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Unresolved Problems in Cluster A nalysis 

B. S.  EVERITT 

Biornetrics Unit ,  Institute of Psychiatry, University of London,  SE5 8AF,  England 

Summary 

The number of cluster analysis techniques has increased dramaticallj over the last ten to 
,fifteen years, and they haue been used in areas as distinct from one another as archaeology and 
psychiatry. However, a number of unresolued problems remain of which potential users of the 
methods need to be aware, if they are not to be faced with irreleuant or even misleading results 
Such problems are discussed here, and an attempt is also made to indicate some possibilities for 
future work in the area. 

1 .  Introduction 

Classification in the widest sense is, along with astronomy, probably one of the oldest 
scientific pursuits undertaken by man. In  the most general terms classification is the process 
of giving names to a collection of objects which are thought to  be similar to each other in 
some respect. T h e  ability to sort similar things into categories is obviously a primitive one, 
since it would seem to be a prerequisite of the development of language, which consists of 
words which help us to recognize and discuss the different types of events, objects and people 
we encounter; each noun in a language is a label used to describe a class of things which have 
striking features in common. Thus, for example, we name animals as cats, dogs, or horses 
and such a name collects individuals into groups. 

Classification has played an important role in the development of many areas of science. 
Most notable, of course, has been its contribution to biology and zoology where it eventually 
led to Darwin's Theory of Evolution. It has, however, also played a central part in other 
fields. For example, the classification of the chemical elements in the periodic table, produced 
in its most complete form by Mendeleyev in the 1860's, has had a profound influence on the 
understanding of the structure of the atom. Again in astronomy the classification of stars into 
dwarf stars and giant stars using the Hertsprung-Russell plot of temperature against lumi- 
nosity has strongly affected theories of stellar evolution. 

In this paper classification is considered to be the process of allocating entities to initially 
undefined classes so that individuals in the same class are, in some sense, similar to one 
another. Techniques which generate classifications are variously known as numerical tax- 
onomy methods, methods for unsupervised pattern recognition, and perhaps most commonly 
cluster analysis methods, and during the last two decades a vast variety of such techniques has 
been developed. The purpose of this paper is not to attempt a complete review of the area- 
such reviews are available elsewhere (see, for example, Cormack 1971 and Everitt 1974)-but 
to discuss some unresolved problems, and to speculate briefly on possible future develop- 
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rnents. We begin, however, with a short discussion comparing and contrasting cluster 
analysis with other multivariate analysis techniques. 

2. Cluster Analysis and Other Multivariate Techniques 

The raw data for many forms of cluster analysis is the familiar ( n  X p)  matrix of 
multivariate observations in whichp variable values are given for each of n individuals. Such 
data is often also analysed by means of other multivariate techniques such as principal 
components and factor analysis, discriminant function analysis, multivariate analysis of 
variance, and increasingly by informal graphical methods. In this section we shall give a brief 
account of the relationship of cluster analysis to these other techniques. 

2. I .  Cluster Analysis and Factor Analysis 

A distinction which is often made between these two sets of techniques is that cluster 
analysis is concerned with the classification of individuals, whilst factor analytic techniques 
assess relationships between variables and could be considered to be concerned with the 
classification of these variables. Such a distinction is however rather artificial since there is, 
essentially, no reason why many clustering techniques could not be used to cluster variables 
into groups, and it is also possible to  use Q-mode factor analysis (see, for example, Cattell 
1952) to directly classify individuals. 

A more fundamental difference arises from consideration of the well formulated linear 
model of factor analysis. This has no equivalent in most methods of cluster analysis. Such a 
clearly defined model has advantages in leading to testable hypotheses concerning certain 
aspects of the structure of the data. It has disadvantages in respect to the linearity constraint, 
which the majority of users conveniently ignore. Such a model also has little meaning when 
applied to individuals rather than variables and consequently Q-mode factor analysis has 
been subjected to much criticism (see, for example, Zubin and Fleiss 1965, Fleiss and Zubin 
1969 and Fleiss, Lawlor, Platman and Fieve 1971). The  method has also been criticised on 
more pragmatic grounds, namely that it performs very poorly in practice, by Blashfield 
(1976). 

In many respects the logical order of analysis on multivariate data should be a cluster 
analysis of individuals followed by separate factor analyses of variables within each group 
found in the previous stage. This might prevent factor analysis being carried out on data in 
which distinct groups were present and for which the overall correlation matrix would not 
necessarily be indicative of the within group correlations. However, such a process may in 
many cases not be possible si-mply because of the large number of variables involved in the 
raw data making it unsuitable for cluster analysis. In such cases the usual procedure is to 
perform the factor analysis first and then use a number of factor scores for each individual as 
input to the clustering method. As a necessary means of data reduction and simplification 
this seems acceptable; however a within group factor analysis following the clustering should 
still be performed, and these factors contrasted with those obtained initially. 

2.2. Cluster Analysis and Discriminant Analysis 

Discriminant function analysis is not a classification procedure per se since it requires an 
existing two (or more) group classification as starting point. However, it may often be 
usefully employed in association with cluster analysis as an informal indicator of which 
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variables have contributed most to cluster formation (the usual significance tests are not 
however valid; see next section), and as a means by which clusters and the relationships 
between them may be examined visually. Such canonical variate plots are used in the 
N O R M A P  program written by Wolfe (1970), and an example of their use in association with 
a cluster analysis is given in Everitt (1976). 

2.3. Cluster Analysis and Analysis of Variance 

A method of cluster analysis originally proposed by Friedman and Rubin (1967) uses 
Wilk's lambda statistic originally proposed in the context of multivariate analysis of vari- 
ance, as its clustering criterion. This method will be subject of some discussion in Section 3 of 
this paper. Its connection with analysis of variance is mentioned here so that the problem of 
between clusters 'significance tests' can be discussed. 

Wilks' lambda, / TI / Wl , arises from consideration of the fundamental equation 

T =  W + B  (1) 

where T ,  W  and B are @ X p )  matrices containing, respectively, 'total', 'within' and 'between' 
sums of squares and products. The distribution of lambda is known under the null hypothesis 
that the g groups are samples from the same population, and this distribution is used in the 
analysis of variance context to assess the significance of differences between group mean 
vectors. Such significance tests are not, however, valid in cluster analysis applications since 
here we construct groups which maximize / T I /  / Wl , and it is, consequently, the distribution 
of maxi1 T / I  Wl } under the null hypothesis, that we would need to study to answer 
questions of the statistical significance of the groups found by this form of clustering. Similar 
remarks hold for other clustering criterion, and for the significance tests sometimes carried 
out on individual variables after clustering using the usual t or  F-tests. For example, Table 1 
in Paykel and Rassaby (1978), contains a number of F-tests which are judged for significance 
using the usual tables of the F-distribution; such tests, if performed at all, should however be 
assessed against the critical values given in Englemann and Hartigan (1969). 

Again in the analysis of variance context, cluster analysis has been proposed as an 
alternative to multiple comparison procedures for grouping means; see Scott and Knott  
( 1974). 

2.4. Cluster Analysis and Graphical Techniques 

Recently there has been increased interest in the use of graphical techniques in statistics in 
general, and in multivariate analysis in particular (see, for example, Gnanadesikan 1977, Cox 
1978 and Everitt 1978a). Graphical aids may simply be useful as a m,eans of presenting the 
raw data, or  they may, in some cases, themselves constitute the statistical analysis by 
providing both a summary of the informational content of the data and an exposure of 
unanticipated characteristics, such as possible inadequacies of the assumed model. Many of 
the proposed methods might usefully be employed in association with cluster analysis. For 
example, some low-dimensional representation of the data using one of the available ordi- 
nation techniques might initially indicate whether applying some form of clustering is likely 
to be useful. Such plots can also be helpful in clarifying just how distinct are the clusters 
found. This might assist in preventing investigators claiming the discovery of some typology 
in their particular area when they have, essentially, merely split arbitrarily a honlogeneous 
sample. 
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3. Cluster Analysis-Sonze Unresolved Problems 

The number of problems associated with clustering techniques is legion. How should 
variables be scaled? Which distance or similarity measure should be used? How should 
clusters be tested for stability and validity? How should we assess the significance of clusters? 
Which method of clustering should we use? Here we shall discuss just a few of these problems 
and some of the more recent attempts to overcome them. 

3.1. Hierarchical Techniques 

We begin by considering the class of hierarchical clustering techniques. These are perhaps 
the most popular of all the multitude of cluster methods, and the literature surrounding them 
is enormous. The concept of the hierarchical representation of a data set was developed 
primarily in biology. The structures output from a hierarchical clustering method resembles 
the traditional hierarchical structure of linnean taxonomy with its graded sequence of ranks, 
with specimens grouped into species and these groups themselves grouped into genera, etc. 
Although any numerical taxonomic exercise with biological data need not replicate the 
structure of traditional classification, there nevertheless remains a strong tendency among 
biologists to prefer hierarchical classifications. However, these methods are now used in 
many other fields in which hierarchical structures may not be the most appropriate, and the 
logic of their use in such areas needs careful evaluation. For  example, in their biological 
applications questions concerning the optimal number of groups d o  not arise-here the 
investigator is specifically interested in the complete tree structure. Such questions are 
however raised by other users of these techniques, who consequently require a decision 
regarding that stage of the hierarchical clustering process which may be regarded as optimal 
in this sense. Informal methods which have been suggested for this purpose are generally of 
the type where the dendrogram is examined for large changes of level, this being taken as 
indicative of the correct number of groups. However, Everitt (1974) shows that such a 
procedure may in many cases be misleading; it appears that a large change in fusion level in a 
dendrogram is a necessary but not a suficient condition for the presence of clear-cut clusters. 
A slightly more formal approach to the problem is taken by Mojena (1977) who describes 
two possible 'stopping rules'. From empirical studies described in the paper, one of these 
rules does appear worthy of further consideration as a pragmatic means of objectively 
assessing the selection of a particular partition from a hierarchic clustering. 

The late 1960's saw the first attempts at constructing a theoretical framework within 
which to study the properties of hierarchical techniques. Johnson (1967) showed that 
hierarchical clusters correspond to a distance metric which satisfies the ultrametric inequality, 
and that consequently a hierarchic dendrogram is characterised by an ultrametric. Since the 
input similarities o r  distances are not generally ultrametric (and only occasionally metric), 
Jardine and Sibson (1968) suggest that a cluster method which t r a n s f o b s  a similarity matrix 
into a hierarchic dendrogram should therefore be regarded as a method whereby the 
ultrametric inequality is imposed on a similarity coefficient. They then specify a number of 
criteria which they argue it is reasonable for any such transformation to satisfy, and prove 
that single-linkage is the only method satisfying all the criteria, the implication seemingly 
being that it is therefore the only acceptable method. This conclusion has led to a certain 
amount of controversy. For  example, Williams, Lance, Dale and Clifford (197 1) question the 
need for cluster methods to satisfy all of Jardine and Sibson's proposed criteria, and adopt a 
more pragmatic approach to clustering, insisting that in practice single-linkage did not 
provide solutions which investigators found useful. Again, Gower (1975) feels that Jardine 
and Sibson's rejection of all but single-linkage clustering is too extreme, and questions 
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whether their criteria are not too stringent. His conclusion is that some of the criteria are not 
essential. It must be said that the approach taken by Jardine and Sibson appears to have had 
little impact on the majority of cluster analysis users; single-linkage is not particularly 
popular and the alternative mathematically acceptable method provided by these two au- 
thors is applicable only to small data sets and the solutions given are generally extremely 
difscult to interpret. 

An alternative and very promising approach to understanding and evaluating the variety 
of hierarchic techniques available is to compare the effectiveness of different neth hods across 
a variety of data sets generated to have a particular structure. In this way the solutions 
obtained by a particular technique may be compared with the generated structure. Several 
studies of this type have been undertaken (for example, Cunninghani and Ogilvie 1972, 
Kuiper and Fisher 1975, and Blashfield 1976). i n  general the results of such studies indicate 
that (1) no single method is best in every situation (2)  the matheniatically respectable single 
linkage is, in most cases, the least successful for the data used and (3)  group average 
clustering and a method due to Ward (Ward 1963), do  fairly well overall. Such empirical 
studies can, of course, never afford a complete evaluation of clustering methods; the r e s ~ ~ l t s  
obtained d o  however, appear to indicate that Williams, Lance and co-workers are correct in 
the pragmatic approach they take and that there are more useful clustering methods than the 
mathematically acceptable single linkage technique. 

O n  the other hand the single linkage method does have a number of desirable properties. 
perhaps the most important of which is that its results are invariant under monotonic 
transformations of the similarity matrix. (Other monotone invariant methods have been 
suggested by Hubert 1973 and D'Andrade 1978). This has led various authors to adapt the 
method in some way so as to retain its useful mathematical properties but to make it more 
practicably relevant. Examples are the methods proposed by Wishart (1969) and Zahn 
(1971). In addition Sibson (1973) has produced a very efficient algorithm for the technique 
which enables it to handle very large data sets and this may be regarded ;IS a distinct 
advantage in many practical situations. 

3.2. Clustering by Oprin~izirzg a Preciefrneci ~ W e a ~ z ~ r e  

Let us now move on to consider those clustering techniques which seek a p~irtition of the 
data into k groups by attempting to optimize some predefined numerical measure indicative 
of a desirable clustering solution. Such methods differ from the methods discussed above in 
that the solution does not portray hierarchical relationships among the entities. The clusters 
denoted in a partitioning solution are discrete and exist at a single rank. For the moment we 
shall assume that the value of k is given Q priori; the problen~ of deciding on an appropriate 
value for k will be discussed in detail later. 

Several numerical criterion have been proposed for this approach to clustering. The most 
common is minimization of trace (W),  a criterion which has been discussed by Friedman and 
Rubin (1967), McRae (1971) and Gordon and Henderson (1977). According to a survey of 
the published uses of classification in 1973 conducted by Blashfield (1976), this method is, in 
fact. one of the three most popular techniques of cluster analysis. It does however sufer  from 
a number of problems. Firstly the method is transformation dependent; in general different 
results will be obtained from applying the technique to, say, the raw data, or to the data 
standardized in the usual way, that is to zero mean and unit standard deviation. This is of 
considerable practical importance in many applications where variables are on different 
metrics and some form of standardization is, in general, unavoidable. A further problem with 
the minltrace (W)} criterion is that the clusters produced are constrained to being hj,per- 
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spherical; in cases where the real clusters in the data are of some other shape this may 
produce misleading solutions. Examples are given in Wishart (1969) and Everitt (1974). 

The transformation dependency problem of the minitrace ( W ) } criterion led Friedman 
and Rubin (1967) to suggest other numerical cluster measures invariant to non-singular 
linear transformations of the data. Amongst these the one that has become most popular is 
minimization of det ( W ) .  Friedman and Rubin were led to this criterion by cons id era ti or^ of 
Wilks' lambda used as a test statistic in multivariate analysis of variance. Scott and Symon 
(1971) show how it arises using likelihood ratio considerations and Binder (1978) using a 
Bayesian approach to clustering shows it may be justified as maximizing certain approxi- 
mated posterior probabilities. Apart  from its advantages with regard to standardization 
considerations it has a further point in its favour, namely that it does )lot restrict clusters to 
being hyperspherical. It does however assume that all clusters in the data have the satrle 
shape, and again this can be a problem when the actual structure is not consistent with this 
requirement; see Everitt (1974) for an example. Some suggestions for overconling this 
particular disadvantage of the det ( W )  criterion are made by Scott and Syrnon (1971). and 
Maronna and Jacovkis (1974). The former authors suggest as a clustering criterion 

where W ,  is the within group scatter matrix of group i, which contains n,  individuals. (The 
restriction that at least p + 1 observations must be assigned to each group avoids the 
degenerate case of infinite likelihood). An illustration of how this criterion performs more 
successfully than the simpler det ( W ) alternative when the clasters do have di f i rent  shapes is 
given in Everitt (1974). Maronna and Jacovkis, in an interesting discussion of the metrics 
used in cluster analysis, suggest the criterion 

but this does not appear to have yet been ~lsed in practice. 

3.3. Optin~izatiorz Algorirlztns 

Once a suitable numerical clustering criterion has been devised, consideration needs to be 
given as to how to choose the k-group partition of the data that will optimize this criterion. 
In theory, of course, the problem is simple; to quote Dr.  Idnozo Hcahscror-Tenib. that super 
galactian hypermetrician who appeared in Thorndike's 1953 Presidential address to the 
Psychometric society, '1s easy. Finite number of combinations Only 563 billion billion 
billion. Try all. Keep best'. In practice the size of n will not allow compkte  enumeration even 
using the fastest computer available since, for example, for n = 19, k = 8 there are 
1,709,751,003,480 distinct partitions. This difficulty has led to the development of algorithms 
designed to  search for a local optimum of the criterion by rearranging existing partitions and 
only keeping the new arrangement if it improves the criterion value. Such procedures are 
generally known as hill clirnbing algorithms. They begin with some arbitrary partition of the 
data into the required number of groups and then consider each individual one by one to see 
whether a move into another group produces an improvement in the current criterion value. 
If it does the entity is included in the other cluster and the procedure repeated until no move 
of a single individual causes any further improvement. The  whole procedure is sometimes 
repeated from a different initial partition in the hope that an improved solution will be 
obtained. With well structured data different starting values will usually lead to the same 
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final set of clusters, although in general there is no  way of knowing i f  the particular criterion 
value obtained is the global or merely a local optimum. 

Other optimization algorithms which have been suggested in respect of the trace ( W )  
criterion are discussed by Jensen (1968) and Gordon and Henderson (1977). The former 
author describes a dynamic programming algorithm which although giving a mathenlatically 
attractive statement of the problem does not seem to  offer realistic practical solutions. 
Gordon and Henderson derive an algorithm based on the classical technique of steepest 
descent which in some cases performs very poorly but in others gives results which coinpare 
favourably with those obtained by other algorithms. A 'hybrid' algorithm also described by 
these authors does however appear to the worthy of further consideration for minimizing 
trace (JV)and may be capable of extension to the optimization of other criteria. 

Scott and Symon (1971), in an investigation of the det (W) criterion for clustering, found 
that problems could arise with the hill-climbing algorithm when the actual structure of the 
data consisted of groups of rather disparate sizes. In such cases it was found that this 
criterion had a tendency to provide solutions having approximatel> equal sized groups, with 
the result that the smaller group failed to be correctly identified. 

3.4. Choosing the Number of Groups 

Choice of criterion and choice of optimization algorithm d o  not exhaust the problems of 
this type of clustering technique. We still need to consider the forniidable problem of 
choosing an  appropriate value of k ,  the number of groups. The importance and difficulty of 
this problem have been noted by many authors including Ling (1971) and Sneath and Sokal 
(1973) and an early attempt at its solution was made by Thorndike (1953) who plotted 
average within-cluster distance against number of groups; with every increase in k there will, 
of course, be a decrease in this measure, but Thorndike suggests that a sudden marked 
flattening of the curve at any point indicates a distinctively 'correct' value for k ,  since, 
intuitively, such a point will occur when the number of groups uniquely corresponds to the 
configuration of points and there is relatively littlegain from further increase in k .  Thorndike 
makes some attempt to test this procedure empirically using artificial data generated to 
contain four clusters. Unfortunately the derived curves provide little support for this intuitive 
notion. Despite this a similar procedure has been advocated by other authors-the classifica-
tion criterion is plotted against the number of groups and,  according to Gower (1975), 'a 
sharp step in this plot indicates the number of classes; otherwise there is no  justification for 
having more than one class'. In practice however the decision over whether such plots 
contain the necessary 'sharp step' is likely to be exceedingly subjective and in many appli- 
cations of clustering this author has not found such a procedure particularly helpful. 

A less subjective but still essentially informal approach to the problem is taken by 
Marriot (1971). In an interesting and informative discussion of the det ( W )  clustering 
criterion, he suggests that a possible criterion for assessing number of groups is to take that 
value of k for which k 2 /  W l  is a minimum. For  unimodal distributions the mininium value is 
likely to give k = 1 ,  for strongly grouped distributions the minimum will indicate the 
appropriate value of k ,  while for a uniform distribution the criterion should remain constant. 
Some simulation results given in the paper are likely to be very useful to investigators 
attempting to decide on a value for k ,  and although Marriot's results in no way provide an 
exact significance test for the presence of clusters they are generally very helpful in practical 
situations. 

Some authors have attempted to derive more formal tests of number of clusters. For  
example, Beale (1969) gives an 'F test' which he suggests may be used to test whether a sub- 
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division into k ,  clusters is significantly better than a sub-division into some smaller number of 
clusters k, .  Experience with this statistic suggests that it will only be useful when the clusters 
are fairly well separated and hyper-spherical. Englemann and Hartigan (1969) give percent- 
age points of a test for clusters based on the ratio of between groups to within groups sum of 
squares. In association with the multivariate mixture approach to clustering, Wolfe (1971) 
derives a likelihood ratio test for assessing the hypothesis that the data arises from a k ,  
component mixture against the alternative that they arise from a mixture with k,  com-
ponents. Binder (1978) has criticised this test on the grounds that the proposed likelihood 
ratio test criterion does not necessarily have the assumed asymptotic chi-squared distribu- 
tion. 

Again in a discussion of the mixture approach as a model for clustering, Day (1969) 
suggests a test that the data is drawn from a single multivariate normal distribution against 
that of a mixture of two multivariate normal distributions with the same variance-covariance 
matrix, may be based on the maximum likelihood estimate of the generalized distance 

= (y1 - ~12)'Z-l (ill - ~ 2 ). 
Following this suggestion and using Monte Carlo techniques Everitt (1978b) has studied the 
null distribution of this estimate and derived significance points for such a test. Such tests are 
likely to  be 1710s~useful where multivariate normality is a reasonable assumption. Some 
further possible approaches to the number of clusters problem are discussed in Lennington 
and Flake (1975). 

Overall the problem of determining the most appropriate number of clusters for a set of 
data can be a difficult one. Despite the numerous attacks on the probleni in the literature it 
must be said that no completely satisfactory solution is available. The main difficulties with 
deriving formal significance tests in this area appear to be the specification of a suitable null 
hypothesis, the determination of the sampling distribution of the distance or  similarity 
nieasures used and the development of a flexible test procedure. Perhaps the problem is, in 
fact, incapable of any formal solution in a truly general sense simply because there is no 
universally acceptable definition of the term cluster. Of course, it might be argued that for 
practical purposes such formal significance tests are unnecessary since the investigator would 
d o  better to consider the possibility of several alternative classifications, each reflecting a 
different aspect of the data. Gnanadesikan and Wilk (1969) seem to be making just this point 
in a slightly different context when they argue that interpretability and simplicity are 
important in data analysis and any rigid inference of optimal number of groups (dimensions 
in original discussion) in the light of the observed value of a numerical index of goodness of 
fit, may not be productive. 

3.5. Dissection and ClassiJication 

Perhaps the most difficult problem facing the user of cluster analysis techniques in 
practice is the assessment of the stability and validity of the clusters found by the numerical 
technique used. A number of questions need to be asked and satisfactorily answered before 
any given typology can be offered as a reasonable and useful system of classification. 
Amongst such questions are 'Do  the same types emerge when new variables are used'?', ' D o  
the sarne types emerge when a new sample of similar individuals is used?', 'Do  the members 
of different groups differ on variables other than those used in deriving them?' and,  in certain 
situations, more specific questions such as 'Do  the members of the different groups respond 
differently to the same treatment'?' However, in many reported clustering applications little 
consideration appears to be given to such questions; many users simply report the results of 
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applying one particular cluster method to a set of data and little else. Although such an 
approach may be thought to be suitable where the investigator is simply interested in using 
clustering to  provide some summary and description of his data, it is obviously inadequate if 
he wishes to propose that the groups found are of particular importance in his area of study. 

The difficulty here essentially concerns whether the user is interested in dissection or 
classification. Many authors, for example, Fleiss et al. (1971) assume that groupings deter- 
mined by arbitrarily splitting a homogeneous sample, i.e. dissection, are not what are 
required of cluster analysis. In such a situation the ideal answer would be a technique which 
actually indicated that the data did not contain clusters. (This is, of course, related to the 
previous discussion concerning the number of groups problem). Corrnack (1971) takes a 
similar view to  Fleiss et al., suggesting that classification is a technique for generating 
hypotheses whereas dissection is not, and where there are n o  distinct clusters the data will 
have been forced into a straight jacket which restricts the domain of possible hypotheses and 
makes it likely that some will be generated by the fact of dissection rather than by the data. 
However, other authors, for example, Ross (1971), argue that dissection is a useful activity 
both in everyday life and in scientific research, and the purpose of clustering should be to 
provide a sound basis for dissection, making use of any natural breaks that occur. Such a 
viewpoint is probably only reasonable when the investigator cares not at  all about the relative 
isolation of clusters, but only about their internal homogeneity. An area where this might be 
appropriate is where cluster analysis techniques are used for stratification in sample surveys 
(see, for example, Golder and Yeornans 1973, Dahmstrom and Hagnell 1974 and Holgersson 
1975). Perhaps the important point is that many users of clustering are not clear whether they 
are interested in dissection or classification, and are not helped (and in some cases apparently 
not bothered) by the lack of a satisfactory test for distinct clusters. 

4. Cluster Analysis-Some Possible Future Decelopn~ents 

In  this section I would like to speculate briefly on those areas which might offer potential 
in the future development of cluster analysis. Not  having the advantages of a Madame 
Sosostris, such speculations may of course turn out to be wide of the mark. Nevertheless it is 
hoped that they will prove of use to  a t  least some readers. 

4.1. Number of Clusters Problems 

This problem has been discussed in some detail in the previous section. For  reasons stated 
there, it is probably not capable of any definitive solution; nevertheless it still presents 
interesting possibilities for research. Although attempts have been made to deal with the 
problem analytically (see, for example, Ling 1972), the most fruitful approach may be by the 
use of Monte Carlo techniques, as in the papers of Englernann and Hartigan (1969), Marriot 
(1971), and Everitt (19786). In this way the null distributions of many clustering criterion 
could be studied and used to provide guidelines for the existence or  otherwise of distinct 
clusters. In the same way rules such as those proposed by Mojena (1977) for deciding on the 
'best' number of clusters could be empirically evaluated. 

4.2. Choosing a 'Best' Clustering Method 

The increasing number of cluster analysis methods available has led several authors to 
consider the perplexing problem of choosing a 'best' method in some sense. Fisher and 
Van Ness (1971), for example, whilst not considering this problem to be defined well enough 
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for a complete solution, suggest various admissibility conditions which they suggest will 
eliminate obviously bad clustering algorithms. The work of Jardine and Sibson referred to in 
the previous section also leads to recommendations regarding which techniques are accept- 
able and which are not. Whilst such theoretical approaches to this problem may be illuminat- 
ing in many respects, they have not led to results acceptable in practice, and it appears 
unlikely that the relations between different methods and data types will be untangled solely 
by formal analysis and argument. An alternative and very promising approach to under- 
standing and evaluating the variety of clustering techniques available is to compare the 
effectiveness of different methods across a variety of data sets. Several studies of this type 
have already been undertaken and referred to in the previous section. However, there is a 
need for more such investigations using other techniques and a greater range of data types. 

4.3. Applj~ing the 'Jackknife' to Clustering 

Over the last few years the jackknife has been and still remains a topic of great interest in 
the statistical literature. The method depends on the qualitative idea that some aspects of the 
stability of an estimate can be judged empirically by examining how much the estimate 
changes as observations are removed. It has been used in a variety of contexts including the 
estimation of error rates in discriminant function analysis (see Lachenbruch 1975), and it 
might perhaps be possible to use it to evaluate clustering techniques, and methods for 
assessing number of clusters. 

4.4, Jrzteractiotl Between Cluster Methocls and Jnforrnal Graphical Techniques 

The last five years has seen the development of many new graphical techniques capable of 
being applied to multivariate data-a description of the majority of these is available in 
Gi~anadesikan (1977). Most research workers with complex multivariate data to analyse 
have, as yet, little experience with the more recent of these methods, but hopefully during the 
near future this situation will change, and such graphical techniques will be welcomed as 
useful additions to the tools of the data analyst. In particular they may be very helpful when 
used in association with clustering methods, as an aid in the interpretation and presentation 
of results. Such interaction between clustering and graphical techniques may be made even 
more attractive by the development and increasing availability of the type of interactive 
computer systems described by Ball and Hall (1970) and by Tukey, Fisherkeller and Fried- 
man (1975). 

4.5. Con~puter Packages for Cluster Analj~sis 

The most comprehensive computer package for cluster analysis is, undoubtedly, CLUS- 
T A N ,  developed during the late 1960's and early 1970's by Dr.  David Wishart. This package 
includes a large number of clustering techniques and a variety of distance and similarity 
measures. It has gained wide acceptance and is currently used by research workers in many 
fields. Nevertheless there is still probably room for other clustering packages providing 
alternative and/or additional features. One possibility would be a package based on the 
programs listed in Anderberg (1973) or  Hartigan (1975). A further possibility would be a 
cluster package including as options a number of the graphical techniques described in 
Gnanadesikan (1977). 
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4.6. I t p r o u e d  A lgorrthms Jor  Particular Techniques 

Recently a number of authors have published accounts of improved algorithms for a 
number of cluster methods. For  example, Sibson (1973) described an optimally efficient 
algorithm for single linkage, making its application feasible for a number of individuals well 
into the range lo3 to lo4.Defay (1977) has given a similar algorithm for the complete link 
method. This technique of cluster analysis has also been considered by Hansen and Delattre 
(1978) who show that it is reducible to the problem of optimally coloring a sequence of 
graphs, and derive an  efficient algorithm for its implementation using this concept. The 
algorithm suggested by Gordon and Henderson (1977) for minimization of trace (W)  has 
already been referred to in the previous section, and consideration should be given to a 
similar approach to the optimization of other clustering criterion, as an alternative to the 
more usual hill-climbing type of algorithm. 

The development of more efficient algorithms for a variety of clustering techniques would 
appear to  be an area of some potential. However, if such improved algorithms are to be of 
general use they must be incoiporated rapidly into established cluster packages. 

Other developments will, of course, occur with the use of cluster analysis in new areas, 
although with its use already noted by Wishart (1978) for classifying puberty rites of 
American Indian Tribes, and extracts from Plato and Jane Austin, one wonders in what 
other fields it can possibly emerge! N o  doubt theoretical developments will also take place 
with the increased interest of mathematicians in the area. For example, the recent publication 
of a Bayesian approach (see Binder 1978) has raised interesting points concerning the 
technique based on  minimization of det (W)  originally proposed as a cluster method some 
ten years ago. Perhaps one might also hope that a further development will be a more critical 
approach by users, with more than merely 'lip-service' being paid to the evaluation of 
solutions. 

The 1960's saw a massive increase in the literature of cluster analysis, and a tendency for 
research workers in many fields to be carried along on a growing tide of euphoria for the 
techniques. Fortunately the 1970's has seen this tendency less in evidence. partly because of 
the appearance of papers openly critical of the attitude prevalent earlier of seemingly 
regarding clustering as an easy alternative to being forced to sit and think. (The major 
example of such a paper is the review by Cormack 1971). Most (although by no means all) 
investigators are now more wary of the whole area, having become aware of the varied and 
difficult problems facing the cluster analysis user in practice. This more critical approach is to 
be welcomed and should lead to more worthwhile results being produced in the future than 
have often been produced in the past. 

L e  notnbre des techniques de classiJication a dranlatiquetnent augnzentP depuis 10 ou 15 ans, et 
elles otft 4th utilishes dans des dotnaines aussi diffzrents les uns des autres que I'archCologie et 
a1 psj'chiatrie. Cependant, beaucoup de problPrnes ne sont pas rhsolus et les utilisateurs potentiels 
de ces me'thodes ont besoin d'en avoir connaissance, s'ils ne ueulent pas faire face d. des rhsultats 
ininthressants ou n28nle trompeurs. On  dhbat ici de ces probl?nzes er on terzte d'indiquer des 
possibilitCs de tracaux futurs dons ce donzaine. 
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