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Abstract

In this study a novel approach to graph-theoretic clustering is presented. A clustering algorithm which uses a struc-

ture called scale-free minimum spanning tree is presented and its performance is compared with standard minimum

spanning tree clustering and k-means methods. The results show that the proposed method is a potential clustering pro-

cedure after some further analysis is done.
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1. Introduction

The goal of this study was the clustering of real-

world data using methods based on graph theory.

A minimum spanning tree (MST) of a weighted

graph connects all the given data points at the low-

est possible cost (Sedgewick, 1984). An MST can
be used in clustering: if the weights of the edges

represent the distances between the data points,

removing edges from the MST leads to a collection

of connected components which can be defined to
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be clusters. It might be possible to use some other

kinds of networks in clustering; in this study, one

network model was considered.

Different irregular network architectures have

been proposed in the literature. One of the oldest

is the random graph model of Erdös and Rényi.

It has been used in different application fields as
an idealized model along with networks with regu-

lar structure. Two newer models are small-world

and scale-free networks. Small-world networks lie

somewhere between regular and random networks

and the name analogy derives from the small-

world phenomenon (Watts and Strogatz, 1998).

Whereas the probability that a vertex has k

links follows a Poisson distribution in random
ed.
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networks, scale-free networks follow a power law

P(k) � k�c. The exponent c has had values of

c = 2.1–2.4 for many real-world cases. (Strogatz,

2001).

A scale-free structure emerges in a network
when it is growing by adding new vertices, and

the new vertices are preferably attached to vertices

which are already highly connected (Barabási and

Albert, 1999). Both of these ingredients are neces-

sary if a scale-free structure is wanted (Barabási

et al., 1999). The situation becomes a little different

if each vertex has some initial fitness which affects

to the connection-making process. In this situation
scale-free behavior can emerge also (Ergün and

Rodgers, 2002).
2. Materials

The most important selection criterion for the

data was the continuity of the attributes. In addi-
tion the selected datasets were all studied before.

The standardized deviates of original attribute val-

ues were used in this study.

Three datasets from UCI Machine Learning

Repository (Blake and Merz, 1998) were used

along with a dataset consisting of intracranial

EEG measurements from rats.

Fisher�s iris plant dataset contains 150 instances
and three (continuous) attributes measured from

three different iris plant species. One class is known

to be linearly separable from the other two classes,

the latter are not linearly separable from each

other.

The thyroid dataset has 215 instances, three

classes and five attributes, all continuous. The

aim is to predict the patient�s thyroid class: ‘‘nor-
mal’’ (150 instances), ‘‘hyper’’ (35 instances) and

‘‘hypo’’ (30 instances).

The Pima Indians diabetes dataset contains 768

instances, eight attributes (not all of them contin-

uous), and two classes: tested positive for diabetes

and tested negative. From this database only 400

instances (152 positive, 248 negative) and six attri-

butes (the continuous-valued ones) were used.
The EEG dataset consists of 400 samples, of

which 80 represent epileptic seizure activity and

320 normal electrical activity of the brain. All six
attributes were continuous and they were selected

in such a way that they were not statistically

strongly correlated with each other. This data

has been studied before and it has been noted that

it is difficult to cluster (Päivinen and Grönfors,
2004).

Fig. 1 shows a scale-free tree which consists of

iris dataset elements. The blue vertices represent

the species Iris setosa, orange vertices I. virginica,

and the green vertices I. versicolor. Figs. 2–4 repre-

sent the same kind of structures from the other

datasets.
3. Methods

Clustering algorithms based on graph theory

can be used to detect clusters of different shapes

and sizes, a feature that is not common among

clustering methods. An example of this ap-

proach is a minimum spanning tree (MST) clus-
tering (see Algorithm 1). The data must have

well-separable clusters in order that they can

be recognized with the MST clustering. On the

other hand, the method does not need any

parameters like the number of clusters or some

other a priori information about the underlying

data which can be considered as an advantage

of the method (Theodoridis and Koutroumbas,
2003).

Algorithm 1. Minimum spanning tree clustering

procedure MST Clustering (V: set of data points)

construct a fully connected graph G of V

such that the edge weights are the

distances between data points

construct a minimum spanning tree T of G
find all inconsistent edges of T

remove the inconsistent edges to get a set of

connected components

define the connected components as clusters

The definition of the ‘‘inconsistent’’ edges
causes problems in the MST clustering algorithm.

One way to overcome these probelms is to extend
the MST method by defining regions of influence

of the vertex pairs (Theodoridis and Koutroum-



Fig. 1. A scale-free network from iris dataset (blue: setosa, green: versicolor, orange: virginica). (For interpretation of the references in

colour in this figure legend, the reader is referred to the web version of this article.)
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bas, 2003). This leads to an another kind of clus-

tering algorithm which can be effective in some

cases (Osbourn and Martinez, 1995).

Since scale-free networks have some vertices

which are highly connected but the majority of

them are not, this leads to a ‘‘natural’’ clustering:
highly connected vertices can be thought to be

‘‘cluster centers’’, and all the vertices connected

to this hub belong to the same cluster. For exam-

ple, the iris plant Fig. 1 seems to contain five clus-

ters and some long out-of-cluster branches. For

reference, a MST created from the same iris data

can be seen in Fig. 5.

Prim�s algorithm for constructing a minimum
spanning tree (Aho et al., 1983) was modified to

produce a spanning tree which has a scale-free

structure. This structure was named as scale-free

minimum spanning tree (SFMST). In Algorithm

2, where the construction of an SFMST is pre-

sented, V means the set of vertices (data points),

D is a square matrix containing the distances be-

tween the vertices, W is the weight matrix whose
initial values are the reversed distances between

the vertices, E is the set of edges not in the SFMST
(initially all the possible edges between the vertices

in V), S is a set containing the vertices of the

SFMST, and P contains the edges of the SFMST.

Throughout the algorithm the edges are identified

as ordered pairs of the end point vertices of the

edges.
The main differences when compared with orig-

inal Prim�s algorithm are the use of ‘‘reversed’’ dis-

tances and updating them during the construction

process. Updating is not always necessary; namely,

if a vertex has only one or two edges, it might not

be reasonable to give it the reward for large con-

nectivity. The updating is controlled by a constant

which tells how many edges does a vertex have to
have before its weight can get a bonus for con-

nectivity.

Algorithm 2. Scale-free minimum spanning tree

construction

procedure Scale-Free Minimum Spanning Tree (V:

set of vertices)

set E to contain all the possible edges between

the vertices in V



Fig. 2. Thyroid (blue: normal, green: hyper, orange: hypo). (For interpretation of the references in colour in this figure legend, the

reader is referred to the web version of this article.)
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calculate distance matrix D / / distances

between vertices

W = dmax(D)e � D; // reversed distances
select (u,v) 2 E which has the greatest weight

S = {u,v}; // vertices of SFMST

P = {(u,v)}; // edges of SFMST

E = En{(u,v)}; // unused edges

while jSj5 jVj do
select (u,v) 2 E, u 2 S, v 62 S, which has

the greatest weight

S = S [ {v};
P = P [ {(u,v)};

E = En{(u,v)};
update weights in E if necessary

end

The line ‘‘update weights in E if necessary’’ is

probably the hardest line of the algorithm to

implement. Every link has to have an effect to

the weight. Linear dependence—every link adds

same constant to the weight—causes one vertex
to gain nearly all the edges, resulting to a star-like

network with one hub. The updated weight was

defined to depend non-linearly on the number of
links in such a way that the connectivity bonus in-

creases slowly with the number of links and starts

to decrease when the number of links is big en-

ough. Specifically, if n is the number of links from

a vertex v and it is greater than a pre-defined

threshold value, then the weights of all possible

links which have v as one end vertex are set to

wnew = wold + ncn, where wold is the old weight of
the link and c is a constant, 0.5 < c < 1.

The two constants, the minimal amount of

edges needed before a bonus for connectivity is

awarded and the multiplying constant in weight-

updating, determine the final form of the spanning

tree. The values used in this study were chosen

based on numerical experiments. The threshold

value for the minimum number of edges a vertex
has to have in order to get the connectivity bonus

was set at three, meaning that if a vertex has at



Fig. 3. Pima indians (blue: negative, orange: positive). (For interpretation of the references in colour in this figure legend, the reader is

referred to the web version of this article.)
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least three links, it is made more attractive in the

linking process. The value c = 1 for a multiplying

constant leads to a unipolar network with one

hub because then the connectivity bonus depends

linearly on the number of links. The smaller the

value of c, the less hubs does the resulting network
have; at value c = 0.5 the network looks nearly like

a basic MST. The value c = 0.9 was used in this

study; then a vertex has to have ten links before

the connectivity bonus starts to decrease. This fol-

lows from the fact that the zero of the derivative of

the weight-updating function is at n = �1/lnc.

The proposed algorithm does not produce the

usual scale-free network. The SFMST is not ran-
dom since at each step the ‘‘fittest’’ vertex is added

to the tree, and its structure is that of a spanning

tree, meaning that it has no cycles and there is only

one path between any two vertices. The construc-

tion makes the SFMST minimal with respect to

the distances between the vertices when the scale-

free property has to be maintained.
4. Results

For each dataset three different clustering meth-

ods were tested: SFMST, MST and k-means.

In both MST and SFMST methods Euclidean

distance was used as the distance measure. A ver-
tex was defined to be a hub if it had at least four

links, and an SFMST cluster was defined to be a

hub and all the vertices that connect directly to

it. If two hubs were connected to each other or

there was only one linking vertex between the

hubs, they were defined to be in the same cluster.

In addition, a branch was defined to be a chain

of (one or more) vertices originating from a hub,
in such a way that the vertex connected directly

to the hub vertex does not belong to a branch.

In MST clustering inconsistent edges were defined

as follows. For each vertex in the minimum span-

ning tree, an average length of edges that lie at

most two steps apart from the vertex, m, is calcu-

lated along with the standard deviation, r. If for



Fig. 4. EEG (blue: normal, orange: epileptic). (For interpretation of the references in colour in this figure legend, the reader is referred

to the web version of this article.)

Fig. 5. An MST from iris dataset (blue: setosa, green: versicolor, orange: virginica). (For interpretation of the references in colour in

this figure legend, the reader is referred to the web version of this article.)
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some edge its length l satisfies jm � lj > qr for a

pre-defined positive constant q, the edge is defined

to be inconsistent and is thus removed from the

MST. The constant q had values around two in

this study. In addition, k-means procedure with
squared Euclidean distance as the distance meas-

ure was used with two different values of k for each

dataset.

For the iris plant dataset, the SFMST method

produced three clusters and eight branches (see

Table 1). The first cluster, C1, which contains the

majority of setosa vertices, has two hubs. The sec-

ond cluster also has two hubs, one with versicolor

vertex as the center and the other virginica vertex.

The third cluster has one hub and contains only
Table 1

Results for iris dataset

Setosa Versicolor Virginia

SFMST

C1 44 1 0

C2 1 35 28

C3 0 0 17

B1 5 0 0

B2 0 1 0

B3 0 0 2

B4 0 0 1

B5 0 7 0

B6 0 2 0

B7 0 4 0

B8 0 0 2

k = 5

C1 0 19 2

C2 0 2 27

C3 22 0 0

C4 0 29 21

C5 28 0 0

MST

C1 1 45 30

C2 0 0 1

C3 0 4 7

C4 0 1 0

C5 0 0 8

C6 0 0 1

C7 0 0 3

C8 36 0 0

C9 13 0 0

k = 3

C1 33 0 0

C2 0 46 50

C3 17 4 0
species virginica. The species setosa is known to

be linearly separable from the other two, and it

can be seen that the SFMST method produced

one cluster and one branch, C1 and B1, which to-

gether contain all but one of these vertices. The
remaining setosa vertex is connected to cluster C1

and to the hub of cluster C2 which means that it

is assigned to cluster C2. Cluster C1 contains also

one versicolor vertex. The MST method produces

a tree in which setosa vertices are at the one end

of the tree (see Fig. 5). The edge between setosa

and versicolor vertices is the longest one in the tree,

and so removing it separates setosa vertices from
the other vertices. However, using the previously

given definition for inconsistent edges, all setosa

vertices are not in the same cluster. The k-means

method separates setosa vertices well from the

other vertices.

For the thyroid dataset the SFMST method

produced four clusters and numerous branches
Table 2

Results for thyroid dataset

Normal Hyper Hypo

SFMST

C1 37 1 2

C2 96 20 0

C3 0 9 0

C4 0 0 12

Bn 17 5 16

k = 5

C1 64 14 0

C2 0 16 0

C3 86 1 8

C4 0 0 22

C5 0 4 0

MST

C1 118 8 30

C2 7 24 0

C3 18 3 0

C4 2 0 0

C5 1 0 0

C6 1 0 0

C7 1 0 0

C8 1 0 0

C9 1 0 0

k = 3

C1 0 16 0

C2 150 19 8

C3 0 0 22
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of which most were singleton-vertex. All the

branch vertices Bn are presented as one row in

Table 2. Cluster C2 has three hubs, other clusters

have one hub each. Clusters C3 and C4 contain

only hyper and hypo vertices, respectively. Cluster
C1 has all kinds of vertices, mostly normal. Cluster

C2 has two hubs which have only normal vertices

and one hub which has mostly hyper vertices con-

nected directly to it. It seems that the hypo vertices

can not be found using MST clustering. On the

other hand, k-means succeeds to separate different

kind of vertices quite well.

Results for the pima indians diabetes dataset
are in Table 3. The SFMST produced five clusters
Table 3

Results for pima indians diabetes dataset

Negative Positive

SFMST

C1 9 7

C2 15 27

C3 26 12

C4 133 38

C5 32 37

Bn 33 31

k = 9

C1 27 23

C2 13 26

C3 8 9

C4 56 20

C5 33 38

C6 3 1

C7 23 22

C8 80 7

C9 5 6

MST

C1 224 138

C2 2 0

C3 9 1

C4 1 0

C5 1 0

C6 1 1

C7 0 1

C8 1 1

C9 9 10

k = 5

C1 102 9

C2 72 43

C3 19 39

C4 47 52

C5 8 9
and lots of branches. Clusters C1 and C3 have one

hub, clusters C2 and C5 have two hubs and the last

cluster C4 has five hubs. This dataset was found

not to be well-separated, the positive cases did

not differ greatly from the negative cases at least
with the used distance function. One must take

into account that not all of the measured attributes

were used since they were not continuous-valued;

this may affect the clustering results.

The SFMST method for the EEG dataset, in

Table 4, resulted in two big clusters and some

branches; cluster C1 has four hubs, cluster C2 has

seven. Epileptic vertices are mainly situated in
cluster C1 or attached directly to it. The MST

method finds some of the epileptic vertices but

most of them are blended in with the normal ones.
Table 4

Results for EEG dataset

Normal Epileptic

SFMST

C1 56 57

C2 217 13

Bn 47 10

k = 9

C1 37 1

C2 84 3

C3 46 2

C4 46 9

C5 38 11

C6 39 4

C7 3 42

C8 16 8

C9 11 0

MST

C1 306 45

C2 7 35

C3 1 0

C4 1 0

C5 1 0

C6 1 0

C7 1 0

C8 1 0

C9 1 0

k = 5

C1 9 44

C2 101 0

C3 51 19

C4 55 3

C5 104 14
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With the k-means procedure one does not seem to

find seizure vertices properly.

The comparison between the results of different

methods is not a simple task. The k-means method

assigns every data point to a cluster whereas the
SFMST method produces, in addition with the

distinct clusters, some branches which could be re-

garded to belong to the hub from which they are

originated, or as separate clusters or even uncer-

tain points. The results should be carefully re-

viewed with the application area on mind—then

the interpretation of the structure of the SFMST

may reveal a new viewpoint to the application.
The results of the MST method are even more dif-

ficult to interpret because of the many singleton-

vertex clusters it produces.
5. Discussion

One drawback of the presented procedure is

that the algorithm is quite time-consuming; clearly

algorithm development and analysis for faster

computing times is needed. Slow computing times

restrict the practical amount of data points. Based
on this it can be argued if the link distribution of

produced trees really follow a power law.

The dependence on distance function or an sim-

ilarity measure is an open question; maybe non-

continuous attributes can be used along with the

continuous ones if the distance measure is selected

accordingly. In addition some other similarity

measure might suit better for clustering purposes.
When selecting the attributes to be used in clus-

tering one should pay attention to their statistical

properties. Strongly correlated attributes and

greatly differing value ranges may harm the clus-

tering performance and lead to confusing results.

In this study, only the EEG dataset had statisti-

cally uncorrelated attributes; in the case of the

other datasets, the attributes provided in the data-
set were used as such.

The SFMST clustering method produced a few

clusters which may contain more than one hub and

several branches. The meaning of branches is still

unclear, and the many hubs inside one cluster

may mean that the cluster contains several sub-

clusters.
So far only weighted non-directed trees have

been used in clustering. Weights are of course

essential, but the use of directed arcs and a general

graph structure may bring forth some new infor-

mation which can be used in clustering.
In conclusion it might be said that the proposed

SFMST method still needs some development and

analysis but the effort invested to it could turn out

to be profitable.
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