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Abstract The problem of kidney exchanges shares
common features with the classical problem of ex-
change of indivisible goods studied in the mech-
anism design literature, while presenting additional
constraints on the size of feasible exchanges. The solu-
tion of a kidney exchange problem can be summarized
in a mapping from the relevant underlying character-
istics of the players (patients and their donors) to the
set of matchings. The goal is to select only matchings
maximizing a chosen welfare function. Since the final
outcome heavily depends on the private information
in possess of the players, a basic requirement in order
to reach efficiency is the truthful revelation of this
information. We show that for the kidney exchange
problem, a class of (in principle) efficient mechanisms
does not enjoy the incentive compatibility property and
therefore is subject to possible manipulations made by
the players in order to profit of the misrepresentation
of their private information.
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1 Introduction

Kidney transplantation is nowadays an elective treat-
ment for many renal failures; for this reason the waiting
list for kidneys from deceased donors is very long. Since
a healthy donor can donate one kidney to an intended
recipient, the transplantation from a living person is a
viable alternative to the waiting list for patients who
find a willing donor.

However it can happen that for medical reasons
the willing donor is not compatible with the intended
recipient (see [19]). To overcome this problem, kidney
exchanges between two pairs of incompatible donor-
recipient pairs such that the patient in each pair can
profitably receive a kidney from the donor in the other
one, have been carried out in several countries. Also
exchanges involving more than two pairs have been
performed.

Ethical and legal issues lie behind these acts. We
shall not address these questions, even if they can be
subjected to a formal scrutiny, and even if they are
relevant in defining the constraints under which one has
to operate (see [4, 14, 19]).

In this paper we will restrict our attention to ex-
changes involving only two incompatible pairs (for a
detailed analysis of the case in which no restrictions
on the cycles’ length are imposed see [16]). Note that
the restriction to incompatible pairs is suggested both
on the basis of ethical issues and on the consideration
of the risks connected with actions that would allow
to speak truly of an organ market; on the other hand
the restriction to direct exchanges is due to a practical
motivation. In fact, since in most countries the consent
to the donation can be withdrawn in any moment, all
the surgeries involved in a fixed exchange must be

@ Springer



352

Health Care Manag Sci (2009) 12:351-362

carried out simultaneously and this constraint requires
a considerable number of medical teams to be available
at the same moment.

In the real situation, in the countries where such
exchanges are performed (see e. g. [2, 3, 5, 6, 13]),
usually a standard program in order to organize the
exchanges is adopted. We are going to present a model
of the organization of a kidney exchange program, on
the basis of [3], which is however similar to the others
cited above. The program of kidney exchanges is orga-
nized in several steps, in chronological order, as follows.
Each transplant center has a fixed period of time to col-
lect a group of incompatible patient-donor pairs. More
precisely it is probable that each patient presents more
than one willing donor, so that the transplant centers
collect pairs of the type patient-set of donors. After the
enrollment period, a centralized (national) database of
incompatible pairs patient-set of donors is formed. At
this point a central committee decides the exchanges to
be carried out using a fixed chosen mechanism. At the
final stage, the list of chosen exchanges is announced
and the transplants are carried out, if no withdrawals
occur.

It is clear that this kind of procedure has some tracts
typical of a market, being quite close to some kind
of barter. So, even if there is not a complete coinci-
dence from the point of view of interpretation (these
exchanges are often referred to as an exchange of gifts),
it is natural to see whether and how the literature on
the exchange of indivisible goods can be applied in this
setting.

In this paper we analyze some essential aspects aris-
ing in the design of the rules of the “market,” using the
point of view of mechanism design and game theory
([7-9, 15, 18]).

We focus on a particular mechanism, very similar to
some mechanisms adopted in practice (see [3, 6]), that
associates to each kidney exchange problem a collec-
tion of exchanges satisfying some natural requirements
arising in this medical setting (see Section 3 for details).
In particular we address the natural requirement of ef-
ficiency by choosing a maximum weight matching (see
Section 3). An appropriate choice of the weights of the
various exchanges should in fact favor by construction
the best transplants in terms of “medical quality,” at
least in principle. In fact, one of the problems is that
efficiency can be impaired by a strategic behavior of
the patients, who may have incentives to use their own
private information in their favor.

Using the terminology of mechanism design, a mech-
anism in which the patients are induced to truthfully
reveal their private information is called incentive com-
patible (see Section 2 for a brief introduction on mecha-
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nism design). We will show with three counterexamples
that the patients can behave strategically in order to
bend the maximum weight mechanism in their favor, so
that the chosen mechanism is not incentive compatible.
This makes our situation completely different from the
case studied in [17], in which it is shown that declaring
the truth is a dominant strategy.

Let us now clarify what kind of private information
each player possesses. The set of willing donors is cer-
tainly part of it. Moreover, we will assume that each
patient, (and/or each patient’s doctor), knows who are
the donors of the other pairs involved in the system who
are compatible with him, and also that this information
is not available to the other patients. We will see in
Section 6 that both these aspects are relevant in deter-
mining the strategies used by the patients. In fact, the
possibility of strategic manipulation arises at this point,
because without involving any illicit behavior, a patient
can decide to hide some of the donors.

In the next sections we will examine this possibility,
studying the property of incentive compatibility at var-
ious levels of information. We will consider three dif-
ferent scenarios, corresponding to three different levels
of information, namely complete information, partially
incomplete information, and incomplete information.
Even if we study them independently, as three one-
shot games, and no dynamic analysis is carried out
in this paper, doing it would be interesting, since the
motivation for the scenarios (or level of information)
that we consider comes from steps that are found in
some of the existing organizations which carry out such
exchange program, so that they could be seen as stages
of the intrinsically dynamic real situation.

Going more into the details, the case of incomplete
information corresponds to a situation in which each
player does not know anything of the others. He does
not even know how many people are taking part in
the exchange. He has anyway a significant amount of
information coming from public sources concerning the
medical (or genetic) characteristics of the other partic-
ipants: he knows, or may know (or his doctor knows),
the probability distribution over the relevant parame-
ters for compatibility (e.g. blood and tissue types, the
age, and the weight). He knows what is the probability
of a positive cross-match, a medical condition forbid-
ding the transplant, between two persons. With this
information, he is able to construct what we will call
the “compatibility matrix” between types. In this work
we make two basic assumptions: the first one is that the
quality of an exchange depends only on the types of
the two individuals involved and the second one is that
the “rules” adopted for computing the compatibility be-
tween a donor and a recipient are common knowledge.
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The first assumption agrees with the choice to mea-
sure the quality of an exchange taking into account
only the quality, identified with the compatibility level,
of the two transplants constituting the exchange. Cer-
tainly this is not the only possible or reasonable choice:
a natural modification of our method gives rise to mod-
els in which factors other than the transplant’s quality
are taken into account, like the gravity of the clinical
situation of the involved patients or the time spent
on the waiting list. The second assumption is almost
unavoidable. In fact the mechanism should be common
knowledge, since a fundamental property required on
a mechanism is its accountability, and in the medical
setting this property assumes even a deeper meaning
than usual. So it would not be acceptable that the
criteria used by the transplant center in order to decide
which exchanges are preferred to the others are not
common knowledge. Note that our assumption simply
implies that given all the relevant parameters everyone
knows how to determine the compatibility between a
donor and a recipient, and does not imply that the
values of the relevant parameters in each situation are
common knowledge.

The case of partial incomplete information can be
seen as a model of the situation in which each doctor
knows each set of donors of the involved patients. We
remark that this occurs in practice, since the evaluation
of compatibility, being not an easy task, is likely to be
left to the doctor of the potential recipient. Moreover
we implicitly assume that the information sets of the
patients coincide with the information sets of their doc-
tors. We simply note that this amount of information
can be used by the players in order to get better results
for themselves. Since the consent to the donation can be
retired in any moment, after this release of information
maybe some patient prefers to declare as unavailable
some donor previously declared as available.

In the case of complete information, every patient
knows exactly the relevant parameters correspond-
ing to the other patients and donors involved in the
exchange program.

We will show that at each information level there
are problems and cases in which it is convenient for a
patient not to declare all the potential donors.

Our model is different from the one in [17]: the
difference with respect to [17] lies mainly in the fact that
we put some weights that make some exchanges better
than others from the medical perspective, while this was
not present in the model [17]. Our hypothesis agrees
with the point of view of the european surgeons that
suggest a link between donor and patient characteristics
and the resulting quality of the transplant ([11, 12]) and
is in contrast with the assumption of american surgeons

that assume that the patient is indifferent among com-
patible healthy kidneys. The approach of [16] is more
similar to our model, but it essentially differs in the
proposed solution, because no restriction on the cycles
length is imposed.

In the presentation of our analysis, after some pre-
liminaries on mechanism design (see Section 2), we
start from the simpler case to model, in which there
is complete information (see Sections 3 and 4), and in
Sections 5 and 6 we consider the cases of incomplete
information and partial incomplete information.

2 Some preliminaries on mechanism design

The typical situation studied in the mechanism design
theory involves a group of agents, a designer, and a
set of possible outcomes. The goal of the designer is
the realization of an outcome prescribed by a given
social choice function, which is defined starting from
the preferences of the agents on the set of possible
outcomes. Usually the problem is that the designer is
at an informational disadvantage with respect to the
agents, in the sense that he has a partial information
about their preferences. A central problem in the the-
ory of mechanism design is whether the designer has
the possibility to invent an appropriate mechanism.
Appropriateness means that the interaction between
the agents, given their real preferences, produces an
outcome realizing the social choice function. Since in
the standard situation more than one agent is involved,
to choose a mechanism means to choose a game form
that the agents have to play. The main suggestion com-
ing from the theory of implementation is that incentives
should be given to the agents in order to obtain the
desired outcome as a consequence of strategic behav-
ior, in such a way that the desired outcome coincides
with the outcome obtained in correspondence of an
appropriately defined solution concept for the chosen
game.

Corresponding to different solution concepts possi-
bility and impossibility results have been obtained. The
most demanding way of implementation is the one in
dominant strategies: in this case the selected outcome
has to be obtained when the agents choose dominant
strategies in the game they are playing. The most fa-
mous result of implementation in dominant strategies
is the Gibbard-Satterthwaite impossibility theorem that
states that if there are at least three possible outcomes
and the designer does not know the private information
of the players the only social choice functions that can
be implemented in dominant strategies are dictatorial.
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Weakening the requirements on the solution, for
instance passing to Nash equilibrium, it is possible to
get positive results. In our paper, since we are in the
case of a static game of incomplete information also be-
tween the agents, the underlying implicit solution con-
cept is the Bayesian Nash equilibrium (for the precise
definitions see [10] and the Appendix).

A key result in the theory of mechanism design is the
revelation principle (see [1, 10, 18] and the Appendix)
for general bayesian games, stating that it is possible to
restrict the attention to the so called direct mechanisms,
which simply ask each agent to report his private infor-
mation and choose an outcome based on this.

In this setting one of the necessary conditions for im-
plementability is called incentive compatibility, which
says that a social choice function must be such that
truthful revelation of the private information is an
equilibrium strategy.

3 Model of the kidney exchange problem
in the complete information setting

Let N = {1, ..., n} be a group of patients, and suppose
that each patient i has a set of potential donors D; (in-
compatible with him). Let us denote by D =[], D;.
Throughout the paper we identify the pair (i, D;) with
the player i. Sometimes we also call patient i the player
i since we will assume that the utility function of player
i coincides with the utility function of the patient. We
will specify later the assumptions on the functional form
of the utility function. Each individual has several rele-
vant characteristics influencing the compatibility with
other people, among them we recall the blood type,
the tissue type, the age, and the weight. We assume
that these characteristics give rise to a finite set of
types of individuals {t,, ...t} =: T. We model this by
introducing a r x r compatibility matrix C, where the
entry c;; expresses the compatibility level between a
donor of type #; and a patient of type ¢;. In particular,
¢;j = 0 means that a donor of type #; cannot donate to a
recipient of type ¢;. In the real world, in addition to the
compatibility between types also the so called negative
cross-match is required in order to make the transplant
possible. Cross-match negativity is not in general pre-
dictable starting from the types, but should be verified
case by case (even if some hints in order to estimate its
probability come from the similarity between the tissue
type of the donor and the recipient, and from the his-
tory of the recipient). Anyway, using the compatibility
matrix C and the information on the cross-match we
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can construct a weight matrix W(N, D) =: W of size
n x n, defined by setting

0 if each donor in D; is not compatible
Wii= with patient j

Cs(i,j),j Otherwise,

where o (i, j) = k, with k the type of the donor d € D;,
which is the best donor for patient j among the donors
of patient i. In other words W;; reflects the quality of
the best possible transplant between a donor in D;
and the patient j. Note that by hypothesis W;; = 0 for
every i.

Definition 1 A kidney exchange problem is a triple
(N, D, W).

It is easy to see that a kidney exchange problem can
be interpreted as an oriented weighted graph where the
patients are the nodes and the ordered pair (i, j) is an
arc if and only if W;; > 0. If this is the case, the weight
of the arc (i, j) is Wj;.

Definition 2 We say that patients i and j are mutually
compatible if W;;- W; > 0.

Definition 3 A matching is a function m : N — N such
that m(i) = j implies m(j) =i for every i, j€ N and
such that m(i) = j with i # j implies that i and j are
mutually compatible.

Definition 4 A mechanism is a rule which assigns a
matching (or more generally a lottery over matchings)
to each problem.

More precisely a mechanism is a function
h:(N,D,W)— h(N,D, W) € L(M),

where L(M) is the set of lotteries over matchings.
Solving a kidney exchange problem consists in find-
ing a suitable mechanism, i.e a rule that associates a
suitable matching to each kidney exchange problem.
The first problem in the setting of kidney exchanges is
to clarify which requirements a solution should satisfy.
It is clear that any proposed solution must be not only
feasible but also efficient, since kidneys are a scarce re-
source that cannot be wasted. The feasibility is ensured
by Definition 3. Efficiency in this setting (see [10]),
can be expressed in the following way: a mechanism
(matching) is efficient if no other feasible mechanism
(matching) can be found that might make some other
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individuals better off and would certainly not make
other individuals worse off.

With respect to efficiency at least two aspects have
to be considered: one is the number of patients that
receive a transplant and the other is the quality of
the performed transplants. In [17] a maximum cardi-
nality matching is proposed as solution, satisfying the
requirement of efficiency in the case of weights 0-1.
Here we focus on mechanisms giving positive prob-
abilities only to maximum weight matchings, so that
it can happen that a matching guaranteeing a smaller
number of transplants of better quality is preferred
to another one which prescribes a bigger number of
transplants, but of less quality. It is straightforward to
prove that this class of mechanisms is efficient. Anyway
it is quite clear that an assessment of the appropriate
weights to be used is far from being an easy and non-
debatable task. However, the focus of this contribution
lies elsewhere.

Usually, more than one maximum weight matching
exists, and several procedures of selection are certainly
possible. One procedure consists in the assignment of
a certain probability to each of the maximum weight
matchings; another possibility is the definition of an
ordering on the set of matchings that allows to select
one precise matching without resorting to the use of
a chance move. For instance, looking at the patients
involved, one can choose the matching that guarantees
a transplant to the patients that have been waiting
for a longer time. In practice there is some perplexity
towards the use of stochastic mechanisms, even if it is
theoretically shown that they satisfy (ex-ante) equity
requirements (see [17]). We do not enter into the de-
tails, since in this paper we will always take into account
examples in which the maximum weight matching is
unique.

We assume that the utility of patient i of receiving a
kidney from the best donor in D;is W;, which implies
that the utility of patient i under the matching m is
Wi We understand that this assumption is not a
light one. A patient could have his idiosyncratic way of
looking at the possible consequences of a transplant
and the ways to be used for their evaluation, even if
it is reasonable to assume that the utility function of a
patient is just coming from a best possible assessment
on the quality of the transplant. And this assessment
should be dictated by scientific reasons which should
represent the best available estimate, e.g. the QALY
(quality adjusted life years). From the point of view of
the negative results obtained in this paper, the fact that
we are able to show the possibility of manipulation even
in this “uniform” landscape of patients endowed with

the same functional form of the utility function, is an
element in favor of the relevance of the results.

4 Strategic decisions in the complete information case

Each patient faces the strategic decision of declaring
his set of willing donors. In the complete information
setting it is easy to show that there are situations in
which a patient can benefit from the decision of stating
a proper subset of D; instead of D;.

Example I To simplify the calculations suppose that
each individual can be only of four possible types, and
suppose that the compatibility matrix has the following
structure

0 ap apn ay

with a;; > 0, satisfying the inequalities:

ap > az, 4d+daz > da, +dp (1)

agz +azp < aq +ap 2

where a, = max{a,, as1} and a = max{au3, a»3}. Con-
sider a kidney exchange problem with 3 patients, pa-
tient 2 is of type ¢; and has a donor of type ¢, patient 3
is of type t; and has a donor of type t;, while patient 1 is
of type t, and has two willing donors d, and d4, of type t,
and t4 respectively. Suppose that all cross-matches are
negative, so that the kidney exchange problem is rep-
resented by the following graph (the notation (fittx . . .)
means that the patient is of type ¢, the first donor is
of type t;, the second is of type # and so on and the
number on the arc (i, j) represents the compatibility
between “the best donor” in D; and patient j):

a3

2 - 3
(hty) (:53)
a * //
1
(atats)

Since patients 2 and 3 are not mutually compatible,
the only feasible exchanges are (1,2) and (1,3) and
we get that the maximum weight matching is (1, 3) by
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assumption (1). Again by assumption (1) it follows that
patient 1 would prefer the matching (1, 2) because he
prefers a donor of type ¢;. Now, if patient 1 hides the
donor of type #, the situation is the following:

2 43 3
(t1ty) (:13)
N a%;
1
(t2ty)

and therefore by Assumption (2) the maximum weight
matching is (1, 2). Thus in the latter scenario patient 1
receives a transplant of quality a;, instead of a trans-
plant of quality as,, with a;, > as,. In other words, de-
noting by u; the utility function of player 1 (depending
on the strategies of all the players)

up 2P x 2P x 2P s [0, +00)
we have

u(Dy, Dy, D3) < ui({d>}, D2, D3).

This is in contrast with the positive results obtained
in the case of complete information in [17], where the
weights are assumed to be 0 or 1. With this assumption
it is proved that revealing all the set of available donors
is not only an equilibrium, but also a dominant strategy
both under a deterministic efficient mechanism and
under a stochastic efficient mechanism (see [17] for the
details).

5 The model in the incomplete information case

We now consider the incomplete information case. As
in Section 3 we suppose to have a set N of patients with
their donors (D, ..., D,), but now patient i does not
know the compatibility matrix W, nor the set D; for
j# i

We suppose that each patient can have at most two
willing donors. Each player type is then given by a
vectort € T := T* U T?. This is not an essential hypoth-
esis, but we make it in order to simplify the calculations
in the following examples. The crucial assumption is
the existence of a fixed common upper bound on the
number of donors, and this is a very realistic assumption
from the practical point of view.

We assume that a probability distribution P over
possible types (i.e. on the set 7) is given and it is
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common knowledge. This assumption is plausible, since
this information is public: the distribution of blood
types is known and in the same way it is possible to
obtain a probability distribution for the other charac-
teristics. Starting from a probability p on the set 7" and
supposing that the types of the donors and of the pa-
tients are independent, we put the product probability
on the sets 72 and T*. If we assume that the probability
of having one or two donors is given by s and 1 —s,
we put the probability P on the space 7 obtained by
the combination of s, p> and p®. More precisely, the
probability that player k is a pair of type (4, ¢;) € T is
s p(t)p(t;), while the probability that he is a triple of
type (t,t;, 1) is (1 —s)p(t) p(t;) p(t). The assumption
on the independence of the types of the patient and
the donors is quite a strong one, since it does not agree
with the possibility that the patient and the donor are
“blood” related, and therefore can have similar genetic
characteristics. Anyway it is a good approximation of
the real situation, where many donations come from an
unrelated donor.

About the information of each player, it is reason-
able to assume that each patient knows his type, i.e.
he knows how many donors he has, and his and their
relevant characteristics.

The set of actions for patient i is 2”i, therefore a
strategy of patient i is a function d; : 7 — 27 (see [10]
and the Appendix for the definitions in the general case
of games of incomplete information). We denote by
d:1eT"— (di(1)),...,d,(1,)) a profile of strategies
of the patients. d univocally defines a kidney exchange
problem for each type profile r, and therefore in cor-
respondence to t and d(r) a compatibility matrix is
also determined. We denote this correspondence by a
function

w: T x 2P x o x 2P 5 R

defined by setting w(z, d(t)) = W(N(1)), D'(t)), where
W is the compatibility matrix obtained in the same way
as in the complete information setting with patients’
types determined by t and the set of donors D' =
(d(t1),...,d(ty)). The main difference compared to
the complete information setting is that in this case the
computation of the compatibility matrix is based on the
declarations of the patients. We implicitly assumed that
a patient can declare a proper subset of his donors, but
he can’t lie on the types of the declared donors, since
this false declaration would be always discovered.

In general we have seen that the compatibility matrix
depends on the types, but also on the possibility of pos-
itive or negative cross-match. This information cannot
be obtained from the types, since it depends on the
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private history of the patient, whether for instance he
has already received a transplant or a blood transfusion.
For this reason we assume that there is a certain prob-
ability g that the cross-match between two people is
positive. In order to have an estimate of this g we refer
to the real situation, in which the published probability
of positive cross-match between two random people is
q = 0.11 (see Table 1 in [19]).

Definition S A kidney exchange problem with incom-
plete information is given by a collection

K = (N, {Dj}ien.T", P,w.q).

Although function w is not independent from the
data, but it is in some sense derived from them, we
include it in Definition 5 since, given the data, several
choices of this function can be done. Also in our setting,
where we have clearly identified the target of obtaining
transplants of quality as high as possible, the ideal w,
which coincides with the life years guaranteed by the
transplant, does exist but it is impossible to be com-
puted. Since there are many arbitrary choices when
determining an approximation of it, several distinct
functions w can well represent the situation, also if they
assign different weights to the arcs, and therefore they
define different kidney exchange problems.

We recall that we are given a mechanism #, in this
case acting on the triples (r, d(t), w(z, d(t))). Clearly
each profile of types and each strategy determine an
element of L(M) through the mechanism A. If & takes
values in M, it is possible to consider the function
h(t,d(r), w(zr,d(r))) = m(zr,d). The resulting match-
ing gives the expected utility of the patients. In fact
the expected utility of patient i who is of type t; and
chooses d;(t;) = D; is given by

uf (t, D}, d_;) = Z Pi(t_ilt)w((t—i, T)s Dmee.ayiy.i
'LL,'GT,,

(here the notation v_; for a vector v means all the
components of vector v except for the i-th).

6 Incentive compatibility under incomplete
information

In this Section we show that in the case of incomplete
information truthful revelation is not an equilibrium
and, a fortiori, not a dominant strategy. The problem
is that the probability of being matched with someone
increases if the set of donors increases (see [17]), but
this property does not hold for the expected utility
which is not “ donor monotonic.”

We prove with two examples that the property does
not hold in the incomplete information setting as de-
picted in Section 5, and also in an intermediate state
of information between the incomplete and the com-
plete one. We start with the incomplete information
setting as modeled in Section 5 and then we modify this
example in order to adapt it to the case in which the
patients possess an intermediate level of information.
The underlying idea is that the situation is analogous to
the case of complete information: having one “good”
donor is not necessarily an advantage, since this can
cause as a result the reception of a kidney of lower
quality.

We want to show that also in the case of incomplete
information, if some types are more probable than oth-
ers, it is possible to design situations in which revealing
all the available donors is not a dominant strategy. In
particular we show that if the strategy of all the players
but player 1 is to reveal all of their donors, the best
response for player 1 is not the truthful revelation of
the set D;. We do not take into account the possibility
of having a positive cross-match, but this can be added
without changing the essence of the example, if we
suppose that the probability of having a positive cross-
match is sufficiently small (see Example 3).

Example 2 As in Example 1 suppose that there are
only four possible types of individuals and that the
compatibility matrix is the following

0 a2 0 au

(7531 0 a3 0
C =

0 axn 0 axu

ay 0 agp ay

We assume that types #; and #3 occur with high proba-
bility, while types #, and ¢, are rare. We show that there
exists a kidney exchange problem in which a patient has
convenience to hide a willing donor if the other players
truthfully reveal the set of their donors. We make these
assumptions on the compatibility matrix:

aj;p > as, ax;+ayp >a,+ap

ag3 +aszx < agq +ap, ags+ap > aq+an

where a, = max{a,;, a4;}. Consider a kidney exchange
problem with three patients and suppose that patient 1
is of type t, and has two willing donors, one of type ,
and the other of type #.

Patient 1 does not know the types of the other pa-
tients and of their donors, he only knows the compati-
bility matrix and that the other patients with probability
1/2 have only one willing donor and with probability
1/2 have two willing donors. We observe that this
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choice can be easily modified, since it is not relevant
in our analysis.

We assume that on the space T = {11, t, t3, t4} the
following probability distribution is given, for some € €
0, 1):

1—¢€ €
pt) =pts) = ——, p(ty) = p(ty) = 3

2

In the first column of Table 1 we put the probability
of the type profiles reported in the second column. The
chosen type profiles in the second and third columns
are those for which the different declaration of player
1 leads to a different outcome for patient 1 under the
maximum weight matching. In the fourth column it
is written the type of kidney which patient 1 receives
at the maximum weight matching if he declares only
donor #4 while in the fifth there is the type of kidney
that he receives declaring both his donors.

Since we supposed that a;, > a3, patient 1 prefers to
receive a kidney of type #; with respect to a kidney of
type t3.

It is clear that for each of these type profiles there is
the “symmetric” one in which patients 2 and 3 exchange
their roles.

Denoting by

4 Y 6
T(1—€)=2[(1 O L ,4-9  5d e)],

26 27 28

the expected utility of patient 1 of type t, declaring only
donor t4 if the other players are “honest” is

1—¢
ui(t, {ta}) = T(1 — €)apn + C( 7 6112>

+eUl(e, t, {t4}).

Table 1 Types’ profiles leading to a different outcome for
patient 1 as a consequence of different declarations

Probability 2’stype 3’stype Type received Type received
from pat. 2 from pat. 2

declaring #4 declaring tp, t4

(1—e*

%6 it i313 l 13
(1-¢’

> h 131313 h 13
(1—¢)’

57 ;313 nnn n 13
(1-¢’

57 1313 L3 b f3
(1—e)P

8 nhth ;31313 n 13
(1—e)

% nnis 131313 h 13
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The expected utility of patient 1 of type t, declaring
donors t, and 14 is

1—¢
ui(t, {r,ta) =T —e)an + C (T, asy, 012>
+€ V(Ev t27 {t21 t4})1

where C can be computed examining the most probable
type profiles, and is the same in both cases, and U
and V can be computed examining the remaining type
profiles. If € is small enough, recalling that a;, > asp, it
follows that

ui(t2, {t4}) > u§ (12, {t2, 4}).

With the next example we show that also in the in-
termediate case, in which each patient (or the doctor of
each patient) knows the compatibility values between
the donors of the other patients and himself, but he
does not know the types of the other patients, the truth-
ful revelation of the set of donors is not an equilibrium.
In this example, which is simpler to manipulate, we take
into account also the role of the cross-match. This is the
reason why we allow only three possible types.

Example 3 Each person can be only of 3 possible types:
t1, 1y, t3 and each type occurs with probability 1/3 (this
is not essential, but simplify the calculations). The com-
patibility matrix is:

0 ap ap
C=| ax 0 a3
ay; ax 0

Recall that the matrix C has to be interpreted in the
following sense: a donor of type ¢; is incompatible with
a recipient of type #;, but a;; > 0 does not imply that
donor ¢ is compatible with patient ¢;, We assume that
this happens only with probability (1 — g), with g small,
while with probability g a donor # is incompatible with
arecipient ¢, if i # j.

Consider a kidney exchange problem in which there
are only 3 patients. Assume that patients 2 and 3 have
only one willing donor.

Patient 1 knows that he has two willing donors.
Patient 1 knows his type and the types of his donors
(incompatible with him). We assume he is of type f,
and his donors are of type t, and t; respectively. Sup-
pose that patient 1 knows that patient 2 has a donor
compatible with him, and that the compatibility is a5,
and also that patient 3 has a donor compatible with him
and the compatibility value is a3,. From this knowledge
he can deduce that with probability ﬁ patient 1 is of
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type t;, with probability ﬁ he is of type t, and with
probability ﬁ he is of type t;. Analogously patient
1 knows that patient 2 is of type #; with probability
@, while with probability ﬁ he is of type ¢, and 1,
respectively.

The possible combinations of types of patients and
donors are the ones in Table 2.

Of course, also the possibilities in which the types of
2 and 3 are interchanged have to be considered in the
computation of the expected utility of patient 1. Now
suppose that patient 1 declares the two donors of type
t, and 3 respectively. Each line of the table plus the
declaration of patient 1 determines a kidney exchange
problem. Let us analyze the first case for instance:

2 3
(t1ty) (t153)
Na*/

1
(tata13)

where a, = max{as;, a>}. Note that in this case the ex-
change between 2 and 3 is not possible, since the donor
of patient 2 is certainly incompatible with recipient 3.
Assuming that aj, > az; we get that with probability
1 — g the selected matching in this case will be (1, 2).
If this is not possible, with probability g(1 —¢q) the
selected matching will be (1, 3), and if also this one is
not feasible, no matchings are found in this case.

Table 2 Players’ types’ probabilities

Probability Type of 2 Type of 3
ﬁ tit i3
ﬁ hify b3
(H_]W tity i3t3
a —f22q)2 i tit3
ﬁ bty i3
ﬁ bty ta13
ﬁ 31 i3
ﬁ 31 i3
T 57 hh o

So, the expected utility of patient 1 in this case is:
ui({tr, 3}, i1, it3) = (1 — @)ann + q(1 — @)as,.

Let us see the case that occurs with the highest
probability (if ¢ is small enough): player 2 is of type
tit; and player 3 is of type f313. The situation is the
following:

_ asi
2 >~ 3
(tit) ais (t313)
x a3 as
1
(t21213)

Assuming that as; + ax3 > a; + a, > a3 + as;, the
selected matching will be (1, 3) with probability (1 — g),
(1, 2) with probability g(1 — g), and finally (2, 3) with
probability ¢*(1 — q).

Therefore the expected utility of 1 in this case is

ui({t2, 13}, 111, t313) = (1 — @) (az + qarn).

In the same manner, it is possible to compute the
expected utility of patient 1 in each case. At the end,
the expected utility of patient 1 declaring all his donors
is an expression that looks like this:

ui({tz, 13}) = (I = q)azn +qA(q, an, azn),

1
(1+2g)?

where A is computed taking into account all the possi-
bilities included in Table 2 and the symmetric ones. It is
clear that if g is sufficiently close to 0, then the expected
utility for 1 in this case is close to as,.

If instead donor 1 decides to declare only the donor
of type 3 he gets:

ui({:}, hty, a13) = (I —q)an

1
(1+2g)?
+qB(q, ain, axn),

where again B is computed in the same way as A. Now,
if g is sufficiently close to 0, the expected utility of
patient 1 declaring only one of his donors is close to
app. Since we assumed that a;, > az,, this shows that
declaring the whole set of donors is not an equilibrium
strategy for patient 1.

@ Springer
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7 Concluding remarks

Kidney exchanges between incompatible pairs of
donors and patients are beginning to be performed
around the world. A centralized organization of the
exchanges requires a formal analysis of the chosen
allocation mechanism in order to correctly assess ef-
ficiency and other desirable properties, as incentive
compatibility.

We have analyzed the property of incentive compat-
ibility in the kidney exchange program from the point
of view of the mechanism design. We studied three
different scenarios corresponding to three different in-
formation levels. The inspiration for considering them
comes from the observation that such scenarios occur
at a certain moment in some of the existing practical
implementations of kidney exchange programs.

i) the first one is the incomplete information case
in which the patients do not know anything but
the information that can be obtained from a pub-
lic source (on the distribution of blood types for
instance);

ii) the second one is again a situation of incomplete
information, but each patient knows the compat-
ibility between himself and the other patients’
donors;

iii) the last one is the case of complete information:
each patients knows the compatibility between
himself and the other patients’ donors and also the
compatibility of the other patients with his donors.

We found out that in each of the three scenarios the
mechanism choosing a maximum weight matching does
not satisfy the incentive compatibility constraints.

In other words, if efficiency is identified with the
medical quality of the transplants, and the social wel-
fare function is the sum of the utility of the patients,
we proved that an efficient mechanism satisfying the
incentive compatibility property does not exist (see the
Appendix).

As we saw, this means that the mechanism lends
itself to manipulations operated by the players, since
they can use the information they possess in order
to obtain a better kidney for themselves, with re-
spect to the kidney allocated through the mechanism.
Moreover, as a consequence, this behavior invalidates
efficiency.

Since the strategic behavior of each patient is limited
to the concealment of some donor, in the practical
application of the mechanism, even if the strategic be-
havior at the first stage (in the incomplete information
case) cannot be controlled, it is essential to try to render
the manipulations as difficult as possible, by limiting for

@ Springer

instance the release of information from the doctors to
the patients, so that no donors are excluded from the
program in the intermediate steps, except for the ones
not declared at the first one.

Finally we remark that the examples studied here
are clearly “fictitious,” even if they preserve the salient
features of the real situation, so that the results of this
paper only prove the theoretical possibility of strate-
gic manipulation of the mechanism. Since preliminary
simulations carried out on the real data suggest that
the possibility of manipulation rarely occurs, we think
that an in-depth analysis of the real case would be
convenient to understand how frequent and severe are
the possibilities of such manipulations.
Acknowledgements We thank the Transplant Unit of the

“Ospedale S. Martino” in Genova, the Nord Italia Transplant
Program and the Italian National Transplant Centre.

Appendix

Indirect mechanisms in the incomplete information
setting: an impossibility result

As briefly described in Section 2, a key result in the
context of mechanism design is the revelation principle.
In this section we show how this can be applied in order
to prove an impossibility theorem as a consequence of
our examples. In the paper we have analyzed incentive
compatibility of a direct mechanism, i.e. a mechanism
that simply asks to each patient to report his type. In
this Appendix we enlarge the set of available mech-
anisms, taking into account also indirect mechanisms.
We therefore need some more terminology.

According to Definition 5, we consider a kidney
exchange problem K = (N, {D}ien, 7", P, w,q). An
outcome of the problem is an admissible matching and
as we have already seen in Section 5, each patient has a
preference on the set of possible matchings, depending
obviously on the set of types of the involved patients.
We model these preferences by saying that each patient
has a utility function u; : 7" x M — [0, +00) (clearly
we consider the expected utility when we deal with
L(M) instead of M). We assume that the utility func-
tion is common knowledge, but not the patient’s types.

Definition 6 Given a kidney exchange problem K, we
call MW(K) the set of maximum weight matchings
corresponding to K, and we denote by / its cardinality.
The function f that associates to each kidney exchange
problem the element in L(M) assigning probability
1/1 to each matching belonging to MW(K) is called
maximum weight choice function.
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As stated in Section 3 in a slightly different context,
a direct mechanism consists of an outcome selection
function 4 :7" — L(M). In order to introduce the
class of indirect mechanisms, we recall the definition
of a Bayesian game with consistent beliefs and Bayes-
Nash equilibria (see [10]).

Definition 7 A Bayesian game is given by (N, A, T,
q, (v)ien) where N:={1,...,n} is a set of players,
A :=[],cn Ai is a collection of sets of actions and T =
[Licy Ti, with a probability distribution g over it, with
T; the set of types of each player i, and a utility function
vi : T x A — R. A pure strategy in a Bayesian game is
a mapping from types to actions, i.e. s; : T; — A;.

Definition 8 The profile of strategies (s7,...,s;;) is a
Bayes-Nash equilibrium if for every agent i, for every
type t; € T;, and every alternative strategy s; € A;, we
have

> qiltyv; (& 7). 87 (0)

> Y qeiltvi (& si(6), 5% (69) .

(We recall that the vector v_; is obtained from the
vector v by deleting the i-th component).

Definition 9 A mechanism for the kidney exchange
problem in the incomplete information case K =
(N, {Di}ien,T", P,w, q) is given by a triple (A, o,s)
where:

e A =],y Aiisacollection of sets of actions;
e 0:A— L(M)isan outcome function;
e s;:7 — A;is aset of strategies.

Definition 10 A mechanism implements the maximum
weight rule f for a kidney exchange problem K in
Bayes-Nash equilibrium if there is a Bayes-Nash equi-
librium s* = (s7,...,s};) of the Bayesian game (N, A4,
T",q, (u; 0 0)icn) such that for all (t,...,t,) € 7" it
holds o(s*(t1, ..., 1)) = f(t1, ..., t).

We recall the fundamental result that we have
cited several times, the so called revelation principle,
restricted to our case (see [1], Ch. 7, p.174).

Theorem 1 Suppose that there is a mechanism that im-
plements the maximum weight social choice rule f in

Bayes-Nash equilibrium. Then there exists a Bayes-Nash
equilibrium incentive compatible direct mechanism that
also implements f in Bayes-Nash equilibrium (with the
truth-telling equilibrium).

In the rest of the paper we have shown that there
exist some cases in which the direct mechanism does
not truthfully implement the maximum weight social
choice function. More precisely, in Example 2, we have
studied such a case. As a consequence of the revelation
principle, this implies that for the problem in Example 2
the maximum weight social choice rule is not Bayes-
Nash implementable through any mechanism. More
formally, we can collect these considerations in the
following theorem.

Theorem 2 When there are at least three patients, there
exist a set of possible types T and a probability distribu-
tion on T such that no mechanism exists that Bayes-Nash
implements the maximum weight social rule for every
realization of the kidney exchange problem.
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