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Abstract--Much work has been published on methods for assessing the probable number of clusters or 
structures within unknown data sets. This paper alms to look in more detail at two methods, a broad parametric 
method, based around the assumption of Gaussian clusters and the other a non-parametric method which utilises 
methods of scale-space filtering to extract robust structures within a data set. It is shown that, whilst both 
methods are capable of determining cluster validity for data sets in which clusters tend towards a multivariate 
Ganssian distribution, the parametric method inevitably fails for clusters which have a non-Gaussian structure 
whilst the scale-space method is more robust. Copyright © 1997 Pattern Recognition Society. Published by 
Elsevier Science Ltd. 
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1. INTRODUCTION 

Most scientific disciplines generate experimental data 
from an observed system about which we may have 
little understanding of the data generating function. The 
notion that complexity may be (at least partially) 
analysed by breaking it down into simpler substructures 
is deeply rooted in (western) scientific culture. For 
whatever reason, however, it has been commented that 
there appear to be more algorithms for clustering data 
than data to analyse! I do not dispute th i s - - indeed  the 
fact that data structure is multifarious will inevitably 
prompt the development of a large number  of clustering 
approaches. Commenting on a survey of clustering 
techniques, Jain (1) states that (up to 1982) some 40 
books alone had been published on the subject. It is 
important that this breadth of approach is acknowl- 
edged, as the problem is complex and many methods 
must often be tried from the analysis " toolbox" before 
data structure may be inferred. Excellent reviews of 
many methods may be found in, for example, Jain, (1) 
Jain and Dubes, (2) Hartigan (3) and Everitt. (4) 

On a broad, descriptive level cluster analysis algo- 
rithms can be broken into two distinct phases. 1 Firstly, a 
model fitting phase, whereby some partition hypothesis 
of complexity K, •K say, is "opt imal ly"  fitted to the 
data set. Secondly, a model validation phase, whereby 
the set of {.2/fK } are assessed according to some cluster 
validity criterion and the "opt imal"  partition hypothesis 
selected. 

* E-mail: s.j.roberts@ic.ac.uk. 
1One could argue that, in the case of Bayesian inference 
methods, these two phases are so interelated as to form a single 
methodology, however. 

Jain (1) makes the distinction between hierarchical and 
partitionaI fitting methods. For the most part, the former 
act by partitioning the data set into successively fewer 
structures, based upon merging structures which have 
sufficient similarity. Such a method gives rise to a 
dendogram which, amongst other properties, details the 
number  of structures obtained as a function of some 
merging threshold. With a thi'eshold of zero the number  
of structures equals the number of data and a high 
threshold partitions the entire data set as a single cluster. 
Observation of the dendogram linkage may then be used 
to select an appropriate number  of structures within the 
data (this is often based upon a partition's " l i f e t i m e " - -  
the range over which a partitioning is stable with respect 
to changes in the merging threshold). The major 
drawback of the hierarchical approach is that the 
entire dendogram is sensitive to (possibly erroneous) 
previous cluster merging, i.e. data are not permitted to 
change cluster membership once assignment has taken 
place. 

Parti t ional methods typically start with a data 
partitioning into a small number of clusters and increase 
the number  of partitions into which the data is divided. 
The precise partitioning is performed so as to minimize 
or maximize some objective function. A datum is, 
furthermore, free to change its partition membership in 
such a scheme. The precise choice of objective function 
clearly has a very strong beating on the partitioning of 
the data; indeed the most popular, the total square error 
between ) fx  and the data, implies that the data will be 
modelled by the fitting of hyper-ellipsoidal clusters, and 
whether we may assume that clusters (if they exist) are 
multivariate Gaussian distributed is an open question for 
many data sets. Many methods for ranking the validity 
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of data models of differing complexity (number of 
partitions) have been proposed. Most, however, rely 
(implicitly or explicitly) upon estimates of within- and 
between-cluster scatter matrices. ~1'2'5) The major pro- 
blem with this approach, of course, is that if  data do not 
conform to the assumptions made by the technique then 
the latter may impose structure on the data and not 
disclose the "true" structure. ~1~ This is also the case 
when clusters have widely differing numbers of 
members. The objective function may be improved by 
artificially splitting a cluster with a large number of 
members more than recognising one with a small 
number. °~ The use of "fuzzy" cluster methods (where- 
by a datum's membership may be distributed over many 
clusters) ~6) may be incorporated into the genre of 
partitional methods with relative ease and has proved 
popular. (7-~2) Such an extension to the modelling 
process is certainly more representative of "real" data. 
There are still, however, difficulties encountered. The 
"optimal" number of clusters must be estimated, the 
location and shape of the clusters is invariably unknown 
and there may be a large variability in the number of 
data members in each cluster. (7~ 

This paper looks in detail at two methods of 
unsupervised clustering (the "optimal"  number of 
partitions is unknown a priori). The first is a partitional 
method utilising a maximum likelihood algorithm; this 
is reduced to the well-known K-means algorithm as 
well. The second method may be seen as failing within 
the hierarchical clustering genre or as a method of scale- 
space (multiresolution) parameter estimation. (13> Results 
from both methods are compared on test data and the 
scale-space method on examples from image and signal 
processing. 

2. M A X I M U M  L I K E L I H O O D  AND K-MEANS 

A L G O R I T H M S  

2.1. Theory 

We consider the case of a data set, X--{xi} where 
Xc!tt a. Let the distribution of data in X form a 
probability density function denoted by p(x). We may 
estimate this density function, in the limit, by consider- 
ing it as a weighted combination of all possible data 
models, M/I, each one of which is specified by a 
parameter vector 0 ~u 

P(X) / f p(xl.~{, O~¢~)p(J~, 0 ~s/) d0~dJ# .  (1) 

~/// 0 J 

Such a complex specification is normally constrained 
such that we look only at a particular class of models, 
such as those with the property of universal approxima- 
tion, the Gaussian mixture model (GMM) being a 
popular choice. We may then specify each GMM by a 
single parameter, K, which describes the complexity of 
the model (the number of Gaussian kernels). If, 
furthermore, we assume, as is common practise, that 
the probability distribution of the within-model free 

parameters, specified by 0/~, is dominated by a 
single, most probable, solution, 0~p, then equation (1) 
reduces to 

p ( x )  = ~ P ( X I K ,  O~tp)P(K, OKMp). (2) 
K 

For ease of notation we assume that, for every model 
specified by K, dependence upon 0MN is implied. Bayes' 
theorem then states that (dropping the 0 terms) 

p(KIx) - P(x[K)p(K) p(x )  ' (3) 

where the evidence term, P(X), is given by equation (2). 
As the number of Gaussian kernels, K, specifies the 
number of data partitions, we may use p(KIx) as a 
partition validation measure. 

2.2. Parameter estimation 

The likelihood term in equation (3), if  we assume N 
independent data samples, may be written as 

N 

p(xIK) Hp(xilK). (4) 
i=1 

From Bayes' theorem for mixtures we may write the 
above as 

P(XI K) = p(xilk)p(k , (5) 

where p(k) is the a priori probability of the kth kernel in 
K the GMM. The within-model parameter vector, 0MN, 

however, still remains to be estimated for each model. 
The maximum likelihood approach seeks to maximise 
the logarithm of equation (4), namely 

N 

logp(xilK). (6) 
i= l  

This maximisation is subject to the constraint that 

K 

~-~p(k) 1. (7) 
k=l  

If we let the free parameters of each component, k, of 
the GMM be specified by a parameter vector Ok then 
combining equations (5) and (6) we obtain, for the kth 
component:(14,15) 

~p(k lx i  ) logp(xilk, Ok) = 0. (8) 
i=1 

For a GMM, each kernel is a multivariate Gaussian 
whose free parameters are completely specified by its 
mean, Pk, and covariance matrix, 12k. Hence 

p(xi Ik, Ok) = p(x~ Ik, ~k, k) 

1 

(27r)d/a[Zkll/2 

× e x p [  - 1  /~k)] (9) (xi  - & ) T z ~ l ( x i  - . 
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Combining equations (7-12) gives (14"15) 

2~ = E~=~ ~)(klxl)(xi  - ~)(~ ,  - i ~ )  ~ 

~=~(~lx~) 
(lO) 

As both the evidence term, P(X), and u are constant over 
all models, ranking models according to their posterior 
on the data set is equivalent to ranking on a "likelihood 
density" term, p(K) given by 

p(X) = P(xlK) (15) 
Vx 

We note that the above formalism may be applied to 
both the ML and K-means partitioning methods. 

Solution to equation (10) requires a non-linear 
optimisation algorithm. Solutions may be estimated 
using batch updating algorithms (7"11) or by means of 
iterative variants of the Expectation-Maximisation (EM) 
algorithm, (16) full details of which may be found in 
references (14,15) for example (see also Section 2.4). If 
we allow the set of posterior probabilities, P(klxi ), to 
collapse to the set p~(klxi) such that 

1 if  k = arg max~{fi(klxi)} , (11) 
P~(klxi)= 0 otherwise, 

then the above maximum-likelihood solution becomes a 
standard K-means approach. Solutions to the latter, like 
the ML approach, may be obtained using batch or 
incremental algorithms. 

2.3. Cluster validity 

The use of either the K-means or the ML approach 
imposes the implicit assumption of hyper-ellipsoidal 
clusters on the data model. Most cluster validity 
measures are based upon estimates of the kernel 
covariance matrices for a given model complexity 
(number of kernels in the GMM). (1) This paper follows 
a proposal made in reference (7) to utilise the "fuzzy 
hypervolume", V, of the data partitioning. For a GMM 
with K components this is given as 

2.4. Notes on implementation 

All data sets in the paper were normalised to zero 
mean and unit variance. This is especially important in 
the case of the K-means algorithm, which relies upon 
the unweighted L2 norm. 

Solutions to both the ML and K-means partitionings 
were obtained using iterative (stochastic gradient- 
descent) algorithms. For the ML method, the iterative 
solutions to equation (10) are given as (is) 

~, (t) /,(,+1) =,.~ + ~/,)[p(~l~(,))~(,~ _/,~')] 

~(t+l) / "k  ) k ~  - - / '~k  ] - -  ~ ' k  J 
~ k  (1 - ~(,)) + ~(~)p(klx/')) 

(16) 

where x (t) is the tth randomly-chosen member of X to be 
presented to the algorithm and a (t) is a decreasing 
adaption parameter chosen to be of the form 

oz(, ) a (t) 
(17) 

l + t  

to satisfy the Munro-Robbins convergence equations. (as) 
For the K-means algorithm, the above equation for the 

adaption of the mean of the kth kernel reduces to 

(~8) 

K 

VK ~ ]~d 1/2. (12) 
k = l  

Gath and Geva (7) choose the partition model which has 
minimum VK. We will, however, allow VK to act as a 
penalty term, such that those data models with large 
values of VK have correspondingly low prior probabil- 
ities. By setting the prior as 

/2 

p(X) - VK' (13) 

(where u is a normalising factor to ensure that 
Xp(K)=I )  and combining equations (3) and (13), we 
obtain 

~P(XIK) (14) 
p(KIx) - p(x)VK 

It is noted that, in many applications of the K-means 
algorithm, c~ (t) is chosen to be a constant adaption gain 
0 < a < l .  Whilst this means that the estimates of the 
kernel means will be inconsistent (their variance with t 
does not go to zero as t---+ oc) they do converge, 
however, in the mean, to the expected values, and are 
hence unbiased estimators. The exact choice of o~ should 
be made from knowledge of the eigen spectrum of the 
data covariance matrix, but for most practical applica- 
tions a value of ee=0.01 gives good results (assuming a 
unit variance data set). 

It is computationally easier to implement diagonal 
covariance matrices in both the ML and K-means 
approaches. This, however, constrains the model even 
further. In the ML approach the covariance matrices are 
updated at each sample. We may, however, ease the 
computational burden of constantly inverting matrices 
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by utilising the Woodbury identity. For the K-means 
algorithm, once the means,/*k have been calculated, we 
may estimate both S~ and p(k) from equation (10) and 
equation (11). 

3.  S C A L E - S P A C E  C L U S T E R I N G  

The major problem with the above approaches is that 
cluster validity makes a strong assumption about the 
parametric form of the data. For many applications this 
is undesirable. Furthermore, solutions to local centroid 
(mean) estimation are not robust in the presence of 
noise. Spann and Wilson ~13> consider a paradigm shift in 
the evaluation of the clustering problem in which they 
require estimates of valid structure within a data set to 
be robust both to the presence of noise and to spatial 
scale changes of the data. We expand upon this 
methodology in this paper. 

3.1. Theory 

We consider once more a data set, X, and make a non- 
parametric estimate of the probability density function 
of x E X as the weighted combination of a set of basis 
functions (kernels), f, sited at each xi C X. 

N 

!3(x) = Z w(i)f(i)(x), (19) 
i=1 

where the superscript (i) implies the basis function is 
sited at xi. If we take the Parzen-windows approach, (17) 
whereby the weighting of each basis function is 
independent of its position we may write equation (19) 
a s  

N 

[p(x) = w Z f  (i) (x), (20) 
i=1 

whence w becomes a normalising factor ensuring that 
/3(x) integrates to unity. In the case of noiseless data, 
data clusters may be defined as peaks in the probability 
density function and hence the number of clusters, and 
their centroids, may be evaluated from the peaks of 
equation (20) or the positive-negative zero-crossings of 
its spatial derivative. 

In the more realistic case, where noise exists in the 
data set, this peak detection fails to detect genuine data 
structure as the noise generates false peaks in /3(x). 
Equation (20) then becomes 

N 

D(x) - w ~ f ( i )  + ¢(x), (21) 
i=1  

where ((x) is a noise process. Estimating the positions 
of the extrema of/3(x) is equivalent to finding the set of 
zero-crossings of OD(x)/Ox. If we wish to provide some 
noise reduction to the estimates, however, some form of 
spatial smoothing must be performed. If the smoothing 
function is specified in the spatial domain by a filter 
kernel t%(x) where s is a scale parameter, then, as the 
convolution and differentiation operators commute, we 
may rewrite the problem as one of seeking the zero- 

crossings of 

~,(x) , ~ ~,(~) = f,(x) , h~(x) 

= w f ( i ) ( x )+£(x  *hs(x). (22) 

It may be shown (13) that the "optimal" (Wiener) filter, 
h,(x), for the problem, under the assumption that ((x) is 
white, is the derivative of a symmetric low-pass filter 
kernel. A full proof is given in reference (13). 

Furthermore, we require the zero-crossings of equa- 
tion (22) to correspond to a maximum likelihood 
solution of a local cluster centroid. Operating ~,(x) on 
equation (20) we obtain 

N 

/pa(x) = w~- ' f ( i ) (x)  * t%(x). (23) 
i=1  

Letting f(i) (x) * ~s (x)=O!i) (x), the above is written as 

N 

~(x) = w Z ~i)(x) (24) 
i=1 

which may be regarded as an estimate ofp(x), smoothed 
at scale s, based upon a new set of basis functions, 
6!i /(x) .  

We now consider the form of a local maximum- 
likelihood solution to the position of the kth cluster 
centroid, given by equation (10) and rewritten as 

N 

Z ( x i  - ,uk)D(klxi ) = o. (25) 
i=1 

Taking the spatial derivative of equation (24) and setting 
it equal to zero gives 

N 

wi~_l O ~!i)(x) =O. (26) 

The solutions to this equation occur at a series of points 
and we consider the kth maxima solution, x =/*k, say. 
equations (25) and (26) may be equated if we allow 

wo~ i) (,u1:) = ~(k]xi) (27) 

and 

0 ~(i) r, 
ox  ~ '"~' (xi - t ,~ )@(~,~) .  (28) 

Without loss of generality we may consider the original 
basis functions, f, to be symmetric low-pass filter 
kernels, whence we must constrain 0 = f  * t~ to be a 
symmetric low-pass filter kernel also. This constraint, 
along with equations (27) and (28) may be satisfied by a 
Gaussian filter 

{ I.-*//, 
0! i) (x) = ls, exp ~-sg j ,  (29) 

whence the normalising factor, w, becomes 

1 
w N(2rc)d/2 (30) 
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3.2. Scale-space evolution 

We, however, still require a methodology for deter- 
mining "valid" data structure from the sets of maximal 
solutions to equation (26). In this section we look, from 
a primarily theoretical perspective, at the evolution of 
these solution sets with scale. If we regard the scale as a 
merging threshold, then the scale-space evolution of 
peaks in the smoothed density function, equation (24), 
may be regarded as a form of dendogram, akin to that 
formed from a hierarchical partitioning method. Unlike 
the latter, however, each datum is not assigned to a 
partition as the dendogram evolves, thus removing the 
largest problem with the hierarchical approach. We may, 
however, utilize the scale-space dendogram to determine 
partitional structure within the data set. We require that 
"true" clusters in the data set be stable over a range of 
scales. We note that other authors have proposed a similar 
requirement. (13) This stability may be related to the par- 
titional "l ifet ime" of hierarchical clustering methods. 

In order to construct a meaningful scale-space 
dendogram, we require that, as scale increases, esti- 
mated clusters merge and do not split (thus the number 
of solutions to equation (26) is non-increasing with 
scale). This requirement is depicted in Fig. 1. We may 
state this requirement more formally as 

Theorem 1. Let 7r(s) represent the number of solutions to 
equation (26) at scale s. For fS~ i) (x) of equation (29), if 
Sl<S2 then 7r(sl)_>Tr(s2). 

Proof. We consider an arbitrary function of scale space, 
h(x,s) say. Consider the set of curves formed by solution 
of (O/Ox)h(x, s) = 0. These solutions may be equated to 
solutions of equation (26) by letting 

N 

h(x, s) = w ~ ~b!/) (x). (31) 
i=l 

Parameterising the evolution of a curve in scale-space 
by an arbitrary parameter, t say, we may write (~s) 

dh Oh Ox Oh Os _ ~ Oh Ox~ Oh Os 
dt -- Ox Ot ~ Os Ot ~= -- ~xn Ot t--Oss Ot" 

(32) 

scare 
splitting merging 

(a) (b) 

Fig. 1. Forbidden (a) and allowed (b) evolution of scale-space 
solution sets. 

f 
position 

At a point of merging or splitting (as in Fig. 1) so 
Oh/Ot = 0 and setting t = xl (the Ith component of x) 
we obtain 

Oh Oh Os 
Ox~ -- Os Oxl (33) 

as (Oxa/Oxb) = 0 for aCb. Operating equation (33) by 
(O/Oxq) we obtain 

OXlOX q " OXIOX q OX l OSOXq ~ OS /] " 

At the turning points of the scale-space curve so 
(Os/Oxl) -- 0 for all l, hence 

0 2 s - - (  Oah ~ ( 0 h )  1 (35) 

ox, oxq \ - ~ )  

Equation (35) may be expressed, for all l,q, as a Hessian 
matrix equation 

--Hh (Oh~ -1 (36) 
H, = \Om) " 

We may diagonalise equation (36), without loss of 
generality, by use of a co-ordinate transform J ,  say, 
based upon the matrix of normalised eigenvectors of Hs 
and we denote the new co-ordinate frame by the use of a 
prime ('), hence 

H ; = - n h  N • (37) 

If the scale-space turning points are to be maxima 
(Fig. 1 (b)) then we require each element along the trace 
of Hrs to be negative, hence for each 1 C [1, d 1, 

02h k Oh 
Ox 7 - ~ ,  (38) 

where k is an arbitrary positive constant. Other 
authors (18) note that equation (38) is the heat equation, 
for which a Ganssian is the Green's function. Applica- 
tion of the co-ordinate transform on equation (31) gives 

/ h(xr, s) = Y w Z  ~O(x) = w~J{ ,~ ' ) (x) } .  
t i = 1  i = 1  

(39) 

As ~b is a symmetric basis function, i.e. it is functionally 
dependent upon Ix - x i l  2 so it is unaffected by rotation 
of the co-ordinate frame from x - +  x ~, but we must 
introduce a positive scaling factor, kl say, (positive as 
the functional form of ~ is that of an L2 norm) which 
accommodates possible changes in the scaling of the 
axes, hence 

j -{¢!O (x) } = kl @ (x'). (40) 

Combining equations (38~0)  gives 

(41) 



266 S.J. ROBERTS 

250 

200 

~ 1 5 0  

-~_ 
100 

50 

(a) 

0.5 1 1.5 2 2.5 
S 

(b) 
• • o , t  ° o • - I  • • • • • • o° °° • ~ o : . . . .  - ~  . -  . . . .  • : ; . .  , -  . . . .  • 
• o , , , $  , %  , ° o  , ; o I ~ ,  o ° o , , O . .  

t " *, 1'o ~ ~ ; °  , ' %  • . . . .  ~ ,  • , , 
° s  • ~  . ~  , °  o , , , •  * , •  • o • - o,t I ,  • ,  # • •  . ~ I *  , ' ° *  " 

~•.,." - '~ '"  ": ,:.2 "2 ..~.;. •. ':. '~': .,~ • ,  • ,.,~* ° • o ' o  ~ • ; • ~ •  o . .  , 
. : a .  . "  . .  • e • - "  % . ¢ "  ~ t ' i . . ¢ e  ° " " 

• • , , ~ °  ° . ~ , o l  ~ ° o o ,  • , o • ° °. 
%" ° '-- .~ : "s' • • .•'~.5 :° 2 - ' ° .  : ' .  

° .  - o  , , "  * • • . * . v  , o  ° • , : .  . • • ° g  . .  . ~ : 
.¢ ". t . . . . :~ • .~.%.. . . - -* . %, - . . . ' =  '~ • 
oO " j oq. "°*. . ~  .°° o • . . ' • ° •  • °-. 

. • . ° o  . • . . 0 o  • ° ~" *. °% °* . 
• . l  ° *  ° . °  o °  • ,  . . ,  o , °  . . ,  , s , 

2 .," Y. "- : ' v  : . . . : : . .  : :  " -"." 7 ,  
° ,  ' # •  ~ o  ° , 1 o °  ° % o ° : "  ~ ° ,  % :  • 

Fig. 2. (a) Decay of 7r(s) with scale and (b) "random" data set. 

As the summation and differential operators commute, 
we obtain, for each (i) 

024@ (~)  - -  k O~! i )  ( ~ )  ( 4 2 )  

Ox~ 2 Os 

If 

then 

o!i)(x,l) 1 exp{.(x'i . , (0,2)  _ - -  x i ) 

s 2 s  2 J 
(43) 

02 ~ i) (Xtl) __ SO0! i) ( ~II) 
(44) 

Ox~ 2 Os 

which equates to equation (42) if k=s. As s is positive, 
each scale-space turning point is a maxima of the form 
depicted in Fig. l(b). The number  of turning points, 
therefore, cannot increase with scale, hence if  Sl<S2 then 
7 r ( S l ) ~ 7 1 - ( S 2 ) .  

3.3. Cluster validity 

We consider the case of a datum xi. If there exists 
some xj  such that Ixi - x j l  < 2s then x i ,x j  will share a 
common local maxima solution to equation (24). If  the 
set of xi are uniformly randomly distributed, then the set 
of I x i - x  j] are also uniformly randomly distributed. 
Under  these circumstances we expect the number  of 
maxima to decay with scale according to 

~r(s) = 7r(0)exp(-/3s), (45) 

where  /3 is a posi t ive  cons tan t  ( re la ted  to the 
dimensionality of the data space). Figure 2(a) shows 
the decay of 7r(s) with s for the random set of xi shown 
in Fig. 2(b). For " random" data, i.e. where no structure 
is discernable, we expect 7r(Sl)>Tr(s2) for sl<s2 for all Sl, 
s2. If, however, "val id"  data structure exists, then (by 
our definition) it is stable over a range of scales sa --+ sb 
such that Tr(sa)--~r(Sc)=~r(sb) for all c EIa, b[. 

2 W e  n o t e  t h a t  i t  i s  e a s i l y  p o s s i b l e  to  l o o k ,  s t a t i s t i c a l l y ,  f o r  

d e p a r t u r e s  o f  ~r(s) f r o m  t h e  f o r m  o f  e q u a t i o n  ( 4 5 ) - - t h i s  i s  no t ,  

h o w e v e r ,  e x p l o r e d  i n  t h i s  p a p e r .  2 

3.4. Classification 

We now assume that some "significant" partitioning 
exists at scale s*; we wish, therefore, to assign a 
membership function to each datum, xi, to each of the 
7r(s*) partitions. 

We consider a simple analogy, by which we "invert"  
the smoothed function/3 s • (x) so producing a hypersur- 
face with exactly It(s*) minima. "Hard"  classification of 
each datum then consists of evaluating which basin of 
attraction each xi belongs to. To evaluate this we 
construct a likelihood function for xi conditioned on the 
kth partition ("basin  of attraction") of the form 

1 (1 + (VD(xi))" (dl,k))exp(-ldi,~lz/2(s*)2), p(xilCk) = 

(46) 

where V!3(xi) is the gradient operation on/5~, at xi, 
di,k = IZ~ - xi and (a) • (b) represents the inner product 
between two normalised vectors. Equation (46) repre- 
sents the product of two probabilistic penalty terms, the 
first of which assesses the orientation of the vector 
between xi and the kth maxima given an estimate of the 
PDF at scale s* and the second acts as to penalise L 2 

distance from the kth maxima. The "membership  
function" for each xi on Ck is given by the a posteriori 
probability which is obtained from equation (46) via 
Bayes '  theorem and a choice for the a priori probability 
of each partition (normally all assumed to be equal and 
given by l/rr(s*)). 

4. R E S U L T S  

4.1. Test data 

We first show the use of all the partitional methods 
presented in this paper on a simple data set consisting of 
five Gaussian clusters each of 1000 data. Each x is 
five-dimensional, but for ease of visualisation the 
data is projected to a 2-D space using the Sammon 
mapping. (19) 

Figure 3(a) shows the data set used in this experiment. 
Figure 3(b) shows the variation of the likelihood density 
parameter, as defined in equation (15), for both the ML 
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Fig. 3. (a) Simple data set of five Gaussian, (b) (K) curves for ML (o) and K-means algorithms (+), (c) ~r(s) 
vs s and (d) scale-space evolution of cluster centroids. 

(a) 

' " (b) 

/ I ~ ' .  ~ "  ' ,  , ' ' " "4- 

, ,~ilt'~'~, ' ' ,  " o 

Fig. 4. (a) partition centroids (circles) and gradient and (b) classification. 

x 

(o) and K-means algorithms (+)  with K, the number  of 
Gaussians in the mixture models. Fig. 3(c) of the same 
figure shows the evolution with scale, s, of the number  
of maxima, ~r(s), of the smoothed density function, and 
Fig. 3(d) the evolution with scale, s, of the spatial 
locations of these points of maxima. 

3Note that a series of five runs, each with a different random 
number seed, have been evaluated. 3 

Figure 4(a) shows the positions of the cluster 
centroids at s--10 (circles) and the gradient function 
for each xi. A "hard"  classification into each of the five 
classes is shown in Fig. 4(b) of the same figure. We note 
that, for this simple example, all algorithms determined 
the "correct"  number  of partitions. 

The next example we give is of a series of three non- 
Gaussian clusters, as shown in Fig. 5(a). As before, 
Fig. 5(b) shows p(K) vs K for the ML and K-means 
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Fig. 5. (a) Data set of three non-Ganssian clusters, (b) (K) curves for ML (o) and K-means algorithms (+), 
(c) ~r(s) vs s and (d) classification. 

algorithms, we note however,  that  the "cor rec t "  
structure (K--3) is not determined by either algorithm. 
Figure 5(c), of 7r(s) vs s, shows a clear partitioning for 
the scale-space method at 7r(s)=3. Figure 5(d) of the 
same figure shows the resultant partitioning for s=6.  It 
is clear, from this example, that the hyper-ellipsoidal 
assumption of the ML and K-means algorithms leads to 
misleading results (it appears that a value of K--7 gives 
"opt imal"  partitioning for the K-means algorithm, and a 
clear par t i t ion ing  is not  ob ta ined  with the ML 
algorithm). 

4.2. Partitioning of vibromyography signals 

The vibromyogram (VMG) is a non-invasive mea- 
surement of muscle sounds. It contains information 
regarding muscular activity as a function of force and is 
of importance in the assessment of disability and muscle 
tremor. (2°) In a separate study, the t ime-domain VMG 
signal was parameterised over 0.1-second segments 
using an 8th-order AR model (parameters estimated 
using the Burg algorithm(21)). Figure 6(a) shows a plot 
of the first two partial correlation (reflection) coeffi- 
cients for data accumulated from one subject over eight 
muscle-force levels. We see that there is a clustering of 
the data, but that a simple Gaussian description would 
not be appropriate. Figure 6(b) shows 7c(s) vs s and from 
this plot we see that a partitioning into 7r(s) 4 is 

significant. Figure 6(c) of the same figure shows the 
data partitioning for s=6  and Fig. 6(d) the time course 
of the classification for the subject. As the time index 
progresses the subject is exerting increasing muscle 
force levels and Fig. 6(d) clearly shows changes in 
"s ta te"  as this force increases. It is interesting to note 
that the plot shows changes in "state" over low to mid 
range force, but a return to previously visited "states" at 
the higher  force levels (large t ime index). This 
corresponds well to current speculations regarding 
recruitment of fibres within muscles; work in this area 
is ongoing. 

4.3. Segmentation of simple texture images 

Variation in texture often provides important informa- 
tion regarding the boundaries of objects in an image and 
much effort has been directed at methods of segmenting 
images on a textural basis. One of the primary problems 
is that the number  of segments within the image is 
unknown (in the majority of cases) a priori. To this end, 
much effort has been directed at the application of 
unsupervised clustering methods to features extracted 
from images. (22 26) It is unreasonable  to expect, 
however, for feature-space data sets, constructed from 
the image, to have a simple hyper-ellipsoidal cluster 
structure, and hence the use of algorithms such as 
K-means may be inappropriate. 
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Fig. 8. Masking of the "water" image using a posteriori probabilities for four partitions--(a) to (d) 
respectively. Plots (e) and (f) show the masking of the image using a two-fold partitioning of the image. 

We take two simple examples in this paper and 
investigate image segmentation based upon well-known 
textural measures. The first test image consists of a 
64x  64 grey-scale (8-bit) image manufactured from two 
Brodatz macro-texture images of water ("f iner"  and 
"coarser") .  The boundary between the two macro- 
texture regions takes the form of a section of a "s tar"  
and may be seen most clearly at the top left-hand comer 
of the image in Fig. 7(a). Two texture measures are 
evaluated from a 7 × 7 sliding mask applied to the image. 
Firstly correlation estimated from the co-occurrence 
matrix (27; and secondly the first grey-scale moment  of 
the grey-scale run length matrix (GSRLM) as proposed 
in reference (28). Full details of both these texture 
measures may be found in the given references. 

Figure 7(b) shows the 2-D scatter plot obtained from 
the texture features. Application of the scale-space 
method described in this paper gives a decay of re(s) 
with scale as shown in Fig. 7(c) of the same figure. Note 
that, although there are " ledges"  in the decay curve 
prior to 7r(s)=4, the latter forms a very scale-robust 

partitioning of the data set. Figure 7(d) shows the 
resultant points of maxima in the smoothed density 
function created from the data set. 

Figure 8(a)-(d) present the masking of the image by 
the partition a posteriori probabilities. Comparison of 
these plots to the original image shows a realistic 
partitioning of textural regions. If, however, we follow 
the evolution of the four partitions as they merge at 
larger scales we observe that a two-fold partitioning of 
the data is obtained whereby partitions 1 and 2 
(Fig. 8(a) and (b)) merge and partitions 3 and 4 
(Fig. 8(c) and (d)) merge. The resultant partit ion 
probabilities, used so as to mask the image, are shown 
in Fig. 8(e) and (f) of the same figure. It is clear from 
the latter that the basic structure of the image's textural 
regions is recovered. One of the benefits, therefore, of 
the proposed scale-space method is that the evolution of 
partitions is mapped and provides detailed information 
about the merging and splitting of image segments. 

The second test image is the (well-known) "house"  
image, configured here as a 128x 128 grey-scale image 
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Fig. 9. (a) "House" image, (b) decay of yr(s) with s, (c)-(f) masking of the "house" image using a posteriori 
probabilities for four partitions, respectively. 

and shown in Fig. 9(a). Two of the Laws microstructure 
texture measures (27'29"3°) were obtained for each pixel 
within the image calculated via application of the 
following 3 x3 masks: 

I1 2 1 ~]  I - 1  _22 1 21 ] L1 2 4 L3 - 4 
1 2 - 1  2 ~ ' 

Figure 9(b) shows the decay of 7r(s) with s and a 
clear partitioning is obtained for 7r(s) 4. Figure 9(c)-(f) 
show the mask in g  of the image  with the a 
posteriori probabilities from each partition respectively. 
Note, for example, that Fig. 9(f) shows regions of 
"detailed" structure within the image, i.e. windows, 
guttering etc. 

5. CONCLUSIONS 

TWO separate methods have been investigated in 
detail within this paper. First, a parametric method of 
Gaussian mixture modelling (GMM) achieved using 
both maximum-likelihood and K-means algorithms; 

second, a method of scale-space parameter estimation 
based upon successive smoothings using a Gaussian 
kernel function. For both methodologies a cluster 
validity criterion is introduced, the concept of the 
likelihood density for the parametric methods and that of 
"significant" scale robustness in the decay of the 
parameter 7r(s) with scale for the scale-space method. 
It has been shown that the scale-space method is more 
robust in cases where hyper-ellipsoidal partitions may 
not be assumed. Furthermore, the scale-space method is 
not apt to consume structures with a small number of 
exemplars as part of a densely populated structure, as 
the Gaussian mixture techniques tend to do. It is, 
therefore, well suited to the task of preserving the 
structure and integrity of small outlying structures 
within a data set. The overall analysis of such outliers 
is a complex one (as described in reference (31)), but it 
is felt that preservation of such structures is important in 
a primary partitioning phase even if they are subse- 
quently removed after examining the spectrum of 
estimated partition priors. Furthermore, it is noted that 
much information regarding structures in a data set is 
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also obtained f rom the merging pattern the structures 
trace in scale-space.  

As must  have been  noted,  no doubt, the data sets 
examined in this paper  are of  low dimensionality.  
Al though the G M M  methods  are easily extended to 
higher  d imensional  spaces, visualisation, interpretation 
and (perhaps most  importantly)  verif icat ion of  the 
results is difficult. Similarly, the scale-space method  
may, in principle,  be  extended to a data set in an 
arbitrary dimensional  space, but the complexi ty  o f  
determining the number  and location of  the turning 
points  of/3s(x ) rises rapidly with the space 's  dimension.  
Al though this may  be a disadvantage for some data sets, 
mos t  h igh-dimensional  data sets may  be mapped  (with, 
naturally, some loss) onto a low-dimensional  manifo ld  
using, for example,  Kohonen ' s  topographic  map  (~2) or 
S a m m o n ' s  non-l inear  mapping.  (ag) It is noted that more  
efficient algori thms than a simple grid search exist for 
evaluating the zeroes o f  mul t i -dimensional  functions (33) 
and their  use is an area of  future implementa t ion  
research. 
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