
Chapter 7

Valid Inequalities
for Structured Integer
Programs

In Chaps. 5 and 6 we have introduced several classes of valid inequalities that
can be used to strengthen integer programming formulations in a cutting
plane scheme. All these valid inequalities are “general purpose,” in the
sense that their derivation does not take into consideration the structure of
the specific problem at hand. Many integer programs have an underlying
combinatorial structure, which can be exploited to derive “strong” valid
inequalities, where the term “strong” typically refers to the fact that the
inequality is facet-defining for the convex hull of feasible solutions.

In this chapter we will present several examples. We will introduce
the cover and flow cover inequalities, which are valid whenever the con-
straints exhibit certain combinatorial structures that often arise in integer
programming. We will introduce lifting, which is a procedure for generat-
ing facet-defining inequalities starting from lower-dimensional faces, and a
particularly attractive variant known as sequence-independent lifting. When
applied to the above inequalities, we obtain lifted cover inequalities and lifted
flow cover inequalities, which are standard features of current branch-and-
cut solvers. We also discuss the traveling salesman problem, for which the
polyhedral approach has produced spectacular results. Finally we present
the equivalence between separation and optimization.
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7.1 Cover Inequalities for the 0,1 Knapsack
Problem

Consider the 0,1 knapsack set

K :=

⎧
⎨

⎩
x ∈ {0, 1}n :

n∑

j=1

ajxj ≤ b

⎫
⎬

⎭

where b > 0 and aj > 0 for j ∈ N := {1, . . . , n}.
Recall from Example 3.19 that the dimension of conv(K) is n−|J | where

J = {j ∈ N : aj > b}. In the remainder, we assume that aj ≤ b for all
j ∈ N , so that conv(K) has dimension n.

In Sect. 2.2 we introduced the concept of minimal covers. Recall that
a cover is a subset C ⊆ N such that

∑
j∈C aj > b and it is minimal

if
∑

j∈C\{k} aj ≤ b for all k ∈ C. For any cover C, the cover inequality
associated with C is

∑

j∈C
xj ≤ |C| − 1,

and it is valid for conv(K).

Proposition 7.1. Let C be a cover for K. The cover inequality associated
with C is facet-defining for PC := conv(K) ∩ {x ∈ R

n : xj = 0, j ∈ N \ C}
if and only if C is a minimal cover.

Proof. Note that dim(PC) = |C|. Assume C is a minimal cover. For all
j ∈ C, let xj be the point defined by xji = 1 for all i ∈ C \ {j} and xji = 0
for all i ∈ (N \ C) ∪ {j}. These are |C| affinely independent points in PC

that satisfy the cover inequality associated with C at equality. This shows
that the cover inequality associated with C is a facet of PC .

Conversely, suppose that C is not a minimal cover, and let C ′ ⊂ C
be a cover contained in C. The cover inequality associated with C is the
sum of the cover inequality associated with C ′ and the inequalities xj ≤ 1,
j ∈ C \ C ′. Since these inequalities are valid for PC , the cover inequality
associated with C is not facet-defining for PC .

Proposition 7.1 shows that minimal cover inequalities define facets of
conv(K)∩{x ∈ R

n : xj = 0, j ∈ N \C}. In the next section we will discuss
the following problem: given a minimal cover C, how can one compute
coefficients αj , j ∈ N \C, so that the inequality

∑
j∈C xj +

∑
j∈N\C αjxj ≤

|C| − 1 is facet-defining for conv(K)?
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Separation

To use cover inequalities in a cutting plane scheme, one is faced with the
separation problem, that is, given a vector x̄ ∈ [0, 1]n, find a cover inequality
for K that is violated by x̄, or show that none exists. Note that a cover
inequality relative to C is violated by x̄ if and only if

∑
j∈C(1 − x̄j) < 1.

Thus, deciding whether a violated cover inequality exists reduces to solving
the problem

ζ = min{
∑

j∈C
(1− x̄j) : C is a cover for K}. (7.1)

If ζ ≥ 1, then x̄ satisfies all the cover inequalities for K. If ζ < 1, then an
optimal cover for (7.1) yields a violated cover inequality. Note that (7.1)
always has an optimal solution that is a minimal cover.

Assuming that a1, . . . , an and b are integer, problem (7.1) can be formu-
lated as the following integer program

ζ = min
∑n

j=1(1− x̄j)zj∑n
j=1 ajzj ≥ b+ 1

z ∈ {0, 1}n.
(7.2)

It is worth noting that the separation problem (7.1) is NP-hard in general
[239]. In practice one is interested in fast heuristics to detect violated cover
inequalities. A simple example is the following: find a basic optimal solution
z∗ of the linear programming relaxation of (7.2) (see Exercise 3.3); if the
optimal objective value of the linear programming relaxation is ≥ 1, then
also ζ ≥ 1 and there is no violated cover inequality. Otherwise (observing
that z∗ has at most one fractional coordinate) output the cover C := {j ∈
N : z∗j > 0}. Note that this heuristic does not guarantee that the inequality
associated with C cuts off the fractional point x̄, even if there exists a cover
inequality cutting off x̄.

7.2 Lifting

Consider a mixed integer set S := {x ∈ Z
n
+ × R

p
+ : Ax ≤ b}. Given a

subset C of N := {1, . . . , n + p}, and a valid inequality
∑

j∈C αjxj ≤ β for

conv(S) ∩ {x ∈ R
n+p : xj = 0, j ∈ N \ C}, an inequality

∑n+p
j=1 αjxj ≤ β is

called a lifting of
∑

j∈C αjxj ≤ β if it is valid for conv(S). In the remainder
of this section we will focus on the case where S ⊆ {0, 1}n.
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Proposition 7.2. Consider a set S ⊆ {0, 1}n such that S ∩ {x : xn=1} 	= ∅,
and let

∑n−1
i=1 αixi ≤ β be a valid inequality for S ∩ {x : xn = 0}. Then

αn := β −max

{
n−1∑

i=1

αixi : x ∈ S, xn = 1

}

(7.3)

is the largest coefficient such that
∑n−1

i=1 αixi + αnxn ≤ β is valid for S.
Furthermore, if

∑n−1
i=1 αixi ≤ β defines a d-dimensional face of conv(S)∩

{xn = 0}, then
∑n

i=1 αixi ≤ β defines a face of conv(S) of dimension at least
d+ 1.

Proof. The inequality
∑n

i=1 αixi ≤ β is valid for S ∩ {x : xn = 0} by
assumption, and it is valid for S ∩ {x : xn = 1} by definition of αn. Thus
∑n

i=1 αixi ≤ β is valid for S, and αn is the largest coefficient with such
property.

Consider d+1 affinely independent points of conv(S)∩{xn = 0} satisfy-
ing

∑n−1
i=1 αixi ≤ β at equality. These points also satisfy

∑n
i=1 αixi ≤ β at

equality. Any point x̄ ∈ S with x̄n = 1 achieving the maximum in (7.3) gives
one more point satisfying

∑n
i=1 αixi ≤ β at equality, and it is affinely inde-

pendent of the previous ones since it satisfies xn = 1. Thus
∑n

i=1 αixi ≤ β
defines a face of conv(S) of dimension at least d+ 1.

Sequential Lifting. Consider a set S := {x ∈ {0, 1}n : Ax ≤ b} of
dimension n, where A is a nonnegative matrix. Proposition 7.2 suggests
the following way of lifting a facet-defining inequality

∑
j∈C αjxj ≤ β of

conv(S)∩{x : xj = 0, j ∈ N\C} into a facet-defining inequality
∑n

j=1 αjxj ≤
β of conv(S).

Choose an ordering j1, . . . , j� of the indices in N \C. Let C0 = C
and Ch = Ch−1 ∪ {jh} for h = 1, . . . , �.

For h = 1 up to h = �, compute

αjh := β−max

⎧
⎨

⎩

∑

j∈Ch−1

αjxj : x ∈ S, xj = 0, j ∈ N \ Ch, xjh = 1

⎫
⎬

⎭
.

(7.4)

By Proposition 7.2 the inequality
∑n

j=1 αjxj ≤ β obtained this way is
facet-defining for conv(S).

The recursive procedure outlined above is called sequential lifting. Note
that the assumption that A ≥ 0 implies that, for every x̄ ∈ S, {x ∈ {0, 1}n :
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x ≤ x̄} ⊆ S. This and the fact that dim(S) = n guarantee that (7.4) is
feasible. We remark that different orderings of N \C may produce different
lifted inequalities. Furthermore, not all possible liftings can be derived from
the above procedure, as the next example illustrates.

Example 7.3. Consider the 0,1 knapsack set

8x1 + 7x2 + 6x3 + 4x4 + 6x5 + 6x6 + 6x7 ≤ 22

xj ∈ {0, 1} for j = 1, . . . , 7.

The index set C := {1, 2, 3, 4} is a minimal cover. The corresponding
minimal cover inequality is x1 + x2 + x3 + x4 ≤ 3.

We perform sequential lifting according to the order 5, 6, 7. According
to Proposition 7.2, the largest lifting coefficient for x5 is

α5 = 3−max{x1 + x2 + x3 + x4 : 8x1 +7x2 +6x3 +4x4 ≤ 22− 6, x1, x2, x3, x4 ∈ {0, 1}}.

It is easily verified that α5 = 1. The lifting coefficient of x6 is

α6 = 3−max{x1+x2+x3+x4+x5 : 8x1+7x2+6x3+4x4+6x5 ≤ 16, x1, . . . , x5 ∈ {0, 1}}.

It follows that α6 = 0. Similarly α7 = 0. This sequence yields the inequality
x1+x2+x3+x4+x5 ≤ 3. By symmetry, the sequences 6, 5, 7 and 7, 5, 6 yield
the inequalities x1 + x2 + x3 + x4 + x6 ≤ 3 and x1 + x2 + x3 + x4 + x7 ≤ 3,
respectively. By Propositions 7.1 and 7.2, all these inequalities are facet-
defining.

Not all possible facet-defining lifted inequalities can be obtained sequen-
tially. As an example, consider the following lifted inequality:

x1 + x2 + x3 + x4 + 0.5x5 + 0.5x6 + 0.5x7 ≤ 3.

We leave it to the reader to show that the inequality is valid and facet-
defining for the knapsack set. However, it cannot be obtained by sequential
lifting since its lifting coefficients are fractional. �

7.2.1 Lifting Minimal Cover Inequalities

The following theorem was proved by Balas [25].
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Theorem 7.4. Let K := {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b}, where b ≥ aj > 0
for all j ∈ N . Let C be a minimal cover for K, and let

∑

j∈C
xj +

∑

j∈N\C
αjxj ≤ |C| − 1 (7.5)

be a lifting of the cover inequality associated with C. Up to permuting the
indices, assume that C = {1, . . . , t} and a1 ≥ a2 ≥ . . . ≥ at. Let μ0 := 0
and μh :=

∑h
�=1 a� for h = 1, . . . , t. Let λ := μt − b (note that λ > 0).

If (7.5) defines a facet of conv(K), then the following hold for every
j ∈ N \ C.

(i) If, for some h, μh ≤ aj ≤ μh+1 − λ, then αj = h.

(ii) If, for some h, μh+1 − λ < aj < μh+1, then h ≤ αj ≤ h+ 1.

Furthermore, for every j ∈ N \C, if μh+1−λ < aj < μh+1, then there exists
a facet-defining inequality of the form (7.5) such that αj = h+ 1.

Proof. Assume that (7.5) is facet-defining for conv(K) and let j ∈ N \ C.
Since 0 < aj ≤ b < μt, there exists an index h, 0 ≤ h ≤ t − 1, such that
μh ≤ aj < μh+1.

By Proposition 7.2, αj ≤ |C| − 1− θ, where

θ := max

{
t∑

i=1

xi :

t∑

i=1

aixi ≤ b− aj, x ∈ {0, 1}t
}

.

Observe that, since a1 ≥ a2 ≥ . . . ≥ at, θ = |C| − k + 1, where k is the
smallest index such that

∑t
�=k a� ≤ b− aj . Therefore αj ≤ k − 2.

Since
∑t

�=k a� = μt − μk−1 = b + λ − μk−1, it follows that k is the
smallest index such that aj ≤ μk−1 − λ. Therefore k is the index such that
μk−2 − λ < aj ≤ μk−1 − λ.

It follows that

αj ≤ k − 2 =

{
h when μh ≤ aj ≤ μh+1 − λ
h+ 1 when μh+1 − λ < aj < μh+1.

(7.6)

Next we show that αj ≥ h. We apply Proposition 7.2 to the inequality

∑

i∈C
xi +

∑

i∈N\(C∪{j})
αixi ≤ |C| − 1. (7.7)

Since (7.5) is facet-defining, it follows that

αj = |C|− 1−max

⎧
⎨

⎩

∑

i∈C

xi +
∑

i∈N\(C∪{j})
αixi :

∑

i∈N\{j}
aixi ≤ b− aj , x ∈ {0, 1}N\{j}

⎫
⎬

⎭
.

(7.8)
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Observe that, since a1 ≥ a2 ≥ . . . ≥ at, (7.8) admits an optimal solution
x∗ ∈ {0, 1}N\{j} such that x∗1 ≤ x∗2 ≤ . . . ≤ x∗t . Since

∑t
�=h+1 a� = μt−μh ≥

b + λ − aj > b − aj , we have that x∗� = 0 for some � ∈ {h + 1, . . . , t}. It
follows that x∗1 = . . . = x∗h = 0. Let x̄ be the vector in {0, 1}n defined by
x̄j = 0, x̄i = 1 for i = 1, . . . , h, and x̄i = x∗i otherwise. We have that x̄ ∈ K
because

∑
i∈N aix̄i =

∑
i∈N\{j} aix

∗
i + μh ≤ b − aj + μh ≤ b. Since (7.5) is

valid for K, it follows that
∑

i∈C x̄i +
∑

i∈N\C αix̄i ≤ |C| − 1. Therefore

αj = |C|− 1−
⎛

⎝
∑

i∈C

x∗
i +

∑

i∈N\(C∪{j})
αix

∗
i

⎞

⎠ ≥
∑

i∈C

(x̄i −x∗
i )+

∑

i∈N\(C∪{j})
αi(x̄i −x∗

i ) = h.

This proves (i) and (ii). We prove the last statement of the theorem.
Assume aj > μh+1 − λ. If we do sequential lifting in which we lift xj first,
it follows from the proof of (7.6) that the coefficient of xj in the resulting
inequality is h + 1. By Proposition 7.2 this inequality is facet-defining for
conv(K).

Remark 7.5. Let K and C be as in Theorem 7.4. For every j ∈ N \C, let
h(j) be the index such that μh(j) ≤ aj < μh(j)+1. The inequality

∑
j∈C xj +∑

j∈N\C h(j)xj ≤ |C| − 1 is a lifting of the minimal cover inequality associ-
ated with C. Furthermore, if aj ≤ μh(j)+1 − λ for all j ∈ N \ C, then the
above is the unique facet-defining lifting.

Example 7.6. We illustrate the above theorem on the knapsack set

K := {x ∈ {0, 1}5 : 5x1 + 4x2 + 3x3 + 2x4 + x5 ≤ 5}.

The set C := {3, 4, 5} is a minimal cover. We would like to lift the inequality
x3 + x4 + x5 ≤ 2 into a facet of conv(K). We have μ0 = 0, μ1 = 3,
μ2 = 5, μ3 = 6 and λ = 1. Therefore α1 = 2 since μ2 ≤ a1 ≤ μ3 − λ.
Similarly α2 = 1 since μ1 ≤ a2 ≤ μ2 − λ. By Theorem 7.4, the inequality
2x1 + x2 + x3 + x4 + x5 ≤ 2 defines a facet of conv(K). Furthermore, by
Remark 7.5, this is the unique facet-defining lifting. �

7.2.2 Lifting Functions, Superadditivity, and Sequence
Independent Lifting

Let S := {x ∈ {0, 1}n : Ax ≤ b}, where we assume that A ≥ 0 and
dim(S) = n. Therefore b ≥ 0. Let C ⊂ N := {1, . . . , n}, and let

∑
j∈C αjxj ≤

β be a valid inequality for S ∩ {x : xj = 0 for j ∈ N \ C}.
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Consider any lifting of the above inequality,

n∑

j=1

αjxj ≤ β. (7.9)

Let aj denote the jth column of A. By Proposition 7.2, for all j ∈ N \C,
inequality (7.9) must satisfy αj ≤ f(aj) (because A ≥ 0 and {x ∈ S : xj =
0} 	= ∅), where f : [0, b] → R is the function defined by

f(z) := β − max
∑

i∈C
αixi

∑

i∈C
aixi ≤ b− z (7.10)

xi ∈ {0, 1} for i ∈ C.

The function f : [0, b] → R is the lifting function of the inequality
∑

j∈C αjxj ≤ β.

A function g : U → R is superadditive if g(u + v) ≥ g(u) + g(v) for all
u, v ∈ U such that u+ v ∈ U .

Theorem 7.7. Let g : [0, b] → R be a superadditive function such that
g ≤ f . Then

∑
j∈C αjxj +

∑
j∈N\C g(aj)xj ≤ β is a valid inequality for S.

In particular, if f is superadditive, then the inequality
∑

j∈C αjxj +
∑

j∈N\C f(aj)xj ≤ β is the unique maximal lifting of
∑

j∈C αjxj ≤ β.

Proof. For the first part of the statement, let αj := g(aj) for j ∈ N \C. Let
t := n−|C|. Given an ordering j1, . . . , jt of the indices in N \C, let C0 := C
and Ci := Ci−1∪{ji}, i = 1, . . . , t, and define the function fi : [0, b] → R by

fi(z) := β − max
∑

j∈Ci−1

αjxj

∑

j∈Ci−1

ajxj ≤ b− z (7.11)

xj ∈ {0, 1} for j ∈ Ci−1.

Note that f1 = f and, by definition, f1 ≥ f2 ≥ . . . ≥ ft. By Proposition 7.2,
the inequality

∑n
j=1 αjxj ≤ β is valid for S if αji ≤ fi(a

ji) for i = 1, . . . , t.

We will show that g ≤ fi for i = 1 . . . , t, implying that αji = g(aji) ≤ fi(a
ji).
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The proof is by induction on i. By assumption g ≤ f1. Consider
2 ≤ i ≤ t, and assume by induction that g ≤ fi−1. Given z ∈ [0, b], we
need to prove that g(z) ≤ fi(z). Let x∗ be an optimal solution of (7.11),
and define u∗ := aji−1x∗ji−1

. It follows that

fi(z) = β −
∑

j∈Ci−2

αjx
∗
j − αji−1x

∗
ji−1

= β − max

⎧
⎨

⎩

∑

j∈Ci−2

αjxj :

∑

j∈Ci−2

ajxj ≤ b− z − u∗

xj ∈ {0, 1} for j ∈ Ci−2

⎫
⎬

⎭
− αji−1x

∗
ji−1

= fi−1(z + u∗)− g(aji−1)x∗
ji−1

≥ g(z + u∗)− g(aji−1)x∗
ji−1

(because g ≤ fi−1)

≥ g(z + u∗)− g(aji−1x∗
ji−1

) (because g is superadditive and x∗
ji−1

∈ Z+)

= g(z + u∗)− g(u∗)
≥ g(z) (because g is superadditive).

For the last part of the statement, assume that f = f1 is superadditive.
By the first part of the statement,

∑
j∈C αjxj +

∑
j∈N\C f(aj)xj ≤ β is

valid for S. It follows from the first part of the proof that f1 ≤ fi for
i = 1, . . . , t. Since f1 ≥ f2 ≥ . . . ≥ ft, we have f1 = f2 = . . . = ft. This
shows that αj ≤ f(aj), j ∈ N \ C, for every lifting

∑n
j=1 αjxj ≤ β of

∑
j∈C αjxj ≤ β.

Note that the inequality
∑

j∈C αjxj +
∑

j∈N\C g(aj)xj ≤ β defined in
the first part of the statement of Theorem 7.7 is valid even when S ∩ {x :
xj = 1} = ∅ for some j ∈ N \ C (If (7.10) is infeasible, we set f(z) = +∞).

7.2.3 Sequence Independent Lifting for Minimal
Cover Inequalities

Consider the 0,1 knapsack set K := {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b} where
0 < aj ≤ b for all j = 1, . . . , n. Let C be a minimal cover. We present a
sequence independent lifting of the cover inequality

∑
j∈C xj ≤ |C| − 1.

The lifting function f defined in (7.10) becomes

f(z) = |C| − 1 −max
∑

j∈C
xj

∑

j∈C
ajxj ≤ b− z

xj ∈ {0, 1} for j ∈ C.

We assume without loss of generality that C = {1, . . . , t} with a1 ≥ . . . ≥ at.
Let μ0 := 0 and, for h = 1, . . . , t, let μh :=

∑h
�=1 a�. Let λ := μt − b > 0.
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The first part of the proof of Theorem 7.4 shows that

f(z) =

{
0 if 0 ≤ z ≤ μ1 − λ
h if μh − λ < z ≤ μh+1 − λ, for h = 1, . . . , t− 1.

The function f is not superadditive in general. Consider the function g
defined by

g(z) :=

⎧
⎨

⎩

0 if z = 0
h if μh − λ+ ρh < z ≤ μh+1 − λ, for h = 0, . . . , t− 1

h− μh−λ+ρh−z
ρ1

if μh − λ < z ≤ μh − λ+ ρh, for h = 1, . . . , t− 1

(7.12)

where ρh = max{0, ah+1 − (a1 − λ)} for h = 0, . . . , r − 1. Note that g ≤ f .
It can be shown that the function g is superadditive (see [192]). Hence by
Theorem 7.7 the inequality

∑

j∈C
xj +

∑

j∈N\C
g(aj)xj ≤ |C| − 1.

is a lifting of the minimal cover inequality.

Example 7.8. Consider the 0,1 knapsack set from Example 7.3

8x1 + 7x2 + 6x3 + 4x4 + 6x5 + 6x6 + 6x7 ≤ 22

xj ∈ {0, 1} for j = 1, . . . , 7.

We consider the minimal cover C := {1, 2, 3, 4} of Example 7.3 and the
corresponding minimal cover inequality is x1 + x2 + x3 + x4 ≤ 3. We lift it
with the superadditive function g defined in (7.12). Figure 7.1 plots the
function. The lifted minimal cover inequality is x1 + x2 + x3 + x4 +0.5x5 +
0.5x6 + 0.5x7 ≤ 3. �

g(z)

1

2

3

5 z0 7 12 13 18 22

Figure 7.1: A sequence independent lifting function
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7.3 Flow Cover Inequalities

The single-node flow set is the mixed integer linear set defined as follows

T :=

⎧
⎪⎨

⎪⎩
(x, y) ∈ {0, 1}n × R

n
+ :

n∑

j=1

yj ≤ b

yj ≤ ajxj for j = 1, . . . , n

⎫
⎪⎬

⎪⎭
(7.13)

where 0 < aj ≤ b for all j = 1, . . . , n. This structure appears in many
integer programming formulations that model fixed charges (Sect. 2.10). The
elements of the set T can be interpreted in terms of a network consisting
of n arcs with capacities a1, . . . , an entering the same node, and one arc of
capacity b going out. The variable xj indicates whether arc j is open, while
yj is the flow through arc j, j = 1, . . . , n. Note that dim(T ) = 2n.

b
...

a1

a2

an

Let N := {1, . . . , n}. A set C ⊆ N is a flow cover of T if
∑

j∈C aj > b.
Let λ :=

∑
j∈C aj − b. The inequality

∑

j∈C
yj +

∑

j∈C
(aj − λ)+(1− xj) ≤ b (7.14)

is the flow cover inequality defined by C.

Theorem 7.9 (Padberg et al. [303]). Let C be a flow cover for the single-
node flow set T , and let λ :=

∑
j∈C aj − b. The flow cover inequality defined

by C is valid for T . Furthermore, it defines a facet of conv(T ) if λ < max
j∈C

aj .

Proof. The flow cover inequality defined by C is valid for T since

∑

j∈C

yj ≤ min{b,
∑

j∈C

ajxj} = b− (b−
∑

j∈C

ajxj)
+ = b− (

∑

j∈C

aj(1− xj)− λ)+

≤ b−
∑

j∈C

(aj − λ)+(1− xj),

where the last inequality holds because x is a 0,1 vector.
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Let F be the face of conv(T ) defined by (7.14). Note that F is a proper
face, since the point defined by xj = 1, yj = 0 for j = 1, . . . , n is in T \ F .

Assume that λ < maxj∈C aj . We will show that F is a facet. It suffices
to provide a set X ⊆ F of points such that dim(X) = 2n− 1.

Without loss of generality, assume that C = {1, . . . , k}, and a1 ≥ . . . ≥
at ≥ λ, at+1, . . . , ak < λ where 1 ≤ t ≤ k.

Define the point x̃ ∈ {0, 1}n by x̃j = 1 for j ∈ C, x̃j = 0 for j ∈ N \ C.
For i ∈ C, let xi := x̃−ei, where ei denotes the ith unit vector. For i ∈ N\C,
let xi := x̃− e1 + ei.

For i = 1, . . . , t, define the points yi, ỹi ∈ R
n by

yij :=

{
aj j ∈ C \ {i}
0 j ∈ (N \ C) ∪ {i} , ỹij :=

{
yij j ∈ N \ {i}
ai − λ j = i.

For i = t+ 1, . . . , k, define the point yi ∈ R
n by

yij :=

⎧
⎨

⎩

a1 + ai − λ j = 1
aj j ∈ C \ {1, i}
0 j ∈ (N \ C) ∪ {i}.

Finally, for i ∈ N \ C, let yi ∈ R
n be defined by

yij :=

{
y1j j ∈ N \ {i}
min{ai, a1 − λ} j = i.

Let X be the following set of 2n points in {0, 1}n × R
n: (xi, yi) for i ∈ N ;

(xi, y1) for i ∈ N \ C; (x̃, ỹi) for i = 1, . . . , t; (x̃, yi) for i = t+ 1, . . . , k.
One can verify that X ⊆ T ∩ F . We will conclude by showing that

dim(X) = 2n− 1. It suffices to show that the system

αx+ βy = γ for all (x, y) ∈ X, (7.15)

in the variables (α, β, γ) ∈ R
n × R

n × R, has a unique nonzero solution up
to scalar multiplication. Consider such a nonzero solution (α, β, γ).

Let i ∈ N \ C. Then αi = (αxi + βy1) − (αx1 + βy1) = γ − γ = 0.
Similarly, min{ai, a1 − λ}βi = (αxi + βyi) − (αxi + βy1) = 0, implying
βi = 0. This shows αi = βi = 0 for all i ∈ N \ C.

For i = 2, . . . , t, λ(β1 − βi) = (αx̃ + βỹi) − (αx̃ + βỹ1) = 0. For i =
t + 1, . . . , k, ai(β1 − βi) = (αx̃ + βyi) − (αx̃ + βỹ1) = 0. This shows that
βi = β1 for all i ∈ C.
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For i = t+ 1, . . . , k, αi = (αx̃+ βyi)− (αxi + βyi) = 0. For i = 1, . . . , t,
αi+βi(ai−λ) = (αx̃+βỹi)− (αxi+βyi) = 0, thus αi = −β1(ai−λ). Since
(α, β) is not the zero vector, it follows that β1 	= 0, and up to rescaling we
may assume that β1 = 1.

Finally, substituting (x̃1, ỹ1) into (7.15) gives γ = b−
∑

j∈C(aj − λ)+.
Therefore the points in F defined above generate the affine space

∑

j∈C
yj +

∑

j∈C
(aj − λ)+(1− xj) = b.

This proves that (7.14) defines a facet of conv(T ).

Note that when the inclusion C ⊂ N is strict, the condition
λ < maxj∈C aj is also necessary for the flow cover inequality (7.14) to define
a facet of conv(T ) (Exercise 7.14).

Example 7.10. (Minimal Knapsack Covers Are a Special Case of Flow Cover
Inequalities) Consider the knapsack setK : ={x ∈ {0, 1}n :

∑n
j=1 ajxj ≤ b}.

Note that conv(K) is isomorphic to the face of the single-node flow set
conv(T ) defined in (7.13), namely the face conv(T ) ∩ {(x, y) : yj = ajxj,
j = 1, . . . , n}.

Let C be a minimal cover for K. Then C is a flow cover for T . Substi-
tuting ajxj for yj, for all j = 1, . . . , n, in the expression (7.14) of the flow
cover inequality relative to C, we obtain the following valid inequality for K

∑

j∈C
ajxj +

∑

j∈C
(aj − λ)+(1− xj) ≤ b.

Note that, since C is a minimal cover, aj > λ for j = 1, . . . , n, thus (aj −
λ)+ = aj − λ. Rearranging the terms in the expression above, we obtain

λ
∑

j∈C
xj ≤ b−

∑

j∈C
aj + |C|λ = (|C| − 1)λ.

The above is the knapsack cover inequality relative to C multiplied by λ. �

Example 7.11. (Application to Facility Location) Consider the facility
location problem described in Sect. 2.10.1. The problem can be written
in the form
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min

m∑

i=1

n∑

j=1

cijyij +

n∑

j=1

fjxj

n∑

j=1

yij = di i = 1, . . . ,m

m∑

i=1

yij ≤ ujxj j = 1, . . . , n

y ≥ 0

x ∈ {0, 1}n.

Note that the above formulation differs slightly from the one in Sect. 2.10.1,
in that here yij represents the amount of goods transported from facility i
to client j, whereas in Sect. 2.10.1 yij represented the fraction of demand
of customer i satisfied by facility j. Nonetheless the two formulations are
obviously equivalent. Let us introduce the variables zj , j = 1, . . . , n, where

zj =

m∑

i=1

yij.

If we define b :=
∑m

i=1 di, then the points (x, z) ∈ {0, 1}×R
n corresponding

to feasible solutions must satisfy the constraints

n∑

j=1

zj ≤ b

zj ≤ ujxj j = 1, . . . , n

zj ≥ 0 j = 1, . . . , n

xj ∈ {0, 1} j = 1, . . . , n.

This defines a single-node flow set. Any known family of valid inequalities
for the single-node flow set, such as the flow cover inequalities, can therefore
be adopted to strengthen the formulation of the facility location problem.
�

Theorem 7.9 shows that, whenever λ < maxj∈C aj, the inequality
∑

j∈C yj +
∑

j∈C(aj − λ)+(1− xj) ≤ b can be lifted into a facet of conv(T )
by simply setting to 0 the coefficients of the variables xj , yj, for j ∈ N \ C.
The next section provides other ways of lifting the coefficients of xj , yj, for
j ∈ N \ C.
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Lifted Flow Cover Inequalities

Let C be a flow cover for the single-node flow set T defined in (7.13), where
0 < aj ≤ b for all j = 1, . . . , n. Let λ :=

∑
j∈C aj − b. Throughout this

section, we assume that λ < maxj∈C aj.
By Theorem 7.9, the flow cover inequality defined by C is facet-defining

for conv(T ). We intend to characterize the pairs of coefficients (αj , βj),
j ∈ N \ C, such that the inequality

∑

j∈C
yj +

∑

j∈C
(aj − λ)+(1− xj) +

∑

j∈N\C
(αjyj + βjxj) ≤ b (7.16)

is facet-defining for conv(T ).
Let C := {j1, . . . , jt} and assume aj1 ≥ aj2 ≥ . . . ≥ ajt. Let μ0 := 0 and

μh :=
∑h

�=1 aj� , h = 1, . . . , t. Assume also that N \C = {1, . . . , n−t} and let
T i := T ∩{(x, y) ∈ R

2n : xj = yj = 0, j = i+1, . . . , n− t}, i = 0, . . . , n− t.
Suppose we want to sequentially lift the pairs of variables (xi, yi) starting

from i = 1 up to i = n − t. That is, once we have determined pairs of
coefficients (α1, β1), . . . , (αi−1, βi−1) so that

∑

j∈C
yj +

∑

j∈C
(aj − λ)+(1− xj) +

i−1∑

j=1

(αjyj + βjxj) ≤ b (7.17)

is facet-defining for conv(T i−1), we want to find coefficients (αi, βi) such
that

∑

j∈C
yj +

∑

j∈C
(aj − λ)+(1− xj) +

i∑

j=1

(αjyj + βjxj) ≤ b (7.18)

is facet-defining for conv(T i).
Let fi : [0, b] → R be the function defined by

fi(z) := b−max
∑

j∈C
yj +

∑

j∈C
(aj − λ)+(1 − xj) +

i−1∑

j=1

(αjyj + βjxj)

∑

j∈C
yj +

i−1∑

j=1

yj ≤ b− z

0 ≤ yj ≤ ajxj, xj ∈ {0, 1} j ∈ C ∪ {1, . . . , i− 1}.

(7.19)

Note that, since (7.17) is valid for conv(T i−1), fi(z) ≥ 0 for z ∈ [0, b].
It follows from the definition that f1 ≥ f2 ≥ . . . , fn−t. The function f := f1
is called the lifting function for C.
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Lemma 7.12. Assume that (7.17) is valid for conv(T i−1). Then (7.18) is
valid for conv(T i) if and only if (αi, βi) satisfies

αiyi + βi ≤ fi(yi) for all yi ∈ [0, ai].

Furthermore, if (7.17) defines a facet of conv(T i−1), then (7.18) is a facet of
conv(T i) if and only if it is valid for conv(T i) and there exist y′i, y

′′
i ∈ [0, ai],

y′i 	= y′′i , such that αiy
′
i + βi = fi(y

′
i) and αiy

′′
i + βi = fi(y

′′
i ).

Proof. By definition of the function fi, (7.18) is valid for conv(T i) if and
only if (αi, βi) satisfies αiyi + βixi ≤ fi(yi) for all (xi, yi) ∈ {0, 1} × R+

such that yi ≤ aixi. Since fi ≥ 0, such condition is verified if and only if
αiyi + βi ≤ fi(yi) for all yi ∈ [0, ai].

For the second part of the lemma, assume that (7.17) defines a facet
of conv(T i−1). So, in particular, there exists a set X ⊆ T i−1 of points
satisfying (7.17) to equality such that dim(X) = dim(T i−1) − 1. Suppose
there exist y′i, y

′′
i ∈ [0, ai], y

′
i 	= y′′i , such that αiy

′
i+βi = fi(y

′
i) and αiy

′′
i +βi =

fi(y
′′
i ). Then there exist points (x̄′, ȳ′) and (x̄′′, ȳ′′) in T i that are optimal

solutions to (7.19) for z = y′i and z = y′′i , respectively, and where (x̄′i, ȳ
′
i) =

(1, y′i) and (x̄′′i , ȳ
′′
i ) = (1, y′′i ). Then the points in X ∪{(x̄′, ȳ′), (x̄′′, ȳ′′)} ⊆ T i

satisfy (7.18) at equality and dim(X ∪ {(x̄′, ȳ′), (x̄′′, ȳ′′)}) = dim(X) + 2 =
dim(T i)− 1.

Conversely, assume that (7.18) defines a facet of conv(T i). Then there
exist two linearly independent points (x′, y′), (x′′, y′′) in Ti satisfying (7.18)
at equality such that (x′i, y

′
i) 	= (0, 0) and (x′′i , y

′′
i ) 	= (0, 0). If follows that

x′i = x′′i = 1, y′i 	= y′′i , αiy
′
i + βi = fi(y

′
i) and αiy

′′
i + βi = fi(y

′′
i ).

Lemma 7.13. Let r := max{i ∈ C : aji > λ}. For z ∈ [0, b], the lifting
function for C evaluated at z is

f(z) =

⎧
⎨

⎩

hλ, if μh ≤ z < μh+1 − λ, h = 0, . . . , r − 1
z − μh + hλ, if μh − λ ≤ z < μh, h = 1, . . . , r − 1,
z − μr + rλ, if μr − λ ≤ z ≤ b.

Proof. Recall that

f(z) := b−max{
∑

j∈C

(yj+(aj−λ)+(1−xj)) :
∑

j∈C

yj ≤ b−z, yj ≤ ajxj , xj ∈ {0, 1}, j ∈ C}.

Consider a point (x, y) achieving the maximum in the above equation. For
i = r + 1, . . . , t, we can assume that xji = 1, since (aji − λ)+ = 0.

Assume that
∑t

i=r+1 aji ≥ b−z, which is the case if and only if μr−λ ≤ z.
Then the maximum is achieved by setting xji = 0 for i = 1, . . . , r and setting
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the value of yji , i = r + 1, . . . , t, so that
∑t

i=r+1 yji = b − z. The value of
the objective function is then b− (b− z +

∑r
i=1(aji − λ)) = z − μr + rλ.

Assume next that z < μr − λ. Then μh − λ ≤ z < μh+1 − λ for some h,
0 ≤ h ≤ r − 1. Observe that we can assume that xj1 ≤ xj2 ≤ . . . ≤ xjr .
Indeed, given i < � ≤ r, if xji = 1 and xj� = 0, then the solution (x′, y′)
obtained from (x, y) by setting x′ji = 0, x′j� = 1, y′ji = 0, y′j� = (yj� − aji +
aj�)

+ has value greater than or equal to that of (x, y), and it is feasible
because aji ≥ aj� .

Note that it is optimal to set xj� = 1, yj� = aj� for � = h + 2, . . . , t
because

∑t
�=h+2 aj� = b+ λ−μh+1 < b− z; and it is optimal to set xj� = 0,

yj� = 0 for � = 1, . . . , h because
∑t

�=h+1 aj� = b+λ−μh ≥ b− z. It remains
to determine optimal values for xjh+1

and yjh+1
.

If z ≥ μh, then b− z−
∑t

�=h+2 aj� ≤ ajh+1
− λ, so an optimal solution is

xji =

{
0 i = 1, . . . , h+ 1,
1 i = h+ 2, . . . , t,

yji =

{
0 i = 1, . . . , h+ 1
aji i = h+ 2, . . . , t.

Thus f(z) = b−
∑t

i=h+2 aji −
∑h+1

i=1 (aji − λ) = hλ.

If z < μh, then b− z−
∑t

�=h+2 aj� > ajh+1
− λ, so an optimal solution is

xji =

{
0 i = 1, . . . , h,

1 i = h+ 1, . . . , t,
yji =

⎧
⎨

⎩

0 i = 1, . . . , h

b− z −∑t
�=h+2 aj� i = h+ 1

aji i = h+ 2, . . . , t.

Thus f(z) = b − (b − z −
∑t

�=h+2 aj�) −
∑t

i=h+2 aji −
∑h

i=1(aji − λ) =
z − μh + hλ.

Lemma 7.14. The function f is superadditive in the interval [0, b].

The proof of the above lemma can be found in [192]. Lemma 7.14 implies
that the lifting of flow cover inequalities is always sequence independent, as
explained in the next lemma, which closely resembles Theorem 7.7.

Lemma 7.15. Let C be a flow cover of T . For i = 1, . . . , n− t, the function
fi defined in (7.19) coincides with the lifting function f .

Proof. Let i ≥ 2 and assume by induction that f = f1 = · · · = fi−1. Let
z ∈ [0, b] and let (x∗, y∗) be an optimal solution for (7.19). It follows from
the definition of fi(z) that

0 ≤ fi(0) ≤ fi−1(y
∗
i−1)− (αi−1y

∗
i−1 + βi−1x

∗
i−1),
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thus αi−1y
∗
i−1+βi−1x

∗
i−1 ≤ f(y∗i−1). By the choice of (x∗, y∗), it follows that

fi(z) = fi−1(z+y∗i−1)−(αi−1y
∗
i−1+βi−1x

∗
i−1) ≥ f(z+y∗i−1)−f(y∗i−1) ≥ f(z),

where the last inequality follows by the superadditivity of the function f .
Since the definition of fi implies f ≥ fi, it follows that fi = f .

Lemma 7.15 shows that each pair (αi, βi), i ∈ N \ C, can be lifted
independently of the others.

Theorem 7.16 (Gu et al. [191]). Let C be a flow cover for T such that
λ < maxi∈C aj. Let r := max{i ∈ C : aji > λ}. The inequality (7.16) is
facet-defining for T if and only if, for each i ∈ N \ C, one of the following
holds

(i) αi = 0, βi = 0;

(ii) αi = λ
ajh

, βi = λ(h − 1 − μh−λ
ajh

) for some h ∈ {2, . . . , r} such that

μh − λ ≤ ai;

(iii) αi = 1, βi = �λ− μ� where ai > μ� − λ and either � = r or � < r and
ai ≤ μ�;

(iv) αi =
λ

ai+λ−μ�
, βi = �λ− λai

ai+λ−μ�
where � is such that μ� < ai ≤ μ�+1−λ

and � < r.

Proof. By Lemmas 7.12 and 7.15, the inequality (7.16) is facet-defining for
conv(T ) if and only if, for every i ∈ N \C, the line of equation v = αiu+βi
lies below the graph of the function f in the interval [0, ai] (i.e., {(u, v) ∈
[0, ai] × R : v = f(u)}), and it intersects such graph in at least two points
in [0, ai]. Since aj1 ≥ aj2 ≥ . . . ≥ ajt, then all possible such lines are a)
the line passing through (0, 0) and (μ1 − λ, 0), b) the line passing through
(μh−1 − λ, f(μh−1 − λ)) and (μh − λ, f(μh − λ)), if μh − λ ≤ ai and h ≤ r,
c) the line passing through (μ� − λ, f(μ� − λ)) and (ai, f(ai)) where � is the
largest index such that 0 ≤ � ≤ r and ai > μ� − λ. The line of equation
v = αiu + βi satisfies a) or b) if (αi, βi) satisfy (i) or (ii), respectively. If
v = αiu + βi satisfies c), then (αi, βi) satisfy (iii) if � = r or � < r and
μ� − λ < ai ≤ μ� and (iv) if � < r and μ� < ai ≤ μ�+1 − λ.

Example 7.17. Consider the single-node flow set

T :=

⎧
⎨

⎩

(x, y) ∈ {0, 1}6 ×R
6
+ : y1 + y2 + y3 + y4 + y5 + y6 ≤ 20

y1 ≤ 17x1, y2 ≤ 9x2, y3 ≤ 8x3
y4 ≤ 6x4, y5 ≤ 5x5, y6 ≤ 4x6

⎫
⎬

⎭
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8 14 195 11 16 20

v = 1
2u − 5

2

v = 3
5u − 18

5

v = u − 10

17 u

v

Figure 7.2: Lifting function f and possible lifting coefficients for (y1, x1)

Consider the flow cover C := {3, 4, 5, 6}. Note that μ1 = 8, μ2 = 14,
μ3 = 19, μ4 = 23, λ = 3 and r = 4. For a1 = 17, Case (ii) of the theorem
holds for h = 2 and h = 3, and Case (iii) holds for � = 3. For a2 = 9, Case
(iv) holds for � = 1. Therefore it follows from Theorem 7.16 that the lifted
flow cover inequality

α1y1 + β1x1 + α2y2 + β2x2 + y3 + y4 + y5 + y6 − 5x3 − 3x4 − 2x5 − x6 ≤ 9

is facet-defining for conv(T ) if and only if (α1, β1) ∈ {(0, 0), (12 ,−
5
2 ), (

3
5 ,−

18
5 ),

(1,−10)} and (α2, β2) ∈ {(0, 0), (34 ,−
15
4 )} (see Fig. 7.2).

�

7.4 Faces of the Symmetric Traveling

Salesman Polytope

In this section we consider the symmetric traveling salesman problem, intro-
duced in Sect. 2.7. Among the formulations we presented, the most success-
ful in practice has been the Dantzig–Fulkerson–Johnson formulation (2.15),
which we restate here. Let G = (V,E) be the complete graph on n nodes,
where V := {1, . . . , n}.
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min
∑

e∈E
cexe

∑

e∈δ(i)
xe = 2 for i ∈ V

∑

e∈δ(S)
xe ≥ 2 for S ⊂ V s.t. 2 ≤ |S| ≤ n− 2

xe ∈ {0, 1} for e ∈ E.

(7.20)

The convex hull of feasible solutions to (7.20) is the traveling salesman
polytope, which will be denoted by Ptsp. The constraints

∑
e∈δ(i) xe = 2 are

the degree constraints, while the constraints
∑

e∈δ(S) xe ≥ 2 are the subtour
elimination constraints.

Theorem 7.18. The affine hull of the traveling salesman polytope on n ≥ 3

nodes is {x ∈ R
(n2) :

∑
e∈δ(i) xe = 2}. Furthermore, dim(Ptsp) =

(n
2

)
− n.

Proof. Note that every point in Ptsp must satisfy the n degree constraints
∑

e∈δ(i) xe = 2 for i ∈ V . We first note that such constraints are linearly
independent. Indeed, let Ax = 2 be the system formed by the n degree
constraints. Let A′ be the n × n submatrix of A obtained by the columns
corresponding to edges 1j, j = 2, . . . , n and edge 23. It is routine to show
that det(A′) = ±2. Therefore dim(Ptsp) ≤

(
n
2

)
− n. To show equality,

consider the Hamiltonian-path polytope P of the complete graph on nodes
{1, . . . , n − 1}. We showed in Example 3.21 that dim(P ) =

(n−1
2

)
− 1 =(n

2

)
− n, thus there exists a family Q of

(n
2

)
− n + 1 Hamiltonian paths on

n − 1 nodes whose incidence vectors are affinely independent. Let T be
the family of

(n
2

)
− n + 1 Hamiltonian tours on nodes {1, . . . , n} obtained

by completing each Hamiltonian path Q ∈ Q to a Hamiltonian tour by
adding the two edges between node n and the two endnodes of Q. Since the
incidence vectors of elements in Q are affinely independent, the incidence
vectors of the elements of T are

(n
2

)
− n + 1 affinely independent points

in Ptsp.

Theorem 7.19. For S ⊂ V with 2 ≤ |S| ≤ n − 2, the subtour elimination
constraint

∑
e∈δ(S) xe ≥ 2 defines a facet of the traveling salesman polytope

on n ≥ 4 nodes.

Proof. Given S ⊂ V , 2 ≤ |S| ≤ n − 2, let F be the face defined by
∑

e∈δ(S) xe ≥ 2. Then there exists some valid inequality αx ≤ β for Ptsp

which defines a facet F̄ such that F ⊆ F̄ . We want to show that F = F̄ .
We first show that, up to linear combinations with the degree constraints,

we may assume that αe = 0 for all e ∈ δ(S). Indeed, assume w.l.o.g. 1 ∈ S.
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By subtracting from αx ≤ β the constraint
∑

i∈S̄ α1i
∑

e∈δ(i) xe = 2
∑

i∈S̄ α1i,

we may assume that α1i = 0 for all i ∈ S̄. Let k ∈ S \ {1}, and let
i, j ∈ S̄, i 	= j. Let H be a tour containing edges 1i and kj, and no other
edge in δ(S). Note that H ′ := H ∪ {1j, ki} \ {1i, kj} is also a Hamil-
tonian tour. If x̄ and x̄′ are the incidence vectors of H and H ′, then
x̄, x̄′ ∈ F ⊆ F̄ , thus αx̄ = αx̄′ = β. It follows that α1i + αkj = α1j + αki,
thus αkj = αki for all i, j ∈ S̄. This shows that, for all k ∈ S, there exists
λk such that αki = λk for all i ∈ S̄. Subtracting from αx ≤ β the con-
straint

∑
k∈S λk

∑
e∈δ(k) xe = 2

∑
k∈S λk we may assume that αe = 0 for all

e ∈ δ(S).

Next, we show that there exist constants λ and λ̄ such that αe = λ for
all e ∈ E[S] and αe = λ̄ for all e ∈ E[S̄]. Indeed, given distinct edges
e, e′ ∈ E[S], there exist Hamiltonian tours H and H ′ such that |H ∩ δ(S)| =
|H ′ ∩ δ(S)| = 2, and (H 
H ′) \ δ(S) = {e, e′}.

ee

ee

HH

SS S̄ S̄

Let x̄ and x̄′ be the incidence vectors of H and H ′ respectively. Since
x̄, x̄′ ∈ F ⊆ F̄ , it follows that αx̄ = αx̄′ = β. Thus αe = αe′ , because αe = 0
for all e ∈ δ(S) and (H 
H ′) \ δ(S) = {e, e′}.

Since every tour H such that |H ∩δ(S)| = 2 satisfies |H ∩E[S]| = |S|−1
and |H∩E[S̄]| = |S̄|−1, and since F ⊆ F̄ , it follows that the equation αx = β
is equivalent to λ

∑
e∈E[S] xe + λ̄

∑
e∈E[S̄] xe = λ(|S| − 1) + λ̄(|S̄| − 1). Since

the inequalities
∑

e∈E[S] xe ≤ |S| − 1 and
∑

e∈E[S̄] xe ≤ |S̄| − 1 both define

the face F , it follows that F = F̄ .

Because there are exponentially many subtour elimination constraints,
solving the linear programming relaxation of (7.20) is itself a challenge.

min
∑

e∈E cexe∑
e∈δ(i) xe = 2 for i ∈ V

∑
e∈δ(S) xe ≥ 2 for S ⊂ V s.t. 2 ≤ |S| ≤ n− 2

0 ≤ xe ≤ 1 for e ∈ E.

(7.21)
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The feasible set of (7.21) is called the subtour elimination polytope. It is
impossible to input all the subtour elimination constraints in a solver for
medium or large instances (say n ≥ 30); they must be generated as needed.
One starts by solving the following linear programming relaxation.

min
∑

e∈E cexe∑
e∈δ(i) xe = 2 for i ∈ V

0 ≤ xe ≤ 1 for e ∈ E.

(7.22)

One then adds inequalities that are valid for the subtour elimination
polytope but violated by the current linear programming solution x̄. The
linear program is strengthened iteratively until an optimal solution of (7.21)
is found (we will explain how to do this shortly). But solving (7.21) is
usually not enough. The formulation is strengthened further by generating
additional inequalities that are valid for the traveling salesman polytope
but violated by the current linear programming solution x̄. This idea was
pioneered by Dantzig et al. [103], who solved a 49-city instance in 1954.
It was improved in the 1980s by Grötschel [184] and Padberg and Rinaldi
[301] who solved instances with hundreds of cities, and refined by Applegate
et al. [13] in the 2000s, who managed to solve instances with thousands and
even tens of thousands of cities. The formulation strengthening approach
mentioned above is typically combined with some amount of enumeration
performed within the context of a branch-and-cut algorithm. However the
generation of cutting planes is absolutely crucial. This involves solving the
separation problem: given a points x̄ ∈ R

E, find a valid inequality for
the traveling salesman polytope that is violated by x̄, or show that no such
inequality exists.

7.4.1 Separation of Subtour Elimination Constraints

Assume that we have a solution x̄ of the linear program (7.22) or of some
strengthened linear program. The separation problem for subtour elimina-
tion inequalities is the following: Prove that x̄ is in the subtour elimination
polytope, or find one or more subtour elimination constraints that are vio-
lated by x̄. Note that

∑
e∈δ(S) x̄e is the weight of the cut δ(S) in the graph

G = (V,E) with edge weights x̄e, e ∈ E. There are efficient polynomial-time
algorithms for finding a minimum weight cut in a graph (see Sect. 4.11). If
the algorithm finds that the minimum weight of a cut is 2 or more, then all
subtour elimination constraints are satisfied, i.e., x̄ is in the subtour elim-
ination polytope. On the other hand, if the algorithm finds a cut δ(S∗) of
weight strictly less than 2, the corresponding subtour elimination constraint

Carolina
Resaltado

Carolina
Resaltado
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∑
e∈δ(S∗) xe ≥ 2 is violated by x̄. One then adds

∑
e∈δ(S∗) xe ≥ 2 to the

linear programming formulation, finds an improved solution x̄, and repeats
the process.

In order to make the separation of subtour elimination inequalities more
efficient, fast procedures are typically applied first before resorting to the
more expensive minimum weight cut algorithm. For example, let Ē := {e ∈
E : x̄e > 0}. If the graph (V, Ē) has at least two connected components,
any node set S∗ that induces a connected component provides a violated
subtour elimination constraint

∑
e∈δ(S∗) xe ≥ 2. Identifying the connected

components of a graph can be done extremely fast [335].

7.4.2 Comb Inequalities

A solution x̄ in the subtour elimination polytope is not necessarily in the
traveling salesman polytope as shown by the following example with n = 6
nodes. The cost between each pair of nodes is defined as follows. For the
edges represented in Fig. 7.3 the costs are shown on the graph (left figure),
and the cost of any edge ij not represented in the figure is the cost of a
shortest path between i and j in the graph. It is easy to verify that every
tour has cost at least 4, but the fractional solution x̄ shown on the right figure
has cost 3 (the value x̄e on any edge not represented in Fig. 7.3 is 0). One
can check directly that x̄ satisfies all the subtour elimination constraints.
We will describe a valid inequality for the traveling salesman polytope that
separates x̄.

v1v1

v2v2

v3v3

v4v4

v5v5

v6v6

1

1

1

1

1

1

0

0

0

1
2

1
2

1
2

1
2

1
2

1
2

1

1

1

Figure 7.3: Traveling salesman problem on 6 nodes, and a fractional vertex
of the subtour elimination polytope

For k ≥ 3 odd, let S0, S1, . . . , Sk ⊆ V be such that S1, . . . , Sk are pairwise
disjoint, and for each i = 1, . . . , k, Si∩S0 	= ∅ and Si\S0 	= ∅. The inequality

k∑

i=0

∑

e∈E[Si]

xe ≤
k∑

i=0

|Si| −
3k + 1

2
(7.23)

is called a comb inequality.
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Proposition 7.20. The comb inequality (7.23) is valid for the traveling
salesman polytope.

Proof. We show that (7.23) is a Chvátal inequality for the subtour elimi-
nation polytope. Consider the following inequalities, valid for the subtour
elimination polytope.

∑
e∈δ(v) xe = 2 v ∈ S0;

−xe ≤ 0 e ∈ δ(S0) \ ∪k
i=1E[Si];∑

e∈E[Si]
xe ≤ |Si| − 1 i = 1, . . . , k;

∑
e∈E[Si\S0]

xe ≤ |Si \ S0| − 1 i = 1, . . . , k;
∑

e∈E[Si∩S0]
xe ≤ |Si ∩ S0| − 1 i = 1, . . . , k.

Summing the above inequalities multiplied by 1
2 , one obtains the inequality

k∑

i=0

∑

e∈E[Si]

xe ≤
k∑

i=0

|Si| −
3k

2
.

Observe that, since k is odd, �−3k
2 � = −3k+1

2 , therefore rounding down the
right-hand side of the previous inequality one obtains (7.23).

Grötschel and Padberg [189] showed that the comb inequalities define
facets of the traveling salesman polytope for n ≥ 6.

v1

v2

v3

v4

v5

v6

S0

S1

S2

S3

Figure 7.4: A comb

In the example of Fig. 7.3, let S0 = {v1, v2, v3}, and S1 = {v1, v4},
S2 = {v2, v5}, S3 = {v3, v6} (see Fig. 7.4). The corresponding comb in-
equality is x12 + x13 + x23 + x14 + x25 + x36 ≤ 4. However x̄12 + x̄13 + x̄23 +
x̄14 + x̄25 + x̄36 = 4.5, showing that the above comb inequality cuts off x̄.
Unlike for the subtour elimination inequalities, no polynomial algorithm is
known for separating comb inequalities in general. In the special case where
|Si| = 2 for i = 1, . . . , k, comb inequalities are known as blossom inequal-
ities, and there is a polynomial separation algorithm for this class (Pad-
berg and Rao [300]). In addition to the separation of blossom inequalities,
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state-of-the-art software for the traveling salesman problem have sophis-
ticated heuristics to separate more general comb inequalities. Note that,
even if all comb inequalities could be separated, we would still not be done
in general since the traveling salesman polytope has many other types of
facets. In fact, Billera and Sarangarajan [53] showed that any 0,1 polytope
is affinely equivalent to a face of an asymmetric traveling salesman polytope
of sufficiently large dimension. We are discussing the symmetric traveling
salesman polytope in this section, but the Billera–Sarangarajan result is a
good indication of how complicated the traveling salesman polytope is. The
following idea tries to bypass understanding its structure.

7.4.3 Local Cuts

In their solver for the symmetric traveling salesman problem, Applegate
et al. [13] separate subtour elimination constraints and comb inequalities.
But then, instead of going on separating other classes of inequalities with
known structure, they introduce an interesting approach, the separation of
local cuts. To get a sense of the contribution of each of these three steps,
they considered an Euclidean traveling salesman problem in the plane with
100,000 cities (the cities were generated randomly in a square, the costs
were the Euclidean distance between cities up to a small rounding to avoid
irrationals), and they constructed a good feasible solution using a heuristic.
The lower bound obtained using subtour elimination constraints was already
less than 1% from the heuristic solution. After adding comb inequalities,
the gap was reduced to less than 0.2%, and after adding local cuts, the gap
was reduced to below 0.1%. We now discuss the generation of local cuts.

Let S ⊂ {0, 1}E denote the set of incidence vectors of tours, and let
x̄ ∈ R

E be a fractional solution that we would like to separate from S.
The idea is to map the space R

E to a space of much lower dimension by a
linear mapping Φ and then, using general-purpose methods, to look for linear
inequalities ay ≤ b that are satisfied by all points y ∈ Φ(S) and violated
by ȳ := Φ(x̄). Every such inequality yields a cut aΦ(x) ≤ b separating x̄
from S. For the traveling salesman problem, Applegate, Bixby, Chvátal,
and Cook chose Φ as follows. Partition V into pairwise disjoint nonempty
sets V1, . . . , Vk, let H = (U,F ) be the graph obtained from G by shrinking
each set Vi into a single node ui, and let y = Φ(x) ∈ {0, 1}|F | be defined by
yij =

∑
v∈Vi

∑
w∈Vj

xvw for all ij ∈ F . This mapping transforms a tour x
into a vector y with the following properties.
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• ye ∈ Z+ for all e ∈ F ,

•
∑

e∈δ(i) ye is even for all i ∈ U ,

• the subgraph of H induced by the edge set {e ∈ F : ye > 0} is
connected.

The convex hull of such vectors is known as the graphical traveling salesman
polyhedron. Let us denote it by GTSP k for a graph on k nodes. The goal is
to find an inequality that separates ȳ from the graphical traveling salesman
polyhedron GTSP k, or prove that ȳ ∈ GTSP k. Because k is chosen to be
relatively small, this separation can be done by brute force. To simplify
the exposition, let us intersect GTSP k with

∑
e∈F ye ≤ n (every y := Φ(x)

satisfies this inequality since
∑

e∈E xe = n for x ∈ S). Let GTSP k,n denote
this polytope. We want to solve the following separation problem: Find
an inequality that separates ȳ from the polytope GTSP k,n, or prove that
ȳ ∈ GTSP k,n. More generally, we want to solve the following separation
problem.

Let Y be a finite set of points in R
t. Given a point ȳ ∈ R

t, either find
an inequality that separates ȳ from the polytope conv(Y), or prove that
ȳ ∈ conv(Y).

This can be done by delayed column generation.
At a general iteration i, we have a set Si of points in Y.
At the first iteration, we initialize S1 := {y1} where y1 is an arbitrary

point in Y.
At iteration i, we check whether ȳ ∈ conv(Si) (this amounts to checking

the existence of a vector u ≥ 0 satisfying
∑i

h=1 uh = 1 and ȳ =
∑i

h=1 y
huh,

which can be done by linear programming). If this is the case we have proved
that ȳ ∈ conv(Y). Otherwise we find a linear inequality ay ≤ b separating ȳ
from conv(Si) (see Proposition 7.21 below). We then solve max{ay : y ∈ Y}
(this is where brute force may be needed). If the solution yi+1 found satisfies
ayi+1 ≤ b, then the inequality ay ≤ b separates ȳ from conv(Y). Otherwise
we set Si+1 := Si ∪ {yi+1} and we perform the next iteration.

Proposition 7.21. If ȳ 	∈ conv(Si), an inequality ay ≤ b separating ȳ from
conv(Si) can be found by solving a linear program.

Proof. If ȳ 	∈ conv(Si), the linear program

min 0
∑i

h=1 y
huh = ȳ

∑i
h=1 uh = 1

u ≥ 0
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has no solution. Therefore its dual

max aȳ − b
ayh − b ≤ 0 h = 1, . . . , i

has an unbounded solution (a, b).

Applegate, Bixby, Chvátal and Cook call local cuts the inequalities gener-
ated by this procedure. In their implementation, they refined the procedure
so that it only generates facets of the graphical traveling salesman polyhe-
dron. Different choices of the shrunk node sets V1, . . . , Vk are used to try
to generate several inequalities cutting off the current fractional solution x̄.
The interested reader is referred to [13] for details.

7.5 Equivalence Between Optimization
and Separation

By Meyer’s theorem (Theorem 4.30), solving an integer program is equiv-
alent to solving a linear program with a potentially very large number of
constraints. In fact, several integer programming formulations, such as the
subtour elimination formulation of the traveling salesman polytope or the
single-node flow set formulation given by all flow cover inequalities, already
have a number of constraints that is exponential in the data size of the
problem, so solving the corresponding linear programming relaxations is
not straightforward. We would like to solve these linear programs without
generating explicitly all the constraints. A fundamental result of Grötschel
et al. [186] establishes the equivalence of optimization and separation: solv-
ing a linear programming problem is as hard as finding a constraint cutting
off a given point, or deciding that none exists.

Optimization Problem. Given a polyhedron P ⊂ R
n and an objective

c ∈ R
n, find x∗ ∈ P such that cx∗ = max{cx : x ∈ P}, or show P = ∅, or

find a direction z in P for which cz is unbounded.

Separation Problem. Given a polyhedron P ⊂ R
n and a point x̄ ∈ R

n,
either show that x̄ ∈ P or give a valid inequality αx ≤ α0 for P such that
αx̄ > α0.

We are particularly interested in solving the above separation problem
when the inequalities defining P are not given explicitly. This is typically
the case in integer programming, where P is given as the convex hull of a
mixed integer set {(x, y) ∈ Z

p
+ × R

q
+ : Ax+Gy ≤ b} with data A, G, b.
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An important theorem of Grötschel et al. [186] states that the optimiza-
tion problem can be solved in polynomial time if and only if the separation
problem can be solved in polynomial time. Similar results were obtained
by Padberg and Rao [299] and Karp and Papadimitriou [233]. Of course,
P needs to be described in a reasonable fashion for the polynomiality state-
ment to make sense. We will return to this issue later. First, we introduce
the main tool needed for proving the equivalence, namely the ellipsoid algo-
rithm. We only give a brief outline here. The reader is referred to [188] for
a detailed treatment.

Ellipsoid Algorithm

Input. A matrix A ∈ Q
m×n and a vector b ∈ Q

m.
Output. A point of P := {x ∈ R

n : Ax ≤ b} or a proof that P is
not full dimensional.

Initialize with a large enough integer t∗ and an ellipsoid E0 that is
guaranteed to contain P . Set t = 0.

Iteration t. If the center xt of Et is in P , stop. Otherwise find
a constraint aix ≤ bi from Ax ≤ b such that aixt > bi. Find the
smallest ellipsoid Et+1 containing Et ∩{aix ≤ bi}. Increment t by 1.
If t < t∗, perform the next iteration. If t = t∗, stop: P is not
full-dimensional.

xt
Et

Et+1

aix ≤ bi

xt+1

P

Figure 7.5: Illustration of the ellipsoid algorithm

Figure 7.5 illustrates an iteration of the ellipsoid algorithm. Khachiyan
[235] showed that the ellipsoid algorithm can be made to run in polynomial
time.

Theorem 7.22. The ellipsoid algorithm terminates with a correct output if
E0 and t∗ are chosen large enough. Furthermore this choice can be made so
that the number of iterations is polynomial.
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The following observations about volumes are key to proving that only a
polynomial number of iterations are required. We state them without proof.

• The smallest ellipsoid Et+1 containing Et∩{aix ≤ bi} can be computed
in closed form.

• Vol(Et+1) ≤ ρVol(Et), where ρ < 1 is a constant that depends only
on n.

• There exists ε > 0, whose encoding size is polynomial in n and in the
size of the coefficients of (A, b), such that either P has no interior, or
Vol(P ) ≥ ε.

• Vol(E0) ≤ Δ, where the encoding size of Δ is polynomial in n and in
the size of the coefficients of (A, b).

Since Vol(Et) ≤ ρtVol(E0), the ellipsoid algorithm requires at most
t∗ = log Δ

ε iterations before one can conclude that P has an empty interior.
Thus the number of iterations is polynomial. To turn the ellipsoid algorithm
into a polynomial algorithm, one needs to keep a polynomial description of
the ellipsoids used in the algorithm. This can be achieved by working with
slightly larger ellipsoids, instead of the family Et defined above. We skip
the details.

The ellipsoid algorithm returns a point in P whenever P is full dimen-
sional. Dealing with non-full dimensional polyhedra is tricky. Grötschel
et al. [187] describe a polynomial-time algorithm that, upon termination of
the ellipsoid algorithm with the outcome that P is not full-dimensional, det-
ermines an equation αx = β satisfied by all x ∈ P . Once such equation is
known, one can reduce the dimension of the problem by one, and iterate. A
detailed description can be found in [188].

Another issue is the optimization of a linear function cx over P , instead
of just finding a feasible point, as described in the above algorithm. This can
be done in polynomial time by using binary search on the objective value,
or a “sliding objective.” Again, we refer to [188] for a description of these
techniques.

Finally, we note a beautiful aspect of the ellipsoid algorithm: It does
not require an explicit description of P as {x ∈ R

n : Ax ≤ b}, but instead
it can rely on a separation algorithm that, given the point xt, either shows
that this point is in P , or produces a valid inequality aix ≤ bi for P such
that aixt > bi.
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As a consequence, if we have a separation algorithm at our disposal, the
ellipsoid algorithm with a sliding objective solves the optimization problem.

Example 7.23. Consider the traveling salesman problem in an undirected
graph G = (V,E). As observed in Sect. 7.4.1, the separation problem for
the subtour elimination polytope can be solved in polynomial time (as it
amounts to finding a minimum cut in G). Therefore, by applying the ellip-
soid algorithm, one can optimize over the subtour elimination polytope in
polynomial time. �

The complexity of the separation algorithm depends on how P is given
to us. We will need P to be “well-described” in the following sense.

Definition 7.24. A polyhedron P ⊂ R
n belongs to a well-described family

if the length L of the input needed to describe P satisfies n ≤ L, and there
exists a rational matrix (A, b) such that P = {x ∈ R

n : Ax ≤ b} and
the encoding size of each of the entries in the matrix (A, b) is polynomially
bounded by L.

Examples of well-described polyhedra are

• P := {x ∈ R
n : Ax ≤ b}, where A, b have rational entries and are

given as input.

• P := conv{x ∈ Z
n : Ax ≤ b}, where A, b have rational entries and

are given as input.

• P is the subtour elimination polytope of a graph G, where G is given
as input.

On the other hand, the subtour elimination polytope of a complete graph on
n nodes in not well-described if the given input is just the positive integer n in
binary encoding, because in this case the length of the input is �log2(n+1)�,
which is smaller than n for n ≥ 3.

Remark 7.25. It follows from Theorems 3.38 and 3.39 that P belongs to a
well-described family of polyhedra if and only if there exist rational vectors
x1, . . . , xk, r1, . . . , rt each of which has an encoding size that is polynomially
bounded by the length L of the input used to describe P , and such that
P = conv{x1, . . . , xk}+ cone{r1, . . . , rt}.

Theorem 7.26. For well-described polyhedra, the separation problem is
solvable in polynomial time if and only if the optimization problem is.
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Proof. We give the proof for the case when P is full-dimensional and bounded.
The proof is more complicated when P is not full-dimensional, and we refer
the reader to [188] in that case.

“Polynomial Separation ⇒ Polynomial Optimization.” This follows from
the ellipsoid algorithm.

“Polynomial Optimization ⇒ Polynomial Separation.”

Claim 1: If Optimization can be solved in polynomial time on P , then an
interior point of P can be found in polynomial time.

Indeed, find a first point x0 by maximizing any objective function over P .
Assume affinely independent points x0, . . . , xi have been found. Choose c
orthogonal to the affine hull of x0, . . . , xi. Solve max cx and max−cx over
P , respectively. Al least one of these programs gives an optimal solution
xi+1 that is affinely independent of x0, . . . , xi. Repeat until i = n. Now
x̄ = 1

n+1

∑n
i=0 x

i is an interior point of P . This proves Claim 1.

Translate P so that the origin is in the interior of P . By Claim 1, this
can be done in polynomial time; indeed, if x̄ is an interior point of P , P − x̄
contains the origin in the interior.

Claim 2: If Optimization can be solved in polynomial time on P , then
Separation can be solved in polynomial time on its polar P ∗.

Given π∗ ∈ R
n, let x∗ be an optimal solution to max{π∗x : x ∈ P}. If

π∗x∗ ≤ 1, then π∗ ∈ P ∗. If π∗x∗ > 1, then πx∗ ≤ 1 is a valid inequality for
P ∗ which cuts off π∗. Its description is polynomial in the input size of the
separation problem on P ∗ (the input is the description of P (by Remark 7.25
P ∗ is well-described by the same input) and π∗). This proves the claim.

By Claim 2 and by the first part of the proof (Polynomial Separation
⇒ Polynomial Optimization), it follows that Optimization can be solved
in polynomial time on P ∗. Applying Claim 2 to P ∗, we get that Separation
can be solved in polynomial time on P ∗∗. Since P contain the origin in its
interior, it follows from Corollary 3.50 that P ∗∗ = P .

7.6 Further Readings

The solution of an instance of the traveling salesman problem on 49 cities,
detailed by Dantzig et al. [103] in 1954, laid out the foundations of the
cutting plane method, and has served as a template for tackling hard com-
binatorial problems using integer programming (see for example Grötschel
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[183, 184], Crowder and Padberg [98], Grötschel et al. [185]). We refer the
reader to Cook [85] for an account of the history of combinatorial integer
programming, to the monograph by Applegate et al. [13] for a history of
traveling salesman computations, and to Cook’s book [86] for an expository
introduction to the traveling salesman problem. On the theory side, the
key insight of Dantzig, Fulkerson and Johnson that one can solve integer
programs by introducing inequalities as needed, culminated in the proof of
equivalence of separation and optimization by Grötschel et al. [186].

Several early works on valid inequalities for structured problems focused
on packing problems, see for example Padberg [297], Nemhauser and Trotter
[283, 284], and Wolsey [350]. Padberg [297] introduced the notion of seq-
uential lifting in the context of odd-holes inequalities and generalized it
in [298], where he described the sequential lifting procedure discussed in
Sect. 7.2. The effectiveness of polyhedral methods in solving general 0, 1
problems was illustrated in the 1983 paper of Crowder et al. [99], where
they reported successfully solving 10 pure 0,1 linear programs with up to
2750 variables, employing a variety of tools including lifted cover inequalities.
Van Roy and Wolsey [340] reported computational experience in solving a
variety of mixed 0,1 programming problems using strong valid inequalities.
The paper formalized the automatic reformulation approach, that has since
become a staple in integer programming: identify a suitable “structured
relaxation” R of the feasible region (such as, for example, a single-node flow
set), find a family of “strong” valid inequalities for R, and devise an efficient
separation algorithm for the inequalities in the family.

The results of Sect. 7.2.2 on superadditive liftings were proved by Wolsey
[351], and generalized to mixed 0,1 linear problems by Gu et al. [192]. The
sequence independent liftings of cover and flow cover inequalities (Sects. 7.2.3
and 7.3) are given in [192]. Gu et al. [191] report on a successful application
of lifted flow cover inequalities to solving mixed 0,1 linear problems. See
Louveaux and Wolsey [258] for a survey on sequence-independent liftings.

Wolsey [352] showed that the subtour formulation of the symmetric trav-
eling salesman problem has an integrality gap of 3/2 whenever the distances
define a metric. Goemans [169] computed the worst-case improvement re-
sulting from the addition of many of the known classes of inequalities for
the graphical traveling salesman polyhedron, showing for example that the
comb inequalities cannot improve the subtour bound by a factor greater
than 10/9.
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Equivalence of Separation and Optimization for Convex Sets

The ellipsoid method was first introduced by Yudin and Nemirovski [356] and
Shor [332] for convex nonlinear programming, and was used by Khachiyan
[235] in a seminal paper in 1979 to give the first polynomial-time algorithm
for linear programming. Several researchers realized, soon after Khachiyan’s
breakthrough, that the method could be modified to run in polynomial
time even if the polyhedron is implicitly described by a separation oracle.
The strongest version of this result is given by Grötschel et al. [186] (see
also [188]), and it can be extended to general convex sets, but similar results
have also been discovered by Karp and Papadimitriou [233] and Padberg and
Rao [299].

As mentioned above, the equivalence of linear optimization and sep-
aration holds also for general convex sets. However, given a convex set
K ⊂ R

n and c ∈ Q
n, it may very well be that the optimal solutions of

max{cx : x ∈ K} have irrational components. Analogously, given y 	∈ K,
there is no guarantee that a rational hyperplane separating y from K ex-
ists, in general. Therefore optimization and separation over K can only be
solved in an approximate sense. Formally, given a convex set K ⊆ R

n and
a number ε > 0, let S(K, ε) := {x ∈ R

n : ‖x− y‖ ≤ ε for some y ∈ K} and
S(K,−ε) := {x ∈ K : S({x}, ε) ⊆ K}.

The weak optimization problem is the following: given a vector c ∈ Q
n,

and a rational number ε > 0, either determine that S(K,−ε) is empty, or
find y ∈ S(K, ε) ∩Q

n such that cx ≤ cy + ε for all x ∈ S(K,−ε).

The weak separation problem is the following: given a point y ∈ Q
n, and

a rational number δ > 0, either determine that y ∈ S(K, δ), or find c ∈ Q
n,

‖c‖∞ = 1, such that cx ≤ cy + δ for all x ∈ K.

In order to state the equivalence of the two problems, one needs to
specify how K is described. Furthermore, the equivalence holds under some
restrictive assumptions. Namely, we say that a convex set K is circumscribed
if the following information is given as part of the input: a positive integer
n such that K ⊂ R

n, and a rational positive number R such that K is
contained in the ball of radius R centered at 0. A circumscribed convex set
K is denoted by (K;n,R).

We say that a circumscribed convex set (K;n,R) is given by a weak
separation oracle if we have access to an oracle that provides a solution c to
the weak separation problem for every choice of y and δ, where the encoding
size of c is polynomially bounded by n and the encoding sizes of R, y, and δ.

We say that a circumscribed convex set (K;n,R) is given by a weak
optimization oracle if we have access to an oracle providing a solution y
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to the weak optimization problem for every choice of c and ε, where the
encoding size of y is polynomially bounded by n and the encoding sizes of
R, c and ε.

If (K;n,R) is expressed by a weak separation or a weak optimization
oracle, an algorithm involving K is said to be oracle-polynomial time if the
total number of operations, including calls to the oracle, is bounded by a
polynomial in n and the encoding sizes of R and of other input data (such
as objective function c and tolerance ε).

Theorem 7.27 (Grötschel et al. [186]). There exists an oracle-polynomial
time algorithm that solves the weak optimization problem for every circum-
scribed convex set (K;n,R) given by a weak separation oracle and every
choice of c ∈ Q

n and ε > 0.
There exists an oracle-polynomial time algorithm that solves the weak sepa-
ration problem for every circumscribed convex set (K;n,R) given by a weak
optimization oracle and every choice of y ∈ Q

n and δ > 0.

The equivalence hinges on an approximate version of the ellipsoid method.
Below we give a high-level description of the method.

Input. A rational number ε > 0 and a circumscribed closed convex
set (K;n,R) given by a separation oracle.
Output. Either a rational point y ∈ S(K, ε), or an ellipsoid E such
that K ⊆ E and vol(E) < ε.

Initialize with a large enough integer t∗ and a small enough δ < ε.
Set t = 0, and let E0 be the ball of radius R centered at 0.

Iteration t. Let xt be the center of the current ellipsoid Et con-
taining K. Make a call to the separation oracle with y = xt. If the
oracle concludes that xt is in S(K, δ), then xt ∈ S(K, ε), stop. If
the oracle returns c ∈ Q

n such that cx ≤ cxt + δ for all x ∈ K, then
find an ellipsoid Et+1 that is an appropriate approximation of the
smallest ellipsoid containing Et ∩ {cx ≤ cxt + δ}. Increment t by 1.
If t < t∗, perform the next iteration. If t = t∗, stop: vol(Et) < ε.

The algorithm described above is oracle-polynomial time because it can
be shown that t∗ and δ can be chosen so that their encoding size is polyno-
mial in n and in the encoding sizes of R and ε. Furthermore, the ellipsoid
Et+1 can be computed by a closed form formula.
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7.7 Exercises

Exercise 7.1. Consider the 0,1 knapsack set K := {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b} where 0 < aj ≤ b for all j = 1, . . . , n.

(i) Show that xj ≥ 0 defines a facet of conv(K).

(ii) Give conditions for the inequality xj ≤ 1 to define a facet of conv(K).

Exercise 7.2. Consider the graph C5 with five vertices vi for i = 1, . . . , 5
and five edges v1v2, . . . , v4v5, v5v1. Let STAB(C5) denote the stable set
polytope of C5, namely the convex hull of its stable sets.

(i) Show that xj ≥ 0 is a facet of STAB(C5).

(ii) Show that xj + xk ≤ 1 is a facet of STAB(C5) whenever vjvk is an
edge of C5.

(iii) Show that
∑5

j=1 xj ≤ 2 is a facet of STAB(C5).

(iv) Let W5 be the graph obtained from C5 by adding a new vertex w
adjacent to every vj , j = 1, . . . , 5. Show how each facet in (i), (ii) and
(iii) is lifted to a facet of STAB(W5).

Exercise 7.3. A wheel Wn is the graph with n+1 vertices v0, v1, . . . , vn, and
2n edges v1v2, v2v3, . . . , vn−1vn, vnv1 and v0vi for all i = 1, . . . n. A Hamil-
tonian cycle is one that goes though each vertex exactly once. We represent
each Hamiltonian cycle by a 0,1 vector in the edge space of the graph,
namely R

2n. Define Hamilton(Wn) to be the convex hull of the 0,1 vectors
representing Hamiltonian cycles of Wn.

(i) What is the dimension of Hamilton(Wn)? How many vertices does
Hamilton(Wn) have? How many facets?

(ii) Show that the inequalities xe ≤ 1 define facets of Hamilton(Wn) for
e = v1v2, . . . , vn−1vn, vnv1.

(iii) Give a minimal description of Hamilton(Wn).

Exercise 7.4. Let G = (V,E) be a graph.

1. Show that the blossom inequalities (4.17) for the matching polytope
are Chvátal inequalities for the system

∑
e∈δ(v) xe ≤ 1, v ∈ V , x ≥ 0.
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2. Show that, if G is not bipartite, then there is at least one blossom
inequality that is facet-defining for the matching polytope of G.

In particular, the matching polytope has Chvátal rank zero or one, and the
rank is one if and only if G is not bipartite.

Exercise 7.5. Consider S ⊆ {0, 1}n. Suppose S ∩ {xn = 0} 	= ∅ and
S∩{xn = 1} 	= ∅. Let

∑n−1
i=1 αixi ≤ β be a valid inequality for S∩{xn = 1}.

State and prove a result similar to Proposition 7.2 that lifts this inequality
into a valid inequality for conv(S).

Exercise 7.6. Consider S ⊆ {0, 1}n. Suppose that conv(S) ∩ {x : xk = 0
for all k = p + 1, . . . , n} has dimension p, and that

∑p
j=1 αjxj ≤ β defines

one of its faces of dimension p−2 or smaller. Construct an example showing
that a lifting may still produce a facet of conv(S).

Exercise 7.7. Consider the sequential lifting procedure. Prove that the
largest possible value of the lifting coefficient αj is obtained when xj is
lifted first in the sequence. Prove that the smallest value is obtained when
xj is lifted last.

Exercise 7.8. Consider the 0,1 knapsack set K := Z
n∩P where P := {x ∈

R
n :

∑n
j=1 ajxj ≤ b, 0 ≤ x ≤ 1}. Let C be a minimal cover, and let h ∈ C

such that ah = maxj∈C aj. Show that the inequality

∑

j∈C
xj +

∑

j∈N\C
�aj
ah

�xj ≤ |C| − 1

is a Chvátal inequality for P .

Exercise 7.9. Let K be a knapsack set where b ≥ a1, . . . ,≥ an > 0, Let
C = {j1, . . . , jt} be a minimal cover of K. The extension of C is the set
E(C) := C ∪ {k ∈ N \ C : ak ≥ aj for all j ∈ C}. Let � be the smallest
index in {1, . . . , n} \ E(C) (if the latter is nonempty).

(i) Prove that, if
∑

j∈C∪{1}\{j1,j2} aj ≤ b and
∑

j∈C∪{�}\{j1} aj ≤ b, then
the extended cover inequality

∑
j∈E(C) xj ≤ |C| − 1 defines a facet of

conv(K).

(ii) Prove that extended cover inequalities are Chvátal inequalities.

Exercise 7.10. Consider the knapsack set {x ∈ {0, 1}4 : 8x1 + 5x2 +
3x3 + 12x4 ≤ 14}. Given the minimal cover C = {1, 2, 3}, compute the
best possible lifting coefficient of variable x4 using Theorem 7.4. Is the
corresponding lifted cover inequality a Chvátal inequality?



7.7. EXERCISES 317

Exercise 7.11. Let set S and the inequality
∑

j∈C αjxj ≤ β be defined as
in Sect. 7.2.2. Suppose that the lifting function defined in (7.10) is superad-
ditive. Prove that

∑
j∈C αjxj +

∑
j∈N\C f(aj)xj ≤ β is valid for S and, for

every valid inequality
∑

j∈N αjxj ≤ β, αj ≤ f(aj) for all j ∈ N \ C.

Exercise 7.12. Show that the function g defined in (7.12) is superadditive.

Exercise 7.13. Show that the lifted minimal cover inequality of Example
7.8 induces a facet.

Exercise 7.14. Prove that, when the inclusion C ⊂ N is strict, the condition
λ < max

j∈C
aj is necessary for the flow cover inequality (7.14) to define a facet

of conv(T ).

Exercise 7.15. Consider the following mixed integer linear set.

T := {x ∈ {0, 1}n, y ∈ R
n
+ :

∑k
j=1 yj −

∑n
j=k+1 yj ≤ b

yj ≤ ajxj for all j = 1, . . . , n}

where b > 0 and aj > 0 for all j = 1, . . . , n. Consider C ⊆ {1, . . . , k} such
that

∑
j∈C aj > b. Let λ :=

∑
j∈C aj − b. Consider L ⊆ {k + 1, . . . , n} and

let L̄ := {k + 1, . . . , n} \ L. Prove that if maxj∈C aj > λ and aj > λ for all
j ∈ L, then

∑

j∈C
yj −

∑

j∈L̄
yj +

∑

j∈C
(aj − λ)+(1− xj)−

∑

j∈L
λxj ≤ b

defines a facet of conv(T ).

Exercise 7.16. Prove that the function f defined in Lemma 7.13 is super-
additive in the interval [0, b].

Exercise 7.17. Prove that flow cover inequalities (7.14) are Gomory mixed
integer inequalities.

Exercise 7.18. Show that the comb inequality (7.23) can be written in the
following equivalent form

∑k
i=0

∑
e∈δ(Si)

xe ≥ 3k + 1.

Exercise 7.19. Let G = (V,E) be an undirected graph. Recall from
Sect. 2.4.2 that stab(G) is the set of the incidence vectors of all the stable
sets of G. The stable set polytope of G is STAB(G) = conv(stab(G)). Let
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Q(G) : ={x ∈ R
V : xi+xj ≤ 1, ij ∈ E} and K(G) : ={x ∈ R

V :
∑

i∈K ≤
1, K clique of G}. Recall that stab(G) = Q(G) ∩ Z

V = K(G) ∩ Z
V .

(i) Prove that, given a clique K of G, the clique inequality
∑

v∈K xv ≤ 1
is facet-defining for STAB(G) if and only if K is a maximal clique.

(ii) Given an odd cycle C of G, the odd cycle inequality is
∑

v∈V (C) xv ≤
(|C| − 1)/2. The cycle C is chordless if and only if E \ C has no edge
with both endnodes in V (C).

– Show that the odd cycle inequality is a Chvátal inequality
for Q(G).

– Show that the odd cycle inequality is facet-defining for STAB(G)∩
{x : xi = 0, i ∈ V \ V (C)} if and only if C is chordless.

(iii) A graph H = (V (H), E(H)) is an antihole if the nodes of H can
be labeled v1, . . . , vh so that vi is adjacent to vj , j 	= i, if and only
if both i − j (mod h) ≥ 2 and j − i (mod h) ≥ 2. The inequality
∑

i∈V (H) xi ≤ 2 is the antihole inequality relative to H. Let H be an
antihole contained in G such that |V (H)| is odd.

– Show that the antihole inequality relative to H is a Chvátal ine-
quality for K(G).

– Show that, if E \E(H) has no edge with both endnodes in V (H),
then the antihole inequality relative to H is facet-defining for
STAB(G) ∩ {x : xi = 0, i ∈ V \ V (H)}.

(iv) Given positive integers n, k, n ≥ 2k+1, a graphW k
n = (V (W k

n ), E(W k
n ))

is a web if the nodes of W k
n can be labeled v1, . . . , vn so that vi is adja-

cent to vj , j 	= i, if and only if i−j (mod h) ≤ k or j− i (mod h) ≤ k.
Show that, if W k

n is a web contained in G and n is not divisible by
k+1, then the web inequality

∑
i∈V (W k

n ) xi ≤ �n/(k+1)� is a Chvátal
inequality for K(G).

Exercise 7.20. Given an undirected graph G = (V,E), the stability number
α(G) of G is the size of the largest stable set in G. An edge e ∈ E is α-
critical if α(G \ e) = α(G) + 1. Let Ẽ ⊆ E be the set of α-critical edges
in G. Show that, if the graph G̃ = (V, Ẽ) is connected, then the inequality
∑

i∈V xi ≤ α(G) is facet-defining for STAB(G).
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Exercise 7.21. Show that the mixing inequalities (4.29) and (4.30) are
facet-defining for Pmix (defined in Sect. 4.8.1).

Exercise 7.22. Show that the separation problem for the mixing inequali-
ties (4.29) can be reduced to a shortest path problem in a graph with O(n)
nodes.
Show that the separation problem for the mixing inequalities (4.30) can be
reduced to finding a negative cost cycle in a graph with O(n) nodes.
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