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A kidney transplant is the treatment of choice 
for end-stage renal disease, but over 90,000 
patients are waiting for a cadaver kidney in the 
United States, and fewer than 11,000 such trans-
plants are performed annually. Live donation is 
also possible, and there are now more live than 
deceased donors each year in the US, although 
they still account for fewer than 6,500 trans-
plants a year (since living donors only donate 
one kidney). And having a healthy, willing live 
donor is not enough: sometimes a donor’s kid-
ney is incompatible with the intended recipient, 
either because of blood type or immunologi-
cal incompatibilities. Incompatibility between 
donor and intended recipient creates the demand 
for kidney exchange (a.k.a. kidney paired dona-
tion): an incompatible patient-donor pair can 
donate a kidney to a compatible recipient and 
receive a kidney from a compatible donor.

The first kidney exchange was in Korea 
(Kwak et al. 1999), where the high frequency 
of blood types A and B make exchanges due to 
blood-type incompatibility readily available (an 
A-B pair exchanging with a B-A pair, where 
X-Y denotes a patient of blood type X and donor 
of blood type Y), more than in the US, where 
blood type B is relatively rare. The first kidney 
exchange in the US, in New England in 2000, 
also involved two blood type–incompatible pairs 
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(see Wallis et al. 2011 for history and refer-
ences). And for most patients on the waiting list 
for cadaver kidneys, blood type determines com-
patibility with a given donor. Only 10 percent of 
those 90,000 patients are “highly sensitized,” 
meaning they are immunologically incompatible 
with more than 80 percent of donors with com-
patible blood type.

But the patients enrolled in the most active 
kidney exchange networks are much more 
highly sensitized: in the 4 exchange networks 
with which we have worked, the percentage of 
highly sensitized patients is from 50–80 percent 
of those enrolled (Ashlagi, Gamarnik, and Roth 
2011). The present paper considers why this is 
the case, and its consequences.

While the first proposal for organizing 
kidney exchange on a large scale involved 
exchanges organized as both cycles and chains, 
logistical constraints required that the initial 
exchanges conducted by the New England 
Program for Kidney Exchange, the Alliance 
for Paired Donation (APD), and other networks 
were between just two patient-donor pairs 
(Roth, Sönmez, and Ünver 2004, 2005a,b).1 
Subsequent work suggested that as patient pools 
grew larger, expanding the infrastructure to 
allow only slightly larger, three- and four-way 
exchanges, would be efficient (Roth, Sönmez, 
and Ünver 2007a). But the prevalence of highly 
sensitized patients among those enrolled in 
kidney exchange has brought long chains back 
into the picture in an important way, after the 

1 In addition to those two large kidney exchange clear-
inghouses, kidney exchange today is practiced by a grow-
ing number of hospitals and consortia. Computer scientists 
have become involved, and an algorithm of Abraham, Blum, 
and Sandholm (2007) designed to handle large populations 
was briefly used in the APD and has been used in the United 
Network for Organ Sharing (UNOS) pilot program for a 
national exchange. 
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introduction of nonsimultaneous chains initi-
ated by a nondirected donor (Roth et al. 2006; 
Rees et al. 2009). Chains now contribute many 
of the kidney exchanges performed by all of the 
largest multihospital networks except the UNOS 
pilot program. The usefulness of chains turns 
out to be closely related to the highly sensitized 
patient population. And one of several causes of 
the high percentage of highly sensitized patients 
is that many large transplant centers are with-
holding their easy-to-match patient-donor pairs, 
and only enrolling their hard-to-match pairs. 
This reduces the total number of transplants that 
can be achieved, particularly for the most highly 
sensitized patients.2 (Another reason the patient 
pool becomes highly sensitized is that sensitized 
patients remain unmatched longer, and build up 
in the patient pool, but the data show even the 
initially enrolled patients are highly sensitized.)

There are several reasons why hospitals 
wish to conduct their own exchanges for easy-
to-match pairs, including compatible pairs in 
which the donor can donate to the intended 
patient.3 These include the difficult logistics of 
coordinating with other hospitals, paying for 
the tests that establish donor-recipient compat-
ibility before knowing who the recipient will be 
(Rees et al. forthcoming), and, finally, the fact 
that presently used matching algorithms do not 
make it individually rational (IR) for hospitals 
to enroll all their pairs, since they do not guar-
antee each hospital that enrolling all its patients 
will allow it to perform as many transplants as 
it could get by enrolling only some patients and 
doing some exchanges internally among its own 
patients.

The initial papers on kidney exchange focused 
on incentives for patients and their surgeons, but 
the current problems facing kidney exchange 
arise from the fact that hospitals have become 
the main players, and have different strategy sets 
than individuals, since directors of transplant 
centers deal with multiple patient-donor pairs. 
Section I considers how the current algorithms 

2 For example, the UNOS kidney exchange program was 
begun in 2010, and through the end of 2011 it had accom-
plished only 17 transplants, from a small pool of enrolled 
patient-donor pairs, despite having many affiliated hospitals. 

3 Failure to enroll compatible pairs in kidney exchange 
not only deprives those pairs of the possibility of a better 
matched kidney, it also exacerbates the shortage of blood 
type O donors who are blood type compatible with all 
patients. 

fail to make it safe for hospitals to enroll all their 
pairs, and how this could be fixed.

Section II considers why long chains play 
such an important role. Exchange pools are mod-
eled as compatibility graphs whose vertices are 
incompatible pairs with directed links indicat-
ing compatibility between donors and patients. 
Previous studies focused on the relatively dense 
compatibility graphs that would arise if blood-
type incompatibilities were dominant, rather 
than the sparse graphs corresponding to many 
highly sensitized patients.

I.  Individual Rationality and Incentives for 
Hospitals to Participate Fully

Most kidney exchange clearinghouses try to 
maximize the (weighted) number of transplants 
without attention to whether some incompatible 
pairs can be matched internally by the hospitals 
that entered them into the database. Thus, it may 
not be individually rational (IR) for a hospital 
to contribute those pairs it can match internally 
(see, e.g., Roth 2008).4 For example, consider a 
hospital A with two pairs, ​a​1​ and ​a​2​, that it can 
match internally. Suppose it enters those two 
pairs in a centralized exchange. It may be that 
the weighted number of transplants is maxi-
mized by including ​a​1​ in an exchange but not ​a​2​, 
in which case only one of hospital A’s patients 
will be transplanted, when it could have per-
formed two transplants on its own.

An allocation (set of disjoint exchanges) is IR 
if no hospital can match more pairs internally 
than the number of its pairs matched in the allo-
cation. In Ashlagi and Roth (2011), we show 
that efficiency and individual rationality cannot 
always be satisfied simultaneously.5 We also 
show constructively, however, that this is not 
an issue in large exchange pools; under minor 
assumptions, as the number of hospitals grows 
(the compatibility graph grows), with probability 
tending to one there exists an ϵ-efficient alloca-
tion that is (i) IR and (ii) doesn’t use exchanges 
of size more than three.6 Our model builds on 
Erdos-Renyi probabilistic graphs, which allows 

4 Some weighted matching algorithms put some weight 
on internal exchanges, but this does not solve the problem. 

5 Roth, Sönmez, and Ünver (2007b) first showed that no 
strategyproof mechanism is efficient. 

6 Toulis and Parkes (2010) show a similar result assuming 
exchanges are limited to size 2. 
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us to show that in the limit as the graph grows 
large and dense, an efficient allocation needs 
exchanges of size no more than three.7

Limit theorems, however, do not address 
patient populations of clinically relevant size, 
and so we report simulations that show the limit 
results are achieved in populations of the size 
we presently see. These simulations suggest that 
considerable gains could be achieved by adopt-
ing an IR mechanism.

Simulations.—For each iteration we gener-
ate compatibility graphs as follows. According 
to blood type and sensitivity (Panel Reactive 
Antibody (PRA)) distributions consistent with 
the UNOS population (see, e.g., Ashlagi and 
Roth 2011), a patient and one to three related 
donors are drawn uniformly. We then test tissue 
type compatibility between the patient and her 
donors using the patient’s PRA (which is a prob-
ability of incompatibility). A patient and one of 
her related donors join the pool (as an incom-
patible pair) if the patient is incompatible with 
all her related donors. In addition, a nondirected 
donor is generated randomly. To complete the 
graph, tissue type tests are conducted between 
donors and patients of different pairs. Finally, 
we associate each incompatible pair and each 
nondirected donor to a random hospital.

We compare an algorithm like those cur-
rently in use, max-match, to an IR mechanism, 

7 This refines a result by Roth, Sönmez, and Ünver 
(2007b) that in sufficiently large graphs exchanges of size 
more than 4 are not needed for efficiency. 

IR-match. Two behaviors by hospitals are con-
sidered: (i) truth-telling—the hospital reports all 
its pairs; and (ii) withhold internal matches—
the hospital withholds a maximum set of pairs it 
can match internally.

Each row of Table 1 corresponds to a scenario. 
The first scenario includes 10 hospitals, and 100 
pairs. The ratio between the number of matches 
a given hospital, H, obtains from withholding to 
the number of matches H obtains from reporting 
truthfully, given that all other hospitals report 
truthfully, is given in the third column (under 
the max-match algorithm) and the sixth col-
umn (under the IR-match algorithm). Thus, it is 
beneficial for H to withhold its internal matches 
under max-match, but not under IR-match.8 The 
maximum number of matches that can possibly 
be obtained is given in the fourth column (under 
max-match when all hospitals report truthfully). 
The number of matches obtained when all hos-
pitals withhold their internal matches is given in 
the fifth column. Finally, the number of matches 
obtained when all hospitals report truthfully 
under IR-match is given in the last column.

To summarize, (i) a hospital profits from 
withholding its internal matches under max-
match but not under IR-match; (ii) more than 
ten percent more matches will be achieved 
under truthful reporting under IR-match than 
under max-match assuming hospitals withhold 
internal matches; and (iii) the cost of using 

8 When all other hospitals withhold their pairs, the gain 
under max-match for hospital H increases to more than 
10 percent. 

Table 1

Max-match IR-match

Truthful reporting Withholding Truthful reporting
Hospitals Pairs H’s gain No. matches No. matches H’s gain No. matches

10 100 1.055 52 43 0.994 51.6
 (12.9)  (8)

12 120 1.066 65 54 0.995 64
(17.2) (11)  (16.6)

15 150 1.061 84 71 0.988 83.5
 (23.8) (16)  (23)

20 200 1.048 117 101 0.986 116.6
 (36) (26) (34.9)

Note: Withholding internal matches versus reporting truthfully in Max match and IR match.
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IR-match is very small even assuming that all 
hospitals report truthfully under max-match, and 
the gain from using IR-match is substantial if 
hospitals withhold under max-match (assuming 
they report truthfully under IR-match).

Individual rationality alone is insufficient to 
guarantee full participation: hospitals may have 
incentives to withhold overdemanded pairs other 
than internal matches (for example, an A-O pair 
is overdemanded since there are fewer such pairs 
than O-A pairs due to blood type compatibility). 
Intuitively, if hospital A has an overdemanded 
pair ​a​1​ that it can internally match to pair ​a​2​ or ​a​3​ 
that are each underdemanded, individual ratio-
nality constraints alone may still leave hospital 
A better off withholding ​a​1​ and waiting to see 
if one of its underdemanded pairs, ​a​2​ or ​a​3​, is 
unmatched by the mechanism and then inter-
nally matching that pair to ​a​1​. In Ashlagi and 
Roth (2011) we introduce an “almost” efficient 
mechanism that makes truthful reporting an 
ϵ-Bayes-Nash equilibrium as the number of par-
ticipating hospitals grows large.

II.  The Need for Long Chains

For large, dense compatibility graphs, there 
is almost always an efficient allocation as in 
Figure 1 (see Roth, Sönmez, and Ünver 2007a 
and Ashlagi and Roth 2011). Exchanges of size 
greater than three are not needed. Furthermore, 
Roth, Sönmez, and Ünver (2007a) showed via 
simulations that even in small exchange pools, 
exchanges of size greater than three do not add 
many transplants. These simulations show (as 
does the related theory) that each nondirected 

donor can increase the number of transplants by 
at most three. But current exchange programs 
have many highly sensitized patients, and thus 
have sparser graphs than graphs generated from 
the statistics of the general patient population.

Ashlagi, Gamarnik, and Roth (2011) provide 
empirical evidence that longer exchanges and 
long chains increase efficiency, and provide a 
theoretical framework based on sparse Erdos-
Renyi graphs. Intuitively, if a patient p is highly 
sensitized and can receive a kidney from very 
few donors, the chance that p will be part of a 
short exchange is small (and including a small 
exchange, even if one exists, might be ineffi-
cient). Previous papers explicitly or implicitly 
ignored tissue type compatibility, and Ashlagi, 
Gamarnik, and Roth (2011) suggest that this 
type of compatibility cannot be neglected. They 
show analytically that for sparse graphs, longer 
exchanges and longer chains increase the num-
ber of transplants linearly as the graph grows. 
They use simulations to show that their results 
give a good approximation in small graphs as 
well.9

Below, we report simulations of the effective-
ness of long chains. Graphs are generated as in 
the previous simulations, except we generate 
more highly sensitized patients by assuming 
each patient has 3–7 potential related donors; 
each patient is tested for compatibility with 
each related donor (this generates a pool with 
approximately 60 percent high-PRA patients). 
The advantage of longer exchanges and chains 
is clear from Table 2 (see also Dickerson, 
Procaccia, and Sandholm 2011 who also con-
duct simulations to confirm the utility of long 
chains).

Each row in the table corresponds to a differ-
ent scenario. In the first 3 scenarios there are 100 
pairs (with an average of 62.5 high-PRA patients) 
and the number of nondirected donors is either 
2 or 6. The third through seventh columns each 
describe the number of matches obtained (and 
in parentheses the number of highly sensitized 
matches) under different matching algorithms—
(k, l) means we search for the maximum number 
of transplants allowing exchanges (cycles) up to 
size k and chains up to size l. Thus, with 100 

9 Ashlagi et al. (2011a, b) use simulations to show 
that long chains increase efficiency in a dynamic setting. 
Dickerson, Procaccia, and Sandholm (2012) support these 
findings with extensive simulations. 

Figure 1. The Structure of an Efficient Allocation 
without Altruistic Donors

Notes: All self-demanded pairs are matched to each other. 
All B-A pairs are matched to A-B (assuming more B-As 
than A-Bs); the remainder of the A-B pairs are matched 
in three-way exchanges using O-As and B-Os. AB-O are 
matched in three-ways, each using two overdemanded pairs, 
and every other overdemanded pair is matched to an under-
demanded pair.

B-AA-O          B-OAB-O A-A B-BAB-B AB-A

O-B             O-A
A-B

O-AB
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pairs and 2 nondirected donors, an average of 
44.48 matches were found when searching for 
matches using cycles of length at most 3 and 
chains of length 3.

III.  Conclusion

Kidney exchange programs are maturing, yet 
progress is still slow. This note describes some 
major issues facing kidney exchange today and 
suggests solutions that may significantly increase 
the number of transplants. First, transplant cen-
ters withhold their easy-to-match patient-donor 
pairs, and we suggest modifying the commonly 
used matching mechanisms to make it IR for 
hospitals to participate with all their patients. 
This applies to compatible as well as incompat-
ible pairs. Blood types cause some pairs to be 
overdemanded and others to be underdemanded. 
Roth, Sönmez, and Ünver (2005a) showed that 
a significant increase in the number of kidney 
exchanges could be achieved by allowing com-
patible pairs to participate (see also Sönmez and 
Ünver 2011, who analyze graphs with compat-
ible pairs).

Second, due to the highly sensitized pools and 
their sizes, allowing long chains will significantly 
increase the number of transplants, especially for 
highly sensitized patients. While many exchange 
networks have begun to do this, the national pilot 
program has yet to adopt this approach.

As kidney exchange has grown, the set of 
players has changed. To foster further growth, 

Table 2

Size NDDS  (2, 3)  (3, 3)  (3, 4)  (3, ∞)  (∞, ∞) 

   100
(62.5)

1 27.72 
(11.78)

42.58 
(22.19)

43.18 
(22.52)

46.44 
(25.66)

56.78 
(35.62)

2 29.44 
(12.71)

44.48 
(23.48)

45.64 
(24.22)

54.25 
(32.17)

58.24 
(36.75)

6 39.08 
(18.58)

52.52 
(28.82)

55.21 
(31.32)

63.1 
(38.89)

63.52 
(39.98)

  150
(94.11)

1 47.49 
(21.32)

76.11 
(42.86)

76.78 
(43.24)

76.72 
(43.46)

98.08 
(65.07)

2 49.88 
(22.14)

79.26 
(44.66)

80.62 
(45.76)

90.16 
(55.13)

101.34 
(67.8)

6 60.71 
(29.02)

87.47 
(50.19)

91.04 
(53.62)

104.53 
(66.81)

105.46 
(69.57)

Note: Average number of matches and high-PRA matches (in parentheses) with different num-
ber of nondirected donors (NDDS) and different-sized pools.

the design of kidney exchange clearinghouses 
must respond.
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