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Abstract

This paper developed a modified genetic algorithm with integer representation (IGA) for cluster analysis problem. The IGA
method expands the basic concepts of conventional GAs to include fitness scaling, a modified selection operator, and three
newly proposed genetic operators, i.e., competition, self-reproduction and diversification. Moreover, a new clustering criterion
was introduced and compared with the commonly used square-error criterion. Clustering of simulated and real chemical data
showed that IGA consistently outperformed conventional GAs both in search efficiency and in search precision, and the
introduced criterion provided better performance than the square-error criterion. © 1997 Elsevier Science B.V.
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1. Introduction

Cluster analysis is a major problem in the areas of
pattern recognition, unsupervised learning and data
compression [1]. The objective of cluster analysis is to
discover a sensible organization of data. Numerous
methods have been reported for data clustering in the
literature of diverse fields [2] including chemistry [3-
5]. A variety of clustering methods are formulated as
optimization problems by defining some criterion
functions to be optimized. Apparently, the theoretical
solution to a clustering problem is straightforward.
One defines a criterion function, evaluates it over all
possible partitions containing K clusters and picks the
partition which gives the optimal criterion value. One
difficulty arises from the fact that most of the cluster-
ing criterion functions are nonconvex and have quite a
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few local optima. Moreover, as there are approxi-
mately KV/K! possible ways to allocate N patterns
among K clusters, the problems of clustering data have
exponential complexity. These problems are known to
be NP-complete (nondeterministic polynomial time
complete) [6], and it is clear that exhaustive search of
all possible partitions for the exact global optimum is
impractical even for a relatively small data set. On the
other hand, optimization of these clustering criteria
using classic hill-climbing or downhill based techni-
ques, though probably computationally efficient, fre-
quently fall short after getting trapped into local
optima, and the local optimal solutions thus obtained
are usually insufficient for practical problem solving.
To combat this difficulty, a viable way is to utilize an
appropriate global optimization technique, such as
simulated annealing (SA) [7] or a genetic algorithm
(GA) [8]. These global optimization techniques pro-
vide practical approaches for finding the globally
optimal or quasi-optimal solution with computational
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requirement proportional to a small power of the
sample size N.

Genetic algorithms (GAs) are a family of global
optimization techniques, which have proven to be
efficacious and efficient in tackling various complex
and large-scale optimization problems, even those
belonging to the class of NP-complete ones. The
attractive power of GAs derives from the behavior
of implicit exponential sampling of the search space
during the genetic search process. Applications of
GAs to the solution of chemical problems, recently
have comprised growing interest from chemometri-
cians [8-12]. A pilot study of using a GA for a data
clustering problem has been presented by Lucasius
et al.[13]. However, there are still many unsolved
problems in GAs. The primary criticism toward
GAs is the occurrence of premature convergence,
which always induces GAs to produce an undesirable
solution rather than the global optimum. Another
problem with GAs is that, when the algorithm is
terminated in limited time, one used to find the
methodology exhibiting rather poor search precision.
This unfavorable characteristic may to some extent
indicate that the global optimality of the solution given
by GAs is dubious.

Selection of a criterion for a practical clustering
problem produces another difficulty to cluster analy-
sis. A clustering criterion always reflects the investi-
gator’s intuitive notion about what a cluster looks like.
In this sense, each clustering criterion imposes a
certain structure on the data. The true clusters are
difficult to be discovered, unless the data conform to
the requirements of the selected criterion. This diffi-
culty is especially serious for the criteria derived from
some parametric models. For instance, the commonly
used square-error criterion is biased towards equally-
sized globular clusters, while another popular cluster-
ing criterion, the Friedman and Rubin’s criterion [14],
tends to impose a similar hyperellipsoidal configura-
tion on each cluster. Both the square-error criterion
and the Friedman and Rubin’s criterion can be derived
from some restricted Gaussian mixture models. An
advantage of the parametric methods over the non-
parametric ones is their high efficiency in the situa-
tions when the underlying data structures happen to be
described by the parametric models. To keep up high
efficiency while mitigate the tendency of imposing
some structures, an appropriate way is to use a general

parametric model, which can described most of data
structures encountered in practice.

In this paper, attempts were made to attack both the
difficulties inherent in the clustering problems, i.e., the
local optima problem and the criterion selection pro-
blem, at the same time, to alleviate the problems with
GAs, i.e., premature convergence and poor search
precision. Our work was distinguished from the pre-
vious studies in two major aspects. First, a new
clustering criterion has been introduced. This criter-
ion, derived from a general Gaussian mixture model,
has a very weak tendency of imposing a particular
structure on the data, therefore, it is suitable for a vast
of clustering problems encountered in practice. Sec-
ond, a modified GA with integer representation (IGA)
has been developed, which expands the basic concepts
of conventional GAs to include fitness scaling and
three new genetic operators, i.e., competition, self-
reproduction and diversification. These new genetic
operators, together with other conventional operators
of selection, crossover and mutation in the modified
form, integrate exploration and exploitation, global
and local search in a balanced manner into the pro-
posed IGA. Experimental results show that the devel-
oped IGA consistently outperforms conventional GAs
both in search efficiency and in search precision, and
the introduced clustering criterion provides a better
performance than the commonly used square-error
criterion.

2. Theory
2.1. Criterion functions for cluster analysis

The problem of hard clustering can be mathemati-
cally stated as follows: given a set of N patterns, x;,
X3,. .., Xy In d-metric space, the aim is to group the
patterns into several disjoint subsets, i.e., clusters, Cy,
C,.. .., Ck without the aid of category labels such that
the patterns within the same clusters are somehow
more similar to each other than patterns in different
clusters. The term ‘hard’ means that each pattern
belongs to only one cluster. Suppose that cluster C;
has N, patterns, then one has

K
ZNk =N (1)
k=1
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One way to make this into a soundly formulated
problem is to define a criterion function measuring the
clustering quality of any partition of the data. There-
fore, the clustering problem is to seek the partition
which optimizes the criterion function, known as
partitional clustering. The most widely used criterion
function is the square-error criterion. Let my be the
mean of cluster C, , i.e.,

N (0

my = - (2)
2N

where x,(-k) is the ith pattern belonging to cluster C,

then the square-error criterion is defined by

Z Y myl? 3)

The objective of the square-error clustering is to
find a partition that minimizes J, for a fixed K.
This criterion has been criticized for two reasons.
One is that it tends to seek for equally-sized hy-
perspherical clusters, and the other is that this criterion
is not invariant under nonsingular linear transfor-
mations. The Friedman and Rubin’s criterion seeks
a partition which minimizes the determinant of
S, the within-cluster scatter matrix, which is defined

K N
=33 ! —m) - m” @

where the subscript T denotes the matrix trans-
position. This criterion has an advantage over the
square-error criterion in that it is invariant to non-
singular linear transformations of patterns. One draw-
back with this criterion is the imposition of a similar
hyperellipsoidal structure on each cluster. Both the
square-error criterion and the Friedman and Rubin’s
criterion can be derived from the Gaussian mixture
models

K
) =" ped(xlg, T (5)

k=1

where py , #, and 3 are the a priori probability, the
mean vector and the covariance matrix, respectively,
of the k th component normal distribution ¢. In most
clustering problems, p, (k =1,..., K) are implicitly
assumed to be equal. It has been pointed out that the

square-error criterion can be derived from the
restricted Gaussian mixture model with X, =
M(k=1,...,K), where I is the identity matrix and
A is a positive number, while the Friedman and
Rubin’s criterion can be derived from the restricted
Gaussian mixture model with identical covariance
matrix for each cluster [2]. Without these particular
restrictions to the covariance matrices, the following
general Gaussian mixture model

Mw

fx) =) olxlm, ) (6)

k=1

provides a more general model for practical cluster-
ing problems, which allows each cluster to have an
arbitrary hyperellipsoidal structure. In fact, most data
involved in chemical practice can be described by
this general model. Therefore, a criterion, which can
be derived from this general Gaussian mixture model
(Eq. (6)), is introduced in the presented work, as
defined by

K
Jom =Y _ Neln(|Si/Ni]) 0
k=1

where S, is the scatter matrix of the kth cluster and
Il denotes the deteminant of a square matrix.
Minimization of this criterion provides a flexible
way for cluster analysis. This criterion has a very
weak tendency to seek clusters of a particular
structure and it is invariant to nonsingular linear
transformations of patterns. Generally, this criterion
can be optimized using the so-called CEM algorithm,
a classification version of the EM algorithm. The
detailed steps of the CEM algorithm for this criterion
(Eq. (7)) are presented as follows:

(i) Select an initial partition containing K clusters
of the patterns.

(ii) Compute my = Z, lJc YN, and S; = S
x — ) (o — )

(iii) Compute di(x;) = (x; — mp)S; " (xi
Ni+In(|S /N )(1 < i <N, 1 <k <K).
(iv) Update partition by assigning each x; to the
cluster which gives the minimum di (x;).

(v) If current partition is distinguished from the
previous one, return to (ii); otherwise, terminate
the algorithm.

—m)"/
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In passing, we have derived from the most general
Gaussian mixture model (Eq. (5)) a clustering criter-
ion, as defined by

K
Jon' =3 Niln(1Si/Nel /A7) ®
k=1

Since the a priori probabilities p; (k =1,. . ., K) are not
assumed to be equal in deriving this criterion, this
criterion may have a certain advantage over the afore-
mentioned criterion (Eq. (7)) under the mixture sam-
pling situations. i.e., the number of samples in
different clusters possibly differs significantly. We
have experienced many examples that, in usual clus-
tering problems in which the number of samples in
different clusters does not have great difference, both
criteria (Eq. (7) and Eq. (8)) turn out to show a
comparable performance.

2.2. An integer GA for data clustering

GAs are a family of stochastic optimization
techniques emulating the natural evolutional process
in a numerical manner. The philosophy of GAs is to
build the nature’s principles of evolution into the
algorithmic operators, such that the produced
genetic operators are beneficial for search efficiency
and implementation convenience. Based on such a
philosophy, a modified GA with integer represen-
tation is proposed by the present authors with
prior attempts to overcome the aforementioned
problems in GAs.

2.2.1. Population representation

A salient characteristic of GAs is that they work
with a population (usually of fixed size, say N,) of
string-represented candidate solutions. By maintain-
ing a multipoint perspective on the search space with
successive populations, GAs have relatively high
chance of finding the global optimum. A candidate
solution, i.e., an individual, in the proposed GA is an
indicator vector whose components, i.c., genes, indi-
cate the cluster membership (k =1,..., K) of corre-
sponding patterns. That is, a candidate solution for a
clustering problem of N patterns is an N-dimensional
vector, and the n th component of it is an integer
equaling the ordinal number of the cluster to which the
n th pattern belongs. As such an integer representation

is used for candidate solutions, the proposed GA is
referred to as integer GA (IGA). This integer repre-
sentation for candidate solutions has two algorithmic
advantages over the binary representation commonly
used in conventional GAs. One is that, with this
integer representation, the clustering criterion values
can be calculated immediately without preliminary
decoding of candidate solutions. On the other hand,
with a binary representation which represents the
cluster membership by several bits, unless K +1
happens to be a power of two, some illegal strings
will unavoidably generated by common bit operations
in conventional GAs. This incurs much inconvenience
for the implementation of some genetic operators.
Moreover, with the proposed integer representation,
the developed IGA can be applied to hard partitional
clustering problems with various criteria, besides the
criterion (Eq. (7)) used in this work, merely through a
minor modification.

2.2.2. Fitness scaling

As the clustering problem seeks a partition which
minimizes a predefined clustering criterion (Eq. (7)),
in principle, any non-increasing function of the criter-
ion value with non-negative response can be used for
fitness evaluation. However, because exploitation of
useful information accumulated in past generations in
GAs is based on the fitness values of individuals,
fitness evaluation plays an important role in the
genetic search process. Ideally, the fitness of indivi-
duals should be evaluated in such a manner that
efficient exploitation takes place while sufficient
diversity is maintained in the population for produc-
tive exploration. A feasible approach to this goal is to
incorporate a fitness scaling transformation into the
evaluation of fitness. There are two major concerns
supporting the scheme of fitness scaling when indi-
viduals are reproduced or replaced probabilistically
with expected rates proportional to their fitness
values. One is the occurrence of a large offset value
of fitness, which makes the selection operator simply
serve as a random walk for non-optimal individuals.
The other is the case, when the fitness values of a
population tend to be homogeneous such that fitness
scaling is needed to enhance the selection pressure on
the population.

In this work, the fitness of an individual is evaluated
by applying a sigmoidal scaling to its raw fitness
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value, which is immediately taken to be the negative
criterion value associated with this individual. That is,
suppose the criterion value vector associated with
current population is Jgm = (Jgm(1), Jom(2), Jom(Np))
with the ith component being the criterion value of the
ith individual, then for an individual with a criterion
value Jg, the raw fitness value of it is -Jg,, and the
evaluated fitness of this individual is given by

fitness (i) = 1/{1 + exp[—(aJom + b)]} )

where a and b are two constants controlling the
slope and bias of sigmoidal function, and are deter-
mined in a manner such that the following set of
equations hold:

aJGm,[N,,/‘t} +b=3 (10)
aJvaNp*[Np/“j +b=-3

where [x] is the largest integer not larger than x,
JGm_[,\,p /4 and JGm.N,f[N,. /4) are the [N, /4]th and (N,
— [N, /4])th smallest criterion values, respectively, in
JGm of current population. Obviously, the fitness
values such evaluated are always positive. This
ensures the legality of fitness-proportional selection
operations. Furthermore, with such a choice of a and
b, the proposed scheme of fitness evaluation has two
attractive characteristics. One is that the best perform-
ing [Ny/4] individuals have comparable fitness such
that a mild competition among these individuals is
guaranteed. This prevents fitness-proportional repro-
duction and replacement operators from generating a
homogeneous population. Meanwhile, the worst per-
forming [N, /4] individuals have certain fitness values
greater than zeros, which ensures that these indivi-
duals still have a certain probability to be selected to
join future population such as to increase the diversity
in population. The other is that, a certain competition
pressure is maintained throughout the genetic search
process.

2.2.3. Selection and competition

The selection operator has a slightly modified form
in the proposed IGA. This operator generates a repro-
ducible parent population of size N,. Similarly to
conventional GAs, each individual is selected to join
the parent population with a probability proportional
to its fitness, relative to the other individuals in current
population. That is, the probability of individual j

being selected is

N
p(j) = fitness (j)/ Zﬁmess (i) (11)
i=1

To generate a productive parent population, the
(2j— Dth and the (2j)th parents (j = 1...., N/2) are
prohibited from being selected from the same indivi-
dual. That is, if the (2j— 1)th parent is generated
according to Eq. (11) from current population, then
the (2j)th parent should be produced according to
Eq. (11) from those individuals in current population
other than the (2j—1)th parent selected. In this sense,
the parent population generated by the modified selec-
tion operator is considered to be an ordered popula-
tion.

Competition operator, as proposed by the present
authors, serves as natural environments, in that it
statistically selects the surviving individuals accord-
ing to their fitness from the competing population. The
competing population consists all individuals of the
current population and the offspring populations gen-
erated by crossover and mutation. It can also consid-
ered as a probabilistically biased replacement
operator. According to the fitness of individuals, the
competition operator cyclically selects N, surviving
individuals from the competing population. The sur-
viving probability of each individual in each cycle is
also proportional to its fitness relative to other indi-
viduals in the competing population. However, to
maintain sufficient diversity in the surviving popula-
tion, in the proposed competition operator, each indi-
vidual has merely one chance of being selected to join
the surviving population. That is, when one individual
survives in the previous cycle, its fitness is set to 0 in
following cycles. To ensure that IGA will converge
asymptotically toward the global optimum, the opti-
mal individual thus far obtained survives and is
retained in the surviving population with a probability
of one.

2.2.4. Crossover and mutation

Crossover and mutation operators are two important
sources of exploration. An efficient GA should feature
a high exploratory power while maintaining a balance
between exploration and exploitation. The proposed
IGA deals with this trade-off using crossover and
mutation operators with high exploratory power,
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followed by a probabilistically biased replacement
operator, i.e., competition. This enables IGA to seek
a proper balance between exploration and exploitation
without loss of exploratory power.

Crossover is a method of sharing useful information
in two successful individuals. With a high exploratory
power, the crossover operator has relative high poten-
tial to reproduce new building blocks, which ensures
that the GA methodology can probe the attraction
regions of all optima. The highest exploratory power is
obtained by using a uniform crossover scheme in the
presented work. In this crossover scheme, after a
parent pair is drawn, each corresponding pair of genes
exchange their values independently with the same
probability of 0.5. As the modified selection operator
generates an ordered population of individuals, a
parent pair is obtained by pairing the (2j—1)th parent
with the (2j)th parent immediately. Provided the
population is sufficiently diverse, it can be expected
that, together with such a pairing method, crossover
scheme can be very productive. Another benefit of the
uniform crossover scheme is that it has no position
bias. As the patterns always have significantly corre-
lated effect on the criterion value in the clustering
problems, and no prior information about such corre-
lation of patterns can be obtained, uniform crossover is
a wise way to alleviate undesirable position bias.

The main role of mutation in conventional GAs is to
ensure the total reach of genetic operators to cover the
whole feasible region of the optimization problem.
Mutation in IGA serves another potential source of
exploratory power. During the mutation operation,
each gene of all individuals has a probability of pn,
to be set to a value randomly drawn from 1, 2,..., and
K. Here p,, is the mutation probability, usually set to
being larger than 0.2, such that mutation operator has
high exploratory power.

2.2.5. Self-reproduction

Self-reproduction, as proposed by the present
authors, provides a distinct approach to exploit the
search space in IGA. The motivation of this new
operator is to incorporate a local search heuristic into
the search process of GAs. With this operator, IGA
generally shows a significantly improved search effi-
ciency compared with conventional GAs, at the same
time without loss of the characteristic of convergence
to the global optimum. Self-reproduction is accom-

plished by carrying out the following procedures on
each individual with the same probability p,, the self-
reproduction probability.

(i) age=0.

(i) age=age+1.

(iit) Call the steps (ii) to (iv) of the CEM
algorithm for criterion (7), as presented before.
(iv) If age < lifetime and the current individual is
distinguished from the previous one, return to (ii);
otherwise, calculate the value of criterion (7) of the
current individual and terminate the self-reproduc-
tion procedure of the current individual.

where lifetime is a controlling parameter and age is a
temporary variable. Note that the proposed reproduc-
tion operator is criterion-specific and should be mod-
ified according to the particular criterion used for
partitional clustering. Nevertheless, generalization
to many other criteria, say the square-error criterion,
is straightforward. A general self-reproduction opera-
tor which is suitable for any clustering criterion can be
developed in a manner similar to previous study [15].
In this work the above-described self-reproduction
procedure is used since it is much more computation-
ally efficient. Another advantage derived from self-
reproduction is that a common drawback with con-
ventional GAs, i.e., poor search efficiency, is remedied
in IGA. Indeed, self-reproduction implements a par-
allel hybrid strategy in IGA.

2.2.6. Diversification

The objective of diversification operator, as pro-
posed by the present authors, is to maintain the
diversity in population such as to enhance the explora-
tory power of crossover. Diversification operator
includes two algorithmic steps. First, individuals
which differ from one of the other individuals in
not more than one gene die away from the population.
Subsequently, a certain number of individuals are
randomly generated to join the population such that
the population size remains Np,. This operator, fol-
lowed by the modified selection operator described
above, is useful for supporting a productive crossover
operator. Moreover, the diversification operator
ensures the legality of fitness scaling as described
before, since Jom vp/4) and Jomap-(wvpa) in Eq. (10)
will generally differ from each other.
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2.2.7. Algorithm

Having described various genetic operators in
detail, the algorithmic steps for IGA can be presented
as follows:

(i) Select an appropriate parameter setting for
IGA.

(i1) Initialize a population of candidate solutions
of size N, randomly such that each gene of an
individual takes a value from 1 to K with equal
probability.

(iii) Calculate the values of clustering criterion
(Eq. (7)) of each individual in the population.

(iv) If the maximal generation admissible g,
expires or the optimal performance has not been
improved for some number of generations g,, the
algorithm terminates; otherwise, it continues.

(v) Evaluate the fitness of individuals in current
population using Eq. (9).

(vi) Select a parent population composed of N,
ordered copies of individuals in current population.
(vii) Pair the (2j -1)th parent with the (2j)th parent
(j =1,..., Npf2) in the parent population.

(viii) Crossover the N, /2 parent pairs such as to
produce an offspring population (offspring popula-
tion 1) of size N,

(ix) Mutate each gene in offspring population 1
with a probability p;, such as to produce another
offspring population (offspring population 2).

(x) Calculate the criterion values of individuals in
offspring populations 1 and 2 and evaluate their
fitness using Eq. (9).

(xi) All individuals in current population and these
two offspring populations are subjected to the
competition operator such as to generate a
surviving population.

(xit) Let each individual in the surviving popula-
tion self-reproduce with a probability p,, and
subsequently update the individuals which have
self-reproduced by their offsprings produced by
self-reproduction.

(xiii) The updated surviving population is sub-
jected to the diversification operator such as to
generate a population of size N, of next generation.
(xiv) Return to (iv).

To verify the performance of the proposed IGA,
another GA is used in this work. This GA is essentially

conventional except for an integer representation, and
the algorithm is presented as follows:

(i) Select a parameter setting and initialize a
population randomly as IGA.

(i) Calculate criterion values for all individuals.
(iii) If the terminating criterion of IGA is satisfied,
the algorithm terminates; otherwise, it continues.
(iv) Generate a parent population by rank-based
selection.

(v) Generate Np/2 parent pairs as IGA.

(vi) Uniformly crossover each parent pair with a
probability p..

(vii) Mutate each gene with a small probability pp,,.
(viii) If the best performing individual obtained
thus far is not retained in the offspring population,
the worst individual in the offspring population is
replaced by the best performing one.

(ix) Return to (iii).

3. Experimental

Four data sets, two simulated and two real chemical
data sets, were used for demonstrating the perfor-
mance of the clustering criterion introduced and the
IGA proposed. For the sake of validating the cluster-
ing results visually, both of the simulated data sets are
two-dimensional.

3.1. Simulated data 1

This data set is composed of two Gaussian clusters,
each consisting of 50 independent and identically
distributed patterns. Cluster 1 has an expected mean
of u; and an expected covariance matrix X, and
cluster 2 has an expected mean of u, and an expected
covariance matrix ¥,. Here,

n=0350" u=(0 07 £, =03
x diag(l, 1) X, = diag(l, 1)

where diag(x, x,) is a diagonal matrix with diagonal
elements of x; and x,.

3.2. Simulated data 2

This data set is composed of three Gaussian clus-
ters, each consisting of 50 independent and identically
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distributed patterns. The three clusters have the same
covariance matrix X but have different expected
means, i.e., 4y, #, and pj, respectively. Here,

=03 0" m=(0,07 p=(15 15x3""
Y = diag(0.3, 1)

3.3. Chinese tea data

The Chinese tea data consist of 31 Chinese tea
samples belonging to three categories: green tea, black
tea and oolong tea [16]. Each sample is represented by
a set of measurements on six chemical components:
cellulose, hemicellulose, lignin, polyphenols, caffeine
and amino acids. The dimensionality of these data was
reduced to two by applying principal component
analysis (PCA) to the autoscaled data in this work.
That is, each pattern was represented by the first two
principal component scores of corresponding six-
dimensional data point. The aim was to investigate
whether the reduced data formed obvious clustering
structure according to their categories.

3.4. Iris data

The Iris data consist of 150 samples, each repre-
sented by a four-dimensional pattern [17]. These
samples have their origin from three categories of Iris
flower: Iris Setosa, Iris Versicolor and Iris Virginica.
The aim was to investigate whether the patterns
formed distinguished clusters according to their cate-
gories.

4. Results and discussion

To start IGA, an appropriate parameter setting
should be selected to keep a balance between exploi-
tation and exploration. These parameters include the
population size N, the mutation probability py,, the
self-reproduction probability p, and the controlling
parameter, lifetime, in self-reproduction operator.
Since IGA deals with the trade-off between exploita-
tion and exploration using separated genetic operators,
these parameters have no significant effect on the
convergence rate of IGA. A consistent parameter
setting was used in this work for all the data sets

studied, where N, was set to 20, p,, was set to 0.3, p,
was set to 0.1 and lifetime was set to 10. Similarly, a
consistent parameter setting was used for the conven-
tional GA, including the population size set to 20, the
crossover probability set to 0.9 and the mutation
probability set to 0.01. Such a parameter setting has
been extensively used in GA literature. Both in IGA
and in the conventional GA, the controlling parameter,
gm and g, for terminating criterion were set to 600 and
100, respectively. To make a rational comparison
between the proposed IGA and the aforementioned
conventional GA, each algorithm was repeated for 10
times and the convergence rates were averaged. In all
clustering problems in this work, the number of
clusters, K, was assumed to be known a priori. When
such a priori information is not available, one should
run the clustering algorithm repeatedly for different
values of K, and the best K can be found using a cluster
validation method. However, the presented work
would skip the studies of cluster validation for the
sake of simplicity. To compare the behavior of the
introduced clustering criterion (Eq. (7)) and the
square-error criterion (Eq. (3)), a variant of IGA,
was developed for minimizing the square-error criter-
ion. This could be immediately accomplished by
modifying the self-reproduction operator based on
the K-means algorithm [2].

The first simulated data set consists of two spherical
clusters of different size. The clustering structure can
be visualized straightforwardly from Fig. 1. One can
discover that the patterns forms two obviously sepa-
rated clusters. The clustering results of this data set
obtained using the IGA for the square-error criterion
(Eq. (3)) is shown in Fig. 1(a), where the cluster
boundary is a straight line. It can be seen that four
patterns belonging to the second cluster are misclas-
sified into the first cluster. This shows the aforemen-
tioned defect of the square-error criterion that it
imposes an equally-sized spherical clustering struc-
ture on the data. In contrast, the results given by the
IGA for the introduced criterion (Eq. (7)) are much
favorable. As shown in Fig. 1(b), the clustering results
are perfectly consistent with the actual clustering
structure, and the cluster boundary obtained is
approximately a circle. On the other hand, it was
discovered that IGA showed much higher efficiency
than the conventional GA. IGA always located the
same optimal solution in different runs with a com-
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Fig. 1. Clustering results of simulated data set 1 (Cluster 1, +;
Cluster 2, ). The solid line or curve is the approximate cluster
boundary given by the algorithm used. a. Clustering results
obtained using the IGA for the square-error criterion. b. Clustering
results obtained using the IGA for the introduced criterion.

putational requirement of 9 generations on the aver-
age. The conventional GA, however, took 461 gen-
erations to converge to the optimal given by IGA or its
neighborhood.

The second simulated data set is composed of three
identically-shaped ellipsoidal clusters with centroids
located at the vertices of an equilateral triangle with
intervertex distance of 3. As can be seen from Fig. 2
that all patterns form three obvious separated clusters.
The clustering results given by the IGA for the square-
error criterion are shown in Fig. 2(a). Ten patterns are
grouped incorrectly. This is a further evidence of the
fact that the square-error criterion tends to look for
clusters of equally-sized spherical clusters. The cri-
terion (Eq. (7)) introduced by the present authors is
not subject to this defect. As is shown in Fig. 2(b), the

2t

Fig. 2. Clustering results of simulated data set 2 (Cluster 1, +;
Cluster 2, O; Cluster 3, x). The solid line or curve is the
approximate cluster boundary given by the algorithm used. a.
Clustering results obtained using the IGA for the square-error
criterion. b. Clustering results obtained using the IGA for the
introduced criterion.

clustering results have the actual clustering structure
and all patterns are grouped correctly. In this experi-
ment, it took merely 16 generations for IGA to reach
the same optimum in different runs, but the conven-
tional GA required 542 generations on the average to
converge to this optimal solution or its neighborhood.

The reduced Chinese tea data are shown in Fig. 3.
One can perceive that the patterns form three clearly
separated clusters, each associated with one category
of tea samples. The clustering results given by the IGA
for the square-error criterion are shown in Fig. 3(a),
where the sample C7 is grouped into the cluster
associated with oolong tea. However, it is discovered
that the nearest three neighbors of the pattern corre-
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Fig. 3. Clustering results of the Chinese tea data (Green tea, +:
Black tea, O; QOolong tea, x). The solid line or curve is the
approximate cluster boundary given by the algorithm used. a.
Clustering results obtained using the IGA for the square-error
criterion. b. Clustering results obtained using the IGA for the
introduced criterion.

sponding to sample C7 in the reduced space belong to
the cluster corresponding to green tea. Therefore, it
might be more reasonable to allocate the pattern of
sample C7 into the cluster associated with green tea.
The clustering results obtained using the IGA for the
introduced criterion are shown in Fig. 3(b), where all
patterns are clustered in a manner perfectly consistent
with one’s perception. The reduced data set also
indicates that the restrict Gaussian mixture model
deriving the square-error criterion is not a general
description of practical data sets, in contrast, the
general Gaussian mixture model (Eq. (6)) provides
a satisfactory description for practical data sets. In this

case, IGA always located the same optimal solution in
different runs with a computational requirement of
merely 11 generations, while the conventional GA
required 476 generations on the average to reach this
optimum or its neighborhood.

The Iris data have been extensively studied in
cluster analysis [3]. It has been discovered that the
patterns of Iris Setosa form a cluster clearly separated
from the patterns of Iris Versicolor and Iris Virginica,
and the clusters of Iris Versicolor and Iris Virginica are
to some extent overlapped. In clustering these data, the
IGA for the square-error criterion and the IGA for the
introduced criterion both correctly allocate the pat-
terns of Iris Setosa into one cluster separated from the
patterns of Iris Versicolor and Iris Virginica, however,
the clustering results for the patterns of Iris Versicolor
and Iris Virginica are distinguished significantly. To
validate visually the clustering results of the patterns
of Iris Versicolor and Iris Virginica, a two-dimensional
representation of the patterns of Iris Versicoor and Iris
Virginica is obtained by projecting these data onto the
first two principal components (PCs), as is shown in
Fig. 4. The variance accounted for by these two PCs is
99.85% of the original total variance, therefore, the
resulting two-dimensional projections could be a fine
representation of the original clustering structure.
Using such a two-dimensional representation, one
could present and validate the clustering results in a
straightforward way. It is noteworthy that, if a two-
dimensional representation with sufficient precision
could not be obtained using PCA, one could take
advantage of nonlinear mapping techniques [18] to
produce an improved two-dimensional representation.
The clustering results given by the IGA for the square-
error criterion are shown in Fig. 4(a). It is observed
that patterns 51, 53 and 78, which belong to Iris
Versicolor, are grouped into the cluster majorly asso-
ciated with Iris Virginica, and patterns 102, 107, 114,
115, 120, 122, 124, 127, 128, 134, 139, 143, 147 and
150, which belong to Iris Virginica, are allocated into
the group majorly associated with Iris Versicolor. The
results given by the IGA for the new criterion are
shown in Fig. 4(b), where only five samples (69, 71,
74, 84 and 134) are grouped into the clusters incon-
sistent with their actual category labels. Since the new
criterion seeks a quadratic or piece-wise quadratic
boundary for clusters, the results obtained give evi-
dence of the fact that the patterns of Iris Versicolor and
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Fig. 4. Clustering results of the Iris data (Iris Versicolor, +; Iris
Virginica, ). The solid line or curve is the approximate cluster
boundary given by the algorithm used. a. Clustering results
obtained using the IGA for the square-error criterion. b. Clustering
results obtained using the IGA for the introduced criterion.

Iris Virginica are essentially divided into two clusters
by a quadratic surface. Compared with the misleading
results given by the square-error criterion, these
results are more consitent with the actual data struc-
ture. The advantage of the new clustering criterion is
that it can adapt itself to the clustering structure
inherent in the data involved, while the square-error
criterion always imposes a certain structure on the
data. In this example, IGA always located the same
optimal solution in different runs with a computational
requirement of merely 127 generations on the average,
while the conventional GA required more than 600
generations to reach this optimum. The typical curves
of the criterion values versus the generations for the
proposed IGA and the conventional GA are shown in
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Fig. 5. Typical curves of the criterion values versus the generations
for the developed IGA (a) and the conventional GA (b).

Fig. 5. One can observe that IGA shows much higher
efficiency than the conventional GA.

It is noteworthy that the introduced clustering cri-
terion (Eq. (7)) is more suitable for cluster analysis of
data sets of which the ratio of sample number to the
dimensionality is relatively large, since this criterion
implicitly requires that all clusters of interest have
nonsingular covariance matrices. In using this criter-
ion for clustering data meeting such a requirement, the
partitions which produce clusters having singular
covariance matrices are inadmissible and should be
assigned a sufficient large criterion value. In the
presented work, therefore, the individuals which pro-
duce clusters having singular covariance matrices are
assigned a very large criterion value, say 10000, and
the self-reproduction operation of these individuals is
prohibited. In the case of applying this criterion to
clustering data not meeting such a requirement, a
preliminary dimensionality-reduction of data shouid
be conducted to alleviate this problem. One could also
take advantage of those methods, which have been
proposed for the Friedman and Rubin’s criterion to
combat a similar problem [2].

5. Conclusions

This paper developed an improved GA with integer
representation (IGA) and introduced a new clustering
criterion for cluster analysis problems. The results
presented show that the introduced criterion has an
important advantage over the commonly used square-
error criterion in that it can adapt itself to the data
structure involved and has a very weak tendency to
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look for clusters of particular structures. Compared
with the conventional GAs, the developed IGA shows
a much higher search efficiency and a better search
precision.

Acknowledgements

The authors are grateful to the National Natural
Science Foundation of China for financial support.

References

[1] R.-Q. Yu, Introduction to Chemometrics, Hunan Education
Publishing House, Changsha, 1991.

[2] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data,
Prentice Hall, Englewood Cliffs, NJ, 1988.

{3] D. Coomans, D.L. Massart, Anal. Chim. Acta 132 (1981) 225.

[4] D.L. Massart, L. Kaufman, D. Coomans, Anal. Chim. Acta
122 (1980) 347.

[5] PK. Hopke, K. Kaufman, Chemom. Intell. Lab. Syst. 8 (1990)
195.

[6] H.P. Friedman, J. Rubin, J. Am. Stat. Assoc. 62 (1972)
1159.

[7]1 J.H. Kalivas, Chemom. Intell. Lab. Syst. 15 (1992) 1.

[8] C.B. Lucasius, G. Kateman, Chemom. Intell. Lab. Syst. 19
(1993) 1.

[9] D.B. Hibbert, Chemom. Intell. Lab. Syst. 19 (1993) 277.

[10] C.B. Lucasius, G. Kateman, Chemom. Intell. Lab. Syst. 25
(1994) 99.

[11] M. Bos, H.T. Weber, Anal. Chim. Acta 247 (1991) 97.

[12] E. Fontain, Anal. Chim. Acta 265 (1992) 227.

[13] C.B. Lucasius, A.D. Dane, G. Kateman, Anal. Chim. Acta
282 (1993) 647.

[14] F. Maffioli, in: N. Christofides, A. Mingozzi, P. Toth, C. Sandi
(Eds.), Combinational Optimization, Wiley, New York,
1979.

[15] J.-H. Jiang, J.-H. Wang, X.-H. Song, R.-Q. Yu, J. Chemo-
metrics 10 (1996) 253.

[16] X. Liu, P.V. Espen, F. Adams, S.H. Yan, M. Vanbelle, Anal.
Chim. Acta 282 (1993) 647.

[17] R.A. Fisher, Ann. Eugenics 7 (1936) 178.

[18] L.W. Sammon, IEEE Trans. Comput. 18 (1969) 401.



