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SELECTION OF VARIABLES IN CLUSTER ANALYSIS:
AN EMPIRICAL COMPARISON OF EIGHT PROCEDURES

DOUGLAS STEINLEY
UNIVERSITY OF MISSOURI-COLUMBIA

MICHAEL J. BRUSCO
FLORIDA STATE UNIVERSITY

Eight different variable selection techniques for model-based and non-model-based clustering are
evaluated across a wide range of cluster structures. It is shown that several methods have difficulties when
non-informative variables (i.e., random noise) are included in the model. Furthermore, the distribution
of the random noise greatly impacts the performance of nearly all of the variable selection procedures.
Overall, a variable selection technique based on a variance-to-range weighting procedure coupled with the
largest decreases in within-cluster sums of squares error performed the best. On the other hand, variable
selection methods used in conjunction with finite mixture models performed the worst.
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1. Introduction

It has long been recognized that not all variables contribute equally to defining cluster struc-
ture (DeSarbo, Carroll, Clark, & Green, 1984; De Soete, DeSarbo, & Carroll, 1985; Donoghue,
1990; Fowlkes, Gnanadesikan, & Kettenring, 1988; Gnanadesikan, Kettenring, & Tsao, 1995;
Green, Carmone, & Kim, 1990; Milligan, 1989; van Buuren & Heiser, 1989), and the inclusion
of variables that do not define cluster structure (coined “masking variables” by Fowlkes & Mal-
lows, 1983) can actually degrade the ability of clustering procedures to effectively recover the
true cluster structure (Milligan, 1980; 1989). Recently, there has been a virtual well-spring of pro-
cedures attempting to determine the subset of variables that define true cluster structures. These
procedures have been developed in both the context of model-based clustering (Dy & Brodley,
2004; Law, Figueiredo, & Jain, 2004; Raftery & Dean, 2006) and non-model-based clustering
(Brusco & Cradit, 2001; Carmone, Kara, & Maxwell, 1999; Friedman & Meulman, 2004; Mon-
tanari & Lizzani, 2001). Excluding the work of Brusco and Cradit (2001) and Carmone et al.
(1999), when new procedures are introduced they are normally demonstrated on a few “choice”
data sets and comprehensive comparisons are never provided. Unfortunately, introducing new
variable selection procedures in this manner results in an entire collection of techniques where
there are no definitive recommendations about when to use which procedure. The purpose of the
current study is to provide an extensive comparison of recent variable selection techniques across
a wide range of conditions.

2. Description of Methods

To describe the eight methods evaluated in the present study, some common notation is
adopted:
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N :=the number of objects, indexedi =1, ..., N;

K := the number of clusters, indexed k=1, ..., K;

Cy := the set of objects in the kth cluster;

Ny :=the number of objects in Cy;

X :=an N x V data matrix whose elements, x;,, represent the measurement of object i on
variable v;

ay := the mixing proportion for the kth cluster (or component), where all oz > 0 and ) le o =
I;

Oy := the set of parameters for the kth component;

X .= the covariance matrix for the kth cluster;

z :=the N x 1 vector of cluster membership, which are unknown a priori. This can also be
referred to as the partition of X;

I4 :=the A x A identity matrix;

Ja :=an A x A matrix of ones;

V := the number of candidate clustering variables, indexedv =1, ..., V;

o2(v) := the variance of the vth variable;

r(v) := the range of the vth variable;

V :=the set of indices for the candidate clustering variables {1,2, ..., V};
Vi, Vi := the number of true clustering and masking variables, respectively, V; + V,,, = V;
X, := the set of observations measured only on the masking variables;

‘P := the power set of V, which contains all Q = 2V _ 1 feasible subsets of the elements of V
(the null set is excluded) and let P € P denote an arbitrary subset of variables from P;

P(s) := P(s) C P, such that all feasible subsets of cardinality s in P are contained in P(s);

7 (P) := a partition of the N objects into K clusters (Cy, ..., Ck, ..., Cx) obtained based on the
variables in P; where Cj denotes the objects assigned to cluster k for 1 <k < K.

2.1. Method 1: Feature Saliency (Law et al., 2004)

Law et al. (2004) estimate feature saliency (e.g., variable weighting in the cluster analysis
literature) by embedding the estimation within the EM algorithm procedure commonly used for
estimating finite mixture models (see McLachlan & Peel, 2000). Let the population density,

K
f=> af (1)
k=1

be a mixture of K components, fi, where f; are assumed to be of the same parametric fam-
ily. Law et al. (2004) make the common assumption that all components are Gaussian. Then,
let p(k|x) = ok fr(x)/ Y o fr(x) represent the posterior probability that object x belongs to
cluster k. The mixture model can be formulated as

fO) =)o filx, 0p), )

where 6 are relevant parameters for the distribution fi. Given x1, ..., xy, the maximum likeli-
hood estimates (MLEs) for oy and 6y satisfy

N
> pklxi)d/dO{ fic(xi, 00)} =0, 3)
i=1

and

N
ar =Y plklx;)/N. “)

i=1
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This estimation proceeds in steps. First, given p(k|x;), estimate 8 (weighting x; by its proba-
bility of belonging to the kth cluster). Second, given the new 6y, estimate p(k|x;). Repeat this
process until the estimates do not change (or only change by a minimal, preset amount). The
EM algorithm (Dempster, Laird, & Rubin, 1977) is the standard method used to fit these models
(Bartholomew & Knott, 1999; McLachlan & Basford, 1988; McLachlan & Peel, 2000).

Law et al. (2004) assume that the variables are conditionally independent given the compo-
nent (e.g., the within-component covariance matrices are chosen to be diagonal), allowing the
density to be rewritten as

K \%4
FO) =Y [ ] £Crulbr), 5)
k=1 v=1

where f(-|6ky) is the density function of the vth variable in the kth component. Law et al. (2004)
denote the vth variable as irrelevant if its distribution follows a common density, denoted by
q(xy|Ay), across classes (i.e., the distribution is independent of class label). Furthermore, a binary
parameter for each feature, ¢,, is introduced such that ¢, = 1 if the vth feature contributes to the
cluster structure and ¢, = 0 otherwise, allowing (5) to be rewritten as

K \%4
@) =D an [T Colben)1? [g ool nn)] % (6)
k=1 v

See Law et al. (2004) for an extensive discussion on how to use the EM algorithm to estimate all
of the unknown parameters in (6).

2.2. Method 2: Model Selection (Raftery & Dean, 2006)

As in Law et al. (2004), Raftery and Dean (2006) attempt to determine which variables
contribute to the overall cluster structure by utilizing the power of finite mixture models. How-
ever, unlike Law et al. (2004), the variables are chosen via model comparison instead of having
their relevance estimated as part of the EM algorithm. Raftery and Dean (2006) also assume the
components are drawn from a multivariate normal mixture, f(-|6x) = MVN(-|ur, Xr); however,
Raftery and Dean implement the unique covariance matrix decomposition given by Banfield and
Raftery (1993),

Xk = M DrAp Dy, (N

where i is the largest eigenvalue of X%, Dy is the matrix of eigenvectors of Xy, and Ay is
a diagonal matrix with scaled eigenvalues as entries. The three parameters control the volume,
orientation, and shape of the kth cluster, respectively. For details on fitting this variant of the
finite mixture model, see Banfield and Raftery (1993). Raftery and Dean (2006) divide the data
set X into three distinct parts:

VD: the set of already selected clustering variables

V@: the variable(s) being considered for inclusion into or exclusion from the set of clustering
variables

V3 the remaining variables

The decision for inclusion or exclusion of V® from the set of clustering variables is then formu-
lated as comparing two models:
MD: p(X|z)= p(V(3) Vo, V(l))p(VQ) IV(l))p(V(l) |Z)’

®)
M®: p(X|z)= p(V(3)|V(2), V(l))p(V(z), V(l)lz).
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Model MV implies that V® provides no additional information about the clustering of the
variables, while M implies that V® provides additional information about cluster membership
above and beyond V(I). The two models are compared via an approximation to the Bayes factor
(see Raftery & Dean, 2006, for details). The variable selection algorithm proceeds as follows:

1. Select the first variable to be the one which provides the most evidence of univariate cluster-
ing.

2. Select the second variable to be the one which shows the most evidence of bivariate clustering
when combined with the first.

3. Propose the next variable to be the one which shows the most evidence of multivariate cluster-
ing when combined with previously selected variables. This variable is accepted if it exhibits
more evidence for clustering than not clustering.

4. Propose the variable for removal from the set of selected variables to be the one which shows
least evidence of multivariate clustering, removing it if the variable exhibits less evidence for
clustering than not clustering.

5. Repeat Steps 3 and 4 until two consecutive steps have been rejected, then stop.

This method essentially computes a BIC statistic that can be used to compare models within
and across different numbers of K. Additionally, Raftery and Dean (2006) identify ten sepa-
rate decompositions of (7) that can be of interest. Unfortunately, the number of potential model
comparisons is now a function of the different values of K, the various covariance matrix de-
compositions, and the number of variables. For example, consider a data set where V = 10
and the range of K of interest is [1,5]. The number of all possible subsets of V variables is
210 _ 1 = 1023 (excluding the empty set), resulting in the number of possible model compar-
isons being (1023)(5)(10) = 51,150—making it virtually impossible to investigate all possible
models across a wide array of data sets.

Thus, for the purposes of this study, it is assumed K is known for two reasons: (1) to help
limit the number of possible models investigated by the above model selection procedure; and
(2) to help disentangle the performance of the variable selection strategy from the difficult prob-
lem of choosing the number of classes. Furthermore, the finite mixture model that is fit to the
data will be allowed to fit an arbitrary covariance matrix that is constrained to be equal across
all clusters. This restriction should not impede the evaluation of this variable selection strategy
because it corresponds to the most complex scenario under which the clusters are generated (see
the section below that describes the data generation process). Assuming the value of K is known
and restricting the cluster-covariance components to be of the form Xy = ¥ reduces the num-
ber of possible model comparisons to 2 — 1, potentially a large number of comparisons, but
definitely more manageable in a broad simulation study.

2.3. Method 3: Scatter Separability (Dy & Brodley, 2004)

Like Methods 1 and 2, Dy and Brodley (2004) utilize finite mixture modeling of multivariate
normal distributions for determining the clustering of observations. Furthermore, three additional
terms are defined:

K

Sw=) ©)
k=1
K

Sp=y_ ax(ux — Mo)(x — M) , (10)
k=1

K
M():Zak,uk. (11)
k=1
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Clearly, S,, measures how scattered the observations are from their cluster centroids, while Sj
measures how scattered the cluster centroids are from the grand mean. Given two variable sub-
sets, V() and V@ we can obtain a partition for each subset, z(I) and z®, respectively. Letting
QWY z(Ny = trace(S,, 15;,), where the jth partition is used on the ith subset of variables to
compute the quantities in (9), (10), and (11). For two distinct partitions the values

T = Q(V(l), z(]))Q(V(z), z), (12)
and
T, =9V, z®) (v, z?) (13)

are computed. If Y1 > T» (Y3 > Y1), choose variable subset Yy (p@y, Dy and Brodley (2004)
implement a sequential forward search procedure that starts with zero variables and sequentially
adds one variable at a time. The variable added is the one that provides the largest criterion value
when used in combination with the variables already chosen. The search terminates when adding
more variables does not improve the criterion.

2.4. Method 4: COSA (Friedman & Meulman, 2004)

The COSA procedure was originally designed to detect subsets of observations that cluster
on subsets of the variables rather than all of them simultaneously. For the task at hand, all of the
observations cluster on the same subset of variables, resulting in a special case of the original
problem. The COSA algorithm implemented in the present study is:

1. Initialize: Wy xg ={1/V}; n=§.
2. Begin loop {
3. Compute the pairwise distance between the ith and jth objects on the vth variable by

\4
D{P[W] = —nlog ¥  wye /",

v=1
dijy = (xiy — xj0)* /s, (14)

1 N N
Sk = — (Xiv — X )%
N2 ZZ

i=1 j=1

where {w, >0} and 3"/_; w, = 1.
4. Implement the chosen clustering algorithm on the proximity matrix obtained in Step 3.
5. Compute weights for the vth variable on the kth cluster by

exp(—Suk/§)
S exp(— Sy /)

m:%ZZ@m (15)
Nk

ieCy jeCy

Wyk =

K

Niwyg
wy =3 Meut.
k=1 N

6. n=n+6¢&.
7. } Terminate loop when W stabilizes.
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Since in the present study we assume that all of the clusters are defined by the same subset of
variables, W is transformed from a V x K matrix to a V x 1 vector by a weighted average
(weighted by cluster size) of the within-cluster weights. The clustering algorithm implemented
was the average-linkage method, while £ and § were initialized as .20 and .10, respectively.
It should be noted that the most general case of COSA was chosen for the simulation study.
Friedman and Meulman (2004) discuss other applications, such as targeted clustering, that may
be more appropriate (not to mention more effective) when domain specific knowledge is taken
into account.

2.5. Method 5: Projection Pursuit (Montanari & Lizzani, 2001)

Montanari and Lizzani (2001) proposed a variable selection procedure for cluster analysis
based on the principles of projection pursuit (Friedman, 1987; Friedman & Tukey, 1974; Kruskal,
1969). The basic premise of this approach is to identify a 1 x V unit-length row vector, a, that
projects the data into a 1 x N row vector, y(a), which has a serious departure from normality as
measured by a chi-square statistic. More formally, the projection is

y@ =aX, (16)
and the goal is to find the best a for the optimization problem:

maximize: Xz(y(a)), an
subject to: aa =1.

To compute the X2 statistic, Montanari and Lizzani (2001) recommend the creation of [«/N ]
bins, where [-] presumably denotes the nearest integer to “-”. The bin points are selected to
preserve equal areas under the normal curve for each bin. The number of objects in each bin for
the projection y(a) is obtained, and the x? statistic is computed in the usual manner.

Citing the work of Goffe, Ferrier, and Rogers (1994), Montanari and Lizzani (2001) uti-
lized a simulated annealing procedure for the optimization problem posed by (16) and (17). This
procedure, which was originally proposed by Corana, Marchesi, Martini, and Ridella (1987), has
proven successful for a variety of continuous-variable optimization problems. Although not men-
tioned by Montanari and Lizzani (2001), the side constraint imposed by (17) does require some
minor modification of the original algorithm. Specifically, whenever any variable is perturbed,
the vector is no longer of unit length and must be renormalized prior to evaluating the solution.
This does not seem to present a major problem, and our projection pursuit MatLab program
tends to produce solutions within a rather narrow range. Montanari and Lizzani (2001) compute
importance coefficients (IC(v)) based on the projection vector that maximizes (17). The coeffi-
cients, IC(v) for 1 < v <V are subsequently compared to a threshold and all variables whose
coefficients fall short of the threshold are discarded. The simulated annealing heuristic is then
reimplemented using only the remaining variables. This process continues until no variables are
discarded.

2.6. Method 6: HINoV (Carmone et al., 1999)

The HINoV clustering procedure developed by Carmone et al. (1999) consists of the follow-
ing steps:

1. Choose K.
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2. For all P € P(1), run @! random initializations of the K-means algorithm (see, Steinley,
2006a, for a review) and let w(P) denote the partition with the best value of SSE(w(P))
across the @ initializations, where

K
SSEGr(P) =Y Y Y (xip — Fip)?. (18)

k=1ieCy peP
and
_ 1
Tip =~ > xip. (19)
k.
ieCy

3. Compute Hubert and Arabie’s (1985) adjusted Rand index, ARI, between all V(V — 1)/2
pairs of partitions obtained in Step 2. Denote these values ARI(u, v) = ARI(v,u) for 1 <u <
v <V, where

(1;/)(11 + 1) — [(t1 + 13) (71 + 14) + (72 + 13) (12 + T4)]

ARI(u,v) = 3
(3)" = [(r1 + ) (T1 + 1) + (22 + 1) (12 + )]

; (20)

where 11 is the number of object pairs that are in the same cluster for both 7, and m, (the
partitions for variables u and v, respectively), 72 is the number of object pairs that are in
different clusters in both m, and m,, 73 is the number of object pairs that are in the same
cluster in m, but different clusters for m,, and 74 is the number of object pairs that are in
different clusters in 7, but in the same cluster for 7.

4. Compute a total pairwise adjusted Rand index, TOPRI(v), for each variable v by summing
across all variables

TOPRI(v) = ZARI(u, v). 1)
u#v
5. Rank the TOPRI values in descending order, and let W (s) = the candidate variable in position
s of this ranking 1 <s < V. Choose the first s variables based on the following rule:
_ (TOPRI(¥(s)) — TOPRI(¥ (s + 1)))
~ (TOPRI(¥ (s — 1)) — TOPRI(¥(s)))

RR(s) for2<v<V-—1. (22)
Although Carmone et al. (1999) recommend ranking the TOPRI(v) values in descending order
and using a scree-type plot to determine the cutoff point for selected variables, this procedure is
not computationally feasible for a large experimental study. Therefore, we formalized Carmone
et al.’s method by using the ratio rule in Step 5. A large value of RR(s) suggests that s is a good
candidate for the number of variables, because increasing the number of variables from s to s + 1
produces a much larger decrease in the TOPRI index than increasing from s — 1 to s.

2.7. Method 7: VS-KM (Brusco & Cradit, 2001)

The VS-KM procedure developed by Brusco and Cradit (2001) consists of the following
steps:

1. Choose K. Set threshold = 0, gmin = .05, gfac = .5.
2. For all P € {P(1) UP(2)}, run @ random initializations of the K-means algorithm and let
7 (P) denote the partition with the best value of SSE(;r (P)) across all @ initializations.

L was set to 50 for Mg and M7, while @ was set to 20 for Mg.
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3. Compute the ARI (Hubert & Arabie, 1985) for all V(V — 1)/2 pairs of partitions for P(1)
obtained in Step 2. Denote these values ARI(u, v) = ARI(v,u) for 1 <u < v < V. For all
V(V — 1)/2 partitions for P(2) obtained in Step 2, let VAF(u, v) denote the VAF for the
two-variable partition obtained using variables u and v, where

(TSS(P) — SSE(m(P)))

VAF(m (P)) = 7SS(P) ) (23)

and
TSS(P) = (N — 1)a*(P). (24)

4. Choose the variable pair {u*, v*} based on the criterion:

VAF* = [{na))((VAF(u, V)IARI(u, v) > threshold)], (25)
u,v

where {u*, v*} correspond to the values of u and v that produce VAF*. Set s =2, n = ARI (u*,
v¥), P*(s) = (u™*, v*), and store 7w (P*(s)).

5. If s =2, go to Step 6; otherwise, set P = P*(s) and run @ random initializations of the K-
means algorithm. Let 77 (P*(s)) denote the partition with the best value of SSE(rr (P*(s)))
across the @ initializations.

6. For all v € V\ P*(s), compute the ARI between partition 7 (P*(s)) and the single variable
partition for variable v obtained in Step 2, denoting these values as ARI(P*(s), v) for v €
VAP*(s).

7. Set A = max, (ARI(P*(s), v)). If A < gmin Or A < 1 X gfac, then return P*(s) as the selected
subset of variables and STOP; otherwise, go to Step 8.

8. Setn=A, P*(s+1) =P*(s)U{v'}, where v/ = v|ARI(P*(s),v) =A.Sets =s+1.If s =V,
then return P*(s) as the selected subset of variables and STOP; otherwise, return to Step 5.

Like the HINoV algorithm, the ARI(u, v) values are computed for all pairs of single-variable
partitions in Step 3. In Step 4, the VS-KM algorithm selects a pair of variables that produces the
largest VAF index, yet also yields a sufficiently large ARI index. Although Brusco and Cradit
tested a threshold of .25, we have found that this frequently resulted in a failure to select any
variables, and have obtained better results with threshold = 0. Steps 5 through 7 of the VS-
KM algorithm attempt to add variables, one at a time. At each iteration, V — s ARI values are
computed using each of the single-variable partitions for the unselected variables as one partition,
and the K -means partition for all currently selected variables as the other partition (Step 5b). The
unselected variable whose partition has the strongest agreement with the partition for the current
set of selected of variables is added to the selected set provided that two conditions are met:
(a) the ARI must equal or exceed gmin; and (b) the percentage reduction in the AR/ relative to the
last appended variable must be no more than 1 — gg,c.

2.8. Method 8: Relative Clusterability Weighting with VAF Selection (Steinley & Brusco, 2007)

Steinley and Brusco (2007) introduced a variance-to-range ratio variable weighting method
that is used in conjunction with a variable selection algorithm. First, a clusterability index is
computed for each variable

12 x 02(v)
Cly=—— 26
r)? 2o
allowing the relative clusterability of each variable to be computed by
CI
; v Yo=1,...,V. 27)

~ min(Cl,)
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Thus, the most clusterable variables will have greater values of CI,,. The final weighting is carried
out by:

1. Compute CI, and RC, for each variable.

2. Transform X to X* by the standard z-score transformation and compute each variable’s new
range, r(v*).

3. Complete the transformation procedure by reweighting the variables of X* such that the values
of RC, hold in the transformed space. The final transformation of the vth variable is computed

by
% RCy [r(v;in)]z
R T @8)

and then all of the transformed variables are taken together, represented as T.

Furthermore, T preserves the relative differences in clusterability while placing the values of
each variable on a similar scale.

The transformed variables are then used as input into a variable selection program. As a
preprocessing step, B standard normal variables with N observations are generated and their
respective CI values are computed. The CI values are ordered from CIy, Cl», ..., Clp and any
variables with CI, less than CI 95, p are immediately discarded, allowing the Steinley and Brusco
(2007) method to handle very large data sets where there is a large number of masking variables.

The culling process based on the CI,, values can be viewed as an initial univariate screening
of the variables. This process is subsequently followed by an exhaustive enumeration of all fea-
sible subsets that pass this initial screening. To avoid further notational clutter, we assume that
V (and, accordingly, V') are redefined based on those variables that pass the initial screening. We
then apply a variable selection procedure that requires the application of the K -means algorithm
(with ¢ = 20 random initializations) for all feasible subsets of clustering variables. The process
is as follows:

1. Choose K. Set P*(s) = & and VAF*(s) =0for1 <s < V.
2. For all P € P perform Steps 2a and 2b.
Step 2a. Run @ random initializations of the K -means algorithm and obtain SSE(x (P)) and
VAF (7t (P)).
Step 2b. If VAF(w(P)) > VAF*(s) and |P| = s, then set P*(s) = P and VAF*(s) =
VAF (7t (P)).
Choose s and P*(s) based on the following ratio rule:

(VAF*(s) — VAF*(s + 1))
(VAF*(s — 1) — VAF*(s))’

RR(s) = (29)

The variable selection algorithm evaluates all feasible subsets of size 1 <s < V in Step 2
and stores the best partition and VAF value for each subset size. The selection of subset size
is based on a ratio rule in Step 3. Large values of RR(s) suggest that there is a much greater
decrease in VAF obtained from increasing the number of variables from s to s 4 1 than there
is from increasing the number of variables from s — 1 to s. Therefore, we choose the subset of
variables, P*(s), that produces the maximum value of RR(s).

Although the initial screening process often greatly reduces the number of candidate vari-
ables, it is possible that V could remain sufficiently large to preclude exhaustive enumeration of
all feasible subsets. In such circumstances, we recommend evaluation of all feasible subsets up
to some computationally feasible size, V' < V. If it is necessary to select more than V' variables,
then we suggest using the subset P*(s = V') as a starting point, and incrementally attempt to add
variables, one at a time, from that point forward.
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3. Simulation Study

3.1. Data Generation

In the simulation study, we wanted to determine the effectiveness of each of the eight proce-
dures described above for selecting the cluster defining variables while simultaneously excluding
the masking variables. We generated 20,412 data sets consistent with the OCLUS procedure de-
scribed by Steinley and Henson (2005), which has been used by a number of previous studies
(Steinley, 2003; 2004a; 2006b). The primary advantage of the OCLUS generation method is
the ability to generate clusters with known probabilities of overlap. For the present simulation
study, each data set was generated with 250 observations and seven factors were systematically
manipulated.

The first factor, the number of clusters in the data sets, was examined at three levels, K =4,
6, and 8. The second factor, density (A) of the clusters, was tested at three levels: (a) an equal
number of objects in each cluster; (b) 10% of the objects; and (c) 60% of the objects in one
cluster and the remaining objects equally divided across the remaining clusters. While the third
factor, the number of true structure variables, was evaluated at three levels, V; =2, 4, and 6.

The fourth factor (and likely the most influential across methods—see Steinley, 2003,
2004a, 2006b; Steinley & Henson, 2005; Steinley and McDonald, 2007), the average proba-
bility of overlap between clusters on each true structure variable, assumed six levels, p(0O) =
0,.05, .15, .25, .35, and .45. Here cluster overlap is defined as the amount of overlap (proba-
bilistically) existing on each of the V; dimensions between two clusters. For two clusters (Ci
and Cy+) some points from each cluster occupy the same region of space for the vth variable
with probability pfk*. If pkk* is the probability of overlap between any pair of clusters across
all clusters (i.e., pkk* = ZL/:] p',jk*), then we can define an overall probability of overlap, p(O),
as the average probability of overlap between all adjacent clusters. Steinley and Henson (2005)
propose first generating each of the V; dimensions independently to allow for an exact control of
cluster overlap. Since each dimension is generated independently, the clusters can be thought of
as existing on a continuum for that dimension. Thus, there are K — 1 adjacent clusters and p(O)
is then defined as p(0O) =1/(K — 1) >_ pkk*, where Cy and Cy+ are adjacent clusters.

Then, if within-cluster correlation (see below) is desired, Steinley and Henson (2005) prove
that a rotation of the clusters does not alter the overlap between the clusters. Each cluster was
generated from multivariate normal distributions (as originally proposed by Milligan, 1985).
When p(0O) = 0, the means of each adjacent cluster were separated by six standard deviations on
each of the V; dimensions (creating data sets that have effectively no overlap between clusters).
As V; increases, the clusters become more separated (see Steinley & Henson, 2005, for a proof),
creating clusters that were well separated (i.e., internally cohesive and externally isolated, see
Cormack, 1971). As p(0O) increases, the clusters begin to overlap on each dimension, becoming
indistinguishable and more difficult to recover. This type of “noise” in the cluster structure is a
more exact manner (again, see Steinley & Henson, 2005, for a proof) to control cluster overlap
than adding random noise or outliers as originally proposed by Milligan, 1980).

The fifth factor was the degree of within-cluster correlation present and had two conditions:
(a) X = Iy,—the within-cluster correlations were set to zero (i.e., variables are independent
given cluster membership is known); and (b) Xy = X —each cluster has the same covariance
matrix (a necessary restriction if exact cluster overlap is to be preserved—see Steinley & Henson,
2005); however, that covariance matrix is arbitrary. The off-diagonal elements in (b) were each
chosen from a continuous uniform distribution on the range [.3, .8].

The sixth factor, the number of masking variables, was evaluated at three levels, V,,, =2, 4,
and 6. The seventh factor, the distribution of the masking variables, f(V,,), was tested at seven
levels:



DOUGLAS STEINLEY AND MICHAEL J. BRUSCO

(a) all V,,, masking variables were independently generated from an F-distribution with 1 degree
of freedom for both the numerator and denominator,

(b) all V,, masking variables were independently generated from a gamma distribution with one
degree for both the numerator and denominator,

(©) xym ~ Ny, (0,1y,);

(d) x,mm ~ Ny, (0,25 ]y, +.75x1y,);

(e) X, ~ Ny, 0, .50 % Jvm + .50 % IV,,, );

() x,m ~ Ny, (0,.75 % Jy, + .25*1y,); and

m m

(g) xym ~ Ny, (0, Z;; =U(1,20); Zj; =0).

The first two conditions (a) and (b) represent different degrees of skewed masking variables,
while conditions (c)—(f) represent masking variables with different degrees of correlation—zero,
low, medium, and high, respectively—and (g) indicates that each of the variances of the masking
variables were independently drawn from a continuous uniform distribution on the range [1, 20].
This resultedina 3 x 3 x 3 x 6 x 2 x 3 x 7= 6804 distinct data scenarios. In addition, three
replications were made of each scenario, resulting in 20,412 data sets.

3.2. Performance Measures

The performance of each of the eight methods, henceforth referred to as M|—Mg, was eval-
uated on all 20,412 data sets. Performance was measured in three different manners:

Recall: The number of relevant variables in the selected subset divided by the total number of
relevant variables. Recall will be denoted by R.

Precision: The number of relevant variables in the selected subset divided by the total number of
variables selected. Precision will be denoted by PR.

Cluster Recovery: The ability of each procedure to return the true cluster structure based on the
subset of variables the procedure selected. The degree of true recovery is measured by ARI,
which assumes a value of unity when there is perfect recovery of the true cluster structure and
a value of zero when recovery is equal to random chance. Steinley (2004b) indicated that the
adjusted Rand index should be the measure of choice when evaluating cluster recovery.

Since M and M4 use weighting schemes for the variables instead of a pure selection procedure
that requires a variable to be in or out, some care must be taken in computing the numerator for
R and PR. The fact that the weights, w,, for the variables are constrained to be in the range
[0,1], means that the numerator can be calculated by summing the weights, Z,Y:l Wy.

To calculate the ARI, cluster membership must be provided by the procedures. My is the
only method to independently provide a pure clustering of the objects upon termination of the
algorithm. For the three procedures based upon mixture models, M;—M3, cluster membership
was determined by assigning objects to the clusters in which the posterior probability is highest
(see Bartholomew & Knott, 1999). For M5—Msg, a K-means cluster analysis (@ = 100) (see
Steinley, 2006a, for a complete review) was conducted on the selected variables, and the resultant
cluster memberships were used to compute ARI.

3.3. Results

3.3.1. Overall Performance of Methods. Across methods, the three measures exhibit a
moderate level of correlation: Cor(R, PR) = 0.644, Cor(R, ARI) = 0.639, Cor(PR,ARI) =
0.712 with p < .0001 for all correlations. Additionally, the correlations between the recovery of
the methods are presented in Table 1. Although some of the correlations are moderate in nature,
many of them are much smaller than one would expect, indicating that the eight methods exhibit
a great deal of differential performance. None of the correlations are large enough (the largest
being Cor(Meg, Mg) = .769) to allow the assertion that one method may serve as a substitution or
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TABLE 1.
Correlation matrix for ARI of variable selection methods.
M, M> M3 My Ms Mg M7 Mg
M —
M> 212 —
M3 .116 474 —
My 445 .449 395 —
Ms 456 512 483 .559 —
Mg 421 218 118 438 414 —
M~ 419 264 .189 410 523 .693 —
Mg .326 182 .074 .367 383 769 711 —

Note: All correlations are significant at p < .0001.

TABLE 2.
Mean performance measures for the eight variable selection methods.

Method R PR ARI % Perfect
M, 9112 8127 .6070 6.33
M, 3262 5521 4334 6.43

M; .5063 6122 .3864 1.73
My .6596 7432 7211 23.45

Ms 7317 .6992 7082 30.92

Mg 9264 9511 8514 38.25

M7 .9832* .8406 .8507 38.41

Mg .8932 .9636* .8611* 38.46*

Note: *Best performing method for the particular performance measure.

predictor for another method (for instance, both Mg and Mg only account for 59% of the variance
in the other).

The mean recall, precision, and recovery for the eight methods are presented in Table 2.
Across all performance measures, the top methods were Mg, M7, and Mg. Mg exhibits the great-
est recovery and precision, while M7 indicates the greatest level of recall and somewhat lower
level of precision than both Mg and Mg. This relationship indicates that making the most out of
each variable selected may be more important than selecting a large number of relevant variables.

The lower level of recall of Mg may be attributed to the preprocessing nature of the procedure
that discards all variables that do not have a high enough relative clusterability index. Due to the
random nature of the preprocessing procedure, relevant variables may occasionally be discarded.
However, it seems that the trade-off of increased precision results in both better average recovery
and more frequent instances where the cluster solution was perfectly recovered (i.e., ARI = 1.00).

After examining the overall performance of the methods, it is informative to determine if
method performance is dependent upon specific situations (i.e., performance varies with the fac-
tor levels). The individual performances are examined by the levels of each factor, beginning
with the factors with the most influence and ending with the factors with the least influence. Fur-
thermore, since recovery is usually of paramount importance, we conducted an MANOVA (see
Table 3) on the true cluster structure recovery, supplementing findings on the ARI with discus-
sions on recall and precision. The between data sets effects can be thought of as the influence
of the design factors across all variable selection methods. To simplify the discussion, only main
effects are modeled and discussed. Furthermore, given the large sample size, it was expected that



DOUGLAS STEINLEY AND MICHAEL J. BRUSCO

TABLE 3.
MANOVA for eight variable selection methods on ARI.

Effect Source DF SS F 72

Between data sets effects
(Vi) 6 2276.23 5516.31 361
p(0O) 5 1447.03 4208.16 229
\ 7 2 1053.11 7656.43 167
pys 2 55.99 814.19 .009
Vin 2 46.64 339.10 .007
K 2 21.41 155.62 .003
A 2 4.19 30.52 .001
Error 20391 1402.34

Within data sets effects

(univariate tests)

Method (M) 7 5023.68 20145.4 .398
M* £ (Vi) 42 1440.18 962.54 114
M*A 14 716.29 1436.21 .056
M*V; 14 131.72 264.12 .010
M*p(0) 35 118.59 95.11 .010
M*V,, 14 54.88 110.03 .004
M* 3 7 30.02 120.39 .002
M*K 14 29.49 59.12 .002
Error 142737 5094.01

all factors would be statistically significant; therefore, all effects were evaluated with respect to
their estimated effect sizes, /2. Finally, the factors are ordered by decreasing effect size, 77%.

The factor having the most impact on the recovery capabilities of the methods is the distri-
bution of the masking variables (see Table 4). When f(V,;,) is an F distribution, Mg drastically
outperforms the other seven selection procedures, indicating that many of the variable selection
techniques have difficulty in the presence of skewed data. In fact, the F distribution results in the
poorest performance for all other methods, while it is the distribution under which Mg exhibits
the best performance. Furthermore, two of the three mixture modeling techniques (M> and M3)
and the projection pursuit technique (Ms) perform at essentially chance levels under the F dis-
tribution. However, there is marked a improvement under the other distributions, with M¢—M3g
exhibiting cluster recovery at consistent levels (excluding the high correlation level where Mg
shows some degradation in recovery). Whenever the masking variables arise from a normal dis-
tribution, regardless of correlation structure, Ms also performs quite well. Although still at an
adequate level, My seems to perform a step below Mg—Mg under all distributions except the F
distribution, where it performs much worse. Finally, the mixture modeling techniques, M|—M3
all perform at a disappointing level, with none of them ever approaching the performance of the
other top variable selection procedures.

The effect of the overlap factor lends itself to a very straightforward interpretation: as the
probability of overlap between the clusters increases, the recovery capabilities of the procedures
decreases. The top three methods, Mg—M3, were more resilient to increases in cluster overlap
than the other five selection procedures. M1, M4, and M5 exhibit a slightly greater decrease in
relation to overlap; whereas, M, and M3 perform extremely poorly with regard to increases in
cluster overlap. In fact, if the heuristic cut-off value of ARl = .65 is considered, the minimum
ARI for acceptable cluster recover (see Steinley, 2004b), none of the mixture model variable
selection techniques provide acceptable cluster recovery, regardless of the amount of overlap;
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TABLE 4.
Performance for eight selection methods by f (V).

Method  Measure F11 INN! Npij:O N/Uij:»ZS Npij:-SO Npl.j:'75 Ncr2~U(1,20)
M, R .6273 9628 9762 9767 9614 9005 9732
PR .3990 .6477 .9850 9817 9266 7665 9821
ARI 3317 .6652 .6703 .6678 .6576 .5662 .6901
M R .1099 4243 .3981 .3768 .3269 2568 .3908
PR 1758 7119 .6701 .6387 .5566 4517 .6594
ARI .0246 4527 .5668 .5455 4800 .3926 5715
M3 R .0829 .6578 .5616 .5597 .5594 5614 .5607
PR 1228 .8623 .6537 .6567 .6606 .6630 .6662
ARI .0507 4335 4386 4447 4461 4443 4464
My R .3490 7341 7610 7436 7075 .6121 7096
PR 3238 .8617 .8296 8271 8155 7099 .8343
ARI .3432 .8205 .8340 .8186 1785 .6481 .8044
Ms R .0056 .6647 .8905 .8819 .8901 .8937 .8950
PR .0075 .6863 .8553 .8559 .8377 1979 .8531
ARI .0044 .6712 .8528 .8573 .8614 .8619 .8481
Mg R .9431* 9441 .9438 .9445 9335 .8432 9320
PR .9637 .9724* 9738 .9701* .9523 8512 9743
ARI .8043 .8679 .8694 8714 .8684 .8107 .8671
My R .8859 1.000* 1.000* 1.000* 1.000* 1.000* .9969*
PR .8821 .8176 8212 .8203 .8202 .8247 8977
ARI 7156 8711* .8718* .8757* .8766* .8756* .8683*
Mg R 9191 .8523 .8916 .8866 .8954 .8920 9149
PR 1.000* 9197 .9640* 9581 .9620* .9645* .9766*
ARI .8712* .8480 .8597 .8619 .8650 .8632 .8589

Note: *Best performing method for the particular performance measure within each distribution.

whereas, M¢—Mg consistently return average values of AR/ greater than .65 across all levels of
cluster overlap.

The effects of the remaining five factors (number of true variables, number of masking vari-
ables, cluster density, and within-cluster correlation) on cluster recovery are displayed in Table 5.
Mg outperforms all the other procedures across all factor levels for the remaining four factors ex-
cept for two levels: (1) for K = 8, M7 has an average ARI .0043 greater than Mg; and (2) for
Vin =2, Mg has an average ARI .0020 greater than Mg (with Mg and M7 exhibiting similar de-
grees of performance as Mg across the remaining factor levels). Given the stellar performance of
Mg, the discussion of recovery, precision, and recall will be restricted to this procedure. In gen-
eral, as the number of clusters increased, ARI decreased. The drop in ARI was accompanied by
a small decrease in R (.9643, .8773, .8378); however, PR (9518, .9674, .9716) remained fairly
constant for K =4, 6, and 8, respectively. This indicates that the variable selection procedure is
probably not responsible for the degradation of the ARI; whereas, the decrease in ARI is more
likely attributed to the properties of the K-means clustering algorithm (see Steinley, 2006b, for
similar results concerning the K-means clustering algorithm).

Increasing the number of true variables resulted in dramatic increases in ARI. Altering the
number of true variables had no immediate effect on the precision of Mg (PR ~ .96 for all
V;); however, as V; increased, R decreased (R = .9642, .8773, and .8378 for V; = 2,4, and 6,
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TABLE 5.
Recovery of eight selection methods by number of clusters, number of true and masking variables, and cluster density.

Factor Level My M, M3 My Ms Mg M7 Mg
K 4 .5955 4753 3813 1317 1372 .8665 .8561 .8853*
6 .6118 4339 3875 1347 .6995 .8483 8511 8577*
8 .6138 3911 .3903 .6969 .6879 .8392 .8449* .8406
Vi 2 4752 .3562 .3585 5604 .5856 1255 .7401 I517*
4 .6400 4492 4008 7614 71328 .8798 .8669 .8840*
6 .7060 4949 .3998 .8415 .8062 .9488 9452 9477*
Vin 2 .6449 4723 4242 7765 7035 .8577* .8469 .8557
4 .6091 4269 .3863 7202 7099 .8583 .8521 .8627*
6 5671 4010 .3485 .6665 111 .8381 .8532 .8651*
A Equal .6662 3877 .3007 7056 7128 .8868 .8809 .8977*
10% .6573 .3523 2982 7074 .7060 8787 8758 .8874*
60% 4976 .5604 .5601 7503 .7059 1887 71954 .7984*
p)) =1 .6160 .3944 3622 .6888 .6950 .8355 .8306 .8487*
=X .5980 4724 4104 71534 1214 .8672 .8709 .8737*

*Best performing method for the particular performance measure within each level of all factors.

Adjusted Rand Index
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respectively). This does not indicate any shortcomings on the part of Mg’s performance, merely
signaling that Mg selects only the subset of variables with the most clustering information. Once
again, this is likely due to the pre-processing procedure based on the CI values. Furthermore, the
general increase in ARI is supported by previous studies as well (see Milligan, 1980; Steinley,
2006b). Altering V,, has no effect on either recall (R ~ .89 for all V;;,) or precision (PR ~ .96
for all V,;,). Almost counterintuitively, ARI increases slightly as V,,, increases. This is likely due to
greater information available for Mg to determine what subsets of variables due not contain any
clustering information. This will have the largest effect when some subset of masking variables
pass the original screening of the CI values.

Just as changing the number of masking variables did not have an effect on recall and pre-
cision, changing the density of the clusters did not have a noticeable effect on either measure
(R =~ .89 and PR =~ .96 for all A). The degradation of the ARI can be attributed to the diffi-
culty that the K -means procedure has in finding many small clusters in the presence of one large
cluster (see Steinley, 2006b, for similar results). However, even the relatively poor performance
of Mjs in the context of one large, dominating cluster is better than the performance of the other
seven procedures. Finally, it is seen that the within-cluster covariance structure does not have a
large effect on the performance of any of the measures (i.e., it only accounts for about 1% of the
between methods effects). This is likely due to the fact that the more critical information is the
nature of the masking variables, the distance between the clusters, and the amount of true cluster
information present. Once again, for Mg, the R & .96 for each condition while PR = .92 for the
uncorrelated variables condition and approximately .87 for the correlated variables condition.

The within data sets effects can be thought of as highlighting the factors that differ the
most across the variable selections method. Of course, we see that the most influential effect
is which method is employed (refer back to Table 2 for individual mean recovery, recall, and
precision values). Given that Mg was found to perform the best, post-hoc tests between Mg and
all other methods found that My significantly (after using a standard Bonferroni correction for
multiple tests) outperformed the other variable selection methods. The effect sizes (in terms of
Cohen’s d) for these differences range from large (.89, 1.14, and 1.41 for M;—M3, respectively),
to medium (.44 for both M4 and Ms), and small (.07 and .06, for Mg and M7, respectively).
All the within data sets interactions in Table 3 are not particularly interesting and can easily be
investigated using Tables 4 and 5. For instance, the interaction between method and masking
variable density is understood by observing that for Mg there are very small mean differences
across the masking variable densities (.0232 to be exact), while some of the other procedures have
large mean differences across the different factor levels—for example, M5 ranges from .0044 to
.8619. Similar results can be found when investigating the other method by factor interactions.

4. Computation Time

Computation times for each of the methods are provided in Table 6. The times (in seconds)
are displayed by the three most influential factors: the number of clusters, the number of true vari-
ables, and the number of masking variables. Each cell in Table 6 represents the time to select the
variables for one data set where the conditions not displayed were set such that the probability of
cluster overlap was zero, the relative density was equal, the masking variables were normally dis-
tributed and uncorrelated, and the within-cluster correlations were set to zero.2 The average time
per data set for M1—Mg were .2668, 167.83, 445.96, 51.81, 121.60, .0966, .3518, and .2002, re-
spectively. When considering that each method was implemented for 20,412 data sets, the overall

2We found that varying these latter four conditions did not noticeably affect the computation time for any of the
methods.
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TABLE 6.
Computation time (in seconds).

K =4 K =6 K=28
Vi=2 Vi=4 V=6 V=2 Vi=4 V;=6 V;=2 Vi=4 V=6

Vm=2 M 0.11 0.16 0.17 0.17 0.28 0.28 0.25 0.27 0.27
M, 26.22 22.25 41.55 51.42 61486 163.02 148.77 124.09 255.81
Mj; 91.08 154.38 340.14 17894 33420 471.78 252.28 44570 759.47
My 4.69 4.80 4.71 7.05 4.74 4.73 4.83 72.27 110.67
M; 66.54 103.78 144.33 69.34  115.17 144.58 58.09 105.59 164.64
Mg 0.05 0.06 0.08 0.04 0.06 0.09 0.05 0.06 0.09
M7 0.06 0.22 0.38 0.08 0.25 0.50 0.09 0.27 0.48
Mg 0.05 0.09 0.34 0.05 0.09 0.38 0.05 0.11 0.41

Vm=4 M 0.18 0.25 0.19 0.23 0.25 0.31 0.25 0.31 0.33
M, 42.75 63.46 47.62 130.50 257.19 13441 12897 137.59 469.97
Mz 250.73 244.05 280.56 322.80 556.50 63497 44591 598.86 645.59
My 11397 4.77 4.84 98.45 94.72 95.84 16.10 49.58 42.91
M; 80.91 67.33 121.49 58.05 14291 163.19 61.52 131.72 210.71
Mg 0.08 0.09 0.11 0.08 0.09 0.13 0.08 0.09 0.13
My 0.17 0.33 0.48 0.17 0.31 0.55 0.11 0.50 0.56
Mg 0.03 0.09 0.70 0.05 0.09 0.38 0.03 0.11 0.41

Vm=6 M 0.17 0.19 0.30 0.22 0.27 0.38 0.33 0.42 0.67
M, 48.95 59.09 51.82  217.06 22993 27845 257.27 21433 314.16
M; 24289 438.42 34422 383.06 582.14 975770 605.95 673.56 787.14
My  116.09 4.47 4.89 102.38 100.28 101.45 106.65 52.58 46.44
WE 93.14 125.63 144.89 104.23 160.43 223.36 92.06 134.77 194.75
Mg 0.09 0.13 0.14 0.11 0.11 0.16 0.11 0.14 0.16
My 0.17 0.39 0.64 0.20 0.44 0.61 0.25 0.55 0.73
Mg 0.03 0.09 0.34 0.03 0.09 0.78 0.06 0.11 0.41

computation times for M1—Mg across the entire simulation become approximately 91 minutes,
40 days, 105 days, 12 days, 29 days, 33 minutes, 120 minutes, and 68 minutes, respectively. This
results in approximately 186 days of computation time.

All of the programs were written as m-files in MATLAB 7 and obtained from the original
authors if possible. The program for M was obtained from Law et al. (2004), while the program
for M, used the m-files developed by Martinez and Martinez (2001, chapter 8; 2005, chapter 6).
Programs implementing M7 and Mg were obtained from Brusco and Cradit (2001) and Steinley
and Brusco (2007), respectively. On the other hand, M3—Mg were programmed by the authors.
It is possible that all programs could be written in different languages or made more efficient
in general; however, we would expect the same general results to hold. Mg—Mg have a compu-
tational advantage because the foundation of the variable selection techniques is the K-means
algorithm, which is known to be very fast and very efficient (see Steinley, 2006a); whereas, M»
and M3 are estimating models that rely on the EM algorithm (which is known to be computa-
tionally burdensome, see McLachlan & Krishnan, 1997, chapter 1). Furthermore, M>, M3, and
M5 are reestimating these models each time a variable is considered for inclusion or exclusion
from the set of clustering variables. This latter reason likely explains why M7, which also relies
on the EM algorithm, is much faster to implement because it estimates the inclusion statistics,
¢y, within the context of the model estimation and it only estimates the model once. Finally, it is
very reassuring that the best performing methods are also the quickest to converge.
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5. Discussion

This paper compares eight contemporary variable selection techniques from several different
literatures, including statistics, machine learning, and psychology. The most effective method
was the procedure proposed by Steinley and Brusco (2007), while the worst performing methods
were those based on finite mixture modeling.

The Steinley and Brusco (2007) procedure (Mg) takes advantage of a new variable weighting
technique that determines the relative clusterability of each variable in the system, which proves
to be particularly advantageous in the presence of skewed random noise. Closely following the
performance of Mg were the two procedures (Mg and M7) based upon finding sets of variables
that, when partitioned, produce similar cluster structures. Although fourth best, COSA’s (M)
performance is somewhat remarkable because of the fact that the COSA procedure was not de-
signed for blind variable selection. In fact, it has been shown that COSA performs quite well
when used for its intended purpose: finding subsets of objects whose cluster structures are de-
fined by different subsets of variables, preferably with some degree of prior knowledge. The
current research illustrates the shortcomings of a possible (perhaps likely) misuse of the COSA
algorithm. The projection pursuit variable selection procedure (Ms5) performed fifth best and
primarily failed due to its inherent nature. Projection pursuit is designed to find the most interest-
ing structures (i.e., non-normal). Subsequently, the procedure’s worst performance is observed
when the random noise is very non-normal, allowing projection pursuit to denote the non-normal
random noise as more “interesting” than the underlying cluster structure. The three worst per-
forming were based on the theory of mixture models for finding the cluster structure. Of those
methods, the procedure that builds the variable weighting scheme into the EM algorithm (M)
performs the best. The final two methods, M, and M3, performed drastically worse than the other
six methods.

Although the comparative performances of each of the methods is quite interesting, the ma-
jor limitation to the current research is the fact that the number of clusters is assumed to be
known. The number of clusters is very rarely known in advance and must be determined by the
researcher. One of the most popular procedures for choosing the number of clusters when imple-
menting finite mixture models is using the BIC within the larger context of model comparison
(see Raftery & Dean, 2006). One promising statistic for choosing the number of clusters in K-
means clustering is the gap-statistic (Tibshirani, Walther, & Hastie, 2001). However, these are
only two among many methods for choosing the number of clusters (see McLachlan & Peel,
2000, chapter 6, for additional procedures in finite mixture modeling; see Steinley, 2006a, for
numerous methods for choosing the number of clusters in the context of K-means clustering).
Unfortunately, extensive comparisons have not been conducted, and including the decision of the
number of clusters within the simulation study would have likely confounded the results obtained
and made the inferences about the variable selection procedures much more difficult. Regardless
of the method used to choose the number of clusters, any such method will be prone to error,
and this error will result in the precision, recall, and ARI reported herein to be inflated (i.e., the
true values of the performance measures are likely to be lower). However, given the degree that
Mg, M7, and Mg outperform the other methods, it is quite unlikely that the worst performing
methods will become the best performing methods (and vice versa) when choosing the number
of clusters is incorporated into the decision making process.

Lastly, the present study opens several avenues of future research that are currently under-
way. First, when the number of variables dramatically increases (say more than 100), many of the
procedures will become increasingly more inefficient. We suspect Mg will continue to perform
well in these situations due to the preprocessing component that ranks the variables in terms
of clusterability. Second, it would be worthwhile to investigate the dependence of the recovery
capability of the more successful methods on the objective function and the algorithm. In the
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former instance, it is possible that minimizing a different criterion other than SSE (such as |[W|,
tr(W~1B), etc.) may be more effective. In the latter instance, the traditional K-means algorithm
is simple and efficient; however, more sophisticated algorithms (such as simulated annealing,
genetic algorithms, tabu search, etc.) may be more effective in minimizing SSE or an alternative
criterion. Finally, the results indicate that, excluding the F-distribution, M7 outperforms all of
the other methods. Thus, to maximize recovery, it seems that some combination of the elements
of Mg and M7 is called for. An effective combination is currently being pursued.
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