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Large-Sample Results for Optimization-Based Clustering 
Methods 

Peter G. Bryant 

University of Colorado at Denver 

Abstract: Many common (nonlaierarchical) clustering and classification methods 
are optimization-based methods, in the sense described by Windham (1987) in this 
Journal. This paper gives some large sample properties for estimates derived by 
such methods. Under appropriate conditions, such estimates converge with proba- 
bility one to a limit, and are asymptotically normally distributed around that limit- 
ing value. The conditions are satisfied by most of the common examples of 
optimization-based methods. 

Keywords: Classification; Clustering; Maximum likelihood; Asymptotic proper- 
ties. 

1. Introduction 

Windham (1986, 1987) described a class of clustering and 
classification methods called optimization-based methods, and showed that 
many common (nonhierarchical) methods fall in this class. While whole 
classes of hierarchical methods have been studied (see Day and Edelsbrunner 
1985), for example), nonhierarchical methods have typically been treated 
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individually, and in an ad hoc manner. Windham's characterization of  
nonhierarchical methods seems to be the first which provides a basis for a 
coherent theory of  such methods. 

This paper extends Windham's work by giving some large-sample sta- 
tistical properties of  the common optimization-based methods. Specifically, 
it shows that under appropriate conditions, estimates of  cluster characteristics 
derived by such methods will tend to limiting values with probability one, 
and will be approximately normally distributed around those values for large 
samples. In a random sample of observations from a population, we might 
say that the sample average "tr ies"  to estimate the population mean, because 
it tends to the population mean as the sample size increases. The limiting 
values for an optimization-based method tell us, in the same sense, what the 
method is " t rying"  to estimate. As will be seen in Section 4, the results are 
sometimes surprising. 

The paper also extends the work of Marriott (1975) and Bryant and 
Williamson (1978, 1986) by showing that the large-sample results derived 
there for particular cases apply to optimization-based methods generally. 

Section 2 contains the necessary background and notation. In the 
interests of  making this paper somewhat self-contained, several ideas and 
examples from Windham (1987) are included there. Section 3 gives the gen- 
eral large-sample results, and discusses when optimization-based methods 
will satisfy the required conditions. Some general observations on the lack of  
consistency of  the resulting estimators and several numerical examples are 
given in Section 4. 

2. Notation and Background 

We consider a d by n matrix X = (x  1,x 2 . . . . .  Xn) of n d-dimensional 
observations x 1,x2 . . . . .  xn to be grouped into k classes characterized in the 
aggregate by a vector parameter 0 taking values in some set O. Often, but not 
always, 0 will be of the form 0 = (01 . . . . .  0 k : c ) ,  where 0j denotes the 
parameters (such as location parameters) characterizing class j ,  and 0 denotes 
the parameters (such as common scale parameters) common to all classes. 
Let the vector a = (al . . . . .  ak) denote the degrees of membership of a generic 
observation x in each of  the k classes, and let al = (ail,ai2 . . . . .  aik) denote 
them for a particular observation xi. The entries aij are restricted to be non- 
negative numbers satisfying Ej aij = 1. When the aij take on only the values 
0 or 1, we have a partition, and aij = 1 means that xi is assigned to class j. 
We may interpret values of  ai) between 0 and 1 as probabilities of  member- 
ship in class j,  or (in the language of fuzzy sets) degrees of  membership, 
though neither of these interpretations is required. We call the n by k matrix 
A whose i-th row is ai a standard classification matrix, and let A* denote the 
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set of all such matrices. The degrees of membership play key roles in 
optimization-based methods, as will be seen. 

In what follows, the ranges of the indices i and j in summations are 
assumed to be 1 to n and 1 to k, respectively. Optimization-based clustering 
methods include: 

Classification methods: those which choose the classifications A ~ A* 
so as to minimize some function C(A,X); 

Estimation (or cluster description) methods: those which choose 
parameters 0 c O so as to minimize some function E(0,X); and 

Combined methods: those which choose A c A* and 0 c @ so as to 
minimize some function B(A,0,X). 

In a combined method speci fled by B, let A = .~(0,X) be the value of  A 
which minimizes B as a function of A. Then E(0,X) = B(A,0,X) is an esti- 
mation method generated by B(A,0,X). Similarly, if 0 = 0(A,X) minimizes B 
as a function of  0, C(A,X) = B(A,0,X) is a classification method generated 
by B(A,0,X). Windham (1987) and Bryant (1988) showed that given a 
classification method or an estimation method, there exists a combined 
method which generates it. Without loss of generality, then, we may restrict 
attention to combined methods. 

The following examples illustrate the range of methods included. Con- 
sult Windham (1987) for further discussion and references. It is convenient 
to have the following terms defined: 

n) = Ziaij  , 

Xj = [ • ia i j x i ]  / n j  , 

W j  = ~ i a i j ( x i  - x j ) ( x i  - ~ j ) t  , and 

w:xjwy, 
where x t denotes the transpose of  x. These are the analogues of the number 
of observations "ass igned"  to class j, the mean of  class j,  and the total scatter 
matrix. 

Example 1. The trace criterion. Let 0 = (~q . . . . .  ~ ) ,  and let 
B(A,0,X) -Ixjl 2, where I I denotes the Euclidean norm. The ZiZjai) Ixi 
optimal value of  I.tj is 12j = xj, and B(A,0,X) = Ej tr (Wj). This is essentially 
the k-means criterion. 

Example 2. The within-cluster determinant criterion. Let 
B(A,0,X) = Z i Y j a i j ( x  i - ~ I . j ) M j ( x  i - g j ) t ,  where the M j  are  positive definite 
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symmetric d by d matrices with determinant ( 1 / d )  a. Here 
0 = (It 1 . . . . .  ~tk, M1 . . . . .  Mk), the optimal values are ~tj = xj, 
Mj = d -1 det (Wj) TM (Wj) -1 , and B(A,0,X) = Xj(det Wj) TM. 

Example 3. The determinant criterion. Let 
B(A,0,X) = ] ~ i Y ' . j a i j ( x i  - gj)M(xi - gj)t, where M is a positive definite d by d 
matrix with determinant (1 / d) d. For this case, 0 = (~h . . . . .  ~tj,,M), ~tj = xj, 
M = d -1 det (W)I /d(w)  -1, and B(A,0,X) = (det W) TM. 

Example 4. Mix tu re  analysis.  Let fj(x,co) (j' = 1 . . . . .  k) be probability den- 
sities, and let B(A,0,X) = - EiEjaij log {pjfj(xi,eo)} + EiEjaij log (aij). Here 
0 = (pl . . . . .  pk,o3) and Ejpj : 1. For this case, aij = [pjfj(xi,o3)]/ 
Ej[pjfj(xi,co)], and B ( A , 0 , X ) =  - X / l o g  {Xjpjfj(xi,co)}. Thus, B generates 
the estimation procedure known as mixture maximum likelihood. 

Example 5. Classification Maximum Likelihood. Let B(A,0,X)= 
-ZiEjaij log {~(xi,o))}, where /) are as in Example 4. For this example, 
aij = 1 when j = arg max {)~(x/,co)} and zero otherwise, and B(A,0,X) = 
- Ei maxj[ log {j~(xi,~)} ]. 

Example 6. Penalized Classification Maximum Likelihood. Let 
B(A,0,X) = - EiEiaij log {pfl~(xi,~)}, where 3~ and pj are as in Example 4. 
This example differs from Example 5 by the penalty term EiEjaij log (pj), and 
is discussed further in Section 4. 

Example 7. The fuzzy k-means criterion. Let 0 = (I-h . . . . .  P-k), and let 
B(A,0,X) = ZiZ_~/(aij) 2 I x i  - ~ j  12. The optimal value of  is 
aij = I x i - ~ j l -  / E j l x i - ~ j 1 - 2 ,  and B(,~,0,X) = Xi{Ejlxi-Ixjl-2} -laij 

In all of  these examples, B(A,0,X) is of  the form 

B(A,0,X) = Xib(ai,O,xi), (2.1) 

for some function b(a,0,x),  and it is this form which allows application of  
some standard results of  mathematical statistics. Let us call such a method a 
linear optimization-based (LOB) method for short. 
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3. Large Sample Propert ies  for LOB Methods 

3.1 Main Results 

Let us now suppose that x~ . . . . .  xn are a random sample from some 
distribution with density f(x) with respect to some underlying measure u, and 
denote by E { } expectations with respect to this density. Let On be the (ran- 
dom) optimal value of 0 determined by the x's using a given LOB method 
B(A,0,X) = Yib(ai,O,xl) - -  i.e., that value of 0 which minimizes B(A,0,X) as 
a function of  0. The large sample properties of On may then be summarized 
as follows. 

Theorem. I f  the generalized Wald suJficient conditions are satisfied, then as 
n becomes large On converges to Oo almost surely, where Oo is the value o f  0 
which minimizes Q(O) = E{b[~,O,x]} as a funct ion o f  O. If, in addition, the 
normality conditions are satisfied, then the distribution o f  n 1/2 (O n --00) 
approaches a normal distribution with mean vector 0 and variance- 
covariance matrix p-1Hp-1  where 

P = (Pij) = {(32 / 30i30j)Q(O)) , 

H = (Hij) = E(bi(O,x)bj(O,x)} , and 

b~(O,x) = (3 / 30~)b(,q,O,x) 

The conditions referred to in the theorem are: 

Generalized Wald Sufficient Conditions (for a.s. convergence): 

(R1) O is a closed subset of R m, for some m. 
(R2) For each 0 e O, there is a neighborhood of 0 and a function L(x,0) 
with E{L3(x,0)} finite such that for all 0" and 0" in the neighborhood, 

I b(a,x,0") - b(a ,x ,0-)  I < L(x,0) I 0" - 0"1. 

(R3) Q(0) has a unique minimum at 0o ~ O. 
(R4) If O is not bounded, then there exists a compact set C c O for 
which E{supb(~,x,0)} is finite, where the supremum is over those 0 not 
in C. 
(R5) If O is not bounded, then except for x in a set of u-measure zero, as 
mini 10j I tends to infinity, so does b(~,t,x). 

For the case in which O is not bounded, (R4) and (R5) will basically allow us 
to confine our search for 0 to the compact set C eventually. Under these con- 
ditions, the proof of  almost sure convergence is the same as that in Bryant 
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and Williamson (1978), using b(,q,0,x) in place of the In ~(x,O)(x,0)] used 
there. 

N o r m a l i t y  C o n d i t i o n s :  

( W l )  O ( 0  ) - O(0o )  = (1 /2) (0  - 0o) t M'" (0 - 0o) + 10 - 0o 12h(0  - 00) ,  
where M is megative definite, h(v) tends to zero as v does, and in some 
neighborhood of 0o, the first partial derivatives of  h exist and are con- 
tinuous except possibly at 00, and are bounded by F / 1 0 - 0 0 1  v, for 
some constant F and some 7 < 1. 
(W2) For each 0 e O, the partial derivatives bj exist almost surely (with 
respect to f), and as a function of 0j alone, bj has only finitely many 
discontinuities, at least over some bounded open interval containing 0o 
for each x. 
(W3) For each compact subset C of  | and each 8 > 0, there exists a 
random variable Z(x,C,8) with E{Z} = 0(8)  and E{Z 2} = O(5), such 
that for i = 1 . . . . .  k, 

sup I bi(0",x) - bi(0",x) l < Z(x,C,5), 

where the supremum is over the set where 10" - 0"" 1 < 5 and 0",0"" e C. 

Under these conditions, Daniels' (1961) proof as augmented by Williamson 
(1984) can be extended to the case where 0 is multidimensional, as is done in 
Bryant and Williamson (1984). 

3.2  R e m a r k s  

The theorem in the previous section is one of many generalizations of  
the corresponding classical results for maximum likelihood estimators. 
Example 5 with k = 1 reduces to ordinary maximum likelihood, for example. 
The results are known in various forms and under a variety of conditions. 
The basic result (in reasonable generality) is given by Huber (1967) in the 
context of M-estimators. His formulation has the advantage of applying to an 
open parameter set, which would include the usual scale parameters, but his 
conditions are hard to verify in practice. In Example 5 and similar examples, 
the derivatives bj are often discontinuous at a few points, and this situation 
motivated the normality conditions above, which include such cases and are 
typically easier to verify in classification problems. Note that the smoothness 
required for the asymptotic normality is on Q(0), not on b. Even when the bj 
are discontinuous, the expectations involved will normally have the required 
smoothness, as the discontinuities typically are isolated. The restriction to a 
closed set is unappealing mathematically, but is of  little practical importance, 
as we would almost always be willing to restrict a variance (say) to be greater 
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than or equal to some number (10 .9 , say) greater than zero. Recently, 
Bardwell (1989) has used an ingenious argument to show how this restriction 
can sometimes be removed. 

When b(fi,O,x) has continuous third partial derivatives which in some 
neighborhood of  00 are bounded by an f-integrable function which is 
independent of  0, an analogue of the usual proofs for maximum likelihood for 
smooth conditions applies here, and the rather technical conditions (Wl)-  
(W3) need not be verified. These results are discussed from other points of  
view by Pollard (1981, 1982), Foutz and Srivastava (1977), Hartigan (1978), 
White (1982), Bock (1985), Dupacova and Wets (1988), Windham (1989) and 
Boente and Fraiman (1988) among others. 

3.3 Application to LOB Methods 

Whether or not the conditions of the theorem are satisfied depends on 
the assumptions made about the particular function b and the underlying pro- 
bability density, of course, but it will often be possible to demonstrate that 
they are satisfied. As Windham points out, in all the common examples, 
including those in Section 2, b takes one of the following three forms, except 
possibly for additive or multiplicative constants: 

Form 1: b(a,0,x) = EjajDj(x,O); 
Form 2: b(a,0,x) = ZjajDj(x,O) + Zjajlog(aj) + log(k); 
o r  

Form 3: b(a,0,x) = Y.jk "/(aj)l+'fDj(x,O), for some y > 0, 

where Dj(x,0) is some measure of the discrepancy between the observation x 
and class j as described by 0. Typically, Dj = I x  - 0 j  12, for some norm, or 
Dj = - log {3~(x,0)}, or something similar. When the optimal values of a are 
used, we obtain: 

Form 1: b(fi,0,x) = minj{Dj(x,O)}; 
Form 2: b(fi,0,x) - l o g [ k  -1 Z) exp{ -Dj (x ,0)}]  
Form 3: b(~,0,x) = [k-l~_,j{Dj(x,O)} -1/Y ]-Y. 

In each of  these cases, b is some sort of "combination" of the discrepancies 
oj: 

b(a,0,x) = miD 1 (x,0) . . . . .  Dk(x,0)] , 

where the function m ( y ) = m ( y l , Y 2  . . . . .  Yk) satisfies the following condi- 
tions: 

(C1): m is symmetric and continuous in its arguments. 
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(C2): mini {yj } < m(y) < maxj {yj }. 
(C3): The partial derivatives m ) =  Om/byj  exist and are continuous 
except possibly for a set of  Lebesgue measure zero. 
((24): There exists a constant K such that: 

0_< m/(y) _< K 
Ejmj(y ) <_ K 
I m ( y ) - m ( z ) l _ < K  l y - z l  

These properties allow us in many cases to verify the conditions of the 
theorem by verifying the corresponding properties for the discrepancies 
Dj(x,O). The problem is thus reduced to the corresponding problem for k = I. 
For example, it is easy to show that under Conditions C1-C4: 

(1) R2 will be satisfied if the D) satisfy it, that is R2 holds with b(fi,0,x) 
replaced by D i(x,0). In the important example in which 
Dj(x,0) = I x - 0 j l  2, IOj(x,Ol)-Oj(x,02)l  < 2 { 1 0 - x l  + E} 101--02[ 
when 0x and 02 are within e of 0. R2 will then be staisfied if x has finite 
third moments. 

(2) R4 and R5 will be staisfied if the Dj satisfy them. When 
Dj(x,0) = I x - 0 j l  2, R5 is automatically satisfied, and R4 will be 
satisfied for such distributions as the normal. 

(3) R3 must generally be verified independently. As some of the examples 
in the next section show, R3 is not always satisfied. 

(4) If  the Dj have continuous third derivatives with the appropriate bounds, 
W1-W3 will be satisfied. This will not be true for b's of Form 1, though, 
when W1-W3 must be verified independently. Since the discontinuities 
of  mj typically occur where f assigns zero measure, this is usually 
demonstrable. 

For LOB methods satisfying C1-C4, then, we can usually demonstrate 
that the conditions of  the theorem are satisfied. 

4. Consistency Results 

4.1 Introduction 

When the true density is f = f(0*,x), a member of some parametric 
family, with true value of 0 = 0", it is not necessarily the case that the limit- 
ing value 0o = 0", and thus 0n may be an asymptotically biased (inconsistent) 
estimator of the tree value 0". This result can also be seen in the following 
formulation. 

By the Law of Large Numbers, n-lB(,~,gn,X) tends to Q(0o) as n 
becomes large. For any given b(a,x,O), let t(0) = .[exp{ -b[ 'a ,0,x]}dx,  and 
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let b*(x,0) = exp{ - b(fi,x,0)} / 1(0), so that b* is a probability density. Note 
that 

where 

Q(0o) = K(00) + E{ - logf(x)} - log I(00), 

K(0) = E{ - log [b*(fi,O,x)/f(x)]} 

(4.1) 

is the Kullback-Leibler measure of discrepancy between b* and f. Our limit- 
ing minimum value of b, then, is E{ - l o g f ( x ) } ,  the entropy inherent in the 
true distribution of the data, modified by two additive terms: logl(00), a 
modification because our function e -~ does not necessarily integrate to 1 (is 
not a probability density), and K(00), a modification because even if e -t' d i d  

integrate to 1, it would not equal the true density f. It is standard to show that 
K is positive unless b* = fa lmost  surely. We may interpret this as a reminder 
that not knowing the form o f f  can only hurt us. If we were using b = - log f, 
we would always get a lower minimum, and the minimum would occur at 
0 = 0o. In general, then, there is no reason to expect that estimates so derived 
will be consistent. Indeed, they often are not. Further, in the light of (4.1) no 
simple modification can be expected to correct the problem, unless it is based 
either on knowledge of  the form of the true distribution or else somehow 
adapts to it for large samples. Several approaches using penalty functions 
have been tried, though, and the theorem in Section 3 allows us to assess (at 
least asmptotically) their effects. 

4.2 Examples 

In the context of clustering methods, the first use of these ideas seems 
to be Marriott (1975) and Bryant and Williamson (1978), where it is noted 
that estimates derived by classification maximum likelihood (CML, Example 
5) are generally inconsistent. In this section we illustrate such inconsistency 
and evaluate two attempts to remove the inconsistency by using "penal ty"  
functions. We limit attention to the case when k = 2. The results for CML 
from Bryant and Williamson (1978) are repeated here to facilitate comparison 
with the other two attempts. 

The CML procedure in such a case is a LOB method with 

b(a,0,x) -= - log ( [fl (0,x)] ~ [f2(0,x)] l-a } 

in the variation considered by Scott and Symons (1971), Marriott (1975) and 
Bryant and Williamson (1978, 1986). Let us call it CML variation 1. 
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Equation (4.1) suggests that using b + log I(0) instead of  b might serve 
to improve the performance. Unless b -- - log fexac t ly ,  of  course, we cannot 
guarantee consistency, but perhaps we can come closer by including some 
penalty like log I(0) which accounts for the fact that e -b is not a probability 
density. One approach to this is the penalized CML approach (Example 6) in 
which 

b(a,0,x)  = - log { [Pfl (0,x)] a [(1 - p)f2(0,x)] l-'a } . 

This has been considered by Symons (1981), Marriott (1982), and Windham 
(1986). Let us call it CML variation 2. It has the advantage that the penalty 
term does not depend on the functional form of  the 3~, but since in practice, 
we know the form of  the j~, though not the form of  the true f ,  we could also 
use log {I(0)} itself: 

b(a,0,x) = - log { [fl  (0,X)} a [f2(0,X)] l-a } 

+ log (I(0)1.  

Let us call this one CML variation 3. 
We now consider the univariate case, with j~ equal to the normal den- 

sity with mean gj and standard deviation c (g l  < g2). For any of  the three 
variations of  CML, one can show that 

= 1 i fx  < M 

and 0 otherwise, where 

M = ( g l  + g 2 ) / 2  

for variation 1 or variation 3, and 

M = (I.tl + ~t2) / 2 + {c 2 log [p / (1 - p ) ]  / (It 2 - I-q)} 

for variation 2. Using these results and the fact that for this case, 
I(0) = 2 0  {g2 - g l )  / (2c)}, where ~ denotes the cumulative standard normal 
distribution, direct calculations show that if there is a global minimum in the 
interior of  O, the optimal values eo satisfy 

po = F(M) 

F(M)~tlo = fx<MxdF(x) + CYo(A / 2)  

[1 - F ( M ) ] g 2 o  = fx>MxdF(x) - c o ( A  / 2)  
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(~o)2(1 - ~A) = Ix<M(X - I.t lo)2dF(x) 

+ Ix>M(X -- g2o)ZdF(x)  

where 8 = (P-2o-glo) /Co,  A = q~'(8/2) / ~,(8/2) for variation 3 and A = 0 
for variations 1 and 2. If the true mean and variance of X are E { X }  = go and 
variance (X) = V 2, respectively, then 

POP-lO + (1 -po)/.t20 = go and 

((30) 2 = V2 -Po(  1 -Po)(g20 - ~1.10) 2 

Suppose further that the true underlying distribution F ( x )  is a mixture 
of  two normals differing in mean with a common variance. Conditions R1-R5 
and WI-W3 follow easily by direct calculation of the various expectations, 
except for R3, which must be verified numerically. The equations above may 
then be solved numerically to yield the limiting values. Such values are 
given for typical parameters in Tables 1,2, and 3. Note that for variations 2 
and 3, it is sometimes the case that the minimum in the interior is a local 
minimum only. The minimum obtained there is greater than the minimum 
obtained by letting the cut-point M tend to either plus or minus infinity (in 
effect, classifying all the data in one class). Intuitively, this means that while 
classifying into two populations improves the fit (and gives a lower 
minimum) compared to a model using a single normal distribution, the 
improvement is not so much as to compensate for the "penal ty"  term in Q. 

Table 2 also lists for each value of  ~* the minimum separation required 
between the means for the interior minimum to be a global minimum. In 
those cases where the convergence of CML variation 2 is assured, the limit- 
ing values are perhaps marginally better than those for variation 1, but this 
happens only for well-separated components and the biases in such cases are 
small in any case. 

For variation 3, things are a bit different. As with variation 2, the 
optimum does not always occur in the interior, but for each given distance 
between the means, there is a range of values of  the mixing proportion ~t* for 
which the optimum occurs in the interior, roughly .22 to .78. Exact values are 
given in Table 3. There seems to be little reason to prefer the limiting values 
for variation 3 to those of either variation 1 or variation 2. 

In short, the large sample results of Section 3 show that there is some 
evidence that penalty functions can reduce the asymptotic bias in CML esti- 
mates, but not in a uniformly useful way. When the components are well 
separated and the mixing proportions are not extreme, the bias is reduced, but 
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TABLE i.  

LIMITING VALUES OF CML VARIATION I ESTIMATES 
FOR TWO NORMALS DIFFERING IN MEAN 

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  . . . .  

* * 2 
P2 ~ ~10 ~20 ~ 0 PO 

! . I  .048 1.713 .398 .488 
.2 -.OB7 1.632 .422 .484 
.3 -.204 1.555 .437 .486 
,4 -.306 1.477 .445 .492 
.5 -.396 1.396 .44B ,500 

2 .I .735 2.593 .516 ,427 
.2 .348 2,440 .589 .40! 
.3 .09B 2.336 .621 .41B 
.4 -.059 2.253 .635 .455 
.5 -.167 2.167 .639 .500 

3 . I  1.122 3.391 .720 ,305 
.2 .345 3.200 .796 .2BO 
.3 .I08 3.143 .B13 ,344 
.4 .003 3.103 .819 .420 
.5 -.059 3.059 .B21 .500 

4 .1 .560 4.102 .013 .142 
.2 .139 4.060 .927 ,219 
.3 .048 4.046 .930 ,312 
.4 .007 4.033 .931 .406 
.5 - , 0 1 6  4.017 .932 .500 

Notes: 
(i) Values tabulated are limiting values o~ estimates of the group means, common 
variance and proportion in the lower class, derived as described in the tewt, 

(2) True distribution is the mixture ,sN(O,I)+(I-,e)N(~2e,}), 

TABLE 2, 

LIMITING VALUES ~F CML VARIATION 2 ESTIMATES 
FOR TWO NORMALB DIFFERING IN MEAN 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ========== -~ .................. ~ .................................. ~ ..... 

" U2,min u2 PlO P20 ~ 0 PO 

. i  2,597 3 -.441 2.959 .998 .076 
4 -.102 3.995 .975 .096 

.2 2.822 3 -.219 2.987 .901 .183 
4 -.056 4.000 .953 .197 

.3 2.936 3 -.151 3.014 .B51 .291 
4 - ,036  4,005 .941 .298 

.4 3,010 4 -.025 4.011 .934 .399 

.5 3.036 4 -,017 4o017 .931 .500 

Notes: 
(1) Values tabulated are limiting values of estimates oT the group means, common variance 
and proportion in the lower class, derived as described in the text, 

~2) True distrlbution is the mixture .~N(O,I)+~I-,e)N(~2a,I). 

. . . .  (3) Values of ~2,mln are the minimum values of p21 for mhich Variation 2 of CML has an 
interlor minimum, as described in the text. 
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TABLE 3. 

LIMITING VALUES OF CML VARIATI0N 3 ESTIMATES 
FOR TWO NORMALS DIFFERING IN MEAN 

======================================================================= 

P2 ~min w ~i0 ~20 o 0 PO 

1 . 2 1 4  . 2 5  . 7 3 6  , 7 6 3  1 , 1 7 5  , 4 9 4  
, 3 0  .66& , 7 3 3  1 . 1 8 1  , 4 9 5  
.40 .536 .663 1,183 .497 

.50 ,425 ,575 !,183 .500 

2 .220 .25 1.353 1.626 1,605 .462 

.30 1.045 1.703 1,478 .461 

.40 .620 1.722 1.327 .474 

.50 .387 1.613 1.285 .500 

3 .225 .25 1,382 2.782 1.765 .380 

�9 30 . 7 0 6  2 . 9 2 7  1 , 3 4 6  . 3 7 2  
.40 .325 2.907 1.205 .429 
.50 .173 2.827 1.182 .500 

4 . 2 2 7  . 2 5  . 2 9 3  4 . 0 0 1  1 , 1 1 6  . 2 7 0  
, 3 0  .201  3 , 9 9 3  1 , 0 9 9  , 3 1 5  
. 4 0  . I 0 7  3 . 9 7 2  1 , 0 8 7  . 4 0 7  
.50 .058 3.942 1.084 .500 

........................................................................ 
Notes: 

(I] Values tabulated are limiting values of estimates o( the group geans, common variance 
and proportion in the lower class, derived as described in the text. 

(2) True distribution is the mixture wJN(O,I)+(I-~JiN(#2*,I). 
(3) Values of w. are the minieuiYalues of ~ for whlch Variation 3 o( CML has an 

. . eln 
loterlor mlni|uu, as described in the text. 

it was small then to begin with. For ill-separated components or extreme 
values of  the mixing proportions, the penalized CML approaches don't clas- 
sify at all, in effect. This may be a useful result when we wish to determine if 
classes are really present, but it's not really helpful for purposes of  reducing 
bias in the estimates of  the cluster characteristics in the case in which we can 
assume the clusters really are present. 
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