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1. Introduction

This paper treats the problem of estimating the parameters of linear re-
gression models, where different subsets (“clusters”) of the entities correspond-
ing to the data set (henceforth, “data points™) follow different linear relations
between a covariate x and a dependent variable Y, and the cluster member-
ship of the data points is unknown. That is, I assume for each cluster a linear
regression distribution of the form

Y=xB+U, L{U) =Ny iid,
Y IR — valuedr.v., x = (z1,...,2p,1) € IRP x {1},
Be R o2 c R, i€l D

The p + 1st component of 3 denotes the intercept parameter. L{U) = N o2
means that U is distributed according to the Gaussian distribution with mean
0 and variance o2. T is some index set. Distinct regression and scale parame-
ters (83, 0?) define distinct clusters. x and Y are observable, but the parameters
and cluster memberships are not. Note that two linear regression distributions
with distinct parameters do not necessarily lead to well separated observations.
I somewhat informally use the term “cluster” because the mixture and fixed
partition model have in common that they are used in partitioning cluster analy-
sis. This practice should avoid confusion between “mixture components” (here:
“clusters”) and “components” of p-dimensional vectors. The Gaussian distribu-
tion is considered as the distribution of U because it is the most familiar for this
purpose. All results carry over to arbitrary univariate location-scale families
that generate identifiable mixtures.
Examples can be found, e.g., in biology and economy:

Example 1.1.

1. Animals or plants can sometimes be grouped according to relationships
between their properties. For example, male and female halibuts can be
divided by considering the relationship between age and length (Hosmer
1974).

2. Seber and Wild (1989, p. 435 ff.) give biological examples for situations
where a relation, e.g., between quantity of fertilizer and yield of corn,
changes at some time or quantity.

3. In marketing consumers or suppliers rate the quality of products or events.
Markets can be segmented by finding groups with respect to the relation
between the rating and the features of the product (DeSarbo and Cron
1988; Kamarkura 1988; Wedel and Steenkamp 1991). Other economi-
cal applications can be found in Fair and Jaffee (1972) and Quandt and
Ramsey (1978).
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The paper is not on particular estimators and their consistency, but in-
stead it starts one step earlier: What can be estimated consistently? I doubt that
there is presently any valid consistency proof for any estimator at any of the
models treated here, and I try to make the reasons clearer. The model choice
and the meaning of the identifiability concept are discussed, with some hope-
fully surprising findings.

For the whole data set there are various models, of which the mixture
model with fixed covariates is the most popular:

Model 1.
L((Ys)ier) = ®Fx,.,J, where
el
Fx,.](’y) = le (1)070'2 (y - X/,B)dj(ﬁ, 02), Tl = IRIH—I X m(—)}_v

®, »» stands for the cumulative distribution function (cdf) of the Gaussian dis-
tribution with mean a and variance 0. ¢, s2 is the corresponding density.
All other distributions are denoted with the same letter as their cdf. J(T") de-
notes the set of mixing distributions with finite support on the parameter set
T. S(J) is the support set of J € J(T). Thus, s := |S(J)| is the number of
mixture components, informally called “clusters” here. That is, the members
of J(T) are distributions generating parameter values (3;,0%),..., (B,,02)
for s clusters with probabilities J(81,0%),..., J(B,02). I is some index set,
e.g., I = {1,...,n} if there are n observations with distinct covariates x;.
“®” denotes the independent product of distributions, i.e., the observations are
modeled as independent in Model 1. For each covariate point x;, modeled as
nonrandom, Fy, j is a finite mixture of one-dimensional Gaussian distributions
with means x'8, ..., x', and variances 02, ...,02.

Before I discuss Model 1, I introduce some further notation. The letter
x is always used for the covariates, which are p + 1-dimensional points with
(p + 1)st component equal to 1, i.e., the (p + 1)st component of a regression
parameter denotes the intercept and x~ denotes the first p components of x. X
is used for the sequence of all covariate values (x;);es. This notation implies
that “dim({x; : ¢ € I'}) < p + 17 is equivalent to “x; ,4 € I lie on a common
(p — 1)-dimensional hyperplane H := {x~ € IR : a/x~ = a}, IR? >
a # 07, where (A) denotes the linear hull of A. H,_; denotes the space of
(p — 1)-dimensional hyperplanes of IR?.

“t < x”, where t,x are d-dimensional vectors, means component-wise
<. P4 denotes the space of distributions on IRC.

Random variables are usually denoted by capitals. If £L(Z) = G for some
random variable Z = (Z1, . .., Zx), GZ stands for the marginal distribution of
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Z; under G. Sometimes I write GZ for G to indicate the corresponding random
variable.

Two further models will be introduced in later sections. ; always de-
notes the parameter set corresponding to the Model ¢ for linear regression clus-
ters. It defines a family of the parameterized distributions C; = (F,)ueq,.
If needed, T; is the corresponding parameter set for a single linear regression.
Some equivalence relations on §2; will be considered. They are denoted by
“~i;”, where 4 is the model number and j = 0, 1, 2 distinguishes between dif-
ferent relations on €2,.

Returning to Model 1: The interest lies in the estimation of the mixing
distribution J, i.e., s and all parameter vectors and cluster probabilities. For
fixed s there are some proposals, e.g., Maximum Likelihood (ML) estimation
(Hosmer 1974; DeSarbo and Cron 1988) or estimation via the Moment Gener-
ating Function (MGF, Quandt and Ramsey 1978). These estimators are believed
to be consistent, at least if the o2 are bounded away from 0, but this paper shows
that this claim is not in general true.

Only identifiable parameters can be estimated consistently. “Identifia-
bility” means that, knowing the data distribution £ ((Y;);cr), one can identify
uniquely the mixing distribution J. That is, no two distinct sets of parameters
(1311'7 U%iv J(Bli’ a%i))v Tty (ﬂsh O'EZ', J(:Bsiv U?z'))v 1= 17 25 lead to the same
data distribution. ‘

I do not know of any consistency proof for Model 1 that takes the ques-
tion of identifiability adequately into account, presumably because it is believed
that identifiability for linear regression mixtures with Gaussian errors follows
directly from the identifiability of Gaussian mixtures (proven by Yakowitz and
Spragins 1968). DeSarbo and Cron (1988, p. 255) make that claim explicitly. I
discuss Model 1 and the various consistency proofs in Section 2 and give iden-
tifiability conditions and a counterexample. The example has the interesting
property that the inverse of the Fisher information matrix of the nonidentifiable
parameters exists and disproves the belief that an invertible information matrix
implies consistent ML-estimation. The counterexample may seem somewhat
pathological, and indeed there are sufficient conditions for identifiability that
presumably hold in most applications — but not always (see the discussion in
the Conclusion). Furthermore, 1 give arguments for the belief that the identifia-
bility problems can lead to serious complications for consistency proofs.

Model 1 seems inadequate for most of the applications because it as-
sumes “assignment independence”: The probability for a point to be generated
by one of the s cluster distributions has to be the same for all covariate values
x; the assignment of the data points to the clusters has to be independent of the
covariates as illustrated by Figure 1. For change point problems like Example
1.1.2, the opposite is true: The covariate value determines the cluster mem-
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Figure 1: In Figure la two regression clusters are differentiated by the slope. Their x-values
are distributed similarly and give no information about the cluster membership. In Figure 1b the
distribution of x is quite different for the two clusters. These cases are referred to as “assignment
independence” and “‘assignment dependence”.

bership. But also intermediate situations are possible — and in my experience
likely — e.g., if the lifespan distribution for male and female halibuts would not
be equal in Example 1.1.1. In Example 1.1.3 assignment independence would
be fulfilled if all products would be rated by the same proportions of members
of the market segments, i.e., only if the product choice would be independent
of the segment.

There are two reasonable models for linear regression clusters that do
not assume assignment independence. One strategy replaces the fixed covari-
ates by covariate distributions that are allowed to differ between the clusters, as
in Section 3. Alternatively, one can use a fixed partition model where the cluster
membership of the points is not random but explicitly parameterized. This ap-
proach was first proposed by Fair and Jaffee (1972) and is discussed in Section
4. Consistency gets even more cumbersome here; at least the ML-estimator is
known to be inconsistent (Oberhofer 1980).

Up to now there are no consistent estimators for these models, and the in-
vestigation of identifiability leads to some new difficulties. In both cases there
are additional parameters that are not identifiable in general, namely the co-
variate distributions, respectively the membership parameters. Concerning the
question of estimability, it would be interesting if one could identify some of
the parameters, e.g., only regression and scale.

For this purpose I introduce a more general concept of identifiability.
Given a parameterized family of distributions C, one can define an equivalence
relation “~”” on the parameter set {2 so that two parameters are equivalent if
the components to be estimated are equal. “Identifiability” then means that the
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distribution determines the equivalence class of the parameters. For the usual
identifiability problem for mixture distributions J; is treated as equivalent to J;
if J; = J;. That is, the equivalence classes correspond to the full parameters,
and the distribution is also determined by the equivalence class of parameters
(corresponding to the “<«"-direction of the equivalence in the definitions be-
low).

If only a part of the parameter is to be estimated, the appropriate
equivalence classes do not determine the distribution. Examples appear in the
later sections. The identifiability of the interesting parameter part is then called
“partial identifiability”.

Definition 1.2. Let Q be an arbitrary parameter space, P be some space
of distributions,
C = (F,)uen € PY, @

and “~” be an equivalence relation on ). Then C is identifiable with respect
tO “N i34 l"f‘
Yw,w € Q: F,=F, 9w~

Definition 1.3. C is called partially identifiable w.r.t. “~” if
Yw,w € Q: F,=F,=w~o.

To my knowledge, there is no previous treatment of identifiability of the
parameters of any fixed partition model, even in the simple Gaussian case. The
interpretation of the concept is less obvious in this setup than for mixture mod-
els and is discussed in Section 4.

In the context of mixture models the concept of identifiability goes
back to Teicher (1961). Some familiar classes of distributions have been
shown to generate identifiable mixtures, e.g., multivariate Gaussian distribu-
tions (Yakowitz and Spragins 1968). Binomial and uniform distributions are
examples for the opposite (Titterington, Smith, and Makov, 1985). More re-
sults on identifiability of mixture distributions can be found in Chandra (1977),
Prakasa Rao (1992) and Lindsay (1995). Prakasa Rao (1992, p. 149) defines
“partial identifiability” for identifiability problems apart from mixture param-
eters, but his interpretation is analogous. Lindsay (1995, p. 44) uses the term
informally. Li and Sedransk (1988) generalize the concept of identifiability for
finite mixtures in other directions. Yakowitz (1969) and Chen (1995) prove the
existence of consistent estimators for identifiable mixture models under certain
further assumptions. A reviewer has also recommended Gordon (1990) and
Feng and McCulloch (1996).

Redner (1981) appears to be the first to introduce equivalence classes in
relation with identifiability. His context is a setup where consistent estimation
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fails because of nonidentifiability and he then shows that the equivalence class
of parameters giving rise to the same distribution is estimable consistently by
ML in the quotient space 2/ ~ under certain conditions. C is trivially iden-
tifiable with respect to that equivalence relation according to Definition 1.2.
Redner’s consistent estimate of such an equivalence class is only interpretable
properly if all its members are known. Therefore the identifiability considera-
tions presented here do not become superfluous by estimating such equivalence
classes of parameters.

2. Mixture Model, Fixed Covariates

Model 1 is treated in this section. To my knowledge there are four papers
containing consistency arguments: Kiefer (1978) and DeSarbo and Cron (1988)
treat the consistency of the ML-estimator; Quandt and Ramsey (1978) as well as
Kiefer (1978) investigate the MGF-estimator. Huang and Pao (1991) propose
a minimum distance-estimator. All proofs base on a generalization of results
for i.i.d. random variables. The Y;, i € I, are not identically distributed and
one has to inspect the sequence X = (x;);es. The choice of I is discussed
at the end of this section. Clearly the covariates x; ,7 € I must not lie on
a common (p — 1)-dimensional hyperplane because otherwise even a single
regression would not be identified. Proofs of consistency for a single linear
regression need to prevent the covariate sequence not only from being collinear,
but also from being too near to collinearity: Consider the setup of (1) and
recall that under Gaussian errors the LS-estimator is distributed Gaussian with
variance o2(X! X,,)~!, and X,, being the covariate matrix of n observations.
Thus, (X, Xn)“l — 0 is necessary even for convergence in probability, and in
the Gaussian case it suffices for strong consistency (Anderson and Taylor 1976).
None of the papers cited above states assumptions of that kind, which suggests
that the authors generalized the i.i.d.-results too superficially. Kiefer (1978, p.
430, footnote 5) mentions that for this reason his proof, strictly speaking, is
not complete, but he does not seem to expect ensuing problems. But there are
some. A single regression line is determined by two covariate points, but two
clusters are not: ~

To apply the notation of Definition 1.2, define for given X:

Cr = (FX,J:FX,J:®FX¢,J> ;
el JeQ,
where Fy, ; is defined as in Model 1,
JrpJioJ=J VJ,Je.

Example 2.1. Let I = {1,2}, p =1, |S(J)| = 2, x1 = (0,1), x2 = (1,1).
Define the joint distribution F' of (Y7,Y3) as the independent product of the
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distribution functions

Fxl = %(I)l,az + %®2,027 (3)
sz = %(I)l,o'2 + %©2,0’25 4)
a* >0, (5)

and consider the following different parameter choices:
J=12: 0]2‘ = 02vﬂ1 = (07 1)7132 = (072)a

and J{(B;,0%)} = 5, 0r

—

J=12: A? = 027[31 = (13 1)7132 = (—_172)7
and j{(ﬁj, 6]2-)} = 1. Observe that F’ = Fy ; = Fx j- C1 is not identifiable
w.r.t. “~10”; see the left side of Figure 2.

Consequently, no consistency is possible at Model 1 if the covariates con-
centrate on (presumably even near to) two (p — 1)-dimensional hyperplanes.
The right side of Figure 2 shows also that three clusters are not in general iden-
tifiable with covariates from three lower-dimensional hyperplanes. The authors
of all four papers cited above did not exclude these cases from their consistency
considerations.

Example 2.1 deals with parameters that are nonidentifiable and therefore
not consistently estimable. One may be surprised that nevertheless their Fisher
information matrix is invertible:
Example 2.1. Continued. Consider F of Example 2.1. Assume 0? = 0% =1
as well as 12 = 1, S22 = 2 as known and consider the problem of estimating
511, P21, i.e., the parameters where J and J of Example 2.1 differ. Compute
the information matrix for the parameters (511, (21) that may have the values
(0, 0) in case of J or (1, —1) in case of J as shown above.

Here is the density of ' = Fg,, 3, :

1 1 1 1
fBur s (Y1, 42) = ‘2‘<P1,1(yl) + 5802,1@1)] [590ﬂ11+1,1(y2) + §¢ﬂ21+2,1(y2) '

Use 2:00,1(y) = (4 — @)¢a,1 (1) to get
=0 _ (B —Dwp;41.1(y2)
80811 10g f6115ﬁ21 (yl? yQ) - ‘Pﬁu+1,1(y2)+¥72121+2,1(y2)’ and

8 _ (y2~B21~2)ppy, +2,1(y2)
B2 log fﬂu,ﬁm(yla Yo) = <P511+1,1(y2)+¢;121+2,1(y2)'
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Figure 2: The black circles represent the means of the Gaussian distributions of y at different
x-values. In Figure 2a, (3,, B,) defines one two-cluster parameterization and (B,,B;) defines
an alternative (Example 2.1). In Figure 2b the nine means can be represented by three clusters in
two different ways, corresponding to either the light lines or the heavy lines.

Now the information matrix Z (311, 821) can be evaluated at 81; = f21 = O:

2
9
/ log f3,, 5, dFy o = 0.2861
aﬁn B11=B21=0 .

9 2
= lo dFy o,
/ ( 8/321 gfﬂll7ﬁ21 ,311:621:0> 0,0

0
lo
/ (aﬂll gfﬁll»ﬂZl 511:/321:0>

(aé% log f:1.62: dFyo = 0.1144.

ﬂll:,B2l:O)

Thus,
0.2861 0.1144
2(0,0) = ( 0.1144 0.2861 ) ’

which is invertible. The reason is that the information matrix is based on
derivatives. Thus it is a local concept. The uniqueness of (811, 821) = (0,0)
is not distorted in the neighborhood of (0,0), but is at (1, —1), so that the
information matrix does not need to detect any abnormalities at (0, 0).

Let h denote the minimum number of (p — 1)-dimensional hyperplanes
to cover the covariates. The key problem of the examples of Figure 2 is that
h is too small compared to the number of clusters. The following theorem
shows that it has to be larger than the number of clusters |S(J)| to guarantee
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identifiability.

Theorem 2.2. In Model 1, C) is identifiable wrt. “~19” under the
additional restriction |S(J)| < h¥J € Qy, where

q
h:=min{q: {x; i€} C UHi:HiE'Hp_l},
i=1
All proofs are given in the Appendix. If |I| = 0o, Cy can be identifiable
without restrictions to the number of clusters:

Corollary 2.3. In Model 1, C is identifiable w.rt. “~19”, if {x; : i € I}

m
cannot be covered by any A of the form A = U H;, m € IN, where

=1

HiEHp_l, 1=1,...,m.

I offer two possibilities to interprete the index set I:

1. “Observation model”: I = IN, each (x;, Y;) models one of the observa-
tions of a (potentially) infinite sequence of observations. Index sets for a
single linear regression are usually interpreted as observation models and
lead to consistency conditions about the limit behavior of (X’H)tn)_l.
Analogous conditions for Model 1 could be cumbersome, because one
presumably has to exclude the case that the covariate sequence comes too
near to nonidentifiability situations, as shown above. The problem might
be only of technical nature: Consistency may hold under mild assump-
tions, which, however, may be hard to derive.

2. “Repeatable design”: A theoretically easier but not necessarily realistic
approach would be to choose I = {1,...,m}, m being the number of
distinct available covariate points. If observations could be repeated at
all m points, the whole experimental design (x;, Y;),;; could be repeated
1.i.d. and would possibly enable easier consistency proofs. [ can also
be interpreted as a repeatable design, if the x;, ¢ € I, are not pairwise
distinct. Such an interpretation means that some covariate values occur
more often than others in the design to be repeated.

3. Mixture Model, Random Covariates

I do not know of any attempt to solve the problem of consistent esti-
mation of clusterwise linear regressions using random covariates, even if the
execution of Kiefers (1978, p. 430, footnote 5) proposal to complete his proof
would result in considering such a model. The mixture model with random
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covariates can be stated as follows:

Model 2.

LX,Y) = Fy,
Fr(x,y) = Jp, F(x,y, 0)dJ(6), where
F(x,y,0) = [ 1(t <x)Po,2(y — t'B)dG(2),
0:=(8,0%,G) €Ty := RP™ x IR x G, J € Qy,

G being some set of distributions of X € IRP*! wherefor G € G : G(Xp41 =
1)=1,092C J(Tr), ie., Cy = (Fy)yeq,-

For the sake of simplicity in the following G € G is treated as a
p-dimensional distribution and X, 11 = 1 as fixed.

That is, a single linear regression distribution F' is defined by (8, a?),
and the covariate distribution G, and it occurs with probability J(3,02, G)
in the mixture distribution F;. Mixing over G does not impose measurability
problems as can be seen from Chapter 12 of Hinderer (1970). Instead of J (1),
it is more convenient to work with

Q= {J € J(Ta) : (B,0°,G) € S(J),G# G = (B,0%G) & S(J)}.

This approach allows only mixing distributions where distinct clusters are char-
acterized by distinct regression or scale parameters. Otherwise, the term “linear
regression clusters” would not be justified.

The model has two advantages compared to Model 1:

1. The random variables (X;,Y;), ¢ = 1,...,n for n observations are i.i.d.,
and the corresponding theory may be applied.

2. Assignment independence is not assumed as long as .J also mixes over G,
i.e., the covariate distributions of the clusters are allowed to be distinct.

Random covariates occur in many applications, e.g., in Example 1.1, the age of
the halibuts caught cannot be controlled, and most economical surveys, while
they are of course not adequate if time is the covariate or there is some con-
trolled experimental design. One could wonder as well in the latter situations,
if some estimator of Model 2 without the assignment independence assumption
could be better as one of Model 1 if this assumption would not be valid. But
Section 4 provides a more adequate model for this case.

What can be estimated? 1 consider the case in which the covariate dis-
tributions are not of primary interest. There are models where such “nuisance”
distributions can be estimated as well (see Kiefer and Wolfowitz 1956), and



284 C. Hennig

indeed they are sometimes identifiable (Theorem 3.2). If this is not the case,
the regression parameters and the cluster proportions J(3, 02, G) are of inter-
est. Different estimation problems lead to different equivalence relations on
{12, which are chosen such that two mixing distributions are equivalent if the
parameter parts of interest are equal:

(a) Estimation of the covariate distributions, cluster proportions, regression
and scale parameters, i.e., the whole mixing distribution:

J g J i J = J.

(b) Estimation of cluster proportions, regression and scale parameters, but not

of the covariate distributions (J (B.7*) denotes the marginal distribution of
(B,0?) under J):

J s F s 3B _ B,

(c) Estimation of only the regression and scale parameters:
J ~22 j = {(13702); (ﬂ,0'2,G) € S(J)}
={(8,0%); (B,0%,G) € S())}.

The equivalence classes of “~4;1” and * ~22 > do not determine the members of
Co, ie., J ~y; J does not imply Fj = Fj, 1 = 1,2. Thus, one can only be
interested in partial identifiability w.r.t. these equlvalence relations.

If the covariate distributions concentrate on too few (p — 1)-dimensional
hyperplanes, counterexamples against identifiability can be obviously con-
structed as in Sections 2 and 4, Figures 2 and 4. But another problem can
appear:

Example 3.1. (5 is not identifiable w.r.t. “~90” nor even partially iden-
tifiable w.r.t. “~91” in general, if G contains distributions which have positive
probability on a (p — 1)-dimensional hyperplane

Ho:={x" € R :x'a =0}, acIR\{0},

as in Figure 3 (H¢q is a single point in IR'). In this case the cluster propor-
tions are not identified because the points on H, (distributed according to G g
below) may be assigned to the cluster with regression parameter 3, 8 + o re-
spectively:

x'B =x'(8+ a) holds for x € Hg. Let G € G, where
1>e:=G(Ha)>0, Gg(B):=G(B|Hy)V Borel sets B € IBP,
Gy = l—i—e(Gl — eG ) (supposed to be € G).
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/ X

Hq (Example 3.1)
x| (Example 4.1)

B+ a

Figure 3: Example 3.1/Example 4.1: The regression parameters 3 and 8 + « lead to the same
distribution of y for covariates from Ha .

G corresponds to G conditional on H,. Let d, denote the Dirac measure in
a. Consider

Ji= 508 000 =980, Gy

— 1—€ 1
J = 576018 02,60) T 7-0(Branon,Gi):

J assigns Hq to the first cluster, J assigns it to the second one. This does not
change the common distribution of X, Y":

XY —
FP = (G @ Ny g o) + EE (G @ MK g0y 00)

)+ 25 (G © Ny g ) +57(CF @ Ny g1, 00)

1 X Y _ . pXY)
)+ 5= (GT @ Ny, Brayes) =

J oo J, T Ao J.

“~v91” is introduced only to illustrate that if there are problems with
the covariate distributions, also the proportions are not identified. The iden-
tifiability results concern either “~gp” or “~oy”: To get identifiability w.r.t.
“~vg0”, the covariate distributions must not give positive probability to any
(p — 1)-dimensional hyperplane:

X/ﬂ’oa

2
3T

Theorem 3.2. In Model 2, Cy is identifiable w.rt. “mgo” If
GC{PePy: P(H)=0 VHE€ Hp—1}-

The regression and scale parameters are (partially) identified, if no
G € G concentrates on less than h + 1 hyperplanes of dimension (p — 1), h
being an upper bound for the number of clusters |S(J)|.
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Theorem 3.3. In Model 2, Cy is partially identifiable w.r.t. “~93" un-
der the additional restriction that |S(J)| < hV.J € Qy, if

m
G CPp, whereNGeG, m<heIN,A=|JH;: GA) <1 (6)

=1

forarbitrary H; € Hp_1,i=1,...,m

4. Fixed Partition Model

The fixed partition model with fixed covariates was considered first by Fair and
Jaffee (1972) in the regression context. “Fixed partition” means that the cluster
membership of each point is not treated as random, but parameterized by some
7 that determines the particular regression and scale parameter values for the
cluster of each single point (x;, y;):

Model 3.

Vier) = @ P where
i€l

v: I IRPT < IRY, |y(I)| < oo,
FeBo2W) = oo2(y —x'B) V(B,0%) € y(I).

This model is most flexible in the sense that it can be interpreted as one
of the other two models conditional on a given assignment of a single point
(xi, Y;) to y(é), which occurs with probability J(~(3)) in Model 1, respectively
J(7(i), G) in Model 2, and on the given covariate values in Model 2. There are
further applications, where some deterministic covariate value or the position ¢
in the experiment determines the cluster membership as in change point prob-
lems as Example 1.1.2. Furthermore, the cluster proportions may change over
the time.

This flexibility is paid for by the fact that the number of parameters tends
with the number of observations to infinity, if I is interpreted as an observation
model.

I do not know of any publication where identifiability of some fixed par-
tition model is discussed. The reason is that in linear regression there is an
identifiability problem, while in other situations there is none. Consider, e.g.,
one-dimensional Gaussian distributions, i.e., p = 0, x = 1 above. For each

¢ there is only a single Gaussian distribution, and its location parameter 3 and
the scale o2 are clearly identified as expectation and variance. However, this
result is not very useful if I is interpreted as an observation model, because
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then there is only one observation available for each parameter y(4). This result
does not answer the question if y(I), i.e., the set of location and scale param-
eters, can be estimated consistently from the non-i.i.d. sequence (Y;);er. The
assignment of each single point Y; is identifiable, but it cannot be estimated
consistently, unless I is a repeatable design. Nevertheless, identifiability is a
necessary condition for the existence of consistent estimators of y(I), and in
the linear regression case it is not such trivial, as will be shown.

Note that one can investigate the limit behavior of ML-estimators of the
parameters of the fixed partition model at least in the location/scale-case, but
this problem is usually approached assuming i.i.d. observations from some
mixture model (e.g., Bryant and Williamson 1978). To my knowledge there
is no asymptotic theory assuming observations from a fixed partition model.
Furthermore, the ML-estimator is known to be inconsistent as shown by Mar-
riott (1975), Bryant and Williamson (1978) and for the linear regression case
by Oberhofer (1980).

I define two equivalence relations, namely “~3¢” for the identification of
the whole parameterization, and “~3;” for identifying only the regression and
scale parameters: For given X let

Q= {v: Im B x RS, Iy(I)] < oo},

Cs 1= (ny'Y)’YEQs ’ FX,’)’ = % Frini)»

’YN3O;Y:¢>7:’? vaa;yEQ?n

v ~s1 g e () =)
Observe first that the cluster membership of the single points is not identified,

as opposed to the Gaussian location case: Example 4.1 (see Figure 3). Cj is not
identifiable w.r.t. “~3”: Choose a € IRP™! \ {0} such that x{a = 0. Let

¥(I) = {(8,0%),(B + e, 0%)},

so that there are two distinct clusters corresponding to the regression parame-
ters B, B + a, respectively. Then, (x1,y;) may be assigned to each of them:
Flxi)iery 18 equal for (1) = (8,0%), and y(1) = (8 + &, 0?).

As a consequence of the assignment independence, all clusters are sup-
ported by all covariate points in Model 1. This situation is not the case for the
Models 2 and 3. Therefore, there are counterexamples against identifiability
of the regression and scale parameters with more distinct covariate points
((p — 1)-dimensional hyperplanes, respectively) than in Example 2.1:
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y 4 .
4 ;

Figure 4: Example 4.2: The black circles represent again the means of the Gaussian distributions
of y for the different s® covariate points. (By,-..,B4) and (B4, ...,B,) define different four-
cluster parameterizations of the same model.

Example 4.2. Let I = {1,...,n}, p = 1, n = 5%, s := |y(I)| being the
number of clusters in Model 3. Choose x1, ..., X, equidistant (which would
not be necessary), say x; = (4,1). Then the joint distribution of the (Y;);¢c; is
defined by

F (i) = ®oo2(yi —3s), i € {(j—Ds+1,...,55}, j=1,...,5
simultaneously for the following parameter choices (see Figure 4):
() = (0,5s,0%) =i € {G—-1Vs+1,...,58}, j=1,...,s,
or
(i) = (1,8 —j,0?) o ic{ks+j: ke {0,...,s=1}},5=1,...,s.

That is, Cj is not partially identifiable w.r.t. “~3;”.

The example is perhaps interesting also in change point theory, because
it illustrates that this kind of a change point setup (with s — 1 change points pa-
rameterized by ) cannot be separated from a situation with s linear regression
clusters parameterized by 4 without clusterwise connected domains of covari-
ates.

The solution of the identifiability problem in Model 3 as well as in
Model 2 (Theorem 3.3) is that the number of clusters (here |y(I)|) has to be
exceeded by the number of distinct (p — 1)-dimensional hyperplanes to cover
the covariate values for each cluster (denoted by h(B, 0?)):
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Theorem 4.3. Cs is partially identifiable w.r.t. “~31” if the restriction |y(I)| <
min(IB o2)en (D) h(B,0?) is added to Q3, where

q
h(B,0?) := min{q: {x7 :iel,y(i) = (B,0%)} C UHi:Hi E’Hp_l}.

i=1
@)
Unfortunately this result implies that one cannot determine the maximum
number of clusters guaranteeing identifiability by considering the covariate de-
sign (x;);cs alone, as opposed to Model 1.

5. Conclusion

The problem of consistent estimation of the parameters of linear regres-
sion clusters turned out to be difficult. It was shown that the existing consistency
proofs for estimators of the mixture model with fixed covariates do not take
identifiability problems adequately into account. Furthermore, this model suf-
fers from the restrictive assumption of assignment independence. I discussed
two more flexible models in which no consistent estimators are known up to
now. A lot of work remains to be done to prove consistency for any estimator in
any of the models. Identifiability conditions were given for all three models, ac-
companied by some discussion of (partial) identifiability for the fixed partition
model, where the identifiability question only starts to get interesting for the re-
gression case. In general the regression and scale parameters are identifiable if
the number of clusters is exceeded by the number of distinct (p—1)-dimensional
hyperplanes which one needs to cover the covariates of each cluster. These con-
ditions seem to be rather mild, but they may be violated in applications where
the covariate variables can only take a small number of values. This happens

(a) if they are dummy variables, e.g., in ANOVA,
(b) at optimal designs for single linear regression, or

(c) if they reflect a small number of possible answers to questionnaires as
often in marketing research.

For example, the three-dimensional covariates of the first data example of Ka-
markura (1988) can be covered by two two-dimensional hyperplanes. (Ka-
markura performs a clusterwise regression on these data. He does not discuss
identifiability, but the counterexamples here do not directly apply because he
imposes an additional side condition for his clustering.)

It would be useful to have an algorithm to compute the minimal number
of (p — 1)-dimensional hyperplanes needed to cover the n points of dimension
p. In Model 1 the answer is “one plus the maximal number of clusters that can
be estimated identifiable with a given covariate design of n points”. In the other
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models one could verify if the covariates of every single cluster would suffice
to identify the given number of clusters after having assigned the points.

Edelsbrunner (1987, p. 278 ff.) gives an algorithm to report all subsets
of more than p points that can be covered by (p — 1)-dimensional hyperplanes.
This approach will suffice often to compute the requested minimum number.
Unfortunately even the existence of such subsets is an NP-complete problem
(Khachiyan 1995).

ML-estimators for the Models 1 and 3 and “Fixed Point Clustering” for
Model 2 are discussed in Hennig (1998).

Appendix

Proof of Theorem 2.2. Only Fy J=I%x;= J = J has to be shown,
because J contains all information to define the common distribution Fi X, of

(Yi)icr- Let Py, =Fg 5 J# J, without loss of generality

S 2 1S T{(B1,0%)} # J{(Br,0D)}- @®)
F)"(, F 7 implies the equality of the marginal Gaussian mixtures at all
x;, 1 € 1t
x J —/ N :Ba )
2
= in,j = T N‘(x:ﬁ,gz)d‘](ﬁﬁ o ) (9)

By identifiability of finite Gaussian mixtures, for : € I:

J{(B,8%) = (xiB,6%) = (xiB1,0%)} = J{(B,0%) : (xiB,0%) = (x}By,0})}.
(10)
A crucial idea in the proof is that the restriction to | S(J)| ensures the existence

of a covariate point x; where the marginal mixture proportion of ./\/ x.8,,02)
1

parameterized by J, cannot be explained by (83, 62) € S(J) with 3 76 B, as
will be shown. Therefore, S(J) must contain (8, 02). Covariate points with
similar properties are considered in the other proofs. The argument can be taken
further to contradict (8):

The assumption |S(J)] < h would be in contradiction to the existence of
some (3,0?) € S(J) such that

U (x":x'B=x'B}>{x; :iel}
(B.o2)es() B0
because then h < |S(J)| < |S(J)|.



Identifiability of Clusterwise Regression Models 291

Thus, for all (8,02%) € S(J), and in particular for (8,,0%), there exists
() € I such that

V(B,5%) € S(J): x;g,8=x;3B=B=h (11)
Puti = i(8,) in (9). The definition of x; = x; g , implies that
VS(J) 3 (B,5%) # (By,01) : (xiB,6°) # (xiBy, 7). (12)
Thus, using (10),
J{(B1,01)} = J{(B,07) : (xiB,0%) = (xiB1,01)} (13)
implying (84, 02) € S(J).
By (8), J{(B1,01)} # J{(B1,01)}, therefore

38(‘]) 3 (/BQ’U%) 7é (ﬂlva%) : (X;,B%O'%) = (x;/BlaU%)' (14)

Consider x; = X;(3,) and apply the arguments above again to get
2

(B,,02) € S(J). This result leads to a contradiction between (12) and
14). '

Proof of Theorem 3.2.
a) Preparation. Only
Fy=F;=J=J (15)

has to be shown,A because J contains all information to define F;. Let s :=
|S(J)], 8 := |S(J)|, where

S(']) = {(ﬂi’ggaGi)vi = 1’- . e ,8}, T 1= J{(;Biao-iZaGi)L (16)
S(j) = {(:317012,G1)7Z = 17 e ,.§}, ’;Tz = j{(Bza&zQaGAz)} (17)

With this notation,
S
FJ = Z"TiF(.wBi?Uz’Q’ Gl)a
i=1
F defined as in Model 2. Define
pi=y Git+y G (18)

FEY) =y = F; gi(x) = 95 (x7),  gilx7) = Li(x7). (19)
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With that, on a set of x-values of probability 1 under FX,
FYRX=x ——-——)——N 3 oy (20)
Z j= 1 7595(x7) (B,0%)
and by analogy, considering F';,
FYX=x = N4, —~)—N 8 @21)
Z Z] 17TJQJ( ) (' B,,57)

Define the set of all covariate points x which can be used to distinct different
B-parameters by different values of x'3:

M:={x:Vike{l,....s},},me{l,...,5}:
xX'B;=xBp=B; =P, xXB;= x'B, =B, = B,
X'B1=xBp = B =P} (22)
M is complement of a finite union of elements of #H,_;. Therefore, from the

assumption to G,

=Y mGi=FXM) =1

i=1 .
For x € M, all (x'B;,02), % = 1,...,s, are pairwise distinct, because all
(B;,02),i=1,...,s, are pairwise distinct for J € €.

b) Identification of B;, o—f. Forx € M, let Jy be an empirical distribution
on IR x IR defined by
gi(x")

{6/ By, 02)} = migr i e
J) ={(x'B;,02) :i=1,...,s, gi(x")>0}, (24)

such that (20) can be written as

FYIX=x _ /RXR+ NgdJy(8),

i=1,...,s, (23)

and, with .fx defined by analogy to (23),
FrX=x = [ N6
RxR} o x(6)

by (21). Thus, with probability 1 under FX,
T = Jx, (25)
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because Gaussian distributions are identifiable. Because of G;(M) = 1, there
exists x(i) € M : gi(x(s ) ) > 0 and, by analogy, x(j) € M : g;(x(5)7) > 0.
For givens € {1,..., s}, (25) implies

3j € {L,...,38} 1 x(3)'B; = x(i) B;, o} =262
The definition of M yields
:Bw )E{(ﬁj’ ]) je{lv-'-,é}}’
and by the same argument applied to X(j) Vj € {1,...,5}:

(Bjaﬁgz‘) € {(131’03) S {1""58}}'

Therefore

{(Bi,o?) rie{l,...,s}} ={(B;,62) : j € {1,...,8}}.

The definition of Q5 enforces Pa1rw1se distinctness of the elements, therefore

s =§and wlo.g (B;,02) = (B;,6%), i=1,.
c¢) Identification of Gi,e;. Fori = 1,... ,s, there are unique G; and

J{(,Bz,al,G )} for given (B;,0?) such that (8,,02,G;) € S(J) and
analogously G, #; because of the definition of . Define forx € M,i =
1,...,s:

&i(x) == Jx{(x'B;,07)},  &i(x) = Iu{(¥'By,0)}
as defined in (23). Then, by (25),
VxeM,i=1,...,s:€(x) = &(x).
With this result and FX(M) = 1,
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Proof of Theorem 3.3. Fy ; = F, ;= J~a2 J has to be shown. Let Fyj=
F, ;. According to the deﬁmtlon of “~v90” it suffices to show that for arbltrary

(ﬂOan,GO) € S(J)

IG € G: (By,0%,G) € 8(J). (26)
Define X 5 = {x; :i € I, (x}Bg,08) = (xB,6%)}. If dim(X(ﬁ’y)) =
p+1forsome (B,52,G) € 8(J), then (8o, 02) = (B,62), i.e., (26).

Otherwise ¥(B,52,G) € S(J) : SLIEH B2y <P+1 Let Xb the

?)
set of the corresponding x;, let H B, be a (p — 1)-dimensional hyperplane

covering X, , consider

(B2
Fj=F;= Go{xi: (xiBy,008) # (x|B8,6%) V(B,52,G) € S(J)} =

and conclude

H ; =1

Gol U CED!
(B,62,G)es(J)

in contradiction to (6).

Proof of Theorem 4.3: The proof is analogous to that of Theorem 3.3.
Ignore the members of G, and replace J by vy and S(J) by v(I). Observe that

(Bo, 08) = (B, 6%) for some (B,62) € 4(1):
Else U H(ﬂ 5y COVerS {x; : i € I,v(i) = (By,08)} in contra-

(B57)en)
diction to |y(I)| < min{h(B,0?)}.
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