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The study of confusion data is a well established practice in psychology. Although many
types of analytical approaches for confusion data are available, among the most common
methods are the extraction of 1 or more subsets of stimuli, the partitioning of the complete
stimulus set into distinct groups, and the ordering of the stimulus set. Although standard
commercial software packages can sometimes facilitate these types of analyses, they are not
guaranteed to produce optimal solutions. The authors present a MATLAB *.m file for
preprocessing confusion matrices, which includes fitting of the similarity-choice model. Two
additional MATLAB programs are available for optimally clustering stimuli on the basis of
confusion data. The authors also developed programs for optimally ordering stimuli and
extracting subsets of stimuli using information from confusion matrices. Together, these
programs provide several pragmatic alternatives for the applied researcher when analyzing
confusion data. Although the programs are described within the context of confusion data,
they are also amenable to other types of proximity data.
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A confusion matrix, C � [cij], is a square (n � n) matrix
with rows that correspond to the n stimuli of an identifica-
tion experiment and columns associated with the n possible
responses for each presented stimulus. The main diagonal of
a confusion matrix contains the number (or percentage) of
correct identifications for each stimulus. Each off-diagonal
element represents the number (or percentage) of times that
the response associated with the column was mistakenly
called (i.e., confused) by the subject for the stimulus corre-
sponding to the row.

Empirical confusion matrices abound in various areas of
psychological inquiry, including visual letter recognition
(Fisher, Monty, & Glucksberg, 1969; Townsend, 1971a,
1971b; Van der Heijden, Malhas, & Roovaart, 1984), tac-
tual letter recognition (K. O. Johnson & Phillips, 1981;
Loomis, 1974, 1982; Vega-Bermudez, Johnson, & Hsiao,
1991), auditory recognition of letters and/or numbers (Hull,

1973; Morgan, Chambers, & Morton, 1973; Van Son &
Pols, 1999), auditory recognition of words (Miralles &
Cervera, 1995), recognition of lip-read letters (Manning &
Shofner, 1991; Massaro, Cohen, & Gesi, 1993), odor rec-
ognition (Youngentob, Markert, Moxell, & Hornung, 1990),
taste recognition (Hettinger, Gent, Marks, & Frank, 1999),
recognition of texture patterns (Cho, Yang, & Hallett,
2000), morse code recognition (Rothkopf, 1957), and rec-
ognition of automotive control signals (Green & Pew,
1978). Although confusion matrices are principally pub-
lished in experimental psychology journals, the pragmatic
value of confusion experiments spans to other branches,
such as social psychology (Derryberry, 1991; Lees &
Neufeld, 1999), educational psychology (Coldren & Haaf,
2000; Compton, 2003), and human factors (Theise, 1989).

Quantitative modeling of confusion data has assumed many
forms. Threshold models make up one class of models for
stimulus recognition. One of the most well-known approaches
in this category is Townsend’s (1971a, 1971b) all-or-none
model. This model is based on the theory that subjects either
know the presented stimulus with certainty (all) or merely
guess from among the set of available responses (none).
Choice models are also used to analyze confusion data. One of
the earliest models is Clarke’s (1957) constant ratio rule, which
posits that the probability of a particular response for a given
stimulus should be the same regardless of the actual subset of
stimuli in the choice set. Although there was some early
evidence of the viability of this model (Clarke, 1957; Rich,
1971), more recent studies have generally rejected the constant
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ratio rule as a model of confusion data (Rouder, 2004;
Townsend & Landon, 1982).

The Shepard–Luce similarity-choice model (Luce, 1963;
Shepard, 1957) is perhaps the most frequently implemented
model for confusion data. The model is defined by a sym-
metric similarity component and a response bias compo-
nent. The similarity parameters, 0 � �ij � �ji � 1, represent
the perceptibility of the stimuli, where more similar stimu-
lus pairs have greater confusability. Response biases are
estimated for bias parameters, 0 � �j � 1. The probability
of response j for presented stimulus i is computed as

Pij �
�ij�j

�
r�1

n

�ir�r

, (1)

where the sum in the denominator is across all possible
responses. The popularity of the similarity-choice model for
analyzing confusion data is based on its efficacy. For ex-
ample, Rouder (2004) observed that the similarity-choice
model is the leading model for letter identification because
it has consistently provided better fit than its competitors
(Townsend & Landon, 1982) and is invariant to response
bias (Townsend & Ashby, 1982).

Statistical comparison of two or more confusion matrices
has also been implemented in the literature, and sometimes
these comparisons have spanned psychological contexts.
For example, Craig (1979); Loomis (1982); and Phillips,
Johnson, and Browne (1983) presented comparisons of vi-
sual and tactual interletter confusion matrices using corre-
lation measures. Brusco (2004) recently compared a much
broader set of visual and tactual matrices using a permuta-
tion-based concordance method proposed by Hubert (1987,
chap. 5), who demonstrated the technique using classic
acoustic recognition confusion matrices originally pub-
lished by Miller and Nicely (1955).

Structural representations of the stimuli associated with
confusion matrices can also be obtained by methods of
combinatorial data analysis (Hubert, Arabie, & Meulman,
2001). These methods include cluster analysis, seriation,
and subset extraction. Cluster analysis methods, in particu-

lar, have often been used to study confusion data. Complete-
link hierarchical clustering, which is also known as S. C.
Johnson’s (1967) maximum method, has been an especially
popular choice for analyzing confusion data (Gilmore,
Hersh, Caramazza, & Griffin, 1979; Hubert, 1973; Hubert &
Baker, 1977; Loomis, 1982; Shepard & Arabie, 1979). The
complete-link method begins with each stimulus in its own
individual cluster. At each level, a pair of clusters is merged,
reducing the total number of clusters by one. The criterion
for selecting the two clusters to merge is to minimize the
maximum dissimilarity element that will be produced by the
merger. This process continues until all stimuli are in one
cluster. The culmination of the complete-link hierarchical
clustering process is a dendrogram (or tree representation)
of the mergers at each level.

To illustrate the complete-link hierarchical clustering al-
gorithm, consider the hypothetical 6 � 6 dissimilarity ma-
trix on the left side of Table 1. The cluster mergers for each
stage (denoted by the number of clusters) and the resulting
maximum dissimilarity element produced by the merger are
shown on the right side of the table. Moving from six
clusters to five clusters requires the consideration of joining
all possible pairs of individual objects, and the pair (1, 3) is
selected because this produces the smallest dissimilarity
element of .05. Next, the objects 4 and 6 are joined, reduc-
ing the number of clusters to 4. This process continues until
all objects are in one cluster.

Although the dendrogram can be a useful visual aid, it is
often a partition (or subset of a partition) that is of particular
interest. These partitions comprise clusters that each possess
a diameter, which represents the maximum dissimilarity
between pairs of stimuli in that cluster. The partition diam-
eter is the maximum of the cluster diameters. The relation-
ship between complete-link hierarchical clustering and min-
imum-diameter partitioning is well documented (Baker &
Hubert, 1976; Hansen & Delattre, 1978; Hubert, 1974), with
Brusco and Cradit (2004) recently providing a discussion
regarding the use of diameter-based partitioning methods
within the context of confusion matrices. The crux of the
relationship is that cutting the hierarchical tree for a com-
plete-link solution does not always produce a minimum-

Table 1
A Small Synthetic Dissimilarity Matrix and the Stages of the Complete-Link Hierarchical Clustering Process

Object

Matrix

Stage
No. of
clusters Clusters of objects

Maximum
dissimilarity1 2 3 4 5 6

1 — .24 .05 .37 .62 .68 1 6 {1} {2} {3} {4} {5} {6} .00
2 .24 — .86 .65 .70 .32 2 5 {1, 3} {2} {4} {5} {6} .05
3 .05 .86 — .59 .16 .41 3 4 {1, 3} {2} {4, 6} {5} .12
4 .37 .65 .59 — .39 .12 4 3 {1, 3, 5} {2} {4, 6} .62
5 .62 .70 .16 .39 — .64 5 2 {1, 3, 5} {2, 4, 6} .65
6 .68 .32 .41 .12 .64 — 6 1 {1, 2, 3, 4, 5, 6} .86
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diameter partition, and the departure from optimality can be
severe (Brusco & Cradit, 2004; Hansen & Delattre, 1978).
To understand this limitation, we return to the right side of
Table 1 and note that the complete-link solution for a
three-cluster partition has a partition diameter of .62, which
is produced by the object pair (1, 5) in the cluster {1, 3, 5}.
This is not the minimum-diameter three-cluster partition.
The minimum-diameter three-cluster partition is as follows:
{1, 2}, {3, 5}, {4, 6}. These three clusters have diameters of
.24, .16, and .12, respectively, and thus the minimum par-
tition diameter is .24.

Although many commercial statistical software packages
contain a program for complete-link hierarchical clustering,
we are not aware of any packages that offer an option for
minimum-diameter partitioning. A further complication is
that there are often a host of alternative minimum-diameter
partitions from which to choose, and the psychological
research analyst typically does not have access to programs
that facilitate selection from among the alternative optima.
One of the principal contributions of this article is to miti-
gate this software accessibility problem.

We have developed three MATLAB (MathWorks, 2002)
programs for the clustering of all stimuli associated with a
confusion matrix. These programs are available in the sup-
plemental material appearing on the Web for this article at
http://dx.doi.org/10.1037/1082-989X.11.3.271.supp. The
first program preprocesses the raw confusion matrix, pro-
ducing several additional similarity and dissimilarity matri-
ces that can be subjected to further analysis. The second
program produces a minimum-diameter partition and is
similar in design to the algorithms described by Brusco
(2003) and Brusco and Cradit (2004). The program enables
the analyst to select a specific dissimilarity matrix for the
clustering process and to choose a desired number of clus-
ters. The third program is useful when obtaining clustering
solutions for two confusion matrices. This program allows
the analyst to select from the set of alternative minimum-
diameter solutions for each matrix so as to maximize the
agreement between the resulting partitions. Although we
could have developed more efficient versions of these pro-
grams in Fortran, we opted for a MATLAB implementation
because of the user-friendly manner in which data can be
manipulated, as well as the recent trend toward MATLAB
models in the literature (Bogacz & Cohen, 2004; Brainard,
1997; Brown & Heathcote, 2002; Brusco & Cradit, 2005;
Cheng & Gallistel, 2005; Henson & Douglas, 2005; Hubert,
Arabie, & Meulman, 2002, 2006; Smith, Morgan, & White,
2005; Steinley, 2003; Walker & Milne, 2005).

The cluster analysis programs require a rigid partitioning
of the stimulus set. In some cases, research analysts might
prefer a “softer” classification of the data. Options for this
type of analysis include hierarchical clustering, multidimen-
sional scaling, and seriation. As noted previously, hierar-
chical clustering provides a treelike representation of the

confusion data and is readily available in commercial soft-
ware packages. Multidimensional scaling methods provide
a spatial representation of the stimuli that reflects psycho-
logical distance among those stimuli. Like hierarchical clus-
tering, multidimensional scaling methods are easily acces-
sible and have been frequently applied to confusion
matrices (Gilmore et al., 1979; Kikuchi, Yamashita, Sa-
gawa, & Wake 1979; Kruskal, 1964; Townsend, 1971b;
Zielman & Heiser, 1996).

Another alternative is to produce a seriation (or ordering)
of the stimuli that uncovers structure in the data (Brusco,
2001, 2002; Hubert & Schultz, 1976). A natural extension
of seriation is to produce a unidimensional scaling of the
stimuli, which has also received attention in the literature
(Brusco & Stahl, 2005b; Hubert, Arabie, & Meulman,
1997). Unlike hierarchical clustering and multidimensional
scaling, algorithms for producing optimal permutations of
stimuli are not available in commercial software packages.
This is unfortunate because seriation of stimuli can often
uncover interesting relationships among the stimuli. For
example, suppose that the rows and columns of the confu-
sion matrix could be permuted such that the elements above
the main diagonal were always larger than their mirror
image element below the main diagonal. The permutation
would represent a perfect dominance relationship among the
stimuli in the sense that if stimulus i precedes stimulus j in
the permutation, then j is more often a mistaken response for
i than i is a mistaken response for presented stimulus j.

To induce a dominance structure, we have developed a
stand-alone *.m file that obtains a permutation of the stimuli
to maximize the sum of elements above the main diagonal
of the reordered matrix. This same matrix permutation prob-
lem has important applications in other contexts, such as
minimum-feedback arcs in engineering (Lawler, 1964), pro-
duction structure in economics (Chenery & Watanabe,
1958), paired-comparison ranking (Slater, 1961), and ma-
jority rule in social choice (Bowman & Colantoni, 1973).

In some instances, researchers have not sought to seriate,
scale, or cluster the complete set of stimuli but instead have
attempted to extract one or more stimulus subsets (Brusco &
Stahl, 2001; Heiser, 1988). Several of these applications
have been conducted within the context of ergonomic de-
sign. For example, Green and Pew (1978) and Theise (1989)
focused on a goal of identifying a subset of automotive
control signals that have minimum confusion among them.
In similar applications, Zwaga and Boersema (1983) were
concerned with recognition of graphic symbols in a railway
station, whereas Moore (1974) attempted to select a viable
subset of push buttons for postal sorting equipment. Brusco
and Stahl (2001) described other possible applications in
this vein, such as reduction of inventories of paint or per-
fumes on the basis of confusion data or the utilitarian design
of cash registers in fast-food restaurants.

The extraction and deployment of subsets of letters has
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also been used in a variety of other psychological applica-
tions. In a study designed to assess the effect of feedback on
arousal, response, and attention, Derryberry (1991) used the
letters A, C, and F as priming signals. These priming signals
reflected feedback in terms of good (A), average (C), and
poor (F) performance on the previous experimental trial.
The importance of the low confusability of this subset of
stimuli in Townsend’s (1971b) study was a crucial factor for
discounting possible discriminability effects with respect to
the feedback. Lees and Neufeld (1999) selected eight letters
(J, L, M, A, Z, V, P, and G), which served as analog stressors
by pairing them with different levels of noise bursts (stress),
in a study designed to measure their effect on indices of
stress arousal and coping propensity. Lees and Neufeld
explicitly noted that this subset was selected because the
letters were maximally distinctive (low confusability) in
Townsend’s confusion matrix. Coldren and Haaf (2000)
used three pairs of letter subsets (E–F, Q–O, and B–R) to
assess whether infants exhibited a bias for either the pres-
ence or absence of a feature in a stimulus. Compton (2003)
recently investigated the effects of letter substitutions in a
subset of letters selected for a rapid automatized naming
task. The importance of the choice-set size (i.e., subset size)
on letter identification has also been recently studied by
Rouder (2001, 2004). Using the Shepard–Luce choice
model to produce a psychological distance, Rouder (2001)
found that subjects exhibited better letter processing for
larger subset sizes. Rouder (2004) subsequently demon-
strated that certain models tend to overestimate a subject’s
use of the choice set, whereas other models foster
underestimation.

Theise (1989) presented an integer programming model
for extracting a subset of stimuli from a confusion matrix
such that total confusion among pairs of stimuli is mini-
mized. He also presented a bicriterion programming model
that incorporated correct identification of subsets into the
objective function. Brusco and Stahl (2001) demonstrated
that more efficient integer programs, which used fewer
binary decision variables to model subset membership de-
cisions and fewer constraints, could be devised for this same
problem. Brusco and Stahl also provided an enhanced inte-
ger programming formulation that permits analysts to select
multiple subsets of stimuli such that the selected subsets
maximize the within-subset sums of confusion entries mi-
nus the between-subsets sums of confusion entries.

Although the integer programming models developed by
Theise (1989) and Brusco and Stahl (2001) facilitate opti-
mal extraction of subsets, they are each inherently limited
by the fact that they require mathematical programming
software packages that are unfamiliar to most analysts in the
field of psychology. To overcome this limitation, we devel-
oped a stand-alone MATLAB *.m file that accomplishes the
same task. This subset extraction program is available in the

Web supplement to this article (http://dx.doi.org/10.1037/
1082-989X.11.3.271.supp).

Our goal is to provide analysts in the psychological
community with an easy to use set of programs for analyz-
ing their confusion data. These software programs produce
optimal solutions to difficult combinatorial data analysis
problems that are not handled by commercial statistical
packages. In the next section, we describe the MATLAB
programs for subset extraction and clustering of confusion
data. This is followed by several examples using real con-
fusion matrices from the psychological literature. The arti-
cle concludes with a discussion and suggestions for future
research. An important point in this final section is that the
programs we have developed are not restricted to confusion
matrices but could also be used for other types of n � n
proximity matrices.

MATLAB Programs for Confusion Matrices

As noted previously, all of our programs for analyzing
confusion data are written as MATLAB *.m files. To use
these programs, users will need access to the base
MATLAB system. Special toolboxes for statistical and op-
timization programs are not required. We provide general
descriptions of how to use our confusion data *.m files in
the MATLAB environment. For a thorough coverage of
workspace management, file management, and *.m file de-
velopment, we recommend that interested readers consult
the MATLAB user’s manual (MathWorks, 2002, chaps. 5–7).

Matrix Preparation

In many applications, some preprocessing of the raw
confusion matrix is required prior to the application of a
subset extraction or clustering program. We have developed
a MATLAB *.m file, prepare.m, which produces six addi-
tional matrices based on the raw confusion matrix, C � [cij].
The raw confusion matrix, confusion_matrix, is the only
required input for the program, which is invoked by a
function call. This is accomplished via the following pro-
cess, (where �� is the command prompt in the MATLAB
environment):

�� load confusion_matrix;
�� [s1, s2, s3, d1, d2, d3] � prepare
(confusion_matrix);

The six n � n output matrices correspond to the variable
names in the brackets on the left-hand side of the function
call. Like the confusion matrix itself, matrices s1, s2, and s3
are similarity matrices because larger matrix elements indi-
cate greater similarity between the corresponding pairs of
stimuli. However, s1, s2, and s3 differ from the confusion
matrix because they are symmetric. Matrix s1 is obtained by
computing the arithmetic mean of mirror elements of the

274 BRUSCO AND STEINLEY



confusion matrix [(cij � cji)/2 for all i � j]. Although
arithmetic averaging or addition of mirror elements is not
uncommon in the literature (Cho et al., 2000; Loomis, 1982;
Theise, 1989), matrix s2 is produced using the geometric
mean of the mirror elements, �cijcji, which can be justified
on the basis that the confusion matrix elements are
frequencies.

Matrix s3 is established by the somewhat more sophisti-
cated process of fitting the Shepard–Luce similarity-choice
model (Luce, 1963; Shepard, 1957) to the confusion matrix.
This is accomplished by using a proportional fitting scheme
described by Heiser (1988), which is based on a procedure
by Deming and Stephan (1940). For raw confusion matrices
where cij � cji � 0 for any i � j, the program adds 1⁄2 to
these cells to avoid division by zero in the estimation
process, which is consistent with Heiser’s implementation.
If the analyst inputs a confusion matrix that has already
been converted to confusion percentages, then .001 is added
to the cells on the basis of Gilmore et al.’s (1979)
recommendation.

The remaining three matrices have a dissimilarity inter-
pretation, such that larger matrix elements represent less
similarity between stimulus pairs. The first two dissimilarity
matrices, d1 and d2, are obtained directly from the similar-
ity matrices s1 and s2, respectively, by subtracting each
off-diagonal element from the largest off-diagonal element
in the appropriate similarity matrix. Shepard (1957) sug-
gested that the negative of the natural logarithm of the
similarity components of the choice model should behave in
a manner similar to Euclidean distances (see also, Heiser,
1988). Therefore, the third dissimilarity matrix, d3, is ob-
tained by taking �ln(s3). For all six matrices produced by
the prepare.m program, the main diagonal is set to zero prior
to completion of the program.

Partitioning Programs

We have developed a MATLAB *.m file, bbdiam.m, that
produces a partition of stimuli on the basis of data in the
confusion matrix. The primary computational method of
bbdiam.m is a branch-and-bound algorithm, which is de-
scribed in Appendix A. The bbdiam.m program requires
only two inputs: (a) an n � n symmetric dissimilarity matrix
(i.e., d1, d2, or d3) and (b) a desired number of clusters for
the partition (num_clusters). The two outputs of bbdiam.m
are the minimum partition diameter, diameter, and an n � 1
vector, partition, containing the cluster assignment for each
stimulus. The implementation of the program requires the
following steps:

1. The user selects one of three dissimilarity matrices for
analysis, which is defined as matrix a, and also defines a
desired number of clusters (num_clusters). The user subse-
quently invokes the program bbdiam.m with a function call.

For a four-cluster solution based on d1, this process is
accomplished using the following statements:

�� a � d1;
�� num_clusters � 4;
�� [partition, diameter] �

bbdiam(a, num_clusters);

2. A branch-and-bound algorithm similar to the one de-
signed by Brusco and Cradit (2004) is then used to obtain a
minimum-diameter partition. The optimal partition is stored
in the vector partition, whereas the minimum partition di-
ameter is stored in diameter.

When processing is complete, the output variables (par-
tition and diameter) are automatically produced in the
MATLAB environment and can be viewed by simply typing
the variable name at the command prompt. The analyst can
explore different solutions by changing num_clusters and
assessing the impact on the partition diameter as well as the
interpretability of the solution. In addition, optimal parti-
tions for a fixed number of clusters can be compared for
different dissimilarity matrices (e.g., d1 vs. d2).

An important aspect of the minimum-diameter criterion is
the potential for a large number of alternative optimal
partitions (Baker & Hubert, 1976; Brusco & Cradit, 2004,
2005; Guénoche, 1993; Hansen & Jaumard, 1997). When an
analyst is comparing partition structures for two or more
matrices, alternative optima can be especially problematic.
For example, suppose we obtained minimum-diameter par-
titions for two different dissimilarity matrices related to
auditory confusion under different levels of noise. Further,
assume that the agreement between these two partitions is
low, indicating serious departures in cluster structure be-
tween the two matrices. It is quite possible that there are
other minimum-diameter partitions for these same two ma-
trices that would exhibit much stronger agreement. For this
reason, we have prepared the *.m file, randopt.m, which
attempts to find minimum-diameter partitions for two dif-
ferent matrices, such that the agreement between the two
partitions is maximized.

The randopt.m program uses Hubert and Arabie’s (1985)
adjusted Rand index (ARI) as a measure of partition agree-
ment. The formula for computing the ARI between two
partitions, 	1 and 	2, is as follows:

ARI �

M
�1 � �2� � 

�1 � �3�
�1 � �4�
� 
�2 � �3�
�2 � �4��

M2 � 

�1 � �3�
�1 � �4�
� 
�2 � �3�
�2 � �4��

, (2)

where M � n(n � 1)/2, �1 is the number of stimulus pairs
in the same cluster in 	1 and the same cluster in 	2, �2 is
the number of stimulus pairs in different clusters for 	1 and
in different clusters for 	2, �3 is the number of stimulus
pairs in the same cluster for 	1 but in different clusters for
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	2, and �4 is the number of stimulus pairs in the same
cluster in 	2 but different clusters for 	1. An ARI of 1
indicates perfect agreement of the two partitions. A value of
0 indicates only chance agreement. The effectiveness of the
ARI for cluster validation has been demonstrated by Milli-
gan and Cooper (1986) and, more recently, by Steinley
(2004).

The randopt.m program requires that the analyst obtain
minimum-diameter partitions for two dissimilarity matrices,
mata and matb, using bbdiam.m. The optimal partitions for
these two matrices are denoted parta and partb, and the
corresponding diameters are stored as diama and diamb.
The randopt.m program reads these data and applies a
heuristic algorithm to modify parta and partb with the
objective of maximizing ARI, while not allowing diama or
diamb to increase. A complete cycle of the heuristic tests the
effect of moving each stimulus in parta from its current
cluster to each of the other clusters and then each stimulus
in partb from its current cluster to each of the other clusters.
Each time a stimulus is tested for relocation to another
cluster, a check is made to determine if the partition diam-
eter constraint will be exceeded. If the relocation will not
cause diama or diamb to be exceeded, then the effect on
ARI is computed. The feasible relocation that produces the
largest increase in ARI is implemented at the end of the
cycle. New cycles are initiated until there is no feasible
relocation of a stimulus that will increase ARI. The imple-
mentation of the program requires the following steps:

1. The user obtains optimal partitions, parta and partb
using bbdiam.m for two selected dissimilarity matrices
(mata and matb) and a desired number of clusters. The
minimum diameters for these partitions are assigned the
variable names diama and diamb, respectively.

2. The user invokes the program randopt.m with the
following function call:

�� [ari,newa,newb] � randopt(mata,matb,parta,
partb,diama,diamb);

3. A heuristic algorithm is used to find alternative mini-
mum-diameter partitions with maximum agreement as mea-
sured by the ARI. The new partitions are stored in newa and
newb, and the corresponding ARI is stored in ari.

Seriation Program

We have developed a MATLAB *.m file, bbdom.m, that
will produce a seriation of the n stimuli on the basis of data
in the confusion matrix. The only input required for this
program is the n � n confusion matrix (confusion_matrix).
The bbdom.m program uses a branch-and-bound algorithm,
which is described in Appendix B, to produce a reordering
of the rows and columns of the confusion matrix so as to
maximize the sum of confusion elements above the main
diagonal of the reordered matrix. The two primary outputs

are the above-diagonal sum of confusion elements for the
optimally reordered matrix (domindex) and the optimal per-
mutation of the stimuli permopt.

The bbdom.m program also produces several secondary
outputs that are helpful for comparisons across confusion
matrices. One of these outputs is the linearity index (lindx),
which standardizes the dominance index by dividing domin-
dex by the sum of the off-diagonal elements. The remaining
outputs, con and incon, represent, respectively, the number
of consistencies and inconsistencies in the optimally reor-
dered matrix. A consistency (inconsistency) occurs when an
element above the main diagonal is greater (less) than its
mirror element below the main diagonal. The implementa-
tion of the bbdom.m program requires the following steps:

1. The user invokes the program bbdom.m with the fol-
lowing function call:

�� [domindex,permopt,lindx,con,incon] �
bbdom(confusion_matrix);

2. A branch-and-bound algorithm similar to the one de-
scribed by Brusco and Stahl (2005a, chaps. 7–8) is then
used to find the optimal permutation of stimuli. The optimal
permutation is stored in the vector permopt, whereas the
maximum above-diagonal sum of confusion elements is
stored in domindex. The linearity index is stored in lindx,
and con and incon represent the number of consistencies
and inconsistencies, respectively.

When the algorithm terminates, the reordered matrix can
be obtained using the following command:

�� reordered_matrix � confusion_matrix
(permopt,permopt);

The sum above the main diagonal for this reordered matrix
is domindex.

Subset Extraction Programs

We have developed a MATLAB *.m file, bbsubset.m,
that will extract exactly K subsets of size T from a proximity
matrix. The primary computational method of bbsubset.m is
a branch-and-bound algorithm, which is described in Ap-
pendix C. The bbsubset.m program offers considerable flex-
ibility. For example, when applied to s1 for the case of K �
1, bbsubset.m will identify a subset of size T with maximum
total confusion within the subset. If a subset of size T with
minimum confusion is desired (Green & Pew, 1978; Theise,
1989), the analyst need only multiply s1 by �1 prior to the
function call.

When applied to s1 for the case of K � 1, bbsubset.m will
extract K subsets of size T so as to maximize the within-
subset sums minus the between-subsets sums, which is the
criterion selected by Brusco and Stahl (2001) and is con-
sistent with the subset extraction goals outlined by Heiser
(1988). Heiser observed that the extraction of multiple pairs
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(i.e., T � 2) of stimuli is an especially important problem in
experimental contexts, with applications to foreknowledge
of position in single-item recognition (Van der Heijden,
Schreuder, & Wolters, 1985), as well as single-item recog-
nition with multiple-item visual arrays (Van der Heijden,
1986). The underlying premise in both of these applications
is that misrecognition of a stimulus should principally be
associated with the other member of its pair and that con-
fusion with a member from another pair should be rare and
likely result from random guessing.

In its current form, bbsubset.m is restricted to selection of
subsets of the same size (i.e., T is the same for all clusters).
For K � 1, which has been used in a number of applications
(Green & Pew, 1978; Lees & Neufeld, 1999; Theise, 1989),
this is obviously not a relevant issue. For K � 2, we have
only come across instances where pairs of stimuli (i.e., T �
2 for all subsets) were selected (Coldren & Haaf, 2000;
Heiser, 1988). Our program provides a more general subset
extraction model by allowing T � 2. Although bbsubset.m
could be modified to allow for multiple subsets of different
sizes, there appears to be no current need for this extension
on the basis of applications observed in the literature. The
implementation of the program requires the following steps:

1. The user selects one of the similarity matrices for
analysis, which is defined as matrix a, and also specifies a
number of subsets, num_subsets, and the subset size, sub
_size. The user subsequently invokes the program bbdiam.m
with a function call. For a four-subset solution consisting of
two stimuli per subset and based on s1, the MATLAB
commands are as follows:

�� a � s1;
�� num_subsets � 4;
�� sub_size � 2;
�� [subset, index] � bbsubset(a, num_
subsets, sub_size);

2. A branch-and-bound algorithm is used to extract the
subsets to maximize the subset selection criterion. The
optimal subset is stored in the vector subset, whereas the
maximum criterion value is stored in index.

MATLAB provides an accommodating environment for
viewing the results of the selected subsets obtained from
bbsubset.m. The following commands provide a convenient
display of the confusion submatrix (submatrix) for the ex-
tracted subset(s):

�� subset � subset(1:num_subsets.*
sub_size);
�� submatrix � confuse(subset,subset);

For the case of num_subsets � 1, submatrix contains the
within-subset confusion entries for the selected subset. For
num_subsets � 1, submatrix will contains a series of T � T
submatrices of within-subset confusion along the main di-
agonal, and all elements outside these submatrices represent
between-subsets confusion.

Demonstration for Partitioning

There are a variety of examples from the literature that
address structural comparison of confusion matrices that
were obtained under different experimental conditions
(Brusco, 2004; Cho et al., 2000; Loomis, 1982; Miller &
Nicely, 1955; Morgan et al., 1973; Phillips et al., 1983;
Townsend, 1971a, 1971b). To illustrate the MATLAB par-
titioning programs for confusion matrices, we use two con-
fusion matrices published by Vega-Bermudez et al. (1991,
p. 537). The first matrix corresponds to tactual confusion
among uppercase letters of the alphabet under conditions of
“active touch,” whereas the second matrix corresponds to
confusions for the same stimulus set under “passive touch.”
In the active touch experiment, subjects were able to reach
out and stroke the embossed stimulus letter. In contrast, for
passive touch, the subject’s arm was immobilized and the
embossed stimulus letter was pressed against the subject’s
index finger. Our goal is to investigate the confusion struc-
tures for active and passive touch in tactual letter
recognition.

We used prepare.m to produce the similarity and dissim-
ilarity matrices for the active touch and passive touch con-
fusion matrices. We subsequently applied bbdiam.m to the
Shepard distances (matrix d3) for these two matrices for
2 � K �� 10 clusters. Optimal partitions were obtained in
less than 1 CPU s for all values of K for both matrices (2.2
GHz, Pentium 4 PC, 1 gigabyte RAM). Table 2 reports the
optimal partition diameters for both matrices for each value
of K. The table also contains the percentage reduction in the
diameter that was realized from increasing the number of
clusters, which Hansen and Delattre (1978) recommended
as a guideline for selecting the appropriate number of
clusters.

Table 2 shows that there was very little improvement in
partition diameter for either active touch or passive touch on
the range of 2 � K � 5 clusters; however, some significant
improvements occurred thereafter. We selected the 9-cluster
partition for active touch because there was a large improve-
ment (9.41%) when moving from 8 to 9 clusters, but a much
smaller improvement (4.68%) when moving from 9 to 10
clusters. Similarly, we adopted the 8-cluster solution for
passive touch because of the large improvement (11.03%)
when moving from 7 to 8 clusters and the small improve-
ment when moving from 8 to 9 clusters (2.35%). After
selecting these solutions, we applied the randopt.m program
to produce minimum-diameter partitions with maximal
agreement as measured by the ARI. The resulting mini-
mum-diameter partitions for active touch and passive touch
are displayed in Table 3.

The agreement between the active touch and passive
touch partitions, as measured by ARI, was .73. On the basis
of Steinley’s (2004) experimental analysis of the index, this
would be characterized as fairly strong agreement. The
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partitions in Table 3 are ordered to facilitate comparison of
the similarities and differences. The first four clusters of the
two partitions are identical. These include two of the larger
clusters, {B, C, D, G, O, Q} and {F, P, T, Y}, and two
singleton clusters, {I} and {L}. The fifth clusters for the two
partitions are very similar, differing only in that {Z} is
included in the fifth cluster for active touch, but not passive
touch. The sixth cluster for active touch, {H, M, W}, is a
subset of the sixth cluster for passive touch, {H, M, R,
U, W}.

The comparison of minimum-diameter partitions also
helps to uncover some important differences in confusion
structure for active touch and passive touch. For example,
consider Clusters 5 and 7. If, for the active touch partition,
the letter Z could be moved from Cluster 5 to Cluster 7, then
Cluster 5 would be the same for the two partitions and
Cluster 7 would also exhibit greater agreement. Unfortu-
nately, this was not possible and a closer inspection of the

confusion matrix uncovers the reason. For active touch, the
letter J was never offered as a mistaken response for stim-
ulus Z and vice versa. Therefore, these two letters are
dissimilar in the active touch data and could not be placed
in the same cluster. For passive touch, J was offered as a
mistaken response for stimulus Z 5 times, and Z as a
mistaken response for stimulus J 6 times. Thus, there was
much greater confusability between the two letters in the
passive touch study, and therefore, the two letters could be
placed in the same cluster.

On the whole, the results of the partitioning analysis
confirm the findings of Vega-Bermudez et al. (1991) that
there is a strong similarity in the confusion structure for
active and passive touch in tactual letter recognition. How-
ever, the partitioning algorithm also uncovers some salient
differences in confusion that might be worthy of further
investigation. For example, why are the letters J and Z never
confused in active touch but frequently confused in passive
touch?

Demonstration for Seriation

We applied bbdom.m to the active touch and passive
touch confusion matrices published by Vega-Bermudez et
al. (1991, p. 537). The optimal permutations for these two
matrices are as follows:

Active touch: H P T A L V Y J Z F S X C G B Q N I
M K E R D U O W

Passive touch: P T Y J L Z X F I S E C G B A R H N
M Q D U O V W K

The optimal above-diagonal sum for the active touch
matrix is 1,268, and 1,046 CPU s were required to obtain the
optimal permutation. The optimal permutation for the pas-
sive touch matrix was obtained in 188 s, and the optimal

Table 3
Minimum-Diameter Partitions for the Shepard’s
Pseudo-Distance Matrices Obtained for the Active
Touch and Passive Touch Confusion Matrices Published by
Vera-Bermudez et al. (1991, p. 537)

Cluster
number (k)

Cluster memberships

Active touch Passive touch

1 {B, C, D, G, O, Q} {B, C, D, G, O, Q}
2 {F, P, T, Y} {F, P, T, Y}
3 {I} {I}
4 {L} {L}
5 {E, K, N, X, Z} {E, K, N, X}
6 {H, M, W} {H, M, R, U, W}
7 {J} {J, S, Z}
8 {A, R, S} {A, V}
9 {U, V}

Table 2
Optimal Partition Diameters (2 � K � 10) for the Shepard’s Pseudo-Distance Matrices
Obtained for the Active and Passive Touch Confusion Matrices Published by Vera-Bermudez et
al. (1991, p. 537)

Number of
clusters (K)

Active touch Passive touch

Optimal
diameter

% diameter
reduction

Optimal
diameter

% diameter
reduction

2 5.6668 5.8792
3 5.5078 2.81 5.7148 2.80
4 5.4886 0.35 5.5567 2.77
5 5.2431 4.47 5.2459 5.59
6 4.3578 16.89 5.0433 3.86
7 4.0015 8.18 4.2525 15.68
8 3.9877 0.34 3.7835 11.03
9 3.6125 9.41 3.6944 2.35

10 3.4434 4.68 3.6139 2.18

278 BRUSCO AND STEINLEY



above-diagonal sum is 1,528. The linearity indices for ac-
tive touch and passive touch are .72 and .73, respectively.
The optimally reordered active touch confusion matrix has
165 consistencies and 44 inconsistencies, whereas the cor-
responding figures for the optimally reordered passive touch
matrix are 167 and 36. The rank correlation coefficient
between the two optimal permutations is .64 (p � .001).

The optimal permutations for the two matrices do exhibit
some evident structural similarities. For example, 7 of the
first 10 letters in both permutations are F, J, L, P, T, Y, and
Z. The sequence of these 7 letters in the two permutations
are also similar. For the active touch permutation, the order
of the 7 letters is P–T–L–Y–J–Z–F. The order is the same for
passive touch, with the exception that the letter L is moved
two places to the right. The ends of the optimal permuta-
tions for the two matrices are also comparable. Four of the
last 6 letters in both permutations are D, U, O, and W, and
these letters are in the same order in both permutations.

It is also insightful to link the seriation results to the
partitioning results discussed in the previous section. For
example, consider the cluster {B, C, D, G, O, Q}, which is
Cluster 1 for both the active touch and passive touch data.
The ordering of these letters is C–G–B–Q–D–O in both the
optimal permutation for the active touch confusion matrix
and the optimal permutation for the passive touch matrix.
This same property holds for the cluster {F, P, T, Y}, which
is Cluster 2 in both partitions in Table 3. The order of these
four letters in both optimal permutations is P–T–Y–F.

Like the partitioning results in the previous section, the
optimal seriation of letters supports the theory that the
confusion structures for active touch and passive touch have
some degree of agreement. However, once again, we ob-
serve some marked differences in the two permutations. For
example, the letters E, K, N, and X appear in Cluster 5 of
both the active touch and passive touch partitions. However,
the order of these stimuli in the active touch partition is
X–N–K–E, whereas the order for passive touch is X–E–N–K.
Once again, a closer inspection of the confusion matrix

reveals why this occurs. For passive touch, stimulus K is a
mistaken response for stimulus E 17 times, and E is a
mistaken response for K 16 times, which is consistent with
E being to the left of K in the permutation. For active touch,
however, stimulus K is a mistaken response for stimulus E
10 times, and E is a mistaken response for K 18 times,
which creates strong pressure to place K to the left of E in
the permutation.

Whereas the partitioning analysis provides information
for comparison of active and passive touch with respect to
the magnitude of confusion, the dominance analysis pro-
vides additional comparative information regarding symme-
try. Under passive touch, the confusion between E and K
was nearly symmetric; however, in the active touch exper-
iment, E was a mistaken response for K far more often than
K was a mistaken response for E.

Demonstration for Subset Extraction

We applied bbsubset.m to each of the similarity matrices
(arithmetic average, geometric average, and similarity
choice) associated with the active touch and passive touch
confusion matrices published by Vega-Bermudez et al.
(1991, p. 537). Following the example outlined by Heiser
(1988), the goal was to select K � 4 pairs (T � 2) of letters
with high similarity within subsets and low similarity be-
tween subsets. The key questions of interest are the follow-
ing: (a) Are the subsets extracted for active touch consistent
with those extracted for passive touch, and (b) how consis-
tent are the subsets across the different similarity matrices?
The optimal subsets and measure of fit indices for each
similarity matrix are displayed in Table 4.

The optimal subsets for the similarity matrices based on
arithmetic and geometric means were extracted in less than
1 CPU s, whereas those based on the Shepard–Luce simi-
larity-choice model required 5 s and 17 s for active touch
and passive touch, respectively. For active touch, the opti-
mal pairs of letters extracted from the arithmetic and geo-

Table 4
Optimal Subset Extraction for the Active Touch and Passive Touch Similarity Matrices
Published by Vera-Bermudez et al. (1991, p. 537), Assuming That K � 4 Subsets of Size T � 2
Are Desired

Confusion data
Similarity

matrix

Optimal
measure of fit,
h*(S1, . . . , S4)

Optimal subsets (letter pairs)

Pair 1 Pair 2 Pair 3 Pair 4

Active touch Arithmetic 105.0000 (F, P) (M, W) (O, Q) (X, Z)
Geometric 93.9630 (F, P) (M, W) (O, Q) (X, Z)

SCM 1.6844 (B, S) (M, W) (V, Y) (X, Z)
Passive touch Arithmetic 135.5000 (F, P) (M, W) (O, Q) (X, Z)

Geometric 103.6500 (M, W) (O, Q) (V, Y) (X, Z)
SCM 1.4006 (F, P) (N, R) (O, Q) (X, Z)

Note. SCM � similarity-choice model.
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metric similarity matrices were identical ({F, P}, {M, W},
{O, Q}, and {X, Z}). For the similarity-choice matrix, {F,
P} and {O, Q} were replaced with {B, S} and {V, Y}.

For passive touch, the optimal pairs of letters extracted
from the arithmetic matrix were identical to those extracted
for the active touch arithmetic matrix. Three of the four
optimal pairs of letters extracted from the geometric matrix
for passive touch were identical to those extracted for the
active touch geometric matrix; however, {V, Y} replaced
{F, P} as the fourth pair. For passive touch, the optimal
pairs of letters extracted from the similarity-choice matrix
differed violently from those extracted for the active touch
similarity-choice matrix, with {X, Z} as the only consistent
pair between the optimal subsets.

Across the six solutions reported in Table 4, the pair {X,
Z} is selected 6 times, the pairs {M, W} and {O, Q} are each
selected 5 times, and the pair {F, P} is selected 4 times. No
other pair is selected more than twice. In addition, {F, P},
{M, W}, {O, Q}, and {X, Z} composed the optimal collec-
tion of subsets for three of the six solutions. Therefore, we
selected these pairs as our consensus subset. The confusion
matrix subsets corresponding to these pairs are displayed in
Tables 5 and 6 for active touch and passive touch, respec-
tively. The within-subset elements are encased within the
boxes along the main diagonal, whereas the between-sub-
sets elements correspond to all remaining values. We note
that the within-subset confusion elements for the four sub-
sets are large, whereas the between-subsets confusion ele-
ments are much smaller. This is indicative of considerable
similarity within subsets and separation between subsets.

Like the partitioning and seriation results, the optimal subset
extraction of letter pairs reveals considerable similarity be-
tween the active touch and passive touch data. The four opti-
mal pairs of letters for these two data sources are identical
when arithmetic averaging is used to produce the similarity

matrices. When geometric averaging is used, three of the four
pairs are the same. There was, however, a somewhat profound
difference in the optimal letter pairs for active touch and
passive touch when the similarity-choice model was used to
produce the similarity matrix.

Discussion

Summary of Methods

The analysis of confusion matrices is a well-recognized
problem in the psychological literature. Unfortunately, some of
the most important methodological tools for modeling confu-
sion data are not widely available. We have attempted to
address this gap by providing a set of MATLAB programs for
confusion data. We selected MATLAB because of its flexible
interface, as well as to build on the recent trend of MATLAB
software for combinatorial data analysis. The first program,
prepare.m, preprocesses a confusion matrix by producing six
new matrices derived from the raw confusion data. The pre-
processing ranges from simple arithmetic and geometric aver-
aging of mirror elements to the creation of a similarity matrix
based on the popular Shepard–Luce similarity-choice model.
After running prepare.m, the analyst is left with three addi-
tional similarity matrices and three dissimilarity matrices for
possible analysis. The modification of the program for varia-
tions of these matrices should be straightforward.

We have also created two MATLAB programs, bbdiam.m
and randopt.m, which can be used for diameter-based parti-
tioning of the dissimilarity matrices generated by prepare.m.
Using bbdiam.m, a quantitative analyst can obtain optimal
partitions for dissimilarity matrices based on geometric or
arithmetic averaging, as well as a psychological distance mea-
sure based on the Shepard–Luce choice model. These analyses
can be completed for various numbers of clusters, and confi-
dence can be gained by observing similar clustering patterns

Table 5
The Submatrix for a Four-Group, Two-Member Subset Extraction Solution for the Active
Touch Confusion Matrix Published by Vega-Bermudez et al. (1991, p. 537)

Letter F P M W O Q X Z

F — 18 0 0 0 0 3 0

P 29 — 0 1 0 1 0 0

M 2 0 — 37 0 0 0 0

W 2 0 19 — 0 1 0 0

O 0 0 0 0 — 5 0 0

Q 0 1 1 0 64 — 0 0

X 0 0 3 3 0 1 — 16

Z 5 0 0 2 0 0 48 —

Note. Values in bold are the within-group terms, whereas the remaining entries are between-groups terms.
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for different dissimilarity matrices. If the relationship between
the partitions for two dissimilarity matrices is antagonistic, the
analyst can use the program randopt.m to identify partitions
that improve the agreement as measured by the ARI, while
maintaining minimum-diameters for both data sources.

We have prepared a seriation program, bbdom.m, which can
be used to obtain a permutation of the stimuli that maximizes
the sum of the confusion elements above the main diagonal of
the reordered matrix. This procedure is less restrictive than the
rigid partitioning process imposed by bbdiam.m and can help
to uncover asymmetry in the data. We have also developed a
program, bbsubset.m, that can be applied to one of the derived
similarity matrices. The program is designed to accommodate
the broader problem of extracting K subsets of size T so as to
maximize within-subset confusion minus between-subsets
confusion. For the case of K � 1, the problem reduces to the
identification of a single subset with maximum within-subset
confusion (there is no between-subsets confusion because there
is only one subset). If minimum within-subset confusion is
desired, the analyst need only multiply all elements of the
similarity matrix by �1 prior to running bbsubset.m.

Limitations and Extensions

Although the branch-and-bound algorithms were success-
fully applied to some of the larger confusion matrices pub-
lished in the literature, the algorithms can be sensitive to matrix
characteristics. The bbdiam.m and randopt.m programs should
be reliable for matrices of 50 � 50 or larger, particularly when
there are fewer than 10 clusters. The bbdom.m and bbsubset.m
programs are a bit more sensitive to the matrix size and
structure and could conceivably require hours of CPU time for
some matrices of size 30 � 30 or larger. Although there are
exceptions (Hull, 1973; Rothkopf, 1957), most confusion ma-
trices published in the psychological literature are 26 � 26 or
smaller and can be accommodated by all of our MATLAB
programs.

Another important issue associated with our programs is
the uniqueness of the solutions provided by the algorithms.
There are frequently multiple (often many) minimum-diam-
eter partitions, and in such cases, the final partition obtained
by bbdiam.m is not unique. The randopt.m program facili-
tates tie breaking among minimum-diameter partitions;
however, it is sensitive to the initial input partitions and
does not necessarily produce optimal partition agreement.
The potential for alternative optima also exists for the
seriation (bbdom.m) and subset extraction (bbsubset.m)
programs; however, the uniqueness problem is much less
severe for these applications.

We have limited our demonstrations and discussion to the
analysis of confusion matrices because of the prevalence
and criticality of these data in the psychological literature.
However, the clustering programs are amenable to any n �
n symmetric dissimilarity matrix, perhaps produced by a
paired-comparison or sorting experiment. The bbdom.m
program could be applied to a variety of asymmetric matri-
ces, such as paired-comparison or journal cross-citation
matrices. In a similar vein, there is no reason that
bbsubset.m could not be applied to any n � n symmetric
similarity matrix. Thus, it should be clear that the methods
described herein have portability beyond the confusion data
context.
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Appendix A

Branch-and-Bound Algorithm for Minimum-Diameter Partitioning

We define N � {1, 2, . . . , n} as the set of indices for the n
stimuli and A � [aij] as an n � n dissimilarity matrix obtained
from the raw confusion data. The goal is to find a minimum-
diameter, K-cluster partition, 	K � {S1, S2, . . . , SK} of the n
stimuli, where Sk is the subset of stimuli assigned to cluster k (1 �
k � K). A mathematical statement of the minimum-diameter
partitioning problem is

min : f 
	K� � max
k�1,. . .,K

� max

i�j��Sk


aij�� (A1)

subject to

Sk � Ø for 1 � k � K; (A2)

Sl � Sk � Ø for 1 � l � k � K; (A3)

and

S1 � S2 � . . . � SK � N. (A4)

The objective function, Equation A1, represents the partition di-
ameter. The constraints in Equations A2, A3, and A4 require the
clusters to be nonempty, mutually exclusive, and exhaustive,
respectively.

The branch-and-bound solution procedure is adopted from
Brusco and Stahl (2005a, chaps. 2–3). We denote p as a pointer
that marks position in the search tree, � as the number of empty
clusters, and nk as the number of stimuli in cluster k, for 1 � k �
K. The vector � � [�1, �2, . . . , �p] contains the cluster member-
ships of the first p stimuli (1 � j � p) and represents a partial
solution in the search process. The vector �* � [�1, �2, . . . , �n]
is the incumbent (best found) complete partition of the stimulus

set. The partition diameters for � and �* are denoted f(�) and f(�*),
respectively. The steps of the algorithm are as follows:

Step 0. Obtain �* and f(�*) using multiple restarts of an
exchange algorithm. Set p � 0, � � K, �j � 0 for
1 � j � n, and nk � 0 for 1 � k � K.

Step 1. Set p � p � 1, k � 1, nk � nk � 1, �p � k. If nk �
1, then set � � � – 1.

Step 2. If n – p � �, go to Step 6.

Step 3. If [aip � f(�*) � �i � k], for any 1 � i � p – 1, then
go to Step 6.

Step 4. If min
k

max

q�1,. . . ,p

ajq|�q � k�� � f(�*), for any

p � 1 � j � n, then go to Step 6.

Step 5. If p � n, then go to Step 1. Otherwise, set �* � �
and store f(�*).

Step 6. If k � K or nk � 1, then go to Step 8.

Step 7. Set nk � nk – 1. Set k � k � 1 and nk � nk � 1.
If nk � 1, then set � � � – 1. Set �p � k and return
to Step 2.

Step 8. Set �p � 0. Set nk � nk – 1 and p � p – 1. If nk �
0, then set � � � � 1. If p � 0, then return the
incumbent solution, which is an optimal solution,
and Stop; otherwise, set k � �p and return to
Step 6.
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Appendix B

Branch-and-Bound Algorithm for Seriation

Let C � [cij] denote the n � n confusion matrix, where cij � the
number (or percentage) of responses for stimulus j when stimulus i is
presented. Define � as the set of all n! feasible permutations of the n
stimuli, and let � represent an arbitrary permutation from that set.
Further, let �(k) indicate the stimulus in position k of permutation �.
The matrix permutation problem can now be concisely stated as

max
���

: g
�� � �
k�l

c�
k��
l �. (B1)

The problem posed by Equation B1 requires finding a permu-
tation, �*, that maximizes the sum of the elements above the main
diagonal, g(�*). DeCani (1972) and Flueck and Korsh (1974)
proposed branch-and-bound algorithms for obtaining optimal so-
lutions to the matrix triangularization problem. Their methods are
based on a general branch-and-bound paradigm that can be used
for a variety of matrix permutation problems (Brusco & Stahl,
2005a, chaps. 7–11). We adopt our branch-and-bound solution
procedure from Brusco and Stahl (2005a, chaps. 7–8). We denote
p as a pointer that marks the current position in the partial se-
quence of stimuli. In addition, we obtain a lower bound, gLB, for
g(�*) using a pairwise interchange heuristic. The steps of the
algorithm are as follows:

Step 0. Obtain the lower bound, gLB using a pairwise
interchange heuristic solution, �B. Set p � 1,
�(p) � 1, �(k) � 0 for k � 2, . . . , n.

Step 1. Set p � p � 1.

Step 2. Set �(p) � �(p) � 1.

Step 3. If �(p) � �(k) for any 1 � k � p – 1, then go to
Step 2.

Step 4. If p � 1 and �(p) � n, then return �B as �* and
Stop.

Step 5. If p � 1 and �(p) � n, then go to Step 11.

Step 6. If p � n – 1, then let �(n) � j � j � �(k) for any
1 � k � n – 1, and go to Step 7. Otherwise, go to
Step 8.

Step 7. Compute g(�). If g(�) � gLB, then set gLB � g(�)
and �B � �. Go to Step 2.

Step 8. Perform adjacency test: If c�(p � 1)�(p) �

c�(p)�(p � 1), then go to Step 9; otherwise, go to
Step 2.

Step 9. Perform insertion test: If �r�q�1
p c�
q��
r�

� �r�q
p�1c�
 p��
r� for any 1 � q � p � 2, then go to

Step 2; otherwise go to Step 10.

Step 10. Perform bound test: If �k�1
p�1 �l�k�1

p c�
k��
l �

� �

i�j��Rp

max
cij,cji� � gLB, where Rp � the set

of stimuli assigned to the first p positions, then go
to Step 1. Otherwise, go to Step 2.

Step 11. Backtrack in the stimulus sequence by setting
�(p) � 0 and p � p – 1. Go to Step 2.

Appendix C

Branch-and-Bound Algorithm for Subset Extraction

We define B � [bij] as an n � n similarity matrix obtained from
the raw confusion data. The goal is to extract K subsets {S1, S2, . . .
, SK} of size T from a complete set of n stimuli, so as to maximize
the sum of the within-subset similarities minus the sum of the
between-subsets similarities. A mathematical statement of the sub-
set extraction problem is

max : h
S1,S2,. . .,SK� � �
k�1

K �

i�j��Sk

bij

� ��
k�1

K�1 �
i�Sk

�
l�k�1

K �
j�Sl

bij� (C1)

subject to

Sl � Sk � Ø for 1 � l � k � K; (C2)

and

|Sk| � T for 1 � k � K. (C3)

Equation C1 represents the measure of fit for the subset extraction
problem, which corresponds to the sum of the within-cluster dis-
similarities minus the sum of the between-clusters dissimilarities.
The constraint in Equation C2 guarantees that a stimulus is not
selected for more than one subset, and the constraint in Equation
C3 requires the subset size to be T for all subsets. Modification of
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the model for different sizes for different subsets could be accom-
plished; however, we have not found any subset extraction prob-
lems in the literature where this was necessary.

We use a modification of the branch-and-bound algorithm de-
scribed in Appendix B to produce optimal solutions to the subset
extraction problem. We obtain a lower bound, hLB, for h(�*) using
a pairwise interchange heuristic. We also make use of the rank
ordering (descending) of the pairwise similarity elements in B. For
any pointer position in the search tree, p, there is a particular
number of within-subset similarity terms that have been collected,
y1, and a particular number that remain to be collected, y2. A
best-case bound for those terms that remain to be collected can be
obtained by scanning the ranked list of similarities and summing
the first y1 terms. We call this sum �(p). In a similar manner,
summing the last y2 terms in the ranked array provides a best-case
bound for the between-subsets contribution, and we denote this
sum as �(p). The steps of the algorithm are as follows:

Step 0. Obtain the lower bound, hLB, using a pairwise
interchange heuristic solution, �B. Set p � 1,
�(p) � 1, �(k) � 0 for k � 2 . . . n. Define �[T(k �
1)�t] � k for 1 � k � K and 1 � t � T.

Step 1. Set p � p � 1.

Step 2. Set �(p) � �(p) � 1.

Step 3. If �(p) � �(k) for any 1 � k � p – 1, then go to
Step 2.

Step 4. If �(p) � �(p � 1) and �(p) � �(p � 1), then go
to Step 2.

Step 5. If �(p) � �(p � 1) and �(p) � �(p � T), then go
to Step 2.

Step 6. If p � 1 and �(p) � n, then return �B as �* and
Stop.

Step 7. If p � 1 and �(p) � n, then go to Step 11.

Step 8. If p � KT, then go to Step 10. Otherwise, go to
Step 9.

Step 9. Compute h(�). If h(�) � hLB, then set hLB � h(�)
and �B � �. Go to Step 2.

Step 10. Perform bound test by computing Equation C1 for
the current partial solution and adding the contri-
bution �(p) and subtracting �(p). If this quantity
exceeds hLB, then go to Step 1. Otherwise, go to
Step 2.

Step 11. Backtrack in the stimulus sequence by setting
�(p) � 0 and p � p – 1. Go to Step 2.
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