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Kidney exchanges enable transplants when a pair of a patient and an incompatible donor 
is matched with other similar pairs. In multi-hospital kidney exchanges pairs are pooled 
from multiple hospitals, and each hospital is able to decide which pairs to report and 
which to hide and match locally. Modeling the problem as a maximum matching on a 
random graph, we first establish that the expected benefit from pooling scales as the 
square-root of the number of pairs in each hospital. We design the xCM mechanism, which 
achieves efficiency and incentivizes hospitals of moderate-to-large size to fully report their 
pairs. Reciprocal pairs are crucial in the design, with the probabilistic uniform rule used to 
ensure incentive alignment. By grouping certain pair types into so-called virtual-reciprocal 
pairs, xCM extends to handle 3-cycles. We validate the performance of xCM in simulation, 
demonstrating its efficiency and incentive advantages over the Bonus mechanism (Ashlagi 
and Roth, 2014).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The scarcity of cadaver kidneys coupled with the significant medical benefits from live kidney transplants has prompted 
the advance of kidney-paired donation (KPD), also referred to as kidney exchanges, in recent years (Montgomery et al., 2005). 
In KPD, a patient with an incompatible donor can form a patient–donor pair and, by entering a kidney exchange program, 
match with one or more other pairs, so that the patient receives a compatible kidney and the donor donates a kidney to 
some other patient. In the simplest case this match occurs through a 2-cycle (or swap) involving the transplant of two 
kidneys. Longer cycles, and in particular 3-cycles, are also practical but beyond 3-cycles the logistics of the simultaneous 
operations become difficult.1

✩ This is a significantly revised version of an extended abstract that appeared in ACM EC’11. In addition to a modified mechanism and an extension 
to 3-cycles, we also provide complete proofs and extensive simulation results. We wish to thank Itai Ashlagi, Ian Kash, Felix Fischer, Les Valiant and the 
reviewers from EC’11 for comments on an earlier version, as well as the reviewers and the Associate Editor at GEB.
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E-mail addresses: ptoulis@fas.harvard.edu (P. Toulis), parkes@eecs.harvard.edu (D.C. Parkes).

1 Simultaneous operations are required for ethical reasons because, for instance, it is possible that a donor could otherwise give up a kidney without the 
paired patient receiving a kidney. Since 2007, a growing practice is to adopt non-simultaneous altruistic donor chains in which a donor with no designated re-
cipient can initiate a chain of transplants. Chains can be longer than cycles because transplants typically take place in an asynchronous manner without the 
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0899-8256/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.geb.2015.01.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geb
mailto:ptoulis@fas.harvard.edu
mailto:parkes@eecs.harvard.edu
http://dx.doi.org/10.1016/j.geb.2015.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geb.2015.01.001&domain=pdf


P. Toulis, D.C. Parkes / Games and Economic Behavior 91 (2015) 360–382 361
Kidney exchange programs exist around the world (Saidman et al., 2006), although their large-scale expansion has been 
hindered by ethical, logistical and incentive issues (Ross and Woodle, 2000; Delmonico et al., 2002). In the U.S., there is a 
growing number of multi-hospital exchanges which seek to pool the patient–donor lists from multiple hospitals in order 
to facilitate thicker markets and identify additional transplants (Rees et al., 2008), providing patients with access to larger 
pools of paired donations.2 Each patient–donor pair is associated with a hospital, and hospitals can choose to share lists of 
pairs with a multi-hospital exchange.

The matching problem in a kidney exchange can be modeled as a compatibility graph, with a vertex corresponding to a 
patient–donor pair and edges representing compatibility between pairs. For 2-cycles, the edges are undirected and indicate 
mutual compatibility between pairs. We take a welfare maximizing outcome to be a maximum cardinality matching.3 If 
3-cycles are also possible, a directed graph is adopted, with a directed edge from pair u to v indicating that the donor 
in pair u is compatible with the patient in pair v . In this setting, we take a maximum cardinality, vertex-disjoint set of 
directed 2- or 3-cycles to be welfare maximizing.

We model the matching problem as one of finding maximum matchings on a random graph. This random graph arises 
from the blood-type and tissue type compatibility relationships of patient–donor pairs sampled from a population (see also 
Ashlagi and Roth, 2014). Characterizing the structural properties of maximum matchings on this random graph provides 
the probabilistic foundation for the analysis of multi-hospital exchange mechanisms. We first quantify the benefit of multi-
hospital exchanges through a square-root law. This expresses the expected increase in the number of transplants that arises 
from pooling patient–donor lists in terms of the square-root of the size of each hospital’s list. This analytical result is 
established for 2-cycles and a uniform tissue-type compatibility model (the same tissue-type compatibility model is also 
adopted in Abraham et al., 2007; Roth et al., 2007; Ünver, 2010). The square-root law explains simulation results in earlier 
papers (Abraham et al., 2007; Roth et al., 2007).

A multi-hospital exchange mechanism receives hospitals’ reports of lists of patient–donor pairs, and determines a match-
ing on reported pairs. An efficient mechanism achieves a maximum cardinality matching, either restricted to 2-cycles or 
3-cycles depending on design constraints. A known challenge is to align incentives, so that each hospital reports its complete 
list of patient–donor pairs. We assume that each hospital seeks to maximize the number of pairs on its own list that are 
matched. In a poorly designed mechanism, a hospital may benefit by revealing only hard-to-match pairs to the exchange and 
free-riding on the reports of others, while completing other matches on pairs that it chooses not to report (Roth et al., 2005;
Ashlagi and Roth, 2014).

We design an efficient and ex post incentive compatible multi-hospital exchange mechanism which we term xCM. The 
xCM mechanism achieves maximum cardinality matchings by allowing 2-cycles on pairs pooled from multiple hospitals 
where the pairs are specific donor–patient pair types known as reciprocal, and uses the probabilistic uniform allocation 
rule (Sasaki, 1997; Sprumont, 1991; Moulin, 2002; Ehlers and Klaus, 2003) to align incentives and ensure that no hos-
pital can gain benefit from misreports. In order to enable maximum cardinality matchings in an exchange with 3-cycles, 
xCM allows 3-cycles on pairs pooled from multiple hospitals that consist of a reciprocal pair from a first hospital and 
a virtual-reciprocal pair from a second hospital, this virtual-reciprocal pair consisting of two pairs from the second hospital.

The patient–donor list is modeled as private information to a hospital. Efficiency and incentive compatibility are estab-
lished under technical properties on the maximum matchings associated with patient–donor lists. Given this, it is an ex 
post Nash equilibrium for every hospital to truthfully report its complete patient–donor list, whatever the exact lists of each 
hospital. This ex post incentive compatibility does not imply that the xCM mechanism is strategy-proof (with truthful re-
porting a dominant strategy), because truthful reporting is only a best-response when the reports of other hospitals satisfy 
these technical properties. Truthful reports will satisfy the properties (by assumption), but the properties need not hold for 
arbitrary reports.

In simulation, we demonstrate that the aforementioned technical properties on hospital donor–patient lists hold with 
high probability for a standard model of uniform tissue-type sensitivity (see Section 2) as long as each hospital’s list is 
moderately sized with at least 30 pairs. We validate the incentive properties of xCM in simulation, and demonstrate that 
xCM also has robust incentive properties for hospitals with smaller lists.

In addition, we compare xCM with the Bonus mechanism of Ashlagi and Roth (2014) in an extensive simulation. In 
settings with 4 to 12 hospitals, we see a significant benefit to a hospital in Bonus to first compute a maximum matching 
on its pairs and report only pairs that it cannot match locally. Although this incentive for strategic under-reporting is less 
useful for systems with larger numbers of hospitals (consistent with the theoretical results in Ashlagi and Roth, 2014), it 
continues to be present for up to 30 hospitals. A theoretical analysis of the incentive properties of Bonus that explains the 
aforementioned simulation results is provided in Section 6.

need to coordinate multiple simultaneous operations (Rees et al., 2009; Dickerson et al., 2012b). We focus on transplants that occur through simultaneous 
cycles rather than chains. Extending our results to chains is left as an open problem for future work.

2 The largest pool in the U.S. is the National Kidney Register (NKR), which has hundreds of active donors and has facilitated more than 1000 kidney 
transplants. Large exchanges are operated by the Alliance for Paired Donation (APD) and the United Network for Organ Sharing (UNOS).

3 In practice, kidney exchange programs select weighted maximum matchings with the weights set by medical professionals taking into account factors 
such as age, gender, health status, geography and patient preferences (Bertsimas et al., 2013). Other notable approaches include dynamic matching that 
take into account the randomness of arrival and expiration times in the transplant waiting list (Ünver, 2010; Dickerson et al., 2012a).
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To compare xCM and Bonus, we evaluate the cardinality of matchings in both mechanisms and across various environ-
ments. Adopting truthful reporting in xCM and under-reporting in Bonus, we find that Bonus is less efficient than xCM. For 
xCM, the average number of pairs matched is in the range 93–99% and 88–97% of the cardinality of the possible maximum 
matching, for uniform and non-uniform tissue-type sensitivity, respectively. This performance range considers settings that 
allow for 3-cycles, and settings that insist on only 2-cycles. The comparable ranges of cardinality of matchings in Bonus
are 82–95% and 66–86%.

1.1. Outline

Section 2 defines the random graph model of kidney exchanges and the relevant technical properties of maximum 
matchings on such random graphs, also stating a theoretical result in regard to existence and structure of certain maximum 
matchings. This section also defines the probabilistic uniform allocation rule, and reviews related work including the Bonus
mechanism. Section 3 gives the square-root law. Section 4 defines the xCM mechanism for 2-cycles (only), and states the first 
main result in regard to the efficiency and incentive compatibility properties of xCM. Section 5 defines the xCM mechanism 
for 3-cycles, generalizing the technical properties and stating the second main result in regard to efficiency and incentive 
compatibility. Section 6 develops a theoretical analysis to isolate some concerns in regard to the incentive properties of 
Bonus (Ashlagi and Roth, 2014). Section 7 presents the simulation results in regard to efficiency and robustness of incentive 
compatibility of xCM. Most proofs are presented in Appendix A, and some additional analysis is deferred to supplementary 
material.

2. Preliminaries

For a kidney transplant to be possible, the donor and patient must be both blood-type and tissue-type compatible. 
Human blood-type is one of O, A, B and AB, and indicates the presence of proteins A and B (e.g., O-type has neither, AB-type 
has both). A patient–donor pair is blood-type compatible if the patient’s blood includes every protein that is present in the 
blood of the donor. For example, a donor with blood-type A is blood-type compatible with a patient with type A or AB but 
not with a patient of type O or B.

By convention, a patient–donor pair is denoted by X–Y, where X is the blood-type of the patient and Y is the blood-type 
of the donor. A patient–donor list of a hospital consists of multiple such pairs, and it is these pairs that are matched on 
cycles. Following Ünver (2010), we associate pairs with one of four pair-types: under-demanded (UD), over-demanded (OD), 
reciprocal (R) and self-demanded (S), based on the blood-types of the pair. Intuitively, OD pairs such as A–O are relatively easy 
to match (hence “over-demanded”) because the donor’s blood-type contains fewer proteins than the patient’s blood-type.

In regard to tissue-type compatibility, this requires that a patient and donor share as many human leukocyte antigens
(HLAs) as possible to prevent a positive cross-match and organ rejection. The probability of a positive cross-match (and thus 
tissue-type incompatibility) depends on the tissue-type sensitivity of the patient. The Panel Reactive Antibody (PRA) sensitivity 
of a patient measures the percentage of the population with whom the patient will be tissue-type incompatible. Higher 
PRA values result in a higher probability of incompatibility. Following Zenios et al. (2001), we consider two models for PRA 
sensitivity. In the uniform PRA model, the sensitivity is assumed to be the same for all patients. In the non-uniform PRA model, 
a patient can be in one of three sensitivity groups, namely low, medium and high, each associated with a different probability 
of a positive cross-match.

2.1. The random graph model

Given a set of pairs and tissue-type and blood-type incompatibility relationships, this defines a compatibility graph. Fo-
cusing first on exchanges that involve only 2-cycles, each patient–donor pair is associated with a vertex, and an undirected 
edge between two vertices u, v indicates that the donor in u is compatible with the patient in v and vice versa. A matching 
on an undirected graph is a set of edges with no common vertices. The size (or cardinality) of a matching is the number 
of vertices incident to edges in the matching. A maximum matching is a matching of maximum cardinality. A matching is 
perfect if it includes every vertex. A matching is almost-perfect if it includes all but one vertex.

A distribution on blood-types and tissue-type compatibility relationships defines a distribution on compatibility graphs. 
Let G̃n denote a random, undirected compatibility graph with n pairs. Let V denote the set of vertices. For pair u ∈ V , 
we adopt up and ud to denote the patient and donor in the pair, respectively. Let predicate ABO(x, y) take on value true
when patient x and donor y are blood-type compatible, and false otherwise. Let pu ∈ [0, 1] denote the PRA sensitivity of 
the patient in pair u. A random graph G̃n is constructed through a generative process. First, vertices are introduced by:

• independently sampling up, ud ∼ FABO, where FABO is the blood-type distribution in the population,
• sampling pu ∼ FPRA of the patient, where FPRA is the PRA distribution in the population, and
• introducing pair u = (up, ud) if (i) not ABO(up, ud), or (ii) with probability pu if ABO(up, ud).

Once n vertices have been introduced, then for every pair of vertices u, v ∈ V , an edge is introduced if the pairs are 
mutually compatible, which requires (i) ABO(v p, ud) and ABO(up, vd), and (ii) tissue-type compatibility, which requires that 
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Fig. 1. A high-level depiction of the compatibility graph for different pair-types. An edge indicates the possibility of mutual, blood-type compatibility 
between two pair-types using only 2-cycles.

Table 1
Patient–donor pairs grouped by pair-type into 
under-demanded (UD), over-demanded (OD), 
reciprocal (R) and self-demanded (S) pairs.

Patient Donor

O A B AB

O S UD UD UD
A OD S R UD
B OD R S UD
AB OD OD OD S

a Bernoulli trial with probability (1 −pu)(1 −pv) is a success, so that each patient is tissue-type compatible with the other 
patient’s donor.

In the non-uniform PRA model, the pairs that enter tend to include patients that are highly-sensitized and hard to match. 
This leads to a more sparse compatibility graph. Following Zenios et al. (2001), we take pu = 0.2 in the uniform PRA model. 
In the non-uniform model, we associate PRA sensitivity of 0.05, 0.45 and 0.9 with low, medium and high PRA sensitivity, 
and adopt probability 0.7, 0.2 and 0.1 for a patient to belong to the low, medium or high PRA group respectively.

Let qx denote the probability that a random pair in G̃n is of pair-type x, where x ∈ {OD, UD, S, R}. Assuming the uniform 
PRA model, and with a blood-type distribution representative of the worldwide population and tissue-type compatibility 
statistics (Zenios et al., 2001), simple algebra yields the following proportions4:

qUD = 0.56, qOD = 0.11, qS = 0.15, qR = 0.18. (1)

Fig. 1 illustrates the high-level structure of a compatibility graph, with each circle corresponding to a pair-type and 
drawn in proportion to the expected frequency of different types in the exchange.5 An edge between two pair-types or a 
self-edge indicates that a 2-cycle is possible between the pair-types incident to the edge based on blood-type compatibility. 
For example, an OD pair may be mutually compatible with any other pair-type while UD pairs cannot match with each 
other.6

For matchings that can include 3-cycles, a directed compatibility graph is used to model the matching problem. An edge 
from pair u to pair v indicates that the donor in pair u is blood-type compatible with the patient in pair v . Let G̃3

n denote 
a random, directed compatibility graph with n pairs. The vertices are generated in the same way as for the undirected 
graph G̃n . For every pair of vertices u, v ∈ V , a directed edge from u to v requires (i) ABO(v p, ud), and (ii) directed tissue-
type compatibility, which requires the success of a Bernoulli trial with probability (1 − pv) so that the patient in pair v is 
tissue-type compatible with the donor in pair u.

4 The worldwide blood-type distribution is roughly O (50%), A (30%), B (15%) and AB (5%) (Wikipedia, 2010). Let fx denote the probability of pair-type 
x in the population. We would expect fOD = fUD = 0.2725, f S = 0.365, and f R = 0.09. With pc = 0.2 to denote the PRA sensitivity, we have qOD = fOD ·pc

Z , 
qS = f S ·pc

Z , qUD = fUD
Z , and qR = f R

Z , where fOD = fO( fA + fB) + fAB( fO + fA + fB), fUD = fOD, f S = f 2
O + f 2

A + f 2
B + f 2

AB, f R = 2 fA · fB, and denominator 
Z = fOD · pc + f S · pc + fUD + f R provides normalization.

5 We see that UD pair-types are much more abundant than other types, and that OD pair-types are approximately 1/pc = 5 times less frequent than UD
pair-types. This is because, an OD pair-type “enters” G̃n only because of tissue-type incompatibility, which happens with probability pc (under the uniform 
PRA model).

6 Similarly, an S pair can only be mutually compatible with another S pair or with an OD pair. The absence of an edge between UD and R shows that 
there can be no edges between vertices that correspond to these two pair-types. These relationships can be checked from the requirement that every 
protein in a donor’s blood is present in a patient’s blood, and considering the mapping from blood-types into pair-types in Table 1.
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2.2. Structural properties

Given an undirected compatibility graph, we can define a subgraph for each pair-type (OD, UD, S and R), consisting of 
the vertices of this pair-type and edges between these vertices. The S-subgraph has four components, comprised by T–T 
pairs for each blood-type T ∈ {O, A, B, AB}. The R-subgraph is bipartite, with one part consisting of A–B pairs and one of B–A 
pairs. The long-side of the R-subgraph corresponds to the pair-type with more pairs (breaking ties at random); the other 
part is the short-side. The R-subgraph is balanced if each part has the same cardinality, and almost-balanced if the two sides 
differ in cardinality by one. The UD-subgraph has no internal edges.

Definition 1 (Perfect-Matching (PM) properties). An undirected compatibility graph, G , is:

• S-perfect if, for each blood-type T, there is a perfect matching for any graph G ′ formed by retaining all T–T pairs of G
when there is an even number, and dropping any single T–T pair when there is an odd number.

• R-perfect if there is a perfect matching for any graph G ′ formed by retaining all the R pairs on the short-side of the 
R-subgraph of G along with any subset of R pairs on the long-side of cardinality equal to that of the short-side.

• OD/UD-perfect if there exists a matching on G in which every OD pair is matched with some UD pair.

A matching on G is S-perfect, R-perfect, or OD/UD-perfect when the matching satisfies the associated perfect matching 
property.

Say that an edge is internal to a subgraph if it is incident to two vertices in the same subgraph.

Definition 2 (Regular matching). A regular matching on an undirected compatibility graph G is a matching that is OD/UD-
perfect (matches every OD pair with some UD pair) and maximizes, amongst all matchings,

(i) the number of matched edges internal to the S-subgraph, and
(ii) the number of matched edges internal to the R-subgraph.

A matching is almost-regular if it is maximum, and maximizes the number of OD–UD pairs that match across all maxi-
mum matchings on G .

The simple structure of regular matchings is helpful for the analysis of the incentive properties of xCM, and because of 
existence and optimality:

Theorem 1. A regular matching on an undirected compatibility graph G is maximum amongst all matchings that use only 2-cycles, 
and exists in random graph ̃Gn w.h.p. for sufficiently large n.

In regard to maximum cardinality, a similar result is stated as Proposition 1 in Roth et al. (2007). Existence of a regular 
matching follows as a special case of the more general Theorem 5 in a context with 3-cycles, and proved as Proposition 5.1 
in Ashlagi and Roth (2014).

We provide a simple proof sketch of maximality. Let N S , NR , NOD, NUD denote the number of pairs matched in a regular 
matching (thus NOD = NUD). Any non-regular matching would match k > 0 OD pairs with either S or R pairs, and since 
UD pairs can be matched only to OD pairs, k fewer UD pairs would be matched. At best, the total pairs matched in that 
non-regular matching would be (N S + NR + k) + NOD + (NUD − k), which is no better than the number of pairs matched in 
the regular matching.

For existence, let G̃m×m,p denote a random bipartite graph with m nodes in each part, and edges between nodes in 
different parts with uniform probability p. Erdos and Rényi (1964) proved the following:

Lemma 1. (See Erdos and Rényi, 1964.) A random bipartite graph ̃Gm×m,p, with any constant p > 0, assumes a perfect matching w.h.p. 
for sufficiently large m.

Consider some UD pair with blood-type X–Y (patient X, donor Y). The symmetric OD pair is Y–X; e.g., consider UD pair 
O–A and OD pair A–O. Because OD pairs only enter when the patient is tissue-type incompatible with the donor while UD
pairs always enter, OD pairs are less abundant than UD pairs, w.h.p. for large n. Based on this, we can appeal to Lemma 1
on the balanced subgraph formed for X–Y and Y–X pairs.

The following lemma confirms the existence in the limit of S-perfect and R-perfect matchings:

Lemma 2. A random compatibility graph ̃Gn on n vertices satisfies the S-perfect and R-perfect properties w.h.p. for sufficiently large n.

The result follows by appeal to Lemma 1. For S-perfect, this follows by noting that the T–T components of the S-subgraph, 
for T ∈ {O, A, B, AB}, can be reduced to an almost-balanced bipartite graph by placing pairs into two, almost-balanced sets 
and dropping between-set edges. For R-perfect, this follows by considering a random, balanced subgraph.
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2.3. Probabilistic uniform rule

The xCM mechanism uses the probabilistic uniform rule (Sasaki, 1997) as a subroutine. The probabilistic uniform rule gen-
eralizes the uniform rule for divisible goods (Sprumont, 1991) to provide a strategy-proof (i.e., dominant-strategy incentive 
compatible), Pareto efficient method to allocate indivisible, identical items.

In defining this rule, let x > 0 denote the number of identical, indivisible units of a resource to allocate. Consider agents 
j ∈ {1, . . . , m}, each of which demands some quantity z j ≥ 0 of items. Each agent strictly prefers more items to less up to 
z j items.

Definition 3 (Probabilistic uniform rule). The probabilistic uniform rule takes demand �z = (z1, . . . , zm) and supply x of identical 
indivisible items and returns an allocation �y = (y1, . . . , ym) = share(z, x) as follows.

First, initialize J := { j : z j > 0}, remaining supply xrem := x and allocation y j := 0 for all j ∈ {1, . . . , m}. Then:

While (xrem > 0) and ( J �= ∅):

• If xrem ≥ | J |, increment y j by one for each j ∈ J , decrement xrem by | J |, and drop any j from J for which y j ≥ z j .
• Else: select a random subset of size xrem of agents in J , and increment y j by one for each selected agent. Set xrem := 0.

Lemma 3. Given supply x > 0 and demand z = (z1, . . . , zm), the probabilistic uniform rule share(z, x) allocates expected quan-
tity yh = min(zh, guniform(z−h, x)) ≥ 0 to agent h, where guniform(z−h, x) ≥ 0 is a quantity that depends on demands z−h =
(z1, . . . , zh−1, zh+1, . . . , zm) of others and supply x, and satisfies properties:

(1) guniform(z−h, x + c) ≤ guniform(z−h, x) + c for all z−h, x and c ≥ 0; and
(2) guniform(z−h, x) ≥ x − ∑

j �=h z j .

Proof. Let d(k) = ∑
j �=h min(z j, k) + k. This is the total demand when it is capped at k for all agents, and assuming agent 

h’s demand is at least k. Let k∗ denote the largest k for which d(k) ≤ x. Let m′ denote the number of agents j �= h for which 
z j > k∗ . Note that the number of unallocated items once up to k∗ have been allocated is x − d(k∗) < m′ + 1. All agents with 
demand ≤ k∗ are allocated in full. Agents with demand > k∗ also receive one additional item with probability x−d(k∗)

m′+1 , since 
the subset allocated one of the remaining items is selected uniformly at random. Therefore, the expected quantity allocated 
to agent h is equal to min(zh, guniform(z−h, x)), and guniform(z−h, x) = k∗ + x−d(k∗)

m′+1 . Property (1) holds because the allocation 
to agents j �= h cannot decrease when more units are introduced. Property (2) holds because no agent j is allocated more 
than z j . �
2.4. Related work

Ashlagi and Roth (2014) also study the design of multiple-hospital exchanges under a random graph model. But while 
their analysis insists on a large number of hospitals, each of which has a small patient–donor list, our analysis insists that 
each hospital has a moderately-sized or large patient–donor list. In this sense the two designs complement each other.7

The xCM and Bonus mechanisms also differ in their design focus. xCM emphasizes the use of pooling to match R
pairs, while Bonus emphasizes the use of pooling to match OD and UD pairs. We identify an incentive concern in regard 
to the use of a lottery in Bonus for matching OD and UD pairs. Although Ashlagi and Roth (2014) argue approximate 
Bayes–Nash incentive compatibility in the limit of a large number of hospitals each with a finite size list, our analysis 
suggests that Bonus remains susceptible to holding back OD pairs and sending UD pairs even with as many as 30 hospitals 
(see Section 6).8,9 The xCM and Bonus mechanisms also differ fundamentally in the way that R pairs are matched, with 
xCM using the probabilistic uniform allocation rule.

Multi-hospital kidney exchanges have also been studied in a worst-case framework by Ashlagi et al. (2013), who consider 
a setting where matchings are restricted to 2-cycles, and prove that no deterministic strategy-proof mechanism can ensure 
an approximation ratio less than two (relative to the cardinality of the maximum matching) on every possible input. In 
addition, no randomized strategy-proof mechanism can provide an approximation ratio better than 8/7; see also Roth et al.
(2005) and Ashlagi and Roth (2014) for more discussion. Ashlagi et al. (2013) also develop the Mix-and-Match mechanism, 
which is a randomized, strategy-proof 2-approximation mechanism.

7 The strong regularity assumption in Ashlagi and Roth (2014) is shown in their simulations to require each hospital to have no more than 30 pairs. The 
technical properties (perfect matching) that we require for the analysis of xCM are shown in simulation to hold for 4 or more hospitals, each of size 30 or 
larger (2-cycles or 3-cycles), under the uniform PRA model.

8 Our simulation results for Bonus disagree with the simulation results of Ashlagi and Roth (2014), in that we find benefits from deviation in envi-
ronments where they find none. We have been unable to explain this discrepancy because the code used by Ashlagi and Roth is not available (personal 
communication). On the other hand, our simulation results are still consistent with their broader theory, in that the benefit from deviation becomes less 
severe as the numbers of hospitals increases.

9 In comparison, xCM only pools OD and UD pairs for the purpose of enabling 3-cycles that involve R-pairs, and in a last step on unmatched pairs.
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3. A square-root law for the benefit from pooling

In this section, we quantify the welfare benefit from pooling patient–donor lists. Given random compatibility graph 
G̃n , let G R and G S denote the R- and S-subgraphs, respectively. We first quantify the expected cardinality of a maximum 
matching on these subgraphs.

Lemma 4. Assuming the S-perfect property, the expected cardinality of a maximum matching M S using 2-cycles on subgraph G S of 
fixed size in compatibility graph ̃Gn, is given by

E
[|M S |

] = |G S | − 2, (2)

where |G S | is the fixed number of vertices in subgraph G S , and |M S | is the size of matching M S .

An informal argument is that the marginal distribution on the parity of the number of pairs in any T–T component (for 
blood-type T) of the S-subgraph places equal probability on odd and even parity. Based on this, the expected number of 
unmatched pairs per component is 0.5(0) + 0.5(1) = 0.5, and with four components the expected number of unmatched 
pairs is 4(0.5) = 2. A full proof must condition on the parity of |G S | and handle dependence between the parity of the 
components of G S ; see Lemma 4 in the supplementary material.

Lemma 5. Assuming the R-perfect property, the expected cardinality of a maximum matching MR using 2-cycles on subgraph G R of 
fixed size in random compatibility graph ̃Gn, is given by

E
[|MR |] = |G R | −

√
2|G R |

π
, (3)

where |G R | is the fixed number of vertices in subgraph G R , and |MR | the size of matching MR .

In effect, Lemma 5 quantifies the size of the expected imbalance between the long-side and short-side of the R-subgraph. 
A formal proof appears in the supplementary material.10

Theorem 2. Assuming the S-perfect, R-perfect and OD/UD-perfect properties, the expected cardinality of a maximum matching Mn

using 2-cycles on random compatibility graph ̃Gn is,

E
[|Mn|

] = γ · n − rn

√
2qR

π
n − 2, γ = 1 − qUD + qOD,

where qR , qUD and qOD denote the probability of reciprocal, under-demanded and over-demanded pair-types in the exchange respec-
tively, and rn ∈ (1 − O (1/n), 1].

The full proof is given in the supplementary material. To gain additional simplification, let’s assume rn = 1. Substituting 
values for qUD, qOD and qR under the uniform PRA model (1), we obtain the following approximate expression for the 
expected cardinality of the maximum matching:

E
[|Mn|

] ≈ 0.556n − 0.338
√

n − 2. (4)

This analysis is accurate enough to explain many simulation results in previous work, and provides an initial validation 
of the PM properties.11

Furthermore, we can quantify the increase in the expected number of transplants from pooling the patient–donor 
pairs from multiple hospitals. For this, let μ(n) denote the expected cardinality of a maximum matching on a random 
graph G̃n . Let W (m, n) denote the expected increase in number of transplants from pooling together m hospitals each of 
size n compared to matching each hospital individually. By symmetry, the expected gain to any one hospital h is simply 
Wh(m, n) = 1

m W (m, n).

10 For some intuition, consider the simpler task of calculating the square of the imbalance between the count of heads and tails after k tosses of a fair coin. 
This imbalance models the unmatched side (A–B or B–A) in a maximum matching within the bipartite R-subgraph. Let Dk denote this random variable. 
Feynman (1964, Chapter 6) argues that E[D2

k ] ≈ k for large k, since Dk = Dk−1 ± 1 and so D2
k = D2

k−1 ± 2Dk−1 + 1, and the expected value of Dk−1 is 
converging to 0 as k grows. By Jensen’s inequality, E(D2

k ) ≥ E(Dk)
2 and thus E(Dk) = O (

√
k).

11 For example, the cardinality of the matchings in Roth et al. (2007) (see Propositions 1 and 2 and Table 2), are explained; e.g., for n = 100, expression (4)
yields an expected number of matched vertices of 55.6 − 3.38 − 2 = 50.22, and close to the reported value of 49.7. Similarly, the results in Table 1 of 
Abraham et al. (2007) can be explained.
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Theorem 3 (Square-root law). Assuming the S-perfect, R-perfect and OD/UD-perfect properties for the pooled compatibility graph of 
m hospitals, each with patient–donor lists of size n, the expected benefit to an individual hospital h from pooling, when using 2-cycles, 
satisfies

Wh(m,n) ≥
(

1 − 1√
m

)√
2qR

π
n + 2

(
1 − 1

m

)
, (5)

where qR is the fraction of R pair-types in the exchange.

Proof. The expected number of matches for each hospital individually is at most μ(n), since this is the expected num-
ber in a regular match, which is maximum when it exists. By the PM assumptions, the expected number of matches in 
the combined graph is μ(mn). Therefore, W (m, n) ≥ μ(mn) − mμ(n), and the result follows from Theorem 2 and simple 
algebra. �

When every compatibility graph satisfies the S-perfect, R-perfect and OD/UD-perfect properties, the expression 
holds with equality. Also, as the number of hospitals m → ∞, the individual expected benefit from pooling satisfies 
limm→∞ Wh(m, n) ≥

√
2qR
π n + 2. This quantifies the benefits that are available from solving the incentive challenges in 

multi-hospital exchanges, and also pinpoints the R-subgraph as being of central importance for achieving efficiency gains. 
The design of xCM promotes pooling of reciprocal-type pairs.

4. The xCM mechanism with 2-cycles

Assume m hospitals each of size n pairs, let h ∈ {1, . . . , m} denote a hospital, and let Gh denote the compatibility graph 
for hospital h. This graph corresponds to the list of patient–donor pairs of a hospital, and is private information to a hospital 
(analogous to type in mechanism design.) Define a marginal economy to be any set of hospitals that includes every hospital 
except one.

Let sh denote the strategy of hospital h, and determine its reported list of pairs. Equivalently, we can consider that a 
hospital reports a compatibility graph and adopt G ′

h = sh(Gh) to denote the reported graph of hospital h. We assume that a 
hospital can hide pairs but can neither introduce false pairs or false information about the compatibility between pairs.12 Let 
�G ′ = (G ′

1, . . . , G
′
m) denote the vector of reports, and let G ′⊕ = ⊕

h G ′
h denote the compatibility graph obtained by combining 

the reports in the natural way.13

A multi-hospital kidney exchange mechanism Γ takes reported graphs �G ′ and computes a matching, denoted by 
Γ (G ′

1, . . . , G
′
m). We adopt Γh(G ′

1, . . . , G
′
m) to denote the pairs of hospital h that are matched. Let s = (s1, . . . , sm) denote 

the strategy profile, and adopt s(�G) = (s1(G1), . . . , sm(Gm)) to denote the vector of reported graphs.
By assumption, each hospital wants to maximize the number of its own pairs that are matched. In addition to the pairs 

matched by the mechanism, a hospital has a recourse action in which it can match pairs that are either returned unmatched 
by the mechanism or were not reported. Define the utility uh(s, �G) to hospital h, given strategy profile s as the total number 
of pairs of the hospital that are either matched by the mechanism or matched during recourse. The utility is,

uh(s, �G) = ∣∣Γh
(
s(�G)

)∣∣ + ∣∣M
(
Gh \ Γh

(
s(�G)

))∣∣, (6)

where M(G) is a maximum matching on graph G , and Gh \ G ′ denotes the graph after removing the vertices G ′ from 
graph Gh .

Definition 4 (EPIC). A matching mechanism Γ is ex post incentive compatible (EPIC) for property P if, for any vector of graphs 
�G = (G1, . . . , Gm) that satisfy property P, it is a best-response for every hospital to report its true patient–donor list when 
other hospitals are truthful.

For randomized mechanisms, EPIC for property P requires that each hospital maximizes its expected number of matches 
with respect to the random draws of the mechanism by reporting truthfully. For xCM, property P is defined to require that 
S-perfect and R-perfect holds for the compatibility graph that corresponds to the marginal economy without any hospital.14

12 This is consistent with previous work. Ashlagi and Roth (2014) note that the information contained in blood tests is becoming standardized, sometimes 
coming from a centralized testing facility. In that respect, a hospital’s strategy amounts to reporting a subset of its patient–donor pairs (vertices in the 
hospital graph), as the edges can be recovered given a known set of vertices.
13 Include all vertices and edges reported by hospitals, and introduce edges between mutually-compatible pairs from distinct hospitals according to the 

random process defined in Section 2.1.
14 EPIC with property P does not imply that a mechanism is dominant-strategy incentive compatible. This is because property P may not hold for arbitrary 

reports from other hospitals, while to establish EPIC it suffices to show that truthful reporting is optimal for a hospital given that reports of others satisfy 
property P.
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Definition 5 (k-Way efficient). A matching mechanism Γ is k-way efficient if the matching Γ (�G) is maximum for any profile 
of graphs �G = (G1, . . . , Gm) amongst matchings that use cycles of length at most k.

4.1. The xCM mechanism

In the following, let αh, βh and τh denote the number of A–B, B–A and T–T pair-types (for some blood-type T) in the 
patient–donor list of hospital h. Let α⊕, β⊕ and τ⊕ denote the corresponding counts when summed over all hospitals. 
Notation α′

h, β ′
h and so forth indicates a count based on reported lists.

Definition 6 (xCM mechanism). The xCM mechanism receives a vector of graphs �G ′ = (G ′
1, . . . , G

′
m). Let G ′⊕ denote the 

combined graph. Initialize matching μxCM to the empty matching. Matching μxCM is output at the end of Step 3.

Step 1. (Match S pairs) Repeat for each self-demanded pair-type T–T, where T ∈ {O, A, B, AB}:
(i) For each hospital h, compute a maximum matching M ′

h,T on the subgraph of G ′
h induced by T–T pairs.

(ii) Let G ′
T denote the subgraph of G ′⊕ induced by T–T pairs. Select matching μT uniformly at random from the set 

of matchings on G ′
T that are maximum amongst those that satisfy,{

μ : NT (μ,h) ≥ ∣∣M ′
h,T

∣∣, ∀h
}
, (7)

where NT (μ, h) is the number of T–T pairs of hospital h in μ.
(iii) μxCM := μxCM ∪ μT .

Step 2. (Match R pairs)
(i) For each hospital h, let m∗

h = min(α′
h, β ′

h), and zh,AB = α′
h − m∗

h , zh,BA = β ′
h − m∗

h denote the excess A–B and B–A 
pairs, respectively. Let xAB = ∑

j z j,AB and xBA = ∑
j z j,BA.

(ii) If (α′⊕ ≥ β ′⊕) then: yAB : share(zAB, xBA), yBA := 0. Else yAB := 0, yBA := share(zBA, xAB).
(iii) For each hospital h, compute a maximum matching on G ′

h,R , and let mh denote the number of A–B pairs 
(and also B–A pairs) matched. Let δh = m∗

h − mh . Let G ′
R denote the subgraph of G ′⊕ induced by R pairs. Let Kq , 

for q = 0, 1, . . . , denote the set of matchings on G ′
R that are maximum amongst those that satisfy,{

μ : NAB(μ,h) ≥ mh + max(0, yh,AB + δh − q), ∀h, and

NBA(μ,h) ≥ mh + max(0, yh,BA + δh − q), ∀h
}
, (8)

where NAB(μ, h) and NBA(μ, h) are the number of A–B and B–A pairs of hospital h in matching μ. Let q∗ denote 
the smallest q for which Kq is non-empty. Select matching μR uniformly at random from Kq .

(iv) μxCM := μxCM ∪ μR .
Step 3. (Match remaining same-hospital pairs) Repeat for each hospital h:

(i) Compute an almost-regular matching μ′
h on the graph G ′′

h formed by removing the pairs in μxCM ∩ G ′
h from G ′

h .
(ii) μxCM := μxCM ∪ μ′

h .
Step 4. (Match remaining pairs) Compute a random, almost-regular matching on the combined graph formed from any 

remaining unmatched pairs. Add this matching μxCM .15

In Step 1, the xCM mechanism computes a maximum matching on the pooled S-subgraph, making sure that each hospital 
does as well as it would if matching internally. In Step 2, the uniform probabilistic rule is used to determine a matching 
on the pooled R-subgraph. In Step 3, this matching is augmented with an almost-regular maximum matching for each 
hospital on any unmatched, reported pairs (without any additional pooling). In Step 4, this matching is augmented with an 
almost-regular maximum matching that allows for pooling of unmatched pairs across hospitals.

The quantity m∗
h represents the maximum number of A–B pairs h could possibly expect to match on its own R-subgraph. 

If the pool is long A–B, then xCM assigns a target number of A–B pairs (equal to mh + yh,AB + δh = m∗
h + yh,AB) to each 

hospital h. xCM relaxes this target if it is not attainable, but always insists that each hospital gains at least the minimal 
number of matches it would achieve internally.16

Theorem 4. The xCM mechanism is EPIC and 2-way efficient for properties (i) S-perfect and R-perfect on compatibility graphs the size 
of every marginal economy and larger, and (ii) OD/UD-perfect on every hospital’s compatibility graph.

The proof of EPIC and efficiency for xCM under properties S-perfect, R-perfect and OD/UD-perfect is given in Appendix A. 
An important step in the proof of EPIC is to use the properties of the probabilistic uniform allocation rule to establish that 

15 This step has no effect when the PM and regularity assumptions hold, but improves welfare when xCM is used in an environment where these 
properties fail to hold.
16 In Section 7 we explain how this procedure can be efficiently implemented.
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a hospital cannot do better in expectation by misreporting its full list of reciprocal patient–donor pairs. Once EPIC for these 
PM properties is established, then efficiency follows because the overall matching is regular, since it is maximum on the 
combined S- and R-subgraphs, and matches every OD pair with a UD pair.

5. Generalizing xCM to allow for 3-cycles

In this section, we generalize the xCM mechanism to allow for 3-cycles. The generalized mechanism remains EPIC for 
generalized PM properties to allow for 3-cycles, and is 3-way efficient. The increase in welfare from using 3-cycles rather 
than 2-cycles relies on 3-cycles involving OD, UD and R pairs because these can address the imbalance between the two 
sides of the R-subgraph.

Definition 7 (Virtual-reciprocal pair). Pairs (B–O, O–A) for which the donor of the OD pair is tissue-type compatible with 
the patient of the UD pair forms a virtual-B–A pair. Pairs (A–O, O–B) for which the donor of the OD pair is tissue-type 
compatible with the patient of the UD pair forms a virtual-A–B pair.

A virtual-reciprocal pair can form a cycle with a compatible reciprocal pair: B–O → O–A → A–B and A–O → O–B → B–A.
Define the number of virtual-B–A pairs (denoted vβ) as the number of B–O pairs matched in a maximum matching on a 

particular undirected bipartite graph. The bipartite graph is formed from a graph G by B–O pairs in one part and O–A pairs 
in the other, and an edge between a B–O and O–A pair when the O donor and O patient are tissue-type compatible. The 
number of virtual-A–B pairs (denoted vα) is defined in an analogous way through a maximum matching on a graph with A–O 
and O–B pairs.

Other 3-cycles of interest for maximum cardinality matchings involve the OD pair with blood-types AB–O, since this can 
form the following 3-cycles with two UD pairs: AB–O → O–A → A–AB, and AB–O → O–B → B–AB. Another 3-cycle of 
interest involve S pairs; for example, A–A → A–A → A–A.

Definition 8 (Generalized Perfect-Matching (PM) properties). Consider a directed compatibility graph G . Let ns and nl denote 
the number of R pairs on the short-side and long-side of the R-subgraph of G respectively, and vs the number of virtual-R 
pairs on the short-side (i.e., virtual-A–B if A–B pairs are on the short-side). Compatibility graph G is:

• 3S-perfect if, for each blood-type T, there is a perfect matching (allowing for 2-cycles and 3-cycles) on graph G ′ formed 
by retaining all T–T pairs of graph G .

• 3R-perfect if (i) when ns + vs ≥ nl , there is a matching (allowing for 2-cycles and 3-cycles) that matches every R pair on 
graph G ′ that is formed by retaining all R pairs and virtual-R pairs of graph G , or
(ii) when ns + vs < nl , there is a matching (allowing for 2-cycles and 3-cycles) on graph G ′ that matches every R pair, 
where G ′ is formed from G by retaining all virtual-R pairs, all R pairs on the short-side, and any subset of cardinality 
ns + vs of R pairs on the long-side.

• 3OD/UD-perfect if (i) there is a matching on G in which every AB–O pair matches with two UD pairs using 3-cycles, and
(ii) having removed any number of virtual-R pairs and all 3-cycles involving AB–O pairs and two UD pairs from G , there 
exists a matching using 2-cycles where every remaining OD pair matches with a UD pair.

A graph is strong 3R-perfect if the graph meets case (i) of 3R-perfect, and matches every R pair. A matching is 3S-perfect if 
the matching attains the structure of the associated graph property (similarly for 3R-perfect). A matching is 3OD/UD-perfect 
if every AB–O pair matches on a 3-cycle with two UD pairs, and every other OD pair not used in a virtual-R pair matches 
in a 2-cycle with a UD pair.

Definition 9 (Extended-R subgraph). The extended-R subgraph of a directed compatibility graph G includes:

1. all A–B, B–A, B–O, O–A, A–O and O–B pairs,
2. all edges that may be used when matching virtual-R pairs in 3-cycles with R-pairs and matching R-pairs in 2-cycles 

with R-pairs.

For example, the extended R-subgraph includes compatibility edges from B–O to O–A pairs when they exist, and from 
O–A to A–B pairs when they exist.

Definition 10 (3-Way regular matching). A 3-way regular matching on a directed compatibility graph G is a matching that uses 
2-cycles and 3-cycles, is 3OD/UD-perfect, and maximizes, amongst all matchings,

(i) the number of matched edges internal to the S-subgraph, and
(ii) the number of matched edges internal to the extended-R subgraph.

A strong 3-way regular matching is a 3-way regular matching in which every R pair is matched. A matching is 3-way 
almost-regular if it is maximum and maximizes the number of OD–UD 2-cycles matched across all maximum matchings.
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Theorem 5. (See Ashlagi and Roth, 2014; Toulis and Parkes, 2011.) A strong 3-way regular matching on a directed compatibility graph 
is 3-way efficient, and exists in G̃3

n w.h.p. for sufficiently large n.

The existence and efficiency of strong 3-way regular matchings was proved by Ashlagi and Roth (2014) (Proposition 5.1).
The most important change in the design of xCM in allowing for 3-cycles is that virtual-R pairs can be matched in Step 2. 

But this is restricted to virtual-R pairs in which the OD and UD pairs belong to the same hospital.
Given this, we define the multi-hospital extended-R subgraph in the natural way on the combined graph from all hos-

pitals, so that it only includes edges B–O to O–A and A–O to O–B when these pairs belong to the same hospital. Similarly, 
multi-hospital 3R-perfect (and multi-hospital strong 3R-perfect) is defined in the natural way on the combined graph, with 
virtual-R pairs (and the count of these pairs) restricted to insist on the OD and UD pairs being from the same hospital.

Following our convention, let vαh, vβh, vα⊕, vβ⊕ denote the associated counts of same-hospital virtual-A–B and virtual-
B–A pairs for truthful reports, with vα′

h , vα′⊕ and so forth to denote the associated counts after misreports.

Definition 11 (3-xCM mechanism). The 3-xCM mechanism receives graphs �G ′ = (G ′
1, . . . G ′

m) from each hospital. Let G ′⊕
denote the combined graph. Initialize μxCM to the empty matching. Matching μxCM is output at the end of Step 3.

Step 0. (Match AB–O pairs)
(i) For each hospital h, compute a maximum matching μh,0 of G ′

h restricted to the AB–O pairs and all UD pairs, 
and only using OD-UD-UD 3-cycles involving AB–O pairs.

(ii) Update μxCM := μxCM ∪ μh,0, and remove any matched OD and UD pairs from G ′⊕ and G ′
h .

Step 1. (Match S pairs) Same as Step 1 in xCM, except allowing for 2-cycles and 3-cycles.
Step 2. (Match R pairs)

(i) For each hospital h, let m∗
h,AB = min(α′

h, β ′
h + vβ ′

h) and m∗
h,BA = min(β ′

h, α′
h + vα′

h). Let zh,AB = α′
h − m∗

h,AB
and zh,BA = β ′

h − m∗
h,BA denote the number of excess A–B and B–A pairs, respectively. Let zh,vAB = vα′

j −
max(0, m∗

j,BA − m∗
j,AB) and zh,vBA = vβ ′

j − max(0, m∗
j,AB − m∗

j,BA) denote the number of excess virtual-AB and 
virtual-BA pairs, respectively.
Let xAB = ∑

j(z j,AB + z j,vAB) and xBA = ∑
j(z j,BA + z j,vBA).

(ii) If (α′⊕ ≥ β ′⊕), then: yAB := share(zAB, xBA), yBA := 0. Else: yAB := 0, yBA := share(zBA, xAB).
(iii) For each hospital h, compute a maximum matching on the extended-R subgraph in G ′

h , maximizing the number 
of R pairs matched (breaking ties to minimize the number of 3-cycles). Let mh,AB and mh,BA denote the number 
of A–B and B–A pairs matched. Let δh,AB = m∗

h,AB − mh,AB and δh,BA = m∗
h,BA − mh,BA.

Let G ′
R denote the multi-hospital extended-R subgraph of G ′⊕ . Let Kq , for q = 0, 1, . . . , denote the set of match-

ings on G ′
R that maximize the number of R pairs matched (breaking ties to minimize the number of 3-cycles) 

amongst those that satisfy,{
μ : NAB(μ,h) ≥ mh,AB + max(0, yh,AB + δh,AB − q), ∀h, and

NBA(μ,h) ≥ mh,BA + max(0, yh,BA + δh,BA − q), ∀h
}
, (9)

where NAB(μ, h) and NBA(μ, h) are the number of A–B and B–A pairs of hospital h in matching μ. Let q∗
denote the smallest q for which Kq is non-empty. Select matching μR uniformly at random from Kq .

(iv) μxCM := μxCM ∪ μR .
Step 3. (Match remaining same-hospital pairs) Repeat for each hospital h:

(i) Compute a 3-way almost-regular matching μ′
h on the graph G ′′

h formed by removing the pairs in μxCM ∩ G ′
h

from G ′
h .

(ii) μxCM := μxCM ∪ μ′
h .

Step 4. (Match remaining pairs) Compute a random, 3-way, almost-regular matching on the combined graph formed from 
any remaining unmatched pairs. Add this matching μxCM .

Step 0 matches as many AB–O pairs on 3-cycles with UD pairs as possible, but without pooling pairs across hospitals. 
Step 1 matches S pairs, allowing for pooling across hospitals and using both 2- and 3-cycles. Step 2 generalizes Step 2 of 
xCM to allow for same-hospital virtual-R pairs. Steps 3 and 4 follow the same logic as Steps 3 and 4 for xCM.

The quantity m∗
h,AB represents the maximum number of A–B pairs that hospital h can match on its own extended-R 

subgraph. If the pool is long A–B, then 3-xCM assigns a target number of A–B pairs (equal to mh,AB + yh,AB + δh,AB =
m∗

h,AB + yh,AB) to each hospital h. Mechanism 3-xCM relaxes this target if it is not attainable, but always insists that each 
hospital gains at least the minimal number of matches it can achieve locally.

Theorem 6. The 3-xCM mechanism is EPIC for properties (i) 3S-perfect and multi-hospital 3R-perfect on compatibility graphs of every 
marginal economy and larger, and (ii) 3OD/UD-perfect for individual hospitals. The 3-xCMmechanism is 3-way efficient if the combined 
graph is multi-hospital strong-3R perfect.
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The theoretical analysis of 3-xCM follows the same outline as the analysis for xCM, and is provided in the supplementary 
material. A part of the analysis is to establish, for an arbitrary strategy of hospital h and the generalized PM assumptions, 
that the mechanism matches every S pair, and with respect to the reported R pairs, as many R pairs on the long-side of 
the pooled R-subgraph as enabled by the total number of R-pairs and virtual-R pairs on the short-side. Efficiency follows by 
showing that the matching computed in 3-xCM is strong 3-way regular.

6. Incentive analysis of the Bonus mechanism

In this section, we examine the incentive properties of Bonus. We first provide a formal definition.

Definition 12 (Bonus mechanism). (See Ashlagi and Roth, 2014.) The Bonus mechanism receives graphs �G = (G ′
1, . . . , G

′
m)

from each hospital. Let G ′⊕ denote the combined graph. Assume an even-number of hospitals, and perform the following 
steps:

Step 1: (Match S pairs) Compute μS , the maximum matching of the S-subgraph of G ′⊕ .
Step 2: (Match R pairs) For each hospital h compute μh,R , a maximum matching of the R-subgraph of G ′

h . Compute μR , 
a maximum matching of the R-subgraph of G ′⊕ , breaking ties to maximize the intersection with 

⋃
h μh,R .

Step 3: (Match OD-UD pairs) Initialize μUO := ∅ and split the hospitals at random into two equal-sized groups L1 and L2. 
For each under-demanded type X–Y, do the following:
(i) Select UD pairs from L1 to match with OD pairs from L2 as follows:

(a) For each hospital h ∈ L1, let Vh,X–Y denote the under-demanded X–Y pairs reported by h. Let Q h,X–Y ⊆ Vh,X–Y

denote a set of X–Y pairs that can be maximally matched in G ′
h . Calculate q1 �

∑
h∈L1

|Q h,X–Y|.
(b) For each hospital h ∈ L2, let Vh,Y–X denote the reported over-demanded Y–X pairs. Calculate q2 :=∑

h∈L2
|Vh,Y–X|.

(c) If q2 > q1: Run a lottery to pick additional X–Y pairs from L1. Proceed in rounds:
– In each round, select a hospital h ∈ L1 with probability proportional to |Vh,X–Y|. Pick a pair at random 

from Vh,X–Y \ Q h,X–Y, and move it from Vh,X–Y to Q h,X–Y. If there is no new pair to pick, remove h from 
the lottery process.

– Repeat until q2 = ∑
h∈L1

|Q h,X–Y|, or there are no hospitals left in L1.

(d) Let Q X–Y �
⋃

h∈L1
Q h,X–Y and V Y–X �

⋃
h∈L2

Vh,Y–X. Compute a random maximum matching on the sub-
graph induced by pairs Q X–Y ∪ V Y–X, and add this matching to μUO.

(ii) Select UD pairs from L2 to match with OD pairs from L1 similar to Step 3(i).
Step 4: Return μS ∪ μR ∪ μUO.

In Step 1, S pairs are matched without considering pooling across hospitals. In Step 2, a maximum matching is selected 
on the pooled R pairs, breaking ties to maximize the overlap with the number of pairs that each hospital would match in a 
maximum matching on its own R subgraph.

In Step 3, the hospitals are split into two groups, with the OD pairs in one group matched with the UD pairs in the 
other. Consider the process of lotterying hospitals in group L1 to match with OD pairs reported by hospitals in group L2
for a particular X–Y (UD) and Y–X (OD) pair. Step 3(i)(a) determines the UD pairs that each hospital would match just 
considering its own X–Y and Y–X pairs. The tally q1 is the total count of pairs matched in this way, and represents the UD 
pairs that are preselected to match with some of the q2 OD pairs that are available from L2 (calculated in Step 3(i)(b)). 
If q2 > q1, and there are more OD pairs to allocate, then Step 3(i)(c) lotteries access to the remaining OD pairs, giving 
preference according to the number of UD pairs reported by each hospital. Once there are no UD pairs left to select, or the 
number of UD pairs selected is equal to the number of available OD pairs, Step 3(i)(d) finds a random maximum matching 
between the selected UD pairs and the OD pairs.

The 2-cycle and 3-cycle versions of Bonus are similar. The main difference is that the 3-cycle version can find 3-cycles 
in Step 1 when matching on the S-subgraph. 3-cycles can also be used when determining the internal matchings in Steps 2 
and 3, but these are only used to control the primary matching process.17,18

6.1. Weakness of Bonus to canonical deviations

The lottery procedure in Bonus is designed to provide incentives for reporting UD and OD pairs. The idea is to give 
a hospital more chances to be selected to match with OD pairs reported by others if it reports more UD pairs. However, 
a numerical example taken from Ashlagi and Roth (2014) (see their Example 1) illustrates a weakness in this argument. 

17 The part of the matching generated by Bonus in Step 2 is limited to 2-cycles because it is restricted to the R-subgraph. The part of the matching 
generated in Step 3(i)(d) is limited to 2-cycles because it is restricted to a subgraph including one particular X–Y UD pair-type and the symmetric Y–X OD
pair-type.
18 xCM makes more use of 3-cycles, especially in regard to matching R pairs (see Section 6.2). This leads to better efficiency, as demonstrated in Section 7.
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Reporting both UD and OD pairs can reduce the effective number of OD pairs available to compete for in the lottery stage 
(Step 3(i)(c)). The overall effect is that it can be useful to hide some UD and OD pairs.

In Example 1, we consider a canonical deviation, in which a hospital finds a maximum matching on its own pairs and 
reports the remainder. We assume for simplicity that there are at least as many UD pairs as OD pairs in the lottery, and 
that the matching in Step 3(i)(d) is perfect, so that every selected UD pair is matched.19

Example 1. Fix the two groups, L1 and L2, and consider a particular UD and OD pair-type (e.g., O–A and A–O). For group L1, 
assume hospital h ∈ L1 has 1 OD pair and 2 UD pairs, and can match its OD pair with one of its UD pairs. Assume that 4 UD 
pairs are reported in total by the other hospitals in L1, and that no other hospital in L1 can match a reported UD pair with 
one of its own reported OD pairs. The number of OD pairs reported by other hospitals in L1 is immaterial. For group L2, 
assume there are two OD pairs reported in total (so that q2 = 2 in Step 3(i)(b)), and that there are plenty of reported UD 
pairs.

If hospital h is truthful, then its OD pair will be placed into a lottery and matched with a UD pair reported by group L2. 
In regard to its UD pairs, one of its UD pairs (but none of the UD pairs of other hospitals in L1) will be preselected, and so 
q1 = 1. The lottery in Step 3(i)(c) involves 6 UD pairs (2 of them from h) competing to be the second UD pair selected from 
L1 to match with the OD pairs provided by L2. Another way to say this is that there is a lottery for the 1 remaining OD pair 
in the supply from L2 that is not already assigned. Hospital h will be selected in the lottery with probability 2

6 . Therefore 
its expected number of pairs matched is 1 + 1 + 2

6 = 35
15 , representing the OD pair that it matches, its preselected UD pair, 

and the chance of matching a second UD pair.
If hospital h follows a canonical deviation, then it matches a UD pair against an OD pair and sends just a single UD pair. 

Now none of the UD pairs in L1 are preselected by the Bonus lottery. The lottery in Step 3(i)(c) involves 5 UD pairs (1 of 
them from h) competing to be part of the 2 UD pairs selected from L1 to match with the OD pairs provided by L2. Another 
way to say this is that there is a lottery for the 2 OD pairs in the supply from L2, now 2 rather than 1 because no pairs are 
already assigned. Hospital h will be selected in the lottery with probability 1

5 + 4
5 · 1

4 = 6
15 , representing the probability that 

its UD pair is selected in the first or second round. Therefore its expected number of pairs matched is 2 + 6
15 = 36

15 > 35
15 , 

considering also the matching that it completes based on the pairs it does not report. Thus, Bonus does not align incentives 
with truthful reporting in this example.

More generally, consider a UD pair-type with patient–donor blood-type X–Y and its symmetric OD pair-type with 
patient–donor blood-type Y–X. Consider some hospital h in L1, with xh pairs of type X–Y, yh pairs of type Y–X, and 
that can maximally match mh pairs of type X–Y, internally. Let q2 = ∑

i∈L2
yi denote the supply of Y–X pairs from L2

and q1 = ∑
i∈L1

mi denote the initial demand for these pairs based on internal matches in L1. Also, define x−h so that 
x−h = ∑

i∈L1,i �=h xi .
In order to simplify the analysis, we assume that all hospitals in L1 remain interested in competing for OD pairs through 

all rounds of the lottery.20 Because of this, the expected utility (= # matches) of hospital h, if it is truthful, is given by

U t
Bonus = mh + yh + min

{
xh − mh, (q2 − q1)

+ xh

xh + x−h

}
, (10)

where x+ = max{0, x}. Eq. (10) holds because h will match all mh UD pairs, and all yh OD pairs will be matched by the 
aforementioned perfect-matching assumption of the lottery. Furthermore, no more than xh − mh pairs beyond mh can be 
selected in the lottery, and with the effect of its xh lottery tickets, hospital h expects to receive a proportion of xh

xh+x−h
of 

the (q2 − q1)
+ OD pairs that will be randomly allocated in the lottery.

Now, let us consider that hospital h follows a canonical deviation and hides k X–Y pairs, where these pairs can be 
matched to k of its own Y–X pairs. Then its report will be xh − k UD pairs and yh − k OD pairs, and the excess will be 
q2 − (q1 − k). By recording the benefit of 2k and adjusting terms in the previous expression, the expected utility of the 
deviating agent, is:

U d
Bonus = 2k + (mh − k) + (yh − k) + min

{
xh − mh, (q2 − q1 + k)+ xh − k

xh − k + x−h

}

= mh + yh + min

{
xh − mh, (q2 − q1 + k)+ xh − k

xh − k + x−h

}
. (11)

By deviating, hospital h gets a smaller fraction from the lottery since xh−k
xh−k+x−h

<
xh

xh+x−h
, for k > 0. However, the lottery 

is selecting an additional k UD pairs from the pool (equivalently it is allocating k additional OD pairs). By matching its own 

19 These assumptions correspond to asymptotic properties established by Ashlagi and Roth (2014), see Claim 10.15. They can be justified for a large 
number of hospitals each with small lists.
20 In the case of dropouts, (10) changes slightly by considering instead a fraction xh/(xh + x−h + z−h), where z−h is an adjustment made to allow for the 

possibility that other hospitals will drop out of the lottery when their remaining demand to match OD pairs is satiated (see Step 3(i)(c)).
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pairs before sending, the hospital guarantees the use of its own OD pairs and still gets to compete for the full pool of OD
pairs provided by others to the lottery.21

Through simple algebra, a sufficient condition for the deviation to be useful is xh − k > q2 − q1. This reveals the concern. 
If the report after deviation (xh − k) is still larger than the excess to allocate in the lottery (q2 − q1), then the deviating 
hospital will be better off. Under the OD/UD-perfect assumption, hospital h will hide every OD pair and a corresponding 
number of UD pairs, and the quantity xh −k is ∝ n; i.e., the individual hospital’s graph size. However, (q2 −q1) is a quantity 
that is proportional to the excess of the long-side in a bipartite graph pooled from m hospitals; by Lemma 5 it follows that 
|q2 − q1| ∝ m

√
n in expectation.

Thus, opportunities to manipulate the Bonus mechanism exist for a broad range of settings where the size of an indi-
vidual hospital n is not fixed, and the number of hospitals m increases at a rate m = O (

√
n) (and thus not too quickly). This 

analysis also suggests that as the number of hospitals m grows while the size of each hospital remains fixed, this devia-
tion becomes less useful. This in agreement with the theory of Ashlagi and Roth (2014), as well as our simulation results 
(see Section 7.4).22

6.2. Bonus vs. xCM on the R-subgraph

The two mechanisms also differ in regard to how they match R pairs. Bonus finds, amongst the maximum matchings 
on the pooled R-subgraph, one that maximizes the intersection with maximum matchings on the R-subgraphs restricted to 
each hospital. In this sense, Bonus treats individual rationality as a soft constraint. In contrast, xCM uses the probabilistic 
uniform rule to determine how many R pairs a hospital can match above those it would match by itself, and ensures that 
each hospital matches at least as many as it would by itself. The supplementary material illustrates the difference between 
the two designs on a simple example. In particular, we show that Bonus does not provide ex post incentive-compatibility 
in regard to truthful reporting of R-pairs. The Bonus and xCM mechanisms also differ in that xCM but not Bonus allows 
R-pairs to match on 3-cycles.

7. Experimental results

In this section, we report results from simulations on mechanisms xCM and Bonus, and compare them with a baseline 
mechanism, rCM, which returns a random maximum matching on the combined graph.23 We test the various PM properties, 
validate the square-root law, and explore the welfare and incentive properties, considering both uniform and non-uniform 
PRA.24 All results are presented for the blood-type frequencies and tissue-type compatibility models introduced in Section 2, 
and averaged over 1000 trials except where otherwise stated.

7.1. Perfect-matching properties and square-root law

First, we investigate the validity of the S-perfect, R-perfect and OD/UD-perfect properties. For 2-cycles, we consider 
graphs G̃n with sizes n from 30 to 130, and for 3-cycles we consider graphs G̃3

n with sizes n from 30 to 90. The tests compute 
the difference in number of pairs matched on the relevant subgraph and the idealized number that would match under 
the various perfect properties; see Appendix B for details. All counts are normalized by the cardinality of the maximum 
matching on the graph, and averaged over 500 trials.

The results for 2-cycles are shown in Table 2, where idealized performance would be a 0% violation. For uniform PRA, the 
OD/UD-perfect property is satisfied with 1% violation for graphs of size 30 or larger. The R-perfect and S-perfect properties 
are satisfied with 1% violation for graphs of size at least 70 and 130 pairs, respectively. For Theorem 6, OD/UD-perfect 
should hold for individual hospitals, while R-perfect and S-perfect for combined lists of all but one hospital. Allowing for a 
2% violation, the assumptions required for Theorem 6 are justified under uniform PRA for 4 hospitals each with lists of size 
25 or larger.

21 This increase in the number of excess pairs to allocate in the lottery from q2 − q1 to q2 − q1 + k appears to have been over-looked in the analysis in 
Ashlagi and Roth (2014).
22 A more formal analysis would be required to fully quantify the trade-offs between withholding and truthful reporting in Bonus, including the case of 

very large markets with hospitals with fixed list sizes.
23 We use R (http://www.r-project.org/) for the code implementation. Maximum matchings are obtained through integer programming (IP) 

with Gurobi (http://www.gurobi.com/) and a free academic license. We follow a cycle formulation for the IP that performs weighted matching 
(each matched vertex has weight 1 by default). Random matchings are obtained by perturbing slightly (±0.1) the weights of every cycle. Matchings that 
promote specific pair-types (crucial for both xCM and Bonus) are obtained by increasing the respective weights. An almost regular matching is achieved 
by increasing slightly (e.g. +0.2) the weights of OD-UD 2-cycles. The source code is available for download from http://www.eecs.harvard.edu/
econcs/code/rgke.zip and the code base is also available through Github at https://github.com/ptoulis/kidney-exchange. Detailed 
instructions on how to reproduce all results of this section can be found in the package.
24 For brevity, we will sometimes use the symbols O, R, S, U to denote OD, R, S, and UD pairs respectively, where O refers to OD and not the O blood-type. 

In this way, a cycle will be denoted by the types of the pairs in the cycle; e.g., OUU denotes a 3-cycle among one UD pair and two UD pairs. Furthermore, 
for 3-cycles, we will use standard regular expression notation. For instance, OO? denotes any 3-cycle that contains two OD pairs, and O[RS] denotes any 
3-cycle that contains one OD pair and any combination of two pairs from types R or S i.e., ORR, ORS or OSS.

http://www.r-project.org/
http://www.gurobi.com/
http://www.eecs.harvard.edu/econcs/code/rgke.zip
https://github.com/ptoulis/kidney-exchange
http://www.eecs.harvard.edu/econcs/code/rgke.zip
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Table 2
The amount of violation of R-, OD/UD- and S-perfect properties for graphs of various sizes, normalized by the size of a maximum matching on G̃n . 2-cycles 
only, and for uniform (U) and non-uniform PRA (nonU) models. Standard errors in parentheses. For example, for n = 30 the value 1.11 under OD/UD-perfect 
indicates that x OD pairs remained unmatched, where x represents 1.11% of the size of a maximum matching on G̃30 . The OD/UD-perfect assumption 
requires that all OD pairs are matched.

PRA Size (n) R-perfect OD/UD-perfect S-perfect

U 30 4.89 (1.08) 1.11 (0.36) 7.30 (1.43)

50 2.17 (0.51) 0.79 (0.20) 3.43 (0.67)

70 1.05 (0.30) 0.46 (0.14) 1.92 (0.42)

90 0.37 (0.16) 0.22 (0.09) 1.75 (0.32)

130 0.00 (0.00) 0.13 (0.06) 1.22 (0.22)

nonU 30 12.25 (2.47) 10.39 (1.17) 26.20 (2.07)

50 6.65 (0.73) 7.22 (0.88) 25.62 (1.92)

70 5.03 (0.65) 4.30 (0.45) 19.36 (1.16)

90 3.76 (0.53) 3.34 (0.37) 16.77 (1.03)

130 2.19 (0.30) 1.77 (0.24) 12.63 (0.68)

Table 3
The amount of violation of 3R-, 3OD/UD- and 3S-perfect properties for graphs of various sizes, allowing for 3-cycles, and for both uniform (U) and non-
uniform PRA (nonU) models. The AB–O statistic is the fraction of AB–O pairs that fail to match in 3-cycles with two UD pairs. Violations are normalized by 
the size of a maximum matching on G̃n allowing for 3-cycles. Standard errors in parentheses.

PRA Size (n) 3R-perfect 3OD/UD-perfect AB–O 3S-perfect

U 30 7.00 (0.86) 2.06 (0.35) 0.00 (0.00) 8.54 (0.77)

50 4.93 (0.76) 1.02 (0.17) 0.00 (0.00) 4.20 (0.38)

70 3.30 (0.60) 0.55 (0.11) 0.00 (0.00) 2.69 (0.30)

90 2.06 (0.40) 0.45 (0.09) 0.00 (0.00) 2.05 (0.18)

nonU 30 17.68 (1.96) 9.41 (1.28) 0.51 (0.18) 32.26 (2.54)

50 6.99 (0.91) 4.76 (0.47) 0.24 (0.11) 18.53 (1.03)

70 5.16 (0.62) 3.71 (0.34) 0.11 (0.05) 13.72 (0.80)

90 3.63 (0.45) 2.87 (0.24) 0.07 (0.04) 12.20 (0.58)

Larger list sizes are required if tissue-type compatibility is non-uniform; e.g., individual hospitals would need to have 
as many as 130 pairs for the OD/UD-perfect property to be satisfied with 1% violation, and the S-perfect property requires 
combined lists of significantly more than 130 pairs.

The results allowing for 3-cycles are shown in Table 3. The AB–O statistic is the fraction of AB–O pairs that fail to 
match in a maximum matching restricted to 3-cycles involving two UD pairs. As in Table 2, all results are normalized by 
the cardinality of a maximum matching, this time allowing for 3-cycles. For uniform PRA, the 3OD/UD-perfect property is 
satisfied with 1% violation for graphs of size 50 or larger, and at 2% violation for graphs of size 30 or larger. Considering 
that Theorem 6 requires the 3R-perfect and 3S-perfect properties to hold for combined lists of all but one hospital, the 
required PM properties are satisfied at 2% violation with 4 hospitals, each with lists of size 30 or larger. The AB–O pairs can 
be easily matched, even for small graphs. With non-uniform PRA, the situation is similar to with 2-cycles, and larger lists 
are required; more than 90 pairs for an individual hospital to achieve 3OD/UD-perfect at 2% violation, and combined lists 
of significantly more than 90 pairs to satisfy the 3S-perfect property.

We now validate Theorem 2, which provides an analytical expression for μ(n), the expected cardinality of a max-
imum matching in G̃n , and leads to the square-root law. The analytical expression for the number of matches in a 
maximum matching of G̃n is μ(n) ≈ 0.556n − 0.338

√
n − 2, for a graph of size n (see Section 3). This is for 2-cycles 

only and with uniform PRA. Table 4 compares the average number of matches in simulation against this expression. The 
results are averaged over 10 000 trials. To test the fit, we run a linear regression of the number matches, and obtain 
μ(n) = 0.567n − 0.572

√
n − 0.9.25 The prediction is generally very close, but usually over-estimating slightly due to viola-

tions in the PM assumptions.

7.2. Multi-hospital kidney exchange with uniform PRA

In this section, we compare the incentive and welfare properties of rCM, xCM and Bonus, considering only uniform PRA.

7.2.1. Strategic properties
The individual strategies we consider are truthful behavior (t) and a canonical deviation (c), which is the strategy when 

a hospital first finds an almost-regular (maximum) matching and then reports only unmatched pairs to the mechanism. 

25 The coefficients on n and √n are statistically significant with p-values less than 10−5, with standard errors 0.007 and 0.137 for the coefficients of n
and √n respectively.
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Table 4
Validation of the square-root law: Average size of maximum matching on 
G̃n for various sizes n compared to the theoretical expression developed in 
Section 3.

Size (n) Observation average #matches Prediction μ(n)

25 10.153 10.210
50 22.746 23.410
75 36.784 36.773

100 50.351 50.220
125 62.724 63.721
150 76.691 77.260
175 90.018 90.829
200 104.380 104.420

Table 5
Incentive analysis under the uniform PRA model, allowing for 2-cycles only, with m = 6 hospitals each having n = 12 patient–donor pairs. The entry in 
the strategy column reflects the strategy type for which average utility (std error), and cumulative number of OD, R, S and UD pairs matched is reported, 
considering all 1000 trials.

Mechanism Profile Strategy Avg. utility #OD #R #S #UD

rCM tttttt t 5.90 (0.03) 1629 2088 1778 1584
tttttc c 6.68 (0.06) 1604 2267 1802 2347
tccccc t 4.54 (0.05) 1492 1656 1476 371
cccccc c 5.57 (0.03) 1462 1878 1580 1201

xCM tttttt t 5.85 (0.03) 1618 2125 1811 1458
tttttc c 5.81 (0.06) 1600 2137 1765 1468
tccccc t 5.59 (0.07) 1485 1840 1582 1246
cccccc c 5.57 (0.03) 1457 1879 1583 1201

Bonus tttttt t 5.67 (0.03) 1537 2081 1778 1410
tttttc c 6.19 (0.06) 1571 1994 1784 2075
tccccc t 4.75 (0.06) 1405 1889 1511 424
cccccc c 5.50 (0.03) 1428 1870 1574 1179

A strategy profile for 6 hospitals is denoted by profile tttttt, tttttc, and so forth. We adopt the canonical deviation 
because this is the deviation for which a vulnerability of Bonus is identified (see Section 6).

In Table 5, we report the average utility (= number of matches, including those matched in recourse) for the hospital 
with the indicated strategy, along with the standard errors. We also report the total number of OD, R, S and UD pairs 
matched across all trials by a hospital with the indicated strategy.

We can make the following observations:

• rCM is not ex post incentive compatible. In particular, the canonical deviation provides an average utility of 6.68 vs 5.90 
when the other hospitals are truthful. This deviation remains beneficial compared to truthful reporting when others 
also deviate. A deviating hospital matches more UD and R pairs by free-riding on the reports of others.

• The canonical deviation is not useful in xCM at least on average (compare 5.81 with 5.85), which is consistent with the 
theoretical analysis of the mechanism.

• The Bonus mechanism is not ex post incentive compatible for this number of hospitals. In particular, the canonical 
deviation provides an average utility of 6.19 vs 5.67 when the other hospitals are truthful. This deviation remains 
beneficial compared to truthful reporting when others also deviate. A deviating hospital matches more UD pairs by 
free-riding, which is consistent with the theoretical analysis of the strategic vulnerability of the mechanism.

Table 6 provides an analogous incentive analysis of the mechanisms, now allowing for 3-cycles. The qualitative results 
are largely unchanged. The main difference is that we now see a small benefit in xCM for deviating to the canonical strategy. 
This can be explained by noting that the PM properties required for Theorem 6 are not well supported until the combined 
lists of all but one hospital have more than 90 pairs, and the lists of single hospitals have more than 30 pairs.

Table 7 summarizes the incentive properties of the various mechanisms, varying the number of hospitals and size of 
hospital lists and considering both 2-cycle and 3-cycle settings. We fix the other hospitals to report complete lists, and 
record the average ratio (and standard error) of the number of matches achieved by a hospital from adopting the canonical 
strategy compared to the number of matches when reporting its complete list. We make the following observations:

• Neither rCM nor Bonus are ex post incentive compatible for any of these (m, n) combinations, irrespective of 2- or 
3-cycles. The rCM and Bonus have qualitatively similar incentive properties in these environments.
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Table 6
Incentive analysis under the uniform PRA model allowing for 3-cycles, with m = 6 hospitals each having n = 12 donor–patient pairs. The entry in the 
strategy column reflects the strategy type for which average utility (std error), and cumulative number of OD, R, S and UD pairs matched is reported, 
considering all 1000 trials.

Mechanism Profile Strategy Avg. utility # OD #R #S #UD

rCM tttttt t 6.61 (0.04) 795 1262 1073 838
tttttc c 7.37 (0.09) 814 1301 1093 1211
tccccc t 4.93 (0.08) 830 970 980 177
cccccc c 5.90 (0.04) 807 1069 981 684

xCM tttttt t 6.29 (0.04) 785 1238 1015 736
tttttc c 6.41 (0.09) 810 1244 1066 724
tccccc t 5.80 (0.10) 825 1092 868 693
cccccc c 5.81 (0.04) 806 1068 932 678

Bonus tttttt t 5.85 (0.04) 762 1059 984 700
tttttc c 6.61 (0.09) 810 1096 1064 996
tccccc t 4.75 (0.08) 795 1054 804 194
cccccc c 5.77 (0.04) 801 1058 925 675

Table 7
Incentive summary (uniform PRA): Average ratio (std error) of the total number of pairs matched by a hospital 
that uses the canonical deviation compared to the total number matched when truthful, and when other hospitals 
are truthful. Ratios larger than one indicate that the canonical deviation is useful.

Mechanism (m,n) = (# hospitals, # pairs per hospital.)

(4, 18) (6, 12) (12, 6)

rCM 1.148 (0.007) 1.133 (0.008) 1.141 (0.014)

3-rCM 1.124 (0.008) 1.113 (0.011) 1.090 (0.013)

xCM 0.995 (0.008) 0.994 (0.009) 1.021 (0.015)

3-xCM 1.022 (0.010) 1.018 (0.013) 0.997 (0.015)

Bonus 1.116 (0.008) 1.091 (0.009) 1.091 (0.015)

3-Bonus 1.158 (0.011) 1.131 (0.014) 1.058 (0.016)

Table 8
Comparison of the number of OU and RR 2-cycles in xCM and Bonus when all hospitals are truthful and m = 6, n = 12. Bonus performs fewer OU cycles 
because of its lottery procedure.

Mechanism PRA #OU #RR #total pairs

xCM-all-t uniform 8753 6218 21 043
non-uniform 7226 5260 16 081

Bonus-all-t uniform 8461 6218 20 420
non-uniform 5486 5260 13 925

• Even though these environments do not meet the PM properties required for the theoretical incentive properties of xCM
and 3-xCM (the hospital lists are too small, and the combined lists of all but one hospital are too small), the incentive 
properties are qualitatively better than the other mechanisms. The canonical deviation does not appear to be useful in 
xCM with 2-cycles, but may be marginally useful in 3-xCM.

7.2.2. Welfare properties
Table 8 presents an overall comparison of the number of OU 2-cycles and RR 2-cycles in xCM and Bonus given truthful 

reports. This is for m = 6, n = 12, and considering both uniform and non-uniform PRA. The xCM mechanism matches more 
OU cycles than Bonus even though the OD and UD pairs are not pooled except in Step 4 of xCM. The mechanisms match 
the same number of R pairs.

Table 9 illustrates the efficiency of each mechanism with 2-cycles, and providing hospitals with the canonical strategy 
when this is beneficial. For xCM we present the results for truthful reports (all-t). For Bonus and rCM we present the 
results for canonical reports (all-c). In addition to welfare (= total number of matches, averaged over all trials), we report 
the total number of different types of cycles matched across all trials, as well as the fraction of cycles that are matched 
within the mechanism rather than in recourse. For a baseline, we provide the statistics for maximum matchings obtained 
with and without pooling on truthful graphs.

The analysis reveals an overall welfare ranking of

xCM-all-t > rCM-all-c > Bonus-all-c.
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Table 9
Average welfare (std err) for each mechanism as well as total counts of different types of 2-cycles matched across all trials. Uniform PRA model, with 
m = 6 hospitals each having n = 12 patient–donor pairs. Below each cycle count is the fraction of cycles that are matched by the mechanism rather than 
in recourse.

Mechanism Welfare OO OR OS OU RR SS

no pooling 24.06 (0.15) 97 885 922 8662 3579 2695
max matching 35.40 (0.18) 5 168 95 9504 6180 5287

rCM-all-c 33.40 (0.18) 79 673 730 7211 5300 4376
2.5 9.7 5.5 5.6 46.8 49.8

xCM-all-t 35.07 (0.17) 185 315 274 8753 6218 5298
100 100 100 100 100 100

Bonus-all-c 33.01 (0.17) 83 627 706 7074 5297 4369
2.4 0 0 3.8 47.2 50

Table 10
Average welfare (std error) for each mechanism as well as total counts of different types of 3-cycles that match across all trials. Uniform PRA model, with 
m = 6 hospitals each having n = 12 patient–donor pairs. Below each cycle count is the fraction of cycles that are matched by the mechanism rather than 
in recourse.

Mechanism Welfare OO? O[RS] ORU OSU OUU RRS SSS

no pooling 29.73 (0.24) 153 572 1205 1479 81 573 369
max matching 39.51 (0.23) 1 50 1694 93 428 1686 1073

3-rCM-all-c 35.40 (0.20) 164 480 1203 1623 83 1055 505
0 3.54 2.74 0.92 0 46.16 27.52

3-xCM-all-t 37.56 (0.22) 299 20 2408 200 170 0 1263
100 100 100 100 100 – 100

3-Bonus-all-c 34.62 (0.20) 175 478 1167 1586 82 568 515
1.14 0 0 0 0 0 28.93

Table 11
Total count of matched pair-types and matched 2-cycle types for each mechanism across all trials. Uniform PRA model, with m = 6 hospitals each having 
n = 12 donor–patient pairs.

Mechanism #O #R #S #U #OU #RR #SS

no pooling 6216 6075 6288 5205 2252 1512 1176
max matching 6337 10 046 8538 6684 4041 2444 1752

3-rCM-all-c 6458 8547 7836 5478 2368 23 145 1454
1.8 30.2 19.5 1.7 1.9 3.3 20.5

3-xCM-all-t 6258 9847 8073 5874 2646 3701 1999
100 100 100 100 100 100 100

3-Bonus-all-c 6409 8464 7398 5422 2368 2798 1468
0.9 29.6 14.5 1.0 2.1 44.8 21.4

Relative to the welfare obtained without pooling, the most important gains in xCM come from the matching of additional 
RR and SS cycles.26

Tables 10 and 11 illustrate the welfare also allowing 3-cycles, again adopting all-t for 3-xCM and all-c for 3-rCM and 
3-Bonus. Table 10 provides a total count of the different types of 3-cycles in the matchings. Table 11 provides a summary 
count of the total number of OD, R, S, and UD pair-types matched, and the main types of 2-cycles matched. The results are 
qualitatively unchanged from the setting with 2-cycles, with the same welfare ranking between mechanisms. There is also 
a significant benefit from pooling.27

Table 12 summarizes the welfare in each mechanism across the three different environments, and compares with the 
welfare without pooling. The welfare is computed as the average fraction of pairs matched relative to those in a maximum 
matching when all lists are pooled. The efficiency of xCM-all-t is between 98% and 99% for 2-cycles and 93% and 95% for 
3-cycles. The efficiency of Bonus under canonical deviations is generally worse than rCM under canonical deviations.

7.3. Multi-hospital kidney exchange with non-uniform PRA

Table 13 summarizes the incentives to deviate to the canonical strategy in each mechanism, presenting this as a fraction 
of the utility from truthful reports, and considering non-uniform PRA. For xCM with 2-cycles there is no incentive to deviate. 

26 The main inefficiency in xCM arises because fewer OU pairs and thus fewer UD pairs are matched. Bonus also matches RR and SS pairs, but because 
hospitals use canonical deviations the other types of matches occur in recourse.
27 The main inefficiency in 3-xCM-all-t relative to the maximum matching occurs because fewer UD and S pairs match in xCM, due to fewer OD-UD cycles 

and RRS cycles, respectively. It seems likely that the efficiency of 3-xCM could be further improved when 3S-perfect does not hold by facilitating RRS cycles.
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Table 12
Welfare summary (uniform PRA): Average ratio (std error) of the total number of pairs matched relative to the 
size of a maximum matching.

Mechanism (m,n) = (# hospitals, # pairs per hospital.)

(4, 18) (6, 12) (12, 6)

no pooling 0.771 (0.006) 0.682 (0.005) 0.505 (0.005)
3-no pooling 0.845 (0.008) 0.759 (0.007) 0.535 (0.005)

rCM-all-c 0.957 (0.007) 0.943 (0.007) 0.943 (0.007)
3-rCM-all-c 0.908 (0.008) 0.893 (0.008) 0.875 (0.006)
xCM-all-t 0.994 (0.001) 0.991 (0.001) 0.982 (0.001)
3-xCM-all-t 0.959 (0.001) 0.951 (0.002) 0.935 (0.002)
Bonus-all-c 0.952 (0.007) 0.933 (0.007) 0.912 (0.007)
3-Bonus-all-c 0.899 (0.008) 0.872 (0.008) 0.823 (0.006)

Table 13
Incentive summary (non-uniform PRA): Average ratio (std error) of the total number of pairs matched by a hos-
pital that uses the canonical deviation compared to the total number matched when truthful, and when other 
hospitals are truthful.

Mechanism (m,n) = (# hospitals, # pairs per hospital.)

(4, 18) (6, 12) (12, 6)

rCM 1.121 (0.008) 1.099 (0.011) 1.059 (0.016)

3-rCM 1.064 (0.008) 1.079 (0.011) 1.074 (0.012)

xCM 1.008 (0.009) 0.992 (0.011) 0.990 (0.016)

3-xCM 1.009 (0.011) 1.016 (0.013) 1.030 (0.015)

Bonus 1.123 (0.010) 1.089 (0.013) 1.061 (0.020)

3-Bonus 1.167 (0.014) 1.152 (0.017) 1.099 (0.020)

Table 14
Welfare summary (non-uniform PRA): Average ratio (std error) of the total number of pairs matched relative to 
the size of a maximum matching.

Mechanism (m,n) = (# hospitals, # pairs per hospital.)

(4, 18) (6, 12) (12, 6)

rCM-all-c 0.947 (0.005) 0.946 (0.005) 0.948 (0.005)
3-rCM-all-c 0.890 (0.005) 0.887 (0.005) 0.890 (0.005)
xCM-all-t 0.977 (0.001) 0.976 (0.001) 0.976 (0.001)
3-xCM-all-t 0.891 (0.001) 0.887 (0.001) 0.892 (0.001)
Bonus-all-c 0.864 (0.005) 0.831 (0.005) 0.785 (0.005)
3-Bonus-all-c 0.791 (0.004) 0.741 (0.004) 0.666 (0.004)

For xCM with 3-cycles there may be a very small benefit, but the results are often within the standard error. On the other 
hand, rCM and Bonus remain vulnerable to canonical deviations. Table 14 presents a summary of the welfare properties, 
relative to the maximum matching on the pooled lists. We adopt all-t for xCM and all-c for rCM and Bonus. With 
2-cycles, the welfare ranking remains xCM-all-t > rCM-all-c > Bonus-all-c. For 3-cycles, the welfare of 3-rCM-all-c and 
3-xCM-all-t are very similar, confirming that larger hospitals and more hospitals are important for 3-xCM in non-uniform 
PRA environments.

7.4. Additional experiments with many, small-sized hospitals

In this set of experiments we compare xCM and Bonus in environments for which the theory suggests that Bonus
should be more suited. For this purpose, we increase the number of hospitals and reduce their individual sizes, considering 
2-cycles and the uniform PRA model. All standard errors were computed on 1000 bootstrap samples.

We start with m = 24 hospitals, with n = 10 pairs each, and set hospitals H2 through H24 to truthful reporting. Then, un-
der Bonus, hospital H1 matches +0.2 (se= 0.03) more pairs/experiment in canonical deviation than in truthful reporting. 
In contrast, under the xCM mechanism, H1 achieves −0.06 (se= 0.02) fewer matches if it canonically deviates. There is also 
a statistically significant difference in the equilibrium efficiency of the two mechanisms: Bonus achieves 121.5 (se= 0.28) 
total matches on average under canonical deviation by all hospitals, whereas xCM achieves 130.6 (se= 0.28) total matches 
on average under truthful reporting by all hospitals.

Similarly, for m = 30 and n = 8 pairs each, a deviating hospital achieves +0.1 (se = 0.03) more matched pairs when 
deviating under Bonus but incurs a loss of −0.05 pairs (se = 0.02) under xCM. Furthermore, Bonus achieves 119.8 
(se= 0.3) total matches on average under the canonical deviation by all hospitals, whereas xCM achieves 130.03 (se= 0.3) 
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total matches on average under truthful reporting by all hospitals. While the incentive issues in Bonus are mitigated as the 
number of hospital increases, Bonus still remains vulnerable to deviations for up to 30 hospitals.

Appendix A. Additional proofs

Theorem 4. The xCM mechanism is EPIC and 2-way efficient for properties (i) S-perfect and R-perfect on compatibility graphs the size 
of every marginal economy and larger, and (ii) OD/UD-perfect on every hospital’s compatibility graph.

Lemma 6. Fix any hospital h. Assuming the S-perfect and R-perfect property for compatibility graphs the size of the marginal economy 
without h and larger, and the OD/UD-perfect property for the reports of hospitals other than h, then for any strategy s′

h of h, the xCM
mechanism satisfies the following properties:

1. In Step 1 with regard to S pairs, and for any type T ∈ {O, A, B, AB}:
(i) the matching μxCM is maximum on the subgraph of combined graph G ′⊕ restricted to T–T pairs,

(ii) hospital h matches all except for at most one reported T–T pair, and if the parity of τ ′⊕ is even then it matches all reported T–T 
pairs, and

(iii) hospital h matches all reported T–T pairs with non-zero probability when at least one hospital j �= h reports an odd number 
of T–T pairs.

2. In Step 2 with regard to R pairs, and assuming α′⊕ ≥ β ′⊕ , then,
(i) all reported B–A pairs are matched, and the matching μxCM is maximum on the subgraph of combined graph G ′⊕ restricted to 

R pairs,
(ii) if (α′

h ≤ β ′
h) or (α′⊕ = β ′⊕) then all reported A–B pairs of hospital h are matched, else the expected number of reported A–B 

pairs matched is,

β ′
h + min

(
α′

h − β ′
h, guniform(z−h,AB, xBA)

)
,

where z−h,AB and xBA are as defined in the xCM mechanism.
2′ . Symmetrically for the case that β ′⊕ > α′⊕ .
3. In Steps 3 and 4, any additional pairs that are matched involve an OD pair of hospital h.

Proof. Consider hospital h. Let G ′
−h denote the combined graph from hospitals other than h.

Consider any T ∈ {O, A, B, AB}.
1 (ii): If τ ′⊕ is even, then a maximum matching on the subgraph is perfect by the S-perfect property, and satisfies 

constraints (7). In particular, hospital h matches all its reported T–T pairs. If τ ′⊕ is odd, consider two cases. If τ ′
h is odd, 

then the following almost-perfect matching exists by the S-perfect property and satisfies all constraints (7): match every 
T–T pair of every hospital except h and all but one T–T pair of hospital h. If τ ′

h is even, then some other hospital j �= h must 
have an odd parity T–T graph and the following almost-perfect matching exists by the S-perfect property and satisfies all 
constraints (7): match every T–T pair of all hospitals other than h and j, every pair but one of j, and all pairs of h. Because 
there exists an almost-perfect matching that satisfies the constraints, then the matching μT computed in Step 1 must leave 
h with at most one unmatched T–T pair. This also establishes 1 (i) since in both cases there is a maximum matching that 
satisfies constraints (7).

1 (iii): Let j �= h denote a hospital with an odd parity T–T graph, and consider the interesting case, where the parity τ ′⊕
is odd (otherwise, there is a perfect matching). Whatever the parity of τ ′

h , the almost-perfect matching that matches every 
T–T pair of every hospital except j exists (by the S-perfect property), and satisfies all constraints. Because of this, and since 
the maximum matching must leave one T–T unmatched and Step 1 selects matching μT at random, the probability that all 
T–T pairs of h are matched is non-zero.

2: For the R-subgraph, and the case α′⊕ ≥ β ′⊕ . A maximum matching includes all B–A pairs by the R-perfect property.
2 (i): We construct a maximum matching that satisfies constraints (8) with q = 0, and is essentially equivalent to the 

matching computed by xCM (under the R-perfect property). For this, order the hospitals such (α′
j ≤ β ′

j ) for hospitals j ∈
{1, . . . , r}, and not for j ∈ {r + 1, . . . , m}. Consider the graph G† induced by including the following number of A–B and B–A 
pairs for each hospital (and corresponding edges),(

α′
1, β

′
1

)
, . . . ,

(
α′

r, β
′
r

)
,
(
β ′

r+1 + yr+1,AB, β ′
r+1

)
, . . . ,

(
β ′

m + ym,AB, β ′
m

)
,

where quotas y j,AB are as defined by xCM. In particular, 
∑

j>r y j,AB = ∑
j≤r(β

′
j −α′

j), so that 
∑

j≤r α′
j +

∑
j>r(β

′
j + y j,AB) =∑

j β
′
j , and G† is a balanced bipartite graph. By the R-perfect property, there exists a perfect matching on G† . Moreover, this 

matching is maximum on the R-subgraph because it includes all B–A pairs. Because all B–A pairs are matched, the matching 
satisfies the B–A constraints (8) with q = 0. The A–B constraints are satisfied for j ≤ r, because m j + max(0, y j,AB + δ j) =
m j + δ j + y j,AB = α′

j + 0. The A–B constraints are satisfied for j > r because m j + max(0, y j,AB + δ j) = m j + δ j + y j,AB =
β ′

j + y j,AB. Because the A–B constraints hold with equality, the maximum matching determined by xCM must match the 
same number of A–B and B–A pairs for each hospital.
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2 (ii): If α′⊕ = β ′⊕ then r = m and α′
j = β ′

j for all hospitals j. If α′
h ≤ β ′

h then the matching includes all reported A–B pairs 
of hospital h by construction. Otherwise, if α′⊕ > β ′⊕ and α′

h > β ′
h then the expected number of reported A–B pairs matched 

is β ′
h = mh + δh plus the expected size of quota yh,AB, which is min(α′

h − β ′
h, guniform(z−h,AB, xBA)).

3: In regard to Step 3: by (1) and (2) there are no R–R or S–S edges in the remaining compatibility graph, and thus the 
only possible matches involve OD pairs. In regard to Step 4: there are no OD pairs remaining from other hospitals because 
of the OD/UD-assumption, and no remaining (cross-hospital) S–S matchings or R–R matchings because of Step 1 and Step 2 
of xCM and the R-perfect and S-perfect assumptions. �

The expectation in the statement of the following lemma is taken with respect to randomization internal to xCM.

Lemma 7 (Best response in xCM). Fixing the reports of other hospitals, if a strategy sh of hospital h with graph Gh,

(i) matches every OD pair in Gh with a UD pair in Gh, and maximizes across all strategies the expected number of UD pairs in Gh
matched with OD pairs of other hospitals,

(ii) maximizes across all strategies the expected number of S pairs in Gh matched, not counting S pairs that match with OD pairs of Gh, 
and

(iii) maximizes across all strategies the expected number of R pairs in Gh matched, not counting R pairs that match with OD pairs of 
Gh, then

strategy sh is a best-response.

Proof. Let NR and N S denote the number of R and S pairs matched by sh . The only possible improvement is some strategy 
s′

h that changes the matching so that k > 0 of its OD pairs match with some of the R or S pairs in Gh . This must decrease 
the number of its UD pairs that match by at least k (by (i)). Suppose it increased the number of its R or S pairs that match 
by more than k. Then more than NR + N S pairs match without using an OD pair of h, a contradiction with (ii) and (iii). This 
completes the proof. �
Proof of Theorem 4. Consider hospital h, and fix the (truthful) reports G−h of the other hospitals. To establish the EPIC 
property, we show that a truthful strategy for h meets the requirements of Lemma 7.

(i) Immediate, by OD/UD-perfect and Step 3, and property (3) of Lemma 6, which precludes any OD pairs of other 
hospitals matching with a UD pair of h.

(ii) Immediate, because there are no matches that do not involve an OD pair of h in Steps 3 or 4 of xCM by property (3) 
of Lemma 6.

Left to argue is that truthful reporting maximizes the number of S pairs that match in Step 1. Consider some type T–T 
for some T ∈ {O, A, B, AB}. First, if τ⊕ is even then with the truthful strategy, h matches all T–T pairs by Lemma 6 prop-
erty (1) (ii), and truthful reporting is optimal. Consider τ⊕ is odd, and two cases. (Case 1) τh is even. In this case, there is 
at least one j �= h with an odd parity number of T–T pairs and h will match all T–T pairs with non-zero probability when 
reporting truthfully by Lemma 6 property (1) (iii). It is worse to send an odd number and hold back an odd number, because 
all those sent by h would match by Lemma 6 property (1) (ii) and at least one would be unmatched in the recourse action. 
Holding back an even number of T–T is worse because this reduces the number of maximum matchings computed in Step 1 
of xCM that include all T–T pairs of h, reducing the probability that μT includes all reported T–T pairs (since a maximum 
matching is selected at random). (Case 2) τh is odd. If at least one j �= h has an odd parity number of T–T pairs then the 
analysis proceeds as in case 1, but considering sending an even number and holding back an odd number, and then holding 
back an even number. Otherwise, if all the other hospitals have an even number of T–T pairs then it is possible that h has 
one reported pair unmatched by xCM with probability one. But now if h sends an even number it matches all it sends by 
Lemma 6 property (1) (ii) but necessarily fails to match at least one of the odd number it holds back. Sending an odd num-
ber and holding back an even number leaves unchanged that one reported pair is unmatched by xCM with probability one.

(R pairs) In regard to R pairs, there are no matches that do not involve an OD pair in h in Steps 3 or 4 of xCM by 
property (3) of Lemma 6. Left to argue is that truthful reporting maximizes the number of R pairs matched in Step 2. 
Assume without loss of generality that α⊕ ≥ β⊕ , and further assume that αh > βh and α⊕ > β⊕ , because hospital h will 
otherwise match all pairs by Lemma 6 (2 (ii)) when reporting truthfully. Given this, then by Lemma 6, (2) (ii), when 
reporting truthfully the hospital matches in expectation 2βh + min(αh − βh, g−h(xBA)) R pairs, where shorthand g−h(xBA) =
guniform(z−h,AB, xBA), and xBA is the total number of excess supply of B–A pairs reported by other hospitals. The interesting 
case is when αh − βh > g−h(xBA) (otherwise it again matches all its R pairs), so that truthful reporting matches an expected 
number of 2βh + g−h(xBA) = #truth pairs.

Consider some non-truthful report of R pairs. Let m′
h denote the number of R pairs of each type matched before addi-

tional assignment from the uniform rule; i.e., the quantity m∗
h in xCM. Let q′

h,AB = m′
h + cAB and q′

h,BA = m′
h + cBA denote the 

expected, total number of reported A–B and B–A pairs of h matched in Step 2, where cAB, cBA ≥ 0 denote additional matches 
through the use of the uniform rule. We proceed by case analysis:

(Case 1) α′⊕ ≥ β ′⊕ , so that A–B pairs remain on the long-side. In this case, the best possible outcome for h is that it 
matches an expected number, 2(βh − q′ ) + q′ + q′ = 2βh + q′ − q′ = 2βh + cAB − cBA R pairs in total, where 
h,BA h,AB h,BA h,AB h,BA
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this represents matching every unmatched B–A pair with an A–B pair in Step 3 and recourse. The adjusted supply of excess 
B–A pairs in the uniform rule is xBA + cBA, i.e., the same number from other hospitals and any additional pairs of h that 
are in excess supply and matched. Based on this, we have cAB = g−h(xBA + cBA) ≤ g−h(xBA) + cBA, where the inequality is by 
Lemma 3, property (1). Therefore the best possible outcome is βh + cAB − cBA ≤ 2βh + g−h(xBA) = #truth.

(Case 2) α′⊕ < β ′⊕ , so that B–A pairs are now on the long-side, and all reported A–B pairs match, by the R-perfect 
property. Because the number of A–B pairs and B–A pairs matched must be equal, we have:

α′
h +

∑
j �=h

α j ≤ q′
h,BA +

∑
j �=h

β j (A.1)

where the right-hand side is the number of B–A pairs of h matched and the total number of B–A pairs in the supply from 
others. This simplifies to,

α′
h − q′

h,BA ≤
∑
j �=h

β j −
∑
j �=h

α j ≤
∑
j �=h

β j −
∑
j∈L

q j,AB −
∑

j /∈{L∪h}
α j, (A.2)

where q j,AB ≤ α j is the expected number of A–B pairs matched to j at truth, and L = { j �= h, α j > β j} are the hospitals long 
A–B. But now we can also write the balance of A–B pairs and B–A pairs matched at truth,

βh + g−h(xBA) +
∑
j∈L

q j,AB +
∑

j /∈{L∪h}
α j =

∑
j

β j, (A.3)

where all B–A pairs are matched and the left-hand side is the expected number of A–B pairs matched. This simplifies to, 
g−h(xBA) = ∑

j �=h β j − ∑
j∈L q j,AB − ∑

j /∈{L∪h} α j , and so from (A.2) we have α′
h − q′

h,BA ≤ g−h(xBA). Now, the best possible 
outcome for h in this case is that it matches, in expectation, 2(βh −q′

h,BA) +α′
h +q′

h,BA = 2βh +α′
h −q′

h,BA ≤ 2βh + g−h(xBA) =
#truth. The first term assumes that all B–A pairs that are unmatched can be matched with A–B pairs in Step 3 or a recourse 
action, and adds the number of A–B and B–A pairs matched.

(OD-UD pairs) Finally, note that the truthful strategy matches all OD pairs with UD pairs in Step 3 because of the 
OD/UD-perfect property of each individual hospital’s compatibility graph.

For 2-way efficiency, by Lemma 6 the matching is maximum on the subgraphs of the combined graph restricted to T–T 
pairs (for all blood-types T) and restricted to R pairs. This follows from the S-perfect and R-perfect properties. In addition, 
every OD pair is matched to a UD pair. The 2-way efficiency property follows by Theorem 1, since the matching is regular 
on the combined graph. �
Appendix B. Detail for tests of PM properties

In matchings with only 2-cycles, we compute the violations of the PM properties in simulation as follows:

• For the R-perfect property, we obtain G R the R-subgraph of G̃n and then remove a subset of the long-side at random 
such that the resulting R-subgraph is balanced. We perform a random matching on the balanced subgraph and then 
record the number of unmatched R pairs as a fraction of the number of pairs in a maximum matching in G̃n .

• For the OD/UD-perfect property, we compute a maximum matching on the subgraph of OD and UD pairs and record 
the number of unmatched OD pairs as a fraction of the number of pairs in a maximum matching in G̃n .

• For the S-perfect property, we obtain G S , the S-subgraph of G̃n , and for every component T–T, we remove one pair 
at random if there is an odd number of pairs and perform a maximum matching. We record the total number of 
unmatched S pairs (determined in this way) as a fraction of the number of pairs in a maximum matching in G̃n .

In the presence of 3-cycles, we compute the violations of the assumed PM properties in our simulations as follows:

• For the R-perfect property, we obtain the extended R-subgraph of G̃3
n and remove R pairs (if needed) in order to make a 

balanced graph of R and virtual R pairs. For example if #A–B > #B–A + #virtual B–A, we will remove (#A–B − #B–A −
# virtual B–A) pairs from the A–B pairs, uniformly at random. Similar to 2-cycles, we compute a maximum matching 
allowing for 3-cycles that maximize the number of matched R pairs, and record the number of unmatched R pairs as a 
fraction of the number of pairs in a maximum matching on G̃3

n .
• For the OD/UD-perfect property, we first obtain all UD and AB–O pairs that can be maximally matched in OUU matches. 

We remove these pairs from G̃3
n , and then keep only the remaining OD/UD pairs and perform a 2-cycle maximum 

matching. We record the number unmatched OD pairs in the final step and number of unmatched AB–O pairs in the 
first step, as a fraction of the number of pairs in a maximum matching on G̃3

n .

• For the S-perfect property, we obtain G S , the S-subgraph of G̃3
n , and for every component T–T, we perform a maximum 

matching with 3-cycles. We record the total number of unmatched S pairs (computed in this way) as a fraction of the 
number of pairs in a maximum matching on G̃3

n .
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Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.geb.2015.01.001.
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