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A number of important applications require the clustering of binary data sets. Traditional
nonhierarchical cluster analysis techniques, such as the popular K-means algorithm, can often
be successfully applied to these data sets. However, the presence of masking variables in a
data set can impede the ability of the K-means algorithm to recover the true cluster structure.
The author presents a heuristic procedure that selects an appropriate subset from among the
set of all candidate clustering variables. Specifically, this procedure attempts to select only
those variables that contribute to the definition of true cluster structure while eliminating
variables that can hide (or mask) that true structure. Experimental testing of the proposed
variable-selection procedure reveals that it is extremely successful at accomplishing this goal.

Cluster analysis is an important method for uncovering
structural information in data. The crucial role of this
method in psychology is evidenced by its many applications
as well as focused efforts to develop better algorithms and
careful guidelines for implementation. Monte Carlo studies
have been conducted to evaluate clustering objective criteria
(Milligan, 1981; Milligan & Cooper, 1986), the effects of
error perturbation (Milligan, 1980), the effects of dimen-
sionality and cluster density (Milligan, Soon, & Sokal,
1983), identification of the appropriate number of clusters
(Milligan & Cooper, 1985), outlier detection (Cheng &
Milligan, 1996), standardization of variables (Milligan
& Cooper, 1988), and variable weighting and selection
(Brusco & Cradit, 2001; Milligan, 1989). An excellent
synopsis of many of these studies is provided by Milligan
(1996).

Most in-depth studies in the clustering literature have
concentrated on continuous-variable data sets, which are
typically generated from multivariate normal distributions
with carefully prescribed degrees of cluster overlap on one
or more variables (see Milligan, 1985). The performance of
algorithms and procedural decisions for other types of data
sets is less well-known. One particular category of data sets
that is considerably significant corresponds to variables with
binary measurements. Binary data can arise in a variety of
contexts. Examples include the measurement of the pres-
ence or absence of various symptoms for a group of patients
(Williams, Barton, White, & Won, 1976) and the measure-
ment of the commission or noncommission of various crim-
inal offenses by a collection of citizens (Cliff, McCormick,

Zatkin, Cudeck, & Collins, 1986). In fact, any application in
which subjects are asked to provide responses to a set of
dichotomous questions will yield a binary data set.

Curry (1976) provided an overview of the statistical prop-
erties of binary data, carefully observing that objects mea-
sured across a battery of binary variables may be viewed as
sets. De Boeck and Rosenberg (1988) subsequently de-
veloped a formal classification method for binary data
(HICLAS), which capitalizes on the set-theoretic properties
of this type of data. More specifically, a Boolean decompo-
sition of a binary matrix is obtained for a prespecified rank.
This decomposition requires estimation of object and at-
tribute (or variable) bundle matrices that are obtained
by means of an alternating least-squares algorithm. The
HICLAS procedure has been deployed in several substan-
tive applications in social and cognitive psychology (Reich,
2000; Rosenberg, 1989; Storms, Van Mechelen, & De
Boeck, 1994). Hands and Everitt (1987) compared the per-
formances of traditional hierarchical clustering methods
across small binary data sets (up to 200 objects). Among the
most salient findings of their study was the propensity for
better cluster recovery when the number of clusters was
small and the number of clustering variables was large. In
their comprehensive reviews of combinatorial data analysis,
Arabie and Hubert (1992, p. 175, and 1996, p. 11) provided
a number of other relevant references for the clustering of
binary data.

More recently, Dimitriadou, Dolničar, and Weingessel
(2002) investigated the performances of 15 indices for se-
lecting the appropriate number of clusters in a binary data
set. Among the noteworthy aspects of their study were its
emphasis on large binary data sets (6,000 objects) and its
use of K-means clustering (MacQueen, 1967) and compet-
itive learning (Leisch, Weingessel, & Dimitriadou, 1998) as
clustering methods. K-means is perhaps the most popular
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partitioning approach and is available in many commercial
software packages, such as MINITAB, SPSS, SAS, and
SYSTAT. Competitive learning methods fall within the
family of neural network models, which have become in-
creasingly popular in the psychometric and classification
literature (Ambroise & Govaert, 1996; Balakrishnan, Coo-
per, Jacob, & Lewis, 1994; Waller, Kaiser, Illian, & Manry,
1998). Neural network models are abstractions of human
neural pathways and neurons that enable software programs
to learn from information or experience. Good overviews of
the history of neural network models and the motivation for
their use in classification are provided by Balakrishnan et al.
(1994) and Waller et al. (1998).

Dimitriadou et al. (2002) concluded that an index devel-
oped by Ratkowsky and Lance (1978) was especially effec-
tive for determining the number of clusters when working
with binary data. Although they did not emphasize the
evaluation of heuristic algorithms, Dimitriadou et al. sug-
gested that both K-means and competitive learning were
effective methods for recovering true cluster structure in
binary data. They also presented results suggesting that
these methods outperform latent class clustering approaches
for large binary data sets. Throughout the remainder of this
article, I emphasize the deployment of the K-means algo-
rithm while recognizing that neural network models and
other methods provide a viable alternative approach. Com-
parative analyses of classification criteria and clustering
methods for binary data are not provided in this article.

As in Dimitriadou et al.’s (2002) article, the focus in this
article is on binary data sets; however, I am concerned with
the ability of partitioning algorithms to recover the true
cluster structure in the data sets when extraneous or irrele-
vant variables are present. It is well-recognized in the psy-
chometric literature that analysts often have a large set of
variables available for inclusion in a cluster analysis but that
only a subset of those variables might be appropriate for
uncovering true cluster structure. Throughout the remainder
of this article, I use the term true variables to refer to those
variables that define the true cluster structure. Unfortu-
nately, incorporating the entire set of candidate variables
into the cluster analysis is generally ineffective because the
inclusion of the irrelevant variables impedes the recovery of
the true cluster structure. In other words, the irrelevant
variables hide or obfuscate the true structure in the data set.
This led Fowlkes and Mallows (1983) to use the term
masking variables for the irrelevant variables, a term which
has been adopted in the psychometric and classification
literature.

Masking variables are problematic for applied analyses
because they can prevent recovery of true cluster structure
and, subsequently, yield erroneous conclusions. Not surpris-
ingly, a significant research effort has been devoted to the
selection of variables for a cluster analysis as well as to
differential weighting of variables (Bishop, 1995; Brusco &
Cradit, 2001; Carmone, Kara, & Maxwell, 1999; DeSarbo,

Carroll, Clark, & Green, 1984; De Soete, 1986; Fowlkes,
Gnanadesikan, & Kettenring, 1988; Gnanadesikan, Ketten-
ring, & Tsao, 1995; Green, Carmone, & Kim, 1990; Milli-
gan, 1989). Gnanadesikan et al. observed that variable-
weighting procedures were frequently outperformed by
variable-selection methods with respect to uncovering clus-
ter structure. In addition to superior performance, variable-
selection methods have another important advantage over
variable-weighting procedures. Specifically, variable-selec-
tion procedures exclude masking variables completely,
which precludes the need for their measurement in subse-
quent cluster analyses.

Variable-selection procedures attempt to select the appro-
priate subset of candidate variables, incorporating true vari-
ables in the subset while avoiding masking variables. Ex-
haustive enumeration of all subsets might be possible for 10
to 15 candidate variables but is computationally infeasible
for larger variable sets. A further complication arises be-
cause of what Bishop (1995) calls the “monotonicity prop-
erty” (p. 305) associated with many clustering criteria. This
means that if a given subset is modified by adding one or
more variables, the resulting clustering criterion cannot
possibly improve. The monotonicity property, therefore,
makes it difficult to compare subsets of different sizes. For
this reason, the accelerated procedures for variable selection
described by Bishop (1995, pp. 306–309) are designed for
a fixed subset size.

One of the earliest variable-selection procedures for clus-
ter analysis was developed by Fowlkes et al. (1988). The
principal limitation of this method is that it requires infor-
mal interpretation of graphical information and is, therefore,
not conducive to large-scale experimental analyses. Car-
mone et al. (1999) and Brusco and Cradit (2001) indepen-
dently developed variable-selection procedures that use Hu-
bert and Arabie’s (1985) adjusted Rand index (ARI), which
is a measure of agreement between two partitions. These
procedures have proven quite successful at eliminating
masking variables when the data measurements are contin-
uous. Unfortunately, neither of the methods can be easily
adapted for the case of binary data because each relies on
single-variable partitions consisting of two or more clusters.
For a single binary variable, all of the measured values are
0 or 1 and, therefore, that single variable can only define
exactly two clusters. Thus, even though binary data sets
are prone to the same type of masking variable problems
that can occur with continuous variables, they are not
directly amenable to these most recent variable-selection
procedures.

One objective of this article is to experimentally assess
the ability of the K-means partitioning procedure to recover
true cluster structure in binary data sets. A second, more
important, contribution is the development and testing of a
variable-selection procedure for binary data sets. In the next
section of this article, I describe the K-means algorithm and
provide an interpretation of the K-means criterion within the
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context of a similarity index for binary clusters. I also
present the variable-selection algorithm for binary data sets.
In subsequent sections I provide the results of experiments
designed to evaluate the performance of the K-means algo-
rithm both with and without the prior implementation of the
variable-selection procedure. I conclude the article with a
brief summary and suggestions for future research.

Algorithms

Anderberg (1973) and Späth (1980, chap. 2) provide
excellent coverage of many possible indices that can be
developed for binary data. The development of the relevant
objective criterion for clustering binary data that is used
herein requires the following notation:

N � the number of objects (subjects, observations,
etc.) to be clustered, indexed i � 1, . . . , N;

K � the number of clusters, indexed k � 1, . . . , K;
P � the number of candidate clustering variables

(dimensions), indexed p � 1, . . . , P;
R � {p � 1, . . . , P}; the complete set of all candidate

clustering variables;
X � an N � P binary matrix with elements xip

representing the measurement for object i on
variable p;

Si � {p � R�xip � 1}; the set of variables for which
the measured value for object i is 1. In other
words, Si is the subset, for object i (i � 1, . . . ,
N), of those elements in R for which xip � 1;

S� i � {p � R�xip � 0}; the complement of Si, this
represents the set of variables for which the
measured value for object i is 0, that is, the
subset, for object i (i � 1, . . . , N), of those
elements in R for which xip � 0;

� � {C1, C2, . . . , CK} a feasible partition of the N
objects into K clusters, where Ck represents the
set of objects that are assigned to cluster k (k �
1, . . . , K). I also define Nk � �Ck� as the
cardinality of Ck, which represents the number of
objects in cluster k (k � 1, . . . , K);

�K � the set of all feasible partitions of the N objects
into K clusters.

Restle (1959) and Curry (1976) have described a metric for
binary data that is based on the set-theoretic properties of
such data. With set notation, the metric can be represented
as follows:

dij � dji � ��Si � S� j� � �S� i � Sj�� for 1 � i � j � N. (1)

This metric represents, for any pair of objects i and j, the
number of variables for which the objects have different
measurements. Because of the binary property of the data,
the metric can also be represented as the sum of squared
deviations between pairs of row vectors of X:

dij � dji � �
p�R

� xip � xjp�
2 for 1 � i � j � N. (2)

To illustrate the relationship between Equations 1 and 2,
consider the 2 � 8 data matrix, X:

X � � 1 0 1 1 0 0 1 0
1 0 0 1 1 0 1 1 � .

Row 1 of this matrix contains ones in Columns 1, 3, 4, and
7, which yields S1 � {1, 3, 4, 7} and S�1 � {2, 5, 6, 8}.
Similarly, Row 2 has ones in Columns 1, 4, 5, 7, and 8,
resulting in S2 � {1, 4, 5, 7, 8} and S�2 � {2, 3, 6}. The
element common to both S1 and S�2 is S1 � S�2 � {3},
whereas the elements common to both S2 and S�1 are S�1 �
S2 � {5, 8}. Joining these two subsets results in (S1 � S�2)
� (S�1 � S2) � {3, 5, 8}, and these elements correspond to
the columns of X for which Rows 1 and 2 have different
values. The metric for binary data expressed by Equation 1
is the number of elements in the subset, d12 � �{3, 5, 8}� �
3. With Equation 2, the same value for the metric is ob-
tained by means of d12 � (1 � 1)2 � (0 � 0)2 � (1 � 0)2 �
(1 � 1)2 � (0 � 1)2 � (0 � 0)2 � (1 � 1)2 � (0 � 1)2 � 3.

I define D � {dij} as the N � N matrix of distances
computed using Equations 1 or 2, also noting that dii � 0 for
i � 1, . . . , N. Hubert, Arabie, and Meulman (2001, chap. 3)
have proposed a wide assortment of criteria for obtaining a
K-cluster partition of D. Perhaps the most popular among
their collection is the within-cluster sum of squares, or
K-means criterion:

min
���K

: Z � �
k�1

K 1

Nk
�

�i�j��Ck

dij. (3)

Although Equation 3 can generally be used for any N � N
nonnegative matrix of dissimilarities (i.e., a large matrix
element indicates less similarity between the corresponding
object pair), when applied to D, the criterion is equivalent to
minimizing the within-cluster sum of squares.

With the exception of a few special cases, partitioning
problems of the type posed by Equation 3 generally fall into
the class of nondeterministic polynomial-time (NP-hard)
optimization problems (Day, 1996). For this class of prob-
lems, there are no available algorithms that are guaranteed
to produce globally optimal solutions with computational
effort that is a polynomial function of problem size. From a
pragmatic standpoint, this means that algorithms designed
to provide guaranteed globally optimal solutions are not
computationally feasible for NP-hard optimization prob-
lems of practical size. The cpu times for such algorithms,
which include dynamic programming (Hubert et al., 2001;
Jensen, 1969) and branch-and-bound methods (Brusco,
2003; Koontz, Narendra, & Fukunaga, 1975), tend to grow
exponentially as problem size increases. Although dynamic
programming and branch-and-bound programming can pro-
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vide globally optimal solutions for small data sets, they are
not widely available in commercial software products be-
cause of the severe limitations on the sizes of problems they
can feasibly handle.

Heuristic procedures for Equation 3 have been devised by
Forgy (1965), MacQueen (1967), Hartigan and Wong
(1979), and many others. Despite the fact that these K-
means procedures do not guarantee globally optimal solu-
tions, they are quite scalable and can be applied to data sets
with thousands of objects. It is well known that K-means
algorithms are sensitive to the initial partition of objects that
is provided as input to the algorithm (see Steinley, 2003, for
a recent discussion of the severity of this problem). To avoid
realization of a possibly poor solution from a single imple-
mentation of a K-means algorithm, it is common practice to
run replications of the algorithm. For each replication, the
algorithm is supplied with a different (often randomly gen-
erated) initial partition. Larger data sets tend to require more
replications to ensure that optimal (or, at least, near-opti-
mal) solutions are identified. Fortunately, on current micro-
computer platforms, it is often possible to run thousands of
replications for these larger data sets in a modest amount of
time.

Dimitriadou et al. (2002) reported considerable effective-
ness for a K-means algorithm used to cluster binary data.
The K-means algorithm deployed in this article is consistent
with Dimitriadou et al.’s implementation, and each replica-
tion begins with the random selection of K rows from X.
These rows serve as the initial seed values (or initial cluster
centroids) for the algorithm. Each object is subsequently
assigned to its nearest seed, and cluster centroids are recom-
puted. Reassignment and recomputation of the centroids
occurs, in an iterative manner, until no change in cluster
memberships is observed. In an effort to mitigate problems
associated with local minima, Dimitriadou et al. reported
using 100 replications of the K-means algorithm in their
study. To provide a reasonable assessment of true cluster
structure recovery for large binary data sets, it was neces-
sary to use many more replications. Therefore, 10,000 rep-
lications of the K-means algorithm were used for each test
problem in this study.

Variable-Selection Heuristic for Binary Data Sets

The description of the proposed variable-selection proce-
dure for binary data sets (VSBD) uses the following nota-
tion in addition to the terms defined previously:

� � the proportion of objects from the full data set that
is randomly selected to create the sampled data
set;

M � the number of objects (M � �N) in the sampled
data set;

L � a set of M objects that is randomly selected from
the collection of all N objects;

Q � the set of clustering variables (Q � R) that has
been selected for inclusion in the cluster analysis;

V � the number of selected variables (V � �Q�);
VI � an initial choice for the number of selected

variables (i.e., the starting value for V in the
VSBD algorithm);

A � an M � V binary matrix that is extracted from X
using the objects from L and the variable indices
from Q;

� � a parameter (0 � � � 1) that defines a stopping
rule for the variable-selection process.

A concise presentation of the VSBD algorithm is dis-
played in the Appendix. The algorithm begins in Step 0 with
the initialization of parameters. For binary data sets with
N � 500 or fewer objects, I recommend applying the VSBD
algorithm using all of the objects, and this is accomplished
by setting � � 1, which results in M � N. However, this
setting is both computationally inefficient and unnecessary
for larger binary data sets. For binary data sets with N �
2,000, I found that � � .10 was sufficient to enable the
VSBD algorithm to extract the proper subset of clustering
variables. For binary data sets with 500 � N � 2,000
objects, it would seem pragmatic to use .2 � � � .3. My
decision to initialize the number of selected variables at V �
VI � 4 was based on two factors. First, it is unlikely that
researchers would wish to consider anything less than four
clustering variables for most binary data sets. As an illus-
tration, consider the fact that any set of three binary vari-
ables could provide a perfect separation of eight clusters.
Second, any value larger than VI � 4 would tend to result in
a prohibitive number of combinations for large values of P.

In Step 1 of the algorithm, M objects are randomly
selected from all N possible objects. Initially, all objects are
considered as “unselected.” An integer is randomly gener-
ated on the interval [1, N], and the object corresponding to
that integer is placed in set L. This process is repeated until
M unique objects are contained in L. The remainder of the
VSBD algorithm operates using only the M objects in set L,
not all N objects.

Steps 2 and 3 are the “engine” of VSBD. In Step 2, the
algorithm attempts to find the best subset of VI variables by
explicit evaluation of all possible subsets. This is extremely
crucial because of the need to provide an exceptionally good
small subset to the less computationally intensive, iterative
selection process in Step 3. For example, if P � 10, then all
subsets of VI � 4 of the 10 variables are tested in Steps 2a
and 2b. The subsets, Q	, are generated and tested sequen-
tially: {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, . . . , {6, 8, 9,
10}, {7, 8, 9, 10}. After evaluation of each of these subsets,
it might be observed that the subset Q � {2, 5, 7, 8} yields
the minimum value of Equation 3, and this subset is sub-
sequently passed to Step 3 for possible augmentation.

Clearly, the feasibility of Step 2 is dictated by the values
of P and VI. From a practical standpoint, as the values of
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these parameters increase, complete enumeration of all
combinations in Step 2 becomes less plausible. In those
situations, a possible strategy would be to replace complete
enumeration of all possible subsets with a branch-and-
bound algorithm (Bishop, 1995; Narendra & Fukunaga,
1977). Branch-and-bound is a partial enumeration scheme
that would guarantee identification of an optimal subset
without complete evaluation of all possible subsets. Al-
though more efficient than complete enumeration, branch-
and-bound algorithms can also become computationally in-
feasible for a large P and VI, at which point an exchange
algorithm that randomly moves variables in and out of the
set Q is recommended.

The best subset of V � VI variables from Step 2 is passed
to Step 3, when additional variables can be added one at a
time. Each unselected variable (p � R	Q) is considered for
inclusion in Q, and the candidate variable, p	, yielding the
minimum value for Equation 3, is retained. For example, if
Q � {2, 5, 7, 8} was passed to Step 3, the algorithm would
evaluate the effect of adding each of the unselected vari-
ables to Q so as to increase the number of selected variables
to five. This would require testing the following subsets: {2,
5, 7, 8, 1}, {2, 5, 7, 8, 3}, {2, 5, 7, 8, 4}, . . . , {2, 5, 7, 8,
10}. Assuming that {2, 5, 7, 8, 9} yielded the minimum
value of Equation 3, then a judgment regarding the inclusion
of the variable p	 � 9 is made in Step 4.

The decision to include the candidate variable in Step 4 is
based on the increase in the within-cluster sum of squares
that is realized from its inclusion. If a variable with a
random distribution of 50% zeros and 50% ones were
measured with respect to the clustering solution, the ex-
pected cluster means for that variable are .5 and thus each
object would contribute (1 � .5)2 or (0 � .5)2 to the total
within-cluster sum of squared errors. Thus, the expected
contribution would be .25 for each of the M objects, result-
ing in a total contribution of M/4. For the clustering variable
to be worthy of inclusion, however, a somewhat smaller
contribution to the within-cluster sum of squares is desired.
Therefore, the parameter � (0 � � � 1) is multiplied by M/4
to set the threshold. I observed considerable success with
� � .5 throughout the experiments. Larger (smaller) values
of � would provide looser (tighter) restrictions on variable
inclusion. The algorithm terminates at Step 4 if no candidate
variable meets the constraint on the increase in the within-
cluster sum of squares or at Step 5 if all candidate variables
have been selected for inclusion.

Motivation for the VSBD Algorithm

The VSBD algorithm is predicated on the principle of
identifying an excellent core subset of clustering variables
and, subsequently, on attempting to augment that core sub-
set. For this reason, the identification of the core subset in
Step 2 of the algorithm is the most computationally inten-
sive, yet most crucial, component of the process. Through

complete evaluation of all possible subsets of VI � 4 vari-
ables, Step 2 identifies a core subset of four variables that
defines a sound cluster structure. Additional variables can
only be added in Steps 3 and 4 if they work well in
combination with this core subset of variables. If a variable
can be added with only a modest increase in Equation 3,
then the core subset is augmented accordingly. This is
typically the case for variables that define true structures.
Masking variables, on the other hand, tend not to work well
with the core subset of variables and often grossly inflate the
value of Equation 3. For this reason, masking variables tend
not to be added to the core subset during execution of the
VSBD algorithm.

A Numerical Illustration

Although VSBD was primarily designed for larger binary
data sets, I provide an illustration for a very small hypo-
thetical data set where P � 10 binary variables are mea-
sured for N � 20 subjects. As shown in Table 1, the variable
set R consists of PT � 5 true variables that define a perfect
five-cluster structure as well as PM � 5 masking variables.
The fourth column of Table 1 provides the cluster member-
ships for the structure associated with the true variables. For
example, Cluster 1 consists of 6 subjects each sharing the
same measurements on the five true variables: xi1 � xi3 �
xi5 � 1 and xi2 � xi4 � 0, for i � 1, . . . , 6. Clusters 2, 3,
4, and 5 have 5, 4, 3, and 2 subjects, respectively.

I ran 100,000 replications of the K-means algorithm for
the binary data set in Table 1 using K � 5 clusters and all
P � 10 clustering variables. The algorithm yielded a within-
cluster sum of squares value of Z � 20.167, which corre-
sponded to the cluster memberships shown in the fifth
column of Table 1. The disparity between the fourth and
fifth columns of Table 1 clearly reveals the potential prob-
lems that can arise from the presence of masking variables.
Although Cluster 3 was perfectly recovered by the K-means
algorithm, Clusters 1 and 4 have been mixed together, as
have Clusters 2 and 5.

I applied the VSBD algorithm to the binary data set using
initial values of VI � 3 and � � .5. Although a value of VI �
4 (or possibly larger) might be more appropriate for larger
data sets, the smaller value of VI � 3 was selected for this
example because it enables a more descriptive illustration.
Because of the small number of subjects in this hypothetical
example, I used all M � N � 20 subjects in the implemen-
tation, which precludes the need for sampling in Step 1.
Step 2 of the algorithm yielded Q � {1, 2, 3} as the best
subset of three variables, with ZB � 0. The first iteration of
Step 3 resulted in the selection of variable p	 � 4, with
ZB2 � 0. This variable passed the test in Step 4 and was
appended to Q, resulting in Q � {1, 2, 3, 4}. In a similar
manner, Variable 5 was appended to Q in the next iteration,
with ZB remaining at zero. When considering the inclusion
of a sixth variable in Q, candidate Variables 6, 7, 8, 9, and
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10 would increase the within-cluster sum of squares by
4.62, 4.70, 3.95, 4.37, and 4.37, respectively. Thus, ZB2 �
3.95 for this iteration of Step 3. Because ZB2 � 3.95 
 ZB �
�(M/4) � 2.5, the algorithm terminates at Step 4 with Q �
{1, 2, 3, 4, 5}. Thus, VSBD accomplished its goal of
selecting the five true variables while omitting the five
masking variables. A K-means implementation using only
the five true variables provides perfect recovery of the true
structure.

Experimental Analyses

Experimental Design

I designed an experiment to investigate the performance
of the K-means algorithm with respect to recovery of true
cluster structure for binary data sets with masking variables.
Particularly interesting was the performance of the K-means
algorithm when applied to the full data set (with masking
variables included) versus application of the K-means algo-
rithm using only those variables selected by VSBD. The
experiment for completing this evaluation was developed to
incorporate a broad range of data conditions, and its design
was similar to those used in previous Monte Carlo compar-
isons (Brusco & Cradit, 2001; Carmone et al., 1999; Milli-
gan, 1989; Steinley, 2003).

A full factorial design with six factors and three levels for
each factor was used. The six factors were (a) the number of

objects, N; (b) the number of clusters, K; (c) the number of
true clustering variables in the data set, PT; (d) cluster
density, DENS; (e) level of data perturbation, PERT; and (f)
the number of masking variables in the data set, PM. The
levels of each factor are displayed in Table 2. The levels of
N � 2,000, 3,000, and 4,000 were selected so as to be
considered large, yet still enable a large number of problems
to be analyzed in a reasonable amount of time. The K-means
and VSBD algorithms can easily be applied to problems
with 10,000 or more objects. The levels of K � 4, 6, and 8
are comparable with, though slightly broader than, the K �
4, 5, and 6 levels used by Dimitriadou et al. (2002) in their
binary clustering experiments. The levels of PT � 4, 6, and
8 are consistent with those used in previous variable-selec-
tion studies (Brusco & Cradit, 2001; Milligan, 1989).

For each object a PT-dimensional vector was randomly
selected from among K candidates so as to define the true
cluster structure for that object. The vectors used for each
combination of PT and K are shown in Table 3. Although
there is some arbitrariness with respect to the development
of these vectors, for each combination of PT and K, the
vectors were carefully selected to clearly distinguish be-
tween clusters.

The cluster density factor for the experimental study,
which corresponds to the relative sizes of the clusters, was
operationalized using probability distributions for choosing
among the K candidates. For Level 1 of the density factor,

Table 1
Data for a Numerical Demonstration of Variable Selection for Binary Data Sets

Subject
True

variables
Masking
variables

True cluster
membership

K-means
membership

1 1 0 1 0 1 1 1 0 0 1 1 4
2 1 0 1 0 1 0 0 1 1 0 1 1
3 1 0 1 0 1 1 1 0 0 1 1 4
4 1 0 1 0 1 0 0 0 1 0 1 1
5 1 0 1 0 1 0 0 1 0 1 1 1
6 1 0 1 0 1 1 0 0 1 0 1 1
7 0 1 1 0 0 0 1 1 1 0 2 2
8 0 1 1 0 0 1 1 0 1 0 2 2
9 0 1 1 0 0 1 0 1 0 1 2 5

10 0 1 1 0 0 0 1 0 1 1 2 2
11 0 1 1 0 0 1 0 1 0 0 2 5
12 0 0 1 1 1 0 1 1 1 0 3 3
13 0 0 1 1 1 0 0 0 0 0 3 3
14 0 0 1 1 1 1 0 0 0 1 3 3
15 0 0 1 1 1 0 1 0 1 1 3 3
16 1 1 0 0 1 0 0 1 1 0 4 1
17 1 1 0 0 1 1 1 0 0 1 4 4
18 1 1 0 0 1 0 1 1 1 1 4 1
19 0 1 0 1 0 0 0 0 1 0 5 2
20 0 1 0 1 0 1 1 0 1 0 5 2

Note. Together, the second and third columns form a 20 � 10 data matrix. The fourth column contains the
cluster number for each subject and is based on the second column. The fifth column shows the cluster number
for each subject based on a five-cluster K-means solution for the 20 � 10 data set.
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each of the PT-dimensional vectors has an equal probability
(1/K) of being selected. Thus, for this level of the density
factor, K clusters of approximately the same size would be
produced. For the second and third levels, the probability of
assignment to one of the first K/2 clusters is 75%, thus
producing clusters of markedly different sizes. The distinc-
tion between Levels 2 and 3 of the density factor corre-
sponds to the probability distributions within the first K/2
and second K/2 clusters. For example, for K � 4 clusters,
Levels 2 and 3 of the density factor both have a 75%
probability of assigning objects to one of the first K/2 � 2
clusters. For Level 2, this probability is equally divided

between Clusters 1 and 2 (.375 and .375 for both clusters),
whereas for Level 3 the probability of cluster assignment is
more heavily skewed toward Cluster 1 (.5 for Cluster 1 and
.25 for Cluster 2).

Level 1 of the data perturbation factor (0%) provides data
sets with a single, “error-free” true structure, whereas Lev-
els 2 and 3 were carefully selected to yield some degrada-
tion of the true structure in the data sets. Data perturbation
was conducted by randomly selecting 2% (or 4%) of the
NPT data elements (xip) defining true cluster structure and
setting xip � 1 � xip. This recoding of binary measurements
for randomly selected objects was implemented to produce

Table 3
Binary Variable Vectors Defining True Cluster Structure

K

PT

4 6 8

4 1 0 0 1
1 1 1 0
0 0 1 1
0 1 0 1

1 0 0 1 1 0
1 1 1 0 0 0
0 0 1 1 0 0
0 1 0 1 0 1

1 0 0 1 1 0 1 0
1 1 1 0 0 0 1 0
0 0 1 1 0 0 0 0
0 1 0 1 0 1 1 0

6 1 0 0 1
1 1 1 1
1 0 1 0
0 1 0 1
0 0 0 1
0 1 1 0

1 0 0 0 1 1
1 1 0 1 1 0
1 1 1 0 0 0
0 1 0 0 0 1
0 1 1 1 1 0
0 0 0 1 1 0

1 0 0 0 1 1 0 1
1 1 0 1 1 0 1 0
1 1 1 0 0 0 0 1
0 1 0 0 0 1 1 1
0 1 1 1 1 0 1 1
0 0 0 1 1 0 0 1

8 1 0 1 1
1 0 0 0
1 1 1 0
1 1 0 1
0 1 0 1
0 1 0 0
0 0 1 1
0 0 0 1

1 0 0 1 1 1
1 0 1 0 0 0
1 1 1 1 1 1
1 1 0 0 0 1
0 1 0 0 1 0
0 1 1 0 0 1
0 0 1 1 1 0
0 0 1 0 0 1

1 0 0 1 1 1 0 1
1 0 1 0 0 0 1 1
1 1 1 1 1 1 0 0
1 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
0 1 1 0 0 1 0 1
0 0 1 1 1 0 1 0
0 0 1 0 0 1 0 1

Table 2
Experimental Factors and Levels

Factor

Level

1 2 3

Number of objects (N) 2,000 3,000 4,000
Number of clusters (K) 4 6 8
Number of true

variables (PT) 4 6 8
Density of clusters Equal [.375, .375, .125, .125] [.5, .25, .15, .1]

[.25, .25, .25, .083, .083, .083] [.3, .25, .2, .125, .075, .05]
[.1875, .1875, .1875, .1875,
.0625, .0625, .0625, .0625]

[.25, .2, .175, .125, .075,
.065, .06, .05]

Level of data
perturbation (%) None 2 4

Number of masking
variables (PT) 0 4 8

Note. Probabilities for cluster membership under Levels 2 and 3 of the density of clusters factor are displayed
in brackets for 4, 6, and 8 clusters. There are 35 � 243 test problems associated with each cell.
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noise in the data set, thus denigrating the true structure. The
factor levels of 2% and 4% were carefully chosen on the
basis of experimentation that suggested greater levels of
perturbation could diminish the cluster structure too
severely.

The measurement for each object on each masking vari-
able was randomly generated on the basis of a uniform
distribution. The factor levels for PM are especially impor-
tant. The level of PM � 0 provides a good baseline because
it is expected that K-means would perform well in the
absence of masking variables, and it is desired that VSBD
would select all of the PT true variables for inclusion when
no masking variables are present. The selected levels also
provide several combinations where the number of masking
variables equals or exceeds the number of true variables,
with the most extreme condition being PT � 4 and PM � 8.
This condition presents a formidable challenge for VSBD
because it must select a small subset of true variables from
a large set of variables that consists of mostly random noise.
Without the successful prior implementation of VSBD, it is
hypothesized that the K-means algorithm would have con-
siderable difficulty recovering the true cluster structure for
data sets where the number of masking variables (nearly)
equals or exceeds the number of true variables.

The experimental design resulted in 36 � 729 data sets.
For each data set, I ran 10,000 replications of the K-means
algorithm and stored the partition corresponding to the
minimum value of Equation 3. I then used Hubert and
Arabie’s (1985) ARI to measure cluster recovery as the
agreement between the partition obtained by the algorithm
and the true cluster memberships for the objects. The for-
mula for computing the ARI between two partitions, �1 and
�2, is as follows:

ARI

�
H�
1 � 
2� � ��
1 � 
3��
1 � 
4� � �
2 � 
3��
2 � 
4��

H 2 � ��
1 � 
3��
1 � 
4� � �
2 � 
3��
2 � 
4��
,

(4)

where H � N(N � 1)/2, 
1 is the number of object pairs that
are in same cluster for both �1 and �2, 
2 is the number of
object pairs that are in different clusters for both �1 and �2,

3 is the number of object pairs that are in the same cluster
in �1 but different clusters for �2, and 
4 is the number of
object pairs that are in the same cluster in �2 but different
clusters for �1. The ARI yields a value of 1 for perfect
agreement, whereas values near 0 indicate near-chance
agreement. The index has been identified as the most effec-
tive external criterion for cluster validation (Milligan &
Cooper, 1986). An excellent overview of the basic proper-
ties and applications of the ARI is provided by Steinley
(2004).

The entire process of problem generation, partitioning,
and measurement of cluster recovery was repeated for each

data set, with the exception that VSBD was implemented to
select clustering variables prior to the execution of the
K-means algorithm. All algorithms were written in Fortran
and were implemented on a 2.2-GHz Pentium IV PC with 1
GB of random-access memory.

Experimental Results

Computation times for the K-means algorithm, when us-
ing all of the clustering variables, were comparable with
those associated with implementation of the VSBD algo-
rithm followed by the K-means procedure. This important
result is attributable to the fact that the time required to
implement the VSBD algorithm is frequently offset, at least
to a large extent, by savings in cpu time for the K-means
algorithm. This occurs because the elimination of masking
variables by VSBD enables the K-means algorithm to con-
verge much more rapidly.

The experimental results are summarized in Tables 4 and
5. Table 4 presents an analysis of variance (ANOVA; main
effects and all two-way interactions) associated with ARI as
the dependent variable. For the ANOVA, the clustering
method was included as a seventh factor (METH) with two
levels: (a) K-means using all variables and (b) VSBD fol-
lowed by K-means using only those variables selected by
VSBD. Because of the potential for violation of the nor-
mality and constant error variance assumptions, I evaluated
logarithmic and square root transformations of the depen-
dent variable. These transformations did not produce any
major differences relative to the analysis of the raw ARIs.
Therefore, all reported results in Tables 4 and 5 correspond
to raw values of the dependent variable.

All main effects, with the exception of the number of
objects (N), were significant. The size of an effect, �̂2, is
measured as the proportion of the corrected total sum of
squares (sum of squares for all the effects and the error term
but not the intercept) that is attributed to the effect. The
number of true variables in the data set, PT (�̂2 � .2549),
and the level of perturbation in the data set, PERT (�̂2 �
.1567), yielded the largest effect sizes. The interaction of
these two factors (PT � PERT) also resulted in the largest
effect size (�̂2 � .0565) among the two-way interactions.
The second largest effect size (�̂2 � .0416) among the
two-way interactions was associated with the number of
masking variables in the data set, PM, and the clustering
method used (METH). The PM � METH interaction is
perhaps the most crucial result in Table 4 because it reflects
the importance of using VSBD prior to applying the K-
means algorithm. For the level of PM � 0, there was no
difference between using all variables and using only those
selected by VSBD (i.e., the METH factor has no effect).
However, for the levels PM � 4 and PM � 8, using the
VSBD algorithm to select variables prior to running the
K-means procedure resulted in much better recovery than
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did applying K-means using all variables (i.e., the METH
factor had a strong effect at these two levels of PM).

Table 5 presents the average ARI, as well as the percent-
age of data sets for which perfect recovery was achieved, for
each factor level of the experimental study. To provide a
measure of the magnitude of the effect of using variable
selection, a paired t statistic is reported for each pair of
means. All t statistics are statistically significant (p � .01)
for every cell except PM � 0, where the results were
identical regardless of whether or not VSBD was used. The
principal information from the t-value column, however, is
the comparison of the relative magnitude of the statistics
within each factor. For example, the t statistics correspond-
ing to different levels of N are quite similar, suggesting that
VSBD provides a roughly similar benefit regardless of the
number of objects. By contrast, the t statistics for different
levels of K are markedly different. The VSBD algorithm
provides increasingly greater benefit for larger values of K.

The results indicate that VSBD frequently provided sig-
nificant improvement in cluster recovery when used to
select variables for a K-means clustering of binary data sets.
In the absence of the VSBD algorithm, the K-means algo-
rithm was able to provide perfect recovery for 22.22% of the
data sets and resulted in an average ARI of .8901. When
used in conjunction with VSBD, the K-means algorithm
yielded perfect recovery for 33.33% of the data sets and
produced an average ARI of .9491. Closer inspection of the
results for different levels of data perturbation are especially
revealing. Using VSBD prior to the K-means algorithm
enabled perfect recovery for each of the 243 (100%) error-
free data sets, whereas perfect recovery was not realized for
81 (33.33%) of these data sets when VSBD was not used.
This shows that VSBD was extremely successful at accom-
plishing its goal of selecting only those variables that define
true cluster structure.

The number of objects in the data set had very little effect

Table 4
Analysis of Variance (ANOVA) and Effect Sizes for the Adjusted Rand Index (ARI)

Source SS df M2 F p
Effect

size (�̂2)

Corrected model 13.3274 85 0.1568 111.9408 .0000
Intercept 1233.0122 1 1233.0122 880296.7378 .0000
No. of objects (N) 0.0003 2 0.0002 0.1173 .8893 0.0000
No. of clusters (K) 1.4272 2 0.7136 509.4696 .0000 0.0936
No. of true variables (PT) 3.8864 2 1.9432 1387.3399 .0000 0.2549
Density (DENS) 0.1538 2 0.0769 54.9004 .0000 0.0101
Perturbation (PERT) 2.3892 2 1.1946 852.8861 .0000 0.1567
No. of masking variables (PM) 0.6514 2 0.3257 232.5139 .0000 0.0427
Method (METH) 1.2685 1 1.2685 905.6540 .0000 0.0832
N � K 0.0026 4 0.0006 0.4585 .7662 0.0002
N � PT 0.0015 4 0.0004 0.2704 .8971 0.0001
N � DENS 0.0005 4 0.0001 0.0936 .9845 0.0000
N � PERT 0.0041 4 0.0010 0.7315 .5705 0.0003
N � PM 0.0003 4 0.0001 0.0531 .9947 0.0000
N � METH 0.0014 2 0.0007 0.4956 .6093 0.0001
K � PT 0.2261 4 0.0565 40.3481 .0000 0.0148
K � DENS 0.0684 4 0.0171 12.2048 .0000 0.0045
K � PERT 0.1216 4 0.0304 21.6998 .0000 0.0080
K � PM 0.2190 4 0.0548 39.0952 .0000 0.0144
K � METH 0.4143 2 0.2071 147.8820 .0000 0.0272
PT � DENS 0.0812 4 0.0203 14.4994 .0000 0.0053
PT � PERT 0.8610 4 0.2152 153.6670 .0000 0.0565
PT � PM 0.2303 4 0.0576 41.1126 .0000 0.0151
PT � METH 0.4766 2 0.2383 170.1447 .0000 0.0313
DENS � PERT 0.0063 4 0.0016 1.1327 .3394 0.0004
DENS � PM 0.0702 4 0.0176 12.5354 .0000 .0046
DENS � METH 0.1247 2 0.0624 44.5310 .0000 0.0082
PERT � PM 0.0016 4 0.0004 0.2841 .8884 0.0001
PERT � METH 0.0038 2 0.0019 1.3449 .2609 0.0002
PM � METH 0.6350 2 0.3175 226.6591 .0000 0.0416
Error 1.9217 1372 0.0014
Total 1248.2613 1458
Corrected total 15.2491 1457

Note. Main effects and two-way interactions ANOVA with ARI as the dependent variable.
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on the recovery performance of the K-means algorithm,
regardless of whether or not VSBD was used to select
variables prior to the cluster analysis. I explored the possi-
bility that the range of values of N might be too narrow to
observe significant differences by replacing the N � 2,000
factor level results with those for the N � 200 level (this
yields a 20:1 ratio for the high-to-low levels of N). This
replacement did not produce any consequential changes in
the observed findings, as the number of objects in the data
set remained an insignificant factor in the ANOVA results.

Recovery performance generally worsened as the number
of clusters increased; however the decrease in recovery was
much more pronounced in the absence of VSBD. The av-
erage ARIs for the K-means algorithm when VSBD was not
applied were .9504 and .8328 for K � 4 and K � 8 clusters,
respectively. When the VSBD algorithm was used for vari-
able selection, the average ARI for the K-means algorithm
dipped only slightly from .9691 at K � 4 to .9340 at K � 8.

Recovery performance improved as the number of true
variables in the data set increased. This finding, which
has been observed in previous variable-selection studies
(Brusco & Cradit, 2001; Milligan, 1989) is not surprising

because each additional true variable further strengthens the
cluster structure. The number of masking variables in the
data set had a marked effect on the recovery performance of
the K-means algorithm when VSBD was not used. As
expected, K-means performed very well in the absence of
masking variables, but recovery performance dropped sig-
nificantly when four or more masking variables were
present. When VSBD was used in conjunction with the
K-means algorithm, recovery performance was very consis-
tent across all levels of the masking variable factor.

Further support for the ability of VSBD to select variables
that define true cluster structure, while discarding those that
do not, was observed by examining the variable sets ob-
tained by VSBD. For each of the 243 test problems without
any masking variables, the VSBD algorithm appropriately
selected all clustering variables. For each of the 486 test
problems with masking variables, the VSBD algorithm also
appropriately selected all of the true clustering variables in
the data set. Furthermore, for these same 486 test problems,
VSBD properly omitted all masking variables in the data set
in 484 cases. For the remaining two data sets, VSBD mis-
takenly included one masking variable in the selected set.

Table 5
Experimental Results Pertaining to Cluster Recovery

Factor and level

Mean adjusted Rand index
% of perfect
recoveries

All VSBD t All VSBD

No. of objects (N)
2,000 .8887 .9496 10.55 22.22 33.33
3,000 .8904 .9502 10.27 21.81 33.33
4,000 .8912 .9475 10.03 22.63 33.33

No. of clusters (K)
4 .9504 .9691 3.89 32.10 33.33
6 .8872 .9442 10.64 23.46 33.33
8 .8328 .9340 17.68 11.11 33.33

No. of true variables (PT)
4 .7929 .9026 14.75 17.28 33.33
6 .9244 .9639 10.12 23.46 33.33
8 .9530 .9808 8.01 25.93 33.33

Density of clusters
Equal .9002 .9502 9.25 23.46 33.33
Skewed 1 .9073 .9496 9.57 23.46 33.33
Skewed 2 .8628 .9476 12.52 19.75 33.33

Level of data perturbation (%)
0 .9365 1.0000 10.11 66.67 100.00
2 .8931 .9499 9.94 0.00 0.00
4 .8408 .8974 11.02 0.00 0.00

No. of masking variables (PM)
0 .9495 .9495 33.33 33.33
4 .8621 .9489 14.18 16.87 33.33
8 .8587 .9489 14.31 16.46 33.33

Overall .8901 .9491 17.83 22.22 33.33

Note. The columns labeled All correspond to the use of all variables in the K-means analysis, whereas the
columns labeled VSBD correspond to application of K-means after using the variable selection for binary data
sets procedure.

519CLUSTERING BINARY DATA



However, in both these cases, eight true variables were
selected and only one masking variable was selected, so the
detriment to cluster recovery was very mild.

In sum, VSBD perfectly identified the true set of variables
for 727 of the 729 test problems. Thus, the ability of the
algorithm to select the proper set of variables appears to be
robust to all of the factors considered in this study. Although
ARIs of 1 were not achieved for any data sets with levels of
data perturbation of 2% or 4% when using VSBD prior to
the K-means algorithm, these findings should not be misin-
terpreted as failure of the VSBD algorithm. Instead, these
results are almost solely attributable to the failure of the
K-means algorithm to correctly assign all of the objects to
their true cluster memberships because of the noise in the
data, despite the fact that VSBD had selected the proper set
of variables.

Follow-Up Experiment: Multiple True Cluster
Structures

Our experimental study used binary data sets with a single
true structure consisting of K clusters as measured on PT

variables. This was necessary to provide an unambiguous
assessment of the ability of VSBD to aid in recovering that
structure. However, as observed by Brusco and Cradit
(2001), it is possible to have multiple true cluster structures
in a data set. In these situations, I believe that, like the
ARI-based procedure described by Brusco and Cradit, the
VSBD algorithm tends to target one of the true cluster
structures. This supposition is based on the fact that VSBD,
like Brusco and Cradit’s variable selection heuristic for
K-means clustering (VS-KM) algorithm, attempts to find an
initial core of variables (Step 2) and then augments those
variables with additional ones that work well in conjunction
with the core (Step 3).

To evaluate the performance of VSBD in the presence of
multiple true cluster structures, a small follow-up study was
done. Specifically, data sets with two independent six-clus-

ter structures were produced, with each structure defined by
PT � 6 true variables. Cluster density was equal for all data
sets. A total of eight data sets was generated by varying
three factors at two levels each. The levels of the first factor,
the number of objects, were N � 3,000 and N � 6,000. The
second factor, the number of masking variables, was exam-
ined at levels of PM � 0 and PM � 6. Based on these first
two factors, the largest data sets in the experiment consisted
of 6,000 objects measured on 18 binary variables (6 vari-
ables for the first true cluster structure, 6 variables for the
second true cluster structure, and 6 masking variables). The
levels of the third factor, data perturbation, were 0% and
3%.

The results for the eight test problems in the follow-up
experiment are provided in Table 6. When using all of the
clustering variables, the K-means algorithm always failed to
recover either of the true cluster structures. It seemed that
the algorithm tended toward one of the true structures but
could not completely recover that structure because of the
effects of the other true structure in the data set. This is
evidenced by the fact that, for each of the eight test prob-
lems, the ARI for one of the two structures was approxi-
mately .55 to .60, whereas the ARI for the other true
structure was approximately .18.

When the VSBD algorithm was used to select a subset of
variables prior to implementation of the K-means algorithm,
perfect (or near-perfect) recovery was always achieved for
one of the clusters. This finding is attributable to the itera-
tive nature of subset generation by means of the VSBD
algorithm. After a particularly good subset is identified at
Step 2, the algorithm avoids inclusion of variables from
other structures because of the detriment to the within-
cluster sum of squares. If the research analyst is interested
in identifying a second true cluster structure in a data set, the
VSBD/K-means implementation can be repeated after im-
posing constraints to preclude the same subset of variables
from being selected again.

Table 6
Experimental Results for Data Sets with Two True Cluster Structures

Experimental factors

Cluster recovery � Adjusted Rand index

K-means only VSBD � K-means

N PM Data perturbation Structure 1 Structure 2 Structure 1 Structure 2

3,000 0 0% .1788 .5898 1.0000 .0000
3,000 0 3% .1855 .5517 �0.0001 .9215
3,000 6 0% .1788 .5898 1.0000 .0001
3,000 6 3% .1848 .5510 �0.0001 .9215
6,000 0 0% .5905 .1825 1.0000 �.0003
6,000 0 3% .5519 .1862 �0.0003 .9163
6,000 6 0% .5905 .1825 1.0000 �.0003
6,000 6 3% .5509 .1842 �0.0003 .9163

Note. For each of the eight test problems, the adjusted Rand index was computed between observed partitions
and each true structure. Two observed partitions were created for each test problem, one using K-means only and
one using variable selection for binary data sets (VSBD) followed by K-means.
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Discussion

Summary of Findings

The results reported in this article generally support the
premise that K-means is an effective method for clustering
binary data sets, which is consistent with the results recently
reported by Dimitriadou et al. (2002). However, the pres-
ence of masking variables in a binary data set can signifi-
cantly diminish the ability of the K-means algorithm to
recover the true structure in that data set. I have presented a
straightforward algorithm, VSBD, which can be used to
select an appropriate subset of variables while omitting the
masking variables. By implementing VSBD prior to execu-
tion of the K-means algorithm, significant improvement in
true cluster recovery can be realized. In this experimental
study, when all variables were included in the cluster anal-
ysis, the K-means algorithm provided perfect recovery for
only 50% (81 of 162) of the error-free data sets with four or
eight masking variables. However, when using only those
variables selected by VSBD, perfect recovery was realized
for all 162 of these data sets.

Limitations and Extensions

I have provided general guidelines for parameter settings
and implementation decisions for the VSBD algorithm;
however, these might need to be modified within the context
of particular applications. For example, it might be neces-
sary to reduce the value of VI from 4, perhaps to 3 or even
2, if the number of candidate variables, P, is very large.
Alternatively, the value of VI could be set at 4 (or possibly
larger) if the complete enumeration of all combinations of
four variables were replaced with a branch-and-bound (Na-
rendra & Fukunaga, 1977) or variable-exchange algorithm.
Larger or smaller values of � and � can also be selected for
the algorithm. For example, if there are numerous candidate
variables and the quantitative analyst wishes to retain only
a very small number of variables for the clustering, the
value of � can be reduced to set a higher standard for
inclusion of variables. Finally, I have observed that more or
fewer replications of the K-means algorithm can be used in
Steps 2 and 3 of the VSBD heuristic, as warranted by
precision and resource constraints. However, for large bi-
nary data sets, I strongly recommend at least several hun-
dred replications in Step 2 and several thousand in Step 3 to
avoid poor local minima (see Steinley, 2003).

Milligan (1996, pp. 342–343) has outlined a number of
important decisions for an applied cluster analysis: (a) se-
lection of clustering elements; (b) selection of clustering
variables; (c) variable standardization; (d) measure of asso-
ciation; (e) clustering method; (f) number of clusters; and
(g) interpretation, testing, and replication. Although I have
primarily focused on only one piece of this puzzle, I believe
that selection of the clustering variables is one of the most
challenging and important steps for binary data sets. Vari-

able standardization is really a nonissue for binary data sets
because all variables are 0/1 measures. As described earlier
in the article, the set-theoretic properties of binary data sets
suggest natural measures of association that can be directly
mapped to the K-means criterion of minimizing the within-
cluster sum of squares. Because of its ability to handle large
data sets, the K-means algorithm is therefore a natural
choice for the clustering methodology.

This is not to suggest that K-means is the only plausible
option for clustering binary data sets. As noted previously,
there are a variety of possible indices for the classification
of binary data (Anderberg, 1973; Späth, 1980, Chapter 2).
The VSBD algorithm is general enough to be implemented
with many of these indices; however, the stopping rule in
Step 4 would have to be appropriately modified for the
selected index. Finally, it must be observed that adaptive
learning procedures based on neural network models have
received significant attention in the classification literature
(Balakrishnan et al., 1994; Bishop, 1995; Leisch et al.,
1998; Waller et al., 1998). These methods might also prove
to be effective for clustering binary data sets in the presence
of masking variables, particularly when asymmetry of the
binary information invalidates the use of the within-cluster
sum of squares measure. Such circumstances can occur, for
example, when two objects matching ones on a variable is
much more important than two objects matching zeros on
the same variable.

The determination of the appropriate number of clusters is
an important decision for binary data sets, and the results
provided by Dimitriadou et al. (2002) can help facilitate this
decision. On the basis of their results, it seems that an
integration of VSBD with the Ratkowsky and Lance (1978)
criterion might provide an excellent starting point for the
interrelated decisions of variable selection and determina-
tion of the number of clusters. Another important direction
for future research involves the deployment of VSBD for
real-world binary data sets. Such implementations can fa-
cilitate examination of interpretation, testing, and replica-
tion issues, which were not applicable for the synthetic data
sets analyzed in this article.
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Appendix

The Steps of the Variable Selection for Binary Data Algorithm

Step 0: Initialize M � �N, Q � A, V � VI, K, ZB � 
, and
ZB2 � 
.

Step 1: Obtain L by random sampling from the collection
of all N objects.

Step 2:
For each of the �P

V� �
P!

V!(P � V)!
possible sub-

sets of size V that can be formed from the P
variables, create the M � V matrix, A, using the
objects from L and corresponding possible sub-
set of variables, which will be denoted as Q	,
and perform Steps 2a and b.

Step 2a: Perform 500 replications of the K-means algorithm
on A, and let Zmin represent the minimum value of
Equation 3 obtained across all replications.

Step 2b: If Zmin � ZB, then set ZB � Zmin and store the
current subset as the best subset found by setting
Q � Q	.

Step 3: For each p � R	Q (i.e., the unselected variables,
which correspond to those variables in R but not in
Q) create the M � (V � 1) matrix, A, using the
objects from L and variables from Q � {p} and
perform Steps 3a and b.

Step 3a: Perform 5,000 replications of the K-means algorithm
on A, and let Zmin represent the minimum value of
Equation 3 obtained across all replications.

Step 3b: If Zmin � ZB2, then set ZB2 � Zmin and store the
current subset, Q � {p	}, as the best subset found.

Step 4: If ZB2 
 ZB � �(M/4), then stop. Otherwise, set
ZB � ZB2 and Q � Q � {p	}.

Step 5: If Q � R, then stop. Otherwise, return to Step 3.

Received September 5, 2003
Revision received June 24, 2004

Accepted July 6, 2004 �

523CLUSTERING BINARY DATA




