
ELSEVIER Pattern Recognition Letters 17 (1996) 825-832

Pattern Recognition
Letters

In search of optimal clusters using genetic algorithms
C.A. Murthy a.,, Nirmalya Chowdhury b

a Machine Intelligence Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700 035, India
b Ramakrishna Mission Shilpapitha, Belgharia, Calcutta 700 056, India

Received 18 January 1995; revised 18 March 1996

Abstract

Genetic Algorithms (GAs) are generally portrayed as search procedures which can optimize functions based on a limited
sample of function values. In this paper, GAs have been used in an attempt to optimize a specified objective function related
to a clustering problem. Several experiments on synthetic and real life data sets show the utility of the proposed method.
K-Means is one of the most popular methods adopted to solve the clustering problem. Analysis of the experimental results
shows that the proposed method may improve the final output of K-Means where an improvement is possible.

Keywords: Pattern recognition; Clustering; K-means; Genetic algorithms

I. Introduct ion

Clustering is an important technique used in dis-
covering inherent structure present in a set of objects.
More specifically, the purpose of cluster analysis (An-
derberg, 1973; Devijver and Kittler, 1982; Jain and
Dubes, 1988; Tou and Gonzalez, 1974) is to group a
set of patterns, usually vectors in a multi-dimensional
space, into clusters in such a way that patterns in the
same cluster are similar in some sense and patterns
in different clusters are dissimilar in the same sense.
We assume that the given patterns belong to an n-
dimensional Euclidean space R n and that the dissimi-
larity measure is the Euclidean distance.

Let the set of patterns M be {xl, x2 Xm}, where
xi is the ith pattern vector. Let the number of clusters
be k. If the clusters are represented by C1, C2 Ck,
then

* Corresponding author. E-mail: murthy@isical.ernet.in.

P1. Ci ~ O, f o r / = 1 k,
P2. C i N C j = 0 for i v~ j , and

P3. U~=l c i = M .

Clustering techniques may broadly be divided into
two categories: hierarchical and non-hierarchical (An-
derberg, 1973). Among the non-hierarchical cluster-
ing techniques, the K-means (or C-means or basic
Isodata) algorithm has been one of the more widely
used algorithms. The K-means algorithm is based on
the optimization of a specified objective function. It
attempts to minimize the sum of squared Euclidean
distances between patterns and cluster centers. It was
shown in (Selim and Ismail, 1984) that this algorithm
may converge to a local minimum solution.

Global solutions of large problems cannot be found
with a reasonable amount of computational effort
(Spath, 1980). This suggested the development of
several approximate methods to solve the underly-
ing optimization problem. Most of these techniques
arrive at a local minimum solution which does not

0167-8655/96/$12.00 (~) 1996 Elsevier Science B.V. All rights reserved
PH S0167 -8655(96)00043-8

826 C.A. Murthy, N. Chowdhury/Pattern Recognition Letters 17 (1996) 825-832

necessarily coincide with the desired global minimum
(Selim and Ismail, t984). In this paper, we have used
Genetic Algorithms (GAs) in an attempt to reach the
optimal solution for the clustering problem. Results
of the experiments with synthetic data as well as with
real-life data are reported.

Section 2 of this paper presents the statement of the
problem. Section 3 provides the details of the proposed
clustering method with GAs. Experimental results and
analysis are reported in Section 4.

ern, 1982) used in this paper, the exact solution re-
quires the examination of S(56, 3) partitions. (Note
that S(56,3) > 1028.)

Thus, approximate heuristic techniques seeking a
compromise or looking for a local minimum solu-
tion which is not necessarily global have usually been
adopted. In this paper we have applied a GA in an at-
tempt to get the optimal value of the function f for a
given clustering problem. The next section describes
the method in detail.

2. Statement of the problem

There are several ways in which a given data set can
be clustered. One of the principles used for clustering
is to minimize the sum of squared Euclidean distances
of the data points from their respective cluster means.
Mathematically this principle is stated below.

1. Let C1, C2 Ck be a set of k clusters of M.
2. Let zj = (ZxeC, x) /•Cj f o r j = 1,2 k, where

x is a pattern vector in Ci and # Cj represents the
number of points in Cj.

3. Let f (C, ,C2 C~) = ~-]~:1 ~-~xccj I] x - zJl] 2'
We shall refer to f (C1, C2 Ck) as the objective
function of the clustering C1,6"2 Ck.

4. Minimize f (C l , C2 Ck) over all C1,6"2
Ck satisfying P1, P2 and P3 stated in Section 1.

The objective function f is non-convex and hence
the problem may have local minimum solutions which
are not necessarily optimal (Selim and Ismail, 1984).
In fact, all possible clusterings of M are to be consid-
ered to get the optimal Cl, C2 Ck. So obtaining
the exact solution of the problem is theoretically pos-
sible, yet not feasible in practice due to limitations of
computer storage and time. If exhaustive enumeration
is used to solve the problem, then one requires the eval-
uation of S(m, k) partitions (Anderberg, 1973; Spath,
1980), where

(k '~ .m
1 ~--~(_l)k_ j J J J . S(m,k) = ~ j=l

This clearly indicates that exhaustive enumeration
cannot lead to the required solution for most prac-
tical problems in reasonable computation time. For
example, for the crude-oil data (Johnson and Wich-

3. Clustering using Genetic Algorithms

Genetic Algorithms (GAs) are stochastic search
methods based on the principle of natural genetic sys-
tems (Goldberg, 1989; Michalewicz, 1992). They per-
form a multi-dimensional search in order to provide
an optimal value of an evaluation (fitness) function in
an optimization problem. Unlike conventional search
methods, GAs deal with multiple solutions simultane-
ously and compute the fitness function values for these
solutions. GAs are theoretically and empirically found
to provide global near-optimal solutions for various
complex optimization problems in the field of opera-
tion research, VLSI design, Pattern Recognition, Im-
age Processing, Machine Learning, etc. (Ankerbrandt
et al., 1990; Belew and Booker, 1991; Bornholdt and
Graudenz, 1992).

While solving an optimization problem using GAs,
each solution is usually coded as a binary string
(called chromosome) of finite length. Each string or
chromosome is considered as an individual. A collec-
tion of P such individuals is called a population. GAs
start with a randomly generated population of size P.
In each iteration, a new population of the same size is
generated from the current population using two ba-
sic operations on the individuals. These operators are
Selection and Reproduction. Reproduction consists of
crossover and mutation operations.

In GAs, the best string obtained so far is preserved
in a separate location outside the population so that the
algorithm may report the best value found, among all
possible solutions inspected during the whole process.
In the present work, we have used the elitist model
(EGA) of selection of De Jong (1992), where the
best string obtained in the previous iteration is copied
into the current population.

C.A. Mur thy , N. C h o w d h u r y / P a t t e r n R e c o g n i t i o n Le t t e r s 1 7 (1996) 8 2 5 - 8 3 2 827

The remaining part of this section describes in de-
tail the genetic algorithm that we propose for cluster-
ing. First, the string representation and the initial pop-
ulation for the problem under consideration are dis-
cussed. Then the genetic operators and the way they
are used are stated. The last part of this section deals
with the stopping criteria for the GA.

3.1. String representation and initial population

String representation. To solve partitioning prob-
lems with GAs, one must encode partitions in a way
that allows manipulation by genetic operators. We
consider an encoding method where a partition is en-
coded as a string of length m (where m is the number
of data points in M). The ith element of the string
denotes the group number assigned to point xi. For
example the partition {xl, x4} {x3, X6} {X2, X5) {X7)
is represented by the string (1 3 2 1 3 2 4). We have
adopted this method, since it allows the use of the
standard single-point crossover operation. The value
of the ith element of a string denotes the cluster mem-
bership of the ith data point in M. Thus, each string
represents a possible cluster configuration and the fit-
ness function for each string is the sum of the squared
Euclidean distances between the patterns and their re-
spective cluster centers. So, here the fitness function
is the objective function f described in Section 2.

Initialpopulation. An initial population of size P for
a genetic algorithm is usually chosen at random. In
the present implementation, several strings of length
m are generated randomly where the value of each
element of the string is allowed to lie between 1 and
k. Only valid strings (that have at least one data point
in each cluster) are considered to be included in the
initial population to avoid wastage of processing time
on invalid strings.

There exist no guidelines for choosing the 'appro-
priate' value of the size (P) of the initial population.
In this work, we have taken P = 6 and this value of P
is kept fixed throughout the experiment. Note that it
has been shown in (Bhandari et al., 1996) that as the
number of iterations goes to infinity the elitist model
of GAs will provide the optimal string for any popu-
lation size P.

3.2. Genetic operators

Selection. The 'selection' operator mimics the 'sur-
vival of the fittest' concept of natural genetic systems.
Here strings are selected from a population to create
a mating pool. The probability of selection of a par-
ticular string is directly or inversely proportional to
the fitness value depending on whether the problem
is that of maximization or minimization. The present
problem is a minimization problem and thus the prob-
ability of selecting a particular string in the popula-
tion is inversely proportional to the fitness value. The
size of the mating pool is taken to be same as that of
population.

Crossover. Crossover exchanges information be-
tween two parent strings and generates two children
for the next population. A pair of chromosomes

/3 -~ (/ 3 m / 3 m - - l " " "/32/31),
y = (Y, ,Ym-I "" "3'2)'1)

is selected randomly from the mating pool. Then the
crossover is performed with probability p (crossover
probability) in the following way.

Generate randomly an integer position pos from the
range of [1, m - 1]. Then two chromosomes/3 and y
are replaced by a pair cr and 6, where

Ol = (/ 3 m / 3 m - l " " " /3pos~/pos+l " " " ~ 2 ~ l) ,

(~ = (~ /rnYm--I " ' " ~lpos/3pos+l " ' " / 3 1 / 3 1).

Crossover operation on the mating pool of size P (P
is even) is performed in the following way:

• Select P/2 pairs of strings randomly from the mat-
ing pool so that every string in the mating pool be-
longs to exactly one pair of strings.

• For each pair of strings, generate a random number
rnd from [0, 1]. If rnd <<, p then perform crossover;
otherwise no crossover is performed.

Usually in GAs, p is chosen to have a value in
the interval [0.25, 1]. In the present work p is taken
to be 0.8 and the population size P is taken to be 6
for all generations. The crossover operation between
two strings, as stated above, is performed at one po-
sition. This is referred to as single-point crossover
(Michalewicz, 1992).

828 C.A. Murthy, N. Chowdhury/Pattern Recognition Letters 17 (1996) 825-832

The single-point crossover operator may create
one problem. The child may have fewer groups
than the parents. For example, if we cross strings
(1 2 2 3 2 1) and (1 3 3 2 2 1) after the third posi-
tion with single-point crossover, then the two children
are (1 2 2 2 2 1) and (1 3 3 3 2 1). Note that the
first child (1 2 2 2 2 1) has only two groups instead
of three. To avoid this problem, we use sampling with
replacement. In other words, we repeat crossover un-
til we get a child with k groups or until a limit on
the number of attempted crossovers is reached. (We
have used a limit of 100.) If the limit is reached
without finding a child with k groups, the child is set
to one of the parents chosen at random. Note that this
strategy was adopted in a previous work (Jones and
Beltramo, 1991) also. (Another way of performing
the validity check of the string is to use the strategy
of sampling without replacement. In such a case the
maximum number of attempted crossovers would be
m - 1, but a list of invalid break points has to be
maintained.) It may also be noted that invalid strings
having fewer groups will have a larger value of the
evaluation function and thus they will be rejected
eventually. But such strings should be excluded from
the population to eliminate wastage of processing
time and to make room for valid strings to produce a
better valid offspring.

[0, 0.5]. The value of q is usually taken to be fixed.
Sometimes it is varied with the number of iterations.
For details, the reader is referred to (Qi and Palmieri,
1994). We have considered varying the mutation prob-
ability for reasons explained in the next subsection.

Elitist strategy. The aim of the elitist strategy is to
carry the best string from the previous iteration into
the next. We have implemented this strategy in the
following way:

(a) Copy the best string (say so) of the initial pop-
ulation in a separate location.

(b) Perform selection, crossover and mutation oper-
ations to obtain a new population (say Q1).

(c) Compare the worst string in Ql (say sl) with so
in terms of their fitness values. If sl is found to
be worse than so, then replace Sl by so.

(d) Find the best string in Q1 (say s2) and replace
so by s2.

Note. Steps (b), (c) and (d) constitute one iteration
of the proposed GA based method. These steps are re-
peated till the stopping criterion is satisfied. Observe
that a string sl is said to be better than another string
s2, if the fitness value of sj is less than that of s2,
since the problem under consideration is a minimiza-
tion problem.

Mutation. Mutation is an occasional random al-
teration of a character. Every character /3i, i =
1,2 m, in each chromosome (generated after
crossover) has equal chance to undergo mutation.
Note that any string can be generated from any given
string by mutation operation.

Note that the mutation operation can, theoretically,
produce invalid offspring. Thus a similar procedure
(as performed after the crossover operation) for
checking the validity of the offspring may be incor-
porated after mutation too, if the need arises. In all
of our experiments, mutation did not produce invalid
offsprings. Hence no validity check for strings has
been incorporated for the mutation operation.

The mutation introduces some extra variability into
the population. Though it is usually performed with
very low probability q, it has an important role in
the generation process (Michalewicz, 1992). The mu-
tation probability q is usually taken in the interval

3.3. Stopping criterion

There exists no stopping criterion in the lit-
erature (Davis and Principe, 1991; Goldberg,
1989; Michalewicz, 1992) which ensures the conver-
gence of GAs to an optimal solution. Usually, two
stopping criteria are used in genetic algorithms. In
the first, the process is executed for a fixed number of
iterations and the best string obtained is taken to be
the optimal one. In the other, the algorithm is termi-
nated if no further improvement in the fitness value
of the best string is observed for a fixed number of
iterations, and the best string obtained is taken to be
the optimal one. We have used the first method in the
experiment. Note that the population size P is taken
to be 6 in all the experiments. For a higher value of
P, one may probably consider fewer iterations for
stopping the GA for the same search space. For the
same P and for different sizes of the search spaces,

C.A. Murthy, N. Chowdhury/Pattern Recognition Letters 17 (1996) 825-832

the stopping times (maximum number of iterations of
the GA-based method) are taken to be different (see
Section 4). Some theoretical aspects relating to stop-
ping times for the elitist model of GA are discussed
in (Murthy et al., 1996).

In order to obtain the optimal string, one needs to
maintain the population diversity. This means that the
mutation probability needs to be high. On the other
hand, as the optimal string is being approached, fewer
changes in the present strings are necessary to move
in the desired direction. This implies that the muta-
tion probability needs to be reduced as the number of
iterations increases. Sometimes, at any stage of the al-
gorithm, many changes in the present best string are
required to get the optimal string. Thus, to have an ef-
ficient search process with GAs, the variation of the
mutation probability with the number of iterations may

Table 1
Results using three data sets of size 10

829

Data f found Initial f found No. iterations
set by ES population by GA required
1 2.3974

2.7196

3 2.5238

1 2.3974 7
2 2.3974 13
3 2.3974 10
4 2.3974 8
5 2.3974 3

1 2.7196 I1
2 2.7196 4
3 2.7196 19
4 2.7196 6
5 2.7196 8
1 2.5238 6
2 2.5238 21
3 2.5238 8
4 2.5238 26
5 2.5238 11

Table 2
Results using a data set of size 50 be made variable. Some of the ways in which the mu-

tation probability can be varied are shown in Fig. 1 (a -
d). We have followed the function shown in Fig. 1 (a)
for the variation of the mutation probability. In fact,
we have started with a mutation probability value of
q = 0.5. The q value is then varied as a step function
of the number of iterations until it reaches a value of
1/m. The minimum value of the mutation probability
is taken to be 1/m.

4. Experimental results and analysis

Experiments have been carried out both on synthetic
and on real-life data sets to judge the validity of the
proposed method. The experiments and their results
are described below.

Initial f found No. iterations
populmion by GA required

1 15.8243 3485
2 15.8243 6521
3 15.8243 7386
4 15.8243 5263
5 15.8243 4208

be 50. For each data set we have conducted the ex-
periment five times with randomly generated initial
populations. Table 1 shows that the proposed method
has reached the optimal value of f in less than 20
iterations in most of the cases with a maximum of 26
iterations. Note that, since the population size P is 6,
six partitions are examined at each iteration. So, the
method required the examination of a maximum of
156 partitions to reach the optimal value.

Exper iment 1. The objective of this experiment is
to check whether the proposed GA-based cluster-
ing method provides the optimal clustering without
searching all possible partitions. For this purpose,
we have considered three data sets each having 10
randomly generated points in R 2. We have then com-
puted the optimal value of the objective function f
for k = 2 by Exhaustive Search (ES) for each of
these three data sets. Note that it requires searching
511 (S(10,2) = 511) partitions to get the optimal
value of f . Then the above-mentioned clustering
method with GA has been applied to all three data
sets. The maximum number of iterations is taken to

Experiment 2. In this experiment, 50 points in R 2
are generated randomly from four classes. The classes
are taken in such a way that the distance of any point
from its class mean is less than the distance of that
point from any other class mean. The data points and
the corresponding four clusters are shown in Fig. 2.
The objective of this experiment is to inspect whether
the proposed GA-based method can provide the same
clusters as shown in Fig. 2. Note that the exhaustive
search for this data set is computationally expensive
(S (5 0 , 4) > 1024) .

Table 2 shows the results of this experiment. Five

830 C.A. Murthy, N. Chowdhury/Pattern Recognition Letters 17 (1996) 825-832

~E

L r_ I t ,

Iterot ion Max. No. Iteration Max. No.
of Iterotions of Iterotions

(o) tb)

lterotion Mox. No.
of lterotions

(c)

f

Iteration Max.No.
of Iteration s

Fig. 1. Possible variation of mutation probability with the number of iterations, adoptable in the experiment.

Table 3
Results showing improvements of K-means final output using the
proposed GA-based method on a data set of size 50
Initial f found f found No. iterations
config, by K-means by GA reqd. for GA

1 15.7456 15.7456 2000
2 17.4714 15.7456 1026
3 15.7456 15.7456 2000
4 15.7456 15.7456 2000
5 16.4901 15.7456 317

sets of initial populations are also used for this exper-
iment. The maximum number of iterations is taken to
be 10000. The objective function value obtained by
the proposed method and the number of iterations re-
quired are depicted in Table 2. In all these five cases,
the proposed GA-based method provided the expected
results. Note also that the maximum number of pos-
sible partitions examined by the method is drastically
less than that required in the exhaustive enumeration
process.

Experiment 3. It is known in the literature that the
K-means algorithm may not provide the optimal clus-
tering. It may converge to a local minimum (Selim
and Ismail, 1984). The objective of this experiment
is to find whether the GA-based method can provide
a better output if the result of the K-means algorithm
(after convergence is achieved) is taken as one of the
strings in the initial population. For this purpose, we
have considered another synthetic data set of size 50 in
•2. The data points are generated randomly from four
classes which are placed very close to each other. Five
different initial cluster configurations were taken ran-
domly and the K-means algorithm was run on this data
set till convergence was achieved for each of these five
initial configurations. Each one of these five outputs is
taken as a string in the initial population for GA and
the other string in the initial population is generated
randomly. The maximum number of iterations for the
GA-based method is taken to be 2000. The number
of iterations taken by the proposed GA-based method
and the final output are as shown in Table 3. It can

C.A. Murthy, N. Chowdhury /Pattern Recognition Letters 17 (1996) 825-832 831

(5

Fig. 2. Data points and cluster configuration obtained by the
proposed method in Experiment 2.

Table 4
Results of K-means on crude-oil data

Initial config, f found by K-means
1 283.7432
2 279.2709
3 296.4848
4 279.2709
5 279.2432

Table 5
Results of the proposed GA-basedmethod on crude-oil data

Initial f found No.i~r~ions
population by GA ~qui~d

1 278.9651 8847
2 278.9651 9712
3 278.9651 7382
4 278.9651 8273
5 278.9651 8054

ing 56 data points, 5 features and 3 classes is chosen
for this experiment. The K-means algorithm was run
(till convergence was achieved) on this data set for
50 randomly generated initial cluster configurations.
The proposed GA-based method was also run on this
data set for 50 randomly generated initial populations.
The maximum number of iterations for the GA-based
method is taken to be 10000. It is found that the GA-
based method provided an objective function value of
278.9651 in all 50 cases. The lowest value of the ob-
jective function provided by the K-means algorithm
in all 50 cases is 279.2432. The K-means algorithm
achieved this value in 39 out of 50 cases. The high-
est value of the objective function provided by the K-
means algorithm is 296.4848. Experimental results of
K-means with five different initial cluster configura-
tions are reported in Table 4. Table 5 shows the results
of the proposed GA-based method with five different
initial populations. The number of iterations taken by
the K-means algorithm to converge in all 50 cases is
less than or equal to 23.

Note that different initial populations are consid-
ered in each experiment described above. The number
of iterations taken by the GA-based method to con-
verge (i.e. the fitness value is found to be the same
after that iteration) has been stated in the tables (Ta-
bles 1-5) for the above experiments. It may be noted
that the number of iterations required to converge is
smaller than the stopping time value for each experi-
ment. But premature convergence (i.e. all or most of
the strings in the population are identical after that it-
eration) of the process has not been observed in the
above experiments.

be seen that the proposed method improves the final
output of the K-means by giving a lower value of the
objective function in a maximum of 1026 iterations
where such an improvement is possible. In this exper-
iment, the number of iterations taken by the K-means
algorithm to converge is less than or equal to 16.

Experiment 4. The objective of this experiment is
to compare the results of the K-means algorithm and
the proposed GA-based method on a real-life data set.
Crude-oil data (Johnson and Wichern, 1982), hav-

5. Conclusions and discussion

The aim of this work is to observe whether the pro-
posed GA-based method can find the optimal cluster-
ing without searching all possible partitions. Experi-
ment 1 shows that the proposed method indeed finds
the optimal clustering without searching all possible
partitions. In Experiment 2, the data points are such
that the optimal clustering was known. The GA-based
method provided the expected results. Experiment 3
shows that the output of K-means may be further im-
proved by the proposed method. In Experiment 4,

832 C.A. Murthy, N. Chowdhury/Pattern Recognition Letters 17 (1996) 825-832

where both the K-means algorithm and the GA-based
method were run independently on a real-life data set,
we find that in all 50 runs K-means provided higher
value of the objective function.

Note that in Experiment 4, the K-means algorithm
takes very few iterations to converge. But it converges
to a local minimum. GAs do not face this problem,
since here the process can theoretically move from any
partition to any other partition with non-zero proba-
bility. The GA-based method suggested in this paper
has been found to provide good results for all the data
sets considered for experimentation.

Observe that the population size P is taken to be 6
for all the experiments, although the sizes of the search
spaces associated with each problem are not the same.
But we have used different stopping times (maximum
number of iterations of the GA-based method) de-
pending upon the size of the search space. There prob-
ably exists a relationship between the stopping time
and the population size for a given search space. The
theoretical results available on this aspect of GAs are
very little (Murthy et al., 1996). For a higher value
of P, probably, a smaller stopping time would provide
similar results.

While solving an optimization problem using GAs,
one always needs to make a compromise between two
conflicting facets of GAs. One facet is the maintenance
of population diversity such that the process searches
for optimal strings in different regions of the search
space. The other facet is that as the GA goes nearer
to the optimal solution, fewer changes in the bits of
the present best string are necessary to get the optimal
string. This means that as the process approaches the
optimal string, the search space needs to be confined
to the strings in the vicinity of the present best string.
If the population diversity is maintained, then it is
difficult to make the process perform the other facet
namely allowing only few changes in the strings. On
the other hand, if the process performs the second facet
alone, then it may lead to premature convergence. Both
these facets have been advocated in our method in
terms of varying the mutation probability as depicted
in Fig. 1. The experiments carried out in this work
utilize the functional form of Fig. 1 (a) for varying the
mutation probability. Premature convergence of the
GA-based method has not been found in any of the
experiments reported in this paper.

Acknowledgements

The authors acknowledge Mr. D. Bhandari for help-
ful discussions during the course of this work. The
authors gratefully acknowledge the constructive com-
ments of the anonymous reviewers.

References

Anderberg, M.R. (1973). Cluster Analysis for Application.
Academic Press, New York.

Ankerbrandt, C.A., B.P. Unckles and EE. Petry (1990). Scene
recognition using genetic algorithms with semantic nets. Pattern
Recognition Lett. 11,285-293.

Belew, R. and L. Booker, Eds. (1991). Proceedings of the
Fourth International Conference on Genetic Algorithms. Morgan
Kaufmann, Los Altos, CA.

Bhandari, D., C.A. Murthy and S.K. Pal (1996). Genetic algorithm
with elitist model and its convergence, lnternat. J. Pattern
Recognition Artificial Intelligence, Accepted.

Bomholdt, S. and D. Graudenz (1992). Genetic asymptotic and
neural networks and structure design by genetic algorithms.
Neural Networks 5, 327-334.

Davis, T.E. and C.J. Principe (1991). A simulated annealing like
convergence theory for the simple genetic algorithm. In: (Belew
and Booker, 1991), 174-181.

Devijver, P.A. and J. Kittler (1982). Pattern Recognition:
A Statistical Approach. Prentice-Hall International, Heme|
Hemstead, Hertfordshire, UK.

Goldberg, D.E. (1989). Genetic Algorithms: Search, Optimization
and Machine Learning. Addison-Wesley, Reading, MA.

Jain, A.K. and R.C. Dubes (1988). Algorithms for Clustering
Data. Prentice-Hall, Englewood Cliffs, NJ.

Johnson, R.A. and D.W. Wichern (1982). Applied Multivariate
Statistical Analysis. Prentice-Hall, Englewood Cliffs, NJ.

Jones, D.R. and M.A. Beltramo (1991). Solving partitioning
problems with genetic algorithms. In: (Belew and Booker,
1991), 442-449.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structure =
Evolution Programs. Springer, Berlin.

Murthy, C.A., D. Bhandari and S.K. Pal (1996). Epsilon optimal
stopping time for genetic algorithms with Elitist model. IEEE
Trans. Syst. Man Cybernet., Submitted.

Selim, S.Z. and M.A. Ismail (1984). K-means type algorithms: A
generalized convergence theorem and characterization of local
optimality. IEEE Trans. Pattern Anal. Mach. lntell. 6 (1), 81-
87.

Spath, H. (1980). Cluster Analysis Algorithms. Ellis Horwood,
Chichester, UK.

Tou, T.J. and C.R. Gonzalez (1974). Pattern Recognition
Principles. Addison-Wesley, Reading, MA.

Qi, Xiaofeng and E Palmieri (1994). Theoretical analysis of
evolutionary algorithms with an infinite population size in
continuous space, Part I: Basic properties of selection and
mutation. IEEE Trans. Neural Networks 5 (1), 102-119.

