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Abstract: In this paper, we propose a bicriterion objective function for clustering 
a given set of N entities, which minimizes l ad  - (1 - Ix)s], where 0 _< Ix < 1, and d 
and s are the diameter and the split of the clustering, respectively. When Ix = 1, the 
problem reduces to minimum diameter clustering, and when Ix = 0, maximum split 
clustering. We show that this objective provides an effective way to compromise 
between the two often conflicting criteria. While the problem is NP-hard in gen- 
eral, a polynomial algorithm with the worst-case time complexity O(N  ~) is devised 
to solve the bipartition version. This algorithm actually gives all the Pareto optimal 
bipartitions with respect to diameter and split, and it can be extended to yield an 
efficient divisive hierarchical scheme. An extension of the approach to the objec- 
tive [ix(d I + d 2 ) -  2(1 - Ix)s]  is also proposed, where dl and d z are diameters of 
the two clusters of a bipartition. 

Keywords:  Diameter; Split; Bicriteria clustering; Complexity; Polynomial algo- 
rithm; Divisive hierarchical clustering. 

1. Introduction 

Clustering problems arise regularly in many areas such as group tech- 
nology, data reorganization, pattern recognition, biology, etc. The application 
of  clustering analysis is based on the assumption that homogeneous clusters 
actually exist in the data. The objective of cluster analysis is to partition enti- 
ties of a given set into homogeneous and/or well separated classes. Separation 
and homogeneity can be expressed in many different ways. Typically, meas- 
ures of dissimilarities can be defined for any two individual elements in the 
data set. Based on the dissimilarities, two criteria are widely used: split and 
diameter as proposed by Delattre and Hansen (1980). The split of two clus- 
ters, say A and B, is defined as the minimum dissimilarity between two enti- 
ties, one from A and the other from B. The diameter of a cluster is defined as 
the maximum dissimilarity between two entities in the same cluster. The 
former measures separation of two clusters, and the latter measures homo- 
geneity of a cluster. Similarly, the split of a partition is defined as the 
minimum of all splits between any two clusters in the partition, and the diam- 
eter of  a partition is defined as the maximum of diameters of all the clusters in 
the partition. 

An ideal partition should then have minimum diameter and maximum 
split. Unfortunately, the two criteria are often conflicting. Minimum diameter 
clustering often suffers from the dissection effect (Cormack 1971), i.e., quite 
similar entities may end up in different groups in order to keep the diameter 
small. On the other hand, maximum split clustering suffers from the chain 
effect (Johnson 1967), i.e., very different entities are clustered in the same 
group. 

Example (a) in Figure 1 is taken from Hansen and Jaumard (1987). It 
illustrates a typical case of the dissection effect. The solid circles represent a 
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c e m 
�9 ?2 00 ,!, 20 0!, :0 8!2 9'5 1 , 0 .  
b 17 1.1 2.0 63  6.7 6.7 7.3 7.9 7.9 9.2 13.3 b 
c 14 1,4 6.4 6.3 6.9 7.2 7.9 7.6 8,9 13.5 c 
d 0,9 5.4 5.8 5.9 6.3 7.2 6.9 8.2 12.6 d 
e 5.0 5,1 5.5 5.8 6.6 6.3 76  12.2 e 
f 16 0.8 1,0 1.6 2.2 3.0 7.2 f 
g 22  1.4 23  1.2 26  7.6 g 

l 2 1.3 2.6 2.3 6.7 h 
i 0 9 14 2.0 6.5 i 

14 6.6 k 
I 5.3 l 

Table 1. Data for Example (b/of Figure 1 
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(a) dissection effect (b) chain and dissection effects 

Figure 1. Examples of partitions that suffer the dissection and chaineffects. 

natural bipartition of  the data set. But if the rain-diameter criterion were used, 
a partition shown as the dashed circles would be inevitable. Example (b) 
further demonstrates that when objectives focusing on either one of  the two 
criteria are used, unsatisfactory partitions may occur. The distance matrix for 
this example is shown in Table 1. 

For example, to minimize the diameter of  a bipartition, entities f and g 
would be assigned to a group including all the entities on their left, resulting 
in a diameter 7 and a split 0.8; to maximize the split, however, we would 
select a partition with m in a single entity cluster and all others in another 
cluster, producing a split 5.3 and a diameter 9.5. 

Remark. The examples shown in Figure 1 have natural partitions that are 
easily recognized by sight, and the undesired partition in (b) results from the 
choice of  the number of  clusters which is equal to two. However, this does 
not exclude seeking better alternatives. In fact, these examples clearly 
demonstrate the tendency that if we focus on either criterion, the other one 
will be weakened. While this does not pose serious difficulty for small prob- 
lems, real-world data sets are so large that one cannot determine in advance 
which criterion and how many clusters will produce the best results. More- 
over, in many cases, dissimilarities cannot be represented by Euclidean dis- 
tances, which makes a visual inspection of  the "goodness" of a partition 
impossible. 
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Trying to resolve the conflict, Hansen and Jaumard (1987) propose 
using the minimum sum of diameters criterion to overcome the drawbacks 
shown in Figure l(a), and they give an O(N 3 log N) algorithm, where N is the 
size of the data set. But this criterion may not deal well with the situation 
shown in Figure l(b): in this case, it would yield a bipartition the same as the 
one maximizing split. For the M-clustering problem, i.e., the problem of parti- 
tioning the data set into M clusters, 2 < M < N, Delattre and Hansen (1980) 
suggest searching for the Pareto efficient solutions for a bicriterion objective. 1 
Their algorithm is enumerative, and hence its time complexity is exponential. 
Thus, finding an effective way to compromise between homogeneity and 
separation of a partition is an important subject in the clustering literature. 

Another difficulty comes from the complexity of clustering problems. 
While the maximum split problem can be solved in O(N z) time for any M 
(Gower and Ross 1969; Hubert 1977; Delattre and Hansen 1980), the 
minimum diameter can only be solved in O(N 2) time for M = 2 (Rat 1971; 
Zahn 1971). For M > 2, it becomes NP-hard (Brucker 1978; Hansen and 
Delattre 1978). For M > 3, the problem of minimizing diameter is NP-hard 
(see Brucker 1978; Hansen and Delattre 1978; and Welch 1983). In dealing 
with M-clustering problems, two strategies are commonly used, hierarchical 
clustering methods and non-hierarchical clustering methods. Hierarchical 
strategies branch into agglomerative hierarchical schemes and divisive 
hierarchical schemes. The former start with N clusters, each entity being a 
cluster, and then merge two clusters into one at each iteration. The latter 
work in the opposite way, starting with all the entities clustered together and 
recursively dividing one cluster into two. We shall discuss the divisive 
hierarchical approach in this paper. 

The efficiency of a divisive hierarchical scheme depends on the biparti- 
tion algorithm that is invoked at each iteration. In this paper, we show that 
partitioning problems with the following objective can be solved efficiently 
for the bipartition case, and that such a bicriterion objective indeed provides 
an effective compromise: 

min [c~ / -  (1 - ~)s] ,  

where 0 _< o~ < 1, and d and s are the diameter and split of the partition, 
respectively. This objective is a generalization ofmin  d and max s. 

1. A partition is Pareto efficient if no other partition into at most  the same number  of  clusters is 
better in both criteria. 
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Such an objective function leads to a satisfactory compromise for the 
two examples shown in Figure 1. The partition represented by the solid cir- 
cles in Example l(a) can be obtained with an ix<0.75. With 
0.215 < o~ < 0.875 in Example l(b), partition {a,b,c,d,e}, {f,g,h,i,j,k,l,m} 
provides the optimal solution with a diameter 7.6 and a split 5.0. These 
examples also demonstrate the insensitivity of the choice of a. 

The weighted sum type of objective is extensively used in multiple cri- 
teria decision making. Quite often, two or more conflicting objectives are 
desired at the same time. For instance, in portfolio analysis, return and risk 
usually move in the same direction, but one is to be maximized while the 
other is to be minimized. In location theory, center and median are two meas- 
ures that reflect two different interests. Various ways of combining two objec- 
tives have been studied (see Berman, Einav and Handler 1990; Hansen 1979; 
and for a comprehensive text on multiple criteria decision making, Zeleny, 
1982). 

The advantages of the weighted sum type are immediate: it is easily 
understood, and the decision maker can control the outcome by choosing 
different weighting schemes. The disadvantage is that sometimes it is not 
clear which criterion should receive the greater weight. To overcome this, we 
derive a minimal set of dominant partitions in the sense that. for any biparti- 
tion P not in the set, there is one P in the set such that P is preferable to P 
for any given ct. We have developed an efficient algorithm to accomplish this 
task. 

This paper is organized as follows. First the problem is formulated and 
notations are specified in the next section. In Section 3, we present the major 
contribution of this paper: definition of the dominance class and the algorithm 
that derives the dominance class. An example is provided in Section 4. The 
result is then extended to the following objective in Section 5: 

min [ct(dl + d2) - 2(1 - c~)s], 
P2 

where P2 = {V1, V2} is a bipartition, dl  and d2 are diameters of V1 and Vz, 
respectively, and s is the split of P2. While this problem can be solved in 
O(N 4 log N) time, an efficient approximation algorithm of complexity O(N 3) 
is also developed. 

2. Problem Formulation 

Given a set V = {vl ,vz  . . . . .  VN} with N = 1VI entities, define a real 
function on V xV, f: (Vk,Vl)---~dkt, k = 1,2 . . . . .  N, l = 1,2 . . . . .  N, that 
satisfies dkl > O, dkk = O, and dkl = dlk for all k,l. An M-clustering of  V is 
defined as a partition of V into M nonempty disjoint subsets (clusters): 
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PM = { V1,V2 . . . . .  VM}. Each cluster Vj has two associated measurements: a 
split and a diameter defined by 

s(Vj) = rain dkl , 
v~ vj,~, ~ 

d(Vj) = max dkl, 
V~t~Vt~: Vj 

respectively. Similarly, a split and a diameter are also defined for the parti- 
tion PM: 

S(PM) = min s(Vj) , 
J 

d(PM) = max d(Vj). 
J 

Two commonly used clustering objectives are mind(PM) and 
max S(PM). Hereafter, we shall refer to min d(P2) as the MinDiameter prob- 
lem and max s(P2) as the MaxSplit problem. 

Define a valued graph G = (V,E), where E = {(Vk,Vl) I Vk,Vt ~ V, for all 
k < l} with the weight on (Vk,Vz) being dkl. Then MinDiameter and MaxSplit 
are solved by constructing a maximum spanning tree and a minimum span- 
ning tree of G, respectively. Recall that a spanning tree T of G is a subgraph 
T of G which contains all the vertices of G, is connected and has no cycle. A 
maximum spanning tree (minimum spanning tree) is a spanning tree such that 
the sum of the weights of its edges is the maximum (minimum). 

Theorem 1. (Hansen and Jaumard 1987) Let T denote a maximum spanning 
tree of G and (vp,Vq) an edge of G\T which has the maximum weight subject 
to the condition that its union with T forms an odd cycle. Then for all parti- 
tions {V1,V2} of V, either d({VI ,V2})=dpq or d({V1,V2})= dkl with 
(vb vl) ~ T and dkl > dpq. 

Note that a tree admits a unique bicoloration of its vertices. The fol- 
lowing corollary, obtained independently by Gu6noche (1989) and Monma 
and Suri (1991), indicates how a minimum diameter bipartition can be 
obtained. 

Corol lary 1. The partition { V~, V2 } induced by a bicoloration of the vertices 
of a maximum spanning tree T of G has minimum diameter. 

The following theorem gives an indication on how to construct a max- 
imum split bipartition (which is in fact given by the well-known single- 
linkage algorithm, Gower and Ross 1969). 
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Theorem 2. (Delattre and Hansen 1980) The number of distinct values of the 
split S(PM) for all partitions PM of V is at most N - 1. Moreover, these values 
are equal to the weights of the edges of the minimum spanning tree of G. 

Let T 1 denote a minimum spanning tree of G and T 2 a maximum span- 
ning tree of G. Thus the longest edge in G\T z that closes an odd cycle in T 2 

defines the minimum diameter of all partitions P2 of V: 

d* = min d(Pz). (1) 

The longest edge in T1 defines the maximum split of all partitions P2 

of V: 

s = maxs (P2) .  (2) 

As discussed in Section 1, either criterion alone has serious drawbacks. 
It is natural then to consider both criteria simultaneously. Here we use the 
weighted sum of diameter and split of a partition as the objective. First define 
for any partition P: 

g(ct, P) = c u / ( P )  - (1  - a)s(P), ( 3 )  

where 0 < ct < 1. Then the weighted sum of diameter and split problem 
(WSDS) can be written as 

g(ct) = rain g(e~,e), (4) 
P e P  

where P is the collection of all admissible partitions. 
For M > 2, the problem is clearly NP-hard. We shall show that, for 

M = 2, the problem can be solved in O(N 2) time, the same complexity as for 
solving either the MinDiameter or MaxSplit problem. 

In the remainder, we will only consider the bipartition version of the 
WSDS problem, i.e., unless otherwise stated, M = 2. 

3. The Dominance Class 

Since the choice of ct in (4) is rather subjective, instead of solving the 
problem for a given ~, we focus on obtaining a set of bipartitions that dom- 
inate those not in the set regardless of the choice of a. 

Let us now take a closer look at the problem. Let the edges of the 
minimum spanning tree T1 be Em = {e~ ,e'~ . . . . .  eTv-1 }. The elements of E1 
are indexed such that f(esl ) < f(e~ ) <...< f(eSN_l ). 

Consider a bipartition pO induced by bicoloring the vertices of the 
maximum spanning tree T2, which has the optimal diameter d o = d* and a 
split s o = f(e~) for some i. If s o = s *, then p0 is optimal. But this is rarely 
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8 

d 

Figure 2. Illustration of Algorithm WSDS. 

the case. (Recall that s * =  f(e~r Thus if sO< s ,  we must have 
i < N -  1.) To improve the objective, we can impose the condition that the 
resulting partition has a split s >f(e'1'). Although this may lead to an 
increased diameter, the weighted sum may be reduced. Equivalently, the 
condition stipulates that edge e~' and all other edges with weight less than or 
equal to f ( e l )  are collapsed so that their vertices are merged and forced into 
the same cluster. This constraint may or may not increase the diameter. To 
update the diameter, we consider two cases. In the first case, the collapsed 
edge does not belong to T2, and hence a cycle C is formed in T2 after the 
merge. To find the minimum diameter with this restriction, we can update T z  
by simply cutting C at the shortest edge. A local recoloration of the updated 
T2 will define a new partition p i .  According to Theorem 1, if C (after two 
vertices are merged) is an even cycle, the diameter is still dO; if C is an odd 
cycle, and the shortest edge in C has a weight greater than d ~ the diameter 
will become equal to the weight of the edge. In the second case, the col- 
lapsed edge belongs to T2, and no cycle is formed. In this case, if the weight 
of the collapsed edge is greater than d ~ it becomes the new diameter; other- 
wise, the diameter remains unchanged. In any case, we have d i > d o and 
s i > s ~ where d i = d ( P  i) and s i = s ( p i ) ,  and we can compare p0 and p i  to 

determine which one is preferable. 
Let us write 

h(o~,eSi ) = g(tx,  P i) = t ~ l ( P  i) - (1 - c t ) s ( p i )  , (5) 

where p i  is the bipartition such that  d(P i) = min~(p2) >f(e~) d(Pz). Thus, for a 

given ~, the WSDS problem is decomposed to subproblems {h(ot, e) : e ~ Ea } 
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(Theorem 2), and we have 

g(t~) = rain h(o~,e). (6) 
e~E~ 

We are now ready to develop an algorithm that progressively increases 
s, and in each iteration, finds a partition with the best diameter. When ~ is 
arbitrary, we are interested in deriving a dominance class which is defined as 
follows. 

Dominance class. Let P be the collection of  all bipartitions of  V. Let 
g(ct,P! be a measure  o f  satisfaction of  P ~ P for 0 <_ t~ <_ 1. I f  
g(~ ,P )<g(t~,P ) f o r P  ,P ~ P f o r a l l ~ s  [0,1], w e s a y P  dominates 
P . A dominance class D c P is a set of  partitions such that each ele- 
ment in P \ D is dominated by at least one partition in D, and no pair of  
partitions in D dominates each other. 

Algorithm WSDS 
inputs: G = (V,E,f); 
outputs: D. 

1 begin 
2 construct the minimum spanning tree T 1 ; 
3 arrange the edges of T1 in the non-decreasing 

order of their weights; 
set s * = f (e~-i  ); 

4 construct the maximum spanning tree T2, 
and find the longest edge in G \ T 2 
that forms an odd cycle with edges in T2, 

say, (V 1,V2); 
set d = f (v  1,v2); 

5 bicolor T 2 and find a bipartition pO, 
compute So = s(P~ 
stack pO in D; 

6 if So = s , stop; 
7 f o r / =  1 t o N - 2 d o  
8 merge ( T z , u , v ) ,  where u,v are 

vertices of e~'; 
e s 9 iff(e'~'+l ) > f ( i ) ,  then do 

10 locally recolor T 2 and find bipartition p i; 
11 compute split si = s(pi); 
12 i fs i  > So, set So = si, update D; 
13 endif 
14 endfor 
15 end 
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Procedure merge (T,u,v) 

begin 
if u and v are already merged, end; 
merge u,v; 
if(u,v) ~ T, 

delete (u,v) from T, and rebuild T; 
if f(u,v) > d, let d = f(u,v); 

else 
identify cycle C in T, and 

find the edge of minimum weight in C 
and denote it (v 1 ,v 2); 

if C is an odd cycle andf(vl,v2) > d, 
l e td  = f(vl,v2); 

delete (Vl ,vz) from T, and rebuild T; 
endif 

end 

We now describe our algorithm {WSDS} that finds such a dominance 
class. Procedure merge (T,u,v) takes a maximum spanning tree T, merges the 
two vertices u and v, finds the cycle formed by the merging, and updates the 
maximum spanning tree by cutting the cycle at the shortest edge. Algorithm 
WSDS takes the graph, computes the minimum and the maximum spanning 
trees (lines 2-5), and in the mean time, identifies the optimal diameter d*. It 
then enumerates lines 8-13 for each edge in T1, from the shortest to the long- 
est, and finds a minimum diameter partition given that the edge under con- 
sideration has to be collapsed. In each loop, either both the split and the 
diameter remain unchanged, or at least one of them increases. When the split 
increases, a new dominant partition appears, and D is updated by adding the 
new partition and removing those dominated by it; otherwise, the new parti- 
tion is dominated and ignored. Figure 2 illustrates the process. 

Since Algorithm WSDS enumerates explicitly the split candidate 
values, and for each enumeration, an optimal diameter is obtained subject to 
the split constraint, the algorithm locates all the dominant bipartitions. Also 
since computing a minimum (maximum) spanning tree takes O(N 2) time, 
bicoloring T2 takes O(N) time, and each line between lines 8 and 13 takes at 
most O(N) time and is executed for O(N) times, the algorithm has a time 
complexity of O(NZ). This is stated in the following theorem. The proof can 
be found in the Appendix. 

Theorem 3. Algorithm WSDS finds the dominance class D in O(N z) time. 
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Note that each partition in D defines a function of (x: 

g(o~ ,P  i) = OWl(P i) - (1 - ~ ) s ( p i )  . 

For any pair of  partitions P" and P'" in D, g(a,P') and g(a~,P") intersect each 
other at some value of ot E (0,1). Thus the following function is well defined: 

g *(c~) = min [ou/(P) - (1 - a)s(P)] .  (7) 
PoD 

Clearly, g *(a) is a concave, piecewise linear and increasing function. Note, 
however, the difference between the dominance class D and the elements in D 
that define g*(a). The latter form only a subset of D. For instance, in Figure 
2, pO,p1 and p4 constitute the dominance class, but only p0 and p4 define 
the function g *(or). 

Given function g *(~), a bipartition satisfying our objective can easily 
be determined by choosing a value of c~ that best suits the compromise. 

Remark .  Although our dominance class is defined with respect to the 
weighted sum of diameter and split, our algorithm actually finds the Pareto- 
efficient set; that is, no bipartition not belonging to D has both a smaller diam- 
eter and a greater split than any bipartition in D, and any two elements in D 
are equivalent in file sense that if  one has a smaller diameter than the other, it 
must also have a smaller split than the other. Such a set can also be used with 
any other utility functions defined with respect to diameter and split by deci- 
sion makers (presumably, a greater split and a smaller diameter are always 
preferable). 

Based on this result, we propose using a divisive hierarchical scheme 
that recursively selects the cluster with the largest diameter and optimally 
partitions it. With the algorithm we developed, we can achieve a complexity 
of O(MN 2) for a hierarchical M-clustering method. This, to our knowledge, 
represents the first polynomial algorithm for solving multiple criteria cluster- 
ing problems in the literature. 2 

Divisive hierarchical schemes offer effective approximations for the 
general problem. Gu6noche, Hansen and Jaumard (1991) have provided 
strong arguments in favor of such schemes. 

2. There exist efficient hierarchical algorithms, however, for single criterion M-clustering 
problems. For example, Gu6noche, Hansen and Jaumard (1991) give an efficient algorithm for 
a divisive method baked on minimum diameter bipartitions. 
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2 3 4 5 6 7 8 9 I0 11 12 13 
�9 .682 .597 532 .670 66-5 g96 .~8  .6~4 .884 .002 .686 .5ll  

.683 .770 .715 766 843 .843 .805 .943 .850 .855 .761 
.695 .753 .732 .777 .618 .816 1.075 .909 .860 .679 

.773 .673 665 .609 .675 .901 .890 .840 .673 
.378 .344 .422 .277 .689 .656 .785 .656 

.278 .473 .280 .707 847 .909 .691 
.381 .315 .754 .768 .619 .655 

.468 .715 .760 .729 .605 
.630 .720 .887 .720 

516 .415 .592 
.572 A69 

A48 

T a b l e  2 .  D a t a  f o r  t h e  E x a m p l e  o f  S e c t i o n  4 

Merge P '  d s VI 
po 0.819 (7,12) 0.278 (6,7) 1,2,3,4,5,6,0 

(5,9) P~ 0.619 (7,12) 0.278 (6,7) 1,2,3,4,5,6,9 
(6,7) P~ 0.843 (2,7) 0.381 (7,8) 1,2,3,4,5,6,7,0 
(6,9) PJ 0.843 (2,7) 0.381 (7,8) 1,2,3,4,5,6,7,0 
(7,6) .o4 0.843 (2,7) 0.511 (I,13) 1,2,3,4,6,6,7,8,9 

(10,12) P~ 0.843 (2,7) 0.511 (1,13) 1,2,3,4,5,6,7,8,0 
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(8,13) P" ' 1.075 (3,10) 0682 (I,2) 2 

Table 3. Iterations of Algorithm WSDS 

�89 
7,8,10,11,12,13 
7,6,10,11,12,13 
8,10,11,19,13 
8,10,11,12,13 
10,11,12,13 
10,11,12,13 
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10,11,12,13 

1,10,11,12,13 
1~4,10,11,12,13 

1,3,4,10,1 L12,13 
1,3,4,5,5,7,8,0,10~11,12,13 

0 < a < 0.328 ] 0.328 _< a < 0.597 I 0.597 _< a < 0.907 0.907 < a < 1 
- p l l  p 9  p4  p o  

1.757a - 0.682 1A98o  - 0.597 1.354o - 0.511 1 .097a - 0.278 

T a b l e  4 .  F u n c t i o n  g * ( ~ )  D e f i n e d  fo r  t h e  P s y c h o l o g i c a l  t e s t  D a t a  
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0.597/1.68~0.532 0.~ 0.415 
@@@ @ @ 

 028___6@ 0.277| 

~ ~ @ 0 . 8  0 9 9 1.075 

O. ~09~8~~7 ~ / ~ 8 ~ 9 0 9  78 .887 0.94 88 .901 

0.819 0.8~.84~720 

@@@ 

Figure 3. The minimum spanning tree (left) and the maximum spanning tree (right). 

4. An example 

In this section, we demonstrate Algorithm WSDS with an example. The 
data are taken from a real case of 13 psychological tests (Harman 1967). 
These data have been used in the clustering literature for illustrations, e.g., 
Delattre and Hansen (1980). The dissimilarity matrix is shown in Table 2. 

The minimum spanning tree T1 and the maximum spanning tree T e 
corresponding to the data are shown in Figure 3. The maximum split cluster- 
ing yields a partition of V1 = {2} and Vz = {1,3,4,5,6,7,8,9,10,11,12,13} 
with a split 0.682 and a diameter 1.075. The minimum diameter clustering 
gives a partition of V1 = {1,2,3,4,5,6,9} and V2 = {7,8,10,11,12,13} with a 
split 0.278 and a diameter 0.819. We will use this example to demonstrate 
Algorithm WSDS. 

The detailed iterations of executing Algorithm WSDS for this example 
are listed in Table 3. By bicoloring T 2, a bipartition p0 is determined, which 
is shown in the first row of Table 3. From this initial partition, we begin the 
algorithm by merging entities 5 and 9 into a supernode (5,9) because they 
correspond to the smallest edge in T1. Since both entities 5 and 9 are in the 
same cluster V~I, merging them does not change the initial partition. In the 
next iteration, entities 6 and 7 are merged; this merge forms an odd cycle 
which has to be broken at the shortest edge (2,7), and thus forces 7 into V1. 
The new partition becomes V 2 = { 1,2,3,4,5,6,7,9} and 
V 2 = {8,10,11,12,13} with a split 0.381 and a diameter 0.843. In the same 
manner, Algorithm WSDS ends when all entities in T 1 are merged. The domi- 
nance class consists ofP~ 9 and p n  (pZ is dominated by p4, p10 is 
dominated by p l l ) .  Among them, pO,p4,p9 and pll  define a function g *(t~) 
which is shown in Table 4. 
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5. An extension 

The approach discussed in the previous sections and Algorithm WSDS 
can be adapted to incorporate the following objective function: 

g(ot,P2) = or + d(V2)] -2(1  -~ ) s (P2) .  (8) 

It is done simply by replacing line 10 of Algorithm WSDS with a pro- 
cedure that finds an optimal solution to 

min [d(V1) + d(V2)]. (9) 
Pz 

Hansen and Jaumard (1987) propose a procedure to solve the min-sum-of- 
diameter problem. They reduce the problem to the determination of the con- 
sistency of a quadratic Boolean equation and obtain an O(N 3 log N) algo- 
rithm. Applying their procedure in Algorithm WSDS and using the algorithm 
in a divisive hierarchical scheme for solving the M-partition problem, we 
would obtain an algorithm with a worst-case complexity of at least 
O ( M N  4 log N). For large N, this is quite slow. In this section, we propose an 
efficient approximation algorithm that utilizes the information contained in 
the spanning trees and yields an O(N 2) time complexity for solving the min- 
sum-of-diameter problem. A divisive hierarchical scheme embedding this 
algorithm will therefore have an O ( M N  3) overall complexity. 

Consider the problem of bipartition given that an edge (u,v) defines the 
diameter for V1 while d(V2) is minimized: 

min d2 = d(V2) 

s.t. u,v ~ V1, and 

dl  = d(V1) = f ( u , v ) .  

(lO) 

(11) 

(12) 

Without loss of generality, we assume that dl-> d2. According to 
Theorem 1, we only need to consider as the candidates for dl the edges of the 
maximum spanning tree T2 that satisfy dk~ > dpq and the edge (Vp,Vq) as 
defined in the theorem. Let Ed be the collection of such edges excluding 
(vp,Vq). We propose a bicoloration procedure minsum to derive the partition 
{ Vl, V2 }. 

Procedure minsum ( T, E d, vp, V q ) 

inputs: T, a tree; 
Ed, a collection of candidate edges; 

output: bipartition { V1, V2 } with V1 
being red and V2 blue; 

begin 
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let d 1 = f(Vp,Vq), d 2 = 0; 
color vp red, depth_first_search (v e, vq); 
Ie tEd = dl + d2, store {V1,V2} 

and reset color; 
let d2 = 0, color Vq red, 

depth_first_search ( v p , V q ) ; 
i f d l  + d 2 < E d ,  l e t E d = d l  +d2 ,  

store { V1, V2 } and reset color; 
while Eu is not empty; 

take e ~ Ed, let the two vertices 
o fe  be u,v; 

color u,v red, delete {u,v } from Ed; 
let d l =  f (u , v ) ,  d2 = 0; 
if dl  > Ed, skip to endwhile; 

depth_first_search ( u, v ) ; 
depth_first_search (v, u); 
if dl + d2 < Ed, 
let Xd = dl + d2, 
store { V1, V2 } and reset color; 

endwhile; 
end 

Procedure depth_first_search (u,v) 
begin 

i fu  is red a n d f ( u , v )  > dl,  color v blue; 
update d2; 

otherwise, color v red; 
for each w adjacent to v; 

if w is not colored, 
depth first_search (v, w); 

endfor 
end 

This is a myopic type algorithm and proceeds as follows: it first parti- 
tions the vertices such that dl  = f(Vp,Vq). Then, it enumerates the edges in 
Ed, the set of  candidate diameters for dl .  For each edge e ~ E d, it colors its 
vertices red (i.e., assigns them to Vi), sets the diameter equal to its weight, 
and then visits other vertices by a depth-first-search algorithm; the subsequent 
vertices are colored red if doing so does not incur a diameter greater than dl ,  
and blue otherwise. The partition with the least sum of diameters is retained. 

Although this algorithm does not guarantee an optimal solution, it is an 
efficient algorithm, and for large data sets, the gain in speed may well 
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compensate the loss in optimality. When this algorithm is applied to the 
example given in Hansen and Jaumard (1987), the optimal solution is 
obtained immediately: the partition with da = f(vp,vq) and d2 = 1 is optimal 
and thus the while-loop, i.e., all the edges in Eu, is skipped. 

6. Conclusion 

We have studied the problem of data clustering in this paper. Recogniz- 
ing that either of the two much used criteria, maximum split and minimum 
diameter, has drawbacks if used alone, we have proposed using the weighted 
sum of both as the clustering criterion. An algorithm of complexity O(N z) 
has been developed to derive the Pareto-efficient set on which an optimal 
solution can be obtained for any given weighting scheme. 

We further extended the criterion to the weighted average of the sum of 
the diameters and the split of a 2-partition, and devised an efficient approxi- 
mation algorithm. The merit of our algorithms is that, when they are applied 
in a divisive hierarchical scheme, the quality of an M-clustering can be 
improved with manageable computational requirements, and the preference 
for stressing split or diameter can easily be adjusted. 

We should point out, however, that the application of the dominance 
class in a divisive hierarchical method is not at all straightforward. Different 
strategies have to be developed in using our algorithms. Although it is not our 
intention to discuss the full issue here, at least three directions can be pur- 
sued: (i) fix a value for a and use it at all steps; (ii) choosing different values 
for ~ as the divisive scheme proceeds; (iii) derive the dominance class at 
each step for arbitrary a. For the first two directions, various criteria need to 
be developed in choosing the value for (~. For the third direction, a manage- 
able size for the problem has to be maintained. For example, some partitions 
in the dominance class at each step can be discarded. These should all be 
interesting topics for future research) 

Appendix 

We prove Theorem 3 in this appendix. The following lemma is a well- 
known (and easy to prove) property of minimum spanning trees. 

3. The authors thank an anonymous referee for inspiring the above comments. 
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L e m m a  1, Suppose edge e ~ T1 and subgraph C of G is a cycle formed by 
adding e to T1. Then 

f(e) = max {f(u,v) I (u,v) ~ C} 

Proof of Theorem3 We only need to show that lines 8-13 of Algorithm 
WSDS produce a bipartition p i  that satisfies 

d(P i) = rain d(Pa) . (13) 
s(P2) > f(e~) 

First for i = 0, we have s(P ~ >f(e'~) since f(e'~) is the minimum, and 
d(P ~ = d*. Let p1 = p0. Therefore, we obtain the first partition satisfying 
(13) at the beginning of the algorithm. 

Now suppose that equation (13) is satisfied for the first i = k - 1 itera- 
tions, k = 1 . . . . .  N - 1, and that no two vertices connected with weights less 
than f(e~) are now separated in two clusters. The current minimum diameter 
partition has a split s > f(e~:). Subsequent partitions will be dominated by it 
unless a greater split is produced. Let uk,vk be the vertices of e~. Procedure 
merge puts Uk and vk in the same cluster. If there is no other edge with the 
weight f(e],), we may now obtain a new dominant partition with a split 

e s s >_ f(e],+l). If there is another edge e with weight f ( k ) ,  then according to 
Theorem 2 and Lemma 1, either e e T1, which will be, if not already, col- 
lapsed, or the addition of e to T1 forms a cycle in which the maximum weight 
is f(e~). Thus either all the vertices in the cycle are already merged into the 
same supernode, or the noncollapsed edges in the cycle all have the same 
weight f(e~), and their vertices will be merged in subsequent iterations. A 
new dominant partition will be determined after all the edges in the cycle are 
merged. 

Since it is the maximum spanning tree that determines the new dom- 
inant partition, if we can show that the maximum spanning tree produced by 
Procedure merge is not affected by the order in which the edges of the same 
weight are merged, then by induction, the theorem is proved. Suppose there 
exists an i such that f(e~') = f(ei+lS ). Let us add e~' and ei+ 1 '~' to T 2. If no cycle 
or only one cycle is formed, then the order of collapsing the two edges will 
not affect the construction of the maximum spanning tree. If two cycles are 
formed, let them be C1 and C2. Let A = C1 n C2. If A = O, the order is 
again irrelevant. Otherwise, let el  be the minimum weight edge in Cl\e~, 
and e2 the minimum weight edge in C2\e~'+1. There are then three possible 
cases: neither el  nor e2 belongs to A; one of them belongs to A; they both 
belong to A. Checking all the cases confirms that the procedure results in the 
same maximum spanning tree regardless of the order of the merging. �9 
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