
731

⁄
0022-2496/02 $35.00

© 2002 Elsevier Science (USA)
All rights reserved.

Journal of Mathematical Psychology 46, 731–745 (2002)
doi:10.1006/jmps.2002.1423

Identifying a Reordering of Rows and Columns
for Multiple Proximity Matrices Using

Multiobjective Programming

Address correspondence and reprint requests to Michael J. Brusco, Marketing Department, College of
Business, Florida State University, Tallahassee, FL 32306-1110. E-mail: mbrusco@cob.fsu.edu.

Michael J. Brusco

Florida State University, Tallahassee, Florida

This paper is concerned with a problem where K (n×n) proximity matrices
are available for a set of n objects. The goal is to identify a single permuta-
tion of the n objects that provides an adequate structural fit, as measured
by an appropriate index, for each of the K matrices. A multiobjective pro-
gramming approach for this problem, which seeks to optimize a weighted
function of the K indices, is proposed, and illustrative examples are provided
using a set of proximity matrices from the psychological literature. These
examples show that, by solving the multiobjective programming model under
different weighting schemes, the quantitative analyst can uncover information
about the relationships among the matrices and often identify one or more
permutations that provide good to excellent index values for all matrices.
© 2002 Elsevier Science (USA)

Key Words: combinatorial data analysis; matrix permutation; multiobjec-
tive programming; three-way two-mode data.

1. INTRODUCTION

Many approaches for fitting a structure to a single proximity matrix (with rows
and columns corresponding to the same set of objects) require the identification of
a reordering (or permutation) of the rows and columns of the matrix that optimizes
some type of index (Baker & Hubert, 1977; Brusco & Stahl, 2001; Hubert, 1976,
1978; Hubert & Baker, 1977; Hubert & Golledge, 1981b; Hubert & Schultz, 1976;
Hubert, Arabie, & Meulman, 2001). Such problems are inherently combinatorial in
nature and can frequently be described within the context of some broader frame-
work, such as the quadratic assignment paradigm (Hubert & Schultz, 1976; Hubert
et al., 2001). When multiple proximity matrices are available for the same set of
objects, the combinatorial nature of the matrix reordering problem is still present,
but the situation is complicated by the fact that multiple indices (one for each
matrix) are relevant.

As noted by Hubert (1979, 1987, Chap. 6), there are a number of important
problems related to the analysis of multiple proximity matrices. These problems
include: (a) the development of measures of concordance among multiple proximity
matrices, (b) relating several proximity matrices to a single proximity matrix of
some hypothesized structure, (c) establishing relationships within and between
subsets of a set of proximity matrices, and (d) fitting some type of structural model
to a set of proximity matrices. Analytical methods for these problems can take
many forms depending upon the characteristics of the proximity data, and there are
a number of available statistical procedures (Hubert, 1979, 1985; Hubert &
Golledge, 1981a; Kendall, 1970; Manly, 1986; Mantel, 1967; Oden & Sokal, 1992;
Smouse, Long, & Sokal, 1986). The identification of a matrix reordering within the
context of multiple proximity matrices, which is the focus of this current paper, is
perhaps most closely related to the fourth problem area suggested by Hubert
(1979).

When multiple proximity matrices are of interest, a particular permutation of
objects might provide optimal (or near-optimal) index values for one or more of the
matrices, but rather poor values for others. Such a permutation is likely to be
unacceptable to the quantitative analyst, particularly if one or more of the matrices
for which the fit is poor is deemed especially important. The analyst might therefore
seek a permutation that provides reasonably good index values for each of the
relevant proximity matrices, perhaps with particular concern for the index values of
a select subset of the matrices.

The problem of establishing a single permutation of the n objects that provides a
reasonable fit to multiple proximity matrices is posed as a multiobjective combina-
torial optimization problem. In this regard, the problem can be viewed as an exten-
sion of a recent multiobjective programming approach to combinatorial data anal-
ysis (Brusco & Stahl, 2001). The key difference is that, whereas Brusco and Stahl
were concerned with identification of a permutation for a single proximity matrix
that provided good values for multiple structural indices, the focus herein is on
finding a permutation for multiple proximity matrices each with their own relevant
structural index.

The multiobjective programming approach is applicable for a wide range of
alternative indices associated with either symmetric or asymmetric matrices. We
focus the presentation and examples on an anti-Robinson index (Robinson, 1951)
for symmetric matrices and a well-known dominance index (Baker & Hubert, 1977;
DeCani, 1969; Hubert, 1976; Hubert et al., 2001) for asymmetric matrices. In the
next section, we present the multiobjective programming model. Section 3 provides
two numerical examples that demonstrate the utility of the model. The paper
concludes with a brief summary in Section 4.

2. METHODOLOGY

2.1. Relevant Indices for Symmetric and Asymmetric Matrices

We define S={o1, o2, ..., on} as a set of n objects, A={Q1, Q2, ..., QK} as a set
of k=1, ..., K nonnegative n×n proximity matrices corresponding to the objects

732 MICHAEL J. BRUSCO

in S, Y={k1, k2, ..., kn!} as the set of all possible permutations of the n objects,
and k(l) as the object in sequence position l of a given permutation k. Elements of
the matrices in A, qijk, represent the proximity between objects oi and oj in matrix
Qk, and it is assumed that the diagonal element qiik is irrelevant (or ignored) for all
i=1, ..., n and k=1, ..., K. A well-established index for seriation of asymmetric
matrices is the maximization of the sum of the elements above the diagonal of the
reordered matrix (Baker & Hubert, 1977; DeCani, 1969; Hubert, 1976, 1978;
Hubert & Golledge, 1981b; Hubert et al., 2001). Using the above definitions, this
index can be mathematically stated as

fk(k)=C
n−1

l=1
C
n

m=l+1
qk(l), k(m), k for k=1, ..., K. (1)

For any particular matrix Qk, a reordering of the rows and columns that maximizes
(1) can be obtained using branch-and-bound (Flueck & Korsh, 1974), dynamic
programming (Hubert et al., 2001; Hubert & Golledge, 1981b), or integer linear
programming (DeCani, 1969). The computational viability of the dynamic pro-
gramming approach, which is used throughout the remainder of this paper, is pri-
marily based on available computer memory. For microcomputers with 128 to
512 MB of RAM, dynamic programming can successfully be applied to matrices
with values of n ranging from about 22 to 27. The dynamic programming code used
herein, which is written in FORTRAN, can be obtained from the Classification
Society of North America (website: http://www.pitt.edu/~csna).

For symmetric dissimilarity matrices, in which larger elements indicate greater
dissimilarity between objects, we consider an anti-Robinson index (Hubert et al.,
2001; Robinson, 1951). A matrix exhibiting perfect anti-Robinson structure will
have nondecreasing entries in each row of the matrix when moving away from the
main diagonal (Hubert, 1987, Chapter 4). This anti-Robinson index is mathemati-
cally defined as

gk(k)=1 C
n−2

m=1
C
n−1

l=m+1
C
n

h=l+1
umlhk+ C

n

m=3
C
m−2

l=1
C
m−1

h=l+1
vmlhk 2 , (2)

where umlhk=1 if qk(m), k(l), k [qk(m), k(h) k, 0 otherwise; and vmlhk=1 if qk(m), k(h), k [
qk(m), k(l), k, 0 otherwise.

The first summation triple in (2) corresponds to the index contributions above
the main diagonal, whereas the second corresponds to contributions below the main
diagonal. Optimal solutions for (2) can be obtained using the methods identified for
(1). We used dynamic programming for the results in this paper.

2.2. The Multiobjective Programming Model

We denote an optimal permutation of objects obtained by dynamic programming
(based on the appropriate asymmetric or symmetric index) for matrix Qk as kg

k , for
k=1, ..., K. The optimal index value for matrix Qk is defined as fg

k for asymmetric
matrices and ggk for symmetric matrices. If kg

1=k
g
2=...k

g
K, then there is no

problem because a single permutation is optimal for each of the matrices in A.

IDENTIFYING A REORDERING FOR MULTIPLE MATRICES 733

However, this occurrence is rather unlikely from a practical standpoint (particularly
for larger values of n and K), and thus there is a need for a method that can find a
single reordering that provides good values of fk(k) (or gk(k)) for k=1, ..., K. One
such approach is to define Qsum=Q1+Q2+·· ·+QK and apply dynamic pro-
gramming directly to Qsum. The primary limitation of this approach is that a subset
of the matrices in A are apt to dominate the solution for Qsum. (This observation is
true even if a normalization procedure based on ranks or z-scores is applied to each
of the matrices in A prior to the analysis.) Whereas the optimal matrix reordering
for Qsum might provide very good index values for the matrices in this subset, the
reordering is also likely to yield inferior (in some cases, very poor) index values for
other matrices in A.

Rather than aggregating the proximity matrices in A into a single matrix (Qsum),
we propose a multiobjective approach that incorporates the index values of each of
the proximity matrices in a single weighted objective function. Defining model
parameters wk(k=1, ..., K) as the objective function weight for matrix Qk, the
multiobjective programming problem for asymmetric matrices can be stated as

Maximize: F(k)=C
K

k=1
wk 1
fk(k)
fg
k

2 (3)

subject to

k ¥ Y (4)

C
K

k=1
wk=1 (5)

wk > 0 (6)

The objective function (3) of the multiobjective problem is a weighted function of
ratios related to each of the K asymmetric proximity matrices in A. For symmetric
proximity matrices, fk(k) and fg

k would be replaced by gk(k) and ggk , respectively.
For each matrix, the ratios represent the percentage of the maximum attainable
index value that is achieved by permutation k. The weighted objective function is
maximized subject to a restriction ensuring a feasible permutation (4) and con-
straints (5) and (6), which guarantee a convex combination of weights summing to
one. The fact that the ratio terms in (3) are bounded above by one, in conjunction
with the fact that the weights must sum to one, ensures that F(k) is also bounded
above by one. It should also be noted that additional constraints establishing
threshold index values for one or more of the proximity matrices could be added to
the multiobjective programming model. However, such threshold values are diffi-
cult to establish à priori, and we have found such constraints of limited value in this
context.

Consistent with Brusco and Stahl (2001), dynamic programming is the recom-
mended solution procedure for providing an optimal solution to the multiobjective
programming problem when computationally feasible. An excellent coverage of
the dynamic programming paradigm for seriation and other combinatorial data
analysis problems is provided by Hubert et al. (2001). A brief description of the

734 MICHAEL J. BRUSCO

multiobjective dynamic programming model presented herein, which is consistent
with the general paradigm described by Hubert et al., begins with the definition of
Wy as the set of all subsets (Ry ¥ Wy) consisting of exactly y of the n objects in S.
Thus, the power set (or set of all subsets) of S is given by P(S)=W1 2 W2 2 · · · 2
Wn. If the objects in Ry are assumed to be placed in the first y positions of a
sequence, then it is straightforward to calculate their contribution, F(Ry), to the
weighted index in (3). The crux of the approach is that for any Ry−1 … Ry (i.e.,
Ry−1=Ry−{ox}, where ox ¥ Ry), a recursive equation relating the incremental
contribution to the weighted index in (3) can be established as

F(Ry)= Max
ox ¥ S0Ry−1

3F(Ry−1)+C
K

k=1
wkdk(Ry−1, ox)4 , (7)

where dk(Ry−1, ox) is the effect on the appropriate index value (e.g., (1) for the
asymmetric case or (2) for the symmetric case) for matrix Qk when appending
object ox to Ry−1 to form Ry, such that ox occupies the yth position in the
sequence. The summation term in (7) therefore represents the weighted effect across
all matrices (for the appropriate index) that would result from adding object ox to
Ry−1. The stages of the dynamic programming algorithm proceed by implementing
the recursive equation (7) for y=1 to n (assuming that F(R0={”})=0), and the
optimal sequence is obtained by backtracking through the recursion.

The resulting optimal solution for a given set of weights is an efficient (non-
dominated) solution for the multiobjective problem. By solving the multiobjective
problem for a number of different weighting schemes, the quantitative analyst can
investigate a portion of the efficient set of solutions in a particular area of interest.
For problems that are too large for dynamic programming, the multi-operation
local search procedure developed by Hubert and Arabie (1994) is highly recom-
mended. Although optimal solutions to the multiobjective programming problem
are not guaranteed when this heuristic is used, computational evidence suggests that
it performs very well (see Brusco & Stahl, 2001).

The multiobjective programming model provides a powerful tool for exploring
tradeoffs among the index values for the matrices in A. This goal is accomplished
by solving the model for different sets of weights. For example, suppose that the
solution for a particular set of weights provides good index values for some subset
(A1) of the matrices in A, but not for another subset, (A2=A0A1). The analyst can
prepare another run of the model after increasing the weights for the matrices in A2
and correspondingly decreasing weights for matrices in A1. By iteratively mani-
pulating the weights, the analyst is often able to investigate rapidly a portion of the
efficient set that provides desirable index values for all proximity matrices.

2.3. Comparing Index Values to Their Distributions

A potential criticism of the ratio measures in the objective function of the mul-
tiobjective programming model is that, in some cases, they might not correspond
well to the actual distributions of index values across all permutations. In other
words, for a given matrix Qk, the index value for some permutation, k, might be

IDENTIFYING A REORDERING FOR MULTIPLE MATRICES 735

80% of the optimal index value for that matrix, yet that same index value might
only fall in the 40th percentile of the distribution of index values across all n! per-
mutations. It is also possible that the index value might be 80% of the optimal
index value, yet fall in the 98th percentile of the distribution. For this reason, we
also recommend collecting information regarding the distributions of index values
for each matrix and comparing the multiobjective solutions to those distributions.

TABLE 1

Confusion Matrices from Morgan et al. (1973)

Response
1 2 3 4 5 6 7 8 9

Stimulus
1 188 9 12 17 150 8 21 16 119 Q1
2 23 117 161 33 16 83 51 32 21 Recognition
3 33 60 143 37 20 37 71 60 62 (Male Voice)
4 55 16 20 300 58 10 29 18 29
5 21 2 5 7 445 0 5 6 51
6 20 15 29 21 11 346 52 27 14
7 31 23 31 30 41 38 274 30 29
8 21 30 44 36 32 56 59 219 34
9 56 6 5 15 113 2 7 11 324

1 770 41 56 63 254 30 41 64 242 Q2
2 96 385 438 89 66 110 189 87 96 Recognition
3 121 224 480 125 81 98 168 139 119 (Female Voice)
4 98 48 54 1023 119 38 64 58 60
5 128 35 35 67 937 16 26 28 292
6 77 94 100 63 64 805 191 111 44
7 122 79 85 100 83 110 807 109 65
8 114 91 141 177 59 242 154 513 55
9 218 60 49 61 324 22 51 48 720

1 2340 23 34 35 48 11 33 41 63 Q3
2 4 2533 28 12 6 12 21 6 6 Memory
3 16 54 2465 13 8 19 24 22 7 (Voice #1)
4 13 42 32 2421 42 11 34 21 12
5 25 24 26 56 2315 17 58 34 73
6 4 11 19 7 10 2506 45 22 4
7 4 14 5 3 8 7 2570 9 8
8 13 13 12 14 7 19 21 2508 21
9 49 28 21 10 72 11 25 25 2387

1 2505 28 28 34 40 10 42 31 32 Q4
2 11 2609 31 16 11 24 19 15 14 Memory
3 7 35 2612 16 13 24 19 14 10 (Voice #2)
4 25 31 23 2530 54 23 24 13 27
5 23 23 35 43 2426 22 51 37 90
6 0 9 14 11 4 2654 37 17 4
7 6 6 11 7 5 14 2692 4 5
8 16 17 13 14 18 23 24 2600 25
9 42 21 13 9 44 9 28 18 2566

736 MICHAEL J. BRUSCO

3. NUMERICAL EXAMPLES

Both of our examples were conducted using a set of K=4 confusion matrices
that were originally reported by Morgan, Chambers, and Morton (1973,
pp. 376–377). These 9×9 matrices, which were also analyzed by Hubert and Baker
(1977, pp. 242–245), are associated with acoustical memory and recognition tasks
for digits from one to nine. The first two matrices correspond to recognition tasks
for male and female voices, respectively. The third and fourth matrices correspond
to memory tasks for two different female voices. Whereas Morgan et al. (1973,
pp. 376–377) originally reported the matrices with the rows representing the
responses and the columns representing the stimuli, our results are based on rows
denoting the stimuli and the columns denoting the responses. The matrices are
shown, in this form, in Table 1.

3.1. Example 1: The Symmetric Case

For the first numerical example, the asymmetric confusion matrices
(Ck, k=1, ..., K) in Table 1 were transformed into symmetric dissimilarity matrices
(Qk, k=1, ..., K) based on the following relationship:

qijk=qjik=fk−(cijk+cjik), for i < j and k=1, ..., K (8)

where

fk=Max
i < j
(cijk+cjik) for k=1, ..., K. (9)

Similar approaches for converting asymmetric confusion matrices into symmetric
dissimilarity matrices have been used in previous studies (Hubert, Arabie, &
Meulman, 1997).

Total enumeration of all 9! permutations was conducted to identify an optimal
reordering and corresponding anti-Robinson index values (2), as well as a distribu-
tion of index values, for each of the four symmetric dissimilarity matrices. The
resulting optimal index values (2) for Q1, Q2, Q3, and Q4 are 148, 142, 126, and
128, respectively. For each of the four optimal permutations and each of the four
matrices, Table 2 presents the corresponding raw index values (2), the raw index
value expressed as a percentage of the optimal index value, and the percentage of
the total number of permutations that have index values that are less than or equal
to the raw index value. The optimal permutations for Q1 and Q2 provide index
values for all four matrices that are at least 80% of the respective optimal index
values. Perhaps more importantly, these permutations also yield, for each of the
four matrices, index values that are above the 92nd percentile of their respective
distributions. The optimal permutations for Q3 and Q4 provide somewhat inferior
index values for Q1 and Q2.

Table 3 presents the results for the multiobjective programming model under
several different weighting schemes. Under an equal weighting scheme, index values
for each of the four matrices are above the 96th percentile for their respective dis-
tributions. Because the index values for Q1 and Q2 were both above the 99.9th
percentile, the next run was made with slightly lower weights for these matrices

IDENTIFYING A REORDERING FOR MULTIPLE MATRICES 737

TABLE 2

A Comparison of Index Values Corresponding to Optimal Permutations for
the Symmetric Casea

Optimized
Resulting objective function value (2)

matrix g1(k) g2(k) g3(k) g4(k)

Q1 148 133 101 104
(1.0000) (0.9366) (0.8016) (0.8125)
[1.0000] [0.9997] [0.9206] [0.9542]

Q2 136 142 103 103
(0.9189) (1.0000) (0.8175) (0.8047)
[0.9995] [1.0000] [0.9452] [0.9455]

Q3 101 92 126 123
(0.6824) (0.6479) (1.0000) (0.9609)
[0.9346] [0.7968] [1.0000] [0.9999]

Q4 84 83 117 128
(0.5676) (0.5845) (0.9286) (1.0000)
[0.5751] [0.5049] [0.9990] [1.0000]

a The table reports the raw anti-Robinson index value (2) for the reordered matrix, the proportion of
the optimal value (in parentheses below the raw figure), and the proportion of permutations that result
in an index value less than or equal to the corresponding raw value [in brackets below the raw figure].

TABLE 3

A Comparison of Index Values Corresponding to Optimal Permutations under Different Sets
of Objective Function Weights for the Symmetric Casea

Objective weights Resulting objective function values

w1 w2 w3 w4 g1(k) g2(k) g3(k) g4(k) F(k)

0.2500 0.2500 0.2500 0.2500 146 134 107 105 —
(0.9865) (0.9437) (0.8492) (0.8203) (0.8999)

[> 0.9999] [0.9998] [0.9770] [0.9620]

0.2000 0.2000 0.3000 0.3000 141 126 110 112 —
(0.9527) (0.8873) (0.8730) (0.8750) (0.8924)
[0.9999] [0.9982] [0.9891] [0.9920]

0.1000 0.3000 0.3000 0.3000 134 132 112 108 —
(0.9054) (0.9296) (0.8889) (0.8438) (0.8892)
[0.9993] [0.9996] [0.9938] [0.9796]

0.1000 0.2000 0.2000 0.5000 134 121 111 115 —
(0.9054) (0.8521) (0.8810) (0.8984) (0.8864)
[0.9993] [0.9952] [0.9918] [0.9966]

a The table reports the raw anti-Robinson index values (2) for the reordered matrix, the proportion of
the optimal value (in parentheses below the raw figure), and the proportion of permutations that result
in an index value less than or equal to the corresponding raw value [in brackets below the raw figure].

738 MICHAEL J. BRUSCO

TABLE 4

The Optimal Permutations for Q1, Q2, Q3, Q4, and Four Multiobjective
Problems with Different Weights for the Symmetric Case

kg
1 {5, 9, 1, 4, 7, 3, 8, 2, 6}
kg
2 {5, 9, 1, 4, 3, 2, 7, 8, 6}
kg
3 {6, 3, 2, 7, 4, 5, 9, 1, 8}
kg
4 {3, 2, 4, 1, 9, 5, 7, 8, 6}
k* (0.25, 0.25, 0.25, 0.25) {5, 9, 1, 4, 7, 8, 3, 2, 6}
k* (0.2, 0.2, 0.3, 0.3) {9, 1, 5, 4, 7, 8, 3, 2, 6}
k* (0.1, 0.3, 0.3, 0.3) {9, 1, 5, 4, 8, 3, 2, 7, 6}
k* (0.1, 0.2, 0.2, 0.5) {9, 1, 5, 4, 7, 8, 2, 3, 6}

(w1=w2=0.2) and, accordingly, slightly greater weights for Q3 and Q4

(w3=w4=0.3). These weights provided a permutation that yields outstanding
index values that are above the 98th percentile of the index distributions for each of
the four matrices. Using weights of w1=0.1, w2=w3=0.2, and w4=0.5, the
resulting optimal permutation provides index values above the 99th percentile of
the index distributions for each of the four matrices.

The optimal permutations for each of the four matrices, as well as the four mul-
tiobjective solutions, are presented in Table 4. The optimal permutations for the
multiobjective solutions tend to resemble more closely the optimal permutations for
Q1 and Q2, which is not surprising because these latter permutations provide good
index values for all matrices. For example, the optimal multiobjective permutation
under equal weights is nearly the same as the optimal permutation for Q1 (the dif-
ference is that objects o3 and o8 are reversed in the two permutations).

As a whole, the results of the analysis generally support the findings of Hubert
and Baker (1977, p. 245) that ‘‘... it is reasonable to conclude that similar proximity
information is being provided in all four of the original frequency matrices.’’
Whereas those authors’ conclusion was based on complete-link hierarchical cluster-
ing, the conclusion here is primarily based on the ability to identify permutations
that provide anti-Robinson index values that are above the 99th percentile of the
index distributions for each of the four matrices.

3.2. Example 2: The Asymmetric Case

For the second example, the asymmetric confusion matrices (Ck, k=1, ..., K) in
Table 1 directly served as the relevant proximity matrices (Qk, k=1, ..., K). Total
enumeration of all 9! permutations was conducted to identify an optimal reordering
and corresponding index values, as well as a distribution of the dominance index
values (1), for each of the four matrices. The resulting optimal index values (1) for
Q1, Q2, Q3, and Q4 are 1751, 4737, 1090, and 1029, respectively. For each of the
four optimal permutations and each of the four matrices, Table 5 presents the cor-
responding raw index values (1), the raw index value expressed as a percentage of
the optimal index value, and the percentage of the total number of permutations

IDENTIFYING A REORDERING FOR MULTIPLE MATRICES 739

TABLE 5

A Comparison of Index Values Corresponding to Optimal Permutations for
the Asymmetric Casea

Optimized
Resulting objective function value (1)

matrix f1(k) f2(k) f3(k) f4(k)

Q1 1751 2837 965 891
(1.0000) (0.9983) (0.5890) (0.6463)
[1.0000] [> 0.9999] [0.0512] [0.1040]

Q2 1725 4737 639 656
(0.9852) (1.0000) (0.5862) (0.6375)

[> 0.9999] [1.0000] [0.0475] [0.0832]

Q3 1035 3303 1090 981
(0.5957) (0.6969) (1.0000) (0.9631)
[0.1164] [0.0387] [1.0000] [0.9976]

Q4 1198 3509 1060 1029
(0.6840) (0.7408) (0.9725) (1.0000)
[0.4340] [0.1593] [0.9993] [1.0000]

a The table reports the raw dominance index value (1) for the reordered matrix, the proportion of the
optimal value (in parentheses below the raw figure), and the proportion of permutations that result in an
index value less than or equal to the corresponding raw value [in brackets below the raw figure].

that have index values that are less than or equal to the raw index value. Of partic-
ular interest is the relationship between these latter two pieces of information. For
example, the optimal permutation for Q1 provides an index value for Q3 that is
58.9% of the optimal index value for Q3. A far more dismal picture is obtained
from the fact that this index value is greater than or equal to only about 5% of the
index values corresponding to the remaining permutations. In some cases, a better
picture is provided by the comparison to the distribution. The optimal permutation
for Q3 provides an index value for Q4 that is 96.4% of the optimal index value for
Q4, but an even better picture is portrayed by the fact that this index value is
greater than or equal to nearly 99.9% of the index values corresponding to the
remaining permutations.

The most striking aspect of Table 5 is that the optimal permutations for Q1 and
Q2 provide excellent index values for each other, but poor index values for Q3 and
Q4. Similarly, the optimal permutations for matrices Q3 and Q4 each provide
extremely good index values for each other, but rather poor values for Q1 and Q2.
Again, this finding is consistent with the results of Hubert and Baker (1977, p. 245),
who observed that the hierarchies for Q1 and Q2 and the hierarchies for Q3 and Q4

were most similar. The multiobjective programming approach was applied to the
matrix reordering problem in an effort to identify a permutation that yields
reasonably good index values for all four matrices.

The results of the multiobjective programming approach are presented in
Table 6. Under an equal weighting scheme, the index values for all four matrices

740 MICHAEL J. BRUSCO

TABLE 6

A Comparison of Index Values Corresponding to Optimal Permutations under Different Sets
of Objective Function Weights for the Asymmetric Casea

Objective weights Resulting objective function values

w1 w2 w3 w4 f1(k) f2(k) f3(k) f4(k) F(k)

0.2500 0.2500 0.2500 0.2500 1439 3880 972 1000 —
(0.8218) (0.8191) (0.8917) (0.9718) (0.8761)
[0.9103] [0.6387] [0.9583] [0.9996]

0.3000 0.3000 0.2000 0.2000 1682 4541 769 787 —
(0.9606) (0.9586) (0.7055) (0.7648) (0.8698)
[0.9996] [0.9983] [0.3752] [0.5392]

0.2750 0.2750 0.2250 0.2250 1427 4001 957 992 —
(0.8150) (0.8446) (0.8780) (0.9640) (0.8708)
[0.8963] [0.7871] [0.9396] [0.9990]

0.2800 0.2800 0.3000 0.1400 1529 4158 913 894 —
(0.8732) (0.8778) (0.8376) (0.8688) (0.8632)
[0.9754] [0.9152] [0.8574] [0.9056]

a The table reports the raw dominance index value (1) for the reordered matrix, the proportion of the
optimal value (in parentheses below the raw figure), and the proportion of permutations that result in an
index value less than or equal to the corresponding raw value [in brackets below the raw figure].

were more than 80% of their respective optimal values. However, whereas the index
values for Q1, Q3, and Q4 were each above the 90th percentile for their respective
distributions, the index value for Q2 was only in the 64th percentile of its distribu-
tion. In an effort to improve the index values for Q1 and Q2, the next run was made
using weights of w1=w2=0.3 and w3=w4=0.2. Although the optimal permuta-
tion associated with these weights yielded a significant improvement for Q1 and Q2,
the sacrifice with respect to Q3 and Q4 was considerable. The last two sets of results
in Table 6 provide somewhat better compromises. In particular, the weighting
scheme of w1=w2=0.28, and w3=0.30, and w4=0.14 provides a permutation
with index values that are at least 83.7% of the optimal values for each of the four
matrices and, at the same time, the index values are above the 85th percentile for all
four of the respective distributions.

Defining A1={Q1, Q2} and A2={Q3, Q4}, it is clear that there is general
agreement in the optimal permutations for matrices within these two subsets, but a
somewhat antagonistic relationship between the two subsets. Some additional
insight regarding this rather perplexing result may be gleaned from the optimal
permutations for each of the four matrices, as well as the four multiobjective solu-
tions, which are presented in Table 7. For example, the last four objects in the
optimal permutations for both Q1 and Q2 are {o1, o4, o5, o9}, which are the first
four objects in the optimal reordering for Q3 (and four of the first five objects in the
optimal reordering for Q4).

IDENTIFYING A REORDERING FOR MULTIPLE MATRICES 741

TABLE 7

The Optimal Permutations for Q1, Q2, Q3, Q4, and Four Multiobjective
Problems with Different Weights for the Asymmetric Case

kg
1 {2, 3, 8, 6, 7, 4, 1, 9, 5}
kg
2 {8, 2, 6, 3, 7, 4, 1, 9, 5}
kg
3 {1, 5, 4, 9, 6, 3, 8, 2, 7}
kg
4 {1, 4, 5, 8, 9, 3, 2, 6, 7}
k* (0.25, 0.25, 0.25, 0.25) {4, 1, 5, 2, 3, 8, 6, 9, 7}
k* (0.3, 0.3, 0.2, 0.2) {2, 3, 8, 6, 4, 1, 9, 5, 7}
k* (0.275, 0.275, 0.225, 0.225) {1, 8, 4, 5, 2, 3, 6, 9, 7}
k* (0.28, 0.28, 0.30, 0.14) {1, 8, 4, 2, 3, 6, 9, 5, 7}

Closer inspection of the raw confusion frequencies provides some direct explana-
tion for the reversal of the orderings. Consider the 4×4 submatrices corresponding
to the first four digits in each of the matrices in Table 1. For the recognition tasks
(Q1 and Q2), observe that c21k > c12k, c31k > c13k, c41k > c14k, c32k < c23k, c42k < c24k, and
c43k < c34k, for k=1 and 2. For the memory tasks (Q3 and Q4), the situation is
completely reversed because c21k < c12k, c31k < c13k, c41k < c14k, c32k > c23k, c42k > c24k,
and c43k > c34k, for k=3 and 4. Other stimulus pairs also exhibit similar reversal of
the asymmetry pattern when moving from recognition to memory tasks. Observe
that, in the recognition tasks, ‘5’ was much more apt to be given as a mistaken
response to the stimulus ‘6’, than ‘6’ was mistakenly given as a response to the sti-
mulus ‘5’, whereas the reverse was true for the memory tasks.

This degree of ‘‘reversal’’ in the optimal permutations is, to say the least,
interesting and suggests at least two possibilities. One possibility is that recognition
tasks exhibit confusion asymmetries that are roughly opposite of those exhibited by
memory tasks. However, in the absence of any theoretical justification for such a
result, this scenario seems rather unlikely. A second possibility is that the matrices
in one of the two subsets (A1 or A2) might have been mistakenly reported, and
actually represent the transposes of the true confusion matrices. Although there is
certainly no conclusive evidence to suggest that such a problem exists with the
matrices as originally reported by Morgan et al. (1973, pp. 376–377), a transposi-
tion would have been less detectable in the studies of Morgan et al. (1973), Hubert
and Baker (1977), and Example 1 herein because, in each of these cases, the original
confusion matrices were transformed to symmetric matrices prior to analysis.

Following up on the speculation of a transposition, we re-ran the multiobjective
model (with equal weights) after replacing Q3 and Q4 (as originally reported by
Morgan et al., 1973) with their transposes. Under an equal weighting scheme, the
resulting optimal permutation yields index values that are at least 90.7% of the
optimal values for each of the four matrices and, at the same time, the index values
are above the 97th percentile for all four of the respective distributions. Using the
weights w1=w2=w3=0.1666 and w4=0.5, the optimal reordering yields index
values that are at least 92.3% of the optimal values for each of the four matrices
and, at the same time, the index values are above the 99th percentile for all four of

742 MICHAEL J. BRUSCO

the respective distributions. This result clearly demonstrates that the replacement of
Q3 and Q4 (or, alternatively, Q1 and Q2) with their transposes enables the identifi-
cation of permutations that simultaneously provide an excellent fit to all four
matrices, as was observed for the symmetric case in Example 1.

Regardless of whether or not there was any transposition of matrices in the
original data, the analysis of the confusion matrices in their original asymmetric
form has certainly revealed some fascinating findings. Neither of the two symmetric
transformations used by Morgan et al. (1973) were as successful at uncovering such
striking differences between the memory and recognition matrices. This not only
suggests that the multiobjective programming approach is a useful tool for uncov-
ering important relationships among proximity matrices, but also that consider-
able care is necessary when converting raw confusion frequencies to symmetric
proximity data. This latter observation is evident from the fact that the differences
between the memory and recognition matrices were not revealed in the multiobjec-
tive analysis of the symmetric data.

3.3. Application of the Multiobjective Programming Approach to Larger Proximity
Matrices

We also applied the multiobjective programming method to a set of proximity
matrices associated with a much larger set of objects. In particular, the method was
applied (using the dominance index (1)) to a set of K=3 stimulus-response matrices
reported by Cho, Yang, and Hallett (2000, pp. 750–751), which correspond to
subjects’ visual judgements of n=20 different textured materials at three different
distances. Specifically, the 20×20 confusion matrices Q1, Q2, and Q3 are associated
with distances of 8.2, 15.5, and 22.9 m, respectively.

For the sake of parsimony, detailed results for the Cho et al. (2000) proximity
data are not reported, however, the results are available upon request. It should be
noted that, because of the larger object size, total enumeration of all permutations
was not possible. Dynamic programming was used to obtain all the optimal per-
mutations, and the distributions of index values could only be estimated using a
large number of randomly generated permutations.

The results of the analysis showed that total confusion increased markedly when
moving from 8.2 to 15.5 m, and slightly when moving from 15.5 to 22.9 m. Perhaps
more interesting, however, is that the pattern of confusion also seemed to change as
distance was increased. For example, ‘pressed cork’ and ‘grass lawn’ move up sig-
nificantly in the optimal ordering as distance is increased. At all distances, these
two textures are frequently misidentified when they are presented, however, the
pattern of misidentification changes. At the 8.2 m distance, ‘grass lawn’ is, by far,
the most frequent incorrect response for the ‘pressed cork’ stimuli. When moving to
15.5 m, ‘herringbone weave’ replaces ‘grass lawn’ as the most frequent incorrect
response for the ‘pressed cork’ stimuli, and, at 22.9 m, ‘straw matting’ supplants
‘herringbone weave.’ In spite of the changing patterns, an excellent compromise
permutation was identified that provides index values for each of the three matrices
that are more than 95% of their respective optimal values.

IDENTIFYING A REORDERING FOR MULTIPLE MATRICES 743

4. SUMMARY

This paper extends the multiobjective programming approach to combinatorial
data analysis proposed by Brusco and Stahl (2001) to the analysis of multiple
proximity matrices. In this regard, the paper also builds on the work of Hubert
(1979, 1987, Chapter 6) by providing another tool for investigating relationships
among multiple matrices. By solving the multiobjective programming model for
different objective function weights, the quantitative analyst can explore the effi-
cient set of the multiobjective problem and often identify a matrix permutation that
provides good index values for all relevant matrices. Two numerical examples were
provided using a set of matrices from the psychological literature.

REFERENCES

Baker, F. B., & Hubert, L. J. (1977). Applications of combinatorial programming to data analysis:
Seriation using asymmetric proximity measures. British Journal of Mathematical and Statistical
Psychology, 30, 154–164.

Brusco, M. J., & Stahl, S. (2001). An interactive multiobjective approach to combinatorial data analysis.
Psychometrika, 66, 5–24.

Cho, R. Y., Yang, V., & Hallett, P. E. (2000). Reliability and dimensionality of judgments of visually
textured materials. Perception and Psychophysics, 62, 735–752.

DeCani, J. S. (1969). Maximum likelihood paired comparison ranking by linear programming. Bio-
metrika, 56, 537–545.

Flueck, J. A., & Korsh, J. F. (1974). A branch search algorithm for maximum likelihood paired com-
parison ranking. Biometrika, 61, 621–626.

Hubert, L. (1976). Seriation using asymmetric proximity measures. British Journal of Mathematical and
Statistical Psychology, 29, 32–52.

Hubert, L. J. (1978). Generalized proximity function comparisons. British Journal of Mathematical and
Statistical Psychology, 31, 179–192.

Hubert, L. J. (1979). Generalized concordance. Psychometrika, 44, 135–142.

Hubert, L. J. (1985). Combinatorial data analysis: Association and partial association. Psychometrika,
50, 449–467.

Hubert, L. J. (1987), Assignment methods in combinatorial data analysis. New York: Dekker.

Hubert, L., & Arabie, P. (1994). The analysis of proximity matrices through sums of matrices having
(anti-) Robinson forms. British Journal of Mathematical and Statistical Psychology, 47, 1–40.

Hubert, L., Arabie, P., & Meulman, J. (1997). Linear and circular unidimensional scaling for symmetric
proximity matrices. British Journal of Mathematical and Statistical Psychology, 50, 253–284.

Hubert, L., Arabie, P., & Meulman, J. (2001). Combinatorial data analysis: Optimization by dynamic
programming. Philadelphia: SIAM.

Hubert, L. J., & Baker, F. B. (1977). The comparison and fitting of given classification schemes. Journal
of Mathematical Psychology, 16, 233–253.

Hubert, L. J., & Golledge, R. G. (1981a). A heuristic method for the comparison of related structures.
Journal of Mathematical Psychology, 23, 214–226.

Hubert, L. J., & Golledge, R. G. (1981b). Matrix reorganization and dynamic programming: Applica-
tions to paired comparisons and unidimensional seriation. Psychometrika, 46, 429–441.

Hubert, L. J., & Schultz, J. V. (1976). Quadratic assignment as a general data analysis strategy. British
Journal of Mathematical and Statistical Psychology, 29, 190–241.

Kendall, M. G. (1970). Rank correlation methods (fourth ed.). New York: Hafner.

744 MICHAEL J. BRUSCO

Manly, B. F. J. (1986). Randomization and regression methods for testing associations with geographi-
cal, environmental, and biological distances between populations. Researches in Population Ecology,
28, 201–218.

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer
Research, 27, 209–220.

Morgan, B. J. T., Chambers, S. M., & Morton, J. (1973). Acoustic confusion of digits in memory and
recognition. Perception and Psychophysics, 14, 375–383.

Oden, N. L., & Sokal, R. R. (1992). An investigation of three-matrix permutation tests. Journal of
Classification, 9, 275–290.

Robinson, W. S. (1951). A method for chronologically ordering archaeological deposits. American
Antiquity, 16, 293–301.

Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple regression and correlation extensions of the
Mantel test of matrix correspondence. Systematic Zoology, 35, 627–632.

Received: March 26, 2001

IDENTIFYING A REORDERING FOR MULTIPLE MATRICES 745

	1. INTRODUCTION
	2. METHODOLOGY
	TABLE 1

	3. NUMERICAL EXAMPLES
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7

	4. SUMMARY
	REFERENCES

