular inequality is not
violated. Even if an edge joining vertices i and j may not exist in the
original graph, (i,j) can be added to E with d;; equal to the length
of the shortest path between these vertices since G is connected and
the triangular inequality holds. In this way, D = (d;;) is an n x n
distance matrix of non-negative real values. Let S be the set of the p
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open medians, where 1 < p < n. Since it is required that all vertices
be assigned to « facilities in the «aNpCP and the aNpMP, it is implicitly
assumed that each vertex is always assigned to its « closest medians
among the p open ones, where a < p.

The remainder of this section is organized as follows. In Section 2.1,
the aNpCP formulation is presented. The integer linear program of the
aNpMP is described in Section 2.2.

2.1. aNpCP formulation

In the aNpCP, a subset S C V of vertices are selected as facilities and
each vertex i € V'\ S is assigned to the nearest a of them. The distance
between a vertex i and its ath nearest facility j € .S is know as the a-
center-distance and is defined by dS(i,S) = mingcg |s1|=, {Max;eq d;;}.
Thus, in this problem, the objective is to minimize the maximum a-
center-distance of vertices that are not facilities, that is, to find a set
S c v, where |S| = p, such that max;c g d5(i, S) is minimum. Observe
that when a vertex is selected as a facility, it is not assigned to other
facilities.

The mathematical formulation of the pCP (Daskin, 1995) can be
adapted to allow each vertex to have multiple assignments. In this
formulation, decision variables x;; control whether client i is allocated
at facility j or not, i.e.,

1, if vertex i € V is assigned to facility vertex j € V,
X = :
Y 0, otherwise.

It is worth mentioning that when x;; = 1 and i = j, then vertex i is
selected as a facility. The aNpCP can be formulated as the following
mixed-integer linear program:

min z (1a)
subject to
Y xy=al-x), iev, (1b)
JEV j#i
Z X;; =P, 19
jev
X <X i€V, jEV, it} ad
dijx;; < z, i€V, jeV,i#], (1e)
zeRY, x; € (0,1}, ieV,jevV. (1D

The value of the continuous variable z is minimized by the objective
function (1a), whose lower bound is given by constraint (1e). In other
words, the objective function (1a) minimizes the maximum distance
between a vertex and its furthest (ath nearest) facility. Constraints (1b)
assure that each vertex i € V' \ .S is assigned to « facilities. Note that
if x; = 1, i.e., vertex i is a facility, then i is not assigned to any other
facility since the right-hand-side of constraints (1b) is zero. Exactly p
facilities are opened, which is guaranteed by constraint (1c). A vertex
i can only be assigned to a facility j if j is open. This is ensured
by constraints (1d). Variables x;; are binary and z is a nonnegative
continuous variable as in constraints (1f).

2.2. aNpMP formulation

The aNpMP requires p medians to be selected from V' and that all
vertices v € V are assigned to their closest a facilities. Let an(i,s) =
Ming g |s'1=¢ 2 s di; De the a-median-distance of vertex i given a set of
facilities S. In the aNpMP, the objective is to minimize the sum of the a-
median-distances of all vertices. In other words, the objective is to find
aset .S C V, where |S| = p, such that Y, d”(i,.S) is minimum. Unlike
the aNpCP, in the aNpMP facilities are also assigned to « facilities.

The aNpMP can be formulated as an integer linear program (2a)-
(2e). In this model, decision variables x;; are the same as the ones
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defined in Section 2.1 and control whether client i is assigned to facility
Jj. Again, when x;; = 1 and i = j then i is selected as a facility.

minz Z dijx;; (2a)

i€V jev
subject to
2 X = a, iev, (2b)
jev
Z Xjj =D (20)
jev
x;; < Xjj, ievV,jev, (2d)
x; € {0,1}, ievV, jev. (2e)

In the model above, the objective function (2a) minimizes the sum
of the distances between every vertex i assigned to each facility j.
Constraints (2b) are the multiple assignment constraints and impose
that every vertex must be assigned to « facilities. Constraint (2c)
guarantees that p vertices are open. A vertex i can only be assigned
to a vertex j if j is an open facility, i.e, only if x;; = 1, and this is
ensured by inequalities (2d). Constraints (2e) define variables x;; as
binary. Note that the difference between the aNpMP model and the
PMP model (Revelle and Swain, 1970) is in constraints (2b), which, in
the aNpMP case, allow multiple assignments.

3. Basic parallel variable neighborhood search

The VNS is a well-known metaheuristic (Hansen and Mladenovic¢,
2018), which consistently explores increasing neighborhoods if no
improvement is detected. Whenever a better solution is found, the
neighborhood range is reset to the minimum size, and the exploring
process starts over, using the neighboring of the new solution. This
metaheuristic also uses a local search procedure to polish newfound
solutions, combining exploring and exploiting.

Since we employed the LIMA methodology for developing heuristics
for the aNpCP and the aNpMP, we decided to implement the BP-VNS.
This VNS is a parallel version of the original metaheuristic proposed
in the seminal work of Mladenovi¢ and Hansen (1997), which is com-
posed of finding a new neighbor solution using one shaking procedure,
followed by one local search, which improves the found solution, and
then deciding whether or not we move to the new neighborhood
(Mladenovi¢ et al., 2020). These steps are repeated until a stop criterion
is met, e.g., maximum execution time.

Remember that in both the aNpCP and the aNpMP, each client is
assigned to its a nearest facilities. So, all the information we need
to represent a solution to these problems is the p facilities. Let S =
(V50 ) denote a solution, i.e., S C V is a set of p vertices
(facilities). A metric to differentiate two solutions .S and S’ is p(S, S") =
p — |Sn.S’|, the number of facilities they do not share. So we say a
solution S’ is at a distance of k from .S if p(S, S”) = k. Then, all solutions
lying at a distance of k, with k = 1, ...k, and k p, are contained
in the neighborhood set N, (S).

The BP-VNS used in this work is depicted by Algorithm 1. This
same structure is used in problems aNpCP and «NpMP. First, an initial
solution is generated and becomes the current solution .S. Then, the
shaker procedure is applied, and a new solution S’ € N, (S) is found
within the neighborhood of size k of the solution S. The local search
is then used to polish solution S’. If the cost of solution S’ is less
than that of the current best-known solution .S, then S’ becomes S, the
neighborhood range k is reset, and the search continues from the new
solution . Otherwise, the neighborhood size increases, allowing it to
explore WV, (S) even further. This step is repeated while the execution
time limit is not reached.

To calculate the cost of a given solution s, for the aNpCP, we
customized the move evaluation and update procedures as well as the

max s
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Algorithm 1: Basic Parallel Variable Neighborhood Search.

Algorithm 2: initial Solution procedure.

1 S « initial Solution(); // generates a solution by

Algorithm 2
2 while time limit is not reached do
3 k<1,
4 while k < k,,,, do
5 S’ « shaker(S,k); // £inds solution S’ by using
Algorithm 4
6 S’ « local Search(S"); // improves S’ by applying
Algorithm 5
7 if cost(S") < cost(S) then
8 S« S5
9 k<« 1;
10 else
11 ‘ k< k+1;
12 end
13 end
14 end
15 return S;

corresponding data structures from Mladenovi¢ et al. (2003), and from
the work of Hansen and Mladenovi¢ (1997), for the aNpMP. Because
these algorithms and data structures are well-known and easy to im-
plement, another advantage is that one can compute a solution’s cost
in O(nlogn).

We opted to use parallelization to enhance the performance of
each component of our BP-VNS: the initial solution algorithm, the
shaker procedure, and the local search. This decision was driven by the
straightforward parallelization possibility each one of these methods
offers, and we focused on keeping them simple. These components are
explained in the following sections. The algorithm to generate an initial
solution is described in Section 3.1. The shaker procedure is detailed in
Section 3.2. The local search method is shown in Section 3.3. Further
implementation details are presented in Section 3.4.

3.1. Initial solution

Algorithm 2 shows the parallel procedure used in this work for gen-
erating initial solutions for both aNpCP and aNpMP. In this algorithm,
the best of r solutions, where r is a parameter of the number of threads,
is selected as the initial solution. Each thread i starts from a solution S;
generated by Algorithm 3. This procedure returns a random solution for
half of the threads and a solution generated by a constructive greedy
algorithm for the other half. After generating a starting solution, a local
search procedure improves it. We use the same local search detailed in
Section 3.3 to keep the algorithm simple. Note that each thread calls
the local search to improve its solution. So unlike the local search step
of Section 3.3, here, each local search procedure runs in serial, unique
to its thread. After all threads finish generating their solution, the best
solution S among all S; solutions is returned as the initial one. The
initial algorithm can be viewed as multiple parallel calls of the serial
local search starting from different solutions.

3.2. Shaker

Hansen and Mladenovié¢ (1997) and Mladenovié¢ et al. (2003) use a
shaker procedure where the facility to be opened is selected randomly,
and then they select the best open facility to be closed regarding the
one to be opened. To find the best facility deletion, they use the move
evaluation algorithm to identify the facility to be closed and to compute
the new objective function value in O(n). For the pCP, Mladenovi¢ et al.

Output: Initial solution .S.

1.8«
2 for i < 1 to r do in parallel // r is the number of
threads
/* Each thread starts with a different
solution */

3 S; < build Starting Solution(i); // calls Algorithm 3
S; < local Search(S,); // calls single threaded
Algorithm 5
if cost(S;) < cost(S) then
| s<s;
end

EN

end
return S;

© ®© N o «u

Algorithm 3: build StartingSolution procedure.

Input: Thread index i.
Output: Solution S.
1 if i is even then
2 return random solution S
random

// opens p medians at

3 end
/* Otherwise, build a greedy solution as follows
*/
4 5 «u;
random
while |S| < p do
select a vertex u € V' \ .S which minimizes the cost(S) and do
‘ S« Suuy
end
end
o return S;

// where veV is a vertex selected at

© o N o »

-

(2003) only considers opening the random facility if it is closer to the
critical vertex than the critical vertex’s current facility.

Since we design a parallel shaker algorithm, the approach of Mlade-
novi¢ et al. (2003) may trap the BP-VNS in local optima, as we
select the best out of a number of candidates, which, in turn, were
selected greedily. Then, in our shaker, we first decided to remove the
requirement of only opening a facility if it improves the critical vertex
assignment, avoiding making such greedy decisions. To improve the
solution space exploration even further and simplify the heuristic, we
opted to make the shaker completely random, i.e., to open and close
facilities randomly. This very same shaker algorithm was successfully
used by Mladenovic et al. (2020) in the obnoxious pMP.

Algorithm 4 depicts the shaker procedure, which, given a solution .S
and the neighborhood size k, is used to find a new solution S’ € N (.S).
The role of this method, as the name implies, is to disturb the current
solution and, thus, avoid being trapped in local optimum solutions. Like
Algorithm 2, we explore r solutions in parallel and keep the best one.
So from the input solution .S, each thread i finds a solution S'.’ € Ni(S)
by randomly swapping k facility vertices with k client vertices. In other
words, each thread randomly selects a set of facilities J = {j, ..., i},
such that J C S, and a set of non-facility vertices L = {/|, ..., [}, such
that L C V' \ S, and swap them.

We decided to close and open k facilities at random in our shaker
instead of, for example, opening a facility at random and closing the
best one as in Hansen and Mladenovi¢ (1997) and Mladenovié et al.
(2003) for two reasons. First, using swaps is well-aligned with the LIMA
aspect of our algorithm; we have not observed any significant gains
from using a more expensive approach during our preliminary tests.
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Algorithm 4: shaker procedure.

Input: Current solution .S; neighborhood size k.
Output: New solution S” € N (S).
1.8 «S;
2 for i «< 1 to r do in parallel
threads
select S/ € NV,(S) and do
closes k facilities
4 if cost(S!) < cost(S") then
5 | s" <8l
6
7

// r is the number of

// randomly opens and

w

end
end
s end
9 return S’;

Second, this random approach helps the BP-VNS to escape local optima
more effectively than a greedy alternative.

3.3. Local search

We implemented a best improvement local search presented by
Algorithm 5. Given an input solution .S/, this algorithm evaluates the
swap of every non-facility vertex with the best facility deletion concern-
ing the opened one. Then, the best swap is selected and performed.
This process systematically explores all solutions in N|(S’) since it
opens every client vertex as a facility, one by one. If the best swap
improves .S’, then this procedure continues refining solution S’ as long
as an improvement is found. If no improvement is detected, it stops and
returns S’. This procedure runs in parallel but, unlike Algorithms 2 and
4 where threads run independently, here, each thread handles a subset
of non-facility vertices. In other words, each thread explores a subset
of N(S”). Then, the best swap is the one selected to be performed.

To evaluate the swap between a facility vertex j € S’ and a
client vertex I € V \ S/, we adapted the move evaluation algorithm
from Mladenovic¢ et al. (2003), for the aNpCP, and from Hansen and
Mladenovi¢ (1997), for the aNpMP. With these algorithms, one can
compute, in O(n) time complexity, the new objective function value if
the swap between j and / would occur.

Algorithm 5: local Search procedure.

Input: Candidate solution S’.
Output: Improved solution .57, if any.
1 do
2 improved « false;
3 foreach S” € N;(S’) do in parallel
closes one facility

// opens and

4 if cost(S") < cost(S’) then
5 S« 8"

6 improved « true;

7 end

8 end

9 while improved;
10 return S’;

3.4. Implementation details

We now present additional implementation details. First, we ex-
plain, in Section 3.4.1, how we adapted some data structures from the
works of Hansen and Mladenovi¢ (1997) and Mladenovi¢ et al. (2003).
Secondly, in Section 3.4.2, we show details regarding the paralleliza-
tion of the initial solution, shaker, and local search procedures. Lastly,
in Section 3.4.3, we present the aNpCP updated objective function used
in this work to improve the BP-VNS convergence further.
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3.4.1. Data structures

As mentioned earlier, we have adapted the move evaluation and the
update algorithms of Mladenovié¢ et al. (2003) for the aNpCP, and of
Hansen and Mladenovi¢ (1997) for the aNpMP, to evaluate facilities
candidates efficiently and to compute the solution cost quickly. Be-
sides other minor algorithmic details, the main difference between the
original versions of these two algorithms and our adaptations lies in
an auxiliary data structure denoted as cl array. In the original move
evaluation and update algorithms, each position i of array c¢1 holds
the index of the nearest facility to each vertex i. However, in our case,
where vertices are assigned to « facilities, the c1 array transforms into
a n X a matrix. Each row i of this matrix corresponds to the « facilities
indices to which vertex i is assigned.

To efficiently update a facility in a row i of matrix c1, we keep each
row’s « facilities sorted into increasing order of distance from vertex
i. This way, we can use binary search to remove or insert a facility.
However, since a is a parameter and its values used in this work are
small (a < 3), as large values are not common in practice (Sdnchez-
Oro et al., 2022), we can consider it a constant. Then, there is no
difference in the asymptotical time complexity between the original
algorithms and our customizations. Thus, the time complexity of the
move evaluation remains at O(n), and the time complexity of the update
algorithm of O(nlog n) remains the same.

3.4.2. Parallelization

Three procedures of our heuristic are parallelized: the initial solu-
tion algorithm, the shaker, and the local search. The parallelization of
each one was done independently. Fig. 1 depicts how multithreading is
implemented in each of these algorithms.

In the initial solution algorithm, r threads are spawned and assigned
a starting solution generated by Algorithm 3. Then, each thread tries to
improve its solution by applying a single-threaded version of the local
search, described in Algorithm 5. Finally, the best solution among the
r ones is selected as the initial solution. A mutex controls the read and
write operations to avoid data racing when selecting the best solution,
a shared resource between the threads.

The parallelization of the shaker is similar to that of the initial
solution algorithm. Here, r copies of the current solution are created
and assigned to r threads. Then, each thread performs k random swap
operations on its copy; that is, it selects kK random vertices to become
medians and k random medians to be closed. The best among the r
solutions found by this method is returned. As in the initial solution
algorithm, we use a mutex to avoid data racing on the best solution.

In the local search, the parallelization was done straightforwardly.
Since we swap every non-median vertex with its respective best median
to be closed, we can give each thread a subset of non-median vertices
so they can compute the swaps. Then, the workload of calling the
move evaluation method |V \ S| times is evenly divided between the
r threads. Again, we use a mutex to control read and write operations
for finding the best swap.

3.4.3. aNpCP evaluation function

The aNpCP inherited an issue from the pCP: several solutions have
the same cost. This problem is even worse in the aNpCP since we
minimize the maximum distance between a vertex and its ath facility.
However, this does not mean that solutions of the same cost are equal.
Between two solutions of the same cost, we can consider one of them
to be better than the other. For example, let S and S’ be two solutions
where p(S,S8’) > 1 and cost(S) = cost(S’) = 42. Also, consider that
S’ has only one critical vertex, a vertex i in which the distance to its
ath facility equals 42, whereas .S has several critical vertices. It may
be easier to reduce the cost of .S’ than to open new facilities and try
to reduce the cost of S. So, adding more information to the cost of an
aNpCP solution regarding the overall assignments is necessary instead
of just considering the critical element.
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Fig. 1. BP-VNS flowchart.

Based on this observation, we adapted the method of
Torres-Jimenez et al. (2015). These authors proposed a heuristic for the
matrix bandwidth minimization problem (MBMP). The MBMP is also a
min-max problem, where the objective is to minimize the maximum
distance between a nonzero coefficient and the main diagonal of a
square sparse symmetric matrix. There are also several solutions to
this problem that cost the same. Then, the authors adapted the idea
proposed by Rodriguez-Tello et al. (2008), which consists of counting
the number of occurrences of distances between all the other nonzero
coefficients and the main diagonal and then translating it to a value 6 €
[0, 1). To compute the value of §, they counted the number of distances
of each value and the maximum number of each distance. They used
these values to represent a number in a positional numbering system
of variable base, also known as mixed radix. The value represented by
this numerical system is then normalized to a value in the range [0, 1)
and added to the objective function value. This adds more meaning to
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the objective function value and helps to differentiate solutions with
the same bandwidth. Please refer to Rodriguez-Tello et al. (2008) and
Torres-Jimenez et al. (2015) for further details.

We can also use this method in the aNpCP since they are both
problems where the objective is to minimize the maximum distance. To
compute §, the value to be added to the aNpCP objective function value,
we use Algorithm 6 (Torres-Jimenez et al., 2015). In this algorithm,
element d; of array d represents the number of edges of length i used
in solution S, i.e., the number of edges of length i connecting a client
vertex to its ath facility. The ith value of array v is the maximum
number of edges of length i that can be used in a solution plus one
because no edge is a possible value. Then, with both arrays d and
v one can represent the aNpCP solution as a number in a positional
numbering system of variable base, where d values can be interpreted
as digits and v as the base in this numerical system. To compute
this value and then normalize it in the [0,1) range, Torres-Jimenez
et al. (2015) proposed the Algorithm 6, where the normalized value
is represented by §.

Algorithm 6: «NpCP alternative objective function.

Input: Solution S; arrays d and v.
Output: aNpCP cost of solution S.
6« 0;

for i < 0 to cost(S) do

if d; > 0 then
5« tdi.

B

AW N =

Vl

end

9,1

6 end
return cost(S) + 6;

N

For example, consider two solutions S and S’ depicted in Fig. 2.
In this example, n = 7, p = 2, @ = 2, cost(S) = cost(S’) = 42, and
p(S,S") = 1. Note that solution S has two critical vertices (two vertices
with a distance of 42 to their facilities), whereas solution .S’ has only
one. So one could use Algorithm 6 to compute the value of 5 of both
solutions and compare them.

To compute the § values for solutions .S and .S’, every edge of the
graph of the aNpCP is counted to define the array v. Also, recall that
the absence of the edge in the solution is counted, too, so we add
one to every v; value. As the array v is related to the graph and not
to a particular solution, then, for solutions S and S’, we have the
same following v values: there is one edge of distance 21 in the graph,
i.e., v,; =2 (the edge plus one to represent the absence of such edge in
a solution); there is one edge of distance 22 in the graph, i.e., v,, =2;
Voy =2, V39 = 2, V35 = 2, and vy, = 3 (since there are two edges of length
42 in solution S, plus one to represent the absence of such edge in a
solution). On the other hand, array d is specific to each solution, and
for solution .S we have: one edge of distance 21 used in the solution,
i.e., dy; = 1; one edge of distance 22 used in the solution, i.e., dy; = 1;
d3g = 1, dy4p = 2. For solution §” we have the following: d,; =1, dy, =1,
dyy =1, d35 = 1, dyp = 1. Then, using Algorithm 6, we get 6 = 0.958 for
solution S and 6 = 0.646 for solution S’. Therefore, solution S’ is better
than S as 42.646 < 42.958. Indeed, it is easier to improve solution .S’
cost because it has only one critical vertex.

Computing the value of § for each solution can be done efficiently
in O(Dyyux), Where Dy, = max; ;e d;;, within the move evaluation and
update algorithms, significantly improving the amount of information
the algorithm considers. As demonstrated in the next section, this
new updated objective function improves convergence and helps the
algorithm achieve better solutions.

4. Computational experiments and analysis

We now describe the computational experiments performed to as-
sess the performance of our methods. All algorithms described were
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(b) Solution S”.

Fig. 2. Example of two aNpCP solutions of same cost (42).

implemented in C++ language and compiled with g++ compiler, version
11.3.0. We used Gurobi’s C++ API, version 10.0.3 for solving the integer
programs. The preliminary tests of Section 4.1 were executed on a
computer equipped with an Intel® Core™ i9-13900K processor with 32
threads at 3.0 GHz and 128 GB of RAM. All the remaining experiments
were conducted on a computing cluster based on AMD EPYC™ Rome
7532 processors running at 2.4 GHz using 24 threads and up to 96 GB
of RAM. All instances described below and their detailed solutions are
available at www.leandro-coelho.com/VNS-location-problems and in
the appendices.

For the tests with both aNpCP and aNpMP, we used the well-
known OR-library instances (Beasley, 1985, 1990). This set contains
40 instances with sizes ranging between 100 and 900 vertices. These
instances are composed of connected weighted non-complete graphs.
To transform these graphs into complete ones, we used the Floyd-
Warshall algorithm to compute the shortest paths between every pair
of vertices, as is done in the literature. Following Sanchez-Oro et al.
(2022), we also used 77 instances derived from the TSPLIB (Reinelt,
1991) for the tests with the aNpCP and, for each of them, we tested
using a € {1,2,3}. For the aNpMP tests, we used ¢ € {10,20} and
compared our VNS with the BIMM heuristic (Panteli et al., 2021).

Since we use the LIMA methodology, the only parameters our
heuristic uses are the k., for which we used k,, = p (Mladenovié
et al., 2020), the number of threads r, which we set to r = 24 for the
experimental tests, and the execution time limit, which we used 30 min
for the experimental tests. Also, we set an additional stopping criterion
for when our heuristic finds the best-known solution or improves it.
In addition, we set 2 h as the execution time limit for the commercial
solver to solve the models.

The remaining of the section is organized as follows. In Section 4.1
we show the preliminary tests carried out to evaluate the compo-
nents of our BP-VNS. The aNpCP experimental results are presented in
Section 4.2, and the aNpMP ones are presented in Section 4.3.

4.1. Preliminary tests

Preliminary tests to evaluate some key features of our BP-VNS
are presented in this section. We tested our heuristic on the first
10 instances of the OR-library, which have n € {100,200} and p €
{5,10,20,33,40,67}. In all tests of this section, we used « =2 and 60 s
as the time limit of the BP-VNS. In addition, as the aNpCP and aNpMP
versions of our heuristic share the same main structure, we performed
the preliminary tests only for the aNpCP. This section is structured as
follows. The impact of parallelism is analyzed in Section 4.1.1, tests
to evaluate the shaker functions are shown in Section 4.1.2, and the
ones to evaluate the usage of the updated aNpCP objective function
are presented in Section 4.1.3.

4.1.1. Evaluation of parallelism

In this section, we assess the parallelism in our BP-VNS, described
in Algorithm 1. First, we tested how the number of threads impacts
the execution times of our heuristic by computing the speedup of
the multithreading version against the serial one. To compute the
speedups properly, we opted to only measure the execution time of the

local search, as a single iteration of this algorithm always evaluates
|V| — p customer-median swaps. So, the workload of these swaps is
evenly divided between the threads. On the other hand, this does not
happen with the initial solution and shaker algorithms, as in these
parallel procedures, the threads run independently and do not divide
the workload but explore different regions of the solution space. Then,
we could not directly compute a speedup.

Fig. 3 shows the execution times (on the left graph) and the
speedups (on the right graph) of the local search algorithm with 1, 2,
4,8, 12, 16, 20, 24, and 32 threads. To obtain these results, for each
number of threads, we got the total execution time of 1000 runs of the
local search algorithm on the pmed40 instance from the OR-library.

Parallelizing the local search significantly improves its execution
time, as it is reduced from 13.75 s (single-threaded) to 1.02 s (32
threads). In terms of speedup, this indicates that our parallel algorithm
can run up to 13.48 times faster than its serial version. As detailed at
the beginning of Section 4, we have used machines from a computing
cluster to run the tests with the a—neighbor problems. Since most
machines of this cluster have 48 threads, we decided to use 24 threads
to run two tests per machine, speeding up the time required to finish
our tests and making a sensible use of variable resources. Also, as one
can note in Fig. 3, the gain of using 32 threads over 24 threads is
negligible (the execution time is reduced from 1.03 s to 1.02 s, and
the speedup is improved from 13.40 to 13.48). Hence, 24 threads is a
reasonable choice.

To evaluate how parallelism helps our heuristic’s convergence, we
tested two versions: the BP-VNS running on a single thread and the
parallel BP-VNS where 24 threads are used. Table 1 shows these tests’
results. In this table, the first three columns show the instances’ names,
the number of vertices, and the number of medians. The optimum (opt)
of each instance is shown in the fourth column. Then, we present for
both BP-VNS versions the best solution found, the iteration in which the
best solution was found (iter,,,,), the total number of iterations (#iter),
and the time, in seconds, in which the best solution was found (t,,,, (s)).

As one can note, the parallel version obtained the optimum values
in all instances. On the other hand, the single-thread BP-VNS did not
find the optimum of instances pmed3, pmed4, pmed9, and pmedl0.
The parallel initial solution algorithm helps the heuristic convergence
as it is a multistart procedure, so the BP-VNS starts from the best
solution out of r candidates. The (paralle]) BP-VNS found the best
solution much earlier than the single-thread version, as one can see
in columns iter,,, and t,,, (s). Indeed, in some instances, as for pmed1
and pmed6, BP-VNS found the optimum at iteration 0, that is, in the
initial algorithm step. Also, parallelism helps the heuristic explore the
solution space faster as multiple solutions are visited in each call of the
shaker procedure. Exploring different neighborhoods more efficiently
helps BP-VNS escape from local optima, which can explain why the
parallel version of BP-VNS found the optimum for all instances. In
addition, the parallel local search algorithm is much faster than the
single thread version, as each thread explores a subspace of N(S).
Since the local search procedure is the most expensive step in our BP-
VNS, parallelizing it helps decrease the computational burden. This
can be noticed in the total number of iterations, where BP-VNS ran
approximately eight to ten times more iterations than the single-thread
version. Then, for these reasons, we decided to use the BP-VNS version
for the remainder of the paper.
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Fig. 3. Execution times and speedups of the parallel local search algorithm running with different numbers of threads.

Table 1

Comparison between the single-thread and the parallel versions of BP-VNS (aNpCP, with a = 2).
Instance n p opt Single-thread BP-VNS BP-VNS

Best iter,,, #iter | O] Best iter,,, #iter [ O]

pmed1 100 5 150 150 72 49539 0.09 150 0 475687 0.01
pmed2 100 10 121 121 2965 56 666 3.24 121 674 469 980 0.11
pmed3 100 10 121 123 814 56075 0.90 121 4210 447 565 0.65
pmed4 100 20 97 98 1181 69843 1.04 97 1067 483936 0.18
pmed5 100 33 63 63 17705 96 636 11.14 63 160 427 687 0.04
pmed6 200 5 929 99 6954 12429 33.57 99 0 159187 0.04
pmed7 200 10 80 80 8672 13262 39.23 80 7 162246 0.07
pmed8 200 20 70 70 839 14520 3.60 70 79 157 030 0.12
pmed9 200 40 49 50 1108 18074 3.88 49 751 182220 0.44
pmed10 200 67 28 29 11503 25421 27.29 28 2025 199115 0.68

Table 2

Comparison between BP-VNS with the greedy and the random shakers (aNpCP, with a = 2).
Instance n P opt Greedy shaker Random shaker

Best iter,,,, #iter s (S) Best iter,,,, #iter thesr (8)

pmed1 100 5 150 150 0 457 386 0.01 150 0 475687 0.01
pmed2 100 10 121 121 810 430671 0.17 121 674 469980 0.11
pmed3 100 10 121 121 19581 415200 2.85 121 4210 447 565 0.65
pmed4 100 20 97 98 885 478 483 0.16 97 1067 483936 0.18
pmed5 100 33 63 63 100 426113 0.03 63 160 427 687 0.04
pmed6 200 5 99 99 0 150220 0.05 99 0 159187 0.04
pmed7 200 10 80 80 19 161231 0.09 80 7 162246 0.07
pmed8 200 20 70 70 161 142285 0.21 70 79 157030 0.12
pmed9 200 40 49 49 1879 169106 0.72 49 751 182220 0.44
pmed10 200 67 28 28 5757 176 213 1.86 28 2025 199115 0.68

4.1.2. Evaluation of shaker functions

Recall that we designed a random shaker unlike the greedy shaker
function initially proposed by Hansen and Mladenovi¢ (1997) and
Mladenovic et al. (2003). Table 2 shows the tests performed to compare
BP-VNS using the greedy approach and with the random shaker. The
table follows the same structure of Table 1. Note that the results of
the random version are exactly the same as presented in Table 1, as
the results presented earlier are related to our complete BP-VNS, which
uses the random shaker.

Since our shaker procedure is parallelized, the BP-VNS with the
greedy one might be trapped in local optima more often than the
random shaker. Once again, our proposed random shaker performs best
as the greedy shaker procedure cannot find all optimum. Moreover, the
version with the greedy shaker took longer to find the optimum values
in almost all instances, sometimes significantly (2.85 s vs. 0.65 s), as
one can see from the iteration and time in which the best solutions were
found in Table 2. Also, since in the random shaker there is no extra
O(n) computation of the move evaluation algorithm, BP-VNS could run
faster and, therefore, the total number of iterations of the heuristic with
random shaker is slightly larger than ones achieved by the BP-VNS with
greedy shaker. We decided to employ the random shaker based on these
results and its simplicity.

4.1.3. Evaluation of the updated aNpCP objective function

In this section, we evaluate our BP-VNS (Algorithm 1) with and
without the updated aNpCP objective function, described in
Section 3.4.3. Note that this new objective function is used only in the
aNpCP, whereas the features tested in Sections 4.1.1 and 4.1.2 are used
in the BP-VNS applied to both aNpCP and «NpMP.

In Table 3, the results from columns updated OF are the same as
the ones from Tables 1 and 2, as our BP-VNS uses the updated «NpCP
objective function. However, the results from columns regular OF refer
to the BP-VNS version with the regular «NpCP objective function.

As one can note from the results of Table 3, the new objective
function significantly helps BP-VNS achieve better results as the version
with the regular objective function could not obtain optimum values
in instances pmed4, pmed9, and pmed10, and some of these by a large
gap. Also, note that the BP-VNS with the regular objective function took
much longer to find the best solutions since the update objective func-
tion helps BP-VNS move to more promising neighborhoods as it adds
more information to solutions costs. Even if the calculation of the new
objective function adds a step of time complexity O(D,,,,), this time is
clearly offset by the gains in terms of information embedded in the so-
lution algorithm, allowing it to explore more promising neighborhoods
and ultimately find better solutions faster. This development shows a
huge potential for this problem and can help improve convergence and
solution quality in other types of problems as well.
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Table 3
Comparison between BP-VNS with the regular aNpCP objective function and the updated one (a«NpCP, with « = 2).
Instance n P opt Regular OF Updated OF
Best iter,,, #iter s (S) Best iter,,,, #iter [ O]
pmed1 100 5 150 150 0 372730 0.01 150 0 475687 0.01
pmed2 100 10 121 121 524 354236 0.11 121 674 469980 0.11
pmed3 100 10 121 121 5148 419403 0.84 121 4210 447 565 0.65
pmed4 100 20 97 98 2787 370127 0.50 97 1067 483936 0.18
pmed5 100 33 63 63 966 411 485 0.15 63 160 427 687 0.04
pmed6 200 5 99 99 0 123946 0.03 99 0 159187 0.04
pmed7 200 10 80 80 183 139211 0.12 80 7 162246 0.07
pmed8 200 20 70 70 44606 131411 23.36 70 79 157030 0.12
pmed9 200 40 49 51 31908 134805 14.12 49 751 182220 0.44
pmed10 200 67 28 34 4561 191058 1.44 28 2025 199115 0.68
Table 4
aNpCP summary results on OR-library and TSPLIB instances.
Instance set a MIP solver GRASP-SO (Sanchez-Oro et al., 2022) Mousavi (2023) BP-VNS
Best #bks t (s) Best #bks Gap (%) t,,, (s) Best #bks Gap (%) t,,, (s) Best #bks Gap (%) t,,, (s)
1 37.33 40 366.47 - - - - 37.33 40 0.00 0.09 37.33 40 0.00 34.54
OR-lib 2 5495 22 4309.75 - - - - 45.55 38 0.24 3.39 45.55 38 0.30 4.19
3 60.98 18 4977.89 - - - - - - - - 51.10 40 0.00 7.55
1 2153.49 55 2920.51 505.43 11 5.63 653.16 - - - - 481.70 60 0.29 397.43
TSPLIB 2 4515.61 33 4486.92 773.35 5 8.36 990.00 - - - - 732.60 76 0.00 404.96
3 4881.12 27 4687.35 997.18 0 7.46 1147.78 - - - - 945.06 74 0.00 445.66

4.2. Performance evaluation on the aNpCP

In this section, we compare our method with the best-known aNpCP
solution values from the literature. Specifically, for the 40 OR-library
instances with « = {1,2}, we compare the results of our BP-VNS
against the ones from the work of Mousavi (2023). For these instances,
we also tested with « = 3, and compared our results with the ones
obtained by the commercial solver solving model (1a)-(1f). For the
77 TSPLIB instances, we used « = {1,2,3} and compared our results
against the ones of the GRASP-SO heuristic (Sanchez-Oro et al., 2022).
Since we extracted the results of the heuristic of Mousavi (2023) and of
the GRASP-SO from their papers, and to provide a fair computational
comparison, we have approximated their running times by dividing the
reported values by 1.5 and 0.85 (PassMark Software Pty Ltd, 1998),
respectively.

Table 4 summarizes the results of the tests on the OR-library and
TSPLIB instances. This table shows the instance set names and the «
values in the first two columns. Each row of the OR-library instances
set corresponds to the average results of 40 instances, and each row
of the TSPLIB to the average of 77 instances. We present for the MIP
solver and the heuristics the average of the best solutions values (best),
the number of best-known solutions (#bks) found, and the average of
the running times (t (s)). Note that since the stopping criterion of our
BP-VNS is the execution time limit of 30 min, we show for this heuristic
the time when the best solution was found (t,,, (s)). In addition,
we present the average percentage gap (gap (%)) related to the best-
known solutions. The detailed results of these tests are presented in
Appendix A.

Regarding the OR-library instances, MIP solver found optimal so-
lutions in all instances with « = 1, and so did our method and the
heuristic of Mousavi (2023). Considering a = 2, the commercial solver
found 22 best solutions, all proven optimal. From these 22 solutions,
our BP-VNS and the heuristic of Mousavi (2023) obtained 20 optimal
ones. From the two solutions where both heuristics did not achieve
the optima, one is the same instance (pmed24), and the other one is
different for each heuristic (pmed25 for BP-VNS and pmed19 for the
heuristic of Mousavi, 2023). In these cases, the difference to the optimal
solutions was just one unit in all cases, but since the optimal solution
value of pmed25 (15) is less than the pmed19 one (24), the relative
gap of this one unit is greater in the pmed25 case. This is why the
average gap of BP-VNS was slightly larger than the one of the algorithm

of Mousavi (2023). Regarding a = 3, BP-VNS found the best solutions
in all 40 instances, and the commercial solver obtained 18 optimal
solutions. Note that Mousavi (2023) did not test their algorithm with
this configuration.

Considering all results in the OR-library instances with a = 1,2,3,
the BP-VNS presented an average improvement gap of 6.10% compared
with results from the literature and the commercial solver. Also, our
heuristic could find 22 new best-known solutions, where the average
improvement in these cases was 34.26%.

Table 4 shows that our BP-VNS outperformed the MIP solver and
the GRASP-SO on the TSPLIB instances with all « values, dominating
that algorithm. With @ = 1, the commercial solver obtained 55 best
solutions, of which 52 are optimal, the GRASP-SO obtained 11 best
ones, and our heuristic found 60 best solutions out of the 77 instances.
With « = 2 and « = 3, the difference in terms of solution quality
between the proposed BP-VNS and the other two solution methods was
even more pronounced. For a = 2, BP-VNS achieved 76 best solutions
out of the 77 instances, whereas the commercial solver and GRASP-
SO found 33 and 11 best solutions, respectively. Similarly, for « = 3,
BP-VNS excelled by obtaining 74 best solutions, while the commercial
solver achieved 27 best solutions, and the GRASP-SO found none. On
the 231 instances of the TSPLIB set, our heuristic obtained an overall
improvement gap of 2.47% compared with the results of the literature
and the commercial solver. Moreover, the BP-VNS found 115 new
best-known solutions with an average improvement of 5.30%.

Considering computational times, even though our heuristic ran for
up to 30 min in all instances, finding the best solutions in both instances
sets required much less time. In the OR-library, although the heuristic
of Mousavi (2023) is fast, BP-VNS could find the same solutions found
by this heuristic, and our method obtained all optimal solutions with
a =1 in less runtime when compared to the MIP solver. Moreover, our
method outperformed it with « = 2 and « = 3, finding the best solutions
with significantly less execution time. Regarding the tests in the TSPLIB
instances, BP-VNS could find better solutions in, on average, less than
half of the GRASP-SO runtime and in much less execution time than
the MIP solver.

To visualize these performances graphically, we show in Figs. 4 and
5 the box plot containing the distribution of the solution values for all
instances and algorithms described. Fig. 4 shows the results for the OR-
library instances where our algorithm is equivalent to that of Mousavi
(2023) for a = 1 and a = 2, and both are significantly better than the
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aNpCP Pairwise Wilcoxon Test for the OR-library instances (p-values shown; significant difference between the performance of the algorithms if less than 0.05).

a Method Best solution values Gap (%) t(s)
Mousavi (2023) BP-VNS Mousavi (2023) BP-VNS Mousavi (2023) BP-VNS
1 MIP solver 1.00 1.00 1.00 1.00 1.82-10°12 7.14-1077
Mousavi (2023) - 1.00 - 1.00 - 5.83-107%
) MIP solver 1.50 - 1074 1.50- 10~ 9.54-107¢ 9.54.1076 1.82-10°12 1.82-10°12
Mousavi (2023) - 1.00 - 1.00 - 0.05
3 MIP solver - 430-107° - 4.77-1077 - 1.82- 10712
Table 6
aNpCP Pairwise Wilcoxon Test for the TSPLIB instances (p-values shown; significant difference between the performance of the algorithms if
less than 0.05).
a Method Best solution values Gap (%) t (s)
GRASP-SO BP-VNS GRASP-SO BP-VNS GRASP-SO BP-VNS
1 MIP solver 0.12 3.90-1073 0.15 1.71-1073 4.87-10°° 14310710
GRASP-SO - 1.68 - 10712 - 1.68 - 10712 - 5.05-1073
5 MIP solver 6.86 - 1075 1.84-10-8 1.94- 1075 1.34-108 4701071 4.17- 1074
GRASP-SO - 1.69- 10713 - 1.69- 10713 - 243107
3 MIP solver 1.01-1077 5.12-1071° 6.21-1078 7.36- 10710 7.18 - 10714 4.88-1071
GRASP-SO - 5381071 - 2.51- 10714 - 6.44 - 10710
200 those of the BIMM heuristic (Panteli et al., 2021). Following Panteli
N N et al. (2021), instead of using the original number of medians p from
o 150 * * * . " each instance, we used two values of p for every OR-library instance:
=
E} * * * x k% £ p = 10 and p = 20. Moreover, to properly compare the results, we
= e
g ¥ ¥ % only used one value of « for each value of p. More specifically, when
=
2 p = 10 we use @« = 5, and when p = 20 we set « = 10. Then, we solved
% model (2a)-(2e) with a commercial solver and ran our BP-VNS on all
. 80 OR-library instances derived by using the values of p and «a as just
.\/{[}? MZOLL)\’:‘X";i BP-VNS I\T]vl? Vié}‘)‘i%:‘ BP-VNS N{IP BP-VNS descrlbed
' ool ’ w2 =3 Table 7 has a structure similar to the one presented in Section 4.2

Fig. 4. Box plot of the aNpCP solution values of all methods on the OR-library
instances.

MIP solver for « = 2. When « = 3, no results are reported by Mousavi
(2023), and we can see a very large difference between the results of
our method and the ones from the MIP solver. In Fig. 5, we show that
for the TSPLIB instances, the differences are even larger and point to a
better performance of our BP-VNS.

To verify if there is a significant difference between the average
performance of these methods, we computed the Pairwise Wilcoxon
Test, shown in Tables 5 and 6. These tables show the p-values related
to the best solution costs, the gap (%), and the runtimes. A p-value less
than 0.05 allows us to refute the null hypothesis, stating that there is
a significant difference between the mean of the paired observations.

In Table 5, all p-values for the best solution and the gap for a = 1
are greater than 0.05, implying that there is no significant difference
between these results, as the MIP solver, the heuristic of Mousavi
(2023), and our method obtained optimal solutions for all instances.
The same can be concluded for « 2 between the results of the
Mousavi (2023)’s heuristic and the BP-VNS. On the other hand, when
these results are compared with those of the MIP solver, we confirm a
significant difference as both methods outperformed the MIP solver. A
similar conclusion can be drawn from the p-values for a = 3.

Table 6 shows the results of the Pairwise Wilcoxon Test for the
TSPLIB instances. As one can note, there is a statistically significant
difference between the results of our heuristic and the results of the
other methods in all scenarios, as the p-values are all less than 0.05.

4.3. Performance evaluation on the aNpMP

The results of the tests on the aNpMP are presented in this section.
Here, we compare the results of our BP-VNS against the MIP solver and

10

and summarizes the results on the OR-library instances. In Table 7,
each row corresponds to an average of 40 instances, where the first two
columns show the p and « values used. Then, for each pair of p and a,
we present the results for the commercial solver, the BIMM heuristic,
and our BP-VNS. The table shows the average of the best solutions
costs, the number of optimal solutions obtained by each method (#opt),
and the running times in seconds. Again, we approximated the running
times of the BIMM by dividing its reported runtime by 1.2 (PassMark
Software Pty Ltd, 1998) as they were extracted from the work of
Panteli et al. (2021). We also show the gap related to the best-known
solutions, which in this case are the solutions from the solver, since the
commercial solver could prove optimality for all instances. The detailed
results of these tests are presented in Appendix B.

The results indicate that the proposed BP-VNS outperformed the
BIMM heuristic regarding solution quality and computational perfor-
mance in the two sets of 40 instances. Indeed, as the detailed results
of Appendix B show, our heuristic found better solutions than the
ones found by the BIMM in all instances, dominating that algorithm.
Moreover, our method found an optimal solution for all of the 80
instances. On the other hand, the BIMM could not find any optimum,
with a gap of more than 2.5% and an adjusted runtime more than 6.7
times that of our BP-VNS heuristic.

Although our heuristic ran for up to 30 min, the optimal solutions
were obtained in much less time, as noted from the t;,, (s) column. In
fact, all BKS were found in less than 4 s. In addition, the average run
time of BP-VNS for finding the best solutions was much faster than the
ones from the commercial solver required to prove optimality.

Fig. 6 shows the box plot containing the distribution of the solution
values of the methods compared for all OR-library instances. Fig. 6(a)
presents the solutions value of the aNpMP with p = 10 and a« = 5 and
those of p = 20 and a« = 10 are shown in Fig. 6(b). As one can note
from these figures, our algorithm achieved better results than the BIMM
heuristic and obtained the same optimal solutions as those from the MIP
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Table 7
aNpMP summary results on OR-library instances.
P a MIP solver BIMM (Panteli et al., 2021) BP-VNS
Best #opt  t (s) Best #opt  Gap (%) t (s)* Best #opt  Gap (%)  ty (s)
10 5 55807.95 40 138.93 57046.05 0 2.28 1.53 55807.95 40 0.00 0.24
20 10 112785.10 40 172.42 115884.23 0 2.82 3.32 112785.10 40 0.00 0.52
Average 84296.53 40 155.67 86465.14 0 2.55 2.43 84296.53 40 0.00 0.38

a Original running times divided by 1.2, an approximation obtained from PassMark Software Pty Ltd (1998).

Table 8

aNpMP Pairwise Wilcoxon Test for the OR-library instances (p-values shown; significant difference between the performance of the algorithms

if less than 0.05).

p a Method Best solution values Gap (%) t (s)
BIMM BP-VNS BIMM BP-VNS BIMM BP-VNS
10 s MIP solver 1.82- 10712 1.00 3701078 1.00 1.82- 10712 1.82- 10712
BIMM - 1.82-10712 - 3.70- 1078 - 3.76 - 106
2 1o MIP solver 1.82- 10712 1.00 3701078 1.00 3.64-10712 1.82- 10712
BIMM - 1.82-107'2 - 3.70- 1078 - 4.53-107¢
solver in all 80 instances tested. However, the BP-VNS is significantly 5. Conclusions

faster than both methods.

Table 8 shows the results of the Pairwise Wilcoxon Test for the OR-
library instances. There is a statistically significant difference between
the results of our heuristic and those of the BIMM in all scenarios,
as the p-values are all less than 0.05. This corroborates the previous
discussion since our BP-VNS outperformed the BIMM heuristic in all
instances. On the other hand, there is no significant difference between
the solution costs of our method and the ones from the MIP solver,
as both achieved optimal solutions in all 80 instances. However, our
heuristic is significantly faster than the commercial solver.

11

This paper presented an effective Basic Parallel VNS for the aNpCP
and the aNpMP. Using the LIMA methodology, we have developed this
heuristic using straightforward and user-friendly algorithmic compo-
nents and adapting the robust and well-known algorithms of Hansen
and Mladenovi¢ (1997) for the aNpMP, and Mladenovi¢ et al. (2003)
for the aNpCP. Computational results indicate that the aNpC problem
contains many symmetrical solutions, where only one edge determines
the cost of the solution, and all remaining edges appearing in the
solution are not considered. To overcome this problem and to give the
algorithm more information about the whole solution, we have adapted
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Table A.9
aNpCP results for the OR-library instances with « = 1.

Instance n p MIP solver Mousavi (2023) BP-VNS

Best Gap,,, (%) t (s) Best Gap (%) t (s)? Best Gap (%) [ O]
pmedl 100 5 127 0.00 4.93 127 0.00 0.00 127 0.00 0.02
pmed2 100 10 98 0.00 2.86 98 0.00 0.00 98 0.00 0.01
pmed3 100 10 93 0.00 2.85 93 0.00 0.01 93 0.00 0.46
pmed4 100 20 74 0.00 1.48 74 0.00 0.01 74 0.00 0.03
pmed5 100 33 48 0.00 1.15 48 0.00 0.00 48 0.00 0.01
pmed6 200 5 84 0.00 21.16 84 0.00 0.00 84 0.00 0.02
pmed7 200 10 64 0.00 15.46 64 0.00 0.00 64 0.00 0.05
pmed8 200 20 55 0.00 15.32 55 0.00 0.00 55 0.00 0.06
pmed9 200 40 37 0.00 6.09 37 0.00 0.00 37 0.00 0.08
pmed10 200 67 20 0.00 4.61 20 0.00 0.01 20 0.00 0.05
pmed11 300 5 59 0.00 45.49 59 0.00 0.05 59 0.00 0.03
pmed12 300 10 51 0.00 40.68 51 0.00 0.01 51 0.00 0.13
pmed13 300 30 36 0.00 23.83 36 0.00 0.02 36 0.00 0.18
pmed14 300 60 26 0.00 14.35 26 0.00 0.01 26 0.00 0.25
pmed15 300 100 18 0.00 11.17 18 0.00 0.00 18 0.00 0.12
pmed16 400 5 47 0.00 43.29 47 0.00 0.00 47 0.00 0.06
pmed17 400 10 39 0.00 102.43 39 0.00 0.00 39 0.00 0.17
pmed18 400 40 28 0.00 39.54 28 0.00 0.05 28 0.00 1.25
pmed19 400 80 18 0.00 33.28 18 0.00 0.41 18 0.00 109.08
pmed20 400 133 13 0.00 24.82 13 0.00 0.61 13 0.00 1.46
pmed21 500 5 40 0.00 128.51 40 0.00 0.00 40 0.00 0.12
pmed22 500 10 38 0.00 652.15 38 0.00 0.02 38 0.00 0.32
pmed23 500 50 22 0.00 92.78 22 0.00 0.27 22 0.00 43.18
pmed24 500 100 15 0.00 55.61 15 0.00 0.04 15 0.00 0.99
pmed25 500 167 11 0.00 48.95 11 0.00 0.05 11 0.00 0.62
pmed26 600 5 38 0.00 1414.87 38 0.00 0.00 38 0.00 0.17
pmed27 600 10 32 0.00 254.74 32 0.00 0.00 32 0.00 0.33
pmed28 600 60 18 0.00 115.44 18 0.00 0.09 18 0.00 14.64
pmed29 600 120 13 0.00 108.06 13 0.00 0.03 13 0.00 1.71
pmed30 600 200 9 0.00 93.71 9 0.00 0.63 9 0.00 182.49
pmed31 700 5 30 0.00 412.46 30 0.00 0.00 30 0.00 0.23
pmed32 700 10 29 0.00 1468.32 29 0.00 0.01 29 0.00 0.56
pmed33 700 70 15 0.00 321.06 15 0.00 0.53 15 0.00 429.87
pmed34 700 140 11 0.00 104.73 11 0.00 0.01 11 0.00 1.70
pmed35 800 5 30 0.00 882.36 30 0.00 0.01 30 0.00 0.26
pmed36 800 10 27 0.00 1178.22 27 0.00 0.03 27 0.00 0.57
pmed37 800 80 15 0.00 539.59 15 0.00 0.12 15 0.00 24.36
pmed38 900 5 29 0.00 535.79 29 0.00 0.01 29 0.00 0.40
pmed39 900 10 23 0.00 4943.95 23 0.00 0.17 23 0.00 8.95
pmed40 900 90 13 0.00 852.79 13 0.00 0.23 13 0.00 556.55
Average 37.33 0.00 366.47 37.33 0.00 0.09 37.33 0.00 34.54

2 Original running times divided by 1.5, an approximation obtained from PassMark Software Pty Ltd (1998).

Table A.10
aNpCP results for the OR-library instances with « = 2.
Instance n P MIP solver Mousavi (2023) BP-VNS
Best Gap,,, (%) t (s) Best Gap (%) t (s)? Best Gap (%) thesr (8)

pmed1 100 5 150 0.00 36.53 150 0.00 0.01 150 0.00 0.02
pmed2 100 10 121 0.00 38.89 121 0.00 0.13 121 0.00 0.02
pmed3 100 10 121 0.00 116.35 121 0.00 0.17 121 0.00 0.05
pmed4 100 20 97 0.00 58.94 97 0.00 5.46 97 0.00 0.04
pmed5 100 33 63 0.00 27.94 63 0.00 0.01 63 0.00 0.07
pmed6 200 5 99 0.00 2109.87 99 0.00 0.02 99 0.00 0.06
pmed7 200 10 80 0.00 881.87 80 0.00 0.06 80 0.00 0.09
pmed8 200 20 70 0.00 654.04 70 0.00 0.02 70 0.00 0.15
pmed9 200 40 49 0.00 377.52 49 0.00 0.49 49 0.00 0.22
pmed10 200 67 28 0.00 113.37 28 0.00 0.41 28 0.00 0.24
pmed11 300 5 68 0.00 2418.26 68 0.00 0.00 68 0.00 0.11
pmed12 300 10 60 0.00 5043.11 60 0.00 0.18 60 0.00 0.71
pmed13 300 30 43 0.00 2504.04 43 0.00 1.38 43 0.00 0.49
pmed14 300 60 34 0.00 1147.22 34 0.00 0.62 34 0.00 0.52
pmed15 300 100 23 0.00 831.86 23 0.00 4.57 23 0.00 0.44
pmed16 400 5 66 96.97 7312.80 52 0.00 0.16 52 0.00 0.21
pmed17 400 10 45 0.00 3114.33 45 0.00 0.03 45 0.00 0.33
pmed18 400 40 34 0.00 3663.91 34 0.00 11.84 34 0.00 1.58
pmed19 400 80 24 0.00 3743.45 25 4.17 0.11 24 0.00 1.26
pmed20 400 133 19 0.00 642.21 19 0.00 0.83 19 0.00 5.87
pmed21 500 5 61 98.36 7200.10 45 0.00 0.80 45 0.00 32.20

(continued on next page)
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Table A.10 (continued).

pmed22 500 10 59 98.31 7200.12 44 0.00 0.28 44 0.00 0.54
pmed23 500 50 36 88.89 7288.52 27 0.00 7.45 27 0.00 10.92
pmed24 500 100 19 0.00 7075.38 20 5.26 0.36 20 5.26 6.02
pmed25 500 167 15 0.00 2542.68 15 0.00 22.45 16 6.67 2.19
pmed26 600 5 53 98.11 7200.09 43 0.00 0.16 43 0.00 0.48
pmed27 600 10 41 97.56 7200.06 36 0.00 0.06 36 0.00 0.74
pmed28 600 60 50 98.00 7200.08 22 0.00 0.39 22 0.00 20.91
pmed29 600 120 59 98.31 7889.52 17 0.00 0.21 17 0.00 21.03
pmed30 600 200 13 0.00 4693.29 13 0.00 1.93 13 0.00 5.99
pmed31 700 5 44 97.73 7200.17 34 0.00 0.03 34 0.00 0.63
pmed32 700 10 46 97.83 7200.07 33 0.00 0.14 33 0.00 1.04
pmed33 700 70 34 97.06 7200.12 19 0.00 6.85 19 0.00 3.16
pmed34 700 140 75 98.67 7200.08 14 0.00 65.18 14 0.00 23.32
pmed35 800 5 43 97.67 7206.02 34 0.00 0.36 34 0.00 0.59
pmed36 800 10 46 97.83 7207.51 31 0.00 0.17 31 0.00 1.37
pmed37 800 80 68 98.53 7200.07 19 0.00 0.08 19 0.00 7.06
pmed38 900 5 52 98.08 7200.15 33 0.00 0.06 33 0.00 0.90
pmed39 900 10 40 97.50 7249.48 26 0.00 0.12 26 0.00 1.76
pmed40 900 90 50 100.00 7200.10 16 0.00 2.03 16 0.00 14.19
Average 54.95 43.88 4309.75 45.55 0.24 3.39 45.55 0.30 4.19

2 Original running times divided by 1.5, an approximation obtained from PassMark Software Pty Ltd (1998).

Table A.11
aNpCP results for the OR-library instances with « = 3.
Instance n p MIP solver BP-VNS
Best Gap,,, (%) t (s) Best Gap (%) thesr (8)
pmed1 100 5 171 0.00 18.52 171 0.00 0.02
pmed2 100 10 138 0.00 105.23 138 0.00 0.08
pmed3 100 10 142 0.00 200.92 142 0.00 0.03
pmed4 100 20 118 0.00 304.62 118 0.00 0.59
pmed5 100 33 76 0.00 91.17 76 0.00 0.03
pmed6 200 5 110 0.00 1191.89 110 0.00 0.06
pmed7 200 10 87 0.00 1608.21 87 0.00 0.17
pmed8 200 20 75 0.00 1283.11 75 0.00 0.30
pmed9 200 40 55 0.00 955.37 55 0.00 0.92
pmed10 200 67 34 0.00 230.77 34 0.00 0.23
pmed11 300 5 72 0.00 1856.76 72 0.00 0.10
pmed12 300 10 84 96.43 7200.01 66 0.00 0.47
pmed13 300 30 48 0.00 4913.13 48 0.00 0.61
pmed14 300 60 38 0.00 3006.85 38 0.00 48.02
pmed15 300 100 27 0.00 1398.19 27 0.00 5.98
pmed16 400 5 55 0.00 4152.29 55 0.00 0.30
pmed17 400 10 52 82.69 7200.01 48 0.00 0.34
pmed18 400 40 38 0.00 6290.50 38 0.00 2.39
pmed19 400 80 28 0.00 5782.77 28 0.00 11.04
pmed20 400 133 22 0.00 3431.93 22 0.00 5.09
pmed21 500 5 58 96.55 7200.11 50 0.00 0.35
pmed22 500 10 61 98.36 9180.37 47 0.00 0.60
pmed23 500 50 34 70.59 7200.03 31 0.00 1.73
pmed24 500 100 53 98.11 7200.19 23 0.00 14.50
pmed25 500 167 34 97.06 7200.14 18 0.00 33.60
pmed26 600 5 59 96.61 7200.17 48 0.00 0.45
pmed27 600 10 52 98.08 7200.23 38 0.00 0.95
pmed28 600 60 34 97.06 8236.53 24 0.00 23.24
pmed29 600 120 28 96.43 8065.69 19 0.00 40.75
pmed30 600 200 72 98.61 7200.08 16 0.00 75.15
pmed31 700 5 47 100.00 7200.14 37 0.00 1.00
pmed32 700 10 49 97.96 7200.21 35 0.00 2.70
pmed33 700 70 61 100.00 7200.27 22 0.00 5.33
pmed34 700 140 74 98.65 7200.00 17 0.00 2.57
pmed35 800 5 45 97.78 7200.14 36 0.00 0.91
pmed36 800 10 46 97.83 7200.00 33 0.00 1.84
pmed37 800 80 37 100.00 7200.00 21 0.00 11.28
pmed38 900 5 52 98.08 7201.05 35 0.00 1.04
pmed39 900 10 40 97.50 7208.02 28 0.00 1.80
pmed40 900 90 33 96.97 7200.17 18 0.00 5.52
Average 60.98 48.28 4977.89 51.10 0.00 7.55
an evaluation function used in the bandwidth minimization problem, time to the aNpCP context. This updated objective function adds more
another a min-max optimization problem, and applied it for the first information to a «NpCP solution, helping it to differentiate solutions of

13



G.O. Chagas et al. Computers and Operations Research 165 (2024) 106589

Table A.12
aNpCP results for the TSPLIB instances with a = 1.
Instance n p MIP solver GRASP-SO BP-VNS
Best Gap,,, (%) t(s) Best Gap (%) t (s)* Best Gap (%)  ty (s)
10 1203.18 0.00 0.35 1203.18 0.00 2.18 1203.18  0.00 0.11
att4s 48 20 710.72 0.00 0.22 710.77 0.01 0.76 710.72  0.00 0.06
30 462.08 0.00 0.17 462.08 0.00 0.26 462.08  0.00 0.05
40 319.85 0.00 0.31 319.85 0.00 0.07 319.85  0.00 0.04
10 14.14 0.00 9.46 14.32 1.27 30.64 14.14  0.00 0.03
20 10.05 0.00 3.33 10.30 2.49 10.00 10.05  0.00 0.05
30 8.06 0.00 1.59 8.25 2.36 5.59 8.06  0.00 2.83
40 7.21 0.00 1.2 7.28 0.97 3.40 7.21 0.00 0.03
eill01 101 50 6.70 0.00 0.88 7.07 5.52 2.12 6.70  0.00 0.03
60 5.83 0.00 0.87 6.32 8.40 1.27 5.83  0.00 0.42
70 5.00 0.00 0.73 5.00 0.00 0.65 5.00 0.00 0.01
80 4.12 0.00 0.89 4.12 0.00 0.29 412 0.00 0.10
90 3.16 0.00 0.8 3.16 0.00 0.09 3.16  0.00 0.02
100 1.41 0.00 3.98 1.41 0.00 0.06 1.41 0.00 0.01
10 141.53 0.00 34.16 141.53 0.00 97.60 141.53  0.00 0.13
20 94.93 0.00 12.84 97.13 2.32 47.02 94.93  0.00 0.36
30 76.62 0.00 4.05 79.56 3.84 21.19 76.62  0.00 1.24
40 64.45 0.00 3.72 68.23 5.87 14.38 64.45  0.00 1.06
50 54.02 0.00 2.49 60.94 12.81 9.11 54.02  0.00 1.53
60 46.27 0.00 2.65 49.64 7.28 7.40 46.27  0.00 0.15
h150 150 70 42.27 0.00 2.32 46.48 9.96 5.15 42.27  0.00 1.02
80 39.10 0.00 2.51 41.46 6.04 3.86 39.10  0.00 0.06
90 35.39 0.00 2.2 38.38 8.45 2.56 35.39  0.00 0.11
100 32.30 0.00 2.19 33.47 3.62 1.76 3230  0.00 0.05
110 29.44 0.00 2.18 30.18 2.51 1.12 29.44  0.00 0.03
120 26.61 0.00 2.16 27.36 2.82 0.65 26.61 0.00 0.05
130 22.46 0.00 2.19 22.45 0.00 0.31 22.45 0.00 0.04
140 17.58 0.00 2.21 17.58 0.00 0.13 17.58  0.00 0.04
10 1971.83 0.00 369.77 1971.83 0.00 2118.65 1971.83  0.00 4.88
20 1185.59 0.00 130.6 1200.26 1.24 1842.95 1185.59  0.00 5.56
30 883.53 0.00 162.47 886.71 0.36 895.65 883.53  0.00 4.01
40 671.75 0.00 105.13 728.87 8.50 576.47 671.75  0.00 37.08
pr439 439 50 564.03 0.00 71.1 600.00 6.38 346.49 564.03  0.00 10.78
60 500.00 0.00 49.99 548.29 9.66 270.69 500.00  0.00 5.48
70 474.34 0.00 80.87 500.00 5.41 206.22 475.66  0.28 46.27
80 412.31 0.00 64.22 475.66 15.36 183.19 412.31 0.00 61.71
90 395.28 0.00 83.27 416.08 5.26 154.33 395.28  0.00 192.35
10 72.67  45.73 3853.01 73.00 0.45 952.84 72.67  0.00 5.49
20 49.65  51.58 7200.23 50.80 2.90 563.13 49.37  0.00 9.32
30 41.04  24.74 7200.16 41.79 5.64 299.96 39.41  0.00 73.14
40 3342  33.03 7200.06 36.36 8.79 206.32 34.01 1.76 448.37
£at575 575 50 29.43 2.87 4165.68 32.56 10.64 135.53 30.02 2.01 271.12
60 27.00 0.00 4713.32 29.53 9.37 113.64 27.02  0.07 128.25
70 24.76 0.00 2953.35 27.66  11.72 98.71 25.00 0.97 1312.73
80 23.35 0.00 1601 25.50 9.23 83.20 23.35  0.02 1716.61
90 21.93 0.00 472.15 24.19 10.30 67.68 22.09 0.72 167.66
100 20.62 0.00 218.54 22.80  10.60 61.94 20.81  0.94 367.16
10 83.49 0.00 3811.9 85.23 2.08 2117.65 83.49  0.00 2.96
20 329.20 2221 7200.07 59.77 5.14 1486.40 56.85  0.00 86.02
30 63.64  31.71 7200.08 49.04 4.70 896.69 46.32  0.00 1078.38
40 64.38 1.85 7805.94 43.05 6.80 730.84 39.81 0.00 643.47
at783 783 50 44.60 0.00 7805.9 37.95 7.08 546.27 3538 0.00 340.72
60 34.67 0.00 7806.8 34.79 7.88 485.51 32.02  0.00 1568.18
70 30.02 0.00 8433.45 32.20 10.24 403.09 29.07  0.00 398.34
80 26.93 0.00 7200.52 30.08 11.71 354.31 27.31 1.43 1298.62
90 25.94 0.00 7611.35 28.16 8.55 321.51 26.08  0.53 1404.50
100 24.04 0.00 1906.5 27.02 12.39 258.48 24.74 290 21.99
10 3200.00 0.00 7200.11 2610.08 2.75 2117.69 2540.18  0.00 24.30
20 2371.17  88.54 7200.08 1795.13 2.92 2117.66 1726.27  0.00 181.53
30 1403.57  53.10 7200.17 1439.62 4.10 1902.38 1350.93  0.00 774.82
40 1303.84  60.67 7200.07 1253.99 3.60 1517.40 1188.49  0.00 1516.24
pr1002 1002 50 1029.56  47.48 7200.11 1096.59 6.51 1168.76 1029.56  0.00 452.55
60 912.41 38.35 3048.71 999.64 9.56 1160.79 943.40  3.40 1455.12
70 850.00  29.06 4662.32 919.24 8.15 1053.49 851.47 0.17 355.77
80 761.58  16.19 747.44 851.47  11.80 819.44 761.58  0.00 1038.36
90 715.89  22.06 923.9 790.57  10.43 660.44 728.01  1.69 1002.65
100 670.82 0.00 498.86 756.64 12.79 548.54 694.62  3.55 1693.61

(continued on next page)
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10 10288.80 80.45 7200.17 3130.67 1.73 2117.71 3077.30 0.00 82.73

20 19687.52 93.34 7200.24 2088.39 3.29 2117.68 2020.35 0.00 726.64

30 19687.52 94.80 7200.15 1745.76 6.99 2117.67 1631.69 0.00 1316.55

40 17617.35 95.14 7200.13 1451.77 5.38 2117.66 1377.68 0.00 377.41

11323 1323 50 19687.52 96.22 7200.45 1290.32 6.11 2117.66 1206.07 0.00 589.28
60 19687.52 96.61 7200.16 1191.50 9.26 2117.66 1087.53 0.00 1449.15

70 16670.03 96.37 7200.13 1075.86 8.45 2117.67 992.00 0.00 899.69

80 1047.37 45.45 7200.12 987.47 5.717 2103.61 933.59 0.00 1758.99

90 16075.14 96.82 7200.16 926.77 7.09 1686.99 857.76 0.00 1477.00

100 787.10 0.00 6615.58 880.00 11.80 1564.48 803.23 2.05 1708.71

Average 2153.49 17.72 2920.51 505.43 5.63 653.16 481.70 0.29 397.43

2 Original running times divided by 0.85, approximation obtained from PassMark Software Pty Ltd (1998).

Table A.13
aNpCP results for the TSPLIB instances with a = 2.
Instance n p MIP solver GRASP-SO BP-VNS
Best Gap,,, (%)  t(s) Best Gap (%)  t(s)? Best Gap (%) ty, (8)
10 1592.12 0.00 7.25 1592.12 0.00 2.18 1592.12  0.00 0.19
att4s 48 20 1061.69 0.00 6.00 1130.85 6.51 0.76 1061.69 0.00 0.22
30 729.90 0.00 1.21 936.38 28.29 0.26 729.90 0.00 0.09
40 485.06 0.00 1.04 532.08 9.69 0.07 485.06  0.00 0.05
10 21.21 0.00 75.40 21.21 0.00 30.64 21.21 0.00 0.04
20 13.60 0.00 48.22 14.14 3.97 10.00 13.60 0.00 0.05
30 11.05 0.00 13.13 12.00 8.60 5.59 11.05  0.00 0.06
40 9.06 0.00 12.76 9.43 4.08 3.40 9.06 0.00 64.68
. 50 8.06 0.00 16.89 8.60 6.70 2.12 8.06 0.00 0.04
eil101 101
60 7.07 0.00 15.45 8.25  16.69 1.27 7.07  0.00 0.06
70 6.32 0.00 14.15 7.28 15.19 0.65 6.32 0.00 0.12
80 5.10 0.00 13.20 6.32 23.92 0.29 5.10 0.00 0.19
90 4.12 0.00 10.70 5.00  21.36 0.09 412 0.00 0.02
100 2.24 0.00 5.04 2.83 2634 0.06 224 0.00 0.02
10 205.66 0.00 250.77 205.66 0.00 97.60 205.66 0.00 0.32
20 138.69 0.00 218.90 141.53 2.04 47.02 138.69  0.00 0.36
30 108.03 0.00 126.20 112.51 4.15 21.19 108.03 0.00 2.29
40 92.67 0.00 153.66 96.42 4.05 14.38 92.67 0.00 1.95
50 82.11 0.00 145.98 87.69 6.80 9.11 82.11  0.00 1.88
60 70.71 0.00 123.40 78.42  10.90 7.40 70.71  0.00 0.90
ch150 150 70 64.45 0.00 83.45 68.23 5.87 5.15 64.45 0.00 2.09
80 58.37 0.00 83.46 64.56 10.61 3.86 58.37 0.00 0.33
90 51.50 0.00 87.67 62.04  20.46 2.56 51.50  0.00 0.21
100 46.49 0.00 78.23 53.21 14.46 1.76 46.49 0.00 0.11
110 43.77 0.00 71.87 51.65 18.01 1.12 43.77 0.00 0.05
120 39.32 0.00 56.92 50.30  27.92 0.65 3932 0.00 0.06
130 36.02 0.00 56.51 46.63 29.46 0.31 36.02 0.00 0.04
140 29.69 0.00 56.44 42.30 42.47 0.13 29.69 0.00 0.01
10 4939.26 97.92 7200.04 3146.63 0.00 2118.65 3146.63  0.00 6.76
20 2177.44 0.00 6953.47 2226.26 2.24 1842.95 2177.44 0.00 7.05
30 1475.85 0.00 6198.28 1500.21 1.65 895.65 1475.85 0.00 7.92
40 1185.59 3.83 7200.03 1253.99 5.77 576.47 1185.59  0.00 17.65
pr439 439 50 984.89 0.00 3411.00 1068.00 8.44 346.49 984.89 0.00 88.74
60 886.71 14.25 7200.33 975.00 9.96 270.69 886.71 0.00 9.59
70 726.72 0.00 4305.21 905.54  24.61 206.22 726.72  0.00 541.01
80 637.38 0.00 5350.93 731.86  14.82 183.19 638.85  0.23 305.72
90 583.10 0.00 6618.35 715.89 22.77 154.33 583.10 0.00 24.16
10 341.47 99.84 7200.04 116.87 0.66 952.84 116.10  0.00 42.33
20 258.21 91.63 7213.12 74.25 1.71 563.13 72.40 0.00 9.32
30 364.18 99.88 7200.11 60.67 4.15 299.96 57.78 0.00 73.14
40 272.15 99.84 7200.12 51.40 4.81 206.32 49.04  0.00 1419.18
rats75 575 50 390.75 99.90 7200.07 46.52 5.03 135.53 4342 0.00 239.16
60 62.63 99.37 7200.03 41.60 3.97 113.64 39.20 0.00 128.25
70 59.68 99.36 7200.13 37.70 3.71 98.71 35.90 0.00 1312.73
80 60.17 99.38 7201.95 35.90 6.85 83.20 3324 0.00 1563.44
90 53.34 97.38 7213.89 33.60 5.30 67.68 31.38 0.00 1243.46
100 31.83 51.08 7200.03 31.39 7.46 61.94 29.21 0.00 1673.42

the same cost better. This improved objective function is demonstrated
to not interfere with optimality and significantly helped the algorithm’s

convergence.

Despite its simplicity, our heuristic consistently achieves state-of-
the-art solutions in almost all instances, and it could improve most of
the best-known solutions from the literature. Specifically, in the aNpCP,

15

(continued on next page)

the proposed VNS found the greater number of best solutions in both
OR-library and TSPLIB instance sets, obtaining 328 best solutions out of
351 possible ones, including 22 new best solutions on the OR-library
instances and 115 new best solutions on the TSPLIB set. Considering
all these instances, the average gap obtained by our heuristic to the
best-known solutions was 0.1%. Moreover, our VNS required only a
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Table A.13 (continued).

10 544.47 99.91  7200.00 138.60 2.48 2117.65 135.25 0.00 5.69
20 608.55 99.93  7200.00 86.38 2.74  1486.40 83.10 0.00 38.79
30 608.55 99.94  7200.00 70.84 498  896.69 67.12 0.00 304.9
40 608.55 99.94  7200.00 60.14 5.84  730.84 56.61 0.00 1044.09
at783 783 50 628.41 99.94  8230.08 52.80 229  546.27 51.62 0.00 358.91
60 628.41 99.94  7200.00 48.75 5.25 48551 45.62 0.00 1005.78
70 628.41 99.95  7200.00 44.41 3.96  403.09 42.45 0.00 398.34
80 628.41 99.95  7200.00 42.43 4.77  354.31 39.62 0.00 642.17
90 74.09 100.00  7200.00 39.21 4.45 32151 36.69 0.00 1317.58
100 628.41 99.95  7200.00 37.48 576 258.48 34.71 0.00 21.99
10 15502.02 99.93  7359.66 3853.89 0.00 2117.69 3853.89 0.00 23.59
20 14 586.38 99.94  7200.00 2710.17 4.30 2117.66 2598.56 0.00 222.93
30 14297.73 99.91  7200.00 2150.58 432 1902.38 2057.30 0.00 313.41
40 14297.73 99.91  7200.00 1811.77 3.87 1517.40 1735.66 0.00 1483.48
pr1002 1002 50 14297.73 99.92  7200.00 1619.41 5.81 1168.76 1523.15 0.00 534.53
60 17479.42 99.95  7200.00 1431.78 4.28 1160.79 1353.70 0.00 1640.22
70 17479.42 99.95  7200.00 1346.29 5.05 1053.49 1258.97 0.00 430.92
80 17479.42 99.95  7200.00 1253.00 424 819.44 1167.26 0.00 995.9
90 17479.42 99.95  7200.00 1170.48 6.74  660.44 1077.03 0.00 1002.65
100 17479.42 99.95  7200.00 1079.35 4.84 54854 1012.42 0.00 968.85
10 14958.28 100.00  7200.23 4694.15 3.08 2117.71 4554.09 0.00 53.76
20 13332.43 99.93  7200.15 3227.00 5.65 2117.68 3036.90 0.00 493.29
30 14417.03 99.94  7200.16 2563.30 4.62  2117.67 2409.27 0.00 1382.01
40 13071.26 100.00  7200.25 2166.96 7.16  2117.66 2022.15 0.00 402.93
11323 1323 50 14417.53 100.00  7200.80 1907.69 5.48 2117.66 1808.50 0.00 790.25
60 12274.84 99.94  7200.14 1735.40 3.95 2117.66 1646.13 0.00 992.43
70 19687.52 99.96  7200.20 1595.20 6.85 2117.67 1493.00 0.00 1625.93
80 19687.52 99.97  7200.15 1440.89 4.82  2103.61 1374.60 0.00 1574.6
90 19687.52 99.97  7200.18 1374.72 6.23  1686.99 1294.08 0.00 923.85
100 19687.52 99.97  7200.15 1293.63 7.50 1564.48 1203.33 0.00 1398.54
Average 4515.61 52.63  4486.92 773.35 8.36  990.00 732.60 0.00 404.96

a QOriginal running times divided by 0.85, approximation obtained from PassMark Software Pty Ltd (1998).

Table A.14
aNpCP results for the TSPLIB instances with a = 3.
Instance n p MIP solver GRASP-SO BP-VNS
Best Gap,,, (%) t (s) Best Gap (%) t (s)? Best Gap (%) s (S)
10 2081.57 0.00 8.86 2186.31 5.03 7.91 2081.57 0.00 0.24
attas 48 20 1283.35 0.00 5.70 137448  7.10 1.89 1283.35  0.00 0.12
30 949.29 0.00 1.35 1011.66  6.57 0.64 949.29  0.00 0.09
40 645.88 0.00 1.18 675.00 4.51 0.09 645.88 0.00 0.05
10 29.43 0.00 88.35 29.43  0.01 108.75 29.43  0.00 0.07
20 17.80 0.00 134.25 18.03 1.29 51.45 17.80  0.00 0.18
30 13.15 0.00 145.80 14.14 7.50 22.79 13.15 0.00 0.10
40 11.18 0.00 39.37 1204 7.69 11.42 11.18  0.00 0.09
. 50 9.43 0.00 14.69 10.63  12.73 5.58 9.43  0.00 0.17
eill01 101
60 8.06 0.00 16.10 9.06 12.41 2.61 8.06  0.00 0.51
70 7.28 0.00 18.92 8.54 17.31 1.25 7.28 0.00 0.03
80 6.40 0.00 17.31 7.28 1375 0.52 6.40  0.00 0.02
90 5.00 0.00 16.98 6.08  21.60 0.13 5.00 0.00 0.02
100 2.83 0.00 4.11 2.83 0.06 0.06 2.83 0.00 0.02
10 297.96 0.00 386.40 298.56  0.20 468.27 297.96  0.00 0.20
20 176.47 0.00 913.48 179.71 1.84 177.58 176.48  0.01 2.55
30 137.46 0.00 1332.72 146.41 6.51 91.86 137.46  0.00 6.52
40 114.47 0.00 904.84 11922 4.15 61.29 114.48  0.01 107.55
50 100.34 0.00 1556.91 108.03  7.67 31.41 100.34  0.00 60.70
60 90.58 0.00 604.79 97.46 7.60 20.92 90.58 0.00 71.95
h150 150 T 83.19 0.00 192.81 92.82  11.58 15.41 83.19  0.00 65.70
80 74.93 0.01 159.37 83.38  11.28 9.81 7494 0.02 247.78
90 67.73 0.00 97.76 79.81 17.84 5.59 67.73 0.00 0.72
100 63.42 0.00 91.36 69.35  9.35 3.80 63.42  0.00 2.33
110 59.04 0.00 87.13 67.22  13.86 2.18 59.04  0.00 0.04
120 52.97 0.00 77.66 61.29 1571 1.12 52.97  0.00 0.11
130 44.46 0.00 59.64 57.50  29.34 0.48 44.46  0.00 0.05
140 38.56 0.00 54.57 5220  35.37 0.19 38.56  0.00 0.03
(continued on next page)
fraction of a second or, at most, a few seconds to find these solutions. A BIMM heuristic in all instances. Again, the computational performance

of the VNS was remarkable.

Our VNS algorithm’s performance across various « values in solving
many instances and its simplicity and user-friendliness make it an effi-
isons against the literature demonstrate that our VNS outperformed the cient choice for tackling the «NpCP and «NpMP optimization problems.

similar performance could be seen in the aNpMP tests. In this case, our

heuristic could find the optimal solutions in all 80 instances. Compar-
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10 7385.88 99.55 7200.09 4076.23 0.64 2118.20 4050.31 0.00 8.58

20 2725.46 77.44 7200.09 2726.03 1.59 2117.75 2683.28 0.00 182.96

30 4907.27 99.47 7200.02 2231.73 8.05 2118.21 2065.49 0.00 34.29

40 1637.83 73.66 7200.08 1644.88 2.75 2118.14 1600.78 0.00 19.62

pr439 439 50 3692.98 99.01 7635.19 1467.35 8.69 2117.71 1350.00 0.00 347.90
60 1844.76 92.24 7200.02 1340.01 14.98 2117.68 1150.27 0.00 213.16

70 1886.80 77.51 7200.02 1231.11 22.16 1548.82 1005.61 0.00 101.09

80 1631.91 91.19 7200.02 1217.58 33.00 1124.40 915.49 0.00 182.67

90 1566.25 91.81 7236.37 986.47 23.31 851.04 800.00 0.00 105.72

10 462.77 99.82 7233.33 140.52 1.20 2117.66 138.85 0.00 4.29

20 212.36 99.65 7296.31 94.64 0.29 2117.65 93.43 0.00 809.05

30 139.90 99.52 7200.03 74.52 2.86 1295.68 72.09 0.00 523.44

40 530.55 99.88 75217.81 64.88 2.97 1118.25 62.61 0.00 1596.92

1at575 575 50 411.02 99.85 7200.11 56.94 5.06 843.99 54.08 0.00 527.62
60 396.13 99.85 7206.62 51.35 4.97 700.12 48.92 0.00 512.56

70 400.70 99.86 7200.03 47.85 4.29 581.38 45.61 0.00 103.79

80 417.90 99.87 7200.03 44.29 5.75 527.33 41.77 0.00 876.34

90 62.30 99.12 7200.03 41.11 4.87 375.45 39.12 0.00 1569.39

100 61.91 99.14 7200.03 38.63 5.06 291.72 36.62 0.00 1595.54

10 550.718 99.87 7210.81 166.23 1.56 2117.71 163.68 0.00 5.01

20 548.352 99.88 7200.00 112.70 2.79 2117.68 109.57 0.00 967.73

30 608.547 99.90 7200.00 88.57 4.69 2117.66 83.55 0.00 1151.44

40 608.547 99.91 7200.00 76.03 3.99 2117.66 72.45 0.00 1408.33

at783 783 50 608.547 99.91 7200.00 66.10 4.00 2117.65 63.53 0.00 461.70
60 628.405 100.00 7200.00 60.02 3.54 1903.00 56.72 0.00 1558.57

70 628.405 99.92 7200.00 55.44 3.88 1931.82 53.16 0.00 265.23

80 628.405 99.92 7200.00 51.66 4.05 1670.87 49.58 0.00 223.17

90 628.405 99.92 7200.00 48.47 5.14 1425.35 45.88 0.00 1175.57

100 628.405 99.92 7200.00 45.88 4.15 1199.53 43.42 0.00 496.48

10 15250.25 99.89 7296.08 5331.28 2.48 2117.76 5202.16 0.00 94.97

20 14205.02 99.90 7418.43 3290.14 3.77 2117.69 3170.57 0.00 36.92

30 13217.13 99.96 7200.00 2644.33 0.94 2117.68 2598.56 0.00 272.51

40 14297.73 99.91 7200.00 2304.89 4.52 2117.68 2191.46 0.00 1244.29

pr1002 1002 50 14297.73 99.91 7200.08 2013.08 4.80 2117.67 1920.94 0.00 1582.57
60 17 479.42 99.95 7200.00 1838.48 5.10 2117.68 1749.29 0.00 372.35

70 17 479.42 99.95 7200.00 1710.26 5.86 2117.67 1607.02 0.00 610.14

80 17 479.42 99.93 7200.08 1518.22 3.72 2117.66 1460.31 0.00 484.96

90 17 479.42 99.95 7200.00 1442.22 5.68 2117.66 1360.15 0.00 1327.29

100 17 479.42 99.95 7200.00 1353.70 3.82 2117.65 1274.75 0.00 1121.09

10 17 207.72 0.00 7026.47 6313.82 1.35 2117.92 6229.60 0.00 56.51

20 13688.24 100.00 7200.31 4032.83 4.87 2117.75 3845.66 0.00 348.67

30 15039.71 99.92 7200.22 3204.16 4.04 2117.73 3054.32 0.00 1456.46

40 16174.19 100.00 7200.21 2774.72 6.25 2117.72 2575.08 0.00 1595.55

11323 1323 50 17106.54 99.93 7200.14 2430.27 8.43 2117.69 2241.23 0.00 1062.41
60 12963.25 100.00 7200.21 2149.14 5.43 2117.69 2030.78 0.00 1285.23

70 20521.99 99.95 7200.16 1997.22 5.71 2117.69 1873.54 0.00 219.66

80 20521.99 99.95 7200.16 1842.10 5.53 2117.68 1744.86 0.00 1600.25

90 20521.99 99.95 7200.17 1745.58 6.55 2117.67 1637.63 0.00 1488.66

100 20521.99 99.95 7203.75 1620.92 5.02 2117.66 1533.75 0.00 458.90

Average 4881.12 60.99 4687.35 997.18 7.46 1147.78 945.06 0.00 445.66

a QOriginal running times divided by 0.85, approximation obtained from PassMark Software Pty Ltd (1998).

The updated aNpCP objective function has shown to be a practical
approach to help the heuristic escape from local optima, showing
promising applications in other optimization problems where there are
many solution symmetries, such as in other min-max problems.

For future works, one can apply this BP-VNS heuristic, for example,
to the capacitated extensions of the aNpCP and aNpMP. Moreover, we
expect the improved objective function to show promising results in
other problems, given that it increases the amount of information used
by the algorithm without much computational burden.
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Table B.15
aNpMP results with p=10 and « = 5.
Instance n MIP solver BIMM BP-VNS
Best Gap,,, (%) t (s) Best Gap (%) t (s)? Best Gap (%) [ O]

pmed1 100 40592 0.00 0.41 41462 2.14 0.09 40592 0.00 0.01
pmed2 100 39421 0.00 0.40 40134 1.81 0.04 39421 0.00 0.02
pmed3 100 43345 0.00 0.56 44000 1.51 0.10 43345 0.00 0.01
pmed4 100 46 854 0.00 0.58 51351 9.60 0.14 46 854 0.00 0.01
pmed5 100 34167 0.00 0.42 35054 2.60 0.11 34167 0.00 0.01
pmed6 200 50759 0.00 3.59 52734 3.89 0.25 50759 0.00 0.04
pmed7 200 44978 0.00 2.86 46 621 3.65 0.40 44978 0.00 0.09
pmed8 200 49837 0.00 2.88 51064 2.46 0.44 49837 0.00 0.04
pmed9 200 47636 0.00 3.14 48638 2.10 0.05 47636 0.00 0.13
pmed10 200 36 864 0.00 3.38 37968 2.99 0.61 36 864 0.00 0.09
pmed11 300 46 297 0.00 19.16 47 657 2.94 0.08 46 297 0.00 1.05
pmed12 300 53082 0.00 18.10 54997 3.61 0.66 53082 0.00 0.87
pmed13 300 48257 0.00 18.78 49012 1.56 0.56 48 257 0.00 0.08
pmed14 300 55342 0.00 20.43 56 304 1.74 0.59 55342 0.00 0.14
pmed15 300 47 426 0.00 17.12 47581 0.33 0.04 47 426 0.00 0.08
pmed16 400 49941 0.00 47.65 51171 2.46 0.38 49941 0.00 0.14
pmed17 400 53403 0.00 49.11 55475 3.88 0.35 53403 0.00 0.20
pmed18 400 59089 0.00 50.53 59734 1.09 0.45 59089 0.00 0.18
pmed19 400 56234 0.00 49.40 57270 1.84 0.13 56234 0.00 0.42
pmed20 400 58389 0.00 49.58 59239 1.46 2.95 58389 0.00 0.16
pmed21 500 56 961 0.00 93.45 57735 1.36 0.09 56 961 0.00 0.04
pmed22 500 62650 0.00 135.57 64217 2.50 1.02 62650 0.00 0.01
pmed23 500 60660 0.00 107.13 62488 3.01 0.21 60660 0.00 0.01
pmed24 500 60210 0.00 105.11 61725 2.52 0.68 60210 0.00 0.16
pmed25 500 54793 0.00 90.52 56 284 2.72 0.46 54793 0.00 0.03
pmed26 600 59347 0.00 154.40 59955 1.02 17.75 59347 0.00 0.35
pmed27 600 57705 0.00 143.48 58046 0.59 1.72 57705 0.00 0.03
pmed28 600 58252 0.00 195.00 59076 1.41 1.05 58252 0.00 0.04
pmed29 600 60745 0.00 160.02 61661 1.51 0.65 60745 0.00 0.13
pmed30 600 65738 0.00 177.32 66 300 0.85 0.60 65738 0.00 0.06
pmed31 700 61463 0.00 244.27 62571 1.80 7.03 61463 0.00 0.48
pmed32 700 67073 0.00 290.61 68186 1.66 1.33 67073 0.00 0.73
pmed33 700 66 024 0.00 239.31 67924 2.88 2.21 66024 0.00 0.05
pmed34 700 63475 0.00 218.37 64 656 1.86 0.89 63475 0.00 0.11
pmed35 800 62408 0.00 432.30 62937 0.85 5.14 62408 0.00 0.19
pmed36 800 70805 0.00 409.19 72878 2.93 1.30 70805 0.00 0.62
pmed37 800 74125 0.00 381.64 74661 0.72 2.04 74125 0.00 0.19
pmed38 900 66456 0.00 704.86 68235 2.68 6.41 66456 0.00 1.81
pmed39 900 66129 0.00 456.37 66 604 0.72 2.13 66129 0.00 0.69
pmed40 900 75386 0.00 460.13 78237 3.78 0.25 75386 0.00 0.22
Average 55807.95 0.00 138.93 57 046.05 2.28 1.53 55807.95 0.00 0.24

a Qriginal running times divided by 1.2, approximation obtained from PassMark Software Pty Ltd (1998).

Table B.16

aNpMP results with p =20 and a = 10.
Instance n MIP solver BIMM BP-VNS

Best Gap,,, (%) t(s) Best Gap (%) t (s)? Best Gap (%) [ O]

pmedl 100 84027 0.00 0.39 88745 5.61 0.23 84027 0.00 0.04
pmed2 100 80660 0.00 0.54 83021 2.93 0.38 80660 0.00 0.01
pmed3 100 88180 0.00 0.36 91 166 3.39 0.23 88180 0.00 0.05
pmed4 100 95441 0.00 0.67 104680 9.68 0.42 95441 0.00 0.11
pmed5 100 70836 0.00 0.29 72192 1.91 0.30 70836 0.00 0.04
pmed6 200 102341 0.00 3.24 105089 2.69 1.93 102341 0.00 0.22
pmed7 200 91465 0.00 2.68 95486 4.40 0.99 91465 0.00 0.22
pmed8 200 101003 0.00 2.61 103998 2.97 0.60 101003 0.00 0.11
pmed9 200 96365 0.00 3.10 99371 3.12 0.20 96365 0.00 0.16
pmed10 200 74770 0.00 4.18 77136 3.16 0.40 74770 0.00 1.32
pmed11 300 93903 0.00 13.30 94851 1.01 1.40 93903 0.00 0.21
pmed12 300 106 863 0.00 19.81 111812 4.63 2.13 106 863 0.00 0.29

computing facilities. We also thank the editors and two anonymous
referees for their valuable suggestions on an earlier version of this

paper.

Appendix A. Results for the aNpCP

This appendix shows the detailed results for the aNpCP. Tables A.9,
A.10 and A.11 and Tables A.12, A.13 and A.14 show the results of the

(continued on next page)

tests in the OR-library instances and the TSPLIB instances, respectively.
For the tests with the OR-library instances, we present the results of
the commercial solver and our heuristic for « = {1,2,3} and the ones
of the heuristic of Mousavi (2023) for a = {1,2}. For the tests with the
TSPLIB instances, we show results of the commercial solver, the GRASP-
SO heuristic (Sanchez-Oro et al., 2022) and our VNS for « = {1,2,3}.
Tables A.9-A.14 have the same structure where the instance name, the
number of vertices, and the number of facilities are presented in the
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Table B.16 (continued).
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pmed13 300 97837 0.00 14.21 99802 2.01 0.29 97837 0.00 0.31
pmed14 300 111488 0.00 19.85 113774 2.05 1.48 111488 0.00 3.47
pmed15 300 96 190 0.00 19.53 98231 2.12 0.93 96 190 0.00 0.34
pmed16 400 101027 0.00 47.73 103530 2.48 3.29 101027 0.00 0.40
pmedl17 400 107 608 0.00 70.44 111679 3.78 0.92 107 608 0.00 2.70
pmed18 400 119282 0.00 51.68 121202 1.61 0.79 119282 0.00 0.36
pmed19 400 113107 0.00 50.92 115688 2.28 2.53 113107 0.00 1.33
pmed20 400 118523 0.00 44.04 121468 2.48 0.36 118523 0.00 0.37
pmed21 500 114895 0.00 87.38 116754 1.62 0.89 114 895 0.00 0.00
pmed22 500 125994 0.00 149.91 132925 5.50 0.71 125994 0.00 0.11
pmed23 500 122437 0.00 100.05 127093 3.80 0.34 122437 0.00 0.15
pmed24 500 121462 0.00 127.16 124517 2.52 0.15 121462 0.00 0.03
pmed25 500 111435 0.00 83.16 114231 2.51 5.67 111435 0.00 0.07
pmed26 600 119392 0.00 172.47 121537 1.80 6.65 119392 0.00 0.07
pmed27 600 116498 0.00 135.63 117508 0.87 4.51 116498 0.00 0.08
pmed28 600 117933 0.00 136.07 120718 2.36 2.20 117933 0.00 0.33
pmed29 600 122339 0.00 150.88 125649 2.71 0.99 122339 0.00 0.17
pmed30 600 133069 0.00 139.75 133935 0.65 3.13 133069 0.00 0.26
pmed31 700 123848 0.00 240.92 129303 4.40 21.73 123848 0.00 0.18
pmed32 700 134470 0.00 569.17 137108 1.96 1.81 134470 0.00 1.12
pmed33 700 132822 0.00 228.99 136182 2.53 13.63 132822 0.00 0.40
pmed34 700 127779 0.00 240.73 130290 1.97 0.74 127779 0.00 0.19
pmed35 800 125727 0.00 427.53 127188 1.16 10.57 125727 0.00 0.41
pmed36 800 142084 0.00 693.30 149330 5.10 2.24 142084 0.00 0.39
pmed37 800 149976 0.00 265.97 152607 1.75 1.95 149976 0.00 0.53
pmed38 900 133369 0.00 1091.66 135485 1.59 13.59 133369 0.00 0.76
pmed39 900 133246 0.00 831.62 136345 2.33 0.78 133246 0.00 1.30
pmed40 900 151713 0.00 654.96 153743 1.34 20.68 151713 0.00 2.04
Average 112785.10 0.00 172.42 115884.23 2.82 3.32 112785.10 0.00 0.52

2 QOriginal running times divided by 1.2, approximation obtained from PassMark Software Pty Ltd (1998).

first three columns. Then, for the MIP solver results, we show the best
solution found, the optimality gap (gap,,, (%)), that is, the gap related
to the branch-and-bound lower bound and the running time. For the
heuristics, we also show the best solution found and the running times,
but we show the gap related to the best known solution.

Appendix B. Results for the aNpMP

This appendix shows the detailed results for the aNpMP. Tables B.15
and B.16 show the results of the MIP solver, the BIMM and the VNS
heuristic for the OR-library instances with p = 10 and « = 5 and
p =20 and a = 10, respectively. The results of the BIMM shown here
were obtained from Panteli et al. (2021). These tables follow the same
structure as the ones presented in Appendix A.
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