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We use developments in full-information optimal stopping to decide kidney-offer admissibility depending on

the patient’s age in treatment, on his/her estimated lifetime probabilistic profile and his/her prospects on the

waiting list. We allow for a broad family of lifetime distributions – the Gamma – thus enabling flexible mod-

eling of patients survival under dialysis. We fully automate an appropriate recursive solution in a spreadsheet

application. It yields the optimal critical times for acceptance of offers of different qualities, and the ensuing

expected value-to-go as a function of time. The model may serve both the organizer of a donation program

for planning purposes, and the particular surgeon in making the critical decision at the proper time. It may

further serve the potential individual recipient, practicing present-day patient-choice. Numerical results and

their discussion are included.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The US UNOS (United Network for Organ Sharing), the ERBP (Eu-

ropean Renal Best Practice) and the Eurotransplant organization out-

line policies by which kidneys of the deceased are allocated lo-

cally, regionally and nationally (Eurotransplant manual, 2014; ERBP,

European Renal Best Practice; US HRSA/OPTN, 2008a). They empha-

size that the final decision to accept a particular organ remains the

prerogative of the transplant surgeon and/or physician responsible

for the care of the candidate in parallel, apatient choice practice has

developed in recent years. Often, the choice is relegated to the pa-

tient (See Ahn & Hornberger, 1996; Su & Zenios, 2004a; 2004b; 2006;

US HRSA/OPTN, 2008a and references therein). Patient-choice, par-

ticularly with regard to transplantation, benefits from hired profes-

sional advice. Because minor-quality kidneys are repeatedly refused

for transplantation by patients on the waiting list and by their sur-

geons, excessive organ wastage is generated. To cope with this prob-

lem UNOS issued the ECD (Expanded Criteria Donor) policy, so kid-

neys from marginal donors are reserved for patients who declare

in advance their willingness to accept such organs (US HRSA/OPTN,

2008a). Recently, shared decision making in kidney transplantation

has been advocated impressively by Gordon et al. (2013). The ques-

tion to be asked is what scientific and fact-based decision aids exist

to help the individual in making such a critical decision, or the orga-
∗ Corresponding author. Tel.: +97 2524588533.

E-mail address: michael.bendersky@gmail.com (M. Bendersky).
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izer of a donation program in assessing the future outlook of a pool

f individual patients. The lack of accurate aids is explained by the

mmense difficulty of the analysis of a regulated dual donor-recipient

treams (see Boxma, David, Perry, & Stadje, 2011; Yuan, Feldhamer,

afni, Fyfe, & Ludwin, 2002; Zenios, Cherow, & Wein, 2000). Con-

equently, alternative decision-analytic approaches are sought. Such

irections are heuristics - but still more analytically sound than the

xtant point system. For example, Yuan et al. (2002) suggest a fuzzy

ogic approach. The authors show, by way of example, that the fuzzy

ogic based policy is closer to an expert’s (a medical practitioner)

pinion than the policy attained by the UNOS point system. The au-

hors, Chun and Sumichrast (2006) suggest a “rank based” approach

or a selection problem applied to kidney allocation. The model pro-

osed in the present work provides an analytical tool to help bridge

he said decision-aid analytical gap, accompanied by an easy to use

xcel workbook. The model and the software should prove useful to

he individual patient, the consultant, the physician, and the social

lanner. We focus on the prospects of the individual patient. Optimiz-

ng the case of the single candidate (see e.g. Hornberger & Ahn, 1997)

pplies directly to patient-choice. As we show, it may further serve as

building block in the analysis of the dual (donor-recipient) queue-

ng system at large. We ask for the patient’s optimal, time-dependent,

cceptance-rejection policy for kidneys of various quality, as a func-

ion of his/her blood-type (ABO) and immunological tissue charac-

eristics (HLA). This policy depends also on the individual’s deterio-

ating lifetime distribution under dialysis, and we assume that this

ifetime distribution is Gamma(α, θ ) with the shape parameter α be-

ng some integer (Erlang distribution). We use the recent study by

http://dx.doi.org/10.1016/j.ejor.2015.12.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.12.009&domain=pdf
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endersky and David (2015) in full-information optimal stopping to

uggest a computational scheme which determines the optimal pol-

cy for the patient in question, in terms of critical times. The Gamma

as long been popular in survival analysis and in medical research,

ith practical examples dating back to the 1950’s (Collett, 2003; Law-

ess, 2011; Lee & Wang, 2003). The two-parameter Gamma family

urnishes enough agreement in fitting it to many relevant datasets

Gupta & Kunda, 1999), and it admits ordering in distribution and in

azard rate, with respect to the shape parameter. Yet, due to the fact

hat the Gamma has no closed form for its cumulative distribution

unction, researchers preferred sometimes the Weibull or the general-

zed exponential. Still, in our case we show that letting the shape pa-

ameter be a positive integer (the Gamma becoming Erlang) we can

ompute both the value functions and critical times while providing

nough flexibly for the modeling of different profiles of deterioration.

Our model relies on the quantification of rewards from each can-

idate and kidney-donation matching, on the ABO and HLA distribu-

ion in the population to which donors belong, and on the donation

ate μ. In fact, to pass from the realm of the single candidate to that

f the competitive world, we propose, by way of approximation, to

se a value of “effective μ” – an expected average rate of future offers

hich become available to the specific candidate in question. This fig-

re is to be assessed via databases such as UNOS’s or the ERA-EDTA’s.

he effective μ will also have to take into account the candidate’s po-

ition in the queue. The present exposition is supported by real data

egarding the above mentioned factors.

In Section 2 we briefly outline the determinants of successful

ransplantation. Section 3 provides basics of the needed temporal

odeling. Section 4 outlines the analysis of the stopping problem for

amma deterioration, and the single-candidate decision algorithm.

ection 5, accompanied with the appendices to this paper, demon-

trates the use of the Excel application with numerical examples.

hese examples are then followed by a discussion, and Section 6 con-

ludes the paper. We emphasize at the outset that the random offer

alue X in our model may not be based on HLA (Human Leukocyte

ntigens, see below) match levels, but rather on any finite set of real

alues of kidney quality, as perceived by the decision-maker. In particu-

ar, it may be based on subjective probabilities or on utilities as per-

eived by the client and/or his/her advisor within the praxis of patient

hoice. As the HLA remains a significant factor in the allocation of live

idneys worldwide, and because real-life data with respect to tissue

atching are available, we base our presentation on this criterion.

. Success in transplantation

We begin by discussing the major factors that influence the suc-

ess in kidney transplantation. These factors function in most alloca-

ion systems in prioritizing the pool of waiting candidates vis-à-vis

ny pending donor kidney.

.1. The HLA tissue matching

Human tissue cells contain antigens that vary from person to per-

on and are immunologically relevant to the specific organ. The sys-

em of these antigens is known as the HLA system. It can be sub-

ivided into two groups: Class I that contains A, B or C antigens, which

re present in body cells that have a nucleus, and Class II that con-

ains antigens of the types DP, DR and DQ which are present only in

he membranes of the cells responsible for triggering the immune

ystem. The A, B,...,DQ antigens are arranged in sites A, B,...,DQ re-

pectively. Every HLA site contains two alleles. Since the 80’s, from

he entire HLA genetic complex, sites A, B and DR were considered

ransplant relevant antigens. If transplanted into another individual,

hey can cause an immune response that can lead to the rejection

f the graft. Yet, different medical centers put different emphases

n the three sites, so that the same match combination may score
ifferently. Part of the question is whether the benefit from HLA

atching is worth the economic and social costs, including the ra-

ioning of fewer donor organs to black recipients (see Held et al.,

994; Vereestraeten et al., 1999). Lefaucheur et al. (2010) is an ex-

mple for recent years renewed emphasis on the HLA matching for

raft survival. In this exposition, we assume that any A, B or DR donor

ntigens which do not match the recipient can trigger an immune re-

ponse. The higher the total number of such antigens, the lower the

hance of a successful transplant. So, seven possible match-levels are

ossible - zero (all 6 alleles, aranged in three sites, do match) to six

ismatches (none match). In assessing the future prospects of a given

andidate, the HLA gene-distribution in the relevant donor popula-

ion is assumed to be known.

One comprehensive source concerning histocompatibility testing

s Cecka and Reid (2005).

.2. ABO blood type

The blood types of the donor and the recipient must also match.

n allocation systems worldwide O donors go to O recipients exclu-

ively, except for the case when there is a recipient with a zero anti-

en mismatch. (UNOS and Eurotransplant have a similar ABO-B rule

or donors and recipients). The incorporation of the ABO match prob-

bility to the tissue match probability of a random donor to a given

andidate is routine (see Barnes & Miettinen, 1972). In our model,

his probability may simply multiply the relevant donor arrival rate to

ield an effective μ. (Since a Poisson process with rate μ and a prob-

bility p of counting any arrival yields a Poisson process with rate μp.

ee also Section 3.2 below). One may assume statistical independence

etween tissue classification and blood type.

.3. Preferred candidates: pediatric, long waiting and sensitized (PRA)

Pediatric patients are allocated extra score points. Also, each ex-

ra year on the waiting list credits the candidate with extra points.

hese two quantifying criteria may also be taken into account by

n effective μ. There is an additional determinant factor in trans-

lantation, called PRA (Panel Reactive Antibodies). It refers to a pe-

iodical immunological check of each candidate (Cecka & Reid, 2005;

urotransplant manual, 2014). Although the PRA status is included

n allocation systems, we choose not to include it in the present

xposition.

.4. x-year graft survival, QALY, and discounted-QALY

Let us denote the reward for a given candidate from a random of-

er by X, a discrete random variable. In this presentation X is a one-

o-one function of I, the total number of mismatches in the HLA A, B

nd DR sites combined. Medical assessments as to how to translate

he number of HLA-mismatches I to X vary, mainly because contro-

ersy surrounds the question of what gain needs to be measured. See

old, Siegel, Russell, and Weinstein (1996) for the prevailing notions

f QALY (quality-adjusted life-years), QALE (quality-adjusted life ex-

ectancy) and discounted-QALY (see also Evans, Tavakoli, & Crawford,

004 for a critique). The present work adopts an alternative measure,

hat of (post-transplant) 3-years graft-survival. Table 1 below summa-

izes the distribution of X which is used for the numerical examples

n Section 5. The sources of these data are indicated in Section 5.1 and

n Appendix A.

. Temporal modeling with gamma deterioration

Obviously, the deteriorating profile of lifetime under dialy-

is treatment must be reflected in any prescriptive model for

cceptance-rejection of a kidney for transplant. David and Yechiali

1985) used dynamic programming to show that if the lifetime of
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Table 1

Reward X (3-years graft survival rates) as a function of HLA

mismatch.

Mismatch Value x of X P(X = x) P(X ≤ x) = F (x)

(I = 6) x7 = 0.750 0.1642 0.1642

(I = 5) x6 = 0.771 0.3632 0.5273

(I = 3) x5 = 0.786 0.3103 0.8377

(I = 3) x4 = 0.802 0.1306 0.9683

(I = 2) x3 = 0.818 0.0285 0.9968

(I = 1) x2 = 0.833 0.0031 0.9999

(I = 0) x1 = 0.850 0.0001 1.0000

V

tt1 = 0 t3t2

x3

x2

x1

t4

x4

xm

λ(t)

Fig. 1. The threshold value λ(t) as a function of time.
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the candidate is Increasing in Failure Rate (IFR), which is certainly the

case under kidney failure, then the optimal threshold function λ(t) for

accepting an offer is a continuous non-increasing function of time.

Further progress is offered in the recent optimal-stopping study by

Bendersky and David (2015), which provides an explicit form for λ(t)

in the case of any Erlang underlying deterioration and dicrerte ran-

dom variable X of offer value.

3.1. The lifetime distribution

The hazard-rate (failure-rate) function of a lifetime is defined

by r(t) = lim
x→0

1
x

(
1 − Ḡ(t + x)/Ḡ(t)

)
where Ḡ(t) = 1 − G(t) is the sur-

vivor function and G(t) is the lifetime cdf. For the Erlang(n, θ )

r(t) = 1

(n − 1)!

/
n−1∑
k=0

θ k−ntk−n+1

k!
. (1)

(See e.g. Lee & Wang, 2003, p. 152.) The distribution �(α, θ ) (α = n

for the Erlang case as the shape parameter) is IFR for α ≥ 1 (Barlow &

Proschan, 1975). From Eq. (1) it is straightforward that lim
t→∞

r(t) = θ .

Also, the presentation [r(t)]
−1 = ∫ ∞

0

(
1 + u

t

)α−1
e−θudu (see Barlow &

Proschan, 1975 again) gives that if X ∼ �(α1, θ1), Y ∼ �(α2, θ2) and

α1 > α2 > 1 then if θ1 = θ2, rX(t) < rY(t) for all t > 0. For integer α’s it

is intuitive that Y is more surviving than X by the interpretation of the

Erlang-n as a sum of n memoryless shocks. This observation is useful

in comparative interpretation of lifetimes, and in assigning them a

Gamma distribution. It is worth noting that if X and Y have the same

expectation and α1 > α2 > 1 then θ1 > θ2 and no hazard ordering

applies (See Fig. 3 in Section 5.1 below).

3.2. Poisson donation

We assume that the decision maker faces a random Poisson

stream of offers, with rate μ. In our examples, below, the original

value of μ is modified to account for scaling of time. If an estimated

proportion of the offers is discarded, e.g. because kidneys go to pre-

ferred candidates on the waiting list, an effective μ may be used, and

the stream remains Poisson.

3.3. The type of optimal policies

In defining V(t, x) — the optimal expected discounted reward from

offer X = x at time t and on, V(t) — the optimal expected reward at

time t just before a bid arrives, and λ(t) the future expected reward if

the offer is arbitrarily rejected at time t while an optimal strategy is

applied thereafter, the basic dynamic-programming equation is

(t) = EXV (t, X ) = E[max (λ(t), X )].

X admits a finite number of values x1 > x2 > · · · > xm, with proba-

bilities p1, p2, . . . , pm respectively. In our case m = 7 as the number

of possible mismatches. x1 is the kidney value for I = 0 — zero HLA

mismatches — down to x7 which is the kidney value for I = 6 — max-

imum HLA mismatches. Let t = max{0, λ−1(x )}. If λ(t) > x for all
i i i
≥ 0 set ti = ∞. The ti’s are the critical times. 0 = t1 ≤ t2 ≤ · · · ≤ tm

ecause λ is non-increasing in t for any IFR lifetime. A region is a pe-

iod between two consecutive ti’s. Thus, for region i, 1 ≤ i ≤ m, we

ave xi+1 ≤ λ(t) ≤ xi and t
i
≤ t ≤ t

i+1
(with t

m+1
≡ ∞). When in re-

ion i, only xi and higher offers (xj s.t. j ≤ i ) are acceptable. (i − 1 and

maller numbers I of mismatches are acceptable). Some regions can

e vacuous. Fig. 1 provides a schematic depiction of λ(t).

. The solution for any Erlang lifetime. An algorithm to decide

ritical times

In this Section we present needed material from Bendersky and

avid (2015), and move on to formulate a solution algorithm, appli-

able to the kidney application.

For the Erlang case we have that

(t) =
(

Die
−Ait + Bi

1 + Ai

n−1∑
k=0

(
1 − (−Ai)

k−n
) tk

k!

)/
n−1∑
k=0

tk

k!
(2)

or each region i, where Ai and Bi are constants depending only on the

istribution function of X, FX(x). Di is an integration coefficient. Each

egion i has its own Ai, Bi and Di. The Ai’s and the Bi’s are calculated

sing the following result:

roposition 4.1.

i =
{

−μq1x1 if i = 1

−μ
[∑i−1

j=1 qj(x j − x j+1) + qixi

]
if i = 2, . . . , m

i = −(1 + μqi), i = 1, . . . , m where qi = ∑i
j=1 p j, i = 1, 2, . . . , m.

Proofs for Eq. (2) and Proposition 4.1 are detailed by Bendersky

nd David (2015).

Having Proposition 4.1 we need to determine imax - the last re-

ion attained by λ(t). Since λ(t) is bounded ∃ lim
t→∞

λ(t) = L and since

imax
< 0, we have from (2) that Dimax

= 0 (otherwise λ(t) does not

onverge). In dividing the nominator and denominator of (2) by tn−1

t follows that

= Bimax

Aimax

(3)

llowing for the determination of imax : by monotonicity of λ(t) there

xists exactly one region i for which the ratio in the R.H.S of (3) lies

etween xi+1 and xi and this is the rightmost region (in t). imax = i.

See Section 5 below for a numerical example how to obtain imax and

). Now,(
timax

)
= ximax

. (4)

imax
(the last critical time which is attained by λ(t)) can be found by

2), that is, by solving for t in:

imax
= Bimax

1 + Aimax

·
n−1∑
k=0

tk

k!

(
1 −

(
−Aimax

)−(n−k)
)/

n−1∑
k=0

tk

k!
. (5)

aving timax
, the rest of the critical times t∗

i
, and Di’s , i ≤ imax , are

omputed by an iterative procedure as explained in Section 4.1 below.
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Fig. 2. The threshold function and the critical times in the α = 2 example.
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his procedure further gives an explicit expression for λ(t) for all t

region dependent).

.1. Algorithm to decide critical times

First, determine Ai, Bi using Proposition 4.1 and determine imax

nd timax
by (3) and (5). Next, let i = imax, and specify Di−1 by:

i−1 =
n−1∑
k=0

tk
i
eti Ai−1

k!

(
xi − Bi−1

Ai−1 + 1

(
1 − (−Ai−1)

−(n−k)
))

. (6)

i−1 is extracted from solving the equation

i−1 =
(

Di−1e−tAi−1 + Bi−1

Ai−1+1

n−1∑
k=0

tk

k!

(
1−(−Ai−1)

−(n−k)
))/

n−1∑
k=0

tk

k!

(7)

n t. Applying (6) and (7) repeatedly by letting i := i − 1 we obtain

ll the lower critical times. When (7) admits no solution, the process

tops. We let imin = i and t1 = ... = timin−1 = 0.

A pseudocode of this algorithm appears in Appendix B.

The optimal policy is determined as follows: when the waiting

ime t is between ti and ti+1 the individual accepts only bid xi and

igher. Bids x1, . . . , ximin−1 are always acceptable. Bids ximax+1, . . . , xm

re never acceptable.
m

. Numerical results, implications

Based on the results of Section 4 and on the solution algorithm, we

resent a few numerical examples. The two examples in Section 5.1

mphasize the significance of coping with the general Erlang case in

odeling deterioration. It is shown that fitting the life distribution

n changing the shape parameter n while maintaining a fixed life ex-

ectancy may affect considerably the optimal policy. In Section 5.2

e demonstrate the use of the application in research and planning,

y studying the impact of donation rate. (Although numerical figures

re presented in 4 decimal places in this paper, subsequent calcula-

ions are based on sufficient precision).

.1. The effect of the shape parameter

We choose for the patient under discussion the following HLA

ntigens: # 2 and # 2 in site A (homozygous), #8 and #35 in site B, and

0 and #4 in site DR. The entire gene distributions for the three sites,

or the US population, were taken from UNOS website (see Table A.5

n Appendix A below). For the quantification of the offer value X we

se data regarding 3-year survival rate, taken from US HRSA/OPTN-

RTR (2008b). (See Table 5.10a: Unadjusted Graft Survival, Deceased

onor non-ECD Kidney Transplants, Survival at 3 Months, 1 Year, 3

ears, and 5 Years). The probabilities of the seven possible values of X

(I = 0), . . . , P(I = 6) are calculated by Eqs. (C.3)–(C.9) in Appendix C

elow. All combined, the data lead to Table 1, the distribution of

idney values X. The donation rate, as experienced by the decision-

aker, is taken to be μ = 20 annually. The candidate’s life expectancy
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Table 2

Values of A and B for Eq. (2).

Region index Region in offer values A B B/A

7 0 ≤ λ(t) ≤ 0.75 −51.0000 −38.8898 0.7625

6 0.75 ≤ λ(t) ≤ 0.771 −42.7916 −32.7336 0.7650

5 0.771 ≤ λ(t) ≤ 0.786 −24.6334 −18.7336 0.7605

4 0.786 ≤ λ(t) ≤ 0.802 − 9.1166 −6.5373 0.7171

3 0.802 ≤ λ(t) ≤ 0.818 − 2.5849 −1.2989 0.5025

2 0.818 ≤ λ(t) ≤ 0.833 − 1.1595 −0.1329 0.1147

1 0.833 ≤ λ(t) ≤ 0.85 − 1.0064 −0.0054 0.0054

Table 3

Optimal Policy for α = 2 and α = 8.

Optimal policy - time until rejection (years)

Mismatch α = 2 α = 8

I = 0 Always accept Always accept

I = 1 Always accept Always accept

I = 2 Always accept Always accept

I = 3 Always accept 1.11

I = 4 0.53 2.23

I = 5 4.89 3.51

I = 6 Never accept 7.03

Table 4

The impact of donation rate – reject-until figures (years).

I μ = 10 μ = 20 μ = 50 μ = 400 μ = 1000 μ = 10000

(# MM) (/yr.) (/yr.) (/yr.) (/yr.) (/yr.) (/yr.)

0 accept accept accept accept accept accept

1 accept accept accept accept accept 0.14

2 accept accept accept 0.09 0.42 reject

3 accept accept 0.12 5.67 reject reject

4 0.08 0.53 2.48 reject reject reject

5 1.13 4.89 reject reject reject reject

6 31.45 reject reject reject reject reject

d

i

5

i

w

T

s

v

m

w

e

c

c

t

m

o

o

i

f

w

s

A

p

5

b

a

λ
e

b

5

i

o

fi

m

X

R

c

o

6

t

is taken to be 5 years. This figure relates to lifetime under dialysis

which presently pertains to patients in the age group of 60–64 years.

(European data, see European Renal Association & Registry, 2008

p. 79). In the first example we assume that α = 2. Thus we may sub-

stitute θ = 1 in the computations and μ = 20 · 2.5 = 50 (2.5 years is a

new time unit which complies with a Gamma expectation α/θ = 2).

Using Table 1 and Proposition 4.1 we arrive at Table 2, which specifies

the required constants for the computations.

To demonstrate the algorithm and the iterative scheme, we solve

this example manually. We start in identifying the maximal-index re-

gion in Table 2 which is attained by λ(t). For imax = 6, L ≡ lim
t→∞

λ(t) =
Bimax

/Aimax
= 0.7650. (Indeed, this value is between x7 = 0.75 and

x6 = 0.771. See Eq. (3). This identification of imax and L is easily au-

tomated, based on Table 2).

So, in [t6, ∞] Eq. (2) takes the simple form

λ(t) = b + at

1 + t
, (8)

where b = B6
A6

(1 − 1
A6

) = 0.7828 and a = B6
A6

= 0.7650. (This is be-

cause D6 = 0. Note that n is the Erlang parameter, n = α = 2).

The determination of ti in this iteration is immediate by in-

verting (8), t6 = λ−1(0.771) = 1.9560, which is 4.89 years. Next,

the determination of D in the following region (Region 5) is

based on the continuity of λ(t) and on the recent knowledge

of the rightmost t in that region. D5 = 2.1458 · 10−25 (substitute

A5, B5, t6 = 1.9560 and x6 = 0.771 in the R.H.S. of Eq. (6)). The

following step is the inversion t5 = λ−1(0.786) = 0.2104, which

is 0.53 years. Here λ(t) = (b + at + D5e−A5t )/(1 + t) where b =
(B5/A5)(1 − 1/A5) = 0.7914 and a = B5/A5 = 0.7605. For Region 4,

D4 = 6.9913 · 10−4 and we have t4 = 0. The times t3 = 0, t2 = 0, t1 =
0 are set to 0 as well, and we are done. See Fig. 2 and Table 3 for α = 2.

As a second example, consider the case where α = 8 while we

keep the former life expectancy. Thus θ = 1.6. The annual arrival re-

mains the same as before, now translated to μ = 12.5 with θ = 1.

Table 1 is still in effect (same recipient with same donor popula-

tion as before). The obtained critical times are given in Table 3,

column α = 8. The calculations are performed using the Excel

spreadsheet.

It can be seen that in the beginning the lifetime distribution

with α = 2, the more skewed, is better for the patient than the

distribution with α = 8. But this preference is reversed as time under
ialysis goes by, an outcome might have been anticipated in examin-

ng the respective failure rates as functions of time. See Fig. 3.

.2. The impact of donation rate

As is frequently the case with spreadsheet applications, various

mportant sensitivity analyses may be easily performed. To illustrate,

e check the sensitivity of the critical times to thedonation rate.

able 4 below summarizes “reject until” results. They are obtained

imply by adjusting the μ input-cell in the main sheet. We raise the

alue of μ from 10 to 20, 50, 400, 1000 and 10000. For each HLA

atch level (or, more generally, kidney-candidate matching reward

hich is distributed as X), the corresponding critical time is stated. As

xpected, the candidate becomes pickier as μ rises. Equivalently, the

andidate becomes less picky with dimmer prospects of future offers,

ombined with deteriorating life expectancy upon dialysis. However,

he exact figures are hardly predictable. For μ = 10 a kidney with 3

ismatches is always accepted. If μ is 5 times bigger, the candidate

nly enjoys some 45 days (0.12 year) of rejecting such a kidney (I = 2

r I = 1 are still never rejected). For μ = 1000 — only a fictional figure

n the present state of affairs — a kidney with I = 2 will be rejected

or about the first 5 months. However, no kidneys with lesser value

ill be accepted thereafter. Thus, even a candidate with top-priority

hould not reject a second-best kidney (I = 1), after some 2 months.

perfect match in unrelated donor transplantation is a golden op-

ortunity.

.3. Exponential lifetimes

The spreadsheet shows that if α = 1, the results are always split

etween accept and reject. This is no surprise, because α = 1 means

n exponential, memoryless lifetime. Thus, the threshold function

(t) is constant over time, a horizontal line in Fig. 1. Temporal mod-

ling in past research assumed the exponential, which proves now to

e over-simplistic.

.4. Alternative settings

It is evident that the X − P entries (value, or utility, vs. probabil-

ty) for the algorithm may be arbitrary. In the spreadsheet, one may

verwrite the existing formulas for the HLA probabilities, and enter

gures as one sees fit. For more than 7 X-values, some programming

odification is required. For less than 7 values, the extra lines in the

− P array may stand for dummy offers, in a straightforward manner.

ecall that for applications such as patient choice (not necessarily in

ontext of transplantation), the X distribution may even be tentative

r subjective.

. Conclusion

The large discrepancy between supply and demand in kidney

ransplantation, the high degree of waste of donated kidneys, and the
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Table A.5

HLA- A,B,DR gene distribution in the US.

A Antigens P B Antigens P B Antigens P DR Antigens P

0 0.100 0 0.075 53 0.032 0 0.123

1 0.111 5 0.002 54 0.001 1 0.072

2 0.215 7 0.079 55 0.012 2 0.040

3 0.101 8 0.099 56 0.005 3 0.097

9 0.002 12 0.001 57 0.028 4 0.172

10 0.002 13 0.018 58 0.019 5 0.012

11 0.047 14 0.022 59 0.000 6 0.030

19 0.003 15 0.002 60 0.043 7 0.082

23 0.040 16 0.001 61 0.012 8 0.043

24 0.082 17 0.007 62 0.052 9 0.021

25 0.013 18 0.048 63 0.010 10 0.010

26 0.032 21 0.001 64 0.001 11 0.072

28 0.039 22 0.002 65 0.009 12 0.020

29 0.031 27 0.031 67 0.000 13 0.069

69 0.002 45 0.017 81 0.001 99 0.000

74 0.007 46 0.002 99 0.000 103 0.000

80 0.001 47 0.003 4005 0.000 Sum 1

99 0.000 48 0.004 5102 0.000

2403 0.000 49 0.021 7801 0.001

Sum 1 50 0.014 8101 0.000

51 0.040 8201 0.000

52 0.012 Sum 1
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roblematic equity issues involved in managing the waiting list, all

all for carefully designed sharing rules, as well as for a means to

redict the outcomes of the frequent changes in these rules. At the

ame time, increasing power has been placed in the hands of the in-

ividual kidney recipient. A mathematically based, user friendly tool

s called for to aid individuals in making sound acceptance decisions.

n this paper we suggest such a tool, based on continuous-time prob-

bilistic dynamic programming. Its main advantage lies in its sim-

licity, portability and flexibility. Indeed, any researcher may imple-

ent changes in this tool as he/she sees fit, as well as any potential

ransplant recipient. The individual may use the model in an utterly

ubjective manner (independent of accepted classification of factors

r their scoring by the centralized decision maker). We propose, pre-

umably for the first time, a convenient vehicle for both computing

he probabilities for a given candidate, and his/her prospective out-

ook in the time axis. Specifically, critical times are calculable for the

ompromise on any given kidney value as waiting time progresses.

utput is dependent on the genetic statistics of the relevant, partic-

lar, population. The model we propose, and the computational tool,

re not restricted to the kidney application, and they can be applied

o any finite-valued, “secretary”-like problem of patient-choice under

eterioration.

In numerical examples we exemplified the use of the model in

tudying the impact of donation rate, and the sensitivity of the op-

imal timing to the proper representation of the evolution of fail-

re rate. Other workable sensitivity analyses might concern the de-

endence of the outcome on the population genetics statistics, on

he estimation of utilities, and on the patient’s personal attributes

HLA and ABO). All these options bear significance for debated is-

ues in the field of transplantation, which now may be investigated

iven access to clinical databases. The spreadsheet decision-making

ool is helpful because Excel is so easy in answering “what if” ques-

ions, and because the sensitivity of the critical times to μ is not dra-

atic: the accuracy of the reward figures (X) turns out to be the most

nfluential.

ppendix A. UNOS’s HLA gene statistics

The data in Table A.5 underline the computation which appears in

he main text.
ppendix B. A pseudo-code for gamma deteriorating lifetimes

The following pseudo-code pertains to the material in Section 4

bove.

1. Enter x1 > x2 > · · · > xm , p1, p2, . . . , pm // Offer values and

their respective probabilities.

2. Enter n ; E ; μ // Erlang shape parameter, Erlang expected life-

time (yr.), annual donation rate.

3. For 1 ≤ i ≤ m {qi :=
i∑

j=1

p j}
4. μ := μ · E/n; xm+1 := 0

5. For 1 ≤ i ≤ m: {{If {i = 1}
Bi := −μq1x1

else

Bi := −μ[
∑i−1

j=1 q j(x j − x j+1) + qixi]}
Ai := −(1 + μqi)

If {xi+1 ≤ Bi/Ai ≤ xi}; imax := i D := 0}
6. i := imax

7. λ+ := xi, A := Ai, B := Bi

8. t− := λ−1(λ+) where λ(t) = (De−tA + B
A+1

∑n−1
k=0

tk

k!

(1 − (−A)−(n−k)))(
n−1∑
k=0

tk

k!
)−1

9. {If {no positive value for t in the inversion (step 8)}
{For 1 ≤ j ≤ i tj := 0; Go to 10}

else

ti := t− ; D := ∑n−1
k=0

(t−)keAt−
k!

(xi − B
A+1

(1 − (−A)−(n−k))) ;
i := i − 1; Go to 7}

10. For 1 ≤ i ≤ imax ti := ti · E/n // Adjust the obtained ti’s for years.

These are the required critical times.

11. End

ppendix C. HLA mismatch computation

For this presentation to be complete, we reproduce here some

eeded results from Alalouf, David, and Pliskin (2012). The Eqs. (C.1)–

C.9) below are embodied in the spreadsheet application, relative to

he data in Appendix A.
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The Distribution of I

Let a1, a2, . . . , an be the population of genes relevant to a given

HLA site in humans, say HLA-A. Denote by fm the probability (per-

tinent to the relevant society or country) to find gene am in the

first allele (second allele) of a random person, recipient or donor,

m = 1, 2, . . . , n. Let ai and aj be the alleles possessed by the recipient

at hand. Define

fu =
{

fi + f j i f i 
= j

fi i f i = j
(C.1)

the u notation is short for u(i, j) = {ai ∪ a j} and, thus, fu is simply the

probability for a random allele of the donor to be possessed by the

recipient as well. (The case of i 
= j in (C.1) is calledheterozygosity and

the case i = j is called homozygosity). Define also

S(−u, f ) =
{

�
m

f 2
m − f 2

i
− f 2

j
i f i 
= j

�
m

f 2
m − f 2

i
i f i = j .

(C.2)

This is the probability that the donor is homozygote, with a double

allele, which is not possessed by the recipient.

Parallel to the notation for site A, define bk and bl (co and cp) -

alleles of recipient’s site B (DR) and gu and hu the corresponding prob-

abilities defined similarly to fu. S(−u, g) and S(−u, h) are defined re-

spectively. Finally let I be the total number of HLA mismatches in the

three sites. The probability of perfect match is clearly

P(I = 0) = f 2
u · g2

u · h2
u. (C.3)

Since I = 0 is comprised of the three disjoint events exactly one mis-

match, and it occurs in A (or B or DR, respectively),

P(I = 1) = [2 fu · (1 − fu) + S(−u, f )] · g2
u · h2

u

+ [2gu · (1 − gu) + S(−u, g)] · h2
u · f 2

u

+ [2hu · (1 − hu) + S(−u, h)] · f 2
u · g2

u, (C.4)

where the terms in brackets signify exactly one mismatch in site A,

B, or DR, respectively. Following similar reasoning (see Alalouf et al.,

2012 for details)

P(I=2) = [2 fu · (1− fu)+S(−u, f )] · [2gu · (1 − gu) + S(−u, g)] · h2
u

+ [2 fu · (1− fu)+S(−u, f )] · [2hu · (1−hu)+S(−u, h)] · g2
u

+ [2gu · (1−gu)+S(−u, g)] · [2hu · (1−hu)+S(−u, h)] · f 2
u

+
[
(1 − fu)

2 − S(−u, f )
]

· g2
u · h2

u

+
[
(1 − gu)

2 − S(−u, g)
]

· h2
u · f 2

u

+
[
(1 − hu)

2 − S(−u, h)
]

· f 2
u · g2

u (C.5)

P(I = 3) = [2 fu · (1 − fu) + S(−u, f )] · [2gu · (1 − gu) + S(−u, g)]

· [2hu · (1 − hu) + S(−u, h)]

+
[
(1− fu)

2−S(−u, f )
]

· [2gu · (1 − gu)+S(−u, g)] · h2
u

+
[
(1− fu)

2−S(−u, f )
]

· [2hu · (1 − hu)+S(−u, h)] · g2
u

+
[
(1−gu)

2−S(−u, g)
]

· [2 fu · (1 − fu)+S(−u, f )] · h2
u

+
[
(1−gu)

2−S(−u, g)
]

· [2hu · (1 − hu)+S(−u, h)] · f 2
u

+
[
(1−hu)

2 − S(−u, h)
]

· [2gu · (1 − gu)+S(−u, g)] · f 2
u

+
[
(1−hu)

2 − S(−u, h)
]

· [2 fu · (1 − fu)+S(−u, f )] · g2
u

(C.6)

P(I = 4) =
[
(1 − fu)

2 − S(−u, f )
]

· [2gu · (1 − gu) + S(−u, g)]

· [2hu · (1 − hu) + S(−u, h)]
+
[
(1 − fu)

2 − S(−u, f )
]

·
[
(1 − gu)

2 − S(−u, g)
]

· h2
u

+
[
(1 − fu)

2 − S(−u, f )
]

·
[
(1 − hu)

2 − S(−u, h)
]

· g2
u

+ [2 fu · (1 − fu) + S(−u, f )] ·
[
(1 − gu)

2 − S(−u, g)
]

· [2hu · (1 − hu) + S(−u, h]

+
[
(1 − gu)

2 − S(−u, g)
]

·
[
(1 − hu)

2 − S(−u, h)
]

· f 2
u

+ [2 fu · (1− fu)+S(−u, f )] · [2gu · (1 − gu)+S(−u, g)]

·
[
(1 − hu)

2 − S(−u, h)
]

(C.7)

(I = 5) =
[
(1 − fu)

2 − S(−u, f )
]

·
[
(1 − gu)

2 − S(−u, g)
]

· [2hu(1 − hu) + S(−u, h)]

+
[
(1 − fu)

2 − S(−u, f )
]

·
[
(1 − hu)

2 − S(−u, h)
]

· [2gu · (1 − gu) + S(−u, g)]

+
[
(1 − gu)

2 − S(−u, g)
]

·
[
(1 − hu)

2 − S(−u, h)
]

· [2 fu · (1 − fu) + S(−u, f )] (C.8)

(I = 6) =
[
(1 − fu)

2 − S(−u, f )
]

·
[
(1 − gu)

2 − S(−u, g)
]

·
[
(1 − hu)

2 − S(−u, h)
]
. (C.9)

Obviously, variations in the HLA criteria lead to different distri-

utions of the offer value, but the calculation of the probabilities is

arried out along similar lines.
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