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VALIDATING CLUSTERS WITH THE LOWER BOUND FOR SUM-OF-SQUARES ERROR
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Given that a minor condition holds (e.g., the number of variables is greater than the number of
clusters), a nontrivial lower bound for the sum-of-squares error criterion in K-means clustering is derived.
By calculating the lower bound for several different situations, a method is developed to determine the
adequacy of cluster solution based on the observed sum-of-squares error as compared to the minimum
sum-of-squares error.
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1. Introduction

The classification of objects is of great interest in many fields, including psychology. If
approached by any type of complete enumeration strategy, however, the sheer magnitude of the
problem is overwhelming. The number of partitions of N objects into K disjoint and nonempty
subsets can be calculated with a Stirling number of the second kind (e.g., see Weisstein, 2003,
p. 2865):
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which in turn can be approximated by KN/K! (e.g., see Kaufman & Rousseeuw, 1990, p. 115).
Thus, for example, if 25 objects are to be grouped into four clusters, there are approximately
4.69 × 1013 different partitions. For small values of N (between 20 and 30), Hubert, Arabie, and
Meulman (2001) and van Os (2000) have used dynamic programming to find optimal partitions.
However, as N grows, a brute-force complete enumeration of all the possible partitions with an
associated evaluation of some objective (loss) criterion is unrealistic. Because of these computa-
tional difficulties, it is of obvious value to design methods that provide “good” (and, hopefully,
optimal) partitions within a reasonable amount of computation time.

Cormack (1971) suggested that the partitions should be externally isolated and internally
cohesive, implying a certain degree of homogeneity within partitions and heterogeneity between
partitions (referred to by Cattell & Coulter (1966) as homostats). Historically, many researchers
attempted to operationalize this definition by minimizing within-group variation (Cox, 1957;
Fisher, 1958; Thorndike, 1953; Engelman & Hartigan, 1969). Following these early attempts of
maximizing within-group homogeneity, MacQueen (1967) developed the K-means method as a
strategy that attempts to find optimal partitions. Since this development, K-means has become
extremely popular, earning a place in several multivariate (Johnson & Wichern, 2002, pp. 695–
700; Timm, 2002, pp. 530–531; Lattin, Carroll, & Green, 2003, pp. 288–297), cluster analysis
(Anderberg, 1973, pp. 162–163; Gordon, 1999, pp. 41–49; Hartigan, 1975, pp. 80–112) and
pattern recognition (Duda, Hart, & Stork, 2001, pp. 526–528) textbooks.

The author was partially supported by the Office of Naval Research Grant #N00014-06-0106.
Requests for reprints should be sent to Douglas Steinley, Department of Psychological Sciences, University of

Missouri-Columbia, 210 McAlester Hall, Columbia, MO 65211, USA. E-mail: steinleyd@missouri.edu.

93
c© 2006 The Psychometric Society



94 PSYCHOMETRIKA

2. The K-Means Method

2.1. Algebraic Representation

The K-means method is designed to partition two-way, two-mode data (i.e., N objects each
having measurements on P variables) into K classes (C1, C2, . . . , CK ), where Ck is the set of
nk objects in cluster k, and K is given. If XN×P = {xij }N×P denotes the N × P data matrix, the
K-means method constructs these partitions so that the squared Euclidean distance between the
row vector for any object and the centroid vector of its respective cluster is at least as small as
the distances to the centroids of the remaining clusters. The centroid of cluster Ck is a point in
P -dimensional space found by averaging the values on each variable over the objects within the
cluster. For instance, the centroid value for the j th variable in cluster Ck is

x̄
(k)
j = 1

nk

∑

i∈Ck

xij , (2)

and the complete centroid vector for cluster Ck is given by
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2 , . . . , x̄

(k)
P

)′
. (3)

According to Gentle (2002, p. 239), finding these clusters is a “computationally intensive
task” that is “rather complicated.” Using the notation just introduced, a typical K-means algorithm
would operate by the following iterative procedure:

1. K initial seeds are defined by P -dimensional vectors ((s(k)
1 , . . . , s

(k)
P ) for 1 ≤ k ≤ K).

2. Based on the initial seeds, the squared Euclidean distance (d2(i, k)) between the ith object
and the kth seed vector is obtained:

d2(i, k) =
P∑

j=1

(
xij − s

(k)
j

)2
. (4)

Objects are allocated to clusters with the minimum squared Euclidean distance to its
defining seed.

3. Once all objects have been initially allocated, cluster centroids are calculated as in (3) and
replace the initial seeds.

4. Objects are compared to each centroid (using d2(i, k)) and allocated to the cluster whose
centroid is closest.

5. New centroids are calculated with the updated cluster membership (by calculating the
centroids after all objects have been assigned—the method is not affected by the sequence
of the data units (Anderberg, 1973, p. 162)).

6. Steps 4 and 5 are repeated until no objects can be reallocated to different clusters.

When attempting to find a “good” partitioning of an object through the iterative method
just described, it is of interest to note that we are also attempting to minimize a particular loss
criterion, the error sum of squares (SSE):

SSE =
P∑

j=1

K∑

k=1

∑

i∈Ck

(
xij − x̄

(k)
j

)2
. (5)

Späth (1980, p. 72) notes that at times, but probably rarely in practice, the SSE (also referred
to as “squared error distortion” in the pattern recognition literature; Gersho & Gray, 1992) may
be further minimized by single object reallocation from one cluster to another. After the initial
K-means algorithm is performed, a final inspection is made between all points and centroids. If
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there is an object within Ck such that
nk

nk − 1
d2(i, k) >

nk∗

nk∗ + 1
d2(i, k∗), (6)

then move the ith object from Ck to cluster Ck∗ , and the SSE is reduced (see Späth, 1980, p. 72).
Furthermore, it is important to note that each object only contributes to the centroid of the cluster
to which the object currently belongs. A common, misguided practice is to allow every object
to contribute to every cluster when the d2(i, k) are computed, leading to wildly divergent results
that are often difficult to interpret—not to mention the occasional nonconvergent implementation
of the K-means algorithm.

As noted in Steinley (in press), the K-means algorithm is subject to locally optimal solutions
and it has been recommended that several thousand random initializations are used, choosing
the solution with the lowest associated value of SSE as the final solution (see Steinley, 2003).
However, a notable exception to this has been illustrated in the literature. The global optimum
can be achieved for very large object sets if it is assumed that the N objects are ordering along a
continuum (see Späth, 1980, pp. 61–64). However, for the purposes of the current research, there
is no assumption of an order constraint.

2.2. Matrix Representation

This section reviews several different techniques for representing (5) using matrices, resulting
in a combination of representations that leads to the lower bound of (5) given K . The K-means
iterative relocation algorithm described above can be formulated using X and two additional
matrices:

(a). an N × K membership matrix, M = {mik}, where entry mik equals unity if object i

belongs to cluster k; zero otherwise; and
(b). a K × P cluster representation matrix, R = {rkp}, where R can be represented as a stack

of row vectors

R =

⎡

⎢⎢⎢⎢⎢⎣

r′
1

r′
2

...

r′
K

⎤

⎥⎥⎥⎥⎥⎦
,

where each row, r′
k , is a centroid vector of means for cluster k on the P variables. This

strategy allows (5) to be rewritten as a function of M and R,

F (R, M) = tr[(X − MR)′(X − MR)], (7)

which can be estimated by an alternating least squares algorithm procedure that alternates between
minimizing (7) with respect to M given the current estimate of R and minimizing (7) with respect
to R given the current cluster membership. Furthermore, by expanding (7) the middle two terms
cancel, and it is seen that R is equal to (M′M)−1M′X, obtaining the formulation in Gordon and
Henderson (1977),

SSE = tr(X′(I − M(M′M)−1M′)X), (8)

which allows the problem to be viewed as trying to find a particular projection of the columns of
X; however, to date, the conceptual direction provided by (8) has been mostly ignored.
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2.3. Combining Existing Representations to Derive the Lower Bound

By combining this representation with several of those presented above, it will be possible
to derive a nontrivial lower bound, under certain conditions, for (5). Representing X as a stack of
row vectors and partitioning them into their respective clusters,

X =

⎡
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

allows the collection of observations for the kth cluster to be represented as the submatrix denoted
Xk of size nk × P . Recalling the form of (7) and breaking it into K components, allows (5) to be
rewritten as

SSE =
K∑

k=1

tr((Xk − jkr′
k)′(Xk − jkr′

k)), (9)

where jk is an nk × 1 vector of ones. Then using the projection notion of (8), (9) can be represented
as

SSE =
K∑

k=1

tr(((Ik − (jkj′k)/nk)Xk)′((Ik − (jkj′k)/nk)Xk)), (10)

where Ik is the nk × nk identity matrix corresponding to the kth cluster. Carrying out the transpose
allows us to rewrite (10) as

SSE =
K∑

k=1

tr(X′
k(Ik − (jkj′k)/nk)′(Ik − (jkj′k)/nk)Xk), (11)

and using the properties of traces and projection matrices results in a further reduction of (11) to

SSE =
K∑

k=1

tr((Ik − (jkj′k)/nk)XkX′
k). (12)

Expanding the terms in (12), splitting the two unit vectors, and distributing the summation sign
reformulates the problem as

SSE =
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tr(X′
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Realizing that X′X is

X′X =

⎡
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leads to the equality

K∑
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tr
(
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kXk

) = tr(X′X). (14)

Additionally, recalling the form of M and noting that M′M is the K × K diagonal matrix

M′M =

⎡

⎢⎢⎢⎢⎣

n1

n2
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nK

⎤

⎥⎥⎥⎥⎦
,

leads to the realization that an N × K orthonormal matrix, O, can be formed by dividing the kth
column of M by nk , allowing (13) to be restated as

SSE = tr(X′X) − tr(O′XX′O). (15)

The first term on the right-hand side of (15) is fixed given the data, allowing the minimization of
SSE to be changed to a problem of maximizing the second term on the right-hand side of (15).
Given that the data are fixed and letting O represent the set of all N × K orthonormal matrices,
the problem becomes finding the specific orthonormal matrix, O∗, that maximizes the second
term of (15). Using the following theorem of Fan (1949) provides the solution.
Theorem. Let H be an N × N Hermitian matrix with eigenvalues λH = λ1 ≥ λ2 ≥ · · · ≥ λN ,
then

λ1 + · · · + λK = max
O

tr(O′HO).

Realizing that all symmetric real valued matrices (e.g., XX′) are special cases of Hermitian
matrices, allows the minimum of (15) to be calculated as

ψ = min SSE = tr(X′X) −
K∑

i=1

λXX′
i . (16)

If P ≤ K , ψ will be trivial (i.e., equal to zero), making the derivation in (16) informative only in
situations where K < P .1

It is clear that M is a subset of O; however, it is likely that O∗ is not of the same form as
M, i.e., the values in O∗ are not going to consist of zeros and ones, but rather continuous values.
Thus, it may be the case that perfectly clustered data will not achieve the lower bound stated in
(16). The following section develops an index to capture specific properties of the lower bound
and explores the relationship between the theoretical lower bound and the observed lower bound
in a cluster analytic situation.

1We are grateful to one of the reviewers for indicating that the same lower bound has previously been derived (see
Zha, Ding, Gu, He, & Simon, 2001). The main difference between the two accounts is that the present derivation is
based on the historical development of K-means clustering and includes the explicit reference to Fan’s (1949) theorem;
however, all mathematical results remain the same.
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3. An Index Based on the Lower Bound

Although the result provided in (16) is theoretically interesting, in its current form, it lacks
direct applicability. Since ψ is fixed given the data, an obvious extension is to measure the distance
between the observed sum-of-squares error, ϑ , resulting from a particular clustering of the data.
However, given different scales of data sets, it would be impossible to compare the differences
across data sets. Thus, a normalized index, ξ , is created by dividing the above difference by the
corrected sum-of-squares total (τ ), represented by

ξ = ϑ − ψ

τ
. (17)

When ψ = 0 and ϑ = τ , ξ has an upper bound of unity, and when ϑ = ψ , a lower bound of
zero. Clearly, the closer ξ is to zero, the more compact the clustering of the data. The following
section relates ξ to cluster recovery, as measured by Hubert and Arabie’s (1985) adjusted Rand
index (ARIHA), and develops a test to determine the quality of the clustering solution based on
the value of the above index.

4. Assessing the Efficacy of Cluster Solutions Using ξ

To assess the ability of ξ to approximate cluster quality, data were generated from several
conditions based on Steinley (2003, 2004a). The seven factors for this study were: (a) the type
of overlap among the clusters; (b) the number of clusters; (c) the number of variables; (d) the
probability of overlap; (e) the type of distributional family; (f) the size of the data set; and (g)
the number of incorrect object assignments. All seven factors are described below. Furthermore,
consistent with other studies, three replications were made for each condition (see Brusco &
Cradit, 2001; Milligan & Cooper, 1985; Steinley, 2003).

4.1. Factor Description

Type of Overlap: Operationalized by Steinley and Henson (2005), the type of overlap between
clusters can be of two different kinds: marginal or joint. Marginal overlap is defined by
allowing clusters to overlap on some dimensions (i.e., variables), but not on all dimensions
simultaneously. The most familiar cluster generation method using this type of overlap is
Milligan’s (1985) method where clusters were not allowed to overlap on the first dimension,
but were allowed to overlap on all the others. This restriction prevents clusters from overlapping
in the joint P -variate space (i.e., on all dimensions simultaneously). Steinley and Henson (2005)
relaxed this condition and allowed clusters to overlap on all dimensions, resulting in a more
realistic technique for generating clusters.

Number of Clusters: The number of clusters ranged from K = 4, . . . , 8.
Number of Variables: For ψ to have any meaning, the number of variables must be greater than

the number of clusters. So, the number of variables ranged from P = (K + 1), . . . , 15.
Probability of Overlap: The probability that two clusters overlapped (either marginal or joint

overlap) ranged from O = 0.10, 0.20, 0.30, 0.40.
Distributional Family: The clusters were drawn from five different distributional families: nor-

mal with equal variances, normal with unequal variances, triangular distributions, uniform
distributions, and a mixed distribution. The normal with equal variances generates variables
with a covariance matrix proportional to the identity. The normal with unequal variances ini-
tially generates data with a diagonal covariance matrix (with no restrictions on the values
of the variances), but through arbitrary rotations different correlation structures are achieved.
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TABLE 1.
T for Co-occurrence between two partitions, P and Q.

Q
Group q1 q2 . . . qC Totals

p1 t11 t12 . . . t1C t1+
p2 t21 t22 . . . t2C t2+

P
...

...
...

...
...

pR tR1 tR2 . . . tRC tR+
Totals t+1 t+2 . . . t+C t++ = N

The triangular distribution generates data from a discrete triangular distribution that results in
skewed data. The uniform distribution generates data from a continuous uniform distribution,
while the mixed condition randomly selects one of the four aforementioned distributions for
each of the variables—resulting in data sets where each variable may rise from a different
distribution (see Steinley & Henson (2005) for details concerning the specifics of the data
generation process).

Size: The size of the data sets took on the values of N = 100, 200, 300, 400, and 500.
Number of Incorrect Object Assignments: To guarantee a wide range of Hubert–Arabie adjusted

Rand indices, the values were directly manipulated in the following manner. Assume P is the
true partition of the objects in the generated data. Now, assume Q is the partitioning of the
objects obtained by a clustering algorithm. Then, the cross-classifications of P and Q can be
represented by the contingency table, T (see Table 1), where P contains R classes and Q
contains C classes (for the purposes of this study, it is assumed R = C). In T , a generic entry,
trc, represents the number of objects that were classified in the rth class of partition R and
the cth class of partition C. Perfect agreement between P and Q (i.e., ARIHA = 1.00) occurs
when all entries are on the main diagonal of T . To obtain values of ARIHA less than unity, it
is sufficient to move objects from the main diagonal into the body of T . See Steinley (2004b)
for a detailed discussion of the manipulation of the partitions and the properties of the ARIHA.
For this factor, there were six levels: (a) perfect agreement; and (b) when 5%, 15%, 25%,
35%, and 45% of the objects were randomly assigned to the incorrect partition. This manner
of manipulating the data allows the results to be generalizable to several clustering techniques
(i.e., the results below are only data dependent and not method dependent).

All factors were completely crossed; however, due to the fact that the value of P for each
condition depends on the value of K , the design is not balanced. Thus, instead of 247,500
observations (in this case data sets) there are 202,500 data sets. For each of the data sets, after
the objects were randomly assigned to the wrong partition, the solution was compared with the
known cluster solution and the ARIHA, ψ , and ξ were computed.

4.2. Results

If ARIHA values are treated as a response variable and the manipulated factors as explanatory
variables, a seven-way ANOVA can be conducted (see Brusco & Cradit, 2001; Milligan & Cooper,
1988; Steinley, 2004a; for similar designs). The results for the main effects of the ANOVA are
displayed in Table 2.

Consistent with results provided by Steinley (2004b), none of the data dependent manipulated
factors had large effects on ARIHA (η2 < .001 for all factors). Thus, ARIHA is invariant to
properties of the data set and is sensitive only to partition agreement (η2 = 0.995).
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TABLE 2.
ANOVA with ARIHA as the response.

Source DF SS MS F η2

Type of overlap 1 ∗ ∗ 0.08 ∗

#Variables 10 ∗ ∗ 0.21 ∗

Prob. overlap 4 ∗ ∗ 0.18 ∗

Distribution 4 ∗ ∗ 0.05 ∗

Data set size 4 0.09 0.02 143.49 ∗

#Clusters 4 52.04 13.01 87903.2 ∗

%Incorrect 5 16550.34 3310.07 2.236E7 0.995

Total 202499 16639.64

∗ ≤ .001.

A similar analysis can be conducted with ξ as the response variable (results presented in
Table 3). Similar to ARIHA, the data dependent factors do not have large effects on ξ ; whereas the
degree of partition agreement has an extremely large effect on the response variable (η2 = 0.90).
Given that the variances of the two indices (ARIHA and ξ ) are almost completely explained by
the same variable, it is reasonable to assume that, in a research setting, the unobservable value of
ARIHA may be well approximated by the cluster dependent value of ξ .

5. Validating Cluster Structure

Given that, when desired, most clustering procedures will always provide a clustering of the
data (whether appropriate or not), this section provides two methods for determining the validity
of a cluster solution provided by a K-means cluster analysis. First, a heuristic method based on
simple linear regression is given so the researcher can quickly assess the appropriateness of a
given partitioning of the data. Second, a more rigorous procedure based on generating appropriate
reference distributions is provided. The latter procedure allows for a straightforward method of
significance testing for cluster validity.

5.1. Heuristic Method

Given the primary influence of the percentage of observations assigned to the incorrect
partition on both ARIHA and ξ , it is instructive to investigate the change in the average value

TABLE 3.
ANOVA with ξ as the response.

Source DF SS MS F η2

Type of overlap 1 64.51 64.51 15083.6 ∗

#Variables 10 56.12 5.61 1312.28 ∗

Prob. overlap 4 45.34 11.33 2650.39 ∗

Distribution 4 111.29 27.82 6505.45 ∗
Data set size 4 5.08 1.27 297.24 ∗

#Clusters 4 25.69 6.42 1502.03 ∗

%Incorrect 5 10816.84 2163.36 505803 0.90

Total 202499 12025.82

∗ ≤ .001.
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TABLE 4.
Mean of ARIHA and ξ with respect to incorrect

partition assignment.

%Incorrect Mean ARIHA Mean ξ

0 1.00 0.13
5 0.88 0.22

15 0.65 0.40
25 0.47 0.55
35 0.31 0.67
45 0.19 0.77

for these indices across the six levels of this factor (see Table 4 for details). It is clear that the
ARIHA and ξ are inversely related, as the value of ARIHA decreases as the value of ξ increases
(r = −.95)

Predicting ARIHA from ξ using a simple linear regression provides

ARIHA = β0 + β1ξ, (18)

and when (18) is fit to the data, the estimated equation is

̂ARIHA = 1.09 − 1.12ξ (19)

as the predictive equation. The model exhibits an adjusted R2 = 0.90, a respectable value for
predictive purposes. Using the heuristic values of ARIHA provided by Steinley (2004b), we
assume that values less than 0.65 represent poor cluster recovery. Substituting 0.65 into the left-
hand side of (19) and solving for ξ yields a value of ξ = 0.40. Now, we can use ξ = 0.40 as a
threshold value to decide whether or not to accept a given partitioning of the data. Dividing the
generated data into two groups, G1 if ξ < 0.40 (i.e., acceptable partitions) and G2 if ξ ≥ 0.40
(i.e., unacceptable partitions), the power of the decision rule can be tested. Table 5 provides the
descriptive statistics for the two groups.

The difference between the average ARIHA of the two groups is 0.49, and when considering
the pooled standard deviation (0.15), the effect size (Cohen’s d) is 3.27—clearly an enormous
value for d. Given the relative nonimportance of data specific characteristics and the range of
data sets in the simulation, the value of 0.40 is generalizable to several data analytic situations.
At the very least, by using (19), the researcher is able to take advantage of external knowledge of
the data set to get a rough idea of how well the resulting partition approximates the true cluster
structure.

5.2. Nonparametric Method

Although the heuristic method above can provide a quick, rough idea of the quality of cluster
solution, it may be desirable to implement a more rigorous procedure. Similar to Steinley (2004b)
and Tibshirani, Walther, and Hastie (2001), it is possible to generate an underlying reference

TABLE 5.
Descriptive statistics for G1 and G2.

Group N Mean ARIHA Std

G1 87,215 .87 0.13
G2 115,285 .38 0.16
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distribution, with the desired properties controlled for, to compare to the observed data set. Since
both ARIHA and ξ primarily depend on the percent of incorrect assignments, it is possible to fix
several properties of the generated data to reflect the characteristics of the observed data.

Assume the data matrix XN×P = {xij } is observed, where N represents the number of
observations and P represents the number of variables. Then, after a cluster analysis is performed
on X to obtain K clusters, a corresponding value of ξ , based on the resulting partition (PX)
when the data set is clustered via the K-means procedure, can be computed (denoted as ξX).
The primary goal is to determine whether the PX is representative of a “true,” underlying cluster
structure or merely an artifact of the clustering algorithm, resulting in the hypothesis:

Ho : The observed PX adequately fit the data (i.e., it reflects a true, underlying cluster structure).

with the corresponding alternative hypothesis:

Ha : The observed PX does not adequately fit the data.

It is assumed that “fit” using cluster structure is measured in terms of the ARIHA. Thus, if the
ARIHA is low (i.e., a clustering technique is unable to recover the true cluster structure), then the
fit of the partition to the data is poor; whereas, if the ARIHA is high and a clustering technique
is able to recover the true cluster structure the fit of the partition to the data is good. Following
Steinley (2004b), the adequate fit cut-off used will be 0.65; however, it is important to realize that
any value of ARIHA can be substituted into the following procedure. To test Ho, the following
algorithm is implemented (afterward, each step is described in detail):

1. Set A = 0, B = 0; define ξX as the observed value of ξ , α as the desired significance
level, Bs as the number of samples to be drawn from the baseline distribution.

2. Generate a data set with K clusters, N observations, and P variables from an appropriate
underlying distribution. In general, before the cluster analysis is performed, the researcher
is not aware of the underlying distribution or the appropriate cluster structure of the data.
Since these factors do not have an appreciable impact on either ARIHA or ξ , it is sufficient
to choose the underlying distribution, the type of cluster overlap, and the degree of
cluster overlap randomly. Thus, whatever small effect these unobservable factors (predata
analysis) have on the two outcome measures will be accounted for by the randomization
method (see the description below for alternative data set generation suggestions).

3. After the data set has been generated, cluster the data set via the K-means procedure and
calculate ξ ∗

B and ARI
(B)
HA for this data set. If ξ ∗

B > ξX, then A = A + 1.
4. If B < Bs , then B = B + 1 and return to Step 2.
5. If A/Bs < α, reject Ho.

5.2.1. Step 1. This steps only requires two user-defined values, α and Bs . Standard values
for α can be employed (say .05 or .01), while larger values of Bs will lead to more accurate results
due to reduction of sampling variability. Bs should be no smaller than 100, while sizes of 1000
or more will lead to much more reliable results.

5.2.2. Step 2. The data generation procedure described in the algorithm above allows for the
most general reference distribution. However, the data generation process is completely flexible
and should be tailored to the specific needs of the researcher. For instance, when generating
classical clusters where there is always at least one dimension that clearly defines the cluster
structures, then Milligan’s (1985) generation procedure could be implemented. On the other
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hand, if clusters with a specific skew or kurtosis were desired, then the use of the procedure
developed by Waller, Underhill, and Kaiser (1999) would be appropriate.

Furthermore, any preconceived notions about the size and shape of the true cluster structure
can be reflected in the reference distribution by either restricting the size of the generated clusters
or the distribution from which the variables defining the cluster structure are drawn. In short, any
generation procedure that has been used previously can be substituted in this step. Thus, the user
is only limited by his/her imagination or creativity, allowing the nonparametric testing procedure
to be extremely flexible.

5.2.3. Steps 3–5. This procedure will compute the area to the right of ξX in the distribution
of ξ ∗. If this area is less than α (indicating ξX is in the upper-tail of the ξ ∗ distribution), the test
indicates poor model fit and lack of true cluster structure recovery by the K-means method.

Alternatively, the test can be conducted in terms of a cut-off value. If the values of ξ ∗ are
ordered from smallest to largest (ξ ∗

(1), ξ
∗
(2), . . . , ξ

∗
(Bs )), then the value ξ ∗

(αBs ) serves as cut-off value.
If ξX > ξ ∗

(αBs ), the null hypothesis is rejected. (Note: This technique can be considered analogous
to model testing in the exploratory factory analysis setting where a chi-squared test statistic is
used.)

5.3. Illustrative Example

This section applies the above methodology to two example data sets. The first is the Fisher
(1936) iris data. The sepal length, sepal width, petal length, and petal width are measured in
millimeters on 50 iris specimens from each of three species, Iris setosa, Iris versicolor, and
Iris virginica. Thus, the final data matrix for the iris data contains 150 observations measured
on four variables. Using the true classes, as defined by the species, the computed index is
ξiris = 0.13; however, when the K-means procedure is used to cluster the iris data, the observed
index is ξiris(K-means) = .08 while the degree of cluster recovery is ARI

(iris)
HA = 0.71, indicating

good recovery by Steinley’s (2004b) guidelines.
The second example data set is a fabricated data set containing an artificial cluster structure.

The fabricated data set is generated from a multivariate normal distribution with four variables
and 150 observations; however, there is no “true” underlying cluster structure present in the data.
The data are then clustered into four clusters, via the K-means procedure, resulting in a computed
index of ξfab = 0.51, and since there is no underlying cluster structure, a value for ARIHA is not
defined.

Since each data set has the same number of objects and variables, it is sufficient to generate
a single reference distribution for both scenarios. In this example, α = .05 and Bs = 1000. The
reference distribution was generated in the manner described within the algorithm. Specifically,
for each of the 1000 data sets, the following decisions were made:

(a) The underlying reference distribution was randomly chosen from the set: {normal with
equal variances, normal with unequal variances, uniform, triangular, mixed}, where each
distribution had an equal probability of being selected (i.e., each had a probability of .20
of being selected).

(b) The type of cluster overlap (i.e., marginal or joint) was also chosen randomly, with each
having a .5 probability of being selected for a given data set.

(c) The amount of cluster overlap for each data set was chosen from a random continuous
uniform distribution U(0, .45).

Thus, for each of the 1000 data sets, there are ten combinations of distribution and type of overlap
(steps (a) and (b)) that are randomly assigned an amount of overlap from the interval [0, .45]
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Reference distribution of ξ .

(step (c)). It is important to note that it is possible for each data set to have different overlaps that
give rise to the cluster structure.

Figure 1 denotes the reference distribution, with the rejection region representing the top
5% of the observed values for ξ (where the exact cut-off value is ξcutoff = .418). For the iris data,
A/Bs = 1, while for the fabricated data A/Bs = 0, indicating that ξiris was always below the ξ ∗

values for all generated data sets while ξfab was always above the ξ ∗ values for all generated data
sets. Clearly, the data set with a true cluster structure falls in the acceptance region, while the data
set with artificial cluster falls in the rejection region.

6. Conclusion

This paper effectively derives a lower bound for the K-means loss criterion and, based on
the lower bound, an index that is invariant to several properties of the data set (i.e., number of
clusters, number of variables, distribution of variables, size, etc.) is created. In turn, this index
is related to a separate cluster recovery index and a powerful test to determine the quality of a
cluster solution is developed. The primary limitation to the proposed index is its ineffectiveness
when the number of clusters is larger than the number of variables; however, given the recent
increase in data set sizes (for instance, microarray data) this situation should not be too difficult
an obstacle to overcome.

Additionally, it is crucial to understand that the effectiveness of the procedure relies heavily
on the choice of reference distributions to generate the cluster structure. In the example above, the
implementation of the nonparametric testing procedure relied on a very conservative approach that
allowed the reference distribution to be drawn from a very wide range of distributions. However,
researchers may be tempted to make certain a priori assumptions about the multidimensional
structure of the clusters hypothesized to be present within the data. A common assumption
would be that the clusters were multivariate normal and spherically shaped. Unfortunately, if the
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reference distribution is generated on an assumed cluster structure that, in actuality, is incorrect,
the conclusions drawn from the nonparametric procedure will be tenuous at best and wildly
misleading at worst. On the other hand, if the correct cluster structure is chosen, the nonparametric
test will become more powerful. To gain maximal confidence in the results obtained from the
outlined procedure, the researcher should conduct some type of sensitivity analysis. For example,
if the researcher chooses a more restrictive range of reference distributions to sample from for
the initial test, a follow-up test (using a more liberal sampling scheme for the possibilities of
reference distributions) should be conducted to determine the sensitivity of the outcome of the
test to the assumptions made upon implementation of the procedure. Finally, these concerns
extend beyond the choice of reference distribution to the other choices made by the researcher
as well (i.e., overlap, relative cluster density, etc.), and appropriate sensitivity analyses should be
conducted to determine the quality of the initial conclusions.

Most importantly, this strategy provides a simple tool to aid researchers in determining if
the partitioning provided by a method minimizing the sum of squares error (such as K-means)
is truly reflecting the underlying nature of the data. Current research is following two avenues of
inquiry:

(a) identifying techniques to transform the continuous values of O∗ to the corresponding
discrete values of M, possibly avoiding the iterative nature of the traditional K-means
procedure; and

(b) developing a similar eigendecomposition and lower bound for fuzzy (i.e., overlapping)
clustering, creating a comparable index and establishing the relationship between the
lower bound and the degree of fuzziness in the final cluster solution.
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