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Abstract. We propose a novel methodology to study kidney exchange. Using a random
graph model of kidney exchange, we propose a nonasymptotic approach to quantifying
the effectiveness of transplant chains in reducing the number of unmatched highly sen-
sitized patients. Our approach is based on a two-phase random walk procedure where
random walks are used to allocate chains, followed by allocation in cycles. The benefit of
random walks is that they preserve the probabilistic structure of residual graphs, greatly
facilitating analysis. Our approach allows us to analytically show the benefit of chains, as
opposed to transplantation in cycles only, in nonasymptotic (medium-sized) graphs. We
also derive useful analytical bounds that illustrate the performance of our proposed allo-
cation procedure andmore general kidney allocation procedures. Our results complement
previous findings from analytical results in large (limit) graphs and empirical results based
on data from fielded kidney exchanges demonstrating the benefits of chains. Moreover,
our analysis sheds light on the relative importance of chains versus cycles in kidney allo-
cation. In particular, our results show prioritizing chains over easy-to-transplant cycles, as
opposed to prioritizing those cycles over chains, improves performance and provides ana-
lytical bounds on the associated benefits. A detailed simulation study numerically verifies
our main results and provides additional insights.
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1. Introduction
Allocating donated kidneys to deserving patients with
end-stage renal disease is an important challenge in
today’s healthcare system. Kidney exchanges are an
integral part of the allocation system and play a cen-
tral role in live donation. Exchanges consist of pools
of patients, each paired with a loved one willing to
donate. A pair may be incompatible because of differ-
ences in blood type or other tissue sensitivities. The
goal of the exchange is to swap donors among incom-
patible pairs to allow for more transplants. Exchanging
kidneys among incompatible patient-donor pairs cre-
ates cycles of donation within an exchange.

More possibilities for exchange occur in the pres-
ence of altruistic donors—individuals who are willing
to donate their kidney to any patient in need. That
is, the kidney of an altruistic donor is not directed to

any particular patient. For this reason, altruistic donors
are also called nondirected donors (NDDs). There are
alternative uses for the donated kidney of an NDD.
Until relatively recently, the NDD kidneys were offered
to the deceased donor wait list managed nationally
under the aegis of the United Network of Organ Shar-
ing (UNOS). However, within kidney exchanges, altru-
istic donors can initiate donation “chains.” A chain
starts with an altruistic donor offering a kidney to a
compatible recipient. The paired donor of that recip-
ient further donates his or her kidney to another
compatible recipient, and so on. Since NDDs are not
directed toward a particular recipient, a chain need not
“cycle” back.

Allocating NDD kidneys among their alternative
uses has sparked ethical and practical debate, includ-
ing whether chains are needed at all (Roth et al. 2007,
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Gentry et al. 2009, Ünver 2010, Woodle et al. 2010,
Ashlagi et al. 2011). Theoretical results show that,
under certain structures, short cycles are sufficient,
eliminating the need for chains (Roth et al. 2007, Ünver
2010). On the other hand, empirical results and sim-
ulations consistently show that chains are important
in practice. Ashlagi et al. (2012) and Dickerson et al.
(2012b) resolve this discrepancy between theory and
practice. Their analytical results reveal that the under-
lying sparseness of connections between patients and
donors in the exchange is the main driver of the need
for chains.
As the above demonstrates, analytical models of kid-

ney exchange have been helpful in resolving debates
and providing explanations of experimental data.
As new empirical findings and practical issues have
arisen, models have been adjusted to meet these chal-
lenges. The standard bearer of analytical work has
been random graph models. These models approxi-
mate exchanges by generating, in a probabilistic fash-
ion, nodes and arcs that represent recipient-donor
pairs and compatibilities, respectively. Recent papers
use asymptotic analysis as their primary theoretical
workhorse; that is, they examine kidney exchange
graphs as the number of nodes tends to infinity.
The development of Ashlagi et al. (2012) described
above is a primary example. Earlier theoretical find-
ings (for instance, Roth et al. 2007) were based on
dense random graphs and were inadequate to explain
empirical findings. By revising the standard model to
include sparse random graphs, Ashlagi et al. (2012)
are able to theoretically justify the observed need for
chains in fielded exchanges using asymptotic analy-
sis. Asymptotic analysis has also been used to derive
insights into incentives issues (Toulis and Parkes 2011),
the effect of “failed” chains and cycles (Dickerson
et al. 2013), myopic versus forward-looking consider-
ations in dynamically allocating kidneys (Dickerson
et al. 2012a, Ashlagi et al. 2013), and fairness issues
(Dickerson et al. 2014).
However, asymptotic analysis has its limitations.

Asymptotic results are best interpreted in the setting
of “large” exchanges with many recipient-donor pairs,
something not usually observed in practice (Melcher
et al. 2012). Researchers in the area of kidney exchange
are well aware of this limitation. Indeed, Ashlagi et al.
(2012) state that analysis in “medium”-sized graphs
should, in fact, be the target for analysis.

The main technical contribution of this paper is to
develop a nonasymptotic methodology that applies
to medium-sized exchanges. The core novelty of our
methodology is to employ a random walk procedure
with two distinct phases. The first phase is to allo-
cate kidneys in chains via a memoryless random walk.
After chains are removed, the second phase is to allo-
cate via cycles.

As a tool for analysis, our two-phase procedure has
many strengths, as evidenced by our analytical results
in Sections 3 and 4. For example, we provide exact for-
mulas and simple nonasymptotic analytical bounds for
the tail probabilities and expectation of the random
number of unmatched nodes after the termination of
the first stage. Although nonasymptotic, these bounds
can be used to recover asymptotic results (as demon-
strated in Proposition 1). These bounds serve as inputs
to further bound the expected number of unmatched
nodes after both phases are implemented, assuming
particular algorithms for assigning cycles in the second
stage. These latter bounds allow us to assess the per-
formance of our two-phase procedure and quantify the
benefits of chains in medium-sized graphs.

More qualitatively, one of the challenges in both ana-
lyzing and managing kidney exchange graphs is trad-
ing off the benefits of chains versus cycles. From an
analytical perspective, there are cases where chains are
not needed (if the graph is sufficiently dense) and cases
where chains are needed (if the graph is sufficiently
sparse), as discussed above. However, there is little
direct work on the relative importance of the sequence
in which chains and cycles are removed. In particu-
lar, there remains open question of how to prioritize
chains and cycles. As noted in the literature (see, for
instance, Toulis and Parkes 2011), under the current
system, hospitals may have an incentive to transplant
short cycles locally and not submit these cases to an
exchange. In this situation, easy-to-transplant cycles
are de facto prioritized over chains, as many potential
kidney-donor pairs cannot participate in long chains
through an exchange. Our analysis sheds light on this
issue and provides some analytical insight into the
cost of this practice. In particular, we show via sim-
ulation and through analytical bounds that prioritiz-
ing chains over cycles outperforms prioritizing cycles
over chains. This provides estimates of the cost of the
practice of hospitals myopically transplanting cycles.
Interestingly, we show through numerical simulations
that the magnitude of this cost depends on the type of
cycle prioritized. When only easy-to-transplant cycles
are prioritized, the loss is much greater than when a
wider class of cycles is prioritized.

Although our proposed procedure does not assign
chains optimally (it uses random walk), there are a
variety of cases where there is little loss overall. In kid-
ney exchange, an optimal packing of chains may not
be needed because of the presence of cycles. In our
approach, the residual graph (the graph that remains
after removing chains) maintains its initial probabilis-
tic density, unaffected by random walk realizations in
the first stage. Since our procedure assigns nodes to
chains randomly, it does not target high-degree nodes
that would allow for longer chains at the cost of
increased sparsity at the cycle formation stage.Without
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introducing additional sparsity, cycles are then suffi-
cient to match many of the remaining patient-donor
nodes. The dense structure of the residual graph allows
probabilistic comparison between the original graph
and residual graph. This idea is central to our analysis
in Section 4.
In existing integer linear programming (ILP)-based

implementations (see, for instance, Dickerson et al.
2014), the assignment of chains is computationally
quite costly. For a given input graph, the number of
cycles of bounded length is polynomial in the input
size, whereas the number of chains grows exponen-
tially in the input size when not capped. For the
column-generation algorithms adapted in Dickerson
et al. (2014), this can present computational chal-
lenges. The fact that random assignment of chains per-
forms reasonably well (as evidenced by our simula-
tions and confirmed by personal communication with
John Dickerson 2014) may greatly reduce computa-
tional burden. We adapt this idea to construct a hybrid
ILP implementation that uses both ILP and random
walks, where random walks are used to generate a
moderate number of candidate chains in the graph,
and test its performance in Section 6. This hybrid algo-
rithm has the benefit of being able to compute reason-
able transplant plans faster, enabling consideration of
more scenarios. Thus, we believe there is both theo-
retical and practical interest for using the concept of
random walks in kidney exchange.

We organize the rest of this paper as follows. In Sec-
tion 2we introduce our random graphmodel of kidney
exchange and propose our two-phase random walk
procedure. Section 3 provides analysis of the nature
of the graph at the termination of the first stage. Sec-
tion 4 provides results on the nature of the graph after
the termination of the second stage. Section 5 analyzes
the impact of prioritizing cycles over chains (and vice
versa). Section 6 contains our numerical experiments.
Section 7 concludes and points to future work.

2. Analytical Framework
2.1. Random Graph Model
We consider the random graph model of kidney ex-
change proposed in Ashlagi et al. (2012). Similar mod-
els are employed in Ashlagi et al. (2013) and Dickerson
et al. (2013). Careful justification of this model can be
found in those papers.

The kidney exchange pool is modeled as a directed
graph D, which contains two types of nodes: patient-
donor nodes and NDD nodes. A directed arc (u , v)
connects nodes u and v if the patient of node v is com-
patible with the donor of node u. Following Ashlagi
et al. (2012), we suppress the issue of blood-type
matchings and focus instead on tissue-type match-
ing of donors and patients. Arc (u , v) appears in
the graph with a probability that depends only on

the tissue-type characteristics of node v. Furthermore,
patient-donor nodes are classified into two categories:
high-sensitization nodes and low-sensitization nodes. For
brevity, we call high-sensitization nodes H-nodes and
low-sensitization nodes L-nodes. Arc (u , v) appears in
the graph with probability pH (pL) if v is an H-node
(L-node), where u is an arbitrary node (not equal to v)
in the graph. Throughout, we assume pH < 0.1< pL. The
assumption of two categories of patient-donor nodes is
justified by empirical investigations found in Ashlagi
et al. (2013), where it is shown that the probability a
patient is compatible with a randomly selected donor
follows a bimodal distribution.

Our model considers the possibility that NDDs and
bridge donors (donors freed to donate to extend the
length of a chain) renege before the time of transplan-
tation. This is captured by the probability r. That is,
every time a chain is extended, there is a probability r
it terminates before the next link in the chain is trans-
planted.

We use the notation D(h , `, t; pH , pL , r) to repre-
sent an exchange pool with h high-sensitization
nodes, ` low-sensitization nodes, and t NDD donors,
along with compatibility probabilities pH and pL and
renege probability r. The proportion `/(` + h) of low-
sensitization nodes in the graph is denoted by λ. When
certain parameters are understood as given, we drop
them in our notation. For instance, when the focus is
on the size of the exchange with probabilities fixed, we
will write D(h , `, t) instead of D(h , `, t; pH , pL , r).

A clearing of the kidney exchange graph is a col-
lection of disjoint cycles and chains that represent the
patients and donors involved in transplantation. Cycles
and chains must be disjoint since each patient can
receive at most one kidney and every donor can give at
most one kidney. A patient-donor node in a clearing is
said to be matched, since the patient receives a kidney
and the donor donates its kidney. In practice, kidney
exchanges clear at regular intervals (weekly, monthly,
or bimonthly) to balance the objectives of efficiency and
fairness (see Dickerson et al. 2012b and Melcher et al.
2012 for details). Ourmodel is static and considers only
a single decision period.

2.2. Two-Phase Random Walk Procedure
We propose the following two-phase clearing proce-
dure for D(h , `, t; pH , pL , r) (hereafter simply called the
two-phase procedure), illustrated in Figure 1.
Phase 1. While there exists at least one NDD, initiate
a chain starting from an NDD. At each step, grow the
chain by adding an H-node accessible from the last
node of the chain (referred to as a tail node). If there
is more than one accessible H-node, randomly select
one among them with equal probability. If no H-nodes
are accessible, terminate the chain and remove all
selected nodes in the chain (including the initiating
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Figure 1. (Color online) Our Two-Phase Procedure

(a) Phase 1: Chain formation in H-nodes
via random walk

H L H L

(b) Phase 2: Cycle packing in
the residual graph

Note. Black disks are H-nodes, triangles are NDDs, and red disks are L-nodes.

NDDdonor). Repeat until either all H-nodes have been
removed or all NDDs have been consumed. Go to
Phase 2.

Phase 2. Apply a cycle-packing algorithm on the
residual graph that remains at the termination of
Phase 1.

A few remarks on the procedure are in order. First,
chains in Phase 1 are executed within the subgraph
of H-nodes and NDD-nodes. There are no L-nodes
in the chains of our procedure. Second, Phase 2 does
not specify a cycle-packing algorithm. Our analy-
sis in Section 4 provides theoretical bounds for the
case where Phase 2 consists of bipartite matching
between H- and L-nodes. Section 6 gives numeri-
cal results for when Phase 2 employs both two- and
three-way cycles. Section 5 compares the performance
of this algorithm to one where these phases are
inverted.
The analytical power of the two-phase procedure

comes from the fact we are able to derive upper bounds
on the expected number of unmatched H-nodes after
the termination of the algorithm and compare this to
the expected number of unmatched H-nodes when
only cycles are permitted. There are several steps
to this analysis. In Section 3 we analyze Phase 1,
focusing on probabilistic statements about how many
H-nodes have been transplanted. Section 4 explores
what happens after Phase 2, leveraging results from
Phase 1.

3. Analysis of Phase 1
In this section, we define a two-dimensional-state
stochastic process that tracks the progress of random
walks, in terms of transplanting H-nodes and con-
suming NDD donors. Counting arguments yield exact
probabilities associated with the random number of
H-nodes left unmatched at the end of Phase 1. To
yield more useful noncombinatorial bounds used in
Section 4, we later define a potential function and

construct martingales to get useful analytical esti-
mates of the expected number of residual unmatched
H-nodes.
Let X(n) denote the number of unmatched H-nodes

at the time when n nodes (either H-nodes or NDD
donor nodes) have been removed from the original
graph D(h , `, t). Let t(n) denote the number of remain-
ing NDDs plus the one being used in the current chain
at the time when n nodes (either H-nodes or NDD
donor nodes) have been removed. The stochastic pro-
cess is {(X(n), t(n)) | n > 0}. Each increment of “time”
n denotes the removal of a node from the graph. When
either the donor reneges or there are no compatible
donors, an NDD node is removed and t(n) is decre-
mented by 1. We call this a “failure.” When a compati-
ble match is found and a patient gets a transplant, then
an H-node is removed and X(n) is decremented by 1.
We call this a “success.” By definition, X(0) � h, and
t(0)� t.
This process of node removal eventually terminates.

There are two conditions for termination. The first is
that all NDDdonors have been consumed, correspond-
ing to t(n)� 0. The second is that all H-nodes have been
transplanted, corresponding to X(n)� 0.
Observe that {(X(n), t(n)) | n > 0} is a two-dimen-

sional pure death process with absorbing states {(X, t) |
X � 0 or t � 0}. At each nonabsorbing state, the transi-
tion probability is given by

(X(n + 1), t(n + 1))�
{
(X(n) − 1, t(n)) w.p. 1− rX(n) ,

(X(n), t(n) − 1) w.p. rX(n) ,

where
ri � r + (1− r)(1− pH)i

gives the probability that either the tail node reneges
or the tail node cannot find an accessible H-node.
From this definition we see that {(X(n), t(n)) | n > 0} is
Markovian. Figure 2 provides a visual representation.

When the graph contains i H-nodes, the number of
NDDs consumed to reduce the number of unmatched
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Figure 2. The Stochastic Process {(X(n), t(n)) | n > 0}

X(n)

X(n) – 1

X(n)

t(n)

t(n)

t(n) – 1

1 – rX(n)

rX(n)

Removal of one node

Stage n Stage n + 1

H-nodes by 1 is a geometric random variable with suc-
cess probability 1− ri and mean

µi :�
ri

1− ri
. (1)

For the ease of the subsequent analysis, we define the
following potential function:

T(n)�
M̄∑

i�n+1
µi ,

where M̄ is a large constant integer. Given an integer
n > 0, the function T(n) calculates the expected number
of NDDs needed to reduce the number of H-nodes
from M̄ to n. In the special case of r � 0, µi � (1− pH)i/
(1−(1−pH)i) and

∑∞
i�1 µi <∞. In this case, we can safely

Figure 3. (Color online) The Functions T and T−1

n
h

T(0)

h

x
T(0)

nT(n) T –1(x)

assign M̄ �+∞without worrying that T(n) diverges to
infinity. For r � 0, the potential function is

T0(n) :�
∞∑

i�n+1
µi . (2)

Observe that T(n) is a strictly decreasing function
on the discrete domain 0, 1, . . . , M̄. We extend T( · )
to be defined over the continuous domain [0, M̄] via
piecewise linear interpolation. This makes the inverse
function T−1 well defined on the range [0,T(0)] of T
where T(0)<∞. For x > T(0), we take T−1(x)� 0, which
will not modify the monotonicity of T−1( · ). Under this
extension, both T and T−1 are convex functions because
T has increasing differences: T(i)−T(i−1)�−µi , and µi
is decreasing in i since ri is decreasing in i. See Figure 3
for a visualization.

We can define the random stopping time as the first
timewhen either all H-nodes or all NDDs arematched;
that is,

τ0 � min{n | t(n)� 0 or X(n)� 0}.

The time of termination of Phase 1 is precisely τ0. We
seek distributional information on the random num-
ber X(τ0) of unmatched H-node patients at the time of
termination of Phase 1. By the Markovian property of
the process, when there are multiple NDDs, whether
chains are selected simultaneously or sequentially does
not affect the distribution of X(τ0). That is, we may
either grow multiple chains simultaneously or com-
plete one chain and then start another, and we result in
the same distribution of X(τ0).
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Tomake the dependence of X(τ0) on h and t explicit,
let Yh , t denote the value of X(τ0)when the initial graph
is D(h , `, t). We are interested in the following perfor-
mance metrics: (a) the tail probability Pr(Yh , t 6 k) for
a given nonnegative integer k and (b) the expectation
of Yh , t .

Theorem 1. For a random kidney exchange graph
D(h , `, t),
(a)

Pr(Yh , t 6 k)�



h∏
i�k+1
(1− ri) when t � 1,

h∏
i�k+1
(1− ri)

∑
k6it−16···6i16h

t−1∏
j�1
ξk(i j)

when t > 2,

(3)

where ξk(i)� ri for i > k, and ξk(i)� 1 if i 6 k; and
(b) consequently,

Ɛ[Yh , t]�



h−1∑
k�0

(
1−

h∏
i�k+1
(1− ri)

)
when t � 1,

h−1∑
k�0

(
1−

h∏
i�k+1
(1− ri)

∑
k6it−16···6i16h

t−1∏
j�1
ξk(i j)

)
when t > 2.

Proof. (a) Note that Yh , 1 represents the number of un-
matched H-nodes after matching with a single chain.
The only way for Yh , 1 6 k is for there to be a string
of consecutive successes in extending the chain to
reduce the number of unmatched H-nodes from h
to k. By independence, this happens with probability∏h

i�k+1(1− ri).
The event {Yh , t 6 k} contains all scenarios where

there are less than t failures in the course of remov-
ing h − k H-nodes. Suppose there are t′ 6 t − 1 failures
before X(n) hits k. For j �1, 2, . . . , t′, we let i j denote the
number of H-nodes remaining in the graph at the time
of the jth failure. The failure rate ξk(i j) at i j is thus ri j

.
Whereas for j � t′ + 1, . . . , t − 1, we simply assign i j � k
and ξk(i j)� 1, as these failures happen after X(n) hits k
and therefore do not contribute to the event {Yh , t 6 k}.
Thus, we derive the tail probability for Yh , t as

Pr(Yh , t 6 k)�
h∏

i�k+1
(1− ri)

∑
k6it−16···6i16h

t−1∏
j�1
ξk(i j).

(b) The expression for Ɛ(Yh , t) directly follows from
the equation Ɛ[X]�∑∞

k�0 Pr(X> k) for nonnegative dis-
crete random variables and the fact that Pr(Yh , t > h)
�0. �

The above combinatorial expressions for the tail
probabilities and expectation of Yh , t are precise but
difficult to work with. The next result provides bounds
that involve the potential function T and are more
amenable to later analysis.

Theorem 2. For a random kidney exchange graph
D(h , `, t),

Pr(Yh , t 6 k)>


exp(T(h)−T(k)) if t�1,

exp(T(h)−T(k))
(1+∑h

i�k+1 ri)t−1

(t−1)! if t>2.

The proof of this theorem is inOnlineAppendix EC.1
and uses bounds on sums in terms of the exponential
function. The result gives rise to a simpler corollary
when r � 0 that is used in later results.

Corollary 1. For a random kidney exchange graph
D(h , `, t) in the special case of r � 0, we have

Pr(Yh , t 6 k)

>


1− 1

pH
((1− pH)k+1−(1− pH)h+1) when t �1,

exp
(
−

(1− pH)k+1

pH(1−(1− pH)k+1)

) (1+∑h
i�k+1 ri)t−1

(t−1)!
when t > 2.

(4)

Proof. We first prove inequality (4) for the t > 2 case.
By Theorem 2, Pr(Yh , t 6 k) > exp(T(h) − T(k))(((1 +∑h

i�k+1 ri)t−1)/(t − 1)!) for t > 2. Thus, to prove inequal-
ity (4), it suffices to show that exp(T(h) − T(k)) >
exp(−(1− pH)k+1/(pH(1− (1− pH)k+1))).
When r � 0, we have ri � (1− pH)i , and therefore µi �

(1− pH)i/(1−(1− pH)i) by (1). We can then lower bound
exp(T(h) −T(k)) as follows:

exp(T(h) −T(k))� exp
(
−

M̄∑
i�k+1

µi

)
� exp

(
−

M̄∑
i�k+1

(1− pH)i
1− (1− pH)i

)
> exp

(
−

∞∑
i�k+1

(1− pH)i
1− (1− pH)k+1

)
> exp

(
−

(1− pH)k+1

pH(1− (1− pH)k+1)

)
.

We have thus proved inequality (4).
For t � 1, we use backwards induction on k.

When k � h, Pr(Yh , 1 6 h) � 1 > 1 − (1/pH)((1 − pH)h+1 −
(1− pH)h+1). So we have proved the base case of k � h.
We next show that inequality (4) for the t � 1 case holds
for all k > 0, by assuming that it holds for k + 1. We
derive an upper bound for Pr(Yh , 1 6 k) as follows:

Pr(Yh , 1 6 k)� Pr(Yh , 1 6 k + 1)Pr(Yh , 1 6 k | Yh , 1 6 k + 1)

�

(
1− 1

pH
((1− pH)k+2 − (1− pH)h+1)

)
(1− (1− pH)k+1)

> 1− (1− pH)k+1 − 1
pH
(1− pH)k+2

+
1

pH
(1− pH)h+1
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� 1− 1
pH
(1− pH)k+1

+
1

pH
(1− pH)h+1

� 1− 1
pH
((1− pH)k+1 − (1− pH)h+1),

where the first equality follows from Markov prop-
erty, the second equality follows from the induction
assumption, and the inequality holds by omitting the
term (1/pH)((1 − pH)k+2 − (1 − pH)h+1)(1 − pH)k+1. This
completes the induction. �

The above bounds are applicable to exchange graphs
of arbitrary size. Although our focus is on nonasymp-
totic analysis, they can be leveraged in asymptotic
settings to derive results similar to those in Ashlagi
et al. (2012, 2013). The following result demonstrates
this approach. Recall that h and ` denote the num-
ber of high- and low-sensitization nodes, respectively,
and λ � `/(h + `) denotes the proportion of low-
sensitization nodes in the graph.

Proposition 1. Suppose r � 0, h is in the order of 1/p1+ε
H for

some ε > 0, and both λ and pL are fixed constants. If t > 1,
then with probability approaching 1, the exchange graph has
a perfect clearing (that is, all nodes are transplanted) as
pH→ 0.

Proof. In (4), suppose k � (c/pH) log(1/pH) for c > 1.
This yields Pr(Yh , 1 6 k) > exp(−pc−1

H ), which converges
to 1 as ph→ 0. Thus with probability approaching 1, no
matter how large the original graph is, only one NDD
is sufficient to reduce the number of H-nodes to the
order of O((1/pH) log(1/pH)). Since t > 1,with probabil-
ity approaching 1, the number of H-nodes remaining
unmatched after Phase 1, denoted by h′, is in the order
of O((1/pH) log(1/pH)). We claim that when pH → 0,
with probability approaching 1, all of those h′ H-nodes
can be matched to L-nodes using two-way cycles.
To prove this claim, we construct an undirected

bipartite graph G̃ � (VH ∪VL , Ẽ) with partitioned node
sets VH :� {all remaining h′ unmatched H-nodes} and
VL :� {all L-nodes}, and an undirected edge set Ẽ �

{(vH , vL) | vH ∈ VH , vL ∈ VL , (vH , vL), (vL , vH) ∈ E}. Each
edge occurs with probability of pH pL—the probabil-
ity of having a two-way cycle between an H-node and
an L-node. According to the marriage theorem (Hall
1935), if the H-nodes cannot be matched in G̃, then
there exists a “bad” pair of subsets A ⊂ VH and B ⊂ VL
with a � |A| > b � |B |, and the set B contains all nodes
adjacent to nodes in A. Without loss of generality, we
may assume that (A,B) is a minimal bad pair, which
means that there is no bad pair (A′,B′) with A′ ∪ B′ ⊂
A ∪ B. When (A,B) is a minimal bad pair, we must
have b � a−1. The probability that any nodes outside B
are not linked to any node inside A is given by (1 −
pH pL)(`−b)a � (1 − pH pL)(`−a+1)a . Since there are at most
Ca

h and Cb
` candidates for a minimal bad pair (A,B) of

sizes a and b, respectively, the probability that at least

one minimal bad pair exists of this size can be upper
bounded by

h′∑
a�1

Ca
h′C

a−1
` (1− pH pL)(`−a+1)a

6
h′∑

a�1

(h′`)a
(a!)2 (1− pH pL)(`−a+1)a

6
h′∑

a�1

1
a! [`h′(1− pH pL)`−a+1]a

6 exp(`h′(1− pH pL)`−h′+1) − 1
6 exp(`h′ exp(−pH pL(l − h′+ 1))) − 1. (5)

Note that `�O(1/p1+ε
H )�h′; thus `−h′+1�O(1/p1+ε

H )
and pH pL(` − h′+ 1)�O(1/pεH)> 2log(1/pH) when pH
is sufficiently small. Therefore, the right-hand side
of (5) is upper bounded by exp(`h′exp(2log(1/pH)))−
1�exp(`h′p2

H)−1�exp(O(p1−ε
H ))−1→0, implying that

the probability of the occurrence of a bad pair con-
verges to 0 when pH→0. Therefore, with probability
approaching 1, all the H-nodes can be matched using
H-L two-way cycles. After removal of all the H-nodes,
the remaining subgraph contains L-nodes only. Each
pair of L-nodes can be matched with a constant proba-
bility of p2

L. Because the size of the remaining graph is
`−h′�O(1/p1+ε

H )→∞ as pH→∞, we know that a perfect
matching exists by the well-known Erdős-Rényi theo-
rem (Erdős and Rényi 1959). �

Remark 1. When h has an order of 1/p1+ε
H , theo-

rem 5.6(2) of Ashlagi et al. (2012) proves that all nodes
can be matched using k-way cycles if λ > 1/k or using
chains with length 6 m if t > ((1 − λ)/m)h. Proposi-
tion 1 states that if we have a single chain of potentially
infinite size (which is aweaker assumption than having
((1−λ)/m)h chains, each with length 6m, with respect
to the purpose of matching the (1− λ)h H-nodes) and
a fixed proportion of L-nodes, we can clear all nodes.
This complements the result of Ashlagi et al. (2012).

We now turn to deriving noncombinatorial lower
and upper bounds on Ɛ[Yh , t] for later analysis. Of
course, one could combine Theorems 1 and 2 to achieve
this, but a different method will yield cleaner bounds.
The proof of the following result (in particular, part (c))
is involved and can be found in Online Appendix EC.2.
It uses the martingale theory and convexity of the
potential function T and its inverse T−1.
Theorem 3. The following conditions hold:

(a) The sequence {T(X(n)) + t(n) | n > 0} is a martin-
gale. As a consequence,

Ɛ[Yh , t] > T−1(T(h)+ t). (6)

(b) The sequence {(X(n)+T−1(T(X(n)+ t(n))))/2 | n >
0} is a supermartingale. As a consequence,

Ɛ[Yh , t] 6 1
2 (T

−1(T(h)+ t)+ h). (7)
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Figure 4. (Color online) The Expected Number of Unmatched H-Nodes Ɛ[Y(h , t)] and Its Lower Bound (6), Upper Bound (7),
and the Strengthened Upper Bound (8)

Lower bound

(a) r = 0.05, pH = 0.03, h = 300 (b) r = 0, pH = 0.03, h = 300

0
50

100

150

200

250

300

350

5 10

t

�[Y(300, t)]

�
[Y

(3
00

,t
)]

0

50

100

150

200

250

300

350

�
[Y

(3
00

,t
)]

15

Upper bound

Lower bound
�[Y(300, t)]

Upper bound
Strengthened upper bound

20 0 5 10

t

15 20

Note. The strengthened upper bound is applicable only to the r � 0 case.

(c) In the case of r �0 and pH 6 0.1, we have the following
strengthened upper bound:

Ɛ[Yh , t] 6
1

pH
log

(
1+ 1
(T0(h)+ 1

4 t)pH

)
, (8)

where T0(h) defined in Equation (2) is the expected number
of NDDs required to reduce the number of H-nodes from
+∞ to h.

Figures 4(a) and (b) plot actual values of Ɛ[Y(h , t)]
versus the bounds in Theorem 3 for pH � 0.03, h � 300,
and r � 0.05 (in (a)) and r � 0 (in (b)) (note the values of
pL and λ are not relevant because we are just working
within the H-subgraph). The lower bound from (a) is
quite tight. The upper bound from (b) is not so tight,
but it nonetheless helps us to understand the asymp-
totic behavior of Ɛ[Y(h , t)]. When r � 0, the bound in
(c) is much tighter and implies that the number of
unmatched H-nodes after Phase 1 is upper bounded by
O((1/pH) log(1/pH)). (Since T0(h)+ 1

4 t is usually small,
1+ 1/((T0(h)+ 1

4 t)pH)� O(1/pH).)

4. Analysis of Phase 2
The goal of this section is to provide analytical bounds
on the number of unmatched H-nodes that are left
after termination of Phases 1 and 2. This analysis pro-
ceeds by comparison against a benchmark—namely,
the number of unmatched H-nodes that remain if only
Phase 2 was implemented from the beginning. In other
words, we are interested in the net benefit of our pro-
cedure to reduce the number of unmatched H-nodes
beyond what could have been transplanted via cycles
alone. Our performance metric does not include the
unmatched L-nodes, as it is easier to clear all the
L-nodes even using cycles only. Moreover, keeping
L-nodes for a later clearing may even be preferred

(Ashlagi et al. 2013). As in the previous section, the
underlyingmemoryless property of randomwalks and
convexity arguments play a pivotal role here, as in the
analysis of Phase 1.

A first challenge is to understand the random struc-
ture of the residual graph that remains at the termi-
nation of Phase 1. We show that this residual graph is
again a graph of the form D(h′, `, t), where parameters
`, t, pH , pL, and r are fixed and h′ 6 h. Throughout
this section we suppose h′ > 0 and all NDDs are con-
sumed during Phase 1. The case where all H-nodes
are matched before all NDDs are consumed is a some-
what uninteresting special case since it is very unlikely
to occur in practice and so does not warrant further
analysis.

Lemma 1. Let D � D(h , `, t) denote the initial random
graph. Suppose during Phase 1 that h − h′ H-nodes are
transplanted and removed, and let R(h′) denote the condi-
tional residual graph—that is, the random graph resulting
from D by removing exactly h − h′ H-nodes in chains via
Phase 1. Then the edge distribution in R(h′) is identical to
the random graph D′ � D(h′, `, 0).

Proof. Fix an ordering of the H-nodes in the starting
graph D. There are

(h−h′+t
t

)
scenarios inwhich one starts

with the graph D and ends with a residual graph that
has h′ remaining H-nodes and 0 NDD nodes. We sim-
ply need to distribute t failures among removing each
of the h−h′ H-nodes. Because of the memoryless prop-
erty of random walk, each of these residual graphs is
isomorphic as a random graph to D′. Now, consider
the conditional random graph R(h′). Since each of the
scenarios is disjoint, we can conclude that the edge dis-
tribution in the remaining graph R(h′) is identical to
the random graph D′. �
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As a first step, consider a simple instantiation of
Phase 2 that involves bipartite matching. This is admit-
tedly not the optimal choice of algorithm for Phase 2,
but it nonetheless forms a bedrock for our analy-
sis. Bipartite matching algorithms are for undirected
graphs, and so we construct an undirected version of
the relevant part of the kidney exchange graph. The
set of nodes is partitioned into H- and L-nodes, and
we only consider matches between H- and L-nodes.
An undirected edge uv is in this undirected version of
the random bipartite graph D̂ if and only if (u , v) and
(v , u) are both directed edges in the original directed
graph D. Hence, the probability undirected edge uv
appears is pH pL. We let CHL denote the (random) set of
undirected edges of this bipartite graph. Phase 2 con-
sists of using an algorithm to find maximal matching
among the edges of CHL (for instance, using linear pro-
gramming). This algorithm generates a maximal cardi-
nality matching M, which is a subset of the (random)
set CHL (we also use this notation later in Section 5).
Let f (h) denote the expected number of H-nodes

remaining when nodes are matched using bipartite
matching from the outset (that is, Phase 1 is not imple-
mented) on a graph with h H-nodes. In the definition
of f , the number of L-nodes and the probabilities pH ,
pL, and r are all fixed constants, and we write f sim-
ply as a function of h. Lemma 1 implies the following
pivotal corollary.
Corollary 2. The expected number of unmatched H-nodes
after Phase 1 and Phase 2 is implemented on D(h , `, t), given
that Phase 1 eliminates h − h′ H-nodes, is f (h′).

Thus, the value of implementing chains versus not
implementing chains can be partially understood by
comparing Ɛ[ f (h′)] to f (h), where h′ is now a ran-
dom variable that represents the number of H-nodes
remaining in the graph D after Phase 1 terminates;
that is, h′�Yh , t , where Yh , t is the number of unmatched
H-nodes. The expectation in Ɛ[ f (Yh , t)] is over the
distribution of unmatched H-nodes after Phase 1.
Whereas we do not have an explicit characterization
of f (making a direct evaluation of Ɛ[ f (Yh , t)] difficult),
Section 3 does provide good estimates of Ɛ[Yh , t]. To
leverage these estimates, we show (in Lemma 2) that
the function f is convex. The proof of the lemma is in
Online Appendix EC.3. It involves the linear program-
ming formulation of bipartite matching and submodu-
larity arguments.
Lemma 2. The expected number f (h) of unmatched
H-nodes remaining after running the bipartite matching
algorithm described above to D(h , `, t) is convex in h.
We leverage the convexity of f to bound the per-

formance of the two-phase procedure when Phase 2
implements bipartite matching. This involves the fol-
lowing notation. Let

ν∗C :� Ɛ[ f (Yh , t)] (9)

denote the expected number of unmatched H-nodes
after completion of both Phase 1 and the bipartite
matching algorithm in Phase 2 on D(h , `, t).

Theorem 4. The following holds:

ν∗C 6
f (h)

h
Ɛ[Yh , t]

6
1
h

(
(h− `)++

(1− pLpH)|h−` |+1−(1− pLpH)max{h , `}+1

pLpH

)
·Ɛ[Yh , t]. (10)

Proof. By Lemma 2, we know f (h′) 6 ( f (h)/h)h′ for
any fixed h′ 6 h, since f is convex. See Figure 5 and
observe that f (0) � 0. Then, by the monotonicity of
expectation, we have

Ɛ[ f (Yh , t)] 6 Ɛ
[

f (h)
h

Yh , t

]
�

f (h)
h

Ɛ[Yh , t]. (11)

This is the first inequality in (10).
The second inequality comes from bounding f (h)

from above. We derive the bound by analyzing the fol-
lowing naïve algorithm tomatch H-nodes. When h > `,
sequence the L-nodes in an arbitrary order. For each
L-node, attempt to match to an H-node using avail-
able edges (which correspond to two-way cycles in
the directed graph). If successful, remove the matched
pair and proceed to the next L-node. The algorithm
terminates when all the L-nodes have been matched.
According to this algorithm, there are at least h − i + 1
unmatched H-nodes when the ith L-node is next to
be matched. Thus, the probability of matching the ith
L-node is at least 1−(1− pH pL)h−i+1. Summing up these

Figure 5. (Color online) Leveraging the Convexity of f in
the Proof of Theorem 4

f (h�)

f (h)

h�f(h)
h

f (h)
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probabilities, we derive a lower bound for the expected
number of matched H and L nodes:∑̀

i�1
(1− (1− pH pL)h−i+1)

� ` −
(1− pH pL)h−`+1 − (1− pH pL)h+1

pH pL
.

This leads to the upper bound on unmatched H-nodes:

f (h) 6 h − ` +
(1− pH pL)h−`+1 − (1− pH pL)h+1

pH pL
. (12)

When h < `, we propose a similar algorithm. This
time, we use two-way cycles to match the H-nodes
sequentially. When the algorithm tries to match the
ith H-node, there are at least ` − i + 1 unmatched
L-nodes remaining, so the probability of matching the
ith H-node is at least 1−(1− pH pL)`−i+1. Using a similar
logic as above, we derive the upper bound:

f (h) 6
(1− pH pL)`−h+1 − (1− pH pL)`+1

pH pL
. (13)

Together, (12) and (13) imply the following upper
bound on f (h) that applies to both cases (h > ` and
h < `):

f (h) 6 (h − `)+ +
(1− pLpH)|h−` |+1 − (1− pLpH)max{h , `}+1

pLpH
.

Plugging this upper bound into (11) yields the second
inequality in (10). �

Of course, one may wonder how Phase 1 and
Phase 2, as currently specified, compare in perfor-
mance to more sophisticated clearing algorithms. This
is a major topic in our numerical experiments in Sec-
tion 6. For now, we show how to analytically bound
the performance of an optimal two-way cycle-packing
algorithm applied to the original graph in compari-
son to the performance using the two-phase procedure
with bipartite matching in Phase 2. We let ν∗2 denote
the expected number of unmatched nodeswhen apply-
ing an optimal two-way cycle-packing algorithm to the
original random graph D(h , `, t).
Theorem 5. Recalling λ � `/(h + `), we have

ν∗C
ν∗2
6

Ɛ[Yh , t]
h

1− 2λ
1− 2λ− (1− λ)p2

H h
, (14)

where ν∗C is defined in (9) and the denominator in the right-
hand side is assumed to be positive.

Proof. Suppose when running the optimal matching
algorithm using two-way cycles that the number of
H-nodes that are matched by H-H cycles is n1, and
that of H-L cycles is n2. The expected number of

H-nodes matched in H-H cycles is upper bounded by
the expected total number of H-H cycles in the H-
subgraph. Hence, Ɛ[n1] 6 h(h − 1)p2

H 6 p2
H h2. Clearly,

Ɛ[n2] 6 h − f (h). Therefore, Ɛ[n1 + n2] 6 h − f (h) +
p2

H h2. Thus, ν∗2 > f (h) − p2
H h2. By the definition of f (h),

since there are at most (λ/(1 − λ))h L-nodes, f (h) >
(1− λ/(1− λ))h. This implies

ν∗C
ν∗2
6

ν∗C
f (h)

f (h)
ν∗2

6
Ɛ[Yh , t]

h
f (h)

f (h) − (p2
H h)h

6
Ɛ[Yh , t]

h
(1− λ/(1− λ))h

(1− λ/(1− λ) − p2
H h)h

�
Ɛ[Yh , t]

h
1− 2λ

1− 2λ− (1− λ)p2
H h
,

where the second inequality uses Theorem 4. �

Using the bounds from Theorem 3 for Ɛ[Yh , t] allows
us to derive insights from Theorem 5 into the value of
chains in reducing the number of unmatched H-nodes
compared with using cycles only. The ratio v∗C/v∗2 mea-
sures performance using chains compared with using
two-way cycles from the outset. The smaller this ratio,
the greater the marginal value of using chains. The
bound (14) gives a guarantee on the expected marginal
value of chains. Theorem 3(c) implies that in the case
of r � 0, even with one NDD, Ɛ[Yh , t] can be upper
bounded by (1/pH) log(c/pH) no matter how large h
is (see the discussion after Theorem 3). Therefore, the
ratio ν∗C/ν∗2 is small as long as 1 − 2λ − (1 − λ)p2

H h is
not close to 0. Thus when the proportion of L-nodes
λ is small and h < 1/p2

H , the benefits of using NDDs
(chains) is most substantial.

4.1. Connections to Integer
Programming Formulations

In this subsectionwe further underscore the possibility
that our bounds in Theorem 4 can be used to bound the
performance of more sophisticated implementations of
the Phase 2 cycle-packing algorithm. One example is
the following ILPmethod for the clearing problem, for-
mulated as

µ∗ILP :� max
∑

c∈C(M)
wc xc

s.t.
∑

{c∈C(M), v∈c}
xc 6 1, for all nodes v ,

xc ∈ {0, 1},

(15)

where w(c) denotes the weight of cycle c, and C(M)
denotes a set of cycles with sizes no more than M and
chains of arbitrary sizes. The ILP (15) was first pro-
posed by Abraham et al. (2007) and improved upon
in subsequent studies (Dickerson et al. 2012b, 2013).
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This ILP serves as the basis of the allocation scheme
currently used by UNOS in clearing its exchange.
One challenge of using this method is that the num-

ber of chains in C(M) is exponentially increasing with
the graph size and the cap on the length of chains,
so the ILP can be solved in real time only for small
and medium-sized graph (less than 200 nodes) and
short chains (no longer than 20) (Dickerson et al.
2012b). For this reason, the current UNOS solver uses a
column-generation method to strategically add poten-
tially valuable chains and cycles into the collection
C(M) (Dickerson et al. 2013). The next corollary states
that as long as C(M) contains the chains that are gen-
erated in Phase 1 and all two-way cycles, then the ILP
matches at least as many H-nodes as does our two-
phase procedure. The lower bound for the two-phase
procedure in Theorem 4 can therefore be used to lower
bound the value of the ILP (15).

Corollary 3. Let wc denote the number of H-nodes con-
tained in the cycle or chain c, and assumeC(M) contains the
t random walks that are generated during Phase 1. Suppose
r � 0 and that cycles of at least length 2 are permitted in (15)
(that is, M > 2). We have

Ɛ[µ∗ILP]>H − ν∗C

>
1

hpH

(
(h− `)++

(1− pLpH)|h−` |+1−(1− pLpH)max{h , `}+1

pLpH

)
· log

(
1+ 1
(T0(h)+ (1/4)t)pH

)
.

Proof. Since C(M) contains the t random walks that
are generated during Phase 1, as well as all the two-
way cycles that are used during Phase 2, any clearing
generated by our two-phase procedure is actually a
feasible solution to the ILP (15). According to the defi-
nition of wc , the ILPmaximizes the number of matched
H-nodes. Therefore, the expected number of H-nodes
matched by the two-phase procedure H − ν∗C gives a
lower bound for the expected optimal value of the ILP
Ɛ[µ∗ILP]. Using the lower bound (10) for ν∗C , and the
strengthened upper bound (8) for Ɛ[Yh , t] in the r � 0
case, we get the analytical lower bound in the statement
of the corollary. �

Section 6 contains a careful numerical comparison of
the two-phase procedure and an ILP-based formula-
tion inspired by (15) to complement this basic analyti-
cal result.

5. Prioritizing Chains vs. Cycles
According to our two-phase procedure, H-L cycles
(two-way cycles connecting an H-node and an L-node)
are matched after allocating all random walks.

However, in practice, transplant centers may myopi-
cally transplant such cycles without even submitting
the patients involved to the nationwide exchange. The
analysis in this section shows that allowing such two-
way cycles to be matched in chains via an exchange
leads to more transplants than myopically transplant-
ing short cycles. In particular, we provide an analytical
lower bound on the average number of extra trans-
plants that can be created by prioritizing the H kidney
in an H-L cycle for chain matching when the exchange
pools is of medium size. Our analysis focuses on the
H-L cycles only because of their analytical tractability,
but our numerical studies show that there are benefits
(albeit smaller) of allowing chains to take nodes that
would otherwise appear in cycles of other forms (i.e.,
three-way cycles and H-H cycles).

Recall the set CHL as defined after Lemma 2 in
Section 4. Let M ⊆ CHL denote a maximum cardinal-
ity matching on this bipartite graph. Clearly, the set
M depends solely on the edge set CHL, not on the
edges wholly inside the H- or L-subgraphs of the ran-
dom graph D. We consider two algorithms. The first
is called the “Prioritize Chains,” or PriCh algorithm,
which is precisely the two-phase procedure studied up
until now. This algorithm name emphasizes the fact
that it prioritizes allocating chains in the first phase, in
contrast to the second algorithmwe consider. The “Pri-
oritize Cycles,” or PriCy algorithm, simply inverts the
two phases of the PriCh algorithm. Phase 1 of the PriCy
algorithm removes all two-way H-L cycles correspond-
ing to matchings in M and then in Phase 2 identifies
chains via randomwalk on the residual graph. To avoid
confusion, we write PriCh.1 and PriCh.2 for Phases 1
and 2 of the PriCh algorithm and PriCy.1 and PriCy.2
for Phases 1 and 2 of the PriCy algorithm.

We still use the number of unmatched H-nodes as a
performance criterion to evaluate the above two algo-
rithms. To this end, ζPriCh and ζPriCy denote the num-
ber of unmatched H-nodes by applying the PriCh
and PriCy algorithms, respectively. The next theorem
shows that the PriCh algorithm always outperforms
the latter. We set m :� |M| and use the notation set in
Section 3 for Yh , t to represent the random number of
unmatched H-nodes after applying the two-phase pro-
cedure on an H-subgraph.
Theorem 6. Consider a random kidney exchange graph
D(h , `, t)with r � 0. Then, the expected difference Ɛ[ζPriCy−
ζPriCh | m] in the number of unmatched H nodes under the
PriCy algorithm compared with the PriCh algorithm, con-
ditional on there being m nodes in a maximal matching, is
always positive. Moreover, we can derive lower and upper
bounds on Ɛ[ζPriCy − ζPriCh | m] as follows:

0 < (h −m)
(
Ɛ[Yh−m , t]

h −m
−
Ɛ[Yh , t]

h

)
6 Ɛ[ζPriCy − ζPriCh | m] 6min{m ,Ɛ[Yh−m , t]}. (16)
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Proof. We first prove the upper bound on Ɛ[ζPriCy −
ζPriCh | m]. By matching all two-way cycles in M in
Phase PriCy.1, there will be h − m H-nodes left for
Phase PriCy.2. Because the selection of M is indepen-
dent of edges inside the H-subgraph, on the resid-
ual H-subgraphR(m), each edge appears according to
an independent Bernoulli distribution with mean pH .
Thus, the number of unmatched H-nodes after the two-
phase procedure has the same distribution as the ran-
dom variable Yh−m , t . As a result,

Ɛ[ζPriCy | m]� Ɛ[Yh−m , t], (17)

which implies

Ɛ[ζPriCy | m] − Ɛ[ζPriCh | m] 6 Ɛ[ζPriCy | m]� Ɛ[Yh−m , t].
(18)

Alternatively, if we execute chains first, then there will
be Yh , t H-nodes left after the two-phase procedure.
Because m is the size of the maximum bipartite match-
ing on the original graph, it must be larger than the
size of the maximum bipartite matching on the graph
where H-nodes have been removed by the random
walk. Thus, in Phase PriCh.2, at most m H-nodes can
be matched. Consequently,

Ɛ[ζPriCh | m] > Ɛ[Yh , t] −m. (19)

Because Yn , t is increasing in n, inequality (17) and (19)
imply that

Ɛ[ζPriCy |m]−Ɛ[ζPriCh |m]6 Ɛ[Yh−m , t]−(Ɛ[Yh , t]−m)6m.
(20)

Inequalities (18) and (20) lead to the upper bound for
Ɛ[ζPriCy − ζPriCh | m] in (16).
To derive the lower bound for Ɛ[ζPriCy − ζPriCh | m],

we need to derive an upper bound for Ɛ[ζPriCh | m],
or equivalently, Ɛ[Yh , t] −m because of (17). According
to the PriCh algorithm, whether an H-node remains
unmatched after Phase PriCh.1 is independent from
whether it is covered by cycles in M or not. Thus, any
remaining H-node has an independent probability of
m/h to be covered by M. Therefore, if we use the two-
way H-L cycles in M to match the remaining H-nodes
in Phase PriCh.2, there will be an expected number of
(1 − m/h)Ɛ[Yh , t] nodes left after Phase PriCh.2. Nev-
ertheless, the PriCh algorithm would perform even
better, because in Phase PriCh.2, the algorithm would
use the maximummatching on the remaining bipartite
H-L graph rather than M to cover the remaining H-
nodes. Therefore, the expected number of unmatched
H-nodes after the PriCh algorithm, Ɛ[ζPriCh | m], is no
more than (1 − m/h)Ɛ[Yh , t]. With this upper bound
for Ɛ[ζPriCh | m], together with the expression for
Ɛ[ζPriCy | m], (17), we have

Ɛ[ζPriCy − ζPriCh | m] > Ɛ[Yh−m , t] −
(
1− m

h

)
Ɛ[Yh , t]

� (h −m)
(
Ɛ[Yh−m , t]

h −m
−
Ɛ[Yh , t]

h

)
,

which gives the lower bound for Ɛ[ζPriCy − ζPriCh | m]
in (16).

At last, we show that Ɛ[Yh−m , t]/(h−m)−Ɛ[Yh , t]/h > 0
for any m > 1. For all integers n > 1 and t > 0 (note that,
by definition, Yn ,0 � n), define

∆t
n :� ƐYn , t − ƐYn−1,t .

Then Ɛ[Yh−m , t]/(h−m) and Ɛ[Yh , t]/h is exactly the aver-
age of the first h − m entries and the first h entries of
the sequence {∆t

n | n � 1, 2, . . .}. By (A1) in Lemma EC.2
in Online Appendix EC.4, ∆t

n decreases in n; therefore
Ɛ[Yh−m , t]/(h −m) − Ɛ[Yh , t]/h > 0 for any m > 1. �

The lower bound in Theorem 6 shows that the ex-
pected number of transplants always increases when
the nodes in H-L cycles are prioritized for use in chains.
To get a more precise sense of these benefits, we pro-
pose to measure the benefit by the number of extra
H-nodes that could be cleared by prioritizing each H-L
cycle for use in chains. The upper bound given in The-
orem 6 then shows that the average benefit for priori-
tizing each H-L cycle is at most one H-node (coming
from the m in the upper bound term), and we provide
a strengthened lower bound for the average benefit for
prioritizing chains in the next theorem, for a particular
class of parameter settings.

Theorem 7. Suppose λ 6 0.28, t 6 3, h > (3.3/pH) ·
ln(1/pH), and r � 0; then

h −m
m

(
Ɛ[Yh−m , t]

h −m
−
Ɛ[Yh , t]

h

)
>

0.089
ch

, (21)

where ch � h/((1/pH) ln(1/pH)) > 3.3. As a result, we
derive upper and lower bounds on the average benefit
(1/m)Ɛ[ζPriCy − ζPriCh | m] of prioritizing chains as follows:

0.089
ch
6

1
m
Ɛ[ζPriCy − ζPriCh | m] 6min

{
1,

Ɛ[Yh−m , t]
m

}
.

(22)

The proof of Theorem 7 is involved and found in
Online Appendix EC.4. The main idea is to prove that
Ɛ[Yn , t], as a function of n, is sufficiently concave (Lem-
mas EC.2 and EC.3), so the difference between the
slopes Ɛ[Yh−m , t]/(h − m) and Ɛ[Yh , t]/h can be lower
bounded for a given m. This will prove inequality (21).
Inequality (22) then follows directly from Theorem 6.

The parameter settings we considered here (λ 6
0.28, t 6 3, pH 6 0.1, and h > (3.3/pH) ln(1/pH)) cover
a broad class of kidney exchange graphs. The quali-
tative insight implied by Theorem 7 is that the extra
transplants created by using an H-L cycle in a chain
rather than myopically transplanting it have a uni-
form lower bound that only depends on the size of
the H-subgraph. Note that the machinery used in the
proof of Theorem 7 (in Online Appendix EC.4) can be
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adapted to derive lower bounds under other parameter
settings (the choices λ 6 0.28, t 6 3, pH 6 0.1, and h >
(3.3/pH) ln(1/pH) are somewhat arbitrary), but there is
no closed-form expression for the value corresponding
to 0.0089 in (21). If precise values for λ, t, and h are
known (or that they lie in a small specified range), the
bounds can be sharpened by adapting the reasoning of
the proof.
One may notice that the lower bound 0.089/ch pro-

vided in Theorem 6 diminishes when the graph size
(and thus ch) gets larger. This is not because our bound
is less tight for large-sized graphs, but because the aver-
age number of transplants per H-L cycle prioritized for
use in chains diminishes when the graph grows in size.
To see this, note that Ɛ[Yh−m , t] will remain in the order
of (1/pH) ln(1/pH) regardless of the size of h, accord-
ing to our discussions after Theorem 3. Since the total
benefit is nearly a constant, the average benefit created
by using an H-L cycle in a chain tends to diminish
when the size of matching (m) grows with the graph
size. One may also draw this conclusion by observing
that the upper bound Ɛ[Yh−m , t]/m tends to diminish for
large-sized graphs.
We have assumed that m is the size of a maximum

H-L bipartite matching for ease of interpretation. In
fact, M can be any subset of CHL, as long as M depends
on the edge set CHL only and not on the edge distribu-
tion inside the H- nor L-subgraphs.

6. Numerical Experiments
Our two-phase procedure presented in Section 2.2 is
simple by design. It handles the issue of chains in as
simple a way as possible (via random assignment) so
that the probabilistic implications of allocating chains
is minimal. Our initial purpose for defining this pro-
cedure was to aid in analysis. This section serves as a
reality check. Numerical tests give us some confidence
in the strength of our analysis and how our procedure
compares to other procedures implemented in the lit-
erature and in practice. Surprisingly, the performance
loss from randomly assigning chains is not as great as
one might expect.
This section consists of three subsections that numer-

ically test different aspects of the two-phase procedure.
The purpose of the first subsection is to examine the
tightness of the bounds derived in Section 4. The sec-
ond subsection provides a sense of the overall effec-
tiveness of the two-phase procedure. We examine the
performance of our two-phase procedure compared
with a heuristic (due to Ashlagi et al. 2013) and an ILP
implementation (based on an algorithm proposed by
Dickerson et al. 2014). The third subsection examines
the order of assigning chains and cycles, to numerically
verify and extend the insights derived in Section 5.
Because of the specification of the two-phase pro-

cedure, and to fit our purposes, we conduct our

numerical tests on simulated random graphs based on
the model in Section 2.1 instead of the more compli-
cated setting of a fully simulated exchange or using
data based on fielded exchanges. A thorough numeri-
cal investigation undertaken with more realistic data is
left for future work.

We test random graphs with 40, 60, 80, 100, 150, 200,
and 300 nodes. Unless otherwise stated, we set param-
eter values of pH � 0.03 or 0.05, pL � 0.45, and λ � 0.27.
We also test a variety of values for the number of NDD
donors, including t � 0, 1, and 5, depending on the
context of the comparison. These parameter choices
follow those made by Ashlagi et al. (2012) to allow
for straightforward comparison with their results. We
repeated the experiment for different parameter values
and reached similar qualitative conclusions. For each
random graph specification, we randomly generate 100
graph instances, apply the algorithm to be studied, and
record the number of unmatched H-nodes at termi-
nation. Values are averaged across these observations
to yield average performance measures of our algo-
rithm and various comparisons. The performance met-
ric we favor is the number of unmatched H-nodes in
the graph (unless otherwise stated). The smaller this
number, the better the performance.

6.1. Tightness of Theoretical Bounds
In our first numerical experiment, we compare the ac-
tual performance of the two-phase procedure as de-
fined in Section 2.2 with bipartite matching in Phase 2
on simulated random graphs (in the third column
of Table 1, with the theoretical upper bounds for ν∗C
derived in Theorem 4). This will give a sense of the
tightness of our theoretical analysis in comparison
to simulated instances. We calculate upper bounds
using (10) and record these values in the fourth col-
umn of Table 1. The simulated values are within 15%
of the upper bounds for most instances, although the
upper bound weakens as the number of nodes and
NDDs increase. If we compare across the different val-
ues for t, we find a significant reduction in the num-
ber of unmatched H-nodes when chains are allowed
(t > 0). The fifth and sixth columns of Table 1 provide a
comparison of simulated values for the ratio ν∗C/ν∗2 and
our bound in Theorem 5. We used an optimal blossom
algorithm to calculate the optimal matching with two-
way cycles only, which gives v∗2. We do not conduct the
tests when there were no NDDs, in which case compar-
ing v∗2 and v∗C makes no sense. We conclude that our
analytical bounds are sufficiently tight to have confi-
dence in the strength of our analysis.

6.2. Overall Performance
In a second set of experiments, we compare the per-
formance of our two-phase procedure (defined in Sec-
tion 2.2) with more sophisticated clearing algorithms,
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Table 1. Tightness of Bounds Derived in Section 4

No. No. ν∗C via Bound ν∗C/ν∗2 via Bound
nodes NDDs simulation for ν∗C simulation for ν∗C/ν∗2

40 0 26.67 27.08
40 1 25.53 25.79 0.98 1.00
40 5 20.88 21.94 0.80 0.85
60 0 37.09 37.76
60 1 34.82 35.23 0.98 0.99
60 5 27.50 29.19 0.78 0.82
80 0 47.91 48.83
80 1 43.20 45.68 0.95 1.00
80 5 33.41 36.66 0.74 0.82
100 0 56.66 58.01
100 1 50.82 54.10 0.97 1.00
100 5 36.75 42.08 0.70 0.80
150 0 78.36 80.85
150 1 63.91 68.44 0.91 0.99
150 5 38.81 44.25 0.55 0.65
200 0 100.22 102.88
200 1 71.65 78.47 0.84 0.96
200 5 37.22 45.55 0.43 0.56
300 0 142.67 145.47
300 1 66.85 85.59 0.61 0.85
300 5 27.72 44.56 0.25 0.44

Notes. Table entries are the number of unmatched H-nodes remain-
ing. A lower number indicates better performance. In the column
labels, ν∗C and ν∗2 denote the expected number of unmatched H-nodes
after applying the two-phase algorithm and the optimal two-way
cycle-packing algorithm to the random graph, respectively. Accord-
ingly, ν∗C/ν∗2 thus gives the performance ratio between algorithms
that use both chains and two-way cycles or use two-way cycles only.
The theoretical upper bounds for ν∗C and ν∗C/ν∗2 are provided in (10)
and (14), respectively.

such as the heuristic algorithm by Ashlagi et al. (2012)
and the ILP with chains generated as random walks.
We find that our two-phase algorithm, which uses a
heuristic algorithm to match the three-way and two-
way cycles in the residual graph in Phase 2, achieves
comparable performance as the heuristic algorithm of
Ashlagi et al. (2012). We also identify parametric set-
tings in which the two-phase algorithm is competi-
tive with ILP, which can be regarded as a proxy for
the optimal algorithm. The gap between the two-phase
algorithm and the ILP is narrowed for larger graph
sizes, greater numbers of NDDs, denser exchange
graphs, and larger proportions of L-nodes (relative to
H-nodes). We also find that the above gap widened
when cycles are not permitted at all, suggesting that
the random walk is actually not good at picking the
longest chains. This, however, does not result in a large
gap when cycles are used. This can be explained by
the fact that the random walk of Phase 1 preserves the
density of the edge distribution in the residual graph,
an advantage for cycle matching in Phase 2.
Our first comparison is with results given in table 5

of Ashlagi et al. (2012), which records the num-
ber of matched H-nodes after running their heuristic

Table 2. Performance of Two-Phase Procedure Compared
with Heuristic in Ashlagi et al. (2012) and the ILP with
Chains Generated as RandomWalks

No. of No. of Two-phase Ashlagi
nodes NDDs procedure et al. (2012) ILP

40 0 23.46 23.81 20.22
40 1 22.20 22.80 15.23
40 5 18.52 19.97 13.18
60 0 28.68 30.79 25.42
60 1 26.47 27.21 16.16
60 5 22.91 21.98 13.41
80 0 33.54 36.59 26.93
80 1 31.17 29.68 15.95
80 5 24.17 21.87 12.72
100 0 36.11 40.67 27.00
100 1 32.75 29.91 14.72
100 5 24.46 19.13 11.57
150 0 39.66 Unavailable 19.60
150 1 34.41 Unavailable 10.29
150 5 22.67 Unavailable 7.57
200 0 40.37 Unavailable 8.40
200 1 32.19 Unavailable 5.26
200 5 19.37 Unavailable 3.24
300 0 35.68 Unavailable 0.18
300 1 24.37 Unavailable 0.13
300 5 12.92 Unavailable 0.12

Notes. Table entries are the number of unmatched H-nodes remain-
ing. A lower number indicates better performance.

algorithm. Their matching algorithm uses three-way
cycles, and so to make the comparison fair, we also
allow three-way cycle matching in the Phase 2 of the
algorithm. The comparison is displayed in Table 2,
where the third column records the average number
of unmatched H-nodes using Phase 1 and Phase 2 of
our procedure across 100 randomly generated graphs
in each setting, and the fourth column records the
number of unmatched H-nodes inferred by table 5 of
Ashlagi et al. (2012). Note that Ashlagi et al. (2012) only
report values for exchanges up to 100 nodes in size.
These results are encouraging. Although the number
of unmatched H-nodes from our procedure increases
relative to the Ashlagi et al. (2012) heuristic, the perfor-
mance is nonetheless comparable.

Next, we attempted to compare our algorithm to an
optimal clearing algorithm. However, as the problem
is NP-hard (Abraham et al. 2007), we cannot expect
that the optimal solution is readily computed, partic-
ularly as the number of nodes grows larger. Existing
heuristics typically tightly cap the length of chains.
If chains are long (which does happen in practice;
see Sack 2012) the generation of many variables in an
ILP formulation such as (15) is required. We worked
with the optimization code provided by Dickerson
et al. inMay 2016 (https://github.com/johndickerson/
kidneyexchange) that accompanied the publication of
Dickerson et al. (2014). When we removed the chain

https://github.com/johndickerson/kidneyexchange
https://github.com/johndickerson/kidneyexchange
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cap, the code was unable to find optimal solutions on
larger instances in a reasonable run time. In response,
we developed amodified version of the Dickerson et al.
code that uses random walk to sample a (reasonably
sized) set of chains that enter an ILP formulation as
variables (inspired by personal communication with
John P. Dickerson et al. (2014)). The generated ran-
domwalks prioritize H-nodes as in our two-phase pro-
cedure. Following standard practice, we capped the
length of cycles at 3 because of the limitation that cycles
must be transplanted simultaneously and hence logis-
tically infeasible at lengths greater than 4. This makes
the number of variables associated with cycles also
manageable. In our simulations, we capped the num-
ber of chain variables at 100,000, meaning that the ILP
formulation worked with at most 100,000 chains gen-
erated as random walks and all cycles up to length 3.
The performance of this modified ILP algorithm,

which uses elements of integer programming and ran-
dom walks, is reported in the final column of Table 2.
We believe this hybrid algorithm gives a good approx-
imation to an optimal clearing algorithm. Indeed, for
graphs of 300 nodes, it leaves almost no unmatched
H-nodes even without using any chains. The gap
between the two-phase algorithm and the ILP stays
below 30 H-nodes across all scenarios.
Our goal is not to advocate that the two-phase pro-

cedure as stated in Section 2.2 be used in practice in
its simple form; instead, our motivation is to show that
it may be useful to incorporate a very simple alloca-
tion of chains via random walk in the first stage into
more elaborate methods, such as the ILP. Using ran-
dom walks can greatly speed the computational bur-
den of finding optimal clearings. Our simple two-phase
procedure runs very quickly with less than 0.1 seconds
for all instances, while the more elaborate ILP formu-
lation can take up to 1,000 seconds for instances with
larger graph sizes.

An interesting question is under what parameter
setting does our two-phase procedure come close to
being optimal. We use the proportion of unmatched
H-nodes instead of the number of H-nodes as a per-
formance measure, as it provides a fair comparison
across instances with different graph sizes. Figure 6
illustrates that the performance of the two-phase pro-
cedure improves as (a) the total number of nodes get
larger, (b) the number of NDD nodes t get larger, (c) pH
gets larger, and (d) the proportion of L-nodes λ get
larger. In (a), we find that when the graph size expands,
the gap between the two-phase procedure and the ILP
reduces quickly. For graphs with more than 200 nodes,
our algorithm matches more than 80% of the H-nodes,
which shows that the two-phase algorithm is most
competitive when the graph size is sufficiently large.
In (b), we notice that increasing the number of NDDs
steadily improves the performance of the two-phase

algorithm, but not the ILP. The intuition is that the ILP
is always able to identify very long chains, so one NDD
often suffices; in our algorithm, however, we cannot
expect a single random walk to match most H-nodes,
so adding extra NDDs (more random walks) helps.
In (c) and (d), we find that the performance of both
our algorithm and the ILP improve, while their gap
shrinks, when the graph contains more edges in the
H-subgraph or contains a larger proportion of L-nodes.
In these cases, the cycle-matching phase becomes rel-
atively more important, which diminishes the sub-
optimality introduced in Phase 1 of the two-phase
procedure.

Thinking more systematically, observe that our two-
phase procedure cannot perform as well as the ILP
for two separate reasons. First, the ILP formulation
can choose the best combination of cycles and chains
out of a large set of generated random walks, whereas
our procedure can only optimize cycle matching after
chains have been removed. Second, the chains gener-
ated by the random walks cannot, in general, match as
many nodes as those generated by the ILP. To further
understand the main reason that leads to the perfor-
mance gap, we consider a special case when the graph
contains only H-nodes and no cycles are allowed. We
then compare the number of nodes that are covered by
chains generated by random walk versus our ILP for-
mulation, and we summarize the results in Table 3. We
set pH � 0.05 and λ � 0, as there is no need to consider
L-nodes for this experiment.
Table 3 shows that the gap could be as large as 50

H-nodes between the random walk and the ILP. How-
ever, in Table 2we observe that the gap is less than 30 in
the presence of cycles. One explanation is that although
random walks are a suboptimal way to allocate chains,
in the presence of cycles, this suboptimality is lessened.
Optimally allocating chains may preclude an efficient
allocation of cycles in the second stage, but this effect is
weakened under randomwalk allocation. As discussed
above, random walk allocation in the first phase main-
tains the probabilistic density of the residual graph,
enhancing cycle matching. Hence, we believe the major
loss of optimality from our procedure is not that it may
choose a chain that is too short but that it is unable to
look forward to assess the impact of choosing a chain
on the cycle formation phase. This returns us to the
discussion of the impact of prioritizing chains versus
cycles that we initiated in Section 5.

6.3. Prioritizing Cycles Before Chains
In Section 5 we showed that if we must prioritize
either chains or cycles in our two-phase procedure, it
is preferable to prioritize chains. These results were
analytical and focused attention on H-L cycles for pur-
poses of tractability. In this sectionwe reinforce numer-
ically, and in greater generality, the same general con-
clusion by allowing a wider variety of cycles.
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Figure 6. (Color online) An Illustration of How the Performance of the Two-Phase Procedure Compared with an ILP
Formulation Under Various Parameter Changes
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Figure 7 illustrates the benefit of prioritizing chains
over prioritizing cycles. The vertical axis captures the
difference in the number of nodes, and the horizon-
tal axis is the net increase in the number of H nodes
matched when prioritizing chains compared with pri-
oritizing cycles. That is, the vertical axis captures sim-
ulated values of Ɛ[ζPriCy − ζPriCh]. Larger values on the
vertical axes correspond to increased benefits of prior-
itizing chains. The figure illustrates three curves. The
first is when bipartite matching between H-L-nodes
is used in the PriCy and PriCh algorithms—the set-
ting discussed in Section 5. This case is denoted as
“H-L” in the figure, meaning the cycle formation phase
employs H-L cycles only. The second curve still prior-
itizes H-L cycles but in the PriCy algorithm adds an
additional step after chains are formed to use three-
way matching in the residual graph that remains. This
case is denoted as “H-L then 3-way” in the figure. This

is a first attempt to “improve” the PriCy algorithm
beyond what was studied in Section 5. Observe that
the improvement is significant but still performs worse
than the PriCh algorithm. Finally, the third curve is a
second attempt to improve the PriCy algorithm, where
instead of only prioritizing H-L cycles, all cycles involv-
ing up to three patients are prioritized. This case is
denoted as “3-way” in the figure. The improvement is
dramatic over the previous two curves but, somewhat
surprisingly, still reveals a small benefit for prioritizing
chains over cycles. Figure 7 is drawn for the case of a
single NDD; we did similar simulations for three and
five NDDs, and the basic pattern was similar.

One implication of these results is that initially pri-
oritizing H-L cycles can undermine subsequent match-
ing in chains and additional cycles, and this impact is
lessened when a wider variety of cycles are prioritized.
This has practical relevance since individual hospitals
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Table 3. Performance of Two-Phase Compared with an ILP
Formulation When There Are No Cycles

Two-phase
No. of nodes No. of NDDs procedure ILP

40 1 33.84 20.40
40 5 22.87 11.52
60 1 48.15 16.90
60 5 27.77 10.70
80 1 56.23 16.95
80 5 28.88 10.67
100 1 61.72 16.51
100 5 11.15 30.61
200 1 67.34 16.38
200 5 31.05 7.58
300 1 68.95 12.39
300 5 31.12 6.45

Notes. Table entries are the number of unmatched H-nodes remain-
ing. A lower number indicates better performance.

are more likely to transplant H-L cycles before declar-
ing their patients in an exchange than they are any
other transplant combination involving an H-node.
A more general implication one can infer from this is
that myopically transplanting the easiest cases has the
greatest negative impact on the quality of clearing in
an exchange. Indeed, further numerical investigation
(not reported here) suggests that the more L-nodes in
the chains that are prioritized (for instance, H-L or
H-L-L compared with H-H-L), the worse is the overall
performance.
Another observation is that the loss of transplants

created by matching H-L cycles increases significantly
as the graph size expands. This is in line with the lower
bound in Theorem 7 that increases with the size of the
graph. However, since we have used a sophisticated
heuristic algorithm to match the three-way cycles, the
loss incurred by prioritizing up to three-way cycles
stays low irrespective of the graph size. The reason
is that a sophisticated heuristic algorithm will intelli-
gently use H-H-H or H-H-L cycles, in which H-nodes
take a larger proportion. As suggested by Figure 7,
removing those cycles first do not result in a big loss.
This underscores how the impact of the order of priori-
tizing chains versus cycles is not robust when attention
is isolated to H-L cycles but is robust when up to three-
way cycles are considered, provided that a sophisti-
cated cycle-matching heuristic is used.

7. Directions for Future Work
In this paper we have developed a nonasymptotic ap-
proach to analyzing kidney exchange graphs that com-
plements previous work that relies on asymptotic anal-
ysis. We demonstrate the power of this approach by
providing analytical performance bounds on a two-
phase procedure for matching donors and recipients,

Figure 7. (Color online) Comparing the Benefits of
Prioritizing Chains vs. Prioritizing Cycles, with λ � 0.27,
pH � 0.05, and t � 1
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andwe demonstrate how these bounds allow us to ana-
lytically show the benefit of chains in “medium-sized”
(that is, nonlimit) graphs.

We developed our approach in the stylized setting
introduced by Ashlagi et al. (2012) with one additional
restriction in our procedure to facilitate analysis. The
chains in our two-phase procedure consist entirely of
H-nodes (initiated, of course, by an NDD donor). We
did this to maintain the stochastic independence struc-
ture of residual graphs that was leveraged at several
points in our proofs. Nonetheless, extending to “mixed
chains” of both H- and L-nodes may be approachable
by adjusting our methodology and is a topic of further
investigation.

Of course, there are several important assumptions
inherent in the random graph model of Ashlagi et al.
(2012) itself. Discussion of the validity of these assump-
tions and the possibility of extension is well docu-
mented (see, for instance, Ashlagi et al. 2012, 2013;
Dickerson et al. 2012b, 2013). A test bed for the power
of our nonasymptotic approach is to systematically
attempt to relax certain assumptions and see what
tractability remains. Since our approach has important
distinctions with the standard asymptotic methods, it
is conceivable that we can achieve further generality
in ways that are not amenable to other methods. Some
promising avenues include embedding random walks
in a dynamic setting of kidney exchange within an
evolving patient and donor base.We feel that themem-
oryless properties of random walks should prove use-
ful in a dynamic setting.

Finally, although we introduced our procedure pri-
marily for analytical investigation, we feel it is use-
ful to comment on the practicality of the approach.
Allocating organs on the basis of random walks may
strike practitioners and patients alike as somewhat
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arbitrary and unfair. However, there is some flexibility
in our procedure that could make it more palatable in
practice. One can specify a priority by which to pro-
cess the nodes. This priority could increase the likeli-
hood that a given patient (potentially a very deserv-
ing one) could get a kidney sooner than others. One
way of doing this is to evaluate the potential of each
node on the kidney exchange graph, as proposed in
Dickerson and Sandholm (2015). Of course, a benefit
of the random walk approach is its scalability and ease
of implementation, which might complement some of
the more sophisticated algorithms proposed by other
researchers.
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