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In this article, we study a Stochastic Minimum Cost Flow (SMCF) problem under arc failure uncertainty, where an arc flow solution
may correspond to multiple path flow representations. We assume that the failure of an arc will cause flow losses on all paths using that
arc, and for any path carrying positive flows, the failure of any arc on the path will lose all flows carried by the path. We formulate two
SMCEF variants to minimize the cost of arc flows, while respectively restricting the Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR) of random path flow losses due to uncertain arc failure (reflected as network topological changes). We formulate a linear
program to compute possible losses, yielding a mixed-integer programming formulation of SMCF-VaR and a linear programming
formulation of SMCF-CVaR. We present a kidney exchange problem under uncertain match failure as an application and use the
two SMCF models to maximize the utility/social welfare of pairing kidneys subject to constrained risk of utility losses. Our results
show the efficacy of our approaches, the conservatism of using CVaR, and optimal flow patterns given by VaR and CVaR models on
diverse instances.

Keywords: Stochastic minimum cost flow, value-at-risk, conditional value-at-risk, Benders decomposition, risk-aware kidney exchange

1. Introduction

The Minimum Cost Flow (MCF) problem is fundamental
to many classic network flow problems (Ahuja et al., 1993).
Consider a directed graph G = (N, A), where N is a set

of all nodes, and A is a set of all arcs. Set S ¢ N and
set 7 C N respectively contain supply and demand nodes.

Denote an absolute value of supply or demand at node i by
D; for all i € NV, a unit flow cost on arc (i, j) by C;;, and a
capacity of arc (i, j) by U;;, for all (i, j) € A. Let decision
variables x;; be the amounts of flows on arcs (7, j) € A. We
formulate a generic MCF problem as

MCF : min Z C,-jx,'j (la)
(i, j)eA
D; Vi € S,
s.t. Z Xij — Z Xji = 0 ViEN\S\T, (lb)
jii. A JiU.ieA -D; VieT,
0<xj<Uj. Vi j)eA (1c)

where the objective (1a) is to minimize the total flow cost,
constraints (1b) ensure flow balance at each node, and con-
straints (1c) bound flows on arcs by their capacities.

In this article, we consider the Stochastic Minimum Cost
Flow problem (SMCF), in which arcs may randomly fail
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given some known probabilities. The goal is to minimize the
arc flow cost, while the losses of path flows are restricted by
two types of risk measures under the uncertainty of 0-1 arc
failure. Such network flows can represent traffic, product
shipments, or telecommunication signals in a wide class of
network applications (see, e.g., Shen and Chen (2013) and
Shen and Smith (2013)). The problem is of great impor-
tance to the design and operations of critical infrastructures
(Shen, 2013). In particular, we let arc flows be fixed before
knowing realizations of random arc failure. The problems
are designed for applications where one needs to determine
flow assignments a priori in an uncertain network envi-
ronment and cannot re-route flows once the uncertainty is
realized.

1.1. Motivation and problem description

We investigate two SMCF problem variants, where we
seek a feasible arc flow solution yielding the minimum
cost subject to constrained risk of flow losses. We jus-
tify our problem settings in applications that typically
involve (1) rapid changes of a network environment; (ii)
extremely short reaction time for resource delivery and net-
work recovery; or both (i) and (ii). For example, a shipment
schedule of relief resources is needed immediately after the
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occurrence of a catastrophic event, when detailed infor-
mation of road failure and traffic congestion is not avail-
able. Or a cyber-attacker interferes with wireless commu-
nications and causes data losses among web users, while
an operator seeks a fixed data routing plan to bound the
risk of significant data losses against possible bandwidth
disruptions.

In this article, we assume that (i) the failure of an arc will
cause flow losses on all paths using that arc and (ii) for any
path carrying positive flows, the failure of one or multiple
arcs on the path will lead to losing all the flows that it
carries. The two assumptions take into account situations
where flows are routed via paths and losses are incurred
when the paths are disconnected.

In a related work, Boginski ez al. (2009) study an SMCF
variant under uncertain arc failure where they calculate
flow losses as a summation of flows on all failed arcs and
restricted the Conditional Value-at-Risk (CVaR) of the to-
tal losses. We consider network flow problems where flows
are routed via paths between supply and demand nodes,
and failed arcs will cause path disconnections and losses
of path flows. Therefore, the summation of flows on failed
arcs may not accurately reflect actual flow losses in the cor-
responding operations in practice. It is demonstrated later
that the amount of arc flow losses used in Boginski et al.
(2009) provides a conservative upper bound of the path
flow losses considered in this article, and the gap between
the two depends on how many failed arcs exist in each path
with positive flows.

Moreover, an arc flow solution possibly correspond to
several path flow representations, yielding multiple pos-
sible values of flow losses. In this article, we restrict the
Value-at-Risk (VaR) and CVaR of any possible values of
flow losses. The total loss is computed through a linear
program formulated on a residual network of the original
graph, given an arc flow solution and a realization of the
uncertain arc failure. We show that the two SMCF vari-
ants are respectively equivalent to bounding the VaR and
CVaR of the minimum value of flow losses among all pos-
sible representations using path flows. For finite scenarios
of random arc failure, we formulate the VaR- and CVaR-
based SMCF variants as a mixed-integer program and a
linear program, respectively. We develop decomposition
and cutting-plane algorithms for solving the two formu-
lations. Our models and approaches are demonstrated on
a class of kidney exchange problems, where the objective
is to maximize the utility/social welfare of pairing kidneys
subject to constrained risk of utility losses due to uncertain
match failure of paired kidneys. We test a set of network in-
stances to demonstrate the results and insights of VaR and
CVaR variants of the SMCF problem. We also apply our
approaches to the kidney exchange problems and charac-
terize exchange solutions that are node-disjoint cycles while
using different probability/risk measures.

Zheng et al.

1.2. Literature review

SMCEF problems are of considerable interest due to their
close relationship with a variety of network applications in-
volving data uncertainties. For instance, Loui (1983), Eiger
et al. (1985), Fan et al. (2005), and Hutson and Shier (2009)
consider variants of a stochastic shortest-path problem, as
special cases of SMCF, where a decision maker seeks a path
from an origin to a destination and minimizes either the ex-
pected value or a weighted sum of mean and variance of
the random path length under uncertain travel time (e.g.,
Boyles and Waller (2010)). Cheung and Powell (1996), Pow-
ell and Cheung (1994), Glockner and Nemhauser (2000),
and Glockner ef al. (2001) analyze stochastic dynamic net-
work flow problems under uncertain arc capacities and
develop formulations based on large-scale time-expanded
networks. In their models, network flows are recourse deci-
sions determined after knowing the uncertainty, which are
also used in the “last-mile delivery” problems of seeking
dynamic flows according to network changes in humanitar-
ian relief applications (e.g., Balcik ez al. (2008), Salmeron
and Apte (2010), Ozdamar et al. (2004)). Also by defin-
ing recourse flows, Prékopa and Boros (1991) compute the
probability of the existence of feasible flows in a stochastic
transportation network with random demands and arc ca-
pabilities, whereas Hudson and Kapur (1983), Lin (1998),
and Lin (2007) study similar reliability problems of assign-
ing feasible flows to meet uncertain demands given a budget
of the total flow cost. In this article, we minimize the cost
of fixed arc flows subject to a sufficiently low risk of flow
losses evaluated by two risk measures with respect to un-
certain arc failure in a network. Specifically, we use VaR
and CVaR (cf. Rockafellar and Uryasev (2000, 2002)) to
bound possible losses of path flows. The former measures
exact probabilities of random outcomes, corresponding to
the study of chance-constrained programming (cf. Miller
and Wagner (1965) and Prékopa (1970)) and its proliferat-
ing literature. The latter, also called “average value-at-risk™
or “expected shortfall” (see, e.g., Chun et al. (2012)), is
a coherent risk measure that has been mainly and widely
used for risk management in financial problems. The two
measures are compared on a variety of applications in the
literature (e.g., Alexander and Baptista (2004)). We ac-
knowledge that there are other options of risk measures, es-
pecially coherent risk measures such as the entropic value-
at-risk (Ahmadi-Javid, 2012; Follmer and Knispel, 2011).
that corresponds to the tightest possible upper bound ob-
tained from the Chernoff inequality for VaR and CVaR.
These coherent risk measures normally yield formulations
that are computationally tractable but could yield solutions
that are more conservative than the VaR measure. In this
article we use CVaR as one of popular coherent risk mea-
sures and as a comparison to VaR for analyzing the SMCF
problem.
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Fig. 1. Illustrating multiple values of path flow losses yielded by
one arc flow solution.

1.3. Contributions and organization of this paper

The contributions of the article are summarized as follows.
First, given any arc flow solution and an arc failure sce-
nario, we formulate a Linear Programming (LP) model to
compute flow losses of the corresponding path flow so-
lutions. This results in an LP reformulation of the CVaR
variant and maintains the computational complexity of the
VaR variant solved by integer programming techniques.
We also apply our approaches to address a class of risk-
aware kidney exchange problems under uncertain match
failure, arising in state-of-the-art applications of SMCF.
Second, we test a variety of SMCF instances to demon-
strate the computational efficacy of our approach that com-
putes path flow losses by using linear constraints, compared
with direct reformulations using path flow representa-
tion variables. Third, we demonstrate the CVaR’s solution
conservatism via calculating risk values associated with the
corresponding VaR on all instances and evaluate flow losses
more accurately by using path flows so that we avoid dupli-
cating losses of arc flows carried by the same path. Fourth,
our results show the importance of trading off the use of
paths with high travel cost and paths containing vulnerable
arcs (i.e., arcs with relatively high failure rates). Moreover,
optimal solutions to both VaR and CVaR variants intend
to split flows to multiple paths with the minimum number
of arcs shared by these paths.

The remainder of the article is organized as follows. In
Section 2, given an arc flow solution to the MCF, we formu-
late an LP model to compute flow losses in each arc failure
scenario. In addition, we develop polynomial-time algo-
rithms for computing the maximum and minimum losses.
Section 3 and Section 4 describe models and algorithms of
the VaR and CVaR variants of SMCEF, respectively, both
of which impose risk constraints on the minimum possible
flow losses. Section 5 demonstrates procedures of formulat-
ing a class of kidney exchange problems as SMCF variants
under match failure uncertainty. Section 6 presents com-
putational results by testing randomly generated diverse
instances, and examines the tradeoff between solution ro-
bustness and the minimum flow cost. We conclude the ar-
ticle and state future research directions in Section 7.

2. Computing path flow losses in polynomial time

We first develop models and algorithms for computing
losses of path flows for a given arc flow solution and a

963

Fig. 2. A path s — ¢ with positive flows in an MCF solution.

realized scenario of arc failure. We evaluate the total loss of
an arc flow solution as the summation of flows on all paths
that have arc failure. According to the flow representation
theorem (Ahuja et al., 1993), an arc flow solution may cor-
respond to multiple flow representations using paths and
cycles. Given C;; > 0,V(i, j) € A, we focus on only path
flow solutions for representing any given arc flow solution,
because a flow representation with positive cycle flows will
yield a higher cost as well as a higher chance of having
bigger flow losses and thus will not be optimal. The to-
tal flow losses corresponding to the same arc flow solution
might vary, depending on which paths we consider to con-
vey positive flows. Consider the example depicted in Fig. 1,
in which we route four units of flow from node 1 to node
8, with arc flow solutions being indicated along the side of
each arc. Consider a scenario where both arcs (2, 3) and
(6, 7) fail. Then two units of losses are incurred if we trans-
port two units of flow via path “Pl: 1-2-3-4-5-6-7-8”
and the other two units via path “P2: 1-4-5-8.” However,
all four units of flow will be completely gone if we ship two
units of flow via path “P3: 1-2-3-4-5-8,” and the other
two units via path “P4: 1-4-5-6-7-8.”

Given random scenarios of arc failure, the correspond-
ing maximum and minimum losses of all possible path flow
representations are also random. For a fixed arc flow so-
lution and an arc failure scenario, Section 2.1 formulates
an LP model for computing all possible losses, and Sec-
tion 2.2 develops polynomial algorithms for computing the
maximum and the minimum flow losses.

2.1. An LP model for computing flow losses

Given an arc flow solution X = [X;;, (i, j) € AJT, we con-
struct a Reformulated Residual Network (RRN) G(X) =
(N, A) with a new arc set A, for which we delete all arcs in
A that are currently with zero flow, create a new arc (i, j)
in A for each arc (j, i) € A that has %;; > 0, and designate
X;j; as the capacity of the new arc.

Figure 2 presents a path flow solution, where nodes s and
t are the origin and destination, straight arcs represent arcs
(e.g., (i, j) and (k, [)), and curvy arcs represent paths (e.g.,
s ~- i). For given X on path s — ¢, we build G(X) by deleting
all zero-flow arcs in A and reversing all positive-flow arcs
in A. Figure 3 illustrates the corresponding RRN G(%) for
path s — ¢ in Fig. 2, given that flows are all positive in the
path.

Fig. 3. The RRN G(%) of path s — ¢ illustrated in Fig. 2.
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Fig.4. The RRN G(X, Y) of paths — tinFig. 2 given ¥j; = ¥y =
1.

Let parameter Y;; denote the status of arc (i, j) € A, such

that
1
Y =
J { O

Consider network G(X, Y), where Y =[Y;, (i, j) € AT, as
a modification of G(%), in which we delete all arcs (i, j)
that have ¥j; = 1. Furthermore, for any nodes i and j with
Y;; = 1, we add an additional fixed supply %;; at node i and
an additional variable demand p; at node j. We also add a
demand variable A, as the accumulated withdrawn of flows
at node s. Figure 4 illustrates the corresponding G(X, Y) for
the G(X) in Fig. 3 given ¥; = Yy = 1.

Given an MCEF solution x and parameter Y, we use the
RRN G(x, Y) to compute all possible values of the total
flow withdrawn (i.e., flow losses) in G due to arc failure.
Define variable f;; for each arc (i, j) € A, which is equal
to the withdrawn flow on arc (j, i) € A. Recall that set S
contains all supply nodes in G. The following LP model
maintains flow balances at all nodes in G(x, Y):

if arc (i, j) € A fails,
otherwise.

—hi + 2 ppea YN = pi

VieS
DD PR
Jili. j)eA Jjij.ieA L ja.pea Yy = pr.
Vie N\S
0<fi =<(1=Y)x; V(i.j)eA (2b)
0<x <D; VieS (2¢)
0<p < Z Yix; VieN. (2d)

J:(.ieA

Constraints (2a) balance flows at all nodes in set S and
all other nodesin '\ S, where the latter do not accumulate
withdrawn path flows reflected by the values of A;, Vi € S.
Constraints (2b) ensure f;; = 0 for any arc (i, j) € Aif arc
(j, i) € Afailsin G, and restrict f;; on other arcs (i, j) € A
by the values of x;; otherwise. The accumulated value of
flow losses at any node i € S is bounded by its original
supply D; according to constraints (2¢), while constraints
(2d) bound the values of variable demands p;, Vi € A/ by
the total amount of flow inputs on failed arcs adjacent to
node i in A.

Let L(x, Y) be the amount of flow losses given by a path
flow representation of solution x and uncertain parame-
ter Y. The following theorem relates L(x, Y) with the LP
formulation (2).

Zheng et al.

Theorem 1. Given a feasible flow solution x and parameter
Y, L(x,Y) =) ,.ghi, where . =[A;,i € SI" is a feasible
solution to Formulation (2).

Proof. Given a feasible arc flow x, according to the flow
representation theorem, we can decompose itinto O(m) dis-
tinct paths, each of which has a positive flow and connects
an excess node with a deficit node. The RRN G(x, Y) repre-
sents a flow-withdrawn pattern, where by eliminating arcs
with no flows (i.e., arcs (7, j) € A with x;; = 0) and revers-
ing arcs with positive flows, we ensure that the withdrawn
flows only traverse arcs in those paths carrying positive
flows in an opposite direction of the original path flow di-
rection. For each node i € N\ S, according to constraints
(2a), the original outgoing flows on its failed adjacent arcs
are accumulated (i.e., Y. 4 YjX;;) and subtracted by
the amount of variable demand p; (created if ¥;; = 1 exists
for any (i, j) € A), to generate a flow-withdrawn supply at
node i. For any nodes in A/ \ S that do not have any failed
adjacent arcs, the associated flow-withdrawn inputs and
outputs are balanced as the right-hand sides of constraints
(2a) are zero. Constraints (2b) forbid any withdrawn flows
traversing failed arcs and also restrict the amount of with-
drawn flows on any arc by its original flow amount. There-
fore, variable p; in constraints (2a) will carry the difference
of accumulated flow withdrawn and the output capacities
at each node i € NV, while its value as the amount of with-
drawn “consumed” by node i will be no more than the
total amount of failed flow inputs in the original graph. Fi-
nally, the accumulated amount of flow losses on each path
is taken by variable X; at origin i of the corresponding path
according to constraints (2a), for alli € S, and is bounded
by the total supply D; according to constraints (2c). The
summation of all positive withdrawn flows A; at all nodes
i € S yields the total flow losses L(x, Y), which completes
the proof. [ |

Remark 1. According to Theorem 1, the total amount of
path flow losses is always bounded above by the summation
of flows on failed arcsi.e., L(x, Y) < Z(i’j)eA Y;;x;;. This is
because the variables A; are only linked to the failed arcs
that are adjacent to nodes i € S in constraints (2a). The
difference between L(x, ¥) and }_; ea Yijxij will become
larger if more failed arcs are present in the same path with
a positive flow assignment. Note that the latter is another
measure of flow losses used in the literature (e.g., Boginski
et al. (2009)) when flows are not considered to be generated
via paths. Our approach uses a less conservative means of
measuring flow losses and offers ways of calculating exact
path flow losses in related applications.

As previously illustrated in Fig. 1, an arc flow solution
x may correspond to multiple path flow representations,
and thus might lead to different L(x, Y)-values when we
solve formulation (2) even for fixed parameter Y. Fig-
ure 5 illustrates the RRN of the network in Fig. 1 un-
der the assumption that both arcs (2, 3) and (6, 7) fail,
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Fig. 5. The RRN of the graph in Fig. 1 and two possible values
of L(x, Y).

resulting in complete flow losses on paths P1, P3, and
P4. Via the LP formulation (2), we can also obtain so-
lutions in the two cases with respectively two and four
units of flow losses: () fo; = fos = f = [ = f&s =0,
Jos=fsa= fis= fy =2, p7 =0, p3 =2, 4 = 2 and (ii)
fsz7 = f726 = f322 = fszs = f423 =0, fézs = f524 = f421 = f221 =
2,220, pi = 0,22 =4,

2.2. Algorithms for computing the maximum and the
minimum flow losses

The SMCF problems studied in this article aim to en-
sure the reliability of any arc flow solution x by bound-
ing possible losses L(x, Y) under uncertainty Y. Given that
multiple values of L(x, Y) for the same combination of
solution x and parameter Y, here we focus on how to com-
pute the minimum and the maximum flow losses, respec-
tively denoted by L(x, Y) = min, , {L(x, Y)|(2a)—(2d)},
and L(x, Y) = max;, ,, r{L(x, Y)|(2a)—(2d)}. We construct
two algorithms in particular for computing L(x, Y) and
L(x, Y) in polynomial time.

For any MCF solution x, define sets S and 7 as follows:

EE ieN Z Y{jxl-j >0 and
Jiui,j)eA

? =1ie N Z Yj,'x]',' >0 y
Ji(JeA

i.e.,, nodes in the corresponding RRN having excesses
and deficits of withdrawn flows, respectively. We construct
ALG(M) (Algorithm 1) to calculate a feasible solution (A,
p, f) to Formulation (2) by rerouting flows from nodes in
S to nodes in M, where set M can either be set S or be set
T, after knowing the failed arcs indicated by parameter Y.

We demonstrate the steps in Algorithm 1 by using the
example in Fig. 5, where 7 = {3,7} and S = {2, 6}. The
solution (A!, p!, 1), yielding two unit of flow losses, corre-
sponds to decisions of routing two units of flow from node
6 to node 3 and then two units of flow from node 2 to
node 1. On the other hand, the solution (A2, p2, f?) with
four units of flow losses corresponds to routing two units
of flow from node 6 to node 1 and the other two units from
node 2 to node 1.

965

Algorithm 1 ALG(M): Routing withdrawn flows from set
S to set M in the RRN G(x, Y).
1: INPUTS: M, gi, Vi e g, Xijs Zj, fjia V(l, ]) e A.
Let Q = {The set of all directed paths from k to /
inG(x, V)}, forallke S, [ e M.
if M = & then
AM=0ande = D, Ve S;
else if M = T then _
P = 0 and e = Zj:(j,l)eA Yj;xﬂ, vieT.
end if
while Q # ¢ do
Pick an arbitrary path P from Q.
Let k and [ be the origin and destination nodes of P
in the RRN G(x, Y).
11: Letd :min{e;,min(i’j)ep{xij _fz‘j}agk}~
12:  if 6 = 0 then
13: Q <~ Q\ {P};

N

S A U

14:  else

15: Jij=fij+6, Vi, j)eP, e =e—38, and g =
8k — 0.

16: if M = S then

17: A=A+

18: else if M = 7 then

19: o= pr+96.

20: end if

21:  endif

22: end while B _
23: return A;,Vi € S; p;,VieT; g;,VieS, fi;j,V(Q,J)e
A.

ALG(M) is an augmenting path algorithm variant for
maximizing flows from multiple source nodes in S (with
certain supply capacities based on arc failure information)
to sink nodes in M (with bounded variable demands).
Denote g¥ = > i jea YjXij, Vi €S. Implementing
ALG(S) (with M =S, g =g¢° VkeS, and f;=
0, V(i j) € A) on the RRN G(x, Y) will give the maxi-
mum amount of flow withdrawn (i.e., L(x, ¥) = 3, s M)
On the other hand, by summing up constraints (2a) over
alli e N, wehave ) ;s A = Y jyea YiiXig = D ien i in-
dicating that:

g})ig {ZA,- : (2a)—(2d)} & Z Y

ieS (i,j)eA

— max {pr : (2a>—(2d)} . 3

ieN
Thus, the following two steps calculate L(x, Y). First, we
run ALG(7) with M =T, gi=g°, VieS, and f;; =
0, ¥(i,j)e A to update g;,¥i € S and f;;,V(i, j) € A.
Then we run ALG(S) with solutions obtained from the
first step to calculate L(x, Y), whichisequalto ) , s A;.
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Denote the random form of parameter Y by Y. Consider
set Q2 of a finite realizations of ¥, denoted by ¥, Vs € Q.
We first restrict the VaR of random flow losses L(x, ¥;) and
formulate

SMCF-VaR : min{ > Giixij : (1b), (lo),
(i, /)eA

P{L(x, %) <n} =1 —9}, 4)

where we keep MCF constraints (1b) and (1c¢) and require
at least a (1 — 0) probability of having L(x, ¥;) being no
more than a threshold loss limit, denoted by n (i.e., the
VaR of L(x, ¥;)). Here 6 is a given small risk tolerance that
is close to zero.

Remark 2. As L(x, Ys) may take multiple values even for
fixed solution x and realization ¥, decision-makers may
be interested in bounding the VaR of L(x, %) or L(x, %),
respectively reflecting “risk-averse” and “risk-seeking” be-
havior against the uncertainty. Problem SMCF-VaR is
in fact equivalent to its L(x, ¥;)-variant that possesses a
probabilistic constraint P{L(x, %) < n} > 1 — 6, because
L(x, Yzs) will always take on the smallest value for an opti-
mal solution x to SMCF-VaR in any scenario s so that the
violation probability with respect to the fixed VaR 7 is min-
imized. This result cannot be generalized to the L(x, Y;)-
variant of SMCF-VaR, which needs to be solved as a bilevel
program where the inner problem L(x, ¥) is a maximiza-
tion problem given fixed xand ¥;. The L(x, ¥;)-variant rep-
resents a more conservative implementation of the SMCF
problems we study, and the bilevel program requires devel-
oping significantly different approaches from the ones for
solving SMCF-VaR that we will elaborate shortly. In this
article, we focus on SMCF-VaR and later SMCF-CVaR
that restrict the risk associated with the minimum flow
losses L(x, ¥;) and will discuss future research in Section 7

for tackling bilevel SMCF problems involving L(x, ¥%).

3.1. An integer programming reformulation
of SMCF-VaR

We reformulate SMCF-VaR as a mixed-integer program
for ¥ with finite realizations by defining an additional bi-
nary variable associated with each realized scenario. Let
Prob;s be the probability of realizing Y., Vs € Q such that
Y seq Probes = 1. Define binary variables z°, Vs € Q, such
that z* = 1 if L(x, ¥-) is larger than the threshold limit 7,
and z* = 0 otherwise. The SMCF-VaR in Formulation (4)
is equivalent to a deterministic model:
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SMCF-VaR-D:
min Z Cl‘ jXij
(i,))eA
s.t. (Ib)—(1c)
(2a)—(2d) with inputs ¥ and variables f*, A°,

and p*,Vs € Q

Lx, o)=Y M <M +n VseQ (5a)
ieS

> Probg:z* <6 (5b)

SEQ

2 €{0,1} VseQ, (5¢)

where M is an arbitrary large number to guarantee the
validity of constraints (5a) when z' = 1 in some scenario
5. Variable A} represents the accumulated flow loss at node
i € S of scenario s, and constraints (5a) specify scenario-
based values of L(x, ¥-) via linear constraints (2a)—(2d).
Constraints (5a) also enforce z° having a value of one if
L(x, Ys) > n. Constraint (5b) restricts the violation chance
being no more than 6.

Remark 3. The number of binary variables in constraint (5)
(as well as models discussed in the rest of this article) de-
pends on the cardinality of set Q2. In general, Monte Carlo
sampling (e.g., Norkin ez al. (1998) and Mak et al. (1999)) is
a common approach for generating independent scenarios
from known distributions of the uncertainty. Shapiro and
Homem-de-Mello (2000) propose a Sample Average Ap-
proximation (SAA) approach for solving stochastic linear
programs, and Kleywegt et al. (2002) extend the approach
to stochastic discrete optimization problems. In particu-
lar, Luedtke and Ahmed (2008) approximate optimization
problems with probabilistic constraints by using SAA and
provide sufficient numbers of samples and scenarios to de-
rive lower bounds or feasible solutions with certain con-
fidence levels. In this article, we focus on solving SMCF-
VaR given set Q and realizations Y. with their probabilities
Probg:, Vs € Q. Our approaches can be integrated into an
SAA implementation that follows the methods provided
in Luedtke and Ahmed (2008) for generating independent
samples and set 2 of scenarios in each sample.

3.2. Decomposition and a cutting-plane algorithm

We view SMCF-VaR as a two-stage optimization prob-
lem that verifies whether or not the value of flow losses
in each scenario s is no more than n after knowing an
MCEF solution x and Y;.. We consider the Benders decom-
position approach (Benders, 1962; Birge and Louveaux,
1997), which partitions all decision variables into two sub-
sets that are made sequentially. (In the context of two-stage
stochastic programming, we classify decisions into “here-
and-now” decisions and “wait-and-see” decisions, with the
former made before knowing realizations of the uncertainty
and the latter depending on the former “here-and-now”
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decisions as well as uncertain realizations.) For SMCF-
VaR, we formulate a master problem that decides an MCF
solution x and subproblems that verify whether x violates
the probabilistic constraint. We develop valid cutting planes
to be generated into the first-stage relaxed master problem
by using the optimal dual information of the second-stage
subproblems. We then iteratively solve the master problem
until no cuts are required.

Let p® be the objective value associated with each sub-
problem s for all s € . The master problem is given by

min{ Z Gijxij : (1b)=(Ic), ZProbgsps <0,

(i.))eA s€Q

F(x, p’)>0,p*>0,Vs € Q}, (6)

where F(x, p*) > 0 is a set of cutting planes derived from
the sth subproblem formulated as

p’ = min{zs : (2a)-(2d) with Yz, f°, A%, and p°,

ZA?SMZS—Fn,zSe{O,l}}. (7)
ieS

Algorithm 2 presents a cutting-plane approach for solv-
ing SMCF-VaR-D. We take the best solution, found by the
Benders decomposition after a fixed number of iterative cut
generations in the form of F(x, p*) > 0 as a “good-quality”
incumbent solution and change to off-the-shelf solvers for
continuing optimizing SMCF-VaR-D as an integer pro-
gram. To compute cut F(x, p*) > 0 in each subproblem s,
we use an LP relaxation of constraint (5) and its optimal
linear duals to derive coefficients of the Benders cuts.

3.2.1. Objective bounding

After obtaining a first-stage solution (X, p), before solving
each subproblem (7) in scenario s, we compute L(X, ¥s)
by running ALG(7) and then ALG(S). If p* =0 and
L(X, Y%s) < n, then no cut is needed for subproblem s,
Vs € Q. This pre-checking procedure, using the previously
derived polynomial-time algorithm, allows us to solve sub-
problem s only when p* = 0 and L(%, ¥%s) > . That is, a
priori to the implementation of Algorithm 2, we compare
an estimated p* with a real violation status of the target
VaR without explicitly solving the sth subproblem to save
the computational effort.

4. Models and algorithms of SMCF-CVaR

We also study a coherent risk measure, CVaRy, to derive
a solution that is feasible to SMCF-VaR for the same
risk parameter 6. In general, CVaRy is known as a con-
vex approximation of VaRy, which measures the expected
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Algorithm 2 Solving SMCF-VaR-D via cutting-plane pro-
cedures.

1: Solve a relaxed master problem (6). Denote (X, p) as
tentative optimal solutions.
2: Denote F(X, p) as the set of cutting planes to be gen-
erated based on solution (X, p).
Set F(x, p) = 9.
for All scenarios s € Q2 do
5:  Fix x = X in the s™ subproblem (7) (or an approxi-
mation of the subproblem, e.g., the LP relaxation),
Vs € Q. Denote Z* as the optimal objective value.
6: if p° < 2z’ then
7: Compute coefficients of cut F(x, p*) > 0 by using
strong/weak optimality conditions.
8: Update F(X, p) = F(&, p) U{F(x, p*) > 0}.
9: endif
10: end for
11: if F(X, p) # O then
12:  Generate all cuts in F(X, p) to the relaxed master
problem (6). Go to Step 2.
13: else
14:  Solution (X, p) is the best we obtain from the decom-
position procedure.
15: if p is not integer-valued then

B w

16: Use (X, p) as an incumbent solution, and
solve SMCF-VaR-D in commercial solver, e.g.,
CPLEX.

17:  else

18: Return (%, p) as an optimal solution.

19:  endif

20: end if

random amount of a random variable exceeding its VaR for
a given risk level 6. Our focus is to analyze SMCF variants
given by the two approaches under uncertain 0-1 arc fail-
ure. According to our definitions of flow losses, additional
arc failure may or may not lead to an increase of flow losses
and will depend on specific network topologies. We aim to
formulate the two variants based on VaR and CVaR to seek
optimal flow patterns against the topological uncertainty
and examine their differences.

Similar to SMCF-VaR, we formulate SMCF-CVaR for
given risk parameter 6 (equivalent to its L(x, ¥;)-variant)
as

min Z Cijxij
(i, ))eA
s.t. (1b)—(1c)
(2a)—(2d) with inputs ¥ and variables f*, A*,
and p*,Vs € Q
n Z Prol;gvbgs < (Sa)

seEQ

o



Downloaded by [Universidad Nacional Colombia] at 10:39 04 December 2015

968
Y M <beta VseQ (8b)
ieS
«>0, by>0 VseQ (8c)

where we keep all previous constraints (1b) and (1¢) that
respectively maintain flow balance of nodes and calculate
flow losses in each scenario s, Vs € Q. Variable « in con-
straints (8a) is the actual VaR of flow losses L(x, ¥:) and
is non-negative ensured by constraints (8c). Variable bg: in
constraints (8b) represents the amount of flow losses (i.c.,
L(x, Ys) = ), s A}) being greater than the VaR value in
scenario s, Vs € Q.

SMCF-CVaR is a linear program with fixed risk param-
eter 6 and threshold . We apply the Benders decomposi-
tion. We relax constraints (8b) and formulate the first-stage
master problem as

min{ > Gy (1b)(lo), 8a), B)t . (9)

(i.))eA

By solving the master problem (9), we obtain a tentative
optimal solution (%, b¢s, &). Now for fixed solution X and
parameter Yz, consider subproblems

mings s {ng : (2a)(2d)} Vs € Q, (10)
ieS

A

yielding an optimal solution (A%, p*, *) to each subprob-
lem (10) associated with realization s, for all s € 2. We
evaluate whether or not 3_, s A4 is greater than b, + & in
each scenario s € Q. If yes, we generate into the master
problem (9) a feasibility cut in the form of

bitaz 30 Y@+t + Y (1= Y
(i, /)eA (i.))eA
+ZDi£:iy’ (D

ieS

where (Z)“', 75, f‘“, 7% are optimal solutions of the dual vari-
ables associated with constraints (2a), (2b), (2b), (2d), re-
spectively, with dual variables ¢* being unrestricted, and all
5,85, 19 <0, Vs € Q.

An optimal solution to SCMF-CVaRy provides a feasi-
ble solution to the SMCF-VaR, for the same risk thresh-
old value 6. The former is much easier to optimize as a
linear program. Therefore, for solving SMCF-VaR as con-
straint (5), one can first solve the corresponding SMCF-
CVaR and employ the optimal result as an incumbent so-
lution to compute bounds of SMCF-VaR and improve the
computational time.

5. Applications in risk-aware kidney exchange

In this section, we demonstrate how to use the developed
SMCEF-VaR and SMCF-CVaR to solve a class of risk- and
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Fig. 6. Network encoding of a kidney exchange.

failure-aware kidney exchange problems. The problems fo-
cus on pairing kidneys given by living donors who may
be incompatible, due to blood type, tissue type, or other
reasons, with their target patients. The method of kidney
exchange has recently emerged to enable willing but incom-
patible donor—patient pairs to swap donors, so that each
patient obtains a compatible kidney. Roth et al. (2004) ini-
tially propose to organize kidney exchange on a large scale,
with the formation of the New England Program for Kid-
ney Exchange described in Roth et al. (2005).

With incompatible donors and their target patients enter-
ing a kidney exchange program, each incompatible donor—
patient pair seeks to swap their donors with other pairs
to obtain a compatible kidney. We encode a general kid-
ney exchange problem as the graph G(\, A) considered in
this article as follows. We construct a node for each donor-
patient pairin A/, and add an arc from one pair i to another
pair j if the donor of pair i is compatible with the patient
of pair j to form the arc set .A. We associate weight w;; with
each arc (i, j) in A, representing the utility or social welfare
attained if the transplant from 7 to j is implemented. Note
that:

® a cycle in this graph represents a possible swap among
multiple pairs, with each pair in the cycle receiving the
kidney from the next pair;

e a feasible exchange solution is a collection of node-
disjoint cycles since each pair can give at most one kid-
ney.

Figure 6 illustrates an example of the network representa-
tion of a case with five donor—patient pairs. The graph con-
tains four cycles, c; =1—>2—> 1, =2—->3—>2,¢3 =
3-4—->3,¢4=1-2—-3—-4—5—1.Both{c, ¢3}
and {c4} are feasible exchange solutions as they are maximal
sets of node-disjoint cycles existing in the graph.

Therefore, a deterministic kidney exchange problem aims
to identify a set of node-disjoint cycles with the maxi-
mum weights of all arcs contained in the cycles, represent-
ing the maximum social welfare/utility attained by pair-
ing kidneys. Here we specify the general arc-flow decision



Downloaded by [Universidad Nacional Colombia] at 10:39 04 December 2015

Loss-constrained minimum cost flow problem

variables x;; in problem MCF as binary variables x;;, for
all (i, j) € A, such that

1 arc (i, j) € Ais contained
in the exchange solution
0 otherwise.

We specify a variant of the MCF for computing a feasible
exchange that results in the maximum social welfare. A
deterministic formulation is given by

max Z wij X (12a)
(i, j)eA

st. Y xX;— > X;=0 VieN (12b)
Jii,j)eA J:,iheA
Y N1 VieN (12¢)
jii,)eA
x;e{0,1} VG, j) e A (12d)

where the objective (12a) maximizes the total utility yielded
by successful exchanges of kidneys; constraints (12b) en-
sure cycle solutions by maintaining zero flow-in and flow-
out balance at each node, while these cycles are disjoint
by node guaranteed by constraints (12¢), which indicate
that no more than one kidney is given out by the donor of
pair i, for each node i € N. It can be easily verified that
the foregoing problem is equivalent to a matching prob-
lem in a transformed graph in which two copies of each
node in NV are created, respectively representing the donor
and the patient of the corresponding node. There exists an
arc between a donor node and a patient node if they are
compatible and thus the resulting transformed graph is bi-
partite in which we can partition the donor nodes and the
patient nodes into two subsets and arcs only exist between
but not within the two subsets. Therefore, the problem of
identifying node-disjoint cycles is equivalent to finding a
perfect matching on a bipartite graph that is also equiva-
lent to a maximum flow problem. We refer to the interested
readers to Ahuja et al. (1993) for more detailed discussions
of the three equivalent problems.

In a stochastic setting, we consider some previously com-
patible donors and receivers may be found incompatible
after pairing the exchanges, which we interpret as arc fail-
ure (topological changes) in the compatible graph GV, A).
An arc failure can be due to several reasons. For example,
a last-minute testing in a kidney exchange often reveals
new incompatibilities that were not detected in the initial
testing. Or a donor may regret or fail to fulfill his/her obli-
gation due to preference change. In all such cases, all pairs
in those cycles containing incompatible pairs are affected
since a planned transplant operation is no longer possible.
Dickerson et al. (2013) address the problem of failure-aware
kidney exchange by maximizing the expected utility while
taking into account match failure, and show that it can
significantly increase the expected number of lives saved
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in both theory and computation, compared with using a
deterministic model. Here we cast two types of risk-aware
kidney exchange problems as variants of SMCF-VaR and
SMCF-CVaR, elaborated as follows.

Recall our notation in earlier sections for defining the
SMCEF problems. Similarly, we assume random 0-1 match
failure of arc (i, j), denoted by a Bernoulli random vari-
able )7]- such that )7] =1 if it fails and YZI otherwise, for
all (i, j) € A. The set Q now specifies a finite number of
realizations of the uncertain Y = [Y/;, (i, j) € AJ" and Y.
denotes a realized match failure status of scenario s € Q.
We modify the definition of flow losses in general SMCF
and for the kidney exchange application, the total utility
losses due to any arc failure in a cycle equal to the sum of
utility weights of all arcs in the cycle. The total amount of
utility losses in G(N, A) can be calculated via constructing
the RRN G(x', Y') as before given an exchange solution x’
and random vector Y. Figure 7 illustrates the RRN of a
four-way exchange cycle with the failure of arc (2, 1) and
arc (4, 3), meaning that the donor of pair 2 (pair 4) cannot
give the kidney to the patient of pair 1 (pair 3) and therefore
all exchanges involved in the cycle cannot be implemented.

We simplify the LP formulation (2) for solving the kid-
ney exchange problem on the RRN of a compatible graph
for computing utility losses L(x', Y’), given an exchange
solution x” and match failure uncertainty Y. We reuse the
previous notation .4 and f;; to indicate the set of arcs in the
RRN and the amount of withdrawn flows on arc (i, j) € A,
respectively, and formulate

L(xX,Y)= Z Y,’-,-wji-mei,n Zﬁwijfij» (13a)
(i)eA (i.j)eA
st o fi= Xl fi= )0 Y
Jii.j)eA JiG.i)eA Ji.j)eA
— > VX, VieN. (13b)
Ji(j,i)eA
0<fiy <(1=Y)x), VG j) €A, (13c)

where the objective (13a) contains two parts of utility losses
as the sum of utility weights of all failed arcs and the sum
of utility weights on the remaining arcs where exchanges
have been withdrawn (indicated by the values of variables
fij» V(i, j) € A); constraints (13b) represent flow conser-
vation constraints, where the withdrawn supply at a node
i is one if pair 7 in A gives out its donor’s kidney but the
match fails and is -1 if there is a kidney received by the
patient of pair i but the match fails. Constraints (13c) al-
low a unit withdrawn flow on arc (i, j), ¥(i, j) € A only if
arc (j, i) € Ais used (has an exchange) and it does not fail.

Theorem 2. The value of L(X', Y'), given X' and Y', measures
exactly the total utility losses of affected exchanges due to
match failure.

Proof. Because all cycles in an exchange solution x’ are
node-disjoint, it is sufficient to show the result for a
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Fig. 7. A four-way exchange solution and the corresponding RRN.

solution consisting of one cycle. By removing failed arcs
from the cycle, the remaining arcs form a collection of
paths. Consider the RRN of a compatible graph (see, e.g.,
Fig. 7), with the cost of each arc (i, j) € A set as the util-
ity weight of arc (j, i) € .A. The MCF solution replicates
a collection of affected exchanges in addition to the failed
exchanges (arcs) indicated by Y'. The total utility losses of
all unimplementable exchanges equal to the sum of utility
weights of directly failed arcs and arcs in the remaining
paths. This completes the proof. [ |

Different from L(x, Y) described before for general
SMCF problems, the utility loss L(x’, Y’) has a unique
value given fixed X’ and Y’ because a feasible exchange only
consists of node-disjoint cycles and therefore the flow rep-
resentation in the remaining graph is unique. Note that for-
mulation (13a)—(13c) for calculating L(x’, Y) is also much
more simplified compared with formulation (2) in the gen-
eral case. To formulate a risk-aware kidney exchange prob-
lem, one can follow the previous procedures to incorporate
L(x', Y;) with random ¥, to a SMCF-VaR setting and for-
mulate

max{ > w1 (12b)<(12d),

(i.j)eA

P{L(. Y)<n)=1-0]. (14)

where the minimization of the objective value of the inner
problem L(x', ¥;) will be naturally enforced at optimum
and thus we can exactly follow the previous procedures to
transform formulation (14) into a mixed-integer program
given the finite support set 2 of §. A SMCF-CVaR for-
mulation of the risk-aware kidney exchange problem can
be established in a similar way as before and we omit the
details for the sake of brevity.

6. Computational studies

This section mainly consists of three parts. First, we demon-
strate the computational performance of SMCF-VaR and

SMCF-CVaR on a set of randomly generated graph in-
stances, in particular emphasize computational-time sav-
ings by formulating path flow losses via linear constraints,
rather than using path flow representation variables. Sec-
ond, we report and compare the results of VaR and CVaR
variants, particularly focusing on (i) the relationship be-
tween their optimal objective values and (ii) their opti-
mal solution patterns. The computation of the first two
parts focuses on general network flow instances, whereas
in the third part, we compute SMCF-VaR and SMCF-
CVaR models of the risk-aware kidney exchange problem
described in Section 5. Through computational studies in
all three parts, we aim to demonstrate general insights and
compare the results yielded by VaR and CVaR approaches
so that one can apply our research to solve specific SMCF
problems that could fit in the assumptions (e.g., flow deci-
sions are made a priori to knowing the uncertainty; flows
are delivered via paths from origins to destinations) made
in this article. We also analyze various optimal pairing de-
cisions of exchanging kidneys by imposing VaR and CVaR
risk measures on potential utility losses, compared with op-
timal results obtained from a deterministic exchange prob-
lem, so that we can demonstrate the necessity of considering
match failure uncertainty in such applications.

6.1. Experimental setup

We randomly generate instances of the directed graph G =
(W, A) in different sizes with 10, 20, and 30 nodes. For
every nodei € N, we randomly pick an integer between the
minimum and the maximum outgoing degrees required for
every node in G, of which the values are indicated in Table
1 for the corresponding graph sizes and density levels. This
integer value represents a target degree of node .

Table 1. The [minimum, maximum] outgoing degree assumptions

Node Low density Medium density High density
10 [2,4] 3, 6] [5, 8]
20 [3, 6] [5, 12] [10, 15]
30 [3, 6] [7,15] [12, 21]
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We then repeatedly generate nodes adjacent to node i
from all nodes in N\ {i} until reaching the degree target.
After this, to provide an initially connected graph and en-
sure the existence of paths between origins and destinations,
we manually add arcs connecting each pair of nodes if they
are not connected, checked by using a search algorithm.
The cost and capacity of each arc are randomly generated
based on uniform distributions on [1, 20] and on [10, 30]
respectively for all instances. Moreover, from the node set
N we randomly pick 1, 2, or 3 supply node(s) and also 1, 2,
or 3 demand node(s) and generate random supply/demand
values of each selected node, while ensuring that the sum
of supplies at all nodes in S equals to the sum of demands
at all nodes in D for each instance.

In this article, we aim to propose, solve, and test general
SMCF problems under uncertain arc failure with finite re-
alizations. In our tests we generate 50 scenarios for each
problem instance; i.e., |©2| = 50. All scenarios are consid-
ered equally likely; i.e., Probgs = 1/]€2|. The scenarios are
generated by conducting independent Bernoulli trials on
all arcs, using either 0.25 or 0.1 as a homogeneous fail-
ure probability of each arc. In this way, we can compare
the performances of the CVaR and VaR approaches for
handling SMCF instances on networks that are relatively
more vulnerable (i.e., the ones generated using a 0.25 failure
probability) and more reliable (i.e., the ones generated using
a 0.1 failure probability). Depending on specific problems
and applications, one can generate scenarios with either
correlated or independent failures of arcs given specified
arc-failure distributions, by using Monte Carlo simulation-
based sampling approaches reviewed in Remark 3.

It is also possible that no feasible flow assignment exists
to the VaR or the CVaR models of the SMCF problem
given specific 6 and n values we test. To address this issue,
we adopt the following rules to keep all instances feasible in
our numerical experiments. For any given 6 and n, we first
solve SMCF-CVaR (which can be easily solved as a linear
program). Note that a CVaR formulation has a more re-
stricted feasible region and thus its optimal solution always
yields a feasible solution to the corresponding VaR for the
same SMCF instance. Therefore, the feasibility of the VaR
model is guaranteed if there exists a feasible solution to
the CVaR model. We regenerate an instance if its CVaR
formulation is infeasible.

All computations are implemented in Microsoft Visual
C++ 2008, while calling CPLEX 12.2 to solve all instances.
All programs are run in Microsoft Windows 7 Enterprise
64-bit operating system on a Dell Desktop with Intel(R)
Pentium(R) CPU G6950 2.80GHz and 3 GB RAM.

6.2. Comparison of CPU times and objectives

We test various values of the risk parameter 1 — 6 from
50% to 90% increased by 5% each time. In addition, we
test instances with high successful rates and let 1 — 6 be
92.5%, 95%, 97.5%, and 99%. For every choice of 1 — 6, we
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run 10 instances for n = 1, ..., 10. The resulting CPU time
is approximately the same for each instance for different
n-values. Tables 2 and 3 report average CPU time (in sec-
onds) for different value ranges of (1 — 0) (indicated in the
second line of each column) respectively under 0.25 and 0.1
homogeneous failure probabilities of each arc. (For exam-
ple, Column “50-70%" reports the average CPU seconds
of the 10 instances with 1 — 6 being > 50% and < 70%.) In
these tables, |NV|-1, -m, and -h indicate graph instances with
low, medium, and high densities.

For both Tables 2 and 3, we provide the following obser-
vations.

1. CPU time increases as we increase graph sizes and den-
sity levels, but the time increase of solving the SMCF-
VaR is much more significant.

2. CPU time decreases as we increase 1 — 6, 1.e., when both
VaR and CVaR seek more robust solutions but with
higher cost.

3. Solving SMCF-CVaR is much quicker than solving
SMCF-VaR.

4. The computational time of SMCF-VaR on graph in-
stances having lower failure probability (i.e., when fail-
ure rate = 0.1 of each arc) is much shorter than on
relatively unreliable graphs.

We continue analyzing the computational time resulted
from various demand settings of nodes in D. Here we only
use instances of “20-m” with the scenario sets generated
from a failure rate = 0.25 on each arc and generate demand
values at nodes from uniform distributions with means of
20, 50, and 100 with the same variance. Table 4 provides
the average CPU seconds and Table 5 presents the average
optimal objectives of the 10 20-m instances with various de-
mand means, where we denote each instance by the value of
demand mean we use followed by “-nc” or “-c,” respectively
representing instances without arc capacities (i.e., uncapac-
itated) and with arc capacities (i.e., capacitated).

From Table 4 and Table 5, we observe that (i) CPU time
slightly increases as we increase the mean of demand; (ii)
there are no significant computational-time or objective dif-
ferences between capacitated and uncapacitated instances;
and (iii) the optimal MCF cost dramatically increases when
the demand average increases. This indicates that the diffi-
culty of probabilistically satisfying demand in SMCF prob-
lems does not directly depend on average node demand. The
patterns of CPU time reflected in Table 4 are similar to the
ones reflected in Tables 2 and 3.

Moreover, for both SMCF-VaR and SMCF-CVaR, their
feasible regions are nondecreasing with respect to values
of reliability 1 — @ and tolerable losses 1. The results also
show that the optimal objective values in both models are
very sensitive to changes made to 1 — 6 and 5. Figure 8
shows the optimal objective values of both SMCF-VaR (in
the lower surface) and SMCF-CVaR (in the upper surface)
while perturbing the reliability (1 — ) and the loss toler-
ance (n).
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Table 2. CPU seconds for solving instances with arc failure rate = 0.25
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SMCF-VaR SMCF-CVaR
Inst. =50% 50-70% 75-90% 90-99% =50% 50-70% 70-90% 90-99%
10-1 1.08 0.52 0.33 0.21 0.15 0.12 0.11 0.10
10-m 5.03 4.86 4.25 0.54 0.27 0.26 0.22 0.19
10-h 7.96 22.25 15.74 2.82 0.41 0.43 0.38 0.34
20-1 92.83 187.44 61.70 3.23 1.45 1.34 1.07 0.79
20-m 857.70 986.27 379.32 16.80 3.26 3.05 2.59 2.23
20-h 161.55 338.32 576.64 33.80 3.81 4.01 3.55 3.30
30-1 3200.48 3440.52 201.14 3.66 2.91 2.62 1.31 0.57
30-m 2435.25 4256.39 1187.17 194.20 13.53 13.00 12.33 12.47
30-h 1844.21 7456.36 4408.97 231.82 17.89 18.45 17.50 17.51
Table 3. CPU seconds for solving instances with arc failure rate = 0.1
SMCF-VaR SMCF-CVaR
Inst. =50% 50-70% 70-90% 90-99% =50% 50-70% 70-90% 90-99%
10-1 0.23 0.61 0.37 0.23 0.11 0.10 0.09 0.08
10-m 0.20 0.34 0.82 0.50 0.14 0.12 0.11 0.12
10-h 0.26 0.52 1.92 0.92 0.19 0.19 0.16 0.14
20-1 2.54 26.44 22.75 2.46 0.76 0.74 0.56 0.48
20-m 0.63 1.20 2.54 4.54 0.79 0.89 1.02 0.84
20-h 0.95 1.54 18.17 7.94 1.42 1.37 1.25 1.05
30-1 90.92 197.86 319.71 10.97 2.30 2.06 1.72 0.95
30-m 1.60 3.07 51.36 63.60 7.99 8.75 7.07 6.06
30-h 26.28 157.31 407.46 97.35 15.04 15.89 15.12 14.79
Table 4. CPU seconds of 20-m instances with means of demand = 20, 50, 100
Inst. 20-nc 20-c 50-nc 50-c 100-nc 100-c
SMCF-VaR =50% 857.70 642.82 984.67 1020.54 1246.71 1103.36
50-70% 986.27 751.29 1382.76 1336.66 1741.14 1770.01
70-90% 379.32 304.92 365.79 375.13 399.61 358.48
90-99% 16.80 14.68 20.88 20.05 23.54 21.32
SMCF-CVaR =50% 3.26 2.73 2.84 3.00 3.06 2.84
50-70% 3.05 2.57 2.66 2.91 2.81 2.63
70-90% 2.59 2.17 2.25 2.44 2.47 2.17
90-99% 2.23 1.86 1.93 2.16 2.16 1.99
Table 5. Optimal flow cost of 20-m instances with means of demand = 20, 50, 100
Inst. 20-nc 20-¢ 50-nc 50-¢ 100-nc 100-¢
SMCF-VaR =50% 582.8 582.8 2142.6 2142.6 4943.0 4943.0
50-70% 790.8 790.8 2955.5 2955.5 6829.5 6829.5
70-90% 1281.5 1281.5 4670.3 4670.3 10 610.2 10 600.6
90-99% 1802.1 1802.1 6472.2 6472.2 14 668.2 14 603.2
SMCF-CVaR =50% 1663.3 1663.3 6183.6 6183.6 14 490.4 14 419.8
50-70% 1795.7 1795.7 6587.5 6587.5 15187.2 15108.6
70-90% 1996.5 1996.5 7107.9 7107.9 16 137.2 16013.2
90-99% 2020.9 2020.9 7139.1 7139.1 16 195.2 16 060.7
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Fig. 8. Comparison of optimal objective values between SMCF-VaR and SMCF-CVaR.

In Fig. 8, the difference between the optima of the two
models is zero at 99% reliability and keeps increasing when
1 — 0 decreases. The optimal objective values in both for-
mulations are neither convex nor concave with respect to
the parameters 1 — 6 and »n. This is because, for SMCF-
VaR, there exist binary variables that cause the nonconvex-
ity issue, and for SMCF-CVaR, the risk parameter 6 ap-
pears in the denominator of the left-hand side. The lower
surface (VaR) appears wavy with respect to the reliabil-
ity 1 — 6. The upper surface (CVaR) appears linear before
reaching the loss tolerance and then appears curvy and
smooth. In addition, SMCF-CVaR is more sensitive to
changes of the loss tolerance n, but SMCF-VaR is more
sensitive to changes of the reliability 1 — 6.

6.3. Results of SMCF-VaR and SMCF-CVaR

In all previous tables, the CPU time of SMCF-VaR is much
longer than the time of SMCF-CVaR. In this section, we
compare detailed solutions obtained by solving SMCF-
VaR and SMCF-CVaR under different parameter settings.
For the same 1 — 6, CVaRy is a conservative approxima-
tion of VaRy, yielding a feasible solution and an objective
upper bound for the latter. In Table 6, we report objective
values of (CVaR-VaR)/ VaR x 100%, indicating gap percent-
ages between the optimal SMCF-CVaR objective and the
corresponding optimal objective value of SMCF-VaR. In
particular, we specify results of 1 — 6 = 99%. Note that the
feasible upper bound provided by CVaR is relatively loose

when 1 — 6 is small, and becomes tighter as we increase
1-6.

We report (CVaR-VaR)/VaRx100% values of all 20-h
instances with arc failure rate = 0.1. Table 7 depicts results
for 1 — 6 = 50%, 55%, ..., 95%, 99% (indicated in the first
column) and loss tolerance n = 1, ..., 10 (indicated in the
first row). The solution gaps are smaller when 7 is larger
given any 1 — 6 value. For each fixed tolerance 7, the so-
lution gaps first increase, reach a peak value, and then de-
crease if we increase the reliability 1 — 6. The peak values
are different for different values of n, and increase as n
increases. The same optimal solutions of CVaR and VaR
appear in many instances as we allow larger loss tolerance
e.g., the columns corresponding ton = 7, 8,9, and 10.

Finally, we check solution robustness and qualities guar-
anteed by SMCF-CVaR. In Table 8, for every demand-loss
allowance 7, each column depicts the real demand losses
(i.e., o defined in CVaR) guaranteed by the corresponding
SMCF-CVaR given 1 — 6. We also fix optimal MCF so-
lutions from the CVaR models,and check the satisfaction
probabilities associated with the VaR constraints yielded
by optimal solutions to SMCF-CVaR given fixed values
of 1 —6 and 7. Table 9 reports the real probabilities of
satisfaction.

For example, if the probability of flow losses being no
more than 10 units is at least 50%, by solving a more con-
servative SMCF-CVaR with 1 — 6 = 50%, a real loss of
flows is 5.23, and we guarantee a much more conservative
reliability level of 80.67%. If the required reliability is 99%,
there are 10 units of flows lost and the satisfied reliability
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Table 6. (CVaR-VaR)/ VaRx100% values (in %) for different values of 1 — 6 and arc failure rates

Arc failure rate Instances =50% 50-70% 70-90% 90-99% =99%
0.25 20-1 159.53 119.51 68.85 32.54 0.00
20-m 183.57 133.53 59.55 13.99 0.00

20-h 36.54 36.23 25.64 9.63 0.00

30-1 117.43 93.03 87.07 11.24 0.00

30-m 89.26 42.7 26.19 5.55 0.00

30-h 91.38 68.66 19.91 6.63 0.00

0.1 20-1 64.18 57.84 42.73 19.32 0.00
20-m 12.62 18.03 31.57 16.35 0.00

20-h 8.50 10.75 10.96 3.57 0.00

30-1 114.67 84.98 40.09 41.51 0.00

30-m 52.85 66.67 53.22 10.47 0.00

30-h 24.88 28.87 22.44 3.76 0.00

is 100.00% as no scenarios are violated. In general, when
1 — 6 and n are small, SMCF-CVaR yields a much looser
and a more conservative approximation of SMCF-VaR.

6.4. Results of risk-aware kidney exchange problems

We apply our approaches to Risk-Aware Kidney Exchange
(RAKE) problems under the uncertainty of certain donor—
patient match failure after the pairing decisions have been
made. In particular, we solve the VaR and CVaR models
of the problem, of which the modeling and solution de-
tails are described in Section 5. We vary the number of
donor—patient pairs involved in the compatibility graph
G\, A) as 50, 100, and 200; i.e., |N| = 50, 100, 200. We
randomly generate 10 instances for each size of the graph
with each node having an outgoing degree between 0.04| /|
and 0.12|N]; i.e., the outgoing-degree ranges of 50-, 100-,
200-node graphs are [2, 6], [4, 12], and [8, 24], respectively.
We follow the same procedures in Section 6.1 to generate
all RAKE instances by making sure that every node in A/
is contained in at least one directed cycle formed by arcs in
A in each generated instance. We set uniform unit utilities
w;; = 1 for all (i, j) € A. Moreover, we employ the results
in Dickerson et al. (2013) to set the failure probabilities

of each match (i.e., each arc in .A). According to their re-
sults, “patients tend to have either very high or very low
sensitization,” and we sample randomly from a bimodal
distribution with 30% of arcs having a low failure rate in
(0%, 20%] while 70% arcs having a high failure rate between
[80%, 100%), such that the average failure rate is 70% which
has also been verified by the literature. For each instance
we generate 200 scenarios with equal probability 0.5% of
realizing each scenario according to these arc-failure rates.

For the SMCF-VaR and SMCF-CVaR models of the
RAKE problem, we test values of the reliability 1 — 6 as
70%, 80%, 90%, and 99%. The threshold loss n is com-
puted a priori to solving all instances as follows. We first
solve a deterministic RAKE problem that maximizes the
total exchange utility without any arc failure. We call this
computational scheme “MaxU” with an optimal exchange
solution denoted by xy;,,;- We then realize the uncertainty
in each instance, and use Equations (13a)—(13c) to compute
the expected utility losses:

/ 1 /
LMax = ]E§ [L(xMaxU’ Yg)] = @ Z L(xMaXU’ Yé\) (15)
seQ

Now consider another benchmark computational scheme,
in which we seek a feasible exchange solution to maxi-

Table 7. (CVaR-VaR)/ VaRx100% values (in %) of instances 20-h with arc failure rate = 0.1

1 -6 (%) 1 2 3 4 5 6 7 8 9 10
50 44.74 24.99 12.22 3.06 0.00 0.00 0.00 0.00 0.00 0.00
55 47.14 28.38 14.03 4.43 0.00 0.00 0.00 0.00 0.00 0.00
60 49.56 31.32 16.20 5.78 1.02 0.00 0.00 0.00 0.00 0.00
65 49.35 33.59 18.43 7.49 1.81 0.00 0.00 0.00 0.00 0.00
70 50.06 36.96 21.98 9.59 3.06 0.00 0.00 0.00 0.00 0.00
75 39.53 33.86 23.15 11.51 4.54 0.57 0.00 0.00 0.00 0.00
80 38.28 32.83 24.60 13.34 6.12 1.70 0.00 0.00 0.00 0.00
85 30.94 27.71 21.94 14.39 7.89 3.31 0.31 0.00 0.00 0.00
90 29.09 25.13 19.90 13.65 9.66 5.19 243 0.23 0.00 0.00
95 9.80 8.46 5.69 6.03 7.49 6.12 4.44 3.18 2.04 0.91
99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 8. Real demand losses («) guaranteed by SMCF-CVaR for various n and 1 — 6

1—0 (%) 1 2 3 4 5 6 7 8 9 10
50 0.00 0.04 0.35 0.71 1.39 2.03 2.79 3.62 4.35 5.23
55 0.00 0.07 0.41 0.84 1.39 2.21 2.95 3.81 4.62 5.37
60 0.00 0.10 0.44 1.03 1.59 2.36 3.12 4.01 4.85 5.60
65 0.02 0.18 0.57 1.12 1.81 2.75 3.54 4.43 5.20 6.17
70 0.03 0.30 0.75 1.39 2.19 2.96 4.00 5.01 6.04 7.04
75 0.11 0.60 1.21 1.91 2.51 3.58 4.60 5.47 6.45 7.37
80 0.64 1.48 2.41 3.19 3.98 4.94 5.81 6.62 7.43 8.52
85 0.82 1.82 2.80 3.76 4.70 5.62 6.44 7.44 8.39 9.37
90 0.95 1.93 2.90 3.90 4.86 5.77 6.60 7.50 8.59 9.65
95 1.00 2.00 3.00 4.00 5.00 5.96 6.86 7.73 8.62 9.41
99 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

mize the total utility given by exchanges and meanwhile
minimize the expected losses due to the uncertain compati-
bility, each with 50% weights. We call this scheme “MinEL,
which” that solves:

1

al. (2006) and Roth et al. (2007) show that efficiency could
be gained by incorporating larger cycle exchanges.

By using SMCF-VaR or SMCF-CVaR, we do not specify
limits of the length of cycles used in our exchange solutions,
which could help to improve the computation by avoiding

o / ) / combinatorial structures of the problem. Meanwhile, we

xé‘{}f‘ﬁw ZS; Wity 1 2{; L{¥. %) ) Z ij enforce optimal solutions to choose shorter cycles via the

e € Jii.j)eA use of risk measures on utility losses. Table 10 provides

;o , . averages of the average (Avg), maximum (Max), and mini-

B Z Xji =0, Z Xy =1, Vie Nt (16) mum (Min) lengths of all cycles in optimal solutions to the
Ji(jeA Jiij)eA

We denote its optimal objective (i.e., the minimum expected
value of utility losses) by Liin. We set the threshold loss »
as the middle point in [ Lyin, Lmax]; that is,

N = (Lmax + Lwmin)/2.

We compute all randomly generated RAKE instances
and compare the lengths of cycles in each optimal solution
according to different settings of the models. Intuitively, we
would prefer solutions containing shorter cycles as they
generally have lower chances of including matches that
could fail later. Abraham et al. (2007) consider a kidney
exchange clearing problem which allows to use cycles up to
length 3 and show that the problem is NP-hard. Saidman et

10 instances we generate, solved by using different solution
schemes indicated in each column.

In Table 10, optimal solutions solved by using MaxU
are the least conservative and contain significantly larger
cycles compared with solutions to other models, whereas
optimal exchange solutions to MinEL are the most conser-
vative ones and all contain relatively small cycles. By using
SMCF-VaR, we balance the total utility yielded by large-
cycle exchanges and potential utility losses due to uncer-
tain failure of any arc involved in the cycle solutions. Given
the same reliability guarantee, SMCF-CVaR tends to re-
sult in more conservative and thus shorter-cycle solutions.
For both SMCF-VaR and SMCF-CVaR, the optimal ex-
changes contain shorter cycles as we increase the reliability
1-6.

Table 9. Real successful probabilities guaranteed by SMCF-CVaR for various n and 1 — 6

1-6 (%) i 2 3 4 5 6 7 8 9 10
50 90.67 87.33 83.33 83.67 83.00 80.67 79.33 80.00 80.67 80.67
55 91.00 88.00 86.67 85.33 85.00 85.00 84.33 82.67 84.00 84.00
60 93.00 89.33 88.00 86.67 86.67 85.33 86.00 85.67 84.67 86.00
65 93.00 90.67 89.33 88.00 88.00 87.33 87.33 86.67 87.33 87.67
70 93.33 91.67 92.00 91.00 89.33 90.00 90.67 90.00 90.00 90.67
75 93.33 93.00 92.67 92.00 91.33 91.33 90.33 91.33 90.67 90.67
80 99.33 98.00 97.33 96.00 96.00 95.00 95.67 95.00 93.00 93.67
85 100.00  100.00  100.00  100.00 99.33 99.33 98.67 98.00 98.00 99.33
90 100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00
95 100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00
99 10000  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00
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Table 10. Comparison of cycle lengths given by optimal solutions using different approaches

SMCF-VaR (1 —-6)

SMCF-CVaR (1—0)

MaxU MinEL 70% 80% 90% 99% 70% 80% 90% 99%
Avg 10.4 2.7 4.8 3.8 32 2.2 4.2 3.6 2.6 2.2
Max 18.2 4.2 6.8 5.0 4.8 2.8 6.4 4.4 4.0 2.4
Min 5.4 2.2 32 2.2 2.0 2.0 3.0 2.0 2.0 2.0

7. Conclusions

In this article, we proposed a linear model to calculate
possible path flow losses given a MCF solution subject to
random arc failure, and also a polynomial algorithm to
compute the minimum and the maximum losses. We used
two types of risk measures, VaR and CVaR, to bound the
minimum flow losses of an arc flow solution that solves
MCF. We formulated SMCF-VaR as a mixed-integer pro-
gram and SMCF-CVaR as an LP model, both of which
involved linear constraints for calculating the flow losses.
We demonstrated formulations of the two SMCF problem
variants on an application of RAKE with random match
failure after decisions of pairing kidneys have been made.
We tested both SMCF-VaR and SMCF-CVaR on gen-
eral network instances with diverse sizes and random arc
failure probability and reported computational results on
both computational times and optimal values. In general,
SMCF-CVaR yielded more conservative flow solutions that
ensure much smaller flow losses with respect to the original
reliability requirement. In an uncertain environment (e.g.,
with possible arc or node failures), both models can find
risk-averse solutions by diversifying flow assignments (e.g.,
different paths) to ensure the successful passage of majority
or all flow assignments with a high probability. Although
this could lead to a higher total cost, it keeps the risk of
flow losses under control. Decision-makers can use the pro-
posed models to balance between the total flow cost and
the risk of flow losses.

Future research tasks include developing algorithms for
solving VaR and CVaR variants that bound the maxi-
mum flow losses L(x, ¥;) in SMCF, where the inner max-
imization problem cannot be simply eliminated. One idea
is to take the dual of L(x, ¥) that is a minimization
problem, and solve SMCF-VaR or SMCF-CVaR by elimi-
nating the “minimization” of the inner dual problem. How-
ever, the constraints in such a reformulation will contain
bilinear terms “x x” the dual variables associated with
constraints (2a)-(2d), which cannot be linearized due to
the continuity of both variables x and the dual variables.
SMCF-VaR would then become both nonlinear and dis-
crete (i.e., z* € {0, 1}), which is in general computationally
intractable. We will investigate efficient algorithms for solv-
ing the L(x, ¥;)-variant in our future research. Meanwhile,
we are interested in developing approximation algorithms

or metaheuristics to derive good objective bounds for ac-
celerating the computation of SMCF-VaR.
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