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Abstract

A common representation of data within the context of multidimensional scaling (MDS) is a collection of symmetric proximity
(similarity or dissimilarity) matrices for each of M subjects. There are a number of possible alternatives for analyzing these data,
which include: (a) conducting an MDS analysis on a single matrix obtained by pooling (averaging) the M subject matrices, (b) fitting
a separate MDS structure for each of the M matrices, or (c) employing an individual differences MDS model. We discuss each of
these approaches, and subsequently propose a straightforward new method (CONcordance PARtitioning—ConPar), which can be
used to identify groups of individual-subject matrices with concordant proximity structures. This method collapses the three-way
data into a subject x subject dissimilarity matrix, which is subsequently clustered using a branch-and-bound algorithm that
minimizes partition diameter. Extensive Monte Carlo testing revealed that, when compared to K-means clustering of the proximity
data, ConPar generally provided better recovery of the true subject cluster memberships. A demonstration using empirical three-way

data is also provided to illustrate the efficacy of the proposed method.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multidimensional scaling (MDS) is an important
method for spatial representation of psychological
phenomena. The literature is replete with empirical
studies that use MDS as the primary method of analysis,
and considerable work has also focused on methodolo-
gical development. A variety of textbooks, edited
volumes, and review articles have addressed the
importance of MDS models in various branches of
psychology (Ashby, 1992; Borg & Groenen, 1997;
Carroll & Arabie, 1980, 1998; Nosofsky, 1992). For
example, Nosofsky (1992) emphasized the critical role
that MDS plays in the development of theories related
to cognitive processing models. More recently, Carroll
and Arabie (1998) provide an encompassing review
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associated with the role of MDS in representing the
psychological structure underlying perception and judg-
ment. This review article also highlights a number of
recent methodological advancements.

The strength of its appeal in psychology arises in large
part from the fact that in MDS information about
complex competitive relationships between stimuli can
be shown compactly in visual, graphic displays, usually
taking the form of spaces. These spaces can be generated
from proximity matrices developed from a variety of
respondent judgments such as similarity, identification
confusion, same-different errors, or any other
measure of pairwise relations between stimuli. The key
assumptions are that these judged stimuli are described
by values along a set of dimensions that place the
stimuli as points in a multidimensional space and
that the similarity between stimuli is inversely related
to the distances of the corresponding points within that
space.
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A common practice in applications of MDS is for the
analyst to apply the selected model to a single proximity
matrix produced by “pooling” proximity scores across
two or more respondent matrices, the resulting “group”
matrix reflecting a simple averaging of the individual
scores. Despite the widespread popularity of this
seemingly straightforward practice, a number of re-
searchers caution that pooling by averaging across
source matrices can distort the psychological structure
of the data (Ashby, Maddox, & Lee, 1994; Furnas, 1989;
Lee, 2001; Lee & Pope, 2003; Siegler, 1987). For
example, Ashby et al. (1994) demonstrate that standard
MDS models are apt to provide very good structural fits
to similarity matrices obtained via averaging across
respondents, regardless of the properties of the indivi-
dual respondent data. Building on the work of Ashby et
al. (1994), Lee and Pope (2003) recently proposed a
method that uses the Bayesian Information Criterion
(Schwarz, 1978) to determine the viability of the MDS
representation for averaged data. The findings of both
Ashby et al. (1994) and Lee and Pope (2003) suggest that
excellent structural fits to the averaged data are not
necessarily indicative of even moderately successful fits
to the individual respondent data. It is quite possible
that the MDS model fit to the pooled matrix will
provide a structural representation inappropriate for at
least some (and possibly all) of the matrices used in the
pooling process.

If pooling across proximity matrices poses such risks,
what options are available to the analyst? One
immediate possibility is to develop individual MDS
solutions for each of the source matrices. Although
some academic studies of scaling use limited respondent
sample sizes (e.g., Ashby and Lee (1991) used only two
subjects), many research applications of MDS are
applied to relatively large samples. Because of the need
for larger sample sizes, it seems that individual-subject
analyses for many empirical applications of MDS would
be prohibitive. In addition, analysts would often be hard
pressed to offer a convincing interpretation for the range
of differing solutions across the individual matrices,
particularly when the number of matrices is large.

One of the earliest attempts to deal with averaging in
MDS was a “points of view” (POV) procedure
suggested by Tucker and Messick (1963). They sought
a compromise between the analysis of individual
subject-level data and the scaling of pooled group data
in an approach that purported to capture individual
differences. In their procedure, similarity judgments
were used to form a matrix of correlations among the
individuals that was then factor analyzed to obtain a
subject space, which in turn, was interpreted to identify
individual differences. In the POV model, clusters of
subjects were identified such that the individuals within
clusters display similar judgment patterns (i.e., are all
highly correlated) and individuals in different clusters

display different judgment patterns (i.e., have weak
correlations). Once identified, the procedure generates
sets of hypothetical judgments, one set for each cluster,
called a POV. These POV, in effect, represent a weighted
average of the judgments made by all subjects, with
those subjects in the corresponding cluster getting the
most weight (Young & Hamer, 1987). The final step in
the POV model is the analysis of each POV by an MDS
procedure, culminating in a separate and independent
solution for each view.

Despite some initial support, POV was criticized on a
number of important points (cf., Carroll & Chang, 1970;
CIliff, 1968; Ross, 1966), the most damning of which was
that it failed to capture individual differences in a
parsimonious manner. Critics argued that it was not
really an individual differences MDS, but actually a
factor analysis followed by MDS (Young & Hamer,
1987).! 1t is important for our present purpose to note
that, in fact, the POV procedure actually involves
averaging subjects, albeit a sophisticated weighted
average determined by factor analytic techniques
(Young & Hamer, 1987). The perils of averaging in this
manner were articulated by Ross (1966), who observed
that the sum of Euclidean distances is not Euclidean.

A third, and more elegant, option is for the analyst to
apply an appropriate three-way MDS model (Arabie,
Carroll, & DeSarbo, 1987; Carroll & Chang, 1970;
Takane, Young, & de Leeuw, 1977). One of the earliest
and most widely used three-way MDS methods is
Carroll and Chang’s (1970) INdividual Differences
SCALing (INDSCAL). This weighted Euclidean model
addresses the pooling issue by explicitly capturing the
effect of individual differences as weights, or impor-
tance, influencing the derived dimensions of the MDS
solution. In this approach, a set of dimension coordi-
nates is established for each stimulus, and each source
matrix is linked to this general coordinate space via a set
of dimension weights that stretches (or compresses) the
coordinates on each dimension. Carroll and Chang
(1970, 1972) also proposed the more general IDIOSCAL
model, which permits an idiosyncratic rotation of the
stimulus coordinate space for each subject in addition to
the differential weighting of dimensions. Winsberg and
De Soete (1993) developed CLASCAL, which is an
extension of the INDSCAL model that incorporates a
latent class method for obtaining clusters of subjects and
simultaneously linking each cluster to a general co-
ordinate space via a set of dimension weights.

Although three-way MDS methods capture individual
differences in an elegant formal framework, some

"More recently, Meulman and Verboon (1993) have reassessed the
POV perspective with a streamlined, reformulation of the original
procedure. Meulman and Verboon (1993) argue that despite the power
of an individual differences perspective, many settings still arise in
which “group” analyses are important (a point we take up
subsequently).
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problems nevertheless remain. First, analysts have
argued that the INDSCAL common space may not be
the best way to display group (as opposed to individual)
differences; in fact, the common space does not need to
fit any group or individual (Meulman & Verboon, 1993).
It is important to recognize that this limitation also
pertains to CLASCAL, which relies on a linkage of the
clusters produced by the latent class method to a single
configuration space. A second problem that arises with
INDSCAL is that the analyst is encumbered by the need
to provide interpretations for the derived dimension
weights. Arabie et al. (1987, p. 32) have argued that
when employing INDSCAL, “...the data analyst has a
responsibility to attempt to offer a convincing inter-
pretation of these fitted parameters. If they are not
interpretable, then the use of two-way MDS may be
more appropriate for the particular dataset.” However,
reverting to the use of two-way MDS begs the previous
pooling question as we have defined it. A third
limitation of INDSCAL and CLASCAL is that the
available software programs typically rely on weighted
Euclidean models, and are not designed to incorporate
alternative distance metrics (e.g., city block). This is not
to suggest that three-way MDS models for the city block
are not possible (see, e.g., Heiser, 1989), but available
software packages are almost exclusively restricted to
Euclidean distances.

In the present paper, we propose an alternative
approach, one which abandons the search for a single
best-fitting proximity matrix in favor of a search for a
set of best-fitting proximity matrices. We investigate the
possibility that the respondent sample can be partitioned
into groups of respondents who share comparable
proximity matrix structures. The viability of such an
approach has recently been recognized by Lee and Pope
(2003) who observed the need for a method that can find
groups of subjects with the same underlying spatial
representation. Our proposed method is a straightfor-
ward preprocessing tool that quantitative analysts can
apply prior to fitting MDS models. This method is quite
flexible and makes no assumptions about dimensionality
of the MDS solutions or the appropriate metric
(Euclidean, city block, etc.). In fact, our proposed
method can be used as a preprocessing tool for both
traditional deterministic MDS methods, as well as
probabilistic approaches (MacKay, 2001; Zinnes &
MacKay, 1983).

Our objective in this paper is to propose a method for
identifying groups of subject dissimilarity matrices that
have comparable structural properties. To accomplish
this task, we develop a measure for collapsing three-way
dissimilarity data into a subject x subject pairwise
dissimilarity matrix, and subsequently produce groups
of subjects using a partitioning algorithm. We refer to
this new procedure as CONcordance PARtitioning
(ConPar).

Our selected concordance measure draws heavily
from Hubert’s (1978, 1979) work on comparisons of
proximity matrices and the measurement of concor-
dance among those matrices. Most notably, we utilize
Hubert’s measures for capturing the internal structural
properties of the matrices. This principle is an important
aspect of our procedure, and helps us to construct
plausible measures of dissimilarity between pairs of
subjects. A second important aspect of our procedure is
the deployment of optimal algorithms for partitioning
the subject x subject pairwise dissimilarity matrix. A
number of criteria can be employed for conducting this
partitioning task, although certain criteria have the
propensity to bias the cluster sizes that are obtained. By
choosing our partitioning criteria carefully, we are able
for the most part to avoid these biases. In subsequent
sections, we test the integrity of our model in a series of
Monte Carlo simulations. From an experimental stand-
point, the emphasis of our analyses is on the ability of
the proposed procedure to recover “‘true’ clusters of
subjects that possess comparable structural properties.?

In Section 2, we first develop ConPar as a method for
identifying clusters of concordant dissimilarity matrices.
In Sections 3-5 we report the results of extensive Monte
Carlo testing of the proposed approach, including a
comparison to a direct K-means clustering of the subject
dissimilarity matrices. We subsequently provide a
demonstration using published three-way data in Sec-
tion 6. The paper concludes in Section 7 with a brief
summary and the identification of the limitations and
possible extensions of this research.

2. ConPar: a method for finding clusters of subjects
2.1. Model development

We define {i=1,2,...,N} as the indices for a
collection of N objects (stimuli) for which proximity
data are to be obtained. We also define
C={m=1,.2,...,M} as the set of indices corresponding
to M individual subjects in the experimental setting.
Three-way data are assumed to be available in the form
of a set of M individual-subject dissimilarity matrices,
B ={A,A,,...,Aps}, of dimension N x N. Each dissim-
ilarity matrix in B consists of an arbitrary main diagonal
and non-negative off-diagonal elements a;,, = a;;, that
represent the dissimilarity between objects i and j for
subject m. From the matrices in B, we create an M x M
dissimilarity matrix among the subjects, S, using a
pairwise concordance measure similar to one proposed

The actual fitting of MDS models to these clusters of subjects is not
part of the focus of our study. In fact, any number of metric or non-
metric MDS models might be applied to the groups obtained by our
method.
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by Hubert (1987, Chapter 5). This type of measure,
which uses within-row and within-column gradient
information from the individual-subject matrices, is
especially relevant in the contexts of permutation tests
of matrix agreement (Brusco, 2004; Hubert, 1978, 1979,
1987) and combinatorial seriation (Brusco, 2002;
Hubert, Arabie, & Meulman, 2001). The selected
measure is specified as follows:

N-2 N-1 N
Suv = Sou = Z Z Z [lahiiu — ] + |ﬂhiju - Bhijv']
h=1 i=hi1j=itl
Vu=1,.., M—landv=u+1,...,M; (1)

sign(apy, — api) for distinct h, i, j,

where, o, = .
' 0 otherwise,

sign(am, — aji) for distinct £, 4, ,
hiju =

0 otherwise,
+1 if x>0,
andsign(x)=¢ 0 ifx=0,
-1 if x<0.

Thus, the dissimilarity measure between each pair of
subjects (1 and v) is a non-metric measure of the extent
to which those subjects differ in terms of their
dissimilarity orderings among triples of objects.

As pointed out by Hubert (1978), indices such as (1)
have at least two advantages as a measure of con-
cordance between two matrices. First, unlike correlation
measures, they are invariant to monotone transforma-
tions of the matrices. Second, and much more impor-
tantly, concordance indices based on gradient
information capture internal structural properties of
the matrices, as opposed to correlation measures that
are based on one-to-one products of matrix elements.
One well-known example of an internal structural
property is anti-Robinson structure (Brusco, 2002;
Hubert et al., 2001, Chapters 3, 4; Robinson, 1951),
which is perfectly achieved when matrix elements are
always non-decreasing when moving away from the
main diagonal within a specific row or column. Within
the context of unidimensional scaling, if a perfect
Euclidean recovery of the data is achievable, then there

exists a reordering of the rows and columns of the
proximity matrix that exhibits perfect anti-Robinson
structure.

To illustrate relationships among correlation, our
selected concordance index (1), and anti-Robinson
structure, consider matrices A; and A, in Table 1.
Clearly, both A; and A, exhibit a perfect anti-Robinson
structure, and this is reflected by the concordance
dissimilarity index (1) of s;,=0. The correlation
coefficient for these two matrices, however, is a modest
.22. Thus, although the two dissimilarity matrices are
weakly correlated, they are perfectly concordant with
respect to the patterning of elements within rows and
columns.

After producing the dissimilarity matrix S, the next
step is to develop a partition of the subjects such that
subsequent MDS analyses can be pursued for each
group, k (k = 1,...,K), of subjects. Hubert et al. (2001,
Chapter 3) present a number of alternative indices for
partitioning a dissimilarity matrix. One of the most
straightforward of these indices is the within-cluster sum
of the pairwise dissimilarity measures. Defining Cj as
the set of subject indices assigned to group k
(k=1,...,K), the resulting optimization problem can
be posed as follows:

K
min : lez Z Sups ()

k=1 (u<v)eCy

subjectto: Cpy#{J} Vk=1,...,K, 3)

CfﬂCkZ{@}VfZI,...,K—l, k=f+1,...,K,
“4)

CiUC,U---UCkg = C. (5)

The objective function (2) represents the sum, across
all clusters, of the sum of pairwise dissimilarity measures
in each cluster. Constraint set (3) guarantees that all
clusters contain at least one subject. Constraint set (4)
ensures that clusters do not overlap, and constraint (5)
requires all subjects to be assigned to a cluster. Together,
these constraints ensure that the clusters are mutually
exclusive and exhaustive. More succinctly, they guaran-
tee that the clusters form a partition of the subjects.

Table 1
Two small matrices for illustrating the potential differences between correlation and gradient-based concordance indices
Matrix A
1 2 3 4
1| — 38 40 42
2| 38 — 32 36
3| 40 32 — 4
4| 42 36 4 —

Matrix A,
1 2 3 4
1 — 3 40 75
2 3 — 25 31
31 40 25 — 30
4 1 75 31 30 —
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Hansen and Jaumard (1997) identified several optimal
solution procedures for solving the optimization pro-
blem posed by (2)-(5), including a straightforward
implicit enumeration algorithm developed by Klein
and Aronson (1991). Brusco (2003) recently strength-
ened Klein and Aronson’s algorithm by incorporating
some improved bounding procedures. Although its
performance is sensitive to the properties of the
dissimilarity matrix, the enhanced branch-and-bound
algorithm is capable of solving problems of up to about
M =50 and K = 6. For larger matrices, the exchange
algorithm of Banfield and Bassil (1977) is recommended.

One of the limitations of the within-cluster sum of
pairwise dissimilarities index is a tendency to produce
clusters of approximately the same size (Brusco, 2003;
Hubert et al., 2001). For example, if M = 20 subjects are
partitioned into K = 4 groups of size five, then there are
4(5(5—1)/2) =40 pairwise dissimilarities that are
summed to compute the index. However, if the 20
subjects are partitioned into three groups of size one and
one group of size 17, then there are 17(16)/2 = 136
pairwise dissimilarity sums used in the index computa-
tion. For this reason, we also consider another
important index, partition diameter, which is represented
as follows:

min: Zy = w21 ((ugluc)lexck(sw) ©
subject to (3)~(5). Following Johnson’s (1967, p. 249)
description of his “Maximum Method” for hierarchical
clustering, the diameter of a cluster is the maximum
pairwise dissimilarity index among objects in that
cluster. The partition diameter is the maximum of the
cluster diameters. Eq. (6) represents the minimization of
partition diameter. Johnson’s Maximum Method, which
is also known as complete-link hierarchical clustering
(Baker & Hubert, 1976; Hubert, 1974) can provide an
approximate solution for a fixed number of clusters, but
frequently will not minimize the partition diameter.
However, guaranteed minimum-diameter solutions can
be obtained using branch-and-bound methods compar-
able to those used for coloring the nodes of a graph
(Brusco, 2003; Hansen & Delattre, 1978).

One of the advantages of the partition diameter index
is that it is not predisposed to produce clusters of
particular sizes. This is important for our context
because of the potential for one fairly large cluster of
subjects and a few small clusters. Another advantage is
that minimization of the partition diameter is compu-
tationally less difficult than minimizing the within-
cluster sum of dissimilarities. Using an implicit enu-
meration algorithm, in conjunction with a strong upper
bound from a complete-link algorithm, Brusco (2003)
obtained optimal solutions to some fairly sizable
dissimilarity matrices (up to 45x45 and K=16
clusters) within 2 min of microcomputer central proces-

sing unit (CPU) time. We have incorporated this implicit
enumeration scheme in ConPar, and have successfully
solved problems with up to 100 subjects and 10 clusters
in a reasonable amount of microcomputer CPU time.
For problems with hundreds or thousands of subjects,
we recommend replacing implicit enumeration with the
complete-link algorithm followed by an exchange
algorithm from Banfield and Bassil (1977).

2.2. Algorithm implementation

The branch-and-bound algorithm for minimizing the
within-cluster sum of pairwise dissimilarity measures
was written in Fortran. This program incorporates
heuristic exchange procedures (Banfield & Bassil, 1977)
prior to the branch-and-bound process, which are
designed to establish a good initial upper bound. The
branch-and-bound algorithm for minimizing partition
diameter was also written in Fortran, and incorporates
the biased sampling complete-link algorithm for obtain-
ing the upper bound. All computational results reported
in this paper correspond to the implementation of the
algorithms on a 2.2 GHz, Pentium IV PC, with 1 GB of
random-access-memory.

3. Experiment #1: comparison of objective criteria
3.1. Experimental design

We began our experimental analyses with a computa-
tional study designed to assess the relative efficacy of the
two partitioning algorithms. Sixty-four test problems
were generated by varying six factors at two levels each.
The levels for the first factor, the number of objects,
were N = 10 and 20. The number of true clusters of
subjects was the second factor, which was tested at levels
of K=2 and 4. The levels of the third factor, cluster
density, were: (a) equally sized clusters, and (b)
approximately 60% of the subjects in the first cluster
with the remaining clusters equally sized. The number of
dimensions (D =2 and 3) and the distance metric
(Euclidean and city block) comprised the fourth and
fifth factors, respectively. The sixth factor was the level
of perturbation of the object distances. For the first level
of this factor, the raw distances were not perturbed,
whereas for the second factor, each distance element was
perturbed by +40% of its raw value based on a uniform
distribution.

The generation of the test problems was initiated by
reading in the factor levels. For each group of subjects, a
random permutation of the objects was obtained for
each dimension. The N x N dissimilarity matrix for each
subject was subsequently produced by randomly gen-
erating a distance between each pair of objects on each
dimension using a uniform distribution, and then
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computing the distance between each pair of objects
using the appropriate metric. These distances either
served directly as the dissimilarities or were subse-
quently perturbed, depending on the perturbation factor
level. We produced M = 20 individual N x N dissim-
ilarity matrices using this process, and subsequently
used Eq. (1) to generate the M x M subject dissimilarity
matrix, S. This matrix, along with the true cluster
memberships for each subject, were written to separate
files for subsequent processing.

For each of the 64 experimental conditions, the
subject dissimilarity matrix, S, was partitioned using
both the within-cluster sum of dissimilarities algorithm
and the partition diameter algorithm. The -cluster
memberships produced by these algorithms were subse-
quently compared to the true cluster memberships using
Hubert and Arabie’s (1985) adjusted Rand index as the
measure of agreement. This index is well-recognized as
an effective measure for evaluating the level of agree-
ment between partitions (Brusco & Cradit, 2001;
Krieger & Green, 1999; Milligan, 1996; Milligan &
Cooper, 1986).

3.2. Experimental results

Table 2 presents a summary of the results for the two
partitioning algorithms. Although both algorithms
performed well, the minimization of partition diameter
was particularly effective. The partition diameter algo-
rithm perfectly recovered each of the 64 true cluster
structures, thus never misplacing a subject for any of the
datasets. The algorithm for minimizing the within-
cluster sum of pairwise dissimilarities provided perfect
recovery for only 45 of the 64 datasets (70%), with
rather poor adjusted Rand indices for some of the
datasets. Most notably, this algorithm exhibited tre-
mendous difficulty for problems with unequal cluster
density, providing perfect recovery for only 13 of 32
(41%) test problems under such conditions. The
partition diameter algorithm was also appreciably more
efficient, requiring a maximum CPU time of .02s. When
minimizing the within-cluster sum of dissimilarities, the

Table 2
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median CPU time was .91 s with a maximum of 54s. In
summary, the findings of this first experiment unequi-
vocally supported the superiority of the partition
diameter algorithm, which was both more efficient and
less sensitive to cluster density properties. Our remain-
ing experiments, therefore, only utilize the partition
diameter algorithm.

4. Experiment #2: comparison to K-means clustering of
subjects

4.1. Experimental design

Our second experiment focused on a comparison of
ConPar with a direct K-means clustering of subjects
based on their dissimilarity values. This comparison
focused on the ability of the algorithms to recover true
cluster structure across a broad range of test conditions.
Test problems were generated in the same manner as
described for Experiment 1; however, the number of
levels for each factor was increased from 2 to 3. A
seventh factor, number of subjects, was also added with
levels of M =24, 36, and 48. The level added for the
number of objects was N = 30, and the level added for
the number of clusters was K = 6. The third level of
cluster density consisted of 10% of subjects in the first
cluster with an equal number of subjects in each of the
remaining clusters. The level added for the number of
dimensions was D = 4, the level added for the distance
metric was a Minkowski metric with a coefficient of 1.5
(augmenting the coefficients of 2 and 1 for Euclidean
and city-block distances, respectively). The perturbation
level added to the study was +20%.

Our implementation of K-means clustering as a
competitive method for ConPar began by stringing out
the N(N—1)/2 dissimilarity elements for each subject and
considering these elements as variables. A partition of
subjects based on these variable measures was subse-
quently obtained using a convergent version of a K-
means algorithm (MacQueen, 1967). Ten replications of
the K-means algorithm were completed. Nine of the

Experiment | results: cluster recovery and computational effort for the two partitioning algorithms

Within-cluster sum of dissimilarities

Partition diameter

Cluster recovery
Number of perfect recoveries (out of 64)
Average adjusted Rand index (across 64 problems)
Smallest adjusted Rand index (across 64 problems)

Computational effort
Median CPU time
Minimum CPU time
Maximum CPU time

45

54

64
.8620 1.0000
4701 1.0000
91 .02
.79 <.01
.00 .02
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Table 3
Experiment 2 results: cluster recovery

Factor Factor level Mean adjusted Rand index % of perfect recoveries
K-means ConPar K-means ConPar
Number of subjects M =24 9592 9966 86.15 98.90
M =36 9775 9976 91.08 98.22
M =48 .8745 9946 75.58 97.39
Number of objects N=10 9420 9935 82.58 96.71
N=20 9779 1.0000 92.32 100.00
N=30 .8914 9953 7791 97.81
Number of clusters K=2 9614 1.0000 95.06 100.00
K=4 .9547 9977 89.30 98.49
K=6 .8951 9912 68.45 96.02
Cluster density Equal 9616 9996 92.59 99.73
60% in cluster 1 .8884 .9979 69.00 98.77
10% in cluster 1 9613 9913 91.22 96.02
Number of dimensions D=2 9639 9967 88.75 98.35
D=3 .9340 9969 80.66 98.22
D=4 9133 9952 83.40 97.94
Minkowski metric 2 (Euclidean) 9309 9947 83.13 97.67
1.5 .9382 9971 84.64 98.35
1 (city-block) 9421 9970 85.05 98.49
Level of perturbation None 9747 9998 92.73 99.86
+20% .9402 9975 84.64 98.77
+40% .8963 9915 75.45 95.88
OVERALL 9371 9963 84.27 98.17

replications used random initial seed points, but one of
the replications used seed points obtained by applying
Ward’s minimum variance algorithm (Ward, 1963) and
cutting the tree at K clusters. The use of random seed
points, as well as those produced by a hierarchical
clustering algorithm, is consistent with practice in the
psychometric literature (Brusco & Cradit, 2001; Lattin,
Carroll, & Green, 2003; Milligan, 1996).

4.2. Experimental results

ConPar provided perfect recovery for 2147 (98.17%)
of the 2187 datasets, and yielded an average adjusted
Rand index of .9963. These results were markedly
superior to the K-means implementation, which pro-
duced a perfect recovery for 1843 (84.27%) of the 2187
datasets and resulted in an average adjusted Rand index
of .9371. ConPar yielded a larger adjusted Rand index
than the K-means procedure for 339 of the datasets,
whereas the reverse was true for only 13 datasets.
ConPar was also more efficient than the K-means
implementation. The minimum, median, and maximum
CPU times for ConPar were (<.01), .07, and .15 CPU
seconds, respectively. The corresponding figures for the

K-means procedure were (<.01), 1.0, and 4.49 CPU
seconds, respectively.

The mean adjusted Rand indices and percentage of
perfect recoveries provided by K-means and ConPar are
presented, for each level of each factor, in Table 3. This
table shows that, relative to the K-means implementa-
tion, ConPar produced more perfect recoveries and a
larger adjusted Rand index for each level of each factor.
Across the 21 factor levels in the table, the minimum
average adjusted Rand index for ConPar was .9912, and
the minimum percentage of perfect recoveries was
95.88%.

The recovery provided by ConPar was relatively
consistent across the different levels for the number of
subjects, whereas the recovery performance of the K-
means procedure dipped noticeably for the M = 48 test
problems. A similar result was observed for the number
of objects, where the percentage of perfect recoveries for
the K-means algorithm fell to 77.91% for N = 30. The
recovery performances of ConPar and K-means both
decreased as the number of clusters increased; however,
the decline was much more profound for the K-means
algorithm. For K = 2, ConPar produced perfect recov-
ery of true cluster structure for 100% of the test
problems, whereas the corresponding figure for K-means
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was 95.06%. At K =06, the percentage of perfect
recoveries provided by ConPar fell to only 96.02%,
but the corresponding percentage for K-means dropped
sharply to 68.45%.

Cluster density also had a more profound impact on
the K-means algorithm than it did on ConPar. This is
perhaps not surprising because of the propensity of the
K-means algorithm to produce clusters of approximately
equal size. With respect to cluster density, perfect
recovery was obtained by ConPar (K-means) for
99.73% (92.59%) of the equal cluster size test problems.
For test problems with 60% of the subjects in the first
cluster and an equal distribution among the remaining
clusters, ConPar provided perfect recovery for 98.77%
of the problems, whereas the corresponding figure for K-
means was only 69%. Neither the number of dimensions
nor the distance metric had a profound impact on the
recovery performances of ConPar or K-means.

The effect of error perturbation on true cluster
structure recovery was also readily apparent, a finding
that is clearly consistent with the literature (Brusco &
Cradit, 2001; Milligan, 1989, 1996). Perfect recovery was
achieved by ConPar for all but one (99.86%) of the
error-free datasets, whereas recovery dipped to 98.77%
and 95.88% for the +20% and +40% perturbation
levels, respectively. The corresponding percentages for
the K-means implementation for the error free, +20%,
and +40% perturbation levels were 92.73%, 84.64%,
and 75.45%, respectively. Some follow-up results
suggested that true cluster recovery deteriorated sig-
nificantly at +60% and +80% levels. However, as
observed by Brusco and Cradit (2001), large perturba-
tion levels effectively decimate any true cluster structure
in the data. Thus, the fact that recovery is poor for such
problems is not especially noteworthy.

5. Experiment #3: identifying the number of subject
clusters

5.1. Experimental design

A pervasive problem in cluster analysis is the
identification of the appropriate number of clusters,
and our situation is no exception. In a practical
situation, it would be necessary to run the algorithm
for a varying number of clusters and perhaps use a scree
diagram procedure to identify an elbow for partition
diameter. The quantitative analyst would hope to
identify some number of clusters, K, such that partition
diameter improves significantly when moving from
K'—1 to K clusters, but only modestly (or not at all)
when going from K to K'+1 clusters. To evaluate the
propensity for this situation to occur in synthetic
datasets, we completed a follow-up experiment on a
subset of the datasets from Experiment 2.

A subset of the datasets from Experiment 2 was
obtained by considering only two of the three levels for
each factor. The levels eliminated from the respective
factors were M = 36, N = 30, K = 6, density of 10% for
the first cluster, D = 4, Minkowski metric of 1.5, and
perturbation level of +20%. For each of the 2" = 128
datasets, we obtained minimum-diameter partitions for
K—1, K, and K+ 1 clusters. We subsequently computed
the percentage reductions in partition diameter when
moving from K—1 to K clusters and from K to K+ 1
clusters.

5.2. Experimental results

Table 4 presents statistics pertaining to average
partition diameter and CPU time for the K—1, K, and
K+1 solutions. For 127 of the 128 datasets, increasing
the number of clusters from K—1 to K resulted in a
larger reduction in partition diameter than the increase
from K to K+1 clusters. Moreover, the average
partition diameter for K—1 clusters was more than
double the corresponding average for K clusters,
whereas the partition-diameter average for K+ 1 clusters
was only 9.9% less than the average for K clusters. For
the dataset where K+ 1 clusters were slightly preferred,
the result of adding another cluster was to split one of
the clusters from the K-cluster solution. Overall, the
results of the experiment suggested that using incre-
mental reductions in partition diameters is a viable
approach for determining the number of subject clusters
in the dataset.

The results in Table 4 also reveal that the CPU times
for K clusters exhibit much less variability than the
corresponding times for K—1 or K+ 1 clusters. Across
the 128 test problems, the maximum CPU time for K
clusters was only .15s, whereas several of the K—1 and
K+ 1 solutions required 20 s or more. Although it would
certainly be risky to base selection of the number of
clusters on computational effort alone, this measure
might provide at least some supporting evidence for the
appropriate number of clusters.

Table 4
Experiment 3 results: recovery of the number of clusters

Assumed number of clusters

K-1 K K+1
Mean partition diameter 1284 619 558
Computational effort
Median CPU time .08 .07 .08
Minimum CPU time <.01 <.01 <.01
Maximum CPU time 26.61 15 28.92
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6. A demonstration using empirical data

To demonstrate ConPar with a practical application,
we applied the methodology to a dataset originally
presented by Aaker, Kumar, and Day (1995, pp.
655-57). Aaker et al. (1995) collected similarity data
from a representative sample of 64 respondents who
evaluated 10 brands of soft drinks: Pepsi, Diet 7Up,
Calistoga Natural Orange, 7Up, Slice, Schweppes
Sparkling Water, Dr. Pepper, Diet Coke, Coke, and
Pepsi Light. For each of these 10 brands, respondents
provided pairwise dissimilarities and preferences, as well
as subjective perceptions regarding each brand along six
separate product attributes: (1) refreshing, (2) sweet
tasting, (3) fruity, (4) full bodied, (5) young and active,
and (6) fattening.

We initially focused our attention on the pooled
(across all subjects) dissimilarity matrix, fitting a non-
metric Euclidean model to these data using KYST3
(Lattin et al., p. 225) with Kruskal’s (1964a, b) original
Stress formula (also known as Stress1) as the criterion.
Fig. 1 presents the MDS solution for the pooled
(M = 64) dissimilarity matrix, which served as a bench-
mark for ConPar. As in past evaluations of these
dissimilarity data, a two-dimensional solution achieved
a very good fit (Stress = .069) and the configuration of
the 10 brands within the two-dimensional space is
consistent with published solutions. The horizontal
dimension separates cola soft drinks from non-cola soft
drinks, while the vertical dimension appears to reveal a
separation based on diet versus non-diet drinks. This
reproduces the solution published by Aaker et al. (1995,
Chapter 21).

We applied the ConPar procedure to this dataset and
investigated two, three, and four-cluster solutions using
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Fig. 1. Two-dimensional Euclidean MDS solution from KYST3 for
the pooled dissimilarity data from Aaker et al. (1995, pp. 655-657).

the Euclidean metric. The best solution appeared to be a
two-dimensional solution partitioned into three clusters.
The number of subjects for clusters 1, 2, and 3 are
denoted |Cy|, |C,|, and |C3|. Figs. 2a—c show the derived
configurations for this three-cluster solution. Fig. 2a
presents the two-dimensional space for Cluster 1
(Cy| = 33, Stress =.070). This cluster of subjects
reproduces the traditional pooled solution with little
or no change in brand locations. The horizontal
dimension once again clearly separates colas from
non-colas, while the vertical dimension separates diet
brands from non-diet brands. Coke and Pepsi are the
closest brands in terms of proximity.

Fig. 2b corresponds to a very small cluster with a less-
clear solution (|C,| = 4, Stress = .117). The horizontal
dimension in this two-dimensional solution appears to
maintain the cola/non-cola distinction. Note that the
proximities between Pepsi, Coke, Pepsi Light, and Diet-
Coke are heightened, while the differences among many
of the non-colas are not as pronounced. The vertical
dimension is less clear, however, and we have opted not
to label this axis. To a limited extent, the vertical
dimension maintains a diet/non-diet distinction,
although the positions of 7Up and Schweppes are
contradictory to this interpretation. It is important to
note that this cluster is small (6.25% of the total
sample), and the Stress level is significantly higher than
for either the first cluster or the benchmark solution for
the full sample. It is possible that this smaller cluster
represents a small set of outliers with a confused
perception of the brands, or an inability to make
consistent similarity judgments. What is important is
that the ConPar procedure has successfully identified
them, allowing the analyst to study the other segments
in a clearer context.

The surprising result of this application of ConPar is
the emergence of the third cluster presented in Fig. 2c.
This segment (|C;| = 27, Stress = 0), constituting 42%
of the sample, achieved a perfect fit. In contrast to the
previous two clusters, this cluster of subjects was best
represented by a one-dimensional solution in which
cluster members cleanly separated colas from non-colas,
completely ignoring any distinction between diet brands
and non-diet brands. What this representation suggests
is that respondents in this cluster simplified the pairwise-
similarity data collection task and focused their atten-
tion on a very obvious, simplistic categorization scheme.
It is important to note that the existence of this
simplified categorization scheme would not be apparent
if a cluster approach had not been applied.

Finally, for comparative purposes, we produced an
individual differences MDS solution using Pruzansky’s
(1975) SINDSCAL program, which is an efficient
procedure for fitting Carroll and Chang’s (1970)
INDSCAL model. The common space for a two-
dimensional fit to the soft drink data is displayed in
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Fig. 2. (a) Two-dimensional Euclidean MDS solution from KYSTS3 for cluster 1 of the three-cluster ConPar solution, (b) two-dimensional Euclidean
MDS solution from KYSTS3 for cluster 2 of the three-cluster ConPar solution, and (c) two-dimensional Euclidean MDS solution from KYST3 for

cluster 3 of the three-cluster ConPar solution.

Fig. 3. Although the basic interpretation of the
individual differences common space in Fig. 3 is
consistent with Fig. 1, there are a few noticeable
differences. For example, in Fig. 1, Coke occupies a
more extreme location than Pepsi on both axes, but this
is reversed in Fig. 3. Similarly, Slice is slightly to the left
of Calistoga and Schweppes in Fig. 1, but slightly to the
right in Fig. 3. It is also interesting to observe the
relative vertical placements of Pepsi Light and Dr.
Pepper in the two figures.

The SINDSCAL solution has the advantage of
linking all of the subjects to the common space in Fig.
3 via dimension weights, whereas ConPar produces

independent solutions for different clusters. An indica-
tion that the individual differences model is recovering
the same information as ConPar would manifest itself
through the dimension weights. In other words, for the
27 subjects in cluster 3 of the ConPar solution, we might
expect larger (smaller) weights on dimension 1 (dimen-
sion 2) relative to the other clusters. Such a finding
would indicate that subjects in cluster 3 were making
only the cola vs. non-cola distinction and ignoring the
diet vs. non-diet distinction. Table 5 reports average
SINDSCAL dimension weights for the subjects in each
of the three clusters of the ConPar solution. These
results indicate that, relative to ConPar, the SINDSCAL
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Fig. 3. Two-dimensional SINDSCAL common space solution for the
dissimilarity data from Aaker et al. (1995, pp. 655-657).

Table 5
Average SINDSCAL dimension weights for objects in the ConPar
clusters

Cluster size Average weights

Dimension 1 Dimension 2
ConPar cluster 1 33 .673 377
ConPar cluster 2 4 .543 284
ConPar cluster 3 27 .681 .346

solution does not as clearly reveal the cluster of subjects
using a one-dimensional perception of soft drinks. This
important finding suggests that INDSCAL and ConPar
each have their own unique advantages and do not
necessarily draw out the same information.

7. Discussion
7.1. The problem with averaging

At first glance, it seems entirely reasonable to average
individual dissimilarity measures across a number of
subjects to obtain a ‘““pooled” proximity matrix. The
main result of such an approach would appear to be
positive in that the averaging process will undoubtedly
result in a minimization of any measurement error

present in the dissimilarity judgments. But what if the
averaging operation affected the underlying structure of
the judgment data? In that case, at the least, one might
anticipate the averaging operation to result in a poor
model fit. At the extreme, however, a much more serious
result might arise if the averaging operation resulted in
the successful fitting of a spurious model. “The worst
possible effect of averaging would be to alter the
underlying psychological structure of the data in such
a way that an invalid model appears valid” (Ashby et
al., 1994, p. 144). Ashby et al. argue that such a scenario
is not only possible, but highly likely.

What actions does an analyst take if the representa-
tion of averaged data is suspect? We reviewed a number
of options, finding each wanting in one respect or
another. We introduced ConPar as a simple method for
identifying groups of individual-subject matrices with
concordant proximity structures. This method collapses
the three-way data into a subject x subject dissimilarity
matrix, which is subsequently partitioned using a
branch-and-bound algorithm. Extensive Monte Carlo
testing of the method reveals that a partition-diameter
index is especially effective for recovery of the true
subject cluster memberships present in the data.

We compared ConPar to a K-means procedure for
identifying clusters across more than 2000 synthetic
datasets. ConPar provided better recovery than K-
means across all factor levels, and was especially
dominant under certain conditions. The K-means
algorithm was particularly sensitive to cluster density
and the number of true clusters in the dataset, whereas
ConPar was far more robust across the levels of these
factors.

7.2. Distance metrics, dimensionality, and model
selection

It is important to recognize that ConPar is not
designed for identifying the appropriate MDS model for
one or more groups of subjects. The procedure captures
information pertaining to the concordance among pairs
of the individual-subject dissimilarity matrices, and
subsequently uses this information to form subject
groups. The value of this process is that the indivi-
dual-subject matrices within the selected groups can
more safely be pooled for further analysis. The fitting of
an MDS model to each group is a separate and
subsequent process, and it is possible that the appro-
priate dimensionality, or even the appropriate distance
metric, might vary among the identified groups. As an
alternative to pooling within the subsets identified by
our proposed method, the research analyst might wish
to obtain INDSCAL solutions for one or more of the
groups.
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7.3. Selecting the number of subject groups

We have found that recovery of the number of subject
groups is facilitated by using information regarding the
reduction in partition diameter that occurs from
incremental increases in K. Although this process is
subjective, problems associated with selection of the
wrong number of clusters might not be especially severe,
especially if one errs on the side of selecting too many
groups. In our Monte Carlo experiments, we observed
that choosing a slightly larger number of groups
typically resulted in the splitting of one or more of the
larger (true) groups. Once the individual MDS analyses
were run for the selected groups, the analyst is apt to
identify the fact that the split groups were, indeed, all
members of the same larger group.

7.4. Limitations of the partitioning algorithms

In this paper, we have presented branch-and-bound
algorithms for optimizing the selected partitioning
indices. Alternative optimal solution procedures include
dynamic programming (Hubert et al., 2001) and integer
linear programming (Hansen & Jaumard, 1997). For
example, using the recent software published by Hubert
et al. (2001), the quantitative research analyst could use
dynamic programming to provide partitions based on a
broad range of heterogeneity indices, but would be
limited to roughly 25 subjects. Integer programming
methods that incorporate column-generation methods
and cutting planes, in addition to branch-and-bound,
might be capable of solving quite sizable problems for
some partitioning indices; however, they require con-
siderable sophistication on the part of the analyst as well
as mathematical programming software.

We have concluded that partition diameter is an
effective index for identifying groups of subjects, and
our branch-and-bound procedure for optimizing this
index can handle 50 or more subjects and 10 or more
clusters. Although the algorithm is typically quite
efficient, we have occasionally observed some excessive
computation times (30 min or more) for problems with
M>50 and K> 5. For problem instances with hundreds
or thousands of subjects, we recommend obtaining an
initial solution by applying complete-link hierarchical
clustering and cutting the tree at K clusters. An
exchange algorithm (Banfield & Bassil, 1977) should
subsequently be applied to improve on this starting
solution. By replacing branch-and-bound with this
heuristic approach, ConPar would be scalable for
problems with hundreds or thousands of subjects.
Moreover, a heuristic approach can easily be adapted
to select from among the set of all minimum-diameter
partitions when alternative optima are present.
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