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Abstract

In this paper, a new clustering algorithm for the domain of graphs is introduced. Also a number of cluster validation

indices are reviewed. These indices aim at finding the optimal number of clusters automatically. The suitability of the

considered indices is experimentally evaluated.
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1. Introduction

Clustering is the process of dividing a set of

given patterns into groups, or clusters, such that

all patterns in the same group are similar to each

other, while patterns from different groups are
dissimilar. Clustering problems are ubiquitous in

pattern recognition. For a survey on the most

important clustering methods used in pattern recog-

nition see, for example Dubes (1993). However,

almost all clustering algorithms published in the

literature are based on pattern representations in

terms of feature vectors. A mapping from the

domain of graphs to feature vectors by means of a
neural net and a subsequent clustering procedure

in the feature space, which is based on similarity

constraints, has been proposed in De Mauro et al.

(2001). But there are only a few works where

symbolic data structures, in particular graphs,

have been directly used in clustering (Englert

and Glantz, 2000; Seong et al., 1993; Riano and

Serratosa, 2000; Lus et al., 2001). This lack of
clustering algorithms working on symbolic data

structures is an unfortunate restriction, because

symbolic data structures have a higher represen-

tational power than feature vectors.

Many clustering algorithms require the number

of clusters being given beforehand. To overcome

this problem, various cluster validation indices

have been proposed. These indices allow to mea-
sure the quality of a clustering. Hence, a clustering

algorithm can be executed several times, with a

different number of clusters in each run, and the

clustering that optimizes the considered index is

selected as the final result. Another alternative

is to change the number of clusters dynamically

during the execution of the clustering algorithm.

For example, in the Rival Penalized Competitive
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Learning Scheme, clustering is started with a

number of clusters larger than the expected value

and the location of cluster centers is changed in

a competitive way (Xu et al., 1993). Whenever a

cluster center represents an empty set of input

patterns it is deleted. Thus the number of clusters
can be dynamically changed. Similar strategies

have been discussed in Fritzke (1999). Notice,

however, that all of these techniques were exclu-

sively developed for feature vector representations.

Another approach to dealing with an unknown

number of clusters has been proposed in Lus et al.

(2001). Here the clustering task is formulated as

a maximum likelihood estimation problem, which
is solved by means of the EM-algorithm. This

method can be applied without prior knowledge of

the optimal number of clusters.

In the present paper two issues will be ad-

dressed. First, a graph clustering algorithm that

was recently introduced by the authors (G€uunter,
2000; G€uunter and Bunke, 2002) will be reviewed.
Secondly, a number of cluster validation indices
will be proposed to evaluate the quality of graph

clusterings. It will be shown through experiments

that these indices are suitable to find the optimal

number of clusters automatically.

The paper is organized as follows. In Section 2

the new graph clustering algorithm will be de-

scribed. The following section reviews a set of

cluster validation indices. Experimental results will
be presented in Section 4, and conclusions drawn

in Section 5.

2. A new graph clustering algorithm

For all issues related with graph matching, in

particular with graph edit distance, the reader is
referred to our previous work (Messmer and

Bunke, 1998).

In G€uunter (2000) and G€uunter and Bunke (2002)
a new graph clustering algorithms is introduced.

This algorithm will be briefly reviewed in the pre-

sent section. It is derived from self-organizing map

(som), as described in Kohonen (1997). While the

‘classical’ som-algorithm is based on vectorial
pattern representations, the new clustering algo-

rithm works on graphs. Hence it can be considered

a generalization that includes the original som as a

special case.

A pseudo-code description of the classical som-

algorithm is given in Fig. 1. The algorithm can

serve two purposes, either clustering or mapping a

high-dimensional pattern space to a lower-dimen-
sional one. In the present paper we focus on its

application to clustering. Given a set of patterns,

X, the algorithm returns a prototype yi for each
cluster i. The prototypes are sometimes called

neurons. The number of clusters,M, is a parameter

that must be provided a priori. In the algorithm,

first each prototype yi is randomly initialized (line
4). In the main loop (lines 5–11) one randomly
selects an element x 2 X and determines the neu-

ron y� that is nearest to x. In the inner loop (lines 8

and 9) one considers all neurons y that are within a

neighborhood Nðy�Þ of y�, including y�, and up-
dates them according to the formula in line 9. The

effect of neuron updating is to move neuron y

closer to pattern x. The degree by which y is

moved towards x is controlled by the parameter a,
which is called the learning rate. It has to be noted

that a is dependent on the distance between y and

y�, i.e. the smaller this distance is the larger is the
change on neuron y. After each iteration through

the repeat-loop, the learning rate a is reduced by a
small amount, thus facilitating convergence of the

algorithm. It can be expected that after a sufficient

number of iterations the yi’s have moved into areas
where many x0js are concentrated. Hence each

yi can be regarded a cluster center. The cluster

around center yi consists of exactly those pat-

terns that have yi as closest neuron. More detail
about this algorithm can be found in Kohonen

(1997).

Fig. 1. The som-algorithm.

1108 S. G€uunter, H. Bunke / Pattern Recognition Letters 24 (2003) 1107–1113



In the original version of the som-algorithm all

xj and yi are feature vectors (Kohonen, 1997). To
make the algorithm applicable in the graph do-

main, two new concepts are needed. First, a graph

distance measure has to be provided in order

to find graph y� that is closest to x (see line 7).
For this purpose the use of graph edit distance

(Messmer and Bunke, 1998) has been proposed in

G€uunter (2000) and G€uunter and Bunke (2002).

Notice that graph edit distance has metric pro-

perties (Bunke and G€uunter, 2001), which is very
important for clustering algorithms. Secondly, a

graph updating procedure implementing line 9 has

to be found. Such a procedure has been described
in G€uunter (2000), G€uunter and Bunke (2002) and
Bunke and G€uunter (2001).
The purpose of the updating procedure is to

change graph y so as to make it more similar to

graph x. Thus the edit distance, dðx; yÞ, between x

and y is decreased by a certain amount b. The
procedure described in G€uunter and Bunke (2002)
and Bunke and G€uunter (2001) to accomplish the
task is based on computing the edit distance,

dðx; yÞ, between x and y. Edit distance compu-

tation not only yields a distance value, but also a

sequence of edit operations, d ¼ e1; . . . ; en, that
transform x into y with minimum cost (Messmer

and Bunke, 1998). If we drop some of these edit

operations from d, we obtain a new sequence, d0,

that transforms y into another graph y 0. Now it
can be shown that y0 is more similar to x by the

amount b, where b is the cost of the edit operations
dropped from sequence d.
With these new concepts the som-algorithm be-

comes in fact applicable in the domain of graphs.

For further details, including the initialization

procedure (line 4), definition and computation of

neighborhood Nðy�Þ (line 8), and termination (line
11) (see G€uunter, 2000; G€uunter and Bunke, 2002).

3. Cluster validation indices

Some clustering algorithms, for example the

methods described in Lus et al. (2001), dynami-

cally obtain the number of clusters during execu-
tion, but many clustering algorithms, including the

original and the graph based version of som, re-

quire the number of clusters given as an input

parameter. This is a potential problem as this

number is often not known. To overcome the

problem, a number of cluster validation indices

have been proposed. A cluster validation index is a

number that indicates the quality of a given clus-
tering. Hence if the correct number of clusters is

not known, one can execute a clustering algo-

rithm multiple times, varying the number of clus-

ters in each run from some minimum to some

maximum value. For each clustering obtained

under this procedure the considered validation

index is computed. Eventually, the clustering that

yields the best index value is returned as the final
result.

In this section we review a few cluster valida-

tion indices that have been proposed in the liter-

ature. It is not intended to provide an exhaustive

coverage of all known indices. Only a few indices

that are intuitively plausible, easy to implement

and included in the standard literature on clus-

tering (Dubes, 1993; Theodoridis and Koutroum-
bas, 1998; Jain et al., 1999) have been taken into

account. All indices considered below have been

proposed for vectorial pattern representations

only. However, as it will become evident below,

they can be applied to graph based representations

as well if graph edit distance is adopted as distance

measure.

3.1. Davies–Bouldin index (Davies and Bouldin,

1979)

This index, Davies–Bouldin (DB), is defined as

follows:

DB ¼ 1

M

Xm

i¼1
max

j¼1;...;M ; j 6¼i
ðdijÞ; where dij ¼

ri þ rj

dðci; cjÞ

In the formulas, M is the number of clusters, ri is

the average distance of all patterns in cluster i to

their cluster center ci and dðci; cjÞ is the distance of
cluster centers ci and cj. Hence dij is small if clus-
ters i and j are compact and theirs centers are far

away from each other. Consequently, DB will have

a small value for a good clustering. It is easy to see
that DB 2 ½0;1�. This index has a small compu-
tational complexity, and can be expected to work
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well if the clusters are of spherical shape in the

feature space.

3.2. Dunn index (Dunn, 1974)

Let dmin denote the smallest distance between
two elements from different clusters, and dmax the
largest distance of two patterns from the same

cluster. Then the Dunn index, D, is given by

D ¼ dmin
dmax

Clearly, D 2 ½0;1� with larger values of D indi-

cating better clusterings. Obviously, compact

clusters that are well separated in the feature space

manifest themselves in small values of dmax and
large values of dmin, leading to a small value of D.
This index is easy to implement and has a low
computational complexity, but it is vulnerable to

outliers as only two distances are used.

3.3. C index (Hubert and Schultz, 1976)

This index is defined as follows:

C ¼ S � Smin
Smax � Smin

In this formula, S is the sum of distances over all

pairs of patterns from the same cluster. Let l be the

number of those pairs. Then Smin is the sum of the l

smallest distances if all pairs of patterns are con-

sidered (i.e. if the patterns can belong to different

clusters). Similarly Smax is the sum of the l largest
distances out of all pairs. It is easy to see that

the numerator in the formula will be small if

pairs of patterns with a small distance are in the

same cluster. Hence a small value of C indicates a

good clustering. The denominator serves the pur-

pose of normalization, causing C 2 ½0; 1�. This in-
dex is appropriate when the clusters have similar

sizes.

3.4. Goodman–Kruskal index (Goodman and Krus-

kal, 1954)

For this index all possible quadruples ðq; r; s; tÞ
of input patterns are considered. Let dðx; yÞ be the
distance of pattern x and y. A quadruple is called

concordant if one of the following two conditions is

true:

• dðq; rÞ < dðs; tÞ, q and r are in the same cluster,

and s and t are in different clusters.

• dðq; rÞ > dðs; tÞ, q and r are in different clusters,
and s and t are in the same cluster.

By contrast, a quadruple is called disconcordant if

one of following two conditions is true:

• dðq; rÞ < dðs; tÞ, q and r are in different clusters,

and s and t are in the same cluster.

• dðq; rÞ > dðs; tÞ, q and r are in the same cluster,
and s and t are in different clusters.

Obviously, a good clustering is one with many

concordant and few disconcordant quadruples.

(Notice that some quadruples may be neither

concordant nor disconcordant.) Let Sþ and S�

denote the number of concordant and disconcor-

dant quadruples, respectively. Then the following
quantity, called the Goodman–Kruskal index

(GK), can be used to assess a given clustering:

GK ¼ Sþ � S�

Sþ þ S�

Apparently, large values of GK indicate a good

clustering. Notice that the denominator normal-

izes the index such that GK 2 ½�1; 1�. This index
can be expected to be robust against outliers be-

cause quadruples of patterns are used for its

computation. However, its drawback is a high

computational complexity, which restricts its ap-
plicability to problem of rather moderate size.

4. Experimental results

The graph clustering algorithm and the clus-

ter validation indices described in Sections 2 and

3, respectively, were experimentally evaluated. In
the experiments, graph representations of capital

characters were used. In Fig. 2, 15 characters are

shown, each representing a different class. The

characters are composed of straight line segments.

In the corresponding graphs, each line segment is

represented by a node with the coordinates of the
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endpoints in the image plane as attributes. No

edges are included in this kind of graph represen-

tation. The edit costs are defined as follows. The

cost of deleting or inserting a line segment is pro-
portional to its length, while substitution costs

correspond to the difference in length of the two

considered line segments. This kind of represen-

tation will be called R1 in the following.

In addition to R1, a second representation,

called R2 below, was considered. Under R2, the

nodes represent locations where either a line seg-

ment ends, or where the end points of two different
line segments coincide with each other. The attri-

butes of a node represent its location in the image.

There is an edge between two nodes if the corre-

sponding locations are connected by a line in the

image. No edge attributes are used in this rep-

resentation. The deletion and insertion cost of a

node is a constant, while the cost of a node sub-

stitution is proportional to the distance of the
corresponding points in the image plane. The de-

letion and insertion of an edge also have constant

cost. As there are no edge labels, edge substitu-

tions will never be needed under representation

R2.

For each of the 15 prototypical characters

shown in Fig. 2, 10 distorted versions were gen-

erated. Examples of distorted A’s are shown in
Fig. 3. The degree of distortion of the other

characters is similar to Fig. 3. As a result of the

distortion procedure, a sample set of 150 charac-

ters were obtained. Although the identity of each

sample was known, this information was not used

in the experiments described below. In other

words, only unlabeled samples were used in the

experiments.

The graph clustering algorithm described in

Section 2 was run on a set of 150 graphs repre-

senting the (unlabeled) sample set of characters,

with the number of clusters set to 15. As the al-
gorithm is non-deterministic, a total of 10 runs

were executed. The cluster centers obtained in one

of these runs are shown in Fig. 4. Obviously, all

cluster centers are correct in the sense that they

represent meaningful prototypes of the different

character classes. In all other runs similar results

were obtained for both representation R1 and R2,

i.e., in none of the runs an incorrect prototype was
generated. Also all of the 150 given input patterns

were assigned to their correct cluster center.

From these experiments it can be concluded

that the new graph clustering algorithm is able to

produce a meaningful partition of a given set of

graphs into clusters and find an appropriate pro-

totype of each cluster, if the correct number of

clusters is known. The purpose of the experiments
described below is to investigate the usefulness of

the cluster validation indices described in Section 3

in order to automatically find the correct number

of clusters.

The graph clustering algorithm was executed

multiple times increasing the number of clusters

from 2 to 24. Then all of the four considered in-

dices were computed for each of the resulting
clusterings. Graphs showing the values of the in-

dices as a function of the number of clusters are

depicted in Figs. 5 and 6. Notice that the optimal

number of clusters manifests itself in a small value

of the DB and the C index, while it corresponds to

a large value of the Dunn and GK index. It is

evident from Figs. 5 and 6 that, for each of the

considered indices, the correct number of clusters
always corresponds to an optimal index value.

Fig. 2. Fifteen characters each representing a different class.

Fig. 3. Ten distorted versions of character A.

Fig. 4. Cluster centers obtained in one of the experimental

runs.
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However, there are several ties or near-ties. For
example, the minimum of the C index is achieved

for the correct value of 15, but also for 16 under

both representation R1 and R2. In order to make

the automatic determination of the optimal num-

ber of clusters more robust and eliminate such ties,

a simple voting strategy was implemented. The

number of clusters with the best, the second best

and the third best result for an index receives 3, 2
and 1 points, respectively. (Notice that the best

values are large for Dunn and GK, but small for

DB and the C index.) Then the sum of the points

for all indices were calculated for each number of

clusters. The result is shown in Fig. 7. Obviously,

the combination index shown in Fig. 7 is a clear

improvement over all individual indices. The cor-

rect number of clusters (15) is represented by a

very sharp peak for both representation R1 and

R2. Ties or near-ties do not occur any longer.

5. Conclusions

Clustering has become a mature subfield of

pattern recognition, but the clustering of graphs is

still a widely unexplored area. In the present paper

Fig. 5. DB index (left) and Dunn index (right) as a function of the number of clusters.

Fig. 6. C index (left) and GK index (right) as a function of the number of clusters.

Fig. 7. Score resulting from the combination of all indices.
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a new graph clustering algorithm is reviewed. It is

an extension of the well-known som-algorithm

into the domain of graphs. The main contribu-

tion of the paper is an extension of a number of

cluster validation indices from feature vector rep-

resentations to the graph domain. These cluster
validation indices allow the application of the

proposed graph clustering algorithm without any

prior knowledge of the number of clusters. The

applicability of the new graph clustering algorithm

and the cluster validation indices has been dem-

onstrated through a series of experiments.

Only drawings consisting of straight line seg-

ments are considered in this paper. But it is
straightforward to apply the approach to graph

representations of other types of patterns. Ex-

amples are line drawings with curved segments

(Foggia et al., 1999) or patterns composed of re-

gions (De Mauro et al., 2001). Future research will

also address the development of additional graph

clustering algorithms and techniques to find the

optimum number of clusters automatically.
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