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Abstract: Proportional link linkage (PLL) clustering methods are a 
parametric family of monotone invariant agglomerative hierarchical clustering 
methods. This family includes the single, minimedian, and complete linkage 
clustering methods as special cases; its members are used in psychological and 
ecological applications. Since the literature on clustering space distortion is 
oriented to quantitative input data, we adapt its basic concepts to input data 
with only ordinal significance and analyze the space distortion properties of 
PLL methods. To enable PLL methods to be used when the number n of 
objects being clustered is large, we describe an efficient PLL algorithm that 
operates in O(n 2 Iogn) time and O(n 2) space. 
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1. Introduction 

In the twenty years since Sokal and Sneath's classic treatise (1963) on 
numerical taxonomy appeared, tremendous advances have occurred in 
developing and analyzing methods for the objective construction of hierarch- 
ical classifications of objects. Typically the input to such clustering methods 
is a symmetric, nonnegative, real-valued matrix D --- [dxy], where dxj, -- 0 if 
and only if x ffi y ;  dxe is interpreted as a quantitative measure of dissimilar- 
ity between objects x and y. As output these clustering methods usually 
generate a dendrogram or what Johnson (1967) calls a hierarchical clustering 
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scheme (HCS). An HCS is a sequence Po . . . . .  Pw of partitions of the 
objects being studied in which P0 is the disjoint partition, Pw is the conjoint 
partition, and Pi is a refinement (in the usual sense) of Pj for all 
0 ~ i < j N< w. Associated with each Pi is a nonnegative real number ai ,  
called its leve~ where c~ 0 -- 0 and ~i ~< a1 for all 0 ~< i < j ~ w. The HCS 
is nonovertapping because the blocks, or clusters, of each partition are mutu- 
ally exclusive; it is hierarchical (in the sense of Johnson, 1967) because two 
clusters in different partitions either are mutually exclusive or can be 
ordered by set containment. Within this context, a hierarchical clustering 
method is simply a function that maps each dissimilarity matrix into a 
corresponding HCS. 

Many well-known hierarchical clustering methods share characteristics 
deriving from a paradigmatic algorithm that can be used to construct the 
HCS. They are agglomerative methods: starting with the disjoint partition 
P0, they group objects into successively fewer and fewer clusters, arriving 
eventually at the conjoint partition Pw. They are sequential methods in 
which the same algorithm is used iteratively to generate Pi+1 from Pi'for all 
0 ~ i < w. They are pair-group methods: at each iteration exactly two clus- 
ters are agglomerated into a single cluster. Sneath and Sokal (1973) use the 
acronym SAHN to designate clustering methods that are sequential, 
agglomerative, hierarchical, and nonoverlapping. Readers wishing more 
information on SAHN clustering methods can consult Anderberg (1973), 
Everitt (1980), Legendre and Legendre (1983a), Sneath and Sokal (1973), 
or any standard numerical taxonomy text. 

SAHN clustering methods can often be defined algorithmically simply 
by providing a precise specification of step 3 in the paradigmatic algorithm in 
Table 1. Since step 2 agglomerates clusters i and j to form the new cluster 
(ij), step 3 must calculate for every other cluster k the revised dissimilarity 
8(ij)k between (ij) and k. Thus 8(u)~ --- min {8/k, 8j k} for the single linkage 
(or minimum or nearest neighbor) clustering method (Florek et al. 1951; 
Lukaszewicz 1951; McQuitty 1957; Sneath 1957); ~(u)k = max {Sik, 8jk} for 
the complete linkage (or maximum or furthest neighbor) clustering method 
(Sorensen 1948); and 8Uj)k = (~:'~x~Uj) ~y~k dxy) / ([ (ij) l" l k 1), where 
I z I denotes the cardinality of a set z, for the group average (or UPGMA or 
unweighted arithmetic average) clustering method (Rohlf 1963). This algo- 
rithmic approach to specifying families of SAHN methods is developed in 
early contributions by Ward (1963), Johnson (1967), Wishart (1969), and 
Anderberg (1973, chapter 6). 

Clustering methods must be selected carefully since they presume dis- 
similarity structure that may be absent in any given application: "usually 
more is significant than just the ordering, but it is rash to employ without 
careful justification methods ... which assume this" (Jardine and Sibson 
1971, p. 92). When data comprising a dissimilarity matrix have only ordinal 
significance (situation considered by Bromtey (1966) and Johnson (1967)), 
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T A B L E  1 

24t  

P a r a d i g m a t i c  S A H N  C l u s t e r i n g  A J g o r i t h m  

beg in  

Initialize a ,  *- 0; P0 *- {{s}:s E S}; A . -  D 

f o r m ~ - 0 t o n - 2 d o  

begin 

1. Search A for a closest pair {i,j} of distinct clusters in pro. 

2. Agglomerate clusters i and j into (ij) at  level a ~ + t  = cS, j to obtain P,~+I from 
P,.  

3. Update  A to reflect agglomeration of i and j into (ij). 

end 

end 

Note: S is the set of n objects to be clustered. D = [d,j ] is the original matrix of interobject  dis- 

similarities. A = [Sjj ] is the matr ix of intercluster dissimilarities. 

the clustering method used should be invariant to monotone increasing 
transformations of the dissimilarity matrix. Johnson (1967) uses this argu- 
ment in preferring single linkage and complete linkage to clustering methods 
such as group average. Monotone invariance plays an important role in the 
work of Jardine and Sibson (1968, 1971) and Sibson (1970, 1972). A 
plethora of monotone invariant clustering methods have since been pro- 
posed. Hubert (1972) develops a method that is invariant to hypermono- 
tone increasing transformations of the dissimilarity matrix. Graph-theoretic 
methods advocated by Ling (1972), Hubert (1973, 1974, 1976, 1977), and 
Matula (1977) are based on the rank ordering of data in the dissimilarity 
matrix. Hubert (1973) and D'Andrade (1978) describe methods based on 
monotone invariant goodness-of-fit statistics. Janowitz (1978a, 1978b, 
1981) develops an elegant order-theoretic model of clustering methods and 
specializes it to the consideration of monotone invariant methods (1979a, 
1979b). 

Although single and complete linkage are monotone invariant clustering 
methods, single linkage tends to agglomerate objects into relatively few large 
straggly clusters, while complete linkage tends to agglomerate objects into 
relatively many compact spherical clusters (Hubert and Schultz 1975). 
Sneath (1966) provides alternatives to these extremes by introducing the 
proportional link linkage (U-PLL) family of monotone invariant SAHN 
methods, where the parameter U is any real number such that 0 < U~< 1. 
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These methods can be defined by specifying step 3 in the paradigmatic 
SAHN algorithm. If 

: - -  [ U . I ( u ) I . I k l l  , (1) 

where Ix] denotes the least integer not less than x, then the dissimilarity 
8(,.v)k between the agglomerated cluster (ij) and any other cluster k is the 
J-th smallest of the set {dxy : xE (ij), y Ek} of interobject dissimilarities. 
I-PLL corresponds to complete linkage. There is no fixed value of U for 
which U-PLL is single linkage; but if one fixes instead the number n of 
objects being clustered, U-PLL is single linkage for any U ~ 4 / n 2. Sheath 
(1966) speculates that .5-PLL may be the "median link" method Kendrick 
and Proctor (1964) use in their analysis of the Fungi Imperfecti, and it may 
also be J. D. Carroll's "average method based on medians" (Johnson I967) 
and D'Andrade's "median method" (1978). Furnas (1980) defines two 
median methods for his investigation of the structural representation of 
two-class data: both methods use the (unique) middle ranked interobject 
dissimilarity if their number is odd, but when their number is even, the 
minimedian (respectively, maximedian) clustering method selects the lesser 
(respectively, greater) of the two middle-ranked dissimilarities. The 
minimedian method corresponds to .5-PLL, but the maximedian method 
has no correspondent in the PLL family. Legendre and Legendre (1983a) 
encourage the use of U-PLL in ecological applications, and they use .75-PLL 
in constructing a benthonic classification (1983b). P. Legendre and his col- 
leagues also modify the U-PLL algorithm to impose on the resulting HCS 
constraints of time contiguity (Legendre, Baleux, and Troussellier 1984; 
Legendre, Dallot, and Legendre 1985) or space contiguity (Legendre and 
Legendre 1984). 

Sneath (1966) provides a second alternative to single and complete 
linkage by introducing the integer link linkage (K-ILL) family of monotone 
invariant clustering methods, where the parameter K is any positive integer. 
These methods can be defined in terms of the paradigmatic SAHN algorithm 
in a manner identical to that of U-PLL except that equation (1) is replaced 
by J = r a i n { K ,  [(ij) l ' l k l } .  I-ILL is single linkage. There is no fixed 
value of K for which K-ILL is complete linkage; but if one fixes instead the 
number n of objects being clustered, K-ILL corresponds to complete linkage 
whenever K >/ n2/4. We know of no published investigations that use K- 
ILL for nontrivial values of K. The explanation may be that the paradig- 
matic SAHN algorithm for K-ILL can generate hierarchies in which reversals 
in partition levels (i.e., o~ > a.i with i < j )  occur when K > 1; Figure 1 
exhibits such a reversal in an application of 2-ILL. Although single rever- 
sals may be dismissed simply as minor irritations, other pathological cases 
are more difficult to ignore; for example, Figure 2 exhibits an avalanche of 
reversals in an application of 2-ILL. 
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Dissimilarity Matrix D 

1 2 3 4 

1 0 I 2 2 

2 1 0 4 4 

3 2 4 0 3 

4 2 4 3 0 

Hierarchical Clustering 

t Leve l  a, P a r t i t i o n  P, 

o o {{1}, {2}, {3}, {4}} 

1 1 {{1,2}, {3}, {4}} 

2 3 {{1,2}, {3,4}} 

3 2 {{1,2,3,4}} 

Figure 1. A reversal caused by the 2-ILL clustering method. Clusters {3} and {4} agglomerate 
at level c~ 2 = 3; clusters {1,2} and {3,4} then have dissimilarity 2 and agglomerate immediately 
at level a 3 = 2. Since c~ 2 > a 3, this hierarchy is not a hierarchical clustering scheme. 

These  reversals demonstrate  that when K-ILL is defined for K > 1 by the 
paradigmatic SAHN algorithm, its output  is not guaranteed to be an HCS so 
that it is not  a well-defined hierarchical clustering method. The integer link 
linkage concept can be salvaged by clustering method models that prohibit  
reversals; Janowitz (1979a), for example,  incorporates integer and propor- 
tional link linkages in his model  of  type I agglomerative mono tone  equivari- 
ant clustering methods. 
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2. Clustering Space Distortion 

It is important to understand when, and why, reversals occur since they 
cause clustering methods based on the paradigmatic SAHN algorithm to be 
ill-defined. If one visualizes clusters as points in an appropriate conceptual 
space, then a reversal in hierarchical clustering can be interpreted as a dis- 
tortion of space in the vicinity of the newly formed cluster. As clusters i 
and j (with dissimilarity 8,:j) agglomerate into cluster (ij), the space near 
(U) may appear to contract with respect to cluster k so that (ij) has dimin- 
ished dissimilarity with respect to k. If the space contraction is such that 
~(~j)k < 15u, then a reversal in partition levels results. Lance and Williams 
(1966, 1967) give intuitive descriptions of distortion, contraction, conserva- 
tion, and dilation of space. Hubert and Schultz (1975) investigate space dis- 
tortion by analyzing the number and type of clusters formed by clustering 
methods at comparable levels. DuBien and Warde (1979) and Rohlf (1977) 
independently propose formal definitions of various space distortion con- 
cepts. 

Although Rohlf (1977) and DuBien and Warde (1979) each define the 
concepts of space contraction, conservation, and dilation, their definitions 
reflect a preoccupation with SAHN methods that generally are not invariant 
to monotone increasing transformations of the dissimilarity matrix. Thus 
DuBien and Warde (1979, pp. 37-38) discuss using space distorting cluster- 
ing meiiaods with "some measure of distance for clustering data sets for 
which it is 'semi-reasonable' to assume at least an interval scale of measure- 
ment for the variables comprising each data point". However, Rohlf (1977, 
p. 9) explicates the original concepts provocatively: "Given three points i, j, 
and k, the dissimilarity between k and the cluster iuj  could (depending 
upon the clustering method) tend to be less than, equal to, or greater than 
the average dissimilarity between k and the members of the cluster. Lance 
and Williams (1967) classify such methods as space contracting, space con- 
serving, and space dilating methods, respectively." The dependency of 
these definitions on average dissimilarity precludes their use with data hav- 
ing only ordinal significance, but they are easily adapted to this more general 
context in the following way. 

Suppose a monotone invariant clustering method is implemented by an 
appropriate specialization of the paradigmatic SAHN algorithm. Assume 
clusters i and j are selected in step 1 for agglomeration into (ij) at level 8ij. 
Let k be any cluster such that k ;~ i and k # j .  The clustering method is 
called space contracting if, for all such i, j ,  and k, 8(~j) k is not greater than 
the minimedian dissimilarity between objects in (ij) and objects in k. It is 
called space dilating if, for such i, j ,  and k, 8(;])k is not less than the 
minimedian dissimilarity between objects in (ij) and objects in k. It is space 
conserving if it is both space contracting and space dilating, and it is space dis- 
torting if it is not space conserving. With these definitions, the minimedian 
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clustering method (Furnas 1980) is the only space conserving method, and 
the maximedian method is very mildly space dilating. The U-PLL methods 
are space contracting when U ~ .5, space dilating when U >1 .5, space con- 
serving when U - - . 5 ,  and space distorting when U ~ .5. The K-ILL 
methods exhibit more complex behavior. 1-ILL is single linkage and so is 
space contracting. For K > 1, the type of space distortion for given i, j ,  
and k depends on K 's  ranking relative to that of the corresponding 
minimedian. As a consequence, Sneath (1966, p.5) observes that "an 
Integer Link Linkage has a special relation to Proportional Link Linkages: it 
corresponds to different degrees of Proportional Link Linkage depending on 
the number  of [objects] in the clusters. An Integer Link Linkage would 
start as similar to Complete Linkage and become more and more like Single 
Linkage as the Sorting Level changed down the dendrogram." Thus K-ILL 
methods for K > 1 are space distorting without being either space contract- 
ing or space dilating. 

Any space distorting clustering method that permits reversals is charac- 
terized by a violation of monotonicity in the sequence of partition levels. 
Using the notation of the preceding paragraph, a clustering method is called 
monotonic (or monotone nondecreasing) if 8(u~k >i 8,- i for all such clusters i, 
j ,  and k (Lance and Williams 1966)~ Rohlf (1977) then calls a clustering 
method super space contracting if it is not monotonic; consequently, a clus- 
tering method permits reversals if and only if it is super space contracting. 
The space contraction definitions have a basic difference in form: a method 
is space contracting if an inequality involving 8(ij~ ~ always holds, whereas a 
method is super space contracting if a different inequality involving 8(O k is 
violated. MiUigan (1979) and Batagelj (1981) give a characterization of 
monotonicity for SAHN methods that are combinatorial in the sense of 
Lance and Williams (1966, 1967); while Diday (1983) obtains analogous 
results for Jambu and Lebeaux' combinatorial generalization (1983). Since 
the K-ILL and U-PLL families are not combinatorial (Legendre and Legen- 
dre 1983a, p. 237), we give characterizations that identify the super space 
contracting methods among their members. 

Theorem 1 A K - I L L  clustering method is monotonic i f  and only i f  K = 1. 

Proof  If K = 1 then K-ILL is the monotonic single linkage clustering 
method. 

If K > 1 then we describe the dissimilarity matrix of an example for 
which K-ILL exhibits a reversal. Let m be the least even integer such that 
K + 2 ~< m 2, and let {1 . . . . .  2m} be the set of objects being clustered. 
The dissimilarity matrix D ~ [dxy] initially has zeros on, and ones off, the 
main diagonal. We modify entries above the main diagonal in three regions, 
with changes below to maintain symmetry. The region with entries dxy, 
where 1 <~ x <~ m < y <~ 3m/2 ,  has ( K -  1) entries with value 2 and 
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(m2/2 - K + 1) entries with value 4. The region with entries dxy, where 
1 ~ x <~ m and 3m/2 < y <,N 2m, has ( K -  1) entries with value 2 and 
(m2/2 - K + 1) entries with value 4. The region with entries dw, where 
m < x <~ 3m/2 < y <~ 2m, has all entries with value 3. Figure 1 shows a 
resulting dissimilarity matrix when K - 2. 

When the K-ILL algorithm operates on this dissimilarity matrix, the 
last two partitions it generates exhibit the following reversal: 

or ._2= 3, P._2 = {{1 . . . . .  m},  {m + 1 . . . . .  2m}} ; 

c~.-1 = 2, Pn-,-- {{1 . . . . .  2m}} 

Thus K-ILL is super space contracting. • 

Theorem 2 U-PLL clustering methods are monotonic for all 0 < U <~ 1. 

Proof Suppose step 1 of the U-PLL algorithm selects clusters i and j to 
agglomerate, and let k be any cluster such that k ~ i and k ~ j .  For any 
clusters r and s, define crs to be the number of dissimilarities in the set 
{d~y:XEr, yEs ,  dxy<Su}. Since 8i~ >/8i~, we have cik<[U'lil'lkt| so 
that cik< U" [ i I" I k l. Similarly, cjk< U. I J I" I k [. By substitution we 
obtain c(i:)k = cik + cjk < U" l (ij) l " I k l I V" l ( i j)  l " l k tl s o  that 
8(;/)k/>8,i. • 

3. An Algorithm for U-PLL Clustering 

Although U-PLL clustering methods have desirable monotone invari- 
ance and space distortion properties, they should also have algorithms using 
reasonable time and space resources to solve reasonably nontrivial problems. 
Toevaluate the complexities of such algorithms, we measure problem size by 
the number n of objects to be clustered, and we describe an algorithm's time 
(respectively, space) complexity by a function f ( n )  expressing, for each n, 
the largest amount of time (respectively, space) the algorithm needs to solve 
any problem instance of size n. In describing the asymptotic behavior of 
such positive valued functions, we say that f ( n )  is O(g(n))  whenever 
there exists a positive real constant c such that f ( n ) ~  c 'g(n) for all large 
positive n. Readers wishing detailed information on the analysis of  algo- 
rithm complexity can consult the classic textbook by Aho, Hopcroft, and 
Ullman (1974) or the excellent survey by Weide (1977). 

An extensive literature exists on the computation of SAHN clustering 
methods. Sibson (1973) describes a single linkage algorithm based on the 
efficient extension of a hierarchical clustering of m objects to one of 
(m + 1) objects; the algorithm requires O(n 2) time and O(n) space. 
Defays (1977) uses this approach to obtain a complete linkage algorithm 



248 W.H.E. Day and H. Edelsbrunner 

with the same asymptotic behavior. Recent advances establish algorithms 
requiring O(n 2) time for all well-known combinatorial SAHN clustering 
methods (Day and Edelsbrunner t984; Murtagh 1983, 1984). By com- 
parison, comparatively little information is available on the complexities of 
algorithms for U-PLL methods. Furnas (1980) gives an algorithm for 
minimedian (.5-PLL) and maximedian methods that requires O(n 4) time 
and O(n 2) space. Execution times provided by Legendre (personal com- 
munication) suggest that his U-PLL algorithm requires O(n 3) time. One 
can also analyze the complexity of the paradigmatic SAHN algorithm when 
it is specialized to the U-PLL computation. In any reasonable implementa- 

tion, step 1 searches (n2m) entries in matrix A and step 3 analyzes O(mn) 
entries in matrix D. Since these steps dominate loop execution, the algo- 
rithm requires O(n 3) time. The matrices cause any reasonable implementa- 
tion of the algorithm to require O(n 2) space. These bounds on asymptotic 
behavior of the paradigmatic SAHN algorithm for U-PLL are unlikely to be 
improved by implementation details. 

Although U-PLL clustering methods are defined by specializing the 
paradigmatic SAHN algorithm, other algorithms can generate a U-PLL HCS 
from a dissimilarity matrix. We describe in Table 2 a new SAHN algorithm 
for U-PLL clustering that exemplifies Anderberg's sorted matrix approach to 
hierarchical clustering (1973). His sorted matrix algorithm for single linkage 
(p. 149) is a restatement of Kruskal's greedy algorithm (1956) to compute 
the minimum spanning tree of an edge-weighted complete undirected graph. 
Hubert (1973) gives a sorted matrix algorithm for the complete linkage 
method. These algorithms build an HCS by processing each dissimilarity 
matrix element exactly once in nondecreasing order of dissimilarity. They 
comprise two phases: an initialization phase in which matrix elements are 
placed in processing order; and a construction phase in which matrix ele- 
ments are processed to generate the HCS. In our sorted matrix algorithm 
for U-PLL, these phases require O(n 2 logn) and O(n 2) time, respectively, 
and so the entire U-PLL algorithm requires only O(n 2 logn) time. Figure 3 
contrasts this asymptotic behavior with those of related clustering algo- 
rithms. 

The sorted matrix algorithm for U-PLL is written in an almost self- 
evident high-level language called Pidgin ALGOL (Aho, Hopcroft, and Ull- 
man 1974, pp. 33-39). It comprises an initialization phase (line 1) and an 
HCS construction phase (line 2). Two basic ideas underlie the algorithm 
design: process interobject dissimilarities in nondecreasing order; and main- 
tain sufficient information to test efficiently for cluster agglomeration. Array 
N = [n;] maintains a count ni of the number of objects in each cluster i in 
partition Pro. Array C = [c U] maintains a count c U of the number of 
interobject dissimilarities dxy encountered with x in cluster i, y in cluster j ,  
and i less than j.  If dxy causes cij to be incremented and if cij>/[ U'ni'nj ] 
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T A B L E  2 

Sorted  Matr ix  S A H N  Clustering A l g o r i t h m  for U - P L L  

bezln 
1. Initialize N, C, Q and Z 

2. for  m ~ Oton-2do 

begln  

found *-- false 

repeat  

3. (d~ ,x,y)4-- ~ N ( Q )  

4. i ~ FIND(x,Z); j *- FIND(y,Z) 

5. ff i ~ i then  

begin 

e~l +-- c~1 + I 

if  C,j > ~U'n,-nj] then found *- true  

end 

unti l  found 

6. Agglomerate clusters i and j at level ~ + t  = d~ to obtain P,~+I from P,~. 

7. UNION (i,j,k,Z) 

8 Update N and C to reflect agglomeration of i and j into k. 

end 

end 

(line 5), then partition Pm+l can be constructed (line 6) by agglomerating i 
and j in O(n) time. Initializing N and C (line 1) requires O(n 2) time, 
while updating them at each execution of line 8 requires O(n) time. 

Since the sorted matrix algorithm for U-PLL requires interobject dis- 
similarities in nondecreasing order, it constructs (line 1) from the dissimilar- 
ity matrix D = [dxy] a priority queue (Aho, Hopcroft, and Ullman 1974, pp. 
147-152) Q of elements (dxy, x, y), l<~x<y<~n, where d~v is called the 
element's label. Elements of Q are made available (line 3) in nondecreas- 
ing order of label value; the MIN operation returns an element with least 
label value and deletes it from Q. Q can be implemented as an array of ele- 
ments; it's O(n 2) entries are sorted into proper order (line 1) in O(n 2 logn) 
time, while each MIN execution (line 3) requires only constant time. 
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Figure 3. Asymptotic behaviors of clustering methods. The curves f i  represent functions 
f i ( n )  = logl0 (Gi(n))+ci ,  the constants c~ providing normalization at n = 10. Gl (n)  = n 2 is 
the time complexity of Sibson's single linkage algorithm (1973): it also is a trivial lower bound 
on the time complexities of clustering algorithms having dissimilarity matrices as input. 
G 2 (n) = n 2 logl0 n and G 3 (n) = n 3 are time complexities of the sorted matrix and paradig- 
matic SAHN algorithms for U-PLL. (74 (n) = n 4 is the time complexity of a minimedian (.5- 
PLL) algorithm (Furnas 1980). 

When the sorted matrix algorithm for U-PLL processes the element 
(dxy, x, y)  returned by MIN (line 3), it must identify which clusters contain 
objects x and y. This can be done by maintaining the partition Pm as a set 
Z o f  mutually exclusive subsets (the clusters) subject to FIND and UNION 
operations. FIND(x, Z) returns the name of the cluster in Z of which x is 
currently a member. UNION(i, j, k, Z) replaces clusters i and j in Z with 
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the agglomerated cluster k. Z can be implemented as an array Z --- [zx] of 
size n in which zx is the name of the cluster containing object x (Aho, Hop- 
croft, and Ullman 1974, pp. 124-125). Initialization of Z (line 1) requires 
O(n) time; each FIND execution (line 4) requires only constant time, while 
each UNION execution (line 7) can be accomplished in O(n) time by scan- 
ning Z sequentially. 

Now we can complete the time complexity analysis of the sorted matrix 
algorithm for U-PLL. The initialization phase (line 1) is dominated by the 
O(n 2 logn) time required to sort Q. Analysis of the HCS construction 
phase (line 2) breaks into two parts. Each execution of the repeat clause 
(lines 3-5) requires constant time; since the clause is invoked O(n 2) times, 
the repeat statement requires O(n 2) time overall. Each execution of lines 
6-8 requires O(n) time; since these lines are invoked ( n - l )  times, they 
require O(n 2) time overall. Since the construction phase thus requires 
O(n 2) time, the entire algorithm is dominated by the initialization phase and 
requires O(n 2 logn) time overall. 

4. Conclusion 

We investigated properties of two families of SAHN clustering methods 
that Sneath (1966) introduced as integer link linkage (K-ILL) and propor- 
tional link linkage (U-PLL). Since these methods are invariant to monotone 
increasing transformhtipns of dissimilarity matrix input, they may be useful 
in psychology, ecology, and other areas where clustering data typically have 
only ordinal significance. We defined basic concepts to describe the cluster- 
ing space distortion exhibited by monotone invariant SAHN algorithms. We 
established that every nontrivial K-ILL method is super space contracting so 
that reversals may occur in the clustering hierarchy, while every U-PLL 
method is monotone so that reversals are impossible. We showed that each 
U-PLL method exhibits a type of clustering space distortion characterized by 
U. We described a new U-PLL algorithm that requires O(n 2 logn) time 
and O(n 2) space to cluster n objects. This asymptotic behavior is better 
than that of other known U-PLL algorithms, but we do not know if it is the 
best possible. 

There remain challenging unsolved research problems concerning U- 
PLL clustering methods. Since these methods exhibit reasonable, predict- 
able, space distortion properties, they should next be subjected to quantita- 
tive comparisons with other monotone invariant clustering methods. As for 
algorithmic considerations, we believe it would be of considerable interest to 
design U-PLL algorithms with time complexities superior to that of the 
sorted matrix algorithm we described. Since such algorithms may not exist, 
we also would welcome any improved lower bounds on the time complexi- 
ties of all U-PLL algorithms. Our goal is to discover a U-PLL algorithm 
with time complexity O(f(n)) ,  and a lower bound g(n) on the time 
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complexi t ies  o f  all U - P L L  algori thms,  such that f ( n )  = O ( g ( n ) ) ;  such an 
algori thm may rightfully be called optimal  for U-PLL clustering. 
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