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1. Introduction

Kidney exchange programmes have been organised in many
countries as an alternative mode of transplant for patients with
kidney failure that have a donor willing to provide a kidney, but
the pair is not physiologically compatible [9,4,24,25,1]. These
programmes are based on the concept of “exchange” between
patient–donor pairs: donors are allowed to provide a kidney to
patients in the other pairs, if compatibility exists, so that patients
in all pairs involved in the exchange benefit.

Fig. 1 (left) illustrates the simplest case with only two pairs,
ðP1;D1Þ and ðP2;D2Þ. Donor D1 of the first pair is allowed to give a
kidney to patient P2 of the second pair, and patient P1 may get a
kidney from donor D2. In the right-hand side of the figure an
exchange between three incompatible pairs is possible: patient P1
may receive the kidney from donor D3, patient P2 from donor D1,
and patient P3 from donor D2; in that case all patients are served.
Notice that these graphs consider only preliminary compatibilities
that will have to be reassessed prior to actual transplant through
additional medical exams.

For logistical reasons, and also to reduce the number of affected
patients when last-minute donor resignation occurs or new
incompatibilities are detected, a limit k is imposed on the length of
cycles.
(X. Klimentova),
iana).
The optimisation problem underlying a basic kidney excha-
nge commonly considers the maximisation of the number of
transplants [9,25]. But other criteria have been proposed to be
maximised, e.g., the number of effective 2-cycles [18], the number
of transplants with identical blood type [14], the overall score
or utility assigned to each transplant [17,18], and the expected
number of transplants [20]. For k limited and greater than 2, the
problem of maximising the number of transplants is known to be
NP-hard [4,1,15]. Integer programming (IP) is a natural framework
for modelling this optimisation problem. A summary of IP models
for the kidney exchange problem (KEP) has been presented in
[8,16], where several formulations are analysed and compared in
terms of tightness and experimental performance.

The most common formulations consider that there is no
uncertainty associated with the data, which is not the case in
practice. In fact, one of the main problems in the implementation
of the solution of a KEP instance arises from data unreliability.
Last-minute testing of donor and patient can elicit new incom-
patibilities (so-called, positive cross-matching) that were not
detected before, causing some donations in a cycle to be cancelled;
patients or donors may become unavailable, e.g., due to illness or
to backing out. Data uncertainty is addressed by some authors by
associating probabilities of failure to vertices (pairs) and arcs
(compatibilities) and by considering the expected size of cycle,
rather than the actual one.

A model considering a discounted utility of cycles was pro-
posed in [11]. It takes into account a probability of failure, but
rearrangement of vertices in case of failure is not considered (we
will call this model “no-recourse expectation” in Section 3.1). A
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Fig. 1. An exchange between two (left) and three (right) incompatible pairs. Solid
lines represent preliminary assessment compatibility and arrows define a possible
exchange.
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model for maximising the expected utility when arcs are subject to
failure is proposed in [17] and [7]. A simulation system, where
patient–donor pairs are generated and assigned to a cycle in a
dynamic version of the KEP, is also proposed there. An approach
for maximising expectation was studied in [20], considering both
vertex and arc failure. A straightforward scheme was used for the
computation of expectation, which turned out to be very limited;
only experiments with k equal to 3 have been performed.

The main contributions of this paper are the following. We
propose a new tree search algorithm for calculating the expected
number of transplants in a KEP which allows instances of the KEP
for larger values of k to be handled, as compared to the approach
used in [20]. We also propose a new scheme for the rearrangement
of vertices on cycles with failure — thus, with a different value for
the expectation — where the recovery of broken cycles may be
performed with rearrangements within a wider subset of vertices,
which we believe is implementable in practice. A computational
experiment was carried out to compare the different rearrange-
ment schemes, as well as to test the algorithm used for calculating
expectations. The results obtained show that by using the new
rearrangement scheme a meaningful increase on the number of
transplants is possible for most of the instances.

The remainder of this paper is organised as follows. A formal
problem statement and IP formulation is provided in Section 2. In
Section 3, three expectation schemes are presented, together with
the algorithms for their computation. Results of computational
experiments are presented in Section 4, which is followed by the
conclusions.
2. Problem statement and IP formulation

Graph theory provides a natural framework for representing
kidney exchange models. Given a directed graph G¼ ðV ;AÞ, the set
of vertices V is the set of incompatible donor-patient pairs. Two
vertices i and j are connected by arc ði; jÞAA if donor of pair i is
compatible with patient of pair j. To each arc (i,j) is associated a
weight wij. If the objective is to maximise the total number of
transplants, then wij ¼ 1, 8ði; jÞAA.

The kidney exchange problem (KEP) can be defined as follows:
Find a packing of vertex-disjoint cycles with length at most k having
maximum weight.

There are several known integer programming (IP) formula-
tions for the KEP [8]. The work presented in this paper is based on
one of the computationally most effective formulations — the cycle
formulation [23] — which can be described as follows. Let C be the
set of all cycles in G with length at most k. We represent a cycle as
an ordered set of arcs. Define variable xc¼1 if cycle cAC is selected
for the exchange, xc¼0 otherwise. Denote by VðcÞDV the set of
vertices which belong to cycle c and by wc the weight of cycle:
wc ¼

P
ði;jÞA cwij . The cycle formulation can be written as follows.

Problem CðkÞ : ð1Þ

maximise
X
cAC

wcxc ð2Þ

subject to :
X

c:iAVðcÞ
xcr1 8 iAV ; ð3Þ

xcAf0;1g 8cAC: ð4Þ
The objective function (2) maximises the weighted sum of the

exchange. Constraints (3) ensure that each vertex is in at most one
of the selected cycles (so that the corresponding patient/donor will
at most receive/donate one kidney). The difficulty of this for-
mulation is induced by the exponential number of variables in
terms of k, related to the exponential number of cycles of length at
most k (in the general case).

State-of-the-art kidney exchange programmes include altruis-
tic donors, i.e., donors that are not associated with any patient, but
are willing to donate a kidney to someone in need. In a kidney
exchange programme, an altruistic donor initiates a chain, not a
cycle: she/he gives a kidney to a patient and the recipient's donor
is “dominoed” to add another incompatible pair to the chain and
so on. The last donor in the chain normally gives a kidney to the
next compatible patient on the deceased donors waiting list
[19,13,22]. European programmes consider bounded chains with
length at most k0 (k0 can be different from k) [18,14]. A discussion
on how to extend the cycle formulation to include altruistic donors
is provided in [8]. Alternatively, we may have a non-simultaneous
extended altruistic donor chain [10,21,2,12] (also known as never-
ending-altruistic-donor chain), where a kidney from the last donor
in a chain (called a “bridge” donor) is not assigned to a patient in
the deceased donors list; instead, the bridge acts as an altruistic
donor for future matches. The cascading donor chain may continue
indefinitely and the length of the chain is unbounded, unless a
donor whose related recipient has already been transplanted
drops out of the programme. Note that in this case simultaneity of
operations is no longer a requirement. This possibility was adop-
ted by some programmes in the USA. The inclusion of altruistic
donor chains is not considered explicitly in this paper.
3. Unreliability and recourse policies

According to [11], in a particular kidney exchange programme
running in the USA only 7% of the matches resulted in transplants,
while 93% failed. For taking into account this observation – com-
mon in these programmes – alternative objectives for the KEP
should be considered. Instead of using the cycle's length as a
weight of the cycle (the most common approach [9,25]), one may
consider using the expectation on the number of transplants that
the cycle will lead to. This expectation can be computed if the
probability of failure of each of the cycle's vertices and arcs is
given. In this paper we will refer to the probability of failure of
vertex iAV in the graph as pi, and to the probability of failure of
arc ði; jÞAA as pij. Throughout the paper it is assumed that the
failure events are statistically independent, and that arcs have
unit weights, wij ¼ 1 8ði; jÞAA. We will consider three recourse
schemes for the rearrangement of exchange cycles. We revisit the
no-recourse and internal-recourse policies and propose a subset-
recourse policy. We also propose algorithms for computing the
corresponding expectations.
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3.1. No-recourse expectation

In the simplest case, which we call no-recourse expectation, the
vertices involved in any exchange cycle may not be rearranged in
case of failure; the expectation of a cycle is computed as follows:

ENðcÞ ¼ ∏
iAVðcÞ

ð1�piÞ ∏
ijAAðcÞ

ð1�pijÞ

where V(c) and A(c) are sets of vertices and arcs involved in cycle c,
respectively. A similar objective was considered in [17,6,11].

To find a solution for the KEP having maximum overall no-
recourse expectation, Problem CðkÞ with wc ¼ ENðcÞ, cAC, must be
solved. We denote an optimum of this problem as En

N .

3.2. Internal-recourse expectations and their computation

More interesting cases of recourse policies consider the
assumption that vertices involved in the cycle where failure occurs
may be rearranged. In a first scheme for tackling this, it is sup-
posed that the vertices of a cycle with failure are rearranged
whenever another (shorter) cycle within them can be formed. We
call this scheme and its expectations internal-recourse. This
approach was studied in [20], and similar ideas have been pre-
sented in [17,7,6]. Here, we briefly present the most general
scheme (refer to [20] for more details).

Consider the graph presented in Fig. 2. For the sake of simpli-
city, assume only vertex failures. The presented cycle c leads to
three transplants if none of the three vertices fail, and to two
transplants (cycle ð1;2Þ) in case of withdrawal of vertex 3 only.
Thus, the internal-recourse expectation for this cycle can be
written as:

EðcÞ ¼ 3ð1�p1Þð1�p2Þð1�p3Þþ2ð1�p1Þð1�p2Þp3:

The expression with both vertex and arc failure has been derived
in Appendix A.

More formally, the expectation for a cycle c with both vertices
and arcs failure is computed as follows. For the joint set of
vertices and arcs in the subgraph corresponding to the cycle,

let ΘðcÞ ¼ 2VðcÞ[AðcÞ be the set of all its subsets, where
AðcÞ ¼ fði; jÞAA∣i; jAV ðcÞg. Any MAΘðcÞ can be seen as the set of
remaining elements of the cycle after a failure occurs. Consider the
following definitions:

� V 0 ¼ VðcÞ \ M is the set of vertices in M, i.e., the vertices
remaining after failure of some components in cycle c;

� T ¼ VðcÞ⧹V 0 is the set of failing vertices of cycle c;
Fig. 2. Cycle c with 3 vertices.

Fig. 3. Examples of confi
� A0 ¼ fði; jÞAAðcÞ \ M : iAV 0; jAV 0g is the set of remaining arcs of
cycle c for which both vertices also remain;

� Q ¼ AðcÞ⧹ðAðcÞ \ MÞ is the set of failing arcs.

The internal-recourse expectation for a cycle c can now be
computed as follows:

EIðcÞ ¼
X

MAΘðcÞ
z ∏
iAV 0

ð1�piÞ ∏
ði;jÞAA0

ð1�pijÞ∏
iAT

pi ∏
ði;jÞAQ

pij ð5Þ

where z is the optimum of Problem CðkÞ for G0 ¼ ðV 0;A0Þ, with a set
of cycles C0 ¼ fcAC : V 0DVðcÞ;A0DAðcÞg.

3.2.1. Previous approaches for computing internal-recourse
expectation

Computation of internal-recourse expectation is faced with
severe bottlenecks. The first difficulty arises when enumerating all
the cycles in the graph representing a KEP; as their number
increases exponentially with respect to the maximum cycle length,
enumeration may be a limitation (which is shared by the standard
cycle formulation). The second difficulty concerns formula (5) for
computing each cycle's expectation. This assumes the enumera-
tion of all subsets MAΘðcÞ of vertices and/or arcs; the number of
such subsets also grows exponentially with the size of cycle. In
practice, computing the expectation for given cycles is by far the
limiting difficulty.

In [17] and [7] a simulation system has been implemented.
However, the process of computation of expectation is not
detailed. The approach of [20] details how this computation is
dealt with, and is related to the concept of the configurations of a
cycle.

Definition 1. A configuration of a cycle of size k is an equivalence
class of isomorphic graphs with k vertices containing at least a
cycle of size k.

All different configurations of a cycle of size 3, and two config-
urations of a cycle of size 4, are shown in Fig. 3. The approach in
[20] was to first prepare a database of possible configurations of
cycles up to a given size k; then, for each of them, the function
calculating its expectation was stored (possibly after simplifying it,
since it may become very large). For computing values of this
expectation, all subsets of a set ΘðcÞ have been enumerated. This
approach was used for maximum length of cycles k¼3, as both the
number of subsets of ΘðcÞ and the number of different configura-
tions of the graph grow very rapidly with the number of vertices
(the number of different configurations of size 4 is 61, and for size
5 it is 3725).

3.2.2. A new algorithm for computing internal-recourse expectation
Here we propose a new effective tree search algorithm for

computing the values of internal-recourse expectations. Different
from the work in [20], the new approach allows an improved
enumeration of the relevant subsets of ΘðcÞ by fathoming redun-
dant branches of the enumeration tree.

To proceed with the algorithm description, we need to intro-
duce the notion of enclosed cycle.

Definition 2. A cycle cAC is enclosed in cycle sAC iff VðcÞDVðsÞ.
Algorithm 1 computes internal-recourse expectations for all

cycles cAC of a graph G¼ ðV ;AÞ, given the probabilities of failure
gurations of cycles.
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for its vertices (pi) and arcs (pij). It computes a value of the
expectation for G by implicitly enumerating all the relevant com-
binations of arcs and vertices failure.

Input: The algorithm starts working with the set of active nodes
of the search tree U [ H, where U ¼ VðcÞ is the sets of vertices and
H¼ AðcÞ the set of arcs involved in the subgraph of considered
cycle cAC (line 3); R is the set of enclosed cycles in cycle c (line 2).
Throughout the algorithm, R represents the set of remaining cycles
in each branch of the search tree, according to failure of elements
of U [ H in parent nodes. The current expectation value s has
value 1.

Branching: The set U [ H defines active nodes of the search tree
for branching. On the left branch it is supposed that the chosen
element t (arc or vertex) does not fail. This happens with
Algorithm 1. Computation of internal-recourse expectations for cycles.

Data: Set of cycles C, pi, pij, where iAV ; ði; jÞAA.
Result: Expectation values EI(c) for each cAC.
1 foreach cAC do //prepare input to RecursionE

2
3
4

R’frAC : rac;VðrÞDV ðcÞg // set of enclosed cycles

U’VðcÞ and H’AðcÞ // nodes for branching

EIðcÞ’RecursionEðR;U;H;1Þ

66664
5 return EI

6 RecursionE ðR;U;H; sÞ
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

if R¼∅ or s¼ 0 then // fathoming

⌊return 0
if Rj j ¼ 1 then
r’element of R

E’s VðrÞ
�� ��∏iAU\VðrÞð1�piÞ∏ði;jÞAH\AðrÞð1�pijÞ

return E

66664
if U ¼∅ and H¼∅ then
V 0’⋃rARVðrÞ;A0’⋃rARAðrÞ
zn’optimum of Problem CðkÞ on graph G0 ¼ ðV 0;A0ÞE’szn

return E

66664
select tAU [ H // branching

if t ¼ uAU then // branching on vertex

R0’R;R1’frARju=2rg
U0’U⧹fug;U1’U⧹fug
H0’H;H1’fði; jÞAHj iau; jaug
s0’sð1�puÞ; s1’spu

66666666664
if t ¼ ðu; vÞAH then // branching on arc

R0’R;R1’frARj ðu; vÞ=2rg
U0’U;U1’U

H0’H⧹fðu; vÞg;H1’H⧹fðu; vÞg
s0’sð1�puvÞ; s1’spuv

6666666664
E0’RecursionEðR0;U0;H0; s0Þ
E1’RecursionEðR1;U1;H1; s1Þ
return E0þE1

6666666666666666666666666666666666666666666666666666666666666664
probability 1�pt , and the corresponding value is multiplied by the
current expectation s (s0 in lines 20–23 and 25–28). On the right
branch element t fails, with probability pt. As a result of this fail-
ure, the sets of remaining cycles R, vertices U, and arcs H are
updated (R1, U1, H1, and s1 in those lines). The chosen element t is
removed from the set of active nodes (lines 21 and 27). The values
obtained on the left and right branches are summed and returned
(line 31).

Fathoming: A branch is fathomed in three cases:

(i) When the set of remaining cycles R is empty (line 7). The
expectation for this node of the search tree is zero.

(ii) When R has a single (line 9). The corresponding expectation is
computed similar to no-recourse expectation.

iii) When a leaf of the tree is reached, i.e., the set of active nodes
for branching is empty (line 13). In this case, Problem CðkÞ is
solved to find a disjoint set of cycles with maximum total
weight (line 15), and the optimum is multiplied by the current
expectation s (line 16).
Fig. 4 illustrates how the algorithm functions for a particular
graph (left). For the sake of simplicity, only vertex failure is con-
sidered. The right-hand side of the figure presents the search
tree for computing the expectation; decisions are taken on vertices
of the left-hand graph with the same label. To each branch
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corresponds an expression to be added during the computation of
expectation (see lines 23, 28). Grey circles show leaves, where the
values z are optima of the corresponding subproblems. Squares are
branches fathomed, having either an empty set of cycles or a single
cycle (indicated below them).

By following paths from the root of the tree down to each leaf,
we can write the value of the expectation for this cycle. The
relevant fathomed branches are marked by letters, and their
expressions are highlighted with the corresponding label, as fol-
lows:

EIðcÞ ¼ 2p2ð1�p1Þð1�p4Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a

þ2p4ð1�p1Þð1�p2Þð1�p3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

þ2p3p4ð1�p1Þð1�p2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

þ4ð1�p1Þð1�p2Þð1�p3Þð1�p4Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d

þ3p3ð1�p1Þð1�p2Þð1�p4Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e

For an illustration of the operation of the algorithm with both
vertex and arc failure see Appendix A.
Fig. 5. Example of subset-recourse.

Fig. 4. Left: example of a cycle with 4 vertices. Right: search tree for calculating its
expectation with internal-recourse.

Fig. 6. Relevant subsets for an example o
Branching rule: It is well-known that the choice of the element
for branching (line 18) is crucial for the effectiveness of tree
search. We started with random choice of the elements first from
the set U and, when U ¼∅, from H. However, after preliminary
tests the following strategy has appeared more effective:

� If Ua∅, choose the vertex included in the maximum number of
remaining cycles R.

� If U ¼∅, choose any arc in the list H.

Solution method for problem CðkÞ: When a leaf of the search tree
is reached, Problem CðkÞ needs to be solved for the corresponding
subgraph G0 (line 15). For this purpose any IP solver could be used;
however, due to the small size of graphs G0 (at most k vertices),
enumeration turned out to be more efficient. An enumeration
algorithm was implemented and used for the computational
experiments presented in Section 4.

Having found the expectation EI(c) for all cycles cAC, to find a
solution of the KEP that has maximum overall internal-recourse
expectation value, Problem CðkÞ must be solved for the original
graph with weightswc ¼ EIðcÞ, cAC. We denote an optimum of this
problem as En

I .

3.3. Subset-recourse expectations

In this section we propose another possibility for the rearran-
gement upon failure, which considers the possibility of involving
vertices not enclosed in the cycle in the rearrangement, as long as
they had not been selected for a different exchange. This leads to
another scheme for computing expectations, which we call subset-
recourse expectations. It is a generalisation of the scheme used for
internal-recourse expectations, presented in the previous section.

Let us consider the example in Fig. 5. In the case of internal-
recourse, if vertex 1 fails then no transplantation can be performed
for vertices in cycle ð1;2;3Þ. Under subset-recourse expectations,
we can consider the subset of vertices V ¼ f1;2;3;4g, and we allow
vertex 3 to be reassigned to cycle ð3;4Þ. Upon failure of vertex 1,
this recourse policy still allows two transplants. We believe that
this new kind of rearrangement is useful in practice; one of the
main results of this paper is showing its benefits, as compared to
no rearrangement and to internal rearrangement.
f graph with five vertices, k¼3, q¼1.

Fig. 7. Limitation of the subset-recourse expectations.
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Under subset-recourse rearrangement, the expected number of
transplants for the set of vertices V is given as follows (again,
for the sake of clarity, in this example we consider only vertex
failure):

ESðV Þ ¼ 2ðp1þð1�p1Þp2Þð1�p3Þð1�p4Þ
þ2p3ð1�p1Þð1�p2Þþ3p4ð1�p1Þð1�p2Þð1�p3Þ
þ4ð1�p1Þð1�p2Þð1�p3Þð1�p4Þ
Da

Re
1
2
3
4

Algorithm 2. Enumeration of all relevant subsets.

Data: Set of cycles C, max. cycle size k, max. size of relevant subsets kþq

Result: Set of subsets Ω for input data
1 Ω’⋃cACfVðcÞg // all sets of vertices of cycles

2 foreach cAC do // prepare input to RecursionS

3
4
5
6

S’VðcÞ // current nodes in subset

C’fsAC jVðsÞ⊈VðcÞg // set of candidate cycles

if jSjokþq then
⌊RecursionS Ω; S;C ; k; q

66666664
7 return Ω

8 RecursionS Ω; S;C ; k; q
9
10
11
12
13
14
15

for cAC do
if VðcÞ \ Sa∅ and jV ðcÞ [ Sjrkþq then
S0’VðcÞ [ S

Ω’Ω [ fS0g
if j S0 jokþq then

Ĉ ¼ fcAC jVðcÞ⊈S0g
RecursionSðΩ; S0; Ĉ ; k; qÞ

$

66666666664

66666666666664

66666666666666664
To take into account practical considerations (e.g., that a crossmatch
validation test must be made among all pairs in a subset), it is
assumed that rearrangements can be made only within vertices of
one subset. Furthermore to limit the combinatorial explosion, it is
assumed that rearrangements to be considered for a cycle with
failures are restricted to a small subset of extra vertices. These are
limited in number and, to be relevant, must form at least one cycle
of acceptable size within the subset. For example, for the graph of
Fig. 5, the subset of vertices f1;2;3;4g is relevant; however, subset
f1;2;3;5g is not, as vertex 5 does not form a cycle within vertices of
f1;2;3g. The formal definition of the relevant subset for this work is
provided next, where strong connectivity is discussed, e.g., in [5].

Definition 3. A relevant subset S of size (k,q) is the set of at most
ðkþqÞ vertices in graph G inducing a strongly connected subgraph
such that any arc of the paths that provide the strong connectivity
belongs to some cycle c of size at most k, and V ðcÞDS.

Note that within this definition for any cycle c in a subset S, i.e.,
VðcÞDS, the number of extra vertices to make rearrangements in
case of failures is equal to ðjSj � jVðcÞj Þ.

A method for the recursive construction of the set of relevant
subsets Ω is presented in Algorithm 2.

Input: The set of relevant subsets Ω is initialised with the sets
of vertices of each cycle cAC (line 1). Then, for each cycle cAC an
initial subset S is given by V(c) (line 3). The set of cycles whose
vertices might augment the current subset S are stored in C
(line 4).
Recursion: Vertices of a cycle cAC together with vertices in S
form a new relevant subset if they have a nonempty intersection
and satisfy the cardinality requirement (line 10). This condition
provides strong connectivity of the new subset S0, in accordance
with Definition 3. While the size of the subset S0 is less than the
given limit kþq (line 13), the procedure is recursively called with
S0 and the set of candidate cycles Ĉ , modified accordingly, as input
parameters (lines 14, 15).
Fig. 6 illustrates all subsets for a given graph, for k¼3 and q¼1.
Vertices belonging to each subset are shown in dark grey, and
cycles having all their vertices included into a subset are shown
with bold arcs. Subsets (a), (b), (c), (d) and (e) directly corres-
pond to cycles, while subsets (f), (g), (h) are constructed as
described above.

Let us denote by Ωðk; qÞ the set of all relevant subsets for a
given graph and given values k and q. For each subset SAΩðk; qÞ,
its expectation value under subset-recourse is calculated by means
of RecursionE, defined in Algorithm 1; this value can be found in
a straightforward fashion after preparing the input as shown in
Algorithm 3.

Algorithm 3. Computation of subset-recourse expectations.
ta: Set of cycles C of size up to k, set of subsets Ω, pi, pij, for
iAV ; ði; jÞAA.
sult: Expectation values ES(S) for each SAΩ.

foreach SAΩ do // prepare input to RecursionE
R’fcAC : VðcÞDSg == set of internal cycles

H’⋃cARAðcÞ ==nodes for branching

ESðSÞ’RecursionEðR; S;H;1Þ

66664

return ES
5

To find a solution to the KEP based on subset-recourse expec-
tation, we may use a formulation similar to the cycle formulation.
Taking into account that rearrangements must be done within the
vertices of one subset, we seek a set of disjoint subsets providing



Fig. 8. Time needed for computing expectations for all configurations of size 5.

Fig. 9. Time needed for computing expectations for configurations of size 6.
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the maximum expectation. This may be done by solving the
following problem, where variable yS is 1 if subset SAΩ is selec-
ted, 0 otherwise.

Problem Pðk; qÞ : ð6Þ

maximise
X

SAΩðk;qÞ
ESðSÞyS ð7Þ

subject to :
X
S:iAS

ySr1 8 iAV ; ð8Þ

ySAf0;1g 8SAΩðk; qÞ: ð9Þ
We denote the optimum for problem Pðk; qÞ as En

S .
In kidney exchange programmes after solution obtention, the

pairs involved in the chosen cycles must be informed of their
selection for transplantation. For an exchange based on the subset-
recourse solution this has to be handled differently, because not all
pairs involved in a selected subset will be actually subject to
transplantation. Hence, firstly one must decide, for a selected
subset S, which cycles to use. This can be done in several ways,
depending on the time of observation of the failures. For example,
the cycle packing leading to the maximum number of possible
transplants in the subgraph defined by the set of vertices S may be
attempted, and, if some failures are observed, recourse cycles in S
are sought.

Because not all possible rearrangements are considered in the
subset-recourse procedure this policy presents some limitations.
To illustrate those limitations consider the graph presented in
Fig. 7. Let k¼2 and q¼1. An optimal solution for the subset-
recourse formulation is given by subsets f1;2;3g and f4;5g. In case
of failure of vertices 5 and 1, the value determined for the
expectation is zero; however, cycle ð3;4Þ, with 2 transplants, is still
available. Cycle ð3;4Þ is neither considered in the expectation value
of the subset f1;2;3g, nor of the subset f4;5g. Hence, in case this
arrangement is possible, the value computed is a lower bound to
the true expectation. This limitation is overcome by considering
larger subsets: e.g., when qZ3, the expectation computed for the
subset f1;2;3;4;5g is the correct one.
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4. Computational experiments

In this section we report computational experiments that were
carried out to evaluate the performance of the tree search method
proposed for computing expectations, and to analyse the results
obtained with the various schemes. All the results were obtained
with a computer with an Intel Xeon processor at 3.00 GHz, 8 GB of
RAM and running Linux. The algorithms presented were imple-
mented in the Python language, version 2.7, using Gurobi version
5.0 as the optimiser.1

Computational experiments were carried out in three main
parts:

� Section 4.1 presents test results of the efficiency of Algorithm 1.
� Section 4.2 shows a comparison of the results obtained with

the deterministic approach to those obtained by maximising
the expected number of transplants under no-recourse and
internal-recourse.

� Section 4.3 compares subset-recourse to the best expectation
scheme among those tested in the previous step.

For Sections 4.2 and 4.3 the instances used have been created
by the most commonly used generator, described in [24]. The
generator creates random graphs based on probabilities of blood
type and of donor–patient tissue compatibility. Default values for
the generator's parameters were used. The probabilities of failure
pij, ði; jÞAA, and pi, iAV were generated randomly with uniform
distribution in ½0;1�. The same test instances have been used in the
computational experiments reported in [8,16], and values for
probabilities are those of [20]. Graphs have different number of
vertices n, starting from 10 up to 300. For each size up to 100
vertices, 50 instances are considered. For bigger n there were 10
instances of each size. Experiments were made for values of k
ranging from 3 to 6.2

4.1. Efficiency of the tree search method

To evaluate the effectiveness of the proposed algorithm for
computing expectations for particular cycles, we computed the
value of the expectation for different configurations (see Definition
1 in Section 3.2.1). The configurations were generated dynamically
by adding all possible combinations of arcs to the cycle of size k
and checking whether it is isomorphic to any of the currently
generated configurations. Due to the number of different config-
urations and to the complexity of computation of the expected
values, for k¼6 we randomly selected only 500 different graphs.

When considering internal-recourse, the number of enclosed
cycles for a given configuration has a crucial influence on the
behaviour of tree search. In this study we analysed the time
required for computing the expectation in terms of the number of
enclosed cycles, for different configurations of cycles of a given
length. The number of enclosed cycles has been determined by
enumeration.

For configurations of size 3 and 4 the expectations for all pos-
sible configurations were computed in less than 1 s; tree search is
very fast for these cases, which hence are not further analysed.
Fig. 8 illustrates the time spent by the algorithm to compute
expectations for configurations of size 5 as a function of the
number of enclosed cycles.
1 Gurobi Optimisation. http://www.gurobi.com/products/gurobi-optimizer/gur
obi-overview/ (last accessed in September, 2014).

2 Currently implemented kidney exchange programmes work in general with a
maximum value of k¼3. However, this value has already been exceeded in practice:
the maximum number of simultaneous transplants that we are aware of is 6 [3].
There usually exist several configurations with the same
number of enclosed cycles; in these cases the average time is
plotted, and a bar between maximum and minimum computa-
tional times is presented. Often, there is no difference in these
values, and the bar appears as a point. For configurations with up
to 50 enclosed cycles the expectations were computed within 5 s.
For more dense configurations, the computational time grows
rapidly, up to 33 s for the configuration corresponding to a com-
plete graph with 5 vertices. In this case there are 84 enclosed
cycles.

Results for configurations of size 6 are presented in Fig. 9. The
time used by the algorithm was limited to 2 h (7200 s). Due to this
limitation, only instances with at most 250 enclosed cycles have
been considered. As some instances with less than 250 cycles
could not also be solved within the time limit, cases of more dense
graphs have not been attempted. Note that the configuration
corresponding to a complete graph of size 6 has 409 enclosed
cycles. As in the case of graphs of size 5, we can observe a drastic
rise in the time used: about 1500 s are enough for graphs with up
to 170 cycles; close to 3500 s are required for graphs with 190–210
cycles; and 7000 s or more have been used for graphs with more
than 220 cycles. In contrast with the results for size 5, the com-
putational time for graphs with the same number of enclosed
cycles may vary significantly; e.g., for graphs with 138 cycles (7
different configurations have been considered), computing the
expectation required from 662 to 1551 s, with an average of
1054 s. Moreover, as compared to configurations of size 5, much
steeper spikes can be observed in this plot.

For configurations of size 7 only a small part of the graphs
could be handled within the time limit of 2 h, and therefore we do
not present results for this case.

4.2. Deterministic case, no-recourse, and internal-recourse

The aim of the second computational experiment was to
compare results for the KEP in a deterministic setting to the no-
recourse and internal-recourse cases. These three approaches are
based on the same model for solving the main problem (cycle
formulation CðkÞ); they differ only in the weight wc attributed to
each of the cycles:

1. Deterministic approach: wc ¼ j cj , maximising the attainable
number of transplants; let zn denote the optimum of this
problem.

2. No-recourse expectation: wc ¼ ENðcÞ; the optimum of this pro-
blem is denoted by En

N .
3. Internal-recourse expectation: wc ¼ EIðcÞ; the optimum is

denoted by En

I .

For the sake of comparison, we also computed ED to be the
expected number of transplants of the optimal solution for the
deterministic problem, if internal-recourse is applied afterwards.
The time used by the algorithm was limited to 1 h (3600 s) for
each instance. In Table 1 we show in parenthesis the number of
instances out of 50 or out of 10 that were not solved within this
time frame. Note that for graphs with 10 vertices, out of the 50
cases considered, only 36 had non-null solutions; the remaining
14 did not have any feasible cycle. All the instances with a larger
number of vertices had non-null solutions. This table shows the
average values of zn, ED, E

n

N , and En

I for the set of instances of
each size.

First of all we should mention that the proposed computational
algorithm is less effective for k¼3 than the approach in [20]. That
paper reports the computational experiments with instances up to
1000 vertices; we are only considering instances with up to 300
vertices. However our approach is useful for bigger values of

http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview/
http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview/


Table 1
Average optima obtained for deterministic and non-deterministic models.

k n zn ED En

N En

I

3 10 3.8 0.24 0.28 0.34
20 8.2 0.40 0.88 1.01
30 12.3 0.71 1.30 1.50
40 17.3 1.05 1.88 2.21
50 23.5 1.31 2.91 3.35
60 27.6 1.66 3.64 4.26
70 34.0 1.89 4.24 4.93
80 39.5 2.28 5.43 6.26
90 46.2 2.63 6.45 7.47
100 51.3 2.86 7.20 8.31
200 21.4 1.09 3.75 4.28
300 (3) 23.7 1.21 4.29 4.87

4 10 3.8 0.23 0.28 0.37
20 8.6 0.53 0.88 1.19
30 12.7 0.75 1.30 1.77
40 18.1 1.00 1.88 2.54
50 24.3 1.52 2.92 3.92
60 28.8 1.86 3.65 4.91
70 35.1 1.92 4.25 5.74
80 40.4 2.42 5.45 7.39
90 (3) 46.6 2.64 6.31 8.53

5 10 3.8 0.26 0.28 0.39
20 8.7 0.49 0.88 1.28
30 (3) 12.5 0.85 1.24 1.79
40 (8) 17.4 1.08 1.78 2.57
50 (30) 23.1 1.70 2.81 4.00

6 10 3.8 0.28 0.28 0.40
20 (25) 6.6 0.33 0.64 0.92

Table 2
Comparison of optimum expectations for internal-recourse (I) to subset-recourse,
with increasing q. Columns q-ðqþ1Þ show improvements when going from subset
recourse with q, to qþ1 extra vertices.

k n I-0 0-1 1-2 2-3 3-4 4-5 5-6 6-7

3 10 50/19 50/24 50/17 50/16 50/11 48/8 47/1 46/0
11.0% 12.2% 3.8 % 1.7% 0.9% 0.4% o0:1% –

20 50/41 50/46 50/46 43/35 27/19 18/9 17/5 15/2
11.7% 13.4% 6.8% 3.9% 1.7% 0.6% 0.3% 0.3%

30 50/46 50/50 50/49 27/25 11/8
9.9% 12.8% 7.6% 5.1% 1.6% – – –

40 50/48 50/50 50/49
9.0% 13.2% 6.4% – – – – –

50 50/50 50/50 44/44
8.9% 13.7% 7.3% – – – – –

60 50/50 50/50 35/35
8.9% 12.7% 7.4% – – – – –

70 50/50 50/50 25/25
8.9% 13.3% 8.5% – – – – –

80 50/50 50/50
8.7% 14.4% – – – – – –

90 50/50 50/50
8.3% 13.9% – – – – – –

100 50/50 50/50
8.5% 13.7% – – – – – –

4 10 50/20 50/17 50/16 49/12 45/7 45/1
18.2% 4.4% 2.3% 1.0% 0.3% o0:1%

20 50/44 50/46 37/31 19/11 14/5 13/3
10.3% 8.1% 4.4% 1.8% 0.2% 0.1%

30 50/47 50/49 24/22 6/3 3/1 3/0
6.3% 9.1% 6.2% 1.6% o0:1% –

40 50/49 50/49 11/11
9.3% 8.7% 7.1% – – –

50 50/50 43/43
7.4% 8.2% – – – –

60 50/50 32/32
7.6% 8.9% – – – –

70 48/48 19/19
7.5% 9.7% – – – –

80 34/34 5/5
6.8% 10.4% – – – –

90 20/20
6.8% – – – – –

5 10 50/24 50/16 49/12 45/7 45/2
20.4% 2.2% 1.0% 0.3% o0:1%

20 50/46 37/31 18/10 14/5 13/3
11.5% 4.5% 1.5% 0.2% 0.1%

30 50/47 23/21 4/2 3/1 3/0
8.3% 6.0% 2.8% o0:1% –

40 46/45 9/9
10.0% 7.7% – – –

50 26/26 2/2
7.6% 8.0% – – –
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k¼ 4;5;6. The average expectation ED for the optimal determi-
nistic solution is significantly inferior to the solutions obtained by
models that explicitly consider rearrangements, either with no-
recourse or internal-recourse. Overall, the expected no-recourse
values exceed the deterministic approach by a factor of 1.7 on
average. The internal-recourse scheme allows an improvement
over ED by a factor of 2.4. Most strikingly, for larger instances with
80 and 90 vertices with k¼4, the average value En

I exceeds ED
more than 3 times. Given this superiority, the internal-recourse
scheme was selected as the approach for comparison with subset-
recourse expectations.

4.3. Subset-recourse

The last stage of the computational experiment is devoted to
comparing expectations obtained with internal-recourse and
subset-recourse models. For each instance, Problem Pðk; qÞ was
solved for k¼ 3;4;5, q¼ 0;…;7, the optimum being denoted by
EqSn. Then, for all consecutive pairs ðq�1; qÞ, q¼ 1;…;7 the
expectation values have been compared by computing the relative
percentage improvement from Eðq�1Þ

S n to EqSn:

Δq ¼ 100� EqSn

Eðq�1Þ
S n

�1

 !
;

and q¼0 was compared to internal-recourse expectation En

I ,
denoted in Table 2 by I:

Δ0 ¼ 100� E0Sn
En

I
�1

 !
:

The computational time allowed for solving each instance was
limited to 3600 s. Column I-0 reports improvement from
internal-recourse to subset-recourse with q¼0; the following
columns ðq�1Þ-q, for q¼ 1;…;7; concern improvement from q�
1 to q. Each column presents values for each graph size in two
lines:

� upper line values have the form N=M, where N is the number of
instances considered and M is the number of cases where there
was an improvement (i.e., the number of instances with Δq40Þ;

� in the lower line is the average value of Δq, i.e., the average of
percentage improvements obtained.

Dashes indicate that no instance has been considered, due to the
time limitation.

The limit on the computational time allocated for the solution
of each instance allowed the most interesting cases to be solved.
Large improvements occur with small values of q; for greater q,



Fig. 10. Left: example of a cycle with 3 vertices. Right: search tree for calculating its expectation with internal-recourse.
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smaller improvements on expectations were obtained, and for
fewer instances. Improvements from I to q¼0 (column I-0), and
from q¼0 to q¼1 (column 0-1), show a clear superiority of
subset-recourse with respect to simple internal-recourse.
5. Conclusions

This paper is devoted to a variant of the kidney exchange
problem where the objective is to find exchanges that maximise
the expected number of transplants. Data for this problem are a
graph and probabilities of failure of its components (vertices or
arcs). The graph describes patient–donor pairs (the set of vertices)
and compatibilities between donors and patients of other pairs
(the set of arcs). Failure probabilities concern the possibility of
patient–donor pairs withdrawing (e.g., due to backing out), and of
arcs connecting them to vanish (e.g., due to incompatibilities
found in a last-minute check).

In this context, for determining the expectation for the number of
transplants associated to a given cycle, the form of reorganisation of a
cycle upon failure of some of its components must be defined. Three
rearrangement possibilities have been considered: no-recourse, inter-
nal-recourse, and, newly proposed in this paper, subset-recourse. This
last scheme considers an extended subset of vertices that can be
used for rearrangements after failure of a cycle. We have proposed
an algorithm for computing internal-recourse and subset-recourse
expectations, based on tree search. These values are required for set-
ting up the optimisation problem of finding the feasible exchanges
that maximise the overall expected number of transplants.

A thorough computational experiment indicated that the expected
number of transplants obtained by internal-recourse significantly
improve on no-recourse, confirming results obtained by related
approaches; these had been presented in [11,17,7,6], albeit for more
restricted situations. The algorithm proposed allowed internal-recou-
rse expectations to be computed for problems with maximum length
of cycles 4, 5 and 6; this complements [20], where only results for
cycles with length 3 are reported.

Results obtained for subset-recourse indicate a significant, addi-
tional improvement with respect to internal-recourse expectations,
showing evidence of the outcomes that can be obtained if subset-
recourse is put in practice.
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Appendix A. Illustration of Algorithm 1 functioning with both
vertex and arc failure

Fig. 10 (right) illustrates the functioning of algorithm 1 for the
graph in Fig. 10 (left).

The expressions below are highlighted with the corresponding
labels of the relevant fathomed branches of the tree:

EIðcÞ ¼ 2p3ð1�p1Þð1�p2Þð1�p12Þð1�p21Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a

þ3p21ð1�p1Þð1�p2Þð1�p3Þð1�p12Þð1�p23Þð1�p31Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

þ2p23ð1�p1Þð1�p2Þð1�p3Þð1�p12Þð1�p21Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

þ2p31ð1�p1Þð1�p2Þð1�p3Þð1�p12Þð1�p21Þð1�p23Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d

þ3ð1�p1Þð1�p2Þð1�p3Þð1�p12Þð1�p21Þð1�p23Þð1�p31Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e

:

In the minimal form the expression is written as follows:

EIðcÞ ¼ ð1�p2Þð1�p1Þð1�p12Þ 3�p3ð1�p23Þð2p21þ1Þð1�p31Þ
�

�p23ð2p21þ1Þð1�p31Þ�2p21p31�p31
�
:
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