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In this paper, we employ the less is more approach to develop a Parallel Variable Neighborhood Search (VNS)
algorithm for the 𝛼-neighbor 𝑝-center problem (𝛼N𝑝CP) and the 𝛼-neighbor 𝑝-median problem (𝛼N𝑝MP). The
𝛼N𝑝CP and the 𝛼N𝑝MP are generalizations of the 𝑝-center (𝑝CP) and 𝑝-median (𝑝MP) problems, respectively.
In the 𝛼-neighbor problems, one seeks to open 𝑝 facilities and assign each of the 𝑛 customers to their closest
𝛼 ones. The objective is to minimize the maximum distance of a customer to its 𝛼th facility, in the case of
the 𝛼N𝑝CP, and the sum of the distances from each customer to their 𝛼 nearest facilities, in the case of the
𝛼N𝑝MP. Our VNS adapts simple but efficient algorithms and data structures from the 𝑝CP and 𝑝MP literature
to the 𝛼N𝑝CP and 𝛼N𝑝MP context. We also introduce an updated objective function for the 𝛼N𝑝CP, which adds
more information to the solution cost and helps the VNS to escape from local optima. Several experimental
tests show that our VNS outperforms more complex state-of-the-art algorithms. Regarding the 𝛼N𝑝CP, on 120
instances derived from the OR-library set, our algorithm improved best-known solutions for 22, with an average
improvement of 34.26%; the overall gap on the 120 instances is 6.18% in favor of our algorithm. Moreover, on
231 instances derived from the TSPLIB set, we improved the solutions for 115, with an average improvement
of 5.30%, and an overall improvement gap of 2.47% for all 231 instances. Considering the 𝛼N𝑝MP results,
our heuristic obtained better results than a heuristic from literature in all 80 instances tested, finding optimal
solutions in all these instances.
1. Introduction

Facility location problems are extensively studied and are an im-
portant topic in operations research (Daskin, 1995; Laporte et al.,
2015). In such problems, one seeks to open facilities and assign each
customer’s demand to an opened one, optimizing an objective function
typically composed of an assignment cost. These problems have several
real-world applications, from logistics to data-mining (Ng and Han,
1994; Hansen et al., 2009; Laporte et al., 2015; Grangier et al., 2016;
Contardo et al., 2019). Among many problems in this research topic,
two of the most known facility location problems are the p-center (𝑝CP)
and the p-median (𝑝MP) problems, both introduced by Hakimi (1964,
1965). Given a graph, the objective in the 𝑝CP is to select 𝑝 vertices,
also known as centers, so the maximum distance between the graph’s
vertices and their respective closest center is minimized, i.e., a min–
max problem. In the 𝑝MP case, one also selects 𝑝 vertices, here known
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as medians, but the objective is to minimize the sum of distances of
every vertex to its nearest median. These problems were proven to be
NP-hard (Garey and Johnson, 1979; Kariv and Hakimi, 1979), so one
often relies on heuristics to solve large instances.

In the 𝑝CP and 𝑝MP, vertices are assigned to a single facility.
However, in some applications, facilities may be prone to failure and
become unavailable due to unpredictable reasons such as weather and
electricity problems (Panteli et al., 2021). In such cases, it is important
to ensure the continuity of service to customers assigned to the failed
facility. This is common in critical services, such as hospitals, fire
stations, and computer networks, where backup coverage is needed
(Wang et al., 2009; Araújo et al., 2020; Panteli et al., 2021). For
instance, during the COVID-19 pandemic, hospitals in highly dense
urban areas that could handle the demand of a regular day were
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facing an overwhelming demand (Miller et al., 2020). An alternative is
assigning excess demand to a temporary healthcare structure or even to
a backup hospital (Araújo et al., 2020). On the other hand, a hospital
located in a less populated region might not be dealing with a burden
on its system. Therefore, the best solution in this case is to reallocate the
population to the hospital in a less populated area instead of opening
an additional temporary facility.

Other examples arise in computer networks, where some critical
systems must have higher redundancy than others, or more generally
in any context where some entities being served are more critical than
others (Wang et al., 2009). From the provider’s perspective, such as in
the hospital example, facilities may be elected to require extra coverage
for their users. Thus, assigning clients to multiple facilities at a time
becomes useful.

To handle these types of problems, Krumke (1995) generalized the
𝑝CP and introduced the 𝛼-neighbor 𝑝CP (𝛼N𝑝CP), where vertices are
ssigned not just to the nearest center but to their 𝛼 nearest ones.
his problem aims to minimize the maximum distance between a non-
acility vertex to its 𝛼th closest center. Note that when 𝛼 = 1, the 𝑝CP is

defined. Krumke (1995) also proposed an approximation algorithm for
the 𝛼N𝑝CP since it is a NP-hard problem as it generalizes the 𝑝CP. Since
then, solution methods have been proposed, especially approximation
and exact algorithms, for either the continuous and discrete versions of
the 𝛼N𝑝CP, e.g., the works of Chaudhuri et al. (1998), Khuller et al.
(2000), Chen and Chen (2013), and Callaghan et al. (2019). In the
continuous version of the 𝛼N𝑝CP, facilities can be placed anywhere in
the defined space. On the other hand, in the discrete version, facilities
must be vertices in the graph. The latter is the topic of interest in this
work.

We are aware of only two heuristics for the 𝛼N𝑝CP, the works
of Sánchez-Oro et al. (2022) and Mousavi (2023). Sánchez-Oro et al.
(2022) proposed a Greedy Randomized Adaptive Search Procedure with
Tabu Search and Strategic Oscillation methodology (GRASP-SO). The
authors tested their algorithm in 37 instances derived from the TSPLIB
(Reinelt, 1991) and compared their results to the exact method of Chen
and Chen (2013). The heuristic of Sánchez-Oro et al. (2022) obtained
the best results in all tested instances. Mousavi (2023) developed
efficient local search algorithms for the 𝑝CP, the 𝛼N𝑝CP and the 𝑝-
next center problem (𝑝NCP). They tested their 𝛼N𝑝CP heuristic, using
𝛼 = 2, on the 40 𝑝MP instances from the OR-library (Beasley, 1990),
but did not compare their algorithm with the results of GRASP-SO of
Sánchez-Oro et al. (2022). The author then ran the algorithm for all
40 OR-library instances for 10,000 s, showing that the heuristic can
consistently find the same solutions in a much shorter execution time.

Exploring the multiple assignment feature in the 𝑝MP context is
also important. However, this 𝑝MP variation has not been explored
as much as the 𝑝CP one. Even though the literature related to 𝑝MP
is vast (Barbaros et al., 1983; Reese, 2006; Mladenović et al., 2007;
Daskin and Maass, 2015; Marín and Pelegrín, 2019), to the best of
our knowledge, there are few works concerning variations of these
problems where vertices can be assigned to more than one median.
One of these studies is the work of Wang et al. (2009), who introduced
the backup 2-center problem and the backup 2-median problem. In
these problems, every vertex is served by two medians. Another study
is that of Karatas et al. (2016), where the authors introduced the
requirement of each vertex to be assigned to more than one facility
and compared it under five different criteria. Also, Brimberg et al.
(2021) introduced the distributed 𝑝MP, where, given a distribution
function over customers’ demands, multiple medians are used to fulfill
the customers’ demands. However, none of these definitions impose
multiple assignments precisely as in the 𝛼N𝑝CP.

To the best of our knowledge, the only work that generalizes the
single assignment requirement to allow multiple assignments, as in the
𝛼N𝑝CP, is the work of Panteli et al. (2021). These authors relaxed the
single vertex-median assignment constraint of the 𝑝MP and imposed
2

that each vertex is allocated to their nearest 𝛼 medians. The objective d
is to minimize the total sum of vertices distances to their 𝛼 facilities.
Again, when 𝛼 = 1, the 𝑝MP is defined, and this problem is NP-hard
as it generalizes the 𝑝MP. Panteli et al. (2021) denominated this 𝑝MP
variation as the multiple 𝑝-median problem. For uniformity, here we
refer to this problem as the 𝛼-neighbor 𝑝MP (𝛼N𝑝MP). These authors
also proposed the Biclustering Multiple Median algorithm (BIMM) to solve
the 𝛼N𝑝MP and compared it with a commercial solver.

Since both 𝛼N𝑝CP and 𝛼N𝑝MP are NP-hard, in this work we propose
a simple but effective Basic Parallel Variable Neighborhood Search (BP-
VNS) algorithm; ‘‘basic’’ defines the VNS version originally proposed
by Mladenović and Hansen (1997). This algorithm is used to produce
high-quality solutions for these problems. This heuristic has been suc-
cessfully applied to many facility location problems, e.g., 𝑝MP (Hansen
and Mladenović, 1997), 𝑝CP (Mladenović et al., 2003), capacitated 𝑝MP
(Fleszar and Hindi, 2008), probabilistic 𝑝CP (Martínez-Merino et al.,
2017), obnoxious 𝑝MP (Herré et al., 2020; Mladenović et al., 2020),
and 𝑝NCP problem (López-Sánchez et al., 2019; Ristić et al., 2023).

We have developed our heuristic using the Less is More Approach
(LIMA) (Mladenović et al., 2016; Brimberg et al., 2023). The LIMA
is a heuristic design methodology focused on simplicity and user-
friendliness rather than developing complex algorithms just for the sake
of proposing a new method, with no solid performance improvement
(Mladenović et al., 2016). The idea is to use the minimum number
of algorithm components to develop a heuristic as simple as possible
and still be able to find solutions at a state-of-the-art level (Mladenović
et al., 2020). Besides the method’s simplicity, another advantage of
using this approach is that it is easier to identify how and why the
algorithm performs the way it does (Mladenović et al., 2020). As we
will demonstrate, our method can be easily adapted to several classes of
problems and performs very well thanks to the important components
described next.

In our BP-VNS we adapted optimized and well-known algorithms
and data structures from the literature to the 𝛼N𝑝CP and 𝛼N𝑝MP
context. Also, to take advantage of modern multi-core CPUs, we par-
allelized our BP-VNS due to its simplicity. In addition, we couple to
our heuristic an updated 𝛼N𝑝CP objective function based on the idea
of Torres-Jimenez et al. (2015), which adds more information about the
solution quality and helps guide the VNS to escape from local optima.
Then, the main contributions of our work are:

• We present a simple and effective BP-VNS for the 𝛼N𝑝CP and
𝛼N𝑝MP. Using the LIMA methodology, we adapt well-known
algorithms and data structures from the literature;

• We use a new objective function for the 𝛼N𝑝CP, which allows the
heuristic to differentiate solutions with the same cost, improving
the heuristic’s convergence;

• We show that our simple heuristic can find high-quality solutions
and outperform state-of-the-art methods.

This paper is organized as follows. The mathematical formulations
are presented in Section 2. Our BP-VNS is detailed in Section 3. Sec-
tion 4 shows the test results. Our concluding remarks and discussion
about future works are presented in Section 5.

2. Mathematical notation and problems definitions

Let 𝐺 = (𝑉 ,𝐸) be an undirected, weighted, and connected graph,
where 𝑉 is the set of vertices and 𝐸 is the set of edges, where |𝑉 | = 𝑛,
|𝐸| = 𝑚 and to each edge (𝑖, 𝑗) ∈ 𝐸 is associated a weight 𝑑𝑖𝑗 ∈ R+.
n facility location problems, 𝑑𝑖𝑗 is often the Euclidean distance or the
hortest path length between vertices 𝑖 and 𝑗, but dissimilarity values
re also common. In all these cases, the triangular inequality is not
iolated. Even if an edge joining vertices 𝑖 and 𝑗 may not exist in the
riginal graph, (𝑖, 𝑗) can be added to 𝐸 with 𝑑𝑖𝑗 equal to the length
f the shortest path between these vertices since 𝐺 is connected and
he triangular inequality holds. In this way, 𝐷 = (𝑑𝑖𝑗 ) is an 𝑛 × 𝑛

istance matrix of non-negative real values. Let 𝑆 be the set of the 𝑝
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open medians, where 1 ≤ 𝑝 ≤ 𝑛. Since it is required that all vertices
e assigned to 𝛼 facilities in the 𝛼N𝑝CP and the 𝛼N𝑝MP, it is implicitly

assumed that each vertex is always assigned to its 𝛼 closest medians
among the 𝑝 open ones, where 𝛼 ≤ 𝑝.

The remainder of this section is organized as follows. In Section 2.1,
the 𝛼N𝑝CP formulation is presented. The integer linear program of the
𝛼N𝑝MP is described in Section 2.2.

2.1. 𝛼N𝑝CP formulation

In the 𝛼N𝑝CP, a subset 𝑆 ⊂ 𝑉 of vertices are selected as facilities and
each vertex 𝑖 ∈ 𝑉 ⧵𝑆 is assigned to the nearest 𝛼 of them. The distance
between a vertex 𝑖 and its 𝛼th nearest facility 𝑗 ∈ 𝑆 is know as the 𝛼-
center-distance and is defined by 𝑑𝑐𝛼(𝑖, 𝑆) = min𝑆′⊂𝑆,|𝑆′

|=𝛼{max𝑗∈𝑆′ 𝑑𝑖𝑗}.
hus, in this problem, the objective is to minimize the maximum 𝛼-
enter-distance of vertices that are not facilities, that is, to find a set
⊂ 𝑉 , where |𝑆| = 𝑝, such that max𝑖∈𝑉 ⧵𝑆 𝑑𝑐𝛼(𝑖, 𝑆) is minimum. Observe

hat when a vertex is selected as a facility, it is not assigned to other
acilities.

The mathematical formulation of the 𝑝CP (Daskin, 1995) can be
dapted to allow each vertex to have multiple assignments. In this
ormulation, decision variables 𝑥𝑖𝑗 control whether client 𝑖 is allocated
t facility 𝑗 or not, i.e.,

𝑖𝑗 =
{

1, if vertex 𝑖 ∈ 𝑉 is assigned to facility vertex 𝑗 ∈ 𝑉 ,
0, otherwise.

t is worth mentioning that when 𝑥𝑖𝑗 = 1 and 𝑖 = 𝑗, then vertex 𝑖 is
elected as a facility. The 𝛼N𝑝CP can be formulated as the following
ixed-integer linear program:

min 𝑧 (1a)
ubject to

∑

𝑗∈𝑉 ,𝑗≠𝑖
𝑥𝑖𝑗 = 𝛼(1 − 𝑥𝑖𝑖), 𝑖 ∈ 𝑉 , (1b)

∑

𝑗∈𝑉
𝑥𝑗𝑗 = 𝑝, (1c)

𝑥𝑖𝑗 ≤ 𝑥𝑗𝑗 , 𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, (1d)

𝑑𝑖𝑗𝑥𝑖𝑗 ≤ 𝑧, 𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, (1e)

𝑧 ∈ R+, 𝑥𝑖𝑗 ∈ {0, 1}, 𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉 . (1f)

The value of the continuous variable 𝑧 is minimized by the objective
unction (1a), whose lower bound is given by constraint (1e). In other
ords, the objective function (1a) minimizes the maximum distance
etween a vertex and its furthest (𝛼th nearest) facility. Constraints (1b)
ssure that each vertex 𝑖 ∈ 𝑉 ⧵ 𝑆 is assigned to 𝛼 facilities. Note that
f 𝑥𝑖𝑖 = 1, i.e., vertex 𝑖 is a facility, then 𝑖 is not assigned to any other
acility since the right-hand-side of constraints (1b) is zero. Exactly 𝑝
acilities are opened, which is guaranteed by constraint (1c). A vertex
can only be assigned to a facility 𝑗 if 𝑗 is open. This is ensured
y constraints (1d). Variables 𝑥𝑖𝑗 are binary and 𝑧 is a nonnegative
ontinuous variable as in constraints (1f).

.2. 𝛼N𝑝MP formulation

The 𝛼N𝑝MP requires 𝑝 medians to be selected from 𝑉 and that all
ertices 𝑣 ∈ 𝑉 are assigned to their closest 𝛼 facilities. Let 𝑑𝑚𝛼 (𝑖, 𝑆) =
in𝑆′⊂𝑆,|𝑆′

|=𝛼
∑

𝑗∈𝑆′ 𝑑𝑖𝑗 be the 𝛼-median-distance of vertex 𝑖 given a set of
acilities 𝑆. In the 𝛼N𝑝MP, the objective is to minimize the sum of the 𝛼-
edian-distances of all vertices. In other words, the objective is to find
set 𝑆 ⊆ 𝑉 , where |𝑆| = 𝑝, such that ∑𝑖∈𝑉 𝑑𝑚𝛼 (𝑖, 𝑆) is minimum. Unlike

he 𝛼N𝑝CP, in the 𝛼N𝑝MP facilities are also assigned to 𝛼 facilities.
The 𝛼N𝑝MP can be formulated as an integer linear program (2a)–

2e). In this model, decision variables 𝑥 are the same as the ones
3

𝑖𝑗 c
efined in Section 2.1 and control whether client 𝑖 is assigned to facility
. Again, when 𝑥𝑖𝑗 = 1 and 𝑖 = 𝑗 then 𝑖 is selected as a facility.

min
∑

𝑖∈𝑉

∑

𝑗∈𝑉
𝑑𝑖𝑗𝑥𝑖𝑗 (2a)

ubject to
∑

𝑗∈𝑉
𝑥𝑖𝑗 = 𝛼, 𝑖 ∈ 𝑉 , (2b)

∑

𝑗∈𝑉
𝑥𝑗𝑗 = 𝑝, (2c)

𝑥𝑖𝑗 ≤ 𝑥𝑗𝑗 , 𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉 , (2d)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉 . (2e)

In the model above, the objective function (2a) minimizes the sum
f the distances between every vertex 𝑖 assigned to each facility 𝑗.
onstraints (2b) are the multiple assignment constraints and impose
hat every vertex must be assigned to 𝛼 facilities. Constraint (2c)
uarantees that 𝑝 vertices are open. A vertex 𝑖 can only be assigned
o a vertex 𝑗 if 𝑗 is an open facility, i.e, only if 𝑥𝑗𝑗 = 1, and this is
nsured by inequalities (2d). Constraints (2e) define variables 𝑥𝑖𝑗 as
inary. Note that the difference between the 𝛼N𝑝MP model and the
MP model (Revelle and Swain, 1970) is in constraints (2b), which, in
he 𝛼N𝑝MP case, allow multiple assignments.

. Basic parallel variable neighborhood search

The VNS is a well-known metaheuristic (Hansen and Mladenović,
018), which consistently explores increasing neighborhoods if no
mprovement is detected. Whenever a better solution is found, the
eighborhood range is reset to the minimum size, and the exploring
rocess starts over, using the neighboring of the new solution. This
etaheuristic also uses a local search procedure to polish newfound

olutions, combining exploring and exploiting.
Since we employed the LIMA methodology for developing heuristics

or the 𝛼N𝑝CP and the 𝛼N𝑝MP, we decided to implement the BP-VNS.
his VNS is a parallel version of the original metaheuristic proposed

n the seminal work of Mladenović and Hansen (1997), which is com-
osed of finding a new neighbor solution using one shaking procedure,
ollowed by one local search, which improves the found solution, and
hen deciding whether or not we move to the new neighborhood
Mladenović et al., 2020). These steps are repeated until a stop criterion
s met, e.g., maximum execution time.

Remember that in both the 𝛼N𝑝CP and the 𝛼N𝑝MP, each client is
ssigned to its 𝛼 nearest facilities. So, all the information we need
o represent a solution to these problems is the 𝑝 facilities. Let 𝑆 =
𝑣𝑖1 ,… , 𝑣𝑖𝑝} denote a solution, i.e., 𝑆 ⊂ 𝑉 is a set of 𝑝 vertices
facilities). A metric to differentiate two solutions 𝑆 and 𝑆′ is 𝜌(𝑆, 𝑆′) =
− |𝑆 ∩ 𝑆′

|, the number of facilities they do not share. So we say a
olution 𝑆′ is at a distance of 𝑘 from 𝑆 if 𝜌(𝑆, 𝑆′) = 𝑘. Then, all solutions
ying at a distance of 𝑘, with 𝑘 = 1,… , 𝑘max and 𝑘max ≤ 𝑝, are contained
n the neighborhood set 𝑘(𝑆).

The BP-VNS used in this work is depicted by Algorithm 1. This
ame structure is used in problems 𝛼N𝑝CP and 𝛼N𝑝MP. First, an initial
olution is generated and becomes the current solution 𝑆. Then, the
haker procedure is applied, and a new solution 𝑆′ ∈ 𝑘(𝑆) is found
ithin the neighborhood of size 𝑘 of the solution 𝑆. The local search

s then used to polish solution 𝑆′. If the cost of solution 𝑆′ is less
han that of the current best-known solution 𝑆, then 𝑆′ becomes 𝑆, the
eighborhood range 𝑘 is reset, and the search continues from the new
olution 𝑆. Otherwise, the neighborhood size increases, allowing it to
xplore 𝑘(𝑆) even further. This step is repeated while the execution
ime limit is not reached.

To calculate the cost of a given solution 𝑠, for the 𝛼N𝑝CP, we

ustomized the move evaluation and update procedures as well as the
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Algorithm 1: Basic Parallel Variable Neighborhood Search.
1 𝑆 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(); // generates a solution by

Algorithm 2
2 while time limit is not reached do
3 𝑘 ← 1;
4 while 𝑘 < 𝑘𝑚𝑎𝑥 do
5 𝑆′ ← 𝑠ℎ𝑎𝑘𝑒𝑟(𝑆, 𝑘); // finds solution 𝑆′ by using

Algorithm 4
6 𝑆′ ← 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆′); // improves 𝑆′ by applying

Algorithm 5
7 if 𝑐𝑜𝑠𝑡(𝑆′) < 𝑐𝑜𝑠𝑡(𝑆) then
8 𝑆 ← 𝑆′;
9 𝑘 ← 1;
10 else
11 𝑘 ← 𝑘 + 1;
12 end
13 end
14 end
15 return 𝑆;

corresponding data structures from Mladenović et al. (2003), and from
the work of Hansen and Mladenović (1997), for the 𝛼N𝑝MP. Because
these algorithms and data structures are well-known and easy to im-
plement, another advantage is that one can compute a solution’s cost
in 𝑂(𝑛 log 𝑛).

We opted to use parallelization to enhance the performance of
each component of our BP-VNS: the initial solution algorithm, the
shaker procedure, and the local search. This decision was driven by the
straightforward parallelization possibility each one of these methods
offers, and we focused on keeping them simple. These components are
explained in the following sections. The algorithm to generate an initial
solution is described in Section 3.1. The shaker procedure is detailed in
Section 3.2. The local search method is shown in Section 3.3. Further
implementation details are presented in Section 3.4.

3.1. Initial solution

Algorithm 2 shows the parallel procedure used in this work for gen-
erating initial solutions for both 𝛼N𝑝CP and 𝛼N𝑝MP. In this algorithm,
he best of 𝑟 solutions, where 𝑟 is a parameter of the number of threads,

is selected as the initial solution. Each thread 𝑖 starts from a solution 𝑆𝑖
enerated by Algorithm 3. This procedure returns a random solution for
alf of the threads and a solution generated by a constructive greedy
lgorithm for the other half. After generating a starting solution, a local
earch procedure improves it. We use the same local search detailed in
ection 3.3 to keep the algorithm simple. Note that each thread calls
he local search to improve its solution. So unlike the local search step
f Section 3.3, here, each local search procedure runs in serial, unique
o its thread. After all threads finish generating their solution, the best
olution 𝑆 among all 𝑆𝑖 solutions is returned as the initial one. The
nitial algorithm can be viewed as multiple parallel calls of the serial
ocal search starting from different solutions.

.2. Shaker

Hansen and Mladenović (1997) and Mladenović et al. (2003) use a
haker procedure where the facility to be opened is selected randomly,
nd then they select the best open facility to be closed regarding the
ne to be opened. To find the best facility deletion, they use the move
valuation algorithm to identify the facility to be closed and to compute
4

he new objective function value in 𝑂(𝑛). For the 𝑝CP, Mladenović et al. f
Algorithm 2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 procedure.
Output: Initial solution 𝑆.

1 𝑆 ← ∅;
2 for 𝑖 ← 1 to 𝑟 do in parallel // 𝑟 is the number of

threads
/* Each thread starts with a different

solution */
3 𝑆𝑖 ← 𝑏𝑢𝑖𝑙𝑑𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖); // calls Algorithm 3
4 𝑆𝑖 ← 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝑖); // calls single threaded

Algorithm 5
5 if 𝑐𝑜𝑠𝑡(𝑆𝑖) < 𝑐𝑜𝑠𝑡(𝑆) then
6 𝑆 ← 𝑆𝑖;
7 end
8 end
9 return 𝑆;

Algorithm 3: 𝑏𝑢𝑖𝑙𝑑𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 procedure.
Input: Thread index 𝑖.
Output: Solution 𝑆.

1 if 𝑖 is even then
2 return random solution 𝑆; // opens 𝑝 medians at

random
3 end
/* Otherwise, build a greedy solution as follows

*/
4 𝑆 ← 𝑣; // where 𝑣 ∈ 𝑉 is a vertex selected at

random
5 while |𝑆| < 𝑝 do
6 select a vertex 𝑢 ∈ 𝑉 ⧵ 𝑆 which minimizes the 𝑐𝑜𝑠𝑡(𝑆) and do
7 𝑆 ← 𝑆 ∪ 𝑢;
8 end
9 end
10 return 𝑆;

(2003) only considers opening the random facility if it is closer to the
critical vertex than the critical vertex’s current facility.

Since we design a parallel shaker algorithm, the approach of Mlade-
nović et al. (2003) may trap the BP-VNS in local optima, as we
select the best out of a number of candidates, which, in turn, were
selected greedily. Then, in our shaker, we first decided to remove the
requirement of only opening a facility if it improves the critical vertex
assignment, avoiding making such greedy decisions. To improve the
solution space exploration even further and simplify the heuristic, we
opted to make the shaker completely random, i.e., to open and close
facilities randomly. This very same shaker algorithm was successfully
used by Mladenović et al. (2020) in the obnoxious 𝑝MP.

Algorithm 4 depicts the shaker procedure, which, given a solution 𝑆
and the neighborhood size 𝑘, is used to find a new solution 𝑆′ ∈ 𝑘(𝑆).

he role of this method, as the name implies, is to disturb the current
olution and, thus, avoid being trapped in local optimum solutions. Like
lgorithm 2, we explore 𝑟 solutions in parallel and keep the best one.
o from the input solution 𝑆, each thread 𝑖 finds a solution 𝑆′

𝑖 ∈ 𝑘(𝑆)
y randomly swapping 𝑘 facility vertices with 𝑘 client vertices. In other
ords, each thread randomly selects a set of facilities 𝐽 = {𝑗1,… , 𝑗𝑘},

uch that 𝐽 ⊆ 𝑆, and a set of non-facility vertices 𝐿 = {𝑙1,… , 𝑙𝑘}, such
hat 𝐿 ⊆ 𝑉 ⧵ 𝑆, and swap them.

We decided to close and open 𝑘 facilities at random in our shaker
nstead of, for example, opening a facility at random and closing the
est one as in Hansen and Mladenović (1997) and Mladenović et al.
2003) for two reasons. First, using swaps is well-aligned with the LIMA
spect of our algorithm; we have not observed any significant gains
rom using a more expensive approach during our preliminary tests.
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Algorithm 4: 𝑠ℎ𝑎𝑘𝑒𝑟 procedure.
Input: Current solution 𝑆; neighborhood size 𝑘.
Output: New solution 𝑆′ ∈ 𝑘(𝑆).

1 𝑆′ ← 𝑆;
2 for 𝑖 ← 1 to 𝑟 do in parallel // 𝑟 is the number of

threads
3 select 𝑆′

𝑖 ∈ 𝑘(𝑆) and do // randomly opens and
closes 𝑘 facilities

4 if 𝑐𝑜𝑠𝑡(𝑆′
𝑖 ) < 𝑐𝑜𝑠𝑡(𝑆′) then

5 𝑆′ ← 𝑆′
𝑖 ;

6 end
7 end
8 end
9 return 𝑆′;

Second, this random approach helps the BP-VNS to escape local optima
more effectively than a greedy alternative.

3.3. Local search

We implemented a best improvement local search presented by
Algorithm 5. Given an input solution 𝑆′, this algorithm evaluates the
swap of every non-facility vertex with the best facility deletion concern-
ing the opened one. Then, the best swap is selected and performed.
This process systematically explores all solutions in 1(𝑆′) since it
opens every client vertex as a facility, one by one. If the best swap
improves 𝑆′, then this procedure continues refining solution 𝑆′ as long
as an improvement is found. If no improvement is detected, it stops and
returns 𝑆′. This procedure runs in parallel but, unlike Algorithms 2 and
4 where threads run independently, here, each thread handles a subset
of non-facility vertices. In other words, each thread explores a subset
of 1(𝑆′). Then, the best swap is the one selected to be performed.

To evaluate the swap between a facility vertex 𝑗 ∈ 𝑆′ and a
client vertex 𝑙 ∈ 𝑉 ⧵ 𝑆′, we adapted the move evaluation algorithm
from Mladenović et al. (2003), for the 𝛼N𝑝CP, and from Hansen and
Mladenović (1997), for the 𝛼N𝑝MP. With these algorithms, one can
compute, in 𝑂(𝑛) time complexity, the new objective function value if
the swap between 𝑗 and 𝑙 would occur.

Algorithm 5: 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ procedure.
Input: Candidate solution 𝑆′.
Output: Improved solution 𝑆′, if any.

1 do
2 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← false;
3 foreach 𝑆′′ ∈ 1(𝑆′) do in parallel // opens and

closes one facility
4 if 𝑐𝑜𝑠𝑡(𝑆′′) < 𝑐𝑜𝑠𝑡(𝑆′) then
5 𝑆′ ← 𝑆′′;
6 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← true;
7 end
8 end
9 while 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑;
10 return 𝑆′;

3.4. Implementation details

We now present additional implementation details. First, we ex-
plain, in Section 3.4.1, how we adapted some data structures from the
works of Hansen and Mladenović (1997) and Mladenović et al. (2003).
Secondly, in Section 3.4.2, we show details regarding the paralleliza-
tion of the initial solution, shaker, and local search procedures. Lastly,
in Section 3.4.3, we present the 𝛼N𝑝CP updated objective function used
n this work to improve the BP-VNS convergence further.
5

o

3.4.1. Data structures
As mentioned earlier, we have adapted the move evaluation and the

pdate algorithms of Mladenović et al. (2003) for the 𝛼N𝑝CP, and of
ansen and Mladenović (1997) for the 𝛼N𝑝MP, to evaluate facilities
andidates efficiently and to compute the solution cost quickly. Be-
ides other minor algorithmic details, the main difference between the
riginal versions of these two algorithms and our adaptations lies in
n auxiliary data structure denoted as 𝑐1 array. In the original move
valuation and update algorithms, each position 𝑖 of array 𝑐1 holds
he index of the nearest facility to each vertex 𝑖. However, in our case,
here vertices are assigned to 𝛼 facilities, the 𝑐1 array transforms into
𝑛 × 𝛼 matrix. Each row 𝑖 of this matrix corresponds to the 𝛼 facilities

ndices to which vertex 𝑖 is assigned.
To efficiently update a facility in a row 𝑖 of matrix 𝑐1, we keep each

ow’s 𝛼 facilities sorted into increasing order of distance from vertex
. This way, we can use binary search to remove or insert a facility.
owever, since 𝛼 is a parameter and its values used in this work are

mall (𝛼 ≤ 3), as large values are not common in practice (Sánchez-
ro et al., 2022), we can consider it a constant. Then, there is no
ifference in the asymptotical time complexity between the original
lgorithms and our customizations. Thus, the time complexity of the
ove evaluation remains at 𝑂(𝑛), and the time complexity of the update

lgorithm of 𝑂(𝑛 log 𝑛) remains the same.

.4.2. Parallelization
Three procedures of our heuristic are parallelized: the initial solu-

ion algorithm, the shaker, and the local search. The parallelization of
ach one was done independently. Fig. 1 depicts how multithreading is
mplemented in each of these algorithms.

In the initial solution algorithm, 𝑟 threads are spawned and assigned
starting solution generated by Algorithm 3. Then, each thread tries to

mprove its solution by applying a single-threaded version of the local
earch, described in Algorithm 5. Finally, the best solution among the
ones is selected as the initial solution. A mutex controls the read and
rite operations to avoid data racing when selecting the best solution,
shared resource between the threads.

The parallelization of the shaker is similar to that of the initial
olution algorithm. Here, 𝑟 copies of the current solution are created
nd assigned to 𝑟 threads. Then, each thread performs 𝑘 random swap
perations on its copy; that is, it selects 𝑘 random vertices to become
edians and 𝑘 random medians to be closed. The best among the 𝑟

olutions found by this method is returned. As in the initial solution
lgorithm, we use a mutex to avoid data racing on the best solution.

In the local search, the parallelization was done straightforwardly.
ince we swap every non-median vertex with its respective best median
o be closed, we can give each thread a subset of non-median vertices
o they can compute the swaps. Then, the workload of calling the
ove evaluation method |𝑉 ⧵ 𝑆| times is evenly divided between the
threads. Again, we use a mutex to control read and write operations

or finding the best swap.

.4.3. 𝛼N𝑝CP evaluation function
The 𝛼N𝑝CP inherited an issue from the 𝑝CP: several solutions have

he same cost. This problem is even worse in the 𝛼N𝑝CP since we
inimize the maximum distance between a vertex and its 𝛼th facility.
owever, this does not mean that solutions of the same cost are equal.
etween two solutions of the same cost, we can consider one of them
o be better than the other. For example, let 𝑆 and 𝑆′ be two solutions
here 𝜌(𝑆, 𝑆′) ≥ 1 and 𝑐𝑜𝑠𝑡(𝑆) = 𝑐𝑜𝑠𝑡(𝑆′) = 42. Also, consider that
′ has only one critical vertex, a vertex 𝑖 in which the distance to its
th facility equals 42, whereas 𝑆 has several critical vertices. It may
e easier to reduce the cost of 𝑆′ than to open new facilities and try
o reduce the cost of 𝑆. So, adding more information to the cost of an
N𝑝CP solution regarding the overall assignments is necessary instead

f just considering the critical element.
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Fig. 1. BP-VNS flowchart.

Based on this observation, we adapted the method of
orres-Jimenez et al. (2015). These authors proposed a heuristic for the
atrix bandwidth minimization problem (MBMP). The MBMP is also a
in–max problem, where the objective is to minimize the maximum
istance between a nonzero coefficient and the main diagonal of a
quare sparse symmetric matrix. There are also several solutions to
his problem that cost the same. Then, the authors adapted the idea
roposed by Rodriguez-Tello et al. (2008), which consists of counting
he number of occurrences of distances between all the other nonzero
oefficients and the main diagonal and then translating it to a value 𝛿 ∈
0, 1). To compute the value of 𝛿, they counted the number of distances
f each value and the maximum number of each distance. They used
hese values to represent a number in a positional numbering system
f variable base, also known as mixed radix. The value represented by
his numerical system is then normalized to a value in the range [0, 1)
6

and added to the objective function value. This adds more meaning to
the objective function value and helps to differentiate solutions with
the same bandwidth. Please refer to Rodriguez-Tello et al. (2008) and
Torres-Jimenez et al. (2015) for further details.

We can also use this method in the 𝛼N𝑝CP since they are both
roblems where the objective is to minimize the maximum distance. To
ompute 𝛿, the value to be added to the 𝛼N𝑝CP objective function value,
e use Algorithm 6 (Torres-Jimenez et al., 2015). In this algorithm,
lement 𝚍𝑖 of array 𝚍 represents the number of edges of length 𝑖 used
n solution 𝑆, i.e., the number of edges of length 𝑖 connecting a client
ertex to its 𝛼th facility. The 𝑖th value of array 𝚟 is the maximum
umber of edges of length 𝑖 that can be used in a solution plus one
ecause no edge is a possible value. Then, with both arrays 𝚍 and
one can represent the 𝛼N𝑝CP solution as a number in a positional

umbering system of variable base, where 𝚍 values can be interpreted
s digits and 𝚟 as the base in this numerical system. To compute
his value and then normalize it in the [0, 1) range, Torres-Jimenez
t al. (2015) proposed the Algorithm 6, where the normalized value
s represented by 𝛿.

Algorithm 6: 𝛼N𝑝CP alternative objective function.
Input: Solution 𝑆; arrays 𝚍 and 𝚟.
Output: 𝛼N𝑝CP cost of solution 𝑆.

1 𝛿 ← 0;
2 for 𝑖 ← 0 to 𝑐𝑜𝑠𝑡(𝑆) do
3 if 𝚍𝑖 > 0 then
4 𝛿 ←

𝛿+𝚍𝑖
𝚟𝑖

;
5 end
6 end
7 return 𝑐𝑜𝑠𝑡(𝑆) + 𝛿;

For example, consider two solutions 𝑆 and 𝑆′ depicted in Fig. 2.
In this example, 𝑛 = 7, 𝑝 = 2, 𝛼 = 2, 𝑐𝑜𝑠𝑡(𝑆) = 𝑐𝑜𝑠𝑡(𝑆′) = 42, and
𝜌(𝑆, 𝑆′) = 1. Note that solution 𝑆 has two critical vertices (two vertices
with a distance of 42 to their facilities), whereas solution 𝑆′ has only
one. So one could use Algorithm 6 to compute the value of 𝛿 of both
olutions and compare them.

To compute the 𝛿 values for solutions 𝑆 and 𝑆′, every edge of the
raph of the 𝛼N𝑝CP is counted to define the array 𝚟. Also, recall that
he absence of the edge in the solution is counted, too, so we add
ne to every 𝚟𝑖 value. As the array 𝚟 is related to the graph and not
o a particular solution, then, for solutions 𝑆 and 𝑆′, we have the
ame following 𝚟 values: there is one edge of distance 21 in the graph,
.e., 𝚟21 = 2 (the edge plus one to represent the absence of such edge in
solution); there is one edge of distance 22 in the graph, i.e., 𝚟22 = 2;
24 = 2, 𝚟30 = 2, 𝚟35 = 2, and 𝚟42 = 3 (since there are two edges of length
2 in solution 𝑆, plus one to represent the absence of such edge in a
olution). On the other hand, array 𝚍 is specific to each solution, and
or solution 𝑆 we have: one edge of distance 21 used in the solution,
.e., 𝚍21 = 1; one edge of distance 22 used in the solution, i.e., 𝚍22 = 1;
30 = 1, 𝚍42 = 2. For solution 𝑆′ we have the following: 𝚍21 = 1, 𝚍22 = 1,
24 = 1, 𝚍35 = 1, 𝚍42 = 1. Then, using Algorithm 6, we get 𝛿 = 0.958 for
olution 𝑆 and 𝛿 = 0.646 for solution 𝑆′. Therefore, solution 𝑆′ is better
han 𝑆 as 42.646 < 42.958. Indeed, it is easier to improve solution 𝑆′

ost because it has only one critical vertex.
Computing the value of 𝛿 for each solution can be done efficiently

n 𝑂(𝐷max), where 𝐷max = max𝑖,𝑗∈𝑉 𝑑𝑖𝑗 , within the move evaluation and
pdate algorithms, significantly improving the amount of information
he algorithm considers. As demonstrated in the next section, this
ew updated objective function improves convergence and helps the
lgorithm achieve better solutions.

. Computational experiments and analysis

We now describe the computational experiments performed to as-
ess the performance of our methods. All algorithms described were
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implemented in 𝐶++ language and compiled with 𝑔++ compiler, version
11.3.0. We used Gurobi’s 𝐶++ API, version 10.0.3 for solving the integer
rograms. The preliminary tests of Section 4.1 were executed on a
omputer equipped with an Intel® Core™ i9-13900K processor with 32
hreads at 3.0 GHz and 128 GB of RAM. All the remaining experiments
ere conducted on a computing cluster based on AMD EPYC™ Rome
532 processors running at 2.4 GHz using 24 threads and up to 96 GB
f RAM. All instances described below and their detailed solutions are
vailable at www.leandro-coelho.com/VNS-location-problems and in
he appendices.

For the tests with both 𝛼N𝑝CP and 𝛼N𝑝MP, we used the well-
nown OR-library instances (Beasley, 1985, 1990). This set contains
0 instances with sizes ranging between 100 and 900 vertices. These
nstances are composed of connected weighted non-complete graphs.
o transform these graphs into complete ones, we used the Floyd–
arshall algorithm to compute the shortest paths between every pair

f vertices, as is done in the literature. Following Sánchez-Oro et al.
2022), we also used 77 instances derived from the TSPLIB (Reinelt,
991) for the tests with the 𝛼N𝑝CP and, for each of them, we tested
sing 𝛼 ∈ {1, 2, 3}. For the 𝛼N𝑝MP tests, we used 𝛼 ∈ {10, 20} and
ompared our VNS with the BIMM heuristic (Panteli et al., 2021).

Since we use the LIMA methodology, the only parameters our
euristic uses are the 𝑘max, for which we used 𝑘max = 𝑝 (Mladenović
t al., 2020), the number of threads 𝑟, which we set to 𝑟 = 24 for the
xperimental tests, and the execution time limit, which we used 30 min
or the experimental tests. Also, we set an additional stopping criterion
or when our heuristic finds the best-known solution or improves it.
n addition, we set 2 h as the execution time limit for the commercial
olver to solve the models.

The remaining of the section is organized as follows. In Section 4.1
e show the preliminary tests carried out to evaluate the compo-
ents of our BP-VNS. The 𝛼N𝑝CP experimental results are presented in
ection 4.2, and the 𝛼N𝑝MP ones are presented in Section 4.3.

.1. Preliminary tests

Preliminary tests to evaluate some key features of our BP-VNS
re presented in this section. We tested our heuristic on the first
0 instances of the OR-library, which have 𝑛 ∈ {100, 200} and 𝑝 ∈
5, 10, 20, 33, 40, 67}. In all tests of this section, we used 𝛼 = 2 and 60 s
s the time limit of the BP-VNS. In addition, as the 𝛼N𝑝CP and 𝛼N𝑝MP
ersions of our heuristic share the same main structure, we performed
he preliminary tests only for the 𝛼N𝑝CP. This section is structured as
ollows. The impact of parallelism is analyzed in Section 4.1.1, tests
o evaluate the shaker functions are shown in Section 4.1.2, and the
nes to evaluate the usage of the updated 𝛼N𝑝CP objective function
re presented in Section 4.1.3.

.1.1. Evaluation of parallelism
In this section, we assess the parallelism in our BP-VNS, described

n Algorithm 1. First, we tested how the number of threads impacts
he execution times of our heuristic by computing the speedup of
he multithreading version against the serial one. To compute the
7

peedups properly, we opted to only measure the execution time of the f
ocal search, as a single iteration of this algorithm always evaluates
𝑉 | − 𝑝 customer-median swaps. So, the workload of these swaps is
venly divided between the threads. On the other hand, this does not
appen with the initial solution and shaker algorithms, as in these
arallel procedures, the threads run independently and do not divide
he workload but explore different regions of the solution space. Then,
e could not directly compute a speedup.

Fig. 3 shows the execution times (on the left graph) and the
peedups (on the right graph) of the local search algorithm with 1, 2,
, 8, 12, 16, 20, 24, and 32 threads. To obtain these results, for each
umber of threads, we got the total execution time of 1000 runs of the
ocal search algorithm on the pmed40 instance from the OR-library.

Parallelizing the local search significantly improves its execution
ime, as it is reduced from 13.75 s (single-threaded) to 1.02 s (32
hreads). In terms of speedup, this indicates that our parallel algorithm
an run up to 13.48 times faster than its serial version. As detailed at
he beginning of Section 4, we have used machines from a computing
luster to run the tests with the 𝛼−neighbor problems. Since most
achines of this cluster have 48 threads, we decided to use 24 threads

o run two tests per machine, speeding up the time required to finish
ur tests and making a sensible use of variable resources. Also, as one
an note in Fig. 3, the gain of using 32 threads over 24 threads is
egligible (the execution time is reduced from 1.03 s to 1.02 s, and
he speedup is improved from 13.40 to 13.48). Hence, 24 threads is a
easonable choice.

To evaluate how parallelism helps our heuristic’s convergence, we
ested two versions: the BP-VNS running on a single thread and the
arallel BP-VNS where 24 threads are used. Table 1 shows these tests’
esults. In this table, the first three columns show the instances’ names,
he number of vertices, and the number of medians. The optimum (opt)
f each instance is shown in the fourth column. Then, we present for
oth BP-VNS versions the best solution found, the iteration in which the
est solution was found (iter𝑏𝑒𝑠𝑡), the total number of iterations (#iter),
nd the time, in seconds, in which the best solution was found (t𝑏𝑒𝑠𝑡 (s)).

As one can note, the parallel version obtained the optimum values
n all instances. On the other hand, the single-thread BP-VNS did not
ind the optimum of instances pmed3, pmed4, pmed9, and pmed10.
he parallel initial solution algorithm helps the heuristic convergence
s it is a multistart procedure, so the BP-VNS starts from the best
olution out of 𝑟 candidates. The (parallel) BP-VNS found the best
olution much earlier than the single-thread version, as one can see
n columns iter𝑏𝑒𝑠𝑡 and t𝑏𝑒𝑠𝑡 (s). Indeed, in some instances, as for pmed1
nd pmed6, BP-VNS found the optimum at iteration 0, that is, in the
nitial algorithm step. Also, parallelism helps the heuristic explore the
olution space faster as multiple solutions are visited in each call of the
haker procedure. Exploring different neighborhoods more efficiently
elps BP-VNS escape from local optima, which can explain why the
arallel version of BP-VNS found the optimum for all instances. In
ddition, the parallel local search algorithm is much faster than the
ingle thread version, as each thread explores a subspace of 1(𝑆).
ince the local search procedure is the most expensive step in our BP-
NS, parallelizing it helps decrease the computational burden. This
an be noticed in the total number of iterations, where BP-VNS ran
pproximately eight to ten times more iterations than the single-thread
ersion. Then, for these reasons, we decided to use the BP-VNS version

or the remainder of the paper.

http://www.leandro-coelho.com/VNS-location-problems
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Fig. 3. Execution times and speedups of the parallel local search algorithm running with different numbers of threads.
Table 1
Comparison between the single-thread and the parallel versions of BP-VNS (𝛼N𝑝CP, with 𝛼 = 2).

Instance n p opt Single-thread BP-VNS BP-VNS

Best iter𝑏𝑒𝑠𝑡 #iter t𝑏𝑒𝑠𝑡 (s) Best iter𝑏𝑒𝑠𝑡 #iter t𝑏𝑒𝑠𝑡 (s)

pmed1 100 5 150 150 72 49 539 0.09 150 0 475 687 0.01
pmed2 100 10 121 121 2 965 56 666 3.24 121 674 469 980 0.11
pmed3 100 10 121 123 814 56 075 0.90 121 4210 447 565 0.65
pmed4 100 20 97 98 1 181 69 843 1.04 97 1067 483 936 0.18
pmed5 100 33 63 63 17 705 96 636 11.14 63 160 427 687 0.04
pmed6 200 5 99 99 6 954 12 429 33.57 99 0 159 187 0.04
pmed7 200 10 80 80 8 672 13 262 39.23 80 7 162 246 0.07
pmed8 200 20 70 70 839 14 520 3.60 70 79 157 030 0.12
pmed9 200 40 49 50 1 108 18 074 3.88 49 751 182 220 0.44
pmed10 200 67 28 29 11 503 25 421 27.29 28 2025 199 115 0.68
Table 2
Comparison between BP-VNS with the greedy and the random shakers (𝛼N𝑝CP, with 𝛼 = 2).

Instance n p opt Greedy shaker Random shaker

Best iter𝑏𝑒𝑠𝑡 #iter t𝑏𝑒𝑠𝑡 (s) Best iter𝑏𝑒𝑠𝑡 #iter t𝑏𝑒𝑠𝑡 (s)

pmed1 100 5 150 150 0 457 386 0.01 150 0 475 687 0.01
pmed2 100 10 121 121 810 430 671 0.17 121 674 469 980 0.11
pmed3 100 10 121 121 19 581 415 200 2.85 121 4210 447 565 0.65
pmed4 100 20 97 98 885 478 483 0.16 97 1067 483 936 0.18
pmed5 100 33 63 63 100 426 113 0.03 63 160 427 687 0.04
pmed6 200 5 99 99 0 150 220 0.05 99 0 159 187 0.04
pmed7 200 10 80 80 19 161 231 0.09 80 7 162 246 0.07
pmed8 200 20 70 70 161 142 285 0.21 70 79 157 030 0.12
pmed9 200 40 49 49 1 879 169 106 0.72 49 751 182 220 0.44
pmed10 200 67 28 28 5 757 176 213 1.86 28 2025 199 115 0.68
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4.1.2. Evaluation of shaker functions
Recall that we designed a random shaker unlike the greedy shaker

function initially proposed by Hansen and Mladenović (1997) and
Mladenović et al. (2003). Table 2 shows the tests performed to compare
BP-VNS using the greedy approach and with the random shaker. The
table follows the same structure of Table 1. Note that the results of
the random version are exactly the same as presented in Table 1, as
the results presented earlier are related to our complete BP-VNS, which
uses the random shaker.

Since our shaker procedure is parallelized, the BP-VNS with the
greedy one might be trapped in local optima more often than the
random shaker. Once again, our proposed random shaker performs best
as the greedy shaker procedure cannot find all optimum. Moreover, the
version with the greedy shaker took longer to find the optimum values
in almost all instances, sometimes significantly (2.85 s vs. 0.65 s), as
one can see from the iteration and time in which the best solutions were
found in Table 2. Also, since in the random shaker there is no extra
𝑂(𝑛) computation of the move evaluation algorithm, BP-VNS could run
faster and, therefore, the total number of iterations of the heuristic with
random shaker is slightly larger than ones achieved by the BP-VNS with
greedy shaker. We decided to employ the random shaker based on these
8

results and its simplicity. s
4.1.3. Evaluation of the updated 𝛼N𝑝CP objective function
In this section, we evaluate our BP-VNS (Algorithm 1) with and

without the updated 𝛼N𝑝CP objective function, described in
Section 3.4.3. Note that this new objective function is used only in the
𝛼N𝑝CP, whereas the features tested in Sections 4.1.1 and 4.1.2 are used
in the BP-VNS applied to both 𝛼N𝑝CP and 𝛼N𝑝MP.

In Table 3, the results from columns updated OF are the same as
he ones from Tables 1 and 2, as our BP-VNS uses the updated 𝛼N𝑝CP
bjective function. However, the results from columns regular OF refer
o the BP-VNS version with the regular 𝛼N𝑝CP objective function.

As one can note from the results of Table 3, the new objective
unction significantly helps BP-VNS achieve better results as the version
ith the regular objective function could not obtain optimum values

n instances pmed4, pmed9, and pmed10, and some of these by a large
ap. Also, note that the BP-VNS with the regular objective function took
uch longer to find the best solutions since the update objective func-

ion helps BP-VNS move to more promising neighborhoods as it adds
ore information to solutions costs. Even if the calculation of the new

bjective function adds a step of time complexity O(𝐷max), this time is
learly offset by the gains in terms of information embedded in the so-
ution algorithm, allowing it to explore more promising neighborhoods
nd ultimately find better solutions faster. This development shows a
uge potential for this problem and can help improve convergence and
olution quality in other types of problems as well.
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Table 3
Comparison between BP-VNS with the regular 𝛼N𝑝CP objective function and the updated one (𝛼N𝑝CP, with 𝛼 = 2).

Instance n p opt Regular OF Updated OF

Best iter𝑏𝑒𝑠𝑡 #iter t𝑏𝑒𝑠𝑡 (s) Best iter𝑏𝑒𝑠𝑡 #iter t𝑏𝑒𝑠𝑡 (s)

pmed1 100 5 150 150 0 372 730 0.01 150 0 475 687 0.01
pmed2 100 10 121 121 524 354 236 0.11 121 674 469 980 0.11
pmed3 100 10 121 121 5 148 419 403 0.84 121 4210 447 565 0.65
pmed4 100 20 97 98 2 787 370 127 0.50 97 1067 483 936 0.18
pmed5 100 33 63 63 966 411 485 0.15 63 160 427 687 0.04
pmed6 200 5 99 99 0 123 946 0.03 99 0 159 187 0.04
pmed7 200 10 80 80 183 139 211 0.12 80 7 162 246 0.07
pmed8 200 20 70 70 44 606 131 411 23.36 70 79 157 030 0.12
pmed9 200 40 49 51 31 908 134 805 14.12 49 751 182 220 0.44
pmed10 200 67 28 34 4 561 191 058 1.44 28 2025 199 115 0.68
Table 4
𝛼N𝑝CP summary results on OR-library and TSPLIB instances.

Instance set 𝛼 MIP solver GRASP-SO (Sánchez-Oro et al., 2022) Mousavi (2023) BP-VNS

Best #bks t (s) Best #bks Gap (%) t𝑏𝑒𝑠𝑡 (s) Best #bks Gap (%) t𝑏𝑒𝑠𝑡 (s) Best #bks Gap (%) t𝑏𝑒𝑠𝑡 (s)

OR-lib
1 37.33 40 366.47 – – – – 37.33 40 0.00 0.09 37.33 40 0.00 34.54
2 54.95 22 4309.75 – – – – 45.55 38 0.24 3.39 45.55 38 0.30 4.19
3 60.98 18 4977.89 – – – – – – – – 51.10 40 0.00 7.55

TSPLIB
1 2153.49 55 2920.51 505.43 11 5.63 653.16 – – – – 481.70 60 0.29 397.43
2 4515.61 33 4486.92 773.35 5 8.36 990.00 – – – – 732.60 76 0.00 404.96
3 4881.12 27 4687.35 997.18 0 7.46 1147.78 – – – – 945.06 74 0.00 445.66
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4.2. Performance evaluation on the 𝛼N𝑝CP

In this section, we compare our method with the best-known 𝛼N𝑝CP
olution values from the literature. Specifically, for the 40 OR-library
nstances with 𝛼 = {1, 2}, we compare the results of our BP-VNS
gainst the ones from the work of Mousavi (2023). For these instances,
e also tested with 𝛼 = 3, and compared our results with the ones
btained by the commercial solver solving model (1a)–(1f). For the
7 TSPLIB instances, we used 𝛼 = {1, 2, 3} and compared our results
gainst the ones of the GRASP-SO heuristic (Sánchez-Oro et al., 2022).
ince we extracted the results of the heuristic of Mousavi (2023) and of
he GRASP-SO from their papers, and to provide a fair computational
omparison, we have approximated their running times by dividing the
eported values by 1.5 and 0.85 (PassMark Software Pty Ltd, 1998),
espectively.

Table 4 summarizes the results of the tests on the OR-library and
SPLIB instances. This table shows the instance set names and the 𝛼
alues in the first two columns. Each row of the OR-library instances
et corresponds to the average results of 40 instances, and each row
f the TSPLIB to the average of 77 instances. We present for the MIP
olver and the heuristics the average of the best solutions values (best),
he number of best-known solutions (#bks) found, and the average of
he running times (t (s)). Note that since the stopping criterion of our
P-VNS is the execution time limit of 30 min, we show for this heuristic
he time when the best solution was found (t𝑏𝑒𝑠𝑡 (s)). In addition,
e present the average percentage gap (gap (%)) related to the best-
nown solutions. The detailed results of these tests are presented in
ppendix A.

Regarding the OR-library instances, MIP solver found optimal so-
utions in all instances with 𝛼 = 1, and so did our method and the
euristic of Mousavi (2023). Considering 𝛼 = 2, the commercial solver
ound 22 best solutions, all proven optimal. From these 22 solutions,
ur BP-VNS and the heuristic of Mousavi (2023) obtained 20 optimal
nes. From the two solutions where both heuristics did not achieve
he optima, one is the same instance (pmed24), and the other one is
ifferent for each heuristic (pmed25 for BP-VNS and pmed19 for the
euristic of Mousavi, 2023). In these cases, the difference to the optimal
olutions was just one unit in all cases, but since the optimal solution
alue of pmed25 (15) is less than the pmed19 one (24), the relative
ap of this one unit is greater in the pmed25 case. This is why the
9

verage gap of BP-VNS was slightly larger than the one of the algorithm (
f Mousavi (2023). Regarding 𝛼 = 3, BP-VNS found the best solutions
in all 40 instances, and the commercial solver obtained 18 optimal
solutions. Note that Mousavi (2023) did not test their algorithm with
this configuration.

Considering all results in the OR-library instances with 𝛼 = 1, 2, 3,
he BP-VNS presented an average improvement gap of 6.10% compared
ith results from the literature and the commercial solver. Also, our
euristic could find 22 new best-known solutions, where the average
mprovement in these cases was 34.26%.

Table 4 shows that our BP-VNS outperformed the MIP solver and
he GRASP-SO on the TSPLIB instances with all 𝛼 values, dominating
hat algorithm. With 𝛼 = 1, the commercial solver obtained 55 best
olutions, of which 52 are optimal, the GRASP-SO obtained 11 best
nes, and our heuristic found 60 best solutions out of the 77 instances.
ith 𝛼 = 2 and 𝛼 = 3, the difference in terms of solution quality

etween the proposed BP-VNS and the other two solution methods was
ven more pronounced. For 𝛼 = 2, BP-VNS achieved 76 best solutions
ut of the 77 instances, whereas the commercial solver and GRASP-
O found 33 and 11 best solutions, respectively. Similarly, for 𝛼 = 3,
P-VNS excelled by obtaining 74 best solutions, while the commercial
olver achieved 27 best solutions, and the GRASP-SO found none. On
he 231 instances of the TSPLIB set, our heuristic obtained an overall
mprovement gap of 2.47% compared with the results of the literature
nd the commercial solver. Moreover, the BP-VNS found 115 new
est-known solutions with an average improvement of 5.30%.

Considering computational times, even though our heuristic ran for
p to 30 min in all instances, finding the best solutions in both instances
ets required much less time. In the OR-library, although the heuristic
f Mousavi (2023) is fast, BP-VNS could find the same solutions found
y this heuristic, and our method obtained all optimal solutions with
= 1 in less runtime when compared to the MIP solver. Moreover, our
ethod outperformed it with 𝛼 = 2 and 𝛼 = 3, finding the best solutions
ith significantly less execution time. Regarding the tests in the TSPLIB

nstances, BP-VNS could find better solutions in, on average, less than
alf of the GRASP-SO runtime and in much less execution time than
he MIP solver.

To visualize these performances graphically, we show in Figs. 4 and
the box plot containing the distribution of the solution values for all

nstances and algorithms described. Fig. 4 shows the results for the OR-
ibrary instances where our algorithm is equivalent to that of Mousavi
2023) for 𝛼 = 1 and 𝛼 = 2, and both are significantly better than the
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Table 5
𝛼N𝑝CP Pairwise Wilcoxon Test for the OR-library instances (𝑝-values shown; significant difference between the performance of the algorithms if less than 0.05).
𝛼 Method Best solution values Gap (%) t (s)

Mousavi (2023) BP-VNS Mousavi (2023) BP-VNS Mousavi (2023) BP-VNS

1 MIP solver 1.00 1.00 1.00 1.00 1.82 ⋅ 10−12 7.14 ⋅ 10−7

Mousavi (2023) – 1.00 – 1.00 – 5.83 ⋅ 10−8

2 MIP solver 1.50 ⋅ 10−4 1.50 ⋅ 10−4 9.54 ⋅ 10−6 9.54 ⋅ 10−6 1.82 ⋅ 10−12 1.82 ⋅ 10−12

Mousavi (2023) – 1.00 – 1.00 – 0.05

3 MIP solver – 4.30 ⋅ 10−5 – 4.77 ⋅ 10−7 – 1.82 ⋅ 10−12
Table 6
𝛼N𝑝CP Pairwise Wilcoxon Test for the TSPLIB instances (𝑝-values shown; significant difference between the performance of the algorithms if
less than 0.05).
𝛼 Method Best solution values Gap (%) t (s)

GRASP-SO BP-VNS GRASP-SO BP-VNS GRASP-SO BP-VNS

1 MIP solver 0.12 3.90 ⋅ 10−3 0.15 1.71 ⋅ 10−3 4.87 ⋅ 10−5 1.43 ⋅ 10−10

GRASP-SO – 1.68 ⋅ 10−12 – 1.68 ⋅ 10−12 – 5.05 ⋅ 10−3

2 MIP solver 6.86 ⋅ 10−5 1.84 ⋅ 10−8 1.94 ⋅ 10−5 1.34 ⋅ 10−8 4.70 ⋅ 10−14 4.17 ⋅ 10−14

GRASP-SO – 1.69 ⋅ 10−13 – 1.69 ⋅ 10−13 – 2.43 ⋅ 10−9

3 MIP solver 1.01 ⋅ 10−7 5.12 ⋅ 10−10 6.21 ⋅ 10−8 7.36 ⋅ 10−10 7.18 ⋅ 10−14 4.88 ⋅ 10−14

GRASP-SO – 5.38 ⋅ 10−14 – 2.51 ⋅ 10−14 – 6.44 ⋅ 10−10
𝑝
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Fig. 4. Box plot of the 𝛼N𝑝CP solution values of all methods on the OR-library
instances.

MIP solver for 𝛼 = 2. When 𝛼 = 3, no results are reported by Mousavi
(2023), and we can see a very large difference between the results of
our method and the ones from the MIP solver. In Fig. 5, we show that
for the TSPLIB instances, the differences are even larger and point to a
better performance of our BP-VNS.

To verify if there is a significant difference between the average
performance of these methods, we computed the Pairwise Wilcoxon
Test, shown in Tables 5 and 6. These tables show the 𝑝-values related
to the best solution costs, the gap (%), and the runtimes. A 𝑝-value less
than 0.05 allows us to refute the null hypothesis, stating that there is
a significant difference between the mean of the paired observations.

In Table 5, all 𝑝-values for the best solution and the gap for 𝛼 = 1
are greater than 0.05, implying that there is no significant difference
between these results, as the MIP solver, the heuristic of Mousavi
(2023), and our method obtained optimal solutions for all instances.
The same can be concluded for 𝛼 = 2 between the results of the
Mousavi (2023)’s heuristic and the BP-VNS. On the other hand, when
these results are compared with those of the MIP solver, we confirm a
significant difference as both methods outperformed the MIP solver. A
similar conclusion can be drawn from the 𝑝-values for 𝛼 = 3.

Table 6 shows the results of the Pairwise Wilcoxon Test for the
TSPLIB instances. As one can note, there is a statistically significant
difference between the results of our heuristic and the results of the
other methods in all scenarios, as the 𝑝-values are all less than 0.05.

4.3. Performance evaluation on the 𝛼N𝑝MP

The results of the tests on the 𝛼N𝑝MP are presented in this section.
10

Here, we compare the results of our BP-VNS against the MIP solver and h
those of the BIMM heuristic (Panteli et al., 2021). Following Panteli
et al. (2021), instead of using the original number of medians 𝑝 from
each instance, we used two values of 𝑝 for every OR-library instance:
𝑝 = 10 and 𝑝 = 20. Moreover, to properly compare the results, we
only used one value of 𝛼 for each value of 𝑝. More specifically, when
= 10 we use 𝛼 = 5, and when 𝑝 = 20 we set 𝛼 = 10. Then, we solved
odel (2a)–(2e) with a commercial solver and ran our BP-VNS on all
0 OR-library instances derived by using the values of 𝑝 and 𝛼 as just
escribed.

Table 7 has a structure similar to the one presented in Section 4.2
nd summarizes the results on the OR-library instances. In Table 7,
ach row corresponds to an average of 40 instances, where the first two
olumns show the 𝑝 and 𝛼 values used. Then, for each pair of 𝑝 and 𝛼,
e present the results for the commercial solver, the BIMM heuristic,
nd our BP-VNS. The table shows the average of the best solutions
osts, the number of optimal solutions obtained by each method (#opt),
nd the running times in seconds. Again, we approximated the running
imes of the BIMM by dividing its reported runtime by 1.2 (PassMark
oftware Pty Ltd, 1998) as they were extracted from the work of
anteli et al. (2021). We also show the gap related to the best-known
olutions, which in this case are the solutions from the solver, since the
ommercial solver could prove optimality for all instances. The detailed
esults of these tests are presented in Appendix B.

The results indicate that the proposed BP-VNS outperformed the
IMM heuristic regarding solution quality and computational perfor-
ance in the two sets of 40 instances. Indeed, as the detailed results

f Appendix B show, our heuristic found better solutions than the
nes found by the BIMM in all instances, dominating that algorithm.
oreover, our method found an optimal solution for all of the 80

nstances. On the other hand, the BIMM could not find any optimum,
ith a gap of more than 2.5% and an adjusted runtime more than 6.7

imes that of our BP-VNS heuristic.
Although our heuristic ran for up to 30 min, the optimal solutions

ere obtained in much less time, as noted from the t𝑏𝑒𝑠𝑡 (s) column. In
act, all BKS were found in less than 4 s. In addition, the average run
ime of BP-VNS for finding the best solutions was much faster than the
nes from the commercial solver required to prove optimality.

Fig. 6 shows the box plot containing the distribution of the solution
alues of the methods compared for all OR-library instances. Fig. 6(a)
resents the solutions value of the 𝑎N𝑝MP with 𝑝 = 10 and 𝛼 = 5 and
hose of 𝑝 = 20 and 𝛼 = 10 are shown in Fig. 6(b). As one can note
rom these figures, our algorithm achieved better results than the BIMM

euristic and obtained the same optimal solutions as those from the MIP
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Fig. 5. Box plot of the 𝛼N𝑝CP solution values of all methods on the TSPLIB instances.
Fig. 6. Box plot of the 𝛼N𝑝MP solution values of all methods on the OR-library instances.
Table 7
𝛼N𝑝MP summary results on OR-library instances.
p 𝛼 MIP solver BIMM (Panteli et al., 2021) BP-VNS

Best #opt t (s) Best #opt Gap (%) t (s)a Best #opt Gap (%) t𝑏𝑒𝑠𝑡 (s)

10 5 55 807.95 40 138.93 57 046.05 0 2.28 1.53 55 807.95 40 0.00 0.24
20 10 112 785.10 40 172.42 115 884.23 0 2.82 3.32 112 785.10 40 0.00 0.52

Average 84 296.53 40 155.67 86 465.14 0 2.55 2.43 84 296.53 40 0.00 0.38

a Original running times divided by 1.2, an approximation obtained from PassMark Software Pty Ltd (1998).
Table 8
𝛼N𝑝MP Pairwise Wilcoxon Test for the OR-library instances (𝑝-values shown; significant difference between the performance of the algorithms
if less than 0.05).
𝑝 𝛼 Method Best solution values Gap (%) t (s)

BIMM BP-VNS BIMM BP-VNS BIMM BP-VNS

10 5 MIP solver 1.82 ⋅ 10−12 1.00 3.70 ⋅ 10−8 1.00 1.82 ⋅ 10−12 1.82 ⋅ 10−12

BIMM – 1.82 ⋅ 10−12 – 3.70 ⋅ 10−8 – 3.76 ⋅ 10−6

20 10 MIP solver 1.82 ⋅ 10−12 1.00 3.70 ⋅ 10−8 1.00 3.64 ⋅ 10−12 1.82 ⋅ 10−12

BIMM – 1.82 ⋅ 10−12 – 3.70 ⋅ 10−8 – 4.53 ⋅ 10−6
c
t
s

solver in all 80 instances tested. However, the BP-VNS is significantly
faster than both methods.

Table 8 shows the results of the Pairwise Wilcoxon Test for the OR-
library instances. There is a statistically significant difference between
the results of our heuristic and those of the BIMM in all scenarios,
as the 𝑝-values are all less than 0.05. This corroborates the previous
discussion since our BP-VNS outperformed the BIMM heuristic in all
instances. On the other hand, there is no significant difference between
the solution costs of our method and the ones from the MIP solver,
as both achieved optimal solutions in all 80 instances. However, our
heuristic is significantly faster than the commercial solver.
11

a

5. Conclusions

This paper presented an effective Basic Parallel VNS for the 𝛼N𝑝CP
and the 𝛼N𝑝MP. Using the LIMA methodology, we have developed this
heuristic using straightforward and user-friendly algorithmic compo-
nents and adapting the robust and well-known algorithms of Hansen
and Mladenović (1997) for the 𝛼N𝑝MP, and Mladenović et al. (2003)
for the 𝛼N𝑝CP. Computational results indicate that the 𝛼N𝑝C problem
ontains many symmetrical solutions, where only one edge determines
he cost of the solution, and all remaining edges appearing in the
olution are not considered. To overcome this problem and to give the

lgorithm more information about the whole solution, we have adapted
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Table A.9
𝛼N𝑝CP results for the OR-library instances with 𝛼 = 1.

Instance n p MIP solver Mousavi (2023) BP-VNS

Best Gap𝑜𝑝𝑡 (%) t (s) Best Gap (%) t (s)a Best Gap (%) t𝑏𝑒𝑠𝑡 (s)

pmed1 100 5 127 0.00 4.93 127 0.00 0.00 127 0.00 0.02
pmed2 100 10 98 0.00 2.86 98 0.00 0.00 98 0.00 0.01
pmed3 100 10 93 0.00 2.85 93 0.00 0.01 93 0.00 0.46
pmed4 100 20 74 0.00 1.48 74 0.00 0.01 74 0.00 0.03
pmed5 100 33 48 0.00 1.15 48 0.00 0.00 48 0.00 0.01
pmed6 200 5 84 0.00 21.16 84 0.00 0.00 84 0.00 0.02
pmed7 200 10 64 0.00 15.46 64 0.00 0.00 64 0.00 0.05
pmed8 200 20 55 0.00 15.32 55 0.00 0.00 55 0.00 0.06
pmed9 200 40 37 0.00 6.09 37 0.00 0.00 37 0.00 0.08
pmed10 200 67 20 0.00 4.61 20 0.00 0.01 20 0.00 0.05
pmed11 300 5 59 0.00 45.49 59 0.00 0.05 59 0.00 0.03
pmed12 300 10 51 0.00 40.68 51 0.00 0.01 51 0.00 0.13
pmed13 300 30 36 0.00 23.83 36 0.00 0.02 36 0.00 0.18
pmed14 300 60 26 0.00 14.35 26 0.00 0.01 26 0.00 0.25
pmed15 300 100 18 0.00 11.17 18 0.00 0.00 18 0.00 0.12
pmed16 400 5 47 0.00 43.29 47 0.00 0.00 47 0.00 0.06
pmed17 400 10 39 0.00 102.43 39 0.00 0.00 39 0.00 0.17
pmed18 400 40 28 0.00 39.54 28 0.00 0.05 28 0.00 1.25
pmed19 400 80 18 0.00 33.28 18 0.00 0.41 18 0.00 109.08
pmed20 400 133 13 0.00 24.82 13 0.00 0.61 13 0.00 1.46
pmed21 500 5 40 0.00 128.51 40 0.00 0.00 40 0.00 0.12
pmed22 500 10 38 0.00 652.15 38 0.00 0.02 38 0.00 0.32
pmed23 500 50 22 0.00 92.78 22 0.00 0.27 22 0.00 43.18
pmed24 500 100 15 0.00 55.61 15 0.00 0.04 15 0.00 0.99
pmed25 500 167 11 0.00 48.95 11 0.00 0.05 11 0.00 0.62
pmed26 600 5 38 0.00 1414.87 38 0.00 0.00 38 0.00 0.17
pmed27 600 10 32 0.00 254.74 32 0.00 0.00 32 0.00 0.33
pmed28 600 60 18 0.00 115.44 18 0.00 0.09 18 0.00 14.64
pmed29 600 120 13 0.00 108.06 13 0.00 0.03 13 0.00 1.71
pmed30 600 200 9 0.00 93.71 9 0.00 0.63 9 0.00 182.49
pmed31 700 5 30 0.00 412.46 30 0.00 0.00 30 0.00 0.23
pmed32 700 10 29 0.00 1468.32 29 0.00 0.01 29 0.00 0.56
pmed33 700 70 15 0.00 321.06 15 0.00 0.53 15 0.00 429.87
pmed34 700 140 11 0.00 104.73 11 0.00 0.01 11 0.00 1.70
pmed35 800 5 30 0.00 882.36 30 0.00 0.01 30 0.00 0.26
pmed36 800 10 27 0.00 1178.22 27 0.00 0.03 27 0.00 0.57
pmed37 800 80 15 0.00 539.59 15 0.00 0.12 15 0.00 24.36
pmed38 900 5 29 0.00 535.79 29 0.00 0.01 29 0.00 0.40
pmed39 900 10 23 0.00 4943.95 23 0.00 0.17 23 0.00 8.95
pmed40 900 90 13 0.00 852.79 13 0.00 0.23 13 0.00 556.55

Average 37.33 0.00 366.47 37.33 0.00 0.09 37.33 0.00 34.54

a Original running times divided by 1.5, an approximation obtained from PassMark Software Pty Ltd (1998).
Table A.10
𝛼N𝑝CP results for the OR-library instances with 𝛼 = 2.

Instance n p MIP solver Mousavi (2023) BP-VNS

Best Gap𝑜𝑝𝑡 (%) t (s) Best Gap (%) t (s)a Best Gap (%) t𝑏𝑒𝑠𝑡 (s)

pmed1 100 5 150 0.00 36.53 150 0.00 0.01 150 0.00 0.02
pmed2 100 10 121 0.00 38.89 121 0.00 0.13 121 0.00 0.02
pmed3 100 10 121 0.00 116.35 121 0.00 0.17 121 0.00 0.05
pmed4 100 20 97 0.00 58.94 97 0.00 5.46 97 0.00 0.04
pmed5 100 33 63 0.00 27.94 63 0.00 0.01 63 0.00 0.07
pmed6 200 5 99 0.00 2109.87 99 0.00 0.02 99 0.00 0.06
pmed7 200 10 80 0.00 881.87 80 0.00 0.06 80 0.00 0.09
pmed8 200 20 70 0.00 654.04 70 0.00 0.02 70 0.00 0.15
pmed9 200 40 49 0.00 377.52 49 0.00 0.49 49 0.00 0.22
pmed10 200 67 28 0.00 113.37 28 0.00 0.41 28 0.00 0.24
pmed11 300 5 68 0.00 2418.26 68 0.00 0.00 68 0.00 0.11
pmed12 300 10 60 0.00 5043.11 60 0.00 0.18 60 0.00 0.71
pmed13 300 30 43 0.00 2504.04 43 0.00 1.38 43 0.00 0.49
pmed14 300 60 34 0.00 1147.22 34 0.00 0.62 34 0.00 0.52
pmed15 300 100 23 0.00 831.86 23 0.00 4.57 23 0.00 0.44
pmed16 400 5 66 96.97 7312.80 52 0.00 0.16 52 0.00 0.21
pmed17 400 10 45 0.00 3114.33 45 0.00 0.03 45 0.00 0.33
pmed18 400 40 34 0.00 3663.91 34 0.00 11.84 34 0.00 1.58
pmed19 400 80 24 0.00 3743.45 25 4.17 0.11 24 0.00 1.26
pmed20 400 133 19 0.00 642.21 19 0.00 0.83 19 0.00 5.87
pmed21 500 5 61 98.36 7200.10 45 0.00 0.80 45 0.00 32.20

(continued on next page)
12
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Table A.10 (continued).
pmed22 500 10 59 98.31 7200.12 44 0.00 0.28 44 0.00 0.54
pmed23 500 50 36 88.89 7288.52 27 0.00 7.45 27 0.00 10.92
pmed24 500 100 19 0.00 7075.38 20 5.26 0.36 20 5.26 6.02
pmed25 500 167 15 0.00 2542.68 15 0.00 22.45 16 6.67 2.19
pmed26 600 5 53 98.11 7200.09 43 0.00 0.16 43 0.00 0.48
pmed27 600 10 41 97.56 7200.06 36 0.00 0.06 36 0.00 0.74
pmed28 600 60 50 98.00 7200.08 22 0.00 0.39 22 0.00 20.91
pmed29 600 120 59 98.31 7889.52 17 0.00 0.21 17 0.00 21.03
pmed30 600 200 13 0.00 4693.29 13 0.00 1.93 13 0.00 5.99
pmed31 700 5 44 97.73 7200.17 34 0.00 0.03 34 0.00 0.63
pmed32 700 10 46 97.83 7200.07 33 0.00 0.14 33 0.00 1.04
pmed33 700 70 34 97.06 7200.12 19 0.00 6.85 19 0.00 3.16
pmed34 700 140 75 98.67 7200.08 14 0.00 65.18 14 0.00 23.32
pmed35 800 5 43 97.67 7206.02 34 0.00 0.36 34 0.00 0.59
pmed36 800 10 46 97.83 7207.51 31 0.00 0.17 31 0.00 1.37
pmed37 800 80 68 98.53 7200.07 19 0.00 0.08 19 0.00 7.06
pmed38 900 5 52 98.08 7200.15 33 0.00 0.06 33 0.00 0.90
pmed39 900 10 40 97.50 7249.48 26 0.00 0.12 26 0.00 1.76
pmed40 900 90 50 100.00 7200.10 16 0.00 2.03 16 0.00 14.19

Average 54.95 43.88 4309.75 45.55 0.24 3.39 45.55 0.30 4.19

a Original running times divided by 1.5, an approximation obtained from PassMark Software Pty Ltd (1998).
Table A.11
𝛼N𝑝CP results for the OR-library instances with 𝛼 = 3.

Instance n p MIP solver BP-VNS

Best Gap𝑜𝑝𝑡 (%) t (s) Best Gap (%) t𝑏𝑒𝑠𝑡 (s)

pmed1 100 5 171 0.00 18.52 171 0.00 0.02
pmed2 100 10 138 0.00 105.23 138 0.00 0.08
pmed3 100 10 142 0.00 200.92 142 0.00 0.03
pmed4 100 20 118 0.00 304.62 118 0.00 0.59
pmed5 100 33 76 0.00 91.17 76 0.00 0.03
pmed6 200 5 110 0.00 1191.89 110 0.00 0.06
pmed7 200 10 87 0.00 1608.21 87 0.00 0.17
pmed8 200 20 75 0.00 1283.11 75 0.00 0.30
pmed9 200 40 55 0.00 955.37 55 0.00 0.92
pmed10 200 67 34 0.00 230.77 34 0.00 0.23
pmed11 300 5 72 0.00 1856.76 72 0.00 0.10
pmed12 300 10 84 96.43 7200.01 66 0.00 0.47
pmed13 300 30 48 0.00 4913.13 48 0.00 0.61
pmed14 300 60 38 0.00 3006.85 38 0.00 48.02
pmed15 300 100 27 0.00 1398.19 27 0.00 5.98
pmed16 400 5 55 0.00 4152.29 55 0.00 0.30
pmed17 400 10 52 82.69 7200.01 48 0.00 0.34
pmed18 400 40 38 0.00 6290.50 38 0.00 2.39
pmed19 400 80 28 0.00 5782.77 28 0.00 11.04
pmed20 400 133 22 0.00 3431.93 22 0.00 5.09
pmed21 500 5 58 96.55 7200.11 50 0.00 0.35
pmed22 500 10 61 98.36 9180.37 47 0.00 0.60
pmed23 500 50 34 70.59 7200.03 31 0.00 1.73
pmed24 500 100 53 98.11 7200.19 23 0.00 14.50
pmed25 500 167 34 97.06 7200.14 18 0.00 33.60
pmed26 600 5 59 96.61 7200.17 48 0.00 0.45
pmed27 600 10 52 98.08 7200.23 38 0.00 0.95
pmed28 600 60 34 97.06 8236.53 24 0.00 23.24
pmed29 600 120 28 96.43 8065.69 19 0.00 40.75
pmed30 600 200 72 98.61 7200.08 16 0.00 75.15
pmed31 700 5 47 100.00 7200.14 37 0.00 1.00
pmed32 700 10 49 97.96 7200.21 35 0.00 2.70
pmed33 700 70 61 100.00 7200.27 22 0.00 5.33
pmed34 700 140 74 98.65 7200.00 17 0.00 2.57
pmed35 800 5 45 97.78 7200.14 36 0.00 0.91
pmed36 800 10 46 97.83 7200.00 33 0.00 1.84
pmed37 800 80 37 100.00 7200.00 21 0.00 11.28
pmed38 900 5 52 98.08 7201.05 35 0.00 1.04
pmed39 900 10 40 97.50 7208.02 28 0.00 1.80
pmed40 900 90 33 96.97 7200.17 18 0.00 5.52

Average 60.98 48.28 4977.89 51.10 0.00 7.55
an evaluation function used in the bandwidth minimization problem,
another a min–max optimization problem, and applied it for the first
13
time to the 𝛼N𝑝CP context. This updated objective function adds more
information to a 𝛼N𝑝CP solution, helping it to differentiate solutions of
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Table A.12
𝛼N𝑝CP results for the TSPLIB instances with 𝛼 = 1.

Instance n p MIP solver GRASP-SO BP-VNS

Best Gap𝑜𝑝𝑡 (%) t (s) Best Gap (%) t (s)a Best Gap (%) t𝑏𝑒𝑠𝑡 (s)

att48 48

10 1 203.18 0.00 0.35 1203.18 0.00 2.18 1203.18 0.00 0.11
20 710.72 0.00 0.22 710.77 0.01 0.76 710.72 0.00 0.06
30 462.08 0.00 0.17 462.08 0.00 0.26 462.08 0.00 0.05
40 319.85 0.00 0.31 319.85 0.00 0.07 319.85 0.00 0.04

eil101 101

10 14.14 0.00 9.46 14.32 1.27 30.64 14.14 0.00 0.03
20 10.05 0.00 3.33 10.30 2.49 10.00 10.05 0.00 0.05
30 8.06 0.00 1.59 8.25 2.36 5.59 8.06 0.00 2.83
40 7.21 0.00 1.2 7.28 0.97 3.40 7.21 0.00 0.03
50 6.70 0.00 0.88 7.07 5.52 2.12 6.70 0.00 0.03
60 5.83 0.00 0.87 6.32 8.40 1.27 5.83 0.00 0.42
70 5.00 0.00 0.73 5.00 0.00 0.65 5.00 0.00 0.01
80 4.12 0.00 0.89 4.12 0.00 0.29 4.12 0.00 0.10
90 3.16 0.00 0.8 3.16 0.00 0.09 3.16 0.00 0.02
100 1.41 0.00 3.98 1.41 0.00 0.06 1.41 0.00 0.01

ch150 150

10 141.53 0.00 34.16 141.53 0.00 97.60 141.53 0.00 0.13
20 94.93 0.00 12.84 97.13 2.32 47.02 94.93 0.00 0.36
30 76.62 0.00 4.05 79.56 3.84 21.19 76.62 0.00 1.24
40 64.45 0.00 3.72 68.23 5.87 14.38 64.45 0.00 1.06
50 54.02 0.00 2.49 60.94 12.81 9.11 54.02 0.00 1.53
60 46.27 0.00 2.65 49.64 7.28 7.40 46.27 0.00 0.15
70 42.27 0.00 2.32 46.48 9.96 5.15 42.27 0.00 1.02
80 39.10 0.00 2.51 41.46 6.04 3.86 39.10 0.00 0.06
90 35.39 0.00 2.2 38.38 8.45 2.56 35.39 0.00 0.11
100 32.30 0.00 2.19 33.47 3.62 1.76 32.30 0.00 0.05
110 29.44 0.00 2.18 30.18 2.51 1.12 29.44 0.00 0.03
120 26.61 0.00 2.16 27.36 2.82 0.65 26.61 0.00 0.05
130 22.46 0.00 2.19 22.45 0.00 0.31 22.45 0.00 0.04
140 17.58 0.00 2.21 17.58 0.00 0.13 17.58 0.00 0.04

pr439 439

10 1 971.83 0.00 369.77 1971.83 0.00 2118.65 1971.83 0.00 4.88
20 1 185.59 0.00 130.6 1200.26 1.24 1842.95 1185.59 0.00 5.56
30 883.53 0.00 162.47 886.71 0.36 895.65 883.53 0.00 4.01
40 671.75 0.00 105.13 728.87 8.50 576.47 671.75 0.00 37.08
50 564.03 0.00 71.1 600.00 6.38 346.49 564.03 0.00 10.78
60 500.00 0.00 49.99 548.29 9.66 270.69 500.00 0.00 5.48
70 474.34 0.00 80.87 500.00 5.41 206.22 475.66 0.28 46.27
80 412.31 0.00 64.22 475.66 15.36 183.19 412.31 0.00 61.71
90 395.28 0.00 83.27 416.08 5.26 154.33 395.28 0.00 192.35

rat575 575

10 72.67 45.73 3853.01 73.00 0.45 952.84 72.67 0.00 5.49
20 49.65 51.58 7200.23 50.80 2.90 563.13 49.37 0.00 9.32
30 41.04 24.74 7200.16 41.79 5.64 299.96 39.41 0.00 73.14
40 33.42 33.03 7200.06 36.36 8.79 206.32 34.01 1.76 448.37
50 29.43 2.87 4165.68 32.56 10.64 135.53 30.02 2.01 271.12
60 27.00 0.00 4713.32 29.53 9.37 113.64 27.02 0.07 128.25
70 24.76 0.00 2953.35 27.66 11.72 98.71 25.00 0.97 1312.73
80 23.35 0.00 1601 25.50 9.23 83.20 23.35 0.02 1716.61
90 21.93 0.00 472.15 24.19 10.30 67.68 22.09 0.72 167.66
100 20.62 0.00 218.54 22.80 10.60 61.94 20.81 0.94 367.16

rat783 783

10 83.49 0.00 3811.9 85.23 2.08 2117.65 83.49 0.00 2.96
20 329.20 22.21 7200.07 59.77 5.14 1486.40 56.85 0.00 86.02
30 63.64 31.71 7200.08 49.04 4.70 896.69 46.32 0.00 1078.38
40 64.38 1.85 7805.94 43.05 6.80 730.84 39.81 0.00 643.47
50 44.60 0.00 7805.9 37.95 7.08 546.27 35.38 0.00 340.72
60 34.67 0.00 7806.8 34.79 7.88 485.51 32.02 0.00 1568.18
70 30.02 0.00 8433.45 32.20 10.24 403.09 29.07 0.00 398.34
80 26.93 0.00 7200.52 30.08 11.71 354.31 27.31 1.43 1298.62
90 25.94 0.00 7611.35 28.16 8.55 321.51 26.08 0.53 1404.50
100 24.04 0.00 1906.5 27.02 12.39 258.48 24.74 2.90 21.99

pr1002 1002

10 3 200.00 0.00 7200.11 2610.08 2.75 2117.69 2540.18 0.00 24.30
20 2 371.17 88.54 7200.08 1795.13 2.92 2117.66 1726.27 0.00 181.53
30 1 403.57 53.10 7200.17 1439.62 4.10 1902.38 1350.93 0.00 774.82
40 1 303.84 60.67 7200.07 1253.99 3.60 1517.40 1188.49 0.00 1516.24
50 1 029.56 47.48 7200.11 1096.59 6.51 1168.76 1029.56 0.00 452.55
60 912.41 38.35 3048.71 999.64 9.56 1160.79 943.40 3.40 1455.12
70 850.00 29.06 4662.32 919.24 8.15 1053.49 851.47 0.17 355.77
80 761.58 16.19 747.44 851.47 11.80 819.44 761.58 0.00 1038.36
90 715.89 22.06 923.9 790.57 10.43 660.44 728.01 1.69 1002.65
100 670.82 0.00 498.86 756.64 12.79 548.54 694.62 3.55 1693.61

(continued on next page)
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Table A.12 (continued).

rl1323 1323

10 10 288.80 80.45 7200.17 3130.67 1.73 2117.71 3077.30 0.00 82.73
20 19 687.52 93.34 7200.24 2088.39 3.29 2117.68 2020.35 0.00 726.64
30 19 687.52 94.80 7200.15 1745.76 6.99 2117.67 1631.69 0.00 1316.55
40 17 617.35 95.14 7200.13 1451.77 5.38 2117.66 1377.68 0.00 377.41
50 19 687.52 96.22 7200.45 1290.32 6.11 2117.66 1206.07 0.00 589.28
60 19 687.52 96.61 7200.16 1191.50 9.26 2117.66 1087.53 0.00 1449.15
70 16 670.03 96.37 7200.13 1075.86 8.45 2117.67 992.00 0.00 899.69
80 1 047.37 45.45 7200.12 987.47 5.77 2103.61 933.59 0.00 1758.99
90 16 075.14 96.82 7200.16 926.77 7.09 1686.99 857.76 0.00 1477.00
100 787.10 0.00 6615.58 880.00 11.80 1564.48 803.23 2.05 1708.71

Average 2153.49 17.72 2920.51 505.43 5.63 653.16 481.70 0.29 397.43

a Original running times divided by 0.85, approximation obtained from PassMark Software Pty Ltd (1998).
Table A.13
𝛼N𝑝CP results for the TSPLIB instances with 𝛼 = 2.

Instance n p MIP solver GRASP-SO BP-VNS

Best Gap𝑜𝑝𝑡 (%) t (s) Best Gap (%) t (s)a Best Gap (%) t𝑏𝑒𝑠𝑡 (s)

att48 48

10 1 592.12 0.00 7.25 1592.12 0.00 2.18 1592.12 0.00 0.19
20 1 061.69 0.00 6.00 1130.85 6.51 0.76 1061.69 0.00 0.22
30 729.90 0.00 1.21 936.38 28.29 0.26 729.90 0.00 0.09
40 485.06 0.00 1.04 532.08 9.69 0.07 485.06 0.00 0.05

eil101 101

10 21.21 0.00 75.40 21.21 0.00 30.64 21.21 0.00 0.04
20 13.60 0.00 48.22 14.14 3.97 10.00 13.60 0.00 0.05
30 11.05 0.00 13.13 12.00 8.60 5.59 11.05 0.00 0.06
40 9.06 0.00 12.76 9.43 4.08 3.40 9.06 0.00 64.68
50 8.06 0.00 16.89 8.60 6.70 2.12 8.06 0.00 0.04
60 7.07 0.00 15.45 8.25 16.69 1.27 7.07 0.00 0.06
70 6.32 0.00 14.15 7.28 15.19 0.65 6.32 0.00 0.12
80 5.10 0.00 13.20 6.32 23.92 0.29 5.10 0.00 0.19
90 4.12 0.00 10.70 5.00 21.36 0.09 4.12 0.00 0.02
100 2.24 0.00 5.04 2.83 26.34 0.06 2.24 0.00 0.02

ch150 150

10 205.66 0.00 250.77 205.66 0.00 97.60 205.66 0.00 0.32
20 138.69 0.00 218.90 141.53 2.04 47.02 138.69 0.00 0.36
30 108.03 0.00 126.20 112.51 4.15 21.19 108.03 0.00 2.29
40 92.67 0.00 153.66 96.42 4.05 14.38 92.67 0.00 1.95
50 82.11 0.00 145.98 87.69 6.80 9.11 82.11 0.00 1.88
60 70.71 0.00 123.40 78.42 10.90 7.40 70.71 0.00 0.90
70 64.45 0.00 83.45 68.23 5.87 5.15 64.45 0.00 2.09
80 58.37 0.00 83.46 64.56 10.61 3.86 58.37 0.00 0.33
90 51.50 0.00 87.67 62.04 20.46 2.56 51.50 0.00 0.21
100 46.49 0.00 78.23 53.21 14.46 1.76 46.49 0.00 0.11
110 43.77 0.00 71.87 51.65 18.01 1.12 43.77 0.00 0.05
120 39.32 0.00 56.92 50.30 27.92 0.65 39.32 0.00 0.06
130 36.02 0.00 56.51 46.63 29.46 0.31 36.02 0.00 0.04
140 29.69 0.00 56.44 42.30 42.47 0.13 29.69 0.00 0.01

pr439 439

10 4 939.26 97.92 7200.04 3146.63 0.00 2118.65 3146.63 0.00 6.76
20 2 177.44 0.00 6953.47 2226.26 2.24 1842.95 2177.44 0.00 7.05
30 1 475.85 0.00 6198.28 1500.21 1.65 895.65 1475.85 0.00 7.92
40 1 185.59 3.83 7200.03 1253.99 5.77 576.47 1185.59 0.00 17.65
50 984.89 0.00 3411.00 1068.00 8.44 346.49 984.89 0.00 88.74
60 886.71 14.25 7200.33 975.00 9.96 270.69 886.71 0.00 9.59
70 726.72 0.00 4305.21 905.54 24.61 206.22 726.72 0.00 541.01
80 637.38 0.00 5350.93 731.86 14.82 183.19 638.85 0.23 305.72
90 583.10 0.00 6618.35 715.89 22.77 154.33 583.10 0.00 24.16

rat575 575

10 341.47 99.84 7200.04 116.87 0.66 952.84 116.10 0.00 42.33
20 258.21 91.63 7213.12 74.25 1.71 563.13 72.40 0.00 9.32
30 364.18 99.88 7200.11 60.67 4.15 299.96 57.78 0.00 73.14
40 272.15 99.84 7200.12 51.40 4.81 206.32 49.04 0.00 1419.18
50 390.75 99.90 7200.07 46.52 5.03 135.53 43.42 0.00 239.16
60 62.63 99.37 7200.03 41.60 3.97 113.64 39.20 0.00 128.25
70 59.68 99.36 7200.13 37.70 3.71 98.71 35.90 0.00 1312.73
80 60.17 99.38 7201.95 35.90 6.85 83.20 33.24 0.00 1563.44
90 53.34 97.38 7213.89 33.60 5.30 67.68 31.38 0.00 1243.46
100 31.83 51.08 7200.03 31.39 7.46 61.94 29.21 0.00 1673.42

(continued on next page)
the same cost better. This improved objective function is demonstrated
to not interfere with optimality and significantly helped the algorithm’s
convergence.

Despite its simplicity, our heuristic consistently achieves state-of-
the-art solutions in almost all instances, and it could improve most of
the best-known solutions from the literature. Specifically, in the 𝛼N𝑝CP,
15
the proposed VNS found the greater number of best solutions in both
OR-library and TSPLIB instance sets, obtaining 328 best solutions out of
351 possible ones, including 22 new best solutions on the OR-library
instances and 115 new best solutions on the TSPLIB set. Considering
all these instances, the average gap obtained by our heuristic to the
best-known solutions was 0.1%. Moreover, our VNS required only a
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Table A.13 (continued).

rat783 783

10 544.47 99.91 7200.00 138.60 2.48 2117.65 135.25 0.00 5.69
20 608.55 99.93 7200.00 86.38 2.74 1486.40 83.10 0.00 38.79
30 608.55 99.94 7200.00 70.84 4.98 896.69 67.12 0.00 304.9
40 608.55 99.94 7200.00 60.14 5.84 730.84 56.61 0.00 1044.09
50 628.41 99.94 8230.08 52.80 2.29 546.27 51.62 0.00 358.91
60 628.41 99.94 7200.00 48.75 5.25 485.51 45.62 0.00 1005.78
70 628.41 99.95 7200.00 44.41 3.96 403.09 42.45 0.00 398.34
80 628.41 99.95 7200.00 42.43 4.77 354.31 39.62 0.00 642.17
90 74.09 100.00 7200.00 39.21 4.45 321.51 36.69 0.00 1317.58
100 628.41 99.95 7200.00 37.48 5.76 258.48 34.71 0.00 21.99

pr1002 1002

10 15 502.02 99.93 7359.66 3853.89 0.00 2117.69 3853.89 0.00 23.59
20 14 586.38 99.94 7200.00 2710.17 4.30 2117.66 2598.56 0.00 222.93
30 14 297.73 99.91 7200.00 2150.58 4.32 1902.38 2057.30 0.00 313.41
40 14 297.73 99.91 7200.00 1811.77 3.87 1517.40 1735.66 0.00 1483.48
50 14 297.73 99.92 7200.00 1619.41 5.81 1168.76 1523.15 0.00 534.53
60 17 479.42 99.95 7200.00 1431.78 4.28 1160.79 1353.70 0.00 1640.22
70 17 479.42 99.95 7200.00 1346.29 5.05 1053.49 1258.97 0.00 430.92
80 17 479.42 99.95 7200.00 1253.00 4.24 819.44 1167.26 0.00 995.9
90 17 479.42 99.95 7200.00 1170.48 6.74 660.44 1077.03 0.00 1002.65
100 17 479.42 99.95 7200.00 1079.35 4.84 548.54 1012.42 0.00 968.85

rl1323 1323

10 14 958.28 100.00 7200.23 4694.15 3.08 2117.71 4554.09 0.00 53.76
20 13 332.43 99.93 7200.15 3227.00 5.65 2117.68 3036.90 0.00 493.29
30 14 417.03 99.94 7200.16 2563.30 4.62 2117.67 2409.27 0.00 1382.01
40 13 071.26 100.00 7200.25 2166.96 7.16 2117.66 2022.15 0.00 402.93
50 14 417.53 100.00 7200.80 1907.69 5.48 2117.66 1808.50 0.00 790.25
60 12 274.84 99.94 7200.14 1735.40 3.95 2117.66 1646.13 0.00 992.43
70 19 687.52 99.96 7200.20 1595.20 6.85 2117.67 1493.00 0.00 1625.93
80 19 687.52 99.97 7200.15 1440.89 4.82 2103.61 1374.60 0.00 1574.6
90 19 687.52 99.97 7200.18 1374.72 6.23 1686.99 1294.08 0.00 923.85
100 19 687.52 99.97 7200.15 1293.63 7.50 1564.48 1203.33 0.00 1398.54

Average 4515.61 52.63 4486.92 773.35 8.36 990.00 732.60 0.00 404.96

a Original running times divided by 0.85, approximation obtained from PassMark Software Pty Ltd (1998).
Table A.14
𝛼N𝑝CP results for the TSPLIB instances with 𝛼 = 3.

Instance n p MIP solver GRASP-SO BP-VNS

Best Gap𝑜𝑝𝑡 (%) t (s) Best Gap (%) t (s)a Best Gap (%) t𝑏𝑒𝑠𝑡 (s)

att48 48

10 2081.57 0.00 8.86 2186.31 5.03 7.91 2081.57 0.00 0.24
20 1283.35 0.00 5.70 1374.48 7.10 1.89 1283.35 0.00 0.12
30 949.29 0.00 1.35 1011.66 6.57 0.64 949.29 0.00 0.09
40 645.88 0.00 1.18 675.00 4.51 0.09 645.88 0.00 0.05

eil101 101

10 29.43 0.00 88.35 29.43 0.01 108.75 29.43 0.00 0.07
20 17.80 0.00 134.25 18.03 1.29 51.45 17.80 0.00 0.18
30 13.15 0.00 145.80 14.14 7.50 22.79 13.15 0.00 0.10
40 11.18 0.00 39.37 12.04 7.69 11.42 11.18 0.00 0.09
50 9.43 0.00 14.69 10.63 12.73 5.58 9.43 0.00 0.17
60 8.06 0.00 16.10 9.06 12.41 2.61 8.06 0.00 0.51
70 7.28 0.00 18.92 8.54 17.31 1.25 7.28 0.00 0.03
80 6.40 0.00 17.31 7.28 13.75 0.52 6.40 0.00 0.02
90 5.00 0.00 16.98 6.08 21.60 0.13 5.00 0.00 0.02
100 2.83 0.00 4.11 2.83 0.06 0.06 2.83 0.00 0.02

ch150 150

10 297.96 0.00 386.40 298.56 0.20 468.27 297.96 0.00 0.20
20 176.47 0.00 913.48 179.71 1.84 177.58 176.48 0.01 2.55
30 137.46 0.00 1332.72 146.41 6.51 91.86 137.46 0.00 6.52
40 114.47 0.00 904.84 119.22 4.15 61.29 114.48 0.01 107.55
50 100.34 0.00 1556.91 108.03 7.67 31.41 100.34 0.00 60.70
60 90.58 0.00 604.79 97.46 7.60 20.92 90.58 0.00 71.95
70 83.19 0.00 192.81 92.82 11.58 15.41 83.19 0.00 65.70
80 74.93 0.01 159.37 83.38 11.28 9.81 74.94 0.02 247.78
90 67.73 0.00 97.76 79.81 17.84 5.59 67.73 0.00 0.72
100 63.42 0.00 91.36 69.35 9.35 3.80 63.42 0.00 2.33
110 59.04 0.00 87.13 67.22 13.86 2.18 59.04 0.00 0.04
120 52.97 0.00 77.66 61.29 15.71 1.12 52.97 0.00 0.11
130 44.46 0.00 59.64 57.50 29.34 0.48 44.46 0.00 0.05
140 38.56 0.00 54.57 52.20 35.37 0.19 38.56 0.00 0.03

(continued on next page)
fraction of a second or, at most, a few seconds to find these solutions. A
similar performance could be seen in the 𝛼N𝑝MP tests. In this case, our
heuristic could find the optimal solutions in all 80 instances. Compar-
isons against the literature demonstrate that our VNS outperformed the
16
BIMM heuristic in all instances. Again, the computational performance
of the VNS was remarkable.

Our VNS algorithm’s performance across various 𝛼 values in solving
many instances and its simplicity and user-friendliness make it an effi-
cient choice for tackling the 𝛼N𝑝CP and 𝛼N𝑝MP optimization problems.
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Table A.14 (continued).

pr439 439

10 7385.88 99.55 7200.09 4076.23 0.64 2118.20 4050.31 0.00 8.58
20 2725.46 77.44 7200.09 2726.03 1.59 2117.75 2683.28 0.00 182.96
30 4907.27 99.47 7200.02 2231.73 8.05 2118.21 2065.49 0.00 34.29
40 1637.83 73.66 7200.08 1644.88 2.75 2118.14 1600.78 0.00 19.62
50 3692.98 99.01 7635.19 1467.35 8.69 2117.71 1350.00 0.00 347.90
60 1844.76 92.24 7200.02 1340.01 14.98 2117.68 1150.27 0.00 213.16
70 1886.80 77.51 7200.02 1231.11 22.16 1548.82 1005.61 0.00 101.09
80 1631.91 91.19 7200.02 1217.58 33.00 1124.40 915.49 0.00 182.67
90 1566.25 91.81 7236.37 986.47 23.31 851.04 800.00 0.00 105.72

rat575 575

10 462.77 99.82 7233.33 140.52 1.20 2117.66 138.85 0.00 4.29
20 212.36 99.65 7296.31 94.64 0.29 2117.65 93.43 0.00 809.05
30 139.90 99.52 7200.03 74.52 2.86 1295.68 72.09 0.00 523.44
40 530.55 99.88 7527.81 64.88 2.97 1118.25 62.61 0.00 1596.92
50 411.02 99.85 7200.11 56.94 5.06 843.99 54.08 0.00 527.62
60 396.13 99.85 7206.62 51.35 4.97 700.12 48.92 0.00 512.56
70 400.70 99.86 7200.03 47.85 4.29 581.38 45.61 0.00 103.79
80 417.90 99.87 7200.03 44.29 5.75 527.33 41.77 0.00 876.34
90 62.30 99.12 7200.03 41.11 4.87 375.45 39.12 0.00 1569.39
100 61.91 99.14 7200.03 38.63 5.06 291.72 36.62 0.00 1595.54

rat783 783

10 550.718 99.87 7210.81 166.23 1.56 2117.71 163.68 0.00 5.01
20 548.352 99.88 7200.00 112.70 2.79 2117.68 109.57 0.00 967.73
30 608.547 99.90 7200.00 88.57 4.69 2117.66 83.55 0.00 1151.44
40 608.547 99.91 7200.00 76.03 3.99 2117.66 72.45 0.00 1408.33
50 608.547 99.91 7200.00 66.10 4.00 2117.65 63.53 0.00 461.70
60 628.405 100.00 7200.00 60.02 3.54 1903.00 56.72 0.00 1558.57
70 628.405 99.92 7200.00 55.44 3.88 1931.82 53.16 0.00 265.23
80 628.405 99.92 7200.00 51.66 4.05 1670.87 49.58 0.00 223.17
90 628.405 99.92 7200.00 48.47 5.14 1425.35 45.88 0.00 1175.57
100 628.405 99.92 7200.00 45.88 4.15 1199.53 43.42 0.00 496.48

pr1002 1002

10 15 250.25 99.89 7296.08 5331.28 2.48 2117.76 5202.16 0.00 94.97
20 14 205.02 99.90 7418.43 3290.14 3.77 2117.69 3170.57 0.00 36.92
30 13 217.13 99.96 7200.00 2644.33 0.94 2117.68 2598.56 0.00 272.51
40 14 297.73 99.91 7200.00 2304.89 4.52 2117.68 2191.46 0.00 1244.29
50 14 297.73 99.91 7200.08 2013.08 4.80 2117.67 1920.94 0.00 1582.57
60 17 479.42 99.95 7200.00 1838.48 5.10 2117.68 1749.29 0.00 372.35
70 17 479.42 99.95 7200.00 1710.26 5.86 2117.67 1607.02 0.00 610.14
80 17 479.42 99.93 7200.08 1518.22 3.72 2117.66 1460.31 0.00 484.96
90 17 479.42 99.95 7200.00 1442.22 5.68 2117.66 1360.15 0.00 1327.29
100 17 479.42 99.95 7200.00 1353.70 3.82 2117.65 1274.75 0.00 1121.09

rl1323 1323

10 17 207.72 0.00 7026.47 6313.82 1.35 2117.92 6229.60 0.00 56.51
20 13 688.24 100.00 7200.31 4032.83 4.87 2117.75 3845.66 0.00 348.67
30 15 039.71 99.92 7200.22 3204.16 4.04 2117.73 3054.32 0.00 1456.46
40 16 174.19 100.00 7200.21 2774.72 6.25 2117.72 2575.08 0.00 1595.55
50 17 106.54 99.93 7200.14 2430.27 8.43 2117.69 2241.23 0.00 1062.41
60 12 963.25 100.00 7200.21 2149.14 5.43 2117.69 2030.78 0.00 1285.23
70 20 521.99 99.95 7200.16 1997.22 5.71 2117.69 1873.54 0.00 219.66
80 20 521.99 99.95 7200.16 1842.10 5.53 2117.68 1744.86 0.00 1600.25
90 20 521.99 99.95 7200.17 1745.58 6.55 2117.67 1637.63 0.00 1488.66
100 20 521.99 99.95 7203.75 1620.92 5.02 2117.66 1533.75 0.00 458.90

Average 4881.12 60.99 4687.35 997.18 7.46 1147.78 945.06 0.00 445.66

a Original running times divided by 0.85, approximation obtained from PassMark Software Pty Ltd (1998).
he updated 𝛼N𝑝CP objective function has shown to be a practical
approach to help the heuristic escape from local optima, showing
promising applications in other optimization problems where there are
many solution symmetries, such as in other min–max problems.

For future works, one can apply this BP-VNS heuristic, for example,
to the capacitated extensions of the 𝛼N𝑝CP and 𝛼N𝑝MP. Moreover, we
expect the improved objective function to show promising results in
other problems, given that it increases the amount of information used
by the algorithm without much computational burden.
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Table B.15
𝛼N𝑝MP results with 𝑝 = 10 and 𝛼 = 5.

Instance n MIP solver BIMM BP-VNS

Best Gap𝑜𝑝𝑡 (%) t (s) Best Gap (%) t (s)a Best Gap (%) t𝑏𝑒𝑠𝑡 (s)

pmed1 100 40 592 0.00 0.41 41 462 2.14 0.09 40 592 0.00 0.01
pmed2 100 39 421 0.00 0.40 40 134 1.81 0.04 39 421 0.00 0.02
pmed3 100 43 345 0.00 0.56 44 000 1.51 0.10 43 345 0.00 0.01
pmed4 100 46 854 0.00 0.58 51 351 9.60 0.14 46 854 0.00 0.01
pmed5 100 34 167 0.00 0.42 35 054 2.60 0.11 34 167 0.00 0.01
pmed6 200 50 759 0.00 3.59 52 734 3.89 0.25 50 759 0.00 0.04
pmed7 200 44 978 0.00 2.86 46 621 3.65 0.40 44 978 0.00 0.09
pmed8 200 49 837 0.00 2.88 51 064 2.46 0.44 49 837 0.00 0.04
pmed9 200 47 636 0.00 3.14 48 638 2.10 0.05 47 636 0.00 0.13
pmed10 200 36 864 0.00 3.38 37 968 2.99 0.61 36 864 0.00 0.09
pmed11 300 46 297 0.00 19.16 47 657 2.94 0.08 46 297 0.00 1.05
pmed12 300 53 082 0.00 18.10 54 997 3.61 0.66 53 082 0.00 0.87
pmed13 300 48 257 0.00 18.78 49 012 1.56 0.56 48 257 0.00 0.08
pmed14 300 55 342 0.00 20.43 56 304 1.74 0.59 55 342 0.00 0.14
pmed15 300 47 426 0.00 17.12 47 581 0.33 0.04 47 426 0.00 0.08
pmed16 400 49 941 0.00 47.65 51 171 2.46 0.38 49 941 0.00 0.14
pmed17 400 53 403 0.00 49.11 55 475 3.88 0.35 53 403 0.00 0.20
pmed18 400 59 089 0.00 50.53 59 734 1.09 0.45 59 089 0.00 0.18
pmed19 400 56 234 0.00 49.40 57 270 1.84 0.13 56 234 0.00 0.42
pmed20 400 58 389 0.00 49.58 59 239 1.46 2.95 58 389 0.00 0.16
pmed21 500 56 961 0.00 93.45 57 735 1.36 0.09 56 961 0.00 0.04
pmed22 500 62 650 0.00 135.57 64 217 2.50 1.02 62 650 0.00 0.01
pmed23 500 60 660 0.00 107.13 62 488 3.01 0.21 60 660 0.00 0.01
pmed24 500 60 210 0.00 105.11 61 725 2.52 0.68 60 210 0.00 0.16
pmed25 500 54 793 0.00 90.52 56 284 2.72 0.46 54 793 0.00 0.03
pmed26 600 59 347 0.00 154.40 59 955 1.02 17.75 59 347 0.00 0.35
pmed27 600 57 705 0.00 143.48 58 046 0.59 1.72 57 705 0.00 0.03
pmed28 600 58 252 0.00 195.00 59 076 1.41 1.05 58 252 0.00 0.04
pmed29 600 60 745 0.00 160.02 61 661 1.51 0.65 60 745 0.00 0.13
pmed30 600 65 738 0.00 177.32 66 300 0.85 0.60 65 738 0.00 0.06
pmed31 700 61 463 0.00 244.27 62 571 1.80 7.03 61 463 0.00 0.48
pmed32 700 67 073 0.00 290.61 68 186 1.66 1.33 67 073 0.00 0.73
pmed33 700 66 024 0.00 239.31 67 924 2.88 2.21 66 024 0.00 0.05
pmed34 700 63 475 0.00 218.37 64 656 1.86 0.89 63 475 0.00 0.11
pmed35 800 62 408 0.00 432.30 62 937 0.85 5.14 62 408 0.00 0.19
pmed36 800 70 805 0.00 409.19 72 878 2.93 1.30 70 805 0.00 0.62
pmed37 800 74 125 0.00 381.64 74 661 0.72 2.04 74 125 0.00 0.19
pmed38 900 66 456 0.00 704.86 68 235 2.68 6.41 66 456 0.00 1.81
pmed39 900 66 129 0.00 456.37 66 604 0.72 2.13 66 129 0.00 0.69
pmed40 900 75 386 0.00 460.13 78 237 3.78 0.25 75 386 0.00 0.22

Average 55 807.95 0.00 138.93 57 046.05 2.28 1.53 55 807.95 0.00 0.24

a Original running times divided by 1.2, approximation obtained from PassMark Software Pty Ltd (1998).
Table B.16
𝛼N𝑝MP results with 𝑝 = 20 and 𝛼 = 10.

Instance n MIP solver BIMM BP-VNS

Best Gap𝑜𝑝𝑡 (%) t (s) Best Gap (%) t (s)a Best Gap (%) t𝑏𝑒𝑠𝑡 (s)

pmed1 100 84 027 0.00 0.39 88 745 5.61 0.23 84 027 0.00 0.04
pmed2 100 80 660 0.00 0.54 83 021 2.93 0.38 80 660 0.00 0.01
pmed3 100 88 180 0.00 0.36 91 166 3.39 0.23 88 180 0.00 0.05
pmed4 100 95 441 0.00 0.67 104 680 9.68 0.42 95 441 0.00 0.11
pmed5 100 70 836 0.00 0.29 72 192 1.91 0.30 70 836 0.00 0.04
pmed6 200 102 341 0.00 3.24 105 089 2.69 1.93 102 341 0.00 0.22
pmed7 200 91 465 0.00 2.68 95 486 4.40 0.99 91 465 0.00 0.22
pmed8 200 101 003 0.00 2.61 103 998 2.97 0.60 101 003 0.00 0.11
pmed9 200 96 365 0.00 3.10 99 371 3.12 0.20 96 365 0.00 0.16
pmed10 200 74 770 0.00 4.18 77 136 3.16 0.40 74 770 0.00 1.32
pmed11 300 93 903 0.00 13.30 94 851 1.01 1.40 93 903 0.00 0.21
pmed12 300 106 863 0.00 19.81 111 812 4.63 2.13 106 863 0.00 0.29

(continued on next page)
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Appendix A. Results for the 𝜶N𝒑CP

This appendix shows the detailed results for the 𝛼N𝑝CP. Tables A.9,
.10 and A.11 and Tables A.12, A.13 and A.14 show the results of the
18

n

ests in the OR-library instances and the TSPLIB instances, respectively.
or the tests with the OR-library instances, we present the results of
he commercial solver and our heuristic for 𝛼 = {1, 2, 3} and the ones

of the heuristic of Mousavi (2023) for 𝛼 = {1, 2}. For the tests with the
TSPLIB instances, we show results of the commercial solver, the GRASP-
SO heuristic (Sánchez-Oro et al., 2022) and our VNS for 𝛼 = {1, 2, 3}.

ables A.9–A.14 have the same structure where the instance name, the
umber of vertices, and the number of facilities are presented in the
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Table B.16 (continued).
pmed13 300 97 837 0.00 14.21 99 802 2.01 0.29 97 837 0.00 0.31
pmed14 300 111 488 0.00 19.85 113 774 2.05 1.48 111 488 0.00 3.47
pmed15 300 96 190 0.00 19.53 98 231 2.12 0.93 96 190 0.00 0.34
pmed16 400 101 027 0.00 47.73 103 530 2.48 3.29 101 027 0.00 0.40
pmed17 400 107 608 0.00 70.44 111 679 3.78 0.92 107 608 0.00 2.70
pmed18 400 119 282 0.00 51.68 121 202 1.61 0.79 119 282 0.00 0.36
pmed19 400 113 107 0.00 50.92 115 688 2.28 2.53 113 107 0.00 1.33
pmed20 400 118 523 0.00 44.04 121 468 2.48 0.36 118 523 0.00 0.37
pmed21 500 114 895 0.00 87.38 116 754 1.62 0.89 114 895 0.00 0.00
pmed22 500 125 994 0.00 149.91 132 925 5.50 0.71 125 994 0.00 0.11
pmed23 500 122 437 0.00 100.05 127 093 3.80 0.34 122 437 0.00 0.15
pmed24 500 121 462 0.00 127.16 124 517 2.52 0.15 121 462 0.00 0.03
pmed25 500 111 435 0.00 83.16 114 231 2.51 5.67 111 435 0.00 0.07
pmed26 600 119 392 0.00 172.47 121 537 1.80 6.65 119 392 0.00 0.07
pmed27 600 116 498 0.00 135.63 117 508 0.87 4.51 116 498 0.00 0.08
pmed28 600 117 933 0.00 136.07 120 718 2.36 2.20 117 933 0.00 0.33
pmed29 600 122 339 0.00 150.88 125 649 2.71 0.99 122 339 0.00 0.17
pmed30 600 133 069 0.00 139.75 133 935 0.65 3.13 133 069 0.00 0.26
pmed31 700 123 848 0.00 240.92 129 303 4.40 21.73 123 848 0.00 0.18
pmed32 700 134 470 0.00 569.17 137 108 1.96 1.81 134 470 0.00 1.12
pmed33 700 132 822 0.00 228.99 136 182 2.53 13.63 132 822 0.00 0.40
pmed34 700 127 779 0.00 240.73 130 290 1.97 0.74 127 779 0.00 0.19
pmed35 800 125 727 0.00 427.53 127 188 1.16 10.57 125 727 0.00 0.41
pmed36 800 142 084 0.00 693.30 149 330 5.10 2.24 142 084 0.00 0.39
pmed37 800 149 976 0.00 265.97 152 607 1.75 1.95 149 976 0.00 0.53
pmed38 900 133 369 0.00 1091.66 135 485 1.59 13.59 133 369 0.00 0.76
pmed39 900 133 246 0.00 831.62 136 345 2.33 0.78 133 246 0.00 1.30
pmed40 900 151 713 0.00 654.96 153 743 1.34 20.68 151 713 0.00 2.04

Average 112 785.10 0.00 172.42 115 884.23 2.82 3.32 112 785.10 0.00 0.52

a Original running times divided by 1.2, approximation obtained from PassMark Software Pty Ltd (1998).
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ppendix B. Results for the 𝜶N𝒑MP

This appendix shows the detailed results for the 𝛼N𝑝MP. Tables B.15
nd B.16 show the results of the MIP solver, the BIMM and the VNS
euristic for the OR-library instances with 𝑝 = 10 and 𝛼 = 5 and
= 20 and 𝛼 = 10, respectively. The results of the BIMM shown here
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