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Abstract. There are over 90,000 patients in the United States waiting for a kidney trans-

plant. Under the current allocation policy, the vast majority of deceased organs are allo-

cated locally. This causes significant disparities in waiting times and access to transplant

across different geographical areas. To ameliorate this inequity, we propose an operational

solution that offers affordable jet services (OrganJet) to patients on the transplant waiting

list, allowing them to list in multiple different, and possibly very distant, donation ser-

vice areas (DSAs) of their choosing. First, using a fluid approximation, we formulate the

patients’ problem of choosing a location to multiple list as a selfish routing game in which

each patient tries to minimize his “congestion cost,” i.e., maximize his life expectancy.

Through a combination of numerical, simulation, and analytical results, we show that

multiple listing can lead to a significant improvement in geographic equity. In the special

case when sufficiently many patients can multiple list, the geographic inequity disap-

pears. Moreover, the supply of deceased donor organs increases under multiple listing,

leading to more transplants and saved lives. We also consider a diffusion approxima-

tion and study the resulting multiple-listing game. The equilibrium outcome under the

diffusion approximation is a second-order perturbation of that under the selfish routing

formulation. In particular, the geographic equity metric, waiting times, and probabilities

of receiving a transplant at various DSAs in equilibrium are second-order perturbations of

those predicted by the selfish routing equilibrium. Hence, the analysis under the diffusion

approximation also supports the finding that multiple listing leads to an improvement

in geographic equity. In addition, restricting attention to the special case of sufficiently

many patients multiple listing leads to an explicit characterization of the equilibria, which

in turn yields additional structural insights. Last, we undertake a simulation study that

supports aforementioned findings.

History: Accepted by Assaf Zeevi, stochastic models and simulation.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2016.2487.
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1. Introduction
Steve Jobs received a liver transplant in Tennessee in

March 2009, although hewas first put on the transplant

waiting list in California, where he lived. Because of the

long waiting time there, he would never have gotten

a transplant in time, and it was not possible (even for

Mr. Jobs) to jump the queue. Isaacson (2011) quotes

Laurene Powell, Mr. Jobs’ wife: “You can do the math,

which I did, and it would have been way past June

before he got a liver in California, and the doctors felt

that his liver would give out in about April” (p. 483).

Isaacson (2011) writes:

So she started asking questions and discovered that it

was permissible to be on the list in two different states at

the same time. . . .There were two major requirements:

The potential recipient had to be able to get to the chosen

hospital within eight hours, which Jobs could do thanks

to his plane and the doctors from that hospital had to

evaluate the patient in person before adding him or her

to the list. . . . James Eason [the head of transplant at the

Methodist University Hospital in Memphis] . . .had no

problem allowing people from elsewhere to multiple-

list in Memphis. . . .
The awful reality was that upcoming events like

St. Patrick’s Day and March Madness offered a greater

likelihood of getting a donor because the drinking

causes a spike in car accidents. . . . Indeed, on the week-

end of March 21, 2009 a young man in his mid-twenties

was killed in a car crash, and his organs were made

available. . . .
Jobs and hiswife flew toMemphis, where they landed

just before 4 a.m. (p. 483)

The story of how Steve Jobs received a transplant

elucidates the geographical disparity in the organ allo-

cation system. This paper focuses on this very disparity
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for the kidney transplants, which constitute the great

majority of organ transplants in the United States.

However, the insights gleaned for the kidney allocation

system apply to other organ transplants as well.

Kidney transplantation is both a life-prolonging and

life-enhancing treatment compared to dialysis. Unfor-

tunately, there is a large imbalance between the sup-

ply of and the demand for deceased donor kidneys.

There are over 90,000 patients awaiting a kidney trans-

plant in the United States. The majority of transplanted

kidneys are deceased donor kidneys (Organ Procure-

ment Transplantation Network 2016b). Oversight of

deceased donor kidney allocation is done by theUnited

Network for Organ Sharing (UNOS). Under the current

policy, the vast majority (more than 70%; Davis 2011)

of deceased donor kidneys are transplanted locally.

Therefore, the differences in supply and demand char-

acteristics of the various geographical regions lead to

a significant disparity and variability in waiting times

and access to transplant across the United States.

The U.S. Department of Health and Human Services

(HHS) stated its beliefs about the current and future

national organ transplantation operations in a 1998

final ruling (see Department of Health andHuman Ser-

vices 1998, p. 16298): “In principle, and to the extent

technically and practically achievable, any citizen or

resident of the United States in need of a transplant

should be considered as a potential recipient of each

retrieved organ on a basis equal to that of a patient

who lives in the area where the organs or tissues are

retrieved. Organs and tissues ought to be distributed

on the basis of objective priority criteria, and not on the

basis of accidents of geography.”

Despite the official view of the U.S. Department of

Health and Human Services, there are significant geo-

graphic disparities in access to deceased organs in

practice, as illustrated by the story of Steve Jobs. The

HHS rule is a federal mandate and not merely a view

point. Strictly speaking, (geographical disparities aris-

ing from) the current allocation system is against the

law. These discrepancies are rooted largely in the evo-

lution of the current allocation system starting in the

1980s; see Section 2 for details.

Ideally, the geographic disparity should be ad-

dressed by a policy change that facilitates complete

sharing of organs. However, despite the significant

advancements in transportation, communication, and

medicine in the last few decades, there remain sub-

stantial obstacles to the successful reform of organ

allocation policy to eliminate the geographical dis-

parity. The Organ Procurement and Transplantation

Network (OPTN) Kidney Transplantation Committee

spent nearly 10 years finalizing the changes to the

allocation policy recently (see Organ Procurement and

Transplantation Network 2016a). However, the tiered

geographic allocation policy is left untouched, and the

committee has stated that substantial geographic dis-

parities will continue to exist under the newly revised

policy.

For the case of liver allocation, Washburn et al.

(2011), coauthored by the former UNOS president John

Roberts, states that

As long as there is a disparity between the supply of

cadaveric livers and the demand, the distribution sys-

tem will not please all stakeholder groups. In general,

any system that redistributes organs from areas of low

need to areas of high need will be accepted by the high-

need areas and rejected by the low-need areas. . . .The
clear endorsement of small, incremental changes as the

best path forward has provided guidance for future pol-

icy recommendations. (p. 1011)

The difficulty highlighted by Washburn et al. (2011)

applies to the allocation of cadaveric kidneys as well.

Therefore, we seek an operational solution and study

its ramifications. As mentioned in the Steve Jobs’

story, patients have the right to be listed at multi-

ple centers of their choosing under the current pol-

icy.
1

Ardekani and Orlowski (2010) writes: “The UNOS

committee acknowledged that the multiple listing pol-

icy could address geographic disparities” (p. 720).

(Many patient-centric sites provide information about

how to multiple list; see txmultilisting.com for exam-

ple.)
2

The authors also note that only 5.1% of end stage

renal disease (ESRD) patients were multiple listed as

of January 31, 2009.

Consistent with the view of Washburn et al. (2011),

we propose an operational solution to alleviate the geo-

graphic disparity in the allocation of cadaveric kidneys.

Our approach is incremental andworks within the sys-

tem. To be specific, we propose using jets (OrganJet)

for patients on the transplant waiting list, which sup-

ports multiple listing of patients of transplant centers

in different, and possibly very distant, donation service

areas (DSAs) of their choosing. This is feasible in the

United States because of the vast number of available

choices in buying fractional jet services. The feasibility

of aircraft logistics has already been verified as Angel

Networks (using prop jets) already provide multiple

listing capability (within 350–400 miles); see, for exam-

ple, the Air Care Alliance (http://www.aircareall.org).

Interestingly, there have been recent discussions in

the liver transplant community on reducing inequity.

A concept document (not a policy proposal) has cir-

culated outlining a potential redistricting of the liver

allocation system to seek public input (see Organ Pro-

curement and Transplantation Network 2014; also see

Neidich et al. 2013). Perhaps as expected, this led to

a strong backlash immediately (see, e.g., Bruce 2014,

Christensen 2014). This effort is currently in a “pause”

stage, requiring further analysis for robustness, and to

analyze newer, less disruptive proposals.
3

Based on our
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discussions with the transplant surgeons, policy mak-

ers, and other stakeholders, a potential policy change,

should it occur, will take several years. Unfortunately,

such a change may not happen. Moreover, as men-

tioned above, the recent change to the kidney allocation

policy did not address the geographic inequity. Indeed,

the committee has stated that addressing that issue

was not a primary goal of theirs (Organ Procurement

and Transplantation Network 2016a), which highlights

the importance of incremental changes such as the one

studied in this paper to improve geographic equity.

The story of how Steve Jobs received a transplant in

Tennessee highlights the potential benefit when only

one person multiple lists. In contrast, we view mul-

tiple listing as an instrument to address geographic

inequity without requiring a policy change. Therefore,

we focus on the case when many patients multiple

list and analyze the resulting game. For simplicity, we

restrict attention to the case of double listing; that is,

each multiple-listing patient can list at one other DSA.
4

First, we consider a deterministic model that formu-

lates the patients’ multiple-listing decisions as a selfish

routing problem and characterize the equilibria as a

solution to a convex optimization problem. To assess

the geographic equity in allocation of deceased donor

kidneys, we develop the metric geographic coefficient

of variation (GCV) and consider how it changes under

multiple listing. Through a combination of analytical,

numerical, and simulation results, we show that geo-

graphic equity improves significantly under multiple

listing. We also consider a special case of the formula-

tion in which sufficiently many patients can multiple

list and can do so at any DSA. In this case, the geo-

graphic inequity disappears. We also show in this case

that the supply of deceased donor organs increases,

leading to more transplants and saved lives.

Next, we consider the multiple-listing game under

uncertainty using a diffusion approximation. Sec-

tion 4 shows that the equilibrium geographic coeffi-

cient of variation under the diffusion approximation

is a second-order perturbation of that in the selfish

routing formulation. Similarly, the equilibriumwaiting

time at a DSA equals to that predicted by the selfish

routing formulation plus a small (i.e., second-order)

Gaussian random variable. In this sense, the equilib-

rium outcome under the diffusion approximation is

a second-order perturbation of that under the selfish

routing formulation. These results are proved with-

out any assumptions on the multiple-listing radius or,

hence, the network structure or the number of patients

who can multiple list. We also consider the special case

in which there are no geographical constraints to mul-

tiple listing and sufficiently many people can multiple

list. With these additional assumptions, we character-

ize the equilibria explicitly and show that the earlier

results continue to hold. In particular, the improvement

in the geographic equity is even stronger, which is con-

sistent with the findings in the context of the selfish

routing formulation.

Last, we undertake a simulation study that relaxes

several simplifying assumptions made in our model.

The results of the simulation study corroborate the ear-

lier finding that multiple listing leads to a more equi-

table outcome geographically, illustrating the value of

OrganJet.

The rest of this paper is structured as follows. Sec-

tion 2 reviews the related literature. Section 3 intro-

duces and studies the selfish routing formulation of

the patients’ multiple-listing decisions. Section 4 intro-

duces uncertainty in the model and uses a diffusion

approximation to study the patients’ multiple-listing

decision. Section 5 performs a simulation study. Sec-

tion 6 concludes. An online supplement includes

Appendices A–H.

2. Current Status and
Literature Review

Recognizing the national shortage of donated organs,

the U.S. Congress passed the National Organ Trans-

plant Act in 1984, which led to the creation of the

Organ Procurement and Transplantation Network to

address the issue of how to allocate deceased organs

nationally. The legislation views the donated organs as

national resources and calls for their fair and equitable

distribution nationally (not just within the local area of

procurement). Since this legislation in 1984, the UNOS

has managed the allocation of deceased organs in the

United States. As part of this effort, the UNOS divided

the country into 11 regions, which are further divided

into 58 donation service areas. Associated with each

DSA is an organ procurement organization managing

all local procurement and allocation procedures.

The revised kidney allocation policy of the UNOS

is a point system that prioritizes the potential trans-

plant candidates based on the points they receive on

the following dimensions: (i) waiting time;
5

(ii) anti-

bodies (i.e., whether the patient is sensitized or not
6

);

(iii) antigen matches (which reflects the quality of the

tissue match between the donor and the recipient);

(iv) whether the recipient and the organ are among the

top 20% in terms of their predicted life expectancy and

the quality scores,
7

respectively; and (v) whether the

patient is a child. Interestingly, Su and Zenios (2004)

note (for the previous kidney allocation policy) that

“The continued shortage of organs and the associated

explosion in waiting times has contributed to a conver-

gence of this point system to a system that resembles

first-come-first-served (FCFS)” (p. 284).

This point system is crucially embedded in the

aforementioned geographical structure: When a kid-

ney becomes available, it is first offered to the patients
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listed in the same DSA (with a few minor exceptions).

If no patient within the DSA accepts the offer, it is then

offered to the patients in the same region. Finally, if

no prospective recipient in the region takes the offer,

then the kidney is offered nationally. During each of

these steps, patients are ranked with respect to the

point system described immediately above. This tiered

geographical structure and the limited cold-ischemia

timemake it difficult for organs to be shared across dif-

ferent geographical regions and nationally; see Organ

Procurement and Transplantation Network (2011) for

further details of the deceased kidney allocation policy.

Organ transplant operations have received signif-

icant research attention in recent years. Several re-

searchers study the patient’s problem of accepting/re-

jecting an organ offer while waiting for a transplant;

see David and Yechiali (1995), Ahn and Hornberger

(1996), Hornberger and Ahn (1997), Howard (2002),

Alagoz et al. (2004, 2007a, b), and Sandıkçi et al. (2008,

2013). Several others use simulation models to study

the results of possible changes to the organ allocation

policy or alternative policies; see CONSAD Research

Corporation (1995), Pritsker et al. (1995), Zenios et al.

(1999), Taranto et al. (2000), Kreke et al. (2002), and

Shechter et al. (2005). Recent work on modeling delays

in data centers with redundant requests has features

reminiscent of our setting; see, for example, Shah et al.

(2014), who focus on deriving performance bounds.

Although our setting is related to the replication-

based scheme with redundant requests studied in

Shah et al. (2014), it has an important difference:

the routing structure is endogenous in our setting,

whereas it is exogenous in that setting. Our setting also

has problem-driven differences such as abandonments

(i.e., patient deaths) and the overloaded nature of the

queues. Another related queueing-theoretic paper is

Guo and Hassin (2015), where customers place dupli-

cate orders from two parallel queues. The authors

characterize the equilibrium for symmetric servers

with the same service rate. Guo and Hassin (2015) do

not consider abandonments. Unfortunately, their anal-

ysis does not extend to the case with more than two

queues
8

or abandonments (Guo and Ata 2012). Indeed,

the analysis of the multiple-listing game is notoriously

difficult in general.

In designing optimal allocation policies, researchers

seek to match organs and patients optimally to max-

imize the social welfare; see Righter (1989), David

(1995), and David and Yechiali (1990, 1995). Zenios

et al. (2000) explore the efficiency–equity trade-off and

use various approximations to develop a dynamic

index policy for deceased kidney allocation, which is

effective and easy to implement. Akan et al. (2012)

explore the trade-off betweenmedical urgency and effi-

ciency in designing the liver allocation system, and

propose a policy that ranks patients based on their

marginal benefit from transplant, i.e., the difference in

expected benefit with versus without the transplant.

Su and Zenios (2004, 2005, 2006) study the impact of

patient choice on the kidney allocation system. Su and

Zenios (2005) consider a stochastic assignment model

and prove asymptotic optimality of a simple partition

policy. Su and Zenios (2006) use mechanism design to

propose a kidney allocation system in which patients

reveal which types of kidneys they would be will-

ing to accept upon joining the transplant waiting list.

Finally, Su and Zenios (2004) explore the role of queue-

ing service discipline as an instrument for maximizing

social welfare when patients choose whether or not to

accept a kidney offer. Bertsimas et al. (2013) design a

scalable, data-driven policy that incorporates fairness

constraints and offers significant efficiency improve-

ments. Ata et al. (2014) provide an analysis of scoring-

based allocation policies taking into account recipient’s

forward-looking behavior. Roth et al. (2005, 2007) and

Zenios (2002) explore paired kidney exchange; also see

Ashlagi and Roth (2012).

Important antecedents of this paper are Kaplan

(1984, 1985, 1986, 1988) and Caldentey et al. (2009),

which use (overloaded) queueing models to study ten-

ant assignment policies in public housing. Talreja and

Whitt (2008) study a queueing system arising from the

same applications. Our diffusion approximation cru-

cially uses the results of Jennings and Reed (2012).

The literature on addressing geographical dispari-

ties is thin. Stahl et al. (2005) and Kong et al. (2010)

investigate potential changes to the geographical struc-

ture of UNOS regions to improve geographic equity

in liver allocation. More recently, Davis (2011) con-

sidered addressing geographic inequities in kidney

transplantation and proposes probabilistic sharing of

available organs in neighboring DSAs. Based on UNOS

data from 2000 until 2009, Davis (2011) observes that

the overall median waiting time to transplant varies

between 0.93 years and 4.14 years depending on the

DSA of listing. Note, however, that these statistics

reflect the aggregate situation over a decade, which

underestimates the current geographic discrepancy.

Unfortunately, the number of patients in need of a kid-

ney transplant has increased significantly in the last

decade, leading to significantly longer waiting times at

many DSAs and an even worse discrepancy in recent

years than those reported in Davis (2011).

Although the OPTN Kidney Transplantation Com-

mittee spent a decade working on revising the kidney

allocation policy, no changes are made to the current

geographical structure in the revised kidney allocation

policy. Indeed, the committee states addressing that

issue was not a primary goal of theirs, and that sub-

stantial geographic disparities will continue to exist

(see Organ Procurement and Transplantation Network

2016a). Indeed, there seem to be substantial obstacles

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
8.

23
4.

29
.1

39
] 

on
 0

6 
Se

pt
em

be
r 

20
17

, a
t 0

9:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Ata, Skaro, and Tayur: OrganJet: Overcoming Geographical Disparities
2780 Management Science, 2017, vol. 63, no. 9, pp. 2776–2794, ©2016 INFORMS

to the successful reform of the current policy to address

the geographic inequity in the United States, as dis-

cussed in the introduction.

Fortunately, multiple listing may help alleviate this

geographic disparity. The UNOS acknowledges that

multiple listing may address the geographical dis-

parity; see Ardekani and Orlowski (2010). Given the

significant barriers, which are practically insurmount-

able, to satisfactorily changing the current policy to

address the geographic inequity, we propose an oper-

ational solution, which works within the existing sys-

tem, to alleviate the geographic discrepancy without

requiring any policy change. Instead, it simply facili-

tatesmultiple listing for the patients whowish to do so.

Last, Yeh et al. (2011) document the geographic in-

equity in the liver allocation system; also seeWashburn

et al. (2011), Kohn et al. (2014), and Vagefi et al. (2014).

The geographic disparity in that context is also driven

by the UNOS’ geographically tiered allocation rule as

in the kidney allocation system. Hence, our results

shed light on that setting as well.

3. A Selfish Routing Formulation of
Patients’ Multiple-Listing Decisions
via a Fluid Model

This sectionmodels patients’ multiple-listing decisions

using a fluid model. For a multiple-listing patient, the

key decision is which DSA to list at because the cur-

rent allocation policy is blind to the specific transplant

centers at which patients are listed within each DSA.

There are K DSAs in our model. (Currently, K � 58 in

the United States.) Because of the deterministic nature

of the fluid model, a multiple-listing patient can be

viewed as essentially “moving” to the DSA where he

multiple listed. This follows because in the fluid model

a patient either receives a transplant in the DSA that

has the shortest waiting time (among the ones hemulti-

ple listed) or dies while waiting. Therefore, pretending

that the patient moves to that DSA produces identical

results in the fluid model.

We restrict attention to adult patients with no

living donors,
9

who arrive at rate λk to DSA k for

k � 1, . . . ,K. The workings of the organ allocation sys-

tem are complex, which makes its exact representa-

tion by a tractable model infeasible. (Indeed, the UNOS

resorts to simulation studies to understand the impact

of potential changes to the organ allocation system.)

Therefore, to focus on themost important issue of inter-

est to us, i.e., the geographical disparity, while keep-

ing the model tractable, we make several simplifying

assumptions. First, we ignore the antigen and sensiti-

zation status of patients. The only other key charac-

teristic is the blood type.
10

Port et al. (1991) observe

that 93% of all transplants are made between identical

blood types. Hence, we make the simplifying assump-

tion that patients with different blood types do not

share organs.
11

This allows decomposing the problem

across blood types and studying each blood type in

isolation. Last, we assume that patients accept all organ

offers.
12

In DSA k, only a fraction πk of patients can multi-

ple list. In other words, the fraction (1 − πk) of DSA k
patients has to wait for a transplant locally. Recall that

we only consider double listing;
13

i.e., each multiple-

listing patient chooses one additional location in addi-

tion to his local DSA. In doing so, he wishes to

maximize his life expectancy.

The geography may limit a patient’s choice of DSAs

to multiple list, because he may not be able to travel

quickly beyond a certain travel radius d, e.g., d � 1,200

miles. For k � 1, . . . ,K, let A(k) denote the set of DSAs j
whose distance to DSA k is less than or equal to d miles.

Then A(k) denotes the set of DSAs to which patients in

DSA k can multiple list. Note that A(k) is also the set of

DSAs whose patients can multiple list at DSA k.
Restricting attention to those patients who can mul-

tiple list, we model their decision through a selfish

routing game; see Roughgarden (2007), and also see

Parlakturk and Kumar (2004) for a related study. The

selfish routing game occurs on a network consisting of

a directed graph (V,E), depicted in Figure 1, and a set

of source-sink pairs referred to as commodities. The

set V of vertices is given by V � {τ, sk : k � 1, . . . ,K},
where sk denotes DSA k, and τ is the terminal node.

The set E of edges is given by E � {(sk , s j), (sk , τ): k �

1, . . . ,K, j ∈ A(k)}, where the edge (sk , s j) is a trans-

port edge
14

corresponding to those patients who live

Figure 1. The Directed Graph Underlying Patients’

Multiple-Listing Game

s1

s2

sk

sK

�

…
…

Note.Vertex sk corresponds toDSA k, whereas vertex τ is the terminal

node.
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in DSA k but multiple list at DSA j ∈ A(k). Similarly,

the edge (sk , τ) is a transplant edge that corresponds to
patients receiving a transplant (or dying while waiting

for it) in DSA k; these patients can be either local or

multiple listed from other DSAs. In particular, DSA k
patients, who cannot multiple list, go through the edge

(sk , τ) to reach the terminal node τ, which corresponds

to leaving the transplant wait list either by receiving a

transplant or by dying.

Another primitive of the selfish routing game is the

set of source-sink pairs sk − τ, or commodities. To be

specific, we wish to send a flow of πkλk patients from

vertex sk to vertex τ for k � 1, . . . ,K. Each patient is

identified with one commodity. Patients originating

from source sk (DSA k) can either wait for a transplant

at their local DSA or multiple list at a different DSA.

Let Pk denote the sk − τ paths of the network, that is,

Pk � {(sk , s j , τ): j ∈ A(k)}, and define P�
⋃

k Pk .

The routes chosen by patients are described using a

flow,which is simply a nonnegative vector x indexed by

the set P of source-sink paths. For a flow x and a path

P ∈ Pk , we interpret xP as the amount of commodity k
that chooses the path P to travel from sk to τ. A flow x
is feasible if it routes all patients: for each k,∑

P∈Pk

xP � πkλk . (1)

For notational simplicity, let xk j denote the amount

of flow going through the path (sk , s j , τ). Then con-

straint (1) can be rewritten as

∑
j∈A(k) xk j � πkλk for k �

1, . . . ,K. Note that xkk corresponds to those patients

who can multiple list but chose not to; so the local

arrival rate to DSA k is xkk + (1− πk)λk .

Finally, each edge e of the network has a cost func-

tion ce( · ), which captures the “congestion cost” ce(x)
on that edge as a function of the total flow x going

through the edge e. The cost of multiple listing is taken

as zero,
15

i.e., csk , s j
(x)� 0 for the transport edges (sk , s j)

for all k , j ∈ A(k). For the transplant edges (sk , τ), the
cost of the edge corresponds to (the negative of) the

expected total life years by listing at DSA k, which

includes life-years while waiting for a transplant as

well as the posttransplant life expectancy (if the patient

receives a transplant).

Arikan et al. (2012) observe that the organ procure-

ment rate, i.e., the fraction of deceased organs pro-

cured for transplant, increases with the congestion at

the DSA. Motivated by this, we allow the organ pro-

curement rate to depend on the number of patients

listed at the DSA; that is, we let µk(x) denote the organ
procurement rate at DSA k as a function of the patient

arrival rate x to the DSA.
16

To be more specific, we

assume

µk(x)� mk f
(

x
mk

)
, k � 1, . . . ,K, (2)

where mk is the maximum rate of organs that can be

procured, and f ( · ) ∈ [0, 1] is the fraction of organs pro-

cured. In what follows, we consider two cases: In the

first case, f is concave increasing with f (0) � 0. In the

second case, f ≡1, i.e., the organ procurement rate does

not change with the congestion at the DSA. Then the

cost of the transplant edge (sk , τ) as a function of the

total patient flow x on the edge is given by

csk , τ
(x) � −[ ¯Wk(x + (1− πk)λk)+φk(x + (1− πk)λk)L],

k � 1, . . . ,K, (3)

where L> 1/γ is the posttransplant life expectancy, e.g.,
15 years, γ is the death rate, and 1/γ is themean time to

death. As characterized in Proposition 14 (see Online

Appendix A),
¯Wk(x) and φk(x) are the expected time

spent on the waiting list and the probability of receiv-

ing a transplant, respectively, at DSA k as functions of

total patient flow x using that edge.

Combining (2) and (3) with Proposition 14 (see

Online Appendix A) gives

csk , τ
(x) � −

[
1

γ
+

(
L− 1

γ

)
µk(x + (1− πk)λk)

x + (1− πk)λk

]
,

k � 1, . . . ,K. (4)

Note that csk , τ
( · ) is a convex function for all k.

The selfish routing (or multiple listing) game com-

prises of the triple of the graph (V,E), the commodities,

and the costs of the edges, in which each patient tries

to minimize his cost. The cost of a patient choosing

a path P with respect to a flow x is the sum of costs

of the constituent edges, cP(x)�
∑

e∈P ce(xe), where, for

k � 1, . . . ,K and j ∈ A(k),

xsk , s j � xk j and xsk , τ �
∑

i∈A(k)
xik

denote the patient flows on edges (sk , s j) and (sk , τ),
respectively.

We refer the reader to Roughgarden (2002) for a for-

mal definition of an equilibrium of the routing game.

The selfish routing game is a special case of the poten-

tial games, and its equilibria can be characterized by

the potential function method. More specifically, the

equilibria of the selfish routing game are precisely the

outcome that optimizes the potential function, which

is given by

Φ(x)�
∑
e∈E

∫ xe

0

ce(x) dx.

Consequently, we characterize the equilibrium flows

as the minimizers of the potential function Φ( · ). In
particular, defining

ge(x)�
∫ x

0

ce(u) du , (5)
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the equilibrium flows of the patients is given by the

following mathematical program:
17

minimize

K∑
k�1

gsk , τ

( ∑
j∈A(k)

x jk

)
(6)

subject to

∑
j∈A(k)

xk j � πkλk , k � 1, . . . ,K, (7)

xk j ≥ 0, k � 1, . . . ,K, j ∈ A(k). (8)

Using the special structure of our problem, we can

simplify this formulation further. To that end, for

each k, define

Hk(x)�
∫ x

0

µk(u + (1− πk)λk)
u + (1− πk)λk

du , (9)

which is a concave decreasing function. Then con-

sider the following mathematical program: Choose xk j
so as to

maximize

K∑
k�1

Hk

( ∑
j∈A(k)

x jk

)
(10)

subject to (7)–(8). (11)

The following proposition characterizes the equilib-

ria of the selfish routing game.

Proposition 1. The equilibrium flows of the patients’
multiple-listing game are given by the maximizers of the
mathematical program (10)–(11).

Although our formulation allows a general f ( · ),
we restrict attention to the case f ≡ 1 for simplicity

throughout except in Section 3.1, wherewe assume that

f ( · ) is strictly concave and increasing and show that

multiple listing leads to an increase in the supply of

organs in that case.

Intuitively, we expect that the waiting times and

access to transplant at the various DSAs become more

uniform, and hence more equitable, under multiple

listing. Propositions 2 and 3 support this intuition. The

following notation is needed to state the results. For

k � 1, . . . ,K, let wk and φk denote the time to trans-

plant (conditional on receiving a transplant) and the

probability of receiving a transplant, respectively, at

DSA k. Also, let w̃k and
˜φk denote the corresponding

quantities after multiple listing. Similarly, let
˜λk denote

the total effective arrival rate to DSA k after multiple

listing. Last, define the vectors w � (wk), φ � (φk), λ �

(λk), w̃ � (w̃k), and ˜λ � ( ˜λk).
Consider the directed graph G(x) associated with

a feasible flow x of the selfish routing game. The

nodes of G(x) are the DSAs 1, . . . ,K and there is a

directed edge from node k to node j (, k) if xk j > 0.

Online Appendix D provides graph-theoretic results

(and their proofs) on G(x) that facilitate the proofs of

the following result and Theorem 1.

The following proposition shows that the ranges

of the waiting times and access-to-transplant proba-

bilities across various DSAs decrease under multiple

listing.

Proposition 2. If x denotes the multiple-listing rates for an
equilibrium of the selfish routing problem such that G(x) has
no directed cycles, then the ranges of time to transplant and
access to transplant across various DSAs decreases under
that equilibrium, i.e.,

max

i , j
(w̃i − w̃ j) ≤max

i , j
(wi −w j) and

max

i , j
( ˜φi − ˜φ j) ≤max

i , j
(φi −φ j).

(12)

The next proposition provides further evidence of

the equity improvements due to multiple listing.

Proposition 3. If A(k) � {1, . . . ,K} and µk � mk for all k
and λi/µi ≥ λ j/µ j whenever λi ≥ λ j for all i , j � 1, . . . ,K,
then the effective arrival rate vector ˜λ after multiple listing
is majorized by λ, i.e., ˜λ ≺ λ. Moreover, w̃ and ˜φ are weakly
majorized by w and φ, respectively, i.e., w̃ ≺w w and ˜φ≺w φ.

The definition of majorization goes back to Lorenz

(1905), who studied wealth inequality and introduced

what is known as the Lorenz curve, which leads to an

equivalent characterization of majorization. The basic

idea is that when awealth distribution vectormajorizes

another, then it is considered less equitable than the

other. In this sense, Proposition 3 shows that the out-

comes under multiple listing are more equitable.

Of course, Proposition 3 hinges on the assump-

tion that A(k) � {1, . . . ,K}. However, our numerical

experiments (see Section 5) show that even when it is

violated, multiple listing leads to an improvement in

equity. In particular, we see that the results are insen-

sitive to multiple listing radius provided it is larger

than 1,000 miles.
18

The other assumption of Proposi-

tion 3 corresponds to assuming that larger DSAs are

more congested, which tends to hold in practice espe-

cially for the largest DSAs. Last, to further explore the

equity benefits of multiple listing, Section 3.1 consid-

ers the special case where sufficiently many patients

can multiple list and shows that multiple listing leads

to uniform waits at the various DSAs and, hence, to

an equitable outcome. This supports the findings of

Propositions 2 and 3.

Quantifying the change in equity under multiple

listing in general is challenging. Nonetheless, our

numerical analysis in Section 5 shows a substantial

improvement in geographic equity under multiple list-

ing. To facilitate that analysis, we develop a metric

of geographical coefficient of variation across DSAs,

which gives an indication of how uniform (or vari-

able) waiting times (and the probabilities of receiving

a transplant) across different DSAs are. The definition

of the geographical coefficient of variation requires the
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following notation: Let w̄ and
¯φ denote the average

time to transplant and the average probability of receiv-

ing a transplant, respectively; that is,

w̄ �

K∑
k�1

µk

M
wk and

¯φ �

K∑
k�1

λk

Λ
φk ,

whereΛ�
∑K

k�1
λk and M �

∑K
k�1
µk are the total patient

and organ arrival rates nationally, respectively, and

µk � mk f (λk/mk). Note that
¯φ � M/Λ. Then the geo-

graphical coefficient of variation for waiting times,

denoted by GCVw , is defined as follows:

GCVw �

√∑
k

µ2

k(wk − w̄)2/
∑

k

µ2

k

/
w̄.

Similarly, define the geographical coefficient of varia-

tion for access to transplant GCVφ by

GCVφ �

√∑
k

λ2

k(φk − ¯φ)2/
∑

k

λ2

k

/
¯φ.

Note that GCVw and GCVφ after multiple listing can

be defined similarly by replacing λk and µk with those

after multiple listing.

The next section considers a special case with no

geographical constraints to multiple listing and where

sufficiently many patients can multiple list to achieve a

geographically equitable outcome.

3.1. The Special Case of Sufficiently Many
Patients Multiple Listing to Achieve a
Global FCFS System

This section considers a relaxed version of the formu-

lation (10)–(11), which allows patients to multiple list

at any other DSA, i.e., A(k) � {1, . . . ,K} for all k. The
following proposition characterizes the equilibrium

multiple-listing rates in this case explicitly and shows

that both the supply of organs increases under multi-

ple listing and the equilibrium outcome is equitable.

Proposition 4. Suppose that A(k)� {1, . . . ,K} and that

(1− πk)λk <Λ
mk

m
for k � 1, . . . ,K, (13)

where m �
∑K

k�1
mk . Then {xk j : j, k � 1, . . . ,K} constitute

an equilibrium if and only if they satisfy (7)–(8) and
K∑

j�1

x jk �Λ
mk

m
− (1− πk)λk , k � 1, . . . ,K. (14)

In each equilibrium, the following hold for k � 1, . . . ,K:

wk �
1

γ
ln

(
Λ

˜M

)
, φk �

˜M
Λ
, and

¯Wk �
1

γ

(
1−

˜M
Λ

)
,

(15)

where ˜M � m f (Λ/m) and m �
∑K

k�1
mk . Therefore, we have

that GCVw � 0 and GCVφ � 0. Moreover, under multiple
listing, the nationwide organ supply, i.e., total number of
deceased donor organs procured, increases.

There are many equilibria that satisfy (7) and (8)

and (14); see Online Appendix F for one in which the

multiple-listing rates are minimal. However, all equi-

libria are payoff equivalent and lead to same aggregate

system characteristics;
19

see (15).

Proposition 4 shows that when sufficiently many

people can multiple list (and when there are no geo-

graphical constraints), then an equitable distribution of

deceased donor kidneys is achieved. Although Propo-

sition 4 makes strong assumptions, our numerical

study (using the UNOS deceased donor kidney trans-

plant data and without making those assumptions)

yields the same insight that multiple listing can allevi-

ate geographic inequity significantly; see Section 5.

The fluid model does not fully capture the multiple-

listing phenomenon because of its deterministic

nature. Therefore, in the next section, we use the dif-

fusion approximation laid out in Online Appendix A

for the virtual waiting time (see Equation (43)), which

helps in modeling the multiple-listing phenomenon

more accurately. Nonetheless, the fluid model captures

the first-order (aggregate) effects ofmultiple listing and

provides a useful building block for the analysis of

Section 4.

4. A Diffusion Model Analysis
of Multiple Listing

This section studies the multiple-listing game using

a diffusion approximation for the congestion at

the various DSAs. Roughly speaking, we construct

an equilibrium that can be viewed as a second-

order perturbation of the selfish routing equilibrium

of Section 3. More specifically, patients’ strategies

(defined in Section 4.1) yield multiple-listing rates that

are second-order perturbations of those in the self-

ish routing equilibrium. In other words, the first-order

(or the fluid-scale) transplant rates under the patients’

strategies coincide with the multiple-listing rates of the

selfish routing game. This result is proved in Section 4.2

(see Theorem 1). Building on this result, Section 4.3

develops a diffusion approximation for the waiting

times at the various DSAs under the strategies of

the form described in Section 4.1. This approximation

leads to a natural approximation of the patients’ utility

under multiple listing as well. Section 4.4 establishes

the existence of an equilibrium and proves a useful

result that characterizes the various metrics in equilib-

rium in relation to their analogs in the selfish routing

equilibrium (see Section 3). In particular, Proposi-

tion 7 shows that the equilibrium geographic coeffi-

cient of variation under the diffusion approximation is

a second-order perturbation of that in the selfish rout-

ing formulation. Similarly, the equilibrium mean time

to transplant and the probability of transplant at the

various DSAs are second-order perturbations of those

in the selfish routing formulation.
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Last, Section 4.5 considers the special case where

there are no geographical constraints, i.e., A(k) �
{1, . . . ,K} for all k, and that sufficiently many patients

can multiple list. The additional structure imposed

on the formulation allows a sharper characterization

of the equilibrium. The findings in this section are

consistent with those in Section 4.4, but the equilib-

rium is characterized explicitly, which yields addi-

tional insights.

4.1. Patients’ Strategy
Defining P̃k as the set of probability distributions on

A(k), i.e.,

P̃k �

{
pk : A(k)→ [0, 1] such that

∑
j∈A(k)

pk( j)� 1

}
,

and letting P̃ �
∏K

k�1
P̃k , the patients’ strategy is de-

noted by p ∈ P̃. We refer to such an equilibrium as a

symmetric mixed strategy equilibrium. For notational

convenience, we denote p ∈ P̃ by p � (p
1
, . . . , pk , . . . , pK),

where pk ∈ P̃k is the strategy of all patients living in

DSA k.
In deriving the diffusion approximation, we consider

an asymptotic regime where arrival rates of patients

and organs grow proportionally large where time-to-

death distributions remain fixed; that is, we consider

a sequence of systems
20

indexed by n, where λn
k � nλk

and µn
k � nµk for k � 1, . . . ,K and n ≥ 1. We denote the

patients’ strategy in the nth system by pn
. Given pn ∈ P̃,

define

xn
k j(pn)� πkλk npn

k ( j) for j ∈ A(k)

as the rate of DSA k patients multiple listing at DSA j.
Note that the number of DSA k patients not multiple

listing (and hence waiting for a transplant locally) is

equal to

(1− πk)λk n + xn
kk(pn)� [(1− πk)+ πk pn

k (k)]λk n.

Loosely speaking, we restrict attention to equilibria

that can be viewed as a second-order perturbation of

the selfish routing equilibrium. Indeed, we construct

an equilibrium where the first-order multiple-listing

rates coincide with (the appropriately scaled versions

of) those in the selfish routing equilibrium. To this

end, we adopt a diffusion approximation and consider

strategies of the form
21

pn
� p̄ +

1

√
n

qn , (16)

where p̄ ∈ P̃ and

∑
j∈A(k) qn

k ( j) � 0 for all k. We also

require that |qn | ≤ cn < ∞ and that pn ∈ P̃ for all n.
In Equation (16), the term p̄ captures the first-order

effects, whereas qn
captures the second-order effects,

which can be attributed to the (second-order) stochas-

ticity in waiting times; see Online Appendix A.

4.2. Patients’ Payoffs and Fluid Model Routing
Equations and Their Solutions

To formulate the patients’ payoff under a given strat-

egy profile pn � p̄ + (1/
√

n)qn
, we next characterize the

congestion in each DSA under that strategy profile. To

this end, note that

xn
k j(pn)� n

[
x̄k j(p̄)+

1

√
n

x̃k j(qn)
]
, (17)

where

x̄k j(p̄)� πkλk p̄k( j) and x̃k j(qn)� πkλk qn
k ( j). (18)

In otherwords, for DSA k, the strategy profile pn
results

in the first-order multiple-listing rates

x̄k j(p̄)� πkλk p̄k( j), j ∈ A(k), j , k. (19)

Also, the (first-order) rate of DSA k patients who do not

multiple list (and hence wait for a transplant locally) is

equal to (1− πk)λk + x̄kk(p̄)� [(1− πk)+ πk p̄k(k)]λk .

Given these first-order rates, we next focus on the

resulting transplant rates
22

in the fluid model of the

corresponding queueing network, where each node is a

multiclass, FCFS queue and corresponds to a DSA. The

first-order rates x̄k j define the topology of the queueing

network, which we elaborate on next. To understand

the structure of the resulting queueing network, it is

helpful to imagine a separate buffer for each flow x̄k j
for j ∈ A(k) and a separate buffer for the patients of

DSA k who do not have the option to multiple list.

Figure 2(a) showsDSA k patients whomultiple list in

DSA j , k, j ∈A(k). Note that yk j denotes the transplant

(or service) rate they receive from DSA j (or server j),
whereas zk j denotes the transplant (service) rate they

receive from DSA k. Figure 2(b) shows DSA k patients

who choose not to multiple list. The transplant (ser-

vice) rate they receive is denoted by zkk . Figure 2(c)

shows DSA k patients who do not have the option to

multiple list; νk denotes the transplant (service) rate

they receive. We also let w̄k denote the time to trans-

plant at DSA k conditional on receiving a transplant (in

DSA k). Finally, let ¯φk � e−γw̄k , which can be interpreted

as the effective transplant probability
23

at DSA k.
Given the routing rates x̄ � (x̄k j) and the resulting

queueing network described in Figure 1, the transplant

(or service) rates ȳ � ( ȳk j), z̄ � (z̄k j), and ν � (νk), the
waiting times w̄ � (w̄k), and the transplant probabilities

¯φ� ( ¯φk)must satisfy the following fluid model routing

equations (Equations (20)–(30)).

4.2.1. Fluid Model Routing Equations. For all k �

1, . . . ,K and j ∈ A(k) with j , k and x̄k j > 0, Equa-

tions (20)–(25) must hold:

if w̄k < w̄ j , then ȳk j � 0; (20)

if ȳk j � 0, then w̄k ≤ w̄ j ; (21)
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Figure 2. Transplant Rates for DSA k Patients

(a) j ≠ k (b) j = k (c) Local patients, who do not have
the option to multiple list

xkj
– xkk (1 – �k)�k

ykj zkk
zkj

�k

–

Note. Panel (a) shows the rates for DSA k patients multiple listing to DSA j, panel (b) shows the rates for DSA k patients choosing not to

multiple list, and panel (c) shows DSA k patients who do not have the option to multiple list.

if w̄ j < w̄k , then z̄k j � 0; (22)

if z̄k j � 0, then w̄k ≥ w̄ j ; (23)

w̄k �
1

γ
ln

(
1

¯φk

)
; (24)

ȳk j + z̄k j

x̄k j
� max{ ¯φ j , ¯φk}. (25)

For DSA k patients, who do notmultiple list, we have

νk

λk(1− πk)
� ¯φk for all k , (26)

z̄kk

x̄kk
� ¯φk provided x̄kk > 0, for all k. (27)

The access to transplant, i.e., the probability of

receiving a transplant, at DSA k, ¯φk must satisfy

¯φk �
µk +

∑
j∈A(k), j,k z̄ jk�{ ¯φ j≤ ¯φk } −

∑
j∈A(k), j,k z̄k j

λk +
∑

j∈A(k), j,k x̄ jk�{ ¯φ j≤ ¯φk } −
∑

j∈A(k), j,k x̄k j
. (28)

Also, the following flow conservation equation must

hold for each DSA:

νk +
∑

j∈A(k), j,k

ȳ jk +
∑

j∈A(k)
z̄k j � µk for all k. (29)

Last, we have the nonnegativity constraints:

ȳk j ≥ 0, z̄k j ≥ 0, w̄k > 0, ¯φk ∈ (0, 1). (30)

Equations (20)–(30) follow because the service disci-

pline at each DSA is FCFS. To elaborate further, con-

sider Equation (20): if w̄k < w̄ j , then, since the time

to transplant is shorter at DSA k, no DSA k patient

who multiple lists to DSA j will receive a transplant at

DSA j. Thus, we conclude ȳk j � 0. Similarly, if no DSA k

patient (multiple listing to DSA j) receives a transplant
from DSA j, then it must be that w̄k ≤ w̄ j . Otherwise,

if w̄ j < w̄k , then we would have ȳk j > 0, since time to

transplant w̄ j at DSA j is shorter than that in DSA k. In
the same vein, if w̄ j < w̄k ,then no DSA k patient who

multiple lists to DSA j receives a transplant at DSA k
in the fluid model because the time to transplant is

shorter at DSA j. Thus, z̄k j � 0. Equation (23) follows

similarly. Equation (24) follows from Proposition 12 (in

OnlineAppendixA), where the traffic intensity is given

by 1/ ¯φk .

Note that DSA k patients who multiple list to

DSA j receive a total transplant rate of ȳk j + z̄k j .

Thus, their probability of receiving a transplant equals

( ȳk j + z̄k j)/x̄k j . At the same time, since both nodes

(DSA k and DSA j) operate under FCFS, this should

equal the maximum of the transplant probabilities at

the two DSAs. Therefore, Equation (25) must hold.

Equations (26) and (27) follow similarly.

Equation (28) looks at the transplant probability at

DSA k, but it excludes the rate of DSA k patients

whomultiple list elsewhere, i.e.,

∑
j∈A(k), j,k x̄k j . In doing

so it appropriately subtracts the transplant rate these

patients receive from DSA k, i.e.,
∑

j∈A(k), j,k z̄k j . Note

that if z̄k j � 0, then it means that ȳk j > 0 and they should

be accounted for in calculating
¯φ j since their transplant

probabilitywill be
¯φ j > ¯φk . On the other hand, if z̄k j > 0,

then it must be that z̄k j/x̄k j �
¯φk (unless

24 ¯φ j �
¯φk)

by (25). So excluding them in Equation (28) causes no

harm. At the same time, Equation (28) also accounts

for patients multiple listing to DSA k from other DSAs.

Note that these patients should be accounted for only if

they receive a transplant at DSA k, which may happen

only if
¯φ j ≤ ¯φk for a DSA j patient multiple listing to

DSA k.
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Remark 1 (Fluid Model Routing Equations Under Global
FCFS). Equations (20)–(30) simplify significantly under

global FCFS, i.e., when w̄k � w̄ j for all i , j. Letting ¯φk �

M/Λ for all k yields the new set of equations.

The next major step in the analysis is to show that

Equations (20)–(30) pin down the first-order transplant

(i.e., service) rates, waiting times, and transplant prob-

abilities under multiple listing for the queueing net-

work described above.

Theorem 1 ties in the queueing network formulated

in this section to the selfish routing formulation of §3

and helps characterize the first-order behavior of the

organ allocation system under multiple listing.

Theorem 1. Let x be an equilibrium of the selfish routing
problem such that G(x) contains no directed cycles. Then the
fluid model routing Equations (20)–(30) corresponding to
flow x (i.e., putting x in place of x̄ in (20)–(30)) have the
unique solution given by

¯φk � φk for k � 1, . . . ,K,

and for k � 1, . . . ,K, j ∈ A(k) with j , k, we have that
z̄k j � 0,

ȳk j �

{
φ j xk j if xk j > 0,

0 otherwise,

z̄kk � φk xkk , and νk � φk(1− πk)λk , where

φ j �
µ j

λ j +
∑

l∈A( j), l, j xl j −
∑

l∈A( j), l, j x jl
. (31)

Remark 2. Theorem 1 pins down the first-order rates

given the multiple listing rates x, which in turn yields

the first-order component p̄ of the strategy profile pn
;

see (17)–(19).

The next subsection refines this characterization by

providing a second-order approximation to patients’

utility under multiple listing.

4.3. A Diffusion Approximation to Waiting Times
and Patients’ Utility Under Multiple Listing

Using the approximation based on the limit theorem

of Jennings and Reed (2012), we model the steady-state

waiting timeW n
j at DSA j by a normal randomvariable:

W n
j

D
� N(wn

j , (σn
j )2), (32)

where
25

wn
j �

1

γ
ln

(
Λn

j

µ j

)
and (σn

j )2 �
1

nγµ j
, and

Λn
j � λ j +

∑
k∈A( j), k, j

x̄k j(p̄)+
1

√
n

∑
k∈A( j), k, j

x̃k j(qn)

−
∑

l∈A( j), l, j

x̄ jl(p̄) −
1

√
n

∑
l∈A( j), l, j

x̃ jl(qn).

Rearranging terms, we write

Λn
j �

¯Λ j +
1

√
n
θj , (33)

where

¯Λ j � λ j +
∑

k∈A( j), k, j

x̄k j(p̄) −
∑

l∈A( j), l, j

x̄ jl(p̄), (34)

θj �
∑

k∈A( j), k, j

x̃k j(qn) −
∑

l∈A( j), l, j

x̃ jl(qn). (35)

Also note that
¯Λ j/µ j � 1/ ¯φ j . Then

wn
j ' w̄ j +

1

γ
√

n
¯φ j

θj

µ j
� w̄ j +

1

γ
√

n

θj

¯Λ j

,

where w̄ j � (1/γ) ln( ¯Λ j/µ j).
Given the virtual waiting times W n

j ( j � 1, . . . ,K) at

various DSAs, consider a patient living in DSA k who

multiple lists at DSA j. His virtual waiting time to

receive a transplant (conditional on surviving on dial-

ysis until then), denoted by W n
k j , is given by

W n
k j � min{W n

k ,W
n
j }.

Then the patient’s waiting time (more precisely, the

time spent on the waiting list) is min{X,W n
k j}, where X

is the time to death on dialysiswithout a transplant and

is an exponential random variable with mean 1/γ. As

done in §3,we assume that eachmultiple-listing patient

inDSA k wishes tomaximizehis life expectancy. The life

expectancy of a DSA k patient multiple listing to DSA j
is given by the following:

Ɛ[min{X,Wk j}]+ L�(Wk j < X),

where L is the posttransplant life expectancy, and

L > 1/γ.
Proposition 5. We have that

Ɛ[min{X,Wk j}]+L�(Wk j <X)�L−
(
L− 1

γ

)
�(Wk j >X),

where

�(Wk j > X)�
∫ ∞

0

γe−γx ¯Φ

(
x −wn

k

σn
k

)
¯Φ

( x −wn
j

σn
j

)
dx.

Since L > 1/γ, the patients’ objective is equivalent to
maximizing the probability of receiving a transplant,

i.e., �(Wk j < X). Moreover, the patients’ strategy can

be viewed as choosing qn
since pn

is of the form (16).

Then, fixing everyone else’s strategy qn
, the utility of

a patient living in DSA k taking action j, denoted by

uk( j; qn), is given by

uk( j; qn) � 1−�(Wk j > X)

� 1−
∫ ∞

0

γe−γx ¯Φ

(
x −wn

k

σn
k

)
¯Φ

( x −wn
j

σn
j

)
dx.
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4.4. Existence and Characterization of Equilibria
The following proposition establishes existence of an

equilibrium.
26

Proposition 6. There exists a symmetric mixed-strategy
equilibrium of the patients’ multiple-listing game.

Next, we turn to characterizing the properties of the

equilibria. In Online Appendix B, using a result from

Cramér (1946), we derive a tractable approximation to

patients’ utility uk( j; qn) for all k. To state the approxi-

mation, consider DSAs j, k and recall that the expected

virtual waiting time wn
i (for i � j, k) and the standard

deviation σn
i (for i � j, k) are given by

wn
i � w̄i +

1

γ
√

n
¯φi
θi

µi
and (σn

i )2 �
1

γnµi
, i � j, k.

There are two cases to consider for a patient listed at

bothDSAs j and k: case (i) is w̄ j < w̄k ; case (ii) is w̄ j � w̄k .

In Online Appendix B, we show that

�(min{W j ,Wk} > X)

�

{
�(W j > X)+ o(1/

√
n) in case (i),

�(W j > X)+O(1/
√

n) in case (ii).

In other words, the improvement in the patient’s util-

ity from listing at both DSAs (as opposed to listing

only at DSA j) is negligible in the diffusion scale, i.e.,

o(1/
√

n), in case (i), whereas in case (ii) it is significant,

i.e., O(1/
√

n).
Therefore, in what follows, we adopt the following

second-order approximation: In case (i),

�(W jk > X) ' �(W j > X), (36)

and in case (ii),

log

(√
n
[
1− 1

φ
�(X >Wk j)

]
+ γ∆

)
' C

1
+C

2

(∑
l� j, k

∆
√
γµl +

φlθl√
γµl

)
, (37)

where ∆, C
1
, and C

2
are positive constants specified in

Online Appendix B, and φ � e−γw̄k .

Using the second-order approximations in (36)

and (37), the following proposition characterizes an

equilibrium that is a (second-order) perturbation of

the selfish routing equilibrium solved for in Section 3.

This result is proved for general A(k) and πk , k �

1, . . . ,K. To state the result, we attach the superscript of

d( f ) to represent quantities under the diffusion (fluid)

approximation.
27

Proposition 7. There exists an equilibrium under the dif-
fusion approximation such that the geographic coefficients of
variation GCVn , d

φ and GCVn , d
w satisfy the following:

GCVn , d
i � GCVn , f

i +O(1/
√

n) for i � φ,w.

Moreover, for k � 1, . . . ,K, the following hold:

wn , d
k � w f

k +O(1/
√

n),
φn , d

k � φ
f
k +O(1/

√
n).

4.5. The Case of Widespread Multiple Listing and
No Travel-Radius Restrictions

In this section, we revisit the special case studied in

Section 3.1. In particular, we assume that (13) holds,

i.e., πk ’s are sufficiently large and A(k) � {1, . . . ,K} for
all k. As shown in Proposition 4, we have that

wk �
1

γ
ln

(
Λ

˜M

)
� w∗ and φk �

˜M
Λ

� φ∗ for all k.

(38)

We further assume
28

that the equilibrium flows of the

selfish routing problem satisfy the following:∑
j,k

xk j < πk for all k. (39)

Under these additional assumptions and approxima-

tions in (36) and (37), we characterize the equilibria

under the diffusion approximation further. To that end,

note that

wn
l � w∗ +

1

γ
√

n
φ∗
θl

µl
and

σn
l �

1

√
nγµl

, l � 1, . . . ,K,
(40)

where θl is given by (35). Also note that

∑K
l�1
θl � 0.

Proposition 8. All equilibria qn are payoff equivalent.
Moreover, every equilibrium leads to the same set of virtual
waiting time distributions at the various DSAs characterized
by (32) and (40), where

θ∗l �∆γΛ

( √
µl∑K

j�1

√
µ j

−
µl∑K
j�1
µ j

)
for l �1, . . . ,K. (41)

Without loss of generality, we relabel the DSAs such

that

µ
1
> · · · > µK ; (42)

i.e., DSAs with larger service rates have lower indices.

Since the variance σ2

l of the virtual waiting time at

DSA l is inversely proportional to the service rate µl
(see Equation (40)), the virtual waiting times at the

larger DSAs have smaller variances: σ
1
< · · · < σK . The

following proposition helps characterize the equilib-

rium further.

Proposition 9. We have that θ∗
1
< 0 < θ∗K . Moreover, there

exists l∗ ≥ 2 such that

θ∗
1
<θ∗

2
< · · ·<θ∗l∗−1

< 0≤ θ∗l and θ∗j > 0 for all j > l∗.
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Recall that the nominal offered load isΛ/ ˜M for every

DSA in the fluid-scale under the current assumptions.

Proposition 9 shows that the offered load of the larger

DSAs will be perturbed downward from this nomi-

nal value, whereas it will be perturbed upward for the

smaller DSAs. This result may seem counterintuitive

at first. The intuition will be provided after the next

proposition, which is immediate from (38), (42), and

Proposition 8.

Proposition 10. Expected virtual waiting times are de-
creasing with the size of the DSA and, hence, increasing
with the variance of waiting times; that is, wn

1
< wn

2
<

· · · < wn
K .

To see the intuition behind this result, note that all

DSAs offer the same virtual waiting time w∗ at the

fluid scale. Consider a patient choosing between two

DSAs (in addition to his own DSA) that have the same

waiting time w∗. Then since he wishes to minimize the

minimum of the waiting times at the chosen DSA and

his own, this “extreme seeking” behavior leads him to

pick theDSAwith the larger variance. Since the smaller

DSAs have larger variances, they are more appealing

(at equal expected waiting time). Thus, in equilibrium

we expect the larger DSAs to have slightly shorter

waits to offset the fact that their variance is smaller.

Although we relied on the approximation (37) to arrive

at this characterization, we arrive at the same insight in

Online Appendix E using a result of Clark (1961) and

verify that it is robust to the particular approximation

we used here.

We close this section by a characterization of the geo-

graphical equity in equilibrium.

Proposition 11. The geographical coefficients of variation
in equilibrium are as follows:

GCV d
w �

1

√
n
∆

w∗

√
1+

(
M
ˆM

)
2 M∑

k µ
2

k

−2

(
M
ˆM

) ∑
k µk
√
µk∑

k µ
2

k

,

GCV d
φ �

1

√
n

√√∑
k(µk(Λ/M)+ (1/

√
n)θ∗k)2(θ∗k/µk)2∑

k(µk(Λ/M)+ (1/
√

n)θ∗k)2
,

where ˆM �
∑K

k�1

√
µk and θ∗k is as given in Proposition 8.

5. Simulation Study
This section undertakes a simulation study to assess

the potential impact of multiple listing on geographic

equity. It explores the value of OrganJet and how it

depends on the problem parameters π � (πk) (the frac-
tion of patients who can multiple list) and d (geo-

graphic coverage). Our primary focus is on blood

types B and O, for which the organ shortage is most

severe.

The analytical model advanced in this paper makes

several simplifying assumptions for tractability. From

the perspective of geographic equity, the focus of our

paper, the single most important simplification is that

it ignores the geographical sharing of organs under the

current UNOS policy. (Recall that about 30% of organs

are eventually offered to patients outside the DSAs in

which they are procured;
29

see Davis 2011). The sim-

ulation study accurately captures the geographic shar-

ing of organs under the current UNOS policy. We also

incorporate the patients’ accept/reject decisions via a

simple model, which is calibrated using UNOS offer

data.

We use public UNOS data to estimate the patient

and organ arrival rates to various DSAs during 2009–

2013 (http://optn.transplant.hrsa.gov/data/), and pri-

vate UNOS organ offer and patient data to estimate

patients’ organ acceptance probabilities and the death

rate γ while waiting for a transplant (γ � 0.17); see

Online Appendix H for details.

We assume that each DSA k patient accepts an organ

offer with probability αk (k � 1, . . . ,K). If an organ is

offered to N patients, then the probability that it will be

accepted is 1−(1−αk)N . Setting N to the average num-

ber of organ offers in our data set and 1−(1−αk)N to the

percentage of organs accepted in DSA k, we estimate

αk , which is then used to simulate the accept/reject

decisions of DSA k patients.
30

The analysis is done for each blood type separately.

To validate the model, we run the simulation with

no multiple listing and compare the resulting median

waiting times to those provided by the UNOS (see

Table 1).
31

As a preliminary to simulating the system under

multiple listing, we derive the equilibrium multiple-

listing rates using the patient and organ arrival rates as

well as the death rate. This is done for a combination

of parameters π ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.50} and
d ∈ {700, 1,000, 1,200, 1,400, 1,600, 1,800, 2,000}. Recall
that patients can multiple list to DSAs that are within a

radius of d miles from their own DSA, and a multiple-

listing patient gets transplanted in the DSA that offers

him a desirable organ first. Our analysis reveals that

the multiple-listing equilibrium is robust to changes in

d for d ≥ 700. The equilibrium outcomes (e.g., arrival

rates, waiting times, access probabilities, and GCV

after multiple listing) are virtually identical for d ≥
1,000 miles and change only slightly for d ∈ [700, 1,000].
In contrast, the equilibrium outcomes are sensitive

to π.

Table 1. Median Waiting Times Resulting from Simulation

and Those Provided by the UNOS for Blood Types B and O,

Respectively

Year listed Simulation UNOS data

B 2001–2002 1,712 2,030

2003–2004 1,806 1,935

O 2001–2002 1,707 1,832

2003–2004 1,733 1,851
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Figure 3. (Color online) Equilibrium Multiple-Listing Rates for Blood Type O on a U.S. Map for the Case of π � 0.25 and

d � 1,200

Note. Each line corresponds to a particular flow, and for each flow, the large circle indicates the fly-out DSA and the small circle corresponds

to the associated fly-in DSA.

Figure 3 (and Figure 8 in Online Appendix G) dis-

plays multiple-listing rates for blood type O (and B) for

the case of π � 0.25 and d � 1,200.
32

Figure 4. (Color online) Waiting Times at 58 DSAs (Based on Patient and Organ Arrival Data from 2009–2013 Provided by the

UNOS) for Blood Type O Before and After Multiple Listing, for d � 1,200 and π � 0.25
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Table 2. Changes in Average Waiting Times of Blood Type O

Patients (in Years) After Multiple Listing at the Most and the

Least Congested Five DSAs

DSA Before After

Most congested New Providence, NJ 7.40 6.29

San Antonio, TX 11.17 9.53

Birmingham, AL 9.99 8.52

Oakland, CA 8.09 6.93

Philadelphia, PA 7.39 6.44

Least congested Winter Park, FL 2.56 5.33

Omaha, NE 2.38 4.89

North Liberty, IA 2.83 5.08

Maumee, OH 2.93 4.79

Westwood, KS 3.60 5.61

the changes in average waiting time for the most and

least congested five DSAs. Table 3 shows how GCVw
and GCVφ change

33

with π and d for blood types B

and O.

We observe that multiple listing improves geo-

graphic equity. To be specific, both GCVw and GCVφ

decrease as π increases. Moreover, the geographic

equity is not sensitive to the multiple-listing radius

provided d ≥ 700 miles. In particular, this suggests that

the assumption of A(k)� {1, . . . ,K} for all k, which was

made for tractability in Proposition 3 and Sections 3.1

and 4.5, is not too critical from an equity perspective.

Interestingly, even if everyone has the ability to mul-

tiple list, only 12% of the patients choose to multiple

list ex post, regardless of the blood type. However, the

Table 3. How GCVw and GCVφ Change with π and d for Blood Types B and O, Respectively

d π � 0.05 π � 0.10 π � 0.15 π � 0.20 π � 0.25 π � 0.50

B GCVw 700 0.2158 0.1857 0.1627 0.1460 0.1353 0.1258

1,000 0.2125 0.1828 0.1573 0.1467 0.1369 0.1235

1,200 0.2153 0.1835 0.1609 0.1436 0.1368 0.1222

1,400 0.2146 0.1817 0.1622 0.1446 0.1345 0.1272

1,600 0.2123 0.1806 0.1611 0.1464 0.1359 0.1233

2,000 0.2179 0.1787 0.1592 0.1441 0.1385 0.1258

B GCVφ 700 0.2059 0.1686 0.1365 0.1160 0.0884 0.0525

1,000 0.2047 0.1710 0.1337 0.1087 0.0857 0.0576

1,200 0.2048 0.1657 0.1386 0.1084 0.0886 0.0550

1,400 0.2040 0.1640 0.1325 0.1163 0.0872 0.0533

1,600 0.2088 0.1659 0.1328 0.1068 0.0938 0.0556

2,000 0.2079 0.1665 0.1401 0.1097 0.0873 0.0519

O GCVw 700 0.1998 0.1553 0.1308 0.1102 0.1025 0.0781

1,000 0.1995 0.1582 0.1315 0.1096 0.1008 0.0741

1,200 0.1994 0.1573 0.1321 0.1095 0.1020 0.0745

1,400 0.1993 0.1558 0.1315 0.1101 0.1007 0.0757

1,600 0.1997 0.1575 0.1314 0.1088 0.1004 0.0750

2,000 0.1983 0.1580 0.1310 0.1091 0.1007 0.0730

O GCVφ 700 0.2185 0.1819 0.1528 0.1294 0.1096 0.0528

1,000 0.2187 0.1827 0.1538 0.1303 0.1099 0.0522

1,200 0.2185 0.1834 0.1539 0.1299 0.1106 0.0493

1,400 0.2191 0.1815 0.1539 0.1310 0.1116 0.0504

1,600 0.2183 0.1828 0.1534 0.1299 0.1103 0.0515

2,000 0.2189 0.1834 0.1539 0.1297 0.1108 0.0511

resulting network of flows is complex, as can be seen

from Figure 3 (and Figure 8 in Online Appendix G).

This may make it operationally challenging to imple-

ment the solution. Nonetheless, as can be seen from

Figures 3 and 8 (in Online Appendix G), much of the

traffic is sourced from a small number of DSAs. There-

fore, focusing on these sources (or fly-out DSAs) leads

to a solution that is much easier to implement and yet

captures much of the value OrganJet offers; namely,

one can consider the case where OrganJet offers its ser-

vices only in certain DSAs.

First, we consider the fly-out DSAs: Oakland, Califor-

nia;NewYork,NewYork;NewProvidence,New Jersey;

and Philadelphia, Pennsylvania. Then we include

Waltham,Massachusetts, aswell. In the former case, the

number of people multiple listing is 35% (38%) of what

it would have been for blood type O (B) if OrganJet

was available everywhere. Including Waltham, Mas-

sachusetts, as a fly-out DSA increases this number

to 37% (38%) for blood type O (B). Finally, we also

include San Antonio, Texas, which brings the num-

ber of people multiple listing to 44% (42%) of what it

would have been for blood type O (B) if OrganJet was

available everywhere. Figure 5 displays the resulting

flows for blood typeOwhenOrganJet offers its services

only in the following DSAs: Oakland, New York, New

Providence, Philadelphia, Waltham, and San Antonio.

Figures 10–14 in Online Appendix G display the result-

ing flows for other cases discussed.
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Figure 5. (Color online) Equilibrium Multiple-Listing Rates for the Partial Solution for Blood Type O Patients

(π � 0.25 and d � 1,200)

Note. In this illustrative scenario, OrganJet offers its services only in certain DSAs: Oakland, California; New York, New York; New Providence,

New Jersey; Philadelphia, Pennsylvania; Waltham, Massachusetts; and San Antonio, Texas.

6. Concluding Remarks
Our goal was to understand the impact of the multi-

ple listing of ESRD patients when a timely jet option

is available on several important metrics, including

the waiting times, the fraction of patients who would

multiple list, the flow of such patients, the number

of organs harvested, and the mortality rate. Unfor-

tunately, a policy change to address the geographic

disparity does not seem feasible in the near future
34

(see Washburn et al. 2011). Our proposal to improve

geographic equity in the United States is in line with

the goals of the UNOS. The key innovation is to dra-

matically increase the range of options where a patient

can multiple list by providing jet access, now possible

in the United States (and parts of Europe) because of

wide availability of fractional use of midrange busi-

ness jets.

Our analysis shows that multiple listing benefits not

only those whomultiple list, but all patients in the con-

gested areas. Despite this, it is plausible that wealth-

ier patients may have improved access to transplants.

However, Yeh et al. (2011) note that there is greater rep-

resentation of minorities (especially African American

and Asian American patients) in the congested areas,

whowill benefit asmore patients from their DSAsmul-

tiple list elsewhere. Therefore, it is not a priori clear

what the net impact of these two forces will be, and it

constitutes an interesting future research topic.

The stylized model in this paper is just the first step

in understanding the important issue of geographic

disparity and possible solutions. There are several

interesting future topics of research, such as incorpo-

rating in the model the possibility of transplants across

compatible blood types, allowing nonstationarities in

the arrivals of organs and patients, and general queue-

ing service discipline capturing further details of the

organ allocation policy.

In parallel to this analysis, we are in discussions with

fractional jet companies, the UNOS, Medicare policy

makers, insurance companies, the transplant centers in

key fly-out and fly-in OPOs, and angel networks (who

can provide certain jet hours for free). This analysis has

given us the design parameters for the creation of an

operating system.
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Endnotes
1
There is one exception to this: No patient can list at a transplant

center in New York State if he is already listed at another transplant

center. However, people from New York can multiple list elsewhere

after they have first listed in New York.

2
Although the current practice of multiple listing may alleviate geo-

graphical disparities in principle, its impact is limited because of

the limited time a kidney can spend outside the human body, i.e.,

the cold ischemia time. The cold ischemia time severely restricts a
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patient’s ability to multiple list at transplant centers of his choosing

because he will have limited time to travel when he accepts a cadav-

eric organ offer. Indeed, Merion et al. (2004) studies the multiple-

listing patients’ choices of the second transplant center to list and

notes that multiple-listing patients are typically willing to make a

two to three hour highway trip, which, of course, limits their options

to those transplant centers within a radius of about 200 miles.

3
See https://www.unos.org/liver-public-forum-final-agenda-and

-presentations-available/ (accessed June 19, 2015).

4
Currently, only a small percentage of multiple-listing patients lists

to more than one DSA in addition to their own DSA.

5
The waiting time of a potential recipient is measured from the start

of dialysis under the new allocation policy.

6
A sensitized patient has exceptionally high antibody levels that

react to foreign tissues.

7
This is introduced in the revised allocation policy. However,

because every DSA is overloaded, we expect that the top 20% of the

organs will be allocated locally, and hence this change to the policy

will have no significant impact on the existing geographic inequity

as also predicted by the Kidney Allocation Committee.

8
Kidney allocation system in the United States can be viewed as

having 1 queue per DSA, resulting in 58 queues.

9
We assume that patients with living donors do not wait in the sys-

tem; i.e., they arrive with living donors and receive a transplant right

away. Although the assumption is not completely realistic, there is

some empirical evidence supporting it, namely, the median waiting

times for transplants with living donors are much less than those

with deceased donors. (The median wait times for living donors

vary from five to nine months across different regions, whereas the

wait times for deceased donors are several years.) In other words,

the patients with living donors are deleted from our model. More-

over, a simulation study (available from the authors) incorporates the

patients with living donors and shows that the results are insensitive

to this. To repeat, this is because the time to receive a transplant from

a living donor (conditional on receiving one) is significantly shorter

than that from a deceased donor. Similarly, the pediatric patients

constitute only a small fraction of patients, and they wait only a few

months, in stark contrast to adult patients.

10
Although one can further refine the patient types along other

attributes, this would offer no additional insights given that the cur-

rent allocation policy is blind to such attributes.

11
This is largely driven by the deceased donor kidney allocation

policy.

12
To study the impact of multiple listing on organ wastage, we

undertake a simulation study in Section 5 that takes into account

patients’ accept/reject decisions.

13
An extensive simulation study (available from the authors) shows

that the incremental improvement in geographic equity under triple

listing beyond that under double listing is not significant.

14
The edge (sk , sk) corresponds to patients inDSA k who canmultiple

list but choose not to and wait for a transplant locally.

15
Recent work by Lee et al. (2009) estimates the value of life at

$129,000 per year, which suggests that the dollar value of receiving a

transplant is several millions of dollars. Multiple listing can improve

the probability of receiving a transplant significantly, and hence is

valued similarly. In contrast, we estimate that the financial cost of

multiple listing is around (or less than) ten thousand dollars and is

negligible when compared with its potential benefit.

16
This rate includes local patients as well as those patients multiple

listing from other DSAs.

17
To see this, observe that (6)–(8) is equivalent to the selfish routing

formulation (NLP2) given on page 29 of Roughgarden (2002).

18
As our base case of analysis, we take d � 1,200 miles, which corre-

sponds to three hours of flight time with a midrange jet at the speed

of 400 miles per hour.

19
Under conditions of Proposition 4, multiple listing enables the

pooling of the distributed resources in a strong sense, which resem-

bles the complete resource pooling phenomenon observed in queue-

ing networks; see, for example, Harrison and Lopez (1999) and Ata

and Kumar (2005). Indeed, every patient experiences the same time

to transplant (conditional on receiving a transplant) and probabil-

ity of receiving a transplant regardless of the DSA he lives in and

whether or not he multiple lists. The equal waiting times at dif-

ferent DSAs are closely related to the notion of the global FCFS

phenomenon; see Talreja and Whitt (2008). The authors consider a

multiclass, parallel-server, overloaded queueing system with aban-

donments. They note that global FCFS holds in the fluid model if

when one atom of fluid arrives to the system before a second atom

of fluid, it starts service before the second atom of fluid. They show

that global FCFS is equivalent to having identical waiting times for

different queues. Interestingly, Talreja and Whitt (2008) show that in

a parallel-server fluid model with an arbitrary exogenous routing

structure, global FCFS may not be achieved. In contrast, the routing

structure is endogenous in our setting, and global FCFS is always

achieved, as shown in Proposition 4 (provided that there are suffi-

ciently many patients who can multiple list). Intuitively, whenever

wi < w j for DSAs i and j, patients will gravitate toward DSA i, and
away from DSA j to achieve wi � w j . Thus, it is natural to have global

FCFS and equal waiting times. Also note that our setting has another

important difference from Talreja and Whitt (2008): they consider a

many-server asymptotic regime, whereas we focus on a single-server

asymptotic regime as in Jennings and Reed (2012).

20
A superscript of n will be attached to the quantities of interest

corresponding to the nth system.

21
Candogan et al. (2011, 2013) study finite-player potential games

and the games that are close to those, referred to as near-potential

games, and establish that the (approximate) equilibria of the two are

close. Although our setting is different from theirs, their findings and

our choice of strategy space (see (16)) can be traced back to the same

intuition: A small perturbation of the problemprimitives should lead

to a small perturbation of the outcomes. Loosely speaking, once we

restrict attention to strategies of the form (16), the resulting game

studied in this section can be viewed as a near-potential game (by

virtue of Theorem 1), albeit with a continuum of agents. Thus, based

on the intuition from the work of Candogan et al. (2011, 2013), it is

natural to expect that the equilibrium outcomes are close to those of

the selfish routing game studied in Section 3. This intuition is con-

sistent with Proposition 7. However, without Theorem 1 and (16),

patients’ utilities are not necessarily close to those in the selfish rout-

ing game of Section 3. Hence, the game studied in this section is not a

near-potential game a priori. Therefore, the aforementioned intuition

hinges critically on (16) and Theorem 1.

22
Or, using the terminology that is standard in queueing theory,

those are the service rates received from various DSAs, which corre-

spond to the servers.

23
Recall from Propositions 12 and 14 of Online Appendix A that

w̄k � (1/γ) ln(λk/µk) and ¯φk � µk/λk , which yield
¯φk � e−γw̄k .

24
If

¯φ j �
¯φk , then the same reasoning applies.

25
Note that x̄k j corresponds to the (appropriately scaled) equilibrium

flows of the selfish routing problem.

26
We refer the reader to Mas-Colell (1984) (and Schmeidler 1973) for

a mathematically precise definition of Nash equilibrium for games

with a continuum of agents.

27
The quantities under the fluid approximation refer to those

derived in the selfish routing equilibrium; see Section 3.

28
Note that if (39) does not hold, then increasing all πk ’s by a small

ε > 0 ensures (39).
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29
Presumably, these are mostly lower-quality organs for which the

rejection rates, and hence, the discard rates, are significantly higher.

30
When a DSA k patient multiple lists to DSA j, he is assumed to

have the same probability, namely, αk , of accepting an organ offer

in both locations. A sensitivity analysis (available from the authors)

varies this probability for DSA j between αk and α j and shows that

the results are robust to this assumption.

31
Themedianwaiting times are listed in this table since averagewait-

ing times are not provided by the UNOS. However, the simulation

model also outputs the average waiting times, which are 1,804 and

1,826 for blood type B, respectively, for years 2001–2002 and 2003–

2004. For blood type O, average waiting times are 1,737 and 1,740,

respectively, for years 2001–2002 and 2003–2004.

32
Note that in Figure 3, some locations are both fly-in and fly-out

DSAs, e.g., Denver, Colorado, and Phoenix, Arizona. These DSAs are

net fly-in DSAs, and they help connect the West to the East, which

results in more balanced waiting times and access to transplants

across the country.

33
For brevity, we report only the outcomes of the simulation study

because we believe that they are more accurate representations of

reality. Nonetheless, we also observed that the analytical approxima-

tions (based on the fluid model) are close to (and, hence, consistent

with) the simulation results.

34
Otherwise, flying the organs could have been easier to implement.
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