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a b s t r a c t

There is a set of incompatible patient–donor pairs and these pairs arematched pairwise. Amatch between
two pairs corresponds to a paired kidney donation, where pairs exchange donated kidneys, or a paired listed
exchange, where the first donor donates a kidney to the deceased donor wait-list, the first patient receives
the kidney of the second donor, and the second patient receives a priority on thewait-list.We characterize
the set of exchanges with themaximumnumber of transplants from the set of pairs. This characterization
generalizes the well-known Gallai–Edmonds Decomposition Theorem.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Transplantation is the preferred treatment for the most serious
forms of kidney disease. While there is a considerable shortage of
deceased donor kidneys,1 they are not the only sources for trans-
plantation and it is also possible for a kidney patient to receive
a live donor transplant.2 We characterize the exchanges utilizing
these sources of kidneys such that the number of live donor trans-
plants is maximum.

Medical authorities have developed different programs to in-
crease the number of transplantations. One of these programs is
a paired kidney donation. A paired kidney donation involves two
incompatible patient–donor pairs, for each of whom a transplant
from donor to intended recipient is not possible due to medical in-
compatibilities, but such that the patient in each pair could receive
a transplant from the donor in the other pair.3 These two pairs can
then exchange donated kidneys.

Another possibility is a listed exchange (also known as living-
donor–cadaver-donor exchange), where the recipient of an in-
compatible pair receives priority on the deceased donor list for
providing the wait-list with the kidney from his intended live
donor.4 Listed exchange can be extended to include two pairs: in a
paired listed exchange, there are two donor–patient pairs; the first

∗ Tel.: +90 212 338 1627; fax: +90 212 338 1653.
E-mail address: ozyilmaz@ku.edu.tr.

1 As of October 24, 2012, there are 94,074 patients waiting for kidney transplants
in the U.S., with the median waiting time of over 3 years, and in 2011, there were
only 11,043 transplants of deceased donor kidneys.
2 In 2011, there were 5,770 transplants of live donor kidneys.
3 See Rapaport (1986), Ross et al. (1997), Ross and Woodle (2000), Delmonico

(2004), Delmonico et al. (2004), Segev et al. (2005a,b).
4 See Delmonico (2004), Kaplan et al. (2005), Zenios (2002).
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donor provides a kidney to a candidate on the deceased donor list,
the first patient receives the kidney of the second donor, and the
second patient receives a priority on the wait-list.5 This improves
the welfare of the first patient, but also of the second patient, com-
pared to having a long wait for a deceased donor kidney, and it
benefits the recipient of the live donor kidney on the wait-list who
benefits from the increase in the kidney supply due to an additional
live donor.

While the transplantation community approved the use of the
paired kidney donations and listed exchanges to increase kid-
ney donations, it has provided little guidance about how to or-
ganize such exchanges. Recently, it is proposed to model kidney
exchange as a mechanism design problem.6 This approach turns
out to be very successful and it is supported by the medical com-
munity. Since then, centralized mechanisms based on the paired
exchange protocols have been used in the regional exchange pro-
grams; in particular, theNewEngland Paired Kidney Exchange Pro-
gram (NEPKE) has been in practice since 2006, which relies on the
design proposed by Roth et al. (2005a,b). The main objective of
these kidney exchange programs has been to maximize the num-
ber of transplants and we focus on this particular objective.

Kidney exchange has three main characteristics. The first one
is a logistical constraint: for any kidney exchange including mul-
tiple transplantations, these transplantations are to be carried out
simultaneously to avoid conflicts which may arise when a donor
gives up after her patient receives a kidney transplant fromanother
donor. This practice excludes the exchanges with three or more

5 Listed exchange is also known as list paired donation. To avoid confusion,
we choose to refer to an exchange with two incompatible pairs as paired listed
exchange.
6 See Roth et al. (2004, 2005a,b, 2006, 2007).
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incompatible pairs and the only available procedures are paired
kidney donation and (paired) listed exchange. The second one is
with regards to the preferences of the patients. Due to a medi-
cal fact, for a patient, the difference between two live donor kid-
neys, which are compatible with him, is negligible in terms of the
success rate and graft survival rate. Thus, patients are considered
to be indifferent between any two compatible live donor kidneys;
patients’ preferences on the set of compatible live donor kidneys
are dichotomous.7 The third one is due to an important difference
between a paired kidney donation and listed exchange. The for-
mer includes two transplantations from live donors and the latter
includes a transplantation from a deceased donor. Since both the
success rate and graft survival rate are higher for a transplanta-
tion from a live donor compared to the one from a deceased donor,
ethical concerns arise regarding listed exchange. Despite these
concerns, there are cases where listed exchange offers more op-
portunities in terms of the utilization of the donors, particularly
when there are small groups of patients (Gentry et al., 2005).

Given these characteristics of kidney exchange, the current
practice includes a set of incompatible pairs registered for a paired
kidney donation and a set of incompatible pairs registered for a
listed exchange, and these two sets are treated separately. A sim-
ple idea is to combine these two sets to further utilize the donors,
in accordance with the kidney exchange programs’ current objec-
tive of maximizing the number of transplants. Based on this idea,
we propose a model where there are two sets of pairs: (i) pairs
with a patient expecting a transplantation only from a live donor
(these belong to the pool of paired kidney donations) and (ii) pairs
with a patient expecting either a transplantation from a live donor
or an urgent transplantation from a deceased donor (these be-
long to the pool of listed exchanges). These (separately formed)
pools of pairs are then reconsidered together and combined to fur-
ther improve the utilization of the donors. The incompatible pairs
are matched pairwise according to the medical compatibilities be-
tween them. There are two mutually exclusive paired exchanges
when two pairs are matched: It is either a paired kidney donation,
where the pairs exchange the live donors, or a paired listed ex-
change, where the first patient receives a live donor kidney and the
second pair receives a priority on the wait-list. The interpretation
of a paired listed exchange is twofold. First, from an institutional
perspective, there is no difference between a listed exchange and
a paired listed exchange as far as the patients in the wait-list are
concerned. Listed exchange replaces the top priority patient with
another patient, thanks to a live donor (the donor of the second
patient). As far as the wait-list is concerned, the paired listed ex-
change does the same thing. For this reason, donation chains of
large sizes are possible in practice and in a paired listed exchange,
only two pairs take part. Second, the second pair in a paired listed
exchange is already registered for a listed exchange and a paired
listed exchange does not improve the welfare of the patient in that
pair but it helps some other patient receiving a live donor kidney.
Thus, while a pair joins the exchange pool with the expectation of
getting a transplantation from a live donor, if this does not hap-
pen, ex post, paired listed exchange has a flavor of altruism: since
the patient in the second pair would have received priority on the
wait-list anyway by engaging in a listed exchange by itself, only
the first pair benefits from this match.8 Thus, while two patients

7 Although this view on the patients’ preferences for the live donor kidneys is
adopted by the transplantation centers, there is a different view arguing that the
quality of the match differs across different live donors. See Nicolò and Rodriguez-
Álvarez (2011a) for a discussion of this point.
8 In anymatching, any unmatchedpair including a patient from the set of patients

(ii), engages in a listed exchange, thus that patient receives priority in the wait-list
as well. These type of unmatched pairs and the pairs matched via a paired listed
benefit from a paired kidney donation, only one patient benefits
from a paired listed exchange. Also, there is no issue of strategic ma-
nipulation: since we take the type of a patient as given by the cur-
rent pool that he belongs to, there is no gaming among the pairs
in the form of revealing whether to accept priority in the wait-list
(in exchange for the donor donating to a patient on the wait-list)
or to accept a transplantation only from a live donor. Thus, our
approach to this matching problem excludes any type of strategic
manipulation per se. We provide a characterization of the match-
ings with the maximum number of patients receiving a live donor
kidney transplantation. Our result generalizes thewell-knownGal-
lai (1964, 1963)–Edmonds (1965) Decomposition Theorem, which
characterizes the maximum cardinality matchings for the prob-
lemswhere each pairwisematch corresponds to a uniformweight.

For the constrained kidney exchange problem, in which only
the paired kidney donations are allowed, an efficient and strategy-
proof mechanism exists under the dichotomous preferences of the
patients and the characterization of the efficient matchings (Roth
et al., 2005a) is given by the Gallai (1964, 1963)–Edmonds (1965)
Decomposition Theorem. There exists also a stochastic mecha-
nism motivated by the fairness considerations. The existence and
characterization of the egalitarian matchings (Roth et al., 2005a)
generalize the corresponding results on the two-sided matching
problem (Bogomolnaia and Moulin, 2004) to the general matching
problem motivated by the kidney exchange.9

A new approach is to incorporate compatible pairs into ex-
change (Sönmez and Ünver, 2011); the paired kidney donations
between the incompatible pairs as well as between an incom-
patible pair and a compatible pair are considered. For this prob-
lem, the efficient matchings are characterized by extending the
Gallai–Edmonds Decomposition Theorem (Sönmez and Ünver,
2011).10 In a related work, the matching rules are analyzed such
that they provide incentives to patients with compatible donors to
enroll in such programs by offering them the chance of receiving an
organ with higher expected graft survival (Nicolò and Rodriguez-
Álvarez, 2011b).

For the unconstrained kidney exchange problem, the organiza-
tion of kidney exchange (under the assumptions of dichotomous
preferences of the patients on the live donor kidneys and that the
success rates of transplants from live donors are higher than those
from cadavers) is explored and the set of efficient and fair random
matchings is characterized (Yılmaz, 2011). Thismodel is essentially
different than the current one in the sense that the former consid-
ers the setting where there is no restriction on the number of pairs
included in an exchange.11 Also, dynamically optimal kidney ex-
change mechanisms are characterized in a setting where the pa-
tient–donor pool is evolving dynamically (Ünver, 2010).

2. The model

A pair consists of a patient and a donor such that the donor
cannot medically donate her kidney to the patient of the pair. Let
N be the set of all pairs. Given two pairs x, y ∈ N , if the donor of

exchange go to the top of the wait-list together. Since they were already registered
for a listed exchange, there is a clear way of prioritizing these pairs. Moreover,
although one might think that to be at the top or at the bottom of this short list
of patients (who are lined up for a listed exchange) should make a big difference,
actually it is not the case. Given the very long waiting times for a cadaveric kidney
and that the number of these patients (up for listed exchange) is so small compared
to the huge number of patients in the very long wait-list, the difference between
being at the top and at the bottom is negligible.
9 Also, for a preference profile constructed according to the blood-type compat-

ibilities, three-way kidney donations as well as paired kidney donations will have
a substantial effect on the number of transplants and larger than three-way kidney
donations have less impact (Roth et al., 2007).
10 This work is closest to the current one and we discuss it further in Section 4.
11 Roth et al. (2004, 2007) also analyze the unconstrained problem.
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y can medically donate her kidney to the patient of x, we say that
x is compatible with y. Given two pairs, if the donor of each pair
can medically donate her kidney to the patient of the other pair,
we say that these two pairs are mutually compatible. Each pair x
has the following preferences on N: it is indifferent between all
compatible pairs, indifferent between all incompatible pairs and
it strictly prefers a compatible pair to remaining unmatched and
remaining unmatched to an incompatible pair.

A pair can be matched to another pair or remain unmatched.
A paired kidney donation (PKD) involves two mutually compatible
pairs x and y such that the patient of x receives the kidney of the
donor of y and the patient of y receives the kidney of the donor of x.
A paired listed exchange (PLE) involves two pairs x and y, such that
x is compatible with y and y is not compatible with x, the patient
of x receives the kidney of the donor of y, the donor of x donates
to a patient in the wait-list, and the patient of y receives priority
in the wait-list. Due to a medical fact, that a live donor kidney has
substantially higher patient survival and graft survival rates than
the deceased donor kidney, each pair strictly prefers a compatible
pair to a deceased donor kidney.

There are two types of pairs: a p-pair prefers being unmatched
to a deceased donor kidney transplantation and an l-pair prefers
the highest priority on the wait-list to being unmatched. The sets
of p-pairs and l-pairs are denoted by Np and Nl, respectively and
they partition the set N .

A feasible exchange matrix R = [rx,y]x,y∈N identifies all feasible
exchanges where

rx,y =


2 if y ∈ N \ {x}, and x, y are mutually compatible
1 if x is compatible with y, y is not compatible with

x and y ∈ Nl
0 otherwise.

A pair (x, y) is referred to as a feasible paired kidney donation if
rx,y = 2 and as a feasible paired listed exchange if rx,y = 1.

A kidney exchange problem (or simply a problem) (N, R) consists
of a set of pairs and a feasible exchange matrix. Given a problem
(N, R) and N ′

⊆ N , the reduced problem is denoted by (N ′, R|N ′),
where R|N ′ is the reducedmatrix of R onN ′. Amatching is a function
µ : N → N such that for all x, y ∈ N, µ(x) = y if and only if
µ(y) = x, and [µ(x) = y and x ≠ y] imply either rx,y ≠ 0 or ry,x ≠

0, with the convention that µ(x) = x means x being unmatched
at µ. Thus, a matching µ specifies a set of mutually feasible paired
kidney donations and paired listed exchanges. For a matching µ, if x
and y are matched via a PLE, we denote this by µ1(x) = y and if x
and y are matched via a PKD, we denote this by µ2(x) = y.12 For a
problem (N, R), let M(N, R) denote the set of all matchings.

Since any pair can always receive priority in the wait-list by
simply accepting to be in a listed exchange, when comparing two
different matchings, only the patients receiving a live donor kid-
ney transplantation should be taken into consideration. For each
matching µ, let Tµ denote the set of all pairs who receive a trans-
plant from a live donor. Formally,
Tµ

= {x ∈ N : (x, y) ∈ µ1 ∪ µ2 for some y ∈ N}.

For each µ, µ′
∈ M, µ Pareto-dominates µ′ if each x ∈ N

weakly prefers µ(x) to µ′(x), and some x ∈ N strictly prefers µ(x)
to µ′(x). A matching µ ∈ M is Pareto efficient if no other matching
Pareto dominates µ. For a problem (N, R), let E(N, R) denote the
set of Pareto efficient matchings.

12 Whenever convenient and no confusion arises, we denote by µ also the set of
pairs matched via the function µ. Since µ1 and µ2 correspond to the set of PLE’s
and PKD’s, respectively, this notation implies µ = µ1 ∪ µ2 . Also, for a matching
µ, (x, y) ∈ µ2 means that the patient of each pair receives a kidney from the donor
of the other pair and (x, y) ∈ µ1 means that the patient of x receives a kidney from
the donor of y, the donor of x donates to a patient on the wait-list, the patient of y
receives priority in the wait-list, and y ∈ Nl . Thus, for x ≠ y, (x, y) ∈ µ2 implies
(y, x) ∈ µ2 , and (x, y) ∈ µ1 implies (y, x) ∉ µ1 .
3. Maximum and p-maximummatchings

Our model relies on the interpretation of the sets Np and Nl.
There is a set of pairs Np, each of whom expects to receive a trans-
plant from a live donor and there is a set of pairs Nl, each of whom
has accepted to be in a listed exchange to receive priority in the
wait-list. These two sets are integrated to improve social welfare
via the extended set of feasible PKD’s and PLE’s. For example, let
Np = {x} and Nl = {y} such that rx,y = 1. If these two pairs are
considered separately, then the pair x remains unmatched, and the
pair y receives priority in the wait-list. On the other hand, if these
two sets are considered together as suggested in our model, then
the pair x receives a transplant from the donor of y and the pair y
receives priority in the wait-list.

When there are no l-pairs, awell-known result, theGallai (1964,
1963)–Edmonds (1965) Decomposition Theorem,13 characterizes
the structure of Pareto efficientmatchings and the same number of
pairs arematched at each Pareto efficientmatching.14 However, for
a kidney exchange model with p-pairs and l-pairs, the number of
pairs, who receive a transplant from a live donor, may be different
in different Pareto efficient matchings.

Example 1. Let Np = {x},Nl = {y, z} and the feasible exchange
matrix R be such that rx,y = 1 and ry,z = 2. There are two Pareto ef-
ficient matchings, µ = {(x, y)} and µ′

= {(y, z)}, where |Tµ| = 1,
and

Tµ′
 = 2. Also, the number of p-pairs, who receive a trans-

plant from a live donor, is different in different Pareto efficient
matchings.

Thus, some Pareto efficientmatchings can be improved in terms
of the number of pairs who receive a transplant from a live donor.
Actually, the opportunity of increasing the number of transplants
in general forms the main objective of the transplantation centers,
they aim at the arrangements of the exchanges such that the num-
ber of transplants is maximized. We focus on this particular ob-
jective as well. A matching µ is maximum (or has the maximum
number of transplants from live donors) if there is no othermatch-
ing µ′ such that

Tµ′
 > |Tµ|. Also, the transplantation centers’

preferred exchange is the PKD. Thus, it is plausible to minimize
the number of PLE’s, while maximizing the number of transplants.
A matching is called p-maximum if it is maximum and it has the
maximum number of PKD’s in the set of the maximummatchings.
Given a problem (N, R), let Em(N, R) denote the set of p-maximum
matchings.15

The existing exchange mechanism used in practice considers
the pool of the p-pairs separately and matches the pairs in such
a way that the number of transplants is maximized. Focusing on
the same objective, our approach considers the sets of the l-pairs
and p-pairs together, which are originally formed separately. The
l-pairs are located possibly in several regions which are geograph-
ically close to the location of the pool of the p-pairs. These l-pairs
are then integrated to the pool of the p-pairs so that the number
of transplants is further enhanced.16 It is clear that each l-pair is
weakly better off after the integration since such a pair x is already
registered for a listed exchange to receive priority in the wait-list,

13 See Appendix A.3. for the formal statement of this result.
14 Observe that when there no l-pairs, only the PKD’s are feasible, and there is no
PLE in a matching.
15 A p-maximummatching always exists. Since the problem is finite, a maximum
matching exists and a p-maximummatching is maximum such that the number of
PKD’s is maximum among thesemaximummatchings, which clearly exist, again by
the finiteness of the problem.
16 We abstract the logistical issues regarding how to bring a patient and a
donor from different regions together. A recent work analyzes ways of overcoming
geographical disparities (Ata et al., 2012).
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and after the integration, pair xwill receive either a live donor kid-
ney transplant (if (x, y) ∈ µ) or priority in the wait-list (if x is
unmatched or (y, x) ∈ µ1; in either case x is back in a (paired)
listed exchange). The question iswhether thewelfare of the p-pairs
(weakly) improves as well, in other words, whether the l-pairs do
not have a negative externality on the welfare of the p-pairs, if the
transplantation center insists on the p-maximummatchings. More
specifically, suppose amaximum(equivalently, p-maximum in this
particular setting of only p-pairs) matching is fixed for the set of
p-pairs only. Let T be the set of pairs who receive a transplant in
this matching. Then, after the integration of the l-pairs to the pool
of p-pairs, does there exist a p-maximum matching in this new
problem, so that all the patients in T receive a live donor kidney
transplant? As our first result shows, the answer is positive.

Proposition 1. Let (Np ∪Nl, R) be a problem. Let µ ∈ Em(Np, R|Np).
Then, there exists a matching µ′

∈ Em(Np ∪ Nl, R) such that Tµ′

⊇

Tµ.

This result implies that the efficiency gains from the integration of
the l-pairs to the pool of p-pairs are always at the full level, even
if the set of matchings is restricted so that each pair in a subset of
Np is guaranteed to receive a live donor kidney transplant.17 Thus,
given a priority ordering on Np and a priority mechanism based on
this ordering,18 a p-maximummatching can be obtained under the
integration without making a pair in Np worse off with respect to
the outcome of this priority mechanism.

4. The structure of p-maximummatchings

Given the setsNp andNl, our goal is to characterize the structure
of p-maximum matchings. As discussed in the introduction, there
is no room for strategic manipulation because our model relies on
the fact that the types of the patients are already revealed and the
setsNp andNl are knownand they are combined together to further
improve the utilization of the donors. Thus, we focus only on the
efficiency issues. For each problem (N, R), let

D(N, R) = {x ∈ N : ∃µ ∈ Em(N, R) s.t. µ(x) = x}.

Let A1(N, R) be the set of pairs who are part of only PLE’s in each
p-maximum matching and have a compatibility with at least one
pair in D(N, R).

A1(N, R) = {x ∈ N : ∀µ ∈ Em(N, R), µ1(x) ≠ x
and ∃y ∈ D(N, R) s.t. {rx,y, ry,x} ≠ {0}}.

A component C of N ′
⊆ N is such that (i) for each x ∈ C and

y ∈ N ′
\ C, x is not compatible with y and y is not compatible with

x, and (ii) for each C ′ ( C , there exist u ∈ C ′ and v ∈ N ′
\ C ′ such

that either u is compatible with v or v is compatible with u.

17 This proposition and the discussion before demonstrate that the integration of
the sets of p-pairs and l-pairs makes each pair weakly better off. This result relies
on the characteristics of our model and the way the sets of p-pairs and l-pairs are
interpreted. It clearly does not hold if we interpret the integration in a differentway
if, for example, we consider the welfare of the patients in a pool where only PLE is
possible initially and then PKD becomes available (although this is far from being a
suitable way of modeling kidney exchange since its characteristics and the current
practice exclude situations where PLE is available but PKD is not). This extension
of the possible exchange procedures may hurt the patients who engage in a PLE
before the change. For example, for the set of pairs N = {x, y, u, v} and the feasible
exchange matrix R with rx,y = ru,v = 1, ry,v = 2, the only p-maximum matching
when only PLE is possible, is µ = {(x, y), (u, v)}. If PKD becomes available as well,
the only p-maximum matching is µ′

= {(y, v)} where pairs x and u are adversely
affected by the extension.
18 A priority mechanism matches as many patients as possible (among the
matchings with the maximum possible number of patients matched in a paired
kidney donation) starting with the patient with the highest priority and following
the priority ordering.
Theorem 1. Let (N, R) be a problem. Then,
1. in any p-maximum matching, each pair in A1(N, R) is matched to

a pair in D(N, R);
2. if the set N \ A1(N, R) contains a component C in D(N, R), then

(a) for each x ∈ C, the problem (C \ {x}, R|C\{x}) has a matching
with each pair being matched,

(b) in any p-maximummatching, each pair in C but one ismatched
to a pair in C,

(c) in any p-maximummatching, at most one pair in C is matched
to a pair in N \ C and such a pair, if any, is matched to a pair
in A1(N, R).

To illustrate the idea and the sets D(N, R) and A1(N, R), we provide
a simple example.

Example 2. Let Np = {u, v},Nl = {x, y, z} and the feasible ex-
change matrix R be as follows:

x y z u v
x 0 1 1 0 0
y 0 0 2 0 0
z 0 2 0 2 0
u 1 1 2 0 0
v 1 0 1 0 0

In any p-maximum matching, three patients receive a transplan-
tation from a live donor; also, z is matched to either u or y via
a PKD, and x is matched to either u, y or v via a PLE. There are
four such p-maximum matchings, each of which is such that one
of the pairs u, v and y is unmatched. Thus, D(N, R) = {u, v, y} and
A1(N, R) = {x}.

Our result conveys the following. For our general model of kid-
ney exchange, while the Gallai–Edmonds Decomposition (GED)19
structure is not fully present anymore, a restricted GED-type struc-
turewith a similar economic interpretation (as in the pairwise kid-
ney exchangewith only PKD’s) still exists. There exists a set of pairs
each of which will always engage in a PLE with a pair from another
given set; also, if a subset of the former set corresponds to a partic-
ular component structure in the reduced problem, then the struc-
ture of matchings of the pairs in that component is equivalent to
the one implied by the GED-type structure.

Our result extends theGEDTheorem: given (N, R), whenno two
pairs are mutually compatible, thus, when for all x, y ∈ N, rx,y ∈

{0, 1}, the structure given in Theorem 1 reduces to the GED Theo-
rem; we discuss further how the latter theorem derives from our
result in Appendix A.3. Moreover, the characterization given in
Theorem 1 is tight and there are examples which illustrate that
there is no further GED-type structure than the one given in Theo-
rem 1.20

A similar (and independent) result is obtained by Sönmez and
Ünver (2011) via an altruistic kidney exchange model introduced
by the authors; their model includes the compatible pairs in a way
that the PKD’s occur between the incompatible pairs or between an
incompatible pair and a compatible pair. This can be interpreted
as a particular case of our model. Each compatible pair can be
matched onlywith an incompatible pair and if it ismatched, it ben-
efits the incompatible pair that it is matched but not itself, because
its patient is compatible with its donor and would receive her kid-
ney anyway. Thus, the compatible pair accepts to be matched with
an incompatible pair purely for altruistic reasons. Thus, in such a
match, only the patient of the incompatible pair benefits. Thus, Nl
is the set of compatible pairs in this model. However, there is a re-
striction: no two compatible pairs can be matched. Thus, x, y ∈

Nl implies rx,y = 0.21 For this particular class of problems, the

19 See Appendix A.3 for the formal statement of the GED Theorem.
20 These examples are available upon request.
21 Note that in the general model that we consider, there is no such restriction for
the l-pairs: an l-pair can be compatible with another l-pair, also two l-pairs can be
mutually compatible.
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GED-type structure is fully preserved. Thus, our result shows the
extent to which the GED structure is maintained under a general-
ization of the altruistic kidney exchange model.22
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Appendix

A.1. Preliminaries on graphs

Our goal is to characterize the set of p-maximum matchings,
thus we focus on the number of patients receiving a transplant
from a live donor. This implies that we can represent a kidney
exchange problem by aweighted graph, where certain edges stand
for a feasible PKD and others for a feasible PLE.We introduce below
some basic notions in graph theory to be used in converting a
feasible exchange matrix into a graph.

A problem (N, R) can be represented by a weighted graph G =

(V , E, w), where V is the set of vertices, E is the set of edges, and
w is a weight function, w : E → {1, 2}. The graph representation
of a problem (N, R) is obtained as follows. Each pair u is a vertex,23
thus V = N . Let u, v ∈ V be two vertices. If ru,v = 2, then the set
E contains the edge uv, the weight of which is 2. If ru,v = 1, then
the set E contains the edge uv, the weight of which is 1. An edge
with weight 1 is called a thin edge; an edge with weight 2 is called
a thick edge. For a weighted graph G = (V , E, w), and E ′

⊆ E, we
call w(E ′) =


uv∈E′ w(uv) as the weight of E ′. An edge uv is said

to be incident with the vertex u (and the vertex v). A vertex u is a
neighbor of v if the set E contains the edge uv. The neighbor set of
a set of vertices V ′

⊆ V is the union of the neighbors of the vertices
in V ′. A set of vertices V ′

⊆ V is a component of G if it is equivalent
to its neighbor set and V ′′ ( V ′ implies that V ′′ is not equal to the
neighbor set of V ′′.

Let G = (V , E, w) be a weighted graph. For a vertex set V ′, let
G − V ′ denote the subgraph obtained by removing each v ∈ V ′

and the edges incident with v. We denote G − {u} by G − u. For
a subgraph H of G, let H2 be the subgraph of H which consists of
the thick edges in H . The set of thin and thick edges are denoted by
E1(G) and E2(G), respectively. Amatching µ is a subset of the edges
such that no two edgesmeet at a common vertex. LetM(G) denote
the set of all matchings. Let ν(G) = Maxµ∈M(G)w(µ). A matchingµ
has maximum weight if w(µ) = ν(G). A matching is p-maximum
if it has the maximum weight and has the maximum number of
thick edges among all maximum weight matchings. A vertex v is
free with respect to a matching µ, or the matching µ misses v, if v
not incident with any edge in µ. We say that a matching µ covers
a vertex v if v is not free with respect to µ. A subset of the edges
µ is a perfect matching if no vertex is free and a near-perfect match-
ing if only one vertex is free with respect to µ. A graph is called
hypomatchable if for each v ∈ V ,G − v has a perfect matching. A
path is a set of edges {v1v2, v2v3, . . . , vk−1vk}; it is called a cycle if
v1 = vk. A path (or a cycle) is alternating with respect to a match-
ing µ if its edges are alternately in µ and not in µ. An augmenting

22 Another related result, which also builds on the GED Theorem, is related to
fractional matchings. We discuss this extension and its relation to our work in
Appendix A.3.
23 For expositional convenience, we use the generic notation u, v, . . . for the
vertices along x, y, . . . which is used to denote the pairs in Sections 2–4.
path is an alternating path between free vertices. An augmenting
path with respect to a matching µ is called a µ-augmenting path.
If the weights of the edges are uniform, then a well-known result
in matching theory characterizes the condition for the maximum
cardinality of a matching.

Theorem 2 (Berge’s Lemma). Given all the edges have the same
weight, a matching µ is maximum if and only if there does not exist a
µ-augmenting path.

A.2. Proofs

First, we extend Theorem 2 to the graphs consisting of both
thick and thin edges. Let ⊕ denote the symmetric difference op-
erator, for E ′, E ′′

⊆ E, E ′
⊕ E ′′

= (E ′
\ E ′′) ∪ (E ′′

\ E ′).

Lemma 1. A matching µ in a graph G is p-maximum if and only if
|µ2| = ν(G2) and there does not exist a µ-augmenting path P with
E2(P ∩ µ) = E2(P \ µ).

Proof (Only If). Clearly, |µ2| ≤ ν(G2). Suppose the inequality is
strict. Then, by Theorem2, there is aµ2-augmenting path inG2, say
P . If both of the end vertices in P are free in µ, then w(µ ⊕ P) =

w(µ) + 2, which contradicts µ having the maximumweight, thus
being p-maximum. Suppose only one of the end vertices, say u, is
covered inµ, say ux ∈ µ. Since P is aµ2-augmenting path inG2, the
edge ux is thin. Then,w(µ⊕(P∪{ux})) = w(µ)+1, which contra-
dictsµ having themaximumweight, thus being p-maximum. Sup-
pose both end vertices in P , say u and v, are covered by the (thin)
edges in G, say by ux and vy. Then, w(µ ⊕ (P ∪ {ux, vy})) = w(µ)
and the matching µ⊕ (P ∪ {ux, vy}) has one more thick edge than
the matching µ, which contradicts that µ is p-maximum. Thus,
|µ2| = ν(G2). Now, suppose there exists a µ-augmenting path P
such that E2(P ∩µ) = E2(P \ µ). Since the end vertices of the path
P are free, the set P ⊕ µ is another matching. Moreover, we have
E2(µ⊕P) = E2(µ\P)∪E2(P \µ) = E2(µ\P)∪E2(P∩µ) = E2(µ),
where the first equality is by definition of the symmetric difference
set, the second by the assumption and the third by the fact that the
end vertices of P are free. Thus, both µ and P ⊕µ have equal num-
ber of thick edges. Since the matching P ⊕ µ contains one more
edge than µ and both µ and P ⊕ µ have equal number of thick
edges, w(P ⊕ µ) = w(µ) + 1, which contradicts the matching µ
having the maximum weight.

(If) Supposeµ is a non-maximumweightmatchingwith |µ2| =

ν(G2). Let µ′ be a p-maximum matching. Since, in a matching, no
two edgesmeet at a common vertex, each vertex is incidentwith at
most one vertex inµ and one vertex inµ′. Thus, the setµ⊕µ′ con-
tains connected components of the form of either a µ-alternating
path or aµ-alternating cycle. Sincew(µ′) > w(µ), one of these al-
ternating paths or cycles, sayH , is such thatw(H∩µ′) > w(H∩µ).
Suppose there exists such an alternating path, say P . Since µ con-
tains the maximum possible number of thick edges, E2(P ∩ µ) ≥

E2(P ∩ µ′). Otherwise, µ ⊕ P contains more thick edges than µ,
which is a contradiction. Now, since P is an alternating path, the
difference between the number of edges of P ∩µ and P ∩µ′ can be
atmost one. Suppose

P ∩ µ′
 = |P ∩ µ| or

P ∩ µ′
 = |P ∩ µ|−1.

Since E2(P∩µ) ≥ E2(P∩µ′), in either case,w(P∩µ′) ≤ w(P∩µ).
Thus, P is such that

P ∩ µ′
 = |P ∩ µ| + 1 and E2(P ∩ µ) =

E2(P ∩ µ′). Note that this implies that P is a µ-augmenting path
with E2(P ∩ µ) = E2(P \ µ). Now, suppose there exists an alter-
nating cycle, say C , such that w(C ∩ µ′) > w(C ∩ µ). Since each
vertex is incident to at most one vertex in µ and one vertex in µ′,
the cycle C is an even size cycle. But, since E2(C ∩ µ) ≥ E2(C ∩ µ′)
implies w(C ∩ µ) ≥ w(C ∩ µ′), this is impossible. �

Proof of Proposition 1. Let (Np ∪ Nl, R) be a problem. Let µ ∈ Em

(Np, R|Np). Let µ
′
∈ Em(Np ∪Nl, R) such that Tµ′

⊉ Tµ. Then, there
exists x ∈ Tµ

\Tµ′

. Since x is covered byµ but not byµ′, the setµ⊕
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µ′ contains a path P starting at x. Let P = {xx1, x1x2, . . . , xk−1xk,
xky} be this path. Observe that since µ is a matching for the prob-
lem (Np, R|Np) and all the vertices x1, x2, . . . , xk are covered by µ

and µ′, these vertices are in Np. Moreover, according to the defini-
tion of R, ra,b = 1 implies that b ∈ Nl. Thus, all the edges x1x2,
x2x3, . . . , xk−1xk in P are thick. If y is covered by µ, then P is a
µ′-augmenting path: the matching P ⊕ µ′ contains more thick
edges and has a higher weight than µ′, contradicting that µ′ is
p-maximum. Thus, y is not covered by µ but covered by µ′. Thus,
the path P contains even number of edges. If the edge xky is thin,
then, since all other edges in P are thick, the matching P ⊕ µ′

has a weight equal to w(µ′) + 1, which contradicts that µ′ is
p-maximum. Thus, the edge xky is thick, and the matching P ⊕ µ′

is p-maximum as well. Observe that thematching P ⊕µ′ covers all
the vertices x, x1, x2, . . . , xk, but not y. Since y is not covered by µ,
we obtained a p-maximum matching P ⊕ µ′ such that T P⊕µ′

=

(Tµ′

∪ {x}) \ {y}. By applying the same argument recursively, a
p-maximum matching is obtained, where it covers all the vertices
in Tµ.

Proof of Theorem 1. LetD1(N, R) andD2(N, R) be the sets of pairs
who are in D(N, R) and part of only PLE’s and of only PKD’s,
respectively, in any p-maximummatching.

LetD1,2(N, R) = D(N, R) \ (D1(N, R) ∪ D2(N, R)). Let C1(N, R)
be the set of pairs who are part of only PLE’s in each p-maximum
matching, which are not in A1(N, R):

C1(N, R) = {x ∈ N \ A1(N, R) :

∀µ ∈ Em(N, R), xy ∈ µ1 for some y}.

Let A1,2(N, R) be the set of pairs who are part of a PLE in some
p-maximummatchings and part of a PKD in the remaining p-maxi-
mummatchings, who have a compatibility with at least one pair in
D1(N, R) ∪ D1,2(N, R).

Let C1,2(N, R) be the set of pairs who are part of a PLE in some
p-maximummatchings and part of a PKD in the remaining p-maxi-
mummatchings, who are not in A1,2(N, R):

C1,2(N, R) = {x ∈ N \ (D(N, R) ∪ A1,2(N, R)) :

∃µ, µ′
∈ Em(N, R), s.t x is matched in µ1, µ

′

2}.

A problem (N, R) can be represented by a graph G, as explained
in Appendix A.1, and in what follows, we refer to its graph repre-
sentation rather than to the problem (N, R) itself. Moreover, the
sets D(N, R) and A1(N, R) in Section 4, as well as the sets given in
the previous paragraph in this subsection, can be redefined with
the argument G instead of the argument (N, R), where the words
‘‘pair’’, ‘‘PLE’’ and ‘‘PKD’’ are replaced by ‘‘vertex’’, ‘‘thin edge’’ and
‘‘thick edge’’, respectively. Thus, for example, we use D(G) instead
of D(N, R).

Lemma 2. If u ∈ D1(G), then each edge incident with u in G is thin.

Proof. Let u ∈ D1(G). Suppose there exists a thick edge uv in G.
Since u ∈ V (G2), either u ∈ D(G2) or u ∈ V (G2) \ D(G2). Suppose
the latter holds; that is, u is matched in any maximum matching
in G2. By Lemma 1, each p-maximum matching µ in G is such that
|µ2| = ν(G2). Thus, u is matched in any p-maximummatching via
a thick edge in G, which contradicts u ∈ D1(G). Thus, u ∈ D(G2).
Let M be a p-maximum matching missing u. The vertex v must be
covered inM , otherwiseM ∪ {uv} is also a matching with a higher
weight than M , which contradicts M being a p-maximum match-
ing. Let vw ∈ M . If vw is thin, then (M \ {vw}) ∪ {uv} has a higher
weight than M , which contradicts M being p-maximum. Thus, vw
is thick. Then, clearly (M \ {vw}) ∪ {uv} is another p-maximum
matching. But this contradicts u ∈ D1(G). �

Lemma 3. Let G be any graph. Let u ∈ A1(G). Then,
(i) D(G − u) = D(G) and
(ii) D1(G − u) = D1(G).
Proof. Let u ∈ A1(G).
(i) Let v ∈ D(G − u). Let M be a p-maximum matching in G − u,

which misses v. By definition of A1(G), there exists a vertex in
D(G), say v′, which is a neighbor of u. Let M ′ be a p-maximum
matching inGmissing v′. If v′

= v orM ′ misses v, then in either
case, there is a p-maximum matching (M ′) in G, which misses
v. Thus, suppose M ′ covers v. Consider the subgraph M ⊕ M ′.
Since both M and M ′ are matchings, M ⊕ M ′ contains alter-
nating paths and cycles. SinceM misses v,M ⊕M ′ contains an
alternating path, P , starting at v with an edge inM ′.

Suppose P ends with an edge ofM . Then, sinceM is in G−u,
the path P does not cover u. If w(P ∩ M) > w(P ∩ M ′), then
M ′

⊕P is anothermatching in G such thatw(M ′
⊕P) > w(M ′),

contradicting thatM ′ is p-maximum; similarly, ifw(P ∩M ′) >
w(P ∩ M), then it contradicts that M is p-maximum. Thus,
w(P ∩M) = w(P ∩M ′). This, together with the fact that P is an
even-length alternating path, implies that P ∩ M contains the
samenumber of thick edges as P∩M ′. But thenM ′

⊕P is another
p-maximummatching in G, which misses v. Thus, v ∈ D(G).

Suppose P ends with an edge of M ′. We claim P ends at u.
Suppose not. Then, if w(P ∩ M) > w(P ∩ M ′), then M ′

⊕ P
is another matching in G such that w(M ′

⊕ P) > w(M ′),
contradicting thatM ′ is p-maximum. Similarly, if w(P ∩M ′) >
w(P ∩ M), then it contradicts that M is p-maximum. Thus,
w(P∩M) = w(P∩M ′). Then, since P∩M ′ containsmore edges
than P∩M, P∩M contains onemore thick edge than P∩M ′. But
then,M ′

⊕ P has weight ν(G) but
M ′

2

 < ν(G2), contradicting
that M ′ is p-maximum. Thus, P ends at u. Now, consider
P ′

= P ∪ {uv′
}. If w(P ′

\M ′) > w(P ′
∩M ′), then w(P ′

⊕M ′) >
w(M ′), which contradicts thatM ′ is p-maximum. Thus, w(P ′

\

M ′) ≤ w(P ′
∩M ′). Supposew(P ′

\M ′) < w(P ′
∩M ′). Let xbe the

vertex such that ux ∈ M ′. Note that, since u ∈ A1(G), w(ux) =

w(uv′) = 1. Define P ′′
= P ′

\ {xu, uv′
}. Since w(P ′

\ M ′) <
w(P ′

∩M ′), we havew(P ′′
\M ′) < w(P ′′

∩M ′). But then, P ′′
⊕M

is a matching in G − u, and moreover w(P ′′
⊕ M) > w(M),

contradicting thatM is p-maximum. Thus,w(P ′
\M ′) = w(P ′

∩

M ′). But then,M ′
⊕ P ′ is a matching in G. Moreover, since P ′ is

an even-length path and w(M ′
⊕ P ′) = w(M ′), the matchings

M ′
⊕P ′ andM ′ have the samenumber of thick edges. Thus,M ′

⊕

P ′ is a p-maximummatching in G. SinceM ′
⊕P ′ does not cover

v, v ∈ D(G).
Let v ∈ D(G). Let M be a p-maximum matching in G miss-

ing v. Then, since M − u is p-maximum in G − u and misses
v, v ∈ D(G − u).

(ii) First, we show thatD1(G) ⊆ D1(G−u). Let v ∈ D1(G) andM be
a p-maximummatchingmissing v. LetM−u = M\{ux}where
ux ∈ M . Since the weight ofM − u is w(M) − 1 and u ∈ A1(G),
the matchingM − u is a p-maximummatching in G − u. Since
M − u misses v, v ∈ D(G − u). Since, by Lemma 2, v ∈ D1(G)
implies that the edges incidentwith v are thin, v ∉ D1,2(G−u).
Thus, v ∈ D1(G − u).

Now, we show that D1(G − u) ⊆ D1(G). Let v ∈ D1(G − u).
Note that D1(G−u) ⊆ D(G−u) ⊆ D(G), where the first inclu-
sion follows from the definition of the setsD1(G−u) andD(G−

u), the second inclusion by part (i). Thus, v ∈ D(G). Suppose
that there exists a p-maximum matching in G, which covers
v by a thick edge. Since u ∈ A1(G), this p-maximum match-
ing does not contain uv. By removing the edge that covers u, a
p-maximummatching in G−u is obtained, which covers v by a
thick edge. But, since v ∈ D1(G− u), it is a contradiction. Thus,
v ∉ D1,2(G) ∪ D2(G). Since v ∈ D(G) and v ∉ D1,2(G) ∪ D2(G),
this implies that v ∈ D1(G). �

Lemma 4. Let G be any graph. Let u ∈ A1(G). Then,
(i) D1,2(G − u) ⊆ D1,2(G),
(ii) D1,2(G) \ D1,2(G − u) ⊆ D2(G − u).
(iii) Moreover, for each v ∈ D1,2(G) \ D1,2(G − u), the only vertex

incident to v in A1(G) is u.
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Proof. (i) First note that D1,2(G− u) ⊆ D(G− u) = D(G), where
the inclusion is by definition of the sets D1,2(G−u) and D(G−

u), and the equality is by Lemma 3(i). Thus, by the fact that, for
each graphG′ the setsD1(G′),D2(G′) andD1,2(G′) partition the
setD(G′), we haveD1,2(G−u) ⊆ D1(G)∪D2(G)∪D1,2(G). Thus,
Lemma 3(ii) (together with the fact that the sets D1,2(G − u)
andD1(G−u) are disjoint) implies thatD1,2(G−u) ⊆ D1,2(G)∪
D2(G). Thus, to prove that D1,2(G − u) ⊆ D1,2(G), it is suffi-
cient to show that, for each v ∈ D1,2(G − u), there exists a
p-maximummatching in G, which covers v by a thin edge. Let
v ∈ D1,2(G − u) and M be a p-maximum matching in G − u,
which covers v by a thin edge. Since v ∈ D1,2(G) ∪ D2(G),
there exists a p-maximum matching, M ′ in G, which misses
v. By definition of A1(G), u is covered by a thin edge, say ux,
in G. Since u ∈ A1(G),M ′

− u is a p-maximum matching in
G − u. Moreover, the matchingM ′

− umisses v. Consider the
set M ∪ (M ′

− u). It contains an alternating path P , starting
at v with an edge of M . Since M and M ′

− u are p-maximum,
this path is an even-length path containing the same number
of thick edges ofM andM ′

−u. Also, since thematchingM ′
−u

misses x, and the path ends with an edge ofM ′
− u, the path P

does not cover the vertex x. But then, thematching (M ′
−u)⊕P

is a p-maximum matching in G − u, which covers v by a thin
edge. Since this lastmatching does not cover the vertices u and
x, the matching M ′

⊕ P is a p-maximum matching in G and it
covers v by a thin edge as well. Thus, v ∈ D1,2(G).24

(ii) Let v ∈ D1,2(G)\D1,2(G−u). Since the setD1,2(G) is nonempty
by assumption (otherwise the result follows trivially), by def-
inition of this set, there are two p-maximum matchings in G,
say M and M ′, where M misses v and M ′ covers v by a thick
edge. Since u ∈ A1(G), bothM −u andM ′

−u are p-maximum
in G − u. By Lemma 3, v ∉ D1(G − u). Thus, v ∈ D2(G − u).

(iii) Let v ∈ D1,2(G) \ D1,2(G − u). Let M be a p-maximum match-
ing in G missing v. Suppose v is incident to v′

∈ A1(G) with
v′

≠ u. Suppose M contains uv′. But then, since the matching
(M \ {uv′

})∪{uv} (which is obtained fromM by replacing the
edge uv′ with uv) is also p-maximum and misses v′, this con-
tradicts with v′

∈ A1(G). Thus, M does not contain uv′. Thus,
M−u covers v′ by a thin edge, say xv′ andmisses v. If the edge
vv′ is thick, then (M \ {xv′

}) ∪ {vv′
} is a matching in G − u,

and has a greater weight thanM − u, contradicting that in the
subgraph G − u,M − u is p-maximum. If the edge vv′ is thin,
then (M \ {xv′

})∪{vv′
} is also p-maximum in G− u, implying

v ∉ D2(G − u). But this contradicts part (ii) above. �

Lemma 5. Let G be any graph. Let u ∈ A1(G). Then, A1(G) \ {u} =

A1(G − u).

Proof. Let v ∈ A1(G) \ {u}. Suppose that in each p-maximum
matching in G, u is matched to v. Let v′ be a vertex in D1(G) ∪

D1,2(G), which is incident to v. Consider a p-maximum matching
M ′ missing v′. Since uv ∈ M ′, the matching (M ′

\ {uv}) ∪ {vv′
} is

also p-maximum in G and misses u, which contradicts u ∈ A1(G).
Thus, there exists at least one p-maximummatching in G such that
u and v are not matched. LetM be such a p-maximummatching in
G and consider the matching M − u in G − u. Since u ∈ A1(G) and
w(M−u) = w(M)−1, thematchingM−u is p-maximum inG−u.
Moreover, it covers v by a thin edge. Thus, v ∈ D1(G−u)∪D1,2(G−

u)∪A1(G−u)∪A1,2(G−u)∪C1(G−u)∪C1,2(G−u). By Lemmas 3 and
4, v ∉ D1(G−u)∪D1,2(G−u). Suppose v ∈ C1(G−u)∪C1,2(G−u).
By Lemmas 3 and 4, this is possible only if the set of neighbors of v

24 Note that in general, D1,2(G) ⊈ D1,2(G − u). This can be seen via a simple
example. Let G = (V , E, w) be a weighted graph such that V = {v1, v2, v3, v4, v5}

where v1v2, v2v3 are thick edges and v3v4, v4v5 are thin edges. Here, D1,2(G) =

{v3}, A1(G) = {v4},D1(G) = {v5}, and D1,2(G − v4) = ∅.
inD1(G)∪D1,2(G), sayV ′, is inD1,2(G)\D1,2(G−u). But Lemma4(iii)
implies that any vertex in V ′ has only one incident vertex in A1(G),
which is u. Thus, v ∉ C1(G − u) ∪ C1,2(G − u). Thus, A1(G) \ {u} ⊆

A1(G−u)∪A1,2(G−u). Now, suppose that v ∈ A1,2(G−u). LetM be
a p-maximummatching in G−u covering v by a thick edge. Let y ∈

D1(G)∪D1,2(G) be a neighbor of u andM ′ be a p-maximummatch-
ing in G, which is missing y. Also, let ux ∈ M ′. Note that x ≠ v,
since otherwise, (M ′

\{uv})∪{uy} has the sameweight asM ′, thus
it is p-maximum in G and missing v, which contradicts v ∈ A1(G).
The matchingM ′

\ {ux} is p-maximum in G− u. IfM misses y, then
M ∪{uy} is p-maximum and it covers v by a thick edge, which con-
tradicts v ∈ A1(G). Thus,M covers y. Then,M⊕(M ′

\{uv}) contains
a path P starting at ywith an edge ofM . Suppose the path P covers x.
Then, sinceM ′

\{ux}misses v, P should end at xwith an edge ofM ,
which, by Lemma1, contradicts that in the subgraphG−u,M ′

\{ux}
is p-maximum. Thus, the path P does not cover x. But then,M ′

⊕ P
is p-maximum in G, covering v by a thick edge, which contradicts
v ∈ A1(G). Thus, v ∉ A1,2(G − u). Thus, A1(G) − {u} ⊆ A1(G − u).

Now, we show that A1(G − u) ⊆ A1(G) \ {u}. Suppose this is
not true. Let x ≠ u such that x ∈ A1(G − u) but x ∉ A1(G). Since
for each p-maximummatchingM missing a vertex x ≠ u,M − u is
also missing x and p-maximum in G− u, each p-maximummatch-
ing in G covers x. Similarly, since for each p-maximummatchingM
covering a vertex x ≠ u by a thick edge, M − u also covers x by
a thick edge and is p-maximum in G − u, no p-maximum match-
ing in G covers x by a thick edge. Thus, x ∈ A1(G) ∪ C1(G). Sup-
pose x ∈ C1(G). Then, by definition of C1(G), x is not incident to
any vertex in D1(G) ∪ D1,2(G). But then, since by Lemmas 3 and 4,
D1(G − u) = D1(G) and D1,2(G − u) ⊆ D1,2(G), x is not incident to
any vertex in D1(G− u) ∪ D1,2(G− u) neither. But this contradicts
x ∈ A1(G − u). Thus, A1(G − u) ⊆ A1(G) \ {u}. �

Lemma 6. Let u ∈ A1(G). Then, in each p-maximum matching, u is
matched with a vertex in D(G).

Proof. Let u ∈ A1(G) and M be a p-maximum matching. Suppose
M contains uv where v ∈ A1(G). Since u ∈ A1(G), the matching
M\{uv} is p-maximum inG−u. By Lemma5, v ∈ A1(G−u). But this
contradicts thatM\{uv} is p-maximumandmisses v inG−u. Now,
supposeM contains uv where v ∈ C1(G)∪C1,2(G)∪A1,2(G). Let v′

∈

D1(G)∪D1,2(G) be a vertex incident with u. ThematchingM covers
v′, since otherwise, (M\{uv})∪{uv′

} is p-maximum inG andmisses
v, contradicting v ∈ C1(G). Since v′

∈ D1(G)∪D1,2(G), there exists
a p-maximummatchingmissing v′. LetM ′ be such amatching. The
setM⊕M ′ contains alternating paths and cycles. Since v′ is covered
by M and missed by M ′, M ⊕ M ′ contains an alternating path, P ,
starting at v′. By Lemma 1, thatM andM ′ are p-maximum implies
that P is not an augmenting path. Thus, the matchings M ⊕ P and
M ′

⊕ P are p-maximum in G. There are two cases to consider.
Case 1: The path P does not contain uv. Then, the matchingM ⊕ P
contains uv and misses the vertex v′. But then, since both uv and
uv′ are thin edges, the matching ((M ⊕ P) \ {uv}) ∪ {uv′

} is
p-maximumandmissing v, which contradicts v ∈ C1(G)∪C1,2(G)∪
A1,2(G).
Case 2: The path P contains uv. Then, the matching M ′

⊕ P is
p-maximum and contains uv. Since u ∈ A1(G), the matching M \

{uv} is p-maximum in G − u. Also, it misses v. Thus, v ∈ D(G − u).
But, by Lemma 3(i), this contradicts v ∈ C1(G) ∪ C1,2(G) ∪ A1,2(G).
Thus, u is matched with a vertex in D1(G) ∪ D1,2(G) ⊆ D(G). �

The last lemma completes the proof of part 1 of Theorem 1. The
second part of the theorem relies on a trivial extension of Gallai’s
Lemma (Lovász and Plummer, 1986); for the sake of completeness,
we present the proof of this extension below.

Lemma 7. The components of G − A1(G) in D(G), if any, are
hypomatchable. Also, each p-maximum matching of G contains a
near-perfect matching of each such component.
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Proof. By Lemmas 3(i) and 5, the subgraph G − A1(G) is such that
if we remove all the vertices in A1(G) one-by-one, D(G− A1(G)) =

D(G). LetM be a p-maximummatching in G. Let H be a component
ofG−A1(G) inD(G). By Lemma6, thematchingM\{ux : u ∈ A1(G)}
isp-maximum inG−A1(G). Now, consider the graphG−A1(G). Sup-
pose that there are two p-maximummatchingsM ′ andM ′′ missing
the vertices A and B respectively, such that |A| < |B|. Now, suppose
that all the vertices in B \ A are covered by M ′. Let u ∈ B \ A. Since
M ′′ misses u, the set M ′

⊕ M ′′ contains a path P starting at u with
an edge ofM ′. Since bothM ′ andM ′′ are p-maximum, Lemma 1 im-
plies that the path P is even. Also, since |A \ B| < |B \ A|, without
loss of generality, we can assume that P does not end in A. Note
that P does not contain any vertex of A. Then, by Lemma 1,M ′

⊕ P
is p-maximum andmisses the vertices in A∪{u}. Thus, there exists
a p-maximum matching which misses A and at least one vertex of
B\A. Now define the binary relation∼ as follows: u ∼ v if and only
if u = v or no p-maximummatching misses both u and v. Suppose
u ∼ v and v ∼ w. Let M ′ be a p-maximum matching missing v
and M ′′ missing u and w. But then, there is a p-maximum match-
ing missing v and w, which is a contradiction. Thus, u ∼ w and
∼ is an equivalence relation. Now, since H is connected, any two
vertices of H must be equivalent. Thus, any p-maximummatching
misses at most one vertex of H . Also, since any vertex u ∈ H is also
inD(G−A1(G)), ν(G−A1(G)) = ν(G−A1(G)−u). Thus, the reduced
submatching ofM on H is a near-perfect matching of H . �

A.3. Gallai–Edmonds decomposition theorem

Let G = (V , E) be an undirected graph.25 The Gallai–Edmonds
Decomposition partitions V into three sets: D(G) is the set of all
vertices v such that there is some maximum matching that leaves
v unmatched, A(G) is the neighbor set of D(G), and C(G) is the set
of all remaining vertices.

Corollary 1 (Gallai–Edmonds Decomposition Theorem). Given a
graph G = (V , E),D(G) consists of odd components of G−A(G) such
that each such component is hypomatchable and C(G) consists of even
components of G−A(G) such that each such component has a perfect
matching. In each maximum matching of G = (V , E),
(i) each vertex in A(G) is matched to a vertex in D(G),
(ii) each even component of G − A(G) has a perfect matching,
(iii) each odd component of G − A(G) has a near-perfect matching

such that only one vertex is either unmatched or matched to a
vertex in A(G).

To see how the GED Theorem is implied by Theorem 1, first note
that the GED Theorem is on the set of non-weighted graphs. Thus,
it corresponds to a special case of our model where for any two
pairs x, y ∈ N, rx,y ∈ {0, 1}.

Let (N, R) be a problem and G = (V , E) be its graphical repre-
sentation as defined inAppendixA.1,with each edgehavingweight
one (thus the function w is redundant and excluded from the rep-
resentation). Since by definition of this representation, V = N , we
have thatD(N, R) = D(G). Also, since there are only PLE’s, A1(N, R)
= A(G). Thus, part (i) of the GED Theorem follows directly from
part (1) of Theorem 1. Note that, by definitions of A1(N, R) and
D(N, R), for each x ∈ D(N, R) and y ∈ N \ A1(N, R), x is not com-
patible with y and y is not compatible with x. Thus, any component
of N \A1(N, R) is either in D(N, R) or in N \ (D(N, R)∪A1(N, R)).26
Thus, part 2 (a) of Theorem 1 implies that any component of D(G)

25 Note that this is a particular case of the graph introduced in Appendix A.1;while
Appendices A.1 and A.2 are on a particular class of weighted graphs, here we focus
on non-weighted graphs (i.e. each edge has weight one). This implies that the defi-
nition of p-maximummatching becomes vacuous; thus in what follows, we refer to
maximum (cardinality) matchings rather than p-maximummatchings. For the def-
inition of a p-maximum or maximum (cardinality) matching, please see Section 3.
26 Note that this does not hold in our model in general.
(=D(N, R)) is hypomatchable (and therefore odd). Also, since in
each maximummatching, each vertex in A(G) is matched to a ver-
tex in D(G) and each vertex in C(G) is matched, each component of
C(G) must be even and have a perfect matching. Finally, parts 2(b)
and 2(c) of Theorem 1 imply part (iii) of the GED Theorem.

A.3.1. Fractional matchings
Another extension of the GED Theorem is in the context of frac-

tional matchings. Given a graph G = (V , E), a fractional matching
is an assignment of the values 0, 1

2 , 1 to the edges E in such a way
that for each vertex, the sum of the values on the incident edges
is at most 1 (Mühlbacher et al., 1984; Pulleyblank, 1987). A frac-
tional matching is called basic if all the edges having value 1

2 form
vertex-disjoint odd cycles. A basic fractional matching is called a
U-matching if it is a maximum fractional matching for which the
number of edges in the odd cycles is minimum. The characteri-
zation of the U-matchings is derived from the GED Theorem (Pul-
leyblank, 1987). Seemingly, this model of fractional matchings has
similarities to our model of kidney exchange, but it is essentially
different and our main result (Theorem 1) is independent from
the characterization of the U-matchings (Theorem 4 Pulleyblank,
1987). There are twomain differences: first, ourmodel relies on the
non-homogeneous weights of the edges as opposed to the uniform
edges; second, in a fractional matching, there can be two edges
which are incident with the same vertex, whereas in our model, a
matching is a subset of the edges such that no two edges meet at a
common vertex. Due to these differences, the two characterization
results are quite separate from each other. While the characteri-
zation of the U-matchings is built on the partition of the GED De-
composition, i.e. on the partition of V into the sets D(G), A(G) and
C(G), the characterization of the p-matchings in our model is ob-
tained via a completely different partition of the set V . Actually, the
structure of the U-matchings coincides with parts (i) and (ii) of the
GED Theorem. The only difference from the GED Theorem is that
a U-matching may induce a perfect fractional matching for some
odd component of G−A(G), which means that in this U-matching,
there is an odd cycle such that each of its edges has value 1

2 (Theo-
rem 4, Pulleyblank, 1987). On the other hand, ourmain result gives
a different and more restricted structure on a more complex par-
tition of V , yet this characterization is rich enough to include the
GED structure as a special case.
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