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Abstract

Many national electricity industries around the globe are being restructured from regulated monopolies to deregulated

marketplaces with competitive business units. The business units responsible for transmission and distribution must be given

physical property rights to certain parts of the power grid in order to provide reliable service and make effective business

decisions. However, partitioning a physical power grid into economically viable districts (distribution companies) involves

many considerations. We refer to this complex problem as the electrical power districting problem (EPDP). This research

identifies the fundamental characteristics required to appropriately model and solve an EPDP. The proposed solution

methodology is implemented as a decision support system (DSS) featuring a visualization tool that allows decision makers

(DMs) to explore what we refer to as a ‘‘soft efficient frontier.’’ This DSS was found to effectively support DMs at The World

Bank in solving an EPDP in the context of a case study for the Republic of Ghana.
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1. Introduction

In 1990, the electricity industry in England and

Wales was the first to introduce competition to the

activities of power generation and supply. Initially,

supply competition was made available to only 5000

large industrial consumers. However, in 1994, com-

petition was extended to an additional 50,000 medium

size consumers such as small factories and businesses

[43]. In the summer of 1999, the United Kingdom

(UK) implemented the first full-blown competitive

electricity industry, where the full compliment of 26

million consumers was allowed to choose among

suppliers of electrical power. Other countries, such

as Australia, New Zealand, Bolivia, Canada, and the

United States, are all at various stages of deregulation

of their electricity sectors.

To facilitate deregulation of the electricity market,

independent business units must be established to

manage power transmission and distribution func-

tions. In addition, these business units must be given

physical property rights to certain parts of the power

grid in order to provide reliable service and make
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effective business decisions. However, partitioning a

physical power grid into economically viable districts

involves many considerations. In this research, we

refer to this interesting and complex problem as the

electrical power districting problem (EPDP). We

anticipate that many new instances of the EPDP will

arise as deregulation of electricity markets takes place

around the world.

Historically, researchers have shown a great deal of

interest in applying management science techniques to

develop political districts and align sales districts.

This study is intended to synthesize the various

approaches to districting problems and identify the

necessary and fundamental characteristics involved in

appropriately modeling an EPDP. To this end, this

research has five objectives. First, to identify the

issues relevant to the EPDP. Second, to investigate

the similarities and differences of the EPDP with other

districting problems published in the research litera-

ture. Third, to develop and recommend an appropriate

solution methodology for the EPDP. Fourth, to dem-

onstrate the effectiveness of our solution method for a

specific instance of an EPDP in the Republic of

Ghana. Last, to describe a decision support system

(DSS) built to aid decision makers (DMs) at The

World Bank in finding an acceptable solution to the

EPDP in a case study of the Republic of Ghana.

1.1. Background on the electricity industry

Because of the prohibitively large start up capital

required to establish a presence in the electricity

industry, every electrical power system in the world

was born as a natural monopoly. Electricity is simply

a commodity, much like natural gas and sugar, which

can be bought and sold in a free market. However,

electricity has several unique features that distinguish

it from other commodities. For instance, today’s

technology does not provide an economical means

of storing bulk electricity. Thus, unlike natural gas and

sugar, electricity must be produced in the right quan-

tity at exactly the right time. In addition, electricity

cannot be differentiated by its originator once it

reaches the transmission and distribution grid. Finally,

the flow of electricity along the grid obeys the laws of

physics. Each of these natural attributes poses con-

siderable difficulty in creating a competitive market-

place for electricity.

The actual production of electricity is a process

termed ‘‘generation.’’ Electricity can be generated in a

variety of ways: hydroelectric involves the conversion

of falling water into electricity, engines or turbines

may be used to convert fossil or nuclear fuel into

electricity, and wind or solar power may be captured

and harnessed into electricity. Ultimately, the gener-

ation function involves the conversion of some form

of energy into a bulk supply of electrical power.

Once electricity is generated, it is usually trans-

ported over great distances to the end users. The

transportation process is referred to as the ‘‘trans-

mission’’ function, which involves delivery of bulk

electricity from the generators to bulk supply distri-

bution points. Since the supply and demand for

electricity must be balanced in real-time, the trans-

mission function also involves the scheduling and

dispatch of all bulk electricity for all of the generators

connected to the network. At the bulk supply distri-

bution points, the voltage of the electricity is reduced

to levels that are practical for delivery to local sub-

stations. At the local substations, the voltage is once

again reduced to consumption levels. The process of

local delivery and voltage reduction is known as

‘‘distribution.’’

For most users of electricity, the functions of

generation, transmission, and distribution have

appeared seamless because these processes have his-

torically been provided as a ‘‘bundled’’ service by the

installed monopoly. Deregulation of electricity mar-

kets involves a partial ‘‘unbundling’’ of this vertical

supply chain. Separation of these functions facilitates

a competitive market for electricity via ‘‘open access’’

to the power grid. With open access, potentially

profitable economic opportunities are available to

new entrants into the electricity market. However,

unbundling the supply chain also creates ambiguities

regarding divisible property rights for an indivisible

physical network.

For the generation function, the ability to inject

electricity into the network and trade a certain amount

over a period of time is required. This will allow the

management of generating facilities to focus their

attention upon their core activities and streamline their

efforts for the efficient production of electricity. In a

competitive electricity market, buyers may choose

their suppliers and thus, each unit of electricity has

a specified source and destination. This is referred to
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as the ‘‘contract path’’ for the delivery of a specified

amount of electricity.

The transmission and distribution functions are

both basically a ‘‘wires business’’, which involves

the coordination of delivery services across the phys-

ical network. The difficulty with unbundling these

two functions is based upon transmission pricing

issues. Because the actual path taken by electricity

from source to destination is dependent upon current

network conditions, the actual path may differ greatly

from the contract path. Therefore, the true cost of

delivering electricity is based upon current network

conditions both at the transmission level and the

distribution level. For this reason, it is likely that

these services will be grouped together as deregula-

tion takes place.

Researchers intimate with the deregulation of elec-

tricity markets have expressed concern that the proc-

ess is taking place without a complete understanding

of the impact of long-term decisions and that without

the proper studies there is a risk of being ‘‘. . .locked
into an inferior market design which will be costly to

change’’ [6]. Furthermore, without proper research,

there is also a risk that the full social benefits resulting

from the deregulation process will not be realized

[33].

1.2. Review of districting problem research

The research literature contains a variety of math-

ematical characterizations for the generalized district-

ing problem as well as several suitable application

areas. The application areas include, but are not limited

to, political redistricting [3,5,14,18,32,35,45,46], sales

territory alignment [9,17,30,42,48], and school redis-

tricting [11]. We posit that the EPDP has similar

constructs to the above applications and represents a

huge open opportunity for researchers interested in

districting problems to create substantial social and

economic benefit. This section provides a review of

the various applications of districting problems cov-

ered in the research literature, the manner in which the

problem has been characterized, and the various sol-

ution techniques applied.

The most prevalent redistricting applications in the

management science literature are political redistrict-

ing and sales territory alignment. The primary goal of

the political redistricting problem is to provide geo-

graphically compact districts that are respectful of

existing political units to the maximum extent possi-

ble. In addition, the districts must have populations

with approximately equal voting potential. The moti-

vation for using a computerized solution method is to

reduce the effects of ‘‘Gerrymandering’’, which may

occur when political incumbents bias the redistricting

solution to accommodate their political agenda.

Automated political redistricting has been of great

interest to politicians and researchers for the last four

decades. The first mathematical characterization of the

political districting problem was proposed by Vickery

[46]. The redistricting problem has been characterized

in the recent literature as a set-partitioning problem

[3], a graph-partitioning problem [5,10], and most

recently as an integer programming problem for

redrawing congressional districts in the state of South

Carolina [32].

Designing sales territories is another application

area that can be viewed as a districting problem. The

sales territory alignment problem is concerned with

grouping a number of smaller geographic regions into

clusters forming nonoverlapping sales territories that

span a larger geographic region. Sales territories may

need to be realigned whenever changing market con-

ditions warrant, such as the introduction of a new

product or variation in sales force size. Sales manag-

ers are motivated to carefully design an equitable

districting plan, otherwise they risk low morale, poor

performance, high turnover rate, and ultimately low

productivity within the sales force. Furthermore, a

balanced territorial design provides a consistent and

effective basis for evaluating and comparing individ-

ual performance within the sales force.

There are a number of criteria that can be used to

assign geographic regions to districts or sales people

to customers. Some single alignment criteria methods

seek to balance income or revenue potential [30],

while other methods attempt to balance workload or

effort [9]. Another common objective is to maximize

overall expected profitability. The consideration of

multiple objectives was first proposed by Zoltners

[47].

Sales territory redistricting has a considerable his-

tory in the research literature. Similar to the political

redistricting problem, a variety of solution techniques

have been applied to this problem. A set-partitioning

approach was investigated [42] as well as various
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assignment methods [17,41,47]. For a thorough

review of integer programming approaches, see Zolt-

ners and Sinha [48]. Heuristic approaches that utilize

incremental improvements have been proposed

[9,16,29].

The relationship between a political district and a

sales territory is fairly obvious. The political district is

driven by the ‘‘one electorate–one vote’’ principle,

which seeks to balance legislative power among

districts. When assigning geographic regions to sales

territories or sales people, most equitable solutions

seek to balance income potential or effort. Both

scenarios are similar to a bin-packing problem, where

the objective is to minimize the total deviation of

some criteria in each bin (district) from the ideal

(global) bin mean. Typically, there are other nontrivial

considerations distinguishing a bin-packing problem

from a districting problem, such as the compactness of

a districting plan or contiguity among the geographic

regions allocated to a particular district.

1.3. The electrical power districting problem

The design of a competitive electricity market is

driven by two mitigating factors. First, energy flows

along a physical network according to the laws of

physics, which requires a coordination of effort in

order to achieve balance, reliability, and frequency

control. Second, there is presently no economical way

to store electricity, which means that it must be

delivered in real-time on demand. Some of the major

design considerations that result from the above

requirements were proposed by Rassenti and Smith

[37]:

(1) Coordination of the dispatch and delivery of

electricity for a centralized network with decen-

tralized suppliers and buyers.

(2) Financial instruments (futures and spot markets

with bilateral contracts) which yield appropriate

market signals for trading and making long-term

investment decisions. For details on this issue, see

Jamison [25].

(3) Defining divisible property rights for an indivi-

sible common transmission network.

(4) Establishing pricing policies such as Zonal or

Nodal pricing. For details on this issue, see

Schweppe et al. [40].

(5) Facilitating competition at the local distribution

level.

The EPDP has risen directly out of issue number 3

above. Between the electricity generator and the

customer stretches a system of transmission lines that

are interconnected to form a physical network. Once

electricity is generated, it is transmitted with high

voltage over large geographic regions to distribution

nodes referred to as bulk supply points (BSPs). From

the BSPs, the voltage is reduced and the electricity is

distributed to local user groups such as residential

neighborhoods, industrial users, or commercial devel-

opments. Due to the large costs of equipment and

maintenance, transmission and distribution are likely

to remain more economical if a large proportion of the

power grid is maintained by a single entity in a given

geographic area. Thus, the available customer base,

which can be represented by BSPs, must be grouped

into districts that can be effectively managed in a

competitive market.

Similar to political redistricting and sales territory

alignment problems, the EPDP is primarily concerned

with creating groups of approximately equal revenue

or profit potential. The motivation for this objective is

to foster competition by attracting private investment.

A good districting plan must also consider the com-

pactness and contiguity of BSPs that comprise a

district. Districts that are compact over a geographic

region rather than disbursed will be more economical

to maintain and thus more profitable. The requirement

for contiguity is rather intuitive since product delivery

takes place over physical wires connecting the BSPs.

From a practical point of view, it is desirable to deliver

electricity between BSPs within a common district

without paying rents to another transmission enter-

prise. However, while contiguity appears to be a

simple and intuitive requirement, there are a number

of hidden complexities that arise when actual power

flow is considered.

Perhaps the most difficult and sensitive issue

regarding competitive design of the electricity market

is establishing a pricing policy. There are two pricing

configurations presently being explored in the re-

search literature and implemented in emerging mar-

kets throughout the world: nodal pricing and zonal

pricing [7,40]. Nodal pricing schemes establish a unit

charge for electricity demanded at each BSP. Under
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this scenario, unit prices of electricity may be based

upon historical consumption and delivery costs.

Another form of nodal pricing is locational marginal

pricing (LMP). LMP is not based upon historical data

but driven by the concepts of economic efficiency.

The curious reader is referred to Schweppe et al. [40]

and Jamison [25] for a detailed description of LMP

methods. The zonal approach aggregates a number of

BSPs into larger zones under the assumption that this

would reduce the complexity of the pricing issue. In

this case, a number of BSPs share a common unit

price.

In our research, we have implemented a nodal

pricing scheme based upon historical data provided

by The World Bank. The research literature suggests

that nodal pricing accounts for ‘‘loop-flow’’ phenom-

enon more accurately than zonal pricing [19,20].

Furthermore, because the nodal pricing that we imple-

ment is based upon historical information, it is less

ambiguous and therefore more appealing to the DMs

at The World Bank.

2. Mathematical framework

A districting plan is a partitioning of units (pop-

ulations, sales regions, BSPs) into nonoverlapping

districts (groups) that the are contiguous (adjacent)

and geographically compact. A desirable districting

plan optimizes one or more objectives such as bal-

anced legislative power or revenue potential. By

associating each BSP with a node, and each long

distance transmission line between BSPs with an

edge, the EPDP can be modeled as a graph-partition-

ing problem. This method was applied to the political

districting problem where the weight on the node was

equal to the corresponding population size [3,32].

Let us define G (N, E) to be a graph G with nodes

N defined to be the set of BSPs that comprise G, and

edges E defined to be a pair-wise connection matrix

corresponding to the set of long distance transmis-

sion lines that connect N. A district is a node

induced subgraph GV (NV, EV) of G (N, E) that is

contiguous. A district GVis contiguous if all nodes NV
assigned to the district are connected by edges EV.
Contiguity also implies that it is possible to reach

any node in a particular district from any other node

assigned to the same district without leaving the

district. A district is also referred to as a partition

or a group belonging to G (N, E) in later sections.

See Fig. 1.

2.1. Balanced revenue objective

As mentioned earlier, one objective DMs may wish

to pursue in solving an EPDP involves creating a

districting plan with approximately equal revenue or

profit potential in each district. A districting plan

where n nodes (bulk supply points) are assigned to

K districts can be described by the solution vector

xika{0,1} where xik = 1 if node i is assigned to district

ka{1,. . .,K} and equal to zero otherwise. To obtain K

transmission districts of approximately equal earning

potential, we can minimize the total deviation of the

revenue in each district from a target value. This can

be modeled as follows:

Minimize : z1 ¼
XK
k¼1

ðuk þ vkÞ ð1Þ

where : r̄ ¼ 1

K

Xn
i¼1

ri ð2Þ

Rk ¼
Xn
i¼1

rixik ; bk ¼ 1 . . .K ð3Þ

Fig. 1. A graph representation of an electrical transmission and

distribution network.
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Rk � r̄ ¼ uk � vk ; bk ¼ 1 . . .K ð4Þ

0Vuk ; vkVdr̄; bk ¼ 1 . . .K ð5Þ

xik = 1 if node i is assigned to district k, and 0

otherwise; Rk = sum total of revenue potential in dis-

trict j; K = number of districts (partitions); ri = amount

of revenue potential contained in node i; n = number

of nodes in the network; 100d, (0V dV 1), is the

maximum allowable percentage deviation of the

actual revenue in a district from the target.

Note that the above formulation does not explicitly

model the difficult task of ensuring contiguity within

each district. Rather, our definition of a district (given

above) requires that districts be contiguous. So the

above model assumes that nodes assigned to a partic-

ular district are contiguous. A later section (and Ap-

pendix C) addresses how our solution methodology

maintains contiguity in each district.

2.2. Compactness objective

Another objective (discussed earlier) of interest to

DMs solving EPDPs is the geographical compactness

of a districting plan. To measure the compactness of a

district k, we use the total Euclidean distance from the

centroid of district k to each node assigned to district

k. The districting plan that minimizes the total com-

pactness is then found by solving the following

problem:

Minimize : z2 ¼
XK
k¼1

Dk ð6Þ

where :

Dk ¼
Xn
i¼1

xik

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCxðkÞ � NxðiÞÞ2 þ ðCyðkÞ � NyðiÞÞ2

q
;

k ¼ 1 . . .K ð7Þ

CxðkÞ ¼
1

mk

Xn
i¼1

xik � NxðiÞ; k ¼ 1 . . .K ð8Þ

CyðkÞ ¼
1

mk

Xn
i¼1

xik � NyðiÞ; k ¼ 1 . . .K ð9Þ

mk ¼
Xn
i¼1

xik ; k ¼ 1 . . .K ð10Þ

Dk= compactness for district k; K = number of districts

(partitions); Cx(k) = x—coordinate for the Centroid of

district k; Cy(k) = y—coordinate for the Centroid of

district k; Nx(i) = x—coordinate for node i; Ny(i) = y—

coordinate for node i; n= number of nodes in the

network; mk = number of nodes in district k.

2.3. Multi-criteria decision making

Because single criteria optimization methods often

fail to adequately model the complexity of problems

faced in today’s rapidly changing business environ-

ment, more and more DMs are interested in using

decision aids that support multi-criteria decision mak-

ing (MCDM).

The mathematical foundation for multi-criteria

decision making (MCDM) was developed over a

century ago [36]. A typical characteristic of a MCDM

problem is the absence of a unique global optimum.

Rather, multiple solutions to the problem often exist

that are superior to (dominate) the others in the

solution space.

When solving a MCDM problem, it is generally

assumed that DMs prefer or desire to obtain Pareto

optimal (or nondominated) solutions. For the criterion

vector F(x)=( f1(x), f2(x),. . ., fq(x)), a solution vector

x*aRn is said to dominate xaRn if fi(x*) is at least as

good as fi(x) for all i and fi(x*) is better than fi(x) for at

least one i. A solution vector x*aRn is Pareto optimal

if there exists no other solution vector xaRn that

dominates x*.

From a practical perspective, when using popula-

tion-based heuristic search techniques, it is often

difficult or impossible to know if another (yet to

be observed) solution exists that dominates a partic-

ular known observed solution. As a result, in this

work, we relax the definition of Pareto optimality to

refer to known (observed) solution vectors rather

than to all possible solution vectors that theoretically

exist in Rn. That is, for a given population of

solution vectors, we say that x* is (currently) non-
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dominated if there exists no other solution x in the

population that dominates x*. Similar relaxed defi-

nitions of Pareto optimality have been used

[12,13,15,23,24,39,44].

2.4. The multi-criteria EPDP model

In this study, f1(x) is defined by Eq. (1) as the total

revenue deviation of a districting plan and f2(x) is

defined by Eq. (6) as the total Euclidean distance

(compactness) of a districting plan. We propose the

following model for simultaneously minimizing the

q = 2 components of criterion vector F(x) for the

EPDP.

Minimize : FðxÞ ¼ ðf1ðxÞ; f2ðxÞÞ ð11Þ

subject to equations Eqs. (1)–(10).

2.5. Solving the model

As mentioned earlier, one of the most difficult

aspects of solving an EPDP is the issue of maintaining

contiguity as various districting plans are created. To

address this issue, we developed a custom genetic

algorithm (GA) designed for solving EPDPs that

automatically maintains contiguity in all of the dis-

tricting plans it generates. The details regarding the

design and operation of this GA are not central to the

theme of this paper. However, for the curious reader,

the custom crossover and mutation operators used in

our GA are described in detail in Appendix D.

This GAwas implemented as the search engine for

our DSS using the Visual Basic for Applications (VBA)

programming language in Microsoft Excel. The ubiq-

uity of Excel, combined with the power of its VBA

programming language and inherent data management,

analysis, and visualization tools, makes it an ideal

platform for creating a DSS that is easy for DMs at

The World Bank to use and distribute. See Fig. 2.

To use our DSS, the DM simply selects the

functions to be optimized and specifies the exogenous

variables such as the maximum allowable percentage

revenue deviation y in Eq. (5), the number of desired

districts (K) and the number of desired solutions

(population size). In addition, the DM has the ability

to control the optimization run time parameters by

choosing from the available termination criteria: a

time limit (in minutes), a computational effort limit

(in function evaluations), or a performance limit (in

function improvement with respect to cumulative run

time). The DSS then generates and displays a series of

Pareto optimal solutions for the DM’s consideration

and exploration. For a thorough description of the

computational performance aspects of our custom

GA, the reader is referred to Ref. [4].

3. The Ghana case study

The Republic of Ghana, situated on the Gold Coast

of Africa, is one of the most developed African

countries south of the Sahara. Like all existing elec-

tricity infrastructures in the world today, the Ghana

power sector began as a noncompetitive national

monopoly. With the objective of developing an eco-

nomically stable, customer-oriented industrial culture

in Ghana, the Government of Ghana (GoG) is under-

taking an industry reform program for their emerging

competitive electricity market. The GoG has enlisted

the services of The World Bank in hopes of bringing

their objectives to fruition. To this end, the authors

engaged in a joint research effort with The World

Bank to develop a solution methodology and DSS to

assist with restructuring the electric power sector in

Ghana, with the intentions of applying this method-

ology to other countries. Specifically, the focus of the

DSS is to assist DMs with developing a restructuring

plan comprised of districts (groupings of BSPs) such

that independent distribution enterprises may operate

as reliable and economically viable electricity service

distributors.

Under the present system, there are two monopoly

organizations installed as the national service pro-

viders of electricity in the Republic of Ghana, the

Electricity Corporation of Ghana (ECG) and the

Northern Electricity Department (NED). Together,

these organizations share the nine geographic regions

that span Ghana. The ECG is the bigger and older of

the two with five regions, while the remaining four are

cared for by the NED.

The national electricity transmission grid of Ghana

is provided in Fig. 3. The grid consists of high vol-

tage transmission connections and 28 BSPs. Recall

that BSPs represent bulk distribution junctions points

where high voltage electricity is reduced for local
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distribution services. Fig. 4 provides a legend of the

BSPs included in this study. The information consists

of the index number and name corresponding to each

BSP shown in Fig. 3. Also, the expected annual

revenue potential is provided for each BSP in mil-

lions of dollars along with the standardized physical

coordinates for each BSP on a two dimensional map.

3.1. A decision support system

According to Marakas [31,p,4], the role of a DSS

‘‘. . .is to provide support to the DM on the structur-

able portions of the decision, thus freeing the DM to

focus his or her cognitive resources on the truly

unstructurable portions of the problem—those por-

tions that, given the limits of technology to execute

the complex problem-solving strategies contained in

human memory, are better left for resolution by the

human DM(s).’’ As a result, generating a set of Pareto

optimal solutions for a DM is only the first step to

solving an EPDP. Evaluating preferences among

power district configurations involves a great deal of

(structurable) numerical analysis as well as (unstruc-

turable) subjective assessment of each plan. While a

DSS may be capable of locating a variety of non-

dominated solutions automatically, the DM will often

Fig. 2. EPDP Solver (custom genetic algorithm).

Fig. 3. The national electricity power grid of Ghana.
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prefer to make small perturbations to an efficient

solution, possibly causing the preferred solution to

be sub-optimal (in a Pareto sense) or even violate one

or more constraints. This is particularly likely to occur

if a decision involves more than one DM, which is

typically the case for an EPDP.

For the Ghana EPDP, the DMs at The World Bank

considered the following criteria in evaluating the

attractiveness of alternative districting plans:

Revenue Potential

Spread of Geographical Area

Customer Spread

Clarity of Demarcation

The primary criterion in the evaluation of a dis-

tricting plan is total absolute revenue deviation (Eq.

(1)), which is more easily quantifiable than some of

the others. The geographic and customer spread are

modeled in our procedure using total Euclidean dis-

tance as the measure of compactness (Eq. (6)). Finally,

and perhaps the most difficult, is the criterion

described as ‘‘Clarity of Demarcation.’’ By this term,

the DMs at The World Bank are referring to the

allocation of districts with respect to existing political

units, proximity to natural geographic boundaries

such as lakes and rivers, and consistency with other

economic influences. The nature of this criterion

makes it difficult to model accurately (i.e. it is

unstructurable). As a result, solution vectors that are

on the Pareto optimal ‘‘efficient frontier’’ formed by

the explicitly modeled (i.e. structurable) criteria may

be dominated or infeasible when considering the

DM’s utility function for all the criteria impacting

the problem. It is this unstructurable component of the

decision problem that motivates us to develop a DSS

to solve the EPDP.

We believe that the true underlying frontier (ad-

justed for the utility of the DMs) is best exposed by

considering alternative solutions near the projected or

interpolated efficient frontier. Further, we submit that

a DSS that allows DMs to explore this ‘‘soft efficient

frontier’’ of solution vectors will be most effective in

modeling MCDM problems.

3.2. A DSS for the EPDP

Traditionally, MCDM problems tend to group

members of the solution set into two primary catego-

ries, the nondominated (optimal) set and the domi-

nated (sub-optimal) set. The Pareto ranking technique

offers a further distinction between the members of

the dominated set. It is a technique which consists of

ranking the members in the dominated set according

to a modified definition of Pareto dominance. See Fig.

5. First, the nondominated solutions are given a rank

of one and then removed from the solution set. In the

absence of the nondominated set, another layer of

solutions is ‘‘exposed’’, which become nondominated

(by the remaining solutions). The subset of ‘‘ex-

posed’’ solutions is given a rank of two and then re-

moved from the solution set. In their absence, another

layer of solutions is ‘‘exposed’’, which are given a

Fig. 4. Bulk supply point information.
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rank of three. The process is continued until all of the

solutions in the solution set have been ranked. The

different layers of nondominated solutions identified

by the Pareto ranking technique are also referred to as

equivalence class layers. The term is fitting because

within each layer, none of the solutions dominate any

of the other solutions in the same layer, thus they are

equivalent. Furthermore, between layers of solutions,

there exists at least one solution in the lower equiv-

alence class, which dominates any solution in a higher

equivalence class. In this regard, the layers are dis-

tinct.

Traditionally, MCDM problems represent objec-

tive function values for a set of solution vectors as a

list or a table. Our DSS renders the solution set using

a visualization tool, which we refer to as a Pareto

rank scatter plot (PRSP). The PRSP is useful in

helping the DMs judge alternative districting plans

Fig. 6. Layer 1—Solution index 2.

Fig. 5. Pareto ranking the dominated subset.
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Fig. 7. Criterion data aggregated at the district level.

Fig. 8. Layer 1—Solution index 1—District 1.
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relative to others in the solution space. The PRSP

organizes the solutions into a ‘‘soft efficient frontier’’

comprised of equivalence class layers. Each solution

in an equivalence class layer is displayed with a

marker corresponding to the legend in the PRSP.

Our DSS also renders a map of Ghana showing a

visual representation of any specific districting plan.

The PRSP synchronizes the active solution (district-

ing plan) shown in the map with all of the alternative

solutions in the set shown in the PRSP. The active

solution is indicated by a large red dot in the PRSP

regardless of which layer it belongs. The objective of

this tool is to visually coordinate the two different

levels of data aggregation (i.e. view one specific

solution vs. view the set of all solutions). The DM

may navigate through the ‘‘soft frontier’’ using the

form shown directly below the PRSP in Fig. 6 to

compare alternatives and consider the details of

various trade-offs.

The DM can also use the controls to hide and/or

display any of the equivalence class layers if the

solution space becomes congested. The details of

any plan can be viewed by clicking on the ‘‘Show

Details’’ button. As shown in Fig. 7, this causes the

form to expand to provide information that is aggre-

gated at the district level for whatever solution is

currently displayed on the map.

The information contained on the summary page

allows the DM to determine the contribution of each

individual district to the overall value of the objective

functions. For example, the top two text boxes

(labeled ‘‘Functions’’) correspond to the objective

function values of the districting plan currently ren-

dered on the map. Recall that the revenue deviation

function is the sum of absolute values, however, the

values corresponding to each district are provided in

nonabsolute terms. This allows the DM to determine

if a given district is above or below the ideal target

value for the overall districting plan. A negative

value indicates the extent to which the district is

below the target value while a positive value indi-

cates the extent to which the district is above the

target value. For the total Euclidean distance objec-

tive function, the corresponding district values indi-

cate the sum of Euclidean distances (compactness)

for each district. Fig. 8 shows the detail information

of the BSPs aggregated at the district level for

District 1.

4. Conclusions

With competitive electricity markets emerging

throughout the world, it is necessary to develop effec-

tive solution methods (systems and algorithms) for

designing power districts. This research represents an

initial attempt to characterize the EPDP. Specifically,

we identified similarities and differences of EPDPs

with other districting problems, and developed a DSS

that is effective in finding acceptable solutions. The

motivation underlying this research was to develop a

useful decision support tool for DMs at The World

Bank, with the intent of applying the tool to other

countries as deregulation takes place around the world.

In order to enact a reform policy designed to

introduce competition into the electric utility industry,

each nation will need to address the EPDP for their

network in some manner. It is significant to note that

developing nations can often experiment with more

innovative approaches than are being considered in

developed countries due to fewer existing barriers to

reform. The opportunity for researchers to make a real

impact in these nations is clearly at hand.

We believe that one of the reasons the solution

method presented in this research is effective is

because it is independent of the utility function the

DM brings to the problem. When the Pareto set can be

easily visualized (using the DSS), the DM is able to

choose a final alternative (from the GA population)

without the rigor and uncertainty of utility assessment.

Furthermore, because the GA has thoroughly explored

the search space, the DM is able to easily manipulate

efficient districting plans and move forward with a

high level of confidence that the important trade-offs

relevant to the decision have been considered.
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Appendix A. Biologically inspired algorithms

Evolutionary algorithms (EAs) represent a power-

ful, general purpose optimization paradigm where the
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computational process mimics Darwin’s theory of

biological evolution [21,27,38]. In a nutshell, most

EAs start with a set of chromosomes (numeric

vectors) representing possible solutions to a problem.

The individual components (numeric values) within a

chromosome are referred to as genes. New chromo-

somes are created by crossover (the probabilistic

exchange of values between vectors) or mutation

(the random alteration of values within a vector).

Chromosomes are then evaluated according to a

fitness (or objective) function with the fittest surviv-

ing into the next generation. The result is a gene

pool that evolves over time via these genetic oper-

ators to produce better and better solutions to a

problem.

In order to solve partitioning problems effectively,

it is necessary to design operators specifically for the

task. This appendix is intended to describe in detail

the operators that have been tailored specifically for

solving the EPDP.

Appendix B. Toward a DNA based evolutionary

algorithm

In this appendix, it is our objective to provide

rationale for introducing analogies that link the

DNA structure to the general graph model. We do

not pretend that our presentation of the biological

composition of DNA is complete. For a comprehen-

sive review of the biology of DNA the reader is

referred to Alberts et al. [2].

Science has revealed that DNA works the same in

all forms of life. Without DNA life would not

exist—not plants, nor animals, not even bacteria.

All living tissue in any life form is comprised of

DNA. This molecule which is so fundamental to life

is composed of a very simple four-code alphabet

referred to as DNA nucleotides (bases). They are

adenine (A), thymine (T), cytosine (C), and guanine

(G). Together, these four bases create all forms of

life depending upon the manner in which they are

bonded and sequenced. Surprisingly, the rules, which

they follow to accomplish this seemingly miraculous

task, are rather simple. There are only four possible

conditions in which the DNA bases can bond: A–T,

T–A, C–G, and G–C. Bonded DNA bases are

referred to as base pairs which are then linked

together (sequenced) to form a DNA strand. DNA

strands are extremely long and herein lies the com-

plexity of living organisms. The human description

has been estimated to be approximately 3 billion

base pairs long.

The process by which new sequences in the DNA

strand are explored is referred to as DNA replication.

An interesting aspect of the recombination process

that occurs in all sexually reproducing organisms is

that it too follows the simple bonding rules, which

allows the DNA to replicate. Thus, while new gene

sequences are evolved over time, the fact remains that

A–T, T–A, C–G, and G–C still holds before and

after the DNA strand has been reproduced in the new

host organism.

Fig. 9 provides a visual example of the replication

process in DNA. The process begins with two parents

contributing a DNA strand comprised of base pairs.

DNA division is the process of separating the base

pairs in the parent strands from each other. One half of

the divided strand from each parent retains their

sequential alignment, while the other half breaks the

DNA bases apart completely. The separated DNA

bases temporarily float in a ‘‘soup’’ while awaiting

to reassemble. The contiguous divided strands con-

tributed by each parent is then randomly segmented

into smaller sequentially aligned pieces and then

recombined to form a new child strand. It is signifi-

cant to note that each half of a DNA strand contains

all of the required information to reconstruct the

original host organism. Thus, when the new child

strand reassembles the base pairs in the DNA soup,

each segment attempts to reconstruct its original

parent DNA strand (host organism). The crossover

operator that we implement in our GA mimics the

DNA replication process described above.

Appendix C. Enforcing contiguity with DNA

bonds

In most GA implementations, constraints are

enforced via penalty functions. When the size of the

constraint set is large, the penalty function method

often results in the production of a substantial number

of infeasible chromosomes. Thus, a great deal of

computational effort is wasted in the process. Enforc-

ing contiguity in a districting plan requires an expo-
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nential number of constraints in the model with respect

to the number of nodes in the graph [32]. An alter-

native to including the constraint set in the model

formulation would be to enforce contiguity strictly in

the search algorithm’s problem representation.

In our DNA object model, we create an additional

layer of abstraction beyond the traditional GA model

where a collection of DNA bases reside within a gene

object. In the model, a DNA base is analogous to a

specific node in the graph, while a gene is analogous to

a node induced subgraph—a district. It is the unique

collection of DNA bases that gives the gene (district) a

set of unique properties or characteristics. A base pair

is analogous to the set of links belonging to a node in

Fig. 9. (top) The DNA replication process.

Fig. 11. (bottom) Enforcing contiguity during DNA replication.
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the graph. The links connecting the nodes in the graph

are used as a surrogate for the rules, which allow DNA

bases to bond and sequence into a strand. In our

algorithm, DNA bases are limited to bonding with

their neighbors during the replication process, which

results in only feasible solutions to highly constrained

graphical network problems without the use of ineffi-

cient penalty functions. Fig. 10 depicts the object

model hierarchical relationships.

Fig. 11 provides a visual representation of the

DNA replication process in our GA. As described

above, the process begins with two parents contribu-

ting complete DNA strands (chromosomes). Each

DNA strand represents an assignment of DNA bases

to a gene, which corresponds to an assignment of

BSPs to a district. Parent 1 has the following assign-

ments: District 1={BSP1, BSP4, BSP7}, District

2={BSP2, BSP3, BSP5}, District 3={BSP6, BSP8}.

Parent 2 has the following assignments: District

1={BSP1, BSP3, BSP4}, District 2={BSP2, BSP5},

District 3={BSP6, BSP7, BSP8}. DNA division in

our algorithm is represented by the instantiation of

new DNA bases in the DNA soup containing identical

information to their parent strands. Thus, each DNA

base is aware of its current district assignment, its

connected neighbors (solid line) and its unconnected

neighbors (dotted line).

During recombination, a new child chromosome

containing K gene objects is instantiated. Each gene in

the child strand is randomly seeded with a DNA base

from the available DNA objects in the DNA soup. The

assignment of the DNA base to a gene in the child

strand corresponds to its district assignment in the

parent gene. Once K unique seeds have been ran-

domly selected and assigned, the recombination proc-

ess allows each seed to ‘‘attempt’’ to reconstruct its

original parent gene. When a DNA base is assigned, it

is removed from the DNA soup of both parent strands.

Since the process is random, the complete set of DNA

bases may not be available to reconstruct the parent

gene entirely. DNA bases that become ‘‘stranded’’ due

to the randomness of assignments are placed in a

temporary location until all possible DNA nucleotides

have been assigned based upon the seed selection.

Fig. 10. DNA object model.

P.K. Bergey et al. / Decision Support Systems 36 (2003) 1–17 15



The remaining nodes in the temporary location are

then randomly assigned back to a feasible gene (not

necessarily the original parent gene).

Note that the ‘‘Break Points’’ for each parent strand

in Fig. 11 are located between distinct genes, where the

genes can contain a variable number of DNA bases.

The recombination step in this example takes place as

follows: BSP1 is selected from parent 1 as the seed for

district 1. BSP2 is selected from parent 2 as the seed for

district 2. BSP6 is selected from parent 2 as the seed for

district 3. Each gene in the child strand is now ready to

‘‘attempt’’ to reconstruct back to its original config-

uration. BSP1 in gene 1 examines the soup from parent

1 and adds the available neighbors BSP4 and BSP7.

BSP2 in gene 2 examines the soup from parent 2 and

adds the available neighbor BSP5. BSP6 in gene 3

examines the soup from parent 2 and adds the available

neighbor BSP8. The random process has stranded

BSP3 in the DNA soup because all available neighbors

have been assigned to completely reconstructed dis-

tricts. Recall that when a DNA base is assigned, it is

removed from the DNA soup of both parents. BSP3 is

placed in a temporary location and then randomly

assigned to a feasible district—in this case District 1.

The new child strand of DNA consists of the following

assignments: District 1={BSP1, BSP3, BSP4, BSP7},

District 2={BSP2, BSP5}, District 3={BSP6, BSP8}.

Note that it strongly resembles each parent, yet differs

slightly due to random recombination.

Appendix D. The mutation operator

The mutation operator uses a series of neighbor-

hood moves that exchanges a single node with a

neighboring district. Thus, the mutation operator is

limited to nodes that exist on the boundary between

two partitions. It can be viewed as a hill-climbing

operator that is designed to optimize the DNA strand

of the child chromosome by enumerating all feasible

solutions that are exactly one move away from the

current solution and only the best solution is retained.
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