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Abstract The Kidney Exchange Problem (KEP) is a combinatorial optimization
problem and has attracted the attention from the community of integer program-
ming/combinatorial optimisation in the past few years. Defined on a directed graph,
the KEP has two variations: one concerns cycles only, and the other, cycles as well as
chains on the same graph. We call the former a Cardinality Constrained Multi-cycle
Problem (CCMcP) and the latter a Cardinality Constrained Cycles and Chains Prob-
lem (CCCCP). The cardinality for cycles is restricted in both CCMcP and CCCCP. As
for chains, some studies in the literature considered cardinality restrictions, whereas
others did not. The CCMcP can be viewed as an Asymmetric Travelling Salesman
Problem that does allow subtours, however these subtours are constrained by cardi-
nality, and that it is not necessary to visit all vertices. In existing literature of the KEP,
the cardinality constraint for cycles is usually considered to be small (to the best of
our knowledge, no more than six). In a CCCCP, each vertex on the directed graph
can be included in at most one cycle or chain, but not both. The CCMcP and the
CCCCP are interesting and challenging combinatorial optimization problems in their
own rights, particularly due to their similarities to some travelling salesman- and vehi-
cle routing-family of problems. In this paper, our main focus is to review the existing
mathematical programming models and solution methods in the literature, analyse
the performance of these models, and identify future research directions. Further, we
propose a polynomial-sized and an exponential-sized mixed-integer linear program-
ming model, discuss a number of stronger constraints for cardinality-infeasible-cycle
elimination for the latter, and present some preliminary numerical results.
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1 Introduction

According to Kidney Health Australia, approximately 1 in 10 Australians aged 18
or above have indicators of chronic kidney disease. Kidney transplant is one of the
treatment options for kidney failure patients. In Australia, patients who are eligible
for a kidney transplant often have to wait, on average, for about 4 years for a kidney
from a deceased donor (Kidney Health Australia 2015). Some of these patients may
have relatives/friends who are willing to donate a kidney to them, but the kidneys
may not be compatible due to ABO blood type incompatibility or positive serological
cross match. We call a pair of patient and his/her incompatible donor an Incompatible
Patient-Donor Pair (PDP). A pool of these PDPs is called a Kidney Exchange Pool.

The idea of kidney exchange provided new hope for kidney failure patients. Sup-
pose we have two pairs of incompatible patient-donors: PDP-A and PDP-B. If the
kidney of Donor A is compatible to Patient B, and that of Donor B’s is compatible to
Patient A, then the two PDPs can exchange kidneys. We call this a 2-way exchange
(or, mathematically, a 2-cycle). In the early days, kidney exchanges involved 2-way
exchanges only. A 3-way exchange (aka a 3-cycle) involves three PDPs, with Donors
A, B, and C donating their kidneys to, e.g., Patients B, C, and A respectively. In
recent years, kidney exchange becomes more sophisticated with the introduction of
multi-way exchanges (see, e.g., Gate (2015) where a 9-way exchange was performed
recently), as well as altruistic donors in the kidney exchange pools. With these com-
plications, the underlying mathematical problem becomes more complex and have
attracted the community of Integer Programming/Combinatorial Optimization to the
research of optimizing kidney exchanges for the best possible outcomes.

Mathematically, the Kidney Exchange Problem (KEP) is a combinatorial optimiza-
tion problem that can be defined on a directed graph, and typically concerns solutions
with either just cycles, or cycles and chains.We call the cycles-only KEP the Cardinal-
ity Constrained Multi-cycle Problem (CCMcP) on directed graphs. One can consider
the CCMcP as an Asymmetric Travelling Salesman Problem (ATSP) with subtours
allowed, yet the subtours are constrained by cardinality, and that it is not necessary to
visit all vertices. We call the KEP that allows cycles as well as chains the Cardinality
Constrained Cycles and Chains Problem (CCCCP) on directed graphs. In a CCCCP,
the chains must start from a pre-determined set of vertices on the graph. Whilst the
cycles in a CCCCP are constrained by cardinality in the same way cycles in CCMcP
do, the chains are considered to be constrained in some studies but unconstrained in
others.

The aim of this paper is to review existing Integer Programming approaches to
different variations of the KEP, analyse the performance of various mathematical pro-
gramming models and solution methodologies, present stronger cuts and preliminary
numerical results, and propose future research directions. In Sect. 2, we explain the
clinical background for the KEP. In Sect. 3, we list the related combinatorial optimiza-
tion problems, compare and contrast the most closely related ones. In Sects. 4 and 5,
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we present existing MILP models, review their respective solution methodologies,
present some strong cycle-cardinality violation elimination constraints, and propose
a couple of new MILP models for the CCCCP (with preliminary results reported in
Sect. 6). In Sect. 7, we review the pre-processing schemes. In Sect. 8, we investigate
the multiple criteria nature of the KEP, review current work, and finally in Sect., 9
propose future research directions.

2 Clinical background

The KEP in the form of a CCMcP involves only PDPs and can be explained as follows.
Given a pool of PDPs, we would like to optimize the way these kidney exchanges are
carried out for the most desired outcome(s). A donor, as soon as the partner patient has
received a kidney, can technically exit the program without donating one, as he/she
is not legally bound to do so. To avoid this from happening, usually exchanges are
carried out simultaneously. As each transplant involves two surgeries, there is a limit
as to how many exchanges can be performed at once, due to human resource and
logistic reasons. We use K to represent the maximum number of transplants that can
be carried out concurrently (i.e., a K -way exchange).

Representing the KEP on a directed graph D, let P be the set of PDPs. If the KEP
pool contains only PDPs, thenwe have D = (V, A), for V = P and A = {(i, j) | i, j ∈
P, i �= j}. Notice that A may not be, and most of the time is simply not, a complete
graph. Compatible patient-donor-pairs are in general not considered in the KEP, hence
D does not contain loops. Though the inclusion of these pairs has been discussed in
recent literature (see, e.g., Gentry et al. 2007), ethicality has been cited as the major
issue. A weight wi j is assigned to each arc (i, j) ∈ A. These weights could be used
to measure how likely the transplant of a kidney from donor i to patient j is to be
successful, or to measure some other aspects of kidney transplants. In some KEPs,
the objective is to maximize the total number of kidney exchanges, whereas in other
studies, the objective is to maximize the sum of arc weights defined by a solution. In
Sect. 8, we will review a number of different objectives discussed or used in existing
literature.

In Fig. 1, the PDPs are represented by p j for j = 1, . . . , 14. A 2-way exchange
is formed between p4 and p7, and a 4-way exchange is formed amongst p5, p6, p9,
and p10. A κ-way exchange (for κ = 2, . . . , K ) that involves PDPs only is called a
cycle. Manlove and O’Malley (2012) has demonstrated the benefit of allowing 4-way
exchanges, (as opposed to just 2- and 3-way exchanges), in terms of increased number
ofmatches. For example, from a set of clinical datawithKEPpool size ranging from85
to 186, on average, 4 more matching can be achieved by allowing 4-way exchanges. In
theU.S., a nine-way kidney exchangewas performed successfully in 2015Gate (2015).
Thismay further improve the outcomes of aKEP. Integer Programming approaches for
the CCMcP has been considered in Abraham et al. (2007), Constantino et al. (2013),
and Klimentova et al. (2014).

With altruistic donors, the KEP digraph becomes more complex. A sequence of
kidney exchanges that begins from an altruistic donor and terminates at the “waitlist”
(which usually refers to the deceased donor waiting list) forms a chain. In Fig. 1, a
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Fig. 1 An example of a kidney exchange pool

chain is formed from altruistic donor n1 who donates a kidney to patient p1 whose
partner donor in turn donates to patient p2, and finally the kidney of donor p2 goes to
the deceased donor waiting list. There are two types of chains: long chains and short
chains. In some studies in the literature, a size limit was considered for chains, and
we use L to denote it. In other studies, the size of a chain is not constrained. There
is a further complication for chains, a long chain can be made up of a sequence of
short chains. Take the chain (n2, p3, p8, p11, p12, p13, p14) in the same figure as an
example: the PDP represented by p11 is called a bridge donor. What it means is that
the transplants from altruistic donor n2 to patient p3, from donor p3 to patient p8, and
from donor p8 to patient p11 are all performed simultaneously. Donor p11 will not
donate his/her kidney at the same time patient p11 receives his/hers, but will wait until
the transplants involving PDPs p12, p13, and patient p14 are ready. These transplants
will then be performed simultaneously. The kidney of donor p14 will then go to the
deceased donor waiting list. Altruistic donors and bridge donors are collectively called
Non-directed Donors (NDDs) in some studies.

In the literature of CCCCP with a size limit for chains (L), some considered L the
same as the size limit for cycles, i.e., L = K , (see, e.g., Manlove and O’Malley 2012),
some considered L ≥ K , (see, e.g., Glorie et al. 2014), and some considered L = ∞,
in other words, chain-size unconstrained (see, e.g., Anderson et al. 2015). To describe
a CCCCP on a directed graph D, we will have D = (V, A), for V = N ∪ P , where N
is the set of altruistic/bridge donors, and A = {(i, j) | i ∈ V, j ∈ P, i �= j}. Notice
that {(i, j) | i, j ∈ N , i �= j} = ∅, and that in a CCCCP, a vertex can be in at most
one chain or cycle, but not both. A summary table for existing literature is presented
in Table 1.

For more detailed descriptions of the history and various forms of the KEP, see,
e.g., Gentry et al. (2011). There are of course operations research techniques other
than integer programming (e.g., Game Theory or heuristic methods) that have been
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studied in the literature for various aspects/forms of the KEP. We refer readers to, e.g.,
Biró et al. (2009), Zenios et al. (2000), Chen et al. (2012), Dickerson et al. (2012),
Ashlagi et al. (2011), and Gentry et al. (2009).

The CCMcP and the CCCCP are interesting combinatorial optimization problems
in their own rights. Aside from the clinical application, the CCMcP is also studied in
the context of barter exchange (see, e.g., Abraham et al. 2007 and Roth et al. 2007).
The aim of this paper, however, is to focus on exact methods for the KEPs, namely
integer programming formulations, solution methodologies, and their numerical per-
formances in the context of constrained cycles and chains problems on directed graphs,
and propose future research directions.

3 Closely related combinatorial optimization problems

The CCCCP concerns cardinality-constrained multi-cycle and multi-chain simulta-
neously, to the best of our knowledge, there is no previous studies in such type of
problems in the literature of combinatorial optimization, except for Glorie et al. (2014)
and Anderson et al. (2015). On the other hand, for the CCMcP, there are a number
of closely related constrained cycle(s) problems. There are, however, some major
differences, namely:

• Some constrained cycle problems studied in the literature concern only a single
cycle, see, e.g., the Cardinality Constrained Travelling Salesman Problem (Cao
and Glover 1997); and the Cardinality Constrained Knapsack Problem defined on
undirected graphs, (Bauer et al. 2002). The CCMcP and CCCCP allow multiple
cycles (as well as multiple chains in the latter).

• Whenever multiple cycles are involved in those previously studied constrained
cycle problems, usually it is required that all vertices be visited, see, e.g., the
Cardinality Constrained Covering Travelling Salesman Problem, (Patterson and
Rolland 2003), whereas neither the CCMcP nor the CCCCP has this restriction.

• Some constrained single- or multi-cycle problems require that for the cycles,
exactly K vertices must be used, see, e.g., the K -cycle Problem (Nguyen and
Maurras 2001 and Hartmann and Özlük 2001). In the case of CCMcP or the
CCCCP, a feasible solution can contain cycles with less than K vertices.

Perhaps the closest are the Vehicle Routing Problems with Capacity Constraints
(see, e.g., Fischetti et al. 1998; Toth and Vigo 2002; Baldacci et al. 2010; Cornuejols
and Harche 1993), and the Asymmetric Travelling Salesman Problem with Replen-
ishment Arcs (RATSP), (see, e.g., Mak and Boland 2000, 2006, 2007). In particular,
when all customers in the former have unit demand, or all vertices in the latter have
unit weight, these two classic combinatorial optimization problems closely resemble
the CCMcP. (Readers who are unfamiliar with the terminology used in these classic
combinatorial optimization problems can find relevant definitions in the papers cited
above).

One important aspect is that subtours are not allowed in Vehicle Routing- or Trav-
elling Salesman-family of problems. Therefore, even though several classes of strong
cardinality violation elimination constraints have been developed in the literature for
these problems, those constraints in general eliminate subtours as well, hence are not
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valid for eliminating cardinality-violated cycles for the CCMcP or the CCCCP, as
we do allow cycles with smaller sizes, as long as they are no greater than K . For a
similar reason, the original Subtour Elimination Constraint (SEC) of Miller-Tucker-
Zemlin (MTZ) (Miller et al. 1960) cannot be applied for the CCMcP and the CCCCP
in eliminating cardinality violation in cycles either. In the Vehicle Routing Problems
with Capacity Constraints, as all cycles start and finish at the depot, it is possible to
derive a set of polynomial-sized constraints with a time-stamp nature, in the manner
of MTZ, for eliminating cardinality violations by assigning a time-variable for all ver-
tices except for the depot. Similarly for the RATSP, where a weight feasible ordinary
path begins/ends at the end/start of a replenishment path respectively. For the cycles
in both a CCMcP or a CCCCP, on the other hand, since they do not have a “start”
or an “end”, a MTZ-type cardinality violation constraint cannot be applied. For the
chains in a CCCCP, however, we are able to produce a set of MTZ-type constraints
for cycle-elimination and cardinality violation-elimination within chains, as we shall
explain in detail in Sect. 4.

As mentioned earlier, one can view the CCMcP as an ATSP with subtours allowed,
but constrained in cardinality and that not all verticesmust be visited.We also looked at
cardinality constrained Assignment Problems, but have found nothing closely related
to the CCMcP. The K -assignment Problem (see, e.g., Dell’Amico and Martello 1997
and Bai 2009) requires that the total assignment is equal to K . For a more thorough
exposition of cardinality constrained cycle and path problems, see, e.g., Kaibel and
Stephan (2007), Kaibel and Stephan (2010).

4 Polynomial-sized formulations

In Constantino et al. (2013), two polynomial-sized formulations were presented for
the CCMcP: the Edge Assignment (EA) model and the Extended Edge (EE) model.
The EA model uses a set of binary variables to indicate whether an arc is used
in the solution and another set of binary variables to indicate whether a vertex
belongs to a particular cycle. These two sets of variables are then linked together
by logic constraints to indicate the arcs involved in each of the cycles. The Extended
Edge (EE) model, on the other hand, makes |V | copies of the directed graph D,
and a three-index binary variable is used to determine whether an arc is used in
a particular cycle. Pre-processing for problem reduction and symmetry elimination
were proposed for both models. More discussions on pre-processing will be pro-
vided in Sect. 7. In this section, we will focus our discussions on the EE model
as it was reported to be computationally more superior. Since the EE model con-
cerns only cycles and no chains, we have V = P , (recall that P is the set of all
PDPs).

Let D = (V, A) be cloned into |V | copies, and let L = {1, . . . , |V |}. We require
that each copy of D contains at most one cycle. Let x�

i j be a binary variable with

x�
i j = 1 indicating arc (i, j) ∈ A is used in cycle � ∈ L. Recall that the weight of an
arc (i, j) ∈ A is denoted by wi j . The full ILP formulation for the EE model is given
as follows.
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Model 1 Polynomial-sized formulation–Constantino et al. (2013)

max
∑

�∈L

∑

(i, j)∈A

wi j x
�
i j (1)

s.t.
∑

j : ( j,i)∈A

x�
j i =

∑

j : (i, j)∈A

x�
i j , ∀i ∈ V, ∀� ∈ L (2)

∑

�∈L

∑

j : (i, j)∈A

x�
i j ≤ 1, ∀i ∈ V (3)

∑

(i, j)∈A

x�
i j ≤ K ∀� ∈ L (4)

∑

j : (i, j)∈A

x�
i j ≤

∑

j : (i, j)∈A

x�
�j ∀i > �, ∀� ∈ L (5)

∑

j : (i, j)∈A

x�
i j = 0 ∀i < �, ∀� ∈ L (6)

x�
i j ∈ {0, 1}, ∀(i, j) ∈ A,∀� ∈ L (7)

Constraint (2) ensures the flow balance of a vertex–if a patient of a PDP receives
a kidney, then the donor will donate his/her kidney to another patient in the pool.
Constraint (3) guarantees that no more than one kidney transplant is involved for each
PDP. Constraint (4) makes sure that the cardinality of each cycle is not more than
K . Constraints (5) and (6) are able to eliminate a great deal of symmetry in the IP
model induced by permutation of cycle indices. Symmetry elimination is achieved by
restricting that the index of a cycle to be exactly the smallest vertex-index among all
vertices involved in the cycle.

Constantino et al. (2013) compared the EA model, the EE model, together with
two exponential-sized formulations of Roth et al. (2007) on four classes of randomly
generated test instances. The first three classes of test instances are randomly generated
directed graphs with arc densities 20, 50, and 70%. The fourth class of test instances
is the blood-type instances generated according to Saidman et al. (2006). All tests
were carried out using CPLEX 12.2. As we shall discuss later, both formulations
of Roth et al. (2007) are exponential in size–the arc-based model has exponentially
many constraints and the cycle-based model has exponentially many variables. Since
neither column generation nor cut generation were discussed in the paper, and only
K = 3, . . . , 6 were tested, presumably the constraints and columns are exhaustively
generated and added to the IP solver. For large-scale problem instances, only the cycle-
based formulation and the EE model were compared. For blood-type test instances,
and those with 20% arc density, the cycle-based model performed better as cycles are
relatively scarce, and solved more problems to optimality, particularly for K = 3, 4,
and 5. For K = 3, the cycle-based model solved problems with up to |V | = 1000
for the blood-type test instances and up to |V | = 500 for low density test instances.
For K = 4, the cycle-based model solved to optimality the same two classes of test
instances with up to |V | = 200.
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The EE model, on the other hand, performed better for problems with medium
(50%) and high (70%) arc densities, particularly for K = 5 and 6. In general, the
method solved to optimality problems of size |V | = 100 in 70–80% of these two
classes of test instances, within a computation time limit of 1800 seconds. Further, for
the EEmodel, Constantino et al. (2013) applied problem reduction pre-processing that
is capable of removing a large portion of variables. The same pre-processing algorithm
cannot be applied for the two formulations of Roth et al. (2007). Constantino et al.
(2013) also briefly described how their polynomial-sized ILP model can be modified
to accommodate altruistic donors, namely, by considering chains as cycles, and setting
different cardinality constraints for cycles that contain an altruistic donor and those
that do not. The vertices representing altruistic donors are also required to be cloned
into multiple copies. The model, however, was not numerically tested.

4.1 A natural extension–polynomial size formulation for the CCCCP

We now propose an alternative, more compact extension of Constantino et al. (2013)
to allow chains. Essentially we split the binary arc variable x�

i j used in Constantino

et al. (2013) into two: yi j ∈ {0, 1} and u�
i j ∈ {0, 1}. By doing so, we are able to

determine whether an arc belongs to a chain or a cycle. We use N to denote the set of
NDDs. Notice that N ∩ P = ∅. Let:
• τ be an auxiliary terminal node (that serves as the deceased donor “waitlist”);
• A′ = A ∪ {(i, j) | i ∈ V, j ∈ P ∪ {τ }}, with A = {(i, j) | i, j ∈ P};
• D be redefined as D = (V ∪ {τ }, A′);
• yi j = 1 indicating the arc (i, j) ∈ A′ forms part of a chain, yi j = 0 otherwise; and
• u�

i j = 1 indicating the arc (i, j) ∈ A forms part of the �th cycle, u�
i j = 0 otherwise;

• ti , for i ∈ V , a continuous variable as “time stamp” for vertex j should it be part
of a chain.

(Notice that as there is no need to index the chains for cycle- or cardinality violation-
elimination, our model will not suffer from symmetry by index permutation). Now,
we modify the objective function and replace Constraint (2) by Constraints (9) and
(10), and replace Constraint (3) by Constraints (11) and (12).

Model 2 The polynomial-sized SPLIT formulation

max z =
∑

(i, j)∈A′
wi j yi j +

∑

�∈L

∑

(i, j)∈A

wi j u
�
i j (8)

∑

j∈P: (i, j)∈A

u�
i j =

∑

j∈P: ( j,i)∈A

u�
j i , ∀i ∈ P, ∀� ∈ L (9)

∑

j∈P∪{τ }: (i, j)∈A′
yi j =

∑

j∈V : ( j,i)∈A′
y ji , ∀i ∈ P (10)

∑

j∈P∪{τ }: (i, j)∈A′
yi j ≤ 1, ∀i ∈ N (11)

∑

j∈P∪{τ }: (i, j)∈A′
yi j +

∑

�∈L

∑

j∈P: (i, j)∈A

u�
i j ≤ 1, ∀i ∈ P (12)
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Constraints (4) − (7), with x�
i j replaced by u�

i j

ti − t j + |P|y ji + (|P| + 2)yi j ≤ |P| + 1, ∀i ∈ V, j ∈ P ∪ {τ } (13)
ti = 0, ∀i ∈ N (14)
ti ≥ 0, ∀i ∈ P ∪ {τ } (15)
tτ ≤ |P| + 1. (16)

Notice that without (13)–(16), the chain variables ya , for all a ∈ A′, may themselves
induce cycles. SubtourEliminationConstraints (SECs), in particular those strongSECs
in the context of Asymmetric Travelling Salesman Problem (ATSP) can certainly be
implemented. There will, however, be exponentially many SECs, hence cutting plane
is expected within a branch-and-cut framework for exact solutions. For a formulation
that is polynomial in size, on the other hand, we can use MTZ-type constraints. Let ti
be the time-stamp of vertex i , for i ∈ V , and we require that should vertex j be visited
immediately after vertex i in a chain, we must have t j ≥ ti + 1. This can be achieved
by Constraint (13). Constraints (14)–(16) are bound constraints.

The benefit of using the MTZ-type formulation for subtour elimination in chains is
that it can be easily modified to accommodate cardinality restrictions in chains. E.g.,
if the maximum chain size, not including τ , is L , we simply replace (16) by:

tτ ≤ L + 1. (17)

(If chain size includes τ , then the right-hand-side of (17) should be just L .) InAnderson
et al. (2015), a Constantino et al. (2013)-style graph cloning idea is used to model the
cardinality limit on L , however no numerical results were presented in this respect. In
Tables 3 and 5, we have compared such constraints proposed in Anderson et al. (2015)
(in columns under “AND-L”) and the MTZ-style constraints we proposed above (in
columns under “SPLIT-MTZ”), both incorporated within Model 6. We can see that
the MTZ-style size constraints on L appear to be computationally more efficient.

5 Exponential-sized formulations

In the context ofCCMcP,mostMIPmodels are either arc based, (using abinaryvariable
for each arc in A), or cycle/chain based, (using a binary variable for each feasible
cycle/chain). There are exponentially many cardinality-infeasible-cycle elimination
constraints with the former but exponentially many variables with the latter. The firsts
of both arc- and cycle-based formulations are proposed in Roth et al. (2007).

5.1 Cycle/chain-based formulation

We first look at the cycle/chain-based formulation. Let:

– � be the index set of all cycles with size no more than K (and all chains with size
no more than L);

– zγ be a binary variable with zγ = 1 if cycle/chain γ ∈ � is selected, and 0 o.w.;
– Vγ ⊆ V be the set of vertices in cycle/chain γ ;
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– ργ = ∑
e∈Eγ

we, for Eγ ⊆ E be the total weight of edges involved in cycle/chain
γ .

The cycle/chain-based MIP formulations is given as follows (see, e.g., Roth et al.
(2007), Abraham et al. (2007) in the context of CCCmP; and Glorie et al. (2014) and
Anderson et al. (2015) in the context of CCCCP).

Model 3 Cycle/chain-based formulation–Roth et al. (2007)

max
∑

γ∈�

ργ zγ (18)

s.t.
∑

γ : i∈Vγ

zγ ≤ 1, ∀i ∈ V . (19)

Abraham et al. (2007) were amongst the firsts to implement the cycle-based expo-
nential size algorithm for the CCMcP, and solved test instances with K = 3. A
branch-and-price (BNP) method is implemented, though the pricing problem is itself
NP complete and is solved by a depth-first tree-search, essentially a complete enu-
meration on the directed graph D to find the cycle with the most positive price. A
single column is added at each iteration of column generation, (thought it was also
mentioned that feasible cycles are identified along the way too). Column initialization
is performed by taking the union of cycles generated by the following three methods.
(1) Randomly select an uncovered vertex, in a greedy manner, form a cycle to cover
it as well as other uncovered vertices. (2) Solve the maximum-weight matching prob-
lem (in O(|V |3) time) to obtain a set of 2-cycles. (3) Perform a random walk on the
directed graph, to produce a random collection of feasible cycles. The size of the LP
is controlled in the way that a predetermined threshold is used to control the number
of columns in the LP. When new columns are added, some columns may be removed
if the total number of columns has exceeded this threshold. The columns that are used
for branching or those that are currently having a non-zero value, however, will not
be removed. To speed up the branch-and-bound method, an upper bound is obtained
from the polynomially-solvable cardinality-unrestricted directed matching problem,
(essentially the Assignment Problem (AP) relaxation). It was mentioned that for test
instances of very large scale, however, as the number of arcs is very large, column
generation is required even for the AP relaxation. Occasionally, the restricted LP was
solved by adding back the integrality constraints and calling CPLEX primal heuristics
to obtain a primal solution. A rounding-type of primal heuristic was also implemented.
The former was reported to be producing better lower bounds than the latter. Abraham
et al. (2007) reported experimental results with test instances with up to |V | = 10, 000
(with arc density unspecified), for K = 3 only, with an average run time of roughly
between 3,000 and 3,500 seconds. (It is hard to be precise as the results are presented
in the form of a graph).

Manlove and O’Malley (2012) used a similar model for the CCCCP that include
“short chains” with the same size limit as cycles. Incoming arcs to the NDDs are
allowed and in the context of KEP, these are considered as kidneys going to the
deceased donor waiting list, hence a chain is considered the same as a cycle. As only
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K = 3 is extensively tested, presumably all columns (cycles) are included in the
ILP. From their clinical data set, we have observed that the proportion of variables
in terms of number of feasible 2- or 3-cycles versus the number of vertices and arc
density varies substantially. E.g., for a test instance with 147 vertices and 901 arcs,
there are only four 2-cycles and four 3-cycles, but for another problem instance with
141 vertices and 1248 arcs, there are as many as fifty-five 2-cycles and a hundred
sixty-six 3-cycles. Amongst the test instances, the largest |V | is 186, and the largest
|A| is 1263. No computation times are reported.

Glorie et al. (2014) extended the column generation idea of Abraham et al. (2007)
for the CCCCP by including variables (columns) for chains as well, and presented
an “exact algorithm” for solving the pricing problem with polynomial complexity
O(|L||V ||A|), under the condition that the reduced cost of a cycle can be expressed as
a linear function of arc weights. A new graph (the reduced cost graph) will be formed
using these reduced arc weights. These arc weights can be negative or non-negative,
and may even contain a negative cycle. The pricing algorithm described is that for
each pair of vertices, one will be the source, and the other the sink. A shortest path-
like algorithm is executed, but with only K and L steps carried out for cycles and
chains respectively. It was unclear as to how a shortest path from the source to the
sink can be guaranteed that uses no more than K or L vertices. In any case, it appears
that for cycle generation, the shortest path-like algorithm will return a sequence of
no more than K vertices, and the total arc weights is added to the weight of a back
arc from the last vertex to the first vertex. If the sum is less than 0, then a negative
reduced cost cycle (i.e., a new column) is produced. (Although, it appears that the
way the back arc is added after the shortest path is found, the new column generated
is not necessarily the one with the most negative reduced cost). A similar strategy is
implemented for new columns that represent chains. As for the possible existence of
negative cost cycles in the reduced cost graph, presumably those with less than K or L
vertices will themselves be new columns, though again not necessarily with the most
negative reduced cost.

Two branching schemes were proposed and implemented. One of which is the
common practice of selecting the variable that is closest to 0.5, creating two branches,
with one setting the variable to 0 and the other, 1. The other branching scheme was
to select the vertex with the largest number of outgoing arcs, list all arc values in
non-descending order, put arcs into set S1, until the sum reaches 0.5. The rest of these
outgoing arcs will be included in a second set S2. One branch is created for each of S1
and S2 wherein all variables in the set are set to 0. It was reported that both branching
schemes performed rather similarly in the numerical experiments. The test set used in
Glorie et al. (2014) are simulated data using the simulator described in Saidman et al.
(2006), it contains |V | ranging from 10 to 500, with two specific cardinality settings
for the cycles and chains: (i) K = L = 3; and (ii) K = 4, L = 6. For the former, the
fastest computation time for the largest problem instances, |V | = 500, is less than 22
seconds, and for the latter, less than 96 seconds.

Klimentova et al. (2014), on the other hand, proposed a decomposition by �-model
for the CCMcP that combines column generation with the graph-cloning idea of Con-
stantino et al. (2013), where a column generation subproblem is solved for each copy
of D (denoted by D� = (Ṽ �, Ã�), for � = 1, . . . , |V |). With the column generation
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subproblem for D�, the only cycles that are required to be generated are those that
involve � and some other vertices with indices greater than �. The column generation
subproblem is presented as an IP model, but was in fact solved using a Greedy Heuris-
tic. The heuristic starts from vertex �, inserts the vertex on D� with an arc that is most
“profitable”. If a back arc to � exists, then a cycle is formed, and it will be returned as
a new column. Otherwise, the next vertex with the most profitable arc will be added
to the path obtained so far. If a back arc exists, a cycle is formed; otherwise, if an
outgoing arc exists for this vertex, the procedure will be continued, and if not, then
backtracking to the previous vertex has to be performed. The heuristic is not polyno-
mial in complexity as backtracking is required, so the computation time when K is
large can be substantially longer. Notice that the heuristic method favours columns
that represent cycles of smaller cardinality.

Now, the solution for each subproblem �will provide a “column” for the Restricted
Master IP, should it exists, hence providing a number of new columns at a time. Some
variations of themethod were implemented, e.g., after column generation ceases in the
root node, the resulting restricted LP is solved as an IP rather than an LP relaxation.
It was briefly mentioned that meta-heuristic approaches (namely Local Search and
Variable Neighbourhood Search) were also implemented for producing lower bounds
in the root node or in all nodes of the BNB tree. Implementation details for those
search heuristics were not specified. A weighted objective function has been tested
too, with a much higher weight given to the number of matches, and a lighter weight
given to the number of cycles in a solution. The motivation for the latter is that as the
number of cycles is maximized, it is likely that the size of each cycle is smaller (though
this cannot be guaranteed). Some impressive numerical results were presented. Test
instances with up to 2000 nodes were solved for K = 3 (with average run time for
the fastest algorithm 51.4 seconds), up to 1000 nodes for K = 4 (with average run
time of the fastest algorithm 82.4 seconds), and up to 900 nodes for K = 5 and
K = 6 (with average run times for the best algorithms 125.4 and 214.6 seconds
respectively). It would be nice if there is numerical evidence of the improvement
brought by the decomposition by � when compared to a standard column generation
without it wherein, e.g., a similar Greedy Insertion heuristic or some pricing method
similar to the one described in Glorie et al. (2014) is implemented.

In the context of CCCCP, Anderson et al. (2015) proposed a model that contains an
exponential number of constraints (for subtour elimination of the arc variables used in
chains) and an exponential number of variables (one for each feasible cycle). Column
generation was not described in Anderson et al. (2015). As the test problem instances
are for K = 3 only, presumably all feasible 2- and 3-cycles are exhaustively generated.
More details on this formulation will be discussed in Model 7.

5.2 Arc-based formulations

The arc-based formulation hasmore varieties, mainly due to the differences in problem
structures between CCMcP and CCCCP, and the differences in restrictions for cycles
and chains.We beginwith formulations for the CCMcP.We defineπ = (i1, . . . , iK+1)

to be a minimal infeasible path or a minimal cardinality violation path. Let
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– 	 be the index set of all minimal infeasible paths;
– xi j , for all (i, j) ∈ A, be a binary decision variable with xi j = 1 if arc (i, j) is
used, and 0 o.w.; and

– wi j be the weight of arc (i, j) ∈ A.

Model 4 Arc-based formulation—Roth et al. (2007)

max
∑

(i, j)∈A

wi j xi j (20)

s.t.
∑

j : (i, j)∈A

xi j =
∑

j : ( j,i)∈A

x ji , ∀i ∈ V (21)

∑

j : (i, j)∈A

xi j ≤ 1, ∀i ∈ V (22)

∑

(i, j)∈π

xi j ≤ K − 1, ∀π ∈ 	 (23)

xi j ∈ {0, 1}, ∀ (i, j) ∈ A. (24)

Without Constraint (23), the problem is an Assignment Problem (AP), and will give
us subtours that may or may not be of sizes greater than K . As AP can be solved in
polynomially time, as a future research direction, onemay attempt a branch-and-bound
method with each node solving an AP-based Lagrangean Relaxation. The reason is, in
Mak and Boland (2007), a similar exact algorithm was implemented for the RATSP.
From the computational results, it appeared that themethod ofMak and Boland (2007)
is computationally much more efficient than the branch-and-price-and-cut algorithm
of Boland et al. (2000) for the RATSP.

For CCCCP, however, Constraint (23) is invalid for L > K if the same binary
variable xi j is used for indicating an arc (i, j) is used in either a chain or a cycle,
as is the arc-based model presented in Anderson et al. (2015), wherein L = ∞ is
considered. (Though L = 3, 4, 5, 6werementioned in the description of the numerical
experiments, judging from the text and the numerical results reported in the two tables,
it is likely that L = ∞ was implemented.) Let C = (i1, . . . , i|C|), for |C | > K , be a
cycle with cardinality constraint violated, and 
 be the set of all cardinality-violated
cycles. Let A∗ = A ∪ {(i, j) |i ∈ N , j ∈ P}, where A = {(i, j) | i, j ∈ P, i �= j}.
Model 5 Arc-based formulation–Anderson et al. (2015)

max (20)

s.t.
∑

j∈P: (i, j)∈A∗
xi j ≤ 1, ∀i ∈ N (25)

∑

j∈V : (i, j)∈A∗
xi j ≤

∑

j∈V : ( j,i)∈A∗
x ji ≤ 1, ∀i ∈ P (26)

|C|−1∑

j=1

xi j ,i j+1 + xi|C |,i1 ≤ |C | − 1, ∀C ∈ 
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xi j ∈ {0, 1}, ∀(i, j) ∈ A∗. (27)

We can see that (25) and (26) are modified from (22) and (21), and that Constraint (27)
is equivalent to the weak SEC for the ATSP. Due to the fact that the same variable is
used irrespective of an arc being part of a chain or a cycle, only the weak cardinality-
infeasible-cycle elimination constraints (i.e., (27)) can be applied. In fact, the smaller
K is, the more such constraints there will be, and thus cut-generation will be required.
Stronger constraints, e.g., (23) are invalid, as we can have any sequence of K +
1 or more distinct vertices used in a feasible solution, as long as they belong to a
chain. To solve the IP, Anderson et al. (2015) described that initially constraints in
(27) are relaxed, violated constraints are then identified from the integer solution and
added to the IP model. The IP is then re-optimized with these additional constraints.
This procedure is repeated until an IP solution with no cardinality violated cycles is
obtained.

Adopting the idea of the split model we proposed inModel 2, for strong cardinality-
infeasible-cycle elimination, instead of using u�

i j to represent an arc (i, j) being used
in Cycle �, we simply have a binary variable ui j , for each (i, j) ∈ A, with ui j = 1
indicating arc (i, j) used in a cycle. The full model is as follows.

Model 6 The exponential-sized SPLIT formulation

max
∑

(i, j)∈A′
wi j yi j +

∑

(i, j)∈A

wi j ui j

s.t. Constraints (10) − (11), (13) − (16) (28)

Constraints (23) (with xi j replaced by ui j ) (29)
∑

j∈P∪{τ }: (i, j)∈A′
yi j +

∑

j∈P: (i, j)∈A

ui j ≤ 1, ∀i ∈ P (30)

∑

j∈P: (i, j)∈A

ui j =
∑

j∈P: ( j,i)∈A

u ji , ∀i ∈ P. (31)

The benefit of using a SPLIT model is that now stronger version of cardinality-
infeasible-cycle elimination constraints can be used, e.g., we can add (23) for each
minimal cardinality violation path, π ∈ 	. When K and |V | are small, one can
exhaustively enumerate all constraints into the IP model–there are O(|V |K+1) of
these constraints, (compared to the number of constraints in (27) which is exponential
even when K is small). Notice that (23) can be further strengthened. Let:

– V (π) = {i1, . . . , iK+1} be the set of vertices in a minimal violation path π ;

– u(F) =
K∑

s=1

K+1∑

t=s+1

uis ,it ; and

– u(B) =
K∑

s=3

s−1∑

t=2

uis ,it .
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Lemma 5.1 The constraints:

u(F) ≤ K − 1, (32)

u(F) −
K−1∑

s=1

uis ,iK+1 +
∑

j ′ /∈V (π)

uiK , j ′ ≤ K − 1, (33)

∑

(i, j)∈π

ui j + u(B) +
∑

j ′ /∈V (π)

uiK , j ′ ≤ K − 1, (34)

for all minimal cardinality infeasible path π ∈ 	, are valid.

We present the proofs of validity and other polyhedral results in a companion
paperMak-Hau (2015). From the Linear Programming relaxation (LPR) upper bounds
presented in Table 2, we can see that whilst the lifted constraints hardly improved the
LPR upper bounds for the objective of maximizing number of matches, Constraints
(33) and (34) did produce an impressive improvement to the LPR for the objective of
maximizing sum of arc weights. Constraint (32), on the other hand, did not improve
(23) significantly.With the lifted constraints, theLPRwith either (33) or (34) is stronger
than the LPR of the polynomial-sized Model 2 that is based on the Constantino et al.
(2013) model together with a MTZ -type chain cardinality constraint.

Anderson et al. (2015) also presented a second model for the CCCCP, a mixed
arc-and-cycle-based formulation that contains exponentially many variables as well
as exponentially many constraints. Let �K be the set of all cycles with cardinality no
more than K . Recall that A∗ = A ∪ {(i, j) |i ∈ N , j ∈ P}, where A = {(i, j) | i, j ∈
P, i �= j}. The mixed formulation uses a binary variable ya , one for each a ∈ A∗
with ya = 1 indicating arc a is used as part of a chain; and zγ a binary variable, one
for each cardinality feasible cycle γ ∈ �K with zγ = 1 indicating cycle γ is used in
the solution. (Notice that in this model there is no need for a terminal node τ ). Let
δ−(S) = {( j, i) ∈ A∗ | j ∈ S̄, i ∈ S}; and wγ = ∑

a∈A(γ ) wa , where A(γ ) are the
arcs used in γ , for any γ ∈ �K .

Model 7 Mixed formulation—Anderson et al. (2015)

max
∑

(i, j)∈A∗
wi j yi j +

∑

γ∈�K

wγ zγ (35)

s.t.
∑

j∈P: (i, j)∈A∗
yi j ≤ 1, ∀i ∈ N (36)

∑

j∈P: (i, j)∈A

yi j +
∑

γ∈�K (i)

zγ ≤
∑

j∈V : ( j,i)∈A∗
y ji +

∑

γ∈�K (i)

zγ ≤ 1, ∀i ∈ P (37)

∑

( j,i)∈δ−(S)

y ji ≥
∑

j∈V : ( j,i)∈A∗
y ji , ∀S ⊆ P, i ∈ S (38)

The model contains exponentially many constraints in (38), and that the number of
zγ variables is of order

(|P|
K

)
. Constraint (38) is a cut-set type SEC borrowed from

the ATSP. Should one considers larger K , column generation would be necessary, but
at the same time, due to the chain variables, there is also an exponential number of
subtour elimination constraints. Hence with larger K , the model would require both
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column and cut generation. Depending on how implementation is carried out, if the
structure of one destroys that of the other, the separation and pricing problems may
not be polynomially solvable.

In their implementation, only K = 3 is reported, and column generation was not
discussed. Presumably all columns were exhaustively generated and included in the
IP model. In their numerical experiments, Anderson et al. (2015) presented results for
two sets of test instances. The first set of test instances has the number of PDPs (|P|)
ranging from 152 to 389, the number of NDDs (|N |) ranging from 1 to 11, and |A|
ranging from 1,109 to 13,711. In all cases, Model 7 appears to excel Model 5, with
the former solving all test instances to optimality within 5 seconds, whilst the latter
was unable to solve some test instances to optimality even after 1200 second of run
time. However, in the second test set, which contains two test instances, one of which
contains 47 NDDs, 931 PDPs, with |A| = 190, 820; and the other 162 NDDs, 1,179
PDPs, with |A| = 346, 608, Model 5 solved the problem within 3 seconds, but Model
7 took 104 seconds to solve the first instance, and 314 to solve the second.

To deal with constrained chain size, Anderson et al. (2015) proposed to use an
“edge extension” approach similar to that of Constantino et al. (2013) in the manner
that multiple copies of the graph is cloned, and that each copy of the graph will contain
at most one chain. In specific, one can add the following constraints to Model 7.

∑

�∈N
y�
i j = yi j , ∀(i, j) ∈ A∗ (39)

∑

(i, j)∈A∗
y�
i j ≤ L , ∀� ∈ N (40)

∑

(i, j)∈δ+(i)

y�
i j ≤

∑

( j,i)∈δ−(i)

y�
j i ≤ 1, ∀� ∈ N , i ∈ P. (41)

No results are presented for constrained L inAnderson et al. (2015).Wehave numerical
evidence, (see Tables 3 and 5), that the MTZ-style size constraints on L that we
proposed in this paper appear to be computationally more efficient.

6 Preliminary numerical testing

We experimented with three models on test instances with different parameters. In
Tables 3 and 4, we have tested the SPLIT model for the CCCCP, (Model 6); a
polynomial-sized MILP formulation for the CCCCP, (Model 2), and another formula-
tion obtained fromModel 6 butwith chain restrictionmodelled in themanner described
in Anderson et al. (2015), i.e., (39)–(41). These three models are referred to as the
SPLIT-MTZ, EE-MTZ, and AND-L respectively in the tables. We did not implement
any problem reduction schemes. All models are coded and solved using IBM ILOG
CPLEX 12.5. No cut or column generation were implemented.

As we can see from the results in Tables 3 and 4, the polynomial size formulation
for the CCCCP (i.e., EE-MTZ) is a clear winner in most test instances, in particular
for modest to moderate sized instances. As the size of problems grows, the polynomial
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Table 4 More test instances

K L SPLIT-MTZ EE-MTZ

Time MaxWt MaxMat Time MaxWt MaxMat

|V | = 162, |N | = 10, |P| = 152, arc den 4%, maxwi j = 10. Obj: Max Sum Arc Wts

3 20 1800+ – – 1800+ – –

3 ∞ 14.20 1176 149 43.23 1176 149

6 ∞ 1800+ – – 45.86 1177 149

10 ∞ 1800+ – – 39.76 1177 149

|V | = 162, |N | = 10, |P| = 152, arc den 4%, maxwi j = 10. Obj: Max #Matches

3 ∞ 1300.44 801 150 48.47 805 150

6 ∞ 1800+ – – 1800+ – –

10 ∞ 1800+ – – 1720.46 856 150

|V | = 203, |N | = 3, |P| = 199, arc den 6%, maxwi j = 10. Obj: Max Sum Arc Wts

3 ∞ 67.92 1818 199 195.84 1818 199

6 ∞ 1800+ – – 211.47 1818 199

10 ∞ 1800+ – – 211.91 1818 199

|V | = 256, |N | = 6, |P| = 250, arc den 5%, maxwi j = 10. Obj: Max Sum Arc Wts

3 ∞ 173.82 2311 250 OOM – –

Times are in seconds. “OOM” stands for “out-of-memory”. “MaxWt” and “MaxMat” refer to the values of
sum of arc weights and number of matches respectively in the optimal solution. Notice that the objective
of some of the test instances below are to maximize sum of arc weights whilst others are to maximize the
number of matches. The objectives are indicated in the lines where test instance parameters are described

size formulation failed to even load the model. The size of L does not seem to have any
effect on EE-MTZ model. For the SPLIT-MTZ, on the other hand, the larger L is, the
faster an optimal solution is obtained.When K increases, however, the problems are in
general harder to solve, although, the impact on the EE-MTZmodel is not as profound
compared to the SPLIT-based models. This is likely due to the fact that currently the
SPLIT-MTZ has all cardinality-infeasible-cycle elimination constraints exhaustively
generated and included in the ILP, hence the poor performance as K grows. As we
have proposed, an Assignment Problem (AP)-based Lagrangean Relaxation within a
branch-and-bound framework is expected to improve the performance of the SPLIT-
MTZ substantially because AP-relaxations can be solved in polynomial time and that
it produces natural integer solutions, hence identifying cardinality-infeasible cycles
can simply be done by stepping through the integer solution which should only take a
trivial amount of time. As K increases, more subtours induced by the AP-relaxation
solution will be cardinality feasible, hence the number of cardinality-infeasible cycle
elimination constraints that need to be generated is expected to decrease as K increases.

In handling the chain restrictions, it seems that the MTZ-like constraints proposed
in this paper performed more favourably than (39)–(41) proposed in Anderson et al.
(2015).

The KEP with the objective of maximizing total number of matches is in general
much harder to solve than the objective of maximizing sum of arc weights, which is
not surprising as the MILP of the former contains a lot more symmetry by equivalent
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objective values due to unit arcweights. From the results in the tables, we also observed
that when we optimize the sum of arc weights, the value of total number of matches in
the optimal solutions are in general close or even equal to the total number of matches
when theMILPs are solved with the objective of maximizing total number of matches.
The converse is not true—when we maximize the total number of matches, the value
of sum of arc weights is usually far from the optimal value when the objective is
to maximize sum of arc weights. Perhaps a more efficient way to obtain the optimal
solution for the objective ofmaximizing total number ofmatches is in fact tomaximize
the sum of arc weights in the first instance, then apply constraint programming or
heuristic approaches to search for an improvement in the total number of matches.

7 Pre-processing

For the CCMcP, in Constantino et al. (2013), a pre-processing algorithmwas proposed
and tested for the EEmodel, and can be explained as follows.Observe that the �th clone
of digraph D can only have cycles that contain the vertex �, and that the only other
vertices in these cycles must be those with indices not less than �. One is therefore
able to remove some vertices and arcs, and obtain a reduced graph as follows. Let
D� = (V �, A�) be the subgraph of the �th clone of D, and let d�

i j be the distance of

the shortest path on D� from vertex i to vertex j (in terms of number of arcs between
the two vertices). We have that:

V � =
{
i ∈ V | i ≥ �, d�

�i + d�
i� ≤ K

}

A� =
{
(i, j) ∈ A | i, j ∈ V �, d�

�i + 1 + d�
j� ≤ K

}

The pre-processing algorithm is relatively efficient (as only shortest path problems
are involved) and appears to be very effective for low density problem instances with
K = 3 and 4 [up to 97.2%variables removed, as reported in Constantino et al. (2013)].
Even for high density test instances with K = 5 and 6, the reduction in number of
vertices/arcs is still impressive, (with around 65% variables removed).

The pre-processing algorithm described above is not valid for IP models that do
not involve cloning D into many copies. We can, however, modify the idea above for
graph reduction on D in general. Let di j be the distance of the shortest path on D from
vertex i to vertex j with unit arc weights. Consider:

Ṽ = {
j ∈ P | (∃σ ∈ N s.t. dσ j ≤ L

) ∨ (∃i ∈ P s.t. di j ≤ K − 1
)}

Â = {
(i, j) ∈ A | i, j ∈ Ṽ , ∃σ ∈ N s.t. dσ i + 1 + d jτ ≤ L + 1

}

Ã = {
(i, j) ∈ A | i, j ∈ Ṽ , d ji ≤ K − 1

}

For arc-based model such as Model 4 for the CCMcP and Model 6 for the CCCCP,
we can remove all cycle-related arc variables (xi j and ui j respectively) for (i, j) ∈
A \ Ã. For Model 6, we can also remove all chain-related arc variables (yi j ) for
(i, j) ∈ A′ \ Â. We cannot do so, however, for Model 5 for the CCCCP, as the same
variable is used to indicate an arc as being part of a cycle or a chain.
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8 Multiple objectives

In Glorie et al. (2014), a set of “hierarchical” objectives used in the Dutch National
Kidney Exchange Program were described. In the first instance, the objective is to
maximize the number of transplants, i.e., z1 = max

∑
(i, j)∈A wi j xi j , with the weight

of arcs wi j set to 1 for all (i, j) ∈ A. Let z∗1 be the optimal value. It was proposed that
other objectives can be optimized in a lexicographical fashion. For example, in the
second instance, the objective is to maximise the number of blood type identical trans-
plants. Let B ⊆ A be the set of arcs that represent blood type identical transplants,
the objective function will now be z2 = max

∑
(i, j)∈B wi j xi j , subject to an addi-

tional constraint that
∑

(i, j)∈A wi j xi j ≥ z∗1, in other words, to perform an objective
propagation.

The next four objectives include “match the patients in priority order based on
match probability”, “minimize the length of the longest cycle or chain”, “maximise
the spread over transplant centres per cycle and chain”, and “match the patient with
the longest waiting time”. Although the idea of iterative objective propagation was
proposed, there were no mathematical description on how exactly these are modelled,
in particular for the second last objective. Only the first objective, i.e., to maximize
the number of matches, was included in their numerical experiments.

InManlove and O’Malley (2012), a different set of objectives were described. They
are mostly to do with promoting cycles with smaller sizes to be used. A 2-cycle is
considered more favourable than a 3-cycles, unless there exists one or more 2-cycles
embedded in a 3-cycle. A lexicographical approach similar to that of Glorie et al.
(2014) was described, but again, there is no numerical results to demonstrate the
respective computation times for each round of the objective propagation.

In our experience with integer programming, after solving the first ILP for the first-
priority objective function, if we solve a second ILP with the second-priority objective
function while having the first objective propagated as a constraint, even though the
feasible space is much smaller, it does not always guarantee the second IP can be
solved much faster. In fact, sometimes it can take much longer. In Table 5, the columns
labelled “MaxMat” are the computation times required for maximizing the number
of matches. These times are extracted from Table 3. The columns labelled “MaxWt”
are the computation times required for solving the second ILP (with an objective
of maximizing sum of arc weights), given the first ILP already solved to optimality
and the optimal number of matches propagated as a constraint in the second ILP. We
can clearly see that the computation can be substantially longer in many cases. One
significant contribution for future research is to properly address the multi-criteria
nature of the Kidney Exchange Program.

9 Future research directions

In Mak and Boland (2007), it was demonstrated that an AP-based Lagrangean
Relaxation within a BNB framework performed more favourably than the branch-
and-cut-and-price method of Boland et al. (2000) in the context of RATSP. For the
CCMcP, when the cycle-cardinality constraints are relaxed, the resulting problem is an
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Table 5 Test instance |P| = 43, |N | = 10, arc density 10%

K L SPLIT-MTZ time(s) And-L time(s) EE-MTZ time(s)

MaxWt MaxMat MaxWt MaxMat MaxWt MaxMat Opt

3 3 1200+ 8.22 1200+ 13.09 1200+ 0.34 –

4 1200+ 4.87 1200+ 17.66 583.32 0.36 164

5 42.96 0.66 1200+ 2.67 13.68 0.34 172

6 3.03 0.25 11.81 8.31 1.53 0.36 174

10 0.36 0.36 0.48 2.43 0.47 0.34 178

20 0.14 0.25 0.56 7.52 0.44 0.34 178

∞ 0.42 0.16 0.45 7.46 0.42 0.31 178

4 5 102.18 4.60 190.01 2.73 23.42 0.92 172

10 0.47 2.28 2.29 2.36 0.67 0.78 178

∞ 0.51 1.08 1.98 2.79 0.58 0.87 178

5 5 97.27 21.87 727.65 41.57 33.20 1.03 174

10 2.07 8.86 8.24 10.55 0.80 1.31 178

∞ 1.75 4.23 4.49 5.85 0.81 0.87 178

6 6 161.41 167.95 594.41 405.38 3.04 1.37 176

10 10.28 25.34 18.44 86.35 0.78 1.53 178

∞ 11.29 9.39 16.22 421.87 0.78 1.39 178

Objective:maximize sumof arcweights subject to number ofmatches propagated from the optimal objective
value obtained from experiments in Table 3. The computation times are recorded in the columns “MaxMat”
and “MaxWt” respectively. Arc weightwa randomly generated from {1, . . . , 5}. The column entitled “Opt”
is the value of the maximum sum of arc weights (for comparisons with the MaxWt values in Table 3)

AP. Hence one promising research direction is to implement a similar methodology.
For the CCCCP, whilst the polynomial-sized SPLIT model, (Model 2), appears to be
computationally superior for problems of small to moderate sizes, for larger problems,
due to its O(|V |3) number of variables, the exponential-sized SPLIT model, (Model
6), is more promising in handling larger problems, particularly in a cut-generation
manner. More research can be conducted in the efficient and effective application of
the exponential-sized SPLIT model.

Another research direction is to properly address the multi-criteria nature of the
KEP. In existing literature, objective propagation within an integer programming
framework has been mentioned in Manlove and O’Malley (2012) and proposed in
Glorie et al. (2014). No computational details can be found in the literature. As demon-
strated in Table 5, despite dealing with a much smaller feasible set, it is not always
true that the subsequent ILPs obtained by objective propagation can be solved effi-
ciently. Heuristic approaches, Constraint Programming (CP), and a hybrid of ILP with
heuristic or CP approaches for multi-criteria optimization of the KEP can be explored
for future research.

Acknowledgements To “The α and the ω”.

123



58 J Comb Optim (2017) 33:35–59

References

Abraham DJ, Blum A, Sandholm T (2007) Clearing algorithms for barter exchange markets: enabling
nationwide kidney exchanges. In: Proceedings of the 8th ACM conference on electronic commerce,
EC ’07. ACM, New York, pp 295–304

Anderson R, Ashlagi I, Gamarnik D (2015) Finding long chains in kidney exchange using the traveling
salesman problem. Proc Natl Acad Sci 112:663–668

Ashlagi I, Gilchrist DS, Roth AE, Rees MA (2011) Nonsimultaneous chains and dominos in kidney- paired
donation revisited. Am J Transpl 11:984–994

Bai G (2009) A new algorithm for k-cardinality assignment problem. In: International conference on com-
putational intelligence and software engineering, 2009, CiSE 2009, pp 1–4

Baldacci R, Toth P, VigoD (2010) Exact algorithms for routing problems under vehicle capacity constraints.
Ann Oper Res 175:213–245

Bauer P, Linderoth J, SavelsberghM (2002) A branch and cut approach to the cardinality constrained circuit
problem. Math Program 91:307–348

Biró P, Manlove D, Rizzi R (2009) Maximum weight cycle packing in directed graphs, with application to
kidney exchange programs. Discret Math Algorithms Appl 1:499–517

Boland N, Clarke L, Nemhauser G (2000) The asymmetric traveling salesman problem with replenishment
arcs. Eur J Oper Res 123:408–427

Cao B, Glover F (1997) Tabu search and ejection chains&mdash;application to a node weighted version of
the cardinality-constrained tsp. Manage Sci 43:908–921

Chen Y, Kalbfleisch JD, Li Y, Song PXK, Zhou Y (2012) Computerized platform for optimal organ alloca-
tions in kidney exchanges

Constantino M, Klimentova X, Viana A, Rais A (2013) New insights on integer-programming models for
the kidney exchange problem. Eur J Oper Res 231:57–68

Cornuejols G, Harche F (1993) Polyhedral study of the capacitated vehicle routing problem. Math Program
60:21–52

Dell’Amico M, Martello S (1997) The k-cardinality assignment problem. Discret Appl Math 76:103–121
Dickerson JP, ProcacciaAD, SandholmT (2012)Optimizing kidney exchangewith transplant chains: theory

and reality. In: Proceedings of the 11th international conference on autonomous agents and multia-
gent systems, vol. 2, AAMAS ’12. International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, pp 711–718

Fischetti M, Gonzlez JJS, Toth P (1998) Solving the orienteering problem through branch-and-cut.
INFORMS J Comput 10:133–148

Gate SF (2015) 9-way kidney swap involving 18 surgeries at 2 S.F. hospitals. http://www.sfgate.com/health/
article/9-way-kidney-swap-involving-18-surgeries-at-2-6307975.php

Gentry SE, Segev DL, Simmerling M, Montgomery RA (2007) Expanding kidney paired donation through
participation by compatible pairs. Am J Transpl 7:2361–2370

Gentry SE, Montgomery RA, Swihart BJ, Segev DL (2009) The roles of dominos and nonsimultaneous
chains in kidney paired donation. Am J Transpl 9:1330–1336

Gentry SE, Montgomery RA, Segev DL (2011) Kidney paired donation: fundamentals, limitations, and
expansions. Am J Kidney Dis 57:144–151

Glorie KM, van de Klundert JJ, Wagelmans APM (2014) Kidney exchange with long chains: An efficient
pricing algorithm for clearing barter exchanges with branch-and-price. Manuf Serv Oper Manage
16:498–512

Hartmann M, Özlük Ö (2001) Facets of the p-cycle polytope. Discret Appl Math 112:147–178. Combina-
torial Optimization Symposium, Selected Papers

Kaibel V, Stephan R (2007) On cardinality constrained cycle and path polytopes.
http://arxiv.org/pdf/0710.3036v1.pdf

Kaibel V, Stephan R (2010) On cardinality constrained cycle and path polytopes. Math Program 123:371–
394

Kidney Health Australia (2015). http://www.kidney.org.au/KidneyDisease/FastFactsonCKD/tabid/589/
Default.aspx

Klimentova X, Alvelos F, Viana A (2014) A new branch-and-price approach for the kidney exchange
problem. In: Murgante B et al (eds) Computational science and its applications–ICCSA 2014. Lecture
notes in computer science, vol 8580. Springer, pp. 237–252

123

http://www.sfgate.com/health/article/9-way-kidney-swap-involving-18-surgeries-at-2-6307975.php
http://www.sfgate.com/health/article/9-way-kidney-swap-involving-18-surgeries-at-2-6307975.php
http://arxiv.org/pdf/0710.3036v1.pdf
http://www.kidney.org.au/KidneyDisease/FastFactsonCKD/tabid/589/Default.aspx
http://www.kidney.org.au/KidneyDisease/FastFactsonCKD/tabid/589/Default.aspx


J Comb Optim (2017) 33:35–59 59

Mak V, Boland N (2000) Heuristic approaches to the asymmetric travelling salesman problem with replen-
ishment arcs. Int Trans Oper Res 7:431–447

Mak V, Boland N (2006) Facets of the polytope of the asymmetric travelling salesman problem with
replenishment arcs. Discret Optim 3:33–49

Mak V, Boland N (2007) Polyhedral results and exact algorithms for the asymmetric travelling salesman
problem with replenishment arcs. Discret Appl Math 155:2093–2110

Mak-Hau V (2015) Polyhedral results for the cardinality constrained multi-cycle problem (CCMcP) and
the cardinality constrained cycles and chains problem (CCCCP). http://www.deakin.edu.au/~vicky/
TechnicalReport2.pdf

Manlove D, O’Malley G (2012) Paired and altruistic kidney donation in the UK: algorithms and experi-
mentation. In: Klasing R (ed) Experimental algorithms. Lecture notes in computer science, vol 7276.
Springer, Berlin, pp 271–282

MillerCE,TuckerAW,ZemlinRA(1960) Integer programming formulation of traveling salesmanproblems.
J ACM 7:326–329

Nguyen VH, Maurras J (2001) On the linear description of the k-cycle polytope. Int Trans Oper Res
8:673–692

Patterson R, Rolland E (2003) The cardinality constrained covering traveling salesman problem. Comput
Oper Res 30:97–116

Roth AE, Sünmez T, Ünver MU (2007) Efficient kidney exchange: coincidence of wants in markets with
compatibility-based preferences. Am Econ Rev 97:828–851

Saidman SL, Roth AE, Sönmez T, Ünver MU, Delmonico FL (2006) Increasing the opportunity of live
kidney donation by matching for two and three way exchanges. Transplantation 81:773–782

Toth P, VigoD (2002)Models, relaxations and exact approaches for the capacitated vehicle routing problem.
Discret Appl Math 123:487–512

Zenios SA, Chertow GM, Wein LM (2000) Dynamic allocation of kidneys to candidates on the transplant
waiting list. Oper Res 48:549–569

123

http://www.deakin.edu.au/~vicky/TechnicalReport2.pdf
http://www.deakin.edu.au/~vicky/TechnicalReport2.pdf

	On the kidney exchange problem: cardinality constrained cycle and chain problems on directed graphs: a survey of integer programming approaches
	Abstract
	1 Introduction
	2 Clinical background
	3 Closely related combinatorial optimization problems
	4 Polynomial-sized formulations
	4.1 A natural extension--polynomial size formulation for the CCCCP

	5 Exponential-sized formulations
	5.1 Cycle/chain-based formulation
	5.2 Arc-based formulations

	6 Preliminary numerical testing
	7 Pre-processing
	8 Multiple objectives
	9 Future research directions
	Acknowledgements
	References




