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ARTICLE INFO ABSTRACT

Keywords: Two integer programming problems are introduced and formulated in this paper, both based on the concepts
Close enough of close enough and facility location. Location problems using the notion of close enough allow customers to
Facility location pick up their demand at pickup points different from the facilities but that are still not too far from the latter.

Column generation Given a discrete set of customers, a discrete set of potential facility locations, and a maximum distance

that each customer is willing to travel free of charge to pick up their order, the Close Enough Facility Location
Problem consists in determining which facilities to open among the candidates, on which points on the plane
to install pickup points, and how to assign customers to both facilities and pickup points, in an optimal way
taking into account different costs. In this work we propose two generalizations of this problem. The first is to
consider that the pickup points have capacities. The second is to consider that the communications network
is restricted to a graph, and that therefore the pickup points cannot be installed on any point on the plane
but only on the network. These problems are named the Capacitated Close-Enough Facility Location Problem
and the Network Capacitated Close-Enough Facility Location Problem, respectively. We propose a column
generation algorithm for the two introduced problems that allows us to obtain better results for large-scale

problems than the CPLEX solver.

1. Introduction and literature review

Location problems have a very important relevance in numerous
contemporary scenarios. Logistics companies and businesses requiring
the establishment of facilities or pickup points often need to devise
optimization models. The main goal of these models is to obtain an op-
timal solution that determines both the ideal facility locations and the
customers they serve. The p-median problem is one of the most studied
problems in discrete optimization, since it was introduced by Hakimi
(1964). Years later, the capacitated p-median problem (CPMP) was
introduced and shown to be an NP-hard problem (see Hartmanis,
1982).

In the last decade, consumer behavior has undergone significant
changes. For instance, many consumers now prefer picking up their
orders at a convenient pickup point near their home or workplace,
rather than providing their address and waiting for an alert about the
delivery time. Large distribution companies are increasingly adopting
this approach, utilizing service or collection points in proximity to the
customer. An example of this trend is the self-service points (lockers)
that Amazon is installing in all the cities.

The close enough concept used in facility location or routing prob-
lems allows for the relocation of customers. A plant is close enough to
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a customer if there is an intermediate point between the plant and the
customer to which the customer is willing to travel to be served at no
additional cost. In this case, the location problem consists of deciding
where to install the plants so that all customers have a close enough
plant. A vehicle is close enough to a customer when they are willing
to move to the vehicle route to obtain the vehicle service. Thus, the
problem consists of designing routes so that all customers have a close
enough route.

Some papers about routing problems that use close enough condi-
tions are Gulczynski et al. (2006), Corberan et al. (2019), Corberan
et al. (2021), Hernandez-Pérez et al. (2021), Bianchessi et al. (2022a,b),
Di Placido et al. (2023) and Reula and Marti (2023). In Gulczynski
et al. (2006) and Di Placido et al. (2023) the problem studied is the
traveling salesman problem and heuristic approaches are proposed. The
close enough traveling salesman problem is a generalization of the
traveling salesman problem that requires a salesman to just go close
enough to each customer instead of visiting the exact location of each
customer. Over the 17 years between the publication of these two works
on the close enough traveling salesman problem, more than a dozen
works have been published on it. In Corberan et al. (2019), Corberan
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et al. (2021), Bianchessi et al. (2022a,b) and Reula and Marti (2023)
the problem studied is the arc routing problem. The close enough arc
routing problem models the situation in which customers are not neces-
sarily nodes of a network and the vehicles must traverse the edges that
are close enough to the customers. Corberan et al. (2019) introduce the
problem and study optimal solutions, whereas the other listed papers on
the close enough arc routing problem introduce other generalizations
as the profitable or the distance-constrained close enough arc routing
problem. In Herndndez-Pérez et al. (2021) the problem studied is the
pickup and delivery problem and the authors do not explicitly say that
the reallocation of customers is due to a close enough condition: they
assume that customers are paid for moving to the vehicle route.

Three papers about location problems that include close enough
conditions are Landete and Laporte (2019), Corberan et al. (2020)
and Moya-Martinez et al. (2021). In the first paper, customers can
collect their demand from some cooperative customers which act as
intermediate points, whereas in the last paper customers can do it
from some general pickup points. In the first paper, the number of
cooperative customers is a finite set while in the latter the number of
all potential candidate pickup points is an infinite set.

In this paper we assume that there is a finite set of potential plant
locations and a finite set of customers who are willing to travel to any
point within a radius to pick up their orders at no additional cost.
We assume that a pickup point may have a capacity that limits the
number of customers allocated to it and we consider two cases: the
pickup points can be installed anywhere on a plane or on a graph.
The problem is to determine where to install the plants and the pickup
points among the potential sets such that all the customers are served,
capacities are not exceeded, and the total cost is minimized. The pickup
points offer an opportunity to reduce transportation costs, as customers
are willing to retrieve goods from a location that is sufficiently close
to the facility that they would have to go to by default. This paper
builds on Moya-Martinez et al. (2021), where the close enough fa-
cility location problem was introduced. The same basic problem is
addressed with two added difficulties: (i) capacities are added to the
pickup points, i.e., the number of customers that can move to a certain
pickup point is restricted, and (ii) pickup points are restricted to be
on a graph, i.e., it is analyzed how the space of feasible solutions
changes when the problem is solved on a graph. The new problems
are named the Capacitated Close-Enough Facility Location Problem
(CCEFLP) and the Network Capacitated Close-Enough Facility Location
Problem (NCCEFLP), respectively.

The application we mentioned before of the decision on the location
of lockers as pickup points fits the description of the problem. It is sen-
sible to assume that the budget manager knows the number of lockers
he can afford to install and that a more detailed budget restriction is
unnecessary. It also fits the fact that the distance traveled by customers
to reach the locker is different in each case, although the price of these
rides is the responsibility of the customers and is not in the manager’s
objective function. It is also appropriate to assign a capacity to each
locker. Another application of the problem related to communications
rather than to transportation is the wifi router location for internet
accessibility. The wifi network and the network cable connection are
the two main options to connect to the network on computers and
laptops. Computers (customers) can be directly served by the cable
connection (facility) or a wifi router (pickup point). It usually happens
that the cable service is better than the router service in terms of
download/upload speed, which means that the number of devices that
can connect to a router is limited. The acceptable distance between
customers and pickup points depends on the quality of the router. In
the event that all the routers installed are of the same quality, we will
assume the best, the system manager must decide where to locate the
number of routers that the budget allows.

The main contributions of this work are summarized as follows:
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i. Two different extensions of the close enough facility location
problem are introduced, namely, the Capacitated Close-Enough
Facility Location Problem and the Network Capacitated Close-
Enough Facility Location Problem.

ii. An efficient algorithm for discretizing the candidate pickup
points set on a graph is proposed.

iii. A column generation algorithm for solving both the CCEFLP and
the NCCEFLP is detailed.

iv. Extensive computational experiments are conducted. Instances
with a number of nodes ranging from 30 to 100 are solved and
the results are discussed.

The remainder of the paper is organized as follows. Section 2 intro-
duces the CCEFLP and proposes a mathematical programming integer
linear formulation. Section 3 studies the location problem on a graph.
Section 4 proposes a column generation algorithm for both CCEFLP and
NCCEFLP. Finally, Section 5 provides a comprehensive computational
study that reports the performance of our column generation algorithm
both for the CCEFLP on the plane and the CCEFLP on a graph (NCCE-
FLP). We conclude with the findings and conclusions of this work in
Section 6.

2. The capacitated close-enough facility location problem

The Close Enough Facility Location Problem (CEFLP) seeks to min-
imize the distance between plants and customers or pickup points,
as detailed in Moya-Martinez et al. (2021). It is assumed that the
customers bear the costs between them and pickup points and therefore
do not have to be taken into account in the planning of the distribution
network manager. Precisely, the radius associated with each customer
establishes the limit of how far he can travel at no cost to the network
manager. In this work, we will address the case in which pickup points
are constrained by a capacity that cannot be exceeded. This capacity
restricts the number of customers that can be assigned to a pickup
point. Particularly, the problem here considered involves locating p
facilities, determining the location of ¢ pickup points, assigning all
customers to open facilities or open pickup points, and finally assigning
open pickup points to open facilities.

Set J is the set of potential facilities and set I is the set of customers.
For all i € I, h; is the demand of customer i and R; is the maximum
distance that customer i is willing to travel for picking up their demand.
If R, is the same for all the customers, then we simply represent it as R.
As proved in Moya-Martinez et al. (2021), the set of potential pickup
points in the CEFLP can be reduced to a finite discrete set. Set K is the
finite discrete set of these potential pickup points. When the pickup
points can be placed anywhere in the plane, then K is the union of
circumference intersections and segment-circumference intersections.
In other words, if C; is the set of points in the circumference with center
in customer i and radius R; for all i € I and S;; is the set of points in
the segment joining customer ; with facility j, for all i € I,j € J,
then K = (Uie“ej(ci n S,-j)> U (Ui iper G, nC,-ZQ. When the pickup
points must be located on a graph, K is still the finite discrete set of
potential pickup points but it is obtained with the algorithm described
in Section 3.

Parameter d,, represents the distance between points 7 and f (cus-
tomers/facilities / pickup points). For each i € I, K; is the subset of
elements of K that are close enough to i, i.e., K; = {k € K : d;;, < R;}.
For the capacitated extension, we consider that there is a capacity N,
for each k € K. This value is the maximum number of customers that
can be allocated to the pickup point .

In the literature there are two known mixed integer linear models
for the non-capacitated CEFLP, a two-index formulation and a three-
index formulation. In Moya-Martinez et al. (2021) it is shown that a
branch-and-price algorithm for the three-index formulation is the best
way of solving the CEFLP. In the capacitated CEFLP that we introduce
in this paper we keep the same notation as in the three index model



A. Moya-Martinez et al.

for the CEFLP and we add the capacity constraint. In particular, we
consider three families of binary variables. For each j € J, y; takes
value 1 if and only if facility j is open. For each k € K, v, takes
value 1 if and only if a pickup point is open at location k. For each
i€l ,keK,jeJ, variable w;; takes value 1 if and only if customer i
goes to pickup point k that in turn is allocated to facility j: w;; = 1
represents that customer i does not go to any pickup point and is
allocated to a facility.
Capacity constraints in terms of these binary variables are:
Z Wik < Nyvg

i€l dy<R; je]

Vk € K.

We propose to model the CCEFLP by adding capacity constraints to
the CEFLP three-index formulation, thus obtaining the following model:

(CCEFLP) min Y > 3 hydyjwy, @

i€l kekK;u{i} jeJ

S't'zyj=p5 (2)
JjedJ
Y=t ®
keK
wy, =1 viel, (4
Jj€J keK,uli)

2 Wi < Vi

JjedJ

Z w,kjSY,

viel, VkeK,, (5)

viel, Vjeld, (6)

keK,u{i}

D wyy < Nyvy vke K, (7)
i€l:d <R, jeJ
wy,; € {0.1} Viel, Vke K,u{i}, VjeJ, (8)
y; €{0.1} viedJ, (9)
v, €{0.1} vke K. (10)

The goal of the CCEFLP is to minimize the total cost. Note that the
objective function does not consider the distance between a customer
and pickup locations (i.e., dy;), but only from a customer or pickup
point (i.e., k € K; ui) to a plant (i.e,, j € J). Constraints (2)
and (3) impose the number of open facilities and open pickup points,
respectively. Constraints (4) guarantee that all the customers are served
by one facility or go to a pickup point that is close enough. Constraints
(5) and (6) enforce that customers only go to close enough open pickup
points and are only allocated to open facilities. Capacity constraints
(7) limit the number of customers going to an open pickup point.
Constraints (8)-(10) are the domain constraints.

3. The CCEFLP on graphs

The CEFLP is a continuous facility location problem since the pickup
points can be placed anywhere within a fixed radius from the cus-
tomers. A useful property of the CEFLP is that the continuous potential
pickup location feasible set can be reduced to a discrete pickup location
optimal set. In an optimal solution of the CEFLP some customers may
have to go the maximum distance that they are willing to go to pick
up their demand. In the CEFLP on a graph (or NCCEFLP), the discrete
potential pickup location set is not the same as in the CEFLP on the
plane. The border set of a customer is not a circumference anymore
but a set of points over some edges of the graph. In this section we
describe how to discretize the optimal set of pickup points when the
problem is solved on a graph.

The formulation for this extension is the formulation for the CEFLP
if capacities do not apply, or the formulation in the previous section if
dealing with the capacitated case. The difficult part is the calculation
of K.

Church and Meadows (1979) deal with the location set-covering
problem and the maximal covering location problem when facility
placement is allowed anywhere on a graph. The authors prove that
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Fig. 1. Different pickup points on a graph.

for either the first or the second problem at least one optimal solution
exists that is composed entirely of points belonging to a finite set of
points called the graph intersect point set. However, given a graph the
intersect point set does not coincide with the pickup point set.

A good guess in order to decide where to place the optimal pickup
points would be to place them on the shortest path between customers
and facilities. However, this is not always the correct answer.

Example 1. Let us consider the situation shown in Fig. 1. There are
three customers i, i,, and i3, with unitary demand and one potential
facility j. We would like to open one facility (p = 1) and one pickup
point (¢ = 1) with a total minimum cost when customers agree to travel
up to R = 4 distance units. We want to illustrate that opening a pickup
point that is not in any of the shortest paths connecting a customer
with the facility can be better than opening a pickup point in one of
these shortest paths. The shortest path from j to i, is (i;,j) and the
candidate location for a pickup point in this path (at distance 4 from
iy) is k. The shortest path from j to i, is (i, 1), (i;,j) and the candidate
location for the pickup point in this path at distance 4 from i, is k5. The
shortest path from j to i5 is (i3, j) and the candidate location for the
pickup point in this path at distance 4 from i5 is k,. k4 is a candidate
location for a pickup point that does not belong to any of the mentioned
three shortest paths but that can act as a pickup point for the three
customers: it is at distance 2 from i, at a distance 4 from i, and also
at a distance 4 from i3. In fact, K;; = {ky, k3, k4}, K;, = {k3,k,} and
K;, = {ky. k4}. If Ny = N; = N3 = 3, then the manager of the network
will open the pickup point at k, because then, his costs will reduce to
the traveling cost from j to ky, i.e., 10. Remind that i;,i, and i3 bear
the costs between them and k.

Following Example 1, in order to calculate all the candidate pickup
points on a network for a customer i, we need to evaluate all the points
on a network at distance R; from customer i. Algorithm 1 is used for cal-
culating all the pickup points on a network. First, Pickup Points(i, !, Ri)
is a recursive function that obtains candidate pickup points from node
i, that is, all the points on the graph at a distance R; from node i. Note
that node / collects the nodes visited by node i on its path to the pickup
point k, and R collects the remaining of R; from / to j on the path from
i to j. Finally, function Create_Pickup_Point(i, I, j,E,k,Ekm) creates the
pickup point k and saves its location within the network. Note that d,,,
is the distance on the graph for edge (/,m), and d;; is the distance from
i to j in the graph. In addition, d,, and d,, are the distances between
the pickup point generated k and the edge nodes (/,m). Once the set
of points K and the distances on the graph have been calculated we
can solve the CCEFLP. Fig. 2 shows how the algorithm works to obtain
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Fig. 2. Small illustrative example for Algorithm 1 .

the candidate pickup points from node 2. The algorithm starts from
node 2 (Fig. 2(a)), traversing all edges incident to this node, until it
reaches the maximum allowed distance for this node (R,=2.2) or until
it encounters another node (Fig. 2(b)). If a node is reached from node 2
(nodes 3 and 5), then the algorithm is repeated from these nodes, with
the maximum distances updated (R;=1.2 and R5=0.2) (Figs. 2 (c) and
2 (d) from node 3, and 2 (e) for node 4. Fig. 2(f)) shows all the points
generated from node 2 when the algorithm finishes.

Algorithm 1: Calculating pickup points on a network.

1G:=(V,E)

2 K 1=

3 k=0

4 forall i e V do
5 K; :=0;

6 Pickup_Points(i, i, R,);

7 Recursive Function Pickup_Points(i,l, R)
8 forall m € V do

9 if(m#1and m#iandd,, : (I,m) € E) then
10 if d,, > R then

11 k++;

12 Ay =R

13 Aoy = dpy — Rs

14 Create_Pickup_Point(i,l,m,d ., d;,,);
15 else

16 L Pickup_Points(i, m, R- d~,m)

17 Function Create_Pickup_Point(i, l,m,glk,gkm )
18 K :=KU({k};

19 K; := K; U {k};

20 pickup point k located in (I,m) € E;

21 forall j € V do

22 | dyji=min{d); +dyy.d,y; +dy };

Proposition 3.1. Let (x*,y*) be the coordinates for a pickup point k in
an optimal solution for the CCEFLP. There exits a customer i which is at
distance R; from (x*, y*).

Proof. Let I; be the subset of customers in I that are close enough to
k,ie, I, ={ieI :dy <R;}. I # @ because k belongs to the optimal
solution. We will prove that, if there is not a customer at maximum
distance, then there is a feasible solution cheaper than the optimal,
which cannot be.

Let us suppose that d;; < R; for all i € I. Let i; be the customer
with R; —d; ;= min;{R;—d; : i € I;;} and let j be the facility to which
k is allocated. Let P =,k (k.j) be the path connecting i; and j,
where (i}, k) and (k, j) are the corresponding shortest paths. Let k; be
the point in the path P, ; such that d; ,, = R; . Then, the solution to
CCEFLP that exchanges k by k, is feasible and cheaper than the optimal.
It is feasible because

I={iel dy =dy+R —d <dy+R —dy=R}=1,

and it is cheaper than the optimal because dj, = d; — (R;, — d; ;) <

dj, and the distances between customers in I, and k, are not in the
objective function. []

Example 2. Let us consider the complete graph (location on the plane
problem) with 20 nodes induced by the example in Moya-Martinez
et al. (2021) and the restricted graph (location on the network) when
the maximum distance between nodes is limited by 35.13 units (20%
of the maximum distance between two nodes on the plane). Fig. 3
illustrates the candidate pickup points on the plane and on the network
in this example. The number of pickup points are 442 and 246 for the
plane and network, respectively. Note that the number of candidate
pickup points on the plane is greater than the number of candidate
pickup points on the network in this example, but, as will be shown
in Section 5, when the number of customers in the problem increases,
this is not necessarily true.

4. Column generation algorithm

The CCEFLP model in Section 2 has a high number of variables with
regard to the number of constraints, although it can be checked that the
linear relaxation gap is usually small. For this reason, a column gen-
eration algorithm is proposed here to solve the problem. The column
generation algorithm in this section allows to solve both CCEFLP and
NCCEFLP on graphs since this fact only affects the calculation of K.

Let LR-CCEFLP be the linear relaxation of CCEFLP, i.e., the linear
model obtained from CCEFLP when replacing the binary domain
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Fig. 3. Candidate pickup points on the plane and on the network.

constraints by bound constraints imposing that the values of variables
y, and v are in the interval [0.1]. Note that variables w are restricted
in the interval [0.1] by the constraint (6). Let (6,0, «;, . Yij» Tk) be the
dual variables of constraints (2), (3),(4), (5), (6) and (7), respectively;
and (m s 1g) the dual variables of the constraints y, and v less than or
equal to one, respectively. The dual problem for LR-CCEFLP is written
as follows:

(D-LR-CCEFLP) max ps+10+ Y a;+ 3 m;+ 3

iel jel kekK
s.ta + 7+ iy vy < hidy MARE Vi_el’
Vk € K; U {i},
6= vy +m; <0 vjieJ,
iel
0= Nyt = Y B+ <0 vk €K,
i€l
7, <0 vk € K,
P <0 Vk e K, Vie I,
7; <0 viel, VjelJ,
m; <0 vjield,
n, <0 Vk € K,
a; free Viel,
8,0. free.

Let K ¢ K be a subset of pickup points and let Re-D-LR-CCEFLP
be the above dual model D-LR-CCEFLP restricted to K. Let also Re-LR-
CCEFLP be the primal model LR-CCEFLP restricted to K. Let (6%, 0%, a*,
f*, y*, v*,m*,n*) be an optimal solution to Re-D-LR-CCEFLP. For all
k € K\ K, the reduced cost &, of column v, is

~ *
G =Ny + Zﬁik_e —ny
il

where
7+ By S minlhidy, — af 75,01 Vi€ 1.

Note that, for all k € K \IE , the value of n, is equal to zero, because
v, is not part of the basic solution from K.

The pricing sub-problem for obtaining the maximum value for the
reduced cost is:
¢, = max Ngg + Z B — 0" an

i€l

. — .
st T+ Py < rjnely{h,-dkj - =70} Vi e I,

7, < 0.

B <0 vieI,.

The following proposition gives the optimal value for this pricing
problem. The proof of the proposition shows that this optimal value is
the sum of the N, smallest values of a list.

Proposition 4.1. Let (6*,0*, a*, p*,7*,y*) be the optimal solution of Re-
D-LR-CCEFLP for k € K C K. For each k € K, let I,={iel:dy <R}
be the set of customers that could go to the pickup point k. For each i € I,
let a; = min;e {h;dy; — af =y, 0} And let & < Gy < ... < djp, . be
values a;; sorted in nondecreasing order. Then the maximum reduced cost

— . = min{ Ny,| I |} ~
¢, of column v, is ¢, = Z:.:‘]( Wl g g

Proof. The dual problem of
(P) max Nyze+ D B

i€l
st. 1 +fy; < rjjrg}l{hidkj —a; = yl.j,O} Viel,
7, <0.
i £0 Vi€ I.

is

(P,) min z ik
i€l
st Y v <N
i€l
v <1 viel,.

The optimal value for the latter is the sum of the N, smallest a;;
values, provided that N, < |I;|. In other words, the optimal value
of (P,) is Z:_:T{N"’”k” a;,. According to the strong duality condition,
it implies that the optimal value of (P)) is the same and thus ¢, is
ymin(Nelld) , _ge

; .

i=1

¢, is an estimation of the improvement on the objective function
if pickup point k is introduced in Re-LR-CCEFLP. If ¢, > 0 for all
k € K \ K, then the current solution of Re-LR-CCEFLP is also optimal
for LR-CCEFLP and the column generation approach finishes. Otherwise
each negative value proposes the addition of a new column (variable).
In each iteration the optimal value of Re-LR-CCEFLP not only gives an
upper bound of the optimal value of LR-CCEFLP, but also a lower bound
of it. The optimal value of LR-CCEFLP cannot be reduced more than the
smaller reduced cost ¢, for each customer i if k € K;, hence
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(b) On the network. v* = 4,379.

Fig. 4. Optimal solution for the uncapacitated problem. The black circles and the gray squares represent the location of the plants and pickup points, respectively. The white and
cross-out circles represent the location of the customers who are served from the plants and the customers who move to the pick up points, respectively.
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Fig. 5. Optimal solution for the capacitated problem. The black circles and the gray squares represent the location of the plants and pickup points, respectively. The white and
cross-out circles represent the location of the customers who are served from the plants and the customers who move to the pick up points, respectively.

LB = v*(Re-LR-CCEFLP) + Z min ¢, < v*(LR-CCEFLP).
ie1 k<K

Obviously, the solution of Re-LR-CCEFLP is an upper bound of
v*(LR-CCEFLP).

The column generation algorithm that we propose in this section
starts with a small subset of pickup points K and adds at most one
pickup point for each customer at each iteration. For each customer i,
the pickup point within the distance R; that is considered to be added
to K is the one with smallest reduced cost. If this minimum reduced
cost is non-negative, no pickup point is added. If the same index k is
the one with the smallest reduced cost for two different customers, then
it is introduced only once. If ¢, >0 for all k € K'\ K, then the optimal
solution of Re-D-LR-CCEFLP is an optimal solution of D-LR-CCEFLP.
Otherwise, pickup points with negative reduced costs must be included
in K and the algorithm continues. The details of the column generation
algorithm that we propose are given in Algorithm 2.

Algorithm 2 initializes the subset of pickup points as an arbitrary
small set, the relative gap and the upper bound (UB) to infinity. The

threshold for the gap is set to 0.01 and it is represented with e.
The stop criterion is the gap measured as the relative difference be-
tween the upper and lower bounds. In each iteration of the algo-
rithm, as long as this gap is larger than ¢, Re-LR-CCEFLP for K c K
is solved to optimality and we compute its dual optimal variables
(6%,0*%,a*, p*,y*,v*). For all k in K \ K the reduced cost is computed
as indicated in Proposition 4.1. For each customer i, the pickup point
ki within its radius with smallest reduced cost is added to K. Finally,
lower and upper bounds are updated. The optimal value of Re-LR-
CCEFLP, named v*(Re-LR-CCEFLP) is an upper bound for LR-CCEFLP,
and, the value v*(Re-LR-CCEFLP)+ Y., Cp is a lower bound for the
same LR-CCEFLP.

When the algorithm ends, problem CCEFLP restricted to K = I?,
which we will refer to as Re-CCEFLP, is solved and the lower bound of
LR-CCEFLP is reported as a lower bound of CCEFLP.

Example 2 (continued). Figs. 4 and 5 present the optimal solution for
CEFLP on the plane or on a graph when the number of facilities and
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Table 1
Average dimensions of the three instances for problems CCEFLP and NCCEFLP.
Instances n CCEFLP NCCEFLP 20% NCCEFLP 30%
#K n01 m #K n01 m #K n01 m
i30 30 1058.00 128828.00 6247.00 - - - 788.67 88138.67 4658.33
i35 35 1435.33 227 313.67 9149.00 482.50 79442.50 4031.50 1700.67 246 210.67 9979.67
40 40 1882.00 374028.67 12825.67 837.00 166 477.00 6656.00 2682.33 481602.33 16333.33
i45 45 2407.33 610012.33 17979.67 1873.67 475828.67 14519.00 4520.33 988595.33 28501.67
i50 50 3054.67 1076304.67 27 069.67 3330.00 1046530.00 26792.00 10129.67 3207046.33 76 666.00
i55 55 3690.00 1520205.00 34343.00 4217.50 1468097.50 33966.50 13458.33 5105065.00 109166.00
i60 60 4386.00 2107846.00 43103.67 6584.50 2747234.50 55980.00 17105.38 6995073.08 137122.85
i65 65 5131.33 2817963.00 52695.67 11843.33 6237283.33 111972.33 24026.57 11342857.29 202515.43
i70 70 5952.86 3737092.86 64224.86 14 492.67 8421212.67 139626.67 30296.27 15800990.82 260629.91
i75 75 6796.00 4683758.50 74 855.50 17 333.93 10832607.14 167 310.57 35943.78 20082218.78 309000.44
i80 80 7770.55 6222708.73 91937.27 24916.36 17624930.91 251474.55 51172.00 32235260.89 460031.11
i85 85 8783.27 7905661.91 108997.73 34731.00 27275335.50 362601.70 73211.75 53637321.75 710770.75
i90 90 9885.00 10376580.00 133260.50 57 369.80 56171757.80 689141.00 122112.00 112363567.71 1377517.29
i95 95 11040.00 12958067.50 156 444.50 69124.55 70350884.55 818145.55 175195.25 170252167.33 1974692.17
i100 100 12196.50 15036446.50 172539.00 130643.86 151628351.00 1655818.93 198120.00 183169520.00 2038032.00
Table 2
Average results of the 3 data sets in the p-median problem.
Instance p-median p-median 20% p-median 30%
Obj Time %GAP Obj Time %GAP Obj Time %GAP
i30 5196,80 1,20 0.00 5292,67 3 0.00
i35 6234,78 25,00 0.03 7500.00 4 0.00 6345,33 4 0.00
i40 7182,95 1,20 0.00 8597,00 1 0.00 7333,33 3 0.00
i45 8165,19 32,60 0.02 8821,67 5 0.00 8436,67 231 0.07
i50 9193,21 1,80 0.00 10403,50 5 0.00 9510.00 12 0.00
i55 10162,58 2,00 0.00 10848,50 5 0.00 10378,00 19 0.00
i60 11117,83 4,00 0.00 11662,00 183 0.24 11322,00 29 0.00
i65 12032,50 4,25 0.00 12291,00 165 0.16 12027,67 42 0.00
i70 12822,83 5,00 0.00 13001,00 32 0.00 12788,00 56 0.00
i75 13807,24 6,67 0.00 14043,67 43 0.00 13883,67 76 0.00
i80 14339,97 8,33 0.00 14751,33 68 0.00 14547,33 134 0.00
i85 15302,05 10.75 0.00 15635,67 114 0.07 15362,33 206 0.00
i90 16149,21 12,67 0.00 16369,33 185 0.00 26979,33 373 0.00
i95 17157,78 15,50 0.00 17278,67 292 0.00 17352,50 295 0.00
i100* 18109,44 17,75 0.00 18597,50 227 0.00

2 Out of memory for the p-median 30% problems.

pickup points is limited to 2 and 3, respectively. The capacities of the
pickup points are infinity in Fig. 4 and 1 in Fig. 5.

Algorithm 2: Column generation algorithm

23 initialization: K = Ky, GAP=1. UB =0, € = 0.01;
24 while GAP > ¢ do

25 Solve Re-LR-CCEFLP (Re-D-LR-CCEFLP) for subset KckK ;
26 Result: Primal (y*, v*, w*) and dual (6*, 6*, a*, p*, v*, %)
solutions;
27 forall k € K \ K do
28 forall i € I do
29 L aik=minjel{hidkj—a;‘—yi’;};
30 i Ek - Z;‘:?(Nks‘lk” ﬁik _ 0*;
31 forall i € I do
32 k; = argmingcg {c, 1 ¢, <0} ;
33 | Updatel? =Kulk');
34 UB=v"(Re-LR-CCEFLP);
35 | LB=v*(Re-LR-CCEFLP)+ Y, _; /3
_ UB-LB,
36 GAP = —53

37 Solve(Re-CCEFLP);

* — —
38 GAP = U (Re CCLEBFLP) LB,

5. Computational results

In this section we present a computational study for CCEFLP and
NCCEFLP. The experiment has been coded in C++, using IBM ILOG

CPLEX Optimization Studio v20.0. The characteristics of the computer
are 2 Intel(R) Xeon(R) 3.10 GHz, and 768 GB RAM.

The data were taken from the instances in p-medcapl.txt of the
problem solved in Osman and Christofides (1994), originally generated
for the p-median problem. This file includes 60 different problems
and we have selected the first three datasets of size 100. Then, we
have generated 15 instances of each dataset, varying the size of n
from 30 to 100. increasing by 5 in each case; resulting in a total
number of 45 instances. Each instance has been solved with 5 different
capacities. In all instances I = J, the customers are potential sites
for locating a facility, and the radius will remain constant. We assume
that customers are willing to go up to 15% of the maximum Euclidean
distance between pairs of points in the data. In order to generate the
instances on a network, the edges with length less than 20% or 30% of
the largest distance in the complete graph have been selected. For all
the cases p (number of facilities) and ¢ (number of pickup points) are
fixed to 4 and 5 respectively.

Table 1 shows the average number of pickup points generated (#K)
for each set of instances with the same size, the average number of
binary variables (n01), and the average number of constraints (m).
We rule out the three i30 instances in NCCEFLP 20% because the
three are disconnected graphs. The main conclusion we can draw from
Table 1 is that the number of pickup points increases significantly when
considering the problem on a network compared to the plane, and
it also increases significantly with the network density. This increase
in the number of pickup points implies an increase in the number of
variables and constraints, therefore, an increase in the dimension of
the problem.
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Table 3

Average results of the 3 data set in CCEFLP.
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Inst Cap CCEFLP Z1p CCEFLP Algorithm

Obj Time %GAP P(xy;) P(dy;) z* Iter Time #%k %GAP g GR
i30 o 2675.31 2.67 2.16 0.60 0.48 2675.30 2608.41 4.33 4.67 9.98 2.26 1.00
i30 10 2675.31 4.33 2.16 0.60 0.48 2675.30 2603.75 4.00 4.67 10.01 2.43 1.00
i30 5 2675.31 4.00 2.07 0.60 0.43 2979.25 2886.48 4.00 4.33 9.87 3.12 0.90
i30 4 2694.13 3.67 1.92 0.59 0.45 2816.53 2748.47 4.00 3.00 9.17 2.24 0.96
i30 3 2816.53 3.67 1.96 0.51 0.52 2390.19 2338.97 4.00 3.33 9.78 1.88 1.18
i35 o 3302.74 9.00 4.22 0.67 0.36 3305.24 3161.05 4.00 16..33 8.12 4.33 1.00
i35 10 3302.74 15.33 4.22 0.67 0.36 3307.84 3177.05 4.33 21.67 8.33 3.88 1.00
i35 5 3307.60 12.00 3.72 0.66 0.36 3302.74 3160.26 4.33 15.67 8.54 4.27 1.00
i35 4 3390.01 11.67 3.80 0.59 0.31 3599.35 3487.69 4.00 9.67 8.17 2.92 0.94
i35 3 3598.59 10.33 2.54 0.47 0.26 3394.00 3250.51 4.00 13.67 8.26 4.06 1.06
i40 o 3943.33 19.67 4.89 0.65 0.22 3943.80 3720.26 4.00 24.00 7.55 5.31 1.00
i40 10 3943.33 44.33 4.89 0.65 0.21 3990.68 3790.39 4.33 29.00 7.56 4.71 0.99
i40 5 3990.20 38.33 3.83 0.57 0.22 3943.80 3765.84 4.33 29.00 7.56 4.29 1.01
i40 4 4134.44 29.33 3.62 0.53 0.14 4402.19 4305.51 3.67 14.33 6.48 2.19 0.94
i40 3 4397.30 24.00 1.97 0.42 0.24 4135.91 3975.44 4.00 20.67 6.99 3.79 1.06
i45 © 4497.22 77.33 3.76 0.62 0.14 4513.81 4303.81 4.33 63.33 6.87 4.44 1.00
i45 10 4497.22 217.67 3.76 0.62 0.14 4620.65 4433.70 4.67 67.67 7.34 3.74 0.97
i45 5 4613.13 129.33 2.54 0.53 0.14 4522.88 4347.79 4.33 71.33 6.58 3.71 1.02
i45 4 4797.00 84.33 2.05 0.46 0.12 5161.92 5076.41 4.00 19.33 5.80 1.53 0.93
i45 3 5157.50 64.00 1.43 0.37 0.18 4838.12 4678.41 4.00 33.00 6.19 2.94 1.07
i50 o 4728.28 193.33 3.82 0.67 0.32 4734.95 4523.43 4.67 149.33 6.64 4.28 1.00
i50 10 4733.28 535.67 3.87 0.66 0.29 5105.11 4928.07 4.33 174.00 5.92 3.26 0.93
i50 5 5143.92 386.00 2.71 0.54 0.15 4767.08 4597.61 4.67 180.00 6.32 3.48 1.08
i50 4 5478.38 390.67 1.42 0.43 0.16 5970.10 5902.85 3.67 62.33 5.37 1.13 0.92
i50 3 5970.04 266.67 0.91 0.33 0.13 5488.83 5356.55 3.67 101.33 5.39 2.35 1.09
i55 0 5135.23 393.33 2.64 0.68 0.27 5167.10 5004.67 4.33 183.33 5.26 3.19 0.99
i55 10 5166.95 1289.33 2.94 0.66 0.24 5666.01 5485.13 4.33 273.33 5.03 3.19 0.91
i55 5 5842.74 816.00 2.84 0.48 0.20 5319.63 5177.88 4.33 220.00 5.39 2.70 1.10
i55 4 6194.33 740.67 1.27 0.39 0.08 6749.96 6677.67 4.00 66.33 4.46 1.03 0.92
i55 3 6743.82 688.00 0.89 0.29 0.10 6194.32 6111.98 4.00 108.00 4.87 1.31 1.09
i60 o 5663.14 1090.33 3.47 0.66 0.24 5711.82 5494.22 4.67 509.33 5.39 3.87 0.99
i60 10 5711.83 2647.33 3.81 0.63 0.21 6300.55 6108.38 4.67 377.67 4.94 3.04 0.91
i60 5 6513.32 1463.33 2.32 0.45 0.21 5881.35 5708.71 5.00 439.67 5.13 3.08 1.11
i60 4 7024.71 1129.67 1.86 0.36 0.15 7643.29 7560.82 3.00 103.00 3.68 1.09 0.92
i60 3 7639.73 1046.67 0.64 0.27 0.11 7030.47 6894.86 4.00 146.67 4.01 1.98 1.09
i65 © 6034.24 3041.67 1.79 0.66 0.23 6083.50 5953.71 4.67 476.00 4.53 2.11 0.99
i65 10 6083.70 7461.00 1.86 0.63 0.19 6861.98 6701.42 4.00 377.33 4.20 2.37 0.89
i65 5 7126.11 3773.67 2.08 0.41 0.20 6315.53 6193.90 4.33 490.33 4.37 1.88 1.13
i65 4 7604.91 3406.00 1.07 0.33 0.10 8307.40 8200.60 3.33 225.00 3.36 1.26 0.92
i65 3 8307.40 3113.00 0.98 0.25 0.09 7604.91 7518.40 3.67 223.00 3.51 1.17 1.09
i70 o 6480.48 6449.00 1.89 0.65 0.21 6574.82 6382.97 4.67 1265.67 4.55 2.78 0.99
i70 10 6564.54 13131.67 2.27 0.61 0.18 7450.12 7276.67 4.00 937.67 3.98 2.33 0.88
i70 5 7733.52 7269.33 1.25 0.38 0.13 6793.55 6677.64 4.00 892.67 3.88 1.73 1.14
i70 4 8228.14 6187.67 0.45 0.30 0.09 8967.61 8896.28 3.67 248.33 3.39 0.73 0.92
i70 3 8905.55 4469.00 0.52 0.23 0.08 8228.13 8176.21 3.67 403.67 3.38 0.60 1.08
i75 © 8622.19 3220.50 14.38 0.63 0.36 7139.95 6879.16 5.00 2373.00 4.36 3.40 1.21
i75 10 7769.98 6594.00 7.27 0.56 0.15 8128.24 7948.37 4.67 1013.67 3.68 2.19 0.96
i75 5 8790.86 3785.00 2.93 0.34 0.10 7443.63 7324.23 5.00 1344.00 4.01 1.44 1.18
i75 4 9144.44 2805.50 0.32 0.28 0.08 9803.59 9732.64 3.00 361.00 2.96 0.74 0.93
i75 3 9833.62 1078.50 0.08 0.21 0.09 9060.60 9015.39 3.67 584.33 3.18 0.51 1.09
i80 o 8229.74 12669.00 10.12 0.64 0.32 7233.72 6982.13 5.00 3860.50 4.13 3.47 1.14
i80 10 12541.87 14411.50 100.00 0.44 0.25 8692.57 8546.86 4.33 2719.33 3.63 1.71 1.44
i80 5 9144.75 6029.00 0.89 0.33 0.07 9181.13 9064.76 4.00 979.00 3.48 1.25 1.00
i80 4 9666.49 1869.50 0.42 0.26 0.09 10461.77 10427.14 3.00 489.33 2.52 0.33 0.92
i80 3 10461.77 2944.00 0.22 0.20 0.09 9724.90 9678.12 4.00 1007.67 3.30 0.50 1.08
i85 0 12881.61 14417.00 100.00 0.58 0.45 8237.29 7786.92 4.67 6282.00 3.89 5.28 1.56
i85 10 27464.93 14 415.50 100.00 0.35 0.53 9412.95 9121.81 4.00 3855.33 3.50 3.14 2.92
i85 5 12709.96 11117.00 67.40 0.26 0.11 8406.44 8225.15 4.67 4705.67 3.77 2.29 1.51
i85 4 10491.35 2792.50 0.21 0.25 0.12 10474.71 10430.64 3.33 450.67 2.79 0.43 1.00
i85 3 11231.77 4377.50 0.06 0.19 0.10 11277.93 11245.27 3.33 141.33 2.70 0.29 1.00
i90 o 20939.77 14421.00 100.00 0.35 0.61 8428.48 8146.19 5.00 8046.67 3.81 3.27 2.48
i90 10 14288.74 14418.50 100.00 0.51 0.23 9869.53 9681.89 4.33 5698.67 3.30 1.94 1.45
i90 5 10036.99 10943.00 50.12 0.29 0.07 8675.32 8586.73 5.33 6523.33 3.88 0.98 1.16
i90 4 10800.42 1733.50 0.25 0.23 0.09 12025.43 12001.13 3.67 2121.67 2.64 0.20 0.90
i90 3 11737.02 7168.00 0.24 0.17 0.06 11163.03 11114.36 3.67 2615.00 2.69 0.44 1.05
i95 o 16422.09 14423.50 100.00 0.36 0.14 9084.20 8672.74 5.00 13001.67 3.51 4.44 1.81
i95 10 18091.24 14423.00 100.00 0.48 0.37 10597.19 10451.95 4.00 8498.67 2.73 1.42 1.71
i95 5 13999.86 14 423.50 100.00 0.27 0.20 9142.20 8996.95 5.00 7505.67 3.84 1.61 1.53
i95 4 17 378.09 14422.50 100.00 0.22 0.29 12899.95 12847.30 3.33 1282.00 2.18 0.40 1.35
i95 3 12698.06 7626.00 50.03 0.16 0.06 12003.36 11929.09 3.33 1314.67 2.22 0.62 1.06

Table 2 shows the average p-median results for the different prob-
lems addressed in this paper and for the different data sets. The time

(continued on next page)

limit was set to 4 h although in general the execution time is negligible.
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Table 3 (continued).
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Inst Cap CCEFLP Z1p CCEFLP Algorithm
Obj Time %GAP P(x;;) P(dy;) z* Iter Time #%k %GAP, g GR
i100 © 9861.92 9509.05 5.00 13489.33 3.22 3.52
i100 10 11737.19 11529.13 4.00 13555.00 2.58 1.83
i100 5 10040.89 9865.10 5.00 7036.00 3.29 1.94
i100 4 14075.72 13938.36 3.67 2069.33 2.43 0.97
i100 3 13160.10 13029.60 3.67 3027.00 2.39 1.00
o
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Fig. 6. p-median problem versus NCCEFLP and CCEFLP.

The linear relaxation gap (%GAP) is usually small while the largest
instances in NCCEFLP 30% could not be solved due to memory over-
flow. In general, computational time for solving NCCEFLP is slightly
higher than for solving CCEFLP. Later we use the values in this table
to illustrate the advantages of using the proposed approach compared
to employing a more classical p-median location problem.

Table 3 shows the average results of the instances presented in
Table 1 for the CCEFLP problem, i.e., the location problem on the
plane. For each instance different capacities have been considered
for each pickup point: 3, 4, 5, 10 and oo, where a capacity of
means that it is the uncapacitated version. Two different runs have
been carried out, plain use of CPLEX v20.1 for the models and the
Column Generation Algorithm in Algorithm 2. Columns header with
Obj, Time and %GAP give, respectively, the best feasible solution of
the CCEFLP problem, the computational time required or the maximum
time allowed (14400 s), and the optimality gap between the solution
of the CCEFLP and its linear relaxation. Column P(x;;) shows the
proportion of customers allocated to pickup points. Note that the
proportion of customers allocated to facilities is the difference up to
1. Column P(d;;) shows the proportion of traveled cost due to pickup
allocation, the difference up to 1 is the proportion for facility allocation.
Columns z*, z; g, Iter, Time, #%k, %GAP; 3, and GR show the results
for the column generation algorithm solution: the solution and the
lower bound provided by the algorithm, the number of iterations, the
total computational time, the percentage of pickup points considered

in the last iteration of the algorithm, the GAP between the solution
and its lower bound, and the ratio between the optimal solution Obj
and the algorithm solution (Goodness Ratio). The missing values occur
when CPLEX is unable to find a feasible solution within the time limit
of 14400 s.

Looking at Table 3 it can be concluded that the column generation
approach presented in this work is always competitive compared with
the plain use of CPLEX. Our column generation algorithm is signifi-
cantly faster than CPLEX in most instances, especially for the last ones.
Moreover, values of GR are always close to 1, and in many cases even
greater. Note, for example, that for the instance i85 with capacity=10.
the algorithm obtains an objective value three times smaller than the
CPLEX objective value, i.e., GR=2.92. It is notorious that the algorithm
uses a small number of pickup points, i.e., the algorithm consumes
almost all the time to solve the reduced CCEFLP to optimality. In
terms of GR values, the algorithm performs better for uncapacitated
problems. In all cases, the optimality gap provided by the algorithm is
small, with the worst result being for instance i85, which has a gap of
5.28%. However, even in this case, the algorithm finds a solution 1.56
times better than CPLEX. The number of connections between pickup
point and facilities decreases with the capacity of the pickup points, as
they can serve fewer customers, and the number of direct connections
between customers and facilities increases. On the other hand, the
relative cost of the two types of connections—direct or through a
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Table 4

Average results for the three data sets in the NCCEFLP problem with 20% network density.
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Inst Cap CCEFLP Z1p CCEFLP Algorithm
Obj Time %GAP P(xy;) P(dy;) z* Iter Time #%k %GAPg GR

i35 ) 4863.00 90.50 0.72 0.52 0.65 4752.20 4697.46 2.33 4.33 11.61 1.15 1.02
i35 10 4863.00 106.00 0.72 0.52 0.65 4752.20 4704.94 3.00 4.00 12.61 0.99 1.02
i35 5 4863.00 111.00 0.72 0.52 0.65 4752.20 4695.76 2.33 4.00 11.87 1.19 1.02
i35 4 4884.00 124.50 0.72 0.48 0.64 4770.87 4711.64 3.33 3.00 13.13 1.24 1.02
i35 3 5025.50 140.00 1.01 0.42 0.62 4908.03 4848.96 3.00 3.00 10.89 1.20 1.02
i40 o 5775.00 201.00 0.08 0.49 0.59 5775.17 5770.61 2.50 4.00 9.36 0.08 1.00
i40 10 5775.00 199.00 0.08 0.49 0.59 5775.17 5770.12 3.00 5.50 10.11 0.09 1.00
i40 5 5782.50 203.50 0.08 0.47 0.59 5782.46 5775.26 3.00 5.50 10.40 0.12 1.00
i40 4 5827.00 192.00 0.08 0.44 0.58 5827.16 5785.72 2.50 5.50 9.52 0.71 1.00
i40 3 5989.50 186.00 0.00 0.39 0.56 5989.48 5989.47 3.00 5.50 10.13 0.00 1.00
i45 ) 5380.00 550.67 0.90 0.56 0.59 5393.38 5299.71 1.67 8.33 5.59 1.74 0.99
i45 10 5380.00 529.67 0.90 0.56 0.59 5393.38 5319.49 3.33 9.00 5.45 1.37 0.99
i45 5 5493.00 739.33 1.19 0.50 0.58 5506.68 5418.92 2.67 9.67 5.10 1.59 0.99
i45 4 5588.33 683.00 0.71 0.45 0.58 5590.46 5524.18 2.00 8.67 5.00 1.19 1.00
i45 3 5938.67 390.33 0.95 0.36 0.46 5938.84 5865.89 2.67 6.33 4.99 1.23 1.00
i50 o 6430.00 2224.00 1.13 0.58 0.23 6430.24 6339.02 2.00 263.00 3.37 1.42 1.00
i50 10 6430.00 2576.50 1.13 0.58 0.23 6430.24 6339.01 2.00 447.00 3.41 1.42 1.00
i50 5 6657.50 2803.50 2.16 0.50 0.24 6667.17 6498.90 3.00 133.00 3.51 2.52 0.99
i50 4 6852.00 1440.50 1.22 0.42 0.23 6852.17 6747.80 1.50 48.00 3.47 1.52 1.00
i50 3 7220.00 1042.50 0.27 0.33 0.18 7219.97 7183.05 2.00 154.50 3.26 0.51 1.00
i55 ) 6478.00 2599.00 0.26 0.60 0.32 6492.41 6458.69 2.00 51.00 3.01 0.52 0.99
i55 10 6478.00 2422.00 0.26 0.60 0.32 6492.41 6433.29 1.50 55.00 291 0.91 0.99
i55 5 6801.50 2553.50 1.74 0.48 0.30 6801.73 6692.04 3.50 54.00 3.25 1.61 1.00
i55 4 7051.50 1497.50 0.82 0.39 0.15 7051.73 6972.01 2.50 54.50 2.80 113 1.00
i55 3 7539.00 1487.50 0.68 0.29 0.10 7538.95 7488.39 1.50 21.00 2.59 0.67 1.00
i60 o 6929.00 4344.00 2.06 0.61 0.27 6928.72 6778.81 2.00 469.00 2.19 2.16 1.00
i60 10 6942.00 4657.00 2.16 0.60 0.26 6941.80 6783.71 3.50 666.00 2.05 2.28 1.00
i60 5 7413.00 5759.00 2.51 0.43 0.08 7425.08 7230.38 2.00 638.00 1.89 2.62 0.99
i60 4 7769.50 5562.50 1.77 0.36 0.19 7769.31 7619.46 1.50 920.00 1.84 1.93 1.00
i60 3 8320.50 3569.00 1.07 0.27 0.16 8331.27 8220.53 1.50 879.50 1.90 1.33 0.99
i65 ) 6818.00 8444.33 1.13 0.62 0.37 6818.12 6728.67 2.67 622.33 1.23 1.31 1.00
i65 10 6850.00 7909.67 1.30 0.60 0.37 6849.84 6766.29 2.33 335.00 0.94 1.22 1.00
i65 5 7713.00 6855.67 2.30 0.40 0.30 7724.98 7583.00 2.33 513.33 0.97 1.84 0.99
i65 4 8183.67 5592.00 1.75 0.33 0.25 8183.66 8072.48 1.33 1429.33 1.01 1.36 1.00
i65 3 8784.67 5812.00 1.10 0.25 0.31 8784.76 8694.15 1.00 889.00 0.89 1.03 1.00
i70 o 7363.00 11383.33 2.98 0.61 0.42 7302.06 7152.52 2.33 1344.67 0.77 2.05 1.01
i70 10 7562.67 12664.67 8.48 0.57 0.44 7375.78 7239.94 3.00 1438.00 0.83 1.84 1.02
i70 5 8352.33 9407.33 2.10 0.38 0.26 8370.92 8226.93 2.00 1759.33 0.80 1.72 0.99
i70 4 8793.33 8868.00 1.15 0.30 0.28 8793.24 8694.16 2.67 1078.67 0.92 1.13 1.00
i70 3 9359.00 6293.67 0.50 0.23 0.19 9358.77 9329.80 1.00 690.33 0.83 0.31 1.00
i75 ) 14591.00 13645.50 2.12 0.34 0.23 7971.26 7862.56 2.00 1818.33 0.74 1.36 1.83
i75 10 18578.33 9027.00 2.62 0.40 0.36 8062.93 7937.64 1.33 2717.67 0.67 1.55 2.30
i75 5 20406.00 7071.67 0.61 0.28 0.31 9146.93 9072.31 3.33 1261.67 0.75 0.82 2.23
i75 4 23932.00 7498.67 19.59 0.16 0.23 9673.08 9607.53 3.33 879.67 0.87 0.68 2.47
i75 3 21997.33 6269.33 26.10 0.17 0.25 10315.21 10289.29 2.00 642.00 0.76 0.25 2.13
i80 o 21602.00 14427.00 0.08 0.02 8145.71 8087.19 2.00 1988.00 0.49 0.72 2.65
i80 10 32173.50 7508.50 0.13 0.13 8328.30 8231.79 2.00 3328.33 0.46 1.16 3.86
i80 5 33583.67 5192.67 0.10 0.22 9772.60 9649.60 2.33 2486.33 0.58 1.26 3.43
i80 4 29683.00 7491.00 0.10 0.12 10332.97 10234.80 2.67 3238.67 0.63 0.95 2.87
i80 3 28730.00 7486.00 43.71 0.09 0.12 10988.80 10950.28 2.00 5201.67 0.58 0.35 2.61
i85 ) 58210.00 510.00 0.02 0.03 8632.50 8517.83 1.00 5204.33 0.42 1.33 6.74
i85 10 51639.00 633.00 0.09 0.12 8997.57 8755.12 2.67 13290.33 0.37 2.69 5.73
i85 5 51517.50 613.50 0.09 0.11 10844.11 10703.50 3.00 7520.50 0.43 1.30 4.75
i85 4 52038.00 372.00 0.06 0.08 11427.72 11373.38 3.00 7348.50 0.49 0.48 4.55
i85 3 58168.00 386.00 78.20 0.01 0.01 12172.34 12139.89 2.00 5110.50 0.44 0.27 4.77
i90 o 9094.33 8999.84 2.00 5505.50 0.24 1.04
i90 10 9558.88 9239.94 3.00 13454.00 0.27 3.34
i90 5 11498.62 11225.83 2.50 15695.00 0.26 2.37
i90 4 12075.98 11976.58 2.00 14115.50 0.30 0.82
i90 3 12890.85 12778.96 2.00 17 018.00 0.32 0.87
i95 ) 9381.82 9327.83 4.00 23243.00 0.27 0.58
i95 10 9121.39 8875.08 2.00 33858.00 0.24 2.70
i95 5 11423.13 11408.85 2.00 21518.00 0.24 0.13
i95 4 12131.58 12114.63 2.00 1901.00 0.25 0.14
i95 3 13077.78 13045.51 2.00 16 241.00 0.23 0.25

i100 oo

i100 10 9999.57 9698.67 3.00 3500.00 0.13 1.04

i100 5 12545.41 12433.62 3.00 5484.00 0.14 3.34

i100 4 13293.75 13292.38 2.00 9236.00 0.13 2.37

i100 3

pickup point—decreases and increases, respectively, when the capacity

of the pickup points decreases.
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The next computational experience presented is for the location
problem on a network with densities 20% and 30%. Tables 4 and 5
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Table 5

Average results for the three data sets in the NCCEFLP problem with 30% network density.
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Inst Cap CCEFLP

Z1p CCEFLP Algorithm

Obj Time %GAP P(x;;) P(dy;) z* Iter Time #%k %GAP g GR
i30 ) 3218.67 101.67 2.94 0.42 0.62 3218.55 3105.15 3.33 0.00 1.71 3.52 1.00
i30 10 3218.67 121.33 2.94 0.49 0.59 3218.55 3096.43 3.33 1.00 1.85 3.79 1.00
i30 5 3218.67 113.00 2.94 0.49 0.59 3218.55 3112.37 3.67 0.33 1.91 3.30 1.00
i30 4 3227.67 118.33 2.94 0.47 0.59 3227.44 3115.63 3.33 0.33 1.91 3.46 1.00
i30 3 3243.00 103.67 2.74 0.44 0.58 3243.15 3138.71 3.33 0.33 1.54 3.22 1.00
i35 o 3765.33 240.33 0.39 0.39 0.56 3765.24 3747.86 4.00 2.67 1.23 0.46 1.00
i35 10 3765.33 242.33 0.39 0.56 0.59 3765.24 3751.08 4.00 2.00 1.23 0.38 1.00
i35 5 3773.33 220.33 0.53 0.56 0.59 3773.24 3747.15 3.33 2.00 1.28 0.69 1.00
i35 4 3818.67 226.00 1.09 0.50 0.58 3818.43 3776.12 4.00 2.67 1.27 111 1.00
i35 3 3952.33 388.67 1.40 0.45 0.58 3958.31 3897.80 4.00 1.33 1.17 1.53 1.00
i40 S 4257.33 296.00 0.01 0.36 0.46 4256.98 4250.86 3.33 2.00 0.79 0.14 1.00
40 10 4257.33 315.33 0.01 0.58 0.23 4256.98 4252.97 3.67 2.67 0.83 0.09 1.00
40 5 4291.00 320.00 0.11 0.58 0.23 4290.82 4278.23 3.67 3.33 0.95 0.29 1.00
140 4 4381.00 295.00 0.52 0.50 0.24 4380.95 4346.28 3.33 3.00 0.72 0.79 1.00
i40 3 4726.33 300.67 1.25 0.42 0.23 4726.41 4654.66 3.33 3.00 0.71 1.52 1.00
i45 o 4938.00 756.67 0.72 0.33 0.18 4937.78 4896.46 3.33 8.33 0.57 0.84 1.00
i45 10 4938.00 813.33 0.72 0.60 0.32 4937.78 4893.78 3.67 9.33 0.67 0.89 1.00
i45 5 5041.00 736.00 1.00 0.60 0.32 5040.89 4977.75 3.33 11.00 0.52 1.25 1.00
i45 4 5132.67 588.00 0.49 0.48 0.30 5133.03 5107.37 3.33 13.00 0.47 0.50 1.00
i45 3 5580.33 1010.00 0.96 0.39 0.15 5580.37 5516.21 3.33 9.00 0.58 115 1.00
i50 ) 5282.00 2529.00 0.75 0.29 0.10 5294.49 5238.46 3.67 77.00 0.35 1.06 1.00
i50 10 5287.00 2087.33 0.79 0.61 0.27 5287.17 5236.36 3.67 132.00 0.42 0.96 1.00
i50 5 5613.67 2763.00 1.96 0.60 0.26 5613.95 5491.22 3.33 178.00 0.39 2.19 1.00
i50 4 5829.00 2211.67 0.84 0.43 0.08 5834.97 5772.56 3.33 121.33 0.45 1.07 1.00
i50 3 6266.67 1931.33 0.27 0.36 0.19 6266.56 6250.63 3.33 56.67 0.29 0.25 1.00
i55 & 5862.67 4721.67 0.70 0.27 0.16 5862.55 5794.88 3.33 109.33 0.36 1.15 1.00
i55 10 5894.33 4881.00 1.00 0.62 0.37 5894.27 5833.54 3.67 240.33 0.41 1.03 1.00
i55 5 6302.00 4085.67 1.89 0.60 0.37 6302.09 6179.84 3.33 226.67 0.44 1.94 1.00
i55 4 6546.67 3381.67 0.65 0.40 0.30 6548.17 6471.96 3.00 506.00 0.38 1.16 1.00
i55 3 7098.00 3329.67 0.56 0.33 0.25 7199.68 7138.88 3.00 39.50 0.65 0.84 0.99
i60 S 6621.00 6213.50 0.39 0.25 0.31 6306.43 6265.62 3.33 1476.67 0.37 0.65 1.05
i60 10 6634.00 6566.00 1.04 0.61 0.42 6346.87 6295.26 3.33 1200.67 0.34 0.81 1.05
i60 5 14251.67 4520.00 26.97 0.57 0.44 6927.06 6821.29 3.33 1323.67 0.33 1.53 2.06
i60 4 16 420.67 4636.33 27.66 0.38 0.26 7347.64 7246.65 3.33 706.33 0.32 1.37 2.23
i60 3 15796.33 2700.33 25.69 0.30 0.28 7957.75 7854.67 3.00 229.00 0.30 1.30 1.99
i65 & 7189.00 13542.50 5.20 0.23 0.19 6694.15 6568.72 3.00 2082.00 0.21 1.87 1.07
i65 10 15631.33 9444.67 44.76 0.34 0.23 6725.87 6584.25 3.00 3152.67 0.18 2.11 2.32
i65 5 15945.00 5712.67 42.47 0.40 0.36 7563.02 7409.12 3.33 5068.67 0.21 2.03 2.11
i65 4 16 548.67 6019.67 41.71 0.28 0.31 8004.36 7859.51 3.00 5269.33 0.22 1.81 2.07
i65 3 17 092.00 5013.33 40.24 0.16 0.23 8572.72 8488.27 2.67 3222.00 0.20 0.99 1.99
i70 ) 40633.00 373.00 85.01 0.17 0.25 7129.09 7049.63 3.00 6997.67 0.17 1.11 5.70
i70 10 40705.00 379.00 86.54 0.08 0.02 7202.81 7120.03 3.33 6263.67 0.17 1.15 5.65
i70 5 18644.67 8551.33 9.64 0.13 0.13 8197.63 8072.23 3.00 5929.67 0.17 1.53 2.27
i70 4 8667.50 12242.50 5.59 0.10 0.22 8149.86 8089.06 2.50 4355.50 0.26 0.75 1.06
i70 3 19135.67 5129.33 27.63 0.10 0.12 8708.93 8708.93 2.50 3018.00 0.27 0.00 2.20
i75 & 7816.06 7715.30 3.33 2086.00 0.25 1.29
i75 10 42966.00 615.00 0.02 0.03 7907.77 7772.39 3.00 2651.67 0.23 1.71 5.43
i75 5 41549.00 459.00 0.09 0.12 9023.93 8925.09 3.33 13764.67 0.32 1.10 4.60
i75 4 44 847.50 450.00 0.09 0.11 9548.15 9486.71 3.00 6981.00 0.24 0.64 4.70
i75 3 43660.50 449.50 74.61 0.06 0.08 10651.12 10570.51 2.00 7672.00 0.26 0.76 4.10
i80 ) 8001.49 7959.84 3.33 8715.00 0.21 0.52
i80 10 8388.88 8314.51 3.00 45538.00 0.21 0.89
i80 5 9931.96 9809.74 3.00 14112.50 0.19 1.23
i80 4 54538.00 846.00 0.17 0.00 10525.97 10480.63 3.00 3055.50 0.19 0.43 5.18
i80 3 11244.34 11229.54 3.50 11333.00 0.20 0.13
i85 o 8680.63 8618.42 3.50 37 878.50 0.11 0.72
i85 10 9032.58 8841.51 3.50 56 828.50 0.10 2.12
i85 5 10201.62 10130.30 2.00 30570.00 0.10 0.70
i85 4 10819.72 10808.87 2.00 28 249.00 0.10 0.10
i85 3 11571.30 11 498.47 2.00 2724.00 0.10 0.63
i90 o 8129.20 8062.36 3.00 5900.00 0.10 0.82
i90 10, 5, 4, 3
i95 ©
i95 10 10774.29 1.00 113228.00 0.07
i95 5 12582.51 1.00 156 409.00 0.07
i95 4 13161.10 1.00 79784.00 0.07
i95 3

i100 0, 10, 5, 4, 3

show the results for both densities, respectively. The time limit has been
set to 60.000 s since it has been seen that the problem on a network is
more difficult than its equivalent on the plane. Some instances cannot
be solved due to a memory overflow. As a first observation about the
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results, the complexity of the problem increases when the network
density rises. When the network density is 20%, CPLEX plain use does
not obtain feasible solutions for instances of size 90 or greater while
the column generation algorithm can solve all the cases except two
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Fig. 7. Percentage of customers allocated to pickup points in CCEFLP and NCCEFLP depending on capacity.

sets of instances with 100 nodes. When the density increases to 30%,
CPLEX cannot solve some instances of size 75, while the algorithm fails
to provide a feasible solution from a network size of 90. The goodness
ratio GR is frequently close to 1 and it is sometimes very large, it is even
6.743 in one case. These numbers illustrate the good performance of
our algorithm. The optimality gap %G AP, p of our algorithm is similar
across all solved instances and the number of iterations of our algorithm
goes from 2 to 4. The computing time goes from 1 to 60.000 s However,
CPLEX cannot solve these more difficult instances, even find a feasible
solution. Blank spaces correspond to instances where the computer’s
memory is exceeded.

Finally, Figs. 6 and 7 gather information that appears in different
tables. In particular, Fig. 6 depicts the advantages of using the proposed
approach instead of the p-median location problem: it shows the ratio
of the optimal value for CCEFLP and NCCEFLP with a capacity equal
to oo and the solution of the p-median problem. This ratio is lower
for the flat problem, i.e. for CCEFLP, and therefore it is in this case
that the use of an appropriate model to reduce costs has the greatest
impact. In any case, for the rest of the models, the ratio is also
satisfactorily small. Fig. 7 depicts the average values in columns P(x;;)
in Table 3 multiplied by 100 and distinguishing by capacity. It shows
that the percentage decreases with the size of the instance and the line
associated with any capacity is above the line associated with another
lower capacity.

6. Conclusions

In this paper, we have formulated two new models from an evolving
line of research. These models help us to obtain an optimal solu-
tion when customers are willing to go to a pickup point. All these
models that have been presented here aim to locate both plants and
pickup points, always minimizing the company’s transportation cost
and satisfying customer demands.

The pickup points generated depend on the type of problem we
are addressing, either on a plane (CCEFLP) or on a network-based
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environment (NCCEFLP). In this work we introduce an algorithm to the
generation of pickup points within a network. These pickup points are
distributed over all possible routes, as they do not need to be limited
to the shortest path between two points.

Finally, in order to improve the results obtained with the 3-index
integer programming models (CCEFLP and NCCEFLP), a column gen-
eration algorithm has been created. Computational results corroborate
the good performance of the new algorithm.
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