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Abstract 

A large number of classification and clustering methods for defining and calculating optimal or 
well-suited partitions for data sets are available. Perhaps the most difficult problem facing the user 
of cluster analysis techniques in practice is the objective assessment of the stability and validity of 
the clusters found by the numerical technique used. The problem of determining the "true" num- 
ber of clusters has been called the fundamental problem of cluster validity. The aim of this paper 
is to compare three methods based on the hypervolume criterion with other well-known methods. 
To illustrate and compare their behaviour, these procedures for determining the number of clusters 
are applied to artificially constructed bivariate data containing various types of structure. To pro- 
vide a variety of solutions six clustering methods are used. We finally conclude by pointing out the 
performance of each method and by giving some recommendations to help potential users of these 
techniques. 
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I. The clustering problem 

We consider a set E of  n m-dimensional observation points Xl, x 2 . . . . .  x n in the 
Euclidean space R m. We want to find a partition of  the set of  objects E into k 
clusters; k is supposed fixed. Let Pk denote the set of  all partitions of  E into k 
clusters. 

For that problem to be mathematically well-stated, we associate, to each P in 
Pk, the value of  a clustering criterion W ( P , k )  which measures the quality of  each 
partition into k clusters. 

The clustering problem is then to find the partition P* that maximizes or minimizes 
the criterion W ( P , k )  over all partitions into k clusters. 
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2. The hypervolume method and the hypervolume criterion 

We suppose that we have a clustering problem when the points we observe are 
a realization of  a Poisson process in a set D, where D is the union of k disjoint 
domains Di (1 < i < k). G C{xl, x2 . . . .  , xn} is the subset of  observations belonging 
to Di (1 < i < k). The problem is to estimate the unknown subsets Di in which the 
points are distributed. 

Let x denote the sample vector {x,, x2,... ,  xn}. The likelihood function can be 
written as follows: 

1 f i  ]D(Xi) ' 
fD(X)- (m(D)) ~ i=1 

where ID(xg) is the indicator function of the set D at the point xi and m(D), the sum 
of the Lebesgue measures of  the k subsets Di. The hypervolume criterion is deduced 
from this statistical model by the method of maximum likelihood estimation. For 
that problem to be statistically well-defined, we have to impose the convexity of the 
sets Di (Ripley and Rasson, 1977). So the maximum likelihood estimation of the 
k subsets D~, D2,. . . ,  Dk is constituted by the k subgroups of points such that the 
sum of  the Lebesgue measures of  their disjoint convex hulls is minimum (Hardy and 
Rasson, 1982; Hardy, 1983). 

So the hypervolume criterion can be written as follows: 

k 

W "Pk --~ R + " P = { C , ,  C 2 , . . . ,  Ck}  ~ W(P,k) = ~ m(H(C~)), 
i - - I  

where H(C~) is the convex hull of  the points belonging to C/ and m(H(C~)) is the 
m-dimensional Lebesgue measure of  that convex hull. One-dimensional hypervolume 
partitions are necessarily contiguous because of  the assumption of  convexity of  the 
clusters, i.e. each group corresponds to a single interval disjoint from all other groups. 
So if we measure only one variable on each object, the problem consists in finding the 
k intervals of  points such that the sum of  the lengths of  the intervals is minimum. 
In a two-dimensional space (m=2),  the optimal solution is constituted by the k 
subgroups of  points such that the sum of the areas of  their disjoint convex hulls is 
minimum. In an m-dimensional space we minimize the sum of the m-dimensional 
hypervolumes of  the convex hulls of  the clusters. 

Let us insist on the fact that the only conditions we impose are the homogeneous 
Poisson process for the distribution of  the points in D and the convexity of  the 
clusters. We make no other restrictions on the shape, the size, the tightness or the 
orientation of  the clusters. 

The majority of clustering techniques are based on the calculation of a matrix of 
similarities or distances between entities. The originality of the criterion comes from 
the fact that we generalize the Lebesgue measure in R by the Lebesgue measure in 
R" itself. The hypervolume method is a non-hierarchical procedure for determining 
non-overlapping convex clusters. 
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The existing global algorithm is a dynamic programming procedure based on a 
multidimensional generalization of the Fisher algorithm (Hartigan, 1975; Hardy and 
Rasson, 1982; Hardy, 1983). The partition obtained is guaranteed optimal, but not 
necessarily unique. Nevertheless, according to the assumptions of the model (Poisson 
process), the solution is unique with probability one. That procedure can be imple- 
mented in a polynomially bounded time (Lengyel, 1979). So the exact algorithm is 
efficient (Barth~lemy et al., 1992). Nevertheless, it is time consuming. 

We proposed also a heuristic approach for the hypervolume method. It is a split 
and merge algorithm. It consists of two parts. The first one is a hierarchic divisive 
procedure which yields a partition of the set of objects into k clusters. The aim 
of the second part of the algorithm is to improve that partition according to the 
hypervolume criterion. 

The local algorithm is faster than the global one. If the clusters are "well-separated" 
the first part of the algorithm yields the partition corresponding to the global optimum 
of the hypervolume criterion function. In almost all the other cases we obtain the 
exact partition after the second part of the local algorithm. 

The local algorithm is faster than the global one, but it is still time consuming 
because it imposes the computation of convex hulls and hypervolumes of convex 
hulls in a m-dimensional space. 

It is possible to avoid that computations by using classical approximations of 
convex hulls (Bentley et al., 1982, ...) or by computing depth contours (Ruts and 
Rousseeuw, 1994). That last approach has the advantage that replacing the convex 
hulls of the clusters by depth contours robustify the corresponding procedure. 

Another approach: the concept of weak convex hulls and the corresponding algo- 
rithms (Schmitt and Mattioli, 1993, 1994) should also contribute to the improvement 
of the proposed algorithms for the hypervolume method. 

The hypervolume procedure fulfils most of the admissibility conditions of Fisher 
and Van Ness (1971). It retrieves also the "natural" structure of the data, 
if any. 

3. Methods to determine the number of clusters 

The first three methods involve the hypervolume criterion (Hardy, 1992). 

3.1. A classical geometric method (M1) 

That well-known method consists in plotting the value of a clustering criterion W 
against k, the number of groups, and assessing the plot by eye, looking for disconti- 
nuities in slope. A sharp step in the curve indicates the number of classes; otherwise 
there is no justification for having more than one class. Unfortunately, that procedure 
can be unreliable; some clustering criteria can show large changes when analysing 
unstructured data. Nevertheless, that method associated with the hypervolume crite- 
rion gives interesting results. 
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3.2. Method based on the estimation of  a convex set (M2) 

That method is based on the solution of  the following problem formulated by Pro- 
fessor D.G. Kendall: "Given a realization of  a homogeneous planar Poisson process 
of  unknown intensity within a compact convex set D, find D". Ifx~,x2,.. .  ,XN denote 
the points in D where realizations are observed, then conditional on the value n of  
N, x~, . . . ,  x, are the values of  n independent uniformly distributed random vectors 
on D. When the value n of  N is known, the problem is reduced to the estimation 
of  the contour of  a compact convex set D given the position of  n points uniformly 
drawn from it. 

The solution analysed by Ripley and Rasson (1977) consists of  a dilation of  
the convex hull H(x) of x = {xl . . . .  , x,} about its centroid. So that solution is 
expressed by D ' =  g(H(x))+ cs(H(x)), where x is the realization of  the Poisson 
process in D, H(x) the convex hull of  x, g(H(x)) the centroid of  H(x)  and s(H(x))= 
H(x) - g(H(x)). 

This solution is affine invariant, as is the problem itself. 
The constant of  dilation c is given by 

C z 
n + l  

(n + 1) - E(Vn+,)' 

where V,+l is the number of  vertices in the convex hull of  xl, . . . ,  xn+l (i.e. as if 
there would be one more point drawn from D). Unfortunately, the determination of  
E(Vn+l) is difficult in practice. But it can be estimated by c = v / n / ( n -  v,), where 
v, is the number of  vertices in the convex hull H(x) (Moore, 1984). 

The realization of  a Poisson process within the sum of k subsets D1, D2 . . . . .  D~ 
can be considered as the realization of  k Poisson processes of  the same intensity 
within the k subsets D1, D2, . . . ,  Dk (Neveu, 1974). 

Let us denote by P* = {C1 k, C~, . . . ,  C~} the optimal partition of  E into k clusters 
and by DI k the estimate of  the convex compact set D~ containing C~. So DI k is the 
dilated version of  D~. 

We propose the following decision rule for estimating k; checking for t = 2, 3,.. • 
• if, for all {i,j} C{1,2 , . . . , t } ,  i ¢ j "  DI¢ ODj t = 9, and if, for any integer s with 

2 _< s < t and for all {i,j} C{1, 2 . . . . .  s}, i ¢ j :  DISNDj ~ = 9, then we conclude 
that the natural partition contains at least t clusters and we examine the partition 
into (t + 1) clusters; 

• if there exists {i,j} C{1,2 , . . . , t } ,  i ¢ j" DI ~ ND~ t ¢ O, and if for any integer s 

with 2 < s < t, and for all {i,j} c { 1 , 2  . . . . .  s}, i ¢ j "  DI ~ N D) ~ = 9, then we 
conclude that the data set contains exactly t -  1 natural clusters; 
" r2 '2 • if D~ N D 2 ~ 9, then we conclude that there is no clustering structure in the data. 

3.3. A likelihood ratio test for clusters (M3) 

Because of  the existence of  an explicit model associated with the hypervolume 
method, we can formulate a likelihood ratio test for the number of  clusters. 
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Let x~, x2 . . . . . .  x, be a random sample from a Poisson process on k disjoint convex 
sets D t , D z , . . . , D k  in an m-dimensional Euclidean space. 

For a given integer k > 2, we test whether a subdivision into k clusters is sig- 
nificantly better than a subdivision into k -  1 clusters, i.e. H0: t = k against the 
alternative H1 : t = k - 1. 
Let us denote by 
• C = {C~,C2,..., G }  the optimal partition into k clusters, with respect to the hy- 

pervolume criterion; 
• D = {DI,D2 . . . .  ,Ok - l }  the optimal partition into k - 1 clusters. 
The likelihood ratio takes the form (Hardy, 1992): 

Q ( x ) =  supDfD(x;t = k - -  l) - -1/(m(D))" _ ( W(P,k) )n 
SuPcf~(x;t = k) 1/(m(C))" W(P,k - 1) " 

We have Q(x) E [0, 1]. Thus, we will reject H0 iff: 

s - -  > l ,  
w ( P , k -  1) 

where l E R. Unfortunately, we do not know the sampling distribution of  the statistic 
S (as it is often the case with statistics derived from other clustering methods). 

Nevertheless, for practical purposes, we can use the following rule: reject H0 if 
S takes large values i.e. if S is close to 1. Practically, we will apply the test in a 
sequential way: if k0 is the smallest value of  k > 2 for which we reject H0, we will 
consider k0 - 1 as the appropriate number of  natural clusters. 

The four other methods are well-known in the scientific literature and were chosen 
because they are available in the cluster analysis software Clustan (Wishart, 1978). 

3.4. Wolfe's test (M4) 

That test, proposed by Wolfe, (1970), is based on the assumption of  multivariate 
normality. It is a likelihood ratio criterion to test the hypothesis of  k clusters against 
k -  1 clusters. 

3.5. The upper tail rule (M5) 

The upper tail rule, proposed by Mojena (1977), is a test for a significant number 
of  clusters in a hierarchical clustering sequence. That statistical stopping rule selects 
the partition associated to the first stage j in the cluster sequence j = 2, 3 . . . . .  N - 2 
which satisfy the condition 

Zj+I > iAvkSz, 

where £ and sz are the mean and unbiased standard deviation of  the distribution of  
N -  1 values; k is the standard deviate. 

So zj+~ lies in the upper tail of  the distribution of  criterion values £. The best 
number of  clusters will be N - j  for the first zj+~ satisfying the condition. The 
conclusion is that there is no significant classification if no zj+~ satisfies the condition. 
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3.6. The movin9 average quality control rule (M6) 

It is also a test for a significant number of clusters in a hierarchical sequence. 
That statistical stopping rule, also proposed by Mojena (1977), chooses the partition 
associated to the first stage j in the partial cluster sequence j = r, r ÷ 1,. . . ,  N - 2 
which satisfy the condition: 

z/+~ > ~ + L/ + b/ + ksz, 

where r is the number of  items in the moving average; Z is the moving mean in stage 
j ;  L/ is the correction for trend lag in stage j;  b/ is the moving least squares slope 
in stage j ;  Sz is the moving unbiased estimate of  the standard deviation in stage j .  
As in the preceeding rule, the conclusion is that there is no significant classification 
if no z/+l satisfies the condition. 

3.7. Marriot's test (M7) 

Marriot (1971) suggests that a possible procedure for assessing the number of  
clusters is to take that value of k for which kZIWI is a minimum where W is the 
matrix of  within-group dispersion. 

4. Results 

In order to make the announced comparison, we have chosen six well-known clus- 
tering procedures (nearest neighbour, furthest neighbour, centroid, Ward, K-means 
and hypervolume) and six artificial data sets illustrating the principal difficulties of 
cluster analysis (bridges between classes, absence of any group structure, elongated 
clusters, non-linearly separable groups, unequal-size hyperspherical-shaped clusters 
and non convex clusters). We have then applied seven methods to determine the 
best number of  clusters to the results so obtained. 

We have chosen two-dimensional data because it is easier to point out the per- 
formances and properties of  statistical procedures on data that can be represented 
graphically and directly assessed by eye. The majority of  the results and conclusions 
remains valid if we analyse m-dimensional data sets where m is greater or equal to 
three. 

4.1. First set o f  data." bridoes between clusters 

If the clusters are compact and well separated then almost any method will succeed 
in finding the obvious clusters. In our first example (Fig. 1), two hyperspherical- 
shaped clusters are linked together by chains of  intermediate objects (bridges). We 
have obtained the following results for k with our seven procedures. 

In the first column of each table we find the names of the clustering methods. 
When a procedure reveals the "true" classification, a " + "  appears in the second col- 
umn of the table. The nearest-neighbour method suffers from what is generally called 
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Table 1 
Bridges between clusters 

Fig. 1. Bridges between clusters. 

Bridges between clusters M1 M2 M3 M4 M5 M6 M7 

Nearest neighbour - * - - 2 2 2 10 
Furthest neighbour + 3 - - 2 2 2 l0 
Centroid + * - - 2 2 4 10 
Ward + * - - 2 2 4 10 
K-means + * - 2 - - 10 
Hypervolume + 2 2 2 - 10 

a "chaining effect". Here the resulting grouping is meaningless. This is expressed by 
a " - "  in the second column o f  Table 1. The seven last columns show the results 
given by the seven methods for the determination o f  the optimal number o f  clusters. 

For example, the application o f  the upper tail rule (M5)  to the results given by 
the furthest neighbour clustering procedure leads to the conclusion that there are two 
clusters in the data o f  Fig. 1. 

Here, the graphical procedure (M1)  is not very helpful; the decision over whether 
such plots contain the necessary "sharp step" is sometimes too subjective. Never-  
theless, method M1 applied to the groupings given by the hypervolume method, 
determines the correct value o f  k. When the result given by a method is not clear 
enough to conclude, a "*"  appears in the corresponding case o f  the table. The two 
other methods based on the hypervolume criterion (M2 and M3) as well as the upper 
tail rule (M5)  and Wolfe ' s  test (M4)  give also the expected result. But the moving 
average control rule (M6)  applied to the results given by the centroid and the Ward 
methods and the Marriot 's  test (M7)  do not give the appropriate result; here the 
curve k 2 de t (W)  has its minimum value for k* = 10. 

The sign " - "  in one o f  the seven last columns o f  a table means that the assumptions 
o f  the method are not fulfilled. For example, methods M2 and M3 are based on 
the hypervolume criterion; so they are only applicable to the results given by the 
hypervolume clustering procedure. M5 and M6 are valid only for hierarchic clustering 
methods. The results o f  Table 1 show that we must be very careful; for example, 
Wolfe ' s  test (M4)  yields the correct number o f  clusters when applied to the results o f  
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the nearest neighbour procedure . . .  but the classification obtained is not the "natural" 
one. 

4.2. Second set of data." absence of  any 9roup structure 

Here we have simulated a Poisson process into a single convex set in the plane; 
so the 150 points are independently and uniformly distributed in this set (Fig. 
2). Let us recall that we are interested here in classification, and not in dissec- 
tion. Many of  the methods find groups when in fact none are present. Results of  
Table 2 show that the three methods based on the hypervolume clustering criterion 
are very efficient when the problem is to test if  there is any grouping structure in 
a data set; in this case the hypervolume criterion decreases monotonically with k. 
The other methods are not very efficient. Furthermore, Marriot's test (M7) is not 
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Fig.  2.  A b s e n c e  o f  a n y  g r o u p  structure.  

T a b l e  2 

A b s e n c e  o f  any  g r o u p  s tructure  

A b s e n c e  o f  an y  g r o u p  s tructure  M 1  M 2  M 3  M 4  M 5  M 6  M 7  

N e a r e s t  n e i g h b o u r  1 - - 1 2 2 X 

Furthes t  n e i g h b o u r  * - - 2 2 4 X 

C e n t r o i d  * - - 2 3 3 X 

W a r d  4 - 3 2 4 X 

K - m e a n s  4 - - 2 - - X 

H y p e r v o l u m e  1 1 1 - - - X 
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applicable here: it is only valid when the number  o f  clusters is greater or equal to 

two. 

4.3. Third set o f  data." two elongated clusters 

In this example,  the natural structure consists o f  two elongated clusters (Fig. 3). 
The results obtained are given in Table 3. 
Only the nearest neighbour  and the hypervolume clustering methods reproduce the 
"natural"  classification o f  the data. Possibly chaining o f  a clustering method is often 
regarded as a defect, but for example  here, the very tendency o f  the nearest neigh- 

bour  to form chains can be advantageous i f  the clusters are elongated or possess 
elongated limbs. The furthest neighbour,  centroid, Ward  and K-means  are biaised 

towards finding spherical clusters. So here these methods fail to find the correct 
clustering when we fix the number  o f  clusters to two. The three methods based on 

the hypervo lume criterion, and methods M1, M4, M5 and M6 applied to the results 

given by  the nearest neighbour  method,  give the correct number  o f  "natural"  clusters. 
Marr io t ' s  test is not very performing.  

+ 

4- 

+ 
+ 

.4. 

-r 

4- 

+ 

+ 

4- 

4- 

4- 

4- 

4- 
+ 

Table 3 
Two elongated clusters 

Fig. 3. Two elongated clusters. 

Two elongated clusters M1 M2 M3 M4 M5 M6 M7 

Nearest neighbour + 2 - - 2 2 2 9 
Furthest neighbour 2 - - * 2 2 9 
Centroid * - - 2 2 4 9 
Ward 4 - - 2 2 4 9 
K-means * - - * - - 9 
Hypervolume + 2 2 2 9 
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4.4. Fourth set o f  data." non-linearly separable clusters 

In this e x a m p l e ,  artificial data were  generated to conta in  three e longated  clusters  

such that no one  is l inearly separable  f rom the t w o  others.  M a n y  c luster ing m e t h o d s  

fail to detect  these  three groups.  The results  obta ined are g i v e n  in Table 4. 

On ly  the nearest  ne ighbour  and the h y p e r v o l u m e  c luster ing m e t h o d s  are eff icient in 

recover ing  the under ly ing  structure into three clusters .  Let  us remark that W o l f e ' s  test  

( M 4 )  appl ied to the results  o f  the furthest ne ighbour,  centroid,  Ward and K - m e a n s  

procedures  g ive  the correct  n u m b e r  o f  c lusters  . . .  but the c lass i f icat ions  obtained by  

these  c luster ing m e t h o d s  are not  "natural" ones .  Here  a l so  M 7  does  not  g ive  a g o o d  

result.  
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Fig. 4. Non-linearly separable clusters• 

Table 4 
Non-linearly separable clusters 

Non linearly separable clusters M1 M2 M3 M4 M5 M6 M7 

Nearest neighbour + 3 - - 3 2 3 10 
Furthest neighbour - * - - 3 2 2 10 
Centroid - * - - 3 2 2 10 
Ward - 3 - - 3 2 3 10 
K-means - 3 - - 3 - - 10 
Hypervolume + 3 * 3 10 
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4.5. Fifth set o f  data." unequal-size hyperspherical-shaped clusters 

The assumption about the "shape" and size of groups can be implicit in the de- 
finition of a clustering criterion; for example, the sum of squares criterion will tend 
to produce equal-size hyperspherical-shaped clusters. The "-" in the second column 
of Table 5 means that the Ward method does not produce the "natural" clusters. 

In the preceeding examples, Wolfe's test (M4) performed well; here it fails in 
recognizing the "true" number of natural clusters. The three methods based on 
the hypervolume criterion perform well. The upper tail rule (M5) and the moving 
average control rule (M6) yield the correct number of clusters when they are ap- 
plied to the results given by the nearest neighbour, furthest neighbour and centroid 
methods. 

4.6. Sixth set of  data. non-convex clusters 

In this example, it appears clear that there are two groups. One of them is not 
convex and is not linearly separable from the other group. 

Here only the nearest neighbour method retrieves the "natural" structure of the data 
when we fix the number of clusters to two. The hypervolume clustering method is 
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Fig.  5. U n e q u a l - s i z e  c lus ters .  

T a b l e  5 

U n e q u a l - s i z e  c lus t e r s  

U n e q u a l - s i z e  c lus t e r s  M1 M 2  M 3  M 4  M 5  M 6  M 7  

N e a r e s t  n e i g h b o u r  + 2 - - 1 2 2 10 

Fu r the s t  n e i g h b o u r  + 2 - - 1 2 2 10 

C e n t r o i d  + 2 - - 1 2 2 10 

W a r d  3 - - 1 2 3 10 

K - m e a n s  + * - - 1 - - 10 

H y p e r v o l u m e  + 2 2 2 - - - 10 
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Table 6 

Non convex clusters 

Fig. 6. Non convex clusters. 

Non convex clusters M 1  M 2  M 3  M 4  M 5  M 6  M 7  

Nearest neighbour + * - - 3 2 2 10 
Furthest neighbour - 5 - - 3 2 3 1 0  

Centroid - 5 - - 3 2 3 1 0  

Ward - 6 - - 2 2 3 1 0  

K-means - * - - 3 - - 1 0  

Hypervolume - 1 1 1 - - - 1 0  

not applicable because the assumption of  convexity is not fulfilled. Wolfe's test does 
not give the correct number of  clusters. Only methods M5 and M6 associated with 
the classification given by the nearest neighbour procedure lead to the conclusion 
that there are two clusters in the data set illustrated in Fig. 6. 

5. Conclusions 

The aim of  this paper was to investigate the performance of  seven methods for 
determining the "true" number of  clusters, and particularly to compare three methods 
based on the hypervolume criterion with four other well-known methods. 

But we have seen that a big problem when we have to find groups in data is to 
choose a good clustering procedure; most of  the methods make implicit assumptions 
about the type of  structure present; when these assumptions fail to be met spurious 
solutions are likely to be obtained; it is not the case of  the hypervolume method; 
we impose the convexity of  the clusters, but we make no other restrictions on the 
shape, the size, the tightness or the orientation of  the clusters. 

Concerning the number of  clusters, we have to be very careful: some meth- 
ods give the "correct" number of  clusters ...  based on an "bad" classification. So 
we have to take into account the a priori information we have on the clustering 
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methods and the underlying assumptions of  each of  them: the chaining effect of  
the nearest neighbour method; the furthest neighbour, centroid, Ward and K-means 
methods favour hyperspherical-shaped clusters; the hypervolume method requires the 
convexity of  the clusters, ... 

When they are applicable, the three methods based on the hypervolume criterion 
perform well, even in the case of  absence of  any group structure. 

The graphical method (M1) is in general very subjective. The decision over 
whether such plots contain the necessary "discontinuity in slope" is likely to be 
very subjective. Nevertheless, it gives the most interesting and clear results when we 
plot the hypervolume criterion against the number of  groups. 

Method M2 works usually very well but it may fail to obtain good results in 
presence of  elongated clusters containing a small number of  points. It should also be 
interesting and useful to find a more appropriate value for the constant of  dilation c 
when we use it to detect the optimal number of  clusters. 

The likelihood ratio test (M3) is one of  the most interesting method. Unfortunately, 
on a theoretical point of  view, the sampling distribution of  the test statistic is not 
known. But in practice it gives clear and relevant results. 

Certainly, the fact that different clustering criteria and methods for determining 
the best number of  clusters can suggest different results when applied to the same 
data set should make investigators wary about accepting uncritically the results of a 
single clustering method associated with a single method for the number of  clusters. 
So what we can recommand, when we are confronted with data to classify, is to use 
several cluster analysis techniques and methods for determining the optimal number 
of  clusters and to analyse all the results in order to have more informations about 
the clusters: size, shape, convexity, tightness, separation, ... and to take into account 
that information to choose the best classification and to interpret it carefully. 
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