PSYCHOMETRIKA
2007
DOI: 10.1007/s11336-007-9013-4

A COMPARISON OF HEURISTIC PROCEDURES FOR MINIMUM WITHIN-CLUSTER
SUMS OF SQUARES PARTITIONING

MICHAEL J. BRUSCO
FLORIDA STATE UNIVERSITY

DOUGLAS STEINLEY

UNIVERSITY OF MISSOURI-COLUMBIA

Perhaps the most common criterion for partitioning a data set is the minimization of the within-
cluster sums of squared deviation from cluster centroids. Although optimal solution procedures for within-
cluster sums of squares (WCSS) partitioning are computationally feasible for small data sets, heuris-
tic procedures are required for most practical applications in the behavioral sciences. We compared the
performances of nine prominent heuristic procedures for WCSS partitioning across 324 simulated data
sets representative of a broad spectrum of test conditions. Performance comparisons focused on both
percentage deviation from the “best-found” WCSS values, as well as recovery of true cluster structure.
A real-coded genetic algorithm and variable neighborhood search heuristic were the most effective meth-
ods; however, a straightforward two-stage heuristic algorithm, HK-means, also yielded exceptional per-
formance. A follow-up experiment using 13 empirical data sets from the clustering literature generally
supported the results of the experiment using simulated data. Our findings have important implications
for behavioral science researchers, whose theoretical conclusions could be adversely affected by poor
algorithmic performances.

Key words: combinatorial data analysis, cluster analysis, heuristics, sum of squares criterion.

1. Introduction

Monte Carlo comparisons in the cluster analysis literature are especially prevalent because
of the large number of methodological alternatives and implementation decisions faced by ana-
lysts. Reviews of many of these comparisons are offered by Arabie and Hubert (1992, 1996) and
Steinley (2006a). In this paper we focus on a Monte Carlo comparison of methods for one of the
most frequently selected criteria in the clustering literature: minimizing the within-cluster sums
of squares (WCSS).

We consider a collection of N objects contained in the set S = {01, 02, ...,0n} with the
corresponding index set C = {1,2,..., N}. Each object is measured on V variables and the
data are contained in the N x V matrix, X = [x;,], whose elements contain the measure of
variable v on object 0; (forall 1 <i < N and 1 <v < V). We assume that the desired number of
clusters, K, is prespecified, and the number of feasible partitions of the N objects into K clusters
can, therefore, be computed as a Stirling number of the second kind. One possible formula for
the number of feasible partitions is offered by Hand (1981):

1 K
FZ(—I)"(’,S)(K—N. ()
" k=0

Requests for reprints should be sent to Michael J. Brusco, Department of Marketing, College of Business, Florida
State University, Tallahassee, FL 32306-1110, USA. E-mail: mbrusco@cob.fsu.edu

© 2007 The Psychometric Society



PSYCHOMETRIKA

The set containing all feasible K -cluster partitions is denoted ITg, and members of this set are
partitions wg = {S1, S2, ..., Sk}. Each set S; (1 <k < K) contains the objects assigned to clus-
ter k of the partition, wg . The set C; (1 <k < K) containing the indices of the objects in S has
a one-to-one relationship with Si. Further, the cardinality of Sy (and Cy) represents the number
of objects assigned to cluster k and is denoted Ny (1 <k < K) and Zle Ny =N.

Although other distance metrics are possible, we consider the WCSS for a partition, g,
based on squared Euclidean distance, which is computed as follows:

K Vv
WCSS(ug) =D 3 > (v — Fur)’, 2)

k=1ieCy v=1

where x,; = Zieck Xiy/ Ny is the mean of variable v in cluster k (forall 1 <v <V and 1 <k <
K). The objective criterion of the minimum within cluster sum of squares partitioning problem
(MWCSSP) is

Minimize: [WCSS(nk) | g € Hk]. 3)

The MWCSSP is known to be NP-hard (Brucker, 1978; Day, 1996). Some recent progress has
been made for producing guaranteed optimal solutions for problems of nontrivial size. Dynamic
programming methods can obtain optimal solutions for small problems with up to about N = 30
objects (Hubert, Arabie, & Meulman, 2001, Chap. 4; van Os & Meulman, 2004). A branch-
and-bound algorithm for MWCSSP was originally proposed by Koontz, Narendra, and Fuku-
naga (1975), and later refined by Diehr (1985) and Brusco (2006). Du Merle, Hansen, Jaumard
and Mladenovic (2000) developed an effective procedure that incorporates an interior point al-
gorithm, column generation, a neighborhood search heuristic, and branch-and-bound methods.
Despite the progress in the development of optimal procedures for MWCSSP, heuristic methods
are typically required for most practical applications.

The earliest heuristic procedures for MWCSSP were popularized in the 1960s under the
constraint of limited computing power (Forgy, 1965; Jancey, 1966; MacQueen, 1967). These
procedures typically alternate between computation of the cluster centroids and reassignment
of objects, with a few minor differences that will be highlighted in the next section. Somewhat
more computationally demanding local search operations were developed in the 1970s (Banfield
& Bassil, 1977; Hartigan & Wong, 1979), including relocation of objects and pairwise inter-
change of objects in different clusters. More recently, heuristic developments have focused on
metaheuristics capable of escaping poor local minima. These methods include simulated anneal-
ing (Babu & Murty, 1994; Klein & Dubes, 1989; Selim & Al-Sultan, 1991; Sun, Xie, Song,
Wang, & Yu, 1994a; Sun, Xu, Liang, Xie, & Yu, 1994b), tabu search (Al-Sultan, 1995; Pacheco
& Valencia, 2003; Sung & Jin, 2000), genetic algorithms (Babu & Murty, 1993; Jones & Bel-
tramo, 1991; Krishna & Murty, 1999; Maulik & Bandyopadhyay, 2000; Pacheco & Valencia,
2003), and variable neighborhood search (Hansen & Mladenovic, 2001).

Despite the prevalence of new heuristic methods for MWCSSP, there has been little system-
atic comparison of methods across a broad range of data conditions. Recent comparative analy-
ses have been restricted to only a few empirical data sets that are measured in a low-dimensional
space (Hansen & Mladenovic, 2001; Pacheco & Valencia, 2003). Therefore, one contribution of
this current manuscript is a comparative analysis of prominent heuristic procedures for MWCSSP
across a broad range of data sets representative of those that are typical for the social sciences.
Although our comparative analyses focus primarily on the ability of existing methods to mini-
mize WCSS, we also recognize that the recovery of some known cluster structure has often been
of paramount importance in the quantitative behavioral sciences literature (Brusco, 2004; Brusco
& Cradit, 2001; Dimitriadou, Dolnicar, & Weingessel, 2002; Milligan, 1980a, 1985, 1989; Mil-
ligan & Cooper, 1986, 1988; Steinley, 2003, 2006b). Therefore, we consider the cluster structure
recovery performances of the algorithms, as well as their ability to minimize the WCSS criterion.



MICHAEL J. BRUSCO AND DOUGLAS STEINLEY

In the next section of this paper we provide a thorough description of the heuristic proce-
dures evaluated in our experimental study. Subsequent sections describe the experimental test
conditions and the results of the computational analyses. The paper concludes with a discus-
sion of the implications of the findings, as well as recommendations for selecting algorithmic
procedures.

2. Heuristic Solution Procedures

We selected nine heuristic procedures for comparison in our analyses. We endeavored to
maintain consistency with previous implementations to the greatest extent possible.

2.1. H-Means (Forgy, 1965)

One of the earliest heuristic procedures for MWCSSP was suggested by Forgy (1965). We
adopt Hansen and Mladenovié¢’s (2001) terminology and refer to the algorithm as H-means. A de-
scription of the algorithm is as follows:

Step 0. Read in an initial K -cluster partition, 7g .

Step 1. Compute x; = Zieck Xiy/Nr foralll <v<Vandl <k <K,
andd} =Y"V_ (xiy —Xp)? for <k <Kand1<i<N.

Step 2. Obtain 7y as follows: [0; € S and i € Cy | d,’; = min(lflfK)(d;)].

Step 3. If 7 =k, then Stop. Otherwise, return to Step 1.

One of the limitations of H-means is that it can potentially terminate with one or more empty
clusters. One remedy for this degeneracy problem is to reassign objects most distant from their
cluster centroids to the empty clusters. For consistency with Hansen and Mladenovi¢ (2001), we
refer to the resulting modified version of H-means as H-means+.

2.2. K-Means (Jancey, 1966; MacQueen, 1967)

The K-means algorithm systematically assesses all possible reassignments of objects to a
different cluster until no further reassignment improves WCSS(rrg ). The key component of this
process is the computation of the change in the WCSS value that results from moving object i
from its current cluster k to a new cluster (/ # k). This change is efficiently computed as

Al ZLXV:()E]—X' )2—Li(fk—x~ )’ (4)
BN+ 1) & TNy

v=I v=1
With this definition in place, the K-means algorithm is described as follows:

Step 0. Set ¢ = 0 and read in an initial K -cluster partition, 7.
Step 1. Perform systematic assessment of all single-object cluster reassignments:
Fori=1to N
Forl # (k|i € Cr and |Ck| > 1)
compute A};l
if Afd < 0, then
move o; from Si to S, set ¢p = 1.
end if
next /
next i
Step 2. If ¢ =0, then Stop. Otherwise, set ¢ = 0 and go to Step 1.



PSYCHOMETRIKA

2.3. HK-Means (Hansen & Mladenovic, 2001)

A solution that is locally optimal for the H-means+ criterion could possibly be improved by
applying K-means, but the reverse is not true. Based on this property, Hansen and Mladenovic
(2001) suggested a two-phase solution strategy using H-means+ and K-means, successively. The
procedure is concisely stated as follows:

Step 0. Read in an initial K -cluster partition, 7.
Step 1. Perform H-means+.
Step 2. Perform K-means.

2.4. KI-Means (Banfield & Bassil, 1977)

Banfield and Bassil (1977) provided a two-stage heuristic procedure, which uses the
K-means algorithm in the first stage, and a pairwise interchange heuristic (which we will call
“I-Means”) in the second stage. These two stages are iteratively implemented until neither heuris-
tic operation can further improve WCSS. A formal description of the algorithm is as follows:

Step 0. Read in an initial K -cluster partition, 7g .
Step 1. Perform K-means.
Step 2. Perform I-Means.
Step 2a. Set ¢ =0.
Step 2b. Perform systematic assessment of all pairwise interchanges:
For(i<j)eClieCy,jeCrandl #k
compute 8,1’,, which represents the effect on WCSS from the pairwise
interchange made by moving o; from Sy to S; and o; from S to S
if 87 <0, then
move o; from Sy to S, and move o; from §; to Si, and set ¢ = 1.
end if
next /
next i
Step 2c. If ¢ =0, then Stop. Otherwise, set ¢ = 0 and go to Step 2b.
Step 3. If any objects changed cluster membership during the most recent execution of Step 1 or
Step 2, then return to Step 1; otherwise, Stop.

2.5. J-Means+ (Hansen & Mladenovic, 2001)

Hansen and Mladenovi¢ (2001) developed the J-Means+ heuristic procedure that allows
for a broader search of the solution neighborhood by considering the reassignment of an entire
centroid rather than just a reassignment of an object. To present the J-means+ algorithm, we
define x; as a 1 x V vector of measurements for row i in matrix X. The algorithm is as follows:

Step 0. Read in an initial K -cluster partition, g, and let 7z = wg and n}é =7ng.
Step 1. Set £2 = {i | x; # [X1k, X2k, - . - » Xy ] for any k}.
Step 2. Centroid replacement procedure
Fori e 2
Fork=1to K
set [X1k, X2ky -+ +» XVi] = X;
reassign all objects to their nearest cluster to create )
if WCSS(m)) < WCSS(ry) then
set WCSS(ry) = WCSS(ry) and my, = mj
end if
next k
next i



MICHAEL J. BRUSCO AND DOUGLAS STEINLEY
Step 3. Run HK-means using 77y as a starting solution and let 77}’ be the obtained solution.
Step 4. If WCSS(ry) < WCSS(ry,), then set y =’ and return to Step 1; otherwise, Stop.

2.6. Tabu Search (Pacheco & Valencia, 2003)

Tabu search is a general heuristic paradigm for combinatorial optimization problems that
facilitates escape from local optima (Glover, 1989, 1990; Glover & Laguna, 1993; Glover, Tail-
lard, & Werra, 1993). Escape is accomplished by a process that permits acceptance of sub-
optimal solutions, and forbids moves on a “tabu list” that would tend to yield an immediate
return to the recently found local optimum. We selected Pacheco and Valencia’s (2003) tabu
search partitioning algorithm for evaluation because of its conceptual straightforwardness. Their
algorithm defines fabu_tenure = K as the number of iterations that an object is forbidden to
return to a cluster. The parameter max_noimprovement = 50 represents the maximum num-
ber of iterations for which no improvement was realized, and defines the termination criterion
for the algorithm. The N x K matrix, Y = [y;x], contains the tabu record for the assignment
of each object i to each cluster k (for 1 <i < N and 1 <k < K). The constants niter and
iter_better represent the current number of iterations of the algorithm and the last iteration that
produced a solution with an improved objective value, respectively. The algorithm is as fol-
lows:

Step 0. Read in an initial K -cluster partition, g, and let JTI*( =mg. Set niter = 0, iter_better =
0, max_noimprovement = 50; and y;; = —tabu_tenure (for 1 <i <N and 1 <k < K).

Step 1. Set niter = niter 4 1.

Step 2. Compute A};l asin(4)forall 1 <i <N andforl+# (k|i € C and |Cg| > 1).

Step 3. Choose i*, k*, I* such that A};**l* = (min(A};l) | niter > y(i, 1) + tabu_tenure).

Step 4. Update g by assigning moving o; from Si to S; and set y;; = niter.

Step 5. If WCSS(k) < WCSS(rg), then set my = mk and iter_better = niter.

Step 6. If niter — iter_better > max_noimprovement, then Stop; otherwise go to Step 1.

2.7. Simulated Annealing (Klein & Dubes, 1989)

The adaptation of the metallurgical process of annealing (Metropolis, Rosenbluth, Rosen-
bluth, Teller, & Teller, 1953) for the traveling salesman combinatorial optimization problem
was independently offered by Kirkpatrick, Gelatt, and Vecchi (1983) and Cerny (1985). Our
implementation of simulated annealing for WCSS partitioning is most consistent with that of
Klein and Dubes (1989) and uses single-object relocations to produce neighboring solutions.
To establish the temperature for the algorithm, which controls the probability of accepting infe-
rior solutions, we evaluate 5000 random relocations of objects and store the absolute minimum
(min_change > 0) and absolute maximum (max_change) in the WCSS. The initial temperature
is set equal to max_change, and the min_change value designates a termination criterion. The
algorithm is as follows:

Step 0. Read in an initial K-cluster partition, g, and let mx = k. Set cooling_factor = .9,
temperature_length = 10N, and perform relocation trials to obtain max_change and
min_change. Compute the number of temperature reductions:

. log(min _change — max _change)
number_of _reductions = - ,
log(cooling_factor)

[Tt

where [eo] is the smallest integer > to “e”. Set current_temperature = max_change.



PSYCHOMETRIKA

Step 1. Run Main Algorithm Loop
For nr = 1 to number_of _reductions
For tl = 1 to temperature_length
randomly select an object 0; with i € Cy and |Cy| > 1
randomly select a new cluster for o;, [ # (k| i € Cy)
compute Afd
if A}, <0, then
move o; from Sy to S; to update g
if WCSS(my) < WCSS(rg) then g =k

else
generate a uniformly distributed random number, rn
let b = — A}, /current_temperature

ifrn < eb, then
move o; from Sk to S; to update g
end if
end if
next t/
current_temperature = current_temperature X cooling_factor
next nr.

2.8. Genetic Algorithm (Maulik & Bandyopadhyay, 2000)

Genetic algorithms are a class of stochastic optimization procedures that can be applied to
a variety of problems (Belew & Booker, 1991; Forrest, 1993; Goldberg, 1989; Holland, 1975).
The key components of a genetic algorithm are a population of chromosomes (or strings), which
each possess a measure of fitness for the problem. Subsets of chromosomes are selected and sub-
jected to operations that are analogous to the genetic characteristics of crossover and mutation.
These operations create a new population of chromosomes, which is subsequently evaluated with
respect to fitness, and this process is repeated for a fixed number of iterations. We selected the
genetic algorithm for partitioning described by Maulik and Bandyopadhyay (2000), which uses
a floating point representation for chromosomes (i.e., a real-coded genetic algorithm) that is con-
venient for identifying cluster centroids. Each chromosome is a string of KV elements that define
cluster centroids. The algorithm is as follows:

Step 0. Set population_size = 100, crossover_probability = .8, and mutation_probability =
.001, number_of_iterations = 100, current_iteration = 0, and WCSS(rg ) = oo.

Step 1. Randomly create an initial population of solutions. Each chromosome is generated by
randomly selecting K of the N objects and stringing together the V variable measure-
ments of those objects to create a chromosome of length KV.

Step 2. Evaluation. For each chromosome in the population, reassign each of the N objects to
its nearest chromosome (based on squared Euclidean distance) and update the chromo-
some elements (i.e., the centroids) after this assignment. Compute WCSS(rrg ) for each
chromosome’s partition and, if WCSS(mrg) < WCSS(rry ) then set nf = mg .

Step 3. Termination. Set current_iteration = current_iteration + 1. If current_iteration >
number_of _iterations, then Stop; otherwise, go to Step 4.

Step 4. Fitness. Compute the fitness of each chromosome as 1/WCSS (k).

Step 5. Selection and Simple (One-Point) Crossover. Perform selection and crossover opera-
tions:

For ps = 1 to population_size/2.
randomly select two chromosomes, w and 6, using a roulette wheel strategy and
biasing selection probability based on the fitness measures computed in Step 4.



MICHAEL J. BRUSCO AND DOUGLAS STEINLEY

generate a uniformly distributed random number, rn
if rn > crossover_probability then
add w and 6 to the new population pool
else
randomly select an integer, «, on the interval [1, KV]
create the chromosome ' from the first ¥ genes in w and last KV — x genes in 0
create the chromosome 60’ from the first « genes in 6 and last KV — k genes in w
add o’ and 6’ to the new population pool
end if
next ps.
Step 6. Mutation. Perform mutation operations using the following algorithm:
For ps = 1 to population_size.
For kv =1to KV
generate a uniformly distributed random number, rn
if rn < mutation_probability
randomly select a new value for the gene based on a uniform distribution
in a range that is defined by £100% of the current value of the gene.
end
next kv
next ps
Return to Step 2.

2.9. Variable Neighborhood Search (Hansen & Mladenovic, 2001)

Hansen and Mladenovi¢ (2001) proposed variable neighborhood search as an alternative
metaheuristic for MWCSSP. A key feature of this approach is its systematic search of the solution
space via increasingly larger neighborhood jumps. The key parameter is neighbormax, which
represents the number of neighborhoods evaluated during the search process. For consistency
with Hansen and Mladenovic’s implementation, we use neighbormax = 10. Following Hansen
and Mladenovi¢’s implementation we assume an upper time limit, time_max, as a stopping rule.
Based on the findings of Pacheco and Valencia (2003), we use HK-Means rather than J-Means
in Step 3 of the algorithm, which is described as follows:

Step 0. Read in an initial K-cluster partition, wg, and let n,’g = k. Set time_max = some de-
sired value and neighbormax = 10.

Step 1. Set neighbor = 1.

Step 2. Relocate neighbor randomly selected objects to randomly selected new clusters to create
a new partition, 7.

Step 3. Apply HK-Means using 7 as the starting solution. Let the returned partition be repre-
sented as 7y .

Step 4. If WCSS(T[%) < WCSS(rry), thenset m3 = n}é and go to Step 1; otherwise set neighbor
= neighbor + 1 and go to Step 5.

Step 5. If neighbor < neighbormax, then go to Step 2; otherwise, go to Step 6.

Step 6. If elapsed time > max_time, then Stop; otherwise go to Step 1.

3. Computational Experiments for Simulated Data Sets

3.1. Experimental Test Conditions

We developed an experimental study to evaluate the nine heuristic procedures described in
Section 2. To consider a broad range of conditions representative of data sets encountered in



PSYCHOMETRIKA

the behavioral sciences, we varied the number of clusters, the number of variables, the relative
density of each cluster, and the degree of overlap between clusters. For the number of clusters
and variables, we examined values of K =4, 6, and 8 and V =4, 6, 8§, and 10, respectively.
To vary the relative density of each cluster (i.e., the number of objects within each cluster), the
procedure popularized by Milligan (1980a) was implemented. Specifically, the following three
conditions were considered:

(a) all clusters had an equal number of observations (D = 1)

(b) one cluster contained 10% of the total number of observations while the remaining 90% of
observations were equally distributed among the other K — 1 clusters (D = 2); and

(c) one cluster contained 60% of the observations while the remaining 40% of observations were
equally distributed among the other K — 1 clusters (D = 3)

Condition D = 2 focuses on the ability to be able to recover a smaller cluster in the presence of
several larger clusters, whereas condition D = 3 focuses on finding several smaller clusters in the
presence of one large cluster. The total number of observations across all clusters was N = 200
for each test problem.

The methodology for varying the degree of overlap between the clusters is slightly more
complex. The first step is choosing the appropriate distributions from which to generate the clus-
ters. Milligan (1980a) popularized the use of truncated multivariate normal distributions; how-
ever, Steinley (2006b) recently examined the performance of the H-means+ procedure when the
cluster structure was generated from the following distributions: uniform distribution, triangular
distribution, multivariate normal with equal variances, multivariate normal with unequal vari-
ances, and a mixed variable set where each of the variables was randomly chosen (with equal
probability) to be generated from one of the four aforementioned distributions. It is well known
(see Steinley, 2006a; 2006b) that the WCSS loss function performs best when the clusters arise
from multivariate normal clusters with covariance matrices proportional to the identity (this is the
equivalent to multivariate normal with equal variances condition). The uniform distribution sim-
ulates clusters that do not have a discernible “core” but have objects distributed evenly across the
space within the cluster boundaries. The triangular distribution simulates clusters that arise from
skewed distributions, and the multivariate normal distribution with unequal variances results in
elliptical clusters. For each of the data sets considered in the current experiment, the underlying
distribution of the cluster structure was randomly chosen (with equal probability) from one of
these five scenarios.

Once the distribution of the clusters was determined, the average amount the clusters overlap
was allowed to vary from O = 0, .20, and .40 and was implemented using the OCLUS genera-
tion procedure described by Steinley and Henson (2005). Another slight complexity that must be
considered is the type of overlap imposed upon the cluster. Steinley and Henson (2005) describe
two types of overlap, marginal and joint. Marginal overlap is defined as overlap that occurs inde-
pendently on each variable that describes the cluster structure, whereas joint overlap is defined as
the amount of overlap that occurs in the joint variable space. In other words, under marginal over-
lap, clusters are only guaranteed to overlap on each variable; however, there still might be spaces
of low density between the clusters in the multivariate space. Under joint overlap, the clusters
are guaranteed to overlap on all variables. Logically, it should be more difficult for clustering
algorithms to recover cluster structure when overlap is guaranteed to simultaneously exist on all
dimensions. In fact, this has been shown to be the case regardless of the underlying distributional
family the clusters are generated from (see Steinley, 2006b). For the present experiment, the type
of overlap for each data set was randomly chosen to be either marginal or joint.

3.2. Implementation

The experimental study was conducted using MatLab Version 6.5 (MathWorks, Inc., 2002)
on a 2.6 GHz Pentium IV PC with 1 GB of RAM. All heuristic methods were written as MatLab



MICHAEL J. BRUSCO AND DOUGLAS STEINLEY

*m files, as were batch files for problem generation and data collection. Manipulation of the
experimental test conditions resulted in a total of 3 x 4 x 3 x 3 = 108 cells (number of clusters
x number of variables x relative density x overlap). Like previous Monte Carlo experiments
(Brusco, 2004; Brusco & Cradit, 2001; Milligan, 1980a; Steinley, 2006b), three data sets were
generated per cell, resulting in 324 unique data sets to be analyzed. After generation of each
test problem, each heuristic method was applied to the problem subject to a limitation of 3 CPU
minutes, resulting in 27 minutes of CPU time for each data set and a total of 8,748 minutes
(145.8 hours or just over 6 days) of computation for the entire experiment. The same set of initial
partitions was used for multiple restarts of each heuristic, and a new restart of a heuristic was
not allowed to begin if the 3-minute limit was exceeded. The HK-means algorithm was used
to post-process the simulated annealing, tabu search, and genetic algorithm solutions, so as to
ensure these methods produced local minima.

The primary piece of information collected for each heuristic and each test problem was
the partition producing the best WCSS value during the prescribed duration. We denote 7§, as
the partition with the best WCSS value, and WCSS(rr7,) as the corresponding best WCSS value
obtained by method e (1 < e <9) within the time limit. The best WCSS value across all methods
is obtained as WCSS(n}?eS‘) = minj<,<o(WCSS(rry)) and n}?es‘ is the corresponding partition
with the best WCSS value across all methods. This enables the WCSS value obtained by each
method to be expressed as a percentage deviation above the best WCSS value found across all
methods as follows:

(WCSS(r§) — WCSS(mBY))

for1 <e<09. 5
WCSS(r B T ©)

WCSSgev(e) = 100 x

Although WCSSgey (e) is the primary performance measure in our experiments, we also consider
a secondary performance measure related to cluster recovery. In particular, for each method and
each test problem, we compute Hubert and Arabie’s (1985) adjusted Rand index (ARI) between
the partition associated with the best WCSS value produced by method e, 7§, and the true clus-
ter structure associated with the generation of the test problem. These values are denoted ARI(e)
for 1 <e <9. A value of ARI(e) = 1 indicates perfect agreement between 77 and the partition
corresponding to the true cluster structure, whereas a value of ARI(e) = 0 indicates chance agree-
ment between the two partitions. Steinley (2004) suggested that values of .65 and .80 indicate
adequate and good agreement between two partitions, respectively.

3.3. Overall Performance

Table 1 provides the overall performance of each of the methods in terms of WCSSgey (e).
The genetic algorithm procedure, when used in conjunction with HK-means as a post-processing
procedure, performed best across all conditions. The variable neighborhood search method,
J-means+, and HK-means were the only remaining procedures to return WCSS values within
1% of the genetic algorithm solution across all the factor levels. Furthermore, KI-means, tabu
search, and simulated annealing only performed slightly worse, returning WCSS values between
1%-3% greater on average than those obtained by the genetic algorithm. Finally, it appears that
H-means+ and K-means performed abysmally compared to the genetic algorithm, with solutions
that are 25% and 29% worse on average, respectively.

Table 1 also provides some indication of how the relative performances of methods are af-
fected by different test problem conditions. For example, the performances of most algorithms
generally worsened as K increased. Four algorithms, H-means+, HK-means, J-means+, and vari-
able neighborhood search always matched WCSS(nI%eS‘) when K = 4; however, their relative
performances worsened slightly when moving to K = 6 and, more significantly, at K = 8. The



PSYCHOMETRIKA

TABLE 1.
Percentage deviation from best-found WCSS value.

Method
Condition® H-means+ K-means HK-means KI-means J-means+ Tabu SA  Genetic VNS
K =4 .00 9.06 .00 .73 .00 43 .36 .00 .00
K=6 13.75 32.70 17 2.72 .10 1.37 1.85 .00 15
K =38 60.18 45.82 .83 4.22 .66 1.29 .82 .00 .58
V=4 43.88 30.42 21 2.27 49 .26 17 .00 .16
V=6 30.31 26.07 .38 2.34 18 1.07 .88 .00 .30
V=28 .15 14.26 24 1.07 12 .58 43 .00 .20
V=10 24.22 46.03 .50 4.54 .23 2.21 2.56 .00 32
D=1 25.20 36.28 41 2.24 33 .06 .01 .00 41
D=2 32.38 28.07 34 1.52 .34 .04 .03 .00 .30
D=3 16.35 23.24 .25 3.90 .09 3.00 2.99 .00 .03
0 =.00 62.12 80.93 .99 7.38 .67 2.99 298 .00 12
0=.20 2.60 4.46 .01 .20 .06 .07 .03 .00 .01
0= .40 9.20 2.19 .00 .08 .04 .04 .02 .00 .00
Average 24.64 29.19 .33 2.55 25 1.03 1.01 .00 24

*For each row, the results are averaged across the other conditions.

density of clusters seemed to have a strong effect on the performances of some clustering meth-
ods, but not others. For example, the tabu search and simulated annealing heuristics performed
well at settings of D =1 and D = 2. These heuristics were less effective for the setting of
D = 3, indicating that their performances deteriorated when there was one large cluster and
several smaller clusters.

The degree of cluster overlap also had a pronounced effect on WCSS optimization per-
formance. The largest percentage deviations from the best WCSS values occurred when there
was no cluster overlap (O = .00). Although this finding might initially seem counterintuitive,
it is readily explainable by considering the effect of misclassification of objects. In the cases of
greater cluster overlap (O = .20 and O = .40), misclassification of even a large number of ob-
jects does not necessarily have a significant impact on WCSS because the cluster centroids are
not as separated. In contrast, when just a few objects are misclassified in a well-separated data set
with no cluster overlap (O = .00), the effect on WCSS can be profound because of the distortion
of the cluster centroids.

Table 2 provides the average ARI of each method across the various conditions. As well as
performing the best in minimizing WCSS, the genetic algorithm also had the highest degree of
true cluster recovery. This finding provides some evidence that the WCSS criterion is effective
for recovering cluster structure across a broad range of data conditions. Moreover, as was the
case for WCSS, HK-means and the variable neighborhood search procedure were close behind
the genetic algorithm with respect to cluster recovery, yielding an overall ARI average within
.005 of corresponding average for the genetic algorithm. More surprisingly, although H-means+
finished eighth in average WCSSgey (¢) performance (approximately 24% worse in terms of min-
imizing the objective function), the average ARI value for H-means+ was only .011 less than
that observed for the genetic algorithm. The average ARI for J-means+ was only slightly less
than those of the best methods, and, as with WCSS, the remaining four procedures (K-means,
KI-means, tabu search, and simulated annealing) performed the worst of the nine methods.

With respect to the effect of experimental test conditions on the relative ARI performances
of the algorithms, perhaps the most critical factor was the degree of cluster overlap. Note the
contrast between the rows for O = .00, O = .20, and O = .40 in Table 1 with the corresponding



MICHAEL J. BRUSCO AND DOUGLAS STEINLEY

TABLE 2.
Partition agreement—average adjusted Rand index with true cluster solution.

Method
Condition* H-means+ K-means HK-means KI-means J-means+ Tabu SA  Genetic VNS
K =4 719 528 719 .630 718 .657 676 719 719
K=6 707 446 14 .591 .689 .652  .658 719 712
K=38 .609 .389 .645 485 .609 589 .603 .667 .650
V=4 .655 437 .658 573 .647 610 .627 .658 .658
V=6 727 .506 135 .632 705 .669 .700 734 127
V=_8 155 516 750 .641 740 .694 702 760 755
V=10 .679 456 .696 .559 .683 627 .627 703 .698
D=1 761 .395 176 107 766 792 787 783 777
D=2 .698 .400 .693 .654 .682 712708 .696 .695
D=3 .645 .634 .657 429 .631 439 485 .659 .652
0 =.00 .883 .567 .899 134 878 812 817 .909 .896
0=.20 .639 422 .639 .545 .629 591 .607 .641 .640
0=.40 581 440 .588 510 572 539  .556 .589 .588
Average 702 476 709 .596 .692 .647 .660 713 708

*For each row, the results are averaged across the other conditions.

rows in Table 2. Although the average WCSS percentage deviations were greatest for O = .00,
Table 2 shows that the recovery was best at this setting. Again, this finding is attributable to the
fact that a few misplaced objects can tremendously inflate WCSS percentage error, yet have only
a modest effect on recovery. For the conditions of greater overlap, WCSS error is small, but a
greater number of misclassified points diminished recovery.

A close inspection of relative recovery performance at the setting for no overlap (O = .00) is
especially important because this is a data scenario where recovery should be strong. The genetic
algorithm had an average ARI of .909 at this setting, and was followed closely by HK-means
(.899), variable neighborhood search (.896), H-means+ (.883), and J-means+ (.878). Each of the
other algorithms produced an ARI of .817 or smaller, which suggests that meaningful differences
in recovery can occur even when clusters are well separated.

4. Computational Experiments for Empirical Data Sets

4.1. The Data Sets

We also investigated the performances of the WCSS partitioning algorithms for 13 data
sets collected from the literature. Our goal was to select a set of test problems that exhibits
variation with respect to the number of objects, the number of variables, and the context of
the data set. Eight of the 13 data sets are two-dimensional, and correspond to contexts such
as city coordinates, birth/death rates, and hole-drilling positions for printed circuit boards. The
two-dimensional problems range in size from N = 59 to N = 1060 objects. The number of
dimensions for the five remaining data sets ranges from 3 < V < 7. Measurements for these data
sets include plant characteristics, body dimensions, vowel sounds, and Likert-scale values for
various marketing profiles. The selected data sets are as follows:

e Data Set I. Two-dimensional coordinates for N = 59 German towns as recorded by Spéth
(1980, p. 80).



4.2.

PSYCHOMETRIKA

Data Set II. Birth and death rates (V = 2) for N = 70 countries as reported by Hartigan
(1975, Chap. 11).

Data Set III. Area, population, and population density (V = 3) for N = 89 Bavarian postal
codes from Spith (1980, pp. 91-92).

Data Set IV. The HATCO data. A synthetic data set consisting of V =7 measurements
for N = 100 objects, as published by Hair, Anderson, Tatham, and Black (1998, pp. 725-
726).

Data Set V. Iris data. The data consist of V = 4 measurements for each of N = 150 plants,
and were originally collected by Anderson (1935) and subsequently analyzed by Fisher
(1936).

Data Set VI. Grotschel and Holland’s (1991) European city coordinates data, part A. Two-
dimensional coordinates for N = 202 cities. These data were obtained from a library of
traveling salesman problems, TSPLIB (Reinelt, 2001).

Data Set VII. Grotschel and Holland’s (1991) European city coordinates data, part B.
Two-dimensional coordinates for N = 431 cities. These data were obtained from a library
of traveling salesman problems, TSPLIB (Reinelt, 2001).

Data Set VIII. Grotschel and Holland’s (1991) European city coordinates data, part C.
Two-dimensional coordinates for N = 666 cities. These data were obtained from a library
of traveling salesman problems, TSPLIB (Reinelt, 2001).

Data Set IX. Reinelt’s (2001) data corresponding to hole-drilling for printed circuit
boards. The data correspond to N = 724 hole positions in two-dimensional space and
were obtained from TSBLIB (Reinelt, 2001).

Data Set X. Reinelt’s (2001) data corresponding to hole-drilling for printed circuit boards.
The data correspond to N = 1060 hole positions in two-dimensional space and were ob-
tained from TSBLIB (Reinelt, 2001).

Data Set XI. Body measurements data. These data were extracted from a body measure-
ments data set collected by Heinz, Peterson, Johnson, and Kerk (2003). The data, which
correspond to V =5 body measurements (weight, height, chest girth, waist girth, and
hips girth) measured for N = 507 men and women, were obtained electronically from:
[www.amstat.org/publications/jse/v11n2/datasets.heinz.html].

Data Set XII. Indian Telugu vowel sounds. These data consist of N = 871 measurements
for V = 3 vowel formant frequencies, and have been studied by Pal and Majumder (1977)
and Maulik and Bandyopadhyay (2000).

Data Set XIII. Telecommunications data. These data were collected by Brusco, Cradit, and
Tashchian (2003) and correspond to responses from N = 475 respondents with respect to
V =5 performance features related to their current long-distance provider: (a) competi-
tively priced products; (b) responsive account executives; (c) billing accuracy; (d) state-
of-the-art products; and (e) responsive repair service.

Experimental Results for Empirical Data Sets

We applied each of the nine WCSS partitioning algorithms to each of the 13 empirical data

sets under the assumption of K =5 clusters and K = 10 clusters. Our choice of the levels for
K was based on a desire to select plausible values for social sciences applications, as well as to
differentiate the heuristics based on WCSS performance. An important caveat, however, is that
these levels do not necessarily represent the best values of K for the 13 data sets. For consistency
with the experiments on simulated data sets reported in the previous section, each algorithm
was limited to 3 minutes of microcomputer CPU time and the best WCSS value obtained by
each algorithm was collected and stored along with the corresponding partition. The HK-means
algorithm was used to post-process the simulated annealing, tabu search, and genetic algorithm
solutions, so as to ensure these methods produced local minima.



MICHAEL J. BRUSCO AND DOUGLAS STEINLEY

TABLE 3.
Percentage deviation from best-found WCSS value (K =5).

Method
Dataset H-means+ K-means HK-means KI-means J-means+ Tabu SA  Genetic VNS
1 .00 .00 .00 .00 .00 .00 .00 .00 .00
1I .00 .00 .00 .00 .00 .00 .00 .00 .00
11 44.66 .00 .00 .00 .00 44.66 44.66  44.66 .00
v .00 .00 .00 .00 .00 .00 .00 .00 .00
\" .00 .00 .00 .00 .00 .00 .00 .00 .00
VI .00 .00 .00 .00 .00 .00 .00 .00 .00
VII .00 .00 .00 .54 .00 .00 .00 .00 .00
VIII .00 3.83 .00 3.83 .00 .00 3.83 .00 .00
X .00 .00 .00 .00 .00 .00 .00 .00 .00
X .00 .00 .00 .00 .01 .00 .00 .00 .00
X1 .01 .01 .01 .01 .01 .01 .00 .00 .00
X1I .01 .00 .00 .00 .09 .00 .00 .00 .00
XIII .01 .00 .00 .05 .00 .04 .00 .00 .00
Average 3.44 .30 .00 .34 .01 3.44 373 3.44 .00
Max 44.66 3.83 .01 3.83 .09 44.66 44.66 44.66 .00
TABLE 4.

Partition agreement—adjusted Rand index with best found partition (K = 5).

Method
Dataset H-means+ K-means HK-means Kl-means J-means+ Tabu SA  Genetic VNS
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
I 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
III 841 1.000 1.000 1.000 1.000 841 .841 .841 1.000
v 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
\'% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
VI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
VI 1.000 1.000 1.000 976 1.000 1.000 1.000 1.000 1.000
VIII 1.000 756 1.000 756 1.000 1.000 .756 1.000 1.000
IX 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
X 1.000 1.000 1.000 .990 971 1.000 1.000 1.000 1.000
XI .994 .856 .994 .856 .856 .856 1.000 1.000  1.000
XII 992 1.000 1.000 .992 952 1.000 1.000 1.000 1.000
XIII .995 1.000 1.000 917 1.000 933 1.000 1.000 1.000
Average .986 970 .999 961 .983 972 .969 988  1.000
Min 841 756 994 756 .856 841 756 .841 1.000

The results for K =5 are presented in Tables 3 and 4. Table 3 reports the WCSSgey (¢) values
for each method on each test problem. The results indicate that all methods performed well, with
each method matching WCSS (n,%e“) for at least 9 of the 13 test problems. The variable neigh-
borhood search heuristic was the only heuristic that matched WCSS(x IE“‘) for all 13 problems;
however, its performance was followed closely by HK-means and the genetic algorithm, which
each produced 12 best WCSS values. The results for data set III are especially interesting. Five of
the nine methods identified the best-found partition, which we know is optimal from the work of
du Merle et al. (2000). The four methods that failed to find the optimal partition, yielded a local
minimum with a departure of more than 44%. As observed by Hansen and Mladenovic¢ (2001),



PSYCHOMETRIKA

TABLE 5.
Percentage deviation from best-found WCSS value (K = 10).

Method
Data set H-means+ K-means HK-means KI-means J-means+ Tabu SA  Genetic VNS
I 5.92 .00 1.66 .00 1.21 .00 .00 .00 .00
II .53 3.77 .04 3.77 .04 .00 .00 .00 .00
111 419.17 185.94 .00 185.94 12.29 .00 .00 .00 .00
v 1.97 .00 .00 .00 .00 .00 .00 .00 .00
\'% 16.70 24.98 15.82 24.98 1.49 .00 .00 .00 .00
VI .52 6.40 .00 6.40 .00 3.80 3.80 .00 .00
VII 2.58 2.44 2.02 2.44 6.75 4.04 2.80 .00 .00
VIII 10.02 5.77 5.79 14.20 .00 9.71 9.59 .00 .00
X .01 .00 .00 .01 .00 1.11 .84 .00 .00
X .03 .19 .19 .19 22 2.71 .19 .00 .00
X1 25 22 22 22 28 22 .16 .00 .00
XII 2.50 .16 2.35 4.01 .98 3.81 .00 .00 .00
XIII Sl 48 .05 1.75 2.29 .73 .15 .07 .00
Average 35.44 17.72 2.16 18.76 1.97 2.01 1.35 .01 .00
Max 419.17 185.94 15.82 185.94 12.29 9.71 9.59 .07 .00

the neighborhoods of optimal partitions for this data set are often rugged and well-protected by
poor local minima.

Table 4 reports ARI(e) values for each heuristic and each test problem under the assumption
of K =5 clusters. Unlike the simulated experiments reported in Section 3, there is no “true”
cluster structure for the empirical data sets. Therefore, the ARI(e) values in Table 4 represent,
for each data set, the agreement between nEeSt and 711‘3( for (1 <e <9). All methods have an
average (across the 13 data sets) ARI value of at least .969, and the minimum ARI value across
all problems and methods was .756. Even the heuristics that exhibited serious departure from the
optimal WCSS value for data set III had very reasonable agreement with the optimal partition,
as evidenced by the ARI value of .841.

Table 5 reports the WCSSqey(e) values for each method on each of the 13 data sets under
the assumption K = 10 clusters. The results in Table 5 indicate that the increase in the number
of clusters from 5 to 10 resulted in a serious deterioration in relative performance for many of
the heuristic methods. For example, H-means+ does not match WCSS(JT}?"’S‘) for any of the 13
data sets, and K-means, HK-means and KI-means, each produced a partition with the best WCSS
value for three or fewer problems.

The variable neighborhood search heuristic and genetic algorithm were the best performing
methods across the test problems. The variable neighborhood search matched WCSS(nI%eSt) for
each of the 13 test problems and the genetic algorithm matched the best found solution for all but
one test problem, exhibiting a .07% departure from WCSS(JTI%eSt) for data set XIII. The simulated
annealing heuristic was a distant third in performance, matching WCSS (n}?e“) for only 6 of the
13 data sets, and producing a departure of 2.5% or greater for three of the data sets.

The resulting ARI(e) values for each test problem under the assumption of K = 10 clusters
are displayed in Table 6. Like Table 4, the ARIs for variable neighborhood search are all 1
because this algorithm always produced the partition with the best WCSS value. Because it
matched the variable neighborhood search solution for all but one problem, the genetic algorithm
ARIs are all 1 except for test problem XIII; however, the ARI of .983 for this problem suggests
that the genetic algorithm partition was not appreciably different than the best-found partition.
The genetic algorithm and variable neighborhood search performances notwithstanding, the best
WCSS partitions produced by the remaining algorithms occasionally differed markedly from the



MICHAEL J. BRUSCO AND DOUGLAS STEINLEY

TABLE 6.
Partition agreement—adjusted Rand index with best-found partition (K = 10).

Method
Dataset H-means+ K-means HK-means Kl-means J-means+ Tabu SA  Genetic VNS
1 .681 1.000 .816 1.000 .854 1.000 1.000 1.000 1.000
1I 796 739 782 739 782 1.000 1.000 1.000 1.000
11 .802 .949 1.000 .949 795 1.000 1.000 1.000 1.000
v 761 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
\" .678 .616 738 .616 .850 1.000 1.000 1.000 1.000
VI 919 .626 1.000 .626 .970 .828  .828  1.000  1.000
VII .857 911 .831 911 .686 582 871 1.000  1.000
VIII 720 .904 918 .806 1.000 675 .639  1.000 1.000
X .984 1.000 1.000 984 1.000 739 804  1.000  1.000
X 917 732 732 732 .878 693 732 1.000  1.000
XI .696 .691 .691 .691 .671 .691 800  1.000  1.000
X1I .688 .923 .699 773 778 762 1.000 1.000  1.000
XIII 564 .665 947 .627 .662 647  .793 983  1.000
Average 774 .827 .858 .804 .840 817 882 1999  1.000
Min .564 .616 .691 .616 .662 582 .639 983  1.000

best-found WCSS partitions across all methods. Each of these algorithms produced an ARI value
of .7 or less for one or more test problems, and there were numerous ARIs below .8.

5. Discussion

5.1. Summary of Main Findings

Among the heuristic methods popularized in the 1960s and 1970s for MWCSSP, our results
indicate that HK-means is superior with respect to WCSS performance, as well as recovery of
cluster structure. HK-means outperformed H-means+, K-means, and KI-means in the experi-
ments for both simulated and real data sets. Our multistart implementation of HK-means was
also very competitive with more sophisticated procedures, often outperforming both the tabu
search and simulated annealing implementations. It is our opinion that researchers in the behav-
ioral sciences should have considerable confidence in a multistart implementation of HK-means
when K < 6. In our experiment using simulated data sets, HK-means produced an average ARI
of .717 when K < 6, which was second only to the genetic algorithm. For the experiment using
real data sets, HK-means obtained the best-found WCSS value for 12 of the 13 test problems at
K =5 with only a small percentage error for data set XI.

For K > 6, our experiments indicate that Maulik and Bandyopadhyay’s (2000) genetic al-
gorithm and Hansen and Mladenovic’s (2001) variable neighborhood search procedure generally
outperform multistart HK-means; however, it should be recalled that both of these latter meth-
ods used the HK-means algorithm in our implementation. The genetic algorithm was the best-
performing procedure in the experiment using simulated data with respect to both minimization
of WCSS and recovery of true cluster structure. For the empirical data sets, the genetic algorithm
matched the best WCSS value obtained by the variable neighborhood search algorithms for 12 of
the 13 test problems at K =5, and 12 of 13 problems when K = 10. We cannot declare a clear
winner between the genetic algorithm and the variable neighborhood search method; however,
the two procedures were clearly the best performers when K > 6 and we confidently recommend
them in such circumstances.



PSYCHOMETRIKA

5.2. Caveats and Limitations

We attempted to select a broad representation of solution procedures for our comparative
evaluations. Although a concerted effort was made to select from among the best procedures
available in the literature, there were many difficult choices and some caution is advisable when
interpreting the results. It is important to remember that the results of our analyses are based on
specific implementations of each method, and should not be extended to compare the broader
methodological choices. For example, our results showed that a particular implementation of a
genetic algorithm outperformed a particular implementation of simulated annealing. This does
not imply that all implementations of genetic algorithms are better than all implementations of
simulated annealing. The disparity in the results is more likely attributable to the neighborhood
jump moves available in the genetic algorithm, which could easily be included in a simulated
annealing algorithm. We cannot guarantee that our implementation of any method is the best
possible, there are too many options.

We conducted our study in a MatLab environment and all programs were written by the
authors, which mitigates the potential for considerable disparity in the efficiency of the codes.
Nevertheless, our results would not necessarily generalize to different computer hardware and
software platforms. For example, if other researchers replicated this study with the same CPU
time limits, but using a Fortran implementation on a faster machine, the results could be different.
The number of solutions produced by some of the more efficient procedures could increase by
several orders of magnitude, thus improving their relative performances.

We also acknowledge that there are a variety of follow-up experiments that would nicely aug-
ment the results of our experiments. For example, in our experiments we randomly produced the
initial partitions for each restart of the algorithms. However, there are numerous other available
approaches for creating initial partitions (Hand & Krzanowski, 2005; Milligan, 1980b; Steinley,
2003) and an evaluation of these approaches in conjunction with one or more of the clustering al-
gorithms studied herein is a worthy avenue of investigation (see Steinley & Brusco, 2007). Also,
as noted by Steinley (2006a), it is well recognized that the WCSS criterion is appropriate for
spherical clusters of approximately the same size. For data sets where clusters have more of an
elliptical shape, possibly with different spatial orientations and cluster sizes, other criteria might
be preferred (Banfield & Raftery, 1993; Maronna & Jacovkis, 1974; Scott & Symons, 1971).
Under such conditions, a comparison of cluster recovery that focuses on comparison of differ-
ent partitioning criteria rather than different partitioning algorithms is, therefore, also highly
worthwhile.

References

Al-Sultan, K. (1995). A tabu search approach to the clustering problem. Pattern Recognition, 28, 1443-1451.

Anderson, E. (1935). The irises of the Gaspé peninsula. Bulletin of the American Iris Society, 59, 2-5.

Arabie, P., & Hubert, L. (1992). Combinatorial data analysis. Annual Review of Psychology, 43, 169-203.

Arabie, P., & Hubert, L.J. (1996). An overview of combinatorial data analysis. In P. Arabie, L.J. Hubert, & G. De Soete
(Eds.), Clustering and classification (pp. 5-63). River Edge: World Scientific.

Babu, G.P, & Murty, M.N. (1993). A near optimal initial seed value selection in k-means algorithm using genetic
algorithms. Pattern Recognition Letters, 14, 763-769.

Babu, G.P., & Murty, M.N. (1994). Simulated annealing for selecting optimal initial seeds in the K-means algorithm.
Indian Journal of Pure and Applied Mathematics, 25, 85-94.

Banfield, C.F.,, & Bassil, L.C. (1977). A transfer algorithm for nonhierarchical classification. Applied Statistics, 26, 206~
210.

Banfield, J.D., & Raftery, A.E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803-821.

Belew, R.K., & Booker, J.B. (Eds.). (1991). Proceedings of the fourth international conference on genetic algorithms.
San Mateo: Morgan-Kaufmann.

Brucker, F. (1978). On the complexity of clustering problems. In M. Beckmann & H.P. Kunzi (Eds.), Optimization and
operations research (pp. 45-54). Heidelberg: Springer.

Brusco, M.J. (2004). Clustering binary data in the presence of masking variables. Psychological Methods, 9, 510-523.

Brusco, M.J. (2006). A repetitive branch-and-bound procedure for minimum within-cluster sums of squares partitioning.
Psychometrika, 71, 347-363.



MICHAEL J. BRUSCO AND DOUGLAS STEINLEY

Brusco, M.J., & Cradit, J.D. (2001). A variable selection heuristic for k-means cluster analysis. Psychometrika, 66,
249-270.

Brusco, M.J., Cradit, J.D., & Tashchian, A. (2003). Multicriterion clusterwise regression for joint segmentation settings:
An application to customer value. Journal of Marketing Research, 40, 225-234.

Cerny, V. (1985). A thermodynamical approach to the traveling salesman problem. Journal of Optimization Theory and
Applications, 45, 41-51.

Day, W.H.E. (1996). Complexity theory: An introduction for practitioners of classification. In P. Arabie, L.J. Hubert, &
G. De Soete (Eds.), Clustering and classification (pp. 199-233). River Edge: World Scientific.

Diehr, G. (1985). Evaluation of a branch and bound algorithm for clustering. SIAM Journal for Scientific and Statistical
Computing, 6, 268-284.

Dimitriadou, E., Dolnicar, S., & Weingessel, A. (2002). An examination of indexes for determining the number of clusters
in binary data sets. Psychometrika, 67, 137-160.

du Merle, O., Hansen, P., Jaumard, B., & Mladenovi¢, N. (2000). An interior point algorithm for minimum sum-of-
squares clustering. SIAM Journal on Scientific Computing, 21, 1485-1505.

Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.

Forgy, E.-W. (1965). Cluster analyses of multivariate data: Efficiency versus interpretability of classifications. Biometrics,
21,768.

Forrest, S. (Ed.). (1993). Proceedings of the fifth international conference on genetic algorithms. San Mateo: Morgan-
Kaufmann.

Glover, F. (1989). Tabu search—Part I. ORSA Journal on Computing, 1, 190-206.

Glover, F. (1990). Tabu search—Part II. ORSA Journal on Computing, 2, 4-32.

Glover, F., & Laguna, M. (1993). Tabu search. In C. Reeves (Ed.), Modern heuristic techniques for combinatorial prob-
lems (pp. 70-141). Oxford: Blackwell.

Glover, F., Taillard, E., & Werra, D. (1993). A user’s guide to tabu search. Annals of Operations Research, 41, 3-28.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and machine learning. New York: Addison-Wesley.

Grotschel, M., & Holland, O. (1991). Solution of large-scale symmetric traveling salesman problems. Mathematical
Programming, 51, 141-202.

Hair, J.F., Anderson, R.E., Tatham, R.L., & Black, W.C. (1998). Multivariate data analysis (5th ed.). Saddle River:
Prentice-Hall.

Hand, D.J. (1981). Discrimination and classification. New York: Wiley.

Hand, DJ., & Krzanowski, W.J. (2005). Optimising k-means clustering results with standard software packages. Com-
putational Statistics and Data Analysis, 49, 969-973.

Hansen, P., & Mladenovi¢, N. (2001). J-Means: A new local search heuristic for minimum sum of squares clustering.
Pattern Recognition, 34, 405-413.

Hartigan, J.A. (1975). Clustering algorithms. New York: Wiley.

Hartigan, J.A., & Wong, M.A. (1979). Algorithm AS136: A k-means clustering program. Applied Statistics, 28, 100—
128.

Heinz, G., Peterson, L.J., Johnson, R.W., & Kerk, C.J. (2003). Exploring relationships in body dimensions. Journal of
Statistics Education, 11, www.amstat.org/publications/jse/v11n2/datasets.heinz.html.

Holland, J.H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193-218.

Hubert, L., Arabie, P., & Meulman, J. (2001). Combinatorial data analysis: Optimization by dynamic programming.
Philadelphia: Society Industrial and Applied Mathematics.

Jancey, R.C. (1966). Multidimensional group analysis. Australian Journal of Botany, 14, 127-130.

Jones, D.R., & Beltramo, M.A. (1991). Solving partitioning problems with genetic algorithms. In R.K. Belew & J.B.
Booker (Eds.), Proceedings of the fourth international conference on genetic algorithms. San Mateo: Morgan Kauf-
mann.

Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220, 671-680.

Klein, R.W., & Dubes, R.C. (1989). Experiments in projection and clustering by simulated annealing. Pattern Recogni-
tion, 22, 213-220.

Koontz, W.L.G., Narendra, PM., & Fukunaga, K. (1975). A branch and bound clustering algorithm. IEEE Transaction
on Computers, C-24, 908-915.

Krishna, K., & Murty, N.M. (1999). Genetic K -means algorithm. /EEE Transactions on Systems, Man, & Cybernetics—
Part B: Cybernetics, 29, 433-439.

MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. In L.M. Le Cam &
J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1,
pp. 281-297). Berkeley: University of California Press.

Maronna, R., & Jacovkis, PM. (1974). Multivariate clustering procedures with variable metrics. Biometrics, 30, 499—
505.

MathWorks, Inc. (2002). Using MATLAB (version 6). Natick: The MathWorks, Inc.

Maulik, U., & Bandyopadhyay, S. (2000). Genetic algorithm-based clustering technique. Pattern Recognition, 33, 1455—
1465.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A., & Teller, E. (1953). Equation of state calculations by
fast computing machines. Journal of Chemical Physics, 21, 1087-1092.

Milligan, G.W. (1980a). An examination of the effect of six types of error perturbation on fifteen clustering algorithms.
Psychometrika, 45, 325-342.



PSYCHOMETRIKA

Milligan, G.W. (1980b). The validation of four ultrametric clustering algorithms. Pattern Recognition, 12, 41-50.

Milligan, G.W. (1985). An algorithm for generating artificial test clusters. Psychometrika, 50, 123-127.

Milligan, G.W. (1989). A validation study of a variable-weighting algorithm for cluster analysis. Journal of Classifica-
tion, 6, 53-71.

Milligan, G.W., & Cooper, M.C. (1986). A study of the comparability of external criteria for hierarchical cluster analysis.
Multivariate Behavioral Research, 21, 441-458.

Milligan, G.W., & Cooper, M.C. (1988). A study of variable standardization. Journal of Classification, 5, 181-204.

Pacheco, J., & Valencia, O. (2003). Design of hybrids for the minimum sum-of-squares clustering problem. Computa-
tional Statistics and Data Analysis, 43, 235-248.

Pal, S.K., & Majumder, D.D. (1977). Fuzzy sets and decision making approaches in vowel and speaker recognition. [EEE
Transactions on Systems, Man, and Cybernetics, 7, 625-629.

Reinelt, G. (2001). TSPLIB. http://www.iwr.uni- heidelberg.de/groups/comopt/software/TSPLIB9S.

Scott, A.J., & Symons, M.J. (1971). Clustering methods based on likelihood ratio criteria. Biometrics, 27, 387-398.

Selim, S.Z., & Al-Sultan, K. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition,
24, 1003-1008.

Spéth, H. (1980). Cluster analysis algorithms for data reduction and classification of objects. New York: Wiley.

Steinley, D. (2003). Local optima in K-means clustering: What you don’t know may hurt you. Psychological Methods,
8,294-304.

Steinley, D. (2004). Properties of the Hubert—Arabie adjusted Rand index. Psychological Methods, 9, 386-396.

Steinley, D. (2006a). K-means clustering: A half-century synthesis. British Journal of Mathematical and Statistical
Psychology, 59, 1-34.

Steinley, D. (2006b). Profiling local optima in K-means clustering: Developing a diagnostic technique. Psychological
Methods, 11, 178-192.

Steinley, D., & Brusco, M. (2007). Initializing K-means batch clustering: A critical analysis of several techniques.
Journal of Classification, 24, 99-121.

Steinley, D., & Henson, R. (2005). OCLUS: An algorithmic method for generating clusters with known overlap. Journal
of Classification, 22, 221-250.

Sun, L.-X., Xie, Y.-L., Song, X.-H., Wang, J.-H., & Yu, R.-Q. (1994a). Cluster analysis by simulated annealing. Com-
puters in Chemistry, 18, 103—108.

Sun, L.-X., Xu, F, Liang, Y.-Z., Xie, Y.-L., & Yu, R.-Q. (1994b). Cluster analysis by the K-means algorithm and simu-
lated annealing. Chemometrics and Intelligent Laboratory Systems, 25, 51-60.

Sung, C.S., & Jin, H.W. (2000). A tabu-search-based heuristic for clustering. Pattern Recognition, 33, 849—-858.

van Os, B.J., & Meulman, J.J. (2004). Improving dynamic programming strategies for partitioning. Journal of Classifi-
cation, 21, 207-230.

Manuscript received 20 JUL 2005
Final version received 8 DEC 2006



	A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning
	Abstract
	Introduction
	Heuristic Solution Procedures
	H-Means For1965
	K-Means
	HK-Means HanMla2001
	KI-Means (Banfield & Bassil, 1997
	J-Means+ (Hansen & Mladenovic, 2001)
	Tabu Search (Pacheco & Valencia, 2003)
	Simulated Annealing (Klein & Dubes, 1989)
	Genetic Algorithm (Maulik & Bandyopadhyay, 2000)
	Variable Neighborhood Search (Hansen & Mladenovic, 2001)

	Computational Experiments for Simulated Data Sets
	Experimental Test Conditions
	Implementation
	Overall Performance

	Computational Experiments for Empirical Data Sets
	The Data Sets
	Experimental Results for Empirical Data Sets

	Discussion
	Summary of Main Findings
	Caveats and Limitations

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


