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Abstract--In this paper we consider the problem of clustering m objects into c clusters. The objects are 
represented by points in an n-dimensional Euclidean space, and the objective is to classify these m points 
into c clusters such that the distance between points within a cluster and its center (which is to be found) is 
minimized. The problem is a nonconvex program that has many local minima. It has been studied by many 
researchers and the most well-known algorithm for solving it is the k-means algorithm. In this paper, we 
develop a new algorithm for solving this problem based on a tabu search technique. Preliminary compu- 
tational experience on the developed algorithm are encouraging and compare favorably with both the 
k-means and the simulated annealing algorithms. 

Clustering problem Tabu search k-means algorithm 
Nonconvex programming Global optimum 

Simulated annealing 

!. INTRODUCTION 

Cluster analysis could be defined as the process of 
separating a set of objects (patterns) into groups (classes 
and clusters) such that members of one group are 
similar, as much as possible, according to a predefined 
criterion. Cluster analysis has found applications in 
life, medical, behavioral and social sciences. Other  
applications also include earth sciences, information 
and decision sciences and engineering. For  a summary 
of these applications, see A1-Sultan. ~1) 

In cluster analysis, the objects are represented by 
points in n-dimensional Euclidean space, where the 
elements of the vector are values for the attributes of 
the object and the objective is to classify these m points 
into c clusters sflch that a certain similarity measure is 
optimized. In this paper, we consider our similarity 
measure (function) to be the distance between points 
within a cluster and its center, and the objective is to 
minimize that function. 

In this paper we develop an efficient algorithm based 
on a tabu search technique for the clustering problem. 
The paper is organized as follows: in Section 2 the 
statement of the problem and literature survey are 
presented. In Section 3 we summarize the tabu search 
technique. The statement of tabu search algorithm is 
presented in Section 4, and its implementat ion details 
are discussed in Section 5. Results and discussion are 
presented in Section 6. Finally, we give our conclusion 
in Section 7. 

2. STATEMENT OF THE PROBLEM AND 
LITERATURE REVIEW 

The clustering problem may be stated as follows: 
Given m patterns in R", allocate each pattern to one of 
c clusters such that the sum of squared Euclidean 
distances between each pattern and the center of the 
cluster (which is also to be found) to which it is allocated 
is minimized. 

The clustering problem can be mathematically des- 
cribed as follows: 

m c 

Minimize J(w,z)= ~ ~ w~jllxi-zj[I z 
i = l j = l  

c 

Subject to ~ w i j = l ,  i = 1 , 2  . . . . .  m 
j = l  

and w i j = 0 o r l ,  i = l , 2 , . . . , m ,  j = l , 2 , . . . , c  

CP) 

where: 

c number of clusters (given); 
m number of available patterns (given); 
xi~ R" location of the ith pattern (given), 

i6 [1 ,2  . . . . .  m]; 
zjER" center of the j th  cluster (to be found), 

j 6 [ 1 , 2  . . . . .  c]; 
wij association weight of pattern xi with cluster j 

(to be found); 
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where 

10 if pattern/is allocated toclusterj 
w i j =  Vi=1,2  . . . .  ,m, j = l , 2 , . . . , c  

otherwise 

z is an m x c matrix whose column j is zj defined 
above; 

w:[w~.j] is an n x c matrix; 
I lx i -  zj II 2 squared Euclidean distance between 

pattern xi and center zj of cluster j. 

In this formulation, the squared Euclidean distance 
has been taken as the criterion function to be minimized. 

Problem CP is a nonconvex program which possesses 
many local minima. The clustering problem has been 
investigated by many researchers. The major difficulty 
is that the solution of problem CP could possibly lead 
to local optima which are not necessarily global. The 
following is a summary of the work done so far on this 
problem: 

• The k-means algorithm 12'~ is the most widely 
used method to solve the problem. However, it may 
fail to obtain the global solution of the problem. Selim 
and Ismail t4~ derived a generalized convergence theorem 
for the k-means algorithm in which they characterized 
the conditions for local optimality of the solution 
obtained by that algorithm. 

• Jensen tS) used dynamic programming to solve the 
above problem with the assumption that cluster centers 
coincide with some patterns. This approach is not 
optimal and it requires a large computer memory 
space and time. 

• Vindo 16) and Rao ~7~ formulated the clustering 
problem as an integer linear program with the same 
assumption as in Jensen. This approach has the same 
disadvantages as in Jensen's approach. 

• Duda and Hart 18~ developed the Isodata algorithm 
to solve the clustering problem. Although the isodata 
algorithm is similar to the k-means algorithm in the 
sense that it may fail to obtain the global optimal 
solution, it is more complex and more expensive to 
implement. However, it has more options which are 
not needed in the solution of our problem. 

• Cooper (9) was the first to formulate the clustering 
problem as a location-allocation problem. For the 
solution of the problem, Cooper suggested two heuristic 
which could achieve local optimal solutions. 

• Selim~l°~ developed an algorithm that guarantees 
that a global solution will be obtained. The algorithm 
transforms the criterion function into an equivalent 
implicit concave function. Then the concept of con- 
vexity cuts is implemented to obtain the optimal solution. 
Although this algorithm is exact, it requires much 
computational time and a large memory. Since the 
cutting plane approach is known to be very slow for 
solving linear integer programming, the case will even 
be worse for the clustering problem which is a non- 
convex program. 

• Koontz et al. ~ ~ employed the branch and bound 
approach to solve the problem. Diehr t':~ modified 

Koontz algorithm to be more efficient. However, the 
algorithm is impractical for large problems. The Branch 
and Bound approach, although guarantees global 
optimality, is known to be a last resort for solving 
optimization problems because of the long and un- 
predictable time it takes to obtain the solution. 

• Klein and Dubes ~'31 and Selim and AI-Sultan 114} 
have developed simulated annealing-based algorithms 
for solving the clustering problem. However, no com- 
parison of the performance of their algorithms to the 
k-means algorithm have been provided. 

In this paper, we develop an algorithm for CP based 
on a tabu search technique. We compare the per- 
formance of our algorithm with that of the k-means 
and the simulated annealing algorithms. However, we 
start by briefly describing the tabu search technique. 

3. THE TABU SEARCH TECHNIQUE 

The tabu search is a meta heuristic that can be used 
to solve combinatorial optimization problems. It is 
different from the well-known hill-climbing 16cal search 
techniques in the sense that it does not become trapped 
in local optimal solutions, i.e. the tabu search allows 
moves out of a current solution that makes the objective 
function worse in the hope that it eventually will achieve 
a better solution. 

The tabu search requires the following basic elements 
to be defined: 

• Conf igurat ion  is a solution or an assignment of 
values to variables. 

• A move  characterizes the process of generating a 
feasible solution to the combinatorial problem that is 
related to the current solution (i.e. a move is a procedure 
by which a new (trial) solution is generated from the 
current one). 

• Se t  o f  candidate  moves  is the set of all possible 
moves out of a current configuration. If this set is too 
large, one could operate with a subset of this set. 

• Tabu  restrictions: These are certain conditions 
imposed on moves which make some of them forbidden. 
These forbidden moves are known as tabu. It is done 
by forming a list of a certain size that records these 
forbidden moves. This is called tabu list. 

• Asp ira t ion  criteria: These are rules that override 
tabu restrictions, i.e. if a certain move is forbidden by 
tabu restriction, then the aspiration criterion, when 
satisfied, can make this move allowable. 

Given the above basic elements, the tabu search 
scheme can be described as follows: start with a certain 
(current) configuration, evaluate the criterion function 
for that configuration. Then, follow a certain set of 
candidate moves. If the best of these moves is not tabu 
or if the best is tabu, but satisfies the aspiration criterion, 
then pick that move and consider it to be the new 
current configuration; otherwise, pick the best move 
that is not tabu and consider it to be the new current 
configuration. Repeat the procedure for a certain 
number of iterations. On termination, the best solution 
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obtained so far is the solution obtained by the algor- 
ithm. Note  that the move that is picked at a certain 
iteration is put in the tabu list so that it is not allowed 
to be reversed in the next iterations. The tabu list has 
a certain size, and when the length of the tabu reaches 
that size and a new move enters that list, then the first 
move on the tabu list is freed from being tabu and the 
process continues (i.e. the tabu list is circular). The 
aspiration criterion could reflect the value of the crit- 
erion (objective) function, i.e. if the tabu move results 
in a value of the criterion function that is better than 
the best known so far, then the aspiration criterion is 
satisfied and the tabu restriction is overridden by this. 

In the above paragraph, we have outlined the basic 
steps of the tabu search procedure for solving com- 
binatorial optimization problems. For  more elabora- 
tion on the tabu search technique as well as a list of 
successful applications, see Glover.  laS) In the next 
section, we develop a new algorithm for solving CP  
based on the above tabu search technique. 

4. THE NEW ALGORITHM 

In this section, we present our tabu search-based 
algorithm for problem CP. However,  before we state 
our algorithm, we need to introduce some notation: 

Let A be an array of dimension m whose ith element 
(Ai) is a number representing the cluster to which the 
ith pattern is allocated. Clearly, given A, all wijs are 
defined in the following manner: 

wo={10 if A~=j 
otherwise 

for all i = 1,2 . . . .  , m, and j = 1,2, . . . ,  c. 

For  example, consider the following array A for m = 10, 
c = 3 .  

[31211121213 11112137 
then the first pattern is assigned to the third cluster (i.e. 
w ~  = 0 ,  w~2 = 0 ,  w~3 = 1), and the second pattern is 
assigned to the second cluster (i.e. w: ~ = 0, w =  = 1 and 
w23 = 0) and so on. 

Given a set of w@, the center of each cluster zi can 
be computed as the centroid of the patterns allocated 
to that cluster or: 

m W 
Z ; :  ~ ,jxi~ (1) 

Zj - -  m W ~ i = l  ij 

Given the array A, and the centers z~, one can compute  
the objective function J(w, z) as: 

J(W,Z) = Z W i j ] [ X  i - -  zjll z (2) 
i= l  j - 1  

Thus, from the above it is clear that for any array A 
(configuration), a specific value corresponds to the 
objective function which, for simplicity, is denoted 
by J. Therefore, we will depend in our tabu search 
algorithm on changing the configuration A, and con- 
sequently it will map into a value for the objective 

function J. We will operate with three arrays and their 
corresponding three objective function values. 

Let A t A c and A b denote the trial, current and best 
arrays and Jt J ,  and Jb denote the corresponding 
trial, current and best objective function values, res- 
pectively. 

We will always operate with a configuration which 
we call the current solution A c and then through moves 
which were explained in the last section, we generate 
trial solutions A t, As the algorithm proceeds, we also 
save the best solution found so far which is denoted by 
Ab. Corresponding to these arrays, we also operate 
with the objective function values Jc, J, and Jb, respec- 
tively. 

We are now ready to state our algorithm. 

4.1. Statement of the algorithm 

(1) Initialization step. Let Ac be an arbitrary solution, 
and Jc be the corresponding objective function value 
computed using equations (1) and (2). Let Ab = Ac, and 
Jb = Jc" Select values for the following parameters: 
MTLS (tabu list size), P (probability threshold), NTS 
(number of trial solutions) and let ITMAX be the 
maximum number of iterations. Let k = 1, let TLL 
(tabu list length) = 0 and go to step 2. 

(2) Using A¢, generate NTS trial solutions A, ~, At 2 . . . . .  
At NTs (see the remark below) and evaluate their cor- 
responding objective function values j1,  j t  2 . . . . .  jtNTS, 
and go to Step 3. 

(3) Order Jt ~, j2  . . . . .  j~TS in an ascending order, 
and denote them by j [u ,  j[2j . . . . .  j[NTS~. If j [U is not 

tabu, or  if it is tabu but j p l  < Jb, then let Ac = At u and 
j~ = j [u ,  and go to step 4; otherwise let A c = At L~, 
Jr  = j[L~ where Jl  Lj is the best objective function of 
j[2], j[31 . . . . .  j[NTS] that is not tabu and go to step 4. If 
all j [u ,  j[el . . . . .  j[NTS~ are tabu go to step 2. 

(4) Insert A c at the bot tom of the tabu list and let 
TLL = TLL + 1 (if TLL = MTLS + 1, delete the first 
element in the list and let TLL = TLL - 1). If Jb > Jc 
let A b : A~ and Jb = J~. I fk  = ITMAX, stop (A b is the 
best solution found and Jb is the corresponding best 
objective function value); otherwise, let k = k + 1 and 
go to step 2. 

4.2. Remark 

Given a current solution Ac, one can generate a trial 
solution using several strategies. We use the following 
strategy: Given Ac and a probability threshold P, for 
i = l , m  . . . . .  draw a r a n d o m  n u m b e r  R ~ u ( 0 , 1 ) .  
If  u(0, 1) < P, then At(i ) = A¢(i); o therwise  d raw 
randomly an integer l f rom the following set {l: l = 1,2, 
3 . . . . .  c, I -# At(j)  } and let Ac(i ) = 1. 

5. IMPLEMENTATION OF THE ALGORITHM 

The algorithm presented in Section 4 has been coded 
in C, and tested on a IBM 386 machine on several test 
problems. We have used the following two sets of test 
problems. 
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5.1. Random test problems (RS). 

These are randomly generated test problems in R 2 
where the data are generated within spheres of the 
same radii. The overlap among clusters is controlled 
through changing the radius of the spheres. The follow- 
ing classes of test problems are used: 

RSO: Clusters are overlapping. 
RST: Clusters are touching each other. 
RSS: Clusters are nontouching (separated). 

5.2. Standard test problems (SS). 

These are standard data setsJ 16) 

SSI: gives 89 postal zones in Bavaria (Germany), 
and their three attributes as their surface area in squared 
kilometers, their populations, and the density of the 
population [see reference (16), pp. 91, 92] 

SS2: gives the same 89 postal zones Bavaria 
(Germany), but with four attributes which are: the 
numbers of self-employed people, civil servants, clerks 
and manual workers [see reference (16), pp. 103, 104]. 

As it is clear from its statement, the tabu search 
algorithm has three parameters which need to be 
assigned values before the execution of the algorithm. 
These parameters are: 

MTLS: tabu list size 
P: probability threshold 
NTS: number of trial solutions 

We have performed our implementation in two 
phases. In the first phase, an extensive parametric 
study has been performed to find the best parameter 
settings. These best values were then used in the second 
phase for testing the performance of the algorithm on 
various random and standard problems. 

6. RESULTS AND DISCUSSION 

As mentioned in the previous section, the tabu search 
algorithm has three parameters. In this section, we 
discuss the theoretical implications of the values of 
these parameters, and the best values obtained for 
them by our extensive parametric study. 

6.1. Tabu list size (MTLS) 

The tabu list embodies one of the functions of the 
short term memory, which enables the algorithm to 
have some memory of the history. In our case, it tells 
the algorithm not to reverse the last MTLS moves, 
where MTLS is the size of the tabu list. Therefore, the 
size of the tabu list here affects how much memory one 
would like the algorithm to have. A large tabu list size 
allows more diversification or forcing new moves to be 
generated which take solution to far points. A small 
list size, on the other hand, makes the algorithm more 
forgetful, and therefore allows movement within the 
region or allows intensification to happen (not forcing 

it because this means more control on the moves). 
Glover 115) suggests using a tabu list size in the range 
[~n, 3n], where n is related to the size of the problem. In 
our case, n is the number of patterns. 

6.2. Probability threshold (P) 

This parameter controls the shake-up that is per- 
formed on a certain solution to produce a neighbor. 
The higher the value of P, the less shake-up is allowed 
and consequently the closer the neighbor (the solution 
obtained after the move) to the current solution, and 
vice versa. In our case, we have found that P = 0.95, or 
very little shake-up for the move produces better results. 
This means that we allow more intensification in the 
neighborhood to generate the next best move. One 
should remember that the tabu list will record this 
move and the search may not return to it in the next 
few iterations or it may be noise to explore the close 
neighborhood fully before one leaves it. (Figs. 1 and 2 
show a sample the current and trial objective function 
values obtained by the algorithm versus, number of 
iterations for several values of P, respectively). 

6.3. Number of trial solutions (NTS) 

This parameter controls the number of trial moves 
to be generated from a current one to decide on the 
next move. Clearly, the larger the value of NTS the 
better, simply because one has more choices to select 
from. However, this is done at the expense of more 
computational effort. Therefore, if one were to decide 
a priori on a certain amount of computational effort 
to be made by the algorithm, then larger values of NTS 
at each iteration means less number of iterations are 
made, or intensification is made at the expense of less 
diversification and vice versa. 

We have tested our algorithms for various values of 
MTLS, P and NTS on l0 problems of each type of test 
problems and for various combinations of m and c. 
Tables 1-3 are just examples of the extensive parametric 
study that has been performed. It is clear that the 
algorithm performs better as the probability threshold 
increases with the best results obtained at P = 0.95. We 
have also found that the best values for both MTLS 
and NTS are in the range 15 20. We might add that 
the three values for each parameter in Tables 1-3 are 
the best values of the parameters found after an initial 
parametric study that has included various other values 
for them. The algorithm, in general, obtains good 
results for a wide range of parameter values, i.e. it is 
relatively robust. 

Tables 4-6 compare the objective function values 
(average of 10 problems for each combination) obtained 
by our algorithm for the random test problems to 
those obtained by our coding of the k-means algor- 
ithm. 12J Tables 7 and 8 compare the objective function 
values obtained by our algorithm for the standard test 
problems to those obtained by our coding of both the 
k-means algorithm and the simulated annealing. 
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The following points are clear from the tables: 

(a) Our  algori thm outperforms the k-means algor- 
i thm in almost  all cases and by a factor ranging from 
10 to 99.5~. 

(b) In general, for a certain number  of pat terns m, 
the larger the number  of clusters c, the more  pro- 
nounced the improvement  of our algori thm over the 
k-means. This is of course clear in the s tandard  test 

problems where we use the same data with different 
values of c (c = 2, 3, 4, 5). This trend is in general clear 
for the random problems, with few exceptions. The 
reason for these exceptions might be that  we are not 
using the same data with different values of c (as in 
s tandard data sets), but rather the seed for the random 
number generator might be different from one problem 
to another,  and hence generates different data. Our  
interpretat ion of this difference in performance is that  
the problem becomes more  difficult and may have 

Table 1. Parametric study on test problems RSS, c = 2, m = 40 

MTLS 15 MTLS 20 
P N TS =I5  NTS=20 NTS=I5  NTS=20 

0.7 1847.58 ca~ 1 8 4 3 . 1 0  1 7 6 0 . 9 3  1652.47 
0.9 529.31 529.31 529.31 668.02 
0.95 529.31 600.60 529,31 529.31 

Ca) 

E~ °, s~, 
10 

where J~ is the objective function value obtained for problem 
i by our algorithm. 

Table 2. Parametric study on test problems RST, c = 4, m = 60 

MTLS 15 MTLS 20 
P N T S = I 5  NTS=20 NTS=15 NTS=20 

0.7 13974.8 c°~ 13559.17 12226.72 13206.64 
0.9 5426.01 5104.26 5 7 2 3 . 0 5  3773.02 
0 . 9 5  3 6 4 8 . 5 3  3 6 5 3 . 9 4  3 6 4 9 . 8 3  3773.10 

(a~ 

EI°1 s~ 
10 

where J~ is the objective function value obtained for problem 
i by our algorithm. 

Table 3. Parametric study on test problems RSO, c = 2, m = 40 

MTLS 15 MTLS 20 
P NTS=15 NTS=20 NTS=15 NTS=20 

0.7 7667.77 lal 7 1 9 4 . 9 3  7 6 0 9 . 7 4  7401.7 
0.9 6466.56 6466.56 6 4 7 4 . 7 7  6466.57 
0 .95 6464.8 6466.56 6 6 5 7 . 9 7  6464.82 

Ca) 

El2, J~ 
10 

where J~ is the objective function value obtained for problem 
i by our algorithm. 

more local minima as c increases for the same value of 
m. The number  of variables for the problem is me, and 
therefore is proport ional  to the value of c for a fixed 
number  ofm. Being a local search method,  the k-means 
is more likely to become stuck at a local minimum that 

Table 4. Comparison of results obtained by our algorithm 
and the k-means algorithm for test problems RSS 

Our k-means 
c m algorithm algorithm 

2 10 102.83 c~ 102.837 cb~ 
100.00 ~c~ 100.00 

40 529.30 529.30 
100.00 100.00 

3 15 157.03 275.39 
57.02 100.00 

60 796.86 1281.39 
62.19 100.00 

4 20 217.99 439.66 
49.58 100.00 

40 507.74 2872.5 
18.44 100.00 

5 20 189.15 1039.19 
18.99 100.00 

40 477.14 1426.67 
60.82 100.00 

o E, 'o, s~ 

l0 

where J~ is the objective function value obtained for problem 
i by our algorithm. 

b El_- °, s~ 
10 

where J~, is the objective function value obtained for problem 
i by the k-means algorithm. 

c~'= 'k Jk; × 100%. 
10 

Table 5. Comparison of results obtained by our algorithm 
and the k-means algorithm for test problem RST 

Our k-means 
c m algorithm algorithm 

2 10 494.87 519.43 
96.57 100.00 

40 2531.01 2544.90 
99.50 100.00 

3 15 750.64 750.64 
100.00 100.00 

60 3810.97 3829.75 
99.51 100.00 

4 20 1010.76 1112.43 
93.31 .100.00 

40 2362.58 2872.51 
85.59 100.00 

5 20 844.89 1039.19 
84.59 100.00 

40 2159.57 2461.72 
89.23 100.00 
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is far from the global minimum as the problem becomes 
harder. This is not the case for our algorithm as explained 
later. 

(c) For  the s tandard  data sets, our algori thm out- 
performs the k-means by a large factor and this dif- 
ference in performance is more  pronounced  than for 
the r andom test sets. The reason is that  the k-means is 
designed for spherical cluster shapes and our random 

Table 6. Comparison of results obtained by our algorithm 
and the k-means algorithm for test problems RSO 

Table 7. Comparison of results obtained by our algorithm, 
the k-means algorithm and the simulated annealing algorithm 

for test problems SS 1 

Our k-means Simulated 
c m algorithm algorithm annealing 

2 89 6.03 × 1011 6.49 x 1011 6.03 × 1011 
92.81 100.00 92.81 

3 89 3.64 × 10 l° 3.64 x 1011 3.64 x 1011 
10.00 100.00 100.00 

4 89 1.05 x 1011 2.79 × 1011 3.18 × 1011 
37.63 100.00 114.22 

5 89 6.78 x 101° 2.60 x 1011 7.82 x 10 x° 
26.06 100.00 30.09 

Our k-means 
c m algorithm algorithm 

2 10 1235.36 1322.86 
94.74 100.00 Table 8. Comparison of results obtained by our algorithm, 

40 6464.82 6489.08 the k-means algorithm and the simulated annealing algorithm 
99.65 100.00 for test problems SS2 

3 15 1538.31 1815.21 
85.08 100.00 Our k-means Simulated 

60 8841.98 9296.26 c m algorithm algorithm annealing 
95.11 100.00 

4 20 1908.33 2320.56 2 89 1.99 x 101° 4.86 × 101° 4.86 × 101° 
83.10 100.00 40.94 100.00 100.00 

40 4557.96 4776.23 3 89 1.74 × 101° 3.60 × 101° 1.74 x 101° 
95.90 100.00 48.36 100.00 48.36 

5 20 1491.29 1814.87 4 89 7.56 × 109 3.05 × 101° 8.04 × 109 
40 84.14 100.00 24.77 100.00 26.34 

3697.59 3920.25 5 89 5.95 × 109 2.95 x 101° 6.47 × 109 
94.86 100.00 20.16 100.00 21.93 

Fig. 3. Values of the current objective function vs number of iterations using the best parameter settings. 
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Fig. 4. Values of the best objective function versus number of iterations using the best parameter settings. 

data are generated within spheres, while this is not the 
case for the standard data. 

(d) Our algorithm has obtained results that are equal 
to those obtained by the simulated annealing algorithm 
in two out of the eight problem sets tested (see Tables 
7 and 8), while it outperformed it in the remaining six 
sets and by a factor that is as large as 10~o in some 
cases. More importantly is the fact that our algorithm 
is much more robust and consistent in its performance 
compared with the simulated annealing algorithm. 
The reason for this lack of robustness in the simulated 
annealing algorithm is its sensitivity to some par- 
ameters, especially the initial temperature and the 
cooling schedule while our algorithm is not too sensi- 
tive to parameters values. In the literature, some results 
of simulated annealing are deceiving because researchers 
usually report the best results obtained by the simulated 
annealing algorithm by using the best parameter settings 
for the data set which may be different from the settings 
used to obtain the best values for another set of data. 
An extensive initial parametric study should be per- 
formed on a large number of problems, and the values 
that seem to be best for most of the problems should 
then be picked. Then, fix these values for comparison 
purposes. This is what has been done in both simulated 
annealing and tabu search algorithms. (If this were not 
the right approach, then any result obtained by one of 
these algorithm is actually not a result of a single run 
of the algorithm, but rather several runs to find the 

best parameter settings and one run to obtain the 
solution using these parameter values, which is of 
course very costly). 

(e) Fig. 3 is a typical graph of the values obtained 
for the current objective function values v e r s u s  the 
number of iterations. It is clear that uphill moves are 
allowed and this is what makes the algorithm powerful 
in the sense that it does not become stuck at a local 
minimum, but rather allows some uphill moves in the 
hope that they will lead to better objective function 
values. 

Figure 4 is a graph of the best objective function of 
values obtained v e r s u s  the number of iterations. As is 
clear from the graph, the best value stays the same for 
some (random) number of iterations and suddenly 
drops when a downhill move is obtained. 

7. CONCLUSIONS 

In this paper, we have developed a new algorithm 
for solving the clustering problem which is based on 
the tabu search technique. The algorithm has been 
implemented and tested on various problems, and 
preliminary computational experience is very encour- 
aging. As a matter of fact, our algorithm obtained 
results that are better than the well-known k-means 
and the simulated annealing algorithms for many test 
problems. 
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