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A VARIABLE-SELECTION HEURISTIC FOR K-MEANS CLUSTERING 
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One of the most vexing proNems in cluster analysis is |he selection and/or weighting of variables 
in order to include those that truly define cluster structure, while elinfinating those that might mask such 
structure. This paper presents a variable-selection heuristic for nonhierarchical (K-means) cluster anal- 
ysis based on the adjusted Rand index for measuring cluster recovery. The heuristic was subiected to 
Monte Carlo testing across more than 2200 datasets will: known cluster structure. The results indicate the 
heuristic is extremely effective at eliminating masking variables. A cluster analysis of real-world financial 
services data revealed that using the variable-selection heut'islic prior to the K-means algorithm resulted 
in greater cluster stability. 
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1. Introduction 

The significant number of citations in the research literature easily supports the importance 
of cluster analysis for applications in social science, physical science, engineering, and business 
(see, for example, Waller, Kaiser, Illian, & Manry, 1998, for recent information regarding the 
volume of citations). In each of these disciplines, there is often a wide spectrum of candidate 
variables that can be used in the process of clustering objects. It has been frequently observed, 
however, that only a limited subset of variables is actually valuable in defining cluster structure 
(DeSarbo, Carroll, Clark, & Green, 1984; De Soete, DeSarbo, & Carroll, 1985; Gnanadesikan, 
Kettenring, & Tsao, 1995; Milligan, 1989). Further, the incorporation of variables that do not 
define true cluster structure may effectively complicate or obscure the recovery of this struc- 
ture during a hierarchical or nonhierarchical cluster analysis (Milligan, 1980; Milligan, 1989). 
Fowlkes and Mallows (1983) referred to these complicating variables as "masking variables;' 

There are two broad approaches for identifying and mitigating the effect of masking vari- 
ables; (a) variable weighting, and (b) variable selection. Variable-weighting methods, which at- 
tempt to differentially weight variables based on their relative ability to define cluster structure, 
have been developed and refined in the literature for quite some time (Anderberg, 1973; Art, 
Gnanadesikan, & Kettenring, 1982; Co~anack, 1971; DeSarbo et al., 1984; De Soete et al., 1985; 
Friedman & Rubin, 1967; Gnanadesikan et al., 1995; Kruskal, 1972; Rohlf, 1970). One of the 
most popular of these methods for nonhierarchical (iterative K-means) clustering is SYNCLUS 
(DeSarbo et al., 1984), which simtfltaneously generates partitions and variable weights using a 
weighted K-means procedure. Weights are chosen to minimize a measure of stress through an 
iterative fitting process. Green, Carmone, and Kim (1990) evaluated SYNCLUS and observed 
that it worked well on one dataset, but that its performance on a second dataset was sensitive to 
initial seed points. 
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De Soete (1986) proposed an algorithm that identifies weights yielding Euclidean distances 
optimally suited for representation by an ultrametric tree. De Soete et al. (1985) and De Soete 
(1986) demonstrated that the weighting algorithm was effective in assigning near-zero weights 
to extraneous variables in a dataset. Milligan (1989) examined the utility of the De Soete (1986) 
algorithm as a variable-weighting procedure and reported that it was effective in reducing the 
influence of variables with little or no contribution to the true cluster structure. 

Perhaps the most comprehensive investigation of variable-weighting methods was provided 
by Gnanadesikan et al. (1995), who tested eight variable-weighting schemes across a sample of 
simulated and real datasets. These weighting schemes included: equal-weight scaling; standard- 
ization of variables based on the standard deviation (autoscaling) or range; several alternatives 
based on the within- and/or between-sum-of-squares and cross-products matrices; SYNCLUS; 
and, De Soete's (1986) procedure. Their results revealed that the two latter procedures under- 
performed relative to schemes based on within and between sums-of-squares cross-products ma- 
trices. In fact, the De Soete (1986) algorithm frequently under-performed simpler schemes such 
as equal-weight scaling, autoscaling, and range-scaling. 

One of the most significant findings of Gnanadesikan et al. (1995) was that variable- 
weighting schemes were often out-performed by a procedure based on variable selection. 
Variable-selection procedures attempt to define a subset of variables for use in a cluster analysis 
(Fowlkes, Gnanadesikan, & Kettenring, 1987; Fowlkes, Gnanadesikan, & Kettenring, 1988). 
In fact, such procedures can be viewed as a special case of variable weighting where all such 
weights are required to be 0 or 1. Variable selection has definite advantages over weighting 
approaches (Fowlkes et al., 1988; Gnanadesikan et al., 1995). For example, variable-selection 
procedures eliminate the need for future measurement of variables that do not define cluster 
structure. Typical applications require the inclusion of all clustering variables. Given the grow- 
ing size of datasets and the use of datamining techniques in fields such as business (Berry & 
Linoff 1997; Blattberg, Glazer, & Little 1994), this seems particularly important. Perhaps more 
importantly, variable-selection procedures do not present the difficulties associated with trying 
to interpret the meaning of differentially weighted variables. 

The Gnanadesikan et al. (1995) study evaluated a forward variable-selection procedure, 
developed by Fowlkes et al. (1988), which selects variables in an iterative manner based on a 
multivariate analysis-of-variance separation criterion. Fowlkes et al. (1988) characterize their 
procedure as "informal" because the selection of clustering variables is based upon graphical 
information. Although this approach often compared favorably to the variable-weighting proce- 
dures in the study, Gnanadesikan et al. (1995) found it "disappointing" that it was not consis- 
tently the best performing method. Another limitation they cited was the fact that the Fowlkes et 
al. (1988) procedure was limited to autoscaled data. Summing up the results of their testing of 
variable weighting and selection procedures, Gnanadesikan et al. (1995) concluded: "Consider- 
able additional research in this general area seems, therefore, to be required" (p. 135). Milligan 
(1996) echoed this sentiment, noting ". . .  more general approaches to variable weighting would 
make worthwhile contributions to the field of classification" (p. 352). 

1.1. HINoVMethod 

Carmone, Kara, and Maxwell (1999) recently observed that, if the ultimate goal is the recov- 
ery of true cluster structure, then a good measure of actual recovery might be useful for guiding 
the selection of cluster variables to include in the analysis. Based on this principle, they devel- 
oped a graphical variable-selection procedure (HINoV: heuristic identification of noisy variables) 
based on Hubert and Arabie's (1985) adjusted version of Rand's (1971) index for measuring the 
agreement of partitions (see Arabie & Hubert 1996; Helsen & Green, 1991; Krieger & Green, 
1999; Milligan 1989; Milligan & Cooper 1986; Salstone & Stange 1996 for discussions of the 
effectiveness of the adjusted Rand index). A description of this procedure requires the following 
notation: 
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M z 

D =  

X z 

C =  
p j =  

R =  

the number of objects (observations, cases, customers, etc.) in the dataset, indexed i = 
1 , . . . , M ;  
the number of variables (or dimensions) on which the objects are measured, indexed j = 
1 . . . . .  D. Additionally D = D1 + D2, where D1 is the number of true (structure) variables 
and D2 is the number of masking (noise) variables. 
an M x D matrix of measurements, where Xij denotes the measurement of object i on 
variable j ;  for i = 1 . . . . .  M and j = 1 . . . .  , D. 
the number of clusters in the dataset indexed c = 1 . . . . .  C; 
a (1 x M)-dimensional row vector that defines a pm'tition developed using only variable j .  
Elements of the vector, flji, designate the cluster to which object i is assigned. 
A symmetric D x D matrix (with zeros on the main diagonal) of adjusted Rand indices, 
where rjk = r~j is the adjusted Rand index associated with partitions pj and Pk, for 
j = 1 . . . . .  D - l a n d k = j + l  . . . .  ,D;  

The HINoV procedure is initiated with the development of a K-means partition, pj, using only 
variable j ,  for each of the j = 1 . . . . .  D variables. The next step is to compute the adjusted Rand 
index, rjk = rkj, between each of the ( D ( D  - 1)/2) pairs of partitions. A total pairwise adjusted 
Rand index (TOPRIj)  is then computed for each variable as follows: 

D 

TOPRIj = Z r j k .  
k=l  

Variables are subsequently selected (in a single pass rather than iteratively) based on a scree 
plot of the ranked TOPRIj values. According to the authors, low-value TOPRI variables (i.e., 
the noisy variables) are identified and eliminated from analysis. The procedure terminates by 
running K-means with only the selected variables. 

Limitations to HINOV. In addition to the fact that it makes use of the well-justified adjusted 
Rand index, HINoV is straightforward and efficient in its implementation. However, the proce- 
dure does have some serious limitations. First, like the method of Fowlkes et al. (1988), HINoV is 
informal and subjective because the variable-selection process requires the interpretation of scree 
plots. This makes it difficult for researchers in this area to replicate the findings of the Carmone 
et al. (1999) study', or to evaluate HINoV against other methods in a Monte Carlo comparison. 
Second, and much more importantly, the computation of the TOPRIj sums is predicated upon 
the assmnption that the pairwise adjusted Rand indices will be large (close to 1.0) for a pair of 
true variables, and small (close to 0) for a pair of masking variables (or a pair consisting of one 
masking and one true variable). This may not always be true. 

As we will see, HINoV is particularly prone to failure under two sets of data conditions 
that are clearly possible to arise in realistic datasets: (a) a high degree of correlation among the 
masking variables, and (b) multiple sets of true cluster structures in the same dataset. When two 
or more masking variables are highly correlated, they may lead to roughly the same cluster struc- 
ture and thus the adjusted Rand index associated with partitions based on these variables could 
be quite large. This can subsequently lead to their erronexms inclusion in the set of clustering 
variables. 

To illustrate, consider an example with M = 9 objects measured on D = 4 vmiables (vl, 
v2, v3, and v4) as shown in Table 1. The plot of v2 versus vl in Figure 1 reveals C = 3 well- 
separated homogeneous clusters, which is the "true" structure in the dataset. Thus, vl and v2 
are the true variables in this example. A plot of the masking variables (v4 vs. v3) in Figure 2 
shows that, although these two variables do not define as nice a structure as vl and v2, they are 
highly correlated. This correlation has serious implications for HINoV. For example, if K-means 
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TABLE 1. 
A small example data set 

Object 1 2 3 4 5 6 7 8 9 

v 1 measure 6 7 8 2 3 4 12 14 14 
v 2 measure 14 115 13 3 1 2 3 4 2 
v3 measure 15 3 10 5 11 7 13 6 1 
v 4 measure 15 4 10 6 12 8 12 7 1 

16 
• 2 
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12 • 3  

v2 8 

4 

0 

4 0  6 

5 •  
1 

0 4 

• 7 

8 12 

I/1 

8 

• 9 

16 

FIGURE 1. 
A plot of lhe true variables for the example data set. 

partitions based only on variable j are developed for each variable j ( j  = 1 . . . . .  D) using C = 3 
clusters, the resulting partitions are Pa = [1, 1, 1, 2, 2, 2, 3, 3, 3], P2 = [1, 1, 1, 3, 2, 2, 3, 3, 2], 
and P3 = P4 = [1, 2, l,  3, l,  3, 1, 3, 2]. The matrix of  adjusted Rand indices corresponding to 
each pair of  single variable partitions, along with corresponding TOPRIj values is shown below: 

R = 

000 . 4 0 7 - . 0 7 1 - . 0 7 1 7  FTOPRI1=.2657 
.407 .OO0 - . 0 7 1  - . 071  / |TOPRIe .265 |  

- . 0 7 1  - . 071  .000 1.000 / |TOPRI3 .857 / " 
- . 0 7 1  - . 071  1.000 .000J [_TOPRI4 .857j  

Observe that the largest TOPRIj values correspond to variables v3 and v4. Thus, HINoV would 
incorrectly select the masking variables for inclusion and eliminate the true variables. This ex- 
ample leads us to conclude that them are at least two potential reasons why the procedure is 
prone to failure. First, two variables (vl and v2 in this example) can define true cluster structure, 
yet when these variables are used independently to develop partitions, the adjusted Rand index 
associated with such partitions can be rather small. Indeed, Figure 3 reveals a situation where 
r12 ~ 0, yet variables vl and v2 again define a well-separated, homogeneous structure. Second, 
masking variables can have a very large Rand index due to high correlation, thus leading to their 
erroneous inclusion. 
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FIGURE 2. 
A plot of the masking variables for the example data set. 

For similar reasons, HINoV is also prone to failure when there are multiple "true" structures 
in the same dataset. In such cases, it is desirable to recover at least one of the true structures. 
Unfortunately, HINoV's use of aggregated sums of adjusted Rand indices can easily result in the 
selection of variables from two o1" more true structures, which impedes the recovery of at least 
one of the structures. Although it is easy to do so, for the sake of brevity we do not include a 
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FIGURE 3. 
A plot of true variables with low adjusted Rand Index for the single-vaxiable partitions. 
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numerical example of  this situation. However, we do provide an empirical comparison of  HINoV 
and our new procedure across datasets with two true structures in section 6.2. 

1.2. Purpose 

Our objective in this paper is to develop a heuristic variable-selection procedure that can be 
successfully applied to large datasets. We refer to this procedure as VS-KM (variable-selection 
heuristic for K-means clustering). VS-KM builds on the strengths of earlier variable-selection 
methods (Carmone et at., 1999; Fowlkes et at., 1988), while overcoming some of  their weak- 
nesses. Like HINoV, VS-KM utilizes the adjusted Rand index. Unlike HINoV, VS-KM adds 
variables in a forward (stepwise) manner and also uses information about the between-cluster 
and total sum-of-squares, similar to the Fowlkes et al. (1988) method. VS-KM is based on the 
premise that the adjusted Rand index information is better used in a forward-selection process. 
To illustrate this logic, consider a situation where three variables have already been selected for 
inclusion and a fourth variable, j ,  is currently under consideration for inclusion. Suppose that 
one partition is developed using the three selected variables and a second partition is developed 
using only variable j .  The adjusted Rand index is then used to compute the agreement between 
these two partitions. A large adjusted Rand index would suggest that adding variable j to the 
mix of  variables would not mask the current cluster structure. Alternatively, if the adjusted Rand 
index is small, it can be concluded that variable j does mask the current structure and should not 
be added to the set of clustering variables. 

In the next section we present the details of  VS-KM. We describe an initial Monte Carlo 
study designed to test VS-KM in section 3, the results of  which are provided in section 4. We then 
conduct a second study to extend our investigation to much larger datasets (up to 7000 objects). 
A description of  this second study and the corresponding results are presented in section 5. 
Section 6 provides a third study that directly compares HINoV with VS-KM. Section 7 completes 
the testing with a real-world demonstration that clusters financial institutions in a business-to- 
business strategy context. The paper concludes in section 8 with a summary of  the findings, 
an overview of  potential areas of  application, and a discussion of the limitations and possible 
extensions of  our investigation. 

2. Variable-selection Heuris t ic--VS-KM 

The description of  VS-KM uses the notation from section 1 in addition to the following: 

Notation: 
S =  
U =  

wjk= 

Q = 

T z 

y =  

G j =  

Groin = 

G f a  C 

the set of  variables selected for inclusion in the cluster analysis; 
the set of  unsetected variables, S U U = {1, 2 . . . . .  D} and S A U = {0}; 
a (1 x M)-dimensional row vector that defines a partition developed using variables 
j and k, for j = 1 . . . . .  D - 1 and k = j + 1 . . . . .  D. Elements of  the vector, Wjki, 
designate the cluster to which object i is assigned; 
a D x D symmetric matrix with zeros on the main diagonal and remaining elements 
qjk = qkj defining the ratio of  the between cluster sum-of-squares to the total sum-of- 
squares for partition wjk, for j = 1 . . . . .  D - 1 and k = j + 1 . . . . .  D; 
a threshold value for the adjusted Rand index when selecting the first pair of  variables; 
an (1 x M)-dimensional row vector that defines a partition developed using variables 
j E S. Elements of the vector, Yi, designate the cluster to which object i is assigned. 
the adjusted Rand index associated with partitions pj and y, for j = 1 . . . . .  D; 
the minimum allowable value of  Gj such that variable j can be selected for inclusion 
in the cluster analysis; 
a factor that when multiplied by the Gj value of  the most recently selected variable 
serves as a threshold for the inclusion of  the next variable. 
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Heuristic Algorithm 

Step 0. 

Step 1. 
Step 2. 

Step 3. 

Step 4. 

Step 5. 
Step 6. 

Step 7. 

Step 8. 

Initialize. y = 0 ;p j  = 0 V j  = 1 , . . . , D ; w j k  = 0, Vj = 1 . . . . .  D -  1 a n d k  = 
j + 1 . . . . .  D; S = {0},U = {1,2, 3 , . . . ,  D}. 
Develop a partition, pj, of C clusters using only variable j ,  for j = 1 . . . . .  D. 
Compute the adjusted Rand index for all D(D - 1)/2 pairs of partitions pj and Pk, for 
j = l  . . . .  D - l a n d k = j + l , . . . , D .  
Develop a partition, Wjk, of C clusters using variables j and k and compute qjk, for 
j = 1 . . . .  D -  1 andk = j + 1 , . . . ,  D. 
IfMaxj.k(rjk) > T, then let 3 = Max(qjklrjka,K >- T), else let 3 = I~lakx(qjk ) . ,  Let j '  

and U denote variables such that qj'u = 3, and let rt = r/k~. Set S = S U { / ,  U} and 
U = U - {f ,  k'}. 
Develop a partition, y, of C clusters using all selected variables j ~ S. 
For each unselected variable j ~ U, compute the adjusted Rand index, Gj, between 
partitions pj and y. 
Let )v = Max(G j). If  L < Groin, or L < ~1 • Gfac, then go to Step 8. Otherwise, let j~ jcu 
denote the variable for which G jr = )v, set zl = 5v, and set S = SU{f}  and U = U -  {j~}. 
If U = {0}, then go to Step 8. Otherwise, return to Step 5. 
Variables in S are selected lot inclusion and variables in U are discarded. A K-means 
cluster analysis is mn using only the variables in S. 

In Step 1 of VS-KM, a partition (pj) of C clusters is developed for each individual variable 
j (j = 1 . . . . .  D). In this study, a convergent version of MacQueen's (1967) K-means algorithm 
was used to generate these partitions. The algorithm, which seeks to minimize a total within- 
cluster sum-of-squares criterion, converges to a local (but not necessarily global) minimum. It 
has been observed that K-means clustering procedures are often very sensitive to the initial cen- 
troids that are used when implementing tile algoriti~n (Green et al., 1990; Helsen & Green, 1991; 
Waller et al., 1998). Therefore, we used Ward's (1963) hierarchical clustering procedure to gen- 
erate the initial centroids. Consistent with previous studies (Helsen & Green, 1991; Waller et 
al., 1998), Ward's algorithm was applied and the resulting tree was cut at the known number of 
clusters. 

In Step 2 of VS-KM, the adjusted Rand index (rjk) is computed for each of the D(D -- 1)/2 
pairs of partitions. In step 3, a K-means partition (Wjk) is developed using each possible pair of 
variables and the ratio of the between-cluster sum-of-squares to tile total-sum-of-squares (qjk) is 
computed. Going into Step 4, there are two relevant pieces of infolanation for each possible pair 
of variables: (a) the palrwise adjusted Rand index, and (b) an estimate of cluster homogeneity 
from the sum-of-squares ratio. Both pieces of information are factored into the selection process 
in Step 4. Specifically, the pair of variables resulting in the largest value of qjk is selected for 
inclusion, provided that its rjk achieves a threshold value (T). The goal is to select a pair of 
variables with a reasonable degree of agreement yet, at the same time, a homogeneous clustering. 
If  no pair of variables achieves tile threshold value, then the pair with the largest qjk value is 
selected. 

An important distinction between VS-KM and HINoV method is that the first two variables 
are selected jointly (as a pah-) and tile remaining variables are added independently (one at a 
time) in Steps 5 through 8. In Step 5, all the selected variables are used to generate a partition, 
y, using the same procedure described above tbr Step 1. In Steps 6 and 7, adjusted Rand indices 
are computed, for each unselected variable, between the individual variable partitions and y. 
Variables are added, in an iterative manner, until no adjusted Rand index in Step 6 is greater than 
Groin, or the greatest adjusted Rand index is less than the product of Gfac and the adjusted Rand 
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index associated with the most recently selected variable. VS-KM terminates in Step 8 with a set 
of selected variables for a K-means cluster analysis. 

2.1. Application of the VS-KM to the Example Dataset 

VS-KM was applied to the example dataset in Section 1. Since Steps 1 and 2 of VS-KM 
are the same as those in HINoV, we obtain the same pairwise Rand index matrix, R, as reported 
above. In Step 3 of VS-KM, K-means partitions are developed using all possible pairs of variables 
and the sum-of-squares ratio, qjk = ql;j, is computed for each pair. The resulting matrix Q is 
obtained for the example dataset: 

Q = 

- .971 .737 .7097 
.971 - .771 .774 / 

1 . 7 3 7  .771 - .884 / " 
L.709 .774 .884 - / 

Observe that the largest value in the matrix above is q12 = q21. For any threshold value T _< .407, 
this means that variables vl and v2 would be initially selected for inclusion in Step 4. VS-KM 
subsequently proceeds to Step 5, where a partition y is constructed for these selected variables (at 
this stage, this is done by simply noting that y = w12). In Step 6, the adjusted Rand indices are 
computed between partitions y and P3 = -.07143, and y and P4 = -.07143. Since both adjusted 
Rand indices are quite low, neither v3 or v4 would be added to the set of selected variables, and 
VS-KM terminates with the correct selection of Vl and v2. 

We note that scenarios can also be constructed where VS-KM can fail. For example, con- 
sider the case of Figure 3. In this scenario, the adjusted Rand index between variables vl and 
v2 is - .  107, far below most threshold values. Indeed, it appears that for the data in Figure 3 an 
informal inspection of the graph is more effective than either HINoV or VS-KM. 

Like the graphical method of Fowlkes et al. (1988) and HINoV, VS-KM could be imple- 
mented as an informal approach to variable selection. An informal implementation precludes the 
need to specify the T, Groin and Gfac parameters. Instead, the researcher could generate tabu- 
lar information regarding the adjusted Rand indices and between-cluster-to-total sum-of-squares 
ratios for combinations of variables, and make subjective decisions regarding which combina- 
tions are useful for defining cluster structure. Unfortunately, such an approach is not conducive 
to a large computational study and, therefore, we lormalize VS-KM by specifying a definitive 
procedure for selecting variables. 

In this formalized version of VS-KM, there are three paralneters that must be specified by 
the research analyst: T, Groin and Gfac. These parameters control the selection process and 
jointly determine when no more variables are to be included. The goal is to set the parameters 
such that true variables will meet the criteria for inclusion, but masking variables will not. For 
any given set of parameters, it would be possible to construct a dataset for which that particular 
parameter set would not meet this goal. Nevertheless, it might be useful to have a general idea 
of reasonable settings for T, Groin and Gfac and this is investigated in the computational study 
described in section 3. 

3. Study I. Methodology 

3.1. Data Generation 

Our initial Monte Carlo study was similar to Milligan's (1989) assessment of De Soete's 
(1986) ultrametric algorithm for providing near-zero weights for masking variables. We wanted 
to ascertain the effectiveness of VS-KM for eliminating masking variables from datasets with 
known cluster structure. We generated 1701 datasets (each consisting of 500 objects, not includ- 
ing outliers) consistent with the process described by Milligan (1985), which has been utilized 
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in a number of previous studies (Balakrishnan, Cooper, Jacob, & Lewis, 1994; Carmone et al., 
1999; Helsen & Green, 1991; Milligan, 1980, Milligan, Soon, & Sokol, 1983, Milligan & Cooper, 
1986; Milligan & Cooper, 1989; Waller et al., 1998). 

Five primary factors were manipulated. The first factor, the number of clusters in the 
datasets, was examined at three levels, C = 3, 4, and 5. The second factor, density of the clus- 
ters, was tested at 3 levels; (a) an equal number of objects in each cluster, (b) 10% of the objects 
in one cluster and an equal division of the remaining objects across the remaining clusters, 
and (c) 60% of the objects in one cluster and the remaining objects equally divided across the 
remaining clusters. The third factor, the number of outliers in the dataset, was evaluated at three 
levels; (a) no outliers, (b) 20% outliers, and (c) 40% outliers. The fourth factor, the number 
of true structure variables, was evaluated at three levels, D1 = 4, 6, and 8. The fifth factor 
manipulated in the study, the one of particular interest, was the number of masking variables 
and the correlation among them. Based on the results of the Gnanadesikan et al. (1995) study, 
we believed that it was important to incorporate problems for which the number of masking 
variables equaled or exceeded the number of true variables, as well as problems with more true 
variables than masking variables. Further, we extend previous research in variable weighting 
and selection methods (Milligan, 1989; Carmone et al., 1999) by considering different levels 
of correlation among the masking variables. Seven levels of the masking variable factor were 
considered; Ca) D2 = 0, (b) D2 = 2, low correlation, (c) D2 = 2, high correlation, (d) D2 = 4, 
low correlation, (e) D2 = 4, high correlation, (f) D2 = 6, low correlation, and (g) D2 = 6, high 
correlation. This produced a 3 x 3 x 3 x 3 x 7 -  level design resulting in 567 data scenarios. In 
addition, three replications were made of each scenario resulting in 1701 datasets. 

The Fortran source code, as well as an executable file, for generating Milligan's (1985) test 
datasets can be obtained from the website: www.pitt.edu/~csna/Milligan/readme.html. We de- 
veloped our own generation program but used precisely the same methods for generating uniform 
random variates (Knuth, 1997) and normal random variates (Box & Muller, 1958) that Milligan 
and his colleagues have used. Our generation program accommodates very large data arrays, as 
well as correlation among masking variables. The masking variables in Milligan's data genera- 
tion program are generated, independently, by drawing from a uniform distribution on the range 
of the first variable. This leads to rather low correlation (average of .031) among the masking 
variables and served as our "low correlation" setting for the masking variables. For the "high- 
correlation" problems, the first masking variable was generated using the uniform distribution 
on the range of the first variable, but subsequent masking variable measurements for each object 
were generated by perturbing the measurement value for the immediately preceding masking 
variable by + / -  50% (again using a uniform distribution). This resulted in an average correla- 
tion among the masking variables of approximately 0.598 for the high setting. 

3.2. Characteristics of the Dataset 

A preliminary exploration of the datasets was conducted to assess two issues regarding the 
selection of variables: (a) the effect of omitting a true variable from the set of clustering variables 
(Type I error), and (b) the effect of including a masking variable in the set of clustering variables 
(a Type II error). This exploration was conducted using one of the replicates of the 567 design 
points. For each of the 567 datasets, the K-means algorithm was run under four sets of conditions: 
(a) using all of the true variables, (b) using all of the true variables except the first true variable, 
(c) using all of the true variables except the second true variable, and (d) using all of the true 
variables and one of the masking variables. The average adjusted Rand indices associated with 
these four conditions are reported in Table 2. 

Table 2 reveals that the average adjusted Rand index is .8937 when S contains all of the true 
variables and no masking variables. If variable j = 1 is deleted from S, this average drops to 
.7294, whereas if j = 2 the average drops to .8821. This finding is easily explained by Milligan's 
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TAm~E 2. 
An exploration of Type I and Type II errors in variable selection 

Selected Variables 

All true All true All true 

All true variables variables variables and one 

variables except j = 1 except j = 2 masking variable 

Average adjusted 
Rand Index* .8937 .7294 .8821 .6037 

*The average is computed across 567 data sets defined by the experimental conditions. 

(1985) generation procedure, which requires complete separation of the clusters on the first true 
variable, but not on any of the other true variables, lhus, the probability of a Type I error appears 
to be negligible for all but the first true variable. In other words, as long as the first true variable is 
selected, other true variables can be omitted without significant degradation in cluster recovery. 

Table 2 also shows that the inclusion of just one masking variable in S can cause serious 
recovery problems even when all true variables are also contained in S. The decrease in the 
average adjusted Rand index from .8937 to .6037 when just one masking variable is included 
suggests that Type II error is much more serious than Type I error, at least for datasets generated 
in this manner. 

3.3. Clustering Methods and Computer Implementation 

The control procedure for the Monte Carlo study was a convergent version of MacQueen's 
(1967) K-means procedure using all variables (both true and masking) with equal weights. As 
was described for Steps 1 and 4 of the heuristic algorithm, initial centroids for the K-means pro- 
cedure were generated using Ward's (1963) hierarchical method and cutting the resulting tree 
at the correct number of clusters. It was not computationally practical to apply Ward's method 
based on all M objects. Therefore, along file lines of Helsen & Green (1991), a random sample 
of 100 objects was taken and Ward's procedure was used to generate initial centroids based only 
upon this sample. The objects in the sample were selected based on the uniform probability distri- 
bution, again using Knuth's (1997) unilblrn random number generation procedure. The centroids 
determined on the basis of this sample were subsequently used as a starting point by the K-means 
algorithm to cluster all M objects. ~llroughout the remainder of this paper, we will refer to the 
control procedure as ALL-KM because all variables are used for the K-means clustering process. 

The experimental procedure was VS-KM, which used only variables selected in Steps 
1-7. In addition, VS-KM, which also uses Ward's method to compute initial centroids, had to be 
modified to use a sample of objects. Specifically, the single variable partitions, pj, as well as the 
selected variable partitions, y, were developed based on a random sample of 100 objects. 

In the initial Monte Carlo study, we wanted to provide some evaluation as to the necessity 
of the threshold parameter, T. Therefore, two versions of VS-KM were tested. The first version, 
VS-KM1, assumes that T = - o c  and thus the first pair of variables selected by the algorithm 
is based solely on the ratio of between cluster sum-of-squares to total-sum-of squares. In the 
second version, VS-KM2, we used T = .25. This parameter setting ensures that, in addition to 
the sum-of-squares ratio, the first pair of variables selected also has reasonable pairwise adjusted 
Rand index values. 

The stopping criteria for both VS-KM1 and VS-KM2 were based on parameter values of 
Groin = .05 and Gfac = 0.5. The justification for these parameter settings is twofold. First, the 
results in Table 2 suggested that Type II errors are somewhat more serious than Type I errors 
and we wanted a Gfac setting that guarded against relatively large decreases in the adjusted 
Rand indices during the selection process. Second, we tested other parameter settings in this 
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neighborhood, including the less restrictive settings of Groin = .03 and Gfac = .3 and the more 
restrictive settings of Gmin = .07 and Gfac = .7. We found that the sensitivity of the heuristic 
to changes of parameter settings in this range was not particularly severe. 

The data generation program, K-means clustering procedure, VS-KM, and adjusted Rand 
index program were all written in Fortran. The source codes are available from the authors via 
email at mbrusco@cob.fsu.edu. The entire study was conducted using a 400 MHz Pentium II 
microcomputer running at the DOS prompt in a Windows 98 operating environment. Data were 
collected regarding true cluster recovery (as measured by the adjusted Rand index) and CPU time 
for each of the 1701 test problems, and the three solution procedures (VS-KM1, VS-KM2, and 
ALL-KM). 

4. Results of Study I 

The results of Study I are summarized in Tables 3 and 4. Table 3 reports the analysis of vari- 
ance results (main effects and two-way interactions) for the experimental study. All main effects 
were statistically significant, with the largest main effect corresponding to the variable-selection 
procedure. A pairwise comparison of means using Tukey's procedure indicated that all pairs of 
means associated with the solution procedures were statistically different. The results in Table 3 
also reveal that most two-way interactions were significant. Most notable among these interac- 
tions are all three combinations of two-way interactions associated with the variable-selection 
procedure, masking variable, and outlier factors. These large interactions are readily explained 
by the data in Table 4. For example, the large A x F interaction term can be partially explained 

TABLE 3. 
Results of study I. Analysis of variance 

Source DF SS MS F P 

Masking variable (A) 6 201.3540 33.5590 789.83 0.000 
Number of clusters (B) 2 4.8672 2.4336 57.28 0.000 
Cluster density (C) 2 4.0117 2.0058 47.21 0.000 
True variables (D) 2 4.4063 2.2032 51.85 0.000 
Outliers (E) 2 51.3734 25.6867 604.55 0.000 
Variable selection (F) 2 192.9316 96.4658 2270.39 0.000 

(A x B) 12 0.8644 0.0720 1.70 0.061 
(A x C) 12 0.9572 0.0798 1.88 0.032 
(A x D) 12 1.2648 0.1054 2.48 0.003 
(A x E) 12 19.6078 1.6340 38.46 0.000 
(A x F) 12 39.7549 3.3129 77.97 0.000 
(B x C) 4 5.8103 1.4526 34.19 0.000 
(B x D) 4 0.6264 0.1566 3.69 0.005 
(B x E) 4 2.0439 0.5110 12.03 0.000 
(B x F) 4 3.0778 0.7694 18.11 0.000 
(C x D) 4 4.6231 1.1558 27.20 0.000 
(C x E) 4 0.3213 0.0803 1.89 0.109 
(C x F) 4 1.3560 0.3390 7.98 0.000 
(D x E) 4 0.4383 0.1096 2.58 0.036 
(D x F) 4 1.8242 0.4560 10.73 0.000 
(E x F) 4 20.6315 5.1579 121.39 0.000 

Error 4986 211.8484 0.0425 

Total 5102 773.9943 
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TABLE 4. 
Results of Study I: True cluster recovery results* 

Factor 

Adjusted Rand Index Percentage of 
(averages) perfect recoveries 

Level ALL-KM VS-KM1 VS-KM2 ALL-KM VS-KM1 VS-KM2 

Number of 
clusters 

3 .3628 .6465 .7563 4.41 25.57 26.63 
4 .3515 .7199 .8150 4.59 27.51 28.22 
5 .3576 .7825 .8522 4.94 31.04 31.92 

Number 4 .3033 .6838 .7698 4.06 25.40 26.98 
of true 6 .3577 .7593 .8282 4.41 28.75 29.63 
variables 8 .4109 .7059 .8255 5.47 29.98 30.16 

Density Even .3840 .7413 .8182 5.29 30.16 30.86 
10% .3999 .7182 .8201 4.23 29.10 30.51 
60% .2879 .6894 .7852 4.41 24.87 25.40 

Outliers None .3734 .9291 .9775 13.93 84.13 86.77 
20% .3544 .6704 .7870 0.00 0.00 0.00 
40% .3543 .5527 .6546 0.00 0.00 0.00 

Masking 
variables 

0 .9089 .9066 .9021 30.45 29.63 29.22 
2-low .4633 .8701 .8993 2.06 29.22 29.22 
2-high .3156 .7530 .8657 0.00 29.22 29.22 
4-low .3761 .8595 .8993 0.00 28.81 29.22 
4-high .0890 .4861 .6883 0.00 28.40 28.81 
6-low .3402 .8508 .8974 0.00 28.81 29.92 
6-high .0079 .2882 .5029 0.00 22.22 27.57 

Overall .3573 .7163 .8078 4.64 28.04 28.92 

*Adjusted Rand Index column values represent the mean adjusted Rand index at each factor level, for each 
factor. The "Percentage of Perfect Recoveries" column values reflect, for each factor level, the percentage of test 
problems for which perfect recovery was achieved. 

by the fact that all three methods perform roughly the same when there are no masking variables, 
but exhibit some significant disparities at other levels of the masking variables. 

For each of the three solution procedures and each factor level, Table 4 reports the average 
adjusted Rand index and percentage of test problems for which perfect cluster recovery (adjusted 
Rand index = 1.0) was achieved. These results clearly demonstrate the effectiveness of the 
variable-selection heuristic. Across all 1701 datasets, the average adjusted Rand indices for VS- 
KM1 and VS-KM2 were more than double the corresponding average for ALL-KM. Moreover, 
the percentage of datasets for which perfect cluster recovery was achieved was only 4.64% for 
the ALL-KM procedure, but over 25% for both of the VS-KM procedures. 

VS-KM1 and VS-KM2 improved the average true cluster structure recovery regardless of 
the number of clusters. The average adjusted Rand indices for VS-KM2 were better than those 
of VS-KM1 at all levels of C, and more than twice those of ALL-KM at all levels of C. The 
VS-KM2 procedure also outperformed VS-KM1 and ALL-KM across all levels of the number 
of true variables and all levels of cluster density. Not surprisingly, outliers had a much more 
pronounced effect on true cluster recovery than the number of clusters, the number of true vari- 
ables, or cluster density. When no outliers were present in the dataset, the VS-KM procedures 
performed exceptionally well. True cluster recovery declined markedly for the 20% and 40% 
outlier conditions. However, both VS-KM1 and VS-KM2 still maintained a sizable advantage 
over ALL-KM. 
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Perhaps the most important results in Table 4 are those pertaining to the number of masking 
dimensions. As expected, when there were no masking variables in the dataset, the ALL-KM 
procedure performed slightly better than VS-KM1 and VS-KM2. However, a pairwise compari- 
son of means using Tukey's procedure revealed no significant difference between the procedures 
at the .05 significance level. Although both of the VS-KM procedures resulted in a slight de- 
crease in the average adjusted Rand index, the differences are quite small considering that the 
heuristic can only fail for these test problems (by eliminating true variables). These results are 
also consistent with Milligan's (1989) findings concerning De Soete's (1986) variable-weighting 
method within the context of hierarchical clustering. Milligan (1989) observed that such minor 
reductions in these recovery values ". . .  would have little, if any, practical impact in an applied 
clustering" (p. 59). 

For datasets with two or more masking variables, the importance of using the variable- 
selection heuristic prior to the K-means analysis was unequivocal. For the ALL-KM procedure, 
the average adjusted Rand indices for D2 = 2, 4, and 6 at low levels of masking variable correla- 
tion were .4633, .3761, and .3402, respectively. Comparable figures for the VS-KM2 procedure 
were .8993, .8993, and .8974, respectively. At high levels of masking variable correlation, the 
average adjusted Rand indices for ALL-KM were a dismal .3156, .0890, and .0079 for D2 = 2, 
D2 = 4, D2 = 6, respectively. Comparable figures for VS-KM2 were .8657, .6883, and .5029, 
respectively. The VS-KM2 procedure outperformed VS-KM1 at all masking variable settings 
other than D2 = 0. Most notably, VS-KM2 was substantially better than VS-KM1 when there 
was high correlation among the masking variables. 

In terms of CPU time, the ALL-KM procedure required an average of 4.33 seconds. The 
average CPU time for the VS-KM1 and VS-KM2 procedures were 93.15 seconds (89.82 sec- 
onds for variable selection +3.33 seconds for the K-means algorithm) and 38.22 seconds (35.29 
seconds for variable selection -t-2.92 seconds for the K-means algorithm), respectively. The VS- 
KM2 procedure is far more efficient that VS-KM1 because a value of T > 0 enables a fathoming 
step in the computer code. Specifically, once a pair of variables (j, k) is identified that achieves 
a value of rjk > T, the development of a two-variable partition (in Step 3) for all subsequent 
pairs of variables is only made if the adjusted Rand index value between the two single-variable 
partitions (computed in Step 2) equals or exceeds the threshold level. 

5. Study II 

5.1. Data Generation for Study H 

The vast majority of Monte Carlo analyses reported in the clustering literature have used 
anywhere from 50 to 300 objects (Balakrishnan et al., 1994; Helsen & Green, 1991; Milligan 
1980; Milligan 1981; Milligan & Cooper 1986; Milligan, 1989; Waller et al., 1998). In most 
previous applications this was reasonable given the settings in which cluster analysis might be 
applied. 

At the same time, many practical clustering applications may contain thousands of objects 
(see for example, the recent discussions of market segmentation applications by Balasubrama- 
nian, Gupta, Kamakura, & Wedel, 1998; Chaturvedi, Carroll, Green, & Rotondo, 1997; Wedel & 
Kamakura 1997). Moreover, with the advent of very large databases in marketing research and 
e-commerce settings (Berry & Linoff 1997; Blattberg, et al. 1994), a host of datamining appli- 
cations have been applied to larger and larger datasets. What are the implications of the cluster 
techniques when applied to large datasets that will most certainly require efficient use of compu- 
tational resources? Can the VS-KM procedure be successfully applied to large datasets within a 
reasonable amount of CPU time? 

To answer these questions, we conducted a second Monte Carlo study to determine if the 
new variable-selection heuristic was still effective for larger datasets. Specifically, 567 additional 
datasets were generated in precisely the same manner as described in section 3, but with a much 
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larger number of objects. These datasets consisted of a minimum of M = 5000 objects (no 
outliers) and a maximum of M = 7000 objects (40% outliers). The ALL-KM, VS-KM1, and 

VS-KM2 procedures were applied to each of these 567 large datasets. 

5.2. Results of Study H 

The results for the 5000 < M < 7000 test problems of Study II are summarized in Table 5. 
For each factor level and all three solution procedures, Table 5 reports the average adjusted 
Rand index and percentage of test problems for which perfect cluster recovery was achieved. 
It is evident that the results in Table 5 are very consistent with those in Table 4. The VS-KM2 
procedure maintained its considerable advantage over ALL-KM and VS-KM1 across most factor 
level settings. The average adjusted Rand index for the VS-KM2 procedure was only slightly less 
for 5000 < M < 7000 (.7934) than it was for 500 < M < 700 (.8078), as was the percentage of 

datasets for which perfect recovery was achieved (25.93% for 5000 < M < 7000 and 28.92% 
for 500 _< M < 700). These results suggest that basing the variable-selection heuristic on a 
sample size of 100 did not yield a substantial penalty in terms of solution quality despite the 

tenfold increase in the number of objects. 
For the 5000 < M < 7000 datasets, most of the results pertaining to the number of clus- 

ters, number of true variables, density of the clusters, and number of masking dimensions were 
comparable to those described for Study I. VS-KM1 and VS-KM2 were superior to ALL-K/vI at 

TABLE 5. 
Results of Study II: True cluster recovery results for 5000 < M < 7000 datasets* 

Adjusted Rand Index Percentage of 
(averages) perfect recoveries 

Factor Level ALIrKM VS-KM1 VS-KM2 ALL-KM VS-KM1 VS-KM2 

Number of 3 .4115 .6675 .7305 3.70 21.69 22.22 
Clusters 4 .3706 .6856 .7562 3.17 20.63 22.22 

5 .3861 .7986 .8937 5.29 3 1.75 33.33 

Number 4 .3577 .6484 .7285 3.17 20.11 22.22 
of true 6 .4136 .7308 .8156 3.17 21.69 22.22 
variables 8 .3969 .7726 .8362 5.82 32.28 33.33 

Density Even .4203 .7628 .8153 4.76 25.40 25.93 
10% .4528 .7358 .8178 3.70 24.87 25.93 
60% .2951 .6531 .7472 3.70 23.81 25.93 

Outliers None .4115 .9369 .9806 12.17 74.07 77.78 
20% .3849 .6987 .7514 0.00 0.00 0.00 
40% .3719 .5251 .6483 0.00 0.00 0.00 

Masking 
variables 

0 .9043 .8976 .8979 25.93 25.93 25.93 
2-Low .5513 .8757 .8945 2.47 25.93 25.93 
2-High .3391 .7412 .8212 0.00 25.93 25.93 
4-Low .4472 .8558 .8894 0.00 25.93 25.93 
4-High .1008 .5356 .6795 0.00 24.69 25.93 
6-Low .3786 .8486 .8823 0.00 25.93 25.93 
6-High .0047 .2663 .4893 0.00 18.52 25.93 

Overall .3894 .7172 .7934 4.06 24.69 25.93 

*Adjusted Rand Index colunm values represent the mean adjusted Rand index at each factor level, for each 
factor. The "Percentage of Perfect Recoveries" column values reflect, for each factor level, the percentage of test 
problems for which perfect recovery was achieved. 



MICHAEL J. BRUSCO AND J. DENNIS CRADIT 263 

every factor level setting, except for the case where there are no masking variables present in the 
data. Further, the VS-KM2 procedure's superiority to the ALL-KM procedure increased as the 
number of masking dimensions was increased, and VS-KM2 was far superior to VS-KM1 when 
the correlation among the masking variables was high. 

With respect to CPU time, the average for the ALL-KM procedure was 39.11 seconds, 
whereas the averages for the VS-KM1 and VS-KM2 procedures were 112.35 and 52.34 seconds, 
respectively. The slight increase in the average CPU times for the VS-KM1 and VS-KM2 proce- 
dures is due to the fact that even though there were ten times as many objects in the dataset, the 
variable-selection procedures were still only using a sample of 100 objects. The significant in- 
crease in processing time for the ALL-KM procedure was due to the fact that, for certain datasets 
with a large number of masking variables, the K-means algorithm required several hundred sec- 
onds to converge. When VS-KM1 and VS-KM2 were applied prior to the K-means algorithm, 
masking variables were eliminated and thus the CPU times were appreciably lower. For example, 
the average CPU time for the K-means component of the VS-KM2 procedure was only 16.78 
seconds, while the variable-selection heuristic required 35.56 seconds. 

The VS-KM2 procedure strongly outperformed VS-KM1 in terms of both true cluster re- 
covery and CPU time in both experimental studies. For this reason, the remainder of the paper 
will focus solely on VS-KM2. Hereafter, we refer to VS-KM2 as simply VS-KM. 

6. Study III 

In a third study, we provide a comparison of VS-KM to a formalized version of HINoV, 
hereafter referred to HINoV-F. Our implementation of HINoV-F was precisely the same as that 
of VS-KM as described in sections 2 and 3.3, except for the criterion used to select the vari- 
ables. Because it was not practical to analyze plots for a large number of datasets, we formalized 
HINoV by using the differences between the rank-ordered TOPRIj values. The largest differ- 
ence between the ordered values was used as a surrogate for the elbow of the scree plot. This 
strategy tends to be conservative regarding the number of variables selected. However, based on 
the results in Section 3.2, we believed this conservative approach worked to the advantage of 
our HINoV-F implementation because it was less likely to incorporate a masking variable. We 
acknowledge that other formalized versions might perform differently for some datasets. 

6.1. A Comparison of HINoV-F and VS-KM for the Datasets in Study I 

The HINoV-F procedure was applied to the 1701 datasets described in section 3. The av- 
erage total CPU time for HINoV-F (16.71 seconds) was considerably less than that of VS-KM 
(38.22 seconds). HINoV-F yielded an average adjusted Rand index of .7229 and perfect recover- 
ies for 21.4% of the datasets, which compares reasonably well to corresponding values of .8078 
and 28.92% for VS-KM. The average adjusted Rand index for VS-KM was larger than that of 
HINoV-F across all factor level settings of the number of clusters, cluster density, the number 
of true variables, and outliers. HINoV-F yielded slightly better average adjusted Rand indices 
for the 2-low and 2-high masking variable levels, whereas VS-KM was slightly better for the 0, 
4-low, and 6-low levels. The average adjusted Rand indices for VS-KM were much larger than 
the corresponding averages for HINoV-F at the 4-high (VS-KM = .6883, HINoV-F = .5039) 
and 6-high (VS-KM = .5029, HINoV-F = .  1211) masking variable levels. 

It is also pertinent to note that, although it outperformed HINoV-F at all three levels of out- 
liers, VS-KM was far superior to HINoV-F across datasets with no outliers. For the 567 datasets 
with no outliers, the average adjusted Rand indices for VS-KM and HINoV-F were .9774 and 
.8337, respectively. Relative to HINoV-F, VS-KM provided a better (worse) adjusted Rand in- 
dex for 183 (20) datasets, and the same adjusted Rand index for 364 datasets. For the subset 
of outlier-free datasets associated with high masking variable correlation, the average adjusted 
Rand-indices for VS-KM and HINoV-F were .9610 and .6290, respectively. These results sup- 
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port our supposition that VS-KM outperforms HINoV when correlated masking variables are 
present. 

The relative performance of HINoV-F improved when moving to the 20% outlier level, and 
further improved at the 40% outlier level. For the 567 datasets at the 40% outlier level, the average 
adjusted Rand indices for VS-KM and HINoV-F were .6546 and .6334, respectively. Relative to 
HINoV-F, VS-KM provided a better (worse) adjusted Rand index for 188 (159) datasets, and the 
same adjusted Rand index for 220 datasets. Thus, neither method performed especially well in 
the presence of a large number of outliers. However, it is difficult to imagine many realistic data 
sets where the 40% (or even 20%) outlier conditions would prevail. 

6.2. A Comparison of HINoV-F and VS-KM for Datasets with Two True Cluster Structures 

We also compared HINoV-F and VS-KM across 27 synthetic error-free datasets (M = 500) 
that contained two true cluster structures in the data. The 27 datasets corresponded to all combi- 
nations of the three levels of the number of clusters, the three levels of cluster density, and the 
three levels of the number of true variables. For each of these combinations, one synthetic dataset 
was generated using Milligan's (1985) procedure, resulting in the first true cluster structure. A 
second synthetic dataset was constructed in exactly the same manner using a different random 
number seed. This dataset provided the second true cluster structure. The two datasets were sub- 
sequently merged into a single dataset after reordering the rows (objects). For example, consider 
the case ofa  dataset with the following parameters: C = 4, even cluster density, and D1 = 8. The 
generated dataset consisted of M = 500 objects measured on 16 (2 x 8) variables. One subset 
of eight variables defined the first true cluster structure of four groups in eight variables, whereas 
the second subset defined the second true cluster structure of four groups in eight variables. An 
effective variable-selection heuristic should select variables that reveal one of the true structures 
(although perhaps not always the "better" of the two). HINoV-F and VS-KM were applied to 
each of the 27 datasets. We also examined the 27 scree plots associated with HINoV and they 
were generally consistent with the HINoV-F results. The results are reported in Table 6. 

Table 6 reveals that VS-KM substantially outperformed HINoV-F for the datasets with 
two true structures. VS-KM perfectly recovered one of the two true structures for 26 of the 
27 datasets, whereas HINoV-F perfectly recovered one of the two structures for only 10 of the 27 
datasets. For the one dataset where VS-KM did not provide perfect recovery, the adjusted Rand 
index for one of the two true structures was a "nearly perfect" .9910. Because VS-KM clearly 
reveals one of the two structures, it can be argued that the unrevealed structure is also more iden- 
tifiable as a function of the remaining unselected variables. The results for HINoV-F indicated 
that, in 14 of the 27 instances, it provided adjusted Rand indices of less than .7 for both true struc- 
tures. In other words, HINoV-F frequently selected variables from both of the two structures and 
thus was unable to clearly reveal either of the single structures. These findings generally support 
our supposition that VS-KM is superior to HINoV when there are multiple true structures in the 
data. 

7. Study IV 

As a final demonstration of the usefulness of the new heuristic, we applied VS-KM to a 
set of data taken from a business-to-business segmentation study of the credit union market. The 
purpose of the study was to identify relevant customer segments, within the credit union mar- 
ket, which might show differential demand for a member-database software product. Data were 
collected from financial and statistical reports collected by the National Credit Union Adminis- 
tration (www.ncua.gov). The final dataset included 11402 reporting credit unions providing 15 
variables representing measures of institutional size (e.g., number of full-time employees, num- 
ber of regular shares, total assets), performance (e.g., total operating income, total deposits, loans 
outstanding), and portfolio value (e.g., interest income, profit/loss). 
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TABLE 6. 
A comparison of ttINoV-F and VS-KM for datasets with two true cluster structures* 

265 

Number of Cluster Number of 
clusters density true vats 

HINoV-F VS-KM 

True-1 True-2 True-1 True-2 

3 Even 2 sets of 4 .2775 .5113 1.0000 .0032 
3 Even 2 sets of 6 .0033 1.0000 .0033 1.0000 
3 Even 2 sets of 8 .0032 1.0000 1.0000 .0032 
3 10% 2 sets of 4 .2665 .6687 .9910 .0051 
3 10% 2 sets of 6 .0005 1.0000 .0005 1.0000 
3 10% 2 sets of 8 .0011 1.0000 1.0000 .0011 
3 60% 2 sets of 4 .0063 .9968 1.0000 .0065 
3 60% 2 sets of 6 .0091 1.0000 .0091 1.0000 
3 60% 2 sets of 8 .5823 .1803 1.0000 .0005 
4 Even 2 sets of 4 - .0007  1.0000 - .0007  1.0000 
4 Even 2 sets of 6 .6678 .1625 1.0000 - .0010  
4 Even 2 sets of 8 .0005 1.0000 1.0000 .0005 
4 10% 2 sets of 4 .1084 .7963 .0054 1.0000 
4 10% 2 sets of 6 .6060 .2415 1.0000 .0041 
4 10% 2 sets of 8 .0037 1.0000 1.0000 .0037 
4 60% 2 sets of 4 .0205 1.0000 .0205 1.0000 
4 60% 2 sets of 6 .6113 .2701 1.0000 .0081 
4 60% 2 sets of 8 - .0087  1.0000 - .0087  1.0000 
5 Even 2 sets of 4 .2300 .3786 - .0022  1.0000 
5 Even 2 sets of 6 .3516 .2558 1.0000 - .0006  
5 Even 2 sets of 8 .3025 .2469 1.0000 - .0010  
5 10% 2 sets of 4 .3733 .2779 .0037 1.0000 
5 10% 2 sets of 6 .0003 .9542 - .0005 1.0000 
5 10% 2 sets of 8 .3909 .3697 1.0000 - .0024  
5 60% 2 sets of 4 .3516 .5264 .0155 1.0000 
5 60% 2 sets of 6 .3568 .3568 1.0000 - .0062  
5 60% 2 sets of 8 .4170 .3856 1.0000 - .0052  

*The HINoV-F and VS-KM columns contain the adjusted Rand indices for each of the 2 two true structures in 
the data set. Values of 1.0 in either the "True-l" or "True-2" columns indicate that perfect recovery of one of the 
true structures was realized. 

The  means  and var iance measurements  for this segmenta t ion  study varied by more  than five 

orders  o f  magni tude,  which would  cause certain variables to have an unduly large inf luence on 

the K-means  part i t ioning results. Stan "dardization of  variables is a thorny issue because  variable 

t ransformations can mask  structure that is present  in the or iginal  variables. However ,  Mi l l igan  

and C o o p e r  (1988) and Mil l igan  (1996) identif ied several  variable s tandardizat ion al ternatives 

that ou tper formed tradit ional s tandardizat ion methods  based  on standard deviat ions.  The  finan- 

cial  insti tution data  were  s tandardized using a t ransformat ion procedure  proven  effect ive in these 

studies (see Mil l igan,  1996; Mi l l igan  & Cooper,  1988). The  d u s t e r  analysis was subsequent ly  

conducted  on this s tandardized dataset, Z ,  with the e lements  o f  the dataset, z i j  defined as fol lows:  

x i j  ' ( i  = 1 . . . . .  M and j = 1 . . . . .  D.  (1) 
z i j  = M a x ( x i j )  - M i n ( x i j )  

The number  o f  true clusters and corresponding cluster  membersh ips  associated with the 

f inancial-services  data were  unknown. Therefore ,  evaluat ion o f  the var iable-select ion heurist ic  

was conducted  using repl icat ion analysis (Breckenridge,  1989; McIn ty re  & Blashfield,  1980; 

Morey,  Blashfield,  & Skinner, 1983), the steps o f  which  have been out l ined by Mi l l igan  (1996). 
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The dataset was divided into two random samples each consisting of  5701 objects. The ALL-KM 
clustering procedure described in section 5 was used to cluster the first sample. Centroids associ- 
ated with the resulting solution were subsequently used to assign objects in the second sample to 
clusters. In other words, a partition of  the second sample was obtained by assigning each object 
in that sample to the closest centroid corresponding to the clustering of  the first sample. Next, a 
second partition of  the second sample was directly obtained using the ALL-KM clustering pro- 
cedure. The adjusted Rand index was subsequently computed to identify the level of  agreement 
between these two partitions of the second sample. Milligan (1996) observed that this measure 
reflects the degree of  stability associated with the data clusters. The steps of  the replication anal- 
ysis were subsequently repeated, except that HINoV-F and VS-KM were each applied to the full 
data set in order to select a subset of  variables prior to K-means clustering. Thus, a replication 
analysis was conducted for clusters developed without the use of  the variable-selection heuristic, 
clusters developed using only variables selected by HINoV-F, and clusters developed using only 
variables selected by VS-KM. Because the results of these analyses might be sensitive to the 
random partitioning of  the dataset, we conducted three repetitions of  the replication analysis. For 
each repetition, we used a different random partition of  the 11402 objects into two samples of 
5701. 

Because the number of  clusters was unknown, the replication analysis was conducted using 
C = 2, 3, 4, 5, and 6 clusters. The results corresponding to each of  these cluster sizes are 
presented in Table 7, which reports the average adjusted Rand indices corresponding to the ALL- 
KM, HINoV-F, and VS-KM procedures for each cluster size. For each of  the procedures, average 
adjusted Rand indices increased over the range of  2 < C < 5, and decreased slightly when 
moving from 5 to 6 clusters. This finding provided evidence that five is a reasonable number of 
clusters for this dataset. However, regardless of  the number of  clusters selected, HINoV-F and 
VS-KM always resulted in larger average adjusted Rand indices than ALL-KM. HINoV-F and 
VS-KM provided the same average adjusted Rand indices for 2 _< C _< 4, however, VS-KM 
yielded better averages for C = 5 and C = 6. At C = 5, the average adjusted Rand index 
was .8657 for VS-KM, but only .7489 for HINoV-E We also examined the scree plot of  the 
ranked TOPRIj values for the five-cluster solution. Two potential elbows were evident. The first 
elbow suggested elimination of  all variables except 1, 2, 3, 4, and 15, whereas the second elbow 
excluded only variables 11, 12 and 13. The average adjusted Rand indices associated with these 
two potential subsets were .8382 and .8582, respectively. These values are somewhat better than 
the HINoV-F result and nearly as good as the VS-KM result. 

The VS-KM procedure eliminated two variables related to "interest income" (variables 11 
and 13), which enabled greater stability in the final cluster solution. When the K-means algorithm 
(C = 5) was applied to the entire dataset upon removal of these two variables, an interpretable 

TABLE 7. 
Results of Study Ill: Replication analysis for the financial services data* 

ALL-KM HINoV-F VS-KM 

Number Adjusted Adjusted Eliminated Adjusted Eliminated 
of clusters Rand Index Rand Index variables Rand Index variables 

2 .1705 .2636 11 and 12 .2636 11 and 12 
3 .5447 .6294 11 and 13 .6294 11 and 13 
4 .5689 .7425 11 and 13 .7425 11 and 13 
5 .6889 .7489 11 .8657 11 and 13 
6 .6205 .7136 11, 12, and 13 .8290 11 and 13 

*The replication analysis was conducted for three independent partitions of the 11402 objects into 2 samples 
of 5701 objects each. The table values contain the average (across the three replication analyses) adjusted Rand 
indices for both the ALL-KM and VS-KM procedures. 
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cluster structure was realized. This structure produced two relatively small clusters of large firms: 
one showing high performance and strong portfolio value, the other displaying moderate perfor- 
mance. The three remaining clusters were composed of small to moderate sized firms primarily 
differentiated based on performance measures. 

8. Discussion 

8.1. Summa~ of Major Findings 

This paper has presented a heuristic algorithm for selecting subsets of variables for inclu- 
sion in a K-means cluster analysis. This heuristic, which makes use of a measure of cluster 
homogeneity, and the popular adjusted Rand index for measuring cluster recovery, was tested 
across a wide range of problems in order to discern its ability to eliminate masking variables. 
The major findings of the study, can be summarized as follows: 

1. When no masking variables were present in the dal~ets, the use of the variable-selection 
heuristic resulted in little deterioration of cluster recovery. For these datasets, the perfor- 
mances of ALL-KM, HINoV-E and VS-KM were equally impressive. 

2. When no outliers were present in the datasets, VS-KM was effective at eliminating masking 
variables regardless of the number of masking variables and the correlation among them, 
whereas HINoV-F was only effective when the masking variable correlation was low. Our 
results suggest that, both theoretically and empirically, VS-KM will generally outperform 
HINoV-F when correlation among masking variables is high. 

3. For datasets with two distinct true cluster structures, VS-KM was extremely effective at iden- 
tifying one of the two structures, whereas HINoV-F otlen failed to identify a true structure. 
Our results suggest that VS-KM will generally outperform HINoV-F when multiple true 
structures are present in a dataset. 

4. HINoV-F is computationally more efficient than VS-KM. However, like HINoV-F, VS-KM 
is not difficult to program and is reasonably efficient, averaging less than one minute of mi- 
crocomputer CPU time even for the 5000 < M < 7000-object datasets. 

5. Another important finding of this study, often not addressed in previous Monte Carlo analyses, 
is the strong performance of VS-KM for large datasets. Because datasets with thousands of 
objects are often encountered in practice, it was encouraging to observe only a small decrease 
in heuristic performance for the 5000 < M < 7000-object datasets. 

8.2. A Brief Comparison of HINoV and VS-KM 

Cm~one et al.'s (1999) HINoV procedure has several advantages over VS-KM that are note- 
worthy. First, it is conceptually more straighttbrward t~cause it requires only sums of adjusted 
Rand indices and adds vmiables in a single pass/observation. A second, and related, advantage 
is that it is computationally more efficient than VS-KM. A third advantage is that the minimum 
number of variables selected by HINoV is one, whereas VS-KM begins with the selection of a 
pair of variables. This is not a major advantage, however, because it seems reasonable to expect 
that two or more variables would generally be selected for clustering. 

We have provided theoretical arguments that VS-KM should outperform HINoV under two 
conditions: (a) correlated masking variables, and (b) multiple true cluster structures in a dataset. 
Our empirical studies in section 6 support these argtnnents. Because it is reasonable to expect that 
correlated masking variables and multiple true cluster structures are likely to be present in many 
datasets, particularly market segmentation databases that might consist of hundreds of candidate 
variables, we feel that VS-KM is a worthy alternative to t lINoV and other variable-weighting 
and selection methods. We recognize that no method is apt to always provide the best results. 
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8.3. Potential Applications 

Market segmentation. It has often been noted that nonhierarchical cluster analysis tech- 
niques, particularly variants of MacQueen's K-means method, have received extensive use in 
market segmentation applications (Arabie& Hubert, 1994; Chaturvedi et al., 1997; DeSarbo et 
al., 1984; DeSarbo, Manrai, & Manrai, 1993; Helsen & Green, 1991, Wedel & Kamakura, 1997). 
As noted by DeSarbo et al. (1984), the number of potential variables for market segmentation 
cluster analyses may exceed 200 variables and thus variable weighting and selection decisions 
are extremely important. Any technique that can be used to eliminate variables would be of 
considerable value. The results presented in this paper demonstrate the effectiveness of the new 
variable-selection heuristic for eliminating unnecessary variables from datasets with up to the 
5000 _< M _< 7000 objects and 14 variables (8 true + 6 masking). Therefore, we believe that 
the variable-selection method presented in this paper might be a promising new tool for selecting 
variables in large-scale market segmentation studies. 

Behavioral science applications. DeSarbo et al. (1984) described several areas of applica- 
tions for nonhierarchical clustering methods in the behavioral sciences. For subject classifica- 
tion in clinical psychology applications, they note that variable weighting and selection methods 
could be appropriate for choosing test items that would be useful for such classification. De- 
Sarbo et al. (1984) also observed that classification of students in educational psychology could 
be improved by using variable-selection procedures. For example our procedure could be used 
to select from an assortment of variables pertaining to classroom characteristics, administrative 
structure, faculty characteristics, student and parent demographic information, and other factors. 
Arabie and Hubert (1996) recently observed that cluster analysis applications in social psychol- 
ogy and sociometry have also become more frequent. In all cases, the VS-KM procedure should 
result in improved data analysis. 

8.4. Limitations and Extensions 

Limitations regarding the experimental testing. We selected Milligan's (1985) procedure for 
generating test problems because it is one of the best-documented and most frequenOy deployed 
generation procedures in the literature (Balakrishnan et al., 1994; Helsen and Green, 1991; Mil- 
ligan, 1980, Milligan & Cooper, 1986, Milligan 1989, Waller et al., 1998). Further, in some 
respects, we have pushed the boundaries of this generation process by considering up to 6 noise 
variables and increasing the level of correlation among such variables. We also have expanded 
testing to include the case of multiple true structures in a single dataset, which might provide 
a very fruitful avenue for future research. Nevertheless, we recognize that other types of data 
structures might yield different findings and could necessitate new parameters or methods for 
VS-KM. For this reason, comparisons of VS-KM with other variable weighting and selection 
procedures across a variety of other data structures would be a worthy avenue for subsequent 
research. 

Limitations and extensions of the variable-selection heuristic. VS-KM can be implemented 
in an informal manner (using tables or graphs) like HINoV or other variable-selection methods 
(Fowlkes et al., 1988). However, we presented a formal, parameterized version of VS-KM in 
order to facilitate a large computational study. One of the most serious criticisms of VS-KM is 
the need to identify parameter values for T, Groin, and Gfac. The parameter settings of T = .25, 
Groin, = .05, and Gfac = .5 provided good results for most of the more than 2200 synthetic 
data sets we considered, as well as the real-world data set, and can be considered as a guideline 
for subsequent studies. 

We observed that the recovery of the true cluster structure deteriorated as the number of out- 
liers increased. Two points are noteworthy in this regard. First, the VS-KM procedure performed 
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well when the outlier level was 40% (or 20%) and masking variable correlation was low, and 
when masking variable correlation was high and there were no outliers. The difficulty was en- 
countered when both masking vmiable con'elation was high and the outlier level was 40% (20%). 
The 20% and 40% outlier levels denigrate the "true" cluster structure, while at the same time a 
strong correlation among the "masking" variables creates a misleading structure among those 
variables. It seems that these extreme conditions bltLr the distinction between "true" and "mask- 
ing" variables and thus are of little pragmatic relevance. A second point is that recent progress 
has been made in the detection of  outliers (Cheng & Milligan, 1996) and it might be useful to 
examine outlier detection methods in conjunction with variable-selection procedures. 

Although the above noted shortcomings of  VS-KM were infrequent in our computational 
study, it might be interesting to examine variations of  the heuristic. The crux of  VS-KM is that 
multiple criteria should be considered in the variable-selection process, particularly when includ- 
ing the first couple of  variables. If a bad choice of  variables is made at the beginning of  a forward 
selection process, then the inclusion of  additional variables based on the adjusted Rand index 
might just compound the problem. In order to mitigate the chance of a poor initial selection, we 
consider both the adjusted Rand index and cluster homogeneity in the selection process. It might 
be possible to incorporate other types of  homogeneity or separation information when making 
this decision. Indeed, a separation criterion might be very effective for the data in Figure 3. An- 
other possible improvement would be to construct a local search method that adds or removes 
variables from S either randomly or based on one or more criteria. Although such a process 
overcomes some inherent problems with forward selection, it could be rather computationally 
intensive. 
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