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Abstract 

Genetic Algorithms (GAs) are generally portrayed as search procedures which can optimize functions based on a limited 
sample of function values. In this paper, GAs have been used in an attempt to optimize a specified objective function related 
to a clustering problem. Several experiments on synthetic and real life data sets show the utility of the proposed method. 
K-Means is one of the most popular methods adopted to solve the clustering problem. Analysis of the experimental results 
shows that the proposed method may improve the final output of K-Means where an improvement is possible. 
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I. Introduct ion  

Clustering is an important technique used in dis- 
covering inherent structure present in a set of  objects. 
More specifically, the purpose of  cluster analysis (An- 
derberg, 1973; Devijver and Kittler, 1982; Jain and 
Dubes, 1988; Tou and Gonzalez, 1974) is to group a 
set of  patterns, usually vectors in a multi-dimensional 
space, into clusters in such a way that patterns in the 
same cluster are similar in some sense and patterns 
in different clusters are dissimilar in the same sense. 
We assume that the given patterns belong to an n- 
dimensional Euclidean space R n and that the dissimi- 
larity measure is the Euclidean distance. 

Let the set of  patterns M be {xl,  x2 . . . . .  Xm}, where 
xi is the ith pattern vector. Let the number of  clusters 
be k. If  the clusters are represented by C1, C2 . . . . .  Ck, 
then 
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P1. Ci ~ O, f o r / =  1 . . . . .  k, 
P2. C i N C j  = 0  for i v~ j ,  and 

P3. U~=l c i  = M .  

Clustering techniques may broadly be divided into 
two categories: hierarchical and non-hierarchical (An- 
derberg, 1973). Among the non-hierarchical cluster- 
ing techniques, the K-means (or C-means or basic 
Isodata) algorithm has been one of  the more widely 
used algorithms. The K-means algorithm is based on 
the optimization of  a specified objective function. It 
attempts to minimize the sum of  squared Euclidean 
distances between patterns and cluster centers. It was 
shown in (Selim and Ismail, 1984) that this algorithm 
may converge to a local minimum solution. 

Global solutions of  large problems cannot be found 
with a reasonable amount of  computational effort 
(Spath, 1980). This suggested the development of  
several approximate methods to solve the underly- 
ing optimization problem. Most of  these techniques 
arrive at a local minimum solution which does not 
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necessarily coincide with the desired global minimum 
(Selim and Ismail, t984). In this paper, we have used 
Genetic Algorithms (GAs) in an attempt to reach the 
optimal solution for the clustering problem. Results 
of the experiments with synthetic data as well as with 
real-life data are reported. 

Section 2 of this paper presents the statement of the 
problem. Section 3 provides the details of the proposed 
clustering method with GAs. Experimental results and 
analysis are reported in Section 4. 

ern, 1982) used in this paper, the exact solution re- 
quires the examination of S(56, 3) partitions. (Note 
that S(56,3) > 1028.) 

Thus, approximate heuristic techniques seeking a 
compromise or looking for a local minimum solu- 
tion which is not necessarily global have usually been 
adopted. In this paper we have applied a GA in an at- 
tempt to get the optimal value of the function f for a 
given clustering problem. The next section describes 
the method in detail. 

2. Statement of the problem 

There are several ways in which a given data set can 
be clustered. One of the principles used for clustering 
is to minimize the sum of squared Euclidean distances 
of the data points from their respective cluster means. 
Mathematically this principle is stated below. 

1. Let C1, C2 . . . . .  Ck be a set of k clusters of M. 
2. Let zj = (ZxeC, x) /•Cj f o r j  = 1,2 . . . . .  k, where 

x is a pattern vector in Ci and # Cj represents the 
number of points in Cj. 

3. Let f (C, ,C2 . . . . .  C~) = ~-]~:1 ~-~xccj I] x - zJl] 2' 
We shall refer to f (  C1, C2 . . . . .  Ck) as the objective 
function of the clustering C1,6"2 . . . . .  Ck. 

4. Minimize f (C l ,  C2 . . . . .  Ck) over all C1,6"2 . . . . .  
Ck satisfying P1, P2 and P3 stated in Section 1. 

The objective function f is non-convex and hence 
the problem may have local minimum solutions which 
are not necessarily optimal (Selim and Ismail, 1984). 
In fact, all possible clusterings of M are to be consid- 
ered to get the optimal Cl, C2 . . . . .  Ck. So obtaining 
the exact solution of the problem is theoretically pos- 
sible, yet not feasible in practice due to limitations of 
computer storage and time. If exhaustive enumeration 
is used to solve the problem, then one requires the eval- 
uation of S(m, k) partitions (Anderberg, 1973; Spath, 
1980), where 

(k '~ .m 
1 ~--~(_l)k_ j J J J  . S(m,k)  = ~ j=l 

This clearly indicates that exhaustive enumeration 
cannot lead to the required solution for most prac- 
tical problems in reasonable computation time. For 
example, for the crude-oil data (Johnson and Wich- 

3. Clustering using Genetic Algorithms 

Genetic Algorithms (GAs) are stochastic search 
methods based on the principle of natural genetic sys- 
tems (Goldberg, 1989; Michalewicz, 1992). They per- 
form a multi-dimensional search in order to provide 
an optimal value of an evaluation (fitness) function in 
an optimization problem. Unlike conventional search 
methods, GAs deal with multiple solutions simultane- 
ously and compute the fitness function values for these 
solutions. GAs are theoretically and empirically found 
to provide global near-optimal solutions for various 
complex optimization problems in the field of opera- 
tion research, VLSI design, Pattern Recognition, Im- 
age Processing, Machine Learning, etc. (Ankerbrandt 
et al., 1990; Belew and Booker, 1991; Bornholdt and 
Graudenz, 1992). 

While solving an optimization problem using GAs, 
each solution is usually coded as a binary string 
(called chromosome) of finite length. Each string or 
chromosome is considered as an individual. A collec- 
tion of P such individuals is called a population. GAs 
start with a randomly generated population of size P. 
In each iteration, a new population of the same size is 
generated from the current population using two ba- 
sic operations on the individuals. These operators are 
Selection and Reproduction. Reproduction consists of 
crossover and mutation operations. 

In GAs, the best string obtained so far is preserved 
in a separate location outside the population so that the 
algorithm may report the best value found, among all 
possible solutions inspected during the whole process. 
In the present work, we have used the elitist model 
(EGA) of selection of De Jong (1992), where the 
best string obtained in the previous iteration is copied 
into the current population. 
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The remaining part of this section describes in de- 
tail the genetic algorithm that we propose for cluster- 
ing. First, the string representation and the initial pop- 
ulation for the problem under consideration are dis- 
cussed. Then the genetic operators and the way they 
are used are stated. The last part of this section deals 
with the stopping criteria for the GA. 

3.1. String representation and initial population 

String representation. To solve partitioning prob- 
lems with GAs, one must encode partitions in a way 
that allows manipulation by genetic operators. We 
consider an encoding method where a partition is en- 
coded as a string of length m (where m is the number 
of data points in M). The ith element of the string 
denotes the group number assigned to point xi. For 
example the partition {xl, x4} {x3, X6} {X2, X5) {X7) 
is represented by the string ( 1 3 2 1 3 2 4). We have 
adopted this method, since it allows the use of the 
standard single-point crossover operation. The value 
of the ith element of a string denotes the cluster mem- 
bership of the ith data point in M. Thus, each string 
represents a possible cluster configuration and the fit- 
ness function for each string is the sum of the squared 
Euclidean distances between the patterns and their re- 
spective cluster centers. So, here the fitness function 
is the objective function f described in Section 2. 

Initialpopulation. An initial population of size P for 
a genetic algorithm is usually chosen at random. In 
the present implementation, several strings of length 
m are generated randomly where the value of each 
element of the string is allowed to lie between 1 and 
k. Only valid strings (that have at least one data point 
in each cluster) are considered to be included in the 
initial population to avoid wastage of processing time 
on invalid strings. 

There exist no guidelines for choosing the 'appro- 
priate' value of the size (P )  of the initial population. 
In this work, we have taken P = 6 and this value of P 
is kept fixed throughout the experiment. Note that it 
has been shown in (Bhandari et al., 1996) that as the 
number of iterations goes to infinity the elitist model 
of GAs will provide the optimal string for any popu- 
lation size P. 

3.2. Genetic operators 

Selection. The 'selection' operator mimics the 'sur- 
vival of the fittest' concept of natural genetic systems. 
Here strings are selected from a population to create 
a mating pool. The probability of selection of a par- 
ticular string is directly or inversely proportional to 
the fitness value depending on whether the problem 
is that of maximization or minimization. The present 
problem is a minimization problem and thus the prob- 
ability of selecting a particular string in the popula- 
tion is inversely proportional to the fitness value. The 
size of the mating pool is taken to be same as that of 
population. 

Crossover. Crossover exchanges information be- 
tween two parent strings and generates two children 
for the next population. A pair of chromosomes 

/3  -~ ( / 3 m / 3 m - -  l " " "/32/31 ), 
y = (Y, ,Ym-I "" "3'2)'1 ) 

is selected randomly from the mating pool. Then the 
crossover is performed with probability p (crossover 
probability) in the following way. 

Generate randomly an integer position pos from the 
range of [ 1, m - 1 ]. Then two chromosomes/3 and y 
are replaced by a pair cr and 6, where 

Ol = ( / 3 m / 3 m - l  " " " /3pos~/pos+l " " " ~ 2 ~ l  ) ,  

(~ = ( ~ /rnYm--I  " ' "  ~lpos/3pos+l " ' " / 3 1 / 3 1  ). 

Crossover operation on the mating pool of size P ( P 
is even) is performed in the following way: 

• Select P/2 pairs of strings randomly from the mat- 
ing pool so that every string in the mating pool be- 
longs to exactly one pair of strings. 

• For each pair of strings, generate a random number 
rnd from [0, 1 ]. If rnd <<, p then perform crossover; 
otherwise no crossover is performed. 

Usually in GAs, p is chosen to have a value in 
the interval [0.25, 1 ]. In the present work p is taken 
to be 0.8 and the population size P is taken to be 6 
for all generations. The crossover operation between 
two strings, as stated above, is performed at one po- 
sition. This is referred to as single-point crossover 
(Michalewicz, 1992). 
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The single-point crossover operator may create 
one problem. The child may have fewer groups 
than the parents. For example, if we cross strings 
(1 2 2 3  2 1) and (1 3 3 2 2  1) after the third posi- 
tion with single-point crossover, then the two children 
are (1 2 2 2 2  1) and (1 3 3 3 2 1). Note that the 
first child ( 1 2 2 2 2 1 ) has only two groups instead 
of three. To avoid this problem, we use sampling with 
replacement. In other words, we repeat crossover un- 
til we get a child with k groups or until a limit on 
the number of attempted crossovers is reached. (We 
have used a limit of 100.) If  the limit is reached 
without finding a child with k groups, the child is set 
to one of the parents chosen at random. Note that this 
strategy was adopted in a previous work (Jones and 
Beltramo, 1991) also. (Another way of performing 
the validity check of the string is to use the strategy 
of sampling without replacement. In such a case the 
maximum number of  attempted crossovers would be 
m - 1, but a list of invalid break points has to be 
maintained.) It may also be noted that invalid strings 
having fewer groups will have a larger value of the 
evaluation function and thus they will be rejected 
eventually. But such strings should be excluded from 
the population to eliminate wastage of processing 
time and to make room for valid strings to produce a 
better valid offspring. 

[0, 0.5]. The value of q is usually taken to be fixed. 
Sometimes it is varied with the number of iterations. 
For details, the reader is referred to (Qi and Palmieri, 
1994). We have considered varying the mutation prob- 
ability for reasons explained in the next subsection. 

Elitist strategy. The aim of the elitist strategy is to 
carry the best string from the previous iteration into 
the next. We have implemented this strategy in the 
following way: 

(a) Copy the best string (say so) of the initial pop- 
ulation in a separate location. 

(b) Perform selection, crossover and mutation oper- 
ations to obtain a new population (say Q1 ). 

(c) Compare the worst string in Ql (say sl) with so 
in terms of their fitness values. If  sl is found to 
be worse than so, then replace Sl by so. 

(d) Find the best string in Q1 (say s2) and replace 
so by s2. 

Note. Steps (b),  (c) and (d) constitute one iteration 
of the proposed GA based method. These steps are re- 
peated till the stopping criterion is satisfied. Observe 
that a string sl is said to be better than another string 
s2, if the fitness value of sj is less than that of s2, 
since the problem under consideration is a minimiza- 
tion problem. 

Mutation. Mutation is an occasional random al- 
teration of a character. Every character /3i, i = 
1,2 . . . . .  m, in each chromosome (generated after 
crossover) has equal chance to undergo mutation. 
Note that any string can be generated from any given 
string by mutation operation. 

Note that the mutation operation can, theoretically, 
produce invalid offspring. Thus a similar procedure 
(as performed after the crossover operation) for 
checking the validity of the offspring may be incor- 
porated after mutation too, if the need arises. In all 
of our experiments, mutation did not produce invalid 
offsprings. Hence no validity check for strings has 
been incorporated for the mutation operation. 

The mutation introduces some extra variability into 
the population. Though it is usually performed with 
very low probability q, it has an important role in 
the generation process (Michalewicz, 1992). The mu- 
tation probability q is usually taken in the interval 

3.3. Stopping criterion 

There exists no stopping criterion in the lit- 
erature (Davis and Principe, 1991; Goldberg, 
1989; Michalewicz, 1992) which ensures the conver- 
gence of GAs to an optimal solution. Usually, two 
stopping criteria are used in genetic algorithms. In 
the first, the process is executed for a fixed number of 
iterations and the best string obtained is taken to be 
the optimal one. In the other, the algorithm is termi- 
nated if no further improvement in the fitness value 
of the best string is observed for a fixed number of 
iterations, and the best string obtained is taken to be 
the optimal one. We have used the first method in the 
experiment. Note that the population size P is taken 
to be 6 in all the experiments. For a higher value of 
P, one may probably consider fewer iterations for 
stopping the GA for the same search space. For the 
same P and for different sizes of the search spaces, 
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the stopping times (maximum number of iterations of 
the GA-based method) are taken to be different (see 
Section 4). Some theoretical aspects relating to stop- 
ping times for the elitist model of GA are discussed 
in (Murthy et al., 1996). 

In order to obtain the optimal string, one needs to 
maintain the population diversity. This means that the 
mutation probability needs to be high. On the other 
hand, as the optimal string is being approached, fewer 
changes in the present strings are necessary to move 
in the desired direction. This implies that the muta- 
tion probability needs to be reduced as the number of 
iterations increases. Sometimes, at any stage of the al- 
gorithm, many changes in the present best string are 
required to get the optimal string. Thus, to have an ef- 
ficient search process with GAs, the variation of the 
mutation probability with the number of iterations may 

Table 1 
Results using three data sets of  size 10 

829 

Data f found Initial f found No. iterations 
set by ES population by GA required 
1 2.3974 

2.7196 

3 2.5238 

1 2.3974 7 
2 2.3974 13 
3 2.3974 10 
4 2.3974 8 
5 2.3974 3 

1 2.7196 I1 
2 2.7196 4 
3 2.7196 19 
4 2.7196 6 
5 2.7196 8 
1 2.5238 6 
2 2.5238 21 
3 2.5238 8 
4 2.5238 26 
5 2.5238 11 

Table 2 
Results using a data set of  size 50 be made variable. Some of the ways in which the mu- 

tation probability can be varied are shown in Fig. 1 (a -  
d). We have followed the function shown in Fig. 1 (a) 
for the variation of the mutation probability. In fact, 
we have started with a mutation probability value of 
q = 0.5. The q value is then varied as a step function 
of the number of iterations until it reaches a value of 
1/m. The minimum value of the mutation probability 
is taken to be 1/m. 

4. Experimental results and analysis 

Experiments have been carried out both on synthetic 
and on real-life data sets to judge the validity of the 
proposed method. The experiments and their results 
are described below. 

Initial f found No. iterations 
populmion by GA required 

1 15.8243 3485 
2 15.8243 6521 
3 15.8243 7386 
4 15.8243 5263 
5 15.8243 4208 

be 50. For each data set we have conducted the ex- 
periment five times with randomly generated initial 
populations. Table 1 shows that the proposed method 
has reached the optimal value of f in less than 20 
iterations in most of the cases with a maximum of 26 
iterations. Note that, since the population size P is 6, 
six partitions are examined at each iteration. So, the 
method required the examination of a maximum of 
156 partitions to reach the optimal value. 

Exper iment  1. The objective of this experiment is 
to check whether the proposed GA-based cluster- 
ing method provides the optimal clustering without 
searching all possible partitions. For this purpose, 
we have considered three data sets each having 10 
randomly generated points in R 2. We have then com- 
puted the optimal value of the objective function f 
for k = 2 by Exhaustive Search (ES) for each of 
these three data sets. Note that it requires searching 
511 (S(10,2)  = 511) partitions to get the optimal 
value of f .  Then the above-mentioned clustering 
method with GA has been applied to all three data 
sets. The maximum number of iterations is taken to 

Experiment  2. In this experiment, 50 points in R 2 
are generated randomly from four classes. The classes 
are taken in such a way that the distance of any point 
from its class mean is less than the distance of that 
point from any other class mean. The data points and 
the corresponding four clusters are shown in Fig. 2. 
The objective of this experiment is to inspect whether 
the proposed GA-based method can provide the same 
clusters as shown in Fig. 2. Note that the exhaustive 
search for this data set is computationally expensive 
( S ( 5 0 , 4 )  > 1024) .  

Table 2 shows the results of this experiment. Five 
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(c) 

f 

Iteration Max.No. 
of Iteration s 

Fig. 1. Possible variation of mutation probability with the number of iterations, adoptable in the experiment. 

Table 3 
Results showing improvements of K-means final output using the 
proposed GA-based method on a data set of size 50 
Initial f found f found No. iterations 
config, by K-means by GA reqd. for GA 

1 15.7456 15.7456 2000 
2 17.4714 15.7456 1026 
3 15.7456 15.7456 2000 
4 15.7456 15.7456 2000 
5 16.4901 15.7456 317 

sets of initial populations are also used for this exper- 
iment. The maximum number of iterations is taken to 
be 10000. The objective function value obtained by 
the proposed method and the number of iterations re- 
quired are depicted in Table 2. In all these five cases, 
the proposed GA-based method provided the expected 
results. Note also that the maximum number of pos- 
sible partitions examined by the method is drastically 
less than that required in the exhaustive enumeration 
process. 

Experiment 3. It is known in the literature that the 
K-means algorithm may not provide the optimal clus- 
tering. It may converge to a local minimum (Selim 
and Ismail, 1984). The objective of this experiment 
is to find whether the GA-based method can provide 
a better output if the result of the K-means algorithm 
(after convergence is achieved) is taken as one of the 
strings in the initial population. For this purpose, we 
have considered another synthetic data set of size 50 in 
•2. The data points are generated randomly from four 
classes which are placed very close to each other. Five 
different initial cluster configurations were taken ran- 
domly and the K-means algorithm was run on this data 
set till convergence was achieved for each of these five 
initial configurations. Each one of these five outputs is 
taken as a string in the initial population for GA and 
the other string in the initial population is generated 
randomly. The maximum number of iterations for the 
GA-based method is taken to be 2000. The number 
of iterations taken by the proposed GA-based method 
and the final output are as shown in Table 3. It can 
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(5 

Fig. 2. Data points and cluster configuration obtained by the 
proposed method in Experiment 2. 

Table 4 
Results of K-means on crude-oil data 

Initial config, f found by K-means 
1 283.7432 
2 279.2709 
3 296.4848 
4 279.2709 
5 279.2432 

Table 5 
Results of the proposed GA-basedmethod on crude-oil data 

Initial f found No.i~r~ions 
population by GA ~qui~d 

1 278.9651 8847 
2 278.9651 9712 
3 278.9651 7382 
4 278.9651 8273 
5 278.9651 8054 

ing 56 data points, 5 features and 3 classes is chosen 
for this experiment. The K-means algorithm was run 
(till convergence was achieved) on this data set for 
50 randomly generated initial cluster configurations. 
The proposed GA-based method was also run on this 
data set for 50 randomly generated initial populations. 
The maximum number of iterations for the GA-based 
method is taken to be 10000. It is found that the GA- 
based method provided an objective function value of 
278.9651 in all 50 cases. The lowest value of the ob- 
jective function provided by the K-means algorithm 
in all 50 cases is 279.2432. The K-means algorithm 
achieved this value in 39 out of 50 cases. The high- 
est value of the objective function provided by the K- 
means algorithm is 296.4848. Experimental results of 
K-means with five different initial cluster configura- 
tions are reported in Table 4. Table 5 shows the results 
of the proposed GA-based method with five different 
initial populations. The number of iterations taken by 
the K-means algorithm to converge in all 50 cases is 
less than or equal to 23. 

Note that different initial populations are consid- 
ered in each experiment described above. The number 
of iterations taken by the GA-based method to con- 
verge (i.e. the fitness value is found to be the same 
after that iteration) has been stated in the tables (Ta- 
bles 1-5) for the above experiments. It may be noted 
that the number of iterations required to converge is 
smaller than the stopping time value for each experi- 
ment. But premature convergence (i.e. all or most of 
the strings in the population are identical after that it- 
eration) of the process has not been observed in the 
above experiments. 

be seen that the proposed method improves the final 
output of the K-means by giving a lower value of the 
objective function in a maximum of 1026 iterations 
where such an improvement is possible. In this exper- 
iment, the number of iterations taken by the K-means 
algorithm to converge is less than or equal to 16. 

Experiment 4. The objective of this experiment is 
to compare the results of the K-means algorithm and 
the proposed GA-based method on a real-life data set. 
Crude-oil data (Johnson and Wichern, 1982), hav- 

5. Conclusions and discussion 

The aim of this work is to observe whether the pro- 
posed GA-based method can find the optimal cluster- 
ing without searching all possible partitions. Experi- 
ment 1 shows that the proposed method indeed finds 
the optimal clustering without searching all possible 
partitions. In Experiment 2, the data points are such 
that the optimal clustering was known. The GA-based 
method provided the expected results. Experiment 3 
shows that the output of K-means may be further im- 
proved by the proposed method. In Experiment 4, 
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where both the K-means algorithm and the GA-based 
method were run independently on a real-life data set, 
we find that in all 50 runs K-means provided higher 
value of the objective function. 

Note that in Experiment 4, the K-means algorithm 
takes very few iterations to converge. But it converges 
to a local minimum. GAs do not face this problem, 
since here the process can theoretically move from any 
partition to any other partition with non-zero proba- 
bility. The GA-based method suggested in this paper 
has been found to provide good results for all the data 
sets considered for experimentation. 

Observe that the population size P is taken to be 6 
for all the experiments, although the sizes of the search 
spaces associated with each problem are not the same. 
But we have used different stopping times (maximum 
number of iterations of the GA-based method) de- 
pending upon the size of the search space. There prob- 
ably exists a relationship between the stopping time 
and the population size for a given search space. The 
theoretical results available on this aspect of GAs are 
very little (Murthy et al., 1996). For a higher value 
of P, probably, a smaller stopping time would provide 
similar results. 

While solving an optimization problem using GAs, 
one always needs to make a compromise between two 
conflicting facets of GAs. One facet is the maintenance 
of population diversity such that the process searches 
for optimal strings in different regions of the search 
space. The other facet is that as the GA goes nearer 
to the optimal solution, fewer changes in the bits of 
the present best string are necessary to get the optimal 
string. This means that as the process approaches the 
optimal string, the search space needs to be confined 
to the strings in the vicinity of the present best string. 
If the population diversity is maintained, then it is 
difficult to make the process perform the other facet 
namely allowing only few changes in the strings. On 
the other hand, if the process performs the second facet 
alone, then it may lead to premature convergence. Both 
these facets have been advocated in our method in 
terms of varying the mutation probability as depicted 
in Fig. 1. The experiments carried out in this work 
utilize the functional form of Fig. 1 (a) for varying the 
mutation probability. Premature convergence of the 
GA-based method has not been found in any of the 
experiments reported in this paper. 
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