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Abstract In this paper, we propose a branch-and-price approach for solving the problem of
maximizing the expected number of transplants in Kidney Exchange Programs (KEPs). In
these programs, the decision on which transplants will be conducted is usually made with
the support of optimization models with the assumption that all operations will take place.
However, after a plan of transplants is defined, a pair may leave the KEP or a more accurate
compatibility evaluation exam may invalidate a transplant. To model these possible events
we consider probabilities of failure of vertices and of arcs and the objective of maximizing
the expected number of transplants. The proposed approach is based on the so-called cycle
formulation, where decision variables are associated with cycles. Built on the concept of
type of cycle a branch-and-price algorithm is conceived. One subproblem is defined for each
type of cycle. We present computational results of the proposed branch-and-price algorithm
and compare them with solving directly the cycle formulation (with a general purpose mixed
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integer programming solver—CPLEX) showing that the proposed approach is the only one
suitable for larger instances.

Keywords Kidney exchange problem - Expected number of transplants - Integer
programming - Branch-and-price

1 Introduction

The problem addressed in this paper arises in the framework of Kidney Exchange Programs
(KEPs). KEPs are meant to facilitate kidney transplants for patients who have someone willing
to donate them a kidney but cannot do it because of blood and/or tissue incompatibilities.
Those issues may be overcome by an exchange of donors between patients, as long as it is
assured that each patient associated with a donor that provides a kidney also receives one.

The simplest form of this mechanism is for two incompatible pairs. The donor and patient
of each pair are incompatible, but if the donor in one pair is compatible with the patient in the
second pair and vice versa, the patients may exchange donors and the two transplants become
possible. This mechanism can be generalized to exchanges involving more than two pairs
although, in practice, exchanges involving a large number of pairs are not usually desirable,
for logistics reasons and to reduce the impact of the cancellation of some planned transplants.
The maximum number of transplants in a feasible exchange is represented by K.

In some KEPs donors that are not associated with any patient, but are willing to donate a
kidney to someone in need (altruistic donors) are involved. Such donors initiate another type
of exchanges: she/he gives a kidney to a patient, the patient’s associated donor donates to a
patient in another incompatible pair and so on. The last donor in this chain normally gives a
kidney to the next compatible patient on the deceased donors waiting list.

In the presence of a large number of incompatible donor/patient pairs, optimization prob-
lems to decide which exchanges should be planned arise. Some of these problems have been
tackled successfully by integer programming. The most common one has the objective of
maximizing the number of transplants (Constantino et al. 2013; Klimentova et al. 2014) with
the assumption that all planned transplants will actually be conducted. Other objectives can
also be found in literature (Manlove and O’Malley 2014; Glorie et al. 2014), particularly
embedded in lexicographic optimization. For integer programming models and a recent sur-
vey of approaches for KEP problems, the interested reader is referred to Dickerson et al.
(2016) and Mak-Hau (2017).

Although these models consider that all planned transplants will be performed, typically
that is not the case in practice. At the time the exchanges are planned, the information
is incomplete in the sense that latter additional compatibility testing of donor and patient
can elicit incompatibilities (so called, positive crossmatch) that were not detected before.
Furthermore patients or donors may become unavailable, e.g. due to illness or to backing
out, among other reasons. In such cases, some or all of the planned transplants may not
proceed and the number of actual transplants may be severely impacted (Dickerson et al.
2013).

The main issue when dealing with this uncertainty is the rearrangement of pair assign-
ment when some planned exchanges fail. Robust optimization has been used do address this
uncertainty. In Glorie et al. (2014) various recourse policies that determine the allowed post-
matching actions are proposed. For each recourse policy, a robust model is proposed and
solution techniques are developed. A different approach is to give priority from the begin-
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ning to exchanges which allow the rearrangement of transplants. For example, by hierarchical
optimization where we maximize first the number of exchanges with three transplants that
include exchanges with two transplants (if one transplants fails, an exchange of two trans-
plants is still possible). After, other objectives can be considered in a lexicographical manner.
This approach was proposed in Manlove and O’Malley (2012) where the first objective is to
maximize the number of effective 2-cycles (exchanges with two pairs, or exchanges with three
pairs that include at least one exchange with two pairs). Another objective is to maximize
the number of exchanges with two transplants inside the exchanges with three transplants.

A third approach is to consider probabilities of failure related to the availability of pairs, and
probabilities of failure related to additional incompatibility information. These probabilities
are used to calculate the expected number of transplants in each potential exchange. The
calculated values are then used in the objective of maximizing the expected number of
overall transplants. The approach was studied in Li et al. (2014), Klimentova et al. (2016)
and Dickerson et al. (2013). In those works, different probabilities of failure are assumed
for each element. Some of the schemes for computing the expected value of each potential
exchange are described in Pedroso (2014), Li et al. (2014) and Klimentova et al. (2016) based
on the possibility of rearrangement of transplants when the exchange fails. The problem is
solved by enumerating all the cycles, computing the expected number of transplants of each
cycle, and including all the corresponding decision variables in the cycle formulation which
is solved directly by a general purpose integer programming solver.

This paper follows this last type of approach and develops a branch-and-price algorithm to
obtain the exchanges that should be planned so that the expected number of actual transplants
is maximized. We consider that all pairs have the same probability of becoming unavailable
and that all potential transplants have the same probability of being canceled due to incom-
patibility between the selected donor and patient. This assumption is based on two reasons.
Firstly, distinct probabilities requires the definition of a procedure for estimating the prob-
ability of failure of each specific element, which is, in itself, a challenging open question.
Using aggregated historic data for estimating a single probability value for failure of pairs
and a single probability value for incompatibilities detected latter seems more suitable in
practice. Secondly, distinct probabilities favour some (easier-to-match) patients with respect
to others. Although justifiable by clinical reasons, at least partially, they may not be easily
perceived as fair. In any case, the proposed branch-and-price approach can be extended to
the case where different probabilities are considered, at the expense of spending more time
in calculating the cycles expectations.

Another two approaches have been attempted for the maximization of the expected number
of transplants when the probabilities are equal. In Alvelos et al. (2015), a compact integer
programming model was proposed with decision variables associated with the assignment of
vertices to positions in types of cycles. In Alvelos et al. (2016) a branch-and-price algorithm
was proposed based on solving subproblems where the decision variables are associated
with the assignment of arcs to positions in types of cycles. Preliminary tests showed that
both approaches are not promising in computational terms, and therefore we focused in the
branch-and-price approach described in this paper.

Branch-and-price is considered to be the most effective approach for the maximization of
the number of planned transplants in KEPs (Glorie et al. 2014; Plaut et al. 2016; Dickerson
et al. 2016; Klimentova et al. 2014). Therefore it is a natural choice for addressing the max-
imization of the expected number of transplants. However, the modification of the objective
function implies significant changes in the method. The main reason is that the contribution
of an exchange is no longer obtained by the number of pairs involved in it, but by a non-linear
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Fig.1 Cycle with 3 vertices

function that measures the expected number of transplants (Klimentova et al. 2016; Pedroso
2014).

Following Klimentova et al. (2016) and given that the integer programming based models
(Alvelos et al. 2015, 2016) proposed so far to solve the subproblems are not promising, we
deal with this issue by enumerating all the cycles, while defining a restricted master problem
with only a subset of them. This strategy is able to obtain solutions to large instances (1000
vertices) with very small optimality gaps.

The paper is structured as follows. In Sect. 2 the problem is defined together with the
concept of expected number of transplants and type of cycle. The cycle model with types
is presented in Sect. 3 and the branch-and-price algorithm detailed in 4. In Sect. 5, the
computational experiments are reported and their results discussed. In Sect. 6 we provide
some concluding remarks.

2 Problem definition and dealing with expectations

The problem addressed in this paper can be represented by a directed graph, G(V, A), where
the set of vertices V is the set of incompatible donor/patient pairs. Two vertices i and j are
connected by arc (i, j) € A if a donor from pair i is compatible with a patient from pair j. A
(directed) cycle in G represents a feasible kidney exchange between the pairs associated with
vertices belonging to the cycle. Since each incompatible pair can be included in at most one
exchange, a solution to the KEP problem is a set of vertex-disjoint cycles of G. Furthermore,
as mentioned before, only cycles with less than a given length K are accepted to be part
of a solution. To the best of our knowledge, with some isolated exceptions, K = 3 is the
current bound on the length of cycles in the most advanced KEPs, though the possibility of
considering K = 4 has been discussed (Glorie et al. 2013; Dickerson et al. 2013, 2016).

We consider the problem where a probability of failure is associated to arcs and vertices
and the objective is to maximize the expected number of transplants. We assume that the
probability of arc failure is equal, for all arcs. The same holds for vertices:

pi=p’, VieV, pij =p*, Y@, j) €A

When calculating the expected number of transplants we also assume that the vertices of
the cycle with failure may be rearranged if a shorter cycle is available within vertices of the
cycle with failure.

The approach is detailed in Pedroso (2014) and Klimentova et al. (2016), so we present
here just an illustrative example supported by Fig. 1. Assuming only vertices failure, the
cycle presented leads to 3 transplants if none of the vertices fails, and to 2 transplants [cycle
(1, 2)] in case of withdrawal of vertex 3 only.
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Fig. 2 Examples of types of cycles

@/N

Fig. 3 Example of graph with three cycles with different rypes of cycles

The expected number of transplants for this cycle is:
E(c) =31 - p)1 = p2)(1 = p3) +2(1 = p)(1 — p2)p3.

Given that the expected number of transplants of a solution is the sum of the expected
number of transplants of its cycles, a key issue in the proposed approach is the computation
of the expected number of transplants of a single cycle. We model this as follows: cycles
with the same length that have additional arcs (arcs between vertices of the cycle but not
belonging to the cycle) in the same relative position are grouped in the same fype of cycle.
Formally, a type of a cycle of size k is an equivalence class of isomorphic graphs with k
vertices containing at least a cycle of size k.

The only type of a cycle of size 2, all different types of cycles of size 3, and two types
of cycles of size 4, are shown in Fig. 2. The number of different types of cycles grows very
rapidly with the number of vertices: for K = 4 there are 61 different types and for K =5
there are 3725 types. As mentioned above, K = 4 seems to be reasonable bound both from
practical and theoretical points of view.

An illustrative example regarding the concept of types of cycles is given in Fig. 3. Cycles
(1,5,4) and (1, 6, 4) are of type 2, and cycle (1, 2, 3) is of type 3.

For cycles of the same type the expected number of transplants is computed equivalently.
Hence, for given equal probabilities of failure of vertices and arcs, the expected number of
transplants of cycles of a type is equal for all those cycles.

The concept of types of cycles can be extended to include chains initiated by altruis-
tic donors and the computational algorithm developed in Klimentova et al. (2016) can be
straightforwardly adapted for computation of expected number of transplants for chains.
Regarding the present study, inclusion of chains would imply extension of number of types.
However it would not imply any extra methodological developments, and is not addressed
in this paper.
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3 Cycle model with types

We use the following notation in the model proposed in this paper. The maximum length of
a cycle is denoted by K. T is the set of types of cycles of sizes k = 2, ..., K, ordered by
increasing k; types are indexed by ¢ (e.g.,if k = 4,1t =5, ..., 65). Let v; be the expected
value (or weight) of type t € T , i.e. the expected number of transplants for any cycle of type
t computed as illustrated in the previous section and detailed in Klimentova et al. (2016) and
Pedroso (2014).

For each type of cycle t € T, let C! be the set of all cycles of type ¢ in graph G. Notice
that C' N C" = @, Ve, ', ¢ #1t €T and|J,., C" = C, where C is set of all cycles of size
up to K in graph G. Define the decision variables y. = 1 if the cth cycle of type 7 is part
of the solution, y. = 0 otherwise, Vt € T, Vc € C'. Parameter a], = 1 if cycle c of type
includes vertex i, afc = 0 otherwise, Vi € V,Vt € T,Vc e C'.

The cycle model with types is as follows:

Maximize Z Z vy yé (1)

teT ceC!
subject to Z Z al.yl <1, VieV
teT ceC?
vl e {0, 1}, Vi eT,VeeC. (2)

The objective function (1) corresponds to maximizing the expected number of transplants.
By constraints (2), a vertex belongs to at most one cycle.

4 Branch-and-price algorithm for the cycle model with types

Column generation allows solving a linear programming model, as the linear relaxation
of the cycle model with types, without explicitly considering all the decision variables.
Its combination with branch-and-bound (i.e. branch-and-price), allows solving the integer
problem. In each iteration of a column generation algorithm, a problem with only a subset
of variables (the Restricted Master Problem—RMP) is optimized. Based on the values of
the dual variables of the RMP, subproblems are responsible for finding variables outside the
RMP with positive (in case of maximization problem) reduced costs. Frequently, but not
necessarily, each subproblem obtains the variable with highest reduced cost by solving an
optimization problem. If no variable with positive reduced cost is found in any subproblem,
the current solution of the RMP is also optimal for the full problem. For further details on
branch-and-price the reader is addressed to Barnhart et al. (1998).

We propose to solve the linear relaxation of the cycle model with types using column
generation by defining one subproblem for each type 7. The reduced cost ! of a cycle ¢ of
type t is:

rl=v — Zafcm 3)

ieV

where 7; is the dual value of constraint (2) of vertex i. The subproblem of type ¢ consists in
finding the cycle of that type with maximum reduced cost:
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Maximize (vt — fo 7'[,‘) “4)

ieV
Subject to: x! define a cycle of type ¢
x €{0,1}, VieV, (&)

where x] = 1 if vertex i is part of the selected cycle and x! = 0, otherwise, Vi € V. Integer
programming models to solve this subproblem can be derived from the models described in
Alvelos et al. (2015, 2016). In this paper, we propose a procedure based on enumeration. This
procedure turns out to be more efficient computationally than the integer programs referred
above, as well as than a tree search algorithm that was also implemented. That algorithm
enumerates all the cycles of a given type, and a subproblem is solved by choosing the one
with the maximum reduced cost. For each vertex the branching is performed on a set of
outgoing arcs, omitting the arcs that cannot be in included due to the configuration of the
type.

To solve an instance of the problem, we start by calculating the expected number of
transplants associated with each type of cycle, v;, according to the actual failure probabilities
of the arcs (p“) and of the vertices (p,) of the instance. Then, cycles are enumerated and their
types are identified. Algorithm 1 provides the pseudocode of this enumeration procedure. Its
input is the maximum allowed length of cycle (K) and the function B(c) that returns the type
of a cycle c. The result of the algorithm are sets C*, ¢ € T.

Algorithm 1: Enumeration of cycles.

Data: K maximum length of the cycle, B(c) — function that returns a type ¢ of cycle c.
Result: For each ¢ € T, C? set of cycles of type ¢

1Cl=0,teT

2 foreachi € V do

3 Path P = (i), length of path h = 1 // initialize path
4 EnumerateCycles (i, P, h)

5 return C!

6 EnumerateCycles (u, P, h)

7 | foreach v € 5% (u) do

8 if v = p; then // new cycle found
9 Cycle ¢ := P is added to the set C*, where t = B(c).

10 L continue

11 if 7 < K then

12 P’ := (P, v), add vertex v to the path

13 L EnumerateCycles (v, P/, h+ 1)

Cycle enumeration is done recursively and is repeated for each i € V (lines 2—4). P stores

the path from vertex i up to the current node as an ordered set of vertices (py, ..., py). For
each i the current path P is initialized with i, i.e. p; = i (line 3). The branch is created
for each vertex v € 87 (i), where §7 (i) = {j € V : (i,j) € A, j > i}, and is

fathomed if a cycle is found (lines 8—10). Otherwise, vertex v is added to the current path
and procedure EnumerateCycles is recursively called (lines 11-13). All the cycles of a
given type are kept in memory. Solving the subproblem of a type corresponds to checking
the enumerated cycles for maximum reduced cost. Each time a tree node with a fractional
value is not fathomed, two descendant nodes are created. In one node a fractional variable
is fixed to 1 and in the other the same fractional variable is fixed to 0. When solving the
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subproblem, the corresponding cycle is not taken into account when selecting the most
attractive variable.

5 Computational tests
5.1 Implementation details

Computational experiments have been carried out to verify the effectiveness of the proposed
method. Two different versions of the branch-and-price (B&P) algorithm are compared with
the direct use of cycle formulation (1)—(2) using CPLEX solver. The following notation will
be used in the remaining of this document to refer to the three approaches:

— C F—direct cycle formulation;

— B& Pysp—version of B&P algorithm, where the variables associated with cycles of size
two are generated by the subproblem when attractive;

— B& P,y p—version of B&P algorithm that includes all 2-cycles from the first restricted
master problem.

The expected values v, for all possible types t € T, of sizesk = 2, ..., 4 are computed in
advance. The enumeration procedure (Algorithm 1) is used in the beginning of each approach.
The only difference between the approaches is that for C F all cycles are included in the model
and the problem is solved directly, while for B& Psp and B& P>y p cycles are included only
when they are attractive.

In the implementation of the B&P algorithms we considered a search strategy that consists
in a mix of depth search (when the current node is not fathomed) and best search (when the
current node is fathomed). The branching variable is the one with a higher coefficient in the
objective function from the ones with fractional value. In an attempt to find a good quality
incumbent early, after the linear relaxation optimal solution is obtained and before branching
starts, the variables of the RMP are set to integer and the resulting integer RMP is optimized.

5.2 Results

Computational tests were carried out in a computer with Intel Xeon processor at 3.00 GHz, 8
Gb of RAM and running Linux OS. MIP solver CPLEX 12.4 was used! for solving directly
the cycle formulation and for solving the linear relaxations in the B&P approaches. B&P was
implemented in SearchCol++.> The computational time allowed for solving each instance
was limited to 3600 s (1 h).

The instances for the computational study were the ones from Klimentova et al. (2016)
and Constantino et al. (2013) with K = 3 and K = 4. We concentrated our computational
experiments on instances from 200 up to 1000 vertices, as the size of the instances up to 100
does not justify the use of branch-and-price (Klimentova et al. 2016). Although, to the best of
our knowledge, the biggest KEPs consider pools of 200-250 patients (Dickerson et al. 2016),
there is intention of joint collaboration between a number of European programs (ENCKEP
2017). Such a collaboration may increase the size of the pool significantly and therefore
justify including in the computational analysis instances of a bigger size.

' IBM: ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/ (last accessed in June, 2017).

2 http://searchcol.dps.uminho.pt/.
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Table 1 Comparison of

performance of the three " cr B&Posp B&Pvp
approaches for K = 3 #slvd gap% #slvd gap% #slvd gap%

p' =0, p¢ =02
200 10 0 9 0.05 9 0.05
300 7 0.06 3 0.10 3 0.11
400 8 0.08 5 0.05 5 0.05
500 6 0.04 7 0.05 7 0.05
600 6 0.06 2 0.04 2 0.04
700 2 0.03 2 0.03 2 0.03
800 4 0.11 4 0.02 4 0.02
900 2 0.03 2 0.03 2 0.03
1000 4 0.12 4 0.03 4 0.04

p' =02, p =04
200 10 0 8 0.07 8 0.07
300 10 0 7 0.09 7 0.09
400 10 0 7 0.10 7 0.08
500 10 0 5 0.11 5 0.10
600 9 0.11 5 0.06 6 0.07
700 8 0.14 5 0.07 5 0.06
800 6 0.28 4 0.10 3 0.09
900 7 0.05 3 0.04 2 0.04
1000 7 0.33 3 0.08 3 0.08

p' =04, p* =04
200 10 0 10 0 10 0
300 10 0 8 0.08 8 0.08
400 10 0 9 0.23 9 0.19
500 10 0 5 0.12 4 0.11
600 9 0.09 2 0.06 3 0.06
700 9 0.18 8 0.17 8 0.16
800 8 0.14 3 0.07 3 0.08
900 7 0.06 0 0.04 1 0.05
1000 7 0.15 3 0.09 3 0.10

Ten instances of each size were solved for three different combinations of values of
probabilities of failure of vertices (p¥) and arcs (p?): (i) p¥ = 0, p* = 0.2; (ii) p¥ = 0.2,
p® = 0.4; (iii) p* = 0.4, p* =0.4.

Table 1 reports the results for K = 3: n is the number of vertices in the instance; #slvd
is the number of instances solved to optimality within the given time limit (3600 s); gap%
is the average optimality gap for the set (gap = %‘Cl’w x 100%, where Inc is the value
of the incumbent solution, and BUB is the best found upper bound).

It can be seen that for K = 3 the cycle formulation performs better than the B&P
approaches in terms of the number of instances solved to optimality. However, for the larger
instances (600-1000 vertices), B&P approaches clearly outperform the direct approach in
terms of quality of the solutions obtained, having smaller average gaps in all sets of instances.
instances, B&P always provides very small optimality gaps.
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Total time
T T

CPU time(s) (log scale)

Problem instances

«— Enumerate o—o CF B8 B&Pygp A—A B&Poyp

Fig. 4 Total time and time when the best solution was obtained for each instance with K = 3, p¥ = 0, and
pt =02

The instances with smaller probabilities values (p” = 0, p* = 0.2) turned out to be more
difficult to solve. The number of instances solved with those probabilities is less than that
with other combinations of p¥, p®. Also noteworthy is that B&P approaches managed, in
some cases, to solve more instances of bigger size (compare n = 300, and n = 400, 500
for p¥* = 0, p* = 0.2; n = 500,600 and n = 700 for p* = 04, p* = 0.4). Forn =
500, p¥ = 0 and p* = 0.2, B&P were able to solve one instance that was not solved by
CF.

Figure 4 shows the computational time, in logarithmic scale, to solve each instance with
p’ =0, p* = 0.2 and to reach the best solution. Similar figures for the other combinations
of probabilities are provided in Appendix. The graph Enumerate plots the CPU time spent
to enumerate all cycles. That value is at most 40-50 s for instances with 1000 vertices. The
time for unsolved instances is 3600 s.

As shown in the graphs, both B& P methods work very similarly, so the CPU time lines
almost coincide. Furthermore, as already mentioned, the C F' solves more instances to opti-
mality, however it can be seen that B& P finds a good quality solution (the best solution
found) faster. not negligible but is not relevant also, the time spent was at most 40-50 s
for instances of size 1000. The graphs on Fig. 4, down, show the time when the final solu-
tion was obtained for each approach (with logarithmic scale). Compared to C F both B& P
approaches manage to obtain the best solution significantly faster almost for all instances
and sets of probabilities (see also Appendix).

A compilation of results obtained for K = 4 is presented in Table 2. In addition to the
previously mentioned notation, we also use # feas for the number of instances where a
feasible solution was found. present For K = 3 feasible solutions were always found with
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Table 2 Comparison of performance of the three approaches for K = 4

n CF B&Prsp B&Pry p
#slvd #feas gap% #slvd #feas gap% #slvd #feas gap%

200 8 10 0.37 3 10 0.29 3 10 0.29
300 3 10 2.32 1 10 0.18 1 10 0.19
400 0 NA 0 10 0.16 0 10 0.16
500 0 NA 1 10 0.25 1 10 0.14
600 - — NA 0 10 0.55 0 10 0.40
700 - — NA 0 10 0.68 0 10 0.41
800 — — NA 0 10 1.22 0 10 0.85
p'' =02, p¢ =04
200 6 10 0.21 3 10 0.18 3 10 0.18
300 5 10 1.94 2 10 0.16 2 10 0.16
400 0 1 47.50 2 10 0.16 2 10 0.15
500 0 0 NA 0 10 0.11 0 10 0.11
600 — — NA 1 10 1.11 1 10 0.41
700 - - NA 0 10 1.58 1 10 0.57
800 - - NA 0 10 2.11 0 10 1.56
p' =04, p =04
200 9 10 0.27 4 10 0.17 4 10 0.14
300 8 10 4.37 5 10 0.09 5 10 0.11
400 0 1 20.27 3 10 0.12 3 10 0.13
500 0 0 NA 2 10 0.11 1 10 0.16
600 - - NA 1 10 1.09 2 10 0.11
700 - - NA 0 10 1.69 0 10 0.77
800 — — NA 0 10 2.06 0 10 1.45

all the methods for all instances. The time for enumeration of cycles is reasonably big for
n < 700 (at most 1400 s) and dramatically increases for instances with 800 vertices (almost
1 h). Therefore instances with n > 800 were not considered for K = 4.

For K = 4 and n = 200-300 vertices, the cycle formulation obtains more optimal
solutions than B&P. However, for larger instances (400-800 vertices), the C F' dramatically
fails—only for 1 instance of size 400 a feasible solution was found with a very large gap.
was not run.

As for the B&P approaches, they obtained feasible solutions with very small gaps in all the
instances with all probabilities (average values for 10 instances are always less than or equal
to 0.25% with n < 500, and never exceed 3% for bigger n). Moreover for bigger values of
probabilities (p¥ = 0.4, p* = 0.4) the B&P methods were able to solve to optimality 3 out
of 10 instance of size 400, 2 (B& P>sp) and 1 (B& P>y p) of size 500, and even 1 (B& Pasp)
and 2 (B& P p) of size 600, while C F did not provide any feasible solution.

Figure 5 presents the total time (in logarithmic scale) and the time when the best solution
was obtained (normal scale) for all methods for p¥ = 0.2 and p* = 0.4. The conclusions
with respect to computational times conducted for K = 3 are valid also here. In general
the B&P methods significantly outperform the cycle formulation in obtaining a good quality
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Fig. 5 Total time and time when the best solution was obtained for each instance with K = 4, p¥ = 0.2, and
pt =04

solution faster. As to the total time, the developed methods loose for smaller instances, having
however better performance for the bigger ones.

Summing up, the proposed B&P approach clearly outperforms the C F approach consisting
in solving directly the cycle formulation in the larger instances (for cycle lengths up to 3 and
600-1000 vertices, and cycle lengths up to 4 and 400-800 vertices) in terms of the quality of
the solutions obtained. For the largest instances among these (cycle lengths up to 4, 400-800
vertices) B&P still obtains solutions with very small gaps, while the cycle formulation fails
to obtain a single feasible solutions.

The cycle formulation is suitable for small instances (cycle lengths up to 3 and less than
500 vertices), as it provides optimal solutions for almost all of those instances. In any case,
even in small instances, B&P obtained solutions with very small gaps.

6 Conclusions

In this paper we propose a branch-and-price approach for the kidney exchange prob-
lem, when there are probabilities of failure associated both to vertices and to arcs. In
such case the objective is to find a solution that maximizes the expected number of
transplants. We assign equal probabilities of failure to all vertices, as well as to all
arcs.

The branch-and-price algorithm proposed is based on the concept of type of cycle. The
efficiency of the proposed approach is compared with solving directly a corresponding model
with a general purpose solver (C F). Total enumeration of the variables is used in the branch-
and-price approach to solve the subproblem (which is difficult to solve efficiently given the
non-linearity arising from the expectations calculations). In one version of branch-and-price
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algorithm, B& P>sp, the variables associated with cycles of size 2 are generated by the
subproblem, when attractive. In another version, B& P2y p, all 2-cycles are included in the
first restricted master problem.

Both approaches were tested in 390 realistic instances with up to 1000 incompatible
donor/patient pairs. For smaller instances, up to 500 vertices, K = 3, or up to 300 vertices,
K = 4, CF outperforms B& P versions. However, for bigger instances, branch-and-price
obtains feasible solutions for all the tested instances with an average optimality gap always
less than 2.11%. For such instances, with 500 incompatible pairs or more and cycles up to
length four, the direct solving of the model fails to provide a feasible solution due to memory
limitation. Therefore, computational results validate the importance of the B&P approach
hereby proposed, when the size of the pool of a Kidney Exchange Program increases above
a given number of pairs.
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Appendix

Figures 6-9 complement the computational results presented in the paper in terms of total
computational time to solve each instance and time to reach the best solution for different
combinations of probabilities, for K = 3 (Figs. 6-7) and for K = 4 (Figs. 8-9).
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