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Abstract

The problem of separating a class of TSP inequalities consists in

devising a method that, given a fractional point x� for a relaxation of

the TSP, either �nds an inequality in the given class of TSP inequali-

ties that is violated by x� or determines that there are no such violated

inequalities. Both heuristic and exact e�cient separation algorithms

are sought after so that we can more easily solve TSP instances when

using a cutting plane approach such as branch-and-cut.

We present e�cient methods for exactly separating over very large

classes of TSP inequalities. These inequality classes arise from node

lifting familiar TSP inequalities.

Key words: traveling salesman problem,separation,lifting,polytope,

inequalities.

1 Introduction

Given a complete graph Kn = (V;E) with costs on the edges, the traveling
salesman problem (TSP) consists in �nding a minimum cost Hamilton cycle
in Kn. This problem is also called the symmetric traveling salesman problem
to distinguish it from the asymmetric traveling salesman problem which is
formulated on a directed graph. It is known to be NP-hard, even when the
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costs satisfy the triangle inequality, i.e. when cij + cjk � cik for all i; j; k 2 V
(see [8]).

For any edge set F � E and x 2 RE, let x(F ) denote the sum
P

e2F xe.
For any node set W � V , let �(W ) denote fuv 2 E j u 2 W; v 62 Wg. The
usual integer programming (IP) formulation for the TSP is as follows:

minimize cx (1)

subject to x(�(v)) = 2 for all v 2 V; (2)

x(�(S)) � 2 for all S � V; (3)

3 � jSj � n� 3;

0 � xe � 1 for all e 2 E; (4)

x integer. (5)

The vector x here is interpreted as an incidence vector of a Hamilton
cycle, i.e. xe = 1 for each e 2 E that is in the Hamilton cycle, and xe = 0
for all other edges. Constraints (2) are called the degree constraints, and
constraints (3) are called the subtour elimination constraints.

In an attempt to solve a given instance of the TSP, one may solve a
linear programming relaxation of the TSP for this instance. For instance, (1)
without constraints (5) is a natural linear programming relaxation of the TSP
called the subtour relaxation. If such a relaxation yields an integral solution,
then this solution is the incidence vector of a minimum cost Hamilton cycle
for this instance. In trying to acheive such an integral optimal solution
for this relaxation, one can use some of the valid inequalities of the TSP,
including but not limited to those in (1), as constraints of the relaxation.
Usually, this attempt will fail at �rst, yielding a fractional optimal solution
x� for this relaxation.

However, if one can �nd a valid inequality of the TSP that cuts o� x�,
then one could add this inequality as a constraint in this linear programming
relaxation, and resolve this relaxation. The task of �nding such an inequal-
ity e�ciently generally goes by the name of the separation problem. This
inequality which can now be added to the linear programming relaxation is
called a cutting plane.

The following Cutting plane algorithm could in theory be used to solve
the traveling salesman problem, if one could solve the separation problem.

(i) Let an initial LP relaxation of the TSP be the current LP relaxation.
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(ii) Find the optimal solution x� to the current linear programming relax-
ation of the TSP. If x� is the incidence vector of a Hamilton cycle,
STOP.

(iii) Solve the separation problem, obtaining a valid TSP inequality ax � b
such that ax� < b.

(iv) Add the cutting plane ax � b to the current LP relaxation and make
the resulting new LP relaxation the current LP relaxation. Go to step
(ii).

However, in practice, the more practical Branch and Cut algorithm is em-
ployed for solving instances of the TSP; see [14].

A valid inequality is said to be facet-de�ning if it is not a valid equation
and it also can not be expressed as a linear combination of valid inequalities
and equations, where the multipliers for the inequalities are all non-negative.
Prevailing opinion has it that the best inequalities to use in a Branch and
Cut or a Cutting plane algorithm are the facet-de�ning ones. Many classes
of facet-de�ning and valid inequalities of the TSP have been found; see [9].

A separation method that has a guarantee of �nding a violated inequality
in a class of inequalities or showing that none of the inequalities in this class
are violated by x� is called an exact separation method. Both heuristic and
exact separation methods have been developed for some of these classes of
inequalities of the TSP. Examples of heuristic separation methods can be
found in [15], and more recently in [11] and [1]. We wish for both the exact
and heuristic separation methods to be able to be carried out in a polynomial
amount of time in terms of the number n of vertices in our TSP instance.

Until recently, only two classes of facet-de�ning inequalities could be sep-
arated exactly in polynomial time. The subtour elimination inequalities have
an exact separation algorithm based on �nding a minimum cut in a weighted
graph with weights given by x�e for all e 2 E. The other class of inequalities
which could be separated exactly were the 2-matching constraints, using the
algorithm developed by Padberg and Rao (1982); see [13]. More recently,
we have learned how to separate bipartition inequalities (which the comb in-
equalities and clique tree inequalities are subclasses of) with a �xed number of
handles and teeth; see [2]. A little progress has also been made on separating
comb inequalities regardless of the number of teeth; see [6].
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In this paper, we develop an easy exact method for separating all classes
of inequalities which are de�ned using a lifting procedure called node lifting,
introduced in [12]. Node lifting is a generalization of 0 node-lifting, see [12].
Zero node-lifting will be de�ned in the next section. If additional variables are
allowed, such an exact separation method was already accomplished by the
author in [3] and [4], in which a linear programming relaxation called cycle-
shrink, which has the usual variables plus additional cycle-shrink variables,
was used.

2 0 Node-Lifting

Two valid inequalities for a polyhedron are said to be equivalent if one can
obtain one of these inequalities by adding a non-negative multiple of the
other inequality and a linear combination of equations of the polyhedron
together. For the TSP, the equations are the degree constraints. When we
talk about TSP inequalities, we tend to think of equivalent inequalities as
di�erent forms expressing the same inequality. For instance, given vertex
sets H; T1; T2; T3 � V satisfying certain properties, we can de�ne a three-
tooth comb inequality. But, because of the degree constraints, there is a class
of equivalent inequalities which we would describe as all being forms of a
given individual three-tooth comb inequality.

We now de�ne the class of three-tooth comb inequalities and illustrate
two di�erent forms in which any individual three-tooth comb inequality can
be expressed. A three-tooth comb consists of a handle H � V and three teeth
Ti � V for i = 1; 2; 3 satisfying the following:

(i) The three teeth are pairwise disjoint.

(ii) The handle intersects all three teeth.

(iii) None of the teeth are included in the handle.

We show a three-tooth comb in Figure 1.
Traditionally, a three-tooth comb inequality with handle H and teeth

Ti; i = 1; 2; 3 is written in closed form as follows:

x(E(H)) +
3X

j=1

x(E(Tj)) � (jHj � 1) +
3X

j=1

(jTjj � 1)� 1 (6)
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Figure 1: a three-tooth comb

Of course, there may be more than one term involving a common variable xe,
which means one must combine these like terms to obtain the �nal expression
for this inequality.

An equivalent form of this three-tooth comb is as follows:

x(�(H)) +
3X

j=1

x(�(Tj)) � 10 (7)

Denote the coe�cient for variable xe after like terms are collected by �e. One
interesting thing about this form is that these coe�cients satisfy the triangle
inequality; i.e. for any three distinct vertices i; j; k 2 V , we have �ik �
�ij + �kj. However, if one subtracts any multiple of the degree constraint
x(�(i)) = 2 from this inequality, then these coe�cients no longer satisfy
the triangle inequality, regardless of which vertex i 2 V is used. When the
coe�cients �e satisfy these two properties, the inequality is said to be in tight
triangular form.

Any TSP inequality can be put uniquely, up to a constant multiple, into
tight triangular form, which was introduced by Naddef and Rinaldi; see [12].
An inequality �x � �0 is in tight triangular (TT) form if and only if:

i) The coe�cients of � satisfy the triangle inequality.

ii) For all w 2 V , there exists u; v 2 V such that �uv = �uw + �vw.
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Consider a facet-de�ning inequality �x � �0 in TT form. If none of the
left hand side coe�cients are 0, then �x � �0 is said to be a simple inequality.
De�ningH := fv1; v2; v3g and Ti := fvi; yig for i = 1; 2; 3 (see Figure 1) yields
a simple three-tooth comb inequality. But if T1 = fv1; y1; jg for some vertex
j 2 V that wasn't in the original comb, but the handle and the other teeth
remain the same, then the resulting comb inequality would not be simple,
but would be a 0 node-lifting of the previous inequality, where the vertex j is
a 0 node-lifting of vertex y1. More formally, let hx � h0 be a facet-de�ning
TSP inequality in TT form on the complete graph Kn = (V(n); E(n)) of n
vertices. Add k more vertices to V = V(n), obtaining the vertex set V(n+k).
We 0 node-lift node u to obtain the inequality h�x� � h0, where:

i) h�e = he for all e 2 E(n)

ii) h�ij = huj 8i 2 V(n+k) n V(n) 8j 2 V(n) n fug

iii) h�ij = 0 8i; j 2 (V(n+k) n V(n)) [ fug

We call the vertices in V(n+k) n V(n) copies of u. It has been proven that
every facet-de�ning inequality is derivable from a simple inequality through
0 node-lifting; see [12]. It would be nice if the 0 node-liftings of any simple
facet-de�ning inequality were always facet-de�ning. For the simple inequali-
ties examined so far, this has been observed to be the case. In [12], su�cient
conditions for this to hold are given.

We now show that the concept of 0 node-lifting can be used to de�ne
classes of inequalities. Consider the subcollection of simple inequalities de-
�ned on complete underlying graphs having possibly di�erent vertex sets,
but with each of these vertex sets being a subset of V := f1; : : : ; ng. We par-
tition this subcollection into classes of inequalities in the following natural
way. Call two simple inequalities isomorphic if a bijective mapping of vertices
transforms one of the inequalities into the other one. That is, if �x � �0 is
de�ned on a complete underlying graph H = (W;E) and �0x � �0 is de�ned
on a complete underlying graph H 0 = (W 0; E 0), then these two inequalities
are isomorphic if there exists a bijective mapping � :W 0 !W such that

��(i)�(j) = �0
ij for all (i; j) 2 E 0 (8)

and hence X
(i;j)2E0

��(i)�(j)x�(i)�(j) =
X

(i;j)2E0

�0
ijxij (9)
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This partitions the simple inequalities into isomorphism equivalence classes.
For example, suppose one has the following simple comb inequality on an

underlying graph H = (W;E), where W := f1; 2; 3; 4; 5; 6g:

x(�f1; 2; 3g) + x(�f1; 4g) + x(�f2; 5g+ x(�f3; 6g) � 10 (10)

Suppose one also has the simple comb inequality on an underlying graph
H 0 = (W 0; E 0), where W 0 := f1; 3; 5; 7; 9; 11g:

x(�f1; 3; 7g) + x(�f1; 5g) + x(�f3; 9g+ x(�f7; 11g) � 10 (11)

The mapping � : W 0 ! W de�ned by

�(1) = 1 �(3) = 2 �(7) = 3
�(5) = 4 �(9) = 5 �(11) = 6

shows that these inequalities are isomorphic. That is, replacing 3 in (11) with
2, and 7 in (11) with 3, etc., makes inequality (11) identical to inequality
(10). Hence, one of these equivalence classes would be the class of simple
three-tooth comb inequalities de�ned on a 6 node graph.

One can describe a particular simple inequality in this equivalence class by
giving just an ordered listing of vertices in the inequality, where the ordering
has a meaning speci�c to the class of inequalities to which our particular
inequality belongs. For instance, one could describe a particular simple 6
node three-tooth comb by giving �rst the vertex in the intersection of the
handle and tooth 1, then the vertex in the intersection of the handle and
tooth 2, and so on. So, the ordered listing of vertices for (11) would be
(1; 3; 7; 5; 9; 11). Of course, we may permute the teeth, so (1; 7; 3; 5; 11; 9)
would also describe (11), but this should not bother us. The meaning of the
ordering in such a listing of vertices will also clearly change depending on
which class of simple inequalities the inequality we are describing belongs
to. We shall refer to such an ordered listing as a backbone of the particular
inequality. We shall refer to the set of the vertices in the backbone as the
backbone set.

Now, let fx � f0 be a facet-de�ning TT inequality. As stated before, it is
then derivable from some simple inequality hx � f0 through zero node-lifting.

Call the equivalence class of simple inequalities to which hx � f0 belongs
S. We then extend the inequalities in the above partition to include all the
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Figure 2: a simple 7 node three-tooth comb

zero node-liftings of hx � f0 and its isomorphisms so that fx � f0 is put
into the equivalence class S as well. Moreover, we extend the de�nition of a
backbone so that a backbone for hx � f0 is now also a backbone for fx � f0.

For example, consider the comb inequality:

x(�f1; 10; 2; 20; 200; 3g)+x(�f1; 10; 4g)+x(�f2; 20; 200; 5g)+x(�f3; 6g) � 10 (12)

Here, 10 is a zero node-lifting of node 1, and 20 and 200 are zero node-liftings
of node 2. Hence, inequality (12) belongs in the same equivalence class of
inequalities as inequality (10). So, if S6 were the class of all simple three-tooth
comb inequalities de�ned on a 6 node graph, than S6 would be extended to
include a large subclass of the three-tooth comb inequalities. This new class
would still not be the entire class of three-tooth comb inequalities because it
would be missing the following simple three-tooth comb inequalities.

7 node simple three-tooth comb inequality: The simple three-tooth comb
inequality on an underlying graphH = (W;E), whereW := f1; 2; 3; 4; 5; 6; 7g,
de�ned by:

x(�f1; 2; 3; 7g) + x(�f1; 4g) + x(�f2; 5g+ x(�f3; 6g) � 10 (13)

Denote the set of all isomorphisms of such an inequality by S7. The corre-
sponding 7 node three-tooth comb is shown in Figure 2.

8



'
&

$
%

H

7

t

T1 T2 T3

�

�

�

�

�

�

�

�

�

�

�

�

1

t
2

t
3

t

4

t
5

t
8

t
6

t

Figure 3: a simple 8 node three-tooth comb

8 node three-tooth comb inequality: The same inequality as that in S7,
but de�ned on an underlying graphH = (W;E), whereW := f1; 2; 3; 4; 5; 6; 7; 8g.
Denote the set of all isomorphisms of such an inequality by S8. The corre-
sponding 8 node three-tooth comb is shown in Figure 3.

Note that the inequality obtained from an inequality in S6 by simply
adding a node to the underlying graph is isomorphic to an inequality in S7

since the handle can be complemented to include this added node.
The class Sall = S6 [ S7 [ S8 is the class of all simple three-tooth comb

inequalities. When one takes all the 0 node-liftings of inequalities in Sall,
then one �nally obtains the class C3 of three-tooth combs. In the next section,
we show that by also adding the lifting procedure called 1-node lifting, we
can obtain the class C3 by lifting inequalities in S6.

3 1-Node and Triangular Lifting

Let cx � c0 be a simple inequality in TT form de�ned on the underlying
graph Kn = (V;E) whose vertex set V is f1; : : : ; ng. Suppose we wish to add
node n + 1 to our underlying graph and this inequality. Consider choosing
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numbers �i for i = 1; : : : ; n such that the following constraints are satis�ed:

�i + �j � cij 8ij 2 E
�i � 0 8i 2 V

(14)

De�ne c by

cij =

(
cij for i; j 6= n + 1
�i for j = n + 1

(15)

We then have the following theorem, which was proved by Naddef and Rinaldi
in [12].

Theorem 1 cx � c0 is a valid TSP inequality on Kn+1.

Proof: Let a Hamilton cycle H in Kn+1 be given. Denote the incidence
vector of H by x. Denote the neighbors of node n + 1 in H by i and j.
Construct a Hamilton cycle H in Kn by removing node n + 1 from H and
adding edge ij. Denote the incidence vector of H by x̂. Since cx � c0 is a
valid TSP inequality, we have:

cx̂ � c0:

But, we have:
c � x = cx̂ + �i + �j � cij � cx̂;

because of the constraints in (14) which the numbers �i must satisfy. Com-
bining these inequalities, we get

c � x � c0;

as required. 2

Consider � de�ned by:

�i =

(
cik for i 6= k
0 for i = k

(16)

Then, with c de�ned by (15), the resulting inequality cx � co is a 0 node-
lifting of cx � c0, with node n + 1 being a copy of node k. However, we
shall see that we obtain more than just the 0 node-lifted inequalities with
this lifting procedure. Naddef and Rinaldi in [12] called this lifting procedure
1-node lifting whether or not it coincides with 0 node-lifting.

We are only interested in those vectors � that are extreme points of the
polyhedron P de�ned by the constraints in (14), as the following theorem
shows:
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Theorem 2 If the vector � is not an extreme point of P then, with c de�ned
by (15), the inequality cx � c0 is not facet-de�ning for the TSP on Kn+1.

Proof: Suppose � is not an extreme point of P . Then, we can express � by

� =
1

2
�1 +

1

2
�2;

where �1; �2 2 P nf�g. For i = 1; 2, de�ne ci using �i in (15). De�ne c using
� in (15). Then, it follows that:

c =
1

2
c1 +

1

2
c2

But c1x � c0 and c2x � c0. Therefore, cx � c0 is not facet-de�ning for the
TSP on Kn+1. 2

As before, let cx � c0 be a simple inequality in TT form de�ned on the
underlying graph Kn = (V;E) whose vertex set V is f1; : : : ; ng. Suppose this
time we wish to add nodes n+ 1 through n+ k to our underlying graph and
this inequality. The underlying complete graph is now Kn+k = (Vn+k; En+k).
Consider choosing coe�cients cij subject to the following constraints:

cij � cik + cjk 8i 6= j 6= k 2 Vn+k
cij = cij 8ij 2 E

(17)

Naddef and Rinaldi noted in [12] that cx � c0 is a valid TSP inequality
on Kn+k. In fact, oftentimes one can increase the right hand side by some
amount and still have a valid inequality. They called this lifting procedure
as node lifting. For completeness, we give a proof of this here.

Theorem 3 cx � c0 is a valid TSP inequality on Kn+k.

Proof: Let a Hamilton cycle Hn+k in Kn+k be given. Denote the incidence
vector of Hn+k by xn+k. Do the following procedure for each l = n + k; n +
k � 1; : : : ; n+ 1, starting with l = n + k:

(i)Denote the neighbors of l in the Hamilton cycle H l in the graph Kl by il
and jl.

(ii)Construct the Hamilton cycle H l�1 in the graph Kl�1 by removing node
l from H l and adding edge iljl. Denote the incidence vector of H

l�1 by
xl�1.
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(iii)Decrease l by 1 and if l � n + 1, go back to (i).

Consider the vectors xl for each l = n; : : : ; n+k� 1 to have a component for
each edge e 2 Kn+k by setting xle = 0 when it is otherwise unde�ned.

Let l 2 fn+ 1; : : : ; n+ kg be given. We have that

cxl = cxl�1 + (cill + cjll � ciljl):

Thus, by constraints (17), it follows that

cxl � cxl�1:

Taking the corresponding result for each l 2 fn+1; : : : ; n+kg, and combining
them yields

cxn+k � cxn:

Since cx � c0 is a valid TSP inequality onKn, and c is constrained to coincide
with c on this graph, we have that

cxn = cxn � c0:

Combining these inequalities, we get

cxn � c0;

as required. 2

Once again, we are only interested in those vectors c that are extreme
points of the polyhedron P de�ned by the constraints in (17), as the following
theorem shows:

Theorem 4 If the vector c is not an extreme point of P , then the inequality
cx � c0 is not facet-de�ning for the TSP on Kn+k.

Proof: This follows from the same argument as in Theorem 2. 2

Whenever the right hand side can not be increased, call the inequality
cx � c0 on Kn+k that we obtained from cx � c0 on Kn the triangular lifting
of cx � c0. Hence, triangular lifting could be 0 node-lifting or more generally
1-node lifting. It may also yield something distinct from these two types of
liftings, although we do not yet know of an example of this. In the next
section, we show 1-node liftings for various classes of simple inequalities.
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4 Various 1-Node and Triangular Liftings

Recall from (10) the simple 6 node comb inequality, i.e. in S6, on an under-
lying graph H = (W;E), where W := f1; 2; 3; 4; 5; 6g:

x(�f1; 2; 3g) + x(�f1; 4g) + x(�f2; 5g+ x(�f3; 6g) � 10 (18)

Denote this inequality by cx � 10. When we de�ne c by (15) where �
satis�es (14), then by Theorem 1, cx � 10 is a valid TSP inequality. Due to
Theorem 2, we need to consider only the extreme points � in the polyhedron
de�ned by the constraints in (14).

Consider an extreme point � for (14) de�ned by:

�i =

(
1 for i = 1; 2; 3
2 for i = 4; 5; 6

(19)

The resulting inequality cx � 10 is in fact an inequality in S7, de�ned by
(13). Indeed, this choice of � corresponds to placing vertex 7 in the handle
of a three-tooth comb as indicated by Figure 2.

Now consider � de�ned by:

�i =

(
2 for i = 1; 2; 3
1 for i = 4; 5; 6

(20)

The resulting inequality cx � 10 is again an inequality in S7, but corre-
sponds this time to placing vertex 7 outside of the handle and all the teeth.

We can lift again on either 7 node comb inequality. Suppose we lift on
the �rst of these S7 inequalities, and use � de�ned by:

�i =

(
2 for i = 1; 2; 3;
1 for i = 4; 5; 6; 7

(21)

The resulting inequality cx � 10 is then an S8 inequality whose corre-
sponding three-tooth comb is shown in Figure 3.

We can also choose for � one of the extreme points de�ned by (16). This
is a 0 node-lifting, and corresponds to putting vertex n+1 in the same place
of the three-tooth comb as vertex k.

We called the special case of node lifting where the right hand side re-
mained the same as triangular lifting. The process of starting with a TSP
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inequality in TT form and repeatedly choosing � each time we wish to add
a node to our inequality is sequential 1-node lifting. We also use the term
sequential triangular lifting since Naddef and Rinaldi proved in [12] that
the right hand side does not increase when the resulting inequality is facet-
de�ning. We can see that by performing sequential 1-node lifting on the
three-tooth comb inequalities in S6, we can obtain all three-tooth comb in-
equalities (C3). Call the polyhedron from which we choose � when performing
sequential 1-node lifting the sequential lifting polyhedron.

There is also the triangular lifting which produces the inequality cx �
c0 on Kn+k from cx � c0 via the constraints in (17). Call this kind of
lifting simultaneous triangular lifting. Call the polyhedron de�ned by (17)
the simultaneous lifting polyhedron.

For all the cases involving the three-tooth comb inequality examined so
far, 1-node lifting has a geometric interpretation of putting the new node in a
particular place in the three-tooth comb. We will show that all 1-node liftings
of a three-tooth comb inequality have this geometric interpretation, and give
su�cient conditions for when all the 1-node liftings of a TT inequality have a
similar geometric interpretation. As a result, we see easily that (19),(20),(21),
and (16) are the only kinds of 1-node liftings for the three-tooth comb.

Call a TT inequality cx � c0 cut-based if we have

cx =
X
i

�ix(�(Hi)): (22)

The three-tooth comb inequality is thus a cut-based inequality. In the cut-
based representation of an inequality, we may complement any shore Hi. For
our subsequent convenience, we complement the appropriate shores so that
there are no shores Hi and Hj in the cut-based representation such that
Hi [Hj = V . Call such a cut-based representation a proper representation.

By choosing 4 of the shores Hi in (22) and possibly complementing some
of these 4, we may produce a claw structure, as shown in Figure 4.

One can never get a claw by complementing the shores Hi of the usual
cut-based representation of any bipartition inequality, and in particular any
comb or clique-tree inequality. If there exists a cut-based representation
where this is the case, we say that the given inequality has no claws. We are
now ready to prove our theorem.

Theorem 5 The only 1-node liftings of a cut-based TT inequality cx � c0
are those having a geometric interpretation of putting the new node in the
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intersection of a speci�ed set of intersecting shores Hi in a proper represen-
tation (and no such other shores Hj) if and only if cx � c0 has no claws.

Proof: We prove this theorem by showing that the only extreme points of
the sequential lifting polyhedron are those that have this geometric interpre-
tation. This in turn is shown by actually exhibiting what the minimum of the
following linear program for any arbitrary non-negative objective function b
is provided our inequality has no claws.

minimize b � �
subject to

�i + �j � cij 8ij 2 E
�i � 0 8i 2 V

(23)

If there is a negative bi, then (23) is an unbounded linear program. Without
loss of generality, let

P
i2V bi = 2.

Consider the proper representation

cx =
X
i2I

�ix(�(Hi)):

We construct our proposed optimal solution �� algorithmically as follows.
For each i 2 I, de�ne

Ti =

(
Hi if

P
j2Hi

bj > 1;
V nHi otherwise.

(24)

Then do the following.

(i) Start with ��j = 0 for all j 2 V .

(ii) For each i 2 I, add �i to each ��j for which j 2 V n Ti.

The resulting solution �� is now feasible for (23). Denote the (sequential)
1-node lifted inequality that results from the sequential lifting polyhedron
point �� by cx � c0. De�ne J := fi 2 I jTi = Hig. With n + 1 being the
new node, it can be easily veri�ed that

cx =
X
i2J

�ix(�(Hi [ fn+ 1g)) +
X
i2InJ

�ix(�(Hi)):
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Since the new node n + 1 can only be added to shores Hi and Hj only if
Hi and Hj already intersect because of (24) and

P
i2V bi = 2, the required

geometric interpretation of this 1-node lifting is satis�ed.
Note that it follows from (ii) that

b � �� =
X
i2I

�ib(V n Ti):

Hence, by (24), it is clear that �� is optimal among all extreme points with a
geometric interpretation. What remains to be shown is that �� is an optimal
solution to (23) in general. The dual to (23) is as follows:

minimize c � w
subject to

w(�(i)) � bi 8i 2 V
wij � 0 8ij 2 E

(25)

Suppose there existed a dual feasible vector w� satisfying the complemen-
tary slackness conditions and one other condition, as listed below:

(i)��i > 0) w�(�(i)) = bi 8i 2 V .

(ii)��i + ��j > cij ) w�
ij = 0 8ij 2 E.

(iii)��i = 0) w�(�(i)) = minfbi;
P

j2Infig bjg.

Then complementary slackness would imply that �� and w� were optimal
solutions for (23) and (25) respectively.

Such a vector w� is constrained to be 0 on precisely the edges in the set[
i2I

E(V n Ti): (26)

The existence of such a solution w� that also satis�es (i) and (iii) is a frac-
tional b-matching feasibility question, where bj is the demand at vertex j for
each j 2 V . Note that because of (24), for no i 2 I do we have

b(V n Ti) > b(Ti); (27)

Also, because of (iii), for no v 2 V do we ever have

bv > b(V n fvg): (28)
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Either (27) or (28) would cause our fractional b-matching problem to be
infeasible if it ever occured. In [5], it is proved that if the only edges not
allowed in the fractional b-matching are those in (26) and that (27) and (28)
never occurred, then the fractional b-matching problem is always feasible if
and only if the set of shores fV n Ti j i 2 Ig does not have a claw. A feasible
such fractional b-matching point w� would imply that �� was optimal for (23).
Conversely, no such feasible fractional b-matching point w� would imply that
�� was not optimal for (23) even though by construction �� is optimal among
those extreme points of (23) that have a geometric interpretation. Therefore,
this theorem follows. 2

There are several things to be noted here. The �rst is, the author does
not know of any facet-de�ning inequality that is cut-based but has claws.
On the other hand, even if there aren't any such TSP inequalities, there may
be simultaneous triangular liftings even of the three-tooth comb which do
not have the geometric interpretation stated in Theorem 5. Clearly, 1-node
lifting (or sequential triangular lifting) is a special case of (simultaneous)
triangular lifting. It is not clear, however, that simultaneous triangular lifting
ever produces an inequality which could not also be obtained by sequential
triangular lifting. The only thing in this respect that the author does know
at present is that simultaneous triangular lifting of the subtour elimination
constraints doesn't produce any other inequalities, as the following theorem
shows.

Theorem 6 The simultaneous triangular liftings of a subtour elimination
inequality are all subtour elimination inequalities.

Proof: The simple subtour elimination inequality for which 1 and 2 are
on opposite shores is an inequality on only the 2 node graph K2, and is
merely x12 � 2. Suppose all the 0 node-liftings of this inequality (subtour
elimination inequalities x(�(H)) � 2 where 1 2 H, 2 62 H) were satis�ed by
a vector x�. By the max-
ow min-cut theorem, when capacities on the arcs
(i; j) and (j; i) are both given by x�ij for each edge ij 2 E, there exists a
feasible 1-2 
ow f in this directed graph of 2 units. Decompose this 
ow f
into r 
ows, where the k-th 
ow has volume �k and is along a directed 1-2
path Pk for k = 1; : : : ; r, with

Pr
k=1 �k � 2, and it is assumed without loss of

generality that there are no cycles of 
ow. Let cx � 2 be any simultaneous
triangular lifting of x12 � 2. De�ne c(i;j) = c(j;i) := cij for each edge e 2 E.
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Because cx � 2 is a simultaneous triangular lifting of x12 � 2, we have for
each path Pk that

c(E(Pk)) � c12 = 1:

We thus have

cx� � c � f =
rX

k=1

�kc(E(Pk)) �
rX

k=1

�k � 2:

Therefore, cx � 2 is implied by the set of subtour elimination inequalities
x(�(H)) � 2 such that 1 2 H, 2 62 H. Hence, this Theorem follows. 2

We are now ready to examine some of the less obvious 1-node liftings
of what may be a non cut-based inequality. Call the subgraph G = (V;E 0)
of the complete graph Kn = (V;E), Hamiltonian if it contains a Hamilton
cycle. Call G hypo-Hamiltonian if G is non-Hamiltonian, but the graph G�v
obtained by removing any vertex v is always Hamiltonian. For every hypo-
Hamiltonian graph G, there is a corresponding hypo-Hamiltonian inequality.
The hypo-Hamiltonian inequalities were formulated and proven to be facet-
de�ning by Gr�otschel in [7]. The hypo-Hamiltonian inequality for a hypo-
Hamiltonian graph G is

x(E n E 0) � 1:

This is a valid inequality because every Hamilton cycle must use an edge
that is not in the hypo-Hamiltonian graph G. In tight triangular form, the
hypo-Hamiltonian inequality for G is

x(E 0) + 2x(E n E 0) � jV j+ 1: (29)

One such hypo-Hamiltonian graph is the Petersen graph, which is shown
in Figure 5.

The right hand side of the Petersen inequality when expressed as in (29)
is 11. Denote this Petersen inequality by px � 11. One can obtain all the
0 node-liftings of the Petersen inequality by the sequential 1-node liftings
indicated by (16). But, we will show that the following is also an extreme
point of the sequential lifting polyhedron:

��i =

(
1=2 i = 9; 10;
3=2 otherwise:

(30)

Denote the resulting 1-node lifted inequality by px � 11. One can easily
see that �� is an extreme point since the objective function �9 + �10 + �2
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20



1

2

3

4
5

6

7

8

910

2/3 2/3
2/3

1/3

2/3

1/3

2/3

2/3 2/3
2/3 2/3

2/3

01 1

1/3

11

2/3 2/3

Figure 6: The subtour point x�.

is minimized by ��, and given that ��9 = ��10 = 1
2
and ��2 = 3

2
and the

constraints on � imposed by the Petersen inequality, we must have ��i � 3=2
for all i 6= 2; 9; 10.

This analysis leads us to de�ne the subtour elimination point x� shown
in Figure 6. We have that px� = 102

3
< 11 even though x� satis�es all of the

0 node-liftings of the Petersen inequality.
In the next section, we show how to separate over classes of inequalities

de�ned by all the (simultaneous) triangular liftings of a given inequality.
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5 Separating Inequalities

Suppose you are trying to solve a TSP instance, and your branch and cut in-
teger linear programming algorithm has just produced the fractional solution
x�. You suspect that x� may violate one of the three-tooth comb inequalities,
which you can then add as a cutting plane to cut the fractional solution x�

o�. But how are you going to �nd which if any three-tooth comb inequalities
it violates? We now know that every three-tooth comb inequality can be
obtained by a (simultaneous) triangular lifting of one of the simple 6 node
three-tooth comb inequalities in S6. In fact, the sequential triangular liftings
(1-node liftings) by themselves give you all the three-tooth comb inequalities.
Since the class C of all simultaneous triangular liftings of inequalities in S6

contains the class of three-tooth comb inequalities, we should be happy if we
can can �nd that inequality in C which violates x� the most or show that
there are no such violating inequalities in polynomial time. The measure of
the violation of cx � c0 by x� which we will use is simply c0 � cx�, which is
greater than zero if and only if there is a violation.

More generally, suppose we are given the class S of all isomorphisms of
a simple TT inequality cx � c0. The class S6 is an example of such a class,
where the right hand side c0 is 10. Consider the class C of all simultaneous
triangular liftings of S. The question then is how do we �nd the most violated
inequality in C?

Each inequality in C is a simultaneous triangular lifting of one or more of
the inequalities in S. Suppose there are n vertices in our TSP instance, and k
vertices in each simple inequality in S. Then there are

�
n

k

�
di�erent backbone

sets B for inequalities in S, and hence n!
(n�k)!

di�erent backbones, which is

polynomial (O(nk)) in terms of n. Each backbone corresponds to a particular
inequality in S. So, if for each backbone, we could �nd in polynomial time
the most violated inequality in C that is a simultaneous triangular lifting of
that inequality in S which has that backbone, then we could �nd the most
violated inequality in C in polynomial time. We could do this because we
would just have to repeat this procedure for all O(nk) backbones.

So, consider a given backbone B of an inequality in S. Denote this
inequality by cx � c0. Given the fractional point x�, how then, do we �nd
the most violated inequality in C which is a simultaneous triangular lifting
of cx � c0? Here's what we do. Denote by B the backbone set for the
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backbone B. So, B is a subset of our set V of vertices in our TSP instance
on Kn = (V;E). De�ne E(B) := fuv 2 E j u 2 B; v 2 Bg. Form the
following linear program:

minimize x� � c
subject to

cij = cij 8ij 2 E(B)
cij � cik + cjk 8i 6= j 6= k 2 V

(31)

Theorem 7 The optimum value c� to (31) corresponds to the valid TSP
inequality c�x � c0 which is violated by x� the most among all simultaneous
triangular liftings of cx � c0.

Proof: The polyhedron of feasible vectors for the linear program (31) is the
same as the polyhedron in (17), namely the simultaneous lifting polyhedron.
The simultaneous triangular liftings of cx � c0 and the points in this polyhe-
dron are in one to one correspondence. Since we are minimizing x� �c, clearly
we are obtaining the most violated such simultaneous triangular lifting, or,
if c� � x� � c0, we are showing there are no such violated inequalities. 2

Let S be the class of isomorphisms of the simple inequality cx � c0 on
a k node graph. Let C be the class of all simultaeous triangular liftings of
inequalities in S. We now have the following theorem.

Theorem 8 The class C of inequalities can be separated over in polynomial
time.

Proof: Let x� be our fractional extreme point. For each of the O(nk)
inequalities c0x � c0 in S, we solve the linear program (31). The solution c�

which is the smallest among all O(nk) solutions of (31) corresponds to the
inequality c�x � c0. This inequality is the most violated of all the inequalities
in C by x�. Hence, we have found the most violated inequality or shown that
there are no such violated inequalities in the time needed to solve O(nk)
linear programs (31). 2

Unfortunately, the result described in Theorem 8 is not a very practical
one in its present form. What the author hopes is that clever methods for
choosing the backbone will make Theorem 8 practically useful. We next will
produce an even more general separation idea.

One should note that the inequality cx � c0 could be any valid k node
TSP inequality. So why not make the cij's be variables also? Denote the
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class of all TSP inequalities on the k nodes in B whose coe�cients satisfy
the triangle inequality and which have a positive right hand side by S(B),
where each one is scaled so that the right hand side is 2. Denote all the
simultaneous triangular liftings of these inequalities by C(B). Denote by
H(B) the set of Hamilton cycles on the nodes of B. Consider the following
linear program:

minimize x� � c
subject to

h � c � 2 8h 2 H(B):
cij = cij 8ij 2 E(B):
cij � cil + cjl for all i 6= j 6= l 2 V:

(32)

Consider a feasible solution (c; c) to (32). Note that since h � c � 2 8h 2
H(B), it follows that cx � 2 is a valid TSP inequality on the set of vertices
B. We have imposed that the coe�cients in c satisfy the triangle inequality.
The analysis which follows is indi�erent to whether or not we impose these
constraints instead of replacing the current triangle inequality constraints in
(32) by

cij � cil + cjl for all i 6= j 6= l 2 V such that l 62 B: (33)

However, replacing the current triangle inequality constraints in (32) by (33)
may lead to unbounded solutions, whereas adding large enough multiples of
the degree constraints to any valid TSP inequality cx � c0 will ensure that
its coe�cients satisfy the triangle inequality.

We now have the following theorem.

Theorem 9 The optimal solution (c�; c�) to (32) corresponds to the valid
TSP inequality c�x � 2 which is violated by x� the most among the inequali-
ties of C(B).

Proof: Let (c; c) be a feasible point of (32). Since h � c � 2 8h 2 H(B),
and the coe�cients of c satisfy the triangle inequality, we have that cx � 2
is a valid TSP inequality in S(B). By the arguments in Theorem 3, the
simultaneous triangular lifting cx � 2 of cx � 2 is a valid TSP inequality.
Conversely, let (c0; c0) be given so that c0x � 2 is in S(B) and c0x � 2 is a
simultaneous triangular lifting of c0x � 2. Then (c0; c0) is a feasible solution
to (32). Since feasible solutions to (32) and inequalities in C(B) are in one-
to-one correspondence and c� is the optimal solution to (32), it follows that
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c�x � 2 is violated by x� the most among the inequalities of C(B), which is
our theorem. 2

De�ne S(k) :=
S
jBj=k S(B). De�ne C(k) to be the set of all simultaneous

triangular liftings of inequalities in S(k). We now have:

Theorem 10 The class C(k) of inequalities can be separated over in poly-
nomial time.

Proof: The proof proceeds as in Theorem 8, except that this time we are
repeatedly solving linear programs (32) for di�erent backbone sets B. We

have to solve
�
n

k

�
= O(nk) such linear programs in all. 2

6 Conclusion

We have two powerful separation techniques, maybe the better of which
involves solving the linear program (32). Are these techniques of practical
value? The author does not know at present since there are unresolved
theoretical and practical questions. It would be nice to know how tight a
formulation of the TSP we get for each k with the following linear program:

minimize dx
subject to

cx � 2 8c 2 C(k):
(34)

A proof that these formulations are fairly tight would be good news for these
separation techniques.

The separation method of solving (32) could be quite useful if one could
make smart guesses for the vertices in the backbone set B. The question then
is, by examining x� and maybe also the objective function d, how would one
decide what the backbone set B should be. One could perhaps pick several
di�erent backbone sets, but the procedure for picking them would have to
be pretty good for the separation method of solving (32) to be useful.

Another question is, just how fast can (32) be solved. The constraints
of (32) don't have to be all explicitly put in since we have the separation
algorithms of �nding the minimum cost Hamilton cycle in a small (k node)
graph and �nding all-pairs shortest paths, where the distances are given by
c. But what is the fastest way to �nd the minimum cost Hamilton cycle in
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a small graph? Also, we do not in fact need all of the triangle inequality
constraints given in (32). We need just enough of these constraints for the
conclusion of Theorem 3 to be valid. So, we can reduce the number of
constraints from O(n3) to O(n2). Alternatively, we do not need to �nd the
all-pairs shortest paths in a separation algorithm for these constraints, but
merely the shortest paths between all pairs of nodes in the backbone set.

We implemented a separation algorithm based on (32) as follows. We
considered the support graph G� = (V;E�) for a fractional solution x�. We
introduced a variable ce for each edge e 2 E�. Since the objective function
for (32) involves only edges which are in E�, we can �nd the optimal solution
c� to (32) by considering only these edges, and allowing the value c�e on any
edge e 2 E n E� to be as large as possible while still satisfying the triangle
inequality constraints of (32). This means that for each edge e 2 E nE�, we
can assign to c�e the shortest path distance in G� between the endpoints of e,
where the length of edge e 2 E� is given by c�e.

We chose a backbone set B. We used an LP based algorithm which
provides us with a tentative (possibly infeasible) optimal solution c� to (32).
We would like the following from this solution.

(i) c�x � 2 is a valid TSP inequality.

(ii) c� satis�es triangle inequality constraints.

(iii) c� � x� < 2.

We tried �nding constraints that are satis�ed by feasible solutions to (32), but
are violated by c� as follows. Given c�, we found the shortest path distances
in G� between every pair of vertices in B. Denote these distances by c�e for
e 2 E(B). We then found the minimum cost Hamilton cycle on the nodes of
B, where the costs are given by c�. If the cost of this Hamilton cycle H was
less than 2, we then found a constraint that is satis�ed by feasible solutions
to (32), but is violated by c� by the following. For each edge e 2 E(H) in
this Hamilton cycle, replace this edge by the edges of the shortest path in
G� between the endpoints of e. This results in a Eulerian multi-graph which
spans all the vertices of B and possibly other vertices using only edges in
G�. Denote the incidence vector of this Eulerian multi-graph by h�. Then
consider

h� � c � 2: (35)
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Then (35) is satis�ed by feasible solutions to (32) since when the coe�cients
c obey the triangle inequality, if Hamilton cycles on the vertices of B all have
cost at least 2, then all of the Eulerian tours on the vertices of B have cost
at least 2 as well. However, (35) is violated by c�.

So, we used the following algorithm:

(i) Start with an LP having variables for each edge e 2 E�, having only
non-negativity constriants, and having the objective function of (32).
This is the current LP.

(ii) Solve the current LP using dual simplex, obtaining the solution c�.

(iii) Find a constraint of the form (35) that c� violates. If there are no such
constraints, go to (v).

(iv) Add this constraint to the current LP. Go to (ii).

(v) Find c�e for e 2 E n E� by taking shortest path distances in G� as
previously described.

As we will prove, this algorithm �nds the optimal solution to (32). This was
our separation algorithm.

We now see why this separation algorithm works:

Theorem 11 The resulting solution c� from the separation algorithm just
described is also the optimal solution to (32).

Proof: We have already seen that the constraints of the form (35) are valid
for (32). By assumption, c� satis�es all the constraints of the form (35).

Suppose c� violates the triangle inequality somewhere. This means that
for some edge ij 2 E�, the shortest path distance between i and j in G�,
using ce as the length of an edge e 2 E�, is less than c�ij. But, we can rede�ne
c�ij to be this shortest path distance. Then, all the constraints of the form
(35) will still be satis�ed, but x� � c� will be strictly smaller. Hence, we know
that c� satis�es the triangle inequality constraints.

De�ne c� := c�jE(B). Suppose c�x � 2 is not a valid TSP inequality
on the vertices of B, hence making c� infeasible for (32). Let h be the
incidence vector of a Hamilton cycle on the vertices of B such that c� �h < 2.
Then one can �nd a corresponding Eulerian tour in G�, whose incidence
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vector we denote by h�, which spans all the vertices in B and possibly other
vertices such that c� � h� = c� � h. This is because the values of c�e for
e 2 E(B) n E� are determined by the shortest path computations on G�

done in (v). Hence, h� � c� � 2 would be a violated constraint of the form
(35), which is a contradiction.

Therefore, c� is feasible for (32). Hence this separation algorithm ulti-
mately produces an LP whose optimal solution is c�, uses only inequalities
valid for (32), and has the same objective function as (32). Since c� is also
feasible for (32), our theorem follows. 2

Our separation algorithm required us to �nd the minimum cost Hamilton
cycle on the vertices of B. We appealed to a 3-opt heuristic to do this, and
checked to see whether it gave us the best tour only when necessary (such as
at the end of our separation algorithm). We tried our separation algorithm
for backbones of up to 39 vertices with success, although the algorithm is
currently too slow to be practical. We hope that this separation algorithm
can be improved upon in this respect.

References

[1] D. Applegate, R. Bixby, V. Chv�atal, and W. Cook (1994). Finding Cuts
in the TSP (a preliminary report), Unpublished manuscript.

[2] R. Carr (1997). Separating clique trees and bipartition inequalities hav-
ing a �xed number of handles and teeth in polynomial time.Mathematics
of Operations Research.

[3] R. Carr, (1995), Polynomial separation procedures and facet determi-
nation for inequalities of the traveling salesman polytope, PhD Thesis,
Department of Mathematics, Carnegie Mellon University.

[4] R. Carr, (1996), Separating Over Classes of TSP Inequalities De�ned
by 0 Node-Lifting in Polynomial Time, IPCO proceedings.

[5] G. Christopher, personal communication.

[6] Fleischer, L., E. Tardos (1997). Separating Maximally Violated Comb
Inequalities in Planar Graphs, Technical Report.

28



[7] M. Gr�otschel (1980). On the monotone symmetric travelling salesman
problem: hypohamiltonian/hypotraceable graphs and facets,Mathemat-
ics of Operations Research 5 285-292.

[8] Johnson, D.S., C.H. Papadimitriou, Computational Complexity, in: E.L.
Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, eds., The
Traveling Salesman Problem (John Wiley & Sons, Chichester, 1985, 37-
85).

[9] M. J�unger, G. Reinelt, and G. Rinaldi, The Traveling Salesman Problem,
in: M.O. Ball et al., eds., Handbooks in OR & MS, Vol. 7 (Elsevier
Science B.V., 1995).

[10] M. J�unger, G. Reinelt, and G. Rinaldi, The Traveling Salesman Problem,
in: M.O. Ball et al., eds., Handbooks in OR & MS, Vol. 7 (Elsevier
Science B.V., 1995).

[11] D. Naddef and J. M. Clochard (1994). Some Fast and E�cient Heuristics
for Comb Separation in the Symmetric Traveling Salesman Problem,
Technical Report, Universite Joseph Fourier Grenoble I

[12] D. Naddef, G. Rinaldi (1992), The graphical relaxation: A new frame-
work for the Symmetric Traveling Salesman Polytope, Mathematical
Programming 58, 53-88

[13] Padberg, M.W., M.R. Rao (1982). Odd minimum cut sets and b-
matchings, Mathematics of Operations Research 7 67-80.

[14] Padberg, M., G. Rinaldi (1989). A branch-and-cut approach to a travel-
ling salesman problem with side constraints. Management Sci., Vol. 35,
No. 11, Nov., 1393-1412.

[15] Padberg, M., G. Rinaldi (1990). Facet identi�cation for the symmetric
traveling salesman polytope, Mathematical Programming 47 219-257.

29


