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Abstract 

Given a set of entities, Cluster Analysis aims at finding subsets, called clusters, which are 
homogeneous and/or well separated. As many types of clustering and criteria lbr homogeneity 
or separation are of interest, this is a vast field. A survey is given from a mathematical program- 
ruing viewpoint. Steps of a clustering study, types of clustering and criteria are discussed. Then 
algorithms tbr hierarchical, partitioning, sequential, and additive clustering are studied. Emphasis 
is on solution methods, i.e., dynamic programming, graph theoretical algorithms, branch-and- 
bound, cutting planes, column generation and heuristics. (~) 1997 The Mathematical Programming 
Society, Inc. Published by Elsevier Science B.V. 
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1. Introduct ion 

Consider a set of entities together with observations or measurements describing 

them. Cluster Analysis deals with the problem of finding subsets of interest called clus- 

tepw, within such a set. Usually, clusters are required to be h o m o g e n e o u s  and/or  wel l  

separa ted .  Homogeneity means that entities within the same cluster should resemble 

one another and separation that entities in different clusters should differ one from the 

other [ 15]. This problem is old. It can be traced back to Aristotle and has already 

been studied extensively by 18th century naturalists such as Button, Cuvier and Linn6. 

It is also ubiquitous, with applications in the natural sciences, psychology, medicine, 
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engineering, economics, marketing and other fields. As a consequence, the cluster anal- 

ysis literature is vast and heterogeneous (the yearly Classification Literature Automated 
Search Service lists many books and hundreds of papers on that topic in each issue). 
Cluster analysis algorithms draw upon statistics, mathematics and computer science. 

Closely related fields are pattern recognition, computer vision, computational geometry 
and subfields of operations research such as location theory and scheduling. 

Given a cluster analysis problem, the following questions should be answered: 
• what is the aim of the clustering - the question of criterion (or criteria); 
• are we justified in pursuing that aim - the question of axiomatics; 
• what constraints should be considered - the question of choice of clustering 07~e; 
• how difficult is it to perfo~xn the clustering - the question of complc:xiry; 
• how should the clustering be done - the question of algorithm design; 
• is the clustering obtained meaningful - the question of interpretation. 

While each of these questions has been studied, sometimes extensively, only some 
chapters of cluster analysis (mainly agglomerative hierarchical clustering) appear to 

be thoroughly explored, i.e., expressed as well developed mathematical theories. A 
fruitful way to address the questions listed above (except possibly the last one) is to 
adopt a mathematical programming viewpoint. While a few clustering problems were 

expressed as mathematical programs before, systematic use of that approach was only 
advocated about 25 years ago [114,102]. The purpose of the present paper is to review 

the mathematical programming approach to cluster analysis since that time. No attempt 
will be made to be exhaustive. We will focus on the large class of methods which use 
dissimilarities. We hope, however, to give a fairly representative view of the main classes 
of clustering problems within that paradigm and of the most efficient tools to solve them. 
The paper is organized as follows. Ingredients of cluster analysis are reviewed in the next 
section: steps of a cluster analysis study, types of clusterings and criteria. Section 3 is 
devoted to hierarchical clustering. Agglomerative and divisive algorithms are reviewed. 

Section 4 addresses partitioning problems, and is organized by solution technique. Six 
of them are considered: dynamic programming, graph theoretical algorithms, branch- 
and-bound, cutting planes, column generation and heuristics. Other less frequently used 
clustering paradigms are examined in Section 5: sequential clustering, additive clustering 
and representation of dissimilarities by trees. Brief conclusions are drawn in Section 6. 

2. Ingredients of cluster analysis 

2.1. Steps of a cluster analysis study 

Most cluster analysis methods rely upon dissimilarities (or similarities, or proximities) 
between entities, i.e., numerical values either direcdy observed or, more often, computed 
fi'om the data before clustering. A general scheme for dissimilarity-based clustering is 

the following: 
(a) Sample. Select a sample O = {Oi,O2 . . . . .  ON} of N entities among which 

clusters are to be found. 
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(b) Data. Observe or measure p characteristics of the entities of O. This yields a 

N x p data matrix X. 

(c) Dissimilarities. Compute from the matrix X a N x N matrix D = (d~e) of  dis- 
similarities between entities. Such dissimilarities (usually) satisfy the properties 

dk~ >1 O, dkk = O, dke = dgk for k,g = 1,2 . . . . .  N. They need not satisfy the 

triangle inequality, i.e., be distances. 

(d) Constraints. Choose the type of  clustering desired (hierarchy of  partitions, par- 

tition . . . .  ). Specify also further constraints on the clusters, if any (maximum 

weight or cardinality, connectedness . . . .  ). 
(e) Criterion. Choose a criterion (or possibly two criteria) to express homogeneity 

and/or  separation of  the clusters in the clustering to be tbund. 

(f) Algorithm. Choose or design an algorithm for the problem defined in (d) ,  (e).  

Obtain or write the corresponding software. 
(g) Computation. Apply the chosen algorithm to matrix D = (dke) thus obtaining 

clusters, and clusterings of  the chosen type. 

(h) Intelpretation. Apply lormal or informal tests to select the best clustering(s) 

among those obtained in (g).  Describe clusters by their lists of  entities and 

descriptive statistics. Proceed to a substantive interpretation of the results. 

Steps (d) and (e) define a clustering problem as a mathematical program. Steps (a) 

to (c) and (h) correspond to a statistical viewpoint on clustering. They are in many 

ways delicate and discussed at length in the literature [111,73,48,83]. We focus here 

on steps (d) to (g) which con'espond to a mathematical programming viewpoint. 

Several remarks are in order. First, dissimilarities may be computed from other sources 

than a matrix of  measurements X, for instance when comparing biological sequences 

or partitions. Second, for some methods only the order of  the dissimilarities matters. 

This information can be obtained by questions such as " are these two entities more 

similar than these two other ones". Third, cluster analysis is not the only way to study 

dissimilarities or distances between entities in the field of  data analysis. Another much 

used technique is principal component analysis (e.g. [99]) .  Fourth, few assumptions 

are made on the clusters in the above scheme and they are usually in set-theoretic 
terms. In some circumstances, more knowledge is available. For instances, the set of  
entities may be associated with a mixture of  distributions, the number and parameters 

of  which are to be found (e.g. [96, Chapter 3]) .  Or yet clusters may con'espond to 

given objects such as characters, to be recognized. This last case pertains to pattern 

recognition, a field close to but different from cluster analysis. Fifth, instead of  com- 

puting dissimilarities, direct clustering may be performed on the matrix X. An early 

example is maximization of  the bond-energy or sum for all cells of products of  their 

values with the values of  adjacent cells [92J. Heuristics are based on permuting rows 

and columns, and an exact solution is obtained by solving two associated traveling 

salesman problems [89].  Clusters found by direct clustering may be interpreted in con- 
cepmal terms. Recently, conceptual clustering has become a very active field o1' research 

(e.g. [34,106] ). 
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2.2. Types of clustering 

Cluster analysis algorithms are designed to lind various types of clusterings, e.g., 

(i) Subset C of O; 
(ii) Partition PM = {C!, C2 . . . . .  CM} of O into M clusters; 

(a) Cj ¢ (3 j = 1,2 . . . . .  M; 

(b) Cif3Cj=O i , j = l , 2  . . . . .  M a n d i 4 ~ j ;  
(c) Q = o; 

(iii) Packing PaM = {Cl, C2 . . . . .  CM} of O with M clusters: 

as (ii) but without (c) ;  

(iv) Covering CoM = {C~, C2 . . . . .  C~4} of O by M clusters: 

as (ii) but without (b);  
(v) Hierarchy H = {Pi,P2 . . . . .  Pq} of q ~< N partitions o1' O. 

Set of  partitions P~, P2 . . . . .  Pq of O such that Ci E Pk, Ci E Pt and k > g imply 

Ci C Cj or Ci n Ci = ~ for all i , j  4~ i, k ,g= 1,2 . . . . .  9. 
By far the most used types of  clustering are the partition and the complete hierarchy 

of  partitions, i.e., that one containing N partitions. This last hierarchy can also be 

defined as a set of  2N - 1 clusters which are pairwise disjoint or included one into the 

other. Recently, weakenings of  hierarchies are also increasingly studied. They inchide 

hierarchies of  packings [91 ], weak hieramhies [2] and pyramids [35].  Work has also 

been done on f i ~ y  clustering, in which entities have a degree of  membership in one or 

several clusters [ 10]. 
In constrained clustering, additional requirements are imposed on the clusters. The 

most frequent are bounds on their cardinality, bounds on their weight, assuming entities 
to be weighted, or connectedness, assuming an adjacency matrix between entities is 

given. 

2.3. Criteria 

We first consider dissimilarity-based criteria used to express separation or homogeneity 

of a single cluster Cj. Separation of Cj can be measured by: 
(i) the split s(Ci) of Cj, or minimum dissimilarity between an entity of  Ci and one 

outside CJ: 

s(Cj) = Min dkl; 
k:OkCCj, f:Ot~Cl 

(ii) the cut c(C 2) of Ci, or sum of dissimilarities between entities of  Ci and entities 

outside Ci: 

k:o~.ccj g:orf~cj 

and one might also consider a normalized cut, which corrects the previous measure to 
/ \ 

eliminate the effect of the cluster's size by dividing c(Cj) by I C i ] ( X -  ICi{}. 
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Homogeneity of  Cj can be measured by: 

(i) the diameter d(Cj) of C/, or maximum dissimilarity between entities of  Cj: 

d(Ci) = Max dk:; 
k,g:Ok,O:CCj 

(it) the radius r(Cj) of  Ci or minimunl for all entities Ok of Ci of the maximum 

dissimilarity between Ok and another entity of  Ci: 

r(Cj) = Min Max dk~; 
k:OkCCj g:OrECj 

(iii) the star st(Ci) of Cj or minimum for all entities Ok of  Ci of the sum of 

dissimilarities between Ok and the other entities of  Cj: 

st(C~) = Min Z elks; 
k:Ot EC i 

g:O:cCj 

(iv) the clique cg(Ci) of  cj or sum of dissimilarities between entitles of Cj; 

cg(C./) = ~ d~; 
k,~:Ok,OrcCj 

and one might also consider a normalized star and a normalized clique defined as sr(Cj) 

by I¢/1 I and cg(C/) divided by I¢:1(Ic:1- n) respectively. divided 

If the entities O.i are points x of a p-dimensional Euclidean space, further concepts 
are useful. Homogeneity of  C~ is then measured by reference to a center of  Cj which is 

no more a point of  C 2, as in the definitions of  r ( Q )  and s t (Cj) .  One can then use 
(i) the sum-oJ:squares ss(C/) of C~ or sum of squared Evclidean distances between 

entities of  Ci and its centroid ~: 

2 

k:OtcCj 

where I1 112 denotes Euclidean distance and 

1 

Pcjl 
k:OtGC/ 

(it) the variance v(Cj) of Ci defined as ss(Cj) divided by Icjl; 

(iii) the continuous radius cr(Ci) of Cj defined by 

cr(Cj) = Min Max I Ixk -  xl12; 
.~EI~tP k:Ok~Cj 

(iv) the colztinuous star cst(Ci) of Cj defined by 

cst(Cj) = Min Z [Ix, - xll2. 
xE~e 

k:O~ GCj 

Next, consider partitions P of  0 into M clusters. The concepts defined above yield, 

in a straightforward way, two families of  criteria, to be maximized lor separation and 
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minimized for homogeneity. They correspond to focusing on the worst cluster or con- 
sidermg all clusters (or average values) respectively. So the split s (Pv)  of partition PM 
is the smallest split of  its clusters, the diameter d(Pa4) of Pa4 is the largest diameter 
of its clusters, and so on. The average split at,(PM) of PM is the sum of splits of its 
clusters divided by M, the average diameter ad(PM) of PM is the sum of diameters of  

its clusters divided by M, and the like. 
Similar definitions can be given fox" packings, coverings and hierarchies (viewed as 

sets of  2 N -  1 clusters). 
Again, several remarks are in order. First, not all criteria are independent. For instance, 

minimizing average clique is equivalent to lnaximizing average cut. Second, a few criteria 
express both holnogeneity and separation. This is the case for ininimizing the within- 
clusters sum-of-squares, a criterion of homogeneity, which is equivalent Io maximizing 

the between-clusters sum of squares, a criterion of separation. Third, values of s(PM), 
r(PM) and d(PM) are equal to a single dissimilarity value. Hence, there are few 
potential values. Moreover, the optimal partitions are not modified by a monotone 

tmnsforlnation of the dissimilarities. Fourth, criteria such as r(C/), st(C~), s s (Cj )  
and t:(Ci) make use of  a cluster center. This center may be usefully considered as 
representative of  the cluster in some applications. Fifth, criteria defined for partitions 
can be used in several ways: they can be optimized globally (exactly or approximately) 
in partitioning or locally in hierarchical clustering, where changes from a partition to 
the next are subject to constraints. Sixth, asymmetric dissimilarities may be reduced 
to symlnetric dissimilarities, e.g. by taking minilnum or maximum values associated to 
opposite directions for each pair of  entities. Alternately, definitions given above may be 

adapted [76].  
Criteria used in additive clustering differ form those described here, and will be 

examined in Section 5. 

3. Hierarchical clustering 

3. t. Agglomerative hierarchical clustering algorithms 

Agglomerative hierarchical clustering algorithms are among tile oldest and still most 
used methods of cluster analysis [23,49]. They proceed from all initial partition in N 
single-entity clusters by successive mergings of  clusters until all entities belong to the 

same cluster. Thus, they fit into the following scheme: 

Initialization 
P~ = {G,C2 . . . . .  CN}; 
Cj={O./} j =  1,2 . . . . .  N; 
k = l ;  

Current step: 
W h i l e N - k >  1 do 
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select Ci, Cj E Pu-k+l following a local criterion; 

CN+ k -~ C i U C j; 

\ 
k = k + l  

EndWhile  

197 

By a local criterion, we mean a criterion which uses only the information given in D 

and the cun'ent partition. Thus the algorithm uses no memory about how this partition 

was reached or look-ahead feature about other partitions than the next one. 
Many local criteria have been considered. They correspond to criteria for the partitions 

oblained, sometimes defined in an implicit way. This is the case for the single-linkage 
algoritlm~, which merges at each step the two clusters for which the smallest inter- 

cluster dissimilarity is minimum. Indeed, a well-known graph theoretic result of  [ 105] 

can be reformulated as follows. Let G = (V,E) denote a complete graph, with vertices 

L~'k associated with entities Ok, fork  = 1,2 . . . . .  N and edges {vk,t.,~} weighted by the 

dissimilarities dkf. Let MST denote a nfinimum spanning tree of  G. 

Proposi t ion 1 (Rosenstiehl [ 105 ] ). The values of the split for all subsets of entities of 
O, and hence for all partitions of" O, belong to the set of dissimilarity values associated 
with the edges of MST. 

Corol la ry  2 (Delattre and Hansen [28] ). The single-linkage algorithm ptvvides maxi- 
mum split partitions at all levels o{ the hierarchy. 

For other criteria, tile partitions obtained after several steps of  an agglomerative 

algorithm are not necessary optimal. For instance, the complete-linkage algorithm merges 
at each step the two clusters for which the resulting cluster, as well as the resulting 

partition, has smallest diameter. After two steps or more this partition may not have 

minimum diameter. An algorithm to find minimum diameter partitions is discussed in 

the next section. 

An interesting updating scheme for dissimilarities in agglomerative hierarchical clus- 

tering has been proposed in [87] and extended in [79,80]. A parametric lbrmula gives 

new dissimilarity values between cluster Ck and Ci, Cj when these last two are merged: 

dkAuj = otidik q- otjdjk q-13dij + fildik -- djk]. 

Values of  the parameters, a few examples of  which are given in Table I, correspond 

to single-linkage, complete-linkage and other methods. Clusters to be merged at each 

iteration are those corresponding to the smallest updated dissimilarity. Using heaps, 

an O ( N  2 log N) uniform implementation of  agglomerative hierarchical clustering is 
obtained [ 26].  

Better results can be derived in a few cases: finding the MS/" of  G, ranking its edges 

by non-decreasing values and merging entities at endpoints of successive edges yields a 

0 ( N  °-) implementation of  the single-linkage algorithm [50].  At each iteration, clusters 
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Table 1 
Coefficients in updating formula for agglomerative hierarchical clustering 

Method ai c~j B 6 

Single linkage 1/2 I/2 0 - 1/2 

Complete linkage 1/2 l/2 0 1/2 

Ic'l ICil 0 0 Average linkage IGI+ICj I ICil-I-ICj I 

Centroid Ic', I Ice I - IC, I IC / l 0 
IGI+Icjl  l(S[+]cj [ ([C,l+lCj b 2 

Ward's method IcJ ~-Ic,~ I IC/[4-1Q: I - Iq I 0 
[GI+IQ I+lCk I Iq I+IQ I', lc~l Iq I+ IQ 1+ Iq l  

correspond to connected components of a graph with the same vertex set as G and as 

edges those of  MS/" considered. A 0 ( N  2) algorithm based on similar principles has 

also been obtained [I 12] for clustering with asymmetric dissimilarit ies and strongly 

connected eonlponents as clusters. 

The following reducibility properO' has been studied in [ 13]: 

d(Ci, Ci) <~ min{d(Ci, Ck),d(Ci, Ck)} 

implies 

min{d(Ci, C1.),d(Ci,C,)} <~ d(CiUCj),CI~) Vi,j,k; 

in words  merging two clusters Ci and Ci less dissimilar between themselves than 

with another cluster Ck cannot make the resulting dissimilarity with Ck smaller than 

the smallest initial one. Dissimilarit ies D = (dk() induce a nearest neighbor relation, 

with one or more pairs of  reciprocal near neighbors. When the reducibility property 

holds, each pair of  reciprocal near neighbors will be merged before merging with other 

clusters. Updating chains of  nearest neighbors yields a 0 ( N  2) agglomerative hierarchical 

clustering algori thm for the (average) variance criterion [7].  This result extends to the 

single-linkage, complete-l inkage and average-linkage algorithms [98].  When entities 

of  O belong to a low-dimensional Euclidean space and dissimilarities are equal to 

distances between them, techniques from computational geometry can be invoked, to get 

even faster algorithms. Extensions of  agglomerative hierarchical clustering algorithms to 

weak hierm-chies or pyramids have been much studied recently, e.g., in [2,9].  

3.2. Divisive hierarchical clustering algorithms 

Divisive hierarchical clustering algorithms are less frequently used than agglomerative 

ones. They proceed from an initial cluster containing all entities by successive biparti- 

tions of  one cluster at a time until all entities belong to different clusters. Thus, they fit 

into the following scheme: 

Initialization 

. . . . .  oN}}; 
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k = l ;  
Cu r r e n t  step: 

W h i l e k <  N d o  
select Cj C Pk following a first local criterion; 
pa r t i t ion  Cj into C2k and C2~+l following a second local criterion: 

Pk-~, = (PkU{C2~,-}U{C2k+,}) \ {C]}; 
k = k + l  

E n d W h i l e  

199 

The role of  the first local criterion is not crucial, as it only determines the order in 
which clusters will be bipartitioned. The real difficulty lies in bipartitioning the chosen 
cluster according to the second criterion, a problem which requires a specific algorithm 
for each case, and which may be NP-hard. Only a few divisive clustering algorithms 
have, as yet, been proposed. 

For the minimum diameter criterion one exploits a property of  any maximum spanning 
tree MS/" ~ of  the graph G defined above: 

Proposi t ion  3 (Gudnoche [ 53 ], Monma and Suri [ 97] ). The unique bicoloring of  M S T  ~ 

defines a rninimum diameter bipartition of O. 

Note that the diameter of  this bipartition is equal to the largest dissimilarity of  an 
edge outside MST'  closing an odd cycle with the other edges in M57". 

Using Proposition 3 at all levels yields an O ( N  3) divisive hierarchical algorithm 
[102,75]. A more careful implementation, building simultaneously maxinmm spanning 
trees at all levels, takes O ( N  2 log N) time [55]. 

It follows l¥om Proposition 3 and the remark following it that there are at most O ( N )  
candidate values for the dianleter of  a bipartition. This property can be used in a divi- 
sive algorithna for hierarchical clustering with tile average diameter criterion. Candidate 
values for the largest diameter are considered in sequence and mininmm values for the 
smallest diatneter sought lbr by dichotomous search. Existence of a bipartition with given 
diameters is tested by solving a quadratic boolean equation [59] or by a specialized 
labelling algorithm [97,46]. The resulting algorithm takes O ( N  3 log N) time. It is more 
difficult to build an algorithnl for average linkage divisive hierarchical clustering: bipar- 

titioning O to maximize the average between clusters dissimilarity is strongly NP-hard 
[60].  However, moderate size problems (N  ~< 40) can be tackled, using hyperbolic 
and quadratic 0-1 programming. For several criteria, when entities are points in N 2, 

there are hyperplanes separating the clusters. This property is exploited in an algorithm 
for hierarchical divisive minimum sum-of-squares clustering in low-dimensional spaces 
[72] which solves instances with N ~< 20000 in R 2, N ~< 500 in R 3 and N ~< 150 in R 4. 

3.3. Global criteria 

As mentioned in the previous section, a complete hierarchy of partitions can be 
viewed as a set of  2N - 1 clusters. Optimizing an objective function defined on this set 
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Fig.  1. A d e n d r o g r a m  and an espal ier ,  f rom 1691. 

of clusters is still unexplored, except lor the average split criterion (where the split of  
O itself is assumed to be 0): the single-linkage algorithm maximizes this value [61 ].  

Results of  hierarchical clustering can be represented graphically on a dendrogram 
[23] or an espalier [69] as shown in Fig. I. Then vertical lines correspond to entities 
or clusters and horizontal lines joining endpoints of  vertical lines to mergings of clusters. 
The height of  the horizontal lines corresponds to the value of the updated dissimilarity 
between the clusters merged. This is a measure of  separation or homogeneity of  the 
clusters obtained. In espaliers the length of the horizontal lines is used to represent a 
second measure of homogeneity or separation of the clusters. If the reducibility condition 
holds the updated dissimilarities d'kt satisfy the ultrametric inequality [ 88]: 

d~g <~ max(d~j, d~g) V j, k, L 
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Thus a hierarchical clustering algorithm transforms a dissimilarity D = (dk~) into an 
ultrametric D ~ = (d~e). This suggests further criteria: one can minimize 

d~) or ~ Idk~-d~l .  ( d k ~ -  ~ ~- 
k,~ k,t 

In the former case, which is NP-hard [86],  a combination of the average linkage 

algorithm with branch-and-bound solves small instances (N ~< 20) [17];  in the latter 
case a branch-and-bound method solves slightly larger instances. Heuristics use penalty 
methods [ 30],  in which violations of  the ultrametric inequality are penalized, or iterative 
projection strategies [77].  They can be extended to the case where sorne data are missing 
[31] and to more general problems discussed in Section 5. 

4. Partitioning 

4.1. Dynamic programming 

In one-dimensional clustering problems, entities Oi, 02 . . . . .  O N correspond to points 
x l , x 2 , . . . , X u  on the Euclidean line. Such problems are best solved by dynamic pro- 
gramming,  e.g., [ 6,109]. This method works well when clusters have the string property, 
i.e., consist of  consecutive points on the line. Assume O1,0-2 . . . . .  ON are indexed in 
order of  non-decreasing values of  xl, x2 . . . . .  Xu. Let f ( C i )  denote the contribution of 
cluster Ci to the objective function (assumed to be additive in the clusters and to be 
minimized) and F,~, the optimal value of a clustering of Oi, 02 . . . . .  O,,, into g clusters. 
The recurrence equation may be written: 

-i + f (C, , )  
{ kE,~,g+ l,,..,m} 

where 

C,,, = {Ok, Ok+I . . . . .  O,,,}. 

Using updating to compute the f ( C j )  for all potential clusters yields O ( N  2) algo- 
rithms tor various criteria [ 102,109]. Note that the string property does not always 
hold. Optimal clusters for one-dimensional clique partitioning do not necessarily satisfy 

it [ 11J. However, they enjoy a weaker nestedness property: let [(;1.] denote the range 
of the entities O~.,.. .  ,Oe of Ci, i.e., [xk,xg]. Then for any two clusters Ci and Ci in 

the set of  optimal partitions 

[Ci]fq[Ci] = 0  or [Ci] C [CJ] or [Ci] c_ [ G ] .  

So, ranges of  any two clusters are either disjoint or included one into the other. Exploiting 
this property leads to a polynomial algorithm for one-dimensional clique partitioning, 
also based on dynamic programming [70].  A detailed discussion of nestedness and 

related properties is given in [78].  
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When clustering entities in higher-dimensional spaces, there does not seem to be 
an equivalent of the string property. In a few particular cases, the recurrence equation 
can be extended [81,38]. Several authors, e.g. [110], have proposed to impose an 
order on the entities, for instance the order of points on a Peano curve or the order of 
traversal in a traveling salesman tour, and then to apply dynamic programming to the 
resulting one-dimensional problem. Such a procedure quickly gives an optimal solution 
to an approximation of the given problem. Its proximity to the optimal solution of the 

problem itself depends on the first step, which is somewhat arbitrary. 
To obtain an optimal solution in the general case, nonserial dynamic programming 

[8] must be used. Let F~ denote the optimal value of a clustering of the entities of 

subset S into g clusters. The recurrence relation then becomes 

,>,.~ \c,,, + .f( c,,,) . 
It"t I ~ l S l - * ,  t 

Applying this equatmn takes time exponential in N, so only small sets of entities 

(N .<, 20) may be considered. Sometimes, constraints accelerate the computations, e.g., 

if all clusters must be small. 

4.2. Graph-theoretical algorithms 

As mentioned in the previous section, Ihe single-linkage algorithm provides optimal 
partitions for the split criterion at all levels of tile hierarchy. So it is also a O(N 2) 
algorithm for maxhnizing the split of a partition of 0 into M clusters. The problem 
of maximizing the average split, or the sum-of-splits, of such a partition is related but 
different. Its solution relies on the following result: 

Proposition 4 (Hansen et al. [61]) .  Let C = {CI,C2 . . . . .  C2N-1} denote the set of  
clusters obtained when applying the single-linkage algorithm to O. Then.[or all M there 

exists a partition P~ which maximizes the average split and consists solely of clusters 

o f t  

Consider then the dual graph of the single-linkage dendrogram, as defined in [61 ]. It 
is easy to show that any partition of O into M clusters of C corresponds to a source-sink 
path with M arcs in that graph. Then, weight the arcs of the dual graph by tile splits 
of the dusters associated with the edges of the dcndrogram they cross. Using dynamic 
programming to find a cardinality constrained longest path yields a partition P~t with 
maximmn average split in O(N 2) time. 

The relationship between graph coloring and finding a bipartition with minimum 
diameter was also mentioned in the previous section. In fact, this relationship extends 

to the general case. 

Proposition 5 (Christofides [22], Hansen and Jaumard [58]) .  Let t be the smallest 

dissimilarity value such that the partial graph Gt = ( V, Et) of G with Et = {{Uk, tJg}; dkg 
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>~ t} is M-colorable. Then the color classes in any optimal coloring ~[ Gt define a 

minimum diameter partition of  0 into M clusters. 

This relationship can be exploited in the reverse direction to show minimum diameter 
partitioning is NP-hard for M ~> 3 [ 13,58], and adapted to prove further NP-hardness 
results [ 115]. Updating may be used to exploit Proposition 5 efficiently. Consider graph 
Gt to which is added an edge. If  the vertices of  this edge do not have the same color, 

or if local recoloring (e.g., by bichromatic interchange) gives a coloring with no more 
colors than previously one can proceed to the next graph. When there is some structure 
in the set O under study, it will be reflected in the graphs Gt, which are easier to color 

than random ones, and instances with N ~< 600 could indeed be solved. 
Minimum diameter partitions are not unique. Enumerating them is discussed in [54].  

Alternately, one can adapt the coloring algo,ithm to find a partition minimizing the 
second largest cluster diameter, subject to the first being nlinimum, then the third largest 

and so on [27] .  
Partitions obtained with the single-linkage algorithm may suffer from the chaining 

effect: dissimilar entities at the ends of  a long chain of pairwise similar entities are 
assigned to the same cluster. Partitions obtained by the coloring algorithm for minimum 
diameter may suffer from the dissection ~!ffect [23]: similar entities may be assigned to 
different clusters. To avoid both effects one may seek compromise solutions, i.e., efficient 
partitions for the split and diameter criteria. The resulting bicriterion cluster analysis 

algorithm [28] is based on Propositions I and 5. To impose a minimum value on the 
split it suffices to merge the vertices of  G at endpoints of  successive edges of  MST. 
Then the resulting reduced graph GR of G can be colored as described above. Splits and 

diameters of  the efticient partitions may be represented graphically on a diameter-split 
map. It can be used to evaluate whether the set O possesses some slructure or not and 
which partitions appear to be the most natural ones. A single efficient partition for a 

value of  M is a good indication. 
Some clustering algorithms apply to graphs, which may be viewed as pmtial graphs 

G~ as defined above, for a given t. Clusters may then be defined as maximal com- 
ponents with n~nimum degree at least 6 [91];  a O ( N  + IEI) algorithm provides a 
hierarchy of  packings corresponding to successive values of  6. When clustering points 
in R 2, geometric properties may be exploited to obtain low-order polynomial algo- 

rithms. For instance, minimum average diameter bipartitioning in the plane can be done 
in O(n  log ~- n / l o g l o g  n) time [74] and minimizing any monotone function of the 
diameters of  an M cluster partition can be performed in O(n  TM) time [ 16]. 

4.3. Branch-and-bound 

Branch-and-bound algorithms have been applied, with some success, to several parti- 
tioning problems of cluster analysis. Their efficiency depends on sharpness of the bounds 
used, availability of  a good heuristic solution and efficient branching, i.e., rules which 

improve bounds for all subproblems obtained in a fairly balanced way. 



204 t~ Hansen, B. Jaumard/Mathematical Programming 79 (1997) 191~215 

An algorithm for n-dnimum sum-of-squares pm'titioning [85,36] exploits bounds based 
on assignments of  entities to clusters already made, and additivity of  bounds for separate 
subsets of  entities. It solves problems with N ~< 120 and a few well-separated clusters 
of  points of  ]R 2, but its performance deteriorates in higber dimensional spaces. Another 
algorithm [84],  fbr minimum sum-of-cliques partitioning, uses bounds based on ranking 
dissimilarities, which are not very sharp. Problems with N ~< 50, M ~< 5 can be solved. 

Better results are obtained when bounds result Iorm solution of a mathematical pro- 
gram. For minimum sum-of-stars partitioning (the M-median problem) the well-known 
DUALOC algorithm [42] combined with Lagrangian relaxation of the cardinality con- 
straint [57J is very efficient. Problems with N <~ 900 are solved exactly and the 
dimension of the space considered does not appear to be an obstacle. 

A variant of  the minimum sum-of-cliques partitioning problem arises when one seeks 
a consensus partition, i.e., one which is at minimum total distance of a given set of  
partitions [ I04 ] ,  distance between two partitions being measured by the number of  

pairs of  entities in the same cluster in one partition and in different clusters in the other. 
Dissimilarities may then be positive or negative and the number of clusters is not fixed 

a priori. This problem can be expressed as follows [90]: 

N 1 N 

Minimize ~ Z dt,,,~ Yk~! 
k=l t=k+l 

subject to: 

and 

Ykt + Y / q - - Y k q ~  1 

--3'k~ + Yeq + Ykq <~ 1 

yk~ -- Yeq + Ykq <~ I 

k =  1,2 . . . . .  N - 2  

# = k + l , k + 2  . . . . .  N -  I 

q = g + l , # + 2  . . . . .  N 

yk~ ~ {0, [} k = l , 2  . . . . .  N - l , g = k + [ , k + 2  . . . . .  N. 

where yk~ = 1 if Ok and Oe belong to tbe same cluster and Yk~' = 0 otherwise. Problems 
with N -,< 72 could be solved [90] by applying the revised simplex method to the dual 
of  the continuous relaxation of the above formulation. No duality gap was observed (nor 
a branching rule specified lbr the case where there would be one). A direct branch- 
and-bound approach is proposed in [39].  A first bound equal to the sum of negative 
dissimilarities is improved upon be using logical relations between the yk~ variables (or, 
in other words, exploiting consequences of  the triangle inequalities). For instance is 
variable Yte is equal to 1 then for all indices q either both Yke and y~-q are equal to 1 or 
both are equal to 0 in any feasible solution. If these variables are free, the bound may 
be increased by 

{max {dk~,0} + max {d,,q,0} max {-dkq ,0}  + m a x  {-d~:q0}}. min 

Many further consequences are taken into account and the resulting bounds are quite 
sharp. Instances with N ~< 158 could be solved, more quickly than with a cutting-plane 
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approach, but less quickly than with a combination of heuristic, cutting planes and 
branch-and-bound (see next subsection). 

4.4. Cutting planes 

Until recently, few papers of cluster analysis advocated the cutting-plane approach. 
The minimum sum-of-cliques partitioning problem has attracted the most attention. 

Therefore, the convex hull H of integer solutions to the problem defined in the previous 

section is studied. 

Proposition 6 (GrOtschel and Wakabayashi [52] ). (i) The dimension of  H is N ( N  - 

1)/2,. 
(ii) f o r  all k ,g  ykt, ) 0 and Ykt <. I are valid inequalities; the former are always 

facets and the latter never; 
(iii) f o r  all k, g, q the triangle inequalities define .fi~cets; 
(iv) .tor every two disjoint subsets" U, V of  O, the 2-partition inequality induced by 

U,V, i.e., 

, , ( s :  v ) -  y(U) - y(v) .< min {IuI, Iv[}, 

where y ( U  : V) denotes the sum of  the variables corresponding to pairr of  entities one 

in U and the other in V, y(U)  = y (U : U) and y(V) = y(V : V), is valid and a facet  

(l'at;d (mly if[U[ ~= ]V I. 

Several further families of facets are given. These results are used in a cutting plane 

algorithm [51] to solve instances with N ~< 158. It appears that the triangle inequalities 
suffice in almost all cases. Facets of the polytope obtained when a cardinality constraint 
is added have also been studied [ 19]. 

Recently, cutting planes have been combined with heuristics, relocalization of the 
best known solution at the origin (which eases the separation problem) and branch-and- 
bound. [101]. Minimum sum-of-cliques problems of the literature with N ~< 158 are 
solved very quickly. 

Cutting-planes were also used in [82] to solve, in moderate time, the auxiliary prob- 

lem in a column generation approach (see next subsection) to a constrained minimum- 
sum-of-cuts partitioning problem (called rain-cut clustering). 

The cutting plane approach does not seem to be easy to adapt to clustering problems 
with objectives which are not sums of dissimilarities or to problems in which the number 
of clusters is fixed. Further work on cutting-planes for clustering or related problem is 
[ 19,20,43 ]. 

4.5. Column generation methods 

The generic partitioning problem of cluster analysis may be expressed as a standard 
partitioning problem, plus one constraint on the number of clusters, by considering all 
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possible dusters, i.e., subsets of  O. This gives a number of  columns exponential in N: 

Min 

subject to: 

and 

2 N - -  I 

f ( c , )  y, 
t= l  

2 X - - I  

aft Yt = 1 
t= l  

2 N - - I  

Yt = M, 
t= l  

y, E {0,1)  

j = 1,2 . . . . .  N 

t = 1,2, . . . .  2 N - -  1,  

and where a jr is equal to 1 if entity Oj belongs to cluster C, and 0 otherwise. Despite 

its enormous size this formulation turns out to be one of the most useful. In order to 

solve this problem one needs (i) to solve efficiently its continuous relaxation and (ii) 

to proceed efficiently to a branch-and-bound phase in case the solution of the relaxation 

is not in integers. We discuss these two aspects in turn. 

The standard way to solve linear programs with an exponential number of  columns 

is to use column generation [47,21 ]. In this extension of the revised simplex nlethod, 

the entering column is obtained by solving an auxiliary problem, where the unknowns 

are the coefficients aj o f  the column: 

N 

f ( C j )  - )_.£ aj uj -- ttN+I Min 
j= I 

subject to: 

aj C {0,1} j = l , 2  . . . . .  N 

where (ul . . . . .  HN, UN+I ) are the dual variables at the current iteration. Difficulty varies 

depending on the form of f ( C j )  as a function of  the aj. For minimum sum-of-stars 

clustering (or the M-median problem), the first clustering problem solved by column 

generation [44] ,  solving the auxiliary problem is straightforward: for each potential 

cluster center k in lurn set a) = 1 if dkj < uj and aj = 0 otherwise. If  ~j / , j=l  (dkj -- 

u i) - UN+I < 0 the column so defined is a candidate to enter the basis. 
For the capacitated version of  this problem the auxiliary problem reduces to a knapsack 

problem. For the sum o f  cliques problem the subproblem reduces to quadratic 0-1 

programming: 

N-I  N N 

Min ~ '  Z d j k a j a k - - ~  a j l ' j - -HN+'  
j=l t.=j+l j=t 
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in 0-1 variables aj [93,82,68]. For the minimum sum-of-squares problem, it reduces to 
a hyperbolic 0-1 program, in view of Huyghens' theorem, which states that the sum 
of squared distances to the centroid is equal to the sum of squared distances between 
entities divided by the cardinality of the cluster: 

~k=j, 1 djk ajak 

~ j N  I a j  .i=r 
-- Z aju.i -- IIN+l 

in 0-1 variables. An iterative solution scheme [37] reduces this problem to a sequence 
of quadratic programs in 0-1 variables. These last problems, as well as other quadratic 
0-1 programs discussed above, can be solved by an algebrafc (or variable elimina- 
tion) method [24], linearisation [113], cutting planes [3] or branch-and-bound [63], 
possibly exploiting the persistency properties of roof duality theory [56]. Combining 
column generation with an interior point method [41] allows solution of minimum 

sum-of-squares partitioning problem with N ~< 150. 
Once the entering column is found the algorithm proceeds to a simplex iteration as 

in the revised simplex method. However, convergence may be slow, particularly if there 
are few clusters in the partition and hence massive degeneracy of the optimal solution. 
In fact, even when the optimal solution is found many more iterations may be needed to 
prove its optimality. Columns in the primal correspond to cutting planes in the dual: a 
good approximation of the dual polytope around the optimal value for the dual is needed, 
but little information is available about this optimum. A recent bundle method in the 
Li-norm [40] stabilizes the algorithm while remaining within the column generation 
framework. It gives good results for continuous sum-of-stars clustering in the plane (the 
multisource Weber problem), instances with N = 1060, M ~< 50 being solved [62]. 

Once the linear relaxation of the master problem is solved, one must check for in- 
tegrality of the solution. For some problems, as minimum sum-oFcliques clustering, 
it seems to be fairly often the case. Otherwise, branch-and-bound is needed. Exten- 

sion of standard dual and primal procedures of mixed-integer programming to column 
generation [71,66] is only efficient when there are few integers variables. Setting one 
fractional variable yr at 1 modifies substantially the problem as all constraints corre- 
sponding to elements of C~ are satisfied; but setting Yt at 0 only excludes one column 
among an enormous number. So other branching rules are needed, and have indeed been 
found. A first proposal [100] was made in 1983 for capacitated sum-of-stars partition- 
ing (or the capacitated M-median problem with single-supply constraints): branching 
is done by assigning an entity to a center, which implies this center is selected in 
some cluster of the partition, or forbidding it to belong to a duster with that center. 
Another fairly close branching rule, first proposed [ 107] for the partitioning problem 
(but not for column generation) is to specify that two entities Oj and Ok must belong 
to the same cluster or not. So branching is done in the auxiliary problem by adding 
the constraints a j  = ak in one branch, and a) + ak ~< 1 in the other. Columns not 
satisfying these constraints are removed. This rule appears to be more efficient than 
the previous one [67] and variants of it have been applied with success in several 
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papers on scheduling problems, e.g., [33] .  Nevertheless, some recent column gen- 

eration methods for clustering, e.g., [93,82] still stop after solution of  the master 
problem relaxation or use some heuristic from that point. In a recent survey [4] ,  the 

name "branch-and-price" has been proposed for combination of column generation and 

branch-and-bound. 

4.6. Heuristics 

For many criteria, exact solution of  large clustering problems is out of  reach. So there 

is room for heuristics. Moreover, finding a good initial solution may be important in 

column generation (if it is well exploited, i.e., if columns close to those of this solution 

are used io complete the basis; otherwise beginning with the heurislic solution may slow 

down the solution process). 
Traditional heuristics use exchange of entities between clusters or redefinition of  

clusters from their centroids. The HMEANS algorithm, e.g. [ 109], for minimum-sum-of- 

squares partitioning draws an initial partition at random, then proceeds to best exchanges 

of  entities from one cluster to another until a local minimum is attained. The KMEANS 

algorithm for the same problem, also draws an initial partition at random then computes 

the cluster centrofds, assigns entities each to the closest of them and iterates until a 

local minimum is attained. Both procedures can be repeated a given number of limes. 

They give good results when there are few clusters but deteriorate when there are many. 

Experiments show that the best clustering found with KMEANS may be more than 50% 

worse then the best known one. 
Much better results have been obtained with metaheuristics, i.e., simulated anneal- 

ing, Tabu search, genetic search, etc. [ I03].  The recent Variable Neighborhood Search 

[72] proceeds by local search to a local minimum, then explores increasingly distant 

neighborhoods of  that partition by drawing a perturbation at random and doing again a 
local search. It moves to a new partition and iterates if and only if a better one than the 

incumbent is found. Experiments show this procedure is very efficient for approximate 

solutions of  large clustering problems. 

5. Other clustering paradigms 

5.1. Sequential  clustering 

Most clustering algorithms give results regardless of  whether the given set of entities 

possesses some structure or not. Moreover, all entities must usually be assigned to some 

cluster. This disregards the possibility of  noise, i.e., entities (possibly all of them) which 

can only be classified arbitrarily. It may therefore be preferable to consider packing 

problems instead of  partitioning problems. Moreover, one may wish to study clusters 
one at a time, beginning by the most obvious one, removing its entities and iterating. 

The so-defined sequential clustering [72] is close to methods of  image processing: 
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Current step 
Find clusters CA- C O with I q l  = k = l, 2 . . . . .  IOl which optimize a criterion; 
Evaluate the best value k* of  k and the significance of cluster Ck*. If  it is significant 
(different from noise) set O = O \ {Ck. } and iterate; otherwise stop. 

Thus, at each step, a single-cluster parametric clustering problem is solved, and 

followed by a test based on the distribution of  values of the criterion. Some cases are 

easy: finding a maximum split cluster can be done in 0 ( N  2) time in view of  Proposition 

1, rediscovered in [18].  Finding a minimum radius cluster or a minimum star cluster 
take O ( N  2 log N) time by ranking dissimilarities. Finding a minimum diameter cluster 

is NP-hard, as well as finding a minimum clique cluster. The former problem can be 

solved by reducing it to a sequence of  maximum clique problems, and the latter by 

expressing it as a quadratic knapsack problem. Other geometric criteria are considered 

in [1] and [25] .  

5.2. Additive clustering 

In addition to tinding clusters one may use them to explain dissimilarities (or sim- 

ilmities) between pairs of entities, as proposed in additive clustering [108,95]. Given 

a matrix S = (ske) of  similarities between pairs of  entities of  O one seeks M overlap- 

ping clusters CI, C2 . . . .  CM and corresponding weights at,  ~2 . . . . .  AM to mininaize the 

s u m - o f  squares of  errors: 

N 1 N 2 

k=l ,(=k+ 1 j]Ok,OtEC~ 

In a variant of  that model, one cluster contains all entities. Many heuristics have been 

proposed for its solution, using various techniques of mathematical programming. If  

one cluster is considered at a time, in a qualitative factor analysis technique [95] ,  the 

problem is easier and can be reduced to quadratic or hyperbolic 0-1 programming with 

a cardinality constraint [64].  

5.3. Representing dissimilarities by trees 

Consider again the dendrogram obtained by a hierarchical clustering algorithm (see 

Fig. 1 ). This dendrogram can be viewed as a tree, with vertices associated with the N 

entities, as well as with the N - 1 clusters obtained (and represented by points in the 

n-fiddle of  the horizontal lines). Edges join vertices if and only if they are joined by 

lines of  the dendrogram crossing no other vertex. Associating with each edge the length 

of  the CO~Tesponding vertical segment in the dendrogram, one observes that the length 

between the vertex corresponding to O and any vertex associated with a single entity 

is a constant. This property may be relaxed. Then the general problem of representing 

dissimilarities by additive trees arises: the length COiTesponding to dk~ will be that of  
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the path between the vertices vk and ue of the additive tree T. So both the topology of 
T and the length of its edges must be determined. This topic is studied in depth in [5]. 

In order to be representable by an additive tree, it is necessary and sufficient that the 
dissimilarity D t satisfy the four-point condition [ 14]: 

,4, d' d~j + d~ <. Max (d~k + '*jr, it: + djk) V i, j, k, g. 

Finding a dissimilarity D' satisfying this condition and at minimum distance of a dis- 
similarity D for the minimum sum-of-squares criterion is NP-hard. Indeed, it subsumes 
the NP-hard problem of finding an ultrametric at minimum distance of a dissimilarity 
discussed in Section 3. Only very small instances of this problem can be solved exactly, 
but many heuristics have been proposed. They include generalizations of the penalty 
approach discussed above [29,31], iterative projection strategies on closed convex sets 
defined by the constraints [77], and alternating methods in which local modifications 
in the tree's topology alternate with fittings of distances to edges [45]. 

6. Conclusions 

Mathematical programming has been applied with success to cluster analysis in the 
last 25 years. This has led to (i) define precisely many cluster analysis problems, 
(ii) determine their computational complexity, (iii) clarify the objective underlying 
known algorithms, and exhibit some important properties, e.g., for the split criterion, 
(iv) obtain improved and sometimes best possible algorithms for known easy prob- 
lems; (v) obtain polynomial and sometimes best possible algorithms for new problems, 
e.g., average split partitioning; (vi) obtain non polynomial but useful algorithm for 
NP-hard problems, e.g., clique partitioning and minimum sum-of-squares partitioning; 
(vii) devise useful heuristics, yielding near-optimal solutions for large instances; (viii) 
establish ties between cluster analysis and other subfields of mathematical programming 
and computational geometry, where similar problems are studied. 

While many results have been obtained, much remains to be done to completely 
integrate cluster analysis within mathematical programming. Axiomatics are needed, 
particularly for partitioning. New exact algorithms should be devised, mostly for divisive 
hierarchical clustering, sequential clustering and additive clustering, where few or none 
exist, but also for partitioning with little studied criteria. Heuristics for large instances 
deserve further study. Empirical comparison of methods is also too rare, with a few 
exceptions (e.g. [94]).  Finally, gathering existing software, often hard to access, and 
streamlining it into a package would be of help. 
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