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Abstract 

In this paper we present an algorithm for finding a subset from a large number of alternatives. The criterion for selecting 
this subset is based on the assumption that ultimately one alternative will be chosen and implemented from this subset. Some 
areas of application for the subset selection techniques are presented. Extensions of this research are suggested. 
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I.  Introduct ion 

There is a class of problems in which several 
items from many are selected for information search, 
and the ultimate objective is to choose, after the 
procurement of information, the best item for some 
management objective. Current information concern- 
ing the potential performances of each item is impre- 
cise, and searching for information with higher preci- 
sion is costly. Therefore, it is infeasible to collect 
information for each item. The decision maker may 
want to select a small group of items or a "subset" 
for which to obtain information with greater preci- 
sion. The final selection is assumed to be restricted 
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to those items with more precise information, i.e., to 
items in the subset. The problem we are addressing 
is how to select this subset. Initially we present some 
applications of this type of problem. 

In foreign direct investment, assume that a manu- 
facturer with large export sales is interested in in- 
vesting in a manufacturing facility abroad. The moti- 
vation for establishing such a facility can be lower 
labor costs, lower costs of raw materials, greater 
proximity to foreign markets, lower transportation 
costs, increased identification of marketing opportu- 
nities with the foreign market, etc. Suppose there are 
over 150 countries with some potential for invest- 
ment. The investor wants to conduct an information 
search on a subset of countries before committing his 
firm to a foreign direct investment decision. It is 
important that the countries that provide good oppor- 
tunities for the manufacturing facility be included in 
the subset. A country that has not been included in 
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the subset and has not been investigated will not be 
considered a viable location for foreign direct invest- 
ment. The investor has the decision problem of 
determining which countries to select for additional 
information search. Subset selection is widely refer- 
enced in the literature of foreign direct investment 
(cf. Aharoni (1966), Stobaugh (1969a), Stobaugh 
(1969b) and Root (1982)). 

In new product development, product concepts 
are usually subjected to a series of screening tests 
with the goal of getting more information on chances 
for success before the product concept actually en- 
ters the market as a finished good. Assume that a 
brand manager selects a subset of product concepts 
with the purpose of producing them in limited quan- 
tity for test markets. The brand manager wants the 
concept that receives the highest score within the 
subset to be a successful one. Subset selection is 
referenced in the marketing literature of product 
planning and development (cf. Kotler (1980), Silk 
and Urban (1978)). 

In application areas that use subset selection, the 
technique used has primarily been to score each 
alternative and to choose the subset of alternatives 
corresponding to the highest scores. Somewhat less 
frequently a variance has been assigned to each 
alternative as a measure of uncertainty attached to 
the original scores. The subset that is selected is 
determined by the alternatives with the smallest vari- 
ance. Although more sophisticated techniques have 
been proposed in the statistical literature, (see Bech- 
hofer (1954) for problem definition and Gupta and 
Panchapakesan (1979) for a review of the literature 
on the techniques), the focus has been on sample 
size. 

The emphasis in this paper is very different. Our 
aim is to find a subset of alternatives so that at least 
one member of the subset will do well, once the 
uncertainties are resolved. Intuitively, the subset may 
very well include some items with relatively high 
scores and low uncertainty and other items with 
relatively low scores and high uncertainty particu- 
larly when the means of the scores of the alternatives 
are not too disparate. An alternative, A, with rela- 
tively low mean score and high variance will often 
do poorly in which case the best item will come 
from an alternative with high mean score. However, 
because of the high uncertainty, the realized value of 

alternative A could be quite high. When this occurs, 
there is an opportunity to choose this altemative. 
Subsets of this form arise from the analysis in this 
paper. 

In Section 2, we formulate the problem mathemat- 
ically. The algorithm for selecting the subset is 
presented in Section 3. Properties of this algorithm 
and a form of sensitivity analysis are also given. The 
results are illustrated with examples in Section 4. 
Finally, in Section 5, conclusions are stated and 
suggestions are given for future research. 

2. Mathematical preliminaries 

Let the values of the n alternatives be denoted by 
the random variables X;; i = 1 . . . . .  n, where (X 1, 
.... X n) are mutually independent and X~ has cumu- 
lative distribution function (cdf) Fi(x). For part of 
the discussion we assume that X~~N(lx i, try2). 
Since we want to choose a subset of size k from 
among the n alternatives we let S denote a subset of 
the integers from 1 to n with k elements. Given the 
subset S of alternatives, the random variable Y(S) 
= m a x X  i. The cdf of Y(S) is denoted by Fv~s)(y). 

i ~ S  
Example: There are ten alternatives from which 

three are to be selected. Hence, n = 10, k = 3 and 

10) = 120 solutions to the there are 3 possible prob- 

lem. If S = {2, 5, 9}, for example, then the objective 
function Y(S) = max( X 2 ,X 5,X9). 

We want to dbcide which subset, from among the 

( k )  subsets of size k, is "bes t " .  In order to decide 

which subset is "bes t " ,  we need to be able to 
compare Y(S,) and Y(S2), for two subsets S I and 
S 2. The problem is trivial if Y(S I) is stochastically 
larger than Y(S 2) (i.e., Fr~s,)(y)< Fr~s2)(y) for all 
y). In practice, however, there will rarely be a situa- 
tion in which a solution S* gives rise to a payoff 
Y(S* ) which is stochastically larger than the payoffs 
for all other subsets. 

The general approach is to choose a suitable 
functional, ~b: F - ~  R (e.g., mean, median and vari- 
ance). If  we focus on measures of central tendency, 
then the class of functionals that is often considered 
is of the form ftl=o F~l(t) dtz(t) where /z is a 
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measure on [0, 1] and where this implicitly assumes 
that Y is absolutely continuous (there is an analo- 
gous formulation if Y is discrete). This formulation 
includes the median if /z places probability one at 
t = 1/2 ,  the mean if p, is uniformly distributed on 
[0, 1] and trimmed mean if /z is uniformly dis- 
tributed on [ a ,  1 - a ]  for a given a ~ ( 0 ,  1/2).  
Although we focus on the mean, median and other 
quantiles, it is important to place these parameters in 
the wider setting as discussed above. 

The random variable that is the maximum of other 
random variables is often skewed to the right; this 
would be the case if the random variables are nor- 
mal. The mean of a skewed random variable is 
highly sensitive to the tail behavior. Hence maximiz- 
ing the mean might not be appropriate. For example, 
in many income distributions the mean is a figure 
such that as many as 75% of the items in the 
distribution are lower than that figure. 

There are of course many criteria that could be 
used. The criterion that should be used is subjective 
and should depend on the context. We only note that 
the more commonly used criteria, means and vari- 
ances, might not be appropriate when one is inter- 
ested in the maximum score chosen from a subset. 

It is interesting to note that the mean of a random 
variable can be written as ]~ F - l ( p )  dp. In essence, 
this says that the mean is the average performance 
over all quantiles. In this paper, we consider a 
specific quantile as our criterion. This suggests that 
an interesting extension would be to use a weighted 
combination of user supplied quantiles as a criterion 
(e.g. maximizing the average of the median and the 
75th percentile). The results in this paper can be used 
in a 0-1 integer program framework to deal with this 
extension. 

How we compare Y(S I) to Y(S2), whether through 
the means of the random variables or the medians of 
the random variables, is somewhat arbitrary and 
should depend on qualitative considerations. There 

The normal  distr ibution (and hence means  and  var iances)  is 

used to descr ibe the behavior  o f  the scores o f  each  o f  the 

alternatives.  When  we consider  an object ive funct ion wh ich  is the 

m a x i m u m  of  normal  random variables,  then we use  a quant i le  

such as the median  as the parameter  o f  interest. 

are clearly cases in which the median of Y(Si) 
exceeds the median of Y(S2), but the mean of Y(S 1) 
is less than the mean of Y(S2). In order to illustrate 
this point, we assume that Xj ~ N ( / x j ,  ¢r~ 2) and 
X 2 ~ N( tx 2, tr if) independent of X~. If  Y = max 
(X 1, X2), then 

+ 

Or 0 • 

where % = ( t r l  2 + trff) I/2 and (h(x) and @(x) de- 
note the density and distribution functions of the 
standard normal distribution. The median of Y is Y0 
defined by the equation 

Eq. (2.1) is proved in Appendix A and equation Eq. 
(2.2) follows from the fact that the distribution of the 
maximum of two independent random variables is 
the product of the distributions. 

Example 1. Let X~N(Ix ,  1), X 2 ~ N ( t . ¢  , 1)and 
X3 ~ N ( _ / x 2 ,  ~4) with / x > 0 .  Let Y~ = m a x  (X~, 
X 2) and Y2 = max (X a, X3). It is easy to verify that 
the median of Y~ is tx + 4-~(v~-Z2)  and the me- 
dian of Y2 iS less than /x + 4 -  1 (~/2/2)  because 

- -Y- > - T  

But, 

1 
e ( r , )  = 4Y6(0 )  + g =  ~ + g  

and 

E(v ) + 
/3, 2 ].L 2 

+ 
+ 

/z 

- ,  l)] --o.os 

- ~( -/z 2/.to- 

At---':* 

/z 
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where /*0 = (1 "1-/.4) I/2. The point is that Y~ is 
preferred by the median criterion, but for sufficiently 
large /*, Y2 is far superior in terms of expected 
value. In the next example, we find an instance 
where Y~ is preferred by the expected value crite- 
rion, but for sufficiently large/*, Y2 is far superior in 
terms of its median. 

Example 2. Let X l = /*  with probability one, X 2 ~ 
N( - /*2 ,  41,4) and X 3 ~ N( - /*2 ,  4/*4) with /* > 0. 

= m a x ( X  I, X 2) and Y2 = max(X2 ,  X3). Let YI 
Then, 

e(rl) 
tx2 

/* 

~ ]  2"-~'~ / 

~ ( ( / . 2  + / * ) / 2 / . 2 )  
+ 

/* 

--* [24)(1 /2)  - ( / ) ( - 1 / 2 ) ]  = 0 . 4  

and 

E(Y2 ) = fff/*26(0) _/*2 =/*2[V/~-q~(0 ) _ l] 

= 0.13/* 2 . 

But the median of Yt is /* and the median of Y2 is 

= 0 . 0 9 / *  2 , 

so Y] is preferred to ¥2 in terms of expected value 
but the median of Y2 is far greater than the median 
of YI for large /*. 

We showed, by way of examples, that the choice 
of criterion (i.e., median versus mean) might affect 
the optimal subset. These examples used random 
variables with high means and low variances and 
random variables with low means and high vari- 
ances. This makes intuitive sense since it is often 
beneficial to include an alternative with a low mean 
and high variance as one of the alternatives because 
the realization of this random variable might be very 
high; we are guarded against a low realization of this 
random variable by the other alternatives in the 
subset. These examples are, of course, carefully con- 
structed. In practice, we might expect that the two 

criteria lead to the same subset. The following 
proposition provides a necessary condition for this to 
be the case. 

Proposition. Assume that X i are normally dis- 
tributed. Index the alternatives so that /*l >/*2 > 
• • • >/*,. Let S = {1 . . . . .  k}. If O'12 _~ ' " " ~> 0"n 2 
then 

(i) the median o fY(S)  > the median of Y(S') for 
all subsets S' of size k and 

(ii) E[Y(S)] >_ E[Y(S')] for all subsets S' of size 
k. 

Proof. (i) The proof of (i) is given as Proposition 
(A.2) in Appendix A. 

(ii) The proof of (ii) follows by applying Corol- 
lary A.5 as stated in Appendix A. [] 

3. Mathematical results 

We are interested in comparing Y(S t) = maxX~ 
iES~ 

to Y(S 2) = maxX/. This will enable us to find ulti- 
i~S  2 

mately the subset S* of size k, such that Y(S* ) is 
preferred to Y(S) for all subsets S of size k. We 
need to specify what we mean by preferred. Since 
Y(S) involves a maximum over k random variables, 
E(Y(S)) is not easily obtainable (it involves numeri- 
cal integration) for most distributional assumptions 
on X i including normality. However, the median or 
any quantile of Y(S) is easily obtainable. We com- 
pare two subsets S~ and S 2 by the pth quantiles of 
Y(S]) and Y(S2). 

This section is divided into three parts. We first 
provide an algorithm for finding S* such that 
F~<ts.)(p)>F~(Js)(p) for all subsets S of size k. 
Note that when p = 1 /2  this corresponds to maxi- 
mizing the median of Y(S). We then present a 
sensitivity analysis to determine the values of p for 
which S* remains optimal. Finally, we illustrate the 
results from the first two subsections in the third 
subsection. 

3.1. Optimal subset algorithm 

In this subsection, we present an algorithm that 
finds the subset S* that maximizes F~(Js.)(p) for 
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any p. We then discuss the logic behind the algo- 
rithm. 

We are given n alternatives Xi,  i = 1 . . . . .  n with 
respective cdf F~(x); i = 1 . . . . .  n. We are also given 
a percentile of  interest, p,  and are required to find 
the best subset of  size k. The following algorithm 
accomplishes this: 

3.1.1. Algor i thm 
Step 0 (Ini t ial izat ion):  Le t  CF= m a x F i - t ( p )  and 

i 
C. = m a x F i - l ( p i / k ) .  

l 
Step 1 (Computat ion):  Le t  c = ( C ! + C , ) / 2 ,  and 

y; = Fi(c) .  
Le t  i I . . . . .  i .  be  def ined so that  Yi~ <- " " " 

<<- ~/i." 

Let  S = {i I , i k} and fl = l--I k. """ J= 1 ~li)" 
Step 2 a ) I f  I / 3 -  p[ < e then STOP;  S* = S. 

b)  I f  I / 3 - p [ >  E and 

(i) / 3 > p ;  C . = c  
G O  TO STEP 1 

( i i )  / 3 < p ;  C r = e  
G O  TO STEP 1 

Note that e is chosen to be a very small positive 
number. 

The basis of  the algorithm is that the subset S at 
any iteration is optimal for the corresponding given 
percentile /3 (see Step 1). This follows because if we 
choose any other subset S', then F r ~ y ) ( c ) = / 3 ' =  
Iq j ~ s' Tj >-/3 = Fr( s)( C ). Hence, Fr(~)(/3) < c be- 
cause Fr(s, ) is a nondecreasing function. 

The remainder of  the algorithm adjusts /3 at each 
iteration so that ultimately 13 is arbitrarily close to p. 
This is accomplished by finding C t and C, at each 
iteration so that F~-(~.)(p) is necessarily between C/  
and C, and halving (C,  - Ct,) from one iteration to 
the next so that C , - C  f is eventually arbitrarily 
small. We initialize C E and C~ in Step O. Clearly, 
F r ( l s . ) ( p ) > F x l ( p )  for all i so that C i is a lower 
bound; the best subset of  size k that maximizes a 
percentile must necessarily do at least as well as the 
best subset of  size 1. By the definition of  C,,  
Fx, (C~)> p i / k ;  i =  1 . . . . .  n. Hence, Fy(s)(C~)>_ p 
for any subset S of  size k. This implies F { ( l ) ( p ) <  
C,. In Step 2 we either replace C~ or C l for c. If  the 
optimal subset at c yields a percentile/3 < p (/3 > p)  
then clearly c is too small (large). 

3.2. Sensi t iv i ty  analys is  

In this subsection, we first find conditions on F i 
such that if a subset is optimal for percentiles P3 and 
Pz it is necessarily optimal for p between pl and P2. 
This provides the basis for a sensitivity analysis if 
the condition is satisfied. 

The issue is simply if X ~ F and Y ~ G are two 
random variables such that F and G cross once (say, 
F ( x )  < G(x )  for x < x o and G ( x )  < F ( x )  for x o < 
x), then for p < P o -  F - I ( x o )  = G - l ( X o  ) random 
variable X would be preferred to random variable Y 
in any subset of  any size. Similarly, if p > Po, then 
random variable Y would be preferred. This pre- 
cludes the possibility of  having a subset S that is 
optimal for p~ and P2 which is not optimal for some 
p between p~ and P2- We discuss this issue of  
1-crossing in more detail in Appendix B. For our 
discussion, it is interesting to note that the condition 
is satisfied if X i, i = 1 . . . . .  n belong to the same 
location-scale family such as the normal. 

We have a subset S that is found to be optimal for 
percentile p. We want to find Pf  and p ,  such that 
this subset remains optimal for all p ~ [ Pi ,  P,]. We 
assume that X i ~  Fi; i =  1 . . . . .  n where F i and F i 
cross once for all i ~ j. 

We need to compare each alternative not in S 
with each alternative in S. Since in comparing alter- 
native i to j,  F i can cross ~ from above or below, 
1 o = 1 if the ith alternative crosses the jth alterna- 
tive from below and zero otherwise; for i ~ S and 
j ~ S. We only define l i j  for those cases for which 
i ~ S and j ~ S. Note that lij = 1 under normality if 
tr~ < tTj. We also let Cij be the point at which the 
distribution functions for the ith alternative and the 
jth alternative are equal. Let C =  max C~j and 

- -  ( i , j ) . l i ,=  0 

C =  min Cij. Then p / =  Fr(s)(_.C) and p .  --- Fr(s) 
__ ( i , j ) , l i )= 1 

(C)  and S remains optimal for all ,o t<  p < p,. 

3.3. I l lustrat ion 

Consider three alternatives (n = 3) with X i ~ N(0, 
25), X 2 ~ N(2.5, 1) and X 3 ~ N(5, 0.04). We want 
to choose a subset of  size 2 (k = 2). The optimal 
subset for p = 1 / 2  is found using the algorithm 
from Section 3.1. Assume ~ = 0.01. 
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Step 0 

Step 1 

Step 2 

Step 1 

Step 2 

Step 1 

Ct = max (F11(0 .5)  = 0, F~-!(0.5) = 2.5, 
F 3  ' (0 .5)  = 5) = 5 
C u = max (F_~_( 0~0-~-.5 ) = 2.73, F~-l( 0vc6~'.5 ) = 

3.04, F31(~/0.5 ) = 5.109) = 5.109 
c = 5.0545 

3'1 = F~(5.0545) = 0.84; 3'2 =/72(5,0545) = 
0.99; 3'3 = F 3 ( 5 " 0 5 4 5 )  = 0 . 6 1  

This implies S = {1, 3} and fl = (0.84)(0.61) 
= 0.5124. 
b(i): J/3 - pl = 0.0124 > 0.01 and /3 > p; C,, 
= 5.0545 
c = (5 + 5 .0545) /2  = 5.0273 
3'~ = Fj(5.0273) = 0.84; 3;2 = F2(5.0273) = 
0.99; 3'3 = F3(5-0273) = 0.55 
This implies S = {1, 3} and /3 = (0.84)(0.55) 
= 0.4620 
b(ii): J/3 - p[ = 0.038 > 0.01 and /3 < p;  C~ 
= 5.0273 
c = (5.0273 + 5 .0545) /2  = 5.0409 

3'1 = F1(5-0409) = 0.84; 3'2 --- F2(5.0409) = 
0.99; 3'3 = F3(5-0409) = 0.58 
This implies S = {1, 3} and /3 = (0.84)(0.58) 
= 0.4872 

Step 2 b(ii): I / 3 - p l  = 0.0128 > 0.01 and fl < p ;  C l 
= 5.0409 

Step 1 c = (5.0409 + 5 .0545) /2  = 5.0477 
3"1 = F~(5.0477) = 0.84; 3"2 = F2(5.0477) = 
0.99; 3'3 = F3(5-0477) = 0.59 
This implies S = {1, 3} and /3 = (0.84)(0.59) 
= 0.4956 

Step 2 Since Ip  - / 3 J  = 0.0044 < 0.01 STOP. 
To illustrate the sensitivity analysis we have 112 

= 0 since o" 1 > 0" 2 and 123 = 1 since 0- 3 < 0-2- C12 
= 3.125 which is the point at which the cdfs of  N(0, 
25) and N(2.5, 1) cross. Similarly C23 = 5.625 is the 
point at which the distribution functions of  N(5, 
0.04) and N(2.5, 1) cross. Hence pc, = qb((3.125 - 
0 ) / ( 5 ) ) ~ ( ( 3 . 1 2 5  - 5 ) / ( 0 . 2 ) ) =  0 and p ,  = 
• ((5.625 - 0) / (5) )qb((5 .625 - 5 ) / ( 0 . 2 ) )  ---=- 0.87. 
This implies that S ={1 ,  3} is optimal for all quan- 
tiles up to 0.87. 

4. Examples 

Many applications have a context within which 
there are a large number of alternatives, but only a 
few alternatives can be explored because of  time and 
cost constraints. Ultimately, one altemative will be 
chosen. We discuss two such applications in an 
attempt to show the richness of  the problem setting 
and to demonstrate the mathematical results from the 
previous sections. 

Example 1: An academic department wants to 
hire an Assistant Professor. There are ten applicants; 
however,  only three can be interviewed because of  
time considerations. Note that in order to restrict the 
output, we assume there are only ten applicants. (The 
same approach can be used on much larger problems 
without any difficulty.) Collectively,  the department 
is able to measure the qualifications of  the ten 
candidates by recording the means (to reflect the 
d e p a r t m e n t ' s  bes t  e s t i m a t e s )  and  s t anda rd  
deviations 2 (to reflect their uncertainties) as outlined 
below and a normal distribution is assumed: 

Applicant  1 2 3 4 
Mean 10.0 10.0 10.0 8.0 
Standard deviation 1.0 1.5 3.0 3.5 

5 6 7 8 9 10 
8.0 7.0 7.0 6.0 6.0 6.0 
4.0 5.0 6.5 5.5 6.0 10.0 

Assume we establish an objective function of  
maximizing the median of  the best candidate inter- 
viewed. If  we interview based on means, then appli- 
cant I,  2 and 3 would be interviewed giving rise to a 
median of  the best candidate interviewed of  11.35. 
However,  the optimal choice of  candidates, using the 
algorithm described in the previous section, is to 
interview candidates 3, 7 and 10. This leads to a 
median of  the best candidate interviewed of  12.75 
(i.e., approximately 12% better than the naive ap- 

2 In this case where the evaluation of  a candidate is collective, 

then the mean and standard deviation can be estimated by summa- 
rizing the scores across the members of the department. There is 
an approach that is commonly used in applications for est imating 
the mean and standard deviation from an individual. The respon- 
dent is first asked to give the number s so that the chance is 50% 
that the candidate will  be better than s. The respondent is then 
told to assume that the candidate 's  performance is better than s. 
The number t is then elicited, where the chance that the candidate 
is better than t given that the candidate is better than s is 50%. 
The mean and standard deviation can then be derived from s and 

t. 
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proach of choosing the highest means). Furthermore, 
using the methodology described in Section 3, the 
subset of (3, 7, 10) not only maximizes the median, 
but also all percentiles between 0.3085 and 0.6154. 

Example 2: A multinational corporation is inter- 
ested in building a plant in a foreign country. Twelve 
countries are under consideration. Management wants 
to reduce this list to four countries that can be 

studied more carefully by teams of employees and 
consultants. The success in building a plant in a 
given country depends on many factors including: 
political climate, cost of labor and materials, import 
and export tariffs and availability of raw materials. 
After a careful preliminary analysis the twelve coun- 
tries are scored as follows: 

Country 1 2 3 4 5 6 7 8 9 10 11 12 
Mean 1.0 2.0 3.0 4.0 6.0 6.5 7.0 7.5 8.0 8.5 8.75 9.0 
Standard deviation 12.0 10.0 8.0 7.0 6.5 6.0 5.5 5.0 4.75 4.5 4.25 4.0 

The naive approach chooses countries (9, 10, 11, 
12) with a median of the best choice from countries 
in the subset of 12.38. In contrast, assuming normal- 
ity, the optimal subset of countries is (1, 5, 9, 10) 
with a median of best choice from among countries 
in this subset of 12.80. The optimal subset not only 
maximizes the median but also all percentiles be- 
tween 0.47 and 0.56. 

Although these data are fabricated, it is not un- 
likely for the means and standard deviations to be 
negatively correlated. In example 2, it is plausible 
that countries 9, 10, 11 and 12 are all well known 
and developed countries (e.g. Canada, France, Ger- 
many and Great Britian) while countries 1, 2 and 3 
are countries in which such ventures are rare (e.g. 
Tanzania, Kenya and New Zealand). The optimal 
subset, that considers countries from both ends of the 
spectrum, is intuitively appealing. Learning more 
about lesser known alternatives might prove to be 
beneficial. 

Example 3: A manufacturer of frozen dinners is 
interested in testing new food product concepts. The 
name of the company is not given and the concepts 
are not described in order to retain confidentiality. 
Twenty seven concepts are evaluated by 305 con- 
sumers. Based on the results of the survey the con- 
suiting company recommended the subset of con- 
cepts A = {12, 13, 21, 25} for further study. 

Means and standard deviations across respondents 
were calculated for each of the twenty seven con- 
cepts. We assume a normal distribution for likeli- 
hood of purchase, rated on a 1-10 scale, for each of 
the concepts. The optimal subset algorithm in Sec- 
tion 3.1 was used to produce the subset of size four 

that maximizes the median. The subset that the 
algorithm produced was B = {11, 18, 21, 22}. Note 
that only concept 21 is in both subsets. 

The median of the best concept from among 
concepts in subset A is 6.42. In contrast, the optimal 
subset B has a median of 6.57. Furthermore, the 
sensitivity analysis described in Section 3.2 shows 
that subset B is optimal for any quantile between 
0.48 and 0.73. 

5. Conclusions 

In this paper, we presented an algorithm for find- 
ing a subset of altematives from a larger number of 
alternatives. The criterion for selecting this subset is 
based on the assumption that ultimately one alterna- 
tive will be chosen from this subset. The intuition 
behind the approach is that the subset will probably 
contain alternatives with high expectation and little 
uncertainty as well as alternatives with relatively low 
expectation and high uncertainty. Since in the end 
only one alternative will be chosen and implemented, 
it might be beneficial to explore some unusual alter- 
natives that are likely to have low expectations a 
priori. 

The criterion that we used was to maximize a 
quantile, for example, the median of the alternative 
that finally is chosen and implemented. One area for 
future research is to consider different criteria, per- 
haps incorporating the cost of gathering the informa- 
tion about the alternatives. In this context, optimal 
subset size can be investigated in conjunction with 
the determination of the optimal subset. In this paper 
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we assumed that alternatives were independent. 
However, it may be the case that knowing the char- 
acteristics of  one alternative provides information 
about the characteristics of  other alternatives. There- 
fore, it is worth exploring the problem considered in 
this paper when the assumption of  independence is 
relaxed. 

Appendix A 

Note that each random variable has a normal 
distribution throughout the discussion in Appendix 
A. 

Proposition A.1. Let Y =  m a x ( X , , X  2) where X, 
and X 2 a r e  independent with X i ~ N ( I x i , 0 - i 2 ) ,  i = 
1,2. Then 

E ( Y )  = 0 - 0 t ~ ( ' I X l ~ I X 2 )  + I X 2 t ~ ( I X 2 - - I X I ) o r  0 or 0 

+ Ix,qb( Ix' - Ix2 ) o . 0 ,  (A.1)  

where 0-0 = ( tr, 2 + 0-2)1/2. 

Proof. Y = X ,  + ( X  2 - - X , )  + where ( X )  + =  max (0, 
X). 

E(Y)=E(XI)+E[(X2-X,)+]. (A.2) 

But (X2-X,)~N(Ix2-Ix ,, 0"2+0"22). Hence X 0 
- (X 2 - X,) += 0 with probability @ ((Ix, - 
Ix 2 ) / ( 0 - 0 ) )  a n d  d e n s i t y  f x o ( X o )  

- (x-/Xo)2/2 O-o 2 
--- (1 / ~ (r o)e for x 0 > 0 where Ixo 

Ix2 - Ixl and o -2 = 0-2 + 0.2 2. This implies 

'~ l e_( Xo_lZo)2/2~,2 ° e( Xo) : X o  dx o 

o~ 1 2 =fy (0-0 Y + IX0) ~ e - y  / 2 d y  
= _ ~ t o / t r  o 

(A.3)  

Substituting Eq. (A.3) into Eq. (A.2) yields Eq. 
(A.1). [] 

Proposi t ion A.2. Let the alternatives be indexed so 
t h a t  Ix,  >__ Ix2 ~ " " " >-- Ixn" I f  0-2 >_~ 0.2 ~ . . . ~ 0-n2 
and S = {1, • • • ,k}, then the median o f  Y( S) is at 
least as great as the median o f  Y(S  l) for  any subset 
S, o f  size k. 

Proof.  Let m be the median of  Y(s).  Clearly, m > 
Ix,. Then P ( X  i < m) = c19((m - Ixi)/(tri)) < P ( X j  
< m) = qb((m - Ix/)/(o-j)) for i > j  because 0 < m  
-- Ixi --< m -- Ixy and % > o-j. So I-I~_ ,P(  X i < m) >_ 
0.5. Hence the median of  max(X i~ , . - .  , ~ k )  is no 
greater than m. [] 

Proposi t ion A.3. Let X ~ N( Ix, O-2) and g(  ix,o -2) 
= E[ (X  - Xo) + ] where x 0 is an arbitrary constant. 
Then g(  Ix,O- 2) is nondecreasing in each o f  its argu- 
ments. 

Proof.  Using the same approach as in Proposition 
(A. 1), it is easy to verify that 

It follows from 4 ; ( x ) - - - x 4 ) ( x )  that the partial 
derivatives of  g( Ix, 0 -2) in each of  its arguments is 
nonnegative. [] 

Coro l la ry  A.4. Let X o be an arbitary random vari- 
able, then E[max( X o , X  )] is nondecreasing in tx and 
or where X ~ N( Ix, tr 2). 

Proof.  E[max(Xo,X)]  = E ( X  o) + E [ ( X  - X0)+]. 
But E [ ( X -  X0)+[ X 0 = x 0] is nondecreasing in IX 
and o- for any x 0 from Proposition (A.3). Hence 
E[(X  - X0) + ] = ExoE[(X - Xo)+[ X o ] is nondecreas- 
ing in IX and o-. [] 

Coro l la ry  A.5. Let Z, --- max(Yl, • • • ,Yn-"Xl )  and 
Z2 = max(Y1, " " " ,Yn- i,X2 ) where X 1 ~ N(Ixl,0-12), 
X 2 ~ S (  Ix2,0 "2) with Ixl > IX2 and ~r, 2 > 0-2. Then 
E(Z,) > E(z2). 
Proof.  The result follows directly from Corollary 
A.4 by letting X 0 = max(Y,, • • • ,Y,_ ,). [] 



C. Meyer Ehrman et al. / European Journal of Operational Research 96 (1996) 417-416 415 

Appendix B 

Consider a pair of  random variables X ~ F and 
Y ~ G. We are interested in the number of  times F 
and G cross. This problem has been studied exten- 
sively in the applied probability literature. Note that 
if F and G do not cross at all then one random 
variable is stochastically larger than the other. We 
are interested in situations in which F and G cross 
once. We assume throughout that X and Y are 
absolutely continuous. To this end, 

Definition B.1. A pair of  random variables (X, Y ) is 
1-crossing if there exists only one x such that 0 < 
F x ( x )  = F r ( x )  < 1. 

Definition B.2. A family of  random variables Fo; 
0 ~ O is l-crossing if Fo, and Fo2 is 1-crossing for 
all 0t ,0 2 ~ O where 0~ 4 : 0  2 . 

We are interested in studying when families of 
random variables are 1-crossing. We first prove the 
following lemma. 

Lemma B.1. I f  Y = g (  X )  where g is strictly in- 
creasing and g ( x ) =  x once then (X,Y)  is l-cross- 
ing. 

Proof .  F r ( Y )  = P ( Y  < y)  = P ( X  < g - l ( y ) )  = 
F x ( g  ~(y)). But y = g - ~ ( y )  ¢* g ( y ) = y  which 
can only occur once. [] 

Corollary B.2. I f  F o is a location scale family then 
F o is I-crossing. 

Proof.  We have 01 ~--(p,l,0.1) and 02=(/.£2,0"2) 
with 0"~ and 0"2 > 0. Hence X = / z  I + 0"1Z and Y = 
~2 + 0"2 Z where Z has location zero and scale one. 
This implies Y ~--- (~£2  - -  0"2 t£1/ /0"1  ) "l- 0 "2X/ /0"1  . 

Since Y is a linear function of  X the condition in 
Lemma B.I is satisfied. 

Example.  The normal family is 1-crossing as it 
satisfies Corollary B.2. 

Corollary B.3. l f  F o is a l-crossing family and G o is 
created by Y E G o ¢~ Y = h ( X )  where X ~ F o and h 

is a monotonically increasing function, then G o is 
1 -crossing. 

Proof.  Consider 01 and 0 2. Go( Y ) =  Go2( y)  iff 
F o ( h - t ( y ) )  = F o ( h - l ( y ) ) .  The results follows. [] 

Example.  The lognormal family is 1-crossing as it 
satisfies Corollary B.3 with h( x)  = e x and F o denot- 
ing the normal family. 

Lemma B.4. I f  X and Y have the same support and 
their respective density functions f ( x )  and g ( x )  
cross twice, then ( X ,Y  ) is 1-crossing. 

Proof.  Assume that f ( x ) =  g ( x )  only at x = a and 
x = b ,  a < b .  Also, f ( x ) < g ( x )  only if x < a  or 
x > b. Clearly, F(a)  < G(a) and F(b)  > G(b).  There 
is at least one point x o with a < x o < b  such that 
F ( X o ) = G ( X o ) .  But F ( x ) < G ( x )  for x < x  o and 
F ( x )  > G(x)  for x > xo because f ( x )  > g ( x )  Vx 
(a, b). [] 

Example.  The gamma family is l-crossing since 

fl~, x ~ , - l  e -~ , ,  

G( 

G( ) 

¢~ x(~,-a2)  e-(13t-#z)X = k_= 
O(o,2) 13, 

Since in general x '~ e -~"  is a unimodal function it 
can only cross the line y = k at most twice. 
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