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A transformation technique is proposed that permits one to derive the linear description of the image
X of a polyhedron Z under an affine linear transformation from the (given) linear description of Z.
This result is used to analytically compare various formulations of the asymmetric travelling salesman
problem to the standard formulation due to Dantzig, Fulkerson and Johnson which are all shown to be
“weaker formulations” in a precise setting. We also apply this transformation technique to “symmetrize”
formulations and show, in particular, that the symmetrization of the standard asymmetric formulation
results into the standard one for the symmetric version of the travelling salesman problem.
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Introduction

A formulation of a combinatorial optimization problem is a finite set of linear
inequalities and/or equations in a finite set of variables, the integer (or mixed-integer)
solutions of which are in one-to-one correspondence with the combinatorial configur-
ations (stable sets, tours of a travelling salesman, spanning trees, etc.) over which
we wish to minimize a linear objective function. As we are dealing with linear
inequalities or equations, we obtain a polyhedron if we drop the integrality require-
ment and thus a “formulation” is a polyhedron in some finite-dimensional Euclidean
vector-space. Its intersection with the lattice of integer (or mixed-integer) points in
that space is in one-to-one correspondence with the set of the desired combinatorial
configurations. Denote D this discrete set of points. If D is a finite set or if the
data of the formulation involve only rational data, then the convex hull of D,
conv(D), is a well-defined polyhedron and thus by Weyl’s theorem [1935] there
exists a finite set of linear inequalities and/or equations that describe conv(D)
completely. We call such a complete linear description the ideal formulation of the
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underlying problem; see also Wolsey (1987). Of course, because of the NP-complete-
ness characteristic of many combinatorial optimization problems the search for an
ideal formulation may prove to be elusive.

For many combinatorial optimization problems there are typically different ways
of “formulating’ them. Given two different formulations A and B of a given problem
that are stated in the same space of variables we have thus two polyhedra X, and
Xg. If X, © Xj then clearly formulation A is “better” than formulation B since the
optimization over X4 brings us “closer” to the “true” optimum, i.e. the upper bound
to the combinatorial optimization problem provided for by X, is always better than
or equal to the upper bound provided for by Xj. (We hasten to point out that we
exclude considerations regarding the “speed of calculation” or other criteria in this
definition of what we consider to be “better’”” and concentrate solely on the goodness
of the upper bound that is obtained from a “formulation”.) The entire line of
research that studies facet-defining inequalities of various polyhedra occurring in
combinatorial optimization is devoted to finding improved formulations of the
respective problems.

Different formulations of a given problem can also frequently be stated in terms
of different sets of variables. So suppose that we have a formulation C that models
the same problem as formulation A, but in a higher-dimensional space. We thus
have a polyhedron Z, say, and the polyhedron X,. If we have an affine transforma-
tion T that maps the integer (or mixed-integer) points of Z. onto the integer (or
mixed-integer) points of X, then it makes sense to calculate the image T(Z-) of
Z. under this transformation. If T(Z.) > X, then formulation A is evidently better
than formulation C as the former provides no new polyhedral information about
the convex hull of integer (or mixed-integer) points of X, i.e. the ideal formulation.
On the other hand, formulation C is better than formulation A if T(Zq)c X,.
However, if T(Z:) > X,, then the polyhedron T(Z.-) need not even be a “formula-
tion” of the problem formulated by X, when general affine transformations are
considered.

The use of “auxiliary” variables to arrive at a different formulation occurs already
in a paper by Miller, Tucker and Zemlin (1960} who show that with the help of
n—1 real variables the “size” of the formulation of the asymmetric travelling
salesman problem can be reduced from exponentially many linear constraints to a
mere n°—n+1 linear constraints where n denotes the number of cities involved.
More recently, a more systematic attempt is made to investigate such “reformula-
tions” of integer and mixed-integer programming problems in higher-dimensional
spaces and we refer the reader to the survey by Wolsey (1987) for further references.

In this paper we study different formulations of the asymmetric travelling salesman
problem (TSP). In Section 1 we state some properties of polyhedral convex cones
that are needed throughout our work. In Section 2 we consider affine transformations
of polyhedra and derive a linear description of the image X of a polyhedron Z
from the linear description of Z. In Section 3 we compare three different formulations
of the TSP (including the Miller-Tucker-Zemlin formulation) to the standard
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formulation due to Dantzig, Fulkerson and Johnson (1954). In Section 4 we use
linear transformations to “symmetrize” several of these asymmetric formulations
of the TSP. In Section 5 we draw some conclusions from our work.

1. Some properties of polyhedral cones

In this section we give some definitions and properties of convex cones that are
essentially known from the literature, see e.g. Gale (1951), Gerstenhaber (1951),
Burger (1956), Simonnard (1966), Stoer and Witzgall (1970) and Bachem and
Grotschel (1982), and that are used extensively throughout other parts of this work.

A set C<R”" is called a cone if v', v”e C implies that A,0'+A,v”e C for all
scalars A;, A,=0. A halfline (or ray) (v) is the set of points {AveR"|VA=0}. A
halfline (v) is called an extreme ray of C if for any v', v’e C, v=2Av"+(1-2A)0’
with 0 <A <1 implies that v', v* are positive multiplies of v. A set of generators of
a cone is a set of halflines which spans C and such that no halfline of the set is in
the convex hull of the others. The class of cones of our interest are the ones for
which there exists a finite set of generators, the so-called polyhedral cones. All cones
considered in our work are polyhedral ones and thus we drop the adjective from
now on.

It follows from Weyl’s (1935) theorem that every cone that we consider is the
intersection of finitely many halfspaces and thus we can write C as

C={xeR"|Ax=0},

where A is an m X n matrix. In most of our work we are given a cone in matrix
form and we wish to find a full system of generators of C. To this end we define
the lineality space L of C to be the set of all vectors x such that xe C and —xe C
and hence

L={xeR"|Ax=0}.

It follows that the dimension of L, dim L, is n —rank(A). If rank(A) = n, the lineality
space of C consists of the origin only. In this case C is a pointed cone, we say that
C has its apex at the origin and moreover, C has a uniquely defined finite set of
extreme rays. Whenever dim L= 1, the cone has no apex and no extreme rays in
the sense of the definition given above. However, C has a finite set of generators
and among all such sets we will distinguish one that we continue to call “extreme”.
To do so define

L*={yeR"|xy=0V¥xe L},
C’=CnL"

L" is the orthogonal complement of L. It follows that the lineality space of the cone
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C* is the origin and hence, C° is a pointed cone and possesses a uniquely defined
finite set of extreme rays (in the sense of the above definition). Since L and C° are
orthogonal to each other, every point x € C can be written as x = I+ x, where le L,
xo€ C° and [ and x, are uniquely determined. We define the extreme rays of C° to
be the “extreme rays” of C since they are a unique set of generators for the conical
part of C. If B, denotes a basis of L, then B; and (—B;) form a unique set of
generators for the lineal part of C. In summary, letting D be the set of extreme rays
of C° a unique set R of generators of any cone C is given by

R=B,u(—B;)uD.

This way the concept of an “extreme ray” of any cone C —even if dimL=1—
is unambiguously defined and in the case of a pointed cone we retrieve the original
definition.

The following lemma and theorem from Burger (1956) state a criterion for x€ C
to define an extreme ray of C.

Lemma 1. LetC ={xcR"|Ax=0} be such that rank(A) = n and denote M the index
set of all rows of A. (x) is an exireme ray of C if and only if x€ C, x #0 and there
exists I = M such that (i) |I|=n—1, (ii) a'x =0 for all i I and (iii) the rows a’ with
i I are linearly independent.

Proof. Given a vector x € C, let I be a maximal subset of M such that a’x =0 for
all ie I and that the rows a’' with ie I are linearly independent. Let A, be the
submatrix of A having rows a’ for all ic] and P be the subspace given by
P={xcR"|A,x =0} It follows that dim P = n—|I| and since I is maximal it follows
that dim P~ C =dim P.

Suppose now that |I|=n—1, but that x is not an extreme ray of C. Since
rank(A)=n we have C = C° and hence there exist x' € C° and x*c C° such that
(x") # (x) % (x*) and x = Ax"+ (1 — A)x* with 0<A <1. From a'x’ =0 for j=1, 2, we
obtain a’x’ =0forie I andj=1,2 and hence, x’ € P for j =1, 2. Since x', x’e P~ C
and dim P =1, it follows that x'= ux* for some x> 0. Consequently, (x)=(x?)
which is a contradiction.

On the other hand, suppose x #0 is an extreme ray of C and let |I|=k. Then
clearly k=< n—1 since otherwise dim P =0 and x =0. Suppose that k<<n—1. Then
dim P~ C =n—k=2 and there exist n —k linearly independent vectors x'e Pn C
such that each x' annuls at least one row of A that is not in A, and that is linearly
independent of the rows of A; since rank(A)=n and where i=1,...,n—k. Con-
sequently, x # x* and x is a nonnegative linear combination of x',..., x" " having
at least two coefficients positive. Since C = C? it follows that x = Ax"+(1—)x> for
some x'# x# x°, x', x> C° and 0< A <1 which is a contradiction. The lemma
follows. [
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Theorem 1. Let C={xcR"|Ax=0}, L={xecR"|Ax =0} and dim L=d. A halfline
(x) is an extreme ray of C if and only if (i) x € C° and (ii) there exist exactlyn—d —1
linearly independent rows a’ of A such that a’x =0.

Proof. Since dim L=d, it follows that rank(A) =n —d. If d =0, we are in the case
stated in previous lemma and we are done. Let d = 1. Then we can write L' =
{xeR"|Bx=0} where B is a d x n matrix of rank d whose rows correspond to a
basis of L. It follows that C°={xeR"|Ax >0, Bx =0}. We claim that the rank of
the constraint matrix of C° equals n. Let A, be a (n —d) X n submatrix of A having
a full rank and suppose that there exist A e R"™% x eR? such that A #0, u # 0 and
M+ uB=0, equivalently AA,=-uB. Consequently, AA;A]=—-uBA] where
BAT =0 is a null-matrix. Since A;A] is a nonsingular matrix of size n — d, it follows
that A =0. Furthermore, since rank(B)=d, we conclude likewise that u =0 and
hence the claim follows. We can thus apply the previous lemma to C° and the
theorem follows. ]

From a computational point of view it will be sometimes more convenient to
determine nonzero solutions of minimal support, i.e. a nonzero solution with the least
number of nonzero components, to equation systems satisfying the requirement (ii)
of Theorem 1 if we want to determine a generator system for the conical part of C.
From any such solution x € C, say, that satisfies x € L one obtains an extreme ray
of C as follows: Given a basis B of the lineality space L of C one calculates the
projection x' of x by the least-squares formula

x'=x-B"(BB") 'Bx. (1)

Since x ¢ L it follows that x' 0 and moreover, x' € C°. The vector x' annuls the
same rows of A as does x. Consequently every nonzero solution of minimal support
to an equation system satisfying the requirement (ii) of Theorem 1 that is not in L
yields via this projection an extreme ray of C. On the other hand, let x € C be any
extreme ray of C. By Theorem 1 there exist n —d —1 linearly independent rows of
A that are annulled by x and since x # 0 this system possesses a nonzero solution
of minimal support. Since x £ L it follows by a standard linear algebra argument
that it possesses a nonzero solution of minimal support that is not in L. Consequently,
we have the following remark which we will use repeatedly later on:

Remark 1. A full generator system for the conical part of a cone C with dim L=d
can be obtained by determining for each system of n—d —1 linearly independent
rows of A a nonzero solution of minimal support to Ax = 0 that is not in L provided
it exists.

In most of our applications of the preceding material the matrix A defining the
cone C is a block diagonal matrix. It is therefore important to note that we can
work on the lower dimensional cones defined by the blocks of A in order to find a
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full generator system for C. More precisely, we have an “intersection property” of
cones given by the following proposition:

Proposition 1. Let
C,={x'eR"|A;x'=0}, C,={x’eR| A,x*=0}

and C; be the intersection cone of cones C, and C, embedded naturally in the R", j.e.
Cy={(x", x)eR""|Ax' =0, A,x*=0}.

Denote R; the set of generators of C; for i=1,2,3. Then
R;={(u,0)eR" | ue R,}u{(0,v)eR" |ve R,}.

Proof. Denote d;=dim L, the dimension of the lineality space of C;, B; any basis
of L; and D; the set of extreme rays of C; for i=1,2, 3. It follows that d;=d;+d,
and consequently

By={(u,0)eR"**|ue B} U{(0,v)eR""|ve B,}

since the respective vectors are linearly independent. Let u€ D,. Then ue C{ and
thus (u, 0) € C5. Moreover, (u, 0) annuls precisely p—d,—1+qg—d,=p+q—d;—1
linearly independent rows of the constraint system defining C;. Thus by Theorem
1 we have (u, 0) € D;. By symmetry, we have (0, v) € D; forall v € D,. Hence we have

{(u,0)eR”*|ue R}U{(0,v) eR”"¥|ve R} < R;.

To show equality suppose that there exists a generator d of C; such that d =(d", d*)
with d'# 07 d*. We write d =(d", 0)+(0, d*). Consequently, d'€ C; for i=1,2
and thus d’ can be expressed as a nonnegative linear combination of the elements
of Rifori=1,2andthusd =Y Aj(#/,0)+Y A3(0, v/) forw/ € R;, v’ € Ryand A}, AT =
0. This contradicts the fact that d € R; and the proposition follows. [

2. Affine transformations of polyhedra

In this section we consider affine transformations of full rank that map R" into R™
where m =< n. It is well-known that an affine transformation from R” into R™ sends
a polyhedron in R" into a polyhedron in R™, see e.g. Bachem and Grotschel (1982,
Theorem 2.12). Given the linear description of a polyhedron Z < R” we are interested
in finding a linear description of the image of Z under a given affine transformation.
To achieve somewhat greater generality we restrict the “feasible” points in the image
of Z to be in some set Q = R™. In most cases we will have Q =R™.

Let

x=f+Lz (2)
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be the affine transformation from R" into R™, i.e. fe R™ and L is an m X n matrix
having full row rank. It will be convenient to partition L into L, and L, such that
L, is an m x m matrix of rank m that corresponds to the first m columns of L. We
will assume that the affine transformation is given along with a fixed partitioning.
We note that for f=0 we have a linear transformation and since a “projection” is
a special case of a linear transformation the following development generalizes
statement (2.1) of Balas and Pulleyblank (1987). Let

Z={zeR"|Az=b, Dz<d} (3)
and
X ={xe Q|3z€ Z such that x=f+ Lz} (4)

where A is a p X n matrix, D is a ¢ X n matrix, feR™, Q<R™ is an arbitrary set,
L=(L,, L,) is an m x n matrix having full row rank and A and D are partitioned
as A=(A,, A,) and D =(D,, D,) according to the partitioning of L. Define

C={(u,v)eR""|u(A,— A LT'L,)+v(D,— D,L{'L,) =0, v=0}, (5)
Xc={xe Q|(uA,+vD,)Li'x<ub+vd +(uA,+vD,)L7"f V(u,v)e C}. (6)

Theorem 2. X = X.

Proof. Let x€ X and thus there exists a z€ Z such that x =f+ Lz For any v=0
we have in the partitioning induced by (L,, L,),

(uA,+vD)z"' + (uA,+ vD,)z* < ub + vd.
Consequently, we have equivalently
(uA,+vD) L (Liz'+ L,2*)+(u(A,— A, L,' L)) + v(D,— D, L' L,))z*
sub+uvd
Adding (uA,+vD,)L;' f to both sides of the last inequality, we obtain
(uA,+ D)Ly (f+ Lz) + (u(A,— A, LT'L,) + v(D,— D, L' L)) z*
<ub+vd+(uA,+ovD)L;'f.

Since x =f+ Lz and since for (u, v) € C the second term of the expression is zero,
we have

(uA,+vD)) L' x < ub+vd +(uA,+vD,) L' f

Hence, X = Xe.
To show X < X, let x 2 X, If x 2 Q, we then immediately have x £ X. Otherwise,
there exists no z€ Z such that x =f+ Lz, i.e. the linear system

Az '+ A z° = b, (7)
D,z'+ D,z*=<d, (8)
Lz'+L,7*=x—, 9)
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is inconsistent. By Farkas’ lemma there exist u € R”, veR? and £R™ satisfying

uA,+ oD+ L, =0, (10)
uA,+vD,+ (L, =0, (11)
ub+uvd+ £(x—f)<0, (12)
v=0.

Since L, is nonsingular, from (10) we have & = —(uA,+vD,)L7'. Substituting & in
(11) we obtain

u(A,— A, L7'L,)+v(D,— D,L{'L,) = 0.

It follows that (u, v) € C. Substituting ¢ in (12), we get
ub+vd <(uA;+vD)L{(x—f),

ie.
ub+ vd +(uA,+vD) LT f<(uA,+ovD,) L] x.

Hence x 2 X and thus xe X implies x € X. The theorem follows. [

Since many combinatorial problems include explicit nonnegativity constraints in
their formulations, we state affine transformations of the associated polyhedra for
ease of reference in the following corollary:

Corollary 1. Let
Z={zeR"|Az=b, Dz<d, z=0}

where A is a p X n matrix and D is a g x n matrix and let X be defined as in (4). Then
X = X, where

Xc={xeQ|(uA,+vD,—w)L,'x
<ub+vd+ (uA,+vD,—w)L{'f V(u, v, w) e C} (13)
and
C={(u,v,w)eR"" "™ u(A,— A, L;' L)+ v(D,— D, L' L,)
+wL'L,=0,v=0, w=0} O

Since every (u, v) € C can be written as a linear combination of the elements of
a basis of the lineality space L of C plus a nonnegative combination of the extreme
rays of C, it follows that in the linear description (6) and (13) of the polyhedron
X we can restrict ourselves to any finite generator system of C. That is, we can
replace the requirement “for all (», v) € C” in (6) and (13) by the requirement “for
all (u, v) in a generator system of C”’. This way we get a finite system of inequalities
for X. In particular, since l€ L implies that —/e L, we get a system of equations
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for X from any basis of L. While the linear system describing X is finite, it may
very well be exponential in the parameters m or n. Thus it is interesting to note that
for any x€R™ the constraint identification problem for X, see e.g. Hoffman and
Padberg (1985), can be stated as the following linear program: Find

z(x) =max{u(A,LT'(x=f)-b)+v(D,L{' (x—f)—d)|[(u,v) e C}  (14)

where x ¢ R™ is given. It follows that x € X if and only if z(x) =0; otherwise, the
solution to this linear program yields a constraint for X that is violated by x. Also,
by the duality theory of linear programming the question of testing x € X amounts
e.g. in the case of (6) to showing that the linear system (7), (8), (9) is inconsistent,
i.e. that this system does not have a feasible solution for the given xeR™. Con-
sequently, if the original problem over Z has an input-length that is polynomial in
n, then the constraint-identification problem over X is automatically polynomial in
n as well since problem (14) is solvable in time polynomial in n; see Khachiyan
(1979) and Karmarkar (1984). Of course, we assume in this statement that either
Q =R" or that x € Q can be checked separately in polynomial time as well.

The following proposition gives a sufficient condition for linear programs over Z
and X, respectively, to be “comparable”.

Proposition 2. Let Z, X be defined as in (3) and (4). If c = dL, then min{cz|ze Z}=

min{dx|xe X} —df.

Proof. If ¢=dL, it follows that

min{cz|ze Z}=min{dLz|ze Z}
=min{d(f+Lz)|ze Z} - df
=min{dx|3z e Z such that x =f+ Lz}~ df
=min{dx|xe X}—df. O
For ease of reference, we state next the projection result of Balas and Pulleyblank

(1987) separately. It follows from our development by choosing f=0, L, =1 and
L,=0. To be specific, let

Z={(z',z)eR"|A;z' + A,z =b, D,z' + D,z2°< d, —z'<0, -z*< 0}
and
X ={z'e Q|3z°cR" ™ such that (z', z%) € Z},

where A=(A,, A,) is a px n matrix and D =(D,, D,) is a g X n matrix. As we are
“truncating” the vector z we can without loss of generality insert the condition
z'€ Q in the constraint set of Z Since L, = I, L, =0, the associated cone C’ is then
defined as follows:

C'={(u, v, w)eR"* T |uA,+vD, =0, v=0, w=0}.
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The inequalities w=0 give rise to extreme rays of the form (0,0, w') where w' is
the ith unit vector of R™. By Corollary 1 these extreme rays yield the nonnegativity
constraints z' = 0. Furthermore, by the intersection property of cones we can work
with the smaller cone

C={(u, v)eR*"|uA,+vD,=0, v=0}. (15)
It follows from Corollary 1 that
X ={z'eQ|z'=0, (uA,+vD,)z' < ub+vd for all (u,v)e C} (16)

as stated in Balas and Pulleyblank (1987).

3. Four different formulations of the travelling salesman problem

The (standard) travelling salesman problem (TSP) is to find a shortest way from a
home city to visit a given set of cities exactly once and then return to the home city.
Dantzig, Fulkerson and Johnson published a seminal paper on the TSP in 1954 and
formulated the problem as a zero-one linear program involving O(n>) variables and
O(2") linear constraints. Since their formulation involves an exponential number
of constraints, various researchers have proposed formulations of the TSP that
involve only a polynomial number of constraints usually at the expense of increasing
the variables; see e.g. Miller, Tucker and Zemlin (1960), Fox, Gavish and Graves
(1980) and Claus (1984). The issue we are addressing here is whether or not these
compact formulations provide better characterizations of the travelling salesman
polytope than the standard formulation due to Dantzig, Fulkerson and Johnson. In
other words, we investigate the question whether or not the solvability of the TSP
is improved by these other formulations when used in connection with linear-
programming-based solution methods such as e.g. branch-and-bound, Lagrangean
relaxation or branch-and-cut.
We use the following standard notation:

8'(i)={(i,j)e E|Vje V} forieV,

8 (i)={(j,i)e E|VjeV} forieV,

8(i)=6"(1)u s (i) forieV,

§5=v-8 forScyV,

E(S)={(i,j)e E|Vi,je S} forScV,
(S::8,)={(i,j)e E|Vie S;,je S} for S;cVand S, V-5,

x(E')= 3 x, for E'lC E.

ecE’
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Furthermore, we write sometimes R” and R” rather than R™"! and R'®' and for any
vectors ueR” and w e R¥ we denote u® and w” the characteristic vectors of S< V
and F c E respectively, i.e. u® and w" are defined by

_S:{'l Vies, wF={1 VeeF,

"0 VieS, ¢ |0 VeeE-F.

We use e,, to denote the vector of size m with all components equal to 1 and u’
(or sometimes w', £') to denote the ith unit vector. The support graph of x e R” is
defined as G(x)=(N, S(x)) where S(x)={ec E|x,#0} and N< V is the set of
nodes spanned by S(x).

3.1. The Dantzig- Fulkerson-Johnson (DFJ) formulation
Dantzig, Fulkerson and Johnson (1954) formulate the standard problem as a zero-one
linear program on a graph G=(V, E) as follows:

n

min Y ¢y

Lj=1
s.t. i x; =1, j=1,...,n, (17)
_ilxj,-zl,jzl,...,n, (18)
stﬁS|S|—1 VSc Vand 2<|S|<n-1, (19)
Lje
x;=0 Vi, j, (20)
x; integer Vi, j, (21)

where V={1,2,..., n}. We assume throughout this paper that the variabies x; do
not exist and thus we have a formulation of the TSP involving n(n—1) zero-one
variables and O(2") constraints. The constraints (19) are referred to as subtour
elimination constraints (SECs) and rule out cycles visiting a subset of nodes in V.
They can be written equivalently in the cut form as

x(S:V-S)=1.
We denote the convex hull of solutions to (17)-(21),
P" = conv{x e R"" V| x satisfies (17)-(21)},
the travelling salesman polytope, and the linear programming relaxation
PI={xeR""V|x satisfies (17)-(20)}, (22)

the subtour polytope. The polytope PS is a formulation of the TSP, but an ideal
Sformulation for the travelling salesman problem, i.e. a complete list of all linear
inequalities that are needed to describe P", is unknown; see Grotschel and Padberg
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(1985) for a survey of the partial results concerning the facial structure of P"
obtained to date. It is well-known that dim P" =dim P§=n(n—3)+1 and that the
constraints (19) and (20) define facets of P". We use the DFJ-formulation as the
benchmark for our comparison.

3.2. The Miller- Tucker-Zemlin (MTZ) formulation

Miller, Tucker and Zemlin (1960) propose a formulation for a more general TSP
on V={1,..., n} nodes, which is known as the “clover-leaf”” TSP with ¢ leaves and
which goes as follows:

Denote city 1 the home city. The salesman is required to visit the other n —1 cities
exactly once. During his travel he must return to the home city exactly ¢ times,
including his final return, and he must visit no more than p cities different from
home in one tour. (A tour is a succession of visits to cities without stopping at city
1.) We require that [(n—1)/p]<t<n—1, where [a] for any acR denotes the
smallest integer greater than or equal to g, since otherwise there is no feasible tour
and p =2 since otherwise the problem is not interesting. The problem is written as
the following mixed 0-1 linear program:

n n
min ), Y Xy

i=1j=1

s.t. Z X1 = t, (23)
i=2
Y xiu=t, (24)
i=2
L oxi=1,j=2,...,n (25)
i=1
Yox;=1,i=2,...,n, (26)
j=1
u—u+px;<p-1, 2<i#j<n, 27)
u;=0, 2<i=n, (28)
x; 20 Vi, j, (29)
x; integer Vi, j. (30)

The constraint (24) is redundant, but we include it for convenience of analysis in
Section 4.2, The restriction that the home city is visited exactly ¢ times is expressed
in (23) and (24). The constraints (27) eliminate tours that visit more than p cities.
The formulation involves O(n?) constraints in n°—1 variables. Furthermore, for
t=1 and p=n—1 the MTZ-formulation models the standard model correctly.
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3.2.1. The MT.Z-formulation and a modified standard model

In order to compare the MTZ-formulation with the standard formulation we use
the following modification of the DFJ-formulation to accommodate the more general
form of the clover-leaf TSP:

min Y, Y ¢y
i=1j=1
st (23)-(26), (29), (30) and
x(E(S))<|S|-[|S|/p] ¥S< V-{1},|S|=2. (31)
For this modification we define the polytope Pg, corresponding to the subtour
polytope Pg as follows:
Pg,= {x e R"""V|x satisfies (23)~(26), (29) and (31)}.
This modified DFJ-formulation models the same problem as the MTZ-formulation
and we can compare the two formulations by projecting out the u-variables of the

latter formulation. To this end we associate with the MTZ-formulation the following
sets:

Q={xeR"" V|x satisfies (23)-(26)},
UPy={(u, x)e R™! |(u, x) satisfies (27)-(29) and x € Q},
Py ={xe Q|3uecR" " such that (u, x) € UPy}.
UPy is the MTZ-polytope, i.e. the linear relaxation of the MTZ-formulation, and
P, its projection into R"""V. The comparison of the two formulations is then
reduced to a comparison of the two polytopes Py and Pg .
To carry out this comparison analytically we use the results of Section 2 and

determine a linear description of the polytope Py,. Noting that the variables x, with
e € 8(1) do not appear in the constraints (27), we write these constraints as

ATu+Bx<b

where A is the node-arc incidence matrix of a complete directed graph on nodes
{2,...,n}, B=pl,_1)(n—2), b=(p—1)€_1)(n—2- In order to find the linear descrip-
tion of Py we need to determine a generator system of the cone

C={veR" V" 2| Ap=0,v=0}.

3.2.2. The arc cone of a complete digraph

We define the arc cone C of a complete digraph with node-set V={1,..., n} to be
C={veR"" V|Ap=0, v=0}

where A is the node-arc incidence matrix of the complete digraph K,. Since
0=¢e,Av=0, it follows that Av=0 for all ve C. Thus C can be written as

C={veR"" V|Av=0,v=0}. (32)

Since v=0 for all ve C, it follows that C is a pointed cone with apex at 0.
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Propeosition 3. A vector ve C defines an extreme ray if and only if

:{1 VYeec 7 (S), (33)

0 otherwise,

where w(S) < E is the arc-set of a directed cycle on Sc V.

Proof. Let ve C be defined as in (33) and assume that v = Av'+ (1 — A )¢ for some
v',v°e C and 0<A <1. Then Av,+(1—A)v2=0 for all e 7(S) implies that v’ =
v2=0 for all e# w(S). If there exists f € 7(S) such that v;=0, we obtain v, =0 for
all ee 7(S) by transitivity from the constraints Av'=0 since 7(S) is a directed
cycle. It follows that v” is a positive multiple of v. So suppose v.>0 and v2> 0 for
all e e w(8S). Since 7(S) is a directed cycle we have by transitivity from Ao’ =0 that
v' is a positive multiple of v°. But then both »' and v’ are positive multiples of v.
Therefore v defines an extreme ray.

For any extreme ray ve C let S(v)={ee E|v,> 0} be the support of v and let
N € V be the set of nodes spanned by S(v). If the partial subgraph G* = (N, S(v))
is not connected and has k=2 components, it follows that v =Zf=1 v' and
equivalently, (v) = Zf;l (1/k)v' where each point v’ has nonzero entries in positions
corresponding to a component of G* and zeroes elsewhere, which is a contradiction.
Hence, G* is a connected graph. Let i€ N and suppose that there do not exist
e,€8"(i) and e, 8 (i) such that v, >0 and v,,> 0. It follows that ¥ _s+, 0. =0
O Y ,c5-(iy Ve =0. By the feasibility of Av=0we have Y, s+ . =X ,c5-; e =0and
thus iZ N, which is a contradiction. Consequently, every node i N has at least
one arc e € 6" (i) and one arc e € § (i) in G* such that v, > 0. By Lemma 1, v satisfies
n(n—1)—1 linearly independent rows of () as equations since C is a pointed cone.
Let g =|N|and A* be the node-arc incidence matrix of the complete digraph induced
by the node-set N. Since the rank of A* equals g —1 it follows that v satisfies at
most g — 1 linearly independent rows of A as equations and thus, v satisfies at least
n(n—1)—gq equations of the form v, =0. It follows that v has exactly q positive
entries of v, because each node i in G* has an in-degree and an out-degree of at
least one. Consequently, G* is a directed cycle and the proposition follows. O

3.2.3. The projection of the MTZ-polytope

Let x! be the vector with components x, for ec 8(1) and x* be the vector with
components x, for ec E—8(1). It follows from (16) that the projection of the
MTZ-polytope UPy, is given by

Py ={(x", x*) e Q|pvx*< (p—1)ve,_1y(n_2 Yve C}.

Since one needs to consider only extreme rays in the definition of Py, it follows
from Proposition 3 that it suffices to consider the inequalities

x(C)=|C|-|C|/p for all directed cycles C < E —8(1). (34)
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Consequently, the following lemma gives the linear description of Py:

Lemma 2. The projection Py, of the MTZ-polytope UP\, is given by
Py = {xeR"" V| x satisfies (23)-(26), (29) and (34)}. O

Lemma 2 has been obtained independently by Egon Balas, see e.g. Balas, (1987)
where it is stated without proof. The following theorem settles the comparison
between the DFJ-formulation and the MTZ-formulation of the clover-leaf TSP:

Theorem 3. The polytopes Py and Pg, satisfy:

(i) Py=Ps, fort=n—-1,n—2andallp=2, n=3.

(ii) Ps, is a proper subset of Py for all [(n—1)/p]<t<n-3, p=2
and n=4. [

The proof of Theorem 3 is somewhat tedious and long and can be found in full
in Sung, (1988).

3.3. The Fox-Gavish-Graves (FGG) formulation

Fox, Gavish and Graves (1980) formulate a “time-dependent” travelling salesman
problem and thus a generalization of the standard TSP. Here the cost of travelling
between city i and city j depends also on the position ¢ of the arc (i, j) in the tour
relative to a given “first” or “home” city that is indexed by 1. The time-dependent
TSP was originally proposed as a formulation for the 1-machine n-job scheduling
problem and studied by K. Fox [1973] in his dissertation; see Picard and Queyranne
(1978) for further references. Of the various formulations proposed by Fox, Gavish
and Graves we investigate here the most compact one involving n linear constraints.
The decision variables of this model are triple-indexed variables zy and zy; =1 if
the arc from i to j is assigned to the tth position in the tour, z; =0 otherwise.
The FGG-formulation of the time-dependent TSP goes as follows:

n n n

min ), 3 Y CyZi

i=1j=11t=1

n n n

st. Y Y Y zp=n, (35)
i=1j=11=1
Z Z tZijt——Z Z tzjitzla i=2,...,n, (36)
j=11=2 j=11=t
Zijt = O Vi’ja t9 (37)
z; integer Vi, j, t. (38)

Constraint (35) is the “aggregation” of constraints of a 3-dimensional assignment
problem which ensure that every city is visited exactly once and that every position
of the tour has one arc assigned to it. The constraints (36) ensure that for each city
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other than the home city the position number of an arc leaving the city is exactly
one more than the position number of an arc entering the city. For a city on a
subtour of length k=2 the position number of an arc leaving the city is k units
bigger than the position number of an arc entering the city and thus the constraint
(36) cannot be satisfied unless the city is the home city. It follows that every feasible
zero-one solution corresponds to a tour and in particular, that the constraints (36)
rule out all subtours; see Garfinkel (1985) for a discussion of this formulation.

To simplify the exposition we note that the constraints (36) can be rewritten as
follows:

n—1 n
Zintn Y (Zy—Zm)t+ L t X (zj—zw)=1 fori=2,..., n
1 j=1 t=2 j=1

i1 =

j
Observing that z;, = z;, =2y, =z, =0 for all i=2, j=1 and 2<t=<n—1 in every
feasible solution to (35)-(38) these constraints are simplified to

n-1 =n
—ziptnzy,t Y 1Y (2 —z)=1 fori=2,...,n (39)
=2 j=2
Furthermore, we do not need variables of the type z;, for all i and ¢ and thus these
variables as well as those that assume the value zero in every feasible solution to
(35)-(38) are dropped from the model. If c; =c; for all i, j and ¢, the FGG-
formulation models the standard TSP correctly and involves n linear constraints in
m=2(n—1)+(n—1)(n—2)* zero-one variables.

3.3.1. The FGG-formulation and the standard model

While the FGG-formulation permits more general cost functions than the standard
DFJ-formulation, we can still investigate the ‘“‘goodness” of the formulation in
comparison to the DFJ-formulation by noting that the linear transformation x = Lz
given by

X=X zy ViLjeY, (40)
t
maps the incidence vectors of tours of the FGG-formulation onto the incidence

vectors of tours of the DFJ-formulation. To carry out this comparison we define
two polytopes TP and Pg as follows:

TP:={zeR™|z satisfies (35), (36) and (37)},
Pr={xeR"" V|32 e TP such that x = Lz}.

We call TP the FGG-polytope and Pgits linear transformation. Since every nonnega-
tive solution to (35) is clearly bounded, both TP and Py are bounded polyhedra,
i.e. they are indeed polytopes. Moreover, we have the following proposition which
we state for completeness:
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Proposition 4. Every feasible solution to (35)-(38) satisfies z; <1 for all i, j, t.

Proof. Let z; be a feasible solution to (35)-(38). Summing up (39) over all i #1,
we obtain

n
Ziyn=n—1.
i=2

=Y Zintn
i=2
IfY! ,zn.=2, we have Y ;_, z;,, = n+1 which is a contradiction to (39). It follows
that ¥, z;;=2,_, Ziu. =1 by the integrality of z and hence by (37) we obtain
z;1=1 and z;,=<1 for all i # 1. Furthermore, there exist i*# j* such that z,;; =1
for i =i*, z,;, =0 otherwise and z;,,, =1 for j = j¥, z;,, = 0 otherwise. Since none of
the variables in (39) has a coefficient equal to 1, every nonnegative integer solution
to (39) has at least two z;, for all i, j, t having positive values. Consequently, there
are at least 2(n—1) positive zy, appearing in the n—1 equations (39). Since z;;
and z;+;, appear exactly once in (39) and every z;, for i # 1 and j # 1 appears exactly
twice in (39), we need to have at least n—2 z; for i#1 and j# 1 having positive
values. On the other hand, by (39) z allows at most n—2z; for i#1 and j#1
having positive values. It follows that z;; <1 forall i # 1 and j # 1 and the proposition
follows. [J

Consequently, every integer extreme point of TPy corresponds to a tour of the
travelling salesman. Clearly, to every tour of the travelling salesman there corre-
sponds a zero-one point in Pgr. To show that the converse holds we determine the
linear description of the polytope Pr by applying the results of Section 2 to the
linear transformation (40). In matrix form this transformation is written as L=
(Ly, L,), where L,=1,.,_,, has columns corresponding to z-variables in the order

(1,2,1),...,(L,n 1,2 1,0),..., (n L, MIU{Gj2)|2<i#j<n}.

The matrix L, is a matrix having n—2 column blocks of (0, I, _1)»-2,)" Where the
matrix 0 is a 2(n—1) X (n—1)(n —2) matrix having all the components equal to 0.
The tth block for 1<t=<n-2 of L, has columns corresponding to z-variables
indexed by {(i, j, t +2)|2=<i#j < n}. Furthermore, the rows of zero matrices in L,
correspond to all arcs with e € §(1).

We denote Az = b the constraint system formed by the constraints (35) and (36).
The vector b is an n x 1 vector having first component equal to #» and 1 elsewhere.
The matrix A can be partitioned according to (L,, L,) as (A,, A,) where A, and
A, are written as follows:

_| € €1 €-_1)(n-2)
A= ,
~I,_, nl,_, 2M

A=[e("—1)<n—2) €in—1)(n-2) " e(n—l)(n—m]
2 3M aM v (n=-1DM ]’
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and M is the node-arc incidence matrix of a complete digraph on V={2,..., n}.
Following the definitions of A; and A,, we obtain

. 0 0 - 0
AzﬁAlLllez[M M - (n—3)M]’

since Ly' = I,(,_,,. The cone corresponding to (5) is given by
C={(vu &w) eR” |kuM+w=0,k=1,...,n—3,£=0, w=0} (41)

where veR, ueR"™, £eR*" ™ and w e R™ D2,

3.3.2. Simplification of the cone C

To make the analysis of the cone (41) easier we proceed as follows: The scalar v
gives rise to a lineality space that is generated by (£1, 0, 0,0) and consequently, in
order to find extreme rays of C we can get rid of it by intersecting C with v =0.
Furthermore, the inequalities £=0 give rise to extreme rays of C of the form
(0,0, £,0) where ¢ is the ith unit vector of R**™". So by the two preceding
operations and the intersection property of cones, we can work with the smaller cone

C'={(u, w)eR" ™V |kuM +w=0 for k=1,...,(n—3), w=0}
Now consider

C"={(u, w)eR" V| (n=3)uM +w=0, w=0}.
Proposition 5. '=C".

Proof. Since (u, w)e C’ implies (u, w) e C", we have C’'< C". Suppose now that
there exists (u, w) e C” such that (u, w) & C’. Then there exists a column m°® of M
and an index k, 1<k <n—3, such that

kum®+w, <0 (42)
and thus from w, =0 we have

um® <0 (43)
since k= 1. On the other hand, since (u, w) € C” we have

(n—3)um®+w,=0. (44)

Adding the negative of (42) to (44) we find (n—3—k)um®>0 and thus since
n—~3—k>0 we have um® >0, which is a contradiction to (43). Consequently, we
have C’'= C" and the proposition follows. O

To get a full generator system of the cone C’ and the linear description of Py
corresponding to (6) it thus suffices to find a generator system for the cone C”.



M. Padberg, T-Y. Sung / Formulations of the travelling salesman problem 333

3.3.3. The node-arc cone of a complete digraph
Let C be a node-arc cone of a complete digraph G on V={1,..., n} and defined
as follows:
C={(u, w)eR"2|puM+w20, w =0}
where p is a positive integer and M is the node-arc incidence matrix of G. Let
MT T
B= [p ] .
0 I
Since the rank of M is n—1, it follows that B has a rank of n’—1. Hence, the
cone C has a lineality space L of dimension 1 and the basis of the lineality space
is given by u=+e,, w=0.
To find the extreme rays of the cone C we have to find solutions to all homogeneous
equation systems corresponding to n” variables and n” —2 linearly independent rows

of B. The solution space to such a system is a family having one parameter and we
derive a member having minimal support of this family.

Proposition 6. Let B* be the (n*—2)x n’ submatrix of B that corresponds to the
equation system of an extreme ray of C. Then every nonzero solution to

B*( ") —0 (45)

w

of minimal support is a positive multiple of the vector (u, w) given by (i), (ii) or (iii)
where

. . for exactly oneiand je 'V,
(i) w=0 VieV, w,,:{l’ '
0 otherwise,

1 forallies, , _{p forallie§,je s,
Y710 otherwise,

(i) ={

0 otherwise,

-1 forallies, ﬂ{p forallie S,je S,
P o otherwise,

(iii) wuw= {

and Sc V,1<|S|<n-1.

0 otherwise,

Proof. Since B* corresponds to an extreme ray of C the system (45) admits a
nonzero solution and we can partition B* = (B,, f) where B, is an (n*—2) x(n*—1)
submatrix of B having a rank of n”—2 and f is some column of B*. Suppose the
column f belongs to a w-variable w;, say. If B* contains the row corresponding to
w; =0, then B, has a rank of at most n>—3 which is a contradiction. If f is the zero
column, then the vector defined in (i) is a solution of minimum support to (45) and
we are done. In the remaining case B* contains the equation pu; — pu; + w; = 0. Since
no (n—2)x(n—2) submatrix of B* having rank n—2 contains all n columns
corresponding to the u-variables we can replace column f by a column corresponding
to some u-variable, i.e. we can assume without loss of generality that column f
belongs to a variable uy, say, with ke V. It follows that the matrix B, decomposes
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as follows:
Ay, F 0
B,={A 0 I
0 I, O

where I, and I, are identity matrices of size |Eg| X |Eg| and |E,| X |E,|, respectively,

E,={ec E|w,=0 in the extreme ray considered}
and E,=E —E,. Both A, and A, have n—1 columns and the matrices A, and F
have n—2 rows. F is an (n—2) x|E,| matrix having exactly one entry equal to 1
per row. Since B, has a rank of n*—2 it follows that A, has a rank of n—2. Since
A, is a submatrix of the arc-node incidence matrix of a directed graph it follows
that the partial subgraph H of G induced by the n—2 rows and all columns of A,
has at most n—1 nodes and that it is a forest consisting of at most one tree whose
node-set S satisfies |S|> 1 and a possibly empty set of isolated nodes otherwise. H
has at least n —2 nodes since the rank of A, equals n—2. If H has n—2 nodes,
then Aq has a zero column corresponding to some variable u; and j# k. From the
rank of A, it follows that all ;=0 for i # j in every solution to (45) and u, =0 in
any solution of minimal support. Since (45) admits a nonzero solution it follows
that u; # 0. From —pu; + w; = 0 and pu; +w; = 0 for all i € V —j and the nonnegativity
of all w; it follows that every nonzero solution of minimal support to (45) is of the
asserted form with S ={j} since E,u E, = E. Suppose now that H has n—1 nodes.
Then there exists exactly one tree with node-set S satisfying |S|> 1. Since k¢ S we
have |S|=< n—1. By transitivity we get u; = A for all i € S in any nonzero solution to
(45), u; =0 for all i € § in any solution of minimal support to (45). Moreover, from
the partitioning of B, it follows that w; =0 for all i, je S and that w; =0 for all
i, j € S in any solution of minimal support to (45). From pu;+ w; =0forallie S, je S
—pu+w; =0 forall je§, ie S and the nonnegativity of all w-variables it follows
that every nonzero solution of minimal support to (45) is of the form (ii) or (iii).
The proposition follows. [

3.3.4. The linear transformation of the FGG-polytope

Since we are working on the linear transformation of the FGG-polytope, the cone
C is the one defined in (41). We use the generator system, which consists of a basis
of the lineality space and a family of generators having minimal support, to derive
the linear transformation of P of the FGG-polytope TPr. By the intersection
property of cones and Proposition 6 with p =n—3, the generator system that we
get is summarized below:

@) ov==1, u=0, £=0, w=0,

(ll) 1.)=0, u=0, f:é:i’ W=0, fori:l’“.,z(n_l),

(i) v=0, u=+e,;, £=0, w=0,

(iv) ©v=0, u=0, £=0, w=(n-3)w' fori=1,...,(n—-1)(n-2),
(v) ©v=0, u=uS £=0, w=(n-3)wS 1,

(Vl) v=0, u:_us’ £=0, wz(n_3)w(S:S—{1}),
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for all ScV-{1}, 1<|S|<n-2 where v is a scalar, uecR"™, feR*"™Y,
weRM™ V"2 £ and w' are the ith unit vectors in R*"™) and RV
respectively, u° and w®’ are the characteristic vectors of S and E’ respectively.
By Corollary 1, Pg is given by
PF: {x € Rn("_l) | ((U’ u)Al - (ga W))x = (Ua u)b V(U, u, f) W) € C}'

It follows that (ii) and (iv) yield the nonnegativity constraints

x,20 VecE (46)
and (i) and (iii} yield the following equations:

x(E)=n, 47)

-x(8T (1)) +nx(6" (1)) =n—-1. (48)

The generators in (v) yield the following inequalities:
h(S)=-x(1:8)+nx(S:1)+2x(S:S-{1})—(n—1)x(S-{1}:5)
<|S| VScV-{i}1<|S|<n-2. (49)
Similarly, the generators in (vi) define the following inequalities:
x(1:8)—nx(S:1)+2x(S—{1}:8) - (n—1)x(S: S-{1}) < —|§| (50)

forall S= V—{1} and 1 =<|8|< n—2. Using (48) the constraint (50) can be rewritten
as

—(n—1)—x(1:5-{1})+nx(S§—{1}: 1) +2x(S—{1}: S)
—(n—1)x(S:S-{1})<—|S|
or equivalently,
=x(1:8-{1)+nx(S—{1}:1)+2x(S—{1}:95)
—(n—1)x(S:S-{1}) <|8|-1,

which is equivalent to the constraint (49) for the set S—{1} since S=
V—(S—{1})—{1}. Hence the constraints (50) define the same inequalities as (49)
and we have the following lemma:

Lemma 3. The linear transformation Pg of the FGG-polytope TPy is given by
Po={xeR""V|x satisfies (46)-(49)}.

Moreover, dim Pe=n(n—1) -2 for all n=3.

Proof. The first part of the lemma follows from the discussion preceding it. To
prove the second part we observe that the point given by x=1/(n—1)e,q_1) is
contained in Py and satisfies all inequalities defining Py strictly. Since the rank of
the equation system defining P equals 2 the statement follows. [



336 M. Padberg, T-Y. Sung / Formulations of the travelling salesman problem

We show next that the relations (46)-(49) together with the integrality condition
on all variables x;; constitute a valid formulation of the travelling salesman problem.
Clearly, every incidence vector x of a tour satisfies (46)-(49). On the other hand
let x be a integer solution to (46)-(49). Like in the proof of Proposition 4, equation
(48) implies x(87(1))=x(8"(1)) =1. Suppose that there exists a node i # 1 such
that x(87(i))=0. Let S=V—{1,i}. Since x(8(1))=1 and x(8"(i))=0 imply
x(8:1) =1, it follows that

h(S)=—x(1:8)+nx(S:1)+2x{(S:i)—(n—1)x(i:S)
=-x(1:8)+n+2x(S:i))=n-1,

which is a contradiction. Hence, x(8"(i)) =1 for all i # 1. The constraint (49) for
S ={i} and i#1 is written as

=X+ nxp+2x(i: S—{1) = (n—Dx(S={1}:1)
=—(n—=D)x(8 (1)) +2x(87 () +(n—=2)(x;; + x,,) < 1.

It follows that x(87(i))=1 for all i #1 because x(8"(i)) =1 for all i # 1. By (47),
it follows that x(8 (i)) =x(8*(i)) =1 for all i and furthermore, the support of x
corresponds to k=1 directed cycles. Suppose k= 2. Let «r(S’) be a subset of support
of x that corresponds to a directed cycle on S'c V, 2<|S’|<n—-2 and 1€ §'. Define
S =8"—{1}. Because 2<|S'|<n—2 and |S|=|S'|—1, it follows that h(S)=—1+n>
|S|, which is a contradiction. The statement follows.

Consequently, all integer extreme points of the polytope Pg correspond to tours
of the travelling salesman and the comparison between the FGG-formulation and
the standard one is reduced to a comparison of the polytopes Pr and Pg. Moreover,
we note that if ¢;, = ¢; for all i, j and ¢ the sufficient condition of Proposition 2 for
“comparability” is satisfied.

Theorem 4. The subtour polytope Pg is a proper subset of Py for all n=4.

Proof. The constraint (49) can be rewritten as
h(S)=—x(S:S)+2x(85:85)+(n—2)(x(S:1)—x(§-{1}:8))=<|S|.

Let x be a vector in PZ. It follows that the equations (47) and (48) are satisfied.
Furthermore, summing up the constraints (17) and (18) for all ie S we obtain
x(E(S))+x(S:8)=x(E(S))+x(5:8)=|S|. It follows that x(S:8)=x(S5:S) and
x(S:8)=<|S|. Since x € P%, we have x(S—{1}: S)+x(S—{1}:1) =1 by connectivity
and x(§—{1}:1)+x(S:1)=1 and hence, x(§—{1}:8)=x(S:1). It follows that

h(S)=x(S:8)+(n-2)(x(S:1)—x(§-{1}: )< x(S:5)<|S|

and thus the constraints (49) are satisfied. Consequently, x € Pg implies x € Pr and
therefore Pg < Pr. To prove that Pg is a proper subset, we construct a vector x as
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follows:

1/n Veed (1),
x, =<0 Yeecd*(1),
(n*—n+1)/n(n—1)(n—-2) VYeeE-5(1).

It follows that x satisfies (46)-(48). Furthermore, x(S:S—{1})=x(S—{1}:S8)>0
and thus

h(S)=0+|S|—(n—3)x(§—-{1}:S)<|S]

for all Sc V—{1} and 1=<|S|<n—2. Hence, x € Pr. However x does not satisfy
constraints (17) and (18) of the DFJ-formulation and thus x & Pg. The theorem
follows. [

The point x constructed in the proof of the theorem satisfies neither the degree
constraints (17), (18) nor the subtour elimination constraints (19) of the DFJ-
formulation. To prove the latter we observe that for n=4 and |S|=n—2 we have

x(E(8)=(n-2)(n-3)n*—n+1)/n(n—1)(n-2)
=(n-3)(n*-n+1)>n-3=|S|-1

and for n=3, S={2,3}, we have x(E(S))=%>1, i.e. the subtour elimination
constraint for § = {2, 3} is violated. Moreover, since dim P> dim Pg it follows that
the affine hull of Pr properly contains the affine hull of P5. The compact FGG-
formulation is thus — from a linear programming point of view — a particularly
“bad” formulation of the travelling salesman problem.

3.4. The Claus (C) formulation

Claus (1984) proposes a different formulation of the standard TSP that uses network
flow concepts involving multiple commodities. Denote s the home city (the “source”
and transform any hamiltonian cycle into a Hamiltonian path by duplicating the
home city as a “sink” ¢ The TSP can be interpreted as the problem of finding a
Hamiltonian path from s to ¢ on an (s, t)-digraph G=(V, E) where V=V'U{s, t},
Vi={1,...,n}and E ={(i, j)|Vi#je V}U{(s, i), (i, t)|Vie V'}. Furthermore, we
interpret the variable x; for (i, j) € E where

B {1 if (i, j) is in the Hamiltonian path,
Y {0 otherwise,

as defining a capacity on arc (i, j). The network flows involve n+1 commodities.
The “kth commodity” is the commodity shipped from s to vertex k where k=
1,...,n+1 and n+1 is the index of the sink t. We define a variable y;; as the flow
of the kth commodity on arc (i, j). Claus (1984) formulates the problem as the
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following 0-1 linear program:

min Y ¢

(i,j)eE

st. ¥ ox=7Y x;=1VieV, (51)
jev jeVv
Z xsi= Z xit=19 (52)
iev! iev?
L Vi~ L Yu=0 Vie Vi, ke V¥ (53)
jev JeV
Z_yikk:_la Zysikzla Zykik:()’ Vke V*, (54)
yijksxij Vi,js ka (55)
x; =0 Yi,j, (56)
yijk2 0 Vi,j’ ka (57)
Xy, Yy integer Vi, j, k, (58)

where V*= V'U{t}. When viewed in isolation the constraints (53), (54) and (57)
assure that for every node ke V* there exists a path from the source s to the node
k along which one can push one unit of flow. The constraint (55) “couple™ these
requirements across all nodes by requiring additionally that for all feasible vectors
(x, y) such paths exist in the support graph corresponding to the positive values of
x. It follows that in the support graph every cut has a value of at least one and thus
all subtour elimination constraints are satisfied by the feasible values of x. Hence,
in particular, all subtours are ruled out by the above formulation. For every feasible
solution to (51)-(57) we have y;, =0 for all ie V and k€ V' because no commodity
can be shipped out from the sink ¢ and y; =0 for all i, ke V* because }; yiu =0
for all ke V*. Hence, these variables can be dropped from the formulation. The
C-formulation involves a set of constraints of order n*> and n>+n”+3n variables
and models the standard problem of the DFJ-formulation correctly.

3.4.1. The C-formulation and the standard model

To compare the C-formulation and the DFJ-formulation we have to project out all
of the y-variables of the former formulation, i.e. the linear transformation that we
have to analyze has the particular form L= (I,2,,,0) where 0 is an appropriately
dimensioned matrix of zeros corresponding to the y-variables. Following the notation
of Section 2 we define the following sets:

Q ={xeR"™"|x satisfies (51), (52) and (56)},
YPc={(y, x) eR"T"¥3"|(y, x) satisfies (51)-(57)},

Po={xe Q|3yeR™" such that (x, y) € YPc}.
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We call YP the C-polytope and P its projection. Ignoring the (minor) conceptual
change introduced by the modelling of Hamiltonian paths rather than Hamiltonian
cycles, the comparison between the two formulations is thus reduced to comparing
the polytopes Pc and P5. By the remarks following the C-formulation one is lead
to expect that P is a smaller polytope than P and the question is simply whether
or not this formulation provides any polyhedral information that is not already
contained in the standard model. The answer to this question — as we shall see — is
negative.

To analyze the C-formulation we write the constraints (53)-(55) in matrix form
as follows:

Ay=b,
—-Dx+y=0.

Examining the formulation we find that A is a block-diagonal matrix and consists
of n+1 blocks A, for k=1,..., n+1. The decomposition of A follows from the
fact that the n+1 commodity flows do not interact with each other. For ke V' the
matrix A, is the node-arc incidence matrix of the complete (s, k)-digraph G, =
(V' U {s}, Ey) having a source s, a sink k and E, = E —(8"(k)u 87 (t)). A, is the
node-arc incidence matrix of the entire network, i.e. G,.,=G. The constraint
2 Vsi. = 1 for the commodity k defines the row of A, corresponding to the source
s and the constraint Y, — v = —1 defines the row of A, that corresponds to the
sink k. Correspondingly, we partition b as induced by (A,,..., A,.;) into b=
(b, ..., b""") where b* for all k has an entry of 1 in the row corresponding to the
source s, —1 in the row corresponding to the sink k and 0 elsewhere. Furthermore,
we partition D according to the partitioning of A as D=(D7,..., DL, )" where
D, for k# n+1 is a matrix of size (n>°~n+1)xn” and D,.,=I,2,,. The columns
of the matrix D correspond to the variables x; for all (i, j) € E. Each row of D,
corresponds to a variable y; and has an entry of 1 in the column corresponding
to the variable x; and 0 elsewhere. Let y* be a vector having components y;; for
all (i,j)€ E; and x be a vector having components x; for all (i, j)€ E. The C-
formulation can then be written in matrix notation as follows:

min ) ¢

(i,j)=E

s.t.  (51), (52) and

i)

Agy¥=b* fork=1,...,n+1,
~Dx+y =<0 for k=1,...,n+1,
x>0, y*=0 fork=1,...,n+1.

In order to carry out the comparison we have to find a generator system of the cone

C={(u,v,w)|uA+v=0,0=0 w=0}. (59)
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The inequalities w= 0 give rise to extreme rays of C which are unit vectors of the
form (0,0, w') where w' is the ith unit vector of R""*Y. Furthermore, since A
decomposes, we can use the intersection property of cones and work on the smaller
cones

Ce={(u", v")|u* A, + 0" =0, v* = 0}

for k=1,...,n+1 to find a full system of generators for C and thereby a linear
description of the polytope Pc.

3.4.2. The node-arc-cone of a (s, t)-digraph
The node-arc cone C of a (s, t)-digraph (V, E) is defined as follows:

C={(u,v)eR"|ATu+0v=0,v=0},

where m=|V|+|E| and A is the node-arc incidence matrix of the (s, t)-digraph
having a source s and a sink . A full generator system for C follows from the
results of Proposition 6 by replacing p with 1 because the arguments used in the
proof of Proposition 6 do not make use of the completeness of the underlying
digraph and thus apply to the sparse digraph considered here as well.

3.4.3. The projection of the C-polytope

Since in this section we are addressing the whole formulation, the cone C is the
cone defined in (59) and V is the node-set of the original (s, t)-digraph, i.e.
V={s1,...,n, t}. By Corollary 1, P is defined by

Pc={xe Q|(-vD—-w)x<ub ¥Y(u,v,w)e C}.

A set of generators of the cone C is given by the unit vectors (0,0, w’') which are
generated by the inequalities w>= 0. These generators yield the nonnegativity con-
straints

x,=20 VecE. (60)

In order to derive the remaining generators of the cone C, by Proposition 1 we
embed the generators of C; for k=1,..., n+1 into the space of C by adding zero
entries elsewhere. However these zero entries in the generators do not affect the
projection. We can still work with the generators of C, and correctly translate the
results to the x-variables, i.e. we have to calculate (—vD,)x < ub* for all generators
(u,v)e C, where k=1,...,n+1.

The vector u* =+e,.,, v* =0 defines a basis of the lineality space of C, for all
k. This generator defines the trivial equality 0 = 0 which is redundant. Forall k # n+1
the remaining generators of C, are given by

S = S-S

s

(i) u=—uS p=pS UES-H
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where S< V —{t} and 1<|S§|<n. These generators yield the inequalities
—x(S—{k}:S)<u,—u, foru=u’ (61)
—x(S—{k}:S—{tV)<u,—u. for u=—-u" (62)
where u; =1 if i € S, u; = 0 otherwise. The remaining generators of C,,; are given by
(i) wu=u®, v=0"%,
(iv) u=-u® v= oS,
where S < V and 1<|S|=<n+1. These generators produce the inequalities
—x(S:8)<u,—u, foru=u® (63)
—x(S:8)<u,—u, foru=-u’ (64)
Moreover, the generators of C; given by Proposition 6, part (i), reproduce the
nonnegativity constraints (60) when k varies from 1 to n+1. If the right-hand side
in (61) or (62) equals 0 or 1, then the corresponding inequality is implied by the

nonnegativity conditions (60) and thus redundant. Therefore, we need to consider
only the following inequalities:

~x(S:8)<-1 VScV-—{t},1<|S|<n s¢S and ke, (65)
~x(S:§—{t})<-1 VScV—-{t},1<|S|<n,seS and k&S, (66)

where we have replaced (S—{k}:S) by (§:8) for ke S and (S—{k}:5—{¢}) by
(5:85—-{t}) for k& S. Consequently, (66) defines the same set of inequalities as does
(65). The left-hand sides of inequalities (63) and (64) except for S={¢} and
S =V —{t}, respectively, are less than or equal to the left-hand sides of (65) and
(66), respectively, and hence, these inequalities are dominated by (65) and (66).
For S={t} and S=V—{t}, respectively, the inequalities (63) and (64) define the
same inequality x(8 (t)) =1 which is redundant.

Since k varies from 1 to n, the inequalities (65) can be summarized as the following
cut constraints:

x(§:8)=1 VScV-{t},1<|S|<nand seS (67)

Consequently, we have the following lemma:

Lemma 4. The projection P of the C-polytope YP. is given by
Pe={xeR™"™"|x satisfies (51), (52), (56), (60) and (67)}. [

In order to compare the C-formulation with the standard formulation for TSP,
we identify the source s and the sink ¢ of the network G. It follows that constraints
(67) can be written as

x(S:8)=1 VScV,1=<|S|=<n,
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which are exactly the subtour elimination constraints in cut form. Hence, we conclude
our comparison in the following theorem:

Theorem 5. The projection Pc of the C-polytope YPc is equivalent to the subtour
polytope PZ*™'. I

4, Symmetrization of three TSP formulations

By “symmetrization” we mean the replacement of a single directed edge or of a
pair of oppositely directed edges joining two nodes of a graph by an undirected
edge of a graph on the same node set. As we are working in the space of variables
corresponding to the edges of a directed graph this operation translates naturally
into a linear transformation mapping the former space onto a space of variables
corresponding to the edges of an undirected graph. We can thus use the results of
Section 2 in order to derive analytically formulations or non-formulations of the
symmetric travelling salesman problem from the formulations of the asymmetric
travelling salesman problem that we have studied so far. We show that the symmetriz-
ation of the DFJ-formulation leads to the standard formulation of the symmetric
travelling salesman problem also due to Dantzig, Fulkerson and Johnson (1954), a
result that was known to Heller (1955); see also Grotschel and Padberg (1985)
where several open problems that relate to this symmetrization technique are stated.
We also “symmetrize” the MTZ-formulation and the FGG-formulation in this
section.

4.1. Symmetrization of the DFJ-formulation
We define a linear transformation y = Lx by
V=Xt X, 1=si<jsn

It is known that this transformation maps P" to the symmetric travelling salesman
polytope Q”", see Grotschel and Padberg (1985), which we can also define as

Q" ={yeR"™ V2|3xe P" such that y = Lx}.

In order to symmetrize the DFJ-formulation of Section 3.1 we derive the linear
description of the polytope

Qi ={yeR"" " Y?|3x e P§ such that y = Lx},

where P§ is the subtour polytope of the asymmetric TSP, It is clear that to every
tour of the travelling salesman in the complete undirected graph there corresponds
a zero-one point of Qg and we will show that the converse holds as well.

In matrix form the DFJ-formulation is written as Ax=e,,, Dx=<d, x=0 and x
integer. The matrix A is the node-edge incidence matrix of a complete bipartite
graph; D has an exponential number of rows and each row corresponds to the



M. Padberg, T-Y. Sung / Formulations of the travelling salesman problem 343

incidence vector xZ‘® with a right-hand side of |S|—1 for S V and 2<|S|<n—1.
We write the above linear transformation in matrix form as L= (L,, L,) = (I, L,)
where L, has columns corresponding to x;, L, has columns corresponding to x;
forall 1<i<j<n and m=3n(n—1). We partition A and D according to (L,, L,)
as (A,, A,) and (D,, D,) and note that

[ H K
= A =
Al K:Is 2 [H:|’

where H and K are of the form

L0 0
enol cee 0 o 0 0
H= €n=2 , K= 0 0\ .
0 0 1 Lo () X
0 0 0 2

Then we have

-M

A2—A1L;1L2=[ M ] D,-D,L;'L,=0,

where M = H— K is the node-arc incidence matrix of a complete acylic digraph
G=(V, E) with |V|=n and E ={(j,j)|for all 1<i<j=<n}.
The cone associated with this transformation is given by

C={(uv,&w)|—uM+oM+w=0,£=0, w=0},
and the linear description of Qg is given by
Qi={yeR"™ V2|((u, v)A,+ €D, — w)L{'y < ue, + ve, + &d
for all (u, v, & w)e C}.
The lineality space of C is given by
(i) u=v=zxu'forallieV, é=0, w=0,
(ii) wu==e,, v=0, £=0, w=0.

The generators (0, 0, £°,0) and the basis of the lineality space give rise to the
following inequalities:

y(E)=n, (68)
y(8(i))=2 VieV, (69)
y(E(S))=<|S|-1 VScV,2<|S|<n-1, (70)

where £° is the unit vector with entry 1 in the position corresponding to the constraint
defined by S. Note that (69) implies equation (68) which is thus redundant.
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Using the intersection property of cones we simplify the cone C by dropping all
£-variables. Intersecting the resulting cone with the lineality space given by (i) we
can furthermore eliminate the variables v. Making the variable transformation
w=1/2w, we can thus work on the smaller cone

Cy ={(u, )| uM + =0, = 0}

to find the remaining generators of C since they are in one-to-one correspondence.
These generators yield the following inequalities of Qg:

(uM =2W)L{'y<ue,—ue,=0 for all (u, w)e C,.
It follows from Proposition 6 that a generator system of C; is given by
i) u=0, w=w’
(i) wu=-uS w=wS,
Gii) w=u, Ww=wSS,
for all S< V—{1}, 1=<|S|<n—1. These generators yield the following inequalities:
y.=0 VecE, (71)
—y(S:8)-y(8:8)<0 VScV,1<|S|<n—1, (72)

and (72) is redundant. Hence we have the following theorem:

Theorem 6. The symmetrization Qg of the subtour polytope Pg is given by

Qi ={yeR""V"?|y satisfies (69)-(71)}. O

It follows that this symmetrization technique yields the standard formulation of
the symmetric travelling salesman problem due to Dantzig, Fulkerson and Johnson
(1954). Moreover, if ¢; = ¢; for all i and j, then the sufficient condition of Proposition
2 for comparability is satisfied and the linear programming relaxations of the
asymmetric and the symmetric formulation, respectively, yield the same upper bound
on the minimum-cost tour.

4.2. Symmetrization of the MTZ-formulation

We consider the linear transformation [}] = L[;/] given by
Vi =Xy t+Xx, 1si<jsn,

zi=u;, 2<i=n,

and define the symmetric MTZ-polytope SPy by

SPy = {(y, 2) e R V=221 3(x y) e UPy, such that [ﬂ = L[z]},



M. Padberg, T-Y. Sung / Formulations of the travelling salesman problem 345

where UP,, is the MTZ-polytope defined in Section 3.2.1. It follows that to every
undirected “permissible itinerary” (see Section 3.2) of the travelling salesman there
corresponds a point of SPy, satisfying y,;€{0, 1, 2} and y; €{0, 1} forall I<i<j<n.
We derive the linear description of SPy; using the results of Section 2 and show
that the converse does not hold for any p=2.

We decompose the vector x of the MTZ-formulation as follows:

xl=(x1, . X)),
X2 = (X3, e s Xoms e s Xno1n) s
x*= (X215, xnl)T,
X = (X300 ey Xnzs e o s Xonet)

Let u=(u,,...,u,), A be the matrix defined by the constraints (23)-(26), D
be the matrix defined by the constraint (27), b=(tt, e, ,, €,_,)" and d=
((p—1)e,,, (p—1)e,)" be the corresponding right-hand sides for A and D
respectively, and m =3(n—1)(n—2). We write the above linear transformation as

x! 5
X
z x
u

where
e 00 I, 0
L=l 0 I, o[ L=[0 I/
0o 0 I, 0 0

We partition A and D according to (L,, L,) as

e,.; 0 0 0 0
0 0 0 e, O
A: A:
“lI,., K ol > 0 H|’
0 H 0 I, K

and

B T

0 pl, M 0 o0
S A e |

L0 0 —-M 0 pl,
where H and K are defined as in Section 4.1 and M = H — K is the node-arc
incidence matrix of a complete acyclic digraph G=(V, E) with |V|=n—1 and
E ={(i,j)|2<i<j=n}. It follows that

-e,, 0
_ e,_ 0 0 —pJ
A,—AL7'L,=| " , D—DLle[ '"].
2 141 2 _‘In~1 M 2 14+~1 2 O PIm

In—l '—M



346 M. Padberg, T-Y. Sung / Formulations of the travelling salesman problem

The cone associated with this transformation is given by
C={(u,v,w)|~upen_ + e, ,—u'+u>+w =0,
u'M —u’M—pv'+pv’+w?=0, v=0, w= 0}
where u= (1o, uy, u', u’), u',u’cR"™" are indexed from 2 to n,v=(v*, v?) and
w=(w', w’, w’). (Note that u' and u” are vectors of variables and not unit-vectors.)
The linear description of SPy, is given by

SPy ={(y, z)|(upe, +u'—why'+ (u'K+u’H + pv' — w?)y*
+(0'MT=0*MT—w?)z
<(uptu)t+e, ,(u'+u’)+(p-1)(v'+ve,

for all (u, v, w)e C}

where y=(y",»%), ¥'= (312, .., ¥1a)" and y*= (323, -, Yo, -+ <, Yno1.0) -

4.2.1. Simplification of the cone C

The linealities of C are given by

(i) uwo=u==1, u'=0, u’>=0, v=0, w=0,

-
2_{11 i=i%
2=

0 izt uy=u;=0, v=0, w=0for i*=2,...,n,
i#i%

(ii) ul=u

(iii) we==£1, w’==%e,_;, u; =0, u'=0, v=0, w=0,
(iv) w,==%1, u'=%e,_;, us=0, u’=0, v=0, w=0.

The vectors (i), (ii) and (iii) are linearly independent and in the lineality space
L of C. We can thus intersect C with the equations

ot u, =0, u'+u*=0, uy+ Y ur=0.
i=2

It follows that u; = —u,, u'=—u® and
1 . 5 .
u():—— Z Ui, u :qun_1+u,
ni=2

where = (i, ..., #,) €R""" is arbitrary. The cone C is thus simplified to the
following cone

C,: 24
—24M —pv'+pv° +w? =0,

+w! =0,
1 2 1 2 3
v, v, w, w, wz=0

Since C,; is a pointed cone it follows that (i), (ii) and (iii) form a basis of L and
that C,; = C n L*. Using the intersection property of cone we can drop the variables
w’ and we note that

(v) all unit vectors associated with w', w” and w’ define extreme rays of C,
and thus of C.
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Furthermore, for any extreme ray of C, it follows that either w'=0 or w' is a
unit vector if 4 =0. If 4 # 0 then we have necessarily

w! = max{0, —2d}
in any extreme ray of C;. Consequently, it suffices to consider the cone
C,: —iM -3+ P+ W =0, §'=0, 5°=0, w=0,
where we set

_1 —1 =1
v =3puv, UV =3pUu, W =3w.

Different from C; the cone C, has a lineality that gives rise to the following two
extreme rays of C;:

- ~ 2 2
(vi) d=e,_,, w'=0, v'=0"=w*=0,
.. ~ 1
(vi) d=-e,_,, w'=2e,,, v'=0"=w?=0.

Let #°=0°+W". Since 6;W; =0 for all i and j in every extreme ray of C,, the
cone C, is then reduced to

C;: —iM -3+ 8*=0, 3'=0, °=0.

Although this variable transformation does not define a unique transformation, we
can still derive all extreme rays of C, from those of the cone C; by replacing every
positive 03 in an extreme ray with 55 = 93, W} = 0 and 9} =0, W}, = 83. Thus to every
extreme ray of C; having k positive components #° there correspond exactly 2*
extreme rays of C,.

4.2.2. A different node-arc cone of a directed graph
Let C be a node-arc cone of a digraph G=(V,E) with |V|=n, E=
{(i,j)|1<i<j=<n} and defined as

C={(u,v", v?) eR”|—uM — ' +0>=0,0' =0, v*=0}

where M is the node-arc incidence of G. Let B be the matrix defining all constraints
of C. Then B has a rank of n”’—1. Hence, C has a lineality space of dimension 1
given by (+e,, 0, 0). The remaining generators are given in the following proposition.

Proposition 7. Let B* be the (n”—2)X n” submatrix of B that corresponds to the
equation system of an extreme ray of C. For any S< Vwith 1<|S|<n—1, let %, and
F, be the families of all subsets of (S:S) and (§:S), respectively. Then every nonzero
solution to

B*| v'|=0 (73)
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of minimal support is a positive multiple of the vector (u, v', v*) given by (i), (ii), (iii)
or (iv) where
(i) u=0, v'=0, v’=u’,

(i) u=0, v'=0v"=4u}

(i) wu=-us v'=0", v?¥=p" ,

(iv) u=us v'=0" 2=
u' is the ith unit vector in R"" V2 uS and v5: are the characteristic vectors of S and
E,, Fe &, F,e %, and Sc V,1<|§|sn-1.

Proof. This proof follows the proof of Proposition 6 and we let B*, B; and f be
defined the same as in the proof of that proposition. Suppose the column f belongs
to a v*-variable vf§~, say, with i <jand k = 1 or 2. If B* contains the row corresponding
to vi—j— =0, then B, has a rank of at most n>~3, which is a contradiction. Otherwise,
if k=2 we prove like in Proposition 6 that we either get the vector defined by (i)
or that we can assume without loss of generality that column f belongs to some
u-variable. If k=1 we either get the vector defined by (ii) or that B* contains the
row v =0. In the latter case we show again like in Proposition 6 that we can assume
without loss of generality that column f belongs to some u-variable. Moreover, for
all solutions of minimal support to (73) not covered by (i) or (ii) it follows that:

if B¥ contains the row —u;,+u; —v};+ v} =0,

then B* contains either the row v; =0 or v}, =0 or both.
By the preceding we can assume that the column f belongs to variable u;, with ke V
and furthermore, that the matrix B, can be decomposed as follows:

A, -1, O 0o o0 I, 0 0 O]
A, 0 -, 0 0 0 I, 0 0
A, 0 0o -, 0 0 0 I O
0 I 0 0 0 0 0 0 O
B,=|0 o0 I, 0 0 0 0 0 O
0 0 0 0 I, 0 0 0 O
0 0 0 0o o I, 0 0 0
0 0 0 0o o0 0 0 I 0
[0 0 0 o 0 0 0 0 I

where Iy, I, I, and I are identity matrices of size | Eq|, |E,|, | E,| and | E;|, respectively,
Ey={e=(i,j)e E|vi=v2=0and —u;+u;=0
in the extreme ray considered},
E,={ec E|v.=0,v2=1 in the extreme ray considered},
E,={ec E|v.=1,0.=0 in the extreme ray considered},
E;={e=(i,j)e E|vi=0v.=0 and —u;+u;>0

in the extreme ray considered}
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and E = E,u E,u E,u E;. The matrices Ay, A, and A, are submatrices of ~M T
with n—1 columns, and A,, A, can be vacuous. Since B, has a rank of n*—2 it
follows that Ay has a rank of n—2. The rest of the proof goes exactly like the proof
of Proposition 6 and hence the proposition follows. []

4.2.3. The symmetrization of the MTZ-polytope

We can now derive the linear description of the polytope SPy, explicitly using the
linealijties and extreme rays of the cone C of Section 4.2. The linealities of C given
by (i), (ii) and (iii} of Section 4.2.1 constitute a basis for the lineality space of C
and yield the following equations:

> yu=y(8(1))=2¢ (74)
i=2
i—1 n
yut Xyt X yy=y(8(i))=2 fori=2,...,n, (75)
j=2 =i+l
gyu'FZ Y yij:y(E)zn+t—1.

i=2 i=2j=i+1

The last equation is implied by (74) and (75) and thus redundant. The extreme rays
of C given by (v) of Section 4.2.1 give rise to the nonnegativity constraints

220, y; 20, forl<i<jsn, (76)

while the extreme rays given by (vi) and (vii) of that section yield the inequality

- X y;s<O
j=2
which is implied by (76) and thus redundant. All of other extreme rays of C are
obtained from the extreme rays of C; of Section 4.2.1 which have been characterized
in Proposition 7. Rather than reversing the variable transformations of Section 4.2.1
we note that in the notation of that section the additional linear inequalities of SPy,
can be written as follows:

—p X (#+max{0, —211,~});v1,-+p2 Y (- g+ 265 -2wh)y,
Jj=2 <i<jsn
+2 X (ﬁ}j(zi_zj)"'ﬁ?j(—'zi‘l'zj))

2=i<j<=n

=D gJ’%")ﬁf“P > (ﬁi“ﬁj‘*'25}j‘2‘4~’z?j))’ij

j 2<i<jsn

n i—1 n
+2 ¥ (Z (=0+3)+ X (5,.1]-—5?,.)>z,-

i=2 \j=2 =i+l

<2p-1)(5"+P)en.
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For convenience we write 4 as u, 0’ as v', ° as v” and W? as w? Then a full
system of generators for the conical part of C; is given by:

(i) u=0, v'=0, v’=u', w*=0,
(ii) u=0, v'=0*=0, w'=u/
(iii) u=0, v'=0v"=u’, w?=0,
(iv) u=0, v¥=0, v'=w’=u’
v) s ,1__ _E 2 E 2 ($:5)-E,
(vi) u=u® v'=0" =05, wi= S ,

where Sc V—{1} with 1=<|S|<n-2, E;<(S:8§) and E,=(S:S) are any subsets
of the respective sets and §= V—{1}-S. The second set of generators is already
contained in those of (v) of Section 4.2.1 while (i), (iii) and (iv) yield the following
inequalities:

—ztz<p-1, (77)
py;<2(p—1), (78)
Zi—stp'—l, (79)

for all 2< i <j=n. Noting that
wMy*=—-y(§:8)+y(5:5),

where y”* and M are defined above, we have the following inequalities from the
generators (v):

~py(1:8)~py(S:8) —py(8:8)+2py(E,) +2py(E,)
+2 Z (Zi“zj)"'?- 2 (—Z,-+Zj)<2(p—l)(l51l+lEzl) (80)

Gj)eE (i) By
and the generators (vi) yield the inequalities
~py(1:8) = py(S:8)—py(S:8)+2py(E\) +2py(E,)

+2 Y (zm—z)+2 Y (—zi+z)<2(p—1)(|E||+|E,|) (81)

(i,j)eEp (bj)e Ey

with the above specification for the sets involved. Hence we have the following:

Theorem 7. The symmetrization SPy, of the MTZ-polytope UP,, is given by

SPu={(y,z)e R("”)("”W‘ (v, z) satisfies (74)-(81)}. O
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From (75), (76) and (78) it follows that every integer-valued point in SPy, satisfies
0<y;<2and 0<y;=1 for all 1<i<j=n and by construction SPy, includes all
the points with y-variables corresponding to a permissible itinerary. On the other
hand, those points (y, 0) with y-variables corresponding to itineraries having subtours
or tours visiting more than p cities are also in SPy,. To prove this we note that the
left-hand side of (80) and (81) is at most p|E;|+ p|E,| for all points (y,0) having
y;€{0,1} for all 2<i<j=<n and that

p|Ei|+ plEs|<2(p—1)(|E\|+|E,|)

holds for all p=2 and all sets E; and E,. Consequently, the symmetrization of the
MTZ-formulation does not provide a formulation of the symmetric TSP.

The explanation for this (unexpected) result is simply that the constraints (27)
and (28) of the MTZ-formulation eliminate all zero-one solutions to (23)-(26) that
correspond to infeasible itineraries, but that for every pair of oppositely directed
infeasible itineraries e.g. the midpoint of the line joining the two corresponding
zero-one points is contained in UPy. Consequently, for every such pair the sym-
metrization produces an integer point in SPy,; that corresponds to the undirected
infeasible itinerary. In addition, it follows that if ¢; = c; for all i and j then the
upper bound on the minimum-cost tour obtained from the MTZ-formulation equals
the upper bound obtained from the “assignment problem” relaxation, i.e. the
minimum of the linear form over the constraints (23)-(26) and (29). This shows
that the MTZ-formulation is a very weak formulation of the asymmetric TSP.

Like in Section 4.1, one can symmetrize the modified DFJ-formulation of Section
3.2.1 to obtain a better formulation of the symmetric clover-leaf TSP that involves
an exponential number of constraints corresponding to the constraints (31). A
relative of the latter problem is studied in Araque (1988) from a polyhedral point
of view.

4.3. Symmetrization of the FGG-formulation
We define a linear transformation y = Lz as follows:
Vi1 =z, 2<j=n,
Yijn = Zjin, 2<j=n,
Vi =ZytZy, 2i<jsn 2stsn-—|,
and define the symmetric FGG-polytope SPg as
SPg={y e R?|3z € TPg such that y = Lz}

where TPy is the FGG-polytope defined in Section 3.3 and p=2(n—1)+ 3(n—1)x
(n—2)". It follows that to every undirected tour of the travelling salesman there
corresponds a zero-one point of SPr. To show that the converse holds we first
derive the linear description of the polytope SPg.
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In matrix form, this linear transformation is written as L= (L,, L,) where
I, 0 0o -+ 0 10 0
0 I, 0O --- 0 0 --- 0
L={0 0 L, --- 0}, L,=|I, 01,
0 0 o - I, 0o I,

and m =3(n —1)(n —2). The matrix A and the vector b defining the constraint system
and corresponding right-hand side are the same as in Section 3.3. The matrix A can
be partitioned according to (L,, L,) as

[ €, en—l €m e em :l
AI: >
-I,., nl, 2M --- (n—1)M
e - e
A, = " " .
2 [—ZM e —(n~1)M:I
Then we have
0 - 0
A,—ALT'L,= .
B [—4M e —2(n—1)M]

It follows that the cone associated with this transformation is given by
C={(up, u, w)| 2tuM +w'=0for2<t<n—1,w=0},

where u,eR, ueR"™" and w=(w’ w', w? ..., w"™") where w’, w'eR"™" and
w' eR™ for 2<t=n—1. Let y=(°y", %% ...,y"™") where y°=3121,-.-, Vim),
y1 = (ylln: aeey ylnn) and yt = (y23ta ey Vonts e e e yn~1,n,l) fOr 2S t<<n-— 1 Then the
linear description of SPr. is given by

(upen_y—u—w)y°+ (uge,_ + nu—~w')y'

SPF:{J’

n-1
+ ¥ (upe,+ tuM —w')y' < nugt+ue,_, V(ug, u, w)e C}.

t=2
The lineality space of the cone is given by (£1, 0, 0) and (0, +e, ., 0) and yields
the following equations:

t=11<i<j<n
n n

- Z Yyt n Z yljn:n—l' (83)
j=2 j=2

The unit vectors associated with w’, w' are generators of C and yield the non-
negativity constraints

1120, y;,=0, forj=2,...,n (84)
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We intersect the cone with the linealities and the previous generators to find the
remaining extreme rays of C. It suffices to analyze the cone

Cr={(u, w)|2tuM+w'=0,w'=0 for t=2,...,n—1}
Making the variable substitution w'=1/(2¢)w’, the cone to be analyzed is given by
Cy={(u, W)|—u;+u+w;, =0, w; =0 for 2<i<j<n2<t<n-1}L

Consequently, we have extreme rays corresponding to all unit vectors of the
(W3, ..., w" ")-vector. These generators produce the nonnegativity constraints

¥ =0, 2<i<j<n 2<t<n-1. (85)

Moreover, every extreme ray of C, with u # 0 satisfies w>=---=Ww""" and thus, it

suffices to determine all extreme rays of the cone
Cs={(u, W)|—u;+u,+Ww; =0,W;=0,2<i<j<n}.

For all generators of C, the linear inequalities of SPg are given by

uj.

j=

I =

n n—1
Y ou(—yipntayg)t Xt Y (= 20y <
> =

2 2<i<j<n j=2

Using the results of Proposition 6, we obtain the generator system corresponding
to the conical part of C;. These generators give rise to the following inequalities:

n—1
Y Yin—n Y Vim— L t( ) Vit ) yijt) S—ISI, (86)
jes jes =2 2=i<jsn 2<i<j<n
ieS,jeS~{1} ieS—{1},jeS
n—1
) yiptn > Yijpm — > t( > Vi T D yijt) slSL (87)
jes jes =2 2=i<j<n 2=i<j=n
icS,je S—{1} ic§—{1},je8

for S< V—{1}, 1 <|§|<n—2. Using (83) the inequality (86) for S is equivalent to
(87) for S—{1}. Hence, we have the following theorem for the symmetrization of
the FGG-formulation.

Theorem 8. The symmetrization SPg of the FGG-polytope TPx is given by
SP.={y e R?|y satisfies (82)-(86)}. O

Moreover, we have the following result for the symmetrization of the FGG-
formulation:

Proposition 8. Every 0-1 point of SPg corresponds to a tour.
Proof. Let y bea0-1 point of SPz. We define the support of y, S(y) as {(, j) | y; > 0}.

Since the constraints (82) and (83) imply Y , y1;;; =Y ,y»=1, node 1 has a
degree of 2 in the support graph of y, G(y)=(V, S(y)). Furthermore, G(y) does
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not have an isolated node otherwise (86) is violated for such a node. Suppose that
there exists a node v # 1 having a degree of 1. If y,,,, = 1, the left-hand side of (86)
for S ={v}is n, which leads to a violation of (86) for S = {v}. If y,,, =0, the constraint
(86) is violated for S =V —{1, v}. Consequently, every node ve V has a degree at
least two and moreoever, G(y) contains at least one cycle because of (82). Suppose
that G(y) is not connected, and let C = (N, E) with Nc V, E < S(y) be a component
of G(y) with 1€ N. The constraint (86) is violated for the set S = N —{1}. Therefore,
G(y) is connected and the proposition follows. O

The symmetrization of the FGG-formulation thus yields a formulation for a
symmetric “time-dependent” TSP. But Proposition 8 is less surprising than it may
seem at first sight since our symmetrization leaves the index ¢ for the “position”
number of an edge in the formulation. This index captures and “preserves” a certain
asymmetry, a fact that is born out by the close resemblance of the linear description
of SPg and of Py (see Lemma 3), respectively. In order to eliminate this residual
“asymmetry” we could, of course, analyze the linear transformation given by

Yy = x Zye T Ziyy.
t

The results of Section 3.3 (Theorem 4) and of Section 4.1 (Theorem 6) prove,
however, that we cannot get any new information about the facial structure of the
symmetric TSP polytope Q" this way.

5. Conclusions

The transformation technique described in this paper is a generally applicable tool
that permits one to compare different formulations of a given combinatorial optimiz-
ation problem analytically. The comparison of different problem formulations was
previously done by comparing empirically the performance of the respective formula-
tions on some set of problem instances. As this paper shows it is not overly difficult
to mathematically analyze different formulations of the travelling salesman problem.

The specific main findings of the work presented here are negative in the sense
that not any one of the alternative formulations of the TSP considered here has
yielded new insights about the facial structure of the (symmetric and asymmetric)
polytopes associated with the Dantzig-Fulkerson-Johnson formulation. When we
began this work, we hoped for positive results. From among the problems studied
here it seems worthwhile to investigate the time-dependent travelling salesman
problem in more detail from a polyhedral point of view because it permits more
general objective functions than the standard formulation. The search for “more
compact” formulations of this problem is, however, ill-directed if the envisaged
solution method relies (directly or indirectly) relaxation of the formulation of the
problem. Indeed, it is well-known that any integer program in bounded variables
can be “reformulated” as a knapsack problem. If we apply e.g. Lemma 1 of Padberg
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(1972) with Q = n’ to the FGG-formulation (35)-(38) then we find that the zero-one
solutions to the knapsack equation

n n
Y (1=n " )z B AR T N,
i=2

i=2

n n n—

+3y ¥ Z 31 l>(zyt ZJ")+ Z Z Z z;=n+ 2 p3n+1=)

i==2 j=2 t=2 i=2j=21=2 =

are exactly the incidence vectors of tours. We note that O(r”) bits suffice to represent
this equation on a digital computer. So — at least theoretically — this “super-
compact” formulation of the TSP looks acceptable. Needless to say, we do not
recommend its use in actual calculation.

A consistent fact that can be inferred from the results of Section 4 is the following:
All of the asymmetric formulations involving polynomially many linear constraints
result in constraint sets that are of exponential size when they are symmetrized.
Evidently, the “breaking up” of an undirected edge into two oppositely directed
edges permits one to capture information that results in the saving. While we did
not symmetrize the Claus-formulation —it is clear by Theorem 5 that from a
polyhedral point of view there is nothing to be gained from it — a symmetrization
of that formulation will also result into a constraint set of exponential size. To prove
this point we note that the minimum-cost (s, ¢)-flow problem on a network with
node set V, a source s and a sink ¢ is part of the C-formulation. So consider the
problem
(FP) min } ¢px;

ij

s.t. Z Xsi = Z xit=17

ieV ieV

Xy= Y x; YieV,

jevots | jevols)
x; 20 Vi j.
By means of the linear transformation
Vi=Xg VieV,
Yu=Xxy; VieV,
yi=X;+x; Vi jeVandi<j,
we find using Proposition 6 that the symmetrized problem becomes

(SP) min  }, &y

i<j

s.t. > Vsi = Y ya=1,

ieV ieV
y(Su{s}:(V=-S)u{th=1 VSc V,1<|S|sn—1,
yy>0 Vi’ja
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where (SuU {s}:(V=S)u{r}) is the cut-set defined by S in the undirected graph.
As expected the symmetrized minimum-cost (s, ¢t)-flow problem has exponentially
many constraints. More importantly, the symmetrized problem is — of course — the
problem of finding a shortest path from node s to node t and we know by the results
of Lehman (1963), see also Johnson (1974), that the basic feasible solutions to (SP)
are all zero-one valued. This celebrated result now follows quite easily from the
fact that — by the total unimodularity of the constraint set — all basic feasible
solutions to (FP) are zero-one valued. Thus by Proposition 2, for all integer ¢;
satisfying ¢; = ¢; for all i and j the objective function value of (SP) is an integer
number and consequently, by a result of Hoffman (1974) all basic feasible solutions
to (SP) are integer-valued. Likewise, one can symmetrize the maximum capacitated
(s, t}-flow and minimum weighted (s, t)-cut problems and derive a symmetric version
of the well-known max-flow-min-cut theorem. These and other applications of the
transformation technique given in this paper are left for future work, see Padberg
and Sung (1989).
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