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1. Introduction

According to Milligan (1996), the validation of a clustegitechnique
requires the generation of artificial data sets and testiadg/dnte Carlo simu-
lation so the researcher has prior knowledge of the exaattsiie of the data.
After generation and the subsequent clustering technigpécation, the re-
sulting clusters are compared with the known structure. kantyy, different
kinds of error are added to the known structure before thageting algorithms
are implemented, attempting to assess their resiliencdighhi (1996) notes,
however, that results provided by these methods are onlgrgérable to the
extent allowed by the data generation.

This paper will focus on the initial data generation step ditiding clus-
ters. For a detailed overview of the remaining steps of elugtlidation, see
Milligan (1996). A brief critique of current data generatitechniques is pro-
vided, followed by a the proposal of new cluster generati@thod that has
been implemented in several cluster validation studiesr(8te2003; 2004).
We end with a discussion of applicability for the proposeadhtéque to several
research areas.

2. Critique of Existing Techniques

1. Milligan (1985): Although a few simulation studies welesady in the
literature at the time, Milligan (1985) pioneered the esiea use of a
Monte Carlo approach in cluster validation by developingesasily im-
plemented algorithm, that used well-separated clustens firuncated
(slightly) multivariate normal distributions. Standardmal error or out-
liers were added to the clusters to simulate measurememtaard “messy”
data, with both additions increasing the variance withustgrs.

Results:

Standard normal errar Let = be normally distributed with mean and
variances?, and represented as~ N (u,02). If e ~ N(0,1) andz and
e are independent, it follows from elementary statisticd tha+ e) ~
N(u,0? +1). Becauser? + 1 > ¢2, the variance has been increased by
adding standard normal error, a result generalizable &/l distribu-
tion.

Outliers Letx = {1, z2,...,2,}' be ann x 1 vector of observations.
The z; arranged in order from smallest to largest are the ordeisttat
denoted byz (1), z(9), - .., 7(,) (Bickel & Doksum 2001; David 1981).
For the order statistics, the mean is denoted:pthe minimum byz ),
and the maximum by ,,. Lety = {y1,y2,...,ym}’ be anm x 1 vector
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of outliers where eacl; is farther fromz than any element of, so when
y is added tax and the resulting order statistics are examined, there are
three distinct possibilities:

(1) All m outliers are greater thary,,), resulting in the order

statistics of the combined setbeing, . . ., z(n), Y(1)s - - - » Y(m)s
(2) all'm outliers are less thany), resulting in the combined
order statistic/(1), - - - » Y(m)s T(1)s - - - » T(n)s

(3) b of them outliers are less than ;) andm — b outliers are
greater tham,,), resulting in the combined order statistics

Yy, -5 YY) L) -+ -5 L(n)s Yo4+1)5 - - - Y(m)-

If xis viewed as a set of fixed data, robust estimation theory (Smisv
and Leroy 1987; Hampel, Ronchetti, Rousseeuw, and Stahe) $88&/s
the breakdown point (the smallest number of arbitrary daiatp that
needs to be added to the observed data to change the estifrthiepop-
ulation variance is zero. Thus, if any additional data pofatgliers) are
added tax outside the rangex(,,) — z(;), the variance of the sample will
increase. Mclintyre and Blashfield (1980) note that incragitia variance
of the clusters increases the degree of overlap betweetedusloreover,
the initial separation between clusters, the parameteisedVN distri-
butions forming the clusters, and the underlying distitoufor the out-
liers are all random and internal (i.e., not user-specifidthiwMilligan’s
(1985) program. Because of these properties, the addifiontbers and
error will have differing, unpredictable effects on the arlging clusters.
Atlas and Overall (1994) note that Milligan’s (1985) gernina method
creates an unrealistic degree of separation between iduated concrete
statements about how much the clusters overlap cannot be; inadever,
this generation method is widely used in the literature.(sge Milligan
1980; Milligan, Soon, and Sokal 1983; Milligan and Cooper 1946-
ligan and Cooper 1988; Helsen and Green 1991; BalakrisHbaoper,
Jacob, and Lewis 1994; Waller, Kaiser, lllian, and Manry 1,98&mone,
Kara, and Maxwell 1999; Brusco and Cradit 2001).

2. Kuiper and Fisher (1975): Kuiper and Fisher (1975) gendratesters
from a sample of differing MVN populations with either idéwptor diag-
onal covariance matrices and different means; howevey, ribger pro-
vide insight into the amount of overlap between the clustised in the
Monte Carlo study. One can infer that overlap changed as #amand
covariance matrix changed, but it is impossible to quaritifydegree of
change.
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. Gold and Hoffman (1976): Gold and Hoffman (1976) sampledmary

population from a standard MVN distribution (i.e., with @piance matrix
equal to the identity). They created sub-populations by ragldandom
variables with differing expectations to data from the @ignpopulation,
but failed to note the distribution of the added random \#eis, mak-
ing it impossible to determine the degree of overlap betwgamerated
distributions.

. Blashfield (1976): Blashfield (1976) structured the growmdance ma-

trices to allow for correlations between the populationsaddition, after
the data were sampled from the specified populations, measaterror
sampled from a random uniform was added, causing the papusato
be more mixed (i.e., overlap was increased). As in Milliga885), the
degree of population overlap is impossible to determin@abse so many
of the parameters are randomly chosen.

. Mcintyre and Blashfield (1980): Mcintyre & Blashfield (1988ljered

the overlap of the populations by increasing (or decredshmgstandard
deviations of the various mixtures. But once again, no geeotion is
available of how much the populations overlapped.

. Price (1993): Price’s method empirically creates oveilapplusters by

“scooting” the means of the different distributions back éorth until the
desired amount of overlap is achieved. Price (1993) lookduaé levels
of overlap between clusters (2%, 20%, and 40%). Becausentiksod
is iterative in nature, and depending on the number of dlsstad the
number of dimensions, it can lverytime consuming. Also, because of
the empirical nature of calculating the overlap, not allgiole values of
overlap are obtainable as a result of a mathematically isipiisy due to
sample size restrictions or confoundings from multiple elisions. This
severely limits the generalizability of Price’s (1993) nwdh

. Atlas and Overall (1994): Atlas and Overall rely on the ipafation of

the intra-class correlation to control cluster overlaprmte that the intra-
class correlation “does not provide a perceptually meduoirpscription
of population overlap” (p. 583).

. Waller et al. (1999): These authors use what they refer iadisator

validities and compactness to control cluster overlap,reotd that “when
the indicator validities account for a large percentagdefiariance, the
clusters are well separated and easily discerned by viespéttion (p.
129).” However, visual inspection only allows comparisafigelative-
ness, such as, “These clusters overlap more than thosersiuste well
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as restricting comparisons to three or fewer dimensionghodigh the
Waller et al. (1999) method is intended to generate Plasm(@iiesters
that are based on real data) and is able to qualitativelyerélew much
clusters overlap, the overlap cannot be described in a fatreé manner,
which is necessary when generating high-dimensional @ds$a s

3. OCLUS

Beauchaine and Beauchaine (2002) caution that althougk saptess
has been achieved, it is unrealistic to develop methodsdbssiely on non-
overlapping distributions. The objective of this paper isedlep a procedure
generating multivariate data from known distributiong] arth a known amount
of overlap between clusters. Within the literature, this baen a difficult task;
for example, Atlas and Overall (1994) state:

Although it is easy to generate artificial data representamgiom
samples from underlying populations with different degrefover-
lap in their multivariate distributions, it is not easy tepliay or oth-
erwise communicate the extent of the population overlapahsa
manner that a reader can readily appreciate its significan&sg).

The proposed data generation procedure, OCLUS (overlaphigtpcs), makes
the concept of overlap understandable by approachingeclaserlap as the
percentage of shared density between clusters. OCLUS wagsapnmed in
MATLAB 7 and exists as a collection of m-files (available by catitag the
first author) and is able to capitalize on the strengths of nm@ryious clus-
tering procedures but avoids the weakness of not being aldsdess cluster
overlap.

3.1 Notation

The following notation is required in to describe OCLUS:

V' : the number of dimensions (i.e., the number of variables);

K : the number of clusters desired, whé&fg represents thét” cluster,1 <
k< K;

n:={nq,...,nt}, thekx1 vector of the number of objects within each cluster
whereN = K 1, is the total number of observations, For example,
n = [50, 50, 50|’ represents three clusters with 50 observations each;

n:={n,...,n,}is ak x 1 vector of mixing proportions, indicating the prob-
ability of observing an observation from ti&" cluster and providing an
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alternative method for sampling objects from specific cisssribject to
the constraingﬁi1 n = 1. For the example above using sample sizes,
the corresponding vector of mixing proportionsjis= [0.33,0.33, 0.33]
andN = 150;

3. := The desired covariance matrix for the variables inktfecluster:

R;. := The desired correlation matrix for the variables in #ecluster;

pg,;)*, pW), P p,S,;l is the overlap between the two clusters andCj,- on
dimensionv, p(”) is the total amount of overlap on dimensiorandP is
the average amount of overlapR\V;

D = {dy-}, wherel < k, k* < K. Letthe K x K identity matrix,Ix «k,
representX clusters with no overlap; in general, for=1,..., K and
k*=1,...,K,if dy - = 1 then the cluster€’, andCy- overlap, and if
d(k k) = 0 then cluster€’y andCy- do not;

X : the N x V data matrix;
Zrom & them!" observation on thet” dimension from thé&*" cluster;

fro(, 0xy) : the probability density function for the?” dimension of the:*"
cluster;dy, represents the vector of parameters relevatf}{0z);

Iy, Uky : the lower and upper bounds, respectively,#gy;

s : the separation parameter denoting how disjointrtbe-overlappingclus-
ters will be and represents the number of standard devitiom non-
overlapping clusters should be from each other. A higharevaidicates
more separation between clusters;

dist, : the different family of distributions from which clustecan be gener-
ated. The choice of distributions and their parameters dneetkin Table
1

z : for two clusters,Cj, and Cy-, z is the value such thafy,(z,0k,) =
frwv(2, Oy, fOr positive values ofi, (z, O, ) and fr, (2, Oy ).

3.2 OCLUS Algorithm

The OCLUS algorithm operates in the following manner:

1. Assumptions: all dimensions are independent and alterlsisare inde-
pendent.
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Table 1. Distributions available in OCLUS

Distribution  Notation Range of Parameter Definition
Uniform U(a,b) a<z<b a : lower bound
b : upper bound
Normal N(p,0) —oco<z<oo p:mean
o : standard deviation
Gamma Y(a,8) 0<z<o « : shape parameter
[ : scale parameter
Triangular  T(a,b,c) a<z<b a : lower bound
b : upper bound
¢ : shape parameter,< ¢ < b

2. The user provideB, P, n (ornp andN), V, s, K, j (or Ry) for each
cluster, andiist. Fordist, the distribution can be specified by choosing a
different family of distributions for each dimension or sjgging that all
dimensions are generated from the same family of distobsti

3. A matrix, O, denoting the order of clusters on each dimension is com-
puted fromD.

4. Each row ofO is randomized so the ordering is not the same on every
dimension.

5. Computd,, for dimensionj, j = 1.
6. Letj = j + 1. Repeat step 5 untjl = V' (once for each dimension).

7. Generate data from computed distributions. The comuutati the para-
meters proceeds in a sequential fashion. First, the paresrfetehe first
cluster is established and based on the specified overlBpand by P
the parameters for the second cluster are computed. Therg baghose
parameters (and the overlap considerations), the paresrfetehe third
cluster are computed. This process continues until the peteasfor all
K clusters have been computeblote Most distributions we use can be
generated from commands built into MATLAB. If not availablewever,
see Evans, Hastings, and Peacock 2000, for a guide to gegedatia
from various distributions).

3.2.1 Assumptions

Krzanowski and Marriott (1994) note “...directly genengtisamples
from an arbitrary high-dimensional joint distribution magt be possible” (p.
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154). Assuming cluster and dimension independence allbe/slusters to be
“pbuilt” from the marginals. By taking the product of the margls across the
dimensions, the known joint distribution of each clusten & formed, with
the inter-cluster independence allowing for direct corapiah of overlap. The
direct implications of the assumptions will be clearly séerihe section on
computing the distributional overlap.

3.2.2 User-defined Options

All user-defined options are explained in the notation sactimwever,
some restrictions are imposed bn

1. For any number of{, a given row ofD cannot indicate cluster overlap
between more than three clusters.

2. The maximum number of rows that can indicate overlap witbdltlus-
tersiskK — 2.

3. The maximum sum of the off-diagonalsbofis 2K — 2.

These constraints are arrived at by considering a set ofeckisn in a unidi-
mensional setting. Assuming the clusters differ in termthefr means, there
will always be two clusters on opposite ends of the contindliat have one
neighboring cluster; whereas, the clusters between theettr@me clusters
will have two neighboring clusters. For clarificatioD, will be further illus-
trated through an example design matiix, D is a symmetric design matrix
indicating the number of clusters and their overlap. Fongxa,

11100
11000
D=|{10100
00011
00011

indicates that cluster 1 overlaps with clusters 2 and 3, amslars 4 and 5 over-
lap. On inspectionﬁ follows all three restrictions. I there are two sets);
andSs, of overlapping clusters whet®y = {k1, k2, k3} andSy = {ky, k5}. S1
andS; are separated by the user defined value

3.2.3 User-defined Value
The value ofs determines the separation of clusters on each dimensions.

For distributions with bounded domains (uniform and trialag) on a given
dimension, the default separation between non-overlapglrsters is just the
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value that ensures the lower-bound of one cluster does restapywith the
upper-bound of a neighboring cluster (or vice-versa). Hstributions with
unbounded domains (normal and gamma), the default sepalziween non-
overlapping clusters is just the distance between the misetensures that
there is less than a 0.01 probability of two clusters ovguilagp. The user-
defined value ok is an additional value that is added to the default values to
increase the degree of separation. Thus, for two non-oy@rgliscrete clus-
ters, if s = 0, the clusters won’t overlap but they will “bump” up againsth
other inV dimensional space; however, as the value @ricreases “empty”
space will be created between the clusters (see Figures 2iartielexamples
section for an illustration of empty space).

3.2.4 Computing and Randomizitiy

FromD, OCLUS calculates the matri@ by locating the diagonal blocks
in D to determine which clusters are always going to be overtappith each
other and which clusters will never overlap with each other,(identifying the
subsetsS; andS; from above). Thus, defining the order clusters are generated
for each dimension. FdD, letV = 3 and the initial computation d be
21 3 4 5
O=|213 45 ] .
21 3 4 5

After O is computed, it is randomized within row so cluster generatiill be
random on each dimension, thereby allowing different eltssto have different
relative magnitudes for values across the dimensions. Xamgple, it might be
that cluster two exhibits the lowest values on the first dir@msvhile cluster
five exhibits the lowest values on the third dimension.

Furthermore, the randomization scheme is quite simple. ,RErstibset
of variables is selected at random without replacement. ,Tkremwing which
clusters must overlap in the variable subset (ffB the order of the clusters
is randomly chosen to be the original order within the sulpsetided in the
initial computation ofO or the reverse order. One possible randomization of
the example is
21 3 4 5
31 2 5 4
5 4 2 1 3
where on the first dimensions OCLUS would generate the clustéhe order
specified by the first row o®; the order of generation on the second and third
dimensions would be determined by the respective row® ofThis random-
ization allows for numerous multidimensional configurasiaa arise from the

0=

)
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same underlying structure, a feature found desirable arey @mponent for
generating random and clustered data (Milligan 1996; Wall@l. 1999).

3.2.5 Determining Overlap Among Different Clusters

To find overlap among the different clusters, the joint disttion of each
dimension is determined by simple transformations on tiv ftistribution of
the clusters. By the independence-of-dimensions assamgbr f,(x, Ok, )
andly, < Trem < Uiy, the joint distribution of cluste€’, is

fr(@rt, Op1) - - - frov(z, Opy). (1)

The expression in (1) can be rewritten as

”
1 feo(, Oro)- )

v=1
By determining (2) for each cluster, the distribution of leatuster can be writ-
ten as the matrix (each row represents a cluster)

H)‘szl flv(-% 91?1)
_1 Jou(z, 02y
distxc — [To=1 f2.( 2)

1Y, Fico (2, Oc0)

Now, the overlap component can be calculated: the overlapdas two clus-
ters,C, andCy-, on dimensiorv is

pl(;;c)* = mln|:(/l fk*v($76k*y)d$+/ fkv(x,ekv)df),

( /l Fon(, Op0) e + / fk*v(a:,ek*v)da:)} , 3)

given positive values of
fk*v(zvek*v) andfkv(zyekv); (4)

z must exist and (4) must be satisfied for (3) to hold. If the value(4) are
zero, thenC, and C- do not overlap and the function in (3) will also equal
zero. If z does exist and (4) does not hold, the two clusters will oyelat

the overlap will not equab,i%)* (i.e., (3) is defined, but the desired value of
p,(jg)* is not achieved). When (3) is defined and (4) is true, the twstehs will
overlap by the desired amount and data from the respectstghditions can

be generated. In deciding how to generate overlappingerkstwo types of
overlap called marginal and joint are considered.
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Marginal Overlap. Marginal overlap is defined by separately establishing the
overlap for alllV marginals. Thus, the goal of the data generation procedure is
to establish either an equal and fixed amount of overlap fdr aimensions or

to establish a different (but fixed) amount of overlap for each

Joint Overlap.Joint overlap between two clusterd”*”, is defined by establish-
ing an overall and fixed amount of overlap for each of thenargins. By (3)
and the independence-of-dimensions assumption, thegeantap is computed
by the product of the marginal overlaps:

\%
pklg* _ H pg];)* . (5)
v=1

Results. The definitions of marginal overlap and joint overlap direddsd to
two asymptotic results.

Result 1. If the amount of overlap for each marginal is fixed, joint
overlap converges to zero as the number of dimensions sesea

Proof. Each cluster(,, exists inRV. For every, p,(fz)* can be cal-
culatedK — 1 times (the maximum number of overlapping regions

imposed by the restrictions dn). Recalling that for eacbg,’g)*, if 2
does not exisp,g,?* is zero, and the marginal overlap for dimension

vis
P = 3 P /(K —1) (6)
Cr#Cir
(6) is computed/ times to calculate the marginal overlap for each
dimension. Giver) < p(*) < 1 for all p(*), by (2), asV — oo, the
joint overlap is

P=][r" =0, 7

v=1

due to an infinite product of fractions less than unity. Thushasnumber of
dimensions increases and the joint overlap convergesdother clusters should
become more discernable. Result 1 is a strong indicatidrMhiggan’s (1985)
method, which shows increased cluster recovery as the nuafib&riables
increase (Milligan 1980; 1996), manipulates marginal by adding error
and outliers to the data.
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Result 2. If the amount of joint overlap is fixed, overlap for each
marginal distribution converges to 1 as the number of dinoeiss
increases.

Proof. For simplification, assume that th&) are equal for alb. To
obtain a total overlap oP between cluster§’;, andCy-, the overlap
on each dimension must bePv (since by (2), joint overlap is the
product of the dimensionsPé)V = P). Then,

iMy_o PV =1 . (8)

Thus, for small or moderate joint overlap in a highly dimensiospace, the
marginal distributions will have a very high degree of oaprl Joint overlap
should be considered and studied by cluster analysts bedauslicates that
two clusters actually occupy the same regiomRof space.

3.2.6 Distributions

This section will show how to determine, whéhis given, which spe-
cific distributions to use from a family of distributions. Thertvations will only
provide the analytical results for two clusters on one disi@m Similar results
for more than two clusters and one dimension would requieggelamount of
space. Nonetheless, these results are easily derived ftplmelusters over-
lapping within a data set across multiple dimensions bygudie results in
(1)—(4). Regardless, OCLUS implements derivations for aalyer of K and
V for each distribution. Because all examples illustrategibeeration process
for one dimension, the dimensionality superscript will bepbed. Note To
calculate marginal overlap, sét= 1). Additionally, the complete derivation is
only provided for the normal with equal variances; wher#aes results for the
other distributions are provided but the derivation is t¢eait

The normal-equal variances. Letting x; ~ N(u1,02), x2 ~ N(uz,0?),
wherey, o, and P are known o unknown, andb is the cumulative distribu-
tion function of the standard normal distribution, we obtdiehman & Casella,
1998, p. 93)

P(wgu):@(u;'u), 9)

2). The mtegral evaluated is

)
[ (@2; i
[ =

wherex ~ N(u, o

> —(

— “1)2}dx1 - pv . (10)

+ 202

m\»—A
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Solving for g,

/Z 1 exp{_($2 —M2)2 }de

—00 0‘(277‘)% 202
< 1 —(z1 — m1)? 1
+/ —ex dey, = Pv =
z 0‘(277')5 p{ 20_2 } !
Pry<z)+1—Px1 <z) = Pv=

invoking (9) results in two equations for z,

pt

2 = wm4od 11— TV)

PL

zZ = U2 —aq)_l(l— TV) =

solving these gives
Pv Pv
Ml""@'@il(l—?) == /,62—0'4)71(1—7)?
B Pv
pe = p1+20(@ 1 - —)) (11)

OCLUS generates overlapping clusters from this family ofritistions by the
following steps:

1. Choosegu; from aU(0, 10) distribution.

2. Set the variances equal to one (or choose randomly andwsa) .eq
3. Findz by using a “built—in” cumulative distribution function.

4. Solve forpus.

For example, lefi; = 0, P = .05, andV = 1. The first distribution is known
to beN(0,1) andz = ®~1(1 — -92) = 1.96. Thus, the second distribution has
to have a mean df(1.96) = 3.92. By generating data for the first cluster from
a distribution of N'(0, 1) and data for the second cluster fraw(3.92, 1), the
overlap between the two clusters will b&. Figure 1 plots the pdfs of these
latter two distributions.
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0.4

0.35 i

031 Normal (3.91, 1)
’ Normal (0, 1)

NN /

0.2 i

f(x)

0.15 i

0.1 i

Figure 1. Example of two overlapping normal distributions with equal naga

The uniform. Let z; ~ U(al,bl), XTo ~ U(ag,bg), whereb; < by (refer

to Table 1 for an explanation of the parameters). For dintensi let aq, by,
and P be known whileas andb, are unknown. OCLUS generates overlapping
clusters from the uniform distribution by the following p&e

1. Chooser; from aU (0, L) distribution.
2. Sethy = a1 + L.

3. Solveay = by — L(PV).

4. Sethy = as + L.

wherelL is the length (i.e., a function of the variability) of the torim distrib-
utions on thev™ dimension. If the two clusters are generated friif, , b)
andU (aq, ba), respectively, then they will have an overlapt on dimension
v. The same procedure can be repeated for any number of dimerasid any
two distributions.

The normal-unequal variances.Let z; ~ N(u1,0?) andzy ~ N(pz,03)
(refer to Table 1 for an explanation of the parameters). jLednd p, equal
Prob[z; > z] and Problz, < z], respectivelyp; + pz = pt¥), andpu; < po.
(Note: If p1 = po, theno; = o9). In addition, letus, o9, P, andp, be
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known. Two restrictions are required $0(x1) and fo(xz2) intersect only once:
fo > p1; 02 < 01. The integral of interest is

/; 02(%) exp{< }d:v +/ or(2n) 2 exp{( }d:cl
(12)

andz can be calculated by
z= g — 2@ (1 —pa) , (13)
and, in turn, use (13) to obtain

2
fo(z, p2,00) = : 1eXp{(z_25§) ’ (14)

o9(2m)2

OCLUS generates overlapping clusters from normal distidbgt with
unequal variances by the following steps:

1. Chooseus from aU(0, 20) distribution.
2. Choosers from aU(1, 5) distribution.

ex (@~ 1-pi)?
3. Setr; = =~}
f2(z,p2,02)(2m) 2
expr e la-p)»?
4. Setyy =z — p{—"”%}@_l(l — 1)

fa(z,p2,02)(2m)

The gamma. Let z; ~ y(a1,51), x2 ~ y(ag, B2) (refer to Table 1 for an
explanation of the parameters). (the point wherep; = Prob[z; > z] and

= Problzs < z]), a1, andg; are known angs, is unknown. The pdf of the
gamma is

@) = gy B 1)
where - )
_ Tya-laynr “ U1 (2
Do) = [~ (5) expl ) (5)de (16)
reducing to
T(a) = (a—1)! (17)

whena is an integer (Hogg & Craig, 1995). The integral of interest is

/ o x§“2 lexp{—= }+/ o :cffl 1exp{_ﬁ—”ﬂ'jl}:Pé
(18)
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Integrating the two terms on the left-hand-side of (18) nexuintegration by
partsa — 2 anda — 1 times, respectively. As the normal with unequal variance,
whenz, p1, andps are known, there is a unique combinatiorn@fandjs that

will lead to the overall desired level @?. Calculatez by

z=v"'1=pr,o,B) - (19)
Use (15) and (19) to obtain,

iz a0, By) = —— o lep( ) (20)

I'(en)By
Setting (20) equal to the pdf af;, yields two equations with two unknowns,
but solving this system of equations requires a search Bedategrating the
second term on the left hand side of (18) results in a contiritzetion (Weis-
stein, 2003). To find the appropriate and 3., a grid search method (GAM-
SEARCH) is used, creating a vect@s, of possibledy’s ranging from 1 to 10 in
steps of 0.1, and a vectafry, of as’s ranging fromg; (a; —1) to 81 (an —1)+10.
All pairs of values from3, anda are evaluated, and the unique solution are
those values satisfying (3) and (4). Through empirical ttte¢ aforementioned
range is usually suitable for finding the unigue solution, dan be widened if
(3) and (4) are unsatisfied in the initial search.

The exponential and chi-square distributions. The exponential and chi-
square distributions are each special cases of the gammaexpoaential is
a~(1, 8) and the chi-square distribution isyéx, 2) (where« is the degrees of
freedom of the chi-square) (Evaes al, 2000). For all exponential distribu-
tions,« is fixed at 1; for all chi-square distributions s fixed at 2. Under these
conditions, (3) may be obtained but (4) violated, causingtie generation of
K > 2 populations, multiple points of intersection resultingairtonvolution
of the desired amount of overlap. Thus, OCLUS does not gendaditefrom
these two distributions.

The triangular distribution. The pdf of the triangular distribution (Evams$
al. 2000, pp. 187-188) is
2(r—a) .
flx) = ————F—ifa<zxz<c;
[(b—a)(c—a)]
2b—z) .
= —————7 _jfe<x <. (21)
[(b—a)(b—0)]
Letxy; ~ T'(a1,b1,c1), z2 ~ T(az, ba,c2) (refer to Table 1 for explanation of
parameters), where,, b;, andc; are known. Let be the point wheré’[z; >
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z] andP[xy < z| are known and equal t@ andp.. The integral evaluated is

b 2(b —w) 2 2z —ay) o
/Z (b1 —a1)(br — Cl)dx * /a2 (ba — ag)(ca — ag)d$ =P (22)

Choosingp; and findingz by solving the first term on the left-hand-side of (22)
and applying the quadratic formula, gives

=

o 2()1 + (41)% — 4(1)% — pl(bl — 01)(61 — al)))
2
The result from (23) can be used in conjunction withto find the parameters
for the second distribution.

To find overlapping clusters from the triangular distribnti®@CLUS fol-
lows these steps:

1. Chooser; from aU (0, 20) distribution.

(23)

2. Choosé; from aU (a1, 20) distribution.

3. Letey = “124“ (for other alternatives, see the section below regarding
skewed data).

2ps
4. Setag = z — fénz)

5. Choosef(cz) fromalU(f(z), f(c1)), thency = as + %

6. Solve forby by by = % + as.

3.2.7 Skewed Data

Waller et al. (1999) generate skewed data to simulate “realddata.
After normal data are generated, skewed data can be createdifmple trans-
formation from the non-normal distribution with desireeskess and kurtosis,
Fleishman (1978) provides the formula

Xs = a+ bX + cX? 4 dX3. (24)

For a table of the three constants (b, ¢, and d) controllisgskewness and kur-
tosis, see Fleishman (1978, pp. 524-525). An indepth dismus$ generating
non-normal skewed data is given in Fleishman (1978), Tadalan(i1980), and
Vale and Maurelli (1983), but it should be remembered thasirey normally
distributed data to be skewed will change the original amofioverlap.
OCLUS provides two natural methods of generating skewed wihiia
still knowing the overlap. First, for the gamma distributihie mean isy8 and
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the mode is?}(a—1). The relationshipa3 > 3(a—1), indicates data generated
from the gamma distribution are naturally skewed. Seconelysl data with
known overlap can be generated from the triangular digichlby noting the
following relationship:

1. A symmetric triangular distribution is found by letting= “T“;

2. aleft-skewed triangular distribution can be formed hitirlg ¢ = ”+43“;

. . . . . . b a
3. aright-skewed triangular distribution can be formed éiyisgc = 3T+

These two distributions allow cluster validation studiegniude skewness as
a factor without altering the amount of overlap present i generated clus-
ters. However, OCLUS does not include a method (beyond therggan of

variables with different variances) to directly controf fbe degree of kurtosis.

3.2.8 Correlated Data

Assume thaiX is a data matrix of. observations from d-dimensional
distribution that contain&’ clusters. Thus, under a model where the correlation
structures of the groups are fully unrestricted, the first gambnd moments of
C, can be represented byla x 1 mean vectoru,,, and aV x V' covariance
matrix, 3, respectively. Then, the squared statistical distance l{f#fses of
computing overlap between clusters), from an arbitrarg gaint,xj, ,, to the
center ofCy, is

d2 = (x* — ) SN (xF = ) - (25)

Now we define a rotational transformatidn, i such thatY = XL. This
transformations results in transformed group means aratizmce matrices for
the transformed observations, and therefore the groupsnéan = 1,.. ., K,

of the transformed variabl¥ are thenu)! = p, L and the covariance matri-
ces for each group aiE} = L’S,L. Given the new variable the statistical
distanced?., of any pointy* and a transformed group meay is:

dy=(y" = )(E) v - ) (26)

Through substitution (26) is:

d? = (x*L — p,L)(L/SL) "' (x*L — p, L)

dy = (X" = )LL) (%" - L)

dy = (= ) LLTSL L (X - )

2 = (X" = ) (CLHSL ) (X - ) (27)
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SinceLL ! = I/-1L/ = I then:
Ay = (x* — ) S (x* — )’ (28)

resulting indfj = d2. Since the definition of overlap is based on statistical
distance, any linear combinatida will not change the proportion of overlap
that was defined in the original data skt,

Generally, using the OCLUS algorithm as described ab®/ecan be
generated from normal distributions with univariate vaci, resulting in the
k' clusterX;, being distributed as

X} ~ MVN (s, 1).

wherep,, represents the mean vector for tfig. Correlation between the vari-
ables for thek*" group, defined either by the covariance mal¥ix or the cor-

relation matrixRy, can be incorporated into the data by settlag- 37 or

L = R}, respectively. For clusters that are overlappibgnust be the same
for all observations within the overlapping clusters (is@mmon within-cluster
covariance matrices are assuml, = X). If clusters or groups of clusters
(see the section on sub-clusters below) are well-separdiféekrent values of
L (or within-cluster covariance matrices may be unique) ierwell-separated
clusters (or groups of clusters) may be used with cauti@n, (ihe user must
check the resulting transformations to determine if umidesl overlap was in-
troduced into the system). An example of correlated clustiercture is pro-
vided below in Example 5. Additionally, this allows for norhdistributions
with unequal variances to be arrived at via transformatafnsormal distribu-
tions with equal variance®pte: The method for generating data with known
overlap and known correlation matrix via transformatiofshe original data
was arrived at through helpful comments provided by Revie®ye

4. Practical Concerns of OCLUS

4.1 Sub-clusters

Sub-clusters are defined as two or more sets of non-overlaphiatgrs
containing either a single cluster or a group of overlapgihgters. D from
the illustrative example given above indicates a desigrirabdntaining two
sub-clusters. The inclusion of sub-clusters in a particalaster generation
design alters the way overlap is operationalized. Becawsginal overlap is
considered the average of overlapping regions within a dgios, the overlap
in the sub-clusters must be adjusted for the fixed value of #ém®whinator in
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(6). For example, imagine three clusters embedded in onerdiion with a de-
sired marginal overlap gf(") = .10. If the clusters are generated as a “string”,
clusterl will overlap with cluster2 which also overlaps with clustéc By (6),
the overlap between each pair must be 0.10, but the same cleistérs could
be embedded in one dimensional space with two sub-clustelisating two
overlapping clusters comprise one sub-cluster while aleiag cluster com-
prises the remaining sub-cluster. For (6) to remain equalli® the overlap in
the first sub-cluster must then be se0t20.

Even if overlap is equalj-dimensional spaces with sub-clusters cannot
be regarded the same dslimensional spaces with “strings” of clusters, al-
lowing for the structure of the overlap to become a factorluster validation
studies. Depending on the overlap structure of the datigusclustering al-
gorithms may perform differently in the presence of sulstets.

4.2 Three Overlapping Groups

All of the previous illustrations of data generation focus generating
two clusters, but (3) and (4) can calculated for any pair o$w@rs. It is possi-
ble that due to the value @f?), a set of three or more clusters will occupy the
same bounded sub-space. If this possibility were ignohedgénerated clusters
would result in a greater degree of overlap then intended.\¥considers ad-
ditional overlap caused by other clusters and adjusts theusd,,'s to achieve
the desired value g(*). This adjustment made by OCLUS is carried out by
slightly moving the means of the clusters and recomputieg tverlap in an
iterative fashion until the desired overlap is achievedr actical purposes,
any two clusters with? < .01 are not considered overlapping (if more sepa-
ration is required between non-overlapping clusters,tgrealues ofs can be
chosen—see above in the discussior)ofAdditionally, the maximum value of
P allowed by OCLUS ig).50, a limit placed onP because it makes little sense
to search for clusters when the joint overlap is greater 8G& (Note This
does not restrict the marginal overlap from being more th&8)0

5. Examples

When discussing different distributions from which OCLUSalde to
generate data, examples of pdfs were provided so overldd bewisualized
as shared densities. This section applies the above metingdaé¢rate artificial
data with known structure. For each example, scatter pfdtee@enerated data
points are displayed.

Example 1: Non-overlapping Normals,K =5,V = 2

Example 1 provides a depiction of data that adheres to Corm@kk7 1)
definition of internally cohesive and externally isolateldsters. For non-
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Figure 2. Example of non-overlapping clusters in 2 dimensions

overlapping clusterd) = Ix .. Figure 2 provides a scatter plot for the data
generated from these distributions, whare- [100, 100, 100, 100, 100]'.

Example 2: Mixture of Normal and Uniform Dimensions, K =3,V =2

This example shows the ability of OCLUS to generate differeixtumes
for each dimension on which a cluster is measured. This isatdidvantage of
assuming independence across dimensions. For this exampte.10. Thus,
the total overlap on each dimension mustyg0 = .3162. Let the design

matrix be
1 10
11 1],
0 1 1

indicating that clustet overlaps with cluste2, which overlaps with clustes.
Figure 3 provides a scatter plot for the data generated fresetlistributions,
for n = [100, 100, 100]". The advantages of mixing distributional clusters can
be seen, from Figure 3. The generated clusters are neithangbes as clusters
generated from a uniform distribution or spheres as clastemerated from a

D=
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Figure 3. Example of overlapping clusters in 2 dimensions

normal distribution. Instead, they seem almost as rectsngith rounded cor-
ners and edges. This mixing allows for the overlap to stay #meswhile
altering the shape of the generated clusters. In turn, tiables testing the
effects of overlap on procedures that favor clusters of aquaar shape.

Example 3: Overlapping Uniform Clusters, K =5,V =3

For this example, design matrix from thuser-defined optionsection,
]3, is used, with overlap chosen to fe= 0.20 in three dimensions. Figure 4
provides a scatter plot of data generated from these disirits. As indicated
by D, there are two groups of overlapping clusters. Group 1,aininty the
first three clusters in the lower right hand corner of Figures4yell separated
from group 2, in the upper right hand corner of Figure 4. This gty of the
design matrix allows for the testing of several differergrsarios and orienta-
tions of clusters, and for evaluating procedures that ciemsimaller amounts of
observations located away from the majority of objects toldiers (Wishart,
1969).
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Figure 4. Example of overlapping clusters in 3 dimensions

Example 4: Introducing Correlated Variables

This example illustrates the introduction of correlatiotoithe cluster
structure in a bivariate space where there are only twoesistFirst, assume
that we want to generate two clusters that overlap with griba0.20 in a two
dimensional space where the variables are not correldbestrated in Figure
5.

The means and correlations for the two groups are

py = [16.02,13.62] p, = [17.91,11.73]
1.00 0.04 1.00 0.02
Ri = [ 0.04 1.00 } Rz = [ 0.02 1.00 ] ’

where the correlation between the two variables in bothggads entirely due
to sample variation. Now suppose that we wanted the vasableach cluster
to have a correlation of 0.40, then we would multiply b&th andX, by
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Figure 5. Example of uncorrelated variables in 2 dimensions

L1/ _ [ 098 020
~ 1020 098 |’

whereL is the desired correlation matrix. The resulting data is ctepli in
Figure 6.
Now the means and covariances of the transformed clusters ar

i =[18.47,16.61] b =[19.93,15.14]
« [ 100 0.40 . [ 1.00 0.40
Rl_[o.zm 100 | B2= ] 040 1.00 |’

where the means have slightly shifted due to the obliqudiontaf the data.
However, the desired correlation between the variablevbas achieved and
the theoretical probability of overlap between the clustsistill 0.20.

6. Discussion

6.1 Advantages of OCLUS

The most attractive feature of OCLUS is its versatility in ¢ireg data
with a known amount of overlap. In addition to its ability teeate the well-
separated clusters to satisfy Cormack’s (1971) definitid®l.@S can generate
well-separated groups of overlapping clusters (Beabove). Instead of ma-
nipulating the structure of the covariance matrices andtiorg uninterpretable
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Figure 6. Example correlated variables in 2 dimensions

clusters to obtain overlap, OCLUS achieves the same goajtaradly, yielding
readily understandable overlap in terms of shared deniiibg.only does this
retain the original interpretability of the clusters, itoéds the iterative method
employed by Price (1993), giving a quantification of overlaplevbaving com-
puting time. Another novel feature of OCLUS is the ability tengrate data
with known overlap from several different distributiongnsidered important
for advancing the understanding of different clusteringoathms (Milligan,
1996).

6.2 Limitations

A limitation of OCLUS is the inability to sample directly frothe joint
distribution of the clusters, restricting the generatidrih@ joint distribution
clusters to be the product of the marginal distributions. &rkbv Chain Monte
Carlo simulation might be a way to sample directly from thiafdistribution,
but the trade-off will be a substantial increase in the camguime. Addition-
ally, the ability to introduce correlation into the systerhil@ preserving group
overlap may make generating clusters from the joint digtidm unnecessary.

Similarly, another limitation of the OCLUS procedure is thability to
generate clusters with known skew and kurtosis. As notedeakden dis-
cussing skewed data, the triangular distribution is usegetterate data with
skewed features; however, the exact degree of skewnesskamen. Thus, in
situations where researchers desire to have the most tontpthe degree
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of skewness and kurtosis in the generated clusters, we sagmthe use of the
Waller et al. (1999) procedure; on the other hand, if clustarlap is of pri-
mary focus, we recommend the OCLUS procedure.

6.3 Future Applications of OCLUS

OCLUS should aid the advancement of the field of cluster arsabsd
classification by helping to study the robustness of bothttoaml (single-link,
complete-link,k-means, etc.) and untraditional strategies (ADCLUS, pyramid
clustering, fuzzy clustering, etc.), and the effects ofiaas distributions and
mixtures of distributions on the performance of these atligors while phrasing
the results in terms of cluster overlap.

OCLUS may play a useful role in investigating techniques afalde
selection (Brusco & Cradit, 2001; Fowlkes, GnanadesikaKeg&ering, 1987;
Fowlkes, Gnanadesikan, & Kettering, 1988; Carmone, Karsla&well, 1999)
and variable weighting (De Soete, DeSarbo, & Carroll, 1985SDete, 1986)
by directly manipulating the dimensions independentlydifidnally, data can
be generated to investigate the robustness of various aetiged for deter-
mining the number of clusters, both for those that are aasgCalinski &
Harabasz, 1974; Duda & Hart, 1973; Hubert & Levin, 1976; Bakétfubert,
1975; Beale, 1969; Atlas & Overall, 1994) and those of moceme vintage
based in finite mixture modeling and model selection (Bozdo§aSclove,
1984, Banfield & Raftery, 1993; Windham & Cutler, 1992; Bozdng1993).
OCLUS can also be used to test the sensitivity of methods pthegito de-
termine the number of modes in a data set (Hartigan, 1988jdgdar 2000;
Hartigan & Hartigan, 1985; Hartigan & Mohanty, 1992). Oukr@CLUS pro-
vides an interpretable mechanism for evaluation of tealmigbustness as de-
veloped over several different areas of cluster analysi$e finixture modeling,
and latent profile analysis.
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