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A tabu-search-based heuristic for clustering
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Abstract

This paper considers a clustering problem where a given data set is partitioned into a certain number of natural and
homogeneous subsets such that each subset is composed of elements similar to one another but di!erent from those of
any other subset. For the clustering problem, a heuristic algorithm is exploited by combining the tabu search heuristic
with two complementary functional procedures, called packing and releasing procedures. The algorithm is numerically
tested for its e!ectiveness in comparison with reference works including the tabu search algorithm, the K-means
algorithm and the simulated annealing algorithm. ( 2000 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Clustering has been an important issue occurring
widely in information data analysis areas. Many of its
applications can be found in the literature analyzing
marketing, medical, archaeology, or pattern recognition
data [1]. This paper considers such a clustering problem
stated as follows. Given n elements each of which has
K attributes, the problem objective is to group (classify)
all the elements into C clusters such that the sum of the
squared Euclidean distance between each element and
the center of its belonging cluster for every such allocated
element is minimized. The clustering process can be rep-
resented as an assignment of all the n elements to C clus-
ters, so that a M0, 1N integer programming formulation
can be derived. For the integer programming formula-
tion, the following notation will be used throughout this
paper.

n number of elements
C number of clusters
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K number of attributes of each element
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It is noted that the number of clusters C is a "xed value
within the range of from 2 to (n!1). Each a

ik
is given as
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. The given problem is now ex-

pressed as the integer programming problem;
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The objective function is non-linear and non-convex
[2], so that it seems to be very di$cult to investigate the
problem in an analytical approach. Referring to Ref. [3],
it is seen that the above problem is NP-complete. This
provides us with the motivation of developing an e$cient
heuristic procedure to "nd a near optimal solution in
reasonable time.

For such clustering problems, several algorithms using
the simulated annealing technique have appeared in the
literature [4}6]. Klein and Dubes [5] have proposed a
simulated-annealing-based algorithm, but without mak-
ing any explicit discussion about the cooling strategy.
Selim and Al-Sultan [6] have proposed a simulated an-
nealing algorithm with a discussion about both a cooling
strategy and a parameter selection strategy. Al-Sultan
[7] has recently proposed an algorithm with a tabu
search heuristic adapted and showed that the algorithm
outperforms both the K-means algorithm and the
simulated annealing algorithm. Thereby, for the integer
programming problem, this paper wants to exploit a heu-
ristic solution algorithm by employing a tabu search
heuristic.

2. Motivation of proposing the algorithm

The heuristic algorithm of this paper consists of two
parts. One is to "nd the initial solution and the other one
is to improve the initial solution. For the initial solution
derivation, both the procedure of packing element pairs
and the procedure of clustering such packed elements are
proposed. Moreover, for the initial solution improve-
ment, a reallocation procedure is also proposed.

The main feature of the heuristic algorithm is com-
posed of packing and releasing procedures. The packing
procedure is to bind a subset of elements together as
a single element and the releasing procedure is to separ-
ate any packed elements from each other. In the initial
solution step, any elements showing a high possibility to
be grouped into a cluster is packed together, which is
represented as the packing procedure. In the solution
improvement step, each packed element is allowed to
move together so as to make a drastic move (improve-
ment) in the solution search e!ort. This is the major
motivation of proposing the packing procedure. Another
motivation is provided with that the solution space can
be reduced by disregarding any solution in which any
two elements having a short element-to-element Euclid-
ean distance do not belong to the same cluster. There-
with, the packing procedure can help to promote the
e$ciency of the solution search.

On the other hand, there may be such a drawback
in the packing procedure that the solution space may
not be fully searched due to each packed element
treated as a single element. This provides us with the
motivation of proposing a releasing procedure such that

any packed-elements are separated from each other (re-
lease of a packing relation). Once all the packed elements
are tried for reallocation, the releasing operation is to be
performed. The procedure of reallocating such packed
elements and that of releasing any one of the packed
elements are processed alternately in an iterative
manner until all the packed elements are released. This
way, the releasing procedure can help to promote the
e!ectiveness of the solution search. More detail about the
packing and releasing procedures will be discussed in
Sections 3 and 4.

During the solution improvement e!ort, a reallocation
trial of all the packed elements may become trapped at
a local optimal solution. In order to avoid such a trap-
ping situation, the tabu search method [8] is to be
employed together with both the packing and releasing
procedures to improve greatly the solution search e$-
ciency and e!ectiveness. The tabu search method for
clustering problems has already been proposed by Al-
Sultan [7]. However, in this paper, the tabu search
method is to be used as a sub-module in the whole
solution algorithm. Moreover, as will be discussed later,
the move for packed element and releasing is newly
exploited for the tabu search, while Al-Sultan [7] has
considered just the individual move.

3. Initial solution

3.1. Packing procedure

The basic idea of the proposing algorithm is that any
pair of elements being close to each other are more likely
to be grouped into a cluster. To implement this idea, the
algorithm employs a packing procedure to treat a subset
of elements as a single element. That is, a subset of elements
are packed together as a single element and assigned to
the same cluster.

The packing procedure is now described in detail. All
the possible pairs of elements are "rst sorted in the
increasing distance order. The two elements of the "rst
ranked (closest) pair in the sorted sequence are packed
together as a single element. This packing procedure is
then repeated for the rest of all such ranked pairs until
having a predetermined number of packings completed.
If one of the elements of a current pair is a member of any
earlier packed element, then the other element will also
be packed into that earlier packed element. If both the
elements of a current pair are separately contained as the
members of two di!erent packed elements, then the two
packed elements will be agglomerated as one packed
element. If both are contained as the members of the
same packed element, then no change will be made. This
way the packing procedure will be processed sequen-
tially, while the method of determining the proper num-
ber of packings will be discussed later.

850 C.S. Sung, H.W. Jin / Pattern Recognition 33 (2000) 849}858



3.2. Packing property

This section characterizes a property named packing
property. The property is used in the solution algorithm
to determine the appropriate number of packings and to
"nd an initial solution. Let us introduce the property
called a generalized string property (GSP) which has
been considered in Ref. [9] as the necessary condition for
optimal clustering in one-dimensional Euclidean case.

Property (generalized string property).
Consider a clustering problem for various elements
each being de"ned in a Euclidean space. Let d

ij
be the

Euclidean distance between elements i and j. If i and
j are included together in a cluster, then every element
k satisfying the relation d

kj
(d

ij
or d

ki
(d

ij
needs also

to be included in the cluster.

Rao [10] has also studied a property similar to GSP,
while it is neither a necessary condition nor a su$cient
condition. Actually, the proposed clustering problem is
heavily dependent on data structures, so that it seems
di$cult to "nd any good robust property. Therefore, this
paper wants to exploit a packing property that can be
used to determine the appropriate number of packings,
while it is similar to GSP but more practical for deter-
mining the number of packings.

Property (packing property).
Let every cluster satisfy GSP and have more than
m elements. Then each pair of elements having its
element-to-element distance shorter than D

(2m~1)
be-

longs to such a cluster together, where D
(2m~1)

denotes
the (2m!1)st shortest element-to-element Euclidean
distance.

Proof. Suppose that d
ij

is the kth shortest element-to-
element distance, where 1)k)2(m!1) and d

ij
(

D
(2m~1)

, and that elements i and j belong to di!erent
clusters, say I and J, respectively. Since each cluster has
more than m elements, the size cardinality of each of the
clusters I and J is at least m. Based on GSP, it holds that
d
ii{
)d

ij
for all i@3I, i@Oi, where the number of such

element i@ is at least (m!1). Therefore, there are at least
(m!1) pairs having element-to-element distances shor-
ter than or equal to d

ij
. A similar logic can be applied to

elements i and j@3J, j@Oj, having (m!1) pairs with their
distances shorter than or equal to d

ij
. This implies that

there are at least 2(m!1) pairs having their distances
shorter than or equal to d

ij
, and so d

ij
is equal to or

greater than D
(2m~1)

. This contradicts the assumption
that d

ij
is the kth shortest distance.

Thus, the proof is completed. h

3.3. Number of packings

This algorithm uses 2(m!1) initial packings provided
that each cluster has at least m elements. Therefore,

determining the minimum cardinality m is equivalent to
determining the number of packing operations. Surely,
the lower bound of m is 1. The logic for calculating the
upper bound can also be characterized easily. If a pack-
ing is made, then two elements (or packed elements) are
agglomerated as one packed element whose cardinality is
the sum of the cardinalities of all the original elements
(or packed element). Since the number of packings is
2(m!1), in the extreme case the maximum cardinality of
a packed element can be 2m!1 (the number of packings
plus its original element). In the case, 2m!1*m for
∀m*1 and all the elements in a packed element should
belong to the same cluster, so that it is possible to make
a cluster being composed of all the elements in such
packed elements and having its cardinality at 2m!1.
This gives the maximum cardinality of a cluster in the
initial solution. Moreover, since all the other clusters
should contain more than m elements, the following
relation should be satis"ed; n!(2m!1)*(C!1)m.
This leads to m)(n#1)/(C#1), and so m)

x(n#1)/(C#1)y since m is an integer.
Thus, m has its upper bound, x(n#1)/(C#1)y , and so

can take an integer number on the range between 1 and
x(n#1)/(C#1)y . This implies that there are many pos-
sible choices for m. Therefore, this algorithm wants to
choose the maximum cardinality of m. The reason is that
the biggest m within the allowed integer range can maxi-
mize the advantage of the packing. Thus, the algorithm
considers the number of packing operations at
2(x(n#1)/(C#1)y!1).

3.4. Initial solution search procedure

In the initial solution each cluster should contain more
than m elements, and each pair of elements having the
element-to-element distance shorter than D

(2m~1)
should

be packed together, at m"x(n#1)/(C#1)y . Moreover,
it may be desirable to allow the variance in cluster car-
dinality to be small. These requirements are put together
to derive the following initial solution search procedure.

Step 1: Sort each pair of elements in the increasing
distance order, and pack every pair which has the ele-
ment-to-element distance shorter than the (2x(n#1)/
(C#1)y!1)st shortest distance. Let each of such
packed elements form an individual cluster, and a non-
packed single element also form an individual cluster. Let
C@ denote the number of such individual clusters and k of
them have more than x(n#1)/(C#1)y elements. It can
easily be shown that C@'C for n)2 and 2)C(n.
Sort the C@ clusters in the decreasing order of their
cardinalities.

Step 2: If k*C, go to Step 3.
Otherwise, go to Step 4.
Step 3: Merge the Cth cluster with the (C#1)st cluster

to become a single cluster.
C@"C@!1.
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If k'C, then k"k!1.
Go to Step 5.
Step 4: Merge the (k#1)st cluster with the (k#2)th

cluster to become a single cluster.
C@"C@!1.
If the cardinality of the new cluster is greater than or

equal to x(n#1)/(C#1)y , then k"k#1.
Step 5: If C@"C, then stop.
Otherwise, sort the clusters in their cardinality order

and go to Step 2.

4. Improvement of initial solution

Each element of the initial solution is to be reallocated
among the C clusters for any better clustering. For the
reallocation, the tabu search method is to be employed
to avoid any search trapping at a local optimal solution
and also to make an e$cient and thorough reallocation
search, such that all the elements of a current intermedi-
ate solution are reallocated so as to "nd any improved
solution. Then one of the packed elements of the current
solution is released from its packing relation. Thus, the
reallocation and the releasing processes are sequentially
operated. In an iterative manner, such that all the ele-
ments of the improved solution with such one packed
element released are again reallocated among the im-
proved C clusters (solution).

4.1. Reallocation of elements

Tabu search is a metaheuristic suggested by Glover
[11,12] to solve combinatorial optimization problems
by introducing a memory-based strategy to prevent the
solution search from becoming trapped at a local optimal
solution. The heuristic either generates or starts with
some initial solutions and proceeds iteratively from one
solution to another one (in neighborhood) until some
termination conditions are satis"ed. To improve the ef-
fectiveness of the heuristic, various intensi"cation and
diversi"cation strategies have been developed [8,13,14].
One of them is the vocabulary building strategy [14].

In fact, the packing procedure functionally corres-
ponds to the vocabulary building strategy of the tabu
search. The vocabulary building strategy has been de-
signed to identify any common attributes of a chosen set
(solution) and also to search for (or generate) other solu-
tions having the same common attributes. Similarly, the
packing procedure is more likely to get any pairs having
a shorter element-to-element distance to be included in
the same cluster.

Now, the design issues of our tabu search are brie#y
described. A detail of the tabu search can be found in
Ref. [8].

Mo*e. In a clustering problem, a move indicates that
an element changes its cluster to another one to which it

is newly assigned. Speci"cally, each move represents a
change of the form My

ij
"1Py

ij
"0 and y

ik
"0P

y
ik
"1 for jOk j, k"1,2C, i"1,2, nN. It has been

shown in Ref. [7] that by ignoring all the solutions of
a neighborhood at some predetermined ignorance prob-
ability, the performance of the associated algorithm in-
creases as the ignorance probability gets lowered. This
implies that such element ignorance is not appropriate.
Therefore, this paper does not allow any neighborhood
element ignorance.

There is a fundamental di!erence between the refer-
ence work [7] and ours. The reference work allows
individual move such that any cluster change induced by
a move is applied only to one element. However, in
performing our packing operation, such a cluster change
is induced by a move of the whole elements of a packed-
element. That is, packed-element-together move occurs
so as to make a drastic move in the solution search.
Therefrom, several advantages can be gained. The "rst
advantage is that a greater improvement in each inter-
mediate solution, if any, is possible so as to get a faster
approach to any anticipated good solution space. The
second advantage is that the drastic move makes it
possible to search a broader area of the solution space
at each search iteration. Another important character-
istic of the packing is that it can contribute to reduce
the solution space. This is done by its helping to re-
move any non-interesting solution (regarded to be bad)
from further consideration in the search e!ort. In fact,
it is desired to disregard any solution in which any
two elements having the short element-to-element dis-
tance do not belong to the same cluster. This way, the
packing can help a lot to search for any better solution
space more thoroughly (conforming to an intensi"cation
strategy).

Tabu list. In our algorithm, the tabu list contains each
element index and its cluster index. For example, a tabu
list element (i, j) indicates that at some iteration, any
move for changing element i from its belonging cluster
k(Oj) to another cluster j is prohibited because it is in
a tabu state. The advantage of such tabu lists is in
memory saving. In fact, for the integer data type, each
element of a tabu list needs only 16 bits for computer
programming, so that the tabu list is not a burden on
computer memory.

In this paper, the size of the tabu list is determined
dynamically to reduce the risk of trapping at cycling
[15]. That is, the tabu list size is changed to a random
integer number in the range between 7 and n after n iter-
ations.

Secondary tabu list. In the clustering problem, there
exist two types of cycle to worry about. One is the
ordinary cycle appearing as the replication of the same
order of mathematical solutions. The other one is the
cycle associated with the labels attached to each cluster.
The second type of cycle appears as the replication of
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the same order of clusterings, but not as that of the
mathematical solutions. This is because the label as-
signed to each cluster is used only to distinguish one
cluster from the others. That is, in the mathematical
formulation, any di!erent label attached to the same
cluster may be treated as a di!erent solution. For
example, consider the instance with n"4 and C"2.
The solution >

1
"(y

11
"y

21
"y

32
"y

42
"1, y

12
"

y
22
"y

31
"y

41
"0) and the solution >

2
"(y

12
"

y
22
"y

31
"y

41
"1, y

11
"y

21
"y

32
"y

42
"0) mean

the same clustering, where elements 1 and 2 constitute
one cluster, and elements 3 and 4 constitute another.
However, in terms of mathematical view they are di!er-
ent solutions. From this respect, the solution space of the
mathematical formulation is over-expanded C! times
more than the real solution (clustering) space. In the
above example, if the search process starts from >

1
and

reaches to>
2
, it will form a cycle in terms of clustering, so

that the search process will move back again from >
2

to
>
1
. This trajectory will then be repeated. The tabu list

described in the preceding section has the role of preven-
ting the "rst type of cycle, but it cannot prevent the
second type (clustering) of cycle. In fact, the second type
of cycle was experienced very often during the experi-
ment work of this paper. Therefore, it is desired to design
some technique to prevent the associated search from
becoming trapped at the second type of cycle.

This paper uses the secondary tabu list [16] to escape
from the second type of cycling trap. The sum of the
Euclidean distances within each cluster of any current
solution forms a vector recorded as an element of the
secondary tabu list. All the C values in such an element
are then sorted in the decreasing order. The sum of the
Euclidean distances within a cluster is not altered unless
the elements composing the cluster are changed. More-
over, because the values (representing each cluster) are
sorted in their size, it is not necessary to keep the label
attached to each cluster. This makes it possible to pre-
vent from the second type of cycle.

The role of the secondary tabu list is similar to that of
the ordinary tabu list. At some search iteration, when
a solution has the least objective function value,
among the solutions in neighborhood, but it is not
restricted by the tabu list, the algorithm is initiated to
check whether or not the solution is contained in the
secondary tabu list. If it is contained in the second-
ary tabu list, it cannot be any candidate for the next
solution.

Aspiration condition. Since the tabu list restricts some
moves, there is a risk even to restrict a good move. In
order to get rid of this risk, the solution can be selected as
the candidate for next solution, if the solution in a tabu
state satis"es the aspiration condition. Accordingly, this
algorithm considers the aspiration condition of solution
f (y)(f

.*/
. This implies that if the objective function

value of solution y is less than the current minimum

objective function value, the solution is set free from
the tabu and can rather be the candidate for the next
solution.

Stoppinu condition. The reallocation procedure ends
after a pre-determined number of iterations. In the ex-
perimental test, the number of iterations is set to
1000/M2 ) (x(n#1)/(C#1)y!1)N to compare with the
algorithms in the literature.

4.2. Releasing procedure

As stated above, the packed-element-together move
has some advantages. However, it may have such a
drawback as a missing of some good solutions. Because
the elements of a packed element move together, the
solution space may not be fully searched to "nd any
better solution. To compensate for such a drawback,
this paper proposes a strategy of releasing such pack-
ing relations in an approach of releasing the packed
pairs one at each iteration of the reallocation operation.
In the approach, the last ranked (most distant) pair is
"rst selected as a released pair whose elements are
allowed separately to belong to di!erent clusters. In
other words, the released elements are allowed to
move separately. Thus, any solution space reduced by
the packing operation can rather be expanded by the
releasing operation (conforming to a diversi"cation
strategy).

5. Step-by-step solution procedure

The proposed algorithm can be characterized as de-
signed to improve the e!ectiveness of the tabu search by
incorporating both the packing and releasing procedures
together such that the packing procedure tends to play
a role of focusing the solution search on good solution
spaces and the releasing procedure tends to play a com-
plementary role of making an intensive search on the
focused solutions spaces.

The whole algorithm is now constructed below in a
step-by-step procedure.

Step 0: Sort k pairs of elements in the increasing dis-
tance order, where k"2(x(n#1)/(C#1)y!1).

Step 1: Find the initial solution (refer to Section 3.4).
Step 2: Search for an improved solution by keeping the

k pairs packed (refer to Section 4.1.).
Step 3: If k"0, stop, and the best solution up to now

becomes the "nal solution.
Otherwise, go to Step 4.
Step 4: Release the kth packed pair.
k"k!1.
Let the initial solution be the best solution found up to

now.
Go to Step 2.
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Fig. 1. Generating test data set.

6. Experiment

In this paper, four algorithms are numerically tested
for their e!ectivenesses with 360 data sets. They include
the K-means algorithm [17], the simulated annealing
algorithm by Selim [6], the tabu search algorithm by
Al-Sultan [7], and the proposed algorithm of this paper
in Section 5. They are implemented in C language on
a Pentium II 400MHz Personnel Computer.

6.1. Data set

Since the e!ectivenesses of any clustering algorithms
are usually dependent on data set, how to design their
test data set is important as well. In the literature, some
authors [18,19] have paid attention to their strategies of
designing test data sets. In this paper, the design strategy
of Milligan [19] is adapted to generate our test data set
by incorporating "ve design factors including number of
elements, number of clusters, number of dimensions (at-
tributes), ratio of cardinality, and error type.

To design the data set, the boundaries for each dimen-
sion of the cluster is pre-determined. In this data set, no
overlap is permitted. In order to satisfy the non-overlap-
ping restriction, any cluster overlap is not permitted on
the "rst dimension of the space. That is, the clusters are
required to occupy disjoint regions of space. Then, all the
elements assigned to a given cluster are required to fall
within the boundaries for each dimension of the variable
space.

Two types of data sets are considered, one having 50
elements and the other having 100. Four di!erent clusters
including 2, 3, 4, and 5 clusters are considered. Each
element is allowed to vary in dimension such as to have
four, six, and eight attributes. The cardinality factor is
allowed to vary in element weight to have three di!erent
distribution patterns. In the "rst pattern, all elements are
distributed among clusters as equally as possible. In the
second and third patterns, one cluster in the data set has
10 and 60% of all the elements, respectively, while the
other clusters have the rest of the elements being equally
distributed among them. Five di!erent types of error are

considered. The "rst type of error represents an error-free
data set. The second and third type of errors are con-
cerned with some random noise elements added to the
error-free data set. The second type error data set has 10
such random noise elements, and the third type of error
data set has 20 such random noise elements. Each of the
random noise elements has the same K attributes as the
ordinary (error-free) input element, but it is like a random
error in the sense that it is not clearly dedicated to any
speci"c cluster. The fourth and "fth type errors are con-
cerned with random noise attributes (dimensions) added
to each error-free element so as to have additionally one
and two more dimensions, respectively.

An example of the data generation procedure is illus-
trated in Fig. 1. At the "rst step, the boundaries for each
dimension of the cluster is set. Then, the elements consid-
ering the "rst four design factors are allocated within the
pre-determined boundaries. At the last step, the error
types are considered. Fig. 1d shows the test data set
having 50 elements, three clusters, two attributes, equal
cardinality, and second type of error.

6.2. Results

It is known that the e!ectivenesses of the K-means
algorithm, the simulated annealing algorithm, and the
tabu search algorithm are all dependent greatly on initial
solutions. Therefore, for every data set, those three algo-
rithms are performed 10 times individually for their own
e!ectiveness tests, each time with a new initial solution
generated randomly from the data set. However, our
proposed algorithm is tested only one time, since it has
a "xed procedure to generate its own initial solution.
Each test is made of at most 1000 iterations of the
associated solution search procedure by each of the four
di!erent algorithms giving an equal chance for a fair
performance comparison among the four algorithms.

The results show that the proposed algorithm of this
paper "nds a solution with the objective function value
less than or equal to the mean of the objective function
values obtained from 10 test runs by each of the other
three algorithms. It is also seen that the tabu search
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Table 2
The results of the statistical hypothesis test on the whole 360 data sets divided only by the `Number of Elementsa factor

Number of elements Algorithm Number of data sets

Rejected at 0.99 Accepted at 0.99 Accepted at 0.95

K-means 107 23 50
50 S.A. 128 11 41

T.S. 29 22 129

K-means 117 24 39
100 S.A. 96 36 48

T.S. 42 21 117

algorithm outperforms the other two algorithms in-
cluding the K-means algorithm and the simulated an-
nealing algorithm, while the K-means algorithm and the
simulated annealing algorithm show similar perfor-
mances. This implies that our proposed algorithm shows
its superiority in e!ectiveness to that of the tabu search
algorithm.

In the above performance comparison, 10 test results
are gathered, by use of a given data set, and averaged for
each reference algorithm. In other words, multiple sam-
ples are gathered for each reference algorithm. Therefore,
it may be desirable to investigate how statistically con"-
dent the superiority of the proposed algorithm is. This
provides a motive of making a statistical hypothesis test
for the three reference algorithms with the following null
hypothesis;

H
0
: the objective function value found by each of those

reference algorithms is equal to that of our proposed
algorithm

However, the reference algorithms are individually
performed only 10 times and thier resulting objective
function values are all discrete, so that the objective
values are unlikely distributed in a Gaussian distribution.
Thus, this paper wants to apply the Wilcoxon rank
sum test, a non-parametric test. The SAS package is used
for the test, and its results are summerized in from
Tables 1}6.

The values in those tables denote the number of data
sets in which the hypothesis is rejected at the con"dence
level 0.99 (rejected at 0.99), rejected at the con"dence level
0.95 but accepted at the con"dence level 0.99 (accepted at
0.99), accepted at the con"dence level 0.95 (accepted at
0.95), respectively. The rejection at the con"dence level
0.99 means that the solution found by the associated test
algorithm gives a strong evidence of having a greater
(not better) objective function value than the solution
found by the proposed algorithm.

According to Table 1, the number of data sets rejected
at 0.99 by the tabu search algorithm is apparently smaller

Table 1
The results of the statistical hypothesis test on the whole 360
data sets generated by considering all the design factors together

Algorithm Number of data sets

Rejected at
0.99

Accepted at
0.99

Accepted at
0.95

K-means 224 47 89
S.A. 224 47 89
T.S. 71 43 246

than each of those by the K-means algorithm and the
simulated annealing algorithm. This means that the solu-
tions obtained by the tabu search algorithm in general
have a tendency of being closer to the solutions obtained
by the proposed algorithm than those by the K-means
algorithm or the simulated annealing algorithm.

The test results summarized in Tables 2}6 show the
e!ects of the design factors. Table 2 shows that as the
number of elements increases, the performance of
the tabu search algorithm gets lowered, and the perfor-
mance gap between the tabu search algorithm and the
other two algorithms decreases. That is, as the number of
elements increases, the proposed algorithm shows a more
robust result than the tabu search algorithm. Table 3
shows that the number of data sets rejected at 0.99
increases as the number of clusters increases. Thus, we
can infer from Table 3 that an increased number of
clusters may induce a larger di!erence between the solu-
tion of the proposed algorithm and those of the other
algorithms. Moreover, we can infer that the proposed
algorithm may be more robust against any change in the
number of clusters. Tables 4 and 5 show the e!ects of the
number of dimensions and the ratio of cardinality.
In both the tables, the solutions of the tabu search
algorithm are closer to those of the proposed algo-
rithm than any of those of the K-means algorithm and
the Simulated Annealing algorithms. However, no
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Table 3
The results of the statistical hypothesis test on the whole 360 data sets divided only by the `number of clustersa factor

Number of clusters Algorithm Number of data sets

Rejected at 0.99 Accepted at 0.99 Accepted at 0.95

K-means 12 8 60
2 S.A. 8 5 77

T.S. 2 0 88

K-means 54 24 12
3 S.A. 53 29 8

T.S. 13 12 65

K-means 75 13 2
4 S.A. 80 9 1

T.S. 22 16 52

K-means 83 2 5
5 S.A. 83 4 3

T.S. 34 15 41

Table 4
The results of the statistical hypothesis test on the whole 360 data sets divided only by the `number of dimensionsa factor

Number of dimensions Algorithm Number of data sets

Rejected at 0.99 Accepted at 0.99 Accepted at 0.95

K-means 73 19 28
4 S.A. 81 11 28

T.S. 24 14 82

K-means 74 15 31
6 S.A. 72 17 31

T.S. 22 17 81

K-means 77 13 30
8 S.A. 71 19 30

T.S. 25 12 83

Table 5
The results of the statistical hypothesis test on the whole 360 data sets divided only by the `ratio of cardinalitya factor

Ratio of cardinality Algorithm Number of data sets

Rejected at 0.99 Accepted at 0.99 Accepted at 0.95

Equal cardinality K-means 84 13 23
S.A. 71 29 30
T.S. 15 13 92

10% in one cluster K-means 78 14 28
S.A. 75 17 28
T.S. 16 18 86

60% in one cluster K-means 62 20 38
S.A. 78 11 31
T.S. 40 12 68
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Table 6
The results of the statistical hypothesis test on the whole 360 data sets divided only by the `error-typea factor

Type of errors Algorithm Number of data sets

Rejected at 0.99 Accepted at 0.99 Accepted at 0.95

First-type error K-means 28 7 37
S.A. 41 11 20
T.S. 11 6 54

Second-type error K-means 52 8 12
S.A. 46 12 14
T.S. 12 6 54

Third-type error K-means 44 15 13
S.A. 46 11 15
T.S. 19 10 43

Fourth-type error K-means 42 10 20
S.A. 42 10 20
T.S. 15 8 49

Fifth-type error K-means 47 7 18
S.A. 49 3 20
T.S. 14 12 46

peculiar trend associated with the design factors is
shown. Table 6 shows the e!ect of the error types. The
solutions of the "rst error type (error-free data set) of
each algorithm show slightly closer to the solution of the
proposed algorithm than those of the other error types of
each algorithm. It means that the error perturbation
deteriorates the e!ectiveness of each algorithm, so that
the proposed algorithm is more robust in terms of error
perturbation.

The average elapsed time for each algorithm is shown
in Table 7. It shows that the proposed algorithm takes
the longest time. This may be due to the additional time
requirement for updating the packing relation. As dis-
cussed earlier, the number of the packing relation updat-
ings depends on the number of the releasing operations.
The elapsed time may be shortened by reducing the
number of the releasing operations rather than by releas-
ing all the packed elements as done in this paper. Such
releasing-operation reduction is left as a further research
issue.

7. Conclusion

This paper proposes an e$cient heuristic algorithm
for a clustering problem by employing the tabu search
method which is combined with two newly exploited
procedures (called packing and releasing procedures) for
both the solution search e$ciency and e!ectiveness.

Table 7
The average elapsed time of each algorithm (s)

Our algorithm T.S. S.A. K-means
2.893 0.856 0.782 0.169

Moreover, a secondary tabu list is considered to prevent
the associated search from becoming trapped at any local
optimal solution. The heuristic algorithm is numerically
tested for its e!ectiveness and shown that it outperforms
over all the three reference works including the tabu
search algorithm, the K-means algorithm, and the simu-
lated annealing algorithm.

The results of this paper may be immediately applied
to various information data analyses concerned with
information classi"cation and pattern recognition. For
example, the proposed algorithm may be applied to
various practical classi"cation subjects including
patient classi"cation, product distribution center alloca-
tion, and government service branch organization.
Moreover, it may be feasible to use the results of this
paper as a guideline for designing any decision boundary
(classi"er).

An e$cient adaptation of the proposed algorithm for
any situation of allowing the number of clusters to be
another decision variable may be an interesting subject
for further study.
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