
Supporting Information
Anderson et al. 10.1073/pnas.1421853112
Proof of Theorem 1

Proof: Let ðy; zÞ be the point for which we must determine
whether the constrain in Eq. 7 is satisfied. Following the well-
known procedure for PC-TSP, first we form a directed
weighted graphG= ðV ;E;wÞ where V = fsg∪V where s is an extra
node, E=E∪ fðs; nÞjn∈Ng, and weights we for e∈E are given by

we =
�
ye e∈E;
1 otherwise;

(the edges with we = 1 each go from the super source to a node inN).
Then, for every v∈P where f iv > 0 we solve the max flow min

cut problem with source s and sink v. If we find a cut of weight
less than f iv, then by taking S to be the set of nodes on the sink
side of the cut we have found a violated constraint. As we are
optimizing over all cuts separating v from the super source and
then checking all v we in fact check all of the constraints in Eq. 7.

Proof of Theorem 2: Before proving the result, we introduce two
auxiliary IP formulations.

Subtour Elimination Formulation
We propose an alternative formulation on the same set of var-
iables as the PC-TSP formulation, called the subtour formulation.
The name is derived from the subtour elimination formulation of
the TSP, as in ref. 1. In the subtour elimination formulation, all
of the constraints are the same as the PC-TSP formulation ex-
cept that Eq. 7 is replaced byP

e∈EðSÞ
ye +

P
D∈Ck

V ðDÞ⊆S

ðjDj− 1ÞzD

+
P
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD ≤ jSj− 1 S⊂P:
[S1]

The idea of the constraint is that subset S of the nodes, the number
of edges used to make chains, should be at most jSj− 1. The IP
formulation would still be correct without the second and third
sums; however, their addition strengths the inequality.

Cycles Formulation
We propose another alternative formulation on the same set of
variables as the PC-TSP and subtour formulations, the cycles
formulation. In the cycles formulation all of the constraints are
the same as in the PC-TSP and subtour formulations except that
Eq. 2 is replaced byX

e∈C
ye +

X
D∈Ck
D≠C

jD∩CjzD ≤ jCj− 1 C∈ C: [S2]

The idea of the constraint is to prevent the edges of C from forming
a cycle, unless the variable zC is used (should the variable exist).
Obviously, if ye = 1 for e∈C, they would form a cycle, but the
constraint prevents this. Again, the IP formulation would still be
correct without the second sum in the constraint, but including this
sum makes the formulation stronger. In Fig. S6 we give an example
of an instance where, if the second sum were not included, the cycle
formulation would be weaker than the recursive formulation.

Proof of Result
Let Zcyc and Zsub be the value of the LP relaxation for the cycle
and subtour formulations of the KEP, respectively. Let Prec, Pcyc,

Psub, and Ptsp be the polyhedrons for the LP relaxations of each
formulation. We will now show

Ztsp ≺Zsub ≺Zcyc WZrec:

Because the relations above are transitive, this will imply Theorem 2.
Proof: First, we show that Ptsp ⊆Psub, which immediately implies

that Ztsp WZsub, because the two formulations share the same
objective function. It suffices to show that each of the subtour
elimination constraints from Eq. 8 are implied by the entire cut
set formulation. Fix S⊆P and assume that y is feasible for the cut
set formulation. Fix some u∈ S. First, we claim thatP

D∈Ck
V ðDÞ⊆S

ðjDj− 1ÞzD +
P
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD

≤
P
D∈Ck

V ðDÞ∩S≠Ø

ðjV ðDÞ∩ Sj− 1ÞzD
[S3]

≤
X
v∈S
v≠u

X
D∈CkðvÞ

zD: [S4]

To justify Eq. S3, observe that for cycles D such that V ðDÞ⊆ S
we immediately have jDj= jV ðDÞj= jV ðDÞ∩ Sj, so for these zD
terms, we have jDj− 1= jV ðDÞ∩ Sj− 1. For D such that
V ðDÞ⊈ S, we have two cases:

• If V ðDÞ∩ S= Ø, then D∩EðSÞ= Ø as well, so these terms can
be dropped.

• If D has ℓ vertices in S, where 0< ℓ< jDj, then at most ℓ− 1 of
the edges of D will have both endpoints in S.

Thus, Eq. S3 has been shown. To justify Eq. S4, by a simple
counting argument we have the following:

• If u∉V ðDÞ, then the term zD will appear jV ðDÞ∩ Sj times in
Eq. S4.

• If u∈V ðDÞ, then the term zD will appear jV ðDÞ∩ Sj− 1 times
in Eq. S4.

Thus, Eq. S4 has been shown. Applying this inequality, we
now haveP

e∈EðSÞ
ye +

P
D∈Ck

V ðDÞ⊆S

ðjDj− 1ÞzD +
P
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD

≤
P
e∈EðSÞ

ye +
P
v∈S
v≠u

P
D∈CkðvÞ

zD

=
P
v∈S

f iv −
P

e∈δ−ðSÞ
ye +
P
v∈S
v≠u

P
D∈CkðvÞ

zD

= f iu −
P

e∈δ−ðSÞ
ye +
P
v∈S
v≠u

 
f iv +

P
D∈CkðvÞ

zD

!
[S5]

≤
X
v∈S
v≠u

 
f iv +

X
D∈CkðvÞ

zD

!
[S6]

≤jSj− 1; [S7]

Anderson et al. www.pnas.org/cgi/content/short/1421853112 1 of 7

www.pnas.org/cgi/content/short/1421853112


where Eq. S5 follows as for a set of nodes S; all edges incoming
to a node in S have their other endpoint either in S or outside of
S. Eq. S6 follows from applying Eq. S2 (multiplied by −1) for the
set S and the vertex u, and Eq. S7 follows from applying the
upper bound from the flow constraint in Eq. S6 jSj− 1 times.
Next, we show that Psub ⊆Pcyc and thus Zsub ≤Zcyc. It suffices to

show that for any cycle C Eq. S9 is directly implied by Eq. S8
taking S=V ðCÞ. To bound the first term of the left-hand side of
Eq. S9, we have X

e∈C
ye ≤

X
e∈EðSÞ

ye:

For the second term, we will partition D∈ Ck;D≠C into two sets,
those where V ðDÞ⊆ S and D≠C, or those where V ðDÞ⊈ S, that is,X

D∈Ck
D≠C

jD∩CjzD =
X
D∈Ck

V ðDÞ⊆S
D≠C

jD∩CjzD +
X
D∈Ck

V ðDÞ⊈S

jD∩CjzD:

For the first sum, we have jD∩Cj≤ jDj− 1, because D≠C (and
D⊄C because both D and C are simple cycles). Thus,X

D∈Ck
V ðDÞ⊆S
D≠C

jD∩CjzD ≤
X
D∈Ck

V ðDÞ⊆S
D≠C

ðjDj− 1ÞzD ≤
X
D∈Ck

V ðDÞ⊆S

ðjDj− 1ÞzD:

For the second sum, because C⊂EðSÞ, we have jD∩Cj≤
jD∩EðSÞj for all D∈ Ck, and thusX

D∈Ck
V ðDÞ⊈S

jD∩CjzD ≤
X
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD:

Putting everything together then applying Eq. S8 we haveP
e∈C

ye +
P
D∈Ck
D≠C

jD∩CjzD

≤
P
e∈EðSÞ

ye +
P
D∈Ck

V ðDÞ⊆S

ðjDj− 1ÞzD +
P
D∈Ck

V ðDÞ⊈S

jD∩EðSÞjzD

≤ jSj− 1= jCj− 1;

showing the claim.
To show that Zcyc WZrec, consider ðyp; zpÞ∈Pcyc that is optimal

for the cycle formulation (the values of f iv and f ov are implied by
yp). If we let

xe = ype +
X

C∈Ck ; e∈C
zpC;

then we claim that x∈Prec (again with the values of the flow
variables being determined by x). To show this, it suffices to
verify Eqs. S2–S4 hold for x. To obtain Eq. S2

X
e∈δ+ðvÞ

xe =
X

e∈δ+ðvÞ

 
ype +

X
C∈Ck ; e∈C

zpC

!
[S8]

=
X

e∈δ+ðvÞ
ype +

X
C∈CkðvÞ

zpC [S9]

where in Eq. S8 we applied the definition of xe, and in Eq. S9 we
used that CkðvÞ, the set of cycles hitting v, is equal to the disjoint
union over all e going out of v of the set of cycles containing e

(the union is disjoint as each cycle contains exactly one edge out
of v). Likewise, we haveX

e∈δ−ðvÞ
xe =

X
e∈δ−ðvÞ

ype +
X

C∈CkðvÞ
zpC:

Thus, Eq. S6 from the cycles formulation implies Eq. S2 in the
recursive formulation. An analogous argument immediately
gives us Eq. S3 as well. Finally, to obtain Eq. S4 we have for
any cycle C with jCj> k,

P
e∈C

xe =
P
e∈C

ype +
P
D∈Ck
e∈D

zpe

0
BB@

1
CCA

=
P
e∈C

ype +
P
D∈Ck
D≠C

jD∩CjzD
[S10]

≤jCj− 1; [S11]

where in Eq. S10 we are counting, and using that jCj> k implies
that there is no D∈ Ck such that D=C, and in Eq. S11 we are
applying Eq. S9. Thus, we conclude that x is feasible. Using
feasibility, we can obtain the result as follows:

Zrec ≥
P
e∈E

cexe

=
P
e∈E

ce ype +
P
C∈Ck
e∈C

zpe

0
BB@

1
CCA

=
P
e∈E

ceype +
P
C∈Ck

cCzpe

=Zcyc:

In Fig. S7 we give a family of problem instances where Ztsp <Zsub.
In Fig. S8 we give an instance where Zsub <Zcyc.

The KEP with Bounded Chain Lengths. We show how to adapt the
PC-TSP formulation to allow for a maximum chain length ℓ, al-
though the technique would work for any of the four for-
mulations presented (the adaptation is trivial for the cycle and
subtour formulations). For each NDD n ∈ N and each edge e ∈ E,
we introduce auxiliary edge variables yne and likewise f i;nv and f o;nv
indicating flow that must begin at n. The formulation becomes

max
P
e∈E

weye +
P
C∈Ck

wCzC

�
y; z; f i; fo

�
∈PtspP

n∈N
yne = ye e∈E

[S12]

X
e∈E

yne ≤ ℓ n∈N [S13]

X
e∈δ−ðvÞ

yne = f i;nv v∈V ; n∈N [S14]

X
e∈δ+ðvÞ

yne = f o;nv v∈V ; n∈N [S15]

f o;nv ≤ f i;v ≤ 1 v∈V ; n∈N [S16]

Anderson et al. www.pnas.org/cgi/content/short/1421853112 2 of 7

www.pnas.org/cgi/content/short/1421853112


ye ∈ f0; 1g e∈E
zC ∈ f0; 1g C∈ Ck
yne ∈ f0; 1g e∈E;   n∈N:

The new constraints are briefly explained as follows. From Eq.
S12 we have that each edge used (ye) must be part of a chain
beginning at some NDD n. From Eq. S13 we obtain that each
chain can use at most ℓ edges, thus giving the maximum chain
length. In Eqs. S14 and S15 we just define auxiliary variables
denoting whether an edge used in a chain starting at n comes
into/out of v. Finally, in Eq. S16 we enforce that the edges used
in the chain starting at n are consecutive. The remaining con-
straints are exactly the same as the PC-TSP constraints with no
maximum chain length.

Stochastic Optimization for the KEP. Here we present a general
framework for dealing with the possibility that after an edge is
selected it might become ineligible for the matching, an event we
refer to as an “edge failure.” Edge failures occur commonly in
practice for a variety of reasons (e.g., a donor backs out, a pa-
tient dies, or a biological incompatibility is discovered).
We propose a two-phase system for planning exchanges that

anticipates edge failures occurring at random and plans to maxi-
mize the number of transplants performed once the failed edges
have been identified and removed. In the first phase, a subset of the
edges in the graph are selected to be tested for edge failures.
Operational constraints restrict this set, where the basic idea is that
it is not practical to check all of the edges. Some natural examples of
phase-one edge sets to test include the following:

• Use at most m edges in phase one.
• Each node has in-degree at most mi and out-degree at most mo.
• The edges used in phase one must be a feasible solution to

the KEP.

The only restriction on the rule used to select phase one edges
is that there exists a polyhedron P such that y∈P ∩ZjEj iff y
corresponds to a valid set of phase one edges (i.e., the set of
phase-one edges must be describable as a mixed-integer pro-
gram). After the phase-one selections are made, we learn which
of the edges that we tested in phase one failed, and in phase two
we solve the regular KEP using only edges that we checked and
that did not fail in phase one. Because we do not know which
edges will fail before we make our phase-one decision, we use
the objective of maximizing the expected weight of our phase-
two KEP solution when picking our phase-one solution. Next, we
describe the probabilistic framework we use for edge failures, and
then the computational technique used to compute our phase-one
solution.
We assume that there is a family of random variables Xe for

e∈E, taking the value one if the edge e can be used in the
matching and zero otherwise. We make no assumptions about
the independence structure of the variables Xe. However, we do
assume that we can jointly sample the vector of Xe variables.
We now define a two-stage stochastic integer optimization

problem. We have decision variables ye for e∈E that indicate the
edges we wish to test in stage one. In stage two, we observe our
realization ω∈Ω of XeðωÞ for the edges where ye = 1 (the edges
we tested), and then we form an optimal cycle packing using only
edges that we tested in phase one and where XeðωÞ= 1. We se-
lect our phase-one edges y, integer and in P, to maximize the
expected size of the phase-two packing.
This problem can be solved using themethod of sample average

approximation, as described and mathematically justified in refs.
2–4. Suppose that we sample the vector of Xe jointly n times, and
let x je for j= 1; . . . ; n be the realization of Xe in the jth sample. Let
y je be one if we use edge e in realization j and zero otherwise, and
likewise let z jC be one if we use cycle C in the jth realization. Let

P j
tsp be the cut set polyhedron on the variables y je and z jC. Our

formulation is then as follows:

max
Xn
j=1

 X
e∈E

cey je +
X
C∈Ck

cCz
j
C

!
[S17]

s:t: y∈P;�
y j; z j

�
∈P j

tsp;

y je ≤ ye e∈E; j= 1; . . . ; n;

y je ≤ x je e∈E; j= 1; . . . ; n;

z jC ≤ ye C∈ Ck; e∈C; j= 1; . . . ; n;

z jC ≤ x je C∈ Ck; e∈C; j= 1; . . . ; n;
ye ∈ f0; 1g e∈E;

y je ∈ f0; 1g e∈E; j= 1; . . . ; n;

z jC ∈ f0; 1g C∈ Ck; j= 1; . . . ; n:

This model has a few very attractive features. First, it allows for
a general probabilistic model for edge failures, which in practice
should be much more accurate than simply independently and
identically distributed edge failures. For example:

• If an edge failed because the donor or receiver became ill or
backed out, then all edges involving that donor/receiver would
be ruled out simultaneously.

• If an edge failed because a receiver developed a new HLA
antibody, then all edges from donors with that HLA antigen
would fail simultaneously.

• If an edge failed because a doctor or transplant center
deemed a donor to be of inadequate quality for the recipient
(e.g., too old), then possibly other edges pointing to the same
doctor/transplant center would fail, but not necessarily all of
them, because a highly sensitized recipient may have lower
standards than a standard recipient.

Clearly, a very sophisticated model could be made to predict
edge failures. Further, it will likely be easier to draw samples
from such a model than to explicitly work out the joint distri-
bution of edge failures.
Another good feature of this model is that we have a great deal

of flexibility in choosing P (the set of edges we are allowed to pick
in phase one). Our flexibility in choosing P allows us to adapt to
various operational constraints of actually running a kidney ex-
change. Additionally, we can use P to try and influence “agents”
(e.g., donors, recipients, doctors, hospitals, and transplant cen-
ters) into taking actions that maximize global welfare. For ex-
ample, if we select more than one incoming edge to a node in
phase one, then the receiver, the doctor, the hospital, and the
transplant center may be incentivized to reject the worse of the
two edges to try and get a higher quality donor. One very simple
fix is to restrict the edges tested in phase one to give each node
an in-degree of at most one. Then as no one will receive multiple
offers, no one will be incentivized to turn down a kidney they
otherwise would have accepted.
Finally, note that it is at times desirable to add additional

decision variables to the phase-one problem. For example, if we
were to restrict our phase-one solution to be a feasible solution to
the KEP, while we could take P=Prec, it is computationally more
efficient to use the PC-TSP formulation instead. One way of
accomplishing this is as follows: Add decision variables ~ye for
e∈E and ~zC for each cycle C∈ Ck, let

ye =~ye +
X
C∈Ck
e∈C

~zC;

Anderson et al. www.pnas.org/cgi/content/short/1421853112 3 of 7

www.pnas.org/cgi/content/short/1421853112


and then take P to be the PC-TSP polyhedron applied to ~y and ~z,
along with the constraint above relating y to ~y and ~z. Further,
note that the cut set constraints for the P j

tsp polyhedrons would
automatically be implied by the cut set constraints from Ptsp on
ð~y;~zÞ and thus could be eliminated.
Our model and can easily solve problems with up to 30 scenarios

on a desktop computer. Various heuristics designed for the sample
average approximation approach can provide close to optimal
results for larger problems. One may also consider solving a fully

stochastic and dynamic optimizationmodel; however, such amodel
is not tractable because it would include an infinite horizon sto-
chastic dynamic program with a state for every possible graph and
a large decision space for every state. One interesting way to tackle
this is through approximate dynamic programming (see e.g., ref. 5).
Previous studies have shown that a large class of dynamic algo-
rithms do not improve outcomes significantly beyond greedy al-
gorithms (see, e.g., ref. 6 and references therein), and thus solving
the one-shot optimization problems is an important challenge.

1. Bertsimas D, Weismantel R (2005) Optimization over Integers (Dynamic Ideas, Belmont,
MA), Vol 13.

2. Swamy C, Shmoys DB (2005) Sampling-based approximation algorithms for multi-stage
stochastic optimization. Proceedings of the 46th Annual IEEE Symposium on Founda-
tions of Computer Science (IEEE, New York), pp 357–366.

3. Kleywegt AJ, Shapiro A, Homem-de Mello T (2002) The sample average approximation
method for stochastic discrete optimization. SIAM J Optim 12(2):479–502.

4. Ahmed S, Shapiro A (2002) The sample average approximation method for stochastic
programs with integer recourse. SIAM J Optim 12:479–502.

5. Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009) ParamILS: An automatic algorithm
configuration framework. J Artif Intell Res 36(1):267–306.

6. Anderson R, Ashlagi I, Gamarnik D, Kanoria Y (2013) A dynamic model for barter ex-
change. ACM technical report (Assoc Computing Machinery, New York).

Fig. S1. A cyclic exchange involving two patient–donor pairs. Each pair is represented by a node, where the blue half of the node represents the donor and
the red half represents the patient.

Fig. S2. A chain exchange involving an altruistic donor, d0, four patient–donor pairs, and a patient with no donor p5. Each pair is represented by a node,
where the blue half of the node represents the donor and the red half represents the patient.

Fig. S3. An example of a KEP instance. The node labeled n is an NDD, and the remaining nodes p1 through p7 correspond to patient–donor pairs. Edges
indicate possible transplants from the donor in the source node to the patient in the target node. In the optimal solution for this instance, indicated by the bold
edges, we form the chain n, p1, p2, p3, p7, and the two cycle with p5 and p6, leaving p4 unmatched.

Anderson et al. www.pnas.org/cgi/content/short/1421853112 4 of 7

www.pnas.org/cgi/content/short/1421853112


Fig. S4. An example of a cut set constraint. The graph contains a single NDD in green, labeled n. Observe that if node v is to be involved in any chain (i.e.,
f iv = 1), then we must use at least one of the edges a or b that go across the cut separating S from the remaining nodes and NDD.

Fig. S5. A pathological instance of the KEP that is very difficult for the direct formulation but is solved trivially by the TSP formulation. The optimal solution is zero.

Fig. S6. The figure represents two fractional solutions to demonstrate the necessity of the second sum from the left-hand side of inequality S9. In this in-
stance, P = fp1, . . . ,p5g, N=∅, the edges are as indicated in the figure above, and all edges have weight one. The numbers next to the edges indicate fractional
solutions, namely ye for the recursive formulation, and ye +

P
C∈Ck ,e∈CzC for the cycle formulation. Observe that the solution on the left has greater weight than

the solution on the right. The solution on the left is infeasible for the recursive formulation, because the constraint on the cycle fðp1,p2Þ,ðp2,p3Þ,ðp3,p4Þ,ðp4,p1Þg
is violated. The solution on the right is optimal for the recursive formulation. For the cycles formulation, letting the cycle D= fð3;4Þ,ð4; 5Þ,ð5; 3Þg, without the
second sum from the left-hand side of S9, we could take zD = 1=4 and ye = 3=4 for e= ð1; 2Þ,ð2; 3Þ,ð3;4Þ,ð4; 1Þ and then fractional solution on the left would be
feasible. This would break the result that Zcyc WZrec. However, by including the variable zD in the constraint against the four cycles, we again have that the
solution on the right is optimal for the cycles formulation.

Anderson et al. www.pnas.org/cgi/content/short/1421853112 5 of 7

www.pnas.org/cgi/content/short/1421853112


Fig. S7. Consider the family of problem instances on n≥ 4 nodes where P = fp1, . . . ,png, N=∅, there are n edges forming a single cycle of length n, and we = 1
for every edge. Above is the instance where n= 8. The optimal solution for the IP and the PC-TSP LP relaxation are both zero, but the subtour elimination LP
relaxation has an optimal solution n− 1 [each node has ye = ðn− 1Þ=n].

Fig. S8. In the instance on six nodes above, where k= 3, N=Ø, P = fp1, . . . ,p6g, and each edge has weight one, the IP optimum is zero. Taking ye to be the
edge labels in the figure above, we get a feasible solution to the LP relaxation of Zcyc = 6. However, the LP optimum for the subtour formulation is Zsub = 5. We
can attain this value by taking yði,i+1Þ =5=6 and yð6;1Þ = 5=6. To show that 5 is optimal, we apply constraints S8 taking S= P, to obtain that

P
e∈EðPÞye ≤ 5, and then

observe that
P

e∈EðPÞye is equal to the objective function.

Table S1. Average number of chains of size k (k=3;4; 5; 6) in
random pools of various sizes and a single altruistic donor

Nodes k = 3 k = 4 k = 5 k = 6

150 4,520 69,780 1,063,727 16,116,117
200 5,147 99,046 1,884,160 35,304,432
250 15,407 370,071 8,807,015 207,347,121

Table S2. Additional patients matched for incremental increases in the maximum chain length

Measures ð3,∞Þ, % ð4,∞Þ, % ð5,∞Þ, % ð6,∞Þ, %
Additional highly sensitized (PRA >95) matched 35 27 21 16
Additional patients matched 21 17 14 12
Instances with more highly sensitized matched 35 32 25 23

Anderson et al. www.pnas.org/cgi/content/short/1421853112 6 of 7

www.pnas.org/cgi/content/short/1421853112


Table S3. Performance of the recursive and TSP algorithms for
“difficult” real-data KEP instances

Running time, s

NDDs Patient–donor pairs Edges Recursive TSP

3 202 4,706 0.148 0.031
10 156 1,109 13.093 0.022
6 263 8,939 59.158 1.655
5 284 10,126 71.066 0.807
6 324 13,175 418.27 0.981
6 328 13,711 474.947 1.947
6 312 13,045 1,200* 0.157*
10 152 1,125 48.56 0.054
3 269 2,642 40.506 0.134
10 257 2,461 67.783 0.258
7 255 2,390 85.475 0.268
6 215 6,145 248.46 0.532
10 255 2,550 216.48 0.126
1 310 4,463 721.66 0.555
11 257 2,502 1,039.105 0.125
6 261 8,915 1,200 4.435
10 256 2,411 587.238 0.114
6 330 13,399 1,200 1.621
10 256 2,347 1,200 0.305
7 291 3,771 1,200* 0.221
8 275 3,158 1,200* 0.224
4 289 3,499 1,200* 0.2
3 199 2,581 1,200* 0.041
7 198 4,882 1,200* 8.204
2 389 8,346 1,200* 0.096

Timeouts (optimal solution not found) are indicated by an asterisk.

Table S4. KEP on very large historical datasets with the recursive and TSP algorithms

Recursive algorithm TSP algorithm

Instance NDDs Patient–donor pairs Edges Running time, s RAM, GB Running time, s RAM, GB

APD 47 931 190,820 1.79 1 104 25
NKR 162 1,179 346,608 3.074 1 314 37

Anderson et al. www.pnas.org/cgi/content/short/1421853112 7 of 7

www.pnas.org/cgi/content/short/1421853112

