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1. Introduction

According to Milligan (1996), the validation of a clustering technique
requires the generation of artificial data sets and testing via Monte Carlo simu-
lation so the researcher has prior knowledge of the exact structure of the data.
After generation and the subsequent clustering technique application, the re-
sulting clusters are compared with the known structure. Frequently, different
kinds of error are added to the known structure before the clustering algorithms
are implemented, attempting to assess their resilience. Milligan (1996) notes,
however, that results provided by these methods are only generalizable to the
extent allowed by the data generation.

This paper will focus on the initial data generation step of validating clus-
ters. For a detailed overview of the remaining steps of cluster validation, see
Milligan (1996). A brief critique of current data generation techniques is pro-
vided, followed by a the proposal of new cluster generation method that has
been implemented in several cluster validation studies (Steinley 2003; 2004).
We end with a discussion of applicability for the proposed technique to several
research areas.

2. Critique of Existing Techniques

1. Milligan (1985): Although a few simulation studies were already in the
literature at the time, Milligan (1985) pioneered the extensive use of a
Monte Carlo approach in cluster validation by developing aneasily im-
plemented algorithm, that used well-separated clusters from truncated
(slightly) multivariate normal distributions. Standard normal error or out-
liers were added to the clusters to simulate measurement error and “messy”
data, with both additions increasing the variance within clusters.

Results:

Standard normal error. Let x be normally distributed with meanµ and
varianceσ2, and represented asx ∼ N(µ, σ2). If e ∼ N(0, 1) andx and
e are independent, it follows from elementary statistics that (x + e) ∼
N(µ, σ2 + 1). Becauseσ2 + 1 > σ2, the variance has been increased by
adding standard normal error, a result generalizable to theMVN distribu-
tion.

Outliers. Let x = {x1, x2, . . . , xn}′ be ann × 1 vector of observations.
Thexi arranged in order from smallest to largest are the order statistics,
denoted byx(1), x(2), . . . , x(n) (Bickel & Doksum 2001; David 1981).
For the order statistics, the mean is denoted byx̄, the minimum byx(1),
and the maximum byx(n). Lety = {y1, y2, . . . , ym}′ be anm× 1 vector
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of outliers where eachyi is farther fromx̄ than any element ofx, so when
y is added tox and the resulting order statistics are examined, there are
three distinct possibilities:

(1) All m outliers are greater thanx(n), resulting in the order
statistics of the combined set beingx(1), . . . , x(n), y(1), . . . , y(m);

(2) all m outliers are less thanx(1), resulting in the combined
order statisticsy(1), . . . , y(m), x(1), . . . , x(n);

(3) b of them outliers are less thanx(1) andm− b outliers are
greater thanx(n), resulting in the combined order statistics
y(1), . . . , y(b), x(1), . . . , x(n), y(b+1), . . . , y(m).

If x is viewed as a set of fixed data, robust estimation theory (Rousseeuw
and Leroy 1987; Hampel, Ronchetti, Rousseeuw, and Stahel 1986) shows
the breakdown point (the smallest number of arbitrary data points that
needs to be added to the observed data to change the estimate)of the pop-
ulation variance is zero. Thus, if any additional data points(outliers) are
added tox outside the range,x(n) − x(1), the variance of the sample will
increase. McIntyre and Blashfield (1980) note that increasing the variance
of the clusters increases the degree of overlap between clusters. Moreover,
the initial separation between clusters, the parameters ofthe MVN distri-
butions forming the clusters, and the underlying distribution for the out-
liers are all random and internal (i.e., not user-specified) within Milligan’s
(1985) program. Because of these properties, the addition of outliers and
error will have differing, unpredictable effects on the underlying clusters.
Atlas and Overall (1994) note that Milligan’s (1985) generation method
creates an unrealistic degree of separation between clusters, and concrete
statements about how much the clusters overlap cannot be made; however,
this generation method is widely used in the literature (e.g., see Milligan
1980; Milligan, Soon, and Sokal 1983; Milligan and Cooper 1986; Mil-
ligan and Cooper 1988; Helsen and Green 1991; Balakrishnan,Cooper,
Jacob, and Lewis 1994; Waller, Kaiser, Illian, and Manry 1998; Carmone,
Kara, and Maxwell 1999; Brusco and Cradit 2001).

2. Kuiper and Fisher (1975): Kuiper and Fisher (1975) generated clusters
from a sample of differing MVN populations with either identity or diag-
onal covariance matrices and different means; however, they never pro-
vide insight into the amount of overlap between the clustersused in the
Monte Carlo study. One can infer that overlap changed as the means and
covariance matrix changed, but it is impossible to quantifythe degree of
change.
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3. Gold and Hoffman (1976): Gold and Hoffman (1976) sampled aprimary
population from a standard MVN distribution (i.e., with covariance matrix
equal to the identity). They created sub-populations by adding random
variables with differing expectations to data from the primary population,
but failed to note the distribution of the added random variables, mak-
ing it impossible to determine the degree of overlap betweengenerated
distributions.

4. Blashfield (1976): Blashfield (1976) structured the group covariance ma-
trices to allow for correlations between the populations. In addition, after
the data were sampled from the specified populations, measurement error
sampled from a random uniform was added, causing the populations to
be more mixed (i.e., overlap was increased). As in Milligan (1985), the
degree of population overlap is impossible to determine because so many
of the parameters are randomly chosen.

5. McIntyre and Blashfield (1980): McIntyre & Blashfield (1980)altered
the overlap of the populations by increasing (or decreasing) the standard
deviations of the various mixtures. But once again, no precise notion is
available of how much the populations overlapped.

6. Price (1993): Price’s method empirically creates overlapping clusters by
“scooting” the means of the different distributions back and forth until the
desired amount of overlap is achieved. Price (1993) looked atthree levels
of overlap between clusters (2%, 20%, and 40%). Because thismethod
is iterative in nature, and depending on the number of clusters and the
number of dimensions, it can bevery time consuming. Also, because of
the empirical nature of calculating the overlap, not all possible values of
overlap are obtainable as a result of a mathematically impossibility due to
sample size restrictions or confoundings from multiple dimensions. This
severely limits the generalizability of Price’s (1993) method.

7. Atlas and Overall (1994): Atlas and Overall rely on the manipulation of
the intra-class correlation to control cluster overlap butnote that the intra-
class correlation “does not provide a perceptually meaningful description
of population overlap” (p. 583).

8. Waller et al. (1999): These authors use what they refer to asindicator
validities and compactness to control cluster overlap, andnote that “when
the indicator validities account for a large percentage of the variance, the
clusters are well separated and easily discerned by visual inspection (p.
129).” However, visual inspection only allows comparisonsof relative-
ness, such as, “These clusters overlap more than those clusters”, as well
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as restricting comparisons to three or fewer dimensions. Although the
Waller et al. (1999) method is intended to generate Plasmodes(clusters
that are based on real data) and is able to qualitatively relate how much
clusters overlap, the overlap cannot be described in a quantitative manner,
which is necessary when generating high-dimensional data sets.

3. OCLUS

Beauchaine and Beauchaine (2002) caution that although some success
has been achieved, it is unrealistic to develop methods based solely on non-
overlapping distributions. The objective of this paper is develop a procedure
generating multivariate data from known distributions, and with a known amount
of overlap between clusters. Within the literature, this has been a difficult task;
for example, Atlas and Overall (1994) state:

Although it is easy to generate artificial data representing random
samples from underlying populations with different degrees of over-
lap in their multivariate distributions, it is not easy to display or oth-
erwise communicate the extent of the population overlap in such a
manner that a reader can readily appreciate its significance (p. 583).

The proposed data generation procedure, OCLUS (overlapping clusters), makes
the concept of overlap understandable by approaching cluster overlap as the
percentage of shared density between clusters. OCLUS was programmed in
MATLAB 7 and exists as a collection of m-files (available by contacting the
first author) and is able to capitalize on the strengths of manyprevious clus-
tering procedures but avoids the weakness of not being able to assess cluster
overlap.

3.1 Notation

The following notation is required in to describe OCLUS:

V : the number of dimensions (i.e., the number of variables);

K : the number of clusters desired, whereCk represents thekth cluster,1 ≤
k ≤ K;

n := {n1, . . . , nk}, thek×1 vector of the number of objects within each cluster
whereN =

∑K
k=1 nk is the total number of observations, For example,

n = [50, 50, 50]′ represents three clusters with 50 observations each;

η := {η1, . . . , ηk} is ak× 1 vector of mixing proportions, indicating the prob-
ability of observing an observation from thekth cluster and providing an
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alternative method for sampling objects from specific clusters subject to
the constraint

∑K
k=1 ηk = 1. For the example above using sample sizes,

the corresponding vector of mixing proportions isη = [0.33̄, 0.33̄, 0.33̄]
andN = 150;

Σk := The desired covariance matrix for the variables in thekth cluster;

Rk := The desired correlation matrix for the variables in thekth cluster;

p
(v)
kk∗ , p(v), P : p

(v)
kk∗ is the overlap between the two clustersCk andCk∗ on

dimensionv, p(v) is the total amount of overlap on dimensionv, andP is
the average amount of overlap inRV;

D := {dkk∗}, where1 ≤ k, k∗ ≤ K. Let theK × K identity matrix,IK×K,
representK clusters with no overlap; in general, fork = 1, . . . , K and
k∗ = 1, . . . , K, if d(k,k∗) = 1 then the clustersCk andCk∗ overlap, and if
d(k,k∗) = 0 then clustersCk andCk∗ do not;

X : theN × V data matrix;

xkvm : themth observation on thevth dimension from thekth cluster;

fkv(x, θkv) : the probability density function for thevth dimension of thekth

cluster;θkv represents the vector of parameters relevant tofkv(x);

lkv, ukv : the lower and upper bounds, respectively, forxkv;

s : the separation parameter denoting how disjoint thenon-overlappingclus-
ters will be and represents the number of standard deviations the non-
overlapping clusters should be from each other. A higher value indicates
more separation between clusters;

distv : the different family of distributions from which clusterscan be gener-
ated. The choice of distributions and their parameters are defined in Table
1;

z : for two clusters,Ck and Ck∗ , z is the value such thatfkv(z, θkv) =
fk∗v(z, θk∗v), for positive values offkv(z, θkv) andfk∗v(z, θk∗v).

3.2 OCLUS Algorithm

The OCLUS algorithm operates in the following manner:

1. Assumptions: all dimensions are independent and all clusters are inde-
pendent.
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Table 1. Distributions available in OCLUS

Distribution Notation Range ofx Parameter Definition

Uniform U(a, b) a ≤ x ≤ b a : lower bound
b : upper bound

Normal N(µ, σ) −∞ ≤ x ≤ ∞ µ : mean
σ : standard deviation

Gamma γ(α, β) 0 ≤ x ≤ ∞ α : shape parameter
β : scale parameter

Triangular T (a, b, c) a ≤ x ≤ b a : lower bound
b : upper bound
c : shape parameter,a ≤ c ≤ b

2. The user providesD, P , n (or η andN ), V , s, K, Σk (or Rk) for each
cluster, anddist. Fordist, the distribution can be specified by choosing a
different family of distributions for each dimension or specifying that all
dimensions are generated from the same family of distributions.

3. A matrix, O, denoting the order of clusters on each dimension is com-
puted fromD.

4. Each row ofO is randomized so the ordering is not the same on every
dimension.

5. Computeθkv for dimensionj, j = 1.

6. Letj = j + 1. Repeat step 5 untilj = V (once for each dimension).

7. Generate data from computed distributions. The computation of the para-
meters proceeds in a sequential fashion. First, the parameters for the first
cluster is established and based on the specified overlap inD and byP
the parameters for the second cluster are computed. Then, based on those
parameters (and the overlap considerations), the parameters for the third
cluster are computed. This process continues until the parameters for all
K clusters have been computed. (Note: Most distributions we use can be
generated from commands built into MATLAB. If not available, however,
see Evans, Hastings, and Peacock 2000, for a guide to generating data
from various distributions).

3.2.1 Assumptions

Krzanowski and Marriott (1994) note “. . . directly generating samples
from an arbitrary high-dimensional joint distribution maynot be possible” (p.
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154). Assuming cluster and dimension independence allows the clusters to be
“built” from the marginals. By taking the product of the marginals across the
dimensions, the known joint distribution of each cluster can be formed, with
the inter-cluster independence allowing for direct computation of overlap. The
direct implications of the assumptions will be clearly seenin the section on
computing the distributional overlap.

3.2.2 User-defined Options

All user-defined options are explained in the notation section; however,
some restrictions are imposed onD:

1. For any number ofK, a given row ofD cannot indicate cluster overlap
between more than three clusters.

2. The maximum number of rows that can indicate overlap with three clus-
ters isK − 2.

3. The maximum sum of the off-diagonals ofD is 2K − 2.

These constraints are arrived at by considering a set of clusters on in a unidi-
mensional setting. Assuming the clusters differ in terms oftheir means, there
will always be two clusters on opposite ends of the continuumthat have one
neighboring cluster; whereas, the clusters between the twoextreme clusters
will have two neighboring clusters. For clarification,D will be further illus-
trated through an example design matrix,D̂. D̂ is a symmetric design matrix
indicating the number of clusters and their overlap. For example,

D̂ =













1 1 1 0 0
1 1 0 0 0
1 0 1 0 0
0 0 0 1 1
0 0 0 1 1













indicates that cluster 1 overlaps with clusters 2 and 3, and clusters 4 and 5 over-
lap. On inspection,̂D follows all three restrictions. In̂D there are two sets,S1

andS2, of overlapping clusters whereS1 = {k1, k2, k3} andS2 = {k4, k5}. S1

andS2 are separated by the user defined values.

3.2.3 User-defined Values

The value ofs determines the separation of clusters on each dimensions.
For distributions with bounded domains (uniform and triangular) on a given
dimension, the default separation between non-overlapping clusters is just the
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value that ensures the lower-bound of one cluster does not overlap with the
upper-bound of a neighboring cluster (or vice-versa). For distributions with
unbounded domains (normal and gamma), the default separation between non-
overlapping clusters is just the distance between the meansthat ensures that
there is less than a 0.01 probability of two clusters overlapping. The user-
defined value ofs is an additional value that is added to the default values to
increase the degree of separation. Thus, for two non-overlapping discrete clus-
ters, if s = 0, the clusters won’t overlap but they will “bump” up against each
other inV dimensional space; however, as the value ofs increases “empty”
space will be created between the clusters (see Figures 2 and 4in the examples
section for an illustration of empty space).

3.2.4 Computing and RandomizingO

FromD, OCLUS calculates the matrixO by locating the diagonal blocks
in D to determine which clusters are always going to be overlapping with each
other and which clusters will never overlap with each other (i.e., identifying the
subsetsS1 andS2 from above). Thus, defining the order clusters are generated
for each dimension. For̂D, let V = 3 and the initial computation of̂O be

Ô =





2 1 3 4 5
2 1 3 4 5
2 1 3 4 5



 .

After Ô is computed, it is randomized within row so cluster generation will be
random on each dimension, thereby allowing different clusters to have different
relative magnitudes for values across the dimensions. For example, it might be
that cluster two exhibits the lowest values on the first dimension while cluster
five exhibits the lowest values on the third dimension.

Furthermore, the randomization scheme is quite simple. First, a subset
of variables is selected at random without replacement. Then, knowing which
clusters must overlap in the variable subset (fromD), the order of the clusters
is randomly chosen to be the original order within the subsetprovided in the
initial computation ofO or the reverse order. One possible randomization of
the example is

Ô =





2 1 3 4 5
3 1 2 5 4
5 4 2 1 3



 ,

where on the first dimensions OCLUS would generate the clustersin the order
specified by the first row of̂O; the order of generation on the second and third
dimensions would be determined by the respective rows ofÔ. This random-
ization allows for numerous multidimensional configurations to arise from the
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same underlying structure, a feature found desirable and a key component for
generating random and clustered data (Milligan 1996; Waller et al. 1999).

3.2.5 Determining Overlap Among Different Clusters

To find overlap among the different clusters, the joint distribution of each
dimension is determined by simple transformations on the joint distribution of
the clusters. By the independence-of-dimensions assumption, for fkv(x, θkv)
andlkv ≤ xkvm ≤ ukv, the joint distribution of clusterCk is

fk1(xk1, θk1) . . . fkV (x, θkV ). (1)

The expression in (1) can be rewritten as

V
∏

v=1

fkv(x, θkv). (2)

By determining (2) for each cluster, the distribution of each cluster can be writ-
ten as the matrix (each row represents a cluster)

distK =













∏V
v=1 f1v(x, θ1v)

∏V
v=1 f2v(x, θ2v)

...
∏V

v=1 fKv(x, θKv)













.

Now, the overlap component can be calculated: the overlap between two clus-
ters,Ck andCk∗ , on dimensionv is

p
(v)
kk∗ = min

[

(

∫ z

lk∗v

fk∗v(x, θk∗v)dx +

∫ ukv

z
fkv(x, θkv)dx),

(

∫ z

lkv

fkv(x, θkv)dx +

∫ uk∗v

z
fk∗v(x, θk∗v)dx)

]

, (3)

given positive values of

fk∗v(z, θk∗v) andfkv(z, θkv); (4)

z must exist and (4) must be satisfied for (3) to hold. If the values in (4) are
zero, thenCk andCk∗ do not overlap and the function in (3) will also equal
zero. If z does exist and (4) does not hold, the two clusters will overlap but
the overlap will not equalp(v)

kk∗ (i.e., (3) is defined, but the desired value of

p
(v)
kk∗ is not achieved). When (3) is defined and (4) is true, the two clusters will

overlap by the desired amount and data from the respective distributions can
be generated. In deciding how to generate overlapping clusters, two types of
overlap called marginal and joint are considered.
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Marginal Overlap. Marginal overlap is defined by separately establishing the
overlap for allV marginals. Thus, the goal of the data generation procedure is
to establish either an equal and fixed amount of overlap for allV dimensions or
to establish a different (but fixed) amount of overlap for each.

Joint Overlap.Joint overlap between two clusters,pkk∗

, is defined by establish-
ing an overall and fixed amount of overlap for each of theV margins. By (3)
and the independence-of-dimensions assumption, the jointoverlap is computed
by the product of the marginal overlaps:

pkk∗

=
V
∏

v=1

p
(v)
kk∗ . (5)

Results.The definitions of marginal overlap and joint overlap directlylead to
two asymptotic results.

Result 1. If the amount of overlap for each marginal is fixed, joint
overlap converges to zero as the number of dimensions increases.

Proof. Each cluster,Ck, exists inRV. For everyv, p
(v)
kk∗ can be cal-

culatedK − 1 times (the maximum number of overlapping regions
imposed by the restrictions onD). Recalling that for eachp(v)

kk∗ , if z

does not existp(v)
kk∗ is zero, and the marginal overlap for dimension

v is
p(v) =

∑

Ck 6=Ck∗

p
(v)
kk∗/(K − 1) . (6)

(6) is computedV times to calculate the marginal overlap for each
dimension. Given0 ≤ p(v) < 1 for all p(v), by (2), asV → ∞, the
joint overlap is

P =
∞
∏

v=1

p(v) = 0 , (7)

due to an infinite product of fractions less than unity. Thus, asthe number of
dimensions increases and the joint overlap converges to zero, the clusters should
become more discernable. Result 1 is a strong indication that Milligan’s (1985)
method, which shows increased cluster recovery as the number of variables
increase (Milligan 1980; 1996), manipulates marginal overlap by adding error
and outliers to the data.
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Result 2. If the amount of joint overlap is fixed, overlap for each
marginal distribution converges to 1 as the number of dimensions
increases.

Proof. For simplification, assume that thep(v) are equal for allv. To
obtain a total overlap ofP between clustersCk andCk∗ , the overlap
on each dimensionv must beP

1

V (since by (2), joint overlap is the
product of the dimensions,(P

1

V )V = P ). Then,

limV →∞ P
1

V = 1 . (8)

Thus, for small or moderate joint overlap in a highly dimensional space, the
marginal distributions will have a very high degree of overlap. Joint overlap
should be considered and studied by cluster analysts because it indicates that
two clusters actually occupy the same region ofRV space.

3.2.6 Distributions

This section will show how to determine, whenP is given, which spe-
cific distributions to use from a family of distributions. The derivations will only
provide the analytical results for two clusters on one dimension. Similar results
for more than two clusters and one dimension would require a large amount of
space. Nonetheless, these results are easily derived for multiple clusters over-
lapping within a data set across multiple dimensions by using the results in
(1)—(4). Regardless, OCLUS implements derivations for any value ofK and
V for each distribution. Because all examples illustrate thegeneration process
for one dimension, the dimensionality superscript will be dropped. (Note: To
calculate marginal overlap, setV = 1). Additionally, the complete derivation is
only provided for the normal with equal variances; whereas,the results for the
other distributions are provided but the derivation is omitted.

The normal–equal variances. Letting x1 ∼ N(µ1, σ
2), x2 ∼ N(µ2, σ

2),
whereµ1, σ, andP are known,µ2 unknown, andΦ is the cumulative distribu-
tion function of the standard normal distribution, we obtain (Lehman & Casella,
1998, p. 93)

P (x ≤ u) = Φ(
u − µ

σ
), (9)

wherex ∼ N(µ, σ2). The integral evaluated is
∫ z

−∞

1

σ(2π)
1

2

exp{−(x2 − µ2)
2

2σ2
}dx2

+

∫ ∞

z

1

σ(2π)
1

2

exp{−(x1 − µ1)
2

2σ2
}dx1 = P

1

V . (10)
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Solving forµ2,

∫ z

−∞

1

σ(2π)
1

2

exp{−(x2 − µ2)
2

2σ2
}dx2

+

∫ ∞

z

1

σ(2π)
1

2

exp{−(x1 − µ1)
2

2σ2
}dx1 = P

1

V ⇒

P (x2 ≤ z) + 1 − P (x1 ≤ z) = P
1

V ⇒

invoking (9) results in two equations for z,

z = µ1 + σΦ−1(1 − P
1

V

2
)

z = µ2 − σΦ−1(1 − P
1

V

2
) ⇒

solving these gives

µ1 + σΦ−1(1 − P
1

V

2
) = µ2 − σΦ−1(1 − P

1

V

2
) ⇒

µ2 = µ1 + 2σ(Φ−1(1 − P
1

V

2
)) (11)

OCLUS generates overlapping clusters from this family of distributions by the
following steps:

1. Chooseµ1 from aU(0, 10) distribution.

2. Set the variances equal to one (or choose randomly and set equal).

3. Findz by using a “built–in” cumulative distribution function.

4. Solve forµ2.

For example, letµ1 = 0, P = .05, andV = 1. The first distribution is known
to beN(0, 1) andz = Φ−1(1 − .05

2 ) = 1.96. Thus, the second distribution has
to have a mean of2(1.96) = 3.92. By generating data for the first cluster from
a distribution ofN(0, 1) and data for the second cluster fromN(3.92, 1), the
overlap between the two clusters will be.05. Figure 1 plots the pdfs of these
latter two distributions.
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Figure 1. Example of two overlapping normal distributions with equal variance

The uniform. Let x1 ∼ U(a1, b1), x2 ∼ U(a2, b2), whereb1 ≤ b2 (refer
to Table 1 for an explanation of the parameters). For dimension v, let a1, b1,
andP be known whilea2 andb2 are unknown. OCLUS generates overlapping
clusters from the uniform distribution by the following steps:

1. Choosea1 from aU(0, L) distribution.

2. Setb1 = a1 + L.

3. Solvea2 = b1 − L(P
1

V ).

4. Setb2 = a2 + L.

whereL is the length (i.e., a function of the variability) of the uniform distrib-
utions on thevth dimension. If the two clusters are generated fromU(a1, b1)

andU(a2, b2), respectively, then they will have an overlap ofP
1

V on dimension
v. The same procedure can be repeated for any number of dimensions and any
two distributions.

The normal–unequal variances.Let x1 ∼ N(µ1, σ
2
1) andx2 ∼ N(µ2, σ

2
2)

(refer to Table 1 for an explanation of the parameters). Letp1 andp2 equal
Prob[x1 > z] andProb[x2 < z], respectively,p1 + p2 = p(v), andµ1 < µ2.
(Note: If p1 = p2, thenσ1 = σ2). In addition, letµ2, σ2, P , andp2 be
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known. Two restrictions are required sof1(x1) andf2(x2) intersect only once:
µ2 > µ1; σ2 < σ1. The integral of interest is

∫ z

−∞

1

σ2(2π)
1

2

exp{(x2 − µ2)
2

−2σ2
2

}dx2+

∫ ∞

z

1

σ1(2π)
1

2

exp{(x1 − µ1)
2

−2σ2
1

}dx1 = P
1

V ,

(12)
andz can be calculated by

z = µ2 − σ2Φ
−1(1 − p2) , (13)

and, in turn, use (13) to obtain

f2(z, µ2, σ2) =
1

σ2(2π)
1

2

exp{(z − µ2)
2

−2σ2
2

} . (14)

OCLUS generates overlapping clusters from normal distributions with
unequal variances by the following steps:

1. Chooseµ2 from aU(0, 20) distribution.

2. Chooseσ2 from aU(1, 5) distribution.

3. Setσ1 =
exp{ (Φ−1(1−p1))2

−2
}

f2(z,µ2,σ2)(2π)
1
2

4. Setµ1 = z − exp{ (Φ−1(1−p1))2

−2
}

f2(z,µ2,σ2)(2π)
1
2

Φ−1(1 − p1)

The gamma. Let x1 ∼ γ(α1, β1), x2 ∼ γ(α2, β2) (refer to Table 1 for an
explanation of the parameters).z (the point wherep1 = Prob[x1 > z] and
p2 = Prob[x2 < z]), α1, andβ1 are known andβ2 is unknown. The pdf of the
gamma is

f(x) =
1

Γ(α)βα
xα−1exp{−x

β
}, (15)

where

Γ(α) =

∫ ∞

0
(
x

β
)α−1exp{−x

β
}( 1

β
)dx (16)

reducing to
Γ(α) = (α − 1)! (17)

whenα is an integer (Hogg & Craig, 1995). The integral of interest is
∫ z

0

1

Γ(α2)β
α2

2

xα2−1
2 exp{−x2

β2
} +

∫ ∞

z

1

Γ(α1)β
α1

1

xα1−1
1 exp{−x1

β1
} = P

1

V .

(18)
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Integrating the two terms on the left-hand-side of (18) requires integration by
partsα−2 andα−1 times, respectively. As the normal with unequal variance,
whenz, p1, andp2 are known, there is a unique combination ofα2 andβ2 that
will lead to the overall desired level ofP . Calculatez by

z = γ−1(1 − p1, α1, β1) . (19)

Use (15) and (19) to obtain,

f1(z, α1, β1) =
1

Γ(α1)β
α1

1

zα1−1exp{−z

β1
} . (20)

Setting (20) equal to the pdf ofx2, yields two equations with two unknowns,
but solving this system of equations requires a search because integrating the
second term on the left hand side of (18) results in a continued fraction (Weis-
stein, 2003). To find the appropriateα2 andβ2, a grid search method (GAM-
SEARCH) is used, creating a vector,~β2, of possibleβ2’s ranging from 1 to 10 in
steps of 0.1, and a vector,~α2, of α2’s ranging fromβ1(α1−1) toβ1(α1−1)+10.
All pairs of values from~β2 and ~α2 are evaluated, and the unique solution are
those values satisfying (3) and (4). Through empirical trial, the aforementioned
range is usually suitable for finding the unique solution, butcan be widened if
(3) and (4) are unsatisfied in the initial search.

The exponential and chi-square distributions. The exponential and chi-
square distributions are each special cases of the gamma. Theexponential is
aγ(1, β) and the chi-square distribution is aγ(α, 2) (whereα is the degrees of
freedom of the chi-square) (Evanset al., 2000). For all exponential distribu-
tions,α is fixed at 1; for all chi-square distributions,β is fixed at 2. Under these
conditions, (3) may be obtained but (4) violated, causing for the generation of
K > 2 populations, multiple points of intersection resulting ina convolution
of the desired amount of overlap. Thus, OCLUS does not generatedata from
these two distributions.

The triangular distribution. The pdf of the triangular distribution (Evanset
al. 2000, pp. 187–188) is

f(x) =
2(x − a)

[(b − a)(c − a)]
if a ≤ x < c ;

=
2(b − x)

[(b − a)(b − c)]
if c ≤ x < b. (21)

Let x1 ∼ T (a1, b1, c1), x2 ∼ T (a2, b2, c2) (refer to Table 1 for explanation of
parameters), wherea1, b1, andc1 are known. Letz be the point whereP [x1 >
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z] andP [x2 < z] are known and equal top1 andp2. The integral evaluated is

∫ b1

z

2(b1 − x)

(b1 − a1)(b1 − c1)
dx +

∫ z

a2

2(x − a2)

(b2 − a2)(c2 − a2)
dx = P

1

V . (22)

Choosingp1 and findingz by solving the first term on the left-hand-side of (22)
and applying the quadratic formula, gives

z =
2b1 ± (4b2

1 − 4(b2
1 − p1(b1 − c1)(b1 − a1)))

1

2

2
(23)

The result from (23) can be used in conjunction withp2 to find the parameters
for the second distribution.

To find overlapping clusters from the triangular distribution, OCLUS fol-
lows these steps:

1. Choosea1 from aU(0, 20) distribution.

2. Chooseb1 from aU(a1, 20) distribution.

3. Let c1 = a1+b1

2 (for other alternatives, see the section below regarding
skewed data).

4. Seta2 = z − 2p2

f(z) .

5. Choosef(c2) from aU(f(z), f(c1)), thenc2 = a2 + f(c2)f(z−a2)
f(z) .

6. Solve forb2 by b2 = 2
f(c2)

+ a2.

3.2.7 Skewed Data

Waller et al. (1999) generate skewed data to simulate “real world” data.
After normal data are generated, skewed data can be created by a simple trans-
formation from the non-normal distribution with desired skewness and kurtosis,
Fleishman (1978) provides the formula

Xs = a + bX + cX2 + dX3. (24)

For a table of the three constants (b, c, and d) controlling the skewness and kur-
tosis, see Fleishman (1978, pp. 524–525). An indepth discussion of generating
non-normal skewed data is given in Fleishman (1978), Tadikamalla (1980), and
Vale and Maurelli (1983), but it should be remembered that causing normally
distributed data to be skewed will change the original amount of overlap.

OCLUS provides two natural methods of generating skewed datawhile
still knowing the overlap. First, for the gamma distributionthe mean isαβ and
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the mode isβ(α−1). The relationship,αβ > β(α−1), indicates data generated
from the gamma distribution are naturally skewed. Second, skewed data with
known overlap can be generated from the triangular distribution by noting the
following relationship:

1. A symmetric triangular distribution is found by lettingc = b+a
2 ;

2. a left-skewed triangular distribution can be formed by letting c = b+3a
4 ;

3. a right-skewed triangular distribution can be formed by settingc = 3b+a
4 .

These two distributions allow cluster validation studies toinclude skewness as
a factor without altering the amount of overlap present in the generated clus-
ters. However, OCLUS does not include a method (beyond the generation of
variables with different variances) to directly control for the degree of kurtosis.

3.2.8 Correlated Data

Assume thatX is a data matrix ofn observations from ad-dimensional
distribution that containsK clusters. Thus, under a model where the correlation
structures of the groups are fully unrestricted, the first andsecond moments of
Ck can be represented by aV × 1 mean vector,µk, and aV × V covariance
matrix, Σk, respectively. Then, the squared statistical distance (thebasis of
computing overlap between clusters), from an arbitrary data point,x∗

V ×1, to the
center ofCk is

d2
x = (x∗ − µk)

′Σ−1
k (x∗ − µk) . (25)

Now we define a rotational transformationLV ×V such thatY = XL. This
transformations results in transformed group means and covariance matrices for
the transformed observations, and therefore the group means, fork = 1, . . . , K,
of the transformed variableY are thenµY

k = µkL and the covariance matri-
ces for each group areΣY

k = L′ΣkL. Given the new variable the statistical
distance,d2

Y , of any pointy∗ and a transformed group meanµ
Y
k is:

d2
y = (y∗ − µ

Y
k )(ΣY

k )−1(y∗ − µ
Y
k )′. (26)

Through substitution (26) is:

d2
y = (x∗L − µkL)(L′ΣkL)−1(x∗L − µkL)′

d2
y = (x∗ − µk)L(L−1Σ−1

k L′−1
)((x∗ − µk)L)′

d2
y = (x∗ − µk)L(L−1Σ−1

k L′−1
)L′(x∗ − µk)

′

d2
y = (x∗ − µk)(LL−1)Σ−1

k (L′−1
L′)(x∗ − µk)

′. (27)
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SinceLL−1 = L′−1L′ = I then:

d2
y = (x∗ − µk)Σ

−1
k (x∗ − µk)

′ , (28)

resulting ind2
y = d2

x. Since the definition of overlap is based on statistical
distance, any linear combinationL will not change the proportion of overlap
that was defined in the original data set,X.

Generally, using the OCLUS algorithm as described above,X∗ can be
generated from normal distributions with univariate variance, resulting in the
kth clusterX∗

k, being distributed as

X∗
k ∼ MV N(µk, I).

whereµk represents the mean vector for theCk. Correlation between the vari-
ables for thekth group, defined either by the covariance matrixΣk or the cor-

relation matrixRk, can be incorporated into the data by settingL = Σ
1

2

k or

L = R
1

2

k , respectively. For clusters that are overlapping,L must be the same
for all observations within the overlapping clusters (i.e., common within-cluster
covariance matrices are assumed,Σk = Σ). If clusters or groups of clusters
(see the section on sub-clusters below) are well-separated, different values of
L (or within-cluster covariance matrices may be unique) for the well-separated
clusters (or groups of clusters) may be used with caution (i.e., the user must
check the resulting transformations to determine if unintended overlap was in-
troduced into the system). An example of correlated clusterstructure is pro-
vided below in Example 5. Additionally, this allows for normal distributions
with unequal variances to be arrived at via transformationsof normal distribu-
tions with equal variances.(Note: The method for generating data with known
overlap and known correlation matrix via transformations of the original data
was arrived at through helpful comments provided by Reviewer 3).

4. Practical Concerns of OCLUS

4.1 Sub-clusters

Sub-clusters are defined as two or more sets of non-overlappingclusters
containing either a single cluster or a group of overlappingclusters. D̂ from
the illustrative example given above indicates a design matrix containing two
sub-clusters. The inclusion of sub-clusters in a particularcluster generation
design alters the way overlap is operationalized. Because marginal overlap is
considered the average of overlapping regions within a dimension, the overlap
in the sub-clusters must be adjusted for the fixed value of the denominator in
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(6). For example, imagine three clusters embedded in one dimension with a de-
sired marginal overlap ofp(v) = .10. If the clusters are generated as a “string”,
cluster1 will overlap with cluster2 which also overlaps with cluster3. By (6),
the overlap between each pair must be 0.10, but the same set ofclusters could
be embedded in one dimensional space with two sub-clusters,indicating two
overlapping clusters comprise one sub-cluster while a singleton cluster com-
prises the remaining sub-cluster. For (6) to remain equal to0.10, the overlap in
the first sub-cluster must then be set to0.20.

Even if overlap is equal,d-dimensional spaces with sub-clusters cannot
be regarded the same asd-dimensional spaces with “strings” of clusters, al-
lowing for the structure of the overlap to become a factor in cluster validation
studies. Depending on the overlap structure of the data, various clustering al-
gorithms may perform differently in the presence of sub-clusters.

4.2 Three Overlapping Groups

All of the previous illustrations of data generation focus on generating
two clusters, but (3) and (4) can calculated for any pair of clusters. It is possi-
ble that due to the value ofp(v), a set of three or more clusters will occupy the
same bounded sub-space. If this possibility were ignored, the generated clusters
would result in a greater degree of overlap then intended. OCLUS considers ad-
ditional overlap caused by other clusters and adjusts the variousθkv ’s to achieve
the desired value ofp(v). This adjustment made by OCLUS is carried out by
slightly moving the means of the clusters and recomputing their overlap in an
iterative fashion until the desired overlap is achieved. For practical purposes,
any two clusters withP < .01 are not considered overlapping (if more sepa-
ration is required between non-overlapping clusters, greater values ofs can be
chosen–see above in the discussion ofs). Additionally, the maximum value of
P allowed by OCLUS is0.50, a limit placed onP because it makes little sense
to search for clusters when the joint overlap is greater than50% (Note. This
does not restrict the marginal overlap from being more than 0.50).

5. Examples

When discussing different distributions from which OCLUS isable to
generate data, examples of pdfs were provided so overlap could be visualized
as shared densities. This section applies the above methods to generate artificial
data with known structure. For each example, scatter plots of the generated data
points are displayed.

Example 1: Non-overlapping Normals,K = 5, V = 2

Example 1 provides a depiction of data that adheres to Cormack’s (1971)
definition of internally cohesive and externally isolatedclusters. For non-
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Figure 2. Example of non-overlapping clusters in 2 dimensions

overlapping clusters,D = IK×K. Figure 2 provides a scatter plot for the data
generated from these distributions, wheren = [100, 100, 100, 100, 100]′.

Example 2: Mixture of Normal and Uniform Dimensions, K = 3, V = 2

This example shows the ability of OCLUS to generate different mixtures
for each dimension on which a cluster is measured. This is a direct advantage of
assuming independence across dimensions. For this example, P = .10. Thus,
the total overlap on each dimension must be

√
.10 = .3162. Let the design

matrix be

D =





1 1 0
1 1 1
0 1 1



 ,

indicating that cluster1 overlaps with cluster2, which overlaps with cluster3.
Figure 3 provides a scatter plot for the data generated from these distributions,
for n = [100, 100, 100]′. The advantages of mixing distributional clusters can
be seen, from Figure 3. The generated clusters are neither rectangles as clusters
generated from a uniform distribution or spheres as clusters generated from a
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normal distribution. Instead, they seem almost as rectangles with rounded cor-
ners and edges. This mixing allows for the overlap to stay the same while
altering the shape of the generated clusters. In turn, this enables testing the
effects of overlap on procedures that favor clusters of a particular shape.

Example 3: Overlapping Uniform Clusters, K = 5, V = 3

For this example, design matrix from theuser-defined optionssection,
D̂, is used, with overlap chosen to beP = 0.20 in three dimensions. Figure 4
provides a scatter plot of data generated from these distributions. As indicated
by D̂, there are two groups of overlapping clusters. Group 1, containing the
first three clusters in the lower right hand corner of Figure 4, is well separated
from group 2, in the upper right hand corner of Figure 4. This flexibility of the
design matrix allows for the testing of several different scenarios and orienta-
tions of clusters, and for evaluating procedures that consider smaller amounts of
observations located away from the majority of objects to beoutliers (Wishart,
1969).
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Example 4: Introducing Correlated Variables

This example illustrates the introduction of correlation into the cluster
structure in a bivariate space where there are only two clusters. First, assume
that we want to generate two clusters that overlap with probability 0.20 in a two
dimensional space where the variables are not correlated, illustrated in Figure
5.

The means and correlations for the two groups are

µ1 = [16.02, 13.62] µ2 = [17.91, 11.73]

R1 =

[

1.00 0.04
0.04 1.00

]

R2 =

[

1.00 0.02
0.02 1.00

]

,

where the correlation between the two variables in both groups is entirely due
to sample variation. Now suppose that we wanted the variables in each cluster
to have a correlation of 0.40, then we would multiply bothX1 andX2 by
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L1/2 =

[

0.98 0.20
0.20 0.98

]

,

whereL is the desired correlation matrix. The resulting data is depicted in
Figure 6.

Now the means and covariances of the transformed clusters are

µ
∗
1 = [18.47, 16.61] µ

∗
2 = [19.93, 15.14]

R∗
1 =

[

1.00 0.40
0.40 1.00

]

R∗
2 =

[

1.00 0.40
0.40 1.00

]

,

where the means have slightly shifted due to the oblique rotation of the data.
However, the desired correlation between the variables hasbeen achieved and
the theoretical probability of overlap between the clusters is still 0.20.

6. Discussion

6.1 Advantages of OCLUS

The most attractive feature of OCLUS is its versatility in creating data
with a known amount of overlap. In addition to its ability to create the well-
separated clusters to satisfy Cormack’s (1971) definition, OCLUS can generate
well-separated groups of overlapping clusters (seeD̂ above). Instead of ma-
nipulating the structure of the covariance matrices and creating uninterpretable
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clusters to obtain overlap, OCLUS achieves the same goal analytically, yielding
readily understandable overlap in terms of shared density.Not only does this
retain the original interpretability of the clusters, it avoids the iterative method
employed by Price (1993), giving a quantification of overlap while saving com-
puting time. Another novel feature of OCLUS is the ability to generate data
with known overlap from several different distributions, considered important
for advancing the understanding of different clustering algorithms (Milligan,
1996).

6.2 Limitations

A limitation of OCLUS is the inability to sample directly fromthe joint
distribution of the clusters, restricting the generation of the joint distribution
clusters to be the product of the marginal distributions. A Markov Chain Monte
Carlo simulation might be a way to sample directly from the joint distribution,
but the trade-off will be a substantial increase in the computing time. Addition-
ally, the ability to introduce correlation into the system while preserving group
overlap may make generating clusters from the joint distribution unnecessary.

Similarly, another limitation of the OCLUS procedure is the inability to
generate clusters with known skew and kurtosis. As noted above when dis-
cussing skewed data, the triangular distribution is used togenerate data with
skewed features; however, the exact degree of skewness is not known. Thus, in
situations where researchers desire to have the most control over the degree
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of skewness and kurtosis in the generated clusters, we encourage the use of the
Waller et al. (1999) procedure; on the other hand, if clusteroverlap is of pri-
mary focus, we recommend the OCLUS procedure.

6.3 Future Applications of OCLUS

OCLUS should aid the advancement of the field of cluster analysis and
classification by helping to study the robustness of both traditional (single-link,
complete-link,k-means, etc.) and untraditional strategies (ADCLUS, pyramid
clustering, fuzzy clustering, etc.), and the effects of various distributions and
mixtures of distributions on the performance of these algorithms while phrasing
the results in terms of cluster overlap.

OCLUS may play a useful role in investigating techniques of variable
selection (Brusco & Cradit, 2001; Fowlkes, Gnanadesikan, &Kettering, 1987;
Fowlkes, Gnanadesikan, & Kettering, 1988; Carmone, Kara, &Maxwell, 1999)
and variable weighting (De Soete, DeSarbo, & Carroll, 1985; DeSoete, 1986)
by directly manipulating the dimensions independently. Additionally, data can
be generated to investigate the robustness of various methods used for deter-
mining the number of clusters, both for those that are classical (Calinski &
Harabasz, 1974; Duda & Hart, 1973; Hubert & Levin, 1976; Baker& Hubert,
1975; Beale, 1969; Atlas & Overall, 1994) and those of more recent vintage
based in finite mixture modeling and model selection (Bozdogan & Sclove,
1984; Banfield & Raftery, 1993; Windham & Cutler, 1992; Bozdogan, 1993).
OCLUS can also be used to test the sensitivity of methods attempting to de-
termine the number of modes in a data set (Hartigan, 1988; Hartigan, 2000;
Hartigan & Hartigan, 1985; Hartigan & Mohanty, 1992). Overall, OCLUS pro-
vides an interpretable mechanism for evaluation of technique robustness as de-
veloped over several different areas of cluster analysis, finite mixture modeling,
and latent profile analysis.
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