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Abstract

It is well known that minimum-diameter partitioning of symmetric dissimilarity matrices can be framed within the context of
coloring the vertices of a graph. Although confusion data are typically represented in the form of asymmetric similarity matrices,
they are also amenable to a graph-coloring perspective. In this paper, we propose the integration of the minimum-diameter
partitioning method with a neighborhood-based coloring approach for analyzing digraphs corresponding to confusion data. This
procedure is capable of producing minimum-diameter partitions with the added desirable property that vertices with the same color
have similar in-neighborhoods (i.e., directed edges entering the vertex) and out-neighborhoods (i.e., directed edges exiting the vertex)

for the digraph corresponding to the minimum partition diameter.
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1. Introduction

Graph-coloring problems have fascinated mathema-
ticians since at least the mid-1800s when Francis
Guthrie suggested the problem to De Morgan (Dailey,
1978; May, 1965). Originally, investigators focused
almost exclusively on the “four-color map problem”,
which concerned the coloring of countries on a two-
dimensional map. In the early 1940s, Brooks’ (1941)
work began a transition from “map coloring” to, more
generally, coloring the nodes of a network (or graph
coloring). Since that time, research and theory has
proliferated into a number of interesting research issues
related to the coloring of graphs. An in depth history of
graph-coloring problems is provided by Dailey (1978).

Because of their relationship to the grouping of
proximity data, graph-coloring methods are particularly
relevant to quantitative data analysis problems in the
social sciences. Hubert (1974) and Baker and Hubert
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(1976) developed an important association between
graph coloring and complete-link hierarchical cluster-
ing, a widely used technique in empirical psychological
research (Loomis, 1982; Shepard & Arabie, 1979). The
relevance of graph-coloring methods to the closely
related nonhierarchical minimum-diameter partitioning
problem (MDPP) is also well documented (Brusco,
2003; Hansen & Delattre, 1978; Hubert, 1974; Hubert,
Arabie, & Meulman, 2001). Most notably, Hubert
(1974, p. 297) observed: “One of the most interesting
connections between graph theory and clustering is with
respect to the colorability of a graph. ... The implica-
tions of this relationship between clustering and node
labeling are awesome given the phenomenal literature
on the coloring problem”.

In a somewhat different nonhierarchical application,
Everett and Borgatti (1991, 1993) have deployed role
coloring methods in the social network literature within
the context of a formalization of regular equivalence
(White & Reitz, 1983). The principles of this type of
graph coloring are similar to those of MDPP situations;
however, the coloring restrictions and objective criteria
are somewhat different. Specifically, the objective of role
coloring is to assign colors to actors such that actors of
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similar color have the same type of role relations (links
or connections with equivalent actors). Although role
coloring (or role assignment) is not directly analogous to
the problems we address herein, it does provide an
example of a coloring-type problem that has recently
received considerable attention in the quantitative social
sciences (Roberts, 1998; Roberts & Sheng, 1999, 2001).

Although graph-coloring methods have, indirectly,
been applied to the study of confusion data because of
their relationship to complete-link hierarchical cluster-
ing, it is the premise of this paper that they can play an
even larger, more formidable role in the analysis of
confusion structure. In particular, we propose an
integration of the MDPP with a neighborhood-based
coloring algorithm that enables the asymmetric proper-
ties of the confusion data to be retained. The neighbor-
hood-based algorithm attempts to produce a partition
of vertices of the digraph corresponding to the minimum
partition diameter, such that vertices of the same color
are similar with respect to their entering and exiting
edges. In other words, the neighborhood-based coloring
procedure provides a straightforward and powerful tool
for selecting a particular coloring of vertices for the
digraph corresponding to the minimum partition
diameter.

In Section 2 of this paper, we describe the general
principles of graph coloring and its relationship to the
MDPP. An implicit enumeration solution procedure is
also presented and benchmarked in Section 2. Section 3
focuses on the application of coloring procedures to
confusion matrices, where we develop the idea of
neighborhood-based coloring, and propose an integra-
tion of this method with MDPP. A numerical example
for synthetic data is used to demonstrate the procedure.
The section concludes with an application to a large,
well-known empirical confusion matrix. The paper
concludes with a brief summary in Section 4.

2. Graph Coloring and the MDPP
2.1. Formulation of the MDPP

To develop the graph coloring problem and its
relevance to classification, we define V = {v, 02, ...,0,}
as a set of n vertices. An edge of the graph is denoted by
e, = (v;,v;), and the set of all edges is denoted by E. We
also assume that a proximity relationship among the
vertices is available in the form of a symmetric n x n
dissimilarity matrix, A, which contains nonnegative off-
diagonal entries a; = a; and an arbitrary main diagonal
(that is ignored in the analyses). We use the term
“dissimilarity”” to reflect the fact that smaller (larger)
matrix elements indicate greater (less) similarity between
the pairs of objects. This convention is consistent with
most of the previous literature in this area (Baker &

Hubert, 1976; Brusco, 2003; Hansen & Delattre, 1978;
Hubert, 1973, 1974).

The dissimilarity measures represent the weights of
the edges of the complete graph G(V,E), where E =
{e, = (vi,vj) forall i=1,....n—1andj = i+l,....n}. A
partial graph of G, is denoted by Gs5(V, Es), where the
edge set E; = {e, = (vi,vj)|a; >0}. A K-coloring for the
partial graph G;(V, Es) consists of an assignment of one
of K colors to each vertex such that no two adjacent
vertices of the partial graph have the same color. In
other words, if (v;) denotes the color of vertex v; then
o(v;) = o(v;) =e, = (v;,v;) ¢ E5s. The chromatic number
of the partial graph Gs(V, Es), which is denoted y(Gs), is
the minimum value of K that permits a K-coloring of
Gs(V, Es).

Hansen and Delattre (1978) expanded this line of
research by developing the relationship between the
graph-coloring problem and the MDPP. The objective
of MDPP is to partition the vertex set V into K subsets
(V1, Va,..., Vi) such that the largest pairwise dissim-
ilarity index across all subsets is minimized. Mathema-
tically, the MDPP can be stated as follows:

min Z; = ma ma i 1
B Lv,,v,)?vk (a"/)] ’ m
V1UV2U--~UVK,1UVK:V, (2)

VinVi=@ Vk=1,...K—1, 1=K+1,..K, (3)

Vil=1 Vk=1,..,K. (4)

The objective function (1) represents the partition
diameter, and constraints (2)—(4) guarantee that the
conditions for a partition of the vertices are met.
Constraint (2) requires all vertices in V' to belong to
one or more subsets. Constraint set (3) ensures that a
vertex is not assigned to more than one subset, and
constraint set (4) forbids empty subsets by requiring the
number of vertices in each subset (denoted |V%|) to be at
least one.

It has been observed that applying the complete-link
hierarchical clustering algorithm and cutting the result-
ing tree at K clusters will often provide a good solution
to MDPP; however, an optimal solution is not
guaranteed (Baker and Hubert, 1976; Hansen and
Delattre, 1978). In fact, Hansen and Delattre’s results
suggested that the complete-link algorithm seldom
produced an optimal solution for MDPP for small
values of K. An optimal solution for the MDPP can be
obtained in polynomial time for the special case of K =
2 using a repulsion algorithm developed by Rao (1971);
however, Hansen and Delattre demonstrated that
MDPP is NP-hard for K>3. As a plausible method
for obtaining an optimal solution when K>3, Hansen
and Delattre proposed a branch-and-bound algorithm
that incorporates a graph-coloring procedure developed
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by Brown (1972). Alternative optimal solution proce-
dures include mathematical programming (Rao, 1971),
dynamic programming (Hubert et al., 2001), and
implicit enumeration (Brusco, 2003). In this paper, we
use the implicit enumeration approach described in the
next subsection.

2.2. An implicit enumeration procedure for the MDPP

Brusco (2003) recently presented a number of
enhancements for an implicit enumeration algorithm
developed by Klein and Aronson (1991) for minimizing
the sum of pairwise dissimilarities within clusters.
Brusco also suggested that the algorithm could be
modified for the MDPP, but he did not describe the
procedure. The general steps of an implicit enumeration
algorithm for MDPP are as follows:

Step 0: Initialize. Find an initial incumbent
solution for the MDPP using a heuristic procedure
and store the coloring of each vertex, Q" =
{w*(v)), w*(v2), ...,0*(vy)} and the corresponding
diameter, Z7j. Initialize the pointer u =0, which
specifies the index of the vertex to be colored.
Initialize ¢(k) =0 for k=1, ...,K as the number of
vertices that are assigned color k. Initialize I’ = ¢ as
the set of colors used in the partial coloring, and let
|I'| denote the number of colors used.

Step 1: Vertex reodering. Reorder the vertices such
that those vertices with the most edges in the graph
corresponding to the solution, Qx, are placed first in
the reordering.

Step 2: Advance. Advance the pointer by setting
u=u+ 1, which specifies the index of the current
vertex to be colored.

Step 3: Initial color. Set the initial color for the
selected vertex to the first color: w(v,) = 1. Set
o(o(v,)) = p(w(v,))+1and I' =Tvw(v,).

Step 4: Feasibility tests. Determine whether or not
the current partial coloring can produce a feasible
solution to the MDPP that has a diameter less than
z:

Step 4a: Unused colors: the number of yet
unused colors must equal or exceed the number
of vertices remaining to be assigned a color. If
K —|I''>n—u, go to Step 7.

Step 4b: Diameter test: If a;,>Z] for any
1<j<u—1 and w(v;) = o(v,), then go to Step
7.

Step 4c: Unassigned vertex test: Compute ; =
ming—, g(max—i _u(aj|lo(v;) =k)) for j=
utl,...n. If {;=Z7 for any u+ 1<j<n, then
go to Step 7.

Step 5: Complete solution test. If u<n, then go to
Step 2.

Step 6: Update incumbent. Z} = max(a;|w(v;) =
o(v;)) and Q% = Q. Y

Step 7. Branching action. 1If o(v,) =K or
(¢p(w(v,)) =1 and ¢(w(v,) +1) =0, then go to
Step 9.

Step  8:  Recolor wvertex. Set (¢p(w(v,)) =
(p(w(vy)) — 1. If ($p(w(vy,)) =0, then set I' =T —
@ (vy). Set w(vy) = o(ve) + 1, (P(o(vi)) =
(¢p(w(vy)) +1,and I'=T" U w(v,). Return to Step 4.

Step  9: Depth retraction. Set (¢p(w(v,)) =
(p(w(vy)) — 1. If (¢(w(v,)) =0, then set I'=1T —
o(vy). Set u=u—1. If u>0, then go to Step 7;
otherwise return the incumbent solution Q" as an
optimal solution to the MDPP and Stop.

The implicit enumeration algorithm begins with the
development of an initial feasible solution from a
heuristic procedure. Although Brusco (2003) recom-
mended replications of a biased-sampling version of a
complete-link clustering algorithm, we have obtained
better initial bounds using the traditional complete-link
algorithm followed by an exchange algorithm. The
exchange algorithm sequentially evaluates the effect of
replacing the current color of a vertex with each of the
other possible colors and accepts any recoloring that
improves the partition diameter. The exchange algo-
rithm terminates when a complete pass through the
vertices occurs without any recolorings. The reordering
routine in Step 1 has also been incorporated in the
algorithm, and can result in huge computational savings
for some problems. By placing vertices with large
dissimilarities early in the ordering of vertices, partial
solutions are pruned earlier in the algorithm.

The vertex pointer, u, is advanced in Step 2, and this
vertex is assigned the first color in Step 3. A series of
feasibility tests for partial colorings are performed in
Step 4. If the number of unused colors exceeds the
number of vertices remaining to be assigned (Step 4a),
then the current partial solution cannot ultimately lead
to a feasible coloring. If vertex u shares a color
assignment with a previously assigned vertex j, and if
the dissimilarity between j and u equals or exceeds Zj,
then the partial solution cannot ultimately produce a
coloring with a better partition diameter (Step 4b). The
third feasibility test (Step 4c), which is extremely
important for computational efficiency, tests each of
the yet unassigned vertices with respect to its best
possible coloring. If the best possible coloring for any
unassigned vertex would yield a dissimilarity value that
equals or exceeds Zj, then the partial solution cannot
ultimately yield a coloring with a better partition
diameter.

If u<n at Step 5, processing returns to Step 2 for
selection of the next vertex. Otherwise, u = n, which
suggests a complete coloring of the graph, and the
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incumbent solution is updated in Step 6. Step 7
determines whether the current vertex is a candidate
for recoloring in Step 8, or whether depth retraction
(backtracking in the vertex ordering by decrementing
the value of u) is required in Step 9. The algorithm
terminates in Step 9 when the pointer is decremented to
zero.

2.3. Benchmarking the performance of the algorithm

We investigated the efficiency of the implicit enumera-
tion algorithm by applying it to a set of five synthetic
dissimilarity matrices. Each of these matrices was
constructed by randomly generating n =75 vertices
within a plane ring of the unit circle, and subsequently
computing the Euclidean distance between each pair of
vertices. We selected this generation process because
such problems were characterized as ‘difficult’ by
Hansen and Delattre (1978, p. 401). The implicit
enumeration algorithm was applied to each of the five
test problems using values of K ranging from 2 to 10.
The algorithm was coded in Fortran and implemented
on a 2.2 GHz Pentium IV PC with 1 GB of RAM. The
computational results are displayed in Table 1.

Table 1 reports the average reduction in partition
diameter when increasing the number of clusters from
K-1 to K. As suggested by Hansen and Delattre (1978),
this type of measure can provide the basis for a
‘stopping rule’ for the MDPP. The CPU times reported
in Table 1 suggest that the implicit enumeration
algorithm is a computationally feasible strategy, even
for reasonably large values of K. Solution times for
K <6 were always less than three seconds, and most of
the CPU times for 7< K <10 were less than one minute.
Clearly, solution-time variability was much greater for

Table 1
Results for then MDPP implicit enumeration algorithm benchmarking
experiments®

No. of % reduction in  Mean Minimum  Maximum
clusters (K) partition
diameter
2 — 0.78 0.78 0.80
3 23.48 0.80 0.78 0.81
4 19.30 0.80 0.78 0.83
5 21.76 0.88 0.82 0.98
6 13.86 1.41 0.79 2.55
7 12.59 22.31 1.69 55.77
8 10.59 43.12 1.32 112.76
9 7.86 70.20 3.80 219.53
10 6.97 732.42 33.86 2605.49

#For each number of clusters (except K = 2), the table reports the
mean percentage reduction in partition diameter when increasing the
number of clusters from K-1 to K. The mean, minimum, and maximum
CPU times (across the five test problems) are also reported for each
cluster size.

larger values of K, with one of the K = 10 test problems
requiring nearly 45 minutes of CPU time. Nevertheless,
the implicit enumeration scheme would meet the need
for most MDPP’s of practical size, and was used to
provide solutions for subsequent experiments in this
manuscript. Further, the general implicit enumeration
paradigm is readily extensible to the related neighbor-
hood-based coloring problem discussed below.

3. Graph coloring and MDPP procedures for confusion
matrices

3.1. Applying MDPP procedures to confusion matrices

An nxn confusion matrix, C, provides a common
representation of data for recognition tasks. An element
of the matrix, c¢;, represents the number of times (or
proportion of times) that response j was offered for the
presentation of stimulus i. Confusion matrices have a
similarity (rather than dissimilarity) interpretation
because more frequent confusion of two objects suggests
that they are more similar. More importantly, confusion
matrices are typically asymmetric because, at least for
some objects, j is more frequently a response to i than i is
a response to j. Nevertheless, it is not uncommon in the
empirical literature to transform a confusion matrix to a
symmetric matrix and apply hierarchical clustering
procedures (Hubert & Baker, 1977; Loomis, 1982;
Morgan, Chambers & Morton, 1973). Hubert (1973)
provides an excellent discussion of various approaches
for applying single-link and complete-link hierarchical
clustering methods to asymmetric proximity matrices.

To illustrate the transformation of an asymmetric
confusion matrix (C) to an asymmetric dissimilarity
matrix (B), and, subsequently, to a symmetric dissim-
ilarity matrix (A), we use the synthetic data displayed in
Table 2. The asymmetric dissimilarity matrix in Table 2
was obtained by subtracting each element of the original
confusion matrix by the largest off-diagonal element in
that confusion matrix (c¢;4 = 10). In other words, B =
[emax)gy—Cs Where cmax =max; . (c;) and [Cpaxgyq 1S @
6 x 6 matrix with cyax as the off-diagonal entries (again,
the main diagonal is ignored). Such a transformation is
common practice in this type of analysis (Cho, Yang, &
Hallett, 2000; Hubert, Arabie, & Meulman, 1997). The
elements of the symmetric dissimilarity matrix (A) are
obtained using a; = a; = max(by, b;;), which is consis-
tent with Hubert’s (1973) “strong completeness’ trans-
formation of asymmetric dissimilarity data.

A minimum-diameter partition for K = 3 clusters was
obtained for the symmetric dissimilarity matrix in Table
2. The resulting partition of ({vy,vz,v3}{va,vs}{vs})
yields a minimum diameter of Zj = 5. As is frequently
the case for empirical proximity matrices, this partition
is not a unique optimum. Indeed, for many empirical
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Table 2
Synthetic matrices for numerical demonstration
Response
Stimulus 1 2 3 4 5 6
A synthetic 6 X 6 1 — 6 5 10 7 1
confusion matrix, C 2 5 — 8 6 8 6
3 9 5 — 9 8 3
4 8 8 7 — 9 4
5 7 9 2 s — 7
6 7 4 8 6 2 —
1 2 3 4 5 6
An asymmetric 1 — 4 5 0 3 9
dissimilarity 2 5 — 2 4 2 4
matrix, B, formed 3 1 5 — 1 2 7
by subtracting the 4 2 2 3 — 1 6
elements in C from 5 3 1 8 5 — 3
10. 6 3 6 2 4 8 —
1 2 3 4 5 6
A symmetric 1 — 5 5 2 3 9
dissimilarity 2 5 — 5 4 2 6
matrix, A, formed 3 5 5 — 3 8 7
based on “‘strong 4 2 4 3 — 5 6
completeness” of S 3 2 8 5 — 8
matrix B. 6 9 6 7 6 8 —

matrices, there can be a large number of partitions that
produce the same minimum diameter. These alternative
optima can vary widely in their configurations, and a
systematic procedure for selecting a solution from the
set of alternative optima would be especially valuable.
The method developed in the next subsection is a
plausible means for this selection process.

3.2. Neighborhood-based coloring of confusion matrices

The primary disadvantage of the traditional applica-
tion of complete-link clustering or the MDPP to
confusion matrices is that they do not directly capture
the asymmetric information in the analysis. One possible
remedy for this problem is to apply graph-coloring
methods to a digraph corresponding to the asymmetric
dissimilarity matrix, B. We define D as a digraph
corresponding to the asymmetric dissimilarity matrix B.
A partial graph of D, is denoted by Ds(V, Es), where the
directed edge set E; = {e, = (v;,v;)|b;>0}. We further
define, for each vertex v; in the digraph, the “in-
neighborhood” as N;(v;) = {vj|le; = (vj,v;) € Es}, and
the  “out-neighborhood” as  No(v;) = {vjle; =
(vi,vj) € Es}. The goal is then to develop a coloring such
that vertices with the same color have similar in-
neighborhoods and out-neighborhoods. Although many
criteria for achieving this objective are possible, we
employ the following criterion in this paper:

min : Z,
_ 3 ( |(N1(v:) O N (0))\(N1(v;) " N (7)) )
+|(No(v:) UNo(5;)\(No(vi) " No(v))| ]

()

[(i<))]o@)=o(y)]

This objective function represents the total sum of
inconsistencies in the in-neighborhoods and out-neigh-
borhoods for vertex pairs of the same color. For each
vertex pair, (v, v;)»0(v;) = (v;), the index collects the
number of vertices that are in N;(v;) but not N;(v;) and
vice versa, as well as the number of vertices that are in
No(v;) but not No(v;) and vice versa. The minimization
of (5) can be accomplished using the same implicit
enumeration scheme described in Section 2 with only
minor modifications for the objective criterion. We
incorporate the constraint that [{e; = (v;i,v;)}€E;s
and/or{e, = (vj,v;)} € Es| = w(v;) #w(v;). Specifically,
we propose integration of the MDPP with the neighbor-
hood-based coloring of the digraph via the following
two-stage procedure:

Stage 1: Obtain a minimum diameter partition
using for matrix A using the algorithm described in
Section 2.2 and let § = Zj.

Stage 2: Form the digraph, D;(V,Es), for the
asymmetric dissimilarity matrix B and obtain a
neighborhood coloring of the digraph by minimizing

).

This two-stage process will yield a minimum-diameter
partition that also provides a coloring such that vertices
of the same color have similar neighborhoods. The need
for Stage 2 arises because of the myriad of minimum-
diameter partitions that are typically available for
empirical matrices. It is also possible to repeat Stage 2
after incremental increases in ¢ to determine whether or
not large decreases in Z, can be achieved at the expense
of small increases in Z;.

To illustrate the two-stage procedure for coloring
confusion matrices, we return to the data from Table 2.
The colored digraph for the minimum-diameter parti-
tion obtained in Stage 1 is shown in Fig. 1 (to improve
readability, we use digraphs with ‘“double-arrowed”
edges instead of two separate edges). This coloring
yields values of Z7 = 5 and Z, = 7. Stage 2 provides the
colored digraph shown in Fig. 2, which corresponds to
the partition ({vy,vs,vs}{v2,v5}{vs}). Although this
coloring also produces a minimum diameter of Zj =5,
it has a smaller value for the neighborhood index
(Z, = 3). For illustrative purposes, the computation of
Z, is shown in Table 3.

Stage 2 of the solution procedure resulted in a
modification of the Stage 1 solution by swapping the
colors of v, and v4. These recolorings occurred because,
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2

Fig. 1. 3-coloring of the digraph, Ds, for matrix B of Table 2 resulting from Stage 1. The convention within each vertex is: vertex number/color of the

vertex.
\ M

Fig. 2. 3-coloring of the digraph, Ds, for matrix B of Table 2 resulting from Stage 2. The convention within each vertex is: vertex number/color of the

vertex.

relative to vy, the neighborhood of v, is more compar- neighborhoods of v; and v3. As shown in Table 3, v; and
able to the neighborhood of vs. Similarly, relative to v, vs have identical in-neighborhoods and out-neighbor-
the neighborhood of v4 is more comparable to the hoods, and both of these vertices have the same
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out-neighborhood as v;. Because {vs} is in the in-
neighborhood of wv3;, but not v; and vy, there is an
inconsistency contribution of +2 associated with the
vertices of color k=1. The vertices of color
k= 2(v,andvs} have identical in-neighborhoods and
only slightly different out-neighborhoods (with an
inconsistency contribution of +1 because {v3} is in the
out-neighborhood of vs but not v,).

To provide an interpretation of the Stage 2 partition
with respect to the original confusion matrix, C, it is

Table 3
Computation of Z, for the 3-coloring of the digraph in Fig. 2.
Vertex (v;) Ni(v;) No(v;) Color, o(v;)
v {} {v} 1
v {ve} {3 2
U3 {vs} {ve} 1
Vs (T} {ve} 1
vs {ve} {vs} 2
Us {v1, 3,04} {v2, vs} 3
Computation of index
Pair In Out
{v1, v3} +1 +0
{1, va} +0 +0
{v3, va} +1 +0
{2, vs} +0 +1
Sum = 2 1
Total sum = 3

|

"

@\
O

helpful to consider the complement, Ds, of the 3-colored
digraph in Fig. 2, which is depicted in Fig. 3. The
vertices v, and vs in Fig. 3, which are each assigned color
k =2, are connected by a double-arrowed edge. This
indicates that the dissimilarities (in both directions) for
this pair of vertices with color k =2 are less than or
equal to 5. Alternatively, this means that the confusion
entries (both directions) for this vertex pair are greater
than or equal to 5. We observe from Table 2 that c;5 = 8
and ¢5; =9, revealing high confusion among objects 2
and 5.

The digraph in Fig. 3 also shows that objects 2 and 5
are similar in their confusion structures with other
objects. Vertices v, and vs are each connected to v; and
v4 by double-arrowed edges, which reveals that stimuli 2
and 5 are both highly confused with stimuli 1 and 4 in
both directions. Fig. 3 also displays a directed edge from
5 to vg and from vs to ve, which indicates that stimulus 6
is often provided as an incorrect response for stimuli 2
and 5 (c6 = 6 and ¢s¢ = 7), but stimuli 2 and 5 are less
frequently offered as incorrect responses to stimulus 6
(c62 = 4 and ¢¢s = 2). The only inconsistency for vertices
v, and vs is that v, is connected to v3; by a double-
arrowed edge, but vs is only connected by a directed
edge from v3. This indicates that although stimuli 2 and
5 are both frequently incorrect responses for stimulus 3
(c32 =5 and ¢35 =38), stimulus 3 is frequently an
incorrect response for stimulus 2 (c¢y;3 = 8) but not for
stimulus 5 (¢s3 = 2).

Fig. 3. The complement, Ds, of the digraph in Fig. 2. The convention within each vertex is: vertex number/color of the vertex.
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3.3. An application to an empirical confusion matrix

Although illustrative, the synthetic confusion matrix
used in previous subsections cannot demonstrate the
significant benefits associated with the two-stage color-
ing procedure. Therefore, we applied the procedure to
Morse code confusion data among the 26 letters and 10
digits 0, 1,2, ...,9(n = 36), as reported by Hubert (1987,
pp. 164-165) based on data originally collected by
Rothkopf (1957). The resulting 36 x 36 confusion
matrix is one of the largest available in the literature,
and was particularly useful for demonstrating the
computational plausibility of the approach presented
herein.

We applied the two-stage procedure to the Morse
code data for 2< K <12 clusters, and the results are
summarized in Table 4. Partition diameter monotoni-
cally decreased as the number of clusters increased, and
a particularly large percentage decrease was observed
when moving from 9 to 10 clusters. The neighborhood
index was smallest at two clusters, reached a maximum
at five clusters, and monotonically decreased across the
range from 6 to 12 clusters. Stage 2 of the procedure
provided a reduction in Z, (without penalty of Z;) for
all values of K, except K =2. In some cases, the
improvement in Z, was considerable (e.g., a 19.1%
reduction in Z, for K = 6). It is important to recognize,
however, that the reduction in Z, should not be
evaluated independently from the reduction in Z;. For
example, when increasing K from 9 to 10, the value of Z;
decreases substantially from 68 to 62. Although the
decrease in Z, from 949 to 881 might seem small, it must
be recognized that the definition of neighborhood is now
much tighter because of the significant reduction in the
diameter.

Because of the particularly small increase in partition
diameter when decreasing K from 11 to 10, as well as the
large increase in diameter when decreasing K from 10 to
9, we selected the 10-cluster solution for evaluation. As

Table 4
Experimental results for the Morse code data

Stage 1 solution Stage 1 solution

No. clusters Z Z, Z, % reduction
2 82 392 392 0.0
3 81 1186 1070 9.8
4 79 2134 1944 8.9
5 76 2131 2064 33
6 74 1995 1613 19.1
7 72 1629 1507 7.5
8 69 1346 1240 7.9
9 68 1123 977 13.0
10 62 949 881 7.2
11 61 719 646 10.2
12 60 648 531 18.1

Table 5
10-cluster partitions for the Morse code data from Stage 1 and Stage 2

Cluster number Stage 1 solution Stage 2 solution

1 (AT} (AT}

2 {E, T} {E, T}

3 (M, N} (M, N}

4 (F, V. 4,5} (E, V. 4,5}

5 {G, K, 0, W} (G, K, 0, W}
6 (J,P,2, 3} (J,P,2,3)

7 Q. 1,8,9, 0} Q. 1,8,9, 0}
8 (B,C, X, 6,7} (B,C.L, X, 67}
9 (D, L, R} (D, H, S}

10 {H, S, U} (R, U}

observed by one of the reviewers of this manuscript,
good performance in the diameter criterion for K
clusters is often associated with somewhat poor perfor-
mance at K — 1 clusters. Table 5 presents the 10-cluster
solutions from Stages 1 and 2, which demonstrate the
reassignments that occur. The first seven clusters of the
two partitions are identical; however, clusters 8-10 are
slightly different. Cluster 9 from the Stage 1 solution
was split apart in the Stage 2 solution, with the letter
“L” becoming a component of cluster 8 in the Stage 2
partition, and the letter “R” moving to cluster 10 of the
Stage 2 partition. One advantage of this change from an
interpretability standpoint is that the Morse code
symbol for the letter “L” has four characters (e-ee), as
do the symbols for the letters “B”, “C”, and “X” in
cluster 8. In the Stage 1 solution, the letter “L”” had been
grouped with two letters, “D” and “R”, which have
Morse code symbols that consist of only three char-
acters. The letters “H”” and ““S” from cluster 10 of the
Stage 1 solution were joined with “D” to form cluster 9
of the Stage 2 solution, and the letter “U” remained in
cluster 10 of the Stage 2 solution but was grouped with
“R” instead of “D” and ““S”.

A couple of additional points regarding the two-stage
procedure are necessary. First, the improvement realized
from Stage 2 is dependent upon the ordering of the
vertices, which affects the first minimum-diameter
partition found (and, therefore, stored) in Stage 1. For
example, there are alternative minimum-diameter parti-
tions for the 10-cluster solution that would have
revealed more significant refinement in the Stage 2
solution. Thus, the benefit of Stage 2 is that it does not
leave the identified minimum-diameter partition to
chance but, instead, provides a rational basis for
choosing among minimum-diameter partitions. Second,
although we have restricted our analysis in Stage 2 to
requiring minimum-diameter partitions, the quantitative
analyst could possibly relax this constraint to determine
whether a small sacrifice in diameter would permit a
large improvement in the neighborhood index.
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4. Conclusions
4.1. Summary

In this paper, we have developed some possible
applications for graph coloring and minimum-diameter
partitioning methods with respect to the analysis of
confusion matrices. Specifically, we propose that mini-
mum-diameter partitioning methods can be integrated
with neighborhood-based coloring methods for digraphs
of asymmetric dissimilarity matrices. The advantage of
our two-stage procedure is that it provides a systematic
means for finding minimum-diameter partitions that
also provide consistent edge neighborhoods for vertices
within the same cluster (i.e., the same color). We have
presented an implicit enumeration scheme for obtaining
the minimum-diameter partition in Stage 1 of the
procedure, and this scheme was easily adapted to color
the minimum-diameter digraph in Stage 2 so as to
minimize the neighborhood index. The implicit enu-
meration scheme efficiently provides guaranteed optimal
solutions for both stages of the procedure.

4.2. Modeling alternatives and extensions

This paper has focused on a graph-coloring perspec-
tive for the analysis of confusion matrices. We have
implemented our algorithms using compact-clustering
criteria based on partition diameter; however, it is
possible to employ objective function criteria other than
those used in Stages 1 and 2 of the proposed method.
Such criteria could encompass a wide range of indices
corresponding to homogeneity within clusters and
separation among clusters. For example, the quantita-
tive analyst could replace the neighborhood-based
clustering procedure in Stage 2 with a weighted-edge
version of the neighborhood index, or a within-cluster
sum of dissimilarities criterion (either with or without
adjustment for cluster size). Fortunately, the branch-
and-bound algorithm described herein can be easily be
adapted for these and many other objective functions.
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