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A transformation technique is proposed that permits one to derive the linear description of the image 
X of a polyhedron Z under an affine linear transformation from the (given) linear description of Z. 
This result is used to analytically compare various formulations of the asymmetric travelling salesman 
problem to the standard formulation due to Dantzig, Fulkerson and Johnson which are all shown to be 
"weaker formulations" in a precise setting. We also apply this transformation technique to "symmetrize" 
formulations and show, in particular, that the symmetrization of the standard asymmetric formulation 
results into the standard one for the symmetric version of the travelling salesman problem. 

Key words: Travelling salesman problem, problem formulations, convex polyhedral cones, polyhedra, 
affine transformations. 

Introduction 

A formulation of a combinatorial optimization problem is a finite set of linear 
inequalities and /o r  equations in a finite set of  variables, the integer (or mixed-integer) 
solutions of  which are in one-to-one correspondence with the combinatorial configur- 
ations (stable sets, tours of  a travelling salesman, spanning trees, etc.) over which 
we wish to minimize a linear objective function. As we are dealing with linear 
inequalities or equations, we obtain a polyhedron if we drop the integrality require- 
ment and thus a "formulat ion" is a polyhedron in some finite-dimensional Euclidean 
vector-space. Its intersection with the lattice of  integer (or mixed-integer) points in 
that space is in one-to-one correspondence with the set of  the desired combinatorial 
configurations. Denote D this discrete set of points. I f  D is a finite set or if the 
data of  the formulation involve only rational data, then the convex hull of D, 
conv(D),  is a well-defined polyhedron and thus by Weyl's theorem [1935] there 
exists a finite set of linear inequalities and /o r  equations that describe conv(D) 
completely. We call such a complete linear description the ideal formulation of the 
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underlying problem; see also Wolsey (1987). Of course, because of the NP-complete- 

ness characteristic of many combinatorial optimization problems the search for an 
ideal formulation may prove to be elusive. 

For many  combinatorial  optimization problems there are typically different ways 

o f" fo rmula t ing"  them. Given two different formulations A and B of a given problem 

that are stated in the same space of variables we have thus two polyhedra XA and 

X~. I f  XA c XB then clearly formulation A is "bet ter"  than formulation B since the 
optimization over XA brings us "closer" to the " t rue"  optimum, i.e. the upper  bound 

to the combinatorial  optimization problem provided for by XA is always better than 

or equal to the upper  bound provided for by XB. (We hasten to point out that we 

exclude considerations regarding the "speed of calculation" or other criteria in this 

definition of what we consider to be "bet ter"  and concentrate solely on the goodness 
of the upper  bound that is obtained from a "formulat ion".)  The entire line of  

research that studies facet-defining inequalities of  various polyhedra occurring in 
combinatorial  optimization is devoted to finding improved formulations of  the 

respective problems. 

Different formulations of  a given problem can also frequently be stated in terms 

of different sets of  variables. So suppose that we have a formulation C that models 

the same problem as formulation A, but in a higher-dimensional space. We thus 

have a polyhedron Zc, say, and the polyhedron XA. I f  we have an affine transforma- 
tion T that maps the integer (or mixed-integer) points of  Zc onto the integer (or 
mixed-integer) points of  XA, then it makes sense to calculate the image T(Zc)  of 

Zc under this transformation. I f  T(Zc)  D XA then formulation A is evidently better 

than formulation C as the former provides no new polyhedral information about 

the convex hull of  integer (or mixed-integer) points of  XA, i.e. the ideal formulation. 

On the other hand, formulation C is better than formulation A if T ( Z c ) c  XA. 
However,  if T(Zc)  ~ X A ,  then the polyhedron T(Zc)  need not even be a "formula-  
t ion" of the problem formulated by XA when general affine transformations are 
considered. 

The use of "auxil iary" variables to arrive at a different formulation occurs already 

in a paper  by Miller, Tucker and Zemlin (1960) who show that with the help of 
n -  1 real variables the "size" of the formulation of the asymmetric travelling 

salesman problem can be reduced from exponentially many linear constraints to a 
mere n 2 - n  + 1 linear constraints where n denotes the number  of cities involved. 
More recently, a more systematic attempt is made to investigate such "reformula- 
t ions" of  integer and mixed-integer programming problems in higher-dimensional 
spaces and we refer the reader to the survey by Wolsey (1987) for further references. 

In this paper  we study different formulations of  the asymmetric travelling salesman 
problem (TSP). In Section 1 we state some properties of polyhedral convex cones 
that are needed throughout our work. In Section 2 we consider affine transformations 
of  polyhedra and derive a linear description of the image X of a polyhedron Z 
from the linear description of Z. In Section 3 we compare three different formulations 
of  the TSP (including the Mil ler-Tucker-Zemlin  formulation) to the standard 
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formulation due to Dantzig, Fulkerson and Johnson (1954). In Section 4 we use 

linear transfornaations to "symmetrize" several of these asymmetric formulations 

of  the TSP. In Section 5 we draw some conclusions from our work. 

1. Some properties of polyhedral cones 

In this section we give some definitions and properties of convex cones that are 

essentially known from the literature, see e.g. Gale (1951), Gerstenhaber (1951), 

Burger (1956), Simonnard (1966), Stoer and Witzgall (1970) and Bachem and 

GrStschel (1982), and that are used extensively throughout other parts of this work. 

A set C___~" is called a cone if V 1, vZE C implies that ~l/)l'J--~2'/)2E C for all 

scalars a~, a2 I> 0. A halfline (or ray) (v) is the set of  points {av e R" IrA ~> 0}. A 
halfline (v) is called an extreme ray of C if for any v *, v2c C, v--;ivY+ ( 1 -  Z)v 2 

with 0 < a < 1 implies that v 1, v 2 are positive multiplies of v. A set of generators of 

a cone is a set of  hairlines which spans C and such that no hairline of the set is in 

the convex hull of the others. The class of cones of our interest are the ones for 

which there exists afinite set of generators, the so-called polyhedral cones. All cones 

considered in our work are polyhedral ones and thus we drop the adjective from 

n o w  o n .  

It follows from Weyl's (1935) theorem that every cone that we consider is the 

intersection of finitely many halfspaces and thus we can write C as 

C = {x c~"IAx >~O}, 

where A is an m × n matrix. In most of our work we are given a cone in matrix 

form and we wish to find a full system of generators of C. To this end we define 

the lineality space L of C to be the set of  all vectors x such that x c C and - x  c C 

and hence 

L= {x eR"]Ax=O}. 

It follows that the dimension of  L, dim L, is n - r ank(A) .  If  rank(A) = n, the lineality 

space of C consists of  the origin only. In this case C is a pointed cone, we say that 

C has its apex at the origin and moreover, C has a uniquely defined finite set of 

extreme rays. Whenever dim L ~  > 1, the cone has no apex and no extreme rays in 

the sense of  the definition given above. However, C has a finite set of  generators 
and among all such sets we will distinguish one that we continue to call "extreme". 

To do so define 

L~={yc~"[xy=O VxcL},  

C O = C n L ' .  

L x is the orthogonal complement of  L. It follows that the lineality space of  the cone 
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C o is the origin and  hence,  C o is a po in ted  cone and  possesses a un ique ly  defined 

finite set of  extreme rays (in the sense of the above definit ion).  Since L and  C o are 

or thogonal  to each other, every po in t  x ~ C can be writ ten as x = l + Xo where I e L, 

Xoe C o and  l and  Xo are un ique ly  determined.  We define the extreme rays of C o to 

be the "ext reme rays" of  C since they are a un ique  set of  generators  for the conical 

part  of  C. I f  BL denotes  a basis of L, then  BL and  (--BL) form a un ique  set of  

generators  for the lineal part  of  C. In  summary,  lett ing D be the set of  extreme rays 

of C °, a un ique  set R of  generators  of any  cone C is given by 

R = BLU (--BL) ~ D. 

This way the concept  of  an  "extreme ray" of any cone C - -  even if d im L/> 1 - -  

is u n a m b i g u o u s l y  defined and  in the case of a po in ted  cone we retrieve the original 

definit ion.  

The fol lowing l emma and  theorem from Burger (1956) state a cri ter ion for x ~ C 

to define an extreme ray of C. 

Lemma 1. Let  C = {x ~ R" l A x  >I O} be such that rank(A)  = n and denote M the index 

set o f  all rows o f  A. ( x ) is an extreme ray o f  C i f  and only i f  x 6 C, x # O and there 

exists I c_ M such that (i) ]I[ = n - 1, (ii) aix = 0 for  all i c I and (iii) the rows a i with 

i ~ I are linearly independent. 

Proof. Given  a vector x ~ C, let I be a maximal  subset  of M such that  aix = 0 for 

all i~  I and  that  the rows a i with i ~ I are l inearly independen t .  Let A1 be the 

submatr ix  of A having rows a i for all i c I and  P be the subspace given by 

P = {x ~ ~" [A~x = 0}. It follows that  d im P = n - [ I [  and  since I is maximal  it follows 

that d im P c~ C = dim P. 

Suppose  now that  111= n - l ,  bu t  that  x is not  an  extreme ray of C. Since 

rank(A)  = n we have C = C o and  hence there exist x I ~ C o and  x 2 ~ C o such that  

(x  l) # (x)  # (x  2) and  x = hx  ~ + (1 - h )x  2 with 0 < h < 1. F rom aim >i 0 f o r j  = 1, 2, we 

obta in  aix j = 0 for i c I a n d j  = 1, 2 and  hence,  M c P f o r j  = 1, 2. Since x ~, x 2 c P c~ C 

and  dim P = 1, it follows that  x 1=/zx  2 for some /x > 0. Consequent ly ,  ( x ) =  (x 2) 

which is a contradict ion.  

On the other hand,  suppose  x # 0 is an extreme ray of C and  let ]I] = k. Then  

clearly k <~ n - 1 since otherwise dim P = 0 and  x = 0. Suppose that  k < n - 1. Then  

d im P n C = n - k >/2 and  there exist n - k l inearly i n d e p e n d e n t  vectors x ~ c P n C 

such that  each x ~ annuls  at least one row of A that is not  in A~ and  that  is l inearly 

i n d e p e n d e n t  of the rows of A1 since rank(A)  = n and  where i = 1 , . . . ,  n - k. Con-  

sequently,  x # x ~ and  x is a nonnega t ive  l inear  combina t ion  of x 1, . . . ,  x n-k having 

at least two coefficients positive. Since C = C O it follows that  x = h x l +  (1 - h ) x  2 for 

some x ~ # x # x  2, XI, x2E C O and  0 < h  < 1  which is a contradict ion.  The l emma 

follows. [] 
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Theorem 1. Let  C = { x ~ R" l A x  >>- 0}, L = {x c ~n i A  x = 0} and dim L = d. A hairline 

(x )  is an extreme ray o f  C i f  and only i f  (i) x c C O and (ii) there exist exactly n - d - 1 

linearly independent rows a i o f  A such that a ix  = O. 

Proof .  Since  d im L = d, it fo l lows tha t  r a n k ( A )  = n - d. I f  d = 0, we are  in the  case 

s ta ted  in p rev ious  l e m m a  and  we are  done .  Let  d >i 1. Then  we can write L -L= 

{x  ~ R ~ I B x  = 0} where  B is a d × n mat r ix  o f  rank  d whose  rows c o r r e s p o n d  to a 

bas is  o f  L. I t  fi~llows tha t  C O = {x ~ R" l A x  >>- O, B x  = 0}. We c la im tha t  the  rank  o f  

the  cons t ra in t  mat r ix  o f  C O equals  n. Let A~ be  a (n - d )  × n submat r ix  o f  A having 

a full  r ank  and  s u p p o s e  tha t  there  exist  h ~ R ~-d , /z  ~ ~d such that  h # O,/x # 0 and  

A A I + / z B = O  , equ iva len t ly  A A ~ = - t z B .  Consequen t ly ,  k A I A T = - t z B A  T where  

B A  T = 0 is a nu l l -mat r ix .  Since A 1 A  T is a n o n s i n g u l a r  mat r ix  o f  size n - d, it fo l lows 

tha t  k = O. Fu r the rmore ,  s ince  r a n k ( B ) =  d, we conc lude  l ikewise  tha t  /z = 0 and  

hence  the  c la im fol lows.  W e  can thus  a p p l y  the  prev ious  l e m m a  to C O and  the 

t h e o r e m  fol lows.  []  

F r o m  a c o m p u t a t i o n a l  p o i n t  o f  view it will  be somet imes  more  conven ien t  to 

de t e rmine  nonzero solutions o f  minimal  support, i.e. a nonze ro  so lu t ion  with the least 

n u m b e r  o f  nonze ro  c o m p o n e n t s ,  to equa t ion  systems sat isfying the r equ i remen t  (ii) 

o f  T h e o r e m  1 if" we wan t  to de te rmine  a gene ra to r  system for  the  conica l  pa r t  o f  C. 

F r o m  any  such so lu t ion  x ~ C, say, tha t  satisfies x ~ L one ob ta ins  an  ex t reme ray  

o f  C as fo l lows:  G i v e n  a basis  B o f  the l inea l i ty  space  L o f  C one ca lcula tes  the  

p r o j ec t i on  x 1 o f  x by  the  leas t - squares  f o r m u l a  

x I = x - B T ( B B T ) - I B x .  (1) 

Since x ~  L it fo l lows tha t  X17 & 0 and  moreover ,  x a e  C °. The vec tor  x a annuls  the  

same rows o f  A as does  x. Consequen t l y  every nonze ro  so lu t ion  o f  m in ima l  suppo r t  

to an equa t ion  ,;ystem sat is fying the r equ i r emen t  (ii) o f  T he o re m 1 that  is not  in L 

yie lds  v ia  this p ro j ec t i on  an ex t reme ray  o f  C. On the o ther  h a n d ,  let  x e C be any  

ex t reme  ray  o f  C. By T h e o r e m  1 there  exist  n -  d -  1 l inear ly  i n d e p e n d e n t  rows o f  

A tha t  are annu l l ed  by  x and  since x # 0 this  sys tem possesses  a nonze ro  so lu t ion  

o f  m in ima l  suppor t .  Since x ~ L it fo l lows by  a s t a n d a r d  l inear  a lgebra  a rgumen t  

tha t  it possesses  a nonze ro  so lu t ion  o f  m in ima l  suppo r t  tha t  is not  in L. Consequen t ly ,  

we have  the fo l lowing  r e m a r k  which  we will  use r epea t ed ly  la ter  on:  

R e m a r k  1. A fidl  gene ra to r  system for  the  conica l  pa r t  o f  a cone C with d im L = d 

can be ob t a ined  by  de t e rmin ing  for  each  sys tem o f  n -  d -  1 l inear ly  i n d e p e n d e n t  

rows o f  A a nonze ro  so lu t ion  o f  min ima l  suppo r t  to A x  >i 0 that  is not  in L p r o v i d e d  

it exists. 

In  mos t  o f  our  app l i c a t i ons  o f  the  p reced ing  mate r ia l  the mat r ix  A defining the 

cone  C is a block diagonal matr ix .  I t  is the re fo re  impor t an t  to note  tha t  we can 

work  on  the lower  d i m e n s i o n a l  cones def ined  by  the b locks  o f  A in o rde r  to find a 
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full generator  system for C. More  precisely, we have an "intersect ion proper ty"  o f  

cones given by the fol lowing proposition: 

Proposition 1. Let 

Cl={Xae~P[Aaxa>>-O}, C2={x2~Rq]A2x2>~O} 

and (23 be the intersection cone of cones Ca and C2 embedded naturally in the R "+q, i.e. 

C 3 ~- {(x  1, x 2) e ~"+q ]aaxa>~ O, A2x2>~ 0}. 

Denote R~ the set of generators of C~ for i = 1, 2, 3. Then 

R3 = {(u, 0) ~ ~P+q ]u ~ Ra} u {(0, v) ~ ~p+q Iv 6 R2}. 

Proof. Denote  d~ = dim L~ the d imension of  the lineality space o f  C~, B~ any basis 

o f  L~ and D~ the set of  extreme rays of  Ci for i -: 1, 2, 3. It follows that  d3 = dl + d2 

and consequent ly  

B3={(u,O)cRP+qIuEB1}u{(O, v) R +qlv  B2} 

since the respective vectors are linearly independent .  Let u c Da. Then  u c C o and 

thus (u, 0) c C °. Moreover ,  (u, 0) annuls precisely p - da - 1 + q - d2 = p + q - d3 - 1 

linearly independent  rows of  the constraint  system defining C3. Thus by Theorem 

1 we have (u, 0) c D3. By symmetry,  we have (0, v) c D3 for all v ~ D2. Hence  we have 

{(u, O) cRP+q[uc RI}U{(O, v)~'+"lv~ R~}~_R3. 

To show equality suppose  that  there exists a generator  d o f  C3 such that  d = (d ~, d 2) 

with d I ¢ 0 # d 2. We write d = (d a, 0 ) +  (0, d2). Consequent ly ,  d ~ ~ Ci for i = 1, 2 

and thus d ~ can be expressed as a nonnegat ive linear combina t ion  o f  the elements 

o f  R~ for i = 1, 2 and thus d = 2 Z)( u j, O) + Y~ h~(0, v j) for u j ~ Ra, v j c R2 and h) ,  h~/> 

0. This contradicts  the fact that  d 6 R3 and the propos i t ion  follows. []  

2. Afline transformations of polyhedra 

In  this section we consider  affine t ransformat ions  o f  full rank that  map  Nn into R "  

where m <~ n. It is wel l -known that  an affine t ransformat ion  f rom R" into R"  sends 
a po lyhedron  in Nn into a po lyhedron  in R '~, see e.g. Bachem and Grgtschel  (1982, 

Theorem 2.12). Given the linear descript ion o f  a po lyhedron  Z ~ En we are interested 

in finding a linear descript ion o f  the image of  Z under  a given affine t ransformation.  
To achieve somewhat  greater generality we restrict the "feasible" points in the image 

of  Z to be in some set Q ~ ~m. In  most  cases we will have Q = R m. 

Let 

x = f +  Lz (2) 
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be the affine t ransformat ion  f rom R n into R",  i.e. f c  ~m and L is an m x n matrix 

having full row rank. It will be convenient  to part i t ion L into L1 and L2 such that 

L1 is an m x m matrix o f  rank m that corresponds  to the first m columns of  L. We 

will assume that  the affine t ransformat ion  is given along with a fixed partit ioning. 

We note that  for  f = 0 we have a linear t ransformat ion  and since a "pro jec t ion"  is 

a special case o f  a l inear t ransformat ion  the fol lowing development  generalizes 

statement (2.1) o f  Balas and Pul leyblank (1987). Let 

Z = {z ~ •" [Az = b, Dz<~ d} (3) 

and 

X = { x c  Q I 3 z c Z  such that x = f  + Lz} (4) 

where A is a p x n matrix, D is a q x n matrix, f c  R",  Q _c R '~ is an arbitrary set, 

L =- (L1, t2) is an m X n matrix having full row rank and A and D are part i t ioned 

as A = (A~, m2) and D = (Da,  D2) according to the part i t ioning of  L. Define 

C = {(u, v ) ~ P + q I u ( A z - A I L ~ I L 2 ) + v ( D 2 - D x L ~ I L 2 ) = O  , v~>0}, (5) 

x c  =- {x c O l(uA, + vD1)Llax <~ ub + vd + (uAl + vD1)L?l f  V(u, v) c C}. (6) 

Theorem 2 .  X = Xc.  

Proof.  Let x c X and thus there exists a z c Z such that  x = f +  Lz. For  any v ~> 0 

we have in the part i t ioning induced by (L1, L2), 

( uA1 + oD1)z ~ + ( uAe + t)D2)2 2 ~ ub + oK. 

Consequent ly ,  'we have equivalently 

(uA1 + vD1)LIa(L1 zl + L2z 2) + (u(A2 - AIL11L2) + v(D2 - DILlaLz))Z 2 

<- ub + yd. 

Adding  (uA~ + v D 1 ) L ~ f  to both  sides o f  the last inequality, we obtain 

(uA~ + vD~) L ;a ( f  + Lz) + (u( A 2 -  A1L?I L2) + v( D2 - D1L11L2) )z 2 

ub + vd + ( uA~ + vDa)L~I f 

Since x = f +  Lz and since for  (u, v )~  C the second term of  the expression is zero, 

we have 

( uA1 -t-vD~)L~lx <~ ub + vd + ( uA1 + vD~) L11f 

Hence,  X ~_ Xc.  
To show X c  c_- X, let x ~ X. I f  x ~ Q, we then immediate ly  have x ~ Xc.  Otherwise, 

there exists no z c Z such that  x = f +  Lz, i . e .  the linear system 

Alz l  + A2 z2= b, 

Dlz l  + D2z2 ~ d, 

La 21 q- L2 z2 = x - f ,  

(7) 

(8) 

(9) 
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is inconsistent. By Farkas' lemma there exist u ~ R p, v ~ R q and ~ ~ E "  satisfying 

uA1 + vD1 + ~:L1 = 0, (10) 

uA2+ vD2+ (L2 = 0, (11) 

ub + vd + ~(x - f )  < 0, (12) 

v~O.  

Since L1 is nonsingular, from (10) we have ~ = - ( u A ~  + vDOL11. Substituting ~ in 
(11) we obtain 

u( A 2 --  A,L~ '  L2) + v( D 2 -  DIL11L2) = O. 

It follows that (u, v) c C. Substituting ~: in (12), we get 

ub + vd < (uA1 + vD1)L~I(x - f ) ,  

i.e. 

ub + vd + ( u A  1 + v D 1 ) L 1 1 f  < (uA1 + vD~)L~Ix. 

Hence x ~ X c  and thus x ~ X c  implies x c X. The theorem follows. [] 

Since many combinatorial problems include explicit nonnegativity constraints in 
their formulations, we state affine transformations of the associated polyhedra for 
ease of reference in the following corollary: 

Corollary 1. Let 

l = {z ~C~"lAz  = b, Dz<~d, z>~0} 

where A is a p x n matrix and D is a q × n matrix and let X be defined as in (4). Then 

X = X c ,  where 

X c  = {x c Q l (Ual+ vD1 - w)L~ 'x  

<~ ub + vd + (uA 1 q- vDa - w ) L ~ l f  V(u, v, w) 6 C} (13) 

and 

C = {(u, v, w) ~ ~v+o+m [u(A2 - A,L11L2) + v ( D 2 -  DxL~'L2) 

+wL~IL2>>-O, v~>0, w~>0}. [] 

Since every (u, v) ~ C can be written as a linear combination of the elements of 
a basis of the lineality space L of C plus a nonnegative combination of the extreme 
rays of C, it follows that in the linear description (6) and (13) of the polyhedron 
X we can restrict ourselves to any finite generator system of C. That is, we can 
replace the requirement " for  all (u, v) c C"  in (6) and (13) by the requirement "for  
all (u, v) in a generator system of C" .  This way we get a finite system of inequalities 
for X. In particular, since Ic  L implies that - I ~ L ,  we get a system of equations 



M. Padberg, T-Y. Sung/Formulations of the travelling salesman problem 323 

for X from any basis of  L. While the linear system describing X is finite, it may 

very well be exponential  in the parameters  m or n. Thus it is interesting to note that 

for any x ~ •" the eonstraint identification problem for X, see e.g. Hoffman and 

Padberg (1985), can be stated as the following linear program: Find 

z ( x ) = m a x { u ( a l L l ' ( x - f ) - b ) + v ( D i L - ( l ( x - f ) - d ) l ( u , v ) ~ C }  (14) 

where x ~ ~"~ is given. It follows that x ~ X if and only if z ( x )  = 0; otherwise, the 
solution to this linear program yields a constraint for X that is violated by x. Also, 
by the duality theory of linear programming the question of  testing x ~ X amounts 

e.g. in the case of  (6) to showing that the linear system (7), (8), (9) is inconsistent, 

i.e. that this system does not have a feasible solution for the given x c ~m. Con- 

sequently, if the original problem over Z has an input-length that is polynomial  in 

n, then the constraint-identification problem over X is automatically polynomial  in 

n as well since problem (14) is solvable in time polynomial  in n; see Khachiyan 
(1979) and Karmarkar  (1984). Of  course, we assume in this statement that either 
Q = R m or that x ~ Q can be checked separately in polynomial  time as well. 

The following proposit ion gives a sufficient condition for linear programs over Z 

and X, respectively, to be "comparable" .  

Proposition 2. Let  Z, X be defined as in (3) and (4). I f  c = dL, then min{cz[z  ~ Z }  = 

m i n { d x [ x  ~ X }  - d f  

Proof. I f  c =dL ,  it follows that 

min{cz[ z  ~ Z }  = m i n { d L z [ z  ~ Z }  

-- m i n { d ( f +  Lz)  Jz c Z } -  d f  

= m i n { d x [ 3 z  c Z such that x = f +  Lz} - d f  

= m i n { d x I x c X } - d f  [] 

For ease of  reference, we state next the projection result of  Balas and Pulleyblank 
(1987) separately. It follows from our development by choosing f - - 0 ,  L~ = I and 
L2 = 0. To be specific, let 

Z = {(z 1, Z 2) C Rn [Alz  1 + A2z 2 = b, D l z  1 + D2z 2 <~ d, - z  I <~ O, - z  z <~ 0} 

and 

X = {z '  ~ Q l 3 z  2 E R " - "  such that (z 1, z 2) c Z}, 

where A = (A1, A2) is a p x n matrix and D = (D1,/92) is a q x n matrix. As we are 
" truncat ing" the vector z we can without loss of  generality insert the condition 

z 1 ~ Q in the constraint set of  Z. Since L1 = I, L2 = 0, the associated cone C '  is then 
defined as follows: 

C ' =  {(u, V, w) ERP+q+m[uAz+vD2~O, v~O,  w~0}. 
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The inequalities w ~> 0 give rise to extreme rays of the form (0, 0, w i) where w i is 
the ith unit vector of R". By Corollary 1 these extreme rays yield the nonnegativity 
constraints z 1 i> 0. Furthermore, by the intersection property of cones we can work 
with the smaller cone 

C = {(u, v) 6 Ep+o [uA2+ vD2>~ O, v >i 0}. (15) 

It follows from Corollary 1 that 

X = { z l c  Q]za>~o, (UAl+vDOzl<~ub+vd for all (u, v)~ C} (16) 

as stated in Balas and Pulleyblank (1987). 

3. Four different formulations of the travelling salesman problem 

The (standard) travelling salesman problem (TSP) is to find a shortest way from a 
home city to visit a given set of cities exactly once and then return to the home city. 
Dantzig, Fulkerson and Johnson published a seminal paper on the TSP in 1954 and 
formulated the problem as a zero-one linear program involving O(n 2) variables and 
0 (2  n) linear constraints. Since their formulation involves an exponential number 

of constraints, various researchers have proposed formulations of the TSP that 
involve only a polynomial number of constraints usually at the expense of increasing 
the variables; see e.g. Miller, Tucker and Zemlin (1960), Fox, Gavish and Graves 
(1980) and Claus (1984). The issue we are addressing here is whether or not these 
compact formulations provide better characterizations of the travelling salesman 
polytope than the standard formulation due to Dantzig, Fulkerson and Johnson. In 
other words, we investigate the question whether or not the solvability of the TSP 
is improved by these other formulations when used in connection with linear- 
programming-based solution methods such as e.g. branch-and-bound, Lagrangean 
relaxation or branch-and-cut. 

We use the following standard notation: 

a+(i)={(i, j)6 E l V j c  V} f o r i e V ,  

6 - ( i ) = { ( £ i ) ~ E [ V j ~ V }  for i~V,  

6 ( i ) = 6 + ( 0 u 6 - ( 0  f o r i ~ V ,  

S = V - S  f o r S ~ V ,  

E ( S ) = { ( i , j ) c E I V i ,  j ~ S  } fo rS_cV,  

(S I :S2 )={ ( i , j )~EIV i~SI , j~S2}  forSl___VandS2c__V-Sa,  

x( E') = ~ Xe f o r E ' c _ E .  
e ~ E '  
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Furthermore, we write sometimes •v and R E rather than ~tvl and ~te[ and for any 

vectors u c R v and w ~ R E we denote u s and w F the characteristic vectors of S ~  V 

and F ~  E respectively, i.e. u s and w F are defined by 

u S = { 1  VIES ,  F {10 V e E F, 
0 V i e S ,  w~= V e E E - E  

We use em to denote the vector of size m with all components equal to 1 and u ~ 
(or sometimes w i, s ~*) to denote the ith unit vector. The support graph of  x 6 R E is 

defined as G ( x ) =  (N, S(x) )  where S ( x ) - - { e E  E Ix~ #0} and N _  V is the set of  
nodes spanned by S(x) .  

3.1. The Dantzig-Fulkerson-Johnson ( DFJ) formulation 

Dantzig, Fulkerson and Johnson (1954) formulate the standard problem as a zero-one 
linear program on a graph G =  (V, E)  as follows: 

rain Y, c~x o 
i,j=l 

n 

s.t. Y~ xu = 1, j = 1 , . . . ,  n, (17) 
i = 1  

xj;= 1, j =  1 , . . . ,  n, (18) 
i = 1  

y x < lsl-I vs=_ v and 2~<[S[~<n-1, (19) 
i , jcS 

x,j >>- 0 Vi, j, (20) 

.x~ integer Vi, j, (21) 

where V-= {1, 2 . , . . . ,  n}. We assume throughout this paper that the variables xii do 
not exist and thus we have a formulation of the TSP involving n ( n -  1) zero-one 
variables and 0(2")  constraints. The constraints (19) are referred to as subtour 
elimination constraints (SECs) and rule out cycles visiting a subset of  nodes in V. 
They can be written equivalently in the cut form as 

x (S :  V -  S) >>- 1. 

We denote the convex hull of  solutions to (17)-(21), 

P"  = conv{x ~ ~"(" 1)Ix satisfies (17)-(21)}, 

the travelling salesman polytope, and the linear programming relaxation 

P~s-- {x ~ Nn(n-1)[X satisfies (17)-(20)}, (22) 

the subtour polytope. The polytope P~ is a formulation of the TSP, but an ideal 

formulation for the travelling salesman problem, i.e. a complete list of all linear 
inequalities that are needed to describe P ' ,  is unknown; see Gr/~tschel and Padberg 
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(1985) for a survey of the partial results concerning the facial structure of  P" 

obtained to date. It is well-known that dim P"  = dim P~ = n(n - 3) + 1 and that the 

constraints (19) and (20) define facets of  P". We use the DFJ-formulat ion as the 

benchmark  for our comparison. 

3.2. The Miller- Tucker-Zemlin ( MTZ) formulation 

Miller, Tucker and Zemlin (1960) propose a formulation for a more general TSP 

on V = {1 . . . .  , n} nodes, which is known as the "clover- leaf"  TSP with t leaves and 

which goes as follows: 

Denote city 1 the home city. The salesman is required to visit the other n - 1 cities 

exactly once. During his travel he must return to the home city exactly t times, 

including his final return, and he must visit no more than p cities different from 
home in one tour. (A tour is a succession of visits to cities without stopping at city 
1.) We require that [ ( n - 1 ) / p ] ~ t ~ n - 1 ,  where [a]  for any a ~ R  denotes the 

smallest integer greater than or equal to a, since otherwise there is no feasible tour 
and p >i 2 since otherwise the problem is not interesting. The problem is written as 

the following mixed 0-1 linear program: 

min ~ ~, CijXij 
i ~ l j = l  

s . t .  ~ Xil = t, 
i=2 

Xli  = t, 
i=2 

~ x o = l ,  j = 2 , . . . , n ,  
i = l  

(23) 

(24) 

(25) 

Y, xq = 1, i = 2 , . . . ,  n, (26) 
j = l  

u~-uj+px~<~p-1, 2<~i#j<~n, (27) 

u~>~O, 2<-i<~n, (28) 

x,j~>0 Vi, L (29) 

x 0 integer Vi, j. (30) 

The constraint (24) is redundant,  but we include it for convenience of analysis in 
Section 4.2. The restriction that the home city is visited exactly t times is expressed 
in (23) and (24). The constraints (27) eliminate tours that visit more than p cities. 
The formulation involves O(n 2) constraints in n 2 - 1  variables. Furthermore, for 

t = 1 and p/> n - 1 the MTZ-formulat ion models the standard model correctly. 
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3.2.1. The MTZ- formula t ion  and a modified standard model 

In order to compare the MTZ-formulat ion with the standard formulation we use 

the following modification of  the DFJ-formulat ion to accommodate  the more general 

form of  the clover-leaf TSP: 

min Y. ~ cox~ 
i= l  j = l  

s.t. (23)-(26), (29), (30) and 

x(E(S))  <- Is l -  [Isl/p] v s  ~_ v -  {1}, Isl/> 2. (31) 
For this modification we define the polytope P~,t corresponding to the subtour 

polytope P ;  as; follows: 

P~,, = {x e R"("- l ) lx  satisfies (23)-(26), (29) and (31)}. 

This modified DFJ-formulat ion models the same problem as the MTZ-formulat ion 
and we can compare the two formulations by projecting out the u-variables of  the 
latter formulation. To this end we associate with the MTZ-formulat ion the following 
sets: 

Q = {x ~ Nn(~-l~lx satisfies (23)-(26)}, 

UPM := {(u, X) ~ ~n2-11 (U, X) satisfies (27)-(29) and x ~ Q}, 

PM = {X ~ Q l3u ~ R "-1 such that (u, x) ~ UPM}. 

UPM is the MTZ-polytope,  i.e. the linear relaxation of  the MTZ-formulat ion,  and 

PM its projection into R ~ - ~ ) .  The comparison of the two formulations is then 
reduced to a comparison of  the two polytopes PM and P~.,. 

To carry out this comparison analytically we use the results of  Section 2 and 

determine a linear description of  the polytope PM- Noting that the variables Xe with 

e e 6(1) do not appear  in the constraints (27), we write these constraints as 

ATu + Bx  <~ b 

where A is the', node-arc incidence matrix of  a complete directed graph on nodes 

{ 2 , . . . ,  n}, B = pI~n-~)(~-2~, b = (p  - 1)e(~-~)(~_2~. In order to find the linear descrip- 
tion of PM we need to determine a generator system of the cone 

3.2.2. The arc cone o f  a complete digraph 

We define the arc cone C of a complete digraph with node-set V = { 1 , . . . ,  n} to be 

c ={v~R"<"- l ) lAv>~O , v~>O} 

where A is the node-arc incidence matrix of  the complete digraph K, .  Since 
0 = enAv >t O, it follows that  A v  = 0 for all v c C. Thus C can be written as 

C = { v ~ R n ( n - l ~ l A v  =0,  v~>0}. (32) 

Since v/> 0 for all v c C, it follows that C is a pointed cone with apex at 0. 
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Proposit ion 3. A vector v ~ C defines an extreme ray i f  and only i f  

{~ Ve ~ ~r(S), 

Ve : otherwise, 

where 7r( S)  c_ E is the arc-set o f  a directed cycle on S c_ V. 

(33) 

Proof.  Let v ~ C be defined as in (33) and assume that v =/~D 1 q- (1 - h )v  2 for some 
1 v a, v2c C and 0 < h  < 1. Then  hvle+ (1 -h)V2e = 0 for all e~  ~-(S) implies that  Ve = 

2 De = 0  for  all e~  ~r(S). I f  there exists f ~  ~r(S) such that  v}=O, we obtain 1 r e = 0  for 

all e c ~-(S) by transitivity f rom the constraints A v  1 = 0  since ~r(S) is a directed 

cycle. It follows that v 2 is a positive multiple o f  v. So suppose Vle> 0 and V2e > 0 for  

all e • 7r(S). Since 7r(S) is a directed cycle we have by transitivity f rom A v  i = 0 that 

v ~ is a positive multiple o f  v 2. But then both  V a and v 2 are positive multiples o f  v. 

Therefore  v defines an extreme ray. 

For  any extreme ray v ~ C let S ( v )  = {e c E [ Ve > 0} be the support  o f  v and let 

N _  V be the set o f  nodes  spanned  by S(D). I f  the partial subgraph G* = (N,  S ( v ) )  
k Di 

is not  connected  and has k~>2 components ,  it follows that v=Y,i= 1 and 
k 

equivalently, (v) = Y, ~= ~ (1 / k) v ~ where each point  v i has nonzero  entries in posit ions 

cor responding  to a c o m p o n e n t  o f  G* and zeroes elsewhere, which is a contradict ion.  

Hence,  G* is a connected  graph. Let i c  N and suppose  that  there do not  exist 

e I C 6+(i) and e2 c 6- ( i )  such that Vel > 0 and De2> O. It follows that  Y,e~+(~)D e = 0 

o r  ~ e~,3 (i) De = 0. By the feasibility o f  A v  = 0 we have ~ e~+(~) Ve = Y,e~8-(;) V, = 0 and 
thus i~ N, which is a contradict ion.  Consequent ly ,  every node  i ~ N has at least 

one arc e c 6+(i) and one arc e c 6 - ( i )  in G* such that Ve > 0. By Lemma 1, v satisfies 

n(n  - 1) - 1 linearly independen t  rows o f  (A) as equat ions since C is a pointed  cone. 

Let q = IN] and A* be the node-arc  incidence matrix o f  the complete  d igraph induced 

by the node-set  N. Since the rank of  A* equals q -  1 it follows that  v satisfies at 

most q - 1 linearly independent  rows of  A as equat ions and thus, v satisfies at least 

n ( n - 1 ) - q  equations o f  the form Ve=O. It follows that v has exactly q positive 

entries o f  Ve because each node  i in G* has an in-degree and an out-degree o f  at 

least one. Consequent ly ,  G* is a directed cycle and the proposi t ion  follows. []  

3.2.3. The projection o f  the MTZ-polytope 

Let x ~ be the vector with componen ts  Xe for e ~ 8(1) and x 2 be the vector with 

componen t s  xe for e ~ E - 8 ( 1 ) .  It follows f rom (16) that the project ion of  the 

MTZ-po ly tope  UPM is given by 

PM = {( xl, X2) ~ Q IP O x 2 ~  (P  -- 1 ) v e ( n - l ) ( n - 2 )  ~'D E C } .  

Since one needs to consider  only extreme rays in the definition o f  PM, it follows 

f rom Proposi t ion 3 that it suffices to consider  the inequalities 

x(C) I c l - I C l / p  for all directed cycles C _ e - 8(1). (34) 
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Consequently, the following lemma gives the linear description of  PM: 

329 

Lemma 2. The projection PM of the MTZ-polytope U P  M is given by 

PM = {x ~ ~ ' ( ' - ' ) ] x  satisfies (23)-(26), (29) and (34)}. [] 

Lemma 2 has been obtained independently by Egon Balas, see e.g. Balas, (1987) 
where it is stated without proof. The following theorem settles the comparison 
between the DFJ-formulation and the MTZ-formulation of the clover-leaf TSP: 

Theorem 3. The polytopes PM and P~,, satisfy: 
(i) PM=P~,,fort=n--1, n--2 andallp>-2, n>-3. 

(ii) P~,t is a proper subset of PM for all [(n-1)/p]<~t<~n-3, 
and n >14. [] 

p~>2 

The proof  of Theorem 3 is somewhat tedious and long and can be found in full 

in Sung, (1988). 

3.3. The Fox-Gavish-Graves (FGG) formulation 

Fox, Gavish and Graves (1980) formulate a "t ime-dependent" travelling salesman 
problem and thus a generalization of the standard TSP. Here the cost of travelling 
between city i and city j depends also on the position t of the arc (i,j) in the tour 
relative to a given "first" or "home"  city that is indexed by 1. The time-dependent 
TSP was originally proposed as a formulation for the 1-machine n-job scheduling 
problem and studied by K. Fox [1973] in his dissertation; see Picard and Queyranne 
(1978) for further references. Of the various formulations proposed by Fox, Gavish 

and Graves we investigate here the most compact one involving n linear constraints. 
The decision variables of this model are triple-indexed variables zot and z0t = 1 if 
the arc from i to j is assigned to the tth position in the tour, z0t = 0 otherwise. 

The FGG-formulat ion of the time-dependent TSP goes as follows: 

min Y~ ~ cijtzijt 
i=1 j = l  t = l  

s.t. ~ ~ ~ zijt=n, (35) 
i - 1  j = l  t = l  

~ t zq , -~  ~ t z j , = l ,  i=2 , . . . , n ,  (36) 
j = l  t=2  j = l  t = l  

zq,~>0 Vi,£ t, (37) 

zo.t integer '¢i, L t. (38) 

Constraint (351) is the "aggregation" of constraints of a 3-dimensional assignment 
problem which ensure that every city is visited exactly once and that every position 
of  the tour has one arc assigned to it. The constraints (36) ensure that for each city 
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other  than the home city the posi t ion number  o f  an arc leaving the city is exactly 

one more  than the posi t ion number  o f  an arc entering the city. For  a city on a 

subtour  o f  length k/> 2 the posi t ion number  o f  an arc leaving the city is k units 

bigger than the posi t ion number  o f  an arc entering the city and thus the constraint  

(36) cannot  be satisfied unless the city is the home city. It follows that every feasible 

zero-one solut ion corresponds  to a tour  and in particular,  that  the constraints (36) 

rule out all subtours;  see Garfinkel (1985) for a discussion of  this formulat ion.  

To simplify the exposi t ion we note that  the constraints (36) can be rewritten as 

follows: 

n-1  n 

- ~ zjil+n ~ (Zo,-Zji ,)+ ~ t Y, (Zo t -Z j , )=l  f o r / : Z , . . . , n .  
j = l  j : l  t=2 j - 1  

Observing that  z0a = zji, = zlit = Zilt = 0 for all i/> 2, j />  1 and 2 <~ t ~< n - 1 in every 

feasible solut ion to (35)-(38) these constraints are simplified to 

n--I 

-z1~1+ nz~ln + ~ t (z 0, - zj~t) = 1 for  i = 2 , . . . ,  n. (39) 
t = 2  j = 2  

Furthermore,  we do not  need variables o f  the type z~it for  all i and t and thus these 

variables as well as those that  assume the value zero in every feasible solution to 

(35)-(38) are d ropped  f rom the model.  I f  cot = c o for all i, j and t, the F G G -  

formulat ion models  the s tandard  TSP correctly and involves n linear constraints in 
m = 2(n - 1) + (n - 1)(n - 2 )  2 ze ro -one  variables. 

3.3.1. The FGG-formulation and the standard model 
While the FGG-fo rmula t ion  permits more  general cost functions than the s tandard 

DFJ-formula t ion ,  we can still investigate the "goodness"  o f  the formulat ion in 

compar i son  to the DFJ- fo rmula t ion  by not ing that the linear t ransformat ion  x -- Lz 

given by 

xU=~ Zot Vi, j c  V, (40) 
t 

maps the incidence vectors o f  tours o f  the FGG-formula t ion  onto the incidence 

vectors o f  tours o f  the DFJ-formula t ion .  To carry out this compar i son  we define 

two poly topes  TPF and PF as follows: 

TPF = {z E ~m [Z s a t i s f i e s  (35), (36) and (37)}, 

PF = {x ~ R"~"-1)I 3 z  ~ TPF such that  x = Lz}. 

We call TPF the F G G - p o l y t o p e  and PF its l inear t ransformation.  Since every nonnega-  
tive solution to (35) is clearly bounded ,  bo th  TPF and PF are b o u n d e d  polyhedra ,  

i.e. they are indeed polytopes.  Moreover ,  we have the fol lowing propos i t ion  which 

we state for  completeness:  
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Proposition 4. Every feasible  solution to (35)-(38) satisfies zo, <- 1 f o r  all i , j ,  t. 

Proof. Let zo, be a feasible solution to (35)-(38). Summing up (39) over all i # 1, 

we obtain 

i = 2  i = 2  

~=2 Z~l,/> 2, we have ~=2  zm >/n + 1 which is a contradiction to (39). It follows 
n _ ~ n  

that Y.i=2 z1~1- i=2 z~, = 1 by the integrality of z and hence by (37) we obtain 
zm ~< 1 and z~a, <~ 1 for all i # 1. Furthermore, there exist i* # j *  such that Zli 1 = 1 

for i = i*, Zlil =-" 0 otherwise and Zjl, = 1 f o r j  = j* ,  Zjl, = 0 otherwise. Since none of 
the variables in (39) has a coefficient equal to 1, every nonnegative integer solution 
to (39) has at least two z~, for all i , j ,  t having positive values. Consequently, there 
are at least 2 ( n -  1) positive z~t appearing in the n -  1 equations (39). Since Zlm 
and zj.1, appear exactly once in (39) and every z~, for i # 1 a n d j  # 1 appears exactly 
twice in (39), we need to have at least n - 2 z~  for i ¢ 1 and j # 1 having positive 
values. On the other hand, by (39) z allows at most  n - 2  z~j, for i # 1 and j ¢  1 
having positive values. It follows that z~, ~< 1 for all i ~ I a n d j  ¢ I and the proposition 
follows. [] 

Consequently, every integer extreme point of TP F corresponds to a tour of  the 
travelling salesman. Clearly, to every tour of  the travelling salesman there corre- 
sponds a zero-one point in PF. TO show that the converse holds we determine the 
linear description of the polytope PF by applying the results of  Section 2 to the 
linear transformation (40). In matrix form this transformation is written as L = 
(LI, L2), where L1 = I,(n_l~ has columns corresponding to z-variables in the order 

{(1,2, 1 ) , . . . ,  (1, n, 1), (2, 1, n ) , . . . ,  (n, 1, n)}u{( i , j ,  2)[2~< i # j < ~  n}. 

The matrix L 2 is a matrix having n - 2  column blocks of (0, I(,_1~(,_2~) T where the 
matrix 0 is a 2 ( n - 1 )  × ( n -  1 ) ( n - 2 )  matrix having all the components equal to 0. 
The tth block for 1<~ t<~ n - 2  of L2 has columns corresponding to z-variables 
indexed by {(i,.h t+2)12~< iCj<~ n}. Furthermore, the rows of zero matrices in L2 
correspond to all arcs with e c 3(1). 

We denote A z  = b the constraint system formed by the constraints (35) and (36). 
The vector b is an n x 1 vector having first component equal to n and 1 elsewhere. 
The matrix A can be partitioned according to (L1, L2) as (ml,  A2) where A1 and 
A2 are written as follows: 

e,-1 e~-i e(n-1)(,-2)] 
A I =  __1,_ 1 nI ,_ l  2 M  J '  

" ' "  

A2 I 

[_ 3M 4M . - .  ( n - 1 ) M J '  
/ 
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and M is the node-arc incidence matrix of  a complete digraph on V = { 2 , . . . ,  n}. 
Following the definitions of  A1 and A2, we obtain 

a 0 0 1 
2 M  . - .  ( n - 3 ) M  ' 

since L~ -1 = In(n-l~. The cone corresponding to (5) is given by 

C = { ( v , u , ~ , w ) ~ E n ~ l k u M + w > ~ O , k = l , . . . , n - 3 , ¢ ~ O , w ~ O }  (41) 

where v ~ ,  u ~R n-l, ~ ~2(~-1) and w ~ R  ~n-l~n-2~. 

3.3.2. Simplification o f  the cone C 

To make the analysis of  the cone (41) easier we proceed as follows: The scalar v 

gives rise to a lineality space that is generated by ( i l ,  0, 0, 0) and consequently, in 
order to find extreme rays of  C we can get rid of  it by intersecting C with v = 0. 

Furthermore, the inequalities ~ >  0 give rise to extreme rays of  C of the form 

(0, 0, ~i, 0) where ~ is the ith unit vector of  R 2~-~.  So by the two preceding 

operations and the intersection property of  cones, we can work with the smaller cone 

C ' = { ( u ,  w ) ~ N ( ~ - l > ~ l k u M + w ~ O  for k =  1 , . . . ,  ( n - 3 ) ,  w~>0}. 

Now consider 

C" = {(u, w ) c N ( ~ - l ~ [ ( n - 3 ) u M + w > ~ O ,  w~>0}. 

Proposition 5. C'= C". 

Proof. Since (u, w) e C '  implies (u, w) ~ C", we have C' c_ C". Suppose now that 

there exists (u, w ) c  C" such that (u, w)~ C'.  Then there exists a column m ~ of M 
and an index k, 1 <~ k <  n - 3 ,  such that 

kum e + We < 0 (42) 

and thus from We >-0 we have 

u m  e ( 0 (43) 

since k/> 1. On the other hand, since (u, w) e C" we have 

(n - 3)urn ~ + W e ~ O. (44) 

Adding the negative of  (42) to (44) we find ( n - 3 - k ) u m " > O  and thus since 
n - 3  - k >  0 we have um ~ > O, which is a contradiction to (43). Consequently, we 
have C ' =  C" and the proposit ion follows. [] 

To get a full generator system of the cone C '  and the linear description of PF 
corresponding to (6) it thus suffices to find a generator system for the cone C". 
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3.3.3. The node-arc cone of a complete digraph 
Let C be a node-arc cone of  a complete digraph G on V =  ( 1 , . . . ,  n} and defined 

as follows: 

C ={(u, w) c ~ 2 1 p u M + w ~ O ,  w~>0} 

where p is a positive integer and M is the node-arc incidence matrix of G. Let 

Since the rank of M -r is n -  1, it follows that B has a rank of n 2 -  1. Hence, the 

cone C has a lineality space L of  dimension 1 and the basis of  the lineality space 

is given by u = + en, w = 0. 
To find the extreme rays of the cone C we have to find solutions to all homogeneous 

equation systems corresponding to n 2 variables and n 2 -  2 linearly independent rows 

of  B. The solution space to such a system is a family having one parameter and we 

derive a member having minimal support of this family. 

Proposition 6. Let B* be the ( n 2 - 2 ) x n  2 submatrix of B that corresponds to the 
equation system of an extreme ray of C. Then every nonzero solution to 

of minimal support is a positive multiple of the vector (u, w) given by (i), (ii) or (iii) 

where 

(Po f o r e x a c t l y o n e i a n d j e V ,  
(i) ui = 0 Vi ~ V, wi~ = otherwise, 

(ii) ui = otherwise, w~ = otherwise, 

{--1 f o r a l l i ~ S ,  {Po f o r a l l i ~ S , j ~ S ,  
(iii) ui= 0 otherwise, w~= otherwise, 

and Sc_ V, l<~lSl<~n-1.  

Proof. Since B* corresponds to an extreme ray of C the system (45) admits a 

nonzero solution and we can partition B* = (B1 , f )  where B1 is an (n 2 - 2 )  x (n 2 - 1 )  

submatrix of  B having a rank of  n 2 - 2  and f is some column of B*. Suppose the 

column f belongs to a w-variable wo, say. If  B* contains the row corresponding to 
wo/> 0, then B1 has a rank of  at most n 2 -  3 which is a contradiction. I f f  is the zero 

column, then the vector defined in (i) is a solution of minimum support to (45) and 

we are done. In the remaining case B* contains the equation pui -pu~ + w o = 0. Since 

no ( n - 2 ) x ( n - - 2 )  submatrix of B* having rank n - 2  contains all n columns 

corresponding to the u-variables we can replace c o l u m n f  by a column corresponding 

to some u-variable, i.e. we can assume without loss of generality that column f 
belongs to a variable Uk, say, with k ~ V. It follows that the matrix B1 decomposes 
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as follows: 

B1 = 1 0 
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where I0 a n d / 1  are identity matrices of  size IEol x IEol and levi x IE, I, respectively, 

Eo = {e ~ E [ we = 0 in the extreme ray considered} 

and E~ = E -  Eo. Both Ao and As have n -  1 columns and the matrices A0 and F 

have n - 2  rows. F is an ( n - 2 ) ×  IEol matrix having exactly one entry equal to 1 

per row. Since Bx has a rank of n 2 - 2  it follows that Ao has a rank of n - 2 .  Since 

Ao is a submatrix of  the arc-node incidence matrix of  a directed graph it follows 

that the partial subgraph H of  G induced by the n - 2 rows and all columns of Ao 

has at most n - ]  nodes and that it is a forest consisting of at most one tree whose 

node-set S satisfies IS I > 1 and a possibly empty set of  isolated nodes otherwise. H 
has at least n - 2  nodes since the rank of Ao equals n - 2 .  I f  H has n - 2  nodes, 

then A0 has a zero column corresponding to some variable uj and j ~ k. From the 

rank of Ao it follows that all ui = 0 for i ~ j  in every solution to (45) and Uk = 0 in 

any solution of minimal support.  Since (45) admits a nonzero solution it follows 

that uj ~ 0. From - p u j  + w o >i 0 and puj + wji >i 0 for all i ~ V - j  and the nonnegativity 

of  all w u it follows that every nonzero solution of minimal support  to (45) is of  the 

asserted form with S = {j} since E0 u E~ = E. Suppose now that H has n - 1 nodes. 
Then there exists exactly one tree with node-set S satisfying IS I > 1. Since k ~ S we 

have IsI ~ n - 1. By transitivity we get u~ = A for all i c S in any nonzero solution to 
(45), u~ = 0 for all i ~ S in any solution of minimal support  to (45). Moreover, from 

the partitioning of B1 it follows that w 0 = 0 for all i , j  ~ S and that w 0 = 0 for all 

i, j ~ S in any solution of minimal support  to (45). From pui + w o. >- 0 for all i ~ S, j ~ S, 
- p u j  + w u >i 0 for all j ~ S, i c S and the nonnegativity of  all w-variables it follows 

that every nonzero solution of  minimal support  to (45) is of  the form (ii) or (iii). 
The proposit ion follows. [] 

3.3.4. The linear transformation o f  the FGG-polytope 

Since we are working on the linear transformation of the FGG-polytope,  the cone 

C is the one defined in (41). We use the generator system, which consists of  a basis 
of  the lineality space and a family of  generators having minimal support,  to derive 

the linear t ransformation of PF of the FGG-poly tope  TPF. By the intersection 
property of  cones and Proposition 6 with p = n - 3 ,  the generator system that we 
get is summarized below: 

(i) v = ± l ,  u=O,  ~ = 0 ,  w=O, 

(ii) v=O,  u=O,  ~ = ~ ,  w = O ,  f o r i = l , . . . , 2 ( n - 1 ) ,  

(iii) v=O, u = + e .  ~, ~=0,  w=O, 

(iv) v=O,  u=O,  ~ = 0 ,  w = ( n - 3 ) w  i for i = l , . . . , ( n - 1 ) ( n - 2 ) ,  

(v) v=O,  u = u  s, ~:=0, w = ( n - 3 ) w  (~-~l~:s), 

(vi) v = 0 ,  u = - u  s, ~ = 0 ,  w = ( n - 3 ) w  <s:~-~l~), 
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for all S___V-{1}, l~<[sl<~n-2 where v is a scalar, u c ~  "-1, ~ c R  2("-1~, 
w~R(,-1)(~-2>, ~i and w i are the ith unit vectors in R 2<n-~) and R (~-1~n-2> 

respectively, u s: and w e' are the characteristic vectors of S and E '  respectively. 

By Corollary 1, PF is given by 

PF-- {x ~ R"("-~)l((v, u ) A 1 -  (~, w))x<-(v, u)b V(v, u, ~, w)~ C}. 

It follows that ,(ii) and (iv) yield the nonnegativity constraints 

xe>~O V e ~ E  (46) 

and (i) and (iii) yield the following equations: 

x(E) = n, (47) 

- x(8+(1)) + nx(8-(1)) = n - 1. (48) 

The generators in (v) yield the following inequalities: 

h(S) = - x ( 1  : S) + nx(S: 1) + 2x(S:  S -  {1}) - (n - 1 ) x ( S -  {1} : S) 

<~[S[ VS_cV--{1},I~<ISI<~n--2. (49) 

Similarly, the generators in (vi) define the following inequalities: 

x ( I : S ) - n x ( S : I ) + 2 x ( S - { 1 } : S ) - ( n - 1 ) x ( S : S - { 1 } ) < ~ - [ S [  (50) 

for all S _  V-{1} and 1 ~< IS[ ~< n - 2 .  Using (48) the constraint (50) can be rewritten 
a s  

- ( n  - 1) - x(1 : S -  {1}) + n x ( S -  {1}: 1) + 2 x ( S -  {1}: S) 

- ( n  - 1)x(S : S -  {1}) ~< - Is [  

or equivalently, 

- x ( l  :S - {1} )+  nx(S-{1}  : l)+ 2x (S - {1}  : S) 

- ( n  - 1)x(S : ~q- {1}) ~< Igl- 1, 

which is equivalent to the constraint (49) for the set S -{ 1 }  since S =  
V - ( S - { 1 } ) - { 1 } .  Hence the constraints (50) define the same inequalities as (49) 
and we have the following lemma: 

Lemma 3. The linear transformation PF of the FGG-polytope T P  F is given by 

PF = {x c R"("-l)lx satisfies (46)-(49)}. 

Moreover, dim PF = n(n -- 1) --2 for all n >I 3. 

Proof. The first part of  the lemma follows from the discussion preceding it. To 
prove the second part we observe that the point given by x = 1/(n-1)e,(n_l) is 
contained in PF and satisfies all inequalities defining PF strictly. Since the rank of 
the equation system defining PF equals 2 the statement follows. [] 
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We show next  that  the relat ions (46)-(49) together  with the integrali ty condi t ion 
on all var iables  xv const i tute a valid fo rmula t ion  of  the travell ing sa lesman problem.  

Clearly,  every incidence vector  x of  a tour  satisfies (46)-(49).  On the other  hand  

let x be a integer solut ion to (46)-(49).  Like in the p r o o f  of  Proposi t ion  4, equat ion 

(48) implies x ( ~ + ( 1 ) ) =  x ( ~ - ( 1 ) ) =  1. Suppose  that  there exists a node  i S  1 such 

that  x(6+(i))=O. Let S =  V - { l , / } .  Since x ( 6 - ( 1 ) ) = l  and x ( 8 + ( i ) ) = 0  imply  

x(S:  1) = 1, it fol lows tha t  

h(S) = - x ( 1  : S) + nx(S: 1) + 2 x ( S :  i) - (n - 1)x( i  : S) 

= - x ( l : S ) + n + 2 x ( S : i ) > / n - 1 ,  

which is a contradict ion.  Hence,  x(6+(i)) ~> 1 for  all i ~ 1. The constraint  (49) for  

S = {i} and  i # 1 is writ ten as 

--Xli "[- nxil + 2x( i :  S -  {1}) - (n - 1 ) x ( S -  {1}: i) 

= - ( n  - 1)x(6-( i))  + 2x(6+(i)) + (n - 2)(xil + Xl,) <~ 1. 

I t  fol lows that  x(6-(i)) /> 1 for  all i # 1 because  x(6+(i)) I> 1 for  all i ~ 1. By (47), 

it fol lows that  x ( 6 - ( i ) ) = x ( 6 + ( i ) ) =  1 for  all i and fur thermore ,  the suppor t  o f  x 

cor responds  to k I> 1 directed cycles. Suppose  k I> 2. Let ~-(S') be a subset  o f  suppor t  

o f  x that  cor responds  to a directed cycle on S'c_ V, 2 <~ IS'[ ~< n - 2 and  1 ~ S'. Define 

S = S ' -  {1}. Because 2 ~< [S'] <~ n - 2 and [S[ = ]S ' [ -  1, it fol lows that  h(S) = -1 + n > 
IS[, which is a contradict ion.  The s ta tement  follows. 

Consequent ly ,  all integer  ext reme points  o f  the po ly tope  Pv cor respond  to tours  
of  the travell ing sa lesman and the compar i son  be tween  the F G G - f o r m u l a t i o n  and  

the s tandard  one is r educed  to a compar i son  of  the po ly topes  PF and P~.  Moreover ,  

we note that  if eij, = c 0 for  all i, j and t the sufficient condi t ion of  Proposi t ion  2 for  

" c o m p a r a b i l i t y "  is satisfied. 

Theorem 4. The subtour polytope P~ is a proper subset of PF for all n >! 4. 

Proof. The constraint  (49) can be rewrit ten as 

h(S) = - x ( S :  S ) + 2 x ( S :  S )+(n  - 2 ) ( x ( S :  1 ) - x ( S - { 1 }  : S ) ) ~  IS[. 

Let x be a vector  in P~.  It  fol lows that  the equat ions  (47) and  (48) are satisfied. 
Fur thermore ,  summing  up  the constraints  (17) and (18) for  all i e S  we obtain  
x ( E ( S ) ) + x ( S :  S) = x ( E ( S ) ) + x ( S :  S) = [S[. It  fol lows that  x(S:  S) = x ( S :  S) and 
x(S:  'S) <~ IS]. Since x ~  P~,  we have x ( S - { 1 } :  S ) + x ( S - { 1 } :  1) i> 1 by  connectivi ty 
and x ( S -  {1} : 1) + x (S  : 1) = 1 and hence,  x ( S -  {1} : S) ~ x (S  : 1). It  fol lows that  

h(S)= x(S:  S ) + ( n - 2 ) ( x ( S :  I ) - x ( S - { 1 }  : S)<~ x(S:  S)<~]S[ 

and thus the constraints  (49) are satisfied. Consequent ly ,  x ~ P~ implies  x ~ PF and 
therefore  P~ _c PF- TO prove  that  P~ is a p rope r  subset,  we construct  a vector  x as 
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follows: 

Xe 

[ ( n  2 -  n+ 1 ) / n ( n - 1 ) ( n - 2 )  

Ve e 6-(1) ,  

Ve~ 6+(1), 

V e ~ E - 6 ( 1 ) .  

It follows that x satisfies (46)-(48). Furthermore, x(S : S -  {1}) = x ( S -  {1} : S) > 0 

and thus 

h(S) == O+ I S l -  (n - 3 ) x ( S - { 1 }  : S) ~ Isl 

for all So__ V - { l }  and l<~]Sl~<n-2 .  Hence, XEPF. However  x does not satisfy 

constraints (17) and (18) of  the DFJ-formulat ion and thus x ~  P~. The theorem 

follows. [] 

The point x constructed in the proof  of  the theorem satisfies neither the degree 

constraints (17), (18) nor the subtour elimination constraints (19) of  the DFJ- 

formulation. To prove the latter we observe that for n i>4 and Isl--n-2 we have 

x(E(S))  = (n - 2 ) ( n  - 3 ) ( n  2 -  n + 1)/n(n - 1)(n - 2 )  

= (n - 3)(n 2 -  n + 1) > n - 3 = Isl- 1 

and for n = 3 ,  S={2 ,3} ,  we have x (E(S ) )=7>I ,  i.e. the subtour elimination 
constraint for S = {2, 3} is violated. Moreover,  since dim PF> dim P~ it follows that 

the affine hull of PF properly contains the affine hull of  P~. The compact  FGG-  

formulation is t h u s -  from a linear programming point of  v i e w - - a  particularly 

" b a d "  formulation of the travelling salesman problem. 

3.4. The Claus (C) formulation 

Claus (1984) proposes a different formulation of  the standard TSP that uses network 

flow concepts involving multiple commodities. Denote s the home city (the "source")  
and transform any hamiltonian cycle into a Hamiltonian path by duplicating the 

home city as a "s ink" t. The TSP can be interpreted as the problem of  finding a 

Hamil tonian path from s to t on an (s, t ) -digraph G = ( V, E)  where V = V ~ u {s, t}, 

V 1 = { 1 , . . . ,  n} and E = { ( i , j ) l V i # j c  V1} u {(s, i), (i, t)[Vic va}. Furthermore, we 

interpret the variable x 0 for (i,j) ~ E where 

[1  if ( i , j ) is  in the Hamil tonian path, 

xij = "[0 otherwise, 

as defining a capacity on arc (i,j). The network flows involve n +  1 commodities. 

The "k th  commodi ty"  is the commodity  shipped from s to vertex k where k =  
1 , . . . ,  n + 1 and n + 1 is the index of the sink t. We define a variable Yok as the flow 
of the kth commodi ty  on arc (i,j). Claus (1984) formulates the problem as the 
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following 0-1 linear program: 

min ~ cux U 
(i,j)eE 

s . t .  • Xij~- Z Xji = 1  V i e  g 1, ( 5 1 )  
j~V  j~V  

Z xs, = Y. xl, =1 ,  (52) 
i~ V 1 ic  V 1 

Y~ Y~k - ~ Yjgk = 0 Vi c V ~, k c V*, (53) 
j e V  j c V  

~--Yikk=-- l ,  ~Ys ik=l ,  ~Ykik=O, V k e  V*, (54) 
i i i 

Yijk ~Xij Vi, j, k, (55) 

xij>~O Vi, j, (56) 

yok>~O Vi, j, k, (57) 

xo, Y~jk integer Vi, j, k, (58) 

where V * =  vXu {t}. When viewed in isolation the constraints (53), (54) and (57) 

assure that for every node k e V* there exists a path from the source s to the node 

k along which one can push one unit of  flow. The constraint (55) "couple"  these 

requirements across all nodes by requiring additionally that for all feasible vectors 
(x, y) such paths exist in the support graph corresponding to the positive values of  

x. It follows that in the support  graph every cut has a value of at least one and thus 

all subtour elimination constraints are satisfied by the feasible values of  x. Hence, 

in particular, all subtours are ruled out by the above formulation. For every feasible 

solution to (51)-(57) we have Yitk = 0 for all i ~ V and k c V 1 because no commodity 

can be shipped out from the sink t and Yk~k = 0 for all i, k e  V* because ~i Ykik = 0 
for all k c V*. Hence, these variables can be dropped from the formulation. The 
C-formulat ion involves a set of  constraints of  order n 3 and n 3 - t  - n2+3n  variables 

and models the standard problem of the DFJ-formulat ion correctly. 

3.4.1. The C-formulation and the standard model 
To compare the C-formulation and the DFJ-formulat ion we have to project out all 
of  the y-variables of  the former formulation, i.e. the linear transformation that we 
have to analyze has the particular form L = (In2+n, 0) where 0 is an appropriately 
dimensioned matrix of  zeros corresponding to the y-variables. Following the notation 

of Section 2 we define the following sets: 

Q={x~R"2+"[x  satisfies (51), (52) and (56)}, 

YPc = {(Y, x) ~ ~n3+"2+3" I (y, x) satisfies (51)-(57)}, 

Pc = {x ~ Q[3y  ~ • n3+2n such that (x, y) e YPc}- 
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We call YPc the C-polytope and Pc its projection. Ignoring the (minor) conceptual 

change introduced by the modelling of Hamil tonian paths rather than Hamiltonian 

cycles, the comparison between the two formulations is thus reduced to comparing 

the polytopes Pc and P~. By the remarks following the C-formulation one is lead 

to expect that Pc is a smaller polytope than P~ and the question is simply whether 

or not this formulation provides any polyhedral  information that is not already 

contained in the standard model. The answer to this question - -  as we shall see - -  is 
negative. 

To analyze the C-formulat ion we write the constraints (53)-(55) in matrix form 

as follows: 

Ay=b, 

- D x + y ~ O .  

Examining the formulation we find that A is a block-diagonal matrix and consists 

of  n ÷ 1 blocks l~ k for k = 1 , . . . ,  n + 1. The decomposit ion of A follows from the 

fact that the n + 1 commodi ty  flows do not interact with each other. For k e V 1 the 

matrix A k is the node-arc incidence matrix of  the complete (s, k)-digraph Gk = 

(V lw  {s}, Ek) having a source s, a sink k and Ek = E -  (6+(k)w 8-( t ) ) .  A~+I is the 

node-arc incidence matrix of  the entire network, i.e. G,+x = G. The constraint 

~i  Ysik = 1 for the commodi ty  k defines the row of A k corresponding to the source 
s and the constraint ~i--Yikk = - - 1  defines the row of Ak that corresponds to the 
sink k. Correspondingly, we partition b as induced by ( A ~ , . . . , A , + ~ )  into b = 

( b ~ , . . . ,  b n+l) where b k for all k has an entry of  1 in the row corresponding to the 

source s, - 1  in the row corresponding to the sink k and 0 elsewhere. Furthermore, 

= ( D 1 , . . . ,  where we partition D according to the partitioning of A as D T D~+~)T T 

Dk for k ~ n + 1 is a matrix of  size (n 2 -  n ÷ l) X//2 and D,+~ = I,~+,. The columns 

of  the matrix D correspond to the variables x~ for all (i,j) ~ E. Each row of Dk 
corresponds to a variable Y~jk and has an entry of  1 in the column corresponding 

to the variable x~ and 0 elsewhere. Let yk be a vector having components  Y~jk for 

all ( i , j )eEk and x be a vector having components  x~ for all ( i , j )cE.  The C- 

formulation can then be written in matrix notation as follows: 

min )~ cox~ j 
(i,j)cE 

s.t. (51), (52) and 

Aky k=b k f o r k = l , . . . , n + l ,  

--Dkx+yk<~o f o r k = l , . . . , n + l ,  

x-~;O, yk>~O for k = l  . . . .  , n + l .  

In order to carry out the comparison we have to find a generator system of the cone 

C = {(u, v, w)[uA+v>~O, v~>O, w~>O}. (59) 
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The inequalities w ~> 0 give rise to extreme rays of  C which are unit vectors of  the 
form (0,0, w;) where w i is the ith unit vector of Rn(,+1). Furthermore, since A 

decomposes,  we can use the intersection property of  cones and work on the smaller 

cones 

C~ = {(u k, v ~)l ukA~ + v ~ >1 O, v ~ >! 0} 

for k = 1 , . . . ,  n + 1 to find a full system of generators for C and thereby a linear 
description of the polytope Pc- 

3.4.2. The node-arc-cone o f  a (s, O-digraph 

The node-arc cone C of a (s, t ) -digraph (V, E)  is defined as follows: 

C ={(u,  v) c R  m [ A T u + v > - O ,  v>~0}, 

where m = [V[+[E] and a is the node-arc incidence matrix of the (s, t )-digraph 
having a source s and a sink t. A full generator system for C follows from the 

results of  Proposition 6 by replacing p with 1 because the arguments used in the 

proof  of Proposition 6 do not make use of  the completeness of the underlying 

digraph and thus apply to the sparse digraph considered here as well. 

3.4.3. The projection o f  the C-polytope 

Since in this section we are addressing the whole formulation, the cone C is the 
cone defined in (59) and V is the node-set of  the original (s, t)-digraph, i.e. 

V = {s, 1 , . . . ,  n, t}. By Corollary 1, Pc is defined by 

P c = { X ~  Q [ ( - v D - w ) x < ~  ub V(u, v, w)c  C}. 

A set of  generators of  the cone C is given by the unit vectors (0, 0, w i) which are 

generated by the inequalities w >i 0. These generators yield the nonnegativity con- 

straints 

Xe:~O Ve~E. (60) 

In order to derive the remaining generators of  the cone C, by Proposition 1 we 

embed the generators of  Ck for k = 1 , . . . ,  n + 1 into the space of C by adding zero 
entries elsewhere. However  these zero entries in the generators do not affect the 
projection. We can still work with the generators of  Ck and correctly translate the 
results to the x-variables, i.e. we have to calculate ( - v D k ) x  <<- ub k for all generators 
(u, v)~  Ck where k =  1 , . . . ,  n + l .  

The vector u k=  ±e ,+ l ,  v k = 0  defines a basis of  the lineality space of Ck for all 

k. This generator defines the trivial equality 0 = 0 which is redundant.  For all k # n + 1 
the remaining generators of  Ck are given by 

(i) u = u s, v = v (g-(k~:s), 

(ii) u = - u  s, v = v (s-{k}:s-{t}), 
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where Sc_ V - ( t }  and 1 ~< ISI<~ n. These generators yield the inequalities 

- x ( S - { k } : S ) < , u ~ - u k  f o r u = u  s, (61) 

- x ( S . - { k } : g - { t } ) < - u s - u k  for u = - u  s, (62) 

where ui = 1 if i ~ S, ui = 0 otherwise. The remaining generators of Cn+l are given by 

(iii) u = u s, v = v ~:s), 

(iv) u = - u  s, v = v ~s:~), 

where S___ V and 1 ~< IsI ~< n + 1 These generators produce the inequalities 

- x ( S :  S) ~< u~ - u~ for u = u s, (63) 

- x ( S : S ) < - u ~ - u ,  f o r u = - u  s. (64) 

Moreover, the generators of Ck given by Proposition 6, part (i), reproduce the 
nonnegativity constraints (60) when k varies from 1 to n + 1. If  the right-hand side 
in (61) or (62) ,equals 0 or 1, then the corresponding inequality is implied by the 
nonnegativity conditions (60) and thus redundant. Therefore, we need to consider 
only the following inequalities: 

- x ( S : S ) < ~ - I  VS~_ V - { t } , l < ~ l S l < ~ n , s ~ S a n d k c S ,  (65) 

- x ( S : S - { t } ) < - - 1  VS~_V-{t},l<<-]Sl<~n, s c S a n d k ~ S ,  (66) 

where we have replaced ( S - { k } : S )  by (,~:S) for k c S  and ( S - { k } : S - { t } )  by 
( S : S - { t } )  for k ~ S. Consequently, (66) defines the same set of inequalities as does 
(65). The left-hand sides of inequalities (63) and (64) except for S = ( t }  and 
S-- V-{t} ,  respectively, are less than or equal to the left-hand sides of (65) and 
(66), respectively, and hence, these inequalities are dominated by (65) and (66). 
For S =  {t} and S =  V - { t } ,  respectively, the inequalities (63) and (64) define the 
same inequality x(8-(t))  ~> 1 which is redundant. 

Since k varies from 1 to n, the inequalities (65) can be summarized as the following 
cut constraints: 

x(S:S)~>I  VScV-{t},I<<_]S[<~n an d s c S ' .  (67) 

Consequently, we have the following lemma: 

Lemma 4. The projection Pc of  the C-polytope YPc is given by 

Pc=(xER"~+"lxsatisfies (51),(52),(56),(60) and (67)}. [] 

In order to compare the C-formulation with the standard formulation for TSP, 
we identify the source s and the sink t of the network G. It follows that constraints 
(67) can be written as 

x(S:,~);~>l VS_~V,I~<ISI<~n, 
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which are exactly the subtour elimination constraints in cut form. Hence, we conclude 
our comparison in the following theorem: 

Theorem 5. The projection Pc o f  the C-polytope YPc is equivalent to the subtour 
polytope o"+1 --S " [] 

4. Symmetrization of three TSP formulations 

By "symmetr izat ion" we mean the replacement of  a single directed edge or of  a 

pair of  oppositely directed edges joining two nodes of  a graph by an undirected 

edge of a graph on the same node set. As we are working in the space of variables 

corresponding to the edges of  a directed graph this operation translates naturally 
into a linear transformation mapping the former space onto a space of variables 
corresponding to the edges of  an undirected graph. We can thus use the results of  

Section 2 in order to derive analytically formulations or non-formulations of  the 

symmetric  travelling salesman problem from the formulations of  the asymmetric 

travelling salesman problem that we have studied so far. We show that the symmetriz- 

ation of the DFJ-formulat ion leads to the standard formulation of the symmetric 

travelling salesman problem also due to Dantzig, Fulkerson and Johnson (1954), a 

result that was known to Heller (1955); see also Gr/Stschel and Padberg (1985) 
where several open problems that relate to this symmetrization technique are stated. 

We also "symmetr ize"  the MTZ-formulat ion and the FGG-formula t ion  in this 

section. 

4.1. Symmetrizat ion o f  the DFJ-formulation 

We define a linear t ransformation y = Lx  by 

Yij = xij + xji, l <~ i < j <~ n. 

It is known that this t ransformation maps P"  to the symmetric travelling salesman 

polytope Q", see GrStschel and Padberg (1985), which we can also define as 

Q" = {y e ~ n(n--1)/213X C P" such that y = Lx}.  

In order to symmetrize the DFJ-formulat ion of Section 3.1 we derive the linear 

description of the polytope 

Q~ = {y ~ ~ n(n--1)/2[3X G- P~ such that y = Lx},  

where P~ is the subtour polytope of the asymmetric TSP. It is clear that to every 
tour of  the travelling salesman in the complete undirected graph there corresponds 
a zero-one point of  Q~ and we will show that the converse holds as well. 

In matrix form the DFJ-formulat ion is written as A x  = e2n, D x  <- d, x >~ 0 and x 
integer. The matrix A is the node-edge incidence matrix of a complete bipartite 
graph; D has an exponential  number  of  rows and each row corresponds to the 



M. Padberg, T-Y. Sung / Formulations of the travelling salesman problem 343 

incidence vector x E(s) with a right-hand side of  IS [ -  1 for S __ V and 2 ~< IS[ <~ n - 1. 

We write the ahove linear transformation in matrix form as L = ( L I ,  L2) = ( Ira ,  Ira)  

where L1 has columns corresponding to x~, /-,2 has columns corresponding to xji 

for all 1 ~< i <j-'-~ n and m =ln(n - 1). We partition A and D according to (L1, L2) 

as (A~, A2) and[ (D~,/92) and note that 

where H and K are of  the form 

0 e._2 " " " K = 0 0 
H = 0 0 • • " I ,-1 I , -2  

0 0 " ' "  

Then we have 

• ° ° 

following inequalities: 

y(E) = n, (68) 

y(6(i))=2 V ie  V, (69) 

y(E(S))<-]S[-1 VS~_V, 2~<[S[<~n-1, (70) 

where s cs is the unit vector with entry 1 in the position corresponding to the constraint 
defined by S. Note that (69) implies equation (68) which is thus redundant.  

A2-A1La1L2=[-MM], D2-D1L~IL2=O, 

where M = H - K  is the node-arc incidence matrix of  a complete acylic digraph 
G = ( V ,  E ) w i t h  ]Vl=n and E={(i , j ) l for  all l<~i<j<~n}. 

The cone associated with this t ransformation is given by 

C ={(u,  v, ~, w ) ] - u M + v M +  w>~O, ~>~0, w~>0}, 

and the linear description of Q~ is given by 

Q~ = {y c R n(n-1)/2[((U, v)A1 + ~D1 -- w)Laly <~ ue, + re, + ~d 

for all (u, v, s c, w) c C}. 

The lineality space of C is given by 

(i) u = v = + u i f o r a l l i ~ V ,  so=0, w = 0 ,  

(ii) u=+e , ,  v=0 ,  ~:=0, w=0.  

The generators (0, 0, ~:s, 0) and the basis of  the lineality space give rise to the 
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Using the intersection property of cones we simplify the cone C by dropping all 
E-variables. Intersecting the resulting cone with the lineality space given by (i) we 
can furthermore eliminate the variables v. Making the variable transformation 
if, = 1/2w, we can thus work on the smaller cone 

C, = {(u, ff,)luM+ff~>~O, v?>~0} 

to find the remaining generators of C since they are in one-to-one correspondence. 
These generators yield the following inequalities of Q~: 

( u M  -2f f~)L~ly <- ue, - ue, = 0 for all (u, if) e C1. 

It follows from Proposition 6 that a generator system of C1 is given by 

(i) u = 0 ,  f f = w  i, 

(ii) u = - u  s, ~ = w (g:s), 

(iii) u = u s, ~ = w (s:~), 

for all S _ V - { l } ,  1 ~< IS I <~ n - 1. These generators yield the following inequalities: 

ye~O VeeE, (71) 

- y ( S : g ) - y ( S : S ) < ~ O  VSc_ V , l~< lS l<~n-a ,  (72) 

and (72) is redundant. Hence we have the following theorem: 

Theorem 6. The symmetrization Q~ of  the subtour polytope P~ is given by 

Q ~ = { y e R " ( " - ~ ) / 2 l y  satisfies (69)-(71)}. [] 

It follows that this symmetrization technique yields the standard formulation of 
the symmetric travelling salesman problem due to Dantzig, Fulkerson and Johnson 
(1954). Moreover, if c 0 = cji for all i and j, then the sufficient condition of Proposition 
2 for comparability is satisfied and the linear programming relaxations of the 
asymmetric and the symmetric formulation, respectively, yield the same upper bound 
on the minimum-cost tour. 

4.2. Symmetrization o f  the MTZ-formulat ion 

We consider the linear transformation [Y] = L[~] given by 

y~ = xo + xji , l <~ i < j <~ n, 

Zi = Ui,  2 <- i ~ n, 

and define the symmetric MTZ-polytope SPM by 

S p ~ = { ( y , z ) e N ( n - l ~ ( ~ - 2 ) / 2 1 3 ( x , u ) ~ U P r ~ s u c h t h a t [ f ] = L [ X ] }  , 
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where UPM is the MTZ-polytope defined in Section 3.2.1. It follows that to every 

undirected "permissible it inerary" (see Section 3.2) of  the travelling salesman there 

corresponds a point of  SPM satisfying Ylj e {0, 1, 2} and Yo ~ {0, 1} for all 1 ~< i <~j ~< n. 

We derive the linear description of SPM using the results of  Section 2 and show 

that the converse does not hold for any p I> 2. 
We decompose the vector x of  the MTZ-formulat ion as follows: 

X 1 = ( X 1 2  , • • • , X l n )  T ,  

X 2 = ( X 2 3 ,  . . . , X2n, . . . ,  Xn--l,n) T, 

x 3 = ( x 2 1 ,  • • • ,  x . 0  "r, 

X 4 ~_ ( X 3 2 ,  . . . , Xn2, . . . ,  Xn,n-1) T. 

Let u = ( u 2 , . . . ,  u,),  A be the matrix defined by the constraints (23)-(26), D 

be the matrix defined by the Constraint (27), b = ( t ,  t, e,-1, e,_~) -r and d =  

( ( p - D e , , ,  ( p - 1 ) e m )  T be the corresponding right-hand sides for A and D 
respectively, and m = ~ ( n -  1 ) ( n - 2 ) .  We write the above linear transformation as  Xx:] 
where 

[ ] l :ml in-1 0 0 -In-x 0 
L1 = 0 Im 0 , L2 = 0 . 

0 0 / n - 1  0 

We partition A and D according to (L1, L2) as 

and 

0 0 A2= e l 
A I =  J~-i K ' 

H 1.-1 

D I =  0 0 - M  T '  D2= pI,. 

where H and K are defined as in Section 4.1 and M = H - K  is the node-arc 
incidence matrix: of  a complete acyclic digraph G = (V, E)  with IV] = n -  1 and 

E = { ( i , j ) [2~  < i<:j<~ n}. It follows that re1 o ] 
1_ I._1 
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The cone associa ted with this t r ans fo rmat ion  is given by 

C = {(u, v, w ) l - u o e , _ l + u l e , _ l - u l + u 2 + w l ~ O ,  

u l M - u 2 M - p v l  +pv2 + w2>~O, v>~O, w~>0} 

where  u = (Uo, ul ,  u 1, u2), u 1, u 2 E ~  "-1 are indexed  f rom 2 to n, v = (v ~, v 2) and 

w = (w ~, w 2, w3). (Note  tha t  u I and  u 2 are vectors  of  variables and not  unit-vectors.)  

The  l inear  descr ipt ion of  SPM is given by 

SPM = {(y, z ) ] ( Uoen-1 + u 1 - w l )y  I + ( ul K + u2H + pv 1 - w2)y 2 

+ ( v ~ M  T -  v 2 M  r -  w3)z 

(UO+ Ul)t d- en_l(U 1+ U 2) d- ( p  -- 1)(V 1 q- v2)em 

for  all (u, v, w) ~ C} 

where  y = (yl ,  y2), ya = (Y12 . . . .  , yln) T and y2 = (Y23, • • •, Y2n, • • •, Y,-1,,) T. 

4.2.1. Simplification o f  the cone C 

The linealities o f  C are given by 

(i) U o = U l = + l ,  u l = 0 ,  u 2 = 0 ,  v = 0 ,  w = 0 ,  

1 2 {01  i = i * ,  = Uo=U~=0 ,  v = 0 ,  w = 0 f o r i * = 2 ,  n, (ii) ui ui = i ¢ i*, " " '  

(iii) u o = + l ,  uZ=:~en_~, U l = 0 ,  u ~ = 0 ,  v = 0 ,  w = O ,  

(iv) U 1 = ± I  , ul=dzen_l ,  UO=0 , U 2 = 0 ,  V = 0 ,  W = 0 .  

The vectors  (i), (ii) and  (iii) are l inearly i ndependen t  and  in the l ineali ty space 

L o f  C. We can thus intersect  C with the equat ions  

Uo+Ul=O,  u ~ + u 2 = O ,  Uo+ u~=O. 

It  fol lows that  ul = - U o ,  u 1= - u  2 and  

1 " 
uo= - - -  Y~ ffti, u 2= uoe.-a + fi, 

n i=2 

where  ff = ( u 2 , . . . ,  ~ , )T~ ~ , - 1  is arbitrary.  The  cone C is thus simplified to the 

fol lowing cone 

C1 : 2ff + w ~ /> 0, 

- 2 ~ M - p v ~ + p v  2 q-W 2 ~ 0 ,  

I)1~ V2~ WI.~ W2~ W 3 ~ O. 

Since C1 is a po in ted  cone it fol lows that  (i), (ii) and  (iii) fo rm a basis o f  L and 
that  C1 = C c~ L ' .  Using the intersect ion p roper ty  of  cone we can d rop  the var iables  
w 3 and  we note  that  

(v) all unit  vectors  associa ted  with w 1, w 2 and  w 3 define ext reme rays of  C~ 

and  thus of  C. 
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Fur thermore ,  for any extreme ray o f  Ca it follows that  either w a = 0  or w 1 is a 

unit  vector  if  ~ = 0. I f  t7 ¢ 0 then we have necessarily 

w 1 -- rnax{0, -2t7} 

in any extreme ray o f  Ca. Consequent ly ,  it suffices to consider  the cone 

where we set 

~a=½pva ' ~2=lpv~ ' ~2 ~w 2 

Different f rom Ca the cone (72 has a lineality that  gives rise to the fol lowing two 

extreme rays o f  Ca: 

(vi) 17 = e,_a, W 1 = 0 ,  V 1 : /2 2 : W 2 : 0 ,  

(vii) f i = - e , , - a ,  w l = 2 e , - a ,  D l = / ) 2 : W 2 = 0 -  ii 

Let /~2 = /~2~_ ~ 2 .  Since -2 ~2 vow~ j = 0 for all i and j in every extreme ray o f  (72, the 

cone Cz is then reduced to 

C3: - u M - v l + ~ 2 ~ > 0 ,  v l ~ 0 ,  ~ 2 ~ 0 o  

Al though this variable t ransformat ion  does not  define a unique t ransformation,  we 

can still derive all extreme rays o f  (?2 f rom those o f  the cone C3 by replacing every 
~2 -2 - -  ^2 - 2  -2  ~ 0~ - 2  ^2 positive v 0 in an extreme ray with v~j - vo, w~j = 0 and v~ w U = v 0 . Thus to every 

extreme ray o f  C3 having k positive componen t s  13 2 there cor respond  exactly 2 k 

extreme rays o f  C2. 

4.2.2. A different node-arc cone of  a directed graph 

Let C be a node-arc  cone o f  a d igraph G = ( V , E )  with ]Vl=n,  E =  

{(i, j)  l 1 ~< i < j  ~< in} and defined as 

C = { ( u , I )  1 ,vz)  c ~ n 2 1 - u M - v a + v z > ~ 0 ,  va>~0, v2~0}  

where M is the node-arc  incidence o f  G. Let B be the matrix defining all constraints 

o f  C. Then B has a rank o f  n 2 -  1. Hence,  C has a lineality space o f  d imension 1 

given by (+en, 0, 0). The remaining generators  are given in the fol lowing proposi t ion.  

Proposition 7. Let B* be the ( n 2 - 2 ) ×  n 2 submatrix of  B that corresponds to the 

equation system o f  an extreme ray of  C. For any So__ V with 1 <-IS I <<- n - 1, let ~a and 
o~2 be the families o f  all subsets o f  (S :  S) and (S :  S), respectively. Then every nonzero 

solution to 

B* v I = 0  (73) 

kv2/ 
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o f  m in im a l  support  is a pos i t ive  mult iple o f  the vector  ( u, v 1, v 2) g iven by (i), (ii), (iii) 
or (iv) where 

(i) u = 0 ,  vl~-~0, V2~-~U i, 

(ii) u = 0 ,  v l = v 2 = u  i, 

(iii) u = - u  s,  v ~ = v ~'1, v 2 =  v ( & s ) ,  

(iv) u = u s, v ~ = v v2, v 2 = v (s:~), 

u i is the ith uni t  vector  in N "(" 1)/2, u s and  v ~1 are the characterist ic  vectors o f  S and  

E l ,  F t <  o%a, F2~ 0~2 a n d  S ~  V, l~<[S[~<n-1.  

Proof. This proof  follows the proof  of Proposition 6 and we let B*, B~ and f be 

defined the same as in the proof  of that proposition. Suppose the column f belongs 
to a vCvariable k v0, say, with i < j  and k = 1 or2. I f  B* contains the row corresponding 

to v ~ > 0 ,  then B~ has a rank of at most n 2 - 3 ,  which is a contradiction. Otherwise, 
i~ k = 2 we prove like in Proposition 6 that we either get the vector defined by (i) 

or that we can assume without loss of generality that column f belongs to some 

u-variable. I f  k = 1 we either get the vector defined by (ii) or that B* contains the 
2 row vii = 0. In the latter case we show again like in Proposition 6 that we can assume 

without loss of  generality that column f belongs to some u-variable. Moreover, for 

all solutions of  minimal support  to (73) not covered by (i) or (ii) it follows that: 

i f  B*  conta ins  the row - u i  + u j -  1 2 v i j + v q = O ,  
0 o r  2 then B* contains  ei ther the row v o = v~ = 0 or both. 

By the preceding we can assume that the column f belongs to variable uk with k c V 
and furthermore that the matrix B~ can be decomposed as follows: 

B1 = 

-Ao - I o  0 0 0 Io 0 0 0 

A1 0 -11 0 0 0 I1 0 0 

A2 0 0 - / 2  0 0 0 I2 0 

0 Io 0 0 0 0 0 0 0 

0 0 11 0 0 0 0 0 0 

0 0 0 0 Is 0 0 0 0 

0 0 0 0 0 Io 0 0 0 

0 0 0 0 0 0 0 l 2 0 

0 0 0 0 0 0 0 0 I3 

where to, I1,12 and Is are identity matrices of  size leo[, IEll, IE21 and I~sl, respectively, 

E o =  { e = ( i , j ) ~  E l v l e =  v~=O and - u i  +u j=-O 

in the extreme ray considered}, 

E , = { e ~ E [ v l e  O, 2 = Ve ~ 1 in the extreme ray considered}, 

E2 = {e ~ E [ vie = 1, v 2 = 0 in the extreme ray considered}, 

17, 3 = {e = ( i , j )  ~ E[vl¢ 2 = r e = 0  and - u i + u j > O  

in the extreme ray considered} 
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and E = Eovo JE~ <o E2w E3. The matrices Ao, Ax and A2 are submatrices of - M  f 
with n - 1  columns, and A t , A 2  can be vacuous. Since B~ has a rank of n 2 - 2  it 
follows that Ao has a rank of n - 2. The rest of the proof goes exactly like the proof 
of Proposition 6 and hence the proposition follows. [] 

4.2.3. The symmetrization of  the MTZ-polytope 
We can now de.rive the linear description of the polytope SPM explicitly using the 
linealities and extreme rays of the cone C of Section 4.2. The linealities of C given 
by (i), (ii) and (iii) of Section 4.2.1 constitute a basis for the lineality space of C 
and yield the following equations: 

y l~=y(8 (1 ) )=2 t ,  (74) 
i = 2  

i--1 

Yli + E', Yji + ~ Y~ = y ( 8 ( i ) ) = 2  for i = 2 , . . . ,  n, (75) 
j = 2  j= i+ l  

yli 4- ~ ~ y i ~ = y ( E ) = n + t - 1 .  
i = 2  i=2 j ~ i + l  

The last equation is implied by (74) and (75) and thus redundant. The extreme rays 
of C given by (v) of Section 4.2.1 give rise to the nonnegativity constraints 

zj>~O, yo>0 ,  for l<~i<j<-n,  (76) 

while the extreme rays given by (vi) and (vii) of that section yield the inequality 

- ~ yli<~O 
j--2 

which is implied by (76) and thus redundant. All of other extreme rays of C are 
obtained from the extreme rays of C3 of Section 4.2.1 which have been characterized 
in Proposition 7. Rather than reversing the variable transformations of Section 4.2.1 
we note that in the notation of that section the additional linear inequalities of SPM 
can be written as follows: 

-p  ~ (~j+max{0,-2~j})y,j+p Y~ (ff ,-~+2~,~-2ff~)y 0 
j = 2  2 ~ i < j ~ n  

+2 Y, (g~(z , -z j )+~2(-z ,+zi))  
2<,i<j<~n 

n 

= __p ~, I~j[Yl j  . .~p ~,, ( a  i -- ~j ~1 "2 + 2v o - 2w ij)y~j 
j = 2  2<~-i<j~n 

o ) 
+2 ( - t ~ ) / + ~ ) +  Y. (t~}-t~ 2) zi 

i = 2  \ j = 2  j = i + l  

2 ( p  - -  1 ) ( { 7 1 +  £2)em. 
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For convenience we write ~ as u, ~ as v ~, ~2 as v 2 and if2 as w e. Then a full 
system of generators for the conical part of C3 is given by: 

(i) u = 0 ,  v l = 0 ,  v2=u i, w2=0, 

(ii) u = 0 ,  v l = v  2=0,  w 2 = u  i, 

(iii) u=O, v l = v 2 = u  ~, w2=0, 

( i v )  U ' ~ - 0 ,  V 2 = 0 ,  1 ) I ~ - w 2 = u  i, 

(V) U = - -U S, ~)1 = /.)El, /)2 = ~E2, W 2 ~- w(S:S)-E2 

(vi) u .~- u s, ~)l = ~) E2, ~.)2= ~,~/~l w 2 =  w(S:g)-E, 

where S c  V-{I}  with 1 ~< IS[<~ n - 2 ,  E1 _ (S: S) and E2c_ (S: S) are any subsets 
of the respective sets and S = V -  {1}- S. The second set of generators is already 
contained in those of (v) of Section 4.2.1 while (i), (iii) and (iv) yield the following 
inequalities: 

- z i  + z~<~p-1, (77) 

pyo <<- 2(p - 1), (78) 

z~ - zj <~ p - 1, (79) 

for all 2 <~ i < j  <~ n. Noting that 

uSMy 2 = - y  (~q: S) + y(S:  S), 

where y2 and M are defined above, we have the following inequalities from the 
generators (v): 

-py(1 : S) - py( S : S) - py( S : S) + 2py( E~) + 2py( E2) 

+2 E (z~-z j )+2  Y. (-zg+zj)<~2(p-1)(iEll+lE21) (80) 
( i,j)cE 1 ( i,j)~E2 

and the generators (vi) yield the inequalities 

-py(1 : S) - py( S : S) - py( S : S) + 2py( E~) + 2py( E2) 

+2 E (z , -C+2 E (-~,+~j)<~2(p-1)([Ed+IE~I) (81) 
(i,j)EE 2 (i,j)E JE 1 

with the above specification for the sets involved. Hence we have the following: 

Theorem 7. The symmetrization SPM of the MTZ-polytope UPM is given by 

SPM={(y,z)aN(~-l)(~+2~/21(y,z ) satisfies (74)-(81)}. [] 
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From (75), (76) and (78) it follows that every integer-valued point in SPM satisfies 

0 ~< YU ~< 2 and 0 ~< y~ <~ 1 for all 1 ~< i < j  <~ n and by construction SPM includes all 

the points with y-variables corresponding to a permissible itinerary. On the other 
hand, those points (y, 0) with y-variables corresponding to itineraries having subtours 
or tours visiting more than p cities are also in SPM. To prove this we note that the 

left-hand side of (80) and (81) is at most p[El[+pIE21 for all points (y, 0) having 

Y0 c {0, 1} for all 2 ~< i < j  ~< n and that 

plE, I + plE l <- 2 ( p -  1)(IE1[ + IE21) 

holds for all p -~" 2 and all sets E1 and Ez. Consequently, the symmetrization of  the 
MTZ-formulation does not provide a formulation of the symmetric TSP. 

The explanation for this (unexpected) result is simply that the constraints (27) 

and (28) of  the MTZ-formulation eliminate all zero-one solutions to (23)-(26) that 
correspond to infeasible itineraries, but that for every pair of oppositely directed 
infeasible itineraries e.g. the midpoint of  the line joining the two corresponding 
zero-one points is contained in UPM. Consequently, for every such pair the sym- 
metrization produces an integer point in SPM that corresponds to  the undirected 
infeasible itinerary. In addition, it follows that if c/~ = c~i for all i and j then the 

upper bound on the minimum-cost tour obtained from the MTZ-formulation equals 
the upper bound obtained from the "assignment problem" relaxation, i.e. the 
minimum of the  linear form over the constraints (23)-(26) and (29). This shows 
that the MTZ-formulation is a very weak formulation of  the asymmetric TSP. 

Like in Section 4.1, one can symmetrize the modified DFJ-formulation of Section 
3.2.1 to obtain a better formulation of the symmetric clover-leaf TSP that involves 

an exponential number of  constraints corresponding to the constraints (31). A 
relative of  the latter problem is studied in Araque (1988) from a polyhedral point 
of  view. 

4.3. Symmetrization of the FGG-formulation 

We define a linear transformation y - Lz as follows: 

Yu1 = Zljl, 2 <~j <~ n, 

Ylj ,=zjl , ,  2<~j<<-n, 

yOt=zqt+zj~,, 2<-i<j<~n, 2<~t<~n-1, 

and define the symmetric FGG-polytope SPF as 

SPF = {y c •P [3z c TPF such that y = Lz} 

where TPF is the FGG-polytope defined in Section 3.3 and p = 2(n - 1)+ l(n - 1) x 
( n - 2 )  2. It follows that to every undirected tour of  the travelling salesman there 
corresponds a zero-one point of SPF. To show that the converse holds we first 
derive the linear description of  the polytope SPF. 
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In matrix form, this l inear t ransformat ion is written as L = (L1, L2) where 

-1 0 0 " "  0 [ ilOO 
LI = 0 Im "'" 0 , 

o o . . .  I , ,  

L 2 ~- 

- 0  • . .  0 ]  ] 0 . . .  0 

Im " "  0 , 

0 . . .  /r, 

and m = l (n  - 1)(n - 2). The matrix A and the vector b defining the constraint  system 

and corresponding  r ight -hand side are the same as in Section 3.3. The matrix A can 

be part i t ioned according to (L1, L2) as 

[ en-1 en-1 em " • " em ] 
A1 

"1-1._1 nI, 2M . . .  ( n - 1 ) M J '  

em 
A2 = - 2 M  

Then we have 

A 2 -  A1L~I L2 = 

It follows that  the cone 

C = { ( u o ,  u, w )  

where Uo~N, u ~ R  n-~ 

I4 o °a Ml . . . .  2(n - 

associated with this t ransformat ion  is given by 

I -2 tuM + w'>~O for  2<~t<~n-1, w>~0}, 

and w = ( w  ° ,w 1 , w 2 , . . . , w  n-l) where w ° ,w 1 ~ n - 1  and 

w'~g~ m for 2<~t<~n-1. Let y=(yO, yl,  y 2 , . . . , y , - l )  where y°=(y121, . . . ,y ln~),  

yl = (Y12, , . . - ,  Ylnn) and y '  = (Y23~, . - . ,  Y 2 n t , . . . ,  Yn-l,n,t) for 2<~ t<~ n -- 1. Then the 
linear descript ion of  SPF is given by 

S P F = { y l ( u o e ~ _ l - u - w ° ) y ° + ( u o e ~ _ l + n u - w l ) y l  

rl--1 1 + ~ (uoem + t u M -  w')y '  <<- nuo+ ue,_l V(Uo, u, w) ~ C . 
t=2 

The lineality space o f  the cone is given by (:el ,  0, 0) and (0, ± e , - a ,  0) and yields 

the fol lowing equations:  

~ y~t = n, (82) 
t-=l l~i<j~n 

- ~ y t j l+n ~ y a ~ , = , - l .  (83) 
j = 2  j = 2  

The unit  vectors associated with w °, w I are generators of  C and yield the non-  

negativity constraints 

Yljl ~ 0, Yljn ~ 0, for  j = 2 . . . .  , n. (84) 
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We intersect the cone with the linealities and the previous generators to find the 
remaining extreme rays of C. It suffices to analyze the cone 

Cl={(u,  w)[-2tuM+w'>~O, wt>~O for t = 2 , . . . ,  n - l } .  

Making the variable substitution ~ '  = 1/(2t)w t, the cone to be analyzed is given by 

C2={(u, f f )[-ui+uj+ ffo.,>10, ff~,>~O for 2 ~  < i < j < ~  n, 2<~ t<~ n - l } .  

Consequently, 'we have extreme rays corresponding to all unit vectors of the 
( ~ 2 , . . . ,  #n-~).vector" These generators produce the nonnegativity constraints 

y~t>~O, 2 < - i < j ~ n ,  2<-t<~n-1. (85) 

Moreover, every extreme ray of C2 with u ¢ 0 satisfies if2 . . . . .  fin-1 and thus, it 
suffices to determine all extreme rays of the cone 

C3 = {(u, ff)]-ui+uj+~o>-O, nS~ ~> 0, 2 ~  < i<j<~n}. 

For all generators of C3 the linear inequalities of SPF are given by 

t / - -1 

uj(-yljl+nyljn)+ ~ t ~ (ui-u:-2~i;)Yijt<~ ~ uj. 
j - - 2  t = 2  2~i<j~n j = 2  

Using the results of Proposition 6, we obtain the generator system corresponding 
to the conical part of C3. These generators give rise to the following inequalities: 

) E Yl j l -n  E Yl j , -  E t E Y/j,+ E y/it <~-ISI, (86) 
j¢S  j~S t = 2  2<~i<j<~n 2~i<j~n 

i~S,jc,~-{1} i~S--{1},jcS o1( ) 
-- £ Yljl + n E YUn -- E t 2 Yij,+ ~ Yut <~ ISI, (87) 

j~S j cS  t = 2  2<~i<j~n 2~i<Zj~n 
i¢S, jcS-{1)  icS--{1},j~S 

for S_c V-{I} ,  1 ~< IS] ~< n - 2 .  Using (83) the inequality (86) for S is equivalent to 
(87) for S-{1}. Hence, we have the following theorem for the symmetrization of 
the FGG-formulation. 

Theorem 8. The symmetrization SPF of the FGG-polytope TPF is given by 

SPF = {y ~ R p]y  satisfies (82)-(86)}. [] 

Moreover, we have the following result for the symmetrization of the FGG- 
formulation: 

Proposition 8. Every 0-1 point of SPF corresponds to a tour. 

Proof. Let y be a 0-1 point of SPF. We define the support of y, S(y) as {(i, j)  l Yqt > 0}. 
n n 

Since the constraints (82) and (83) imply Y.j=2 y1:1 = Y.j=2 yljn = 1, node 1 has a 
degree of 2 in the support graph of y, G(y) = (V, S(y)). Furthermore, G(y) does 
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not have an isolated node otherwise (86) is violated for such a node. Suppose that 
there exists a node v ¢ 1 having a degree of  1. If Ylo, = 1, the left-hand side of (86) 
for S = { v} is n, which leads to a violation of (86) for S = { v}. If y ~ ,  = 0, the constraint 

(86) is violated for S = V - { I ,  v}. Consequently, every node v c V has a degree at 
least two and moreoever, G(y) contains at least one cycle because of (82). Suppose 
that G(y) is not connected, and let C = (N, E)  with N c V, E c S(y) be a component 
of G(y) with 1 e N. The constraint (86) is violated for the set S = N - { 1 } .  Therefore, 
G(y) is connected and the proposition follows. [] 

The symmetrization of the FGG-formulation thus yields a formulation for a 
symmetric " t ime-dependent"  TSP. But Proposition 8 is less surprising than it may 

seem at first sight since our symmetrization leaves the index t for the "posit ion" 
number of an edge in the formulation. This index captures and "preserves" a certain 
asymmetry, a fact that is born out by the close resemblance of the linear description 
of SPF and of PF (see Lemma 3), respectively. In order to eliminate this residual 
"asymmetry" we could, of course, analyze the linear transformation given by 

Yij = ~ Zijt + Zjit" 
t 

The results of Section 3.3 (Theorem 4) and of Section 4.1 (Theorem 6) prove, 
however, that we cannot get any new information about the facial structure of the 
symmetric TSP polytope Qn this way. 

5. Conclusions 

The transformation technique described in this paper is a generally applicable tool 
that permits one to compare different formulations of a given combinatorial optimiz- 
ation problem analytically. The comparison of different problem formulations was 
previously done by comparing empirically the performance of the respective formula- 
tions on some set of problem instances. As this paper shows it is not overly difficult 
to mathematically analyze different formulations of the travelling salesman problem. 

The specific main findings of the work presented here are negative in the sense 
that not any one of the alternative formulations of the TSP considered here has 
yielded new insights about the facial structure of the (symmetric and asymmetric) 
polytopes associated with the Dantzig-Fulkerson-Johnson formulation. When we 
began this work, we hoped for positive results. From among the problems studied 
here it seems worthwhile to investigate the time-dependent travelling salesman 
problem in more detail from a polyhedral point of view because it permits more 
general objective functions than the standard formulation. The search for "more 
compact" formulations of  this problem is, however, ill-directed if the envisaged 
solution method relies (directly or indirectly) relaxation of the formulation of the 
problem. Indeed, it is well-known that any integer program in bounded variables 
can be "reformulated" as a knapsack problem. If  we apply e.g. Lemma I of Padberg 
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(1972) with Q --= n 3 to the FGG-formulat ion (35)-(38) then we find that the zero-one 

solutions to the knapsack equation 

(1--rt3(n+l-i))Zlia+ ~ (l+n3(n+l-i)+l)Ziln 
i = 2  i = 2  

iz  n--1 n--1 
+ ~ ~ ~, tn3(n+l-i)(Zijt--Zjit)+ ~ ~ ~ z i j t : n + ~  n 3(n+1-i) 

i==2j=2  t = 2  i = 2 j = 2  t=2  i=2  

are exactly the incidence vectors of tours. We note that O(n 5) bits suffice to represent 
this equation on a digital computer. S o - - a t  least theore t ica l ly- - th is  "super- 
compact" formulation of  the TSP looks acceptable. Needless to say, we do not 

recommend its use in actual calculation. 
A consistent fact that can be inferred from the results of  Section 4 is the following: 

All of the asymmetric formulations involving polynomially many linear constraints 
result in constraint sets that are of exponential size when they are symmetrized. 
Evidently, the "breaking up"  of an undirected edge into two oppositely directed 

edges permits one to capture information that results in the saving. While we did 
not symmetrize the Claus- formula t ion- - i t  is clear by Theorem 5 that from a 
polyhedral point of  view there is nothing to be gained from i t - - a  symmetrization 

of  that formulation will also result into a constraint set of exponential size. To prove 
this point we note that the minimum-cost (s, t)-flow problem on a network with 
node set V, a source s and a sink t is part of the C-formulation. So consider the 
problem 

(FP) min ',~ c~jx~ 
1,j 

s.t. Y~ xsi = ~ xi, = 1, 
i ~ V  i ~ V  

Y~ x• = Y x~, v i E V, 
jE  V w { t }  j c  V w { s }  

x~>~O Vi, j. 

By means of the; linear transformation 

y~i = x~i: V ie  V, 

Yit =Xit ViE V~ 

yg = x~ + xji V i, j e V and i < j, 

we find using Proposition 6 that the symmetrized problem becomes 

(SP) rain ];" c~y~ 
i<j 

s.t. )Z Ysi = Y. Yi, = 1, 
i~-V i c V  

y ( S u { s } : ( V - S )  u { t } ) ~ l  V S c  V , I ~ ] S ] ~ n - 1 ,  

y~ >~O Vi, j, 
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where ( S u  {s}: ( V - S ) w  {t}) is the cut-set defined by S in the undirected graph. 
As expected the symmetrized minimum-cost (s, t)-flow problem has exponentially 
many constraints. More importantly, the symmetrized problem is - -  of course - -  the 
problem of finding a shortest path from node s to node t and we know by the results 
of Lehman (1963), see also Johnson (1974), that the basic feasible solutions to (SP) 
are all zero-one valued. This celebrated result now follows quite easily from the 
fact that - - b y  the total unimodularity of the constraint s e t - - a l l  basic feasible 
solutions to (FP) are zero-one valued. Thus by Proposition 2, for all integer c~ 
satisfying c o = cji for all i and j the objective function value of (SP) is an integer 
number and consequently, by a result of Hoffman (1974) all basic feasible solutions 
to (SP) are integer-valued. Likewise, one can symmetrize the maximum capaeitated 
(s, t)-flow and minimum weighted (s, t)-cut problems and derive a symmetric version 
of the well-known max-flow-rain-cut theorem. These and other applications of the 
transformation technique given in this paper are left for future work, see Padberg 
and Sung (1989). 
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