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a b s t r a c t

Living donors are often incompatible with their intended recipients. Kidney paired donation matches
one patient and his or her incompatible donor with another pair in the same situation for an exchange.
Let patient-donor pairs be the vertices of an undirected graph G, with edges connecting reciprocally
compatible vertices. A matching in G is a feasible set of paired donations. Because the lifespan of a
transplant depends on the immunologic concordance of donor and recipient, we weight the edges of
G and seek a maximum edge-weight matching. Unfortunately, such matchings might not have the
maximum cardinality; there is a risk of an unpredictable trade-off between quality and quantity of
paired donations. We prove that the number of paired donations is within a multiplicative factor of
the maximum possible donations, where the factor depends on the edge weighting. We propose an
edge weighting of G which guarantees that every matching with maximum weight also has maximum
cardinality, and also maximizes the number of transplants for an exceptional subset of recipients, while
favoring immunologic concordance. We partially generalize this result to k-way exchange and chains,
and we implement our weightings using a real patient dataset from Brazil.

Published by Elsevier Ltd.

1. Introduction and motivation

The preferred treatment for end-stage renal disease is kidney
transplantation, but there are not enough donor kidneys available
to meet the need. As of November, 2018 there are 95,313 US
candidates waiting for a kidney [1]. Often a family member or
a friend offers to donate one of his or her two kidneys, but
approximately one-third of such offers are ruled out because the
donor’s blood or tissue types are incompatible with the intended
recipient. Kidney paired donation circumvents these barriers by
matching an incompatible pair to another pair with a comple-
mentary incompatibility [2,3]. In simultaneous operations, the
donor of the first pair gives to the recipient of the second pair,
and vice versa.

A variety of operations research models have been applied
for maximizing the benefits of kidney exchange [4–8]. The basic
integer program formulations for kidney exchange were intro-
duced by Roth et al. [9] and Abraham et al. [10]. More recent
models cover broader aspects of kidney exchange, for instance,
long chains in kidney exchange by Glorie et al. [11] and Anderson
et al. [12] or international exchanges [13]. For further reading
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on the integer programming approach, we recommend surveys
by Constantino et al. [14] and Mak-Hau [15].

Optimal two-way kidney paired donation can be formulated
as a maximum matching problem in a weighted graph [4] or
more generally as a cycle packing problem [16] if more than two
pairs may be involved in any exchange. We primarily consider
undirected graphs and two-way paired donation, but we also
partially generalize to directed graphs representing k-way paired
donation, involving up to k incompatible pairs.

Chains, in which a non-directed living donor donates to the
recipient of an incompatible pair to start a sequence of living
donations, can easily be incorporated into either model. We rep-
resent each non-directed donor as a node in the graph whose
‘‘recipient’’ is compatible with every paired donor in the pool.

The contribution of the paper is the design of clinically mean-
ingful points systems for optimizing kidney paired donation. A
paired donation allocation corresponds to a matching, or a cycle
packing, in a graph which may have positive integer weights on
either its vertices or edges. We argue that edge weights are nec-
essary to capture important features of clinical paired donation
such as matching pairs at the same hospital and the particularized
risk of immunologic incompatibility. On an undirected graph,
a maximum vertex-weight matching simultaneously maximizes
the number of transplants performed. A maximum edge-weight
matching, on the other hand, does not necessarily maximize the
number of transplants performed. That is, accounting for factors
such as the compatibility of each recipient with his or her donor
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might reduce the total number of transplants. On a directed
graph, even weighting the vertices might decrease the number
of transplants performed. Our work here is related to Dickerson
et al. [17], which proved a theoretical bound and provided in-
practice results showing the number of transplants overall that
could be lost by requiring the maximum number of a special
group of vertices to be included.

For maximum edge-weight matchings and cycle packings, we
establish multiplicative bounds on the suboptimality of the num-
ber of transplants performed. Our results can be applied to gen-
erate edge weighting schemes that allow preference to be given
to particularly good matches, with a guarantee that the number
of transplants performed decreases by no more than a certain
fraction. As a special case, we design an edge weighting that
guarantees a maximum edge-weight solution will simultaneously
maximize the number of transplants performed. For undirected
graphs only, we also consider the case of a subgroup of recipi-
ents for whom a transplant is medically urgent, and design an
edge weighting scheme that guarantees a maximum edge-weight
matching will simultaneously maximize both the number of med-
ically urgent recipients transplanted and the total number of
transplants performed. Our proofs rely on elementary inequalities
for matchings and cycle packings in edge-weighted graphs.

In Section 2, we consider various formulations of the objective
for allocating kidney paired donation using maximum matchings.
In Sections 3 and 4, we establish our main results on two-way
matchings. In Section 5, we generalize to k-way kidney paired
donation, using cycle packings on directed graphs. Computational
results are presented in Section 6. We discuss the limitations of
our analysis in Section 7.

2. Objectives for optimal matchings in KPD graphs

We represent reciprocal compatibility between incompatible
pairs by edges in an undirected graph G. Each vertex of G rep-
resents an incompatible patient-donor pair, and there is an edge
between two vertices of G whenever the donor of the first pair is
compatible with the recipient of the second pair, and the donor
of the second pair is compatible with the recipient of the first
pair. We can represent non-directed donors that are available to
start chains as vertices where the imaginary recipient would be
compatible with the donor of any incompatible pair. We refer to
G as a KPD graph.

2.1. Matchings in kidney paired donation graphs

A matching M in a graph G is a set of edges in G such that
every vertex of the graph is incident with at most one edge of
M . The matching number µ of G is the maximum number of
edges in a matching in G. There is a vast literature on matchings,
matching numbers, and their applications, including the classic
paper by Edmonds [18], the book by Lovász and Plummer [19],
and the survey by Pulleyblank [20].

Any feasible allocation of kidney paired donations within a
KPD graph G is a matching. A KPD graph is not bipartite in gen-
eral, since any incompatible pair may, in theory, be reciprocally
compatible with any other.

There are several notions of optimality for the matching M .
If all kidney paired donations are equally valuable, the matching
M is optimal provided it has the maximum cardinality µ. We
now discuss two variant notions of optimality in which weights
(positive real numbers) are assigned to the vertices or edges of G
to signify preferences among matchings.

The vertex-weight of a matching is the sum of the weights
of the incident vertices. The edge-weight of a matching is the
sum of the weights of its edges. Edge-weighted matchings include
vertex-weighted matchings as a special case, in which the weight
for each edge is defined as the sum of the weights of the vertices
connected by that edge.

2.2. Factors that can be captured using vertex weights

To express priorities among patients, Roth et al. [21] proposed
assigning a weight to each vertex of G. Organ allocation policy
has long recognized special categories of transplant candidates:
pediatric candidates, the medically fragile, or highly sensitized
candidates. A medically fragile candidate is one whose need for
a transplant has become urgent. A highly sensitized candidate is
disadvantaged by a wide range of existing antibodies that make
the search for a compatible donor like looking for a needle in
the haystack [22]. Physicians recognize at least two objectives:
maximizing transplants for prioritized patients, and maximizing
transplants overall.

In the case of two-way matching on an undirected graph, there
is no trade-off necessary to maximize both because maximum
vertex-weight matchings always have maximum cardinality.

2.3. Factors that can only be captured as edge weights

The desirability of a particular paired donation allocation ac-
tually depends on both edge properties and vertex properties. To
express priorities among feasible kidney exchanges, we proposed
assigning a weight to each edge of the KPD graph G [4]. A
maximum edge-weight scheme can also consider factors related
to vertices, such as the pediatric or prior live donor status of a re-
cipient, by adding the weight attributable to a vertex property to
the weight of every edge incident on that vertex. Edge-weighted
matchings are more general than vertex-weighted matchings, and
more appropriate for KPD graphs.

KPD matching should favor better immunologic concordance
between donor and recipient. Poor immune compatibility might
trigger a response against the kidney, leading to graft rejec-
tion. Also, matches between pairs at geographically distant trans-
plant centers require longer and more expensive organ trans-
ports. Both the distance and immunology must be modeled with
edge weightings. Although kidney donors and recipients need not
be related for a good outcome of the transplant, the extent of
immunologic concordance between donor and recipient affects
survival rates for the kidney [23]. Other factors such as the age
and medical history of donor and recipient could be used to
generate edge weights that express the expected gain in life-years
for each particular donor and recipient pairing [24]. This would,
for example, make it more likely that a kidney from a younger
donor goes to a younger recipient who can take advantage of the
graft’s full usable lifespan [25].

Some centers can desensitize recipients to some incompatible
donors, so edge weights might reasonably depend on the level
of difficulty expected in desensitizing recipients to particular
donors [26].

Furthermore, transplant centers strongly prefer to do an inter-
nal kidney exchange over matching their patients with candidates
from another center [27]. The transplant centers must be assured
that feasible matches between pairs who are both at their center
will receive priority. Otherwise, large centers with the ability to
perform many paired donations among their patients will have a
disincentive to include their candidates and donors in a national
registry.

For all of the considerations above, it is the fit between the
donor and the recipient, which must be represented as an edge
weight, that is critical to determining the benefit of an exchange.

3. Cardinality of maximum edge-weight matchings

In the worst case, the number of edges in a maximum edge-
weight matching might be only half the number of edges in a
maximum cardinality matching. In this section, we prove that
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Fig. 1. Some components of the subgraph H in the proof of the Matching Lemma. The bold edges are in the maximum matching M , the unbolded edges are in the
matching M∗ , and the bold dashed edges are in both of the matchings M and M∗ .

when there are only small differences between any two edge
weights in the graph, a tighter multiplicative bound on the cardi-
nality of the maximum edge-weight matching holds. We prove
that, when all the edge weights are quite close together, in a
sense we will describe, a maximum edge-weight matching has
maximum cardinality.

3.1. Maximum vertex-weight matchings

The (vertex-) weighted matching number µv of G is the max-
imum number of edges among all matchings with maximum
vertex-weight in G. The following result assures us that spec-
ifying higher priorities to some patients does not decrease the
total number of patients receiving transplants in two-way paired
donation.

Proposition 1. In an undirected graph with positive vertex weights,
any matching with maximum vertex-weight also has maximum
cardinality. In other words, µv = µ, where µ of G is the maximum
number of edges in a matching in G.

We isolate the main idea of the proof of Proposition 1 in a
lemma, which is a reformulation of a fundamental result in graph
theory discovered by Berge [28,29]. We let V (M) denote the set
of vertices in a matching M .

Lemma 2 (Matching Lemma). Let G be a graph with matching
number µ. Let M∗ be any matching in G. Then there is a matching
M with µ edges such that V (M∗) ⊆ V (M).

Proof. Proof of the Matching Lemma. Let M denote any max-
imum matching of G. We will replace some edges of M by an
equal number of edges of M∗ to bring about the containment
V (M∗) ⊆ V (M). It will not be necessary (and it may not be
possible) to include all edges of M∗ in a maximum matching M .
Consider the subgraph H of G whose vertex set is V (M∗) ∪ V (M)
and whose edge set is M∗

∪ M . Each connected component of H
is either an even cycle or a path with edges alternating between
M and M∗, or an isolated edge belonging to both M and M∗. (See
Fig. 1.)

The vertices of V (M∗) in any even cycle are already in V (M). In
a path with an odd number of edges, the edge at each end must
occur in M since M is a maximum matching, and it is clear that
V (M∗) ⊆ V (M). In paths with an even number of edges the two
matchings use the same number of edges, and we may replace
the edges of M by those of M∗ (as illustrated in Fig. 1) to bring
about the containment V (M∗) ⊆ V (M). The vertices of V (M∗) in
an isolated edge belonging to both M∗ and M are already in V (M).

The Matching Lemma immediately implies Proposition 1. Let
Mv be a maximum vertex-weight matching with µv edges. Then
there is a maximum cardinality matchingM that satisfies V (Mv) ⊆

V (M). If V (Mv) ̸= V (M), then the vertex-weight of M is strictly

Fig. 2. A maximum cardinality matching (bold edges) has six edges, while a
maximum weight matching has three edges. The labels are the edge weights.

greater than the vertex-weight of Mv , contrary to the definition
of Mv . Therefore V (Mv) = V (M), and thus µv = µ. The result in
Proposition 1 is well-known; see [21] for a demonstration in a
different context.

3.2. Worst-case cardinality of maximum edge-weight matchings

The (edge-) weighted matching number µe of G is the max-
imum number of edges among all matchings with maximum
edge-weight in G. Clearly,

µe ≤ µ. (1)

There are cases for which the inequality (1) is strict. For instance,
the edge-weighted graph in Fig. 2 has matching number µ = 6
and edge-weighted matching number µe = 3. In this example,
the ratio µe/µ equals 1/2.

Proposition 3. In an edge-weighted graph with positive edge
weights, a matching with maximum edge weight has at least half as
many edges as a matching of maximum cardinality. In other words,

µe ≥
1
2

µ. (2)

Proof. Let Me be a maximum edge-weight matching, and let M
be a maximum matching of G. As in the proof of the Matching
Lemma, consider the subgraph H of G with vertex set V (Me) ∪

V (M) and edge set Me ∪ M . Again, each connected component
of H is either an even cycle or a path. We will show that the
inequality µe/µ ≥ 1/2 holds for each connected component of
H . The inequality (2) then follows.

An even cycle satisfies µe/µ = 1, as does an even path. Any
odd path in H with k edges has its first, third, . . ., kth edge in M
and its second, fourth, . . ., (k−1)th edge in Me. There are (k−1)/2
edges of Me and (k+1)/2 edges of M on an odd path with k edges,
so we have µe/µ = (k−1)/(k+1). This ratio is at least 1/2 unless
k = 1. However, an odd path with one edge in H must belong to
both M and Me. An isolated edge in H belonging either to M or
Me but not both would violate either the maximum cardinality of
M or the maximum edge-weight of Me.
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Fig. 3. Vertex and edge subsets.

The prospect of producing a maximum edge-weight allocation
with µe near µ/2 is likely to be unacceptable when arranging
kidney exchanges. We proceed by restricting the class of edge
weightings to obtain stronger guarantees. In Section 3.3 we will
assign the edge weights in a manner that guarantees µe = µ.

3.3. A theorem on the cardinality of maximum edge-weight match-
ings

If the edge weights of an undirected graph G are all equal, then
µe = µ, of course. We will show that the equality µe = µ still
holds provided the edge weights are nearly equal. Moreover, if
the edge weights are not nearly equal, we give a lower bound for
the fraction µe/µ.

Theorem 4. Let G be an edge-weighted graph whose edge weights
are all at least w and at most W (0 < w ≤ W ). Let µ and µe be the
matching number and edge-weighted matching number of G. Then

µe ≥

( w

W

)
µ. (3)

Also, if G has n vertices and w ̸= W, then

W
W − w

>

⌊n
2

⌋
implies µe = µ. (4)

Moreover, when the inequality in (4) holds, then every maximum
edge-weight matching has maximum cardinality µ.

Proof. Consider two matchings M and Me in G with maximum
cardinality and maximum edge-weight, respectively. Of course,
the weight of M is at most the weight of Me. Also, the weight of M
is at least wµ, while the weight of Me is at most Wµe. Therefore
Wµe ≥ wµ, and inequality (3) follows.

Because µ and µe are integers, inequality (3) implies that
µe = µ if (w/W )µ > µ − 1. This latter inequality is equiv-
alent to W/(W − w) > µ if we assume that w ̸= W . In
any graph the matching number satisfies ⌊n/2⌋ ≥ µ, and thus
the implication (4) holds. The argument remains valid when µe
is replaced by |Me|, the cardinality of an arbitrary maximum
edge-weight matching. Thus, whenever the premise of (4) holds,
every maximum edge-weight matching has maximum cardinality
(|Me| = µ).

3.4. Edge weightings suggested by Theorem 4

Let G be a KPD graph with n vertices, matching number µ,
and weighted matching number µe. The edge weight restriction
of Theorem 4 forces the desirable equality |Me| = µe = µ. It
guarantees that every maximum edge-weight matching reflects a
quantitative efficiency precept: Any two kidney paired donations
are better than any single kidney paired donation.

Theorem 4 points the way to an allocation algorithm for
kidney paired donation using the KPD graph G. We assign the
weights

W = n + 1 to each preferred edge of G,
and w = n − 1 to each non-preferred edge of G.

An edge is preferred provided the two pairs have ready access to
the same hospital, say, or the degree of immunologic concordance
meets some desired threshold. Because W/(W − w) = (n +

1)/2 > ⌊n/2⌋, by (4) we have µe = µ. Then the edges of Me,
any maximum edge-weight matching in G, give an optimal set
of organ exchanges. This allocation maximizes the total number
of kidney paired donations while simultaneously reducing travel
and increasing immunologic concordance.

In the simplified method presented above, the edge weights
take on just two values. No matching with maximum cardinality
in G uses more preferred edges than Me. In a more refined model
we may specify degrees of preference by assigning edge weights
to be real numbers in the closed interval [n−1, n+1]. We expand
on this idea in Section 4.2.

4. Beyond the objectives of cardinality and edge-weight

4.1. Maximum edge-weight matchings with exceptional recipients

We might also want to maximize transplants for a very small
group of exceptional recipients. Surgeons cite the example of
patients who have run out of dialysis access and therefore cannot
be dialyzed. For this group of recipients, a transplant is truly life-
saving. Here, we consider an edge-weight system for two-way
kidney exchange that parallels the one in Section 3.3, with the
addition of an exceptional group of high-priority recipients.

4.1.1. A theorem on edge weights for exceptional recipients
Let G = (V , E) be a KPD graph with n vertices. Consider the

vertex partition V = V1 ∪ V2, where each vertex in V2 represents
an exceptional recipient with his or her donor(s). We anticipate
that V2 will have smaller cardinality than V1. A matching M has
maximum V2-cardinality provided no matching in G is incident
with more vertices of V2 than M . Our goal is to assign edge
weights to reflect the high priorities of the vertices in V2. Let the
edge weight for each edge be the sum of: a number b > 0, a
number B > 0 for each vertex in V2 that is incident with the
edge, and a number from the interval [0, 2]. Consider the edge
partition E = E0 ∪ E1 ∪ E2, where Ek is the set of edges of G with
exactly k vertices in V2 for k = 1, 2, 3. (See Fig. 3.) Then the edge
weight of each edge in E0, E1, and E2 lies in the respective closed
interval

[b, b + 2], [b + B, b + B + 2], and [b + 2B, b + 2B + 2]. (5)

The number b expresses the priority given to raw cardinality, the
number B expresses the priority given to the vertices of V2, and
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the number in [0, 2] expresses any other desirable properties of
a match, say, with larger weights corresponding to shorter travel
distance or higher immunologic concordance.

Theorem 5. Let G be an edge-weighted graph with vertex partition
V1 ∪V2, edge partition E0 ∪E1 ∪E2, and edge weights in the intervals
in (5), with b > 0 and B > 0. Let G have matching number µ and
edge-weighted matching number µe.
(a) If

b ≥ n − 1, (6)

then µe = µ, and every maximum edge-weight matching has
maximum cardinality µ.
(b) If

B > n, (7)

then every maximum edge-weight matching has maximum V2-
cardinality.

Part (a) asserts that, subject to condition (6) on b, every maxi-
mum edge-weight matching has maximum cardinality. Part (b)
asserts that, subject to condition (7) on B, a maximum edge-
weight matching also has maximum V2-cardinality. If the
premises (6) and (7) are both satisfied, then a maximum edge-
weight matching has both maximum cardinality and maximum
V2-cardinality.

Preliminaries. Consider a vertex-weighted graph Gv , where
every vertex in V1 has weight b/2, and every vertex in V2 has
weight (b/2) + B. Let µv and µ be the matching number and
vertex-weighted matching number of Gv . By Proposition 1, a max-
imum vertex-weight matching in Gv has maximum cardinality,
and so µv = µ. Also, any maximum vertex-weight matching Mv

has maximum V2-cardinality. The Matching Lemma tells us that
there is a maximum cardinality matching M with V (Mv) ⊆ V (M).
It follows that M has maximum V2-cardinality. Because B > 0, M
must have greater vertex weight than any maximum cardinality
matching that does not have maximum V2-cardinality, and so
all maximum vertex-weight matchings must also have maximum
V2-cardinality.

We construct Ge, the edge-weighted graph corresponding to
Gv , where the weight of each edge is the sum of the weights
of the two incident vertices. From the argument above, Me also
has maximum cardinality and has maximum V2-cardinality. Each
edge weight of Ge equals b, b+ B, or b+ 2B, depending upon the
number vertices of V2 incident with the edge.

We now amend the edge weights of the graph Ge, adding to
each edge any number in the interval [0, 2], to create a new graph
G. Since the two graphs have the same set of edges, µ(G) = µ(Gv).
We use the generic µ to refer to the identical matching number
of G and Gv . We will show that µe(G) = µ if (6) holds, and
that any maximum edge-weight matching in G has maximum
V2-cardinality if (7) holds.

Proof. Proof of (a). We proceed by contradiction. Assume that
µe(G) < µ. Then because µe and µ are integers, µe(G) ≤ µ − 1.
Let the weight of every maximum edge-weight matching in Ge
be K . The weight of a maximum edge-weight matching in G
is at most K − b + 2(µ − 1), because it has one fewer edge
(subtracting at least b) but might gain as many as 2(µ − 1) units
of weight from the amended weights of G. But by assumption (6),
K − b + 2(µ − 1) ≤ K − n − 1 + 2µ ≤ K − n − 1 + 2⌊n/2⌋ < K .
The last inequality holds because 2⌊n/2⌋ ≤ n. Then the weight
of a maximum edge-weight matching in G is strictly less than
the weight of every maximum edge-weight matching in Ge, even
though no edge weight in Ge exceeds the corresponding edge
weight in G. This is a contradiction.

Proof. Proof of (b). We proceed by contradiction. Assume that
some maximum edge-weight matchingMe(G) does not have max-
imum V2-cardinality. Again let the weight of every maximum
edge-weight matching in Ge be K . The weight of a maximum
edge-weight matching in G is at most K − B + 2µ, because it
contains at least one fewer vertex from V2 (subtracting at least B),
and might gain as many as 2µ units of weight from the amended
weights in G. But by assumption (7), K − B+ 2µ < K − n+ 2µ ≤

K−n+2⌊n/2⌋ ≤ K . Again the weight of a maximum edge-weight
matching in G is strictly less than the weight of every maximum
edge-weight matching in Ge, and we have a contradiction.

4.2. Edge weightings for clinical paired donation registries

Deciding what constitutes the best allocation is outside our
scope. Those determinations must be made by the transplant
community according to medical judgment and ethical princi-
ples. Theorems 4 and 5 provide guarantees regarding the effect
of selecting particular numerical weights. If the correct clini-
cal model is to order the cardinality objective(s) strictly ahead
of other objectives, then policy-makers should select the edge
weights from the specified intervals. Our theorems guarantee that
the maximum edge-weight matchings solve the corresponding
preemptive multi-objective problems.

The results presented here suggest a simple calculation to
assign edge weight wi to edge i in practice. Initially, assign a
weight w̃i in the closed interval [0, 2] to edge i. The number
w̃i may be assigned on the basis of edge properties, such as the
relative medical and geographic desirability of particular matches.
Also, w̃i may be assigned on the basis of vertex properties, such as
whether recipients are pediatric or prior live donors, when these
recipients are not classified as exceptions.

Once n (the total number of patient-donor pairs) is known, add
b = n−1 to each edge weight w̃i to get the weight wi for edge i. If
the consensus among physicians is that quantitative efficiency is
required, then each edge weight falls in the interval [n−1, n+1].
The advantageous conclusion of Theorem 4 applies.

On the other hand, say that the desired allocation does not
require quantitative efficiency, but a subset V2 of exceptional
vertices has been identified. Then we add B = n+ 1 to each edge
weight w̃i for each vertex in V2 incident with edge i. Thus either
0, n + 1, or 2n + 2 is added to w̃i. Because no edge should have
weight zero, we add a small number to each edge, say, 1. The
resulting edge weights are within the intervals

[1, 3], [n + 2, n + 4], and [2n + 3, 2n + 5]. (8)

These edge weights might be suitable if there are some excep-
tional recipients, but policy-makers are willing to trade off overall
cardinality to achieve, say, greater reductions in travel. Then part
(b) of Theorem 5 applies, and as many exceptional recipients as
possible will be matched.

If physicians require both quantitative efficiency and the max-
imum number of transplants for exceptional recipients, then we
add n− 1 to every edge, and we also add B = n+ 1 to each edge
weight wi for each vertex in V2 incident with edge i. The edge
weights will fall in the intervals

[n−1, n+1], [2n, 2n+2], and [3n+1, 3n+3], (9)

and both of the reassuring conclusions of Theorem 5 hold. Donors
and recipients can have confidence in an organ allocation sys-
tem that maximizes the number of people who receive a trans-
plant, and that gives absolute priority to exceptionally deserv-
ing recipients, and that also takes into account other important
concerns.
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Fig. 4. A directed KPD graph with two directed cycles.

5. Kidney paired donation as vertex-disjoint cycle packing
problem in a directed graph

To model kidney paired donation where three-way or k-way
exchanges for k > 2 are permitted, we use a directed KPD graph
G (See Fig. 4). There is an edge of G from one vertex to another
vertex if the donor of the source vertex is compatible with the
recipient of the target vertex. Then, any directed cycle in G is an
opportunity for an exchange. In this case, the allocations are not
matchings, but rather sets of vertex-disjoint cycles in the directed
KPD graph G. We formulate a problem of finding the best kidney
exchanges as a vertex-disjoint cycle packing problem in directed
graph [16]. A k-way cycle packing is a set of directed cycles
involving only cycles of the length at most k. We define the cardi-
nality of the cycle packing as the total number of edges involved
in all cycles. Note that the analogous result to Proposition 1 does
not hold: in Fig. 4, if the vertex weight of V1 is greater than
the sum of the vertex weights of V3 and V4, then the maximum
vertex-weight cycle packing does not have maximum cardinality.
We consider problems of finding k-way maximum cardinality
cycle packings, and k-way maximum edge-weight cycle packings
in the directed KPD graph.

Chains can still be represented, with a non-directed donor as
a vertex with a dummy recipient that can receive a kidney from
any donor except another non-directed donor. That is, there are
edges pointing from each pair in the pool to each non-directed
donor vertex.

In this setting, a maximum vertex-weight cycle decomposi-
tion might not have maximum cardinality. Dickerson et al. have
provided a bound on the theoretical shortfall of cardinality (price
of fairness) in these exchanges when including a side constraint
that maximizes the number of included vertices of a given subset,
given some assumptions about the structure of kidney paired
donation graphs [17]. They also found that in practice the shortfall
has been as large as 33.33%.

5.1. A theorem on the cardinality of maximum edge-weight vertex-
disjoint cycles packing

We denote by µ̄ the number of edges in k-way maximum
cardinality cycle packing in a directed KPD graph G for k ≥ 2.
We denote by µ̄e the maximum number of edges among all
k-way cycle packings with maximum edge weight. Similarly to
Section 3.3, we will provide a condition on edge weightings that
guarantees µ̄ = µ̄e, along with a lower bound on the fraction
µ̄e/µ̄ for other edge weightings.

Theorem 6. Let G be an edge-weighted directed graph whose edge
weights are all at least w and at most W (0 < w ≤ W ). Let µ̄ and
µ̄e be the number of edges with in k-way maximum cardinality and
k-way maximum edge-weight cycle packing of G. Then

µ̄e ≥

( w

W

)
µ̄. (10)

Also, if G has n vertices and w ̸= W, then
W

W − w
> n implies µ̄e = µ̄. (11)

Moreover, when the inequality in (11) holds, then every k-way
maximum edge-weight cycle packing has maximum cardinality µ̄.

Proof. Consider a k-way maximum cardinality cycle packing C
and a k-way maximum edge-weight cycle packing Ce in G for
k ≥ 2. The weight of C is at most the weight of Ce. Also, the
weight of C is at least wµ̄, while the weight of Ce is at most wµ̄e.
Therefore wµ̄e ≥ wµ̄, and inequality (10) follows.

Since µ̄ and µ̄e are integers, inequality (10) implies that µ̄e =

µ̄ if (w/W )µ̄ > µ̄ − 1. This latter inequality is equivalent to
W/(W − w) > µ̄ if we assume that w ̸= W . In any graph
the cycle packing covers at most all n vertices, hence it satisfies
n ≥ µ̄, and thus the implication (11) holds. The argument remains
valid when µ̄e is replaced by |Ce|, the cardinality of an arbitrary
k-way maximum edge-weight cycle packing. Thus, whenever the
premise of (11) holds, every k-way maximum edge-weight cycle
packing has maximum cardinality (|Ce| = µ̄). All considered
inequalities are oblivious to k, thus (10) and (11) hold for k ≥ 2.

5.2. Edge weightings suggested by Theorem 6

Let |Ce| be the number of edges in an arbitrary k-way maxi-
mum edge-weight cycle packing. Theorem 6 suggests an alloca-
tion algorithm for kidney paired donation using the KPD graph
G, if we want to guarantee that µ̄ = µ̄e = |Ce|. We assign the
weights

W = n + 1 to each preferred edge of G,
and w = n to each non-preferred edge of G.

Because W/(W −w) = n+ 1 > n, by (11) we have µe = µ. Then
the edges of Ce, any set of cycles of maximum edge-weight cycle
packing in G, give an optimal set of organ exchanges.

5.3. A wider interval of edge weights

The medical community might not prefer an allocation that
maximizes the total number of transplants. Theorem 6 still offers
a guarantee about the size of every maximum edge-weight cy-
cle packing. If ethical considerations allow a cycle packing that
contains a fraction 1 − ϵ of the number of edges in a maximum
cardinality cycle packing µ, then by inequality (10) we may select
our edge weights in any scaled version of the interval [1 − ϵ, 1].

6. Computational experiments

To evaluate our proposal, we used real-life patient data ac-
quired from one Brazilian hospital. Since KPD is still not permitted
in any form in Brazil, this analysis also aims to provide evidence
of increasing donation potential by allowing kidney exchanges.

6.1. Incompatible pairs data

Our single-center dataset contains 89 recipients, 11 of which
had two incompatible donors available. We have data on the
blood types of donors and recipients, and on the antigens for
each donor and the donor-specific antibodies of each recipient.
When a recipient has strong donor-specific antibodies against
an antigen of the donor, then the kidney transplant is not com-
patible. Donor-recipient compatibility is evaluated using human
leukocyte antigen (HLA) typing. All recipients were typed for HLA,
but only 38 donors had HLA typing. For the remaining 62 donors,
we randomly resampled HLA typing from over 500 past living
donors from the same hospital.
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A donor is assumed to be compatible with a recipient if they
are blood-type compatible, and the recipient does not have strong
donor-specific antibodies against the antigens of the donor. Each
vertex of the graph represents a recipient and all of their incom-
patible donors.

A highly sensitized recipient is one that has preformed anti-
bodies to most of the population, and so has difficulty finding
any compatible donors. The panel reactive antibody (PRA) score
approximates the percentage of the population with which the
recipient is incompatible because of preformed antibodies. In our
dataset, 21 candidates had PRA of at least 80%, and we considered
them highly sensitized. Some of our weighting schemes prioritize
highly sensitized recipients, because it is difficult to find matching
donors for these recipients.

All pairs in our dataset are listed in one single transplant
center. We simulated a multicenter pool by randomly assigning
each pair to one of three notional cities. Some of our weighting
schemes prioritize local (same-city) exchanges over those be-
tween multiple centers located in transplant centers in different
cities.

6.2. Graph weighting

To model two-way KPD, we created an undirected edge be-
tween vertices in the KPD graph when the mutual exchange
of kidneys was possible. To each edge, we variously assigned a
numerical weight according to the schemes shown in Table 1.

To model two-and-three-way KPD as a cycle packing problem,
we created a directed edge between vertices of the KPD graph,
starting from a compatible donor to a potential recipient where
the edge end. To each such edge, we assigned a numerical weight
according to the schemes shown in Table 2.

In Vertices 1, all vertex-weights equal one. In Vertices 2, the
exceptional recipients (sensitized or with past transplant) were
awarded vertex-weight equal two, while the rest of vertices had
vertex-weight one. The weight of each directed or undirected
edge in Vertices 1 and Vertices 2 is the sum of the weights of
the two incident vertices. For two-way KPD, Vertices 2 will have
maximum cardinality, but for three-way KPD, Vertices 2 might not
achieve this.

The Edges 1a scheme was suggested in Section 3.4 for match-
ing and Section 5.2 for cycle packing problem, and it yields a
maximum cardinality allocation that favors local exchanges. The
Edges 1b has wider edge interval than Edges 1a (see Section 5.3).
Using lower bound (3) for matching and lower bound (10) for
cycle packing problem Edges 1b yields at least 70% of the max-
imum number of transplants in an allocation that favors local
exchanges. The Edges 2 scheme weights edges in the intervals (8)
of Section 4.2, and it yields a maximum V2-cardinality matching
(priority vertices) that does not necessarily have maximum car-
dinality. The Edges 3 scheme weights edges in the intervals (9) of
Section 4.2, and it yields maximum cardinality and maximum V2-
cardinality allocations that local transplants edges. All schemes
were tested for the matching problem, while we did not evaluate
schemes Edges 2 and Edges 3 for cycle packing problem, since we
did not offer theoretical results of this form for cycle packing.

6.3. Solution algorithm

The maximum cardinality and maximum edge-weight match-
ing problems in undirected KPD graph are equivalent to maxi-
mum cardinality and maximum edge-weight cycle packing prob-
lems in an equivalent directed graph if only cycles of size two
are allowed [16]. We represented an undirected KPD graph as a
directed KPD graph, where each undirected edge becomes a cycle
of two directed edges in a directed KPD graph. The weight of

Table 1
Two-way KPD edge weights for schemes Vertices 1, Vertices 2, Edges 1, Edges 2,
and Edges 3.
Scheme Edge weighting Weights Weights

Two-way KPD (n < 100)

Vertices 1a – 2 2

Vertices 2a
0 priority vertices 2 2
1 priority vertices 3 3
2 priority vertices 4 4

Edges 1aa Unpreferred edge n − 1 99
Preferred edge n + 1 101

Edges 1b Unpreferred edge 0.7n 70
Preferred edge n 100

Edges 2

Unpreferred edge, 0 priority vertices 1 1
Preferred edge, 0 priority vertices 3 3
Unpreferred edge, 1 priority vertex n + 2 102
Preferred edge, 1 priority vertex n + 4 104
Unpreferred edge, 2 priority vertices 2n + 3 203
Preferred edge, 2 priority vertices 3n + 5 305

Edges 3a

Unpreferred edge, 0 priority vertices n − 1 99
Preferred edge, 0 priority vertices n + 1 101
Unpreferred edge, 1 priority vertex 2n 200
Preferred edge, 1 priority vertex 2n + 2 202
Unpreferred edge, 2 priority vertices 3n + 1 301
Preferred edge, 2 priority vertices 3n + 3 303

aOverall maximum cardinality scheme.

Table 2
Three-way KPD edge weights for schemes Vertices 1, Vertices 2, Edges 1, Edges
2, and Edges 3.
Scheme Edge weighting Weights Weights

Three-way KPD (n < 100)

Vertices 1a – 2 2

Vertices 2
0 priority vertices 2 2
1 priority vertices 3 3
2 priority vertices 4 4

Edges 1aa Unpreferred edge n 100
Preferred edge n + 1 101

Edges 1b Unpreferred edge 0.7n 70
Preferred edge n 100

aOverall maximum cardinality scheme.

an undirected edge was split equally between two corresponding
directed edges.

To solve a cycle packing problem, we used a simple integer
program allowing participation of exactly two pairs in each cycle
to model the matching problem, or at most three pairs in each
cycle to model allocation with at most 3-way KPD [10]. Suppose
G has n vertices, and p directed cycles, each with at most k edges.
With the ith directed cycle, we associate the binary decision
variable xi. Let xi = 1 if the ith cycle is included in the allocation,
and let xi = 0 if the ith cycle is not included in the allocation.
Let the cycle index i be in the set Cyc(j) provided the ith cycle
contains vertex j (j = 1, 2, . . . , n). Let the weight wi represent the
sum of edge weights of the ith cycle. Then the integer program
to be solved is

max
p∑
i

wixi

subject to:
∑
Cyc(j)

xi ≤ 1 for each vertex j in {1, 2, . . . , n}, (12)

xi ∈ {0, 1} for each cycle i in {1, 2, . . . , p}. (13)

An optimal allocation was found using integer program solved
by Gurobi Optimizer Version 8.1. from Gurobi Optimization, Inc
[30].
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Table 3
Comparison of numbers of transplants, preferred edges, and priority vertices
matched with each weighting scheme for two-way KPD, using simulated
donor-recipient pairs.
Weighting Transplants Preferred edge Priority vertex

Two-way Three-way Total Local Sensitized

Totals 89 21

Vertices 1 28.14 0 28.14 9.18 5.40
Vertices 2 28.14 0 28.14 9.30 8.45
Edges 1a 28.14 0 28.14 22.28 5.99
Edges 1b 28.14 0 28.14 22.28 5.97
Edges 2 27.70 0 27.70 20.90 8.45
Edges 3 28.14 0 28.14 20.42 8.45

Table 4
Comparison of numbers of transplants, preferred edges, and priority vertices
matched with each weighting scheme for two- and three-way KPD allocation,
using simulated donor-recipient pairs.
Weighting Transplants Preferred edge Priority vertex

Two-way Three-way Total Local Sensitized

Totals 89 21

Vertices 1 7.30 27.42 34.72 11.66 8.57
Vertices 2 8.98 25.70 34.68 11.72 10.16
Edges 1a 9.94 24.78 34.72 24.37 8.52
Edges 1b 9.70 24.66 34.36 25.45 8.35

6.4. Computational results

We tested our suggested edge weightings against vertex
weightings. Table 3 shows the average results of 100 runs for
a matching problem considering only two-way KPD. Table 4
shows the average results of 100 runs for a 3-way cycle packing
problem considering two-way and three-way KPDs. Each row
shows outcomes for a weighting scheme, and the columns reflect
the average numbers of: incompatible pairs matched for 2-way
KPD; incompatible pairs matched for 3-way KPD; total number
of incompatible pairs that can be matched; incompatible pairs
which match to another pair in the same hospital and thus
do not need to travel; and incompatible pairs with sensitized
recipient matched. The average number of pairs of each type
who were matched for each paired donation allocation scheme
should be compared to the numbers in the Totals row, which
gives the average number of pairs of each type in the KPD graphs
generated. For example, 21 out of 89 candidates were sensitized.
It would not be meaningful to provide the number of preferred
local (same-city) edges in this row.

The results suggest that vertex-weighting schemes would re-
quire most people or organs to travel long distances. Considering
only two-way KPD (see Table 3), the vertex weighting shown
is weakly Pareto-dominated by our edge weighting schemes.
The Edges 1a weighting achieves the greatest number of local
transplants but, since it gives the vertex properties zero weight,
it matches fewer sensitized recipients.

In both three-way and two-way KPDs (see Table 4), edge
weighting schemes (Edges 1a and Edges 1b) helped to prioritize
local exchanges. Also, the wider edge weight interval (Edges 1b)
decreases the total number of transplants, but does not violate the
lower bound determined by the range of the edge weight interval
— see Section 5.3 and Table 4.

The maximum edge-weight matching for any scheme in which
all properties have positive weight is on the efficient frontier for
this allocation problem [31]. Starting from any of the schemes
shown in which all listed properties have positive weight (these
are Edges 2, Edges 3), it will not be possible to increase one out-
come measure without decreasing some other outcome measure.

7. Limitations

We will review some limitations of our analysis. If a KPD graph
has smallest edge weight w and largest edge weightW , inequality
(3) guarantees that µe ≥ (w/W )µ. For realistic paired donation
graphs, this lower bound is extremely conservative. For instance,
in the simulation results of Table 3 for Edges 2 weightings, one
cannot use inequality (3) to give tighter bounds than (2) gives,
because for the aforementioned weightings the fraction w/W is
less than 1/2. These matchings nonetheless have almost maxi-
mum cardinality because they satisfy µe ≥ 0.99µ. In a different
case, that of two- and three-way kidney paired donation, Dick-
erson et al. [17] gave a theoretical result based on blood type
distributions that showed we should expect the cardinality of
such allocations to be within about 1.5% of the maximum possible
cardinality in large enough groups of incompatible pairs, but they
observed larger deviations in practice.

In a real kidney exchange program, recipients and their in-
compatible donors present to physicians on an ongoing basis.
If every feasible paired donation were performed immediately,
there would be no opportunity to take advantage of optimal
matching algorithms, and fewer transplants could be performed.
In this paper, we view the dynamic problem as a static optimiza-
tion problem. Other researchers have investigated algorithms for
dynamic optimization [32,33]. Actual match run frequency varies
by country and transplant program, e.g., the UK, the Netherlands,
and Australia run a match every three months, where US’s United
Network for Organ Sharing (UNOS) matches candidates weekly,
and Ashlagi et al. [34] have studied the empirical effectiveness of
these choices.

8. Conclusion

Organ allocation priorities have customarily been expressed
through weighting systems that assign numerical values to each
potential transplant. Kidney paired donation was no exception;
the UNOS Kidney Pancreas Committee used a simulation tool to
empirically explore the space of weighting schemes and decide
weights for its Kidney Paired Donation Pilot Program. Physicians
might not be experts at translating their judgments about the
relative value of particular paired donation matches to numerical
weights. Maximizing the total number of transplants might be
required, but some circumstances might warrant decreasing the
number of transplants to achieve other goals. We aim to help the
transplant community express its allocation goals through the use
of KPD graphs. To that end, we have provided weighting methods
that give cardinality guarantees, while allowing the necessary
edge preference structure.

We can recast Theorem 5 and the discussion in Section 4.2
as a preemptive (lexicographical) multi-objective optimization
method. Klingman and Phillips [35] construct a similar method
for a related model, a preemptive multi-objective assignment
model.

The number of vertices in a matching M is |V (M)|. Let |V2(M)|
be the number of vertices of M that are in the subset V2. In
decreasing order of importance, the objectives we consider for
kidney paired donations are: f1(M) = |V2(M)|, the number of
transplants for the highest priority recipients; f2(M) = |V (M)|,
the number of transplants overall; and f3(M), a function that may
subsume various other vertex-associated objectives, such as the
number of transplants for preferred but not exceptional recip-
ients, as well as edge-associated objectives, like same-hospital
transplant and immunologic concordance.

Let M be the set of all matchings in G. We express the con-
straints in the generic form: M ∈ M. The general theory of
multi-objective combinatorial optimization asserts [31] that for
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an ordered list of objectives f1(M), f2(M), . . ., fk(M) there ex-
ist preemptive weights C1, C2, . . ., Ck such that the preemptive
multi-objective problem is equivalent to

max
M∈M

k∑
i=1

Cifi(M). (14)

One may solve (14) using a maximum edge-weight matching
algorithm.

Without loss of generality Ck = 1, and in our case k =

3. Theorem 5 provides exact values for C1 and C2. Write the
maximum edge-weight matching problem as

max
M∈M

∑
j∈M

wj = max
M∈M

⎛⎝(n + 1)|V2(M)| + (n − 1)|V (M)| +

∑
j∈M

w̃j

⎞⎠
(15)

and note that the objective on the right hand side of (15) is
a linear combination of the objectives f1, f2, and f3. This yields
C1 = n + 1 and C2 = n − 1 as preemptive weights for (14).

Alternatively, we may solve preemptive multi-objective prob-
lems as a sequence of single-objective problems. In that
paradigm, first solve

F1 = max
M∈M

f1(M) (16)

and then solve

F2 = max
M∈M

f2(M), subject to F1 = f1(M), (17)

which incorporates maximizing the most important objective as
a constraint, and then solve,

F2 = max
M∈M

f3(M), subject to F1 = f1(M) and F2 = f2(M), (18)

and so on.
In the case of undirected graphs, the advantage of the former

scheme with a single objective is that an efficient algorithm
for matching can be used, whereas there is no obvious way to
incorporate side constraints of the form in (17) into a maxi-
mum matching algorithm. Also, for directed graphs and k-way
exchange, Dickerson et al. [17] note that the most efficient al-
gorithms known cannot directly incorporate a side constraint
requiring inclusion of the maximum number of vertices of a
preferred subset. Our work gives an edge weighting function that
implements this lexicographic ordering without adding a side
constraint.

Thus, our results can be understood as specifying the correct
preemptive weights for converting a clinically meaningful pre-
emptive multi-objective optimization model to a single-objective
model. Our points schemes appear in a format that is familiar and
comprehensible to transplant policymakers. Further, the single-
objective formulation facilitates the use of specialized, computa-
tionally efficient algorithms for these optimization problems.
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