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Abstract

Kidney exchange programs utilize both deceased-donor and live-donor kidneys. One of these programs,
a two-way kidney paired donation (KPD), involves two patients exchanging their live donors’ kidneys.
Another possibility is a list exchange (LE): a living incompatible donor provides a kidney to a candidate
on the deceased-donor waitlist and in return the intended recipient of this donor receives a priority on the
waitlist. By taking into consideration the fact that transplants from live donors have a higher chance of
success than those from cadavers, we characterize the set of efficient and egalitarian exchanges involving
the KPD’s and LE’s.
© 2011 Elsevier Inc. All rights reserved.

JEL classification: C71; C78; D02; D63; I10

Keywords: Mechanism design; Matching; Kidney exchange; Random assignment; Lorenz dominance

1. Introduction

Transplantation is the preferred treatment for the most serious forms of kidney disease. Unfor-
tunately, there is a considerable shortage of deceased-donor kidneys: as of June 13, 2008, there
are 76,313 patients waiting for kidney transplants in the US, with the median waiting time of over
3 years, and in 2007, there were only 10,587 transplants of deceased-donor kidneys. The cadav-
eric kidneys are not the only sources for transplantation. Since healthy people have two kidneys
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Fig. 1. An n-way KPD.

and can remain healthy on one, it is also possible for a kidney patient to receive a live-donor
transplant. In 2007, there were 6,038 transplants of live-donor kidneys. Our goal is to design an
efficient and fair mechanism utilizing these two sources of kidneys.

The two sources of kidneys enable the medical authorities to develop different programs to in-
crease the number of transplantations. One of these programs is a kidney paired donation (KPD).
A two-way KPD involves two patient-donor couples, for each of whom a transplant from donor
to intended recipient is not possible due to medical incompatibilities, but such that the patient
in each couple could receive a transplant from the donor in the other couple [15,16]. This pair
of couples can then exchange donated kidneys. Multiple-way exchanges, in which multiple pairs
participate, can also be utilized (Fig. 1). To expand the opportunity for the KPD, optimal match-
ing algorithms have been designed to identify maximal sets of compatible donor/recipient pairs
from a registry of incompatible pairs.

Another possibility is a list exchange (LE). In an LE-chain of length two, a living incompatible
donor provides a kidney to a candidate on the deceased-donor (DD) waitlist and in return the
intended recipient of this donor receives a priority on the DD-waitlist. This improves the welfare
of the patient in the couple, compared to having a long wait for a compatible cadaver kidney,
and it benefits the recipient of the live kidney, and other on the DD-waitlist who benefit from
the increase in the kidney supply due to an additional living donor. Through April 2006, 24 list
exchanges have been performed. The LE in which more than one additional pair participates can
also be considered. An LE with n pairs is depicted in Fig. 2.

In utilizing these two protocols, an important distinction is that transplants from live donors
have a higher chance of success than those from cadavers. This fact is underlined by medical
authorities and is supported by the data on the difference between the patient survival rate for
live-donor transplants and for cadaveric transplants performed between 1997 and 2004 in the US
(Table 1).

As the data shows, the gap between the patient survival rates increases over the years post
transplant. The comparison between the graft survival rates is actually more striking (Table 2).

While transplants from live donors have a higher chance of success than those from cadavers,
the experience of American surgeons suggests that patients should be indifferent among kidneys
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Fig. 2. An LE with n pairs.

Table 1
Kidney patient survival rates.

Donor type Years post
transplant

Number alive/
functioning

Survival
rate

Cadaveric 1 year 23,735 94.5
Living 1 year 18,026 97.9
Cadaveric 3 year 24,436 88.3
Living 3 year 18,198 94.3
Cadaveric 5 year 19,042 82.0
Living 5 year 12,642 90.2

Table 2
Kidney graft survival rates.

Donor type Years post
transplant

Number alive/
functioning

Survival
rate

Cadaveric 1 year 22,753 89.0
Living 1 year 17,649 95.0
Cadaveric 3 year 23,075 77.8
Living 3 year 17,556 87.9
Cadaveric 5 year 17,629 66.5
Living 5 year 12,033 79.7

from healthy donors that are blood type and immunologically compatible with the patient. This
is because, in the US, transplants of compatible live kidneys have about equal graft survival
probabilities, regardless of the closeness of tissue types between patient and donor [6,11]. In
accordance with this medical findings, we assume that, while patients’ preferences over the set
of live-donor kidneys are such 0-1 preferences (we refer to such preferences as dichotomous),
they prefer a live-donor kidney transplant to a cadaveric-kidney transplant.
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Our goal is to explore how to organize kidney exchange by integrating the KPD’s and LE’s,
under the assumptions of dichotomous preferences of the patients, and that the success rates
of transplants from live donors are higher than those from cadavers. Kidney exchange is an
assignment problem with donors (resources) to be allocated to the patients (agents), and under
the dichotomous preferences assumption, the characterization of the set of the efficient exchanges
reduces to the characterization the maximal cardinality matchings in the corresponding bipartite
graph, in which there is a link connecting a patient and a donor if and only if there are no
medical incompatibilities between them.2 However, kidney exchange has more structure: each
agent (patient) has a private endowment (donor). The fairness implication of this structure and
the distinction between the success rates of transplants from live donors and those from cadavers
is that, if the donor of an intended recipient donates to a patient in the patient-donor couples pool,
then that intended recipient should have a priority in receiving live-donor kidney transplant.3 In
random matchings, this wisdom is elevated to equating the difference between the probability of
a patient’s receiving a live-donor kidney transplant and the probability of his donor’s donating
her kidney to someone in the patient-donor couples pool, as much as possible among all patient-
donor couples in the pool. Our contribution is the characterization of the set of efficient and fair
(fairness to be formally defined capturing the idea just described) exchanges involving the KPD’s
and LE’s.

2. Related literature

While the transplantation community approved the use of the KPD’s and LE’s to increase
kidney donations, it has provided little guidance about how to organize such exchanges. Roth,
Sönmez, and Ünver [17] suggested that, by modeling kidney exchange as a mechanism design
problem, integrating the KPD’s and LE’s may benefit additional candidates.4 This approach turns
out to be very successful and is supported by the medical community. Since then, a centralized
mechanism for kidney exchange based on these two protocols has been used in the regional
exchange program in New England (The United Network for Organ Sharing-UNOS-Region 1).
In terms of integrating the KPD’s and LE’s, their paper is closest to the present work.

Bogomolnaia and Moulin [5] assumed dichotomous preferences and considered two-sided
matching such that an agent on one side of the market can only be matched with an agent
on the other side. (This problem can be represented as a bipartite graph derived from the un-
derlying (dichotomous) preferences of the agents.) They define the egalitarian solution as the
one that picks an efficient matching equalizing as much as possible the individual probabilities
of being matched, and show that the corresponding profile of utilities first-order stochastically

2 The maximum cardinality matching problem is well analyzed in the graph theory literature. More specifically, the
Gallai [9,10] and Edmonds [8] Decomposition Lemma characterizes the set of maximum cardinality matchings. We make
use of this result in constructing an efficient exchange.

3 Note that, a patient-donor couple can always go to the DD-waitlist to obtain a priority in receiving a deceased-donor
kidney, and the incompatible patient-donor pairs register the centralized clearinghouse with the expectation of receiving
a live-donor kidney transplant for the patient.

4 See also Roth, Sönmez, and Ünver [19]. The kidney exchange problem has some common features with the assign-
ment problem with private endowments and/or a social endowment. (See for example Abdulkadiroğlu and Sönmez [1,2],
Hylland and Zeckhauser [13], Shapley and Scarf [23], Sönmez and Ünver [24], Yılmaz [27,28].)
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dominates any other feasible profile of utilities arranged increasingly, a property known as
Lorenz-dominance.5

Roth, Sönmez, and Ünver [18] assumed dichotomous preferences and considered the con-
strained kidney exchange problem, in which only the two-way KPD’s are allowed. They show
that, in the constrained problem, efficient and strategy-proof mechanisms exist. These mecha-
nisms include a deterministic mechanism based on the priority setting that organ banks currently
use for the allocation of cadaver kidneys, and a stochastic mechanism motivated by the fair-
ness considerations. The results of Roth, Sönmez, and Ünver [18] on the egalitarian mechanism
generalize the corresponding results of Bogomolnaia and Moulin [5] to general (not necessarily
bipartite) graphs.6 Recently, Sönmez, and Ünver [25] characterize the set of efficient matchings
for the constrained kidney exchange model with altruistic pairs under the dichotomous prefer-
ences assumption, where an altruistic pair is a compatible patient-donor pair agreeing to take
part in a two-way KPD for purely altruistic reasons, i.e. so that the number of patients receiving
a transplant increases in the kidney exchange program which they contribute. Also, Yılmaz [29]
characterizes the set of matchings with the maximum number of transplants in a constrained
kidney exchange model where only the LE’s with two pairs and two-way KPD’s are possi-
ble.

We explore how to organize kidney exchanges without any constraint on the number of pa-
tients taking part in a KPD or an LE. In this unconstrained problem, we integrate the KPD’s
and LE’s and take into consideration the fact that transplants from live donors have a higher
chance of success than those from cadavers. Our contribution is the characterization of the set of
efficient and egalitarian matchings. While the characterization of the efficient set follows from
the Gallai–Edmonds Decomposition Lemma [8–10], we need another elegant result from graph
theory in order to characterize the set of egalitarian kidney exchanges (see Theorem 2 in Ap-
pendix A.2).

3. The model

Let P be a finite set of patients each of whom has an incompatible donor, and D be the set
of these donors. We denote the donor of patient p ∈ P by dp , and the patient whose donor is
d ∈ D by pd . For expositional convenience, we assume that all patients are male and all donors
are female.

For each p ∈ P , Dp ⊆ D denotes the set of compatible donors for patient p. For each S ⊆ P ,
we write DS = ⋃

p∈S Dp for the set of donors compatible with at least one patient in S. Also,
for each d ∈ D, Pd denotes the set of patients for whom donor d is compatible. For each F ⊆ D,
we write PF = ⋃

d∈F Pd for the set of patients for each of whom there is at least one compatible
donor in F .

5 Another work that uses the same criterion for an egalitarian allocation is by Dutta and Ray [7]. They show that, for
convex cooperative games, the egalitarian allocation is unique and it is in the core.

6 Roth, Sönmez, and Ünver [20] also explore that, for a specific preference profile of the patients (this profile is
constructed according to the medical facts on the blood-type compatibilities), when multiple-way KPD’s are feasible,
three-way KPD’s as well as two-way KPD’s will have a substantial effect (and larger than three-way KPD’s have less
impact) on the number of transplants that can be arranged. Also, Ünver [26] introduces a dynamic kidney exchange
model and analyzes efficient matching mechanisms in this dynamic setting.
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Each patient evaluates each donor as compatible or incompatible and is indifferent between
all compatible donors and between all incompatible donors. He prefers each compatible donor to
the waitlist option w, and w to each incompatible donor. Thus, for each patient p,

d, d ′ ∈ Dp and d ′′, d ′′′ /∈ Dp imply d ∼p d ′ �p w �p d ′′ ∼p d ′′′.
Note that the set Dp fully describes the preferences of patient p.

A kidney exchange problem, or simply a problem is a triple (P,D, (Dp)p∈P ).
Let

cp,d =
{

1 if d ∈ Dp,

0 otherwise.
Each problem (P,D, (Dp)p∈P ) induces a |P | × |D| compatibility matrix C = [cp,d ]p∈P,d∈D .
We refer to the triple (P,D,C) as the reduced problem of (P,D, (Dp)p∈P ). Throughout the pa-
per, we fix a problem (P,D, (Dp)p∈P ), and the reduced problem (P,D,C) of (P,D, (Dp)p∈P ).

A deterministic matching is an injective partial function μ from P into D, that is, for each
d ∈ D, there is at most one patient p such that μ(p) = d . An unmatched patient receives high pri-
ority on the cadaver queue. By definition of a deterministic matching, the number of unmatched
patients is equal to the number of unmatched donors. Thus, for each patient p receiving high
priority on the cadaver queue, there is a donor d (not necessarily dp) who donates her kidney to
someone on the queue. A deterministic matching is represented as a |P |×|D| matrix with entries
0 or 1, and at most one nonzero entry per row and one per column. A deterministic matching μ

is individually rational if, for each patient p ∈ P , μ(p) = d implies d ∈ Dp . Let M denote the
set of all individually rational deterministic matchings.7 Let Pμ ≡ {p ∈ P : μ(p) ∈ D}, the set of
patients matched by μ. We call |Pμ| as the cardinality of matching μ.

Let λ = (λμ)μ∈M be a lottery that is, a probability distribution over M. Let �M denote
the set of all lotteries. Each lottery λ ∈ �M induces a random matching (matrix) Z(λ) =
[zp,d(λ)]p∈P,d∈D , where zp,d(λ) is the probability that patient p is matched to donor d , that
is, the probability that λ selects a deterministic matching μ such that μ(p) = d . Thus, for each
λ ∈ �M, the |P |× |D| matrix Z(λ) is substochastic, that is to say, it is nonnegative and the sum
of each row (each column) is at most one. Let Z be a non-negative and substochastic matrix such
that zp,d > 0 implies d ∈ Dp . The set of all such random matching matrices is denoted by Z .

For patient p ∈ P , the aggregate probability that he receives a live-donor transplant, is the
canonical utility representation of his preferences over random matchings. Thus, given a random
matching Z ∈ Z , the utility of patient p is defined as the sum of the entries in the pth row of Z:

up(Z) =
∑
d∈D

zp,d ,

and the utility profile is defined as the non-negative real vector u(Z) = (up(Z))p∈P . We denote
by U the set of all feasible utility profiles. That is, U = {u(Z): Z ∈ Z}.

Given a random matching Z ∈ Z , the probability that kidney of donor d is transplanted to
someone in the exchange pool, td (Z), is the sum of the entries in the d th column of Z:

td (Z) =
∑
p∈P

zp,d ,

and the transplantation probability profile is defined as the non-negative real vector t(Z) =
(tdp (Z))p∈P .

7 Throughout the rest of the paper, we consider only individually rational matchings.
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A variant of the Birkhoff–von Neumann Theorem [3,30], implies that each substochastic ma-
trix Z ∈ Z obtains as a (in general not unique) lottery λ ∈ �M.8 Since, for each patient, two
lotteries resulting in the same random matching yield the same aggregate probability of receiving
a live-donor transplant, we do not distinguish them. Thus, a random solution to (P,D,C) is a
matrix Z ∈ Z .

4. Efficiency

A deterministic matching μ ∈ M is Pareto efficient if there exists no other matching η ∈ M
such that Pη � Pμ, i.e. if Pμ is inclusion maximal. Let E be the set of Pareto efficient matchings.
A well-known property of matchings states that each Pareto efficient matching matches the same
number of patients. For the sake of completeness, we repeat a result from abstract algebra which
implies this property9:

A matroid is a pair (X, I) such that X is a set and I is a collection of subsets of X such that

M1. if I is in I and J ⊆ I then J is in I ; and
M2. if I and J are in I and |I | > |J | then there exists an i ∈ I \ J such that J ∪ {i} is in I .

Proposition 1. Let I be the sets of simultaneously matchable patients, i.e. I = {I ⊆ P : ∃μ ∈ M
such that I ⊆ Pμ}. Then, (P, I) is a matroid.

The following property follows immediately from the second property of matroids:

Lemma 1. For each pair of Pareto efficient matchings μ,η ∈ E , |Pμ| = |Pη|.

4.1. The Gallai–Edmonds Decomposition

The Gallai–Edmonds Decomposition (GED) of bipartite graphs, a well-known result in graph
theory, further clarifies the structure of Pareto efficient deterministic matchings.10

Lemma 2 (The Gallai–Edmonds Decomposition). Given a reduced problem (P,D,C), there is
a unique pair of partitions {P o,P f ,P u} of P and {Du,Df ,Do} of D such that:

(i) Du is only compatible with P o, and Du is underdemanded by P o:

PDu = P o

and

for each S ⊆ P o: ∣∣DS ∩ Du
∣∣ > |S|;

(ii) there is a full match between P f and Df , that is, all patients in P f can be matched with
all donors in Df :

for each S ⊆ P f : ∣∣DS ∩ Df
∣∣ � |S|;

8 The Birkhoff–von Neumann Theorem holds for bistochastic matrices. This result is generalized to substochastic
matrices by Bogomolnaia and Moulin [4].

9 This result is also stated by Roth, Sönmez, and Ünver [18].
10 All the results in this section are also stated by Bogomolnaia and Moulin [5].
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(iii) P u is only compatible with Do, and Do is overdemanded by P u:

DPu = Do

and

for each F ⊆ Do: ∣∣PF ∩ P u
∣∣ > |F |.

Note in particular that |P o| < |Du|, |P f | = |Df |, and |P u| > |Do|. The GED Lemma states
that it is possible to match the patients in P o with the donors in Du such that each patient in
P o receives a live-donor transplant from the set Du. In this case, there are |Du| − |P o| donors
in Du, each of whom donates her kidney to someone on the queue. Also, the patients in P u

can be matched only with the donors in Do. But, there are not enough donors in Do such that
each patient in P u receives a live-donor transplant. Thus, if each patient in P u is matched with a
donor in Do, then there are |P u| − |Do| patients in P u, each of whom receives high priority on
the cadaver queue rather than a live-donor transplant. Note that |Du| − |P o| = |P u| − |Do|.

As shown before, finding a Pareto efficient deterministic matching reduces to finding a max-
imum cardinality matching. The GED Lemma characterizes the set of maximum cardinality
matchings.

Lemma 3. A deterministic matching μ ∈ M is Pareto efficient if and only if exactly |P o| +
|P f | + |Do| patients are matched by μ. Moreover, at each Pareto efficient matching, patients
in P o are matched to donors in a proper subset of Du, patients in a proper subset of P u are
matched to donors in Do, and there is a full match between P f and Df .

We now turn our attention to random matchings. A lottery λ is ex post efficient if its support
is a subset of the set of Pareto efficient deterministic matchings, that is, if λμ > 0 implies μ ∈ E .
A random matching Z is ex ante efficient if there exists no other random matching Z′ such
that u(Z′) � u(Z) and for some p ∈ P , up(Z′) > up(Z). We denote the set of ex ante efficient
random matchings by Z e. A utility profile u ∈ U is efficient if there exists no other utility profile
v ∈ U such that v � u and for some p ∈ P , vp > up . We denote the set of efficient utility profiles
by U e.

The GED Lemma is also key to the characterization of the efficient utility profiles.

Lemma 4.

(i) A lottery is ex post efficient if and only if, with probability one, it matches exactly |P o| +
|P f | + |Do| patients.

(ii) A random matching is ex ante efficient if and only if the sum of its entries is |P o| +
|P f | + |Do|.

(iii) A random matching is ex ante efficient if and only if zp,d > 0 implies (p, d) ∈ (P o,Du) ∪
(P f ,Df ) ∪ (P u,Do), and its restriction to (P o,Du) is row-stochastic, to (P f ,Df ) is
bistochastic, and to (P u,Do) is column-stochastic.

Throughout the rest of the paper, we consider only efficient matchings.
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5. Stochastic exchange

Given a random matching Z, and a patient p, the difference between his utility and the prob-
ability that the kidney of his donor dp is transplanted to someone in the exchange pool (we call it
as the u–t difference for patient p) is important in the sense of fairness: if the donor dp donates
her kidney to someone in the exchange pool, then it is plausible to think that patient p should
have the priority in receiving a live-donor kidney transplantation in exchange for his donor’s
contribution to the pool. But, there may be several patients whose donors donate their kidneys to
the pool, yet there are not enough compatible donors in the pool to donate their kidneys to these
patients. Thus, for a random matching Z, the vector u(Z) − t(Z) = (up(Z) − tdp (Z))p∈P is key
to evaluating its fairness; equalizing the u–t differences as much as possible is very plausible
from an equity perspective. We use the Lorenz criterion as the partial ordering of the matchings.
The Lorenz dominance is the following partial orderings of vectors in R|P |: v Lorenz dominates
y if upon rearranging their |P | coordinates increasingly as v∗ and y∗, we have

for each k = 1, . . . , |P |:
k∑

i=1

(
v∗
i − y∗

i

)
� 0.

If a matching Z ∈ Z e is such that u(Z) − t(Z) is Lorenz dominant in the set {u(Z′) − t(Z′):
Z′ ∈ Z e}, then it has a very strong claim to fairness within the set of efficient matchings. It
achieves the maximum over {u(Z′) − t(Z′): Z′ ∈ Z e} of any collective welfare function averse
to inequality in the sense of the Pigou–Dalton transfer principle. Also, it maximizes not only
the leximin ordering but also any collective welfare function

∑
P f (up − tp) for each increasing

and concave function f . (See Moulin [14] and Sen [22] for these results and more on Lorenz
dominance.) This leads to the following definition.

Definition 1. A random matching Z ∈ Z e is egalitarian if the vector u(Z) − t(Z) is Lorenz
dominant in the set {u(Z′) − t(Z′): Z′ ∈ Z e}.

Since the Lorenz dominance is a partial order, an egalitarian random matching may not exist
in general. It turns out that it exists and our main result is to characterize the set of the egalitarian
random matchings.

Let P u;u denote the set of underdemanded patients whose donors are underdemanded, P u;f,o

denote the set of underdemanded patients whose donors are fully demanded or overdemanded.
Also, let P u;1(Z) denote the set of underdemanded patients who receive live-donor transplan-
tations with probability one in the random matching Z. Similarly, Du;u denotes the set of
underdemanded donors of underdemanded patients, and Du;f,o denotes the set of underde-
manded donors of fully demanded or overdemanded patients. Note that P u = P u;u ∪ P u;f,o

and Du = Du;u ∪ Du;f,o. Also, let P f,o;u denote the set of fully demanded or overdemanded
patients whose donors are underdemanded.

To convey the idea in our characterization result, let us consider the special case where
P f = Df = ∅, and P u;f,o = Du;f,o = ∅, that is, each underdemanded patient has an under-
demanded donor. For an overdemanded patient p, at each efficient random matching Z ∈ Z e ,
the probability of both him receiving a live donor kidney and also his donor donating her kid-
ney someone in the exchange pool is one, thus, up(Z) − tdp (Z) = 0. For an underdemanded
patient, on the other hand, the u–t difference may be negative or positive. Also, for each Z ∈ Z e ,∑

(up(Z) − tdp (Z)) = 0. (Note that this equality holds for the general case as well.) By
p∈P



Ö. Yılmaz / Journal of Economic Theory 146 (2011) 592–618 601
efficiency, the underdemanded patients will be matched to the overdemanded donors and the un-
derdemanded donors will be matched to the overdemanded patients. The difficulty of the problem
of equating the u–t differences as much as possible in the sense of Lorenz-dominance is that these
two matching problems cannot be considered separately: when a set of underdemanded patients
are matched (randomly) to the overdemanded donors, the matching of their donors to the overde-
manded patients has to be considered simultaneously. Thus, there are two different matching
problems, connected to each other by the patient-donor type private ownership relation and the
notion of the u-t difference.

Since an egalitarian random matching necessarily maximizes the leximin ordering of the u-t
differences vectors, first step in finding such a matching is to find the maximum possible first
coordinate of the vector upon rearranging their coordinates increasingly. For each E ⊆ D, define
P(E) ≡ {p ∈ P : Dp ⊆ E} as the set of patients whose compatible donors are only in E. Let
S ⊆ P u be a set of patients. Our goal is to find a random matching such that the u-t difference for
each patient in S is the same and as maximum as possible. For each F ′ such that {dp: p ∈ S} ⊆
F ′ ⊆ Du, P(F ′) ⊆ P o; and each patient in P(F ′) receives a live-donor kidney transplantation
with probability one. By the GED Lemma, at an efficient random matching, the patients in S can
receive at most |DS | live-donor kidney transplantations, and also, at best, their donors donate
only to |P(F ′)| − |F ′ \ {dp: p ∈ S}| patients in P o. Then, if the u-t difference for each patient in
S is the same, then its maximum possible value can not be greater than

f
(
S,F ′) = |DS | − (|P(F ′)| − |F ′ \ {dp: p ∈ S}|)

|S| .

Since, given F ′, this number is an upper bound, to find the maximum possible u–t difference, we
need to take the minimum of this function over all such sets. Let

F = Arg min
F ′: F ′⊇{dp : p∈S}

|DS | − (|P(F ′)| − |F ′ \ {dp: p ∈ S}|)
|S| .

But, the problem is that we don’t know whether there is a match such that each donor in
F \ {dp: p ∈ S} donates to a patient in P(F). It turns out that there is such a match and it
follows from Hall’s Theorem:

Hall’s Theorem. (See [12].) There exists a matching such that each donor in F \ {dp: p ∈ S}
donates to a patient in P(F) if and only if

for each E ⊆ F \ {dp: p ∈ S}: |E| � ∣∣{p ∈ P(F): Dp ∩ E �= ∅}∣∣.
Suppose there does not exist a matching such that each donor in F \ {dp: p ∈ S} donates to a

patient in P(F). Then, by Hall’s Theorem, there is a set E ⊆ F \ {dp: p ∈ S} such that

|E| > ∣∣{p ∈ P(F): Dp ∩ E �= ∅}∣∣.
This is equivalent to

|E| > ∣∣P(F)
∣∣ − ∣∣{p ∈ P(F): Dp ∩ E = ∅}∣∣.

Consider now the set F \ E. Note that P(F \ E) = {p ∈ P(F): Dp ∩ E = ∅} > |P(F)| − |E|.
Thus,

f (S,F \ E) = |DS | − |P(F \ E)| + |(F \ E) \ {dp: p ∈ S}|
|S|

= |DS | − |P(F \ E)| + |F \ {dp: p ∈ S}| − |E|

|S|
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<
|DS | − (|P(F)| − |E|) + |F \ {dp: p ∈ S}| − |E|

|S|
= f (S,F ).

Since F \ E ⊇ {dp: p ∈ S}, this contradicts with the definition of the set F . Thus, the maxi-
mum possible u–t difference for each patient in S can be achieved by matching each donor in
F \ {dp: p ∈ S} to a patient in P(F), and the donors in {dp: p ∈ S} to the remaining patients
in P(F).

Since f (S,F ) is an upper bound for the set S, and we need to take the minimum of this
function over all subsets of P u, we conclude that the maximum value of the first coordinate of
the leximin ordering can not be greater than

λ∗ = min
S′: S′⊆Pu

{
min

F ′: F ′⊇{dp : p∈S′}
|DS′ | − (|P(F ′)| − |F ′ \ {dp: p ∈ S′}|)

|S′|
}
.

The question is whether there exists a random matching such that the u–t difference for each
patient is at least λ∗. Our main result shows that there exists such a matching. Next, we generalize
our findings here and present a recursive construction of the egalitarian random matchings. In
the egalitarian random matchings, the characterization of the minimum positive u–t difference is
slightly different than the characterization of the minimum non-positive u–t difference.

5.1. The egalitarian mechanism: recursive construction of the egalitarian random matchings

First, the donors in Df are matched to the patients in P f , such that they are fully matched
to each other. Let P

u;u
1 = P u;u, P

u;f,o

1 = P u;f,o, D
u;u
1 = Du;u, D

u;f,o

1 = Du;f,o, Do
1 = Do and

P o
1 = P o.

Step 1: For each S ⊆ P u
1 , F ⊆ Du

1 , define a real-valued function f1 through

f1(S,F ) = |DS | − |P o
1 (F )| − |S| + |F |

|S| .

Let

λ1 = min
S

{
min

F : {dp : p∈S∩P
u;u
1 }⊆F

f1(S,F )
}

and S1, and F1 be the largest sets in the sense of inclusion11 such that

λ1 = f1(S1,F1).

Let

P
u;u
2 = P

u;u
1

∖(
S1 ∪ {

p ∈ P u
1 : dp ∈ (

F1 ∩ D
u;u
1

)∖{
dp: p ∈ S1 ∩ P

u;u
1

}})
,

P
u;f,o

2 = (
P

u;f,o

1

∖
S1

) ∪ {
p ∈ P u

1 : dp ∈ (
F1 ∩ D

u;u
1

)∖{
dp: p ∈ S1 ∩ P

u;u
1

}}
,

D
u;u
2 = D

u;u
1 \ F1, D

u;f,o

2 = D
u;f,o

1 \ F1, Do
2 = Do

1 \ DS1 , and P o
2 = P o

1 \ P o
1 (F1). Let Z1 ⊆ Z e

denote the set of all random matchings Z such that for each patient p ∈ S1, up(Z) − tdp (Z) =
λ1 � 0, and p ∈ P \ S1, up(Z) − tdp (Z) > λ1.

11 As we show in Appendix A, these largest sets are well defined.
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Step k: For each S ⊆ P u
k , F ⊆ Du

k , define a real-valued function fk through

fk(S,F ) = |DS ∩ Do
k | − |P o

k (F )| − |S| + |F |
|S| .

Let

λk = min
S

{
min

F : {dp : p∈S∩P
u;u
k }⊆F

fk(S,F )
}

and Sk , and Fk be the largest sets in the sense of inclusion such that

λk = fk(Sk,Fk).

Let

P
u;u
k+1 = P

u;u
k

∖(
Sk ∪ {

p ∈ P u
k : dp ∈ (

Fk ∩ D
u;u
k

)∖{
dp: p ∈ Sk ∩ P

u;u
k

}})
,

P
u;f,o

k+1 = (
P

u;f,o
k

∖
Sk

) ∪ {
p ∈ P u

k : dp ∈ (
Fk ∩ D

u;u
k

)∖{
dp: p ∈ Sk ∩ P

u;u
k

}}
,

D
u;u
k+1 = D

u;u
k \ Fk , D

u;f,o

k+1 = D
u;f,o
k \ Fk , Do

k+1 = Do
k \ DSk

, and P o
k+1 = P o

k \ P o
k (Fk). Let

Zk ⊆ Zk−1 denote the set of all random matchings Z such that for each patient p ∈ Sk ,
up(Z) − tdp (Z) = λk � 0, and p ∈ P \ ⋃k

i=1 Si , up(Z) − tdp (Z) > λk .

Let Step K be such that λK � 0 and λK+1 > 0. For each Z ∈ ZK , let P u;1(Z) ≡ P
u;1
K+1 ≡

P
u;f,o

K+1 .

Step K + 1: For each T ⊆ P
u;u
K+1 ∪ P

u;1
K+1, and H ⊆ Du

K+1, define a real-valued function g1
through

g1(T ,H) = |DT ∩ Do
K+1| − |P o

K+1(H)| − |T | + |H |
|H | .

Let

β1 = min
H

{
min

T : {dp : p∈T ∩P
u;u
K+1}⊆H

g1(T ,H)
}

and T 1, and H 1 be the largest sets in the sense of inclusion such that

β1 = g1
(
T 1,H 1).

Let P
u;u
K+2 = P

u;u
K+1 \ {p: dp ∈ H 1},

P
u;1
K+2 = (

P
u;1
K+1 ∪ {

p: dp ∈ D
u,u
K+1 ∩ H 1})∖T 1,

Du
K+2 = Du

K+1 \ H 1, P o
K+2 = P o

K+1 \ P o
K+1(H

1), and Do
K+2 = Do

K+1 \ DT 1 . Let ZK+1 ⊆ ZK

denote the set of all random matchings Z such that for each patient p ∈ T 1, up(Z) − tdp (Z) =
β1 > 0, and p ∈ P \ (

⋃K
i=1 Si ∪ T 1), up(Z) − tdp (Z) > β1.

Step K + m: For each T ⊆ P
u;u
K+m ∪ P

u;1
K+m, and H ⊆ Du

K+m, define a real-valued function gm

through

gm(T ,H) = |DT ∩ Do
K+m| − |P o

K+m(H)| − |T | + |H |
|H | .

Let

βm = min
H

{
min

T : {d : p∈T ∩P
u;u }⊆H

gm(T ,H)
}

p K+m
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and T m, and Hm be the largest sets in the sense of inclusion such that

βm = gm

(
T m,Hm

)
.

Let P
u;u
K+m+1 = P

u;u
K+m \ {p: dp ∈ Hm},

P
u;1
K+m+1 = (

P
u;1
K+m ∪ {

p: dp ∈ D
u,u
K+m ∩ Hm

})∖
T m,

Du
K+m+1 = Du

K+m \ Hm, P o
K+m+1 = P o

K+m \ P o
K+m(Hm), and Do

K+m+1 = Do
K+m \ DT m . Let

ZK+m ⊆ ZK+m−1 denote the set of all random matchings Z such that for each patient p ∈ T m,
up(Z) − tdp (Z) = βm > 0, and p ∈ P \ (

⋃K
i=1 Si

⋃m
i=1 T i), up(Z) − tdp (Z) > βm.

Let K + M be the last step of the construction, that is PK+M+1 = DK+M+1 = ∅.

5.2. Main result

At the end of Step 1, each donor in F1 \ {dp: p ∈ S1 ∩ P
u;u
1 } donates her kidney to someone

in P o
1 (F1) with probability one. Each donor in DS1 donates her kidney to someone in S1 with

probability one. The next step continues with the remaining patients and donors. But there is a
change in the decomposition of the patients: Note that each donor in F1 \ {dp: p ∈ S1 ∩ P

u;u
1 }

donates her kidney in the current step with probability one. Thus, in the next step, they are fully
demanded or overdemanded donors of the underdemanded patients {p ∈ P u

1 : dp ∈ (F1 ∩D
u;u
1 ) \

{dp: p ∈ S1 ∩ P
u;u
1 }}. Thus, each such patient switches from being a member of P

u;u
1 to being a

member of P
u;f,o

2 .
At the end of Step K , there is a matching such that the u–t difference for each remaining

patient is positive. Thus, to maximize the leximin ordering among the remaining patients, we now
have to consider all the patients including the overdemanded patients. (In the previous steps, since
efficiency implies that the u–t difference for each overdemanded patient is positive, we ignored
them.)

At the end of Step K + 1, for each H ⊆ Du
K+1, the patients in {p: dp ∈ H ∩ D

u;f,o

K+1 } are

overdemanded. For each T such that {dp: p ∈ T ∩ P
u;u
K+1} ⊆ H , the patients in {p: dp ∈ H ∩

D
u;u
K+1} can receive at most∣∣DT ∩ Do

K+1

∣∣ − ∣∣T ∩ P
u;1
K+1

∣∣ + ∣∣H ∩ D
u;u
K+1

∣∣ − ∣∣T ∩ P
u;u
K+1

∣∣
donors. Thus, together with the patients in {p: dp ∈ H ∩ D

u;f,o

K+1 }, they can receive at most∣∣DT ∩ Do
K+1

∣∣ − ∣∣T ∩ P
u;1
K+1

∣∣ + ∣∣H ∩ D
u;u
K+1

∣∣ − ∣∣T ∩ P
u;u
K+1

∣∣ + ∣∣{p: dp ∈ H ∩ D
u;f,o

K+1

}∣∣
= ∣∣DT ∩ Do

K+1

∣∣ − ∣∣T ∩ P
u;1
K+1

∣∣ + ∣∣H ∩ D
u;u
K+1

∣∣ − ∣∣T ∩ P
u;u
K+1

∣∣ + ∣∣H ∩ D
u;f,o

K+1

∣∣
= ∣∣DT ∩ Do

K+1

∣∣ − |T | + |H |
donors. Also, efficiency implies that their donors are matched to at least |P o

K+1(H)| patients.
Thus, the upper bound for the lowest u–t difference for the patients in {p: dp ∈ H } is

|DT ∩ Do
K+1| − |P o

K+1(H)| − |T | + |H |
|H | .

Since H and T are arbitrarily chosen, to determine the upper bound for the lowest u–t difference,
we need to consider each such pair of sets such that this upper bound as specified above is the
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minimum. Thus, g1(T
1,H 1) is the upper bound for the value of the first coordinate of the leximin

ordering for the remaining patients. As we show in Appendix A, there is actually a matching such
that the first coordinate of the leximin ordering for the remaining patients is equal to g1(T

1,H 1).
The set of random matchings obtained by the egalitarian mechanism is the set ZK+M . For

each patient p, the u–t difference is the same in all the random matchings in the set ZK+M .
Our main result is to show that the set ZK+M coincides with the set of the egalitarian random
matchings.

Theorem 1. A random matching Z is egalitarian if and only if Z ∈ ZK+M .

The proof of this result is relegated to Appendix A and it highly relies on an elegant result
from graph theory (see part (i) of Theorem 2 in Appendix A.2), which gives the necessary and
sufficient condition for the existence of flows along the arcs in a directed graph, where for each
vertex, the difference between the inflow and the outflow is specified.

Our main result has an implication in terms of the condition under which an efficient matching
with no inequality (i.e. an efficient matching where the u–t difference is zero for each patient)
exists.

Corollary 1. For each kidney exchange problem (P,D, (Dp)p∈P ), the following are equivalent:

(i) For each S ⊆ P u and F ⊇ {dp: p ∈ S ∩ P u;u}, |F | − |P o(F )| � |S| − |DS |.
(ii) There exists a matching with no inequality.

(iii) There exists a deterministic matching with no inequality.
(iv) There exists a deterministic egalitarian matching.12

While the set ZK+M is not necessarily a singleton, the corresponding u–t difference vector is
unique. However, the random matchings in ZK+M may correspond to different utility vectors.
This point is particularly important for the analysis of the strategic properties.

6. Concluding remarks

Roth, Sönmez, and Ünver [17] proposed efficient kidney exchange mechanisms that integrates
the KPD and LE. Roth, Sönmez, and Ünver [18] later suggested an alternative mechanism which
involves only two-ways KPD’s and no LE’s, and assumes that each patient is indifferent between
all compatible kidneys. In addition to this latter assumption, we also adopt the assumption that
each patient prefers each compatible live-donor kidney to each deceased-donor kidney; and allow
multiple-ways KPD’s and as well as LE’s as in the mechanism proposed by Roth, Sönmez, and
Ünver [17]. Our contribution is to construct a stochastic kidney exchange mechanism that is
efficient and egalitarian. Although we consider only the kidney exchange problem, the same
mechanism applies to the assignment problems with private endowments where the endowment
of each agent is ranked at the bottom of his preference ordering, and there is an outside option
that is always feasible.

12 See Appendix A.3 for the proof of this result, which follows directly from Theorem 1 and part (ii) of Theorem 2 in
Appendix A.2.
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Appendix A

A.1. The egalitarian mechanism: an example

Let (pk, dk) be the k-th incompatible patient-donor pair. The set of underdemanded patients
and donors are as follows:

P u = {p1,p2,p3,p4,p5,p6,p7,p8,p9,p10},
Du = {d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13}.

The compatibility of the underdemanded patients with the overdemanded donors, do
1 , do

2 , do
3 , do

4 ,
do

5 , is given as follows13:

do
1 do

2 do
3 do

4 do
5

p1 0 1 0 0 0
p2 1 1 0 0 0
p3 1 0 1 0 1
p4 0 0 0 1 0
p5 1 0 1 0 0
p6 1 0 1 1 1
p7 1 1 0 0 0
p8 0 1 0 0 0
p9 1 0 1 0 0
p10 0 1 0 0 0

The compatibility of the underdemanded donors with the overdemanded patients, po
1 , po

2 , po
3 ,

po
4 , po

5 , po
6 , po

7 , is given as follows:

d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13

po
1 1 0 0 0 0 0 1 0 0 0 0 0

po
2 0 0 0 0 0 0 1 0 1 0 0 0

po
3 1 0 0 0 0 0 0 1 0 1 0 0

po
4 0 0 0 1 0 1 0 1 1 0 0 0

po
5 0 0 0 1 0 1 0 0 0 1 0 0

po
6 0 0 1 0 1 0 0 0 0 0 1 1

po
7 0 1 1 0 0 0 0 0 0 0 0 1

Step 1: The largest sets S1 and F1 such that

min
S

{
min

F : {dp : p∈S∩P
u;u
1 }⊆F

f1(S,F )
}

= f1(S1,F1)

are as follows: S1 = {p1,p8,p10} and F1 = {d2, d8, d10}. This implies that the patients in S1 and
P o

1 (F1) are matched to DS1 = {do
2 } and F1 respectively, such that the donor in F1 \ {dp: p ∈

13 Since the egalitarian matchings are efficient, the only part that matters is how the underdemanded patients and donors
are going to be matched and we do not include the rest of the patients and donors.
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S1 ∩ P
u;u
1 } = {d2} donates her kidney to someone in P o

1 (F1) with probability one. Moreover, for
each p ∈ S1, the u–t difference is

λ1 = f1(S1,F1) = |DS1 | − |P o
1 (F1)| − |S1| + |F1|

|S1| = 1 − 3 + 3 − 2

3
= −1

3
.

The following is such an assignment of probabilities14:

do
2

p1
2
3

p8
1
6

p10
1
6

d2 d8 d10
po

1 1 0 0
po

2 0 1
2

1
2

Step 2: Since donor d2 donates with probability 1 in the previous step, patient p2 is an underde-
manded patient now with a fully demanded (or overdemanded) donor. The largest sets S2 and F2
such that

min
S

{
min

F : {dp : p∈S∩P
u;u
2 }⊆F

f2(S,F )
}

= f2(S2,F2)

are as follows: S2 = {p2,p5,p7,p9} and F2 = {d5, d7, d9, d11}. This implies that the patients in
S2 and P o

2 (F2) are matched to DS2 ∩ Do
2 = {do

1 , do
3 } and F2 respectively, such that the donor in

F2 \ {dp: p ∈ S2 ∩P
u;u
2 } = {d11} donates her kidney to someone in P o

2 (F2) with probability one.
Moreover, for each p ∈ S2, the u–t difference is

λ2 = f2(S2,F2) = |DS2 ∩ Do
2 | − |P o

2 (F2)| − |S2| + |F2|
|S2| = 2 − 4 + 4 − 3

4
= −1

4
.

The following is such an assignment of probabilities:

do
1 do

3
p2

3
4 0

p5 0 1
2

p7
1
4 0

p9 0 1
2

d5 d7 d9 d11
po

3 0 0 0 1
po

4 0 1
4

3
4 0

po
5

3
4

1
4 0 0

Step 3: The remaining underdemanded patients and donors are P u
3 = {p3,p4,p6} and Du

3 =
{d3, d4, d6, d12, d13}, respectively. The remaining overdemanded donors and patients are Do

3 =

14 Remember that, while the u–t difference vector of an egalitarian matching is uniquely determined by definition, there
could be multiple stochastic matchings giving the same u–t difference vector.
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{do
4 , do

5 } and P o
3 = {po

6,po
7}, respectively. Since for each S ⊆ P u

3 and for each F such that {dp ∈
Du

3 : p ∈ S ∩ P
u;u
3 } ⊆ F ,

|DS ∩ Do
3 | − |P o

3 (F )| − |S| + |F |
|S| > 0,

we conclude that Step 3 is the first step such that for each remaining pair, the u–t difference is
positive. The largest sets T 1 and H 1 such that

min
H

{
min

T : {dp : p∈T ∩P
u;u
3 }⊆H

g1(T ,H)
}

= g1(T
1,H 1)

are as follows: T 1 = {p3,p4,p6} and H 1 = {d3, d4, d6, d12, d13}. This implies that the patients
in T 1 and P o

3 (H 1) are matched to DT 1 ∩Do
3 = {do

4 , do
5 } and H 1 respectively. Moreover, for each

p such that dp ∈ H 1, the u–t difference is

β1 = g1
(
T 1,H 1) = |DT 1 ∩ Do

3 | − |P o
3 (H 1)| − |T 1| + |H 1|
|T 1| = 2 − 3 + 5 − 2

5
= 2

5
.

The following is such an assignment of probabilities:

do
4 do

5
p3 0 3

5

p4
3
5 0

p6
2
5

2
5

d3 d4 d6 d12 d13

po
6 0 0 2

5
3
5 0

po
7

1
5

1
5 0 0 3

5

The random matching obtained is given by two substochastic matrices. The first one is for the
matching of the underdemanded patients with the overdemanded donors:

do
1 do

2 do
3 do

4 do
5

p1 0 2
3 0 0 0

p2
3
4 0 0 0 0

p3 0 0 0 0 3
5

p4 0 0 0 3
5 0

p5 0 0 1
2 0 0

p6 0 0 0 2
5

2
5

p7
1
4 0 0 0 0

p8 0 1
6 0 0 0

p9 0 0 1
2 0 0

p 0 1 0 0 0
10 6
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The second one is for the matching of the overdemanded patients with the underdemanded
donors:

d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13
po

1 1 0 0 0 0 0 0 0 0 0 0 0

po
2 0 0 0 0 0 0 1

2 0 1
2 0 0 0

po
3 0 0 0 0 0 0 0 0 0 1 0 0

po
4 0 0 0 0 0 1

4 0 3
4 0 0 0 0

po
5 0 0 0 3

4 0 1
4 0 0 0 0 0 0

po
6 0 0 0 0 2

5 0 0 0 0 0 3
5 0

po
7 0 1

5
1
5 0 0 0 0 0 0 0 0 3

5

A.2. Directed graphs: preliminaries

A directed graph, or digraph is a pair G = (V ,A), consisting of a set of vertices V and a
set of ordered pairs of vertices, A, called arcs. For each U ⊆ V , an arc a = (u, v) is said to leave
U if u ∈ U and v /∈ U ; it is said to enter U if u /∈ U and v ∈ U . We denote the set of arcs of G

entering U by δin(U) and the set of arcs leaving U by δout(U).
Let k : A → R+ be a function which associates each arc a = (u, v) a nonnegative real number

k(a) called the capacity of the arc.
Let b : V → R be a function. A function f : A → R is called a b-transshipment if for each

u ∈ V , ∑
a∈δin({u})

f (a) −
∑

a∈δout({u})
f (a) = b(u).

The next result is the key for the proof of our main result.15

Theorem 2. Let G = (V ,A) be a digraph and let k : A → R and b : V → R with
∑

v∈V b(v) = 0.

(i) Then, there exists a b-transshipment f satisfying that for each a ∈ A, 0 � f (a) � k(a) if
and only if

for each U ⊆ V :
∑
u∈U

b(u) �
∑

a∈δin(U)

k(a). (1)

(ii) Moreover, if b and k are integer-valued, then f can be taken integer-valued.

A.3. Proofs

Proof of Theorem 1.

Lemma 5. Consider the first step of the egalitarian mechanism.16 Suppose the sets Y1, Y2 ⊆
P u;u, Z1,Z2 ⊆ P u;f,o, K1,K2 ⊆ Du;u, and L1,L2 ⊆ Du;f,o are such that

f1(Y1 ∪ Z1,K1 ∪ L1) = f1(Y2 ∪ Z2,K2 ∪ L2) = λ1.

15 For more on this result, see Schrijver [21].
16 The result directly applies to steps 2, . . . ,K as well.
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Then,

f1(Y1 ∪ Z1 ∪ Y2 ∪ Z2,K1 ∪ L1 ∪ K2 ∪ L2) = λ1

as well.

Proof. For i = 1,2, define

ni = |Yi ∪ Zi |, di = ∣∣DYi∪Zi
∩ Do

∣∣,
mi = ∣∣P(Ki ∪ Li)

∣∣ − ∣∣(Ki ∪ Li) \ {dp: p ∈ Yi}
∣∣.

Also, define

n3 =
∣∣∣∣ ⋂

i=1,2

(Yi ∪ Zi)

∣∣∣∣, n4 =
∣∣∣∣ ⋃

i=1,2

(Yi ∪ Zi)

∣∣∣∣,
d3 = ∣∣D(Y1∪Z1)∩(Y2∪Z2) ∩ Do

∣∣, d4 = ∣∣D(Y1∪Z1)∪(Y2∪Z2) ∩ Do
∣∣,

and

m3 =
∣∣∣∣P

( ⋂
i=1,2

(Ki ∪ Li)

)∣∣∣∣ −
∣∣∣∣
( ⋂

i=1,2

(Ki ∪ Li)

)∖
{dp: p ∈ Y1 ∩ Y2}

∣∣∣∣,
m4 =

∣∣∣∣P
( ⋃

i=1,2

(Ki ∪ Li)

)∣∣∣∣ −
∣∣∣∣
( ⋃

i=1,2

(Ki ∪ Li)

)∖
{dp: p ∈ Y1 ∪ Y2}

∣∣∣∣.
By definition, we have

n1 + n2 = n3 + n4, and |Z1| + |Z2| = |Z3| + |Z4|.
Also,

d1 + d2 � d3 + d4.

This is because, not only the compatible kidneys of the patients in
⋂

i=1,2(Yi ∪ Zi) are counted
twice, but also two patients, one in Y1 ∪ Z1, the other in Y2 ∪ Z2, may reveal the same donor as
compatible.

By definition of P(·), the patients in P1(
⋂

i=1,2(Ki ∪Li)) are the only double counted patients
in

⋃
i=1,2 P1(Ki ∪ Li). Moreover, a patient who is neither in P1(K1 ∪ L1) nor in P1(K2 ∪ L2),

may be in P1(
⋃

i=1,2(Ki ∪ Li)). Thus,∑
i=1,2

∣∣P1(Ki ∪ Li)
∣∣ �

∣∣∣∣P1

( ⋃
i=1,2

(Ki ∪ Li)

)∣∣∣∣ +
∣∣∣∣P1

( ⋂
i=1,2

(Ki ∪ Li)

)∣∣∣∣.
For each i = 1,2, d ∈ (

⋂
i=1,2(Ki ∪ Li)) \ {dp: p ∈ Y1 ∩ Y2} and pd ∈ Yi implies d ∈

((K−i ∪L−i )\{dp: p ∈ Y−i}), but d /∈ ((Ki ∪Li)\{dp: p ∈ Yi}). Thus, the only double counted
donors in the set⋃

i=1,2

(
(Ki ∪ Li) \ {dp: p ∈ Yi}

)
are the donors in(( ⋂

(Ki ∪ Li)

)∖
{dp: p ∈ Y1 ∩ Y2}

)∖
(Y1 ∪ Y2).
i=1,2
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Thus, ∑
i=1,2

∣∣(Ki ∪ Li) \ {dp: p ∈ Yi}
∣∣ =

∣∣∣∣
( ⋂

i=1,2

(Ki ∪ Li)

)∖
{dp: p ∈ Y1 ∩ Y2}

∣∣∣∣
+

∣∣∣∣
( ⋃

i=1,2

(Ki ∪ Li)

)∖
{dp: p ∈ Y1 ∪ Y2}

∣∣∣∣.
Thus,

m1 + m2 � m3 + m4.

By definition of λ1,

λ1 = d1 − m1 − |Z1|
n1

= d2 − m2 − |Z2|
n2

� d3 − m3 − |Z1 ∩ Z2|
n3

,

thus,

λ1n1 = d1 − m1 − |Z1|,
λ1n2 = d2 − m2 − |Z2|,
λ1n3 � d3 − m3 − |Z1 ∩ Z2|.

Adding the first two lines and subtracting the third line,

λ1 (n1 + n2 − n3)︸ ︷︷ ︸
=n4

� (d1 + d2 − d3)︸ ︷︷ ︸
�d4

− (m1 + m2 − m3)︸ ︷︷ ︸
�m4

− (|Z1| + |Z2| − |Z1 ∩ Z2|
)︸ ︷︷ ︸

=|Z1∪Z2|
;

thus,

λ1 � d4 − m4 − |Z1 ∪ Z2|
n4

= f1(Y1 ∪ Z1 ∪ Y2 ∪ Z2,K1 ∪ L1 ∪ K2 ∪ L2).

Since λ1 is the minimum value of f1 among all possible sets as defined in the solution,

f1(Y1 ∪ Z1 ∪ Y2 ∪ Z2,K1 ∪ L1 ∪ K2 ∪ L2) = λ1. �
Lemma 6. Consider Step K + 1 of the egalitarian mechanism.17 Suppose the sets Y1, Y2 ⊆
P

u;u
K+1 ∪ P

u;1
K+1, and L1,L2 ⊆ Du

K+1 are such that

g1(Y1,L1) = g1(Y2,L2) = β1.

Then,

g1(Y1 ∪ Y2,L1 ∪ L2) = β1.

Proof. For i = 1,2, define

ni = |Yi |, di = ∣∣DYi
∩ Do

K+1

∣∣,
mi = ∣∣P o

K+1(Li)
∣∣.

Also, define

17 The result directly applies to steps K + 2, . . . ,K + M as well.
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n3 = |Yi ∪ Y2|, n4 = |Y1 ∪ Y2|,
d3 = ∣∣DY1∩Y2 ∩ Do

K+1

∣∣, d4 = ∣∣DY1∪Y2 ∩ Do
K+1

∣∣,
and

m3 = ∣∣P o
K+1

({dp: p ∈ Y1 ∩ Y2}
)∣∣,

m4 = ∣∣P o
K+1

({dp: p ∈ Y1 ∪ Y2}
)|.

By definition, we have n1 + n2 = n3 + n4. Also,

d1 + d2 � d3 + d4.

This is because, not only the compatible kidneys of the patients in
⋂

i=1,2 Yi are counted twice,
but also two patients, one in Y1, the other in Y2, may reveal the same donor as compatible.

By definition of P(·), the patients in P o
K+1({dp: p ∈ Y1 ∩ Y2}) are the only double counted

patients in
⋃

i=1,2 P o
K+1({dp: p ∈ Yi}). Moreover, a patient who is not in the latter set may be in

P o
K+1({dp: p ∈ Y1 ∪ Y2}). Thus,

m1 + m2 � m3 + m4.

By applying the same technics as in the previous lemma, we obtain

g1(Y1 ∪ Y2,L1 ∪ L2) = β1. �
Thus, in the mechanism, the largest sets minimizing fk and gm in the sense of inclusion are

well defined for each step k ∈ {1, . . . ,K} and K + m for m ∈ {1, . . . ,M}.
The set of random matchings obtained by the egalitarian mechanism is ZK+M . First, we need

to show that ZK+M ⊆ Z e.

Lemma 7. The set ZK+M is non-empty and contains only efficient random matchings.

Proof. We prove by induction.
Step 1: We claim that there exists a random matching Z ∈ Z e such that, for each p ∈ P ,

up(Z) − tdp (Z) � λ1. We construct the following digraph G = (V ,A):

V = (
(P ∪ D)

∖(
P f ∪ Df

)) ∪ {t}.
A =

( ⋃
p∈Po∪Pu

{
(p, d): d ∈ Dp

}) ∪ {
(d,pd): d ∈ Du:u} ∪ {

(d, t): d ∈ Do ∪ Du;f,o
}
.

Define the capacity function k : A → R+ as follows:

k(a) =
{∞ if a ∈ (

⋃
p∈Po∪Pu{(p, d): d ∈ Dp}),

1 if a ∈ {(d,pd): d ∈ Du;u} ∪ {(d, t): d ∈ Du;f,o ∪ Do}.
Define b : V → R as follows:

b(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if v ∈ P o,

0 if v ∈ Du ∪ Do,

−λ1 if v ∈ P u;u,
−1 − λ1 if v ∈ P u;f,o,

o u;u u;f,o
|P | + λ1|P | + (1 + λ1)|P | if v = t.
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Let f : A → R be a function. The interpretation is that, for

a = (
p′, d ′) ∈

( ⋃
p∈Po∪Pu

{
(p, d): d ∈ Dp

})
,

f (a) is the probability that patient p′ receives kidney transplantation from donor d ′. Similarly,
for a = (d ′′,p′′) ∈ {(d,pd): d ∈ Du;u}, f (a) is the probability that donor d ′′ of patient p′′
donates her kidney to someone in the set P o. The function b is specified to capture efficiency,
that is, the GED. For p ∈ P o, since by efficiency, patient p receives a live donor transplantation
with probability one, b(p) = −1. Also, for each p ∈ P u;u, the difference between the sum of
the values of f of the arcs leaving vertex p and entering vertex p is the difference between the
probability that patient p receives a live donor kidney transplantation and the probability that his
donor donates her kidney someone in the pool. Our claim is that it is possible to stochastically
match the patients to the donors such that for each underdemanded patient, the u–t difference is
at least λ1. Given the digraph G = (V ,A), the functions k : A → R+ and b : V → R constructed
above, since the existence of a function f : A → R such that for each u ∈ V ,∑

a∈δin({u})
f (a) −

∑
a∈δout({u})

f (a) = b(u).

implies that there is an ex ante efficient random matching Z such that, for each p ∈ P ,
up(Z) − tdp (Z) � λ1, we need to show that there exists a b-transshipment f satisfying that
for each a ∈ A, 0 � f (a) � k(a). By Theorem 2, there exists such a b-transshipment f if and
only if

for each U ⊆ V :
∑
u∈U

b(u) �
∑

a∈δin(U)

k(a).

First, note that the inequality is satisfied for U = {t}. Suppose not. Then,∣∣P o
∣∣ + λ1

∣∣P u;u∣∣ + (1 + λ1)
∣∣P u;f,o

∣∣ = b(t) > k
(
δin(t)

) = ∣∣Do
∣∣ + ∣∣Du;f,o

∣∣,
which implies

λ1 >
|Do| + |Du;f,o| − |P o| − |P u;f,o|

|P u| . (2)

Consider P u;u ∪ P u;f,o, and F ′ = Du;u ∪ Du;f,o. By the GED Lemma, DPu ∩ Do = Do. Then,
by definition of λ1,

|Do| − (|P o| + |P u;f,o| − |(Du;u ∪ Du;f,o) \ {dp: p ∈ P u;u}|)
|P u;u| + |P u;f,o| � λ1

which is equivalent to

|Do| − (|P o| + |P u;f,o| − |Du;f,o|)
|P u| � λ1,

and this contradicts with (2).
Let S′ = R′ ∪T ′ with R′ ⊆ P u;u and T ′ ⊆ P u;f,o and consider a set U ⊆ V such that {t}∪S′ ⊆

U . If for some d ∈ DPu\S′ ∩Do, d ∈ U , then, since k(δin(U)) = ∞, the inequality (1) is trivially
satisfied. Thus, we need to check inequality (1) only for U such that Do\ DPu\S′ ⊆ U . Similarly,
if D′ ⊆ U for some D′ ⊆ Du, we need to check it only for U such that P o \ P(Du \ D′) ⊆ U .
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We claim that it is enough to check inequality (1) for D′ ⊆ Du such that D′ ∩ Du;u ⊆
{dp: p ∈ R′}. Let D′ ⊆ U such that D′′ ⊆ D′ where D′′ ⊆ Du;u \ {dp: p ∈ R′}. As
argued above, P o \ P(Du \ D′) ⊆ U . Now, let us consider U \ D′′. Since P o \ P(Du \ D′) ⊇
P o \ P(Du \ (D′ \ D′′)), and for each p ∈ P o, b(p) = −1, this implies that

∑
u∈U b(u) �∑

u∈U\D′′ b(u). Also, the construction of the capacity function k implies that
∑

a∈δin(U) k(a) =∑
a∈δin(U\D′′) k(a). Thus, if inequality (1) is satisfied for U \D′′, then it is satisfied for U as well.

Thus, it is enough to check inequality (1) for U where D′ ⊆ U implies D′ ∩Du;u ⊆ {dp: p ∈ R′}.
Now, consider U = {t} ∪ S′ ∪ (Do \ DPu\S′) ∪ F ′ ⊆ V such that F ′ ∩ Du;u ⊆ {dp: p ∈ R′}.

Let R = P u;u \ R′, T = P u;f,o \ T ′, and F = Du \ F ′. Suppose
∑

u∈U b(u) >
∑

a∈δin(U) k(a).
Thus, ( −(|P o| − |P(F)|) + (−λ1)(|P u;u| − |R|)

+(−1 − λ1)(|P u;f,o| − |T |) + |P o| + λ1|P u;u| + (1 + λ1)|P u;f,o|
)

� |DS | + ∣∣(F ∩ Du;u)∖{dp: p ∈ R}∣∣ + ∣∣F ∩ Du;f,o
∣∣,

which is equivalent to

λ1 >
|DS | + |(F ∩ Du;u) \ {dp: p ∈ R}| − |P(F)| − |T | + |F ∩ Du;f,o|

|S|
= |DS | + |{dp: p ∈ R}| − |P(F)| − |T | + |F |

|S|
= |DS | + |R| − |P(F)| − |T | + |F |

|S|
= |DS | − |P(F)| − |S| + |F |

|S| .

This contradicts with the definition of λ1. Thus,
∑

u∈U b(u) �
∑

a∈δin(U) k(a). Since U is
arbitrarily chosen, this condition holds for each U . Then, by Theorem 2, there exists a b-
transshipment f satisfying that for each a ∈ A, 0 � f (a) � k(a). Thus, there exists an ex ante
efficient random matching Z ∈ Z e such that, for each p ∈ P , up(Z) − tdp (Z) � λ1. Let Z1 be
the set of all such ex ante efficient random matchings.

Step k: Let the sets Sk−1, and Fk−1 be the largest sets in the sense of inclusion such that

λk−1 = fk−1(Sk−1,Fk−1).

The donors in Fk−1 are matched only to the patients in P o
k−1(Fk−1). The donors in Do ∩ (DSk−1 \⋃k−2

n=1 DSn) are matched only to the patients in Sk−1. The donors in Fk−1 \ {dp: p ∈ Sk−1}
and Do ∩ (DSk−1 \ ⋃k−2

n=1 DSn) are matched with probability one. The patients and donors in
Sk−1 ∪ Fk−1 leave. Then, we construct the digraph with the remaining patients and donors, as in
the previous step. By Theorem 2, there exists a b-transshipment f satisfying that for each a ∈ A,
0 � f (a) � k(a). Thus, there exists an ex ante efficient random matching Z ∈ Zk−1 such that,
for each remaining patient p, up(Z)− tdp (Z) � λk . Let Zk be the set of all such ex ante efficient
random matchings.

Step K + 1: Let the sets SK , and FK be the largest sets in the sense of inclusion such that

λK = fK(SK,FK).

The patients and donors in SK ∪ FK leave. If, among the remaining patients, there exists an
underdemanded patient p such that his donor has left at an earlier stage, then for each Z ∈ ZK ,
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up(Z) − tdp (Z) � 0. This contradicts with the definition of λK . Thus, the donor of a remaining
underdemanded patient p is among the remaining donors. We construct the digraph G = (V ,A)

where V is the set of remaining patients and donors together with the vertex t , that is,

V = {t} ∪ Du
K+1 ∪ Do

K+1 ∪ P o
K+1 ∪ P u

K+1

and

A =
( ⋃

p∈Po
K+1∪Pu

K+1

{
(p, d): d ∈ Dp

}) ∪ {
(d,pd): d ∈ D

u;u
K+1

}
∪ {

(d, t): d ∈ Do
K+1 ∪ D

u;f,o

K+1

}
.

Define the capacity function k : A → R+ as follows:

k(a) =
{∞ if a ∈ (

⋃
p∈Po

K+1∪Pu
K+1

{(p, d): d ∈ Dp}),
1 if a ∈ {(d,pd): d ∈ D

u;u
K+1} ∪ {(d, t): d ∈ D

u;f,o

K+1 ∪ Do
K+1}.

Define b : V → R as follows:

b(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1 if v ∈ P o
K+1 ∪ P

u;1
K+1,

0 if v ∈ P
u;u
K+1 ∪ Do

K+1,

−β1 if v ∈ D
u;u
K+1,

1 − β1 if v ∈ D
u;f,o

K+1 ,

|P o
K+1| + |P u;1

K+1| + β1|Du;u
K+1| − (1 − β1)|P u;f,o

K+1 | if v = t.

Let T ′ ⊆ P u
K+1. By the same argument used in Step 1, it is enough to check the condition in

Theorem 2 for U ⊆ V such that U ∩ (D
u;u
K+1 \ {dp: p ∈ T ′}) = ∅. The definition of β1 implies

that for each U ⊆ V ,
∑

u∈U b(u) �
∑

a∈δin(U) k(a). Then, Theorem 2 implies that there exists a
b-transshipment f satisfying that for each a ∈ A, 0 � f (a) � k(a). Thus, there exists an ex ante
efficient random matching Z ∈ ZK such that for each remaining patient p, up(Z)− tdp (Z) � β1.
Let ZK+1 be the set of all such ex ante efficient random matchings.

Step K + m: Let the sets T m−1 and Hm−1 be the largest sets in the sense of inclusion such
that

βm−1 = gm−1
(
T m−1,Hm−1).

The donors in (DT m−1 \ (
⋃K

n=1 DSn) \ (
⋃m−2

j=1 DT j )) ∩ Do are matched to the patients in T m−1,

and the donors in {dp: p ∈ T m−1} ∪ Hm−1 are matched to the patients in P o
K+m−1({dp: p ∈

T m−1}∪Hm−1). These patients and donors leave and a digraph is constructed with the remaining
patients and donors, as in the previous step. By Theorem 2, there exists a b-transshipment f

satisfying that for each a ∈ A, 0 � f (a) � k(a). Thus, there exists an ex ante efficient random
matching Z ∈ ZK+m−1 such that, for each remaining patient p, up(Z)− tdp (Z) � βm. Let ZK+m

be the set of all such ex ante efficient random matchings.
At the end of step K + M , the set ZK+M is non-empty and contains only efficient random

matchings. �
Lemma 8. For each k ∈ {1, . . . ,K − 1}, λk < λk+1. For each m ∈ {1, . . . ,M − 1}, βm < βm+1.
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Proof. Let the sets Sk , Fk; and Sk+1, Fk+1 be the largest sets in the sense of inclusion such that

λk = fk(Sk,Fk),

λk+1 = fk+1(Sk+1,Fk+1).

Suppose

λk+1 � λk.

Thus,

|(DSk+1 \ (
⋃k

n=1 DSn)) ∩ Do| − (|P o
k+1(Fk+1)| + |Sk+1| − |Fk+1|)

|Sk+1|

�
|(DSk

\ (
⋃k−1

n=1 DSn)) ∩ Do| − (|P o
k (Fk)| + |Sk| − |Fk|)

|Sk| . (3)

Now, consider Sk ∪ Sk+1 and Fk ∪ Fk+1. Note that∣∣∣∣
(

DSk∪Sk+1

∖( k−1⋃
n=1

DSn

))
∩ Do

∣∣∣∣
=

∣∣∣∣
(

DSk

∖( k−1⋃
n=1

DSn

))
∩ Do

∣∣∣∣ +
∣∣∣∣
(

DSk+1

∖( k⋃
n=1

DSn

))
∩ Do

∣∣∣∣. (4)

Also, Fk and Fk+1 are mutually exclusive and this implies∣∣P o
k (Fk ∪ Fk+1)

∣∣ �
∣∣P o

k+1(Fk+1)
∣∣ + ∣∣P o

k (Fk)
∣∣. (5)

Then, combining (3), (4) and (5), we obtain

fk(Sk,Fk) � fk(Sk ∪ Sk+1,Fk ∪ Fk+1).

This contradicts with the definition of Sk and Fk , that they are the largest sets in the sense of
inclusion such that

λk = fk(Sk,Fk).

Also, by construction β1 > 0, and λK � 0. By using the same inequalities/equalities as above,
we see that, for each m ∈ {1, . . . ,M − 1}, βm < βm+1. �

Let Z∗ ∈ ZK+M be a random matching. For each patient p in S1, up(Z∗) − tdp (Z∗) is the
lowest under Z∗, for each patient p in S2, up(Z∗) − tdp (Z∗) is the lowest among the remaining
patients under Z∗, and so on. Note that S1 ⊆ P u, F1 ⊆ Du such that {dp: p ∈ S1} ∩ P u;u ⊆ F1,
and

f1(S1,F1) = |DS1 ∩ Do| − (|P o(F1)| + |S1| − |F1|)
|S1| .

By compatibility, the patients in S1 can be matched to at most |DS1 ∩ Do| patients. Also, by
efficiency, the patients in P o(F1) are matched to the donors in F1. At an efficient random
matching, the least possible number of patients who are matched to {dp: p ∈ S1 ∩ P u;u} is
|P o(F1)| − (|F1| − |S1 ∩ P u;u|); and this is possible only if each donor in F1 \ ({dp: p ∈
S1} ∩ Du;u) is matched to a patient in P o(F1) with probability one. After this matching of the
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donors in F1 \({dp: p ∈ S1}∩Du;u), there are |P o(F1)|−(|F1|−|S1 ∩P u;u|) remaining patients
in P o(F1). By efficiency, each such patient is matched to the donors in {dp: p ∈ S1 ∩ P u;u} with
probability one. Also, by efficiency, the donor of each patient p ∈ S1 ∩ P u;f,o is matched with
probability one. Thus, for each Z ∈ Z e,∑

p∈S1

(
up(Z) − tdp (Z)

)
�

∣∣DS1 ∩ Do
∣∣ − (∣∣P o(F1)

∣∣ − (|F1| −
∣∣S1 ∩ P u;u∣∣)) − ∣∣S1 ∩ P u;f,o

∣∣
= ∣∣DS1 ∩ Do

∣∣ − ∣∣P o(F1)
∣∣ + |F1| −

(∣∣S1 ∩ P u;u∣∣ + ∣∣S1 ∩ P u;f,o
∣∣)

= ∣∣DS1 ∩ Do
∣∣ − ∣∣P o(F1)

∣∣ + |F1| − |S1|.
We have already shown that Z∗ is an ex ante efficient random matching and this upper bound is
reached in an egalitarian way under Z∗, thus, for each patient p ∈ S1, up(Z∗) − tdp (Z∗) = λ1.
Similarly, for the patients in S2, the highest possible aggregate u–t difference achieved by the
lowest u–t difference |S1| + 1 patients in S1 ∪ S2 is |S1| × f1(S1,F1) + f2(S2,F2). Proceeding
in this way, the upper bound for the patients in S2 is reached in an egalitarian way, and so on.
Thus, the vector u(Z∗) − t(Z∗) Lorenz dominates any other vector in the set {u(Z) − t(Z):
Z ∈ Z e}.

Proof of Corollary 1. (i) ⇔ (ii). It follows directly from Theorem 1.
(iv) ⇒ (iii). By the GED Lemma, |F | > |P o(F )|. Thus, by Theorem 1, the u–t difference of

each patient is greater than −1 under the egalitarian matching. Thus, a deterministic egalitarian
matching with inequality is not possible.

(ii) ⇒ (iii). By definition, an efficient matching with no inequality is an egalitarian match-
ing. Thus by Theorem 1, it is possible to construct a b-transshipment. Note that, since the u–t
difference of each patient is zero, b is integer-valued. Then, by Theorem 2, f can be taken as
integer-valued. Thus, there exists a deterministic matching with no inequality. �
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