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We study a mechanism design version of matching computation in graphs that models 
the game played by hospitals participating in pairwise kidney exchange programs. We 
present a new randomized matching mechanism for two agents which is truthful in 
expectation and has an approximation ratio of 3/2 to the maximum cardinality matching. 
This is an improvement over a recent upper bound of 2 (Ashlagi et al., 2010 [2]) and, 
furthermore, our mechanism beats for the first time the lower bound on the approximation 
ratio of deterministic truthful mechanisms. We complement our positive result with new 
lower bounds. Among other statements, we prove that the weaker incentive compatibility 
property of truthfulness in expectation in our mechanism is necessary; universally truthful 
mechanisms that have an inclusion-maximality property have an approximation ratio of at 
least 2.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In an attempt to address the wide need for kidney transplantation and the scarcity of cadaver kidneys, several coun-
tries have launched, or are considering, national kidney exchange programs involving live donors [1,4,7,11]. Patients can 
enter such a program together with a member of their family or friend who is willing to donate them a kidney but cannot 
due to incompatibility. National kidney exchange programs aim to implement exchanges between two compatible patient–
donor pairs u and v so that the donor of pair u donates her kidney to the patient of pair v and vice versa. This requires 
four simultaneous operations. More complicated exchanges involving more than two donor–patient pairs are also possible; 
however, we focus on pairwise exchanges since they are easier to perform in practice.

Donor–patient pairs approach a hospital in order to enroll into the national kidney exchange programs. In an ideal 
scenario, each hospital reports its donor–patient pairs to the program and a central authority runs an algorithm that decides 
which pairwise kidney exchanges will take place. In practice, strategic issues immediately arise. A hospital may prefer to not 
enroll some easy-to-match donor–patient pairs to the program and instead match them and perform the kidney exchange 
operations internally. This may have an impact on patients of other hospitals who could have benefited if the hospital 
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truthfully reported all its donor–patient pairs to the program. The current paper follows the line of research that seeks to 
design algorithms (or mechanisms) that discourage hospitals from behaving untruthfully. The main objective is to perform as 
many kidney exchanges as possible under this constraint. This is a mechanism design [5] problem, and in particular—because 
paying for organs is illegal in almost all countries—it falls within the scope of approximate mechanism design without 
money [6].

We can model the problem as a matching problem in graphs. The input consists of a graph in which the nodes represent 
donor–patient pairs and an edge connects two nodes u and v when the donor of pair u and the patient of pair v are 
compatible, and the donor of pair v and the patient of pair u are compatible. Each node of the graph is controlled by exactly 
one self-interested agent (a hospital). A mechanism takes the graph as input and returns a matching, i.e., a disjoint pair of 
edges indicating which pairwise kidney exchanges will take place. The gain of an agent is the number of nodes under her 
control that are matched. Clearly, an optimal solution is easy to find by a maximum matching computation. Unfortunately, a 
mechanism that returns such a solution may incentivize hospitals to behave untruthfully in the following sense. A hospital 
could hide some of its nodes from (i.e., not enroll them into) the system so that the mechanism is essentially applied on a 
graph that contains neither the hidden nodes nor the edges incident to them. Then, the gain of the hospital is the number 
of its nodes that are matched by the mechanism plus the number of nodes it managed to match internally. Such behavior 
can lead to fewer matched nodes compared to the best possible solution, i.e., fewer patients who receive kidneys. So, we 
seek mechanisms that guarantee that no agent has any incentive to deviate from truth-telling. Our goal is to design such 
mechanisms that also return matchings of high cardinality, i.e., high total gain.

The mechanisms can be deterministic or randomized. Given an instance of the problem, a deterministic mechanism 
returns a simple matching. A randomized mechanism returns a probability distribution over matchings. In the latter case, 
we distinguish between universally truthful mechanisms and mechanisms that are truthful in expectation. The former are 
induced by a probability distribution over truthful deterministic mechanisms, whereas the latter guarantee that no agent 
can deviate from truth-telling in order to increase her expected gain. The efficiency of truthful mechanisms is assessed 
through their approximation ratio, i.e., the maximum ratio over all possible instances of the problem of the size of the 
maximum cardinality matching over the expected size of the matching returned by the mechanism.

Related work Early work on kidney exchange problems in Economics [8–10] has considered the incentives of incompatible 
donor–patient pairs. However, as national kidney exchange programs emerged, it has become apparent that such incen-
tives are less important compared to the incentives of the hospitals [3]. The model considered in the current paper has 
also been studied in [2,3,12,13]. The fact that the maximum cardinality matching mechanism is not truthful was first ob-
served by Sönmez and Ünver [12] (see also [3]). Ashlagi et al. [2] present a universally truthful randomized 2-approximation 
mechanism (called Mix-and-Match) for arbitrarily many agents. Mix-and-Match is based on a simple deterministic truth-
ful 2-approximation mechanism for two agents, henceforth called Match. Match returns a matching that contains the 
maximum number of internal edges (where the nodes on both sides are controlled by the same agent), breaking ties in 
favor of the matching with maximum cardinality. A nice property of Match is inclusion-maximality; this translates to the 
requirement that a donor–patient pair does not participate in any kidney exchange only when all its compatible donor–
patient pairs participate in some pairwise kidney exchange. A randomized mechanism has this property when it returns a 
probability distribution over inclusion-maximal matchings. On the negative side, there are lower bounds of 2 and 8/7 for 
deterministic truthful mechanisms and randomized mechanisms that are truthful in expectation, respectively [2,3]. Ashlagi 
et al. [2] also propose the mechanism Flip-and-Match for two agents. Flip-and-Match equiprobably selects among the 
outcome of Match and a maximum cardinality matching. They prove that this mechanism has approximation ratio 4/3 and 
leave open the question of whether it is truthful in expectation. Ashlagi and Roth [3] and Toulis and Parkes [13] consider 
weaker notions of truthfulness in random graph models that reflect the compatibility frequency among donors and patients 
from the human population. As in [2], no such information is required in our setting.

Our results In an attempt to better understand the potential and limitations of randomized mechanisms, we consider the 
case of two agents. This case is of special interest because efficient mechanisms can enable cooperation between pairs of 
hospitals on an ad-hoc basis, in countries where a national kidney exchange program is not yet in place. Our main result is a 
randomized mechanism called Weight-and-Match for 2-agent pairwise kidney exchange that is truthful in expectation and 
has a tight approximation ratio of 3/2. This establishes, for the first time, a separation between the power of randomized 
mechanisms and deterministic mechanisms (for which there is a lower bound of 2).

Weight-and-Match is inspired by the mechanism Flip-and-Match proposed in [2]. Unfortunately, it turns out that
Flip-and-Match is not truthful due to its use of maximum cardinality matchings. This observation is our starting point 
for the definition of the new mechanism. Weight-and-Match first assigns weights to the edges of the input graph and 
then selects equiprobably among two maximum-weight matchings: one with minimum cardinality (the particular weights 
assigned to the edges guarantee that this matching is identical to the one returned by Match) and one with maximum 
cardinality (which replaces the second matching used by Flip-and-Match). Informally, this definition guarantees that the 
bad incentives created by the second matching are canceled out by the outcome of Match.

We complement this result with new lower bounds on the approximation ratio of randomized mechanisms that are 
truthful in expectation or universally truthful, distinguishing between mechanisms that are inclusion-maximal and those 
that are not. Here we use the same 2-agent instance as in previous work [2,3,12] but our stronger analysis leads to im-
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Fig. 1. The original instance I used in the proof of Theorem 1 and the two subinstances I1 and I2 used in cases 1 and 2, respectively. The dashed nodes 
and edges are not part of the instances I1 and I2 but are shown here in order to compare with instance I .

proved bounds for inclusion-maximal and universally truthful mechanisms. Our general lower bound is 5/4. Interestingly, 
we prove a lower bound of 2 for inclusion-maximal universally truthful mechanisms that indicates that the weaker notion 
of truthfulness satisfied by Weight-and-Match (which is inclusion-maximal) is indeed necessary.

Roadmap The rest of the paper is structured as follows. We warm up by showing that Flip-and-Match is not truthful in 
Section 2. Our mechanism and its analysis are presented in Section 3. The lower bounds are presented in Section 4. We 
conclude with a short discussion of open problems in Section 5.

2. An unsuccessful attempt: FLIP-AND-MATCH

Throughout the paper, we refer to the two agents as agent 1 and agent 2. We also call the nodes of agents 1 and 2 white
and gray nodes, respectively, and represent them accordingly in the figures.

Let us warm up by considering the mechanism Flip-and-Match proposed in [2]. Flip-and-Match selects equiprobably 
among the matching returned by Match and a maximum cardinality matching. We remark that, in the original definition 
of [2], ties among maximum cardinality matchings are broken in favor of matchings that maximize the number of internal 
edges (i.e., edges between two nodes controlled by the same agent) and then arbitrarily. In our proof, we essentially show 
that any modification of the tie-breaking rule violates truthfulness. Furthermore, the proof also indicates that variations in 
which Flip-and-Match selects between the solution of Match and a maximum cardinality matching with different non-zero 
probabilities are not truthful either.

Theorem 1. Flip-and-Match is not truthful.

Proof. Our proof uses the instance I and subinstances I1 and I2 of Fig. 1. When applied to instance I , Match returns the 
matching M1 = {(v2, v3), (v4, v5), (v7, v8)}. The gain of agent 1 is 4 while the gain of agent 2 is 2. Let M2 be a maximum 
cardinality matching. It leaves exactly one node unmatched; this can be either a white or a gray node, i.e., M2 matches 
either 4 white nodes and 4 gray nodes or 5 white nodes and 3 gray nodes. We distinguish between these two cases:

Case 1. M2 matches 4 white nodes and 4 gray nodes and, hence, the expected gain of agent 1 from the application of
Flip-and-Match on instance I is 4. Consider the instance I1 in which agent 1 hides the white nodes v7 and v8 and matches 
them internally. In the new instance, Match returns the matching {(v2, v3), (v4, v5)} and contains 2 matched white nodes 
while the maximum cardinality matching is {(v1, v2), (v3, v4), (v5, v6)} that contains 3 matched white nodes. The expected 
gain of agent 1 (including the hidden nodes) is 4.5.

Case 2. M2 matches 5 white nodes and 3 gray nodes and hence the expected gain of agent 2 from the application of
Flip-and-Match to the original instance I is 2.5. Consider the instance I2 in which agent 2 hides nodes v2 and v3 (and 
matches them internally). In the new instance, Match returns the matching {(v4, v5), (v7, v8)} that contains no matched 
gray nodes while the maximum cardinality matching is {(v4, v5), (v6, v7), (v8, v9)} that contains 2 matched gray nodes. 
The expected gain of agent 2 (including the hidden nodes) is 3.

In both cases, some agent has an incentive to deviate from truth-telling and withhold nodes. �
3. Our mechanism: WEIGHT-AND-MATCH

In this section, we present our new mechanism for two agents, which we call Weight-and-Match. The main idea behind 
this mechanism is similar to the one that led to Flip-and-Match: we try to combine mechanism Match with another 
mechanism that yields a higher gain. However, given the negative result for Flip-and-Match presented in the previous 
section, we should be careful with the definition of our mechanism. We can think of the following alternative definition for
Match. We first assign weights to the edges of the input graph as follows. Internal edges have weight 1; edges between 
nodes of different agents have weight 1/2. The matching returned by Match is then a maximum-weight matching on 
the weighted version of the input graph, where ties are broken in favor of the matching with minimum cardinality. Our 
mechanism Weight-and-Match also computes a maximum-weight maximum-cardinality matching on the weighted version 
of the input graph, and selects equiprobably among the two matchings. Note that Weight-and-Match is inclusion maximal.
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Fig. 2. An instance indicating that the analysis of Lemma 3 is tight. The maximum matching matches all 6 nodes but mechanism Weight-and-Match

returns the matching that consists of edges (v2, v3) and (v4, v5). Note that here the symmetric difference is a path of length 5.

We first show that our mechanism can be implemented efficiently, i.e., maximum-weight matchings of minimum and 
maximum cardinality can be computed efficiently on the weighted version of the input graph. We remark that the efficient 
implementation of Match has already been discussed in [2] using a slightly different approach; we nevertheless include the 
easy proof of the next lemma (using the alternative definition based on the different edges weights) for completeness.

Lemma 2. Weight-and-Match can be implemented in polynomial time.

Proof. In order to compute a maximum-weight matching of maximum and minimum cardinality, we will exploit maximum-
weight matching computations on the input graph with slightly different edge weights. For the computation of maximum-
weight maximum (respectively, minimum) cardinality matching, edges with endpoints belonging to the same agent have 
weight 1 and edges with endpoints belonging to different agents have weight 1/2 + 1/n (respectively, 1/2 − 1/n), where n
is the number of nodes in the input graph. We compute a maximum-weight matching on this new instance. Let k be the 
weight of the maximum-weight matching for the original instance. Clearly, no matching has more than n/2 edges. There-
fore, the maximum-weight matching in the new instance has weight in [k, k + 1/2] (respectively, [k − 1/2, k]). It follows 
that the maximum-weight matchings in the new instances are among the maximum-weight matchings in the original in-
stance that have the maximum (respectively, minimum) number of edges with low weight and, consequently, the maximum 
(respectively, minimum) number of edges. �

We proceed with the proof of the approximation guarantee of our mechanism.

Lemma 3. Weight-and-Match has an approximation ratio of 3/2.

Proof. Let M be a matching of maximum cardinality and let M1 and M2 be the maximum-weight matchings of minimum 
and maximum cardinality, respectively, that are used by Weight-and-Match. Consider the symmetric difference M�M1 =
(M \ M1) ∪ (M1 \ M). It consists of several connected components which are either cycles (of even length), or paths with 
edges alternating between edges of M and edges of M1. Let m1 be the number of edges of M that either belong also to M1
or belong to cycles or paths of M�M1 with even length. Let m3 and m5 be the edges of M that belong to paths of M�M1
with length exactly 3 and odd length at least 5, respectively. Clearly, |M| = m1 + m3 + m5.

Note that the number of edges of M1 that either belong also to M or belong to cycles or paths of M�M1 of even length 
is exactly m1 as well. Also, since M has maximum cardinality, the first and the last edge in a path with odd length in 
M�M1 belong to M . So, M1 contains exactly m3/2 edges in paths of M�M1 of length 3 and at least 2m5/3 edges in paths 
of M�M1 of odd length at least 5. Hence, |M1| ≥ m1 + m3/2 + 2m5/3.

We now show that M2 (the maximum-weight matching of maximum cardinality) contains at least m1 + m3 + 2m5/3
edges. Observe that, since M1 is a maximum-weight matching, in any path with length 3 in M�M1, the edge of M1
should have endpoints belonging to the same agent (and, hence, weight 1) and the two edges of M should have endpoints 
belonging to different agents (and, hence, weight 1/2). Consider the edges of M1 that do not belong to paths of length 3 of 
M�M1 and the edges of M that belong to paths of length 3 in M�M1. All these edges form a matching that has the same 
total weight as the edges of M1, and their cardinality is at least m1 + m3 + 2m5/3. Clearly, this is also a lower bound on the 
cardinality of M2, i.e., |M2| ≥ m1 + m3 + 2m5/3.

We conclude that the expected cardinality of the matching returned by the mechanism is

1

2
(|M1| + |M2|) ≥ m1 + 3m3

4
+ 2m5

3
≥ 2

3
(m1 + m3 + m5) = 2

3
|M|

and the theorem follows. �
The bound obtained in Lemma 3 is tight through the example of Fig. 2. We now turn to proving that our mechanism is 

truthful.

Lemma 4. Weight-and-Match is truthful in expectation.

Proof. We will show that agent 1 never has an incentive to deviate from truth-telling. The case of agent 2 is identical.
Let G be the input graph and consider the maximum-weight matchings M1 and M2 of minimum and maximum cardi-

nality, respectively, that are used by Weight-and-Match. Also, assume that agent 1 hides some nodes and matches them 
internally. Then, the mechanism is applied to the subgraph G ′ of G which does not contain the hidden white nodes and 



I. Caragiannis et al. / Theoretical Computer Science 589 (2015) 53–60 57
Fig. 3. A connected component of M1�M3 considered in the proof of Lemma 5. The sets of gray nodes {v1}, {v5, v6, v7}, {v9, . . . , v13}, and {v15} form 
blocks. The main argument in the proof is that each block has an odd number of gray nodes.

edges incident to them. Let M3 and M4 be the maximum-weight matchings of minimum and maximum cardinality com-
puted by Weight-and-Match on input G ′ , augmented by the edges used by agent 1 to match the hidden white nodes 
internally. Denote by gain(M) the gain of agent 1 from matching M and by wgt(M) the weight of matching M . Our proof 
will follow from the next two lemmas.

Lemma 5. gain(M3) = gain(M1) − 2(wgt(M1) − wgt(M3)).

Proof. Denote by nww(M), nwg(M), and ngg(M) the number of edges in matching M connecting two white nodes, two nodes 
belonging to different agents, and two gray nodes, respectively. We will first show that ngg(M1) = ngg(M3). Consider the 
symmetric difference of the two matchings M1�M3 = (M1 \ M3) ∪ (M3 \ M1) and the subgraph of G induced by these edges. 
This subgraph consists of several connected components which can be cycles or paths (see Fig. 3 for an example). Consider 
such a connected component C and let C1 and C3 be the sets of edges of M1 and M3 it contains, respectively.

In order to prove that ngg(M1) = ngg(M3), it suffices to prove that ngg(C1) = ngg(C3). This is clearly true if C is a 
cycle consisting of gray nodes only, since such a cycle should have an even number of edges, half of which belong to 
C1 and half to C3. Assume that C contains a block of t consecutive gray nodes b1, b2, . . . , bt such that the first and the 
last have either degree 1 or are connected to another white node outside the block. We will show that t cannot be even. 
Assume that this was the case; then one of the two matchings (say M1; the argument for M3 is completely symmetric) 
would contain the t

2 − 1 edges (b2, b3), (b4, b5), . . . , (bt−2, bt−1) and the other (say M3) would contain the t
2 edges (b1, b2), 

(b3, b4), . . . , (bt−1, bt). Then, by replacing the t
2 − 1 edges of matching M1 in the block as well as the edges of M1 that are 

incident to nodes b1 and bt (if any) with the t
2 edges of M3 in the block, we would obtain a matching that either has higher 

weight than M1 (if some of nodes b1 and bt has degree 1) or the same weight as M1 (recall that the edges connecting 
nodes b1 and bt to white nodes outside the block have weight 1/2) but smaller cardinality. Both cases contradict the 
fact that the matching M1 is a minimum cardinality maximum-weight matching. Hence, every block has an odd number 
of nodes and an even number of edges between gray nodes that alternate between matchings M1 and M3. This implies 
that ngg(C1) = ngg(C3). Consequently, by summing over all connected components of M1�M3 and the edges of M1 ∩ M3
connecting gray nodes, we also have that ngg(M1) = ngg(M3).

Next, observe that gain(M) = 2nww(M) + nwg(M) and wgt(M) = nww(M) + ngg(M) + nwg(M)/2. Hence, since ngg(M1) =
ngg(M3), we have

gain(M3) = 2nww(M3) + nwg(M3)

= 2nww(M3) + nwg(M3) + 2ngg(M3) − 2ngg(M1)

= gain(M1) − 2(wgt(M1) − wgt(M3)),

as desired. �
Lemma 6. gain(M4) ≤ gain(M2) + 2(wgt(M2) − wgt(M4)).

Proof. First consider each edge in M2 ∩ M4 and observe that its contribution to gain(M4) equals its contribution to 
gain(M2) + 2(wgt(M2) − wgt(M4)). We will now consider the symmetric difference of the two matchings M2�M4 =
(M2 \ M4) ∪ (M4 \ M2) and the subgraph of G induced by these edges. Again, this subgraph consists of several connected 
components which can be cycles or paths. Consider such a connected component C and let C2 and C4 be the sets of edges 
of M2 and M4 it contains, respectively. We will complete the proof of the lemma by showing that

gain(C4) ≤ gain(C2) + 2(wgt(C2) − wgt(C4). (1)

First, observe that since M2 is a maximum-weight matching in G , it holds that wgt(C2) ≥ wgt(C4) (otherwise, we 
could replace the edges of C2 with the edges of C4 in M2 and obtain a matching with higher weight). We now use a 
four-letter/number notation to classify the connected components of the subgraph of G induced by M2�M4 that are paths 
into different types: the first and last letters are w or g and denote whether the left and right endpoint of the connected 
component is a white or gray node, respectively. The second and third numbers are either 2 or 4 and denote whether the 
first and the last edge of the connected component belong to matching M2 or M4, respectively. Examples of paths of type 
w22w, w44g, and w44w are depicted in Fig. 4. We distinguish between three main cases:
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Fig. 4. Examples of connected components of M2�M4 considered in the proof of Lemma 6 (paths of type w22w, w44g, and w44w).

Case 1. If C is a cycle, or a path of type w22w, w24w, w42w, w22g, w24g, g22g, g24g, g42g, or g44g, we have gain(C4) ≤
gain(C2) and inequality (1) follows easily since wgt(C2) ≥ wgt(C4).

Case 2. If C is a path of type w42g or w44g, we claim that wgt(C2) + wgt(C4) is non-integer. Indeed, since the first and 
the last node in the path belong to different agents, there is an odd number of external edges (between a white and a 
gray node) in C , and each such edge contributes 1/2 to the sum wgt(C2) + wgt(C4). Recall that wgt(C2) ≥ wgt(C4), and 
therefore wgt(C2) − wgt(C4) ≥ 1/2. Inequality (1) then follows by observing that gain(C2) = gain(C4) − 1 in this case.

Case 3. If C is of type w44w, observe that C4 contains one more edge than C2 and, hence, wgt(C2) > wgt(C4) (otherwise, 
we could replace the edges of C2 with the edges of C4 in M2 in order to obtain a matching of the same weight but with 
higher cardinality). Also, observe that the number of external edges in C is even, and hence wgt(C2) + wgt(C4) is integer. 
It follows that wgt(C2) ≥ wgt(C4) + 1. Then, inequality (1) follows by further observing that gain(C2) = gain(C4) − 2. �

Since wgt(M1) = wgt(M2) and wgt(M3) = wgt(M4), by Lemmas 5 and 6 we have that the expected gain 1
2 (gain(M3) +

gain(M4)) of agent 1 when she hides some white nodes and matches them internally is upper-bounded by the expected 
gain 1

2 (gain(M1) + gain(M2)) when she acts truthfully. �
The next statement summarizes the discussion of this section.

Theorem 7. Mechanism Weight-and-Match runs in polynomial time, has approximation ratio 3/2, and is truthful in expectation.

4. Lower bounds

Ashlagi et al. [2] and Ashlagi and Roth [3] provide a lower bound of 8/7 for truthful-in-expectation randomized mech-
anisms.3 The proof of the next lemma starts with the same initial instance as [2,3] but uses a more detailed reasoning 
in order to prove lower bounds for randomized mechanisms that are either universally truthful or truthful in expectation, 
distinguishing between mechanisms that are inclusion-maximal and those that are not.

Theorem 8. Let A be a randomized mechanism for 2-agent kidney exchange.

(a) If A is truthful in expectation, then its approximation ratio is at least 5/4.
(b) If A is truthful in expectation and inclusion-maximal, then its approximation ratio is at least 4/3.
(c) If A is universally truthful, then its approximation ratio is at least 3/2.
(d) If A is universally truthful and inclusion-maximal, then its approximation ratio is at least 2.

Proof. Our proof uses the instances depicted in Fig. 5. The starting point is instance I . We denote by I1 the instance 
obtained by removing the white nodes v5 and v6 and their incident edges from I , by I2 the instance obtained from I by 
removing the nodes v2 and v3 and their incident edges, and by I3 the instance obtained from I2 by removing the nodes v4
and v5 and their incident edges.

(a) Consider the application of mechanism A to instance I . Observe that the maximum cardinality matching of this instance 
has size 3, i.e., the total gain of both agents from any matching is at most 6. So, assume that the expected gain of agents 1 
and 2 from the matching returned by A is at most 4 − u and at most 2 + u respectively, for some u ∈ [0, 1]. Then, consider 
the application of mechanism A to instance I1. The expected gain of agent 1 from the matching returned by A should be at 
most 2 − u (otherwise, in the original instance I , agent 1 would have an incentive to hide the white nodes v5 and v6 and 
match them internally). This means that, on input I1, the probability that A returns a matching consisting of two edges is 
at most 1 − u/2. Hence, the approximation ratio of mechanism A on instance I1 is at least 4

4−u .

3 Ashlagi et al. [2] actually claim a bound of 4/3 but this is inaccurate. In fact it is not hard to design an artificial mechanism (as a probability distribution 
over matchings) that is truthful in expectation and has approximation ratio at most 5/4 for the instances considered in their proof.
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Fig. 5. The instances I , I1, I2, and I3 used in the proof of Theorem 8. The dashed nodes and edges are not part of the instances I1, I2, and I3 but are 
shown here in order to compare with instance I .

Also, consider the application of mechanism A to instance I2. The expected gain of agent 2 from the matching returned 
by A should be at most u (otherwise, in the original instance I , agent 2 would have an incentive to hide the gray nodes v2
and v3 and match them internally). This means that, on input I2, the probability that A returns a matching consisting of 
two edges is at most u. Hence, the expected gain of agent 1 from instance I2 is at most 2 + u. Now, consider the application 
of A to instance I3; A should return a non-empty matching with probability at most u (otherwise, agent 1 would have 
an incentive to hide nodes v4 and v5 from instance I2 and match them internally). Hence, the approximation ratio of 
mechanism A on instance I3 would be 1/u.

We conclude that the approximation ratio of A is at least max
{ 4

4−u , 1u
}

which is minimized to 5/4 for u = 4/5.

(b) From the analysis of (a), we have that A is inclusion-maximal only when u = 1 (otherwise, the mechanism would 
return an empty matching for instance I3 with non-zero probability). In this case, the approximation ratio of A becomes at 
least 4/3.

(c) Since A is universally truthful, it uses a probability distribution over deterministic truthful mechanisms. We partition the 
set of truthful deterministic mechanisms into two sets Aw and Ag: the set Aw (respectively, Ag) consists of mechanisms 
which, on input instance I , return a matching that leaves at least one white node (respectively, at least one gray node) 
unmatched. Any other truthful deterministic mechanism is arbitrarily put in one of the two sets.

Let Aw be a deterministic mechanism that belongs to Aw . On input instance I1, Aw should return a matching with just 
one edge. Otherwise, a matching with two edges would match the two white nodes v1 and v4 which means that agent 
1 would have an incentive to hide nodes v5 and v6 from instance I and match them internally; this would violate the 
truthfulness of mechanism Aw . Hence, mechanism Aw returns matchings of size at most 1 on input instances I1 and I3.

Also, let Ag be a deterministic mechanism that belongs to Ag . Consider the application of Ag to instance I2. The 
matching it returns should not match node v7 since otherwise agent 2 would have an incentive to hide nodes v2 and v3
in the original instance I and match them internally. Hence, only two white nodes are matched by mechanism Ag on input 
instance I2. Now consider the application of Ag to the instance I3. It should return an empty matching otherwise agent 
1 would have an incentive to hide the white nodes v4 and v5 from instance I2 and match them internally. Hence, the 
matchings returned by mechanism Ag on input instances I2 and I3 have size at most 2 and 0, respectively.

Next, let p be the probability that mechanism A runs a deterministic truthful mechanism from Aw . Then, the expected 
size of the matching returned by A on input instances I1 and I3 is at most 2 − p and p, respectively, and its approximation 
ratio is at least max

{ 2
2−p , 1

p

}
which is minimized to 3/2 for p = 2/3.

(d) Note that, in the proof of (c), the deterministic mechanisms in Ag are not inclusion-maximal. Hence, if A is universally 
truthful and inclusion-maximal, it should use only deterministic mechanisms from Aw , i.e., p = 1. Following the analysis in 
the previous case for instance I1, we obtain that A has approximation ratio at least 2. �

Theorems 7 and 8(d) establish a separation between truthfulness in expectation and universal truthfulness with respect 
to inclusion-maximal mechanisms.

5. Discussion and open problems

Our work has shed some light on the efficiency of randomized truthful mechanisms for the 2-agent pairwise kidney 
exchange problem. Although the number of agents is restricted, we believe that this case is of special interest because 
2-agent mechanisms can enable ad-hoc arrangements between hospitals in countries where national exchanges are not in 
place.

Clearly, the question of whether the upper bound of 2 of Ashlagi et al. [2] can be improved for instances with arbitrarily 
many agents remains wide open. Unfortunately, several extensions of Weight-and-Match that we have considered for this 
case have failed, and in fact it seems likely that this upper bound is tight for more than two agents. Still, the 2-agent 
case deserves some further investigation because there are gaps between our upper and lower bounds. In this context, 
it is especially interesting to know whether a truthful in expectation, inclusion-maximal, 4/3-approximation mechanism 
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exists. For the 2-agent case, we also believe that characterizations of truthful mechanisms would be very useful in order to 
complete the picture. Finally, Ashlagi et al. [2] were unable to provide a truthful deterministic mechanism for the case of 
more than two agents that gives any nontrivial approximation ratio. Providing such a mechanism, or proving a lower bound, 
remains an enigmatic open problem.
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