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The generalized assignment problem (GAP) determines the minimum cost assignment of 7 jobs to m agents such that
each job is assigned to exactly one agent, subject to an agent’s capacity. Existing solution algorithms have not solved
problems with more than 100 decision vanables. This paper designs an optimization algorithm for the GAP that
effectively solves problems with up to 500 variables. Compared with existing procedures, this algorithm requires fewer
enumeration nodes and shorter running times. Improved performance stems from: an enhanced Lagrangian dual ascent
procedure that solves a Lagrangian dual at each enumeration node; adding a surrogate constraint to the Lagrangian
relaxed model; and an elaborate branch-and-bound scheme. An empirical investigation of various problem structures,

not considered in existing literature, is also presented.

he generalized assignment problem (GAP) deter-

mines the minimum cost assignment of # jobs to
m agents such that each job is assigned to exactly one
agent, subject to an agent’s capacity. Applications of
the GAP and existing algorithms are reviewed by
Rosenwein (1986), and the problem appears as a
subproblem in certain network design problems, e.g.,
Guignard and Rosenwein (1987). This paper designs
and validates a dual based optimization procedure for
the GAP which outperforms previous algorithms. Our
algorithm yields a decrease in computational running
times and in the number of enumeration nodes re-
quired to solve a GAP to optimality. Medium sized
problems, unsolved in prior literature, are solved ef-
fectively. Although enumeration algorithms for the
GAP exist, in particular, see Fisher, Jaikumar and
Van Wassenhove (1986), they have not been demon-
strated to solve problems with more than 100 decision
variables. In addition, we determine which sizes and
structures of problems are computationally the most
difficult.

Section 1 describes the model, and Section 2 pre-
sents the improved enumeration algorithm. Section 3
summarizes computational results and benchmarks
the algorithm with existing procedures. Some con-
cluding remarks are given in Section 4.
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1. THE GENERALIZED ASSIGNMENT PROBLEM

Let I ={i, ..., i,} be aset of agents, and let J =
{j1, ..., j.} be aset of tasks. For i € [, j € J, define
¢, as the cost of assigning task j to agent i, a,, as the
resource required by agent 7 to perform task j, and b,
as the resource availability of agent i. Also, y,, is a 0-1
variable that is 1 if agent / performs job j and 0
otherwise. The model is given by (1)-(4).

Problem GAP

Minimize Y ¥ ¢y, N
=S A=V}

subject to

Yy, =1 for each j € J (2

e/

a,,<b foreachi€ [ (3)

=7

y,=0o0rl foreachi€l, jEJ 4)

The multiple choice constrainis, (2), ensure that each
task is assigned to exactly one agent. The knapsack
constraints, (3), stipulate the capacity of each agent.
Fisher et al. prove that the GAP is an NP-hard prob-
lem. The strong Lagrangian relaxation for the GAP is
given by the following.

0030-364X/89/3704-0658 $01.25
© 1989 Operations Research Society of America

Copyiighit© 2001 AllRIGHTS RESETEd



Problem LR,,

min {z S (e = w, + 5 w1 G) <4>}.

¥ el e/ €S

The corresponding Lagrangian dual is given by
max, -, v{LR, ) where v(-) denotes the optimal value
of problem (-). Also, define

Z = min {Z 2 (¢, — Wj)y’/ [ (3), (4)}

) el el

W‘:ZW/

Ji=ys

p=2 v, foreachje ]

el
and
v(ILR)=Z+ W.

The tree algorithm of Fisher et al. outperforms
existing algorithms by an order of magnitude on
tightly constrained problems with m = 5, n = 20.
However, the authors do not report solving larger
problems. The essential step of the Fisher-Jaikumar-
Van Wassenhove (hereafter, FJV) algorithm is
a Lagrangian dual ascent procedure that solves the
Lagrangian dual at each enumeration node.

In this note, we propose certain extensions and
enhancements to the FJV algorithm, and we deploy
certain algorithmic methods not considered by the
earlier procedure. These improvements lead to faster
computational running times and shorter enumera-
tion trees in solving GAPs to optimality. FJV main-
tains p, < 1, for each j, throughout the algorithm.
Although this condition is required for primal feasi-
bility, it restricts the search over the w space in solving
the Lagrangian dual. Addition of the surrogate
constraint

XXy, =n (5a)
R ay=v;

or

XXy, sn (5b)
ef e

to LR, also serves to potentially improve v(LR,, ). The
surrogate constraint is a convex combination of the
dualized constraints, (2), and is required for primal
feasibility. A complex branching scheme, combining
depth-first and breadth-first branching, is used for
enumeration. Finally, an effective implementation of
subgradient optimization generates tighter bounds
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than the FJV algorithm at the root node with signifi-
cantly reduced computational effort. Details of the
enhancements and the overall enumeration algorithm
are described in the following sections.

2. AN ENUMERATION ALGORITHM FOR THE
GAP

Steps 1-4 are performed at each node of the enumer-
ation algorithm. At the root node, subgradient opti-
mization is used in place of Lagrangian dual ascent to
solve the Lagrangian dual in Step 3.

Step 1. Initialize w.

Step 2. Compute Zand v(LR, ). Let y be an optimal
solution of LR,. If y violates (2), add a surrogate
constraint (either 5a or 5b).

Step 3. Lagrangian dual ascent steps exploit viola-
tions of (2).

Step 4. Post-Lagrangian interchange heuristic at-
tempts to resolve violations of (2) and tighten the
upper bound.

Branch-and-bound is performed by branching on col-
umns with p, that is different from 1, and bounds are
obtained by performing Steps 2-4 at each node. Exe-
cution terminates when all branches are fathomed.

2.1. Initialization of w and Addition of a Surrogate
Constraint (Steps 1 and 2)

We initialize w, at the root by setting w, = ¢, —
mayx, {c,}, for each j € J. Thus, a jobj may be assigned
to none, one, or two or more agents, which allows
for a search over a wide w space for the optimal
Lagrangian dual. In contrast, Fisher et al. maintain
p, < 1, for each j, throughout their procedure. Empir-
ically, improved bounds for tightly constrained prob-
lems are obtained if p, is not restricted. At a lower
level node, the multipliers are initialized by setting
them equal to the final multiplier values obtained at
the parent node.

The problem in y consists of 71 independent knap-
sack problems that are solved individually by the
efficient knapsack code of Fayard and Plateau (1982).
If a solution y to LR, violates ¥ ,c; Y <, ¥, = n, we
add the “violated” part of the equation, i.e., (5a) or
(5b), to the relaxation model as a tightening constraint.
The addition of a surrogate constraint, generated from
a model’s relaxed constraints, potentially strengthens
the Lagrangian bound. The FJV algorithm did not use
surrogate constraints.

The Lagrangian problem with a surrogate constraint
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can be written as

min {Z 2 (e, = w)y, 1 (3), (4), (52) or (5b)}.

' €1 &7

The surrogate constraint is, then, dualized into the
objective function with multiplier 8. The strengthened
relaxation is given by

LR(8) = min {2 Y (c,—w+0y,—6n|(3), (4)}

11,0

By not specifying a constraint on the sign of 6, the
model is capable of accommodating a dualization of
either (5a) or (5b). Since LR(6#) is a piecewise linear
and convex function of one variable, an optimal value
of 8, #*, may be found with a search procedure,
as proposed by Handler and Zang (1980} (see also
Minoux 1975). At iteration k, let LR;(8,) (respect-
ively, LR, (#,)) be the equations of the rightmost
(respectively, leftmost) segment of LR(6;) with a pos-
itive (respectively, negative) slope and let 8, be the
abscissa of their intersection. If LR(#,) = LR (6,) =
LR, (8,), 6* = 6,. Otherwise, let k = k + 1 and repeat.
The procedure iterates until the termination criterion
is reached. No attempt is made to close a duality gap,
if one exists.

2.2. Lower and Upper Bound Calculation
(Steps 3 and 4)

A lower bound at each node, save the root, is com-
puted by a Lagrangian dual ascent procedure that
exploits violations of the dualized constraints to im-
prove the Lagrangian bound. If a job j exists with p,
different from 1, i.e., if (2) is violated, the correspond-
ing w, may be adjusted upward (downward) to effec-
tively increase (decrease) the attractiveness of includ-
ing (excluding) this job in (from) exactly one knapsack
solution. If a certain job j* is unassigned, an increase
in w,. results in an increase in W while Z remains
constant and v(LR, ) increases. At the point where j*
is assigned to exactly one agent, Z is no longer con-
stant. In fact, Z begins to decrease at the same rate
that W increases and no bound improvement occurs.
Similarly, if a job j* is assigned to two or more agents,
a decrease in w,- results in a decrease in W that is
offset by a larger increase in Z. If W decreases by an
amount A,., Z increases by an amount p«<A., p« > 1.
The overall effect of an adjustment of w,. is to increase
v(LR, ) by an amount A,.( p,- — 1). At the point where
j* is assigned to exactly one agent, the increase in Z
is offset by the decrease in W, and no bound improve-
ment is possible. The Lagrangian dual ascent steps are

described in greater detail in Guignard and Rosenwein
(1989).

Calculation of the bound at the root of the enumer-
ation tree by subgradient optimization improves the
enumeration algorithm’s performance. We imple-
mented the subgradient procedure as follows. Let LB
and UB denote the lower and upper bounds, respec-
tively. Let & be an iteration counter, and A, is a
parameter adjusted by the algorithm. At Step &,
a lower bound LB, is computed by LB, = W + Z.
LR, is solved at every iteration by computing the
multipliers w*, as

W= W z,\(l -y yf,)

€7

where

t=MUB=-LB)/ ¥ <1 -2 yf‘J)_

=vi ef

and yf‘, is the value of y, at the kth iteration. If
LB, < LB,_,, we set A, = A, /2. If X\, < ¢, the sub-
gradient algorithm terminates. In this implementation
of the subgradient procedure, A, = 2 and ¢ = 0.001.
The subgradient procedure typically terminates in ap-
proximately 30 iterations at the root node. The rela-
tively rapid termination is due to our method for
updating ;.

If the subgradient procedure is used to solve the
Lagrangian dual at each tree node, the enumeration
algorithm converges slowly to optimality, as mono-
tonic bound improvement is not guaranteed by the
subgradient method. For certain problems, the num-
ber of nodes required to prove optimality exceeded
the core storage. Furthermore, the number of subgra-
dient iterations greatly exceeds the number of ascent
steps at each level of the tree, except the root. There-
fore, we opted for a bounding strategy that uses the
subgradient method to solve the Lagrangian dual at
the root and Lagrangian dual ascent at all other nodes.

Finally, we developed an interchange routine in an
attempt to attain a feasible solution if the ascent
procedure terminates with (2) violated. More impor-
tantly, this routine potentially can tighten the upper
bound and, thereby, enhance the overall enumeration
procedure. It attempts to assign an unassigned j to
some knapsack i while simultaneously removing a
multiply-assigned ; from the same i. If a feasible
solution is found, it is compared with the current
upper bound for possible updating.

2.3. Branch-and-Bound

Steps 1-4 are performed at each node. A node is
fathomed if its lower bound exceeds or is equal to the
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current upper bound. If a feasible solution value at a
node is less than the current upper bound, the upper
bound is updated. The procedure terminates if all
pending nodes are fathomed.

If a j exists with p, different from 1 following ter-
mination of ascent at a node, the enumeration algo-
rithm must partition the node’s solution set. The
addition of (5b) ensures that at least one p, is greater
than 1. We select one j* with p. greater than 1 and
create p, branches at the node. For each branch, a
distinct y,, with y,,» = 1 in the current solution is fixed
at 0. At each node, we branch on a j that corresponds
to j* = min, max, {a,|p,> 1 and y,, = 1} and initially
explore the branch corresponding to max, {a,»}. The
variable y, - is disqualified from solutions at descend-
ant nodes. The branching rule minimizes the largest
increase in slack in the generated candidate subprob-
lems, i.e., fewer feasible solutions are likely to exist.

We initially use depth-first branching to explore the
tree. If the duality gap at a pending node is no more
than 1%, depth-first branching is temporarily aban-
doned. The Lagrangian dual ascent procedure, typi-
cally, vields increasingly smaller improvements in the
lower bound as branching proceeds down the tree. If
the duality gap at a pending node is no more than
1%, we backtrack to the parent node and proceed
downward upon an unexplored branch. If an im-
proved feasible solution is found, the algorithm may
fathom dangling nodes, i.e., nodes that were not
fathomed but whose bounds were within 1% of a
previously incumbent feasible solution. If continued
backtracking does not result in an improved feasible
solution, the dangling, unfathomed nodes are fath-
omed by closing the duality gap through a resumption
of depth-first branching. Our branching rules enhance
the FJV branching scheme, which is a pure depth-first
tree search.

Branch-and-bound is implemented with data struc-
tures that enable a unique path to be traced from the
root to any pending node. A list of multiplier adjust-
ments that occur at a node may be saved since, with
the exception of the root node, the number of adjust-
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ments is small compared with the number of mul-
tipliers. Thus, the enumeration algorithm may
reposition itself at any nonfathomed node and resume
a tree search from that node. If a node is fathomed,
storage space allocated to the node is freed and may
be reused.

3. COMPUTATIONAL EXPERIENCE

The algorithm was programmed in FORTRAN and
executed on a DEC-10. We tested it on a sample set
of random problems, generated according to distri-
butions A, B, C, and D described in Martello and
Toth (1981). The letters A, B, C, and D refer to four
different problem generations and are given by the
following distributions.

A. a, and ¢, are integer from a uniform distribution
between 5 and 25 and between 10 and 25, respec-
tively. b, = 9(n/m) + 0.4 max.e, ¥, ,c, - a,, where
J*={j€e J|i=arg(min, c, ).

Same as A for g, and ¢,,. b, = 0.7 of b, in A.
Same as A for g, and ¢,,. b, = 0.8 3 <, a,/m.
Same as C for b. a, is integer from a uniform
distribution between 1 and 100. ¢, = 111 — q, +
K. K is integer from a uniform distribution be-
tween —10 and 10,

CoxE

Table I benchmarks the proposed algorithm. Each
entry was obtained by randomly generating and solv-
ing ten different problems for each data class with
m = 5, n = 20. Problems of dimension 5 X 20
represent the largest problems solved by the FJV
algorithm. For results described in Tables I and II, the
root bound was computed by our Lagrangian dual
ascent procedure.

Table I illustrates that our algorithm compares
favorably in the number of nodes and the average and
maximum CPU running times required to solve
tightly constrained problems. We also consider the
effectiveness of certain enhancements in calculating
the root bound. Since the FJV algorithm was not
available, we recoded it according to its specifications

Table 1
Algorithm Benchmark (m = 5, n = 20)

Average Number of Nodes

Average (max) CPU Running Times

Data
Set  Fisheretal. Guignard-Rosenwein Fisher et al. Guignard-Rosenwein
A 2 2 0.645 (0.910) 1.325 (2.366)
B 28 11 14.930 (40.730) 5.039 (11.884)
C 25 20 13.750 (43.490) 8.316 (20.058)
D 126 84 67.606 (115.710) 67.337 (92.839)
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(see Fisher et al.). For the ten C 5 X 20 problems, the
root bound improved on average by 3.74% if the
surrogate constraint was added and p, was maintained
< 1, and by 4.53% if the surrogate constraint was
added and p, was allowed to assume values > 1. In
one extreme case, the bound increased by 10.33%
using our initialization of w, and the addition of (5a)
or (5b). For all ten problems, our root bound was
superior to the root bound computed by our imple-
mentation of the FJV algorithm. Addition of the
surrogate constraint impacts the quality of the root
bound more significantly than initialization schemes.
The root bound was typically between 1-3% of the
optimal solution.

A summary of the results appears in Table II. No
performance benchmarking is possible for larger prob-
lems, for they are unsolved by previous algorithms.
Ten problems were solved from each problem class
with the exception of m = 10, n = 40 and m = 10,
n = 50 for which only five problems were generated
due to computer budget considerations. For B and C
problems with mn larger than 500 and for D problems
with mn larger than 150, core storage required to
maintain the tree search exceeded allocated storage

capacity. Type A problems were not solved for mn
larger than 250 because their structure is not interest-
ing i.e., (3) is not tight. The effect of the algorithm’s
performance of varying m and »n was investigated. If
mn is constant, but the ratio n/m increases, the algo-
rithm’s performance deteriorates. Larger problems,
in fact, could not be effectively solved if n/m was
too large, e.g., if n/m > 10. For instance, although
10 X 40 and 10 X 50 problems are effectively solved,
5 % 80 and 5 x 100 problems cannot be solved with
the existing core storage allocation.

The performance of the enumeration algorithm is
improved further if subgradient optimization is used
to solve the Lagrangian dual at the root node. The
root bound is improved, on average, by 1.36% for
the ten C § X 20 problems and by 0.62% for the ten
D 5 x 20 problems. Computational running time to
calculate the bound is also reduced, e.g., by a factor
of 20 for the D problems. Overall improvement to the
FJV enumeration algorithm may be viewed as a two-
step progression, as illustrated by Table III. HYBRID
computes root bounds with subgradient optimization
and lower level bounds with a Lagrangian dual ascent
procedure. LDA computes each lower bound in the

Table 11
Summary of Results
No. of Avg. No. Avg. Max.
Data Problems of CPU CPU
Set m n Solved Nodes Seconds Seconds
A 5 20 10 2 1.325 2.366
A 5 50 10 7 11.382 19.427
B 5 20 10 11 5.039 7.024
B 5 30 10 16 11.884 23.958
B 5 40 10 26 32.190 78.294
B 10 25 10 15 12.709 34.615
B 7 35 10 28 26.732 37.899
B 5 50 10 37 51.205 88.737
B 10 40 5 66 77.464 186.502
B 10 50 5 101 199.562 339.988
A
C 5 20 10 20 8.316 20.058
C 5 30 10 28 18.883 32.056
C 5 40 10 39 37.694 69.692
C 10 25 10 16 14.655 43.442
C 7 35 10 35 37.141 69.810
C 5 50 10 53 59.468 94.700
C 10 40 5 86 114,058 180.928
C 10 50 4¢ 156 268.434 308.402
D 5 20 10 84 67.336 92.839
D 5 30 5 102 168.240 273.655

“One other problem was generated but not solved because the number of nodes

exceeded allotted core storage.
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Table 111
Performance Improvements by the HYBRID
Algorithm (m = 5, n = 20)
Avg. No. of Nodes Avg. CPU Seconds

Data
Set FJV LDA HYBRID FJV LDA HYBRID
C 25 20 16 13.8 8.3 7.9
D 126 84 69 67.6 67.3 46.6

tree with a Lagrangian dual ascent procedure. Table
III displays evidence that both HYBRID and LDA
improve upon the FJV algorithm, for each requires
fewer enumeration nodes and CPU seconds, on
average, to solve GAPs to optimality. HYBRID out-
performs LDA because at the root the number of
Lagrangian dual ascent steps greatly exceeds the
number of subgradient iterations, and furthermore,
the subgradient yields improved bounds. However,
Lagrangian dual ascent is a preferred method for
solving the Lagrangian dual at all other nodes.

4. CONCLUSION

Our dual based algorithm for the GAP features: 1) an
improved Lagrangian dual ascent procedure to solve
the Lagrangian dual; 2) a complex branching strategy
that shortens the tree search; 3) the addition of a
surrogate constraint to the relaxed GAP; and 4) the
usc of subgradient optimization to compute bounds
at the root node. Empirical testing reveals that our
algorithm requires fewer enumeration nodes and CPU
seconds than existing algorithms to solve the GAP to
optimality. The algorithm also solves medium sized
problems, unsolved by existing algorithms. (The com-
puter code is available from the second author.)
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