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R6sum~: Soient N objets ~, classifier et une matrice de dissimilarit~s entre paires 
de ees objets. L'6cart d'une classe est la plus petite dissimilarit6 entre un objet 
de cette classe et un objet en dehors d'elle. L'atgorithme du lien simple foumit 
des partitions en M classes dont le plus petit ~cart est maximum. On &udie 
l '6cart moyen des classes, ou, ce qui est 6quivalent, la somme des ~carts. On 
propose un algorithme en O(N 2) pour d6terminer des partitions en M classes 
dont la somme des 6carts est maximum pour M allant de N - 1 ~ 2, bas~ sur le 
graphe dual du dendrogramme de la mfthode du lien simple. 

Keywords:  Partition; Split; Dendrogram; Dual graph; Complexity; Polynomial 
algorithm. 

1. Introduction 

Cluster analysis (see e.g., Hartigan 1975 and Gordon 1981) aims at 
finding homogeneous and/or well separated subsets, called clusters, of a 
given set of N entities. The concepts of homogeneity and separation can be 
made precise in a variety of ways. It is often assumed that all differences 
between values of relevant characteristics for any given pair of entities can be 
summarized by a single number, called dissimilarity. Separation can then be 
expressed in terms of dissimilarities between entities in a cluster and entities 
outside of it. A fruitful approach is to focus on the smallest such dissimilar- 
ity, as is done in the single-linkage algorithm, and call it the split of the clus- 
ter. The split of a partition can then be defined as the smallest of its clusters" 
splits. As shown in Delattre and Hansen (1980), the single-linkage algorithm 
provides partitions with maximum split at all levels of the hierarchy (see also 
Zahn 1971, Leclerc 1977, and Hubert 1977 for related results). This method 
thus optimizes a mathematically well-defined concept of separation. More- 
over, as shown below, the single-linkage algorithm also maximizes the sum 
of the splits of the 2 N -  1 clusters appearing in the hierarchy. It does not, 
however, maximize the sum of the splits of the clusters of each partition of 
this hierarchy. 

The classifier may be more interested in the average split of the clusters 
of a partition than in the minimum of its splits. Indeed, in some cases, the 
minimum split may be much smaller than the average split, and thus may be a 
poor estimate of  the separation of all clusters. He will then want to determine 
the partition with maximum average split or, which is equivalent, the partition 
into a given number M of clusters with maximum sum of splits. The main 
result of the present paper is a O(N 2) algorithm to solve that problem for all 
M between 2 and N - 1. This is done by determining longest paths with 2 to 
N - 1 arcs in the dual graph of the single-linkage dendrogram. The resulting 
partitions do not necessarily form a hierarchy. 
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The criteria of the single-linkage method and of the proposed algorithm 
express in a mathematically precise way two aspects of separation. Other 
well-known methods of clustering, such as the complete-linkage algorithm or 
the average-linkage algorithm are more oriented towards aspects of homo- 
geneity. However, to the best of our knowledge, these methods do not optim- 
ize any mathematically well-defined criterion, except at each individual itera- 
tion. In other words, they are greedy algorithms without an explicit objective 
function. Homogeneity can be made precise by using the concepts of diame- 
ter of a cluster, i.e., maximum dissimilarity between two entities of that clus- 
ter, and of diameter of a partition, i.e., maximum of the diameters of the clus- 
ters of that partition. Hansen and Delattre (1978) have shown how minimum 
diameter partitions can be obtained by graph coloring methods. A problem 
dual to that of this paper is to find minimum sum-of-diameters partitions. 
Brucker (1978) has shown that it is NP-complete forM > 3 clusters. Hansen 
and Jaumard (1987) provide an O(N 3 log N) algorithm for the case M = 2. 
Monma and Suri (1989) recently proposed an O(N 2) algorithm for this last 
case under the additional assumption that entities are points in the plane and 
dissimilarities are equal to the Euclidean distances between them. 

The present paper is organized as follows. The maximum sum-of-splits 
clustering problem is formulated in  the next Section. Properties of the 
single-linkage algorithm are discussed in Section 3. Section 4 is devoted to a 
basic property of maximum sum-of-splits partitions. Our algorithm is 
presented in Section 5. Maximum split and maximum sum-of-splits partitions 
for a data set from the literature are compared in Section 6. Conclusions are 
drawn in the last section. 

2. Problem Statement 

Let O = {01,02 . . . . .  ON} denote a set of N entities to be classified 
and D = (dk/) a matrix of dissimilarities between all pairs of those entities. 
As usual, it is assumed that dja > 0, dkt = dtk and d~  = 0 for k, l = 1,2 . . . . .  N, 
but that the triangular inequality d~ + dr,,, > d ~  need not necessarily hold. 

Let PM = {C1,C2 . . . . .  CM} denote a partition of O into M clusters; 
hence C/~: 9 ,  Ci c~ C) = ~ for i ¢ j,  i, j = 1,2 . . . . .  M and 
wj=a.2 . . . . .  M C./= O. As stated above, the split s(C)) of cluster 6") is the smal- 
lest dissimilarity between an entity in C/and an entity not in Cj: 

s(C)) = min dn 
k, llOk~ Ci,Ol~ Cj 

and the split S(PM) of the partition PM is: 
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S(PM) = min s(Cj) . 
j=l ,2  . . . .  ,M 

The sum of splits of Pu ' s  clusters, denoted ss(Pu), is thus: 

M 
ss(PM) = Z 

j = l  

Any hierarchical clustering algorithm generates a hierarchy H of partitions 
PN, PN-1 ..... p~, i.e., if Ci ~ Pk, Cj ~ Pt and k > l either Ci n 6 ' )= ~ or 
Ci c Cj. Hence any hierarchy H is characterized by 2N - 1 clusters Cj which 
are pairwise either disjoint or included one in the other. The sum of the splits 
of H's clusters denoted ss(H), is thus: 

2N-1 
ss(H) = Z s(C)) 

j = l  

where, by convention, s(C~_l) = s(O) = O. 
Let I ' I  M denote the set of all partitions of O into M non-empty clusters. 

The maximum sum-of-splits clustering problem or maximum average split 
clustering problem (where the optimum value is divided by M) may be for- 
mulated: 

D e t e r m i n e  PM ~ riM 

such that sS(PM) is maximum forM = 2,3 . . . . .  N - 1. 

3. Properties of the Single-Linkage Algori thm 

Using the concepts of splits of clusters and of partitions, the wall- 
known single-linkage algorithm (SLA) can be expressed as follows: 

(a) LetPN = {C1,C2 . . . . .  CN} where C / =  {O/} for j  = 1,2 . . . . .  Naiad 
k = 0 .  

(b) Find two clusters Ci and Ci ~ P~-k such that 
s(Ci) = s(Cj)= s(PN-k) (and in case of ties in the split values for 
more than two clusters there exist Om ~ Ci, Op ~ Cj such that 
dine = s(Ci)) .  

(c) Obtain PN-k-1 from PN-k by setting Clv÷k÷l = CiuCj .  Set 
k ~---k + 1. I fk  < N -  1, return to (b). 

This algorithm maximizes s(Pm) for all M. We now study its effect on 
ss(H). Let HI denote the set of all hierarchies of partitions of O. 
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Theorem 1 The single-linkage algorithm maximizes for all H ~ HI the sum 
ss(H) of the 2N - 1 splits of the clusters of the hierarchy. 

Proof Let H* denote a hierarchy of partitions O with a maximum sum-of- 
splits ss(H*). Let d~t denote the minimum dissimilarity between pairs of enti- 
ties of O. Either {Ok,Or} is a cluster of H* or not. If not, let us define a 
modified hierarchy H as follows: 

(a) For all clusters Ci belonging to H* such that Ok e Ci and Ot ~ Ci, 
add Ot to Ci. 

(b) For all clusters Cj belonging to H* such that Ol ~ Cj and Oh ~ Cj, 
remove Ot from Cj. 

(c) A duplicate class has been formed: in (a) if Ol was first fused with a 
cluster Cp containing Ok and in (b) if Ot was first fused with a clus- 
ter Cq not containing Oh. This duplicate cluster is equal to 
C t, u { 01 } in the former case, and to Cq in the latter one; delete it. 

(d) Add the cluster {Ok,Or}. 

Now all clusters which have been modified did contain either Ok or Ot 
but not both. Their split was therefore minimum and equal to d~. They are 
replaced b~¢ clusters containing {Ok,0t}, the split of which cannot be smaller. 
Hence ss (H) >_ ss(H*). 

In H*, or H, one has the cluster {Ok,Or}. Entities Ok, Ot can therefore 
be fused, as in the single-linkage algorithm, and the above argument iterated. 
This proves the theorem. • 

Consider now the graph G = (V,E) associated with the dissimilarity 
matrix D (vertices vj ~ V correspond to entities Oj ~ O, edges {vk,vt} ~ E 
are weighted by d~t ~ D). A cocycle o)(A) with A c V is the set of edges 
{vk,vt} ~ E such that vk ~ A, vt ~ VkA. A classical result of graph theory 
(Rosenstiehl 1967) is that all minimum spanning trees of G contain an edge of 
minimum weight of all cocycles c0(A). This implies that the split of any clus- 
ter is equal to the weight of an edge of the minimum spanning tree of G. 

While the single-linkage algorithm maximizes both ss(H) and S(PM) 
for M = N - 1, N - 2 . . . . .  2, it does not maximize the sum-of-splits ss(PM) of 
the partitions PM for all values of M. This is shown in the following example. 
Consider O = { 0 1 , 0 2 , 0 3 , 0 4 , 0 5 , 0 6 , 0 7 , 0 8  } and the matrix Of dissimilari- 
ties given in Table 1. A minimum spanning tree is represented in Figure 1. 
The single-linkage algorithm gives a partition P4 = { {O1,O2}, {O3,O5}, 
{04,07,08}, {06} } with ss(P4) = 11 + 8 + I1 + 8 = 38. However, the 
maximum sum-of-splits pa~ition P 4 = { { O 1 } ,  {O2}, {O3,O5,O6}, 
{04,07,08} } is such that ss(P4) = 7 + 7 + 17 + 11 = 42 (see Figure 2). 
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Table 1. Dissimilarities 

1 2 3 4 5 6 7 8 

1 0 7 17 11 18 i8 12 13 

2 7 0 17 15 20 25 14 11 
3 17 17 0 19 3 8 22 20 
4 11 15 19 0 t0 20 2 4 
5 18 20 3 19 0 9 18 20 

6 18 25 8 20 9 0 19 18 

7 12 14 22 2 18 19 0 7 

8 13 II 20 4 20 18 7 0 

/ \11 

17 

8 

4 

Figure 1. Minimum spanning tree of Example 1. 
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Figure 2, Dehdrogram of Example 1. 

4. A Property of Maximum Sum-of-splits Partitions 

While maximum sum-of-splits partitions may differ from those of the 
single-linkage algorithm, there is a strong relationship between the clusters 
appearing in these partitions. 

Theorem 2 For any minimum spanning tree T and for every 
M = 2,3 . . . . .  N - 1, there is a maximum sum-of-splits partition PM of  O such 
that all its clusters belong to the set of  2N - 1 clusters of  the single-linkage 
hierarchy obtained from T. Moreover, this is true for all maximum sum-of- 
splits partitions if there are no ties in the dissimilarity values. 

Proof. We first show that for a given minimum spanning tree T and for any 
given number of clusters M, there is a maximum sum-of-splits partition PM 
such that C1,C2 . . . . .  CM induce connected subgraphs ofT. Consider a parti- 
tion PM such that this property does not hold. Each cluster Ci induces one or 
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Figure 3. Connected subgraphs of T induced by partition Pro. 

several connected subgraphs of T. Let p > M denote the number of such sub- 
graphs induced by all clusters of PM. Let Ck be a cluster inducing several 
connected subgraphs and C~ an induced connected subgraph such that 
s(C~) = s(Ck) (see Figure 3). Let C~ denote the cluster which includes the 
endpoint outside Ck of the edge defining s(Ck). Note that S(Cl)< s(C~). Con- 
sider then the partition obtained from PM by replacing Ck by Ck\C 1 and Ct by 
Ct ~ C~. Then s(Ck\C~)>s(Ck) and s(Ct u C1k) > s(CI), hence the sum of 
the splits cannot decrease. If it increases, the partition PM is not optimal. If it 
remains the same, we note that p has decreased by one unit and the result fol- 
lows by induction. 

We then show that the optimum value is independent of the minimum 
spanning tree which is chosen when it is not unique. Indeed, assume that T1 
and T2 are minimum spanning trees. A maximum sum-of-splits partition P~ 
for T l can be converted into a partition p 2  of not smaller sum-of-splits for Te 
using the above reasoning. As the converse is also true, the maximum sum- 
of-splits partitions P~t and p 2  must be of equal value. Hence it suffices to 
reason on any minimum spanning tree TofG.  

Next, fixing T, we show there is a maximum sum-of-splits partition 
PM = {C1,C2 . . . . .  CM} such that all its clusters belong to the single-linkage 
hierarchy H. A cluster Ck belongs to H if and only if its split s(Ck) is such 
that drs < s(Ck) for all edges {vr,vs} of Tsuch that Vr and vs belong to Ck. We 
use induction on the number q of edges which do not satisfy this condition. 
Consider a partition PM such that the condition is not satisfied, i.e., there is a 
cluster Ck such that d,.s > s(Ck) for an edge {v,.,vs} of T such that vr and vs 
belong to C,~ (see Figure 4). Let then Tk denote the subtree of T induced by 
the vertices of C~, and C~ be a cluster associated with the vertices of a subtree 
of T,~ obtained by deleting {v,.,vs } and such that s (Cb = s(Ck). Let Ct denote 
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Figure 4. Clusters of H and of Pu. 

again the cluster which includes the endpoint outside Ck of the edge defining 
s(Ck). Consider then the partition obtained from PM by replacing Ck by 
Ck\C~ and Ct by Cl vo C~. Again s(Ck\C~) >- s(Ck), s(Ct u C~) >_ s(Ct) and 
the sum of splits cannot decrease. If it increases, the partition 
{CI,C2 . . . . .  (i'M} is not optimal. If it remains the same, we note that q has 
decreased by one and the result follows by induction. 

Finally, assuming no ties in the dissimilarities, we recall that T is 
unique in that case (see e.g., Rosenstiehl 1967, Hubert 1974) and note that 
s(Ck\C~) > s(Ck) or s(Cl u C~) > s(Ct) holds in points 1 and 3 of the proof. 
Hence all maximum sum-of-splits partitions must satisfy the stated condi- 
tion. = 

Let us note that the maximum sum-of-splits partition Pat need not be 
unique even if all dissimilarities are different in the chosen minimum span- 
ning tree T. This is illustrated by example 1. The partitions P~ = { {Ol }, 
{O2}, {O4}, {O7}, {O8}, (O3,O5,O6} } and P~ = { {O1}, {O2}, {O3}, 
{Os}, {06}, {04,07,08} } are both maximum sum-of-splits partitions with 
ss(P~) = ss(P 2) = 39 (see again Figure 2). 

The Dual Graph of a Dendrogram and  a n  Algorithm 

It is customary to represent the results of the single-linkage algorithm 
on a dendrogram: vertical lines correspond to entities and clusters, horizontal 
lines to fusions between them. The dendrogram can be associated with a 
planar graph Go = (VD,ED), partitioning the plane into faces. Notice that the 
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Figure 5. Dendrogram G D and its dual G~). 

faces include the exterior infinite one. To this effect we modify the dendro- 
gram by extending the vertical lines corresponding to entities down to a sink 
and adding a line on the right, outside the dendrogram, linking the sink and 
the middle of the highest horizontal line. Then intersections of more than 2 
lines are vertices. Hence Vo = {Vl,V2 . . . . .  vN}. Continuous lines between 
vertices are edges. See Figure 5 for a representation of graph Go. This graph 
can easily be computed while building the dendrogram (with algorithm SLA) 
as follows: 

(a) 

(b)  

Associate a vertex vk to each cluster CN÷k of the single-linkage 
hierarchy, k = 1,2 . . . . .  N - 1, and the vertex vzv to the sink. 
When fusing clusters Ci and C.i in cluster C]v÷k, k = 1,2 . . . . .  N - 1, 
if Ci contains more than one entity then add the edge {vi-w,vk } and 
add the edge {vN,vk} otherwise; if Cj contains more than one entity 
then add the edge {vj-.,v, vk} and add the edge {vN,vl~} otherwise. 
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(c) Add the edge {vN-l,v~). 

We can then consider the dual graph Go = (Vo,ED) of Go (see e.g., 
Bondy and Murty 1980) where a vertex vj is associated with each face Of GD, 
and an edge joins vj to vk if and only if the corresponding faces are adjacent, 
i.e., have a common edge in their boundaries. The dual graph Go has N + 1 
vertices. Indeed, there is one face associated with each fusion and two exter- 
ior faces. It is known that the dual graph G* of a graph G has the same 
number m of edges as G and can be built in O(m) operations assuming the 
graph G is given by its adjacency lists (or, in other words, by the list of neigh- 
bors of each vertex) in clockwise order with respect to the planarity of G. In 
fact, it is enough to have all adjacency lists in clockwise order except one. 
Now, notice that all vertices of GD have exactly three adjacent vertices 
except vN, so that the clockwise order condition is easily satisfied for all ver- 
tices except vN. So G~ can be computed in O(N) operations since Go has 
2N - 1 edges, each of them corresponding to a cluster of the single-linkage 
hierarchy. We assume that the vertex of the exterior face is located on the left 
of the dendrogram and has index 1, and that the vertex of the second right- 
most face has index N + 1. 

Moreover, edges of G~ can always be oriented from left to right, if the 
vertices vj of the dual graph are located below the highest vertex of GD on 
the boundary of their face, except for the first and the last ones vl and VN.~. 
From now on, GD denotes this oriented graph, with arc-set Up. Note that Go 
is acyclic. We assume further that the vertices of G~ are labeled in topologi- 
cal order, i.e., in such a way that each arc (v),v*k) satisfies the condition j < k. 
Indeed, while building the dual graph and without modifying the complexity, 
one can always assign indices to the vertices as follows: if vertex vt is 
located below vertex vN÷k of Go, i.e., is associated with the fusion of cluster 
Ci (assumed to be the leftmost of the two in the dendrogram) and cluster C), l 
is equal to the order, in the dendrogram, of the leftmost entity of Cj. The dual 
G~ of GD for example 1 is also represented on Figure 5. 

The edges of the graph Go are weighted by the splits of the clusters 
with which they are associated. These are equal to the heights of the horizon- 
tal lines corresponding to fusions of these clusters. Arcs (v),v'k) of the dual 
graph G~ are given the weight w# of the edges they are crossing. The result- 
ing weighted graph for example 1 is reproduced in Figure 6. 

Then, as proved in Theorem 3 below, the maximum sum-of-splits parti- 
tions PM forM = 2,3 . . . . .  N - 1, correspond to the longest paths between the 
first and last vertices v~ and VN÷I of the dual graph G~ containing 
2,3 . . . . .  N -  1 arcs respectively. 

These paths can be easily found using the following labeling algorithm. 
The labels ~.~ for k = 1,2 . . . . .  N + 1, p integer and p < k denote the value of 
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Figure 6. Weighted dual graph. 

the longest path already found from v~ to v~ containing p arcs. These values 
are computed sequentially, as in the PERT method (see e.g., Lawler 1976) but 
taking also into account the numbers of arcs of the paths. 

Algorithm DMSS (Dual Maximum Sum-of-Splits) 

(1) 
(2) 

(3) 

Initialization. Set ~.~ = 0, k = 1,2 . . . . .  N + l , p  = 1,2 . . . . .  N. 
Current step. 
For k = 2,3 . . . . .  N + 1 compute: 

For each predecessor v) ofv~ do: 
)~ = max ()~,~.~-1 + wjk) p = 1,2 . . . . .  j, 

Note by a pointerp~ an index j realizing this maximum. 
Maximum sum-of-splits partitions. 
Recompose the longest paths PAM = (a l ,a2  . . . . .  aM) for 
M = 2,3 . . . . .  N -  1 using the pointers recursively from VN+ 1 tO Vl" 
set p to M, k to N + 1 and l to PPk. Then until p = 0 repeat: 
ap ~-- (v;,v~); p ~---p - I; k <--- l; l ~--p~. Output the corresponding 
partitions using the dendrogram. 

This algorithm can be accelerated, without modifying its worst-case 
complexity, by taking into account the lengths of the shortest paths from v~ to 
vk for k = 2,3 . . . . .  N. Details are given in Hansen, Jaumard and Musitu 
(1988). 

We now show that algorithm DMSS solves the maximum sum-of-splits 
clustering problem. 

Theorem 3 Maximum sum-of-splits partitions PM for M = 2,3 . . . . .  N - 1 
can be computed in O(N 2) time. 

Proof  Each path of G~ from v~ to v;v+1 corresponds to a partition of O into 
clusters of H. These clusters are those associated with the vertical lines of the 
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dendrogram crossed by that path. Conversely all partitions of 0 containing 
only clusters of H can be associated with such paths. Moreover, the sums of 
splits of these partitions are equal to the lengths of these paths. Then, from 
Theorem 2, any maximum sum-of-splits partition PM can be associated with a 
path of GD from v~ to vN÷l. So, the problem reduces to that of finding the 
longest paths between vl and vN+l containing M = 2,3, . . . .  N -  1 arcs. This 
last problem is solved by algorithm DMSS. Correctness of this algorithm fol- 
lows easily from the optimality principle of Dynamic Programming (see e.g., 
Bellman 1957, Bellman and Dreyfus 1962). 

Regarding complexity, we first observe that building the graph Go can 
be done while computing the single-linkage dendrogram without changing 
the complexity, i.e., in O(N2), as described in the beginning of this section. 
Then, building the weighted dual graph can be easily done in O(N). 

We next show that algorithm DMSS is in O(N2). This is obvious for 
step 1. For step 2, we observe that it is easy to obtain a description of Go by 
the list of the predecessors of its vertices in O(N): the undirected dual graph 
G~ is given by its adjacency lists, so since the vertices of the (directed) graph 
Go are labeled in topological order, the list of the predecessors of a vertex vj 
(j = 1,2 . . . . .  N + 1) can be obtained from its adjacency list by selecting in it 
the vertices with index k < j. Then, as G~ has 2 N -  1 --O(N) arcs and each 
of them is considered at most once in the computation of ~.~ for each value of 
p, i.e., for O(N) values, step 2 is also O(N2). In step 3 recomposition of each 
longest path takes M operations with M = 2,3 . . . . .  N - 1, i.e., O(N 2) opera- 
tions for all of them. Finally listing the entities of the clusters of the parti- 
tions P 2 , P 3  . . . . .  PN-I can be done in O(N 2) if each vertex vj of Go has 
pointers to the leftmost and rightmost entities of the cluster associated with it 
and each entity has a pointer to the next entity on its right in the dendrogram. 
Hence, the complexity of algorithm DMSS, as well as that of the whole pro- 
cedure, is in O(N2). 

We finally note that the value of the sum of splits of a partition requires 
looking at the dissimilarities of all edges in the cocycles of its clusters, i.e., 
O(N 2) operations. Therefore the proposed procedure has the best possible 
complexity up to a constant factor, i.e., it is in O(N2). 

p = l  
p = 2  
p = 3  
p = 4  
p = 5  

We now illustrate algorithm DMSS on example 1. The values of the 
parameters ~.~ and of the pointers p~ are given in Table 2. 

The longest paths of length p = 1,2 . . . . .  7 are: 
(v~,v~) with value 0, 
(v~,v*6,v~) with value 34, 
@1 ,V3,V6,V9) with value 39, 
(V 1,1J2,V 3 ,V6,V9) with value 42, 
(V 1 ,V2,V3,V6,VS,V9) with value 41, 
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v~ 
v~ 

v~ 
p~ 
pg 
vg 
pg 

Table 2. Illustration of Algorithm 
DMSS on Example ! 

I 
~ A~ ~ ~ ~ ~ ~ ~ 

7 II 17 0 
,__114 13 ~5 22 2o 25 34 
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4 
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8 

p = 6 (Vl,V2,V3,V6,V7,V8,V9) and 
( v l , v2 , v3 , v4 , v s , v6 , v9 )  with value 39, 

p = 7 (v*1,v[,v~,v4,v*5,v*6,v[,v~) with value 38. 

The maximum sum-of-splits partitions forM = 2,3 . . . . .  N - 1 are: 
P2 = { { 0 1 , 0 2 , 0 4 , 0 7 , 0 8 } , { 0 3 , 0 5 , 0 6 } } ,  
P3 = { { 0 1 , 0 2 } , { 0 4 , 0 7 , 0 8 } , { 0 3 , 0 5 , 0 6 } } ,  
P4 -" {{O1} ,{O2} ,{O4,O7,O8} ,{O3,O5,O6}} ,  

P5 = { { 0 1 } , { 0 2 } , { 0 4 , 0 7 , 0 8 } , { 0 3 , 0 5 } , { 0 6 } } ,  
e l  = { { 0 1 } , { 0 2 } , { 0 4 } , { 0 7 } , { 0 8 } , { 0 3 , 0 5 , 0 6 }  } and 

p2 = { { 0 1 } , { 0 2 } , { 0 3 } , { 0 5 } , { 0 6 } , { 0 4 , 0 7 , 0 8 } } ,  
P7 = { { 0 1 } , { 0 2 } , { 0 4 } , { 0 6 } , { 0 7 } , { 0 8 } , { 0 3 , 0 5 } }  • 

Note that: (i) three out of seven partitions (e4, P5 and P7) are not 
identical to the partitions obtained by the single-linkage algorithm; (ii) parti- 
tions are not always hierarchical, see e.g., Ps ,  P61 or P62, P7; (iii) optimal par- 
titions are not necessarily unique even if all dissimilarity values are distinct. 

6. Experimental Results 

We now consider the analysis of a data set with the single-linkage algo- 
rithm (SLA) and the maximum sum-of-splits algorithm (DMSS) presented in 
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Section 5. Both algorithms have been implemented in Fortran 77 on a Sun 
3/360S Microsystem. We use the SLINK algorithm of Sibson (1973) for 
SLA. Our program for the DMSS algorithm is described in Hansen, Jaumard 
and Musitu (1988) and is available upon request. 

The data set concerns the principal nutrients in 27 foods (meat, fish and 
fowl). The matrix of dissimilarities can be computed (using Euclidean dis- 
tance) from the  data given in Hartigan (1975, p. 87). Some of the optimal 
partitions (Ps, P 13, P 19) which differ from the ones obtained with the single- 
linkage algorithm are indicated on the dendrogram of Figure 7 (small-dashed 
lines). For a given value M, partitions obtained by SLA may have different 
sum-of-splits values due to identical dissimilarity values. Two of these parti- 
tions (P]3, P23) are also represented on Figure 7 (large-dashed lines). The 
sum-of-splits values of the partitions are given between parentheses on the 
right side of the figure. 

These results suggest the following conclusions, corroborated by the 
study of a dozen more data sets: 

(a) Partitions obtained by SLA and DMSS tend to have the same sum- 
of-splits values for small M. 

(b) Differences in the values of the sum-of-splits increase with the 
heterogeneity of the dissimilarity values. 

7. Conclusions 

The single-linkage algorithm is among the most used in cluster analysis 
and has many desirable properlies (see e.g., Jardine and Sibson 1971). It can 
be viewed as a method to find maximum split partitions for any number M of 
clusters. We show in this paper that the single-linkage algorithm also maxim- 
izes the sum of the splits of all 2N - 1 clusters of the hierarchy that it defines, 
but does not maximize the sum of the splits of all clusters in a partition. We 
therefore study this last problem and provide a O(N 2) algorithm to determine 
maximum sum-of-splits partitions into M clusters for M = 2,3 . . . . .  N -  1. 
Results with several data sets from the literature show that better maximum 
sum-of-splits partitions than those obtained by the single-linkage algorithm 
are usually obtained for some values of M, but quite often the partitions of the 
single-linkage algorithm are also optimal for the sum-of-splits criterion. 
Therefore the single-linkage algorithm appears to be a good heuristic to solve 
the maximum sum-of-splits clustering problem. However, the single-linkage 
algorithm is also in ®(N2). So both the maximum split and the maximum 
sum-of-splits clustering problems can be solved exactly at small cost. This is 
done by using first the single-linkage algorithm and then by applying the 
algorithm of this paper to the dual graph of the single-linkage dendrogram. 
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