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This paper presents an integer linear programming formulation for the problem of extracting a 
subset of stimuli from a confusion matrix. The objective is to select stimuli such that total confusion among 
the stimuli is minimized for a particular subset size. This formulation provides a drastic reduction in the 
number of variables and constraints relative to a previously proposed formulation for the same problem. 
An extension of the formulation is provided for a biobjective problem that considers both confusion and 
recognition in the objective function. Demonstrations using an empirical interletter confusion matrix from 
the psychological literature revealed that a commercial branch-and-bound integer programming code was 
always able to identify optimal solutions for both the single-objective and biobjective formulations within 
a matter of seconds. A further extension and demonstration of the model is provided for the extraction of 
multiple subsets of stimuli, wherein the objectives axe to maximize similarity within subsets and minimize 
similarity between subsets. 
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Introduction 

Many psychological experiments are characterized by a set of objects, S = {1, 2 . . . . .  n}, 
that represents both stimuli and responses. Under such circumstances, the n x n confusion ma- 
trix, C, is a convenient method for representing the experimental data. Typically, the rows of 
the confusion matrix correspond to the stimuli, the columns correspond to the responses, and 
ent r ies ,  cij, represent the number of instances (or proportion of instances) for which response 
j was given for stimulus i. Entries on the main diagonal of C represent the correct recognition 
of the stimuli, whereas off-diagonal elements indicate incorrect responses or confusion among 
the stimuli. Confusion matrices are quite common in a variety of psychological areas including 
visual alphabetic letter recognition (Appelman & Mayzner, 1982; Dawson & Harshman, 1986; 
Townsend, 1971; Townsend & Ashby, 1982), speech and/or auditory recognition (Hodge & Pol- 
lack, 1962; Miralles & Cervera, 1995; van Son & Pols, 1999), taste recognition (Hettinger, Gent, 
Marks, & Frank, 1999), tactile recognition (Loomis, 1990; Vega-Bermudez, Johnson, & Hsiao, 
1991), odor discrimination (Kent, Youngentob, & Sheehe, 1995; Youngentob, Markert, Mozell, 
& Hornung, 1990), lip reading (Manning & Shofner, 1991; Massaro, Cohen, & Gesi, 1993), and 
ergonomic design of instrument panels (Moore, 1974). 

Confusion matrices can be been analyzed using unidimensional seriation and scaling meth- 
ods (Baker & Hubert, 1977; Hubert, 1974; Hubert, 1976; Hubert, Arabie,& Meulman, 1997; 
Hubert & Schultz, 1976), multidimensional scaling (Kruskal, 1964; Townsend, 1971; Yougnen- 
tob et al., 1990; Zielman & Heiser, 1996), and hierarchical cluster analysis (Hettinger et al., 
1999; Smith & Jones, 1975; Smith, Wilson, & Jones, 1975). Hubert (1987) reviewed a variety of 
potential applications of the quadratic assignment paradigm regarding the analysis of confusion 
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matrices. These include compactness and isolation of subsets, as well as evaluation of symme- 
try, subset selection and seriation. A large body of confusion-matrix research has focused on the 
"constant ratio rule" (Clarke, 1957; Hodge & Pollack, 1962; Rich, 1971; Townsend & Landon, 
1982). This rule specifies that if Experiment 1 and Experiment 2 are precisely the same in every 
way except that the set of stimuli ($1) in Experiment 1 is a proper subset of the set of stimuli 
($2) in Experiment 2 ($1 c $2), then the confusion matrix of Experiment 1 will reflect the same 
proportions as observed in the submatrix of Experiment 2. 

In this paper, we focus on the combinatorial optimization problem associated with the ex- 
traction of a subset of stimuli from a confusion matrix. Theise (1989) carefully identifies the 
assumptions of the subset extraction problem, which include the constant ratio rule. Instead of 
evaluating clusterings or reorderings of rows and columns of a confusion matrix, the problem 
posed by Theise is concerned with the extraction of a fixed number of stimuli from a confusion 
matrix such that the resulting subset contains minimum total confusion. Such problems occur in 
the redesign of automobile controls (Green & Pew, 1978), the selection of directional symbols 
that will be clear to passengers (Zwaga & Boersema, 1983), and the identification of a subset 
of push-buttons that will be clear to equipment operators (Moore, 1974). Other examples might 
include the design of computer keyboards, the programming of buttons for fast-food restaurant 
cash registers, and the reduction of a large inventory of perfumes or paint colors to a more man- 
ageable size. 

Theise (1989) presents several linear 0-1 integer-programming models for subset extraction 
problems. However, considerably improved mathematical formulations are possible and that is 
the focus of our paper. There are at least three important reasons for developing improved for- 
mulations: (a) an increase in the size of confusion matrices to which optimal subset extraction 
methods can be applied, (b) reduced storage requirements and computational eflbrt in obtaining 
optimal solutions and (c) greater flexibility in analysis objectives and constraints. We present 
a compact integer linear programming formulation that provides a substantial reduction in the 
number of variables and constraints relative to the models suggested by Theise. We also present 
an extension of the formulation to a biobjective subset extraction problem that considers both 
confusion and recognition in the objective function. We further extend our modeling approach 
to an important problem described by Heiser (1988), in which multiple subsets are extracted 
such that the similarity within subsets is large and the similarity between subsets is small. These 
compact models increase the feasibility of integer programming methods for subset extraction 
problems. 

In the next section of this paper, we present single-objective mathematical programming 
formulations for the problem of extracting a subset of minimum total confusion and demonstrate 
our new formulation using an empirical interletter confusion matrix from Heiser (1988, p. 41). 
Section 3 presents a biobjective subset extraction model that considers both total confusion and 
total recognition in the objective function. A demonstration of the biobjective model is also pro- 
vided in section 3. In section 4, we present a model for extracting multiple subsets of stimuli from 
a matrix, along with a corresponding demonstration for the interletter confusion matrix. Limita- 
tions and extensions are presented in section 5 and the paper concludes with a brief summary in 
section 6. 

Mathematical Programming Formulations for the Subset Extraction Problem 

A Quadratic 0-1 Formulation 

The subset extraction problem is concerned with the selection of a subset of m stimuli from 
a master set of n stimuli (1 < m < n) such that total confusion is minimized. Consistent with 
Theise (1989), confusion consists of incorrect responses for stimuli (cij + cji), as well as unde- 
cided responses for each stimuli (ui, i = 1 . . . . .  n). As explained by Theise (1989), a stimulus 
that is selected for inclusion in the subset should be appropriately penalized for undecided re- 
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sponses to that stimulus. In some instances, such as the push-button Clam set studied by Moore 
(1974) and Theise (1989), the number or proportion of undecided responses might be available 
and important to the analysis. In other cases, undecided responses might be prohibited or not 
relevant to the analysis. Defining xi = 1 if stimulus i is selected for inclusion in the subset and 
0 otherwise (i = 1 . . . . .  , n), the subset extraction problem can be modeled as a quadratic 0-1 
integer programming problem (hereafter Q1) as follows: 

n - 1  n n 

Minimize Z = Z Z (cu + cji)xix,J + Z uix~" (1) 
i=1  j = i + l  i=1 

n 

Subject to Z xi = m, (2) 
i=1  

xi E {0, 1} Vi = 1 . . . . .  n. (3) 

The objective function (1) of Q1 represents total confusion associated with the extracted 
subset. The constant Cij -t- Cji represents the total confusion between stimulus i and stimulus j .  
This term is only counted in the objective function if both stimulus i and j are selected in the 
subset (i.e., xi = xj = 1). Constraint (2) guarantees that the number of selected stimuli is equal 
to m and the constraints in (3) place binary restrictions on the decision variables. Kuo, Glover, 
and Dhir (1993) demonstrate that the NP-complete clique problem (Garey & Johnson, 1979) is 
reducible to Q1 and thus problem Q1 is NP-hard. 

There are at least two possible strategies for generating optimal solutions for modest sized 
versions of Q1. One approach is to tackle directly problem Q1 using an enumerative algorithm 
(Comley, 1996; Hansen, 1972; Taha, 1972). Another option, which was employed by Theise 
(1989), is the conversion of Q1 into a linear 0-1 programming problem (Glover, 1975; Glover & 
Woolsey, 1974). The relalive efficacy of enumerative and transformed linear approaches is diffi- 
cult to gauge. The general consensus is that neither approach can claim superiority in all cases 
(Glover, 1975) and that certain problem instances can be particularly difficult for certain algo- 
rithms (Comley, 1996). Howevel; one pragmatic advantage of the linearization approach is the 
widespread availability of commercial branch-and-bound integer linear programming software. 
Kuo et al. (1993, p. 1174) observed that the enumerative quadratic methods ". . .  have not under- 
gone the intensive refinements of linear zero-one methods, nor have they found widespread use 
in real-world applications". For these reasons, we focus on the linearization approach throughout 
the remainder of this paper, while recognizing that direct quadratic methods, dynamic program- 
ming, and branch-and-bound techniques might also provide viable solution approaches. 

Theise's (1989) Integer Linear Programming Formulation (P1 and P1-E) 

Theise (1989) presented a linearization of Q1 that required the definition of an additional set 
of binary decision variables; Y i j  z 1 if stimulus i and stimulus j are both selected for inclusion 
in the subset and 0 otherwise (1 _< i < j _< n). Theise's (1989) integer linear programming 
model (hereafter Pl) for extracting a subset of stimuli from a confusion matrix is as follows: 

n - 1  n n 

Minimize Z1 = E Z (cij + cji)Yij + ZUiXi .  (4) 
i-----1 j = i + l  i=1 

Subject to xi q- Y j  - -  Yij _< 1 for 1 < i < j _< n, (5) 

- -  X i  - -  Xj q- 2 y i j  < 0 for 1 < i < j <_ n, (6) 

Yij E {O, 1} f o r l  < i < j _ < n ,  (7) 

and (2) and (3). 
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The objective function (4) of P1 is comparable to (1) except that the quadratic t e r m  (x ix j )  is 
replaced with Yij. It should be noted that Yij variables are necessary only for pairs with Cij ~- 
Cji > 0. In other words, if the total confusion between i and j is zero, then there is no penalty 
to be collected in the objective function even when both are included in the subset. This feature 
allows for considerable variable and constraint reduction when the confusion matrix is sparse. 
Constraint set (5) requires, for each (i, j )  pair, that Yij = 1 if xi = x j  = 1. In other words, if 
stimulus i and stimulus j are both included in the subset, then the total confusion between them 
must be included in the minimization of (4) via Yij = 1. Constraint set (6) ensures that Yij = 0 
unless xi = x j  = 1. We observe that, for the case in which Cij -t- Cji > 0 for all i and j ,  that Pl 
consists of n + n(n - 1)/2 integer decision variables and n(n - 1) + 1 constraints, not including 
the binary restrictions imposed in (3) and (7). 

There are several possible enhancements to the formulation proposed by Theise. First, (6) 
is not necessary because the nature of the objective function is such that it would always be 
detrimental for any Yij tO assume a value of one. Theise (1989) did not report any computational 
benefits (e.g., better lower bounds, stronger branching, etc.) from including (6), and our limited 
experience revealed that the significant increase in the number of constraints actually hurt solu- 
tion efficiency. Additionally, constraint set (5), in conjunction with the nonnegativity of Cij -]- Cji, 
obviates the need to impose the integer restrictions on the Yij variables in (7). To minimize total 
confusion, Yij will equal z e r o  ifxi + xj 5 1,  but must equal exactly 1 ifxi + Xj = 2 .  Hereafter, 
we refer to the model corresponding to Pl with the two enhancements noted above as P1-E. Al- 
though these enhancements result in far fewer integer variables (only n instead of n + n (n - 1)/2), 
a large number of continuous variables and constraints remain in the model. Fortunately, using 
ideas developed by Glover (1975), significant reductions in problem size can be realized. 

An Improved Integer Linear Programming Formulation (P2) 

The improved linear programming R)nnulation (hereafter P2) for the subset extraction prob- 
lem is based on the work of Glover (1975) and Kuo et al. (1993). We define the following quan- 
tities: 

[ n=~i+l(Cij +Cji)Xj'Xi = 1 
wi = j f o r i = l  . . . .  n - 1 .  (8) 

[01xi = 0 

If stimulus i is included in the selected subset of stimuli, then wi represents the total confu- 
sion between stimulus i and all other selected stimuli with indices greater than i. Otherwise, 
wi assumes a value of zero. The sum of the wi values represents the total confusion among all 
stimuli in the subset, excluding the undecided responses. To collect values of wi accurately in a 
linear programming formulation, we note that an obvious upper bound on wi is the sum of the 
min(m, n - i) largest values of (cij + Cji IJ > i),  for I < i < n - 1. Denoting these upper bounds 
as ai(1 < i < n - 1), a compact formulation (P2) is as follows: 

n- -1  n 

Minimize Z2 = Z wi + Z uixi .  (9) 
i = 1  i = l  

t t  

Subjectto Z (Cij-~Cji)Xj--(Yi(1--Xi)--Wi <0 f o r l  < i < n - l ,  (10) 
j=i+l 

wi >_0 fo r l  < i  < n - l ,  (11) 

and (2) and (3). 

The objective function (9) of P2 represents total confusion within the subset. Constraint set (10) 
assures that the continuous wi variables can equal their lower bounds of zero if xi = 0, but must 
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TABLE 1. 
A problem-size comparison for alternative single-objective formulations of the subset extraction problem 
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Model PI  Model P1-E Model P2 

Binary variables n + ( n ( n  - 1)/2)  n n 

Continuous variables - -  n ( n  - 1)/2  n - 1 

Constraints n(n - 1) + 1 (n(n - 1)/2) + 1 n 

equal the sum of confusions between i and j (j > i and x j  = 1) when xi = 1. Constraint set 
(11) places nonnegatMty restrictions oll the wi variables. The reduction in problem size when 
moving from P1 (or P1-E) to P2 is tremendous. Model P2 requires only n integer variables, n - 1 
continuous variables, and n constraints. For a contusion matrix associated with the 26 letters of 
the alphabet (assuming all Cij + Cji .'> 0) ,  model Pl would require 351 integer variables and 
651 constraints, whereas model P2 only requires 26 integer variables, 25 continuous variables, 
and 26 constraints. We note that the LP formulation of P2 is not as restrictive as Pl or P1-E. 
In other words, the difference between the LP relaxation objective value and the integer optimal 
objective value is typically larger for P2 than for Pl.  However, the ease of solving LPs during the 
branch-and-bound process generally enables much faster identification and confirmation of the 
integer optimal solution. Table 1 presents a problem-size summary for Pl, P1-E, and P2. 

A Demonstration o f  P2 Using an Empirical Interletter Confusion Matrix 

All computational results reported in this paper were Obtained using a 400 MHz Pentium II 
PC with 128 MB of random access memory. Matrix generation programs were written in For- 
tran and formulations were solved using the mixed-integer-linear-programming solver associated 
with ILOG CPLEX, Version 6.5 (ILOG, 1999). 

Our goal was to select a confusion matrix of moderate size and complexity that would 
be representative of confusion matrices observed in practice. Theise (1989) applied model P1 
to a confusion matrix (n = 25) originally reported by Moore (1974), which corresponded to 
pushbuttons for sorting equipment used by the British postal service. The total confusion matrix 
(Theise 1989, p. 296) is rather sparse, consisting of only 92 instances in which cij + cji > 0 
out of a total of 300 such oft-diagonal sums. As a result, the P1 formulation required only 117 
binary variables (92 Yij variables and 25 xi variables) and Theise reported that the solution for 
m = 12 required approximately 10 minutes using HypeffLindo PC on a 386 PC. We formulated 
and solved this same problem using P2. With the speed of contemporary computer platforms and 
our new formulation, the total time to read and solve this formulation was less than one-half of 
one CPU second. Therefore, we concluded that it was desirable to identify a more challenging 
confusion matrix. 

We turned our attention to a confusion matrix associated with judgments regarding the sim- 
ilarity of the n = 26 (capital) letters of the alphabet (van der Heijden, Malhas, & van den 
Roovaart, 1984). The confusion matrix published by van der Heijden et al. (1984, p. 86) rep- 
resents confusion as proportions, whereas Heiser (1988, p. 41) published the same data using the 
raw confusion frequencies. We used the raw frequency matrix in our demonstrations, which is 
presented in Table 2. This matrix does not contain undecided responses and therefore the second 
term of (9) is not considered in our analysis. We believe that this matrix was a good candidate 
for analysis for two reasons. First, empirical intefletter confusion matrices are widespread in 
the psychological literature (Dawson & Harshman, 1986; Manning & Shofner, 1991; Townsend, 
1971; Vega-Bemudez et al., 1991). Second, Heiser p rov id~  a description of a subset extraction 
problem associated with the confusion matrix. 

We formulated and solved P1, P1-E, and P2 for values of m ranging from 2 to 25. The 
optimal objective values, CPU times, number of nodes, and number of iterations for each problem 
are reported in Table 3. 
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TABLE 3. 
Branch-and-bound integer programming results for the interletter confusion data using models P1, P1-E, and P2 

CPU Time B & B Nodes B & B Iterations 
Subset Objective 

Size Value, Z~ P1 P1-E P2 P1 P1-E P2 P1 P1-E P2 

m = 2 0 .65 .57 .08 23 22 6 83 45 16 
m = 3 9 .91 .73 .21 29 32 131 211 216 206 
m = 4  41 3.42 1.79 .65 305 227 478 1669 1444 860 
m =  5 81 4.16 2.21 .78 358 294 591 2334 2190 1302 
m = 6  154 6.73 2.65 1.99 833 339 1652 6005 3403 3350 
m =  7 278 9.24 5.44 2.67 1323 939 2135 11089 9449 5650 
m =  8 424 10.96 5.66 5.28 1450 745 5181 15860 10520 11166 
m =  9 633 13.19 7.71 3.38 1 5 6 6  1 0 7 3  2 7 8 1  21632 16873 7861 
m =  10 866 14.77 8.17 3 . 3 1  1692 990 2897 25011 17383 7184 
m =  11 1157 15.99 8.15 3.44 1529 814 2940 29995 17840 6973 
m =  12 1567 14.54 8.67 4.45 947 712 3646 24016 17872 9531 
m = 1 3  2008 12.44 8.41 4.48 549 565 1 9 3 7  11810 11836  12121 
m =  14 2488 9.36 5.16 2.19 392 395 1434 9012 8913 3975 
m = 1 5  2994 7.37 3.09 1.49 193 167 751 4701 4097 2229 
m = 1 6  3595 6.53 2.62 .99 89 96 386 2340 2605 1108 
m = 1 7  4275 5.16 1.54 .39 32 32 172 1134 1060 508 
m =  18 5103 4.27 1.21 .40 11 18 150 575 681 451 
m =  19 6114 4.80 1.08 .36 7 9 153 532 536 369 
m = 20 7181 3.68 .75 .20 11 8 76 544 510 189 
m = 21 8280 3.65 .75 .14 10 9 47 451 434 134 
m = 2 2  9427 2.78 .60 .08 2 2 10 405 405 72 
m = 23 10669 .28 .28 .04 0 0 2 366 366 53 
m = 24 12110 .28 .25 .04 0 0 0 342 342 51 
m = 25 13688 .25 .23 .04 0 0 0 345 345 30 

The results in Table 3 indicate that total confusion is a non-decreasing function of  m. In 

some instances, the optimal subset for m + 1 is equal to the optimal subset for m, plus one 

additional stimulus. However, in other instances, there is a considerable difference between the 

optimal subset for m and the optimal subset for m + 1. For example, the optimal subset for 

m = 13 is {A, B, C, D, F, L, M, S, T, U, V, X, Z}. In the optimal subset for m = 14, stimuli 

{F, S} are replaced with {E, R Q}. 

The results in Table 3 also suggest that, relative to P1, optimal subsets were extracted more 

efficiently when using P1-E. In many instances, solutions to P1-E were obtained in less than one- 

half of  the time required to solve P1. In all cases, solutions to P2 were obtained in less time than 

either P1 or P1-E and, in most cases, solution time for P2 was less than one-half the time of  its 

nearest competitor (P1-E). The CPU time required to solve the P2 formulations never exceeded 

5.28 seconds. Problems for 6 < m < 15 required at least one CPU second, whereas optimal 

solutions for all other problems were obtained in less than one second. 

A Biobjective Integer Linear Programming Formulation for Subset Extraction 

The Biobjective Integer Linear Programming Formulation (P3) 

Theise (1989) proposed a biobjective variation of  the subset extraction problem. Specif- 

ically, he offered an integer goal-programming formulation that focused on the maximization 

of  total recognition (correct responses for stimuli) subject to a constraint that ensured that total 

confusion was below a maximum allowable value, h. Although Theise's (1989) model  is interest- 

ing from a theoretical standpoint, it does not provide a convenient mechanism for exploring the 
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tradeoffs between total recognition and total confusion tk)r problems of  practical size. As a plau- 
sible alternative for studying these tradeoffs, we propose using a weighted biobjective integer- 
programming model. Similar optimization models  have recently proven successful in analyzing 
multiobjective seriation problems for asymmetric  proximity matrices (Brusco & Stahl, 2001). 
The biobjective integer programming formulation (hereafter P3) of  interest here is as follows: 

MinimizeZ3=gl l i_~ l 'w i+uix i  -g2  i = 1  Ci iX i"  (12) 

n-1 n 
Subjectto + _< h, (13) 

i=1 i=1 

and (2), (3), (10), and (11). 

Problem P3 is a direct extension of  P2 and focuses on the minimization of  a weighted combina- 
tion of  total confusion and total recognition (12). The second component  of  (12), weighted total 
recognition, is subtracted from the objective function because we are attempting to minimize 
total confusion, yet maximize total recognition. The parameters gl  and g2 should be used within 
the context of  a convex combination where both parameters are nonnegative. Constraint (13) can 
be included if  it is desirable to place an upper bound on total confusion, as in Theise 's  biobjective 
model. 

Demonstration of P3 Using an Empirical Interletter Confusion Matrix 

As a demonstration for problem P3, we consider the interletter confusion matrix under the 
assumption of a desired subset size of  m = 13 and no prespecified aspiration level for total 
confusion (i.e., h = oc). We used the CPLEX branch-and-bound code to solve P3 for each of 
11 weighting schemes (gl ,  g2) beginning with (1, 0), and subsequently decreasing gt by .1 and 
increasing g2 by .1 until arriving at the weighting scheme (0, 1). The results of  the study are 
reported in Table 4. 

Table 4 indicates that modest  sacrifices in confusion (recognition) can lead to significant 
improvements in recognition (confusion). For  example, a 3.6% improvement in recognition can 
be realized for only a .3% increase in confusion by moving f~om a weighting scheme of (1, 0) to 
(.9, .1). By moving from a weighting scheme of  (0, 1) to (.3, .7), a 20.5% reduction in confusion 

TABLE 4. 
Branch-and-bound integer programming results for interletter confusion data using model P3. All biobjective 
results correspond to a subset size of m = 13 with 11o aspiration level 

Confusion Recognition Objective Total "Ik3tal B & B B & B CPU 
weight, g 1 weight, g2 Value, Z 3 Confusion Recognition Nodes Iterations Time 

1.0 0.0 2008 2008 8399 1819 12917 4.88 
.9 .1 943.6 2015 8699 1292 8646 3.32 
.8 .2 -127.8 2015 8699 1138 5633 2.80 
.7 .3 -1210.1 2152 9055 787 4168 2.14 
.6 .4 -2364.6 2261 9303 420 1630 1.14 
.5 .5 -3521 2261 9303 314 917 .70 
.4 .6 -4677.4 2261 9303 210 647 .44 
.3 .7 -5880.5 2684 9551 57 146 .17 
.2 .8 -7132.4 2978 9660 12 48 .08 
.1 .9 -8396.2 2978 9660 1 19 .06 

0.0 1.0 -9691.0 3376 9691 0 13 .02 
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can be achieved at the expense of  only a 1.4% reduction in recognition. Regions of the biobjective 
solution space can be explored in greater detail by refinement of  the weights. 

Table 4 also shows that the total CPU time required to solve the P3 formulations ranged 
from .02 to 4.88 seconds. The solution to the problem associated with a weighting scheme of  
(0, 1) is lrivial because it is only necessary to select the m stimuli with the largest diagonal 
elements in the subset. Solution times gradually increased as more weight was placed on total 
confusion, reaching a maximum at the weighting scheme of  (1, 0). 

Demonstration of P3 with Total Confusion Aspiration Levels 

Our next demonstration concerns the biobjective subset extraction problem (m = 13) using 
different aspiration levels lor total confusion. For example, suppose that upon furthcr examina- 
tion of Table 4, the quantitative analyst was interested in finding a subset that provided the largest 
total recognition subject to a constraint that total confusion does not exceed more than roughly 
110% of  its minimum value of  2008 (e.g., h = 2200). One way to answer this question is to 
solve model  P3 using the weighting scheme (0, 1) and including (13) with h = 2200. Table 5 
presents results for different values of  h. These results were obtained using a weighting scheme 
(.0001, .9999) to provide better values of total confusion in case of multiple optima. In other 
words, for h = 2200, there might  be two subsets that provide the same total recognition, yet  
different levels of  total confusion. The weighting scheme (0, 1) would be indifferent to these two 
solutions, but the weighting scheme with a very small positive value of  g l  would yield the subset 
with the smaller total confusion as the unique optimal solution. 

The results in "Ihble 5 reveal that the solution con'esponding to weights of  (.7, .3) in Table 4, 
does not provide the largest total recognition, given an upper bound on confusion of  h = 2200. 
It is possible to increase recognition up to 9120 while remaining within the bound for confusion 
at 2189. This demonstrates the utility of  analyst-specified aspiration levels that can be used to 
optimize one criterion subject to the aspiration constraint on the other criterion. 

One of  the most  striNng aspects of  Table 5 is that the biobjective formulations become 
increasingly difficult to solve as the value of  h is decreased. For 3000 > h > 2300, the total CPU 
time was less than one second. However, the CPU time was at least 3.94 seconds for 2050 > h > 
2010, with a maximum of  6.71 seconds for h = 2010. 

TABLE 5. 
Branch-and-bound integer programming results for interletter confusion data using lnodel P3. All results 
correspond to a subset size of m = 13, a total confusion weight of gl = .0001 and a tmal recognition weight of 
g2 = .9999 

Total Total B & B B & B CPU 
h Z~ Confusion Recognition Nodes Iterations Time 

2010 -8397.96 2008 
2020 -8697.93 2015 
2050 -8697.93 2015 
2100 -8870.90 2083 
2200 -9118.87 2189 
2300 -9301.84 2261 
2400 -9355.83 2380 
2500 -9444.81 2489 
2600 -9444.81 2489 
2700 -9549.78 2684 
2800 -9553.77 2755 
2900 -9590.76 2832 
3000 -9658.74 2978 

8399 6062 24150 6.71 
8699 4085 17546 4.95 
8699 3286 13237 3.94 
8872 2495 8782 2.93 
)120 947 3256 1.51 
)303 199 647 .46 
)357 211 537 .41 
)446 89 224 .19 
)446 265 614 .54 
)551 31 87 .17 
)555 23 64 .13 
9592 11 39 .08 
9660 1 19 .05 
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Extraction of  Multiple Subsets from a Confusion Matrix 

An Integer Linear Programming Model for  Extracting Multiple Subsets (P4) 

In some psychological experiments, the interrelationships among the extracted stimuli are 
of  interest. Heiser (1988) described a subset extraction problem for the empirical letter confusion 
matrix obtained by van der Heijden et al. (1984). The problem was to select four pairs of  letters 
from the confusion matrix such that similarity within the pairs was large and similarity between 
the pairs was small. This problem is more complicated than simply extracting a subset of  m = 8 
from the n = 26 stimuli because of  the interest in the relationship between pairs of  stimuli within 
the subset. For the purposes of our mathematical model, similarity between stimuli is reflected in 
the total confusion between those two stimuli. The problem is viewed as selecting four subsets, 
each of  size m = 2, from the contusion matrix. A generalization of  P1 for this problem requires 
an extremely large number of variables and constraints, and is not a viable alternative for prob- 
lems of  practical size. A generalized variation of  P3 (hereafter P4) for extracting T subsets of 
sizes mt >_ 2(1 < t < T) from a confusion matrix requires the following variable definitions: 

Xit 

1)it = 

tt3it z 

1 if stimulus i is selected for inclusion in subset t, 0 othelwise, for 1 _< i _< n and 
l < t < T ;  
if stimulus i is selected lbr subset t, then vit is the total confusion between stimulus i and 
all other selected stimuli j ( j  > i) in the same subset, otherwise v i¢= 0, for 1 < i < n -  1 
a n d l  < t  < T ;  
if stimulus i is selected lk)r subset t, then wit is the total confusion between stimulus i 
and all other selected stimuli j ( j  > i) in the subsets other than t, otherwise wit = 0, for 
1 < i  < n -  1 a n d l  < t  < T. 

We also define the following parameters: 

fli t  z 

?/it z 

largest values of  (Cij "~ Cji tJ > i), for 1 < i < n - 1 and 1 < t < T; 

an upper bound on vit, which is computed as the sum of the min(mt - 1, n - i) largest 
values of  (Cij -~- Cji IJ > i), for 1 < i < n - 1 and 1 < t < T; 

an upper bound on wit, which is computed as the sum of the m i n ( ( ~ ' = l  rap) - mr, n - i) 

With these variables and parameters, model P4 is formulated as follows: 

n- -1  T n- -1  T 

Maximize: Z4 -= gl Z Z Vit -- g2 Z Z wit. 
i = 1  t = l  i = 1  t = l  

Subject to 

(14) 

f o r l < i < n - l , l < t < T ,  (17) 

for 1 < t < T, (18) 

for 1 < i < n, (19) 

vit - f i tx i t  <_ 0 

I)it -- ~ (Cij +Cji)Xjt <_ 0 
j = i + l  

n - 1  

- w i t  + ×itxit + ~_, ~_~(cij + c j i )x j r  <_ ×it 
j = i + l  r~t 

t/ 

Z Xit z n~ t 
i = 1  

T 

Z xit <_ 1 
t = l  

f o r l < i < n - l , l < t < T ,  (15) 

f o r l  < i  < n - l , l  < t  < T ,  (16) 
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xit ~ {0, 1} 

IJit, tOit > 0 

for 1 < i < n, 1 < t < T, (20) 

f o r l < i < n - l , l < t < T .  (21) 

The objective function (14) of P4 consists of two components. The first component repre- 
sents total confusion within subsets. The second component represents total confusion between 
subsets. This second component is subtracted from the objective function because the goal is to 
maximize similarity within subsets, yet minimize similarity between subsets. Although a biobjec- 
tire exploration of convex combinations of gl and g2 could be conducted, we limit our analysis 
to equal weights of gl = g2 = 1. 

Constraints (15) and (16) ensure that vit will assume a value of zero if stimulus i is not se- 
lected for inclusion in subset t, but can assume a value equal to the sum of stimulus i 's confusion 
with other selected stimuli j (j > 1) in subset t if that stimulus is included in the subset. Con- 
straints (17) ensure that similarity between subsets will be appropriately collected. If stimulus i 
is not selected for inclusion in subset t(xit = 0), then wit can assume a value of zero, which is 
desirable from the standpoint of the objective function. Itowever, if xit = 1, then wit must be 
at least as large as the sum of stimulus i 's  confusion with all other selected stimuli j (j > i) in 
other subsets r(r # t). Although it is possible to replace the flit and Fi, terms in (15) and (17) 
with some arbitrary large value, M, we have observed that the tighter bounds greatly improve 
solution efficiency and are important to the formulation. Constraints (18) require that exactly mt 
stimuli are selected for each of the T subsets. Constraints (19) guarantee that a stimulus is not 
selected for more than one subset. Constraints (20) place binary restrictions on the xit variables, 
and (21) impose nonnegativity restrictions on the vit and wit variables. 

Model P4 consists of nT integer decision variables, 2T(n - 1) continuous variables, and 
3T(n - 1) + n + T constraints. This formulation is larger and more complex than P2 and P3 be- 
cause of the modeling of multiple interrelated subsets. However, because P4 is constructed using 
the same type of compact representation of variables and constraints, it is a plausible approach 
for the modest sized confusion matrices often lound in practice. 

Demonstrations and Analysis of P4 Using an Empirical InterIetter Confusion Matrix 

We first applied P4 to the problem addressed by Heiser (1988), which was to extract T = 4 
pairs of size m t =  2(1 < t < T) from the n = 26 letters in the confusion matrix. The optimal 
solution to this formulation required more than one million integer iterations, approximately 
6 minutes of CPU time, and a maximum storage of 5MB of RAM. The extracted letter pairs 
were O-Q, H-M, E-F, and X-Y. Three of these pairs are the same as those identified by Heiser. 
His fourth pair was K-X instead of X-Y. It is possible that alternative weighting schemes, or 
transformations of the similarity matrix might yield different results. To test this theory, we noted 
that Heiser (1988, p. 42) applied a probability model based on the work of Shepard (1957) and 
Luce (1963), in order to obtain a symmetric similarity matrix, D, based on van der Heijden et 
al. (1984) interletter confusion matrix. We applied P4 to this similarity matrix by replacing the 
(Cij + Cji ) terms in the formulation with dij. The extracted subsets of letter pairs were the same 
as those obtained when we applied the model directly to the confusion matrix. It was interesting 
to note, however, that the CPU time required to solve P4 based on D was only about 2 minutes. 

In addition to the similarity of the pairs selected based on the solution of P4 to the pairs 
obtained by Heiser (1988), it is encouraging to note that pairs have a logical interpretation. The 
similarity of letters within the pairs is rather obvious. For example, the circular nature of O and Q, 
or the fact that E and F are characterized by a vertical bar on the left and two or more horizontal 
bars. Even the X-Y and K-X pairs share a notable feature in that they all have intersecting lines 
in their midsections. Closer inspection also reveals a lack of similarity between pairs. None of 
the letters in three of the pairs remotely resemble O or Q. Like the letters E and F, the letters H 
and M have a vertical bar on the left, but they also have a vertical bar on the right. It generally 
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seems that P4 resulted in a selection of a similar letters within pairs, but a lack of similarity of 
letters between pairs. 

We also applied P4 to the problem of extracting T = 4 subsets of size mt = 3(1 < t < 
T). By moving from pairs to triples, the solution space and problem complexity is significantly 
increased. For the interletter confusion matrix, the optimal solution for P4 required nearly seven 
million integer iterations, almost 42 minutes of CPU time, and a maximum storage of 15 MB 
of RAM. The extracted letter triples were E-F-P, G-O-Q, I-J-L, aJld K-X-Y. When we applied 
model P4 to D, two of the selected triples were different, and solution time was only 23 minutes. 
The extracted letter triples were E-F-P, G-O-Q, X-Y-Z, and H-M-W. 

Limitations and Extensions 

Limitations of the Models and Applications to other Confitsion Matrices 

The primary limitation of the models presented in this paper is that, for certain data sets, 
branch-and-bound integer programming methods consume significant memory storage and CPU 
time. The feasibility of integer programming methods for subset extraction is affected by two 
critical factors: (a) the size of the confusion matrix, which affects the number of variables and 
constraints in the models, and (b) the structure of the confusion matrix. We have observed that, 
for dense confusion matrices with little variability among the entries, the models presented in 
this paper can be very difficult to solve even for n ~ 30. However, dense confusion matrices 
with significant variability among the entries (e.g., the interletter conlusion matrix from van der 
Heijden et al. (1984)) are relatively easy to solve. Under such conditions, we have successfully 
applied our models to randomly generated confusion matrices as large as n = 50. 

We have applied the models presented in this paper to various empirical confusion matrices 
(Manning & Shofner, 1991; Moore, 1974; Rothkopf, 1957; Vega-Bermudez et al., 1991). The 
largest and most challenging of these was the Morse code confusion data (n = 36) repolted by 
Rothkopf (p. 97). We applied models P2 and P3 to this confusion matrix for conditions compa- 
rable to those associated with Tables 2, 3, and 4 (detailed results are available l?om the authors). 
Although we were always able to obtain optimal solutions for the Morse code data, the CPU 
times were 10-15 minutes for some of the problems. Model P4 failed in implementation for the 
Morse code data because of computer memory limitations. We believe that the increased dif- 
ficulty associated with solving problems for the Morse code data stems from two factors: (a) 
a larger number of variables and constraints for the Morse code data, and (b) less variability 
among the confusion entries in the Morse code data. To test this hypothesis partially, we squared 
the confusion entries in the Morse code data prior to running model P4. As a result, we were 
able to successfully extract four pairs (6 CPU minutes) and four triples (2 CPU hours) from the 
"squared" Morse code confusion data. 

Despite the squaring of the confusion measures, the subsets extracted for the Morse code 
data were easily interpreted. The four pairs selected based on the solution to P4 were (E = ,,, T = 
- ) ,  (G = - - - , O  - ), (B = - . * * ,  6 = - . * * . ) ,  and (9 -- . , 0 - -  ). 
Again, the similarity within pairs is evident. The pairs E-T, G-O, and 9-0 all have the same 
number of elements in the symbol and differ only by one element. For the remaining pair, the 
symbol for 6 appends a dot to the end of the symbol for B. The lack of similarity between pairs 
is also clear. The E-T, G-O, and 9-0 pairs are well separated based (m the fact that they have 
1, 3, and 5 elements in their symbols respectively. The B-6 pair and 9-0 pair are differentiated 
based on the fact that the symbols consist mostly of dots, whereas the symbols for 9 and 0 consist 
mostly of dashes. Comparable findings regarding similarity within and between triples of letters 
were observed. The lour triples were (A = . - ,  I = . . ,  N = - , , ) ,  (G = - - . ,  O - , W = 
• - - ) ,  (B = - . . . ,  X = - . . ,  6 = - . . . . ) ,  and (1 = • . . . .  ,9 -- . ,  0 -- ). 
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Modeling Enhancements and Alternative Solution Approaches 

As noted earlier in the paper, there are alternative optimal solution approaches for sub- 
set extraction problems, including quadratic enumerative algorithms and dynamic programming. 
Hubert, Arable and Meulman (2001) have developed an extensive variety of dynamic program- 
ming algorithms for related problems. Their dynamic programming paradigm could be modified 
easily to develop a recursive scheme for subset selection, which could then be compared to 
the integer-programming approach. Our emphasis on branch-and-bound integer programming 
is based on the accessibility of software and the flexibility of incorporating different criteria and 
constraints. In this paper, we have explicitly modeled such criteria as minimizing total confllsion, 
maximizing total recognition, maximizing confusion within subsets, and minimizing confusion 
between subsets. Criteria such as minimizing the maximum confusion in a subset, or maximiz- 
ing the minimum confusion in a subset, can also be modeled using integer programming. The 
formulations in this paper can also be augmented to incorporate problem-specific constraints. 
Constraints can be imposed to require that, if a particular stimulus is included in a subset, then 
one or more other stimuli are included in the same subset. Alternatively, constraints can be added 
to guarantee that certain subsets of stimuli are not included in the same subset. In short, there 
are many possible variations of objective criteria and constraints that can be accommodated by 
integer programming formulations. 

It is also important to recognize that there are several strategies that might improve the 
performance of branch-and-bound integer programming methods for the formulations proposed 
in this paper, including specialized branching strategies and cutting planes. Another approach 
is to use heuristic methods to provide an initial feasible integer solution, as well as a bound on 
the objective function. We have developed a simulated annealing heuristic for subset extraction 
problems that provides excellent starting solutions and can improve computational efficiency for 
larger problems. The heuristic is also an efticient and effective solution procedure in its own 
right, and can provide good solutions for much larger confusion matrices (n > 100). 

Summary 

This paper has presented single-objective and biobjective linear 0-1 formulations for extract- 
ing a subset of stimuli from a confusion matrix. These formulations are far more compact than 
previously proposed formulations for the same problem. We successfully solved both single- 
objective and biobjective problems for an empirical interletter confusion matrix using branch- 
and-bound integer programming. All the ILP formulations solved in a reasonable amount of 
microcomputer CPU time (.02 to 6.71 seconds) and did not consume a significant amount of 
memory for storage of the branch-and-bound tree. We also extended the basic modeling ap- 
proach to the problem of extracting T subsets of sizes mt (1 < t < T) such that within subset 
similarity is large and between subset similarity is small. The model was successfully applied 
to the extraction of letter pairs and triples from the interletter confusion matrix. Although these 
problems were considerably larger and more difficult to solve, the resulting subsets of pairs and 
triples were easy to interpret, and the pairs were similar to those obtained by Heiser (1988). Lim- 
itations, other applications, possible enhancements, and alternative approaches to the proposed 
integer programming models were also discussed. 
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