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Abstract

In the cluster analysis problem one seeks to partition a ®nite set of objects into disjoint groups (or clusters) such that

each group contains relatively similar objects and, relatively dissimilar objects are placed in di�erent groups. For certain

classes of the problem or, under certain assumptions, the partitioning exercise can be formulated as a sequence of linear

programs (LPs), each with a parametric objective function. Such LPs can be solved using the parametric linear pro-

gramming procedure developed by Gass and Saaty [(Gass, S., Saaty, T. (1955), Naval Research Logistics Quarterly 2,

39±45)]. In this paper, a parametric linear programming model for solving cluster analysis problems is presented. We

show how this model can be used to ®nd optimal solutions for certain variations of the clustering problem or, in other

cases, for an approximation of the general clustering problem. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In general, the cluster analysis problem involves
partitioning a set of n objects into g6 n disjoint
groups (or clusters). The measure of e�ectiveness
for the clustering exercise may involve a single
criterion, e.g., maximizing within cluster similarity,
or, there may be additional criteria, e.g., a speci®c
number of groups in the partition. Usually, the
properties of a partition are expressed as a sum of
its individual group properties, e.g., total cost,
total size. The general class of clustering problems

is computationally di�cult, potentially requiring
examination of an exponential number,Pn

g�1 �1=g!� Pg
i�1 �ÿ1�gÿi ��g!=�i!�g ÿ i�!���in�� �

, of
partitions. Therefore, as n increases, the associated
computational burden makes ®nding an optimal
solution impractical and exact solution approaches
are abandoned in favor of practical solution ap-
proaches.

The linearly ordered clustering problem is a
variation of the clustering problem that is more
amenable to solution. In this problem, clusters can
only be formed from a given sequential ordering of
the objects. The number of possible partitions for
a sequentially ordered set of n objects is equal toPn

g�1 �nÿ 1�!=��g ÿ 1� ! �nÿ g�!� � 2nÿ1. Even
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though this number is exponential, many problem
types can be solved in polynomial time. As a re-
sult, the linearly ordered clustering problem has
been used to approximate the general clustering
problem so that practical solutions can be found,
Chen and Yu [1], Hwang [2].

The linearly ordered clustering problem has
been explored in the literature. Even though its
connection to linear programming (LP) has been
known, researchers have focused on dynamic
programming approaches, tailoring their algo-
rithms to ®t the speci®c problem instance. In this
paper, we focus on linear programming (LP)
methods and propose a parametric LP model for
the linearly ordered clustering problem. Paramet-
ric LP methods can be used to ®nd exact solutions
in many situations where a second clustering cri-
terion must be satis®ed. We use parametric LP to
solve a sample of problems taken from the litera-
ture. Other variations of the clustering problem
where parametric LP can be applied are also
identi®ed.

2. Clustering linearly ordered objects

Real world applications of the linearly ordered
clustering problem occur as a result of one of two
broad conditions. Either, (a) objects must be kept
in a given order (naturally occurring or as desired
by the investigator) Everitt [3], Gordon [4,5],
Kernighan [6] or, (b) the mathematical structure of
the clustering objective determines that the opti-
mal partition must come from a sequential order-
ing of objects; Hwang [2], Chakravarty et al. [7],
Anily and Federgruen [8].

While dynamic programming has been the
popular solution approach used in the literature,
the lack of a canonical form and general purpose
solution algorithm means that speci®c algorithms
must be devised to handle each application. As the
number of objects increase, dynamic programming
approaches usually experience inordinate growth
in computing resources which results in reduced
e�ciency. The presence of side conditions can also
increase the problem complexity for dynamic
programming, and algorithms must be further
specialized to handle side conditions. For example,

capacity considerations may mean limiting the size
of any group, Kernighan [6] or, economic consid-
erations may mean restricting the number of
groups in the partition, Chakravarty et al. [7].
Lagrangian relaxation can be used to handle some
side conditions, Stanfel [9,10]; however, dynamic
programming methods provide no information on
the appropriate magnitude or range of values for
the Lagrangian multiplier.

3. A parametric linear programming model

It is well known that the cluster analysis prob-
lem can be formulated as an integer programming
problem (IP), Vinod [11], Rao [12], called a set
partitioning problem (SPP). The SPP belongs to a
class of computationally di�cult problems and
this approach has not been e�ective for solving the
general class of cluster analysis problems. The
linear ordering of objects for clustering means that
the matrix representation of the clusters has spe-
cial structure which can be exploited to solve the
problem e�ciently.

The SPP formulation of the single-criterion
clustering problem for n objects may be stated as:

P1: fmin CX j AX � 1; 06X6 1 and binaryg;
where X � fXj: j � 1; . . . ;Ng; Xj � 1 if group j is
in the partition, 0 otherwise; N is the total number
of possible groups; C� {Cj}, and Cj is the crite-
rion measure for group j; A� {Aj}, and Aj is an n-
dimensional vector associated with group j such
that aij � 1 indicates that object i is a member of
group j and aij � 0 otherwise; 0 and 1 are n-di-
mensional vectors of 0's and 1's, respectively.

Restricting the clusters to be formed from a
linear ordering of objects means that each column
of A has its 1's in consecutive rows. Such a matrix
is described as an interval matrix, Nemhauser and
Wolsey [13], and interval matrices are known to be
totally unimodular. The LP relaxation of P1 for
the linearly ordered set of objects would thus
possess the integrality property and its solution is a
valid partition. Note that, for the linearly con-
strained problem, the number of columns N in P1

is equal to n(n + 1)/2. This is a polynomial func-
tion of n, in comparison to the total number of
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possible partitions which is an exponential func-
tion of n. This is because the LP model represents
the possible partitions as extreme points of the LP
polytope. Hence, LP provides an e�cient data
structure for storing the problem information.

In some cases, a second clustering criterion can
be handled as an additional constraint in the LP
model. Problem P2 is formulated:
fmin

P
j CjXj j AX� 1;

P
j DjXj � K; Xj binaryg,

where Dj represents the coe�cient for group Xj in
the second criterion, and K is a speci®ed value that
must be achieved for the second criterion. An ad-
ditional constraint means that the special structure
may not be preserved and the solution to the LP
relaxation of P2 may be non-integer. This con-
straint can be moved to the objective function and
a new problem formulated:

P3: min
X

j

CjXj � h
X

j

DjXj

 !
AX
��(

� 1; Xj binary

)
:

Problem P3 is totally unimodular and given a
value h, LP techniques will ®nd an integer solution
for the relaxed problem. Further, problem P3 is a
linear programming problem with a parametric
objective function. Hence, the parametric pro-
gramming approach proposed by Gass and Saaty
[14] can be applied to solve problem P3 exactly.

4. Parametric programming approach

The parametric programming procedure of
Gass and Saaty [14] solves the following linear
programming problem for every value of w:

P4: fmin Z0�X� � wZ1�X� j AX � b; X P 0g
where Z0(X) and Z1(X) are linear functions of X,
and w is a scalar multiplier. Using the simplex
method, the parametric programming procedure
®rst solves problem P4 for w�w0, where w0 is
some arbitrary small number. The result is that
either there is some e�cient extreme-point solu-
tion X0, or that there is no ®nite minimum for
w�w0.

Let NB(X0) be the index set of non-basic vari-
ables associated with X0 and, let the reduced costs
have the form (hj + wgj) where hj and gj are the
reduced costs in terms of Z0(X) and Z1(X), re-
spectively. For optimality we require that
(hj + wgj)6 0. Therefore, X0 is the optimal solu-
tion of problem P4 for any w 2 �w0L;w0U � where w0L,
w0U are determined as follows:

w0L � ÿhqL=gqL � maxfÿhj=gj: gj < 0;
j 2 NB�X 0�g or
ÿ1 if gj P 0 for all j 2 NB�X 0�

w0U � ÿhqU=gqU � minfÿhj=gj: gj > 0;
j 2 NB�X 0�g or
�1 if gj6 0 for all j 2 NB�X 0�:

The procedure is terminated if either of the
following conditions occurs: (a) w0U �+1, (b) w0U
is ®nite but all the corresponding ai;qU 6 0. Oth-
erwise, the simplex method introduces xqU into the
basis and eliminates the basic variable in the usual
manner. Gass and Saaty [14] established that the
resulting basis yields a minimum for at least one
value of w, and that if [w00L, w00U ] is the interval for
which the resulting basis yields a minimum then
w0U �w00L.

Thus, the parametric programming procedure
generates the set of e�cient, extreme points that
solve the single parameter LP problem for all w
such that )16w6+1 and will identify the
parametric interval that is associated with each
such extreme point. It can be seen that problems
P3 and P4 are equivalent therefore, the parametric
programming procedure may be used to solve
problem P3 for all relevant values of h, and:

(a) the precise range of values for h for each
solution vector is determined;

(b) only a single LP problem will have to be
solved.

5. Solving an approximation of a general clustering

problem

We apply the parametric linear programming
model to a clustering problem studied in Stanfel
[9,10]. The grouping criterion to be minimized is
the average dissimilarity within groups relative to
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the average dissimilarity between groups. This
form of objective function is common in the clus-
ter analysis literature and assesses a partition on its
performance both within the groups and between
the groups. A distance measure is used to represent
dissimilarity/similarity between objects. The clus-
tering problem can be expressed as

P1: min F �
P

i

P
r>i dirYirP

i

P
r>i Yir

ÿ
P

i

P
r>i�1ÿ Yir�dirP

i

P
r>i�1ÿ Yir� ;

where dir is the distance between objects i and r,
and Yir is a binary variable that is used to indicate
whether objects i and r are placed in the same
group (Yir� 1) or in di�erent groups
�Yir � 0�; i; r 2 f1; . . . ; ng.

Using the development of Stanfel [9], the non-
linear objective function is transformed into a
linear function by letting M� n(n ) 1)/2,P

i

P
r>i dir � C, and restricting

P
i

P
r>i Yir to

equal some constant K. The objective function can
be expressed as

G�K� � M
X

i

X
r>i

dirYir=�K�M ÿ K��
" #
ÿ �C=�M ÿ K��:

Minimizing the objective function, F, becomes
equivalent to minimizing

P
i

P
r>i dirYir given a

value for K. Note that, when all objects are in
separate groups then, K� 0, and F�)C/M; when
all objects belong to one group, then K�M, and
F �Pi

P
r>i dirYir=

P
i

P
r>i Yir � C=M . Also, it

may not be possible for K to attain all values be-
tween 0 and M, for example, when n� 5, then, K 2
{0,1,2,3,4,6,10}, and there are no partitions such
that K� 5, 7, 8, or, 9.

The restricted problem may be formulated as a
set partitioning problem:

P2: min
X

j

CjXj j AX � 1;

(
X

j

MjXj� K; Xj binary

)
where Cj �

P
i aijarjdir, i < r, is the total of the

within group distances in group j; nj � the number
of objects in group j, and Mj � nj�nj ÿ 1�=2.

Stanfel [9] proposed to solve an approximation of
problem P2 by (i) assuming that the objects must
be kept in a given linear order, and (ii) using La-
grangian relaxation to move the side constraint to
the objective function. The new problem P3 does
possess the integrality property:

P3: min
X

j

�Cj � vMj�Xj j AX � 1; Xj 2 �0; 1�
( )

:

Stanfel's [9] solution approach involved (a) es-
tablishing a range and step length for the multi-
plier; (b) generating problems for a range of
multiplier values; (c) applying the simplex method
to each of the problem generated; (d) using dy-
namic programming techniques to price and select
the next column for entry into the basis. In a later
approach, Stanfel [10], the simplex method is
eliminated, and the problem is solved using only
dynamic programming methods.

In a parametric programming approach, if we
let Z0�X� �

P
j CjXj; Z1 �X��

P
jÿMjXj; w � ÿv

fand b � 1, then problem P3 is just a special case
of problem P4 with w 2 �0;�1� and so the para-
metric programming procedure may be used to
®nd optimal solutions for all relevant values of v.
Since the parametric procedure obtains the exact
values and ranges for the optimal multipliers, there
is no chance of missing an optimal solution.

6. Computational results

We demonstrate the parametric linear pro-
gramming model using eight examples of problem
type P3. Examples E1±E4 are taken from Stanfel
[9] and E5±E8 are taken from Stanfel [10]. The
object coordinates are given in Table 1.

Example E1 has 20 objects; examples E2±E4 all
have 50 objects, example E5 has 91 objects, and
examples E6±E8 all have 100 objects. The exam-
ples E5 and E6 show obvious structure; for ex-
ample E6 the structure is well de®ned both within
and between groups. We used the parametric
programming feature of IBM's Optimization
Subroutine Library (OSL) to solve the four prob-
lems. Table 2 contains descriptions and corre-
sponding test results.
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Given the high degree of primal degeneracy in
this problem class, multiple pivots are sometimes
required to obtain a new distinct solution. The
ratio of No. of Pivots to No. of Distinct Solutions
is 5.74 for E1 with 20 objects, 7.75 for E2, 7.92 for
E3 and 8.98 for E4 with 50 objects. For E5 with 91
objects, this ratio is 10.52, while for E6, E7 and E8
with 100 objects each, the ratio values are 9, 9.30,
and 8.74, respectively. These ratios are small and
do not indicate a serious problem with degeneracy.
Note that the optimal solution obtained for ex-
ample E4 is superior to that obtained by Stanfel
[9]; this is because the range of values explored for
the Lagrangian multiplier did not include the op-
timal value.

The results show that the total number of piv-
ots required by the parametric procedure repre-
sents only a minute fraction of the total number of

possible partitions (or extreme points of the
problem), e.g. for n� 20, the total number of
pivots required represents 155/524, 288 or 0.0295%
of the total number of extreme points. This indi-
cates that LP is highly e�cient for solving the
linearly ordered clustering problem.

In example E1, the optimal solution was found
after 19 pivots. For examples E2±E4, the optimal
solution was found after 301, 462, and 530 pivots,
respectively. For examples E5±E8, the optimal
solution was found after 868, 503, 1144, and 1147
pivots. The relatively small number of pivots to
obtain the optimal solution for E6 is in keeping
with its well-de®ned structure, both within and
between groups. Given the number of objects, the
number of pivots to ®nd the optimal solution in-
creases as the presence of structure decreases. The
less de®ned the problem structure, the smaller the

Table 2

Computational results

Problem No. of objects Optimal F No. of pivots No. of distinct solutions Solution time (s)

E1 20 )17.93 155 27 1.59

E2 50 )35.58 496 64 24.56

E3 50 )38.86 539 68 27.07

E4 50 )32.43 557 62 29.18

E5 91 )114.80 905 86 17.64

E6 100 )106.33 846 94 19.05

E7 100 )234.86 1144 123 90.64

E8 100 )304.44 1162 133 81.96

Table 1

Object coordinates

E1 0, 1, 5, 7, 10, 15, 17±20, 25, 27, 30, 32, 34, 35, 40, 45, 47, 55

E2 0, 1, 3, 4, 7, 9±14, 16±22, 26±32, 40, 41, 43, 45, 46, 49, 51, 53±56, 58, 60, 70, 73, 76, 78, 79, 80, 86±88, 95, 96, 99

E3 0, 1, 5, 7, 10, 15, 17±20, 25, 27, 30, 32, 34, 35, 40, 45, 47, 55±57, 60, 62, 64±67, 70±81, 85±89, 92±96

E4 0±3, 7, 9±14, 17±20, 23, 26±36, 40, 42±45, 50, 51, 53, 54, 56±58, 60, 65, 70, 75, 80, 82±84, 90, 91, 98

E5 0±9, 30±59, 120±149, 210±220, 270±279

E6 0±9, 30±39, 60±69, 90±99, 120±129, 150±159, 180±189, 210±219, 240±249, 270±279

E7 0, 2, 3, 5, 6, 8, 10, 12, 15, 20, 45±54, 70±89, 130±134, 160±189, 200, 202, 205, 228, 229, 255, 260, 265, 270, 275, 300, 302,

304, 308, 316, 325, 329, 333, 339, 346, 400, 430, 460, 500, 505

E8 0±10, 12, 15±17, 20, 22, 24, 26, 30±33, 60, 63, 64, 66, 68, 71, 73, 75, 77, 80, 82, 83, 85, 86, 89, 92, 94, 95, 97, 100, 102, 104,

105, 108, 112, 114, 115, 119, 120, 122, 170, 174, 175, 179, 182, 183, 185, 190, 191, 195, 198, 202, 205, 210, 212, 214, 216,

219, 223, 225, 404, 410, 415, 420, 425±427, 429, 431, 433, 435, 439, 442, 446, 449, 451, 453, 455, 460, 463, 610, 612, 615,

620, 623, 625, 631
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number of clusters in the optimal partition.
Therefore, for problems E4, E7, and E8, the
number of pivots to arrive at the optimal solution
is large compared to the total number of pivots to
solve the respective problem.

The advantages of the parametric programming
procedure for solving the class of clustering
problem studied in this paper are most obvious
when one considers how the search parameters for
the dynamic programming model were deter-
mined. In order to specify appropriate values and
step sizes for the Lagrangian multiplier, Stanfel
[10] ®rst conducted sample runs and studied
problem behavior to deduce appropriate search
parameters. These sample runs suggested the fol-
lowing characteristics: (a) nearly unimodal be-
havior of F as v decreases; (b) global optimal
solutions persist for relatively wide ranges of
multiplier values v, this also occurs for other op-
timal solutions; (c) integer values of v exist which
will ®nd the global optimal solution.

Based on these observations a heuristic proce-
dure for setting and altering the step size v was
then developed. Stanfel [9,10] noted the disad-
vantages of using a heuristic procedure for multi-
plier generation. Namely, (1) di�erent multipliers
may result in the same solution, and (2) the opti-
mal solution may be omitted because the appro-
priate value of the multiplier was missed. The
characteristics (a)±(c) also re¯ect a relatively well-
de®ned behavior for the given objective function
and present favorable conditions for the use of
heuristic methods for multiplier generation. This
well-de®ned behavior does not necessarily persist
for other clustering criteria, and additional study
would be required to develop search parameter
values.

7. Extensions

If a second clustering criterion can be expressed
as a linear constraint on the set of possible clusters,
then a parametric LP solution approach should be
explored. For example, a typical clustering prob-
lem minimizes the within group sum of squared
distances about the group centroid and requires a
speci®c number of groups g in the optimal parti-

tion, Gordon [5], Everitt [3]. Thus F �Pj CjXj,
where Cj is the sum of squared distances for group
j, and an additional constraint

P
j Xj � g is added

to the LP. A ®rm value for g is usually not known
at the outset and a number of values for g are
investigated. This is a straightforward application
of the parametric LP procedure and a search will
provide solutions for the instances where a multi-
plier exists for

P
j Xj � g; 16 g6 n. An inventory

management application is discussed in Chakra-
varty et al. [7]; Chen and Yu [1] discuss an appli-
cation in concurrency control in data sharing
environments.

Another popular clustering criterion minimizes
the di�erence between the average within-group
sum of squared distances and the average between-
group sum of squared distances, i.e., F � P

i

ÿP
r>i d2

irYir=
P

i

P
r>i Yir� ÿ

P
i

P
r>i d2

ir�1ÿ Yir�
ÿ

=
P

i

P
r>i�1ÿ Yir��. This criterion can be handled

in a similar manner as was done in Section 5. The
resulting problem can then be solved using para-
metric LP.

The parametric LP approach can handle many
side conditions by manipulating the columns of
the constraint matrix. For example, columns for
clusters that do not satisfy capacity limits or
membership conditions are eliminated from the
problem matrix. Limits on group cost can also be
handled by eliminating the relevant columns.
Eliminating columns reduces the problem size and
the computational e�ort required for solution. In
addition, the special structure of the linearly con-
strained clustering problem, can be exploited in
achieving e�cient input and storage of problem
data.

8. Conclusion

In this paper a technique for locating exact
solutions for an important class of grouping
problems has been presented. It o�ers an im-
provement over other techniques in that the user
does not have to settle for near optimal solutions,
and it does not require that the user specify a
procedure for generating the set of Lagrangian
multipliers. The approach is practical, examining a
minute fraction of the total possible partitions and
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requiring relatively small computational e�ort to
do so. The storage requirements are a polynomial
function of the number of objects rather than the
total number of possible partitions.

The technique presented here has implications
for solution strategies for classes of partitioning
problems beyond that considered in this paper.
The problem class considered here is also an ap-
proximation for other classes of partitioning
problems for which there are no known strategies
for their exact solution. Thus it might be useful to
solve such problems by obtaining the exact solu-
tions for a set of associated approximate problems
rather than to attempt to obtain an approximate
solution for the original problem. There are no
existing data on the e�ectiveness of linearly or-
dered approximations of the general clustering
problem. This is so probably because it was not
feasible to conduct such studies e�ciently. The
technique presented in this paper can be used to
study approximation schemes for di�erent clus-
tering problems and ®nd exact solutions e�ciently.
Therefore, future research projects will use the
parametric LP approach to investigate the per-
formance of linearly ordered approximation
schemes for various clustering problems.
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