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Abstract 
Although the goal of clustering is intuitively compelling and its notion arises in many fields, it is 
difficult to define a unified approach to address the clustering problem and thus diverse clustering 
algorithms abound in the research community. These algorithms, under different clustering 
assumptions, often lead to qualitatively different results. As a consequence the results of clustering 
algorithms (i.e. data set partitionings) need to be evaluated as regards their validity based on widely 
accepted criteria. 
In this paper a cluster validity index, CDbw, is proposed which assesses the compactness and 
separation of clusters defined by a clustering algorithm. The cluster validity index, given a data set and 
a set of clustering algorithms, enables: i) the selection of the input parameter values that lead an 
algorithm to the best possible partitioning of the data set, and ii) the selection of the algorithm that 
provides the best partitioning of the data set. CDbw handles efficiently arbitrarily shaped clusters by 
representing each cluster with a number of points rather than by a single representative point. A full 
implementation and experimental results confirm the reliability of the validity index showing also that 
its performance compares favourably to that of several others. 

Keywords: cluster validity, clustering, quality assessment, unsupervised learning 

 

1. INTRODUCTION 
Since clustering is an unsupervised learning procedure and there is no a priori knowledge of data 
distribution in the underlying set, the significance of the clusters defined for a data set needs to be 
validated. Given a data set and a clustering algorithm running on it with different input parameter 
values, we obtain different partitionings of the data set into clusters. Then we need to select among the 
defined partitionings which one best fits the concerned data set. This, the cluster validity problem, is 
generally accepted as a cornerstone issue of the clustering process. 
However, the notion of “good” clustering is strictly related to the application domain and its specific 
requirements. Nevertheless it is generally accepted that the answer to the validity of the clustering 
results has to be sought in measures of separation among the clusters and cohesion within clusters. 
These are widely known as objective cluster validity criteria. To define these measures and evaluate 
clusters we have to take into account specific aspects of their definition.  
In this work we tackle the cluster validity problem based on the density properties of clusters. This 
implies that we measure the compactness and separation of clusters evaluating the density distribution 
within and between clusters. We define and evaluate a new validity index, CDbw (Composed Density 
between and within clusters) and a methodology that given a data set, S, and a set of algorithms 
A={algi} enables: i) finding the set of input parameter values that lead each algi to the best possible 
clustering results, and ii) taking into account the results of (i), finding algi that returns the best 
partitioning of S among those defined by the considered algorithms. 
There are cases that a clustering algorithm finds the correct number of clusters but partitions the data 
set in a wrong way (i.e. it fails to discover the real clusters into which the data can be organized). 
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Assuming different clustering algorithms’ sessions on a given data set (i.e. the application of the 
clustering algorithm to a data set using specific values for its input parameters), a set of different 
partitionings but all containing the correct number of clusters (that is, the number of clusters that 
present in the underlying data) is defined. CDbw enables finding the best partitioning of a data set 
among the aforementioned ones. Moreover, it adjusts well to non-spherical cluster geometries, contrary 
to the validity indices proposed in the literature (an overview is presented in [11]). It achieves this by 
considering multiple representative points per cluster. The cluster validity index is fully implemented 
and experiments prove its efficiency for various data sets and clustering algorithms. 
We note, here, that the cluster validity approaches can be considered to be a tool for assisting the user 
with the clustering process and they cannot be expected to solve all the problems related to the 
unsupervised learning. CDbw aims to assist with the evaluation of clustering results based on the 
criteria of the clusters’ well-separation and cohesion and the selection of the clustering that best 
approximates the clusters into which the given data can be organized. The users can exploit the results 
of the cluster validity and based on their requirements they could select the clustering that is suitable 
for their application domain. We note that our method finds the best partitioning among those that have 
been defined by the selected algorithm. Hence if the clustering algorithm does not manage to find the 
actual partitioning of a dataset then the cluster validity approach, of course, is not able to find the 
partitioning either. However it can be used to select among the defined clusterings, the one that mostly 
approximates the real clusters according to the requirement of well-separated and cohesive clusters. 
The rest of the paper is organized as follows. Section 2 motivates the definition of a new validity index 
and discusses some background information. Then, in Section 3 we present the fundamental concepts 
of our approach discussing also in detail the proposed cluster validity index. In Section 4 we describe 
an experimental study of our approach while we present its comparison to other cluster validity indices. 
In the sequel, Section 5 reviews cluster validity related concepts and some cluster validity criteria 
related to our work. Finally, we conclude in Section 6 by briefly presenting our contributions and 
indicating directions for further research. 

2. PRELIMINARIES AND MOTIVATION OF THE CLUSTER VALIDITY APPROACH  
The validity assessment of clustering results is a complex problem and it depends on the application 
domain. In the sequel, we motivate the aspects of assessing the validity of clustering results, using 
examples. As Figure 1 depicts, a clustering algorithm (here, the K-Means [2] algorithm is used) with 
different input parameter values (for brevity, further referred to as ipvs) results in different clusterings. 
The data set is falsely partitioned in most of the cases. Only a specific set of ipvs (in this case when 
number of clusters = 3) lead to the actual partitioning of the data set. If there is no prior knowledge 
about the data structure, it is difficult to find the best ipvs for a given algorithm. 
Cross-algorithm comparison takes place in the example of Figure 6 where different clustering 
algorithms (K-Means [2], CURE [9], DBSCAN[6], a clustering algorithm provided by the CLUTO 
toolkit [��]) are used to partition the DS2 data set. The algorithms ran under specific set of ipvs to 
define a partitioning of DS2 into four clusters. As we can observe in Figure 6(a)-(c), K-Means, CURE 
(with ipvs a=0.3, r=10) and the CLUTO algorithm partition DS2 wrongly into four clusters. On the 
other hand, DBSCAN (see Figure 6(d)) with suitable ipvs gives better results since it partitions the data 
set discovering its real four clusters.  A similar example is presented in Figure 7. 
Following up the examples discussed above, each algorithm provides a partitioning of a dataset but 
does not deal with the validity of the clustering results. They aim to find the best possible partitioning 
for the given ipvs but there is no indication that the defined clusters are the ones that best fit data. 

  
Figure 1: The different partitionings defined by K-Means when it runs with different input 
parameter values. 
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Visual perception of the 
clusters structure enables a 
profound assessment of the 
partitioning validity. However, 
in case of large high-
dimensional data sets (e.g. 
more than three dimensions), 
effective visualization can be 
cumbersome. Moreover the 
perception of clusters based on 
visualization is a difficult task 
for humans not accustomed to 
higher dimensional spaces. 
What is then needed is a 
visual-aids-free assessment of 
some objective criterion, 
indicating the validity of 
clusterings defined by a 
clustering algorithm. This 
should be applicable to a potentially high dimensional data set and handle efficiently arbitrarily shaped 
clusters (i.e. clusters of non-spherical geometry). 
The fundamental criteria for clustering algorithms include compactness and separation of clusters. 
However, the clustering algorithms aim at satisfying these criteria based on initial assumptions (e.g. 
initial locations of the cluster centers) or input parameter values (e.g. the number of clusters, minimum 
diameter or number of points in a cluster). What is missing is an approach that satisfies a global 
optimization of the clustering criteria, comparing the different clusterings defined for a data set. 
Another issue of concern is the geometry of the clusters that has been treated in several algorithms 
recently [6, 28]. The problem is that when a cluster’s geometry is deviating from the hyper-spherical 
shape, the majority of clustering algorithms has problems to identify the correct clusters. Even in cases 
that an algorithm achieves to handle arbitrarily shaped clusters, it is based on specific assumptions.   
The above observations motivate the definition of a cluster validity index, CDbw, taking into account 
a) the density distribution between and within clusters to assess the compactness and separation of the 
defined clusters, b) the changes of the density distribution within clusters to assess the clusters’ 
cohesion, and c) the requirements for handling awkward cluster geometries. 
The cluster’s geometry issue is addressed in CDbw by considering multiple representative points for 
each cluster defined by an algorithm. This approach improves geometry-related efficiency compared to 
other related ones (a survey of cluster validity approaches is presented in [11]) that consider a single 
representative point per cluster. 
Below we introduce the terms and concepts that will be used throughout the paper.   
Assuming that S is a data set presenting clustering tendency (i.e. one can identify sparse and dense 
areas in the data space) and there is a partitioning C of S that represents its dense areas as distinct 
partitions (i.e. the underlying clusters in S), we call C actual partitioning of S. In other words, the 
actual partitioning is used in the context of this paper to represent the partitions that corresponds to the 
clusters that are expected to be identified in the underlying data.  The results of a clustering algorithm 
A applied to S comprise a partitioning of S into a set of clusters that is called clustering of S. If for each 
cluster Ci there is a partition Pj of the actual partitioning such that Ci = Pj (i.e. contain the same data 
objects) then we claim that the algorithm discovered the real clusters or the actual partitioning. 
There are cases that an algorithm A applied to S with different ipvs, results in different clusterings none 
of which resembles the actual partitioning. Among these clusterings, the one that is most similar to 
(approximates with high accuracy) the actual partitioning is further called best partitioning1 of S by A. 
The best partitioning refers to the best possible partitioning of S among those defined by the clustering 
approaches. As it will be further discussed, it is important to discover the ipvs for A applied to S that 
result in the best partitioning.  

                                                      
1 In the context of this paper the terms “partitioning” and “clustering” are interchangeable. 

 
Figure 2. Inter-cluster density definition 
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Also the term “correct number of clusters” is used to refer to the number of clusters in the actual 
partitioning of a data set while the number of clusters in case of best partitioning is further called “best 
number of clusters”. 

3. A CLUSTER VALIDITY APPROACH BASED ON DENSITY 
In this section, we formalize our cluster validity index putting emphasis on the geometric aspects of 
clusters and exploiting the density notion of clusters as well. It is a relative validity index since it aims 
to compare different clusterings defined for a given data set and select the one that best fits the data 
(i.e. best partitioning). Its definition is based on a set of representative points per cluster and the 
measures of: i) clusters’ cohesion (in terms of relative intra-cluster density), and ii) clusters’ separation 
(in terms of distance and inter-cluster density). 

3.1 Cluster representative points definition 
Let D={V1, …, Vc} be a partitioning of a data set S into c clusters where Vi is the set of representative 
points of the cluster Ci, such that Vi= {vi1,…, vir | r = number of representatives per cluster} and vij is 
the jth representative of the cluster Ci. Each cluster is represented by a set of r points that are generated 
by selecting well-scattered points within this cluster. These r points achieve to capture the geometry of 
the respective cluster.  
The contribution of the proposed approach is the use of multi-representatives in cluster validity so as to 
capture the shape of the clusters in the clustering evaluation process and not a method to define 
representative points.  Hence we select to use one of the widely used approaches, which is based on the 
“furthest-first” technique [23], to define the representative points of the clusters. We note that other 
approaches for finding the clusters’ representative can be used as well. According to this approach, in 
the first iteration the point farthest from the center of the cluster under concern is chosen as the first 
representative point. In each subsequent iteration a point from the cluster is chosen that is farthest from 
the previously chosen representative points. Thus the function results in a set of points that represent 
the geometry of the cluster periphery (boundaries of the cluster).  
The extended analysis on the procedure for selecting the representatives is out of the scope of this 
paper. We note that the number of clusters depends on the nature of data and can be either user-defined 
or selected based on statistical properties of data. In this paper, we empirically determine the value of r.  

DEFINITION 2.1. Closest Representative points. Let Vi and Vj be the set of representatives of the 
clusters Ci and Cj respectively. A representative point of Ci, let ikv , is considered to be the closest 
representative in Ci of the representative vjl of the cluster Cj, further referred to as closest_repi (vjl), if 
vik is the representative point of Ci with the minimum distance from vjl, i.e. 

( ) ( ){ }ixjl
iVixv

ikjl v,vdminv,vd
∈

= , where d is the Euclidean distance. The set of closest representatives of 

Cj with respect to Ci is defined as follows: i
jCR  = {(vik, vjl)| vjl = closest_repj (vik) } 

DEFINITION 2.2. Respective Closest Representative points. The set of respective representative points 
of the clusters Ci and Cj is defined as the set of mutual closest representatives of the clusters under 
concern, i.e. RCRij = {(vik, vjl)| vik = closest_repi (vjl) and vjl = closest_repj (vik)}. 

In other words, the RCRij set is defined as the intersection of the closest representative of Ci with 

respect to Cj and the closest representative of Cj with respect to Ci, i.e. i
j

j
iij CRCRRCR ∩= . 

3.2 Clusters’ Separation in terms of density 
In this paper we evaluate the separation of the defined clusters based on the density distribution in the 
area between the clusters. Here, the term “area between clusters” implies the area between the 
respective closest representatives of the clusters. Considering that representative points efficiently 
capture the shape and extent of the clusters, the density in the area between closest points of clusters is 
an indication of how close the clusters are.  

DEFINITION 3. Density between clusters – It measures the number of points distributed in the area 
between the respective clusters. Let ( )jlik

p
ij v,vrep_clos =  be the pth pair of respective closest 



 

 

 

ACCEPTED MANUSCRIPT 

 
representative points of clusters Ci and Cj, i.e. ij

p
ij CRrep_clos ∈ , and p

iju  the middle point of the line 

segment defined by the pth pair p
ijrep_clos  (see Figure 2). The density between the clusters Ci and Cj is 

defined as follows: 

( ) ( ) ( )�
=

�
�

�

�

�
�

�

�
⋅

⋅
=

ijRCR

1i

p
ij

p
ij

ij
ji uycardinalit

2

rep_closd

RCR

1
C,CDens

stdev
 

 
Eq. 1 

where ( )p
ijrep_closd  is the Euclidean distance between the pair of points defined by ij

p
ij RCRrep_clos ∈ , 

|RCRij| presents the cardinality of the set RCRij and the term stdev is the average standard deviation of 
the considered clusters. We note that the term density between clusters is used as equivalent to the term 
cardinality between the clusters, which  is defined in Eq. 2: 

( )
ji

jnin

1l

p
ijl

p
ij nn

u,xf

)u(ycardinalit
+

=
�
+

=  

Eq. 2 
 

where xl corresponds to the data points of the clusters under concern (i.e.
jil CCx ∪∈ ) , while ni and nj 

are the number of points that belong to clusters Ci and Cj  respectively.  
Specifically, ( )p

ijuycardinalit  represents the average number of points in Ci and Cj that belong to the 

neighborhood of p
iju . To define the neighborhood of a data point, the scattering of data points on each 

dimension is considered to be an important factor. In other words, if the scattering of data is large and 
the neighborhood of points is small then there might be no points included in the neighborhood of any 
of the data points. On the other hand, if the scattering is small and the neighborhood is large, then the 
entire data set might be in the neighborhood of all the data points. Selecting different neighborhoods 
for different data sets can reasonably solve this problem. The standard deviation can be used to 
approximately represent the scatter of data points. Therefore the neighborhood of a point can be 
considered to be a function (e.g. average, min, max) of standard deviation on each data dimensions.  In 
this work, the goal is to evaluate the density in different areas within and between the defined clusters. 

Thus we select to define the neighborhood of a data point, p
iju , as the hyper-sphere centered at p

iju  (see 

Figure 2) with radius the average standard deviation of the considered clusters, stdev. Other definitions 
of points’ neighborhood can also be used. However a study regarding the definition of the point’s 
neighborhood is beyond the scope of this work.  
Based on the above discussion the function f(x, uij) is defined as:  

( ) ( )
�
	

 ≠<

=
otherwise      ,0

u   xand ux,d if       ,1
u,xf ijij

ij

stdev
�

 
Eq. 3 

where stdev is the standard deviation of the considered clusters. 

A point belongs to the neighbourhood of p
iju  if its distance from p

iju  is smaller than the average 

standard deviation of the clusters (i.e. ( ) stdev<p
iju,xd ). On the other hand, the actual area between 

clusters, whose density we are interested in estimating, is defined to be the area between the respective 

closest representative points (see Figure 2) and its size is defined to be ( )p
ijrep_closd . Since the term 

( )p
ijuycardinalit  represents the number of points distributed in the area whose size is defined by the 

standard deviation of the considered clusters (i.e. the hyper-sphere with diameter 2⋅stdev), without loss 
of generality, the “actual” number of points between the clusters is defined to be the 

( ) ( )stdev2rep_closd p
ij ⋅  percentage of points belonging to the neighbourhood of p

iju  (i.e. ( )p
ijuycardinalit ). 

The above justifies the definition of density (cardinality) between the pth pair of the respective 

representatives of clusters Ci and Cj as  
( ) ( )p

ij

p
ij uycardinalit

s2

rep_closd
⋅

⋅ tdev
.� 
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DEFINITION 4. Inter-cluster Density - Let C ={Ci | i=1,…,c} be a partitioning of a data set into c 
clusters, c>1. The Inter-cluster density measures for each cluster Ci∈C, the maximum density between 
Ci, and the other clusters in C. More specifically, it is defined by Eq. 4: 

( ) ( ){ }ji

c

1i ij
c,...,1j

C,CDensmax
c
1

dens_Inter �
= ≠

=
=C  

 
Eq. 4 

where c>1, c ≠ n. � 

DEFINITION 5. Clusters’ separation (Sep). It measures the separation of clusters taking into account the 
Inter-cluster density with respect to the distance between clusters. A good partitioning is characterized 
by long distances between clusters’ representatives and low density between them (i.e. well-separated 
clusters). Then, the clusters’ separation is defined by the equation (Eq. 5): 

( )
( ){ }

( ) nc,1c      ,
dens_Inter1

C,CDistmin
c
1

Sep

c

1i
ji

ji
c,...,1j

≠>
+

=

�
= ≠

=

C
C  

 

Eq. 5 

where ( ) ( )�
=

=
ijRCR

1i

p
ij

ij
ji rep_closd

RCR

1
C,CDist  and |RCRij| is the cardinality of the set RCRij as 

defined earlier. 
According to the definitions above, Inter_dens assesses the maximum number of points distributed in 
the area between the clusters under concern. This is an indication of how close the clusters are. Without 
loss of generality, we assume that the maximum inter-cluster density is detected between a cluster and 
its closest one, since the closest the clusters are the more probable is to find areas of high density 
between them. Also the area between clusters is measured in terms of the distance between their 
respective closest representatives. Then, Sep(C) is perceived to measure the respective number of data 
points per unit of space between the closest clusters, i.e. the relative density between clusters. 

3.3 Clusters’ compactness in terms of density 
We previously introduced the concept of multiple representative points. They are initially generated by 
selecting well-scattered points in the cluster that represent well the geometric features of the cluster. 
We exploit these points to assess the separation of the clusters as it is discussed above. Besides the 
cluster’s separation, we also take into account the cluster’s compactness and cohesion. This implies that 
clusters should not only be well separated but also dense. Cluster’s compactness is a measure of 
cluster’s inherent quality, which increases when the clusters are characterized by high internal density.  
The center of a cluster (the mean of the data points in the cluster) is not necessarily a point within the 
cluster but it is perceived as the most central point of cluster space around which the data points 
belonging to the cluster are distributed. Moreover cluster center can be considered as a reference point 
toward which the cluster representatives can be gradually moved in order to get instances of initial 
representatives at different areas in cluster space. Measuring the density in the neighborhood of these 
representatives, the density distribution within a cluster can be estimated. Thus without loss of 
generality the cluster center can be considered as a good approximation of the cluster space core. 
Let vij, further called shrunken representative, correspond to the jth representative point of the cluster 
Ci, vij, shrunk (shifted) towards the center of the cluster by a shrinking factor s∈[0, 1] (see Figure 2). 
Thus the kth dimension of vij can be defined as )v  -  .center(Csvv k

ij
k
i

k
ij

k
ij ⋅+= , where Ci.center is the center of 

cluster Ci. The shrinking factor, s, is user-defined to control the compactness of clusters in the validity 
checking process according to the application needs. A high value of s shrinks the representatives 
closer to the cluster center and thus it favours more compact clusters. On the other hand, a small value 
of s shrinks more slowly the representatives and the validity checking process favours elongated 
clusters. Selecting a suitable shrinking factor we can manage to have instances of representatives 
within the cluster. 
To eliminate the influence of s to the cluster validity results, the density within clusters is estimated for 
different values of s. More specifically, the value of s is increasing so that the representative points are 
gradually shrunk and the respective values of density are calculated at these shrunken points. The 
average value of a cluster’s intra-cluster density, as calculated for the different values of s, is 
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considered to be the density within the considered clusters. It is evident that we are able to get a better 
view of density distribution within a cluster, calculating the density at different areas of the cluster. 

DEFINITION 6. Relative intra-cluster density measures the relative density within clusters with respect 
to (wrt.) a shrinking factor s. This implies the number of points that belong to the neighbourhood of the 
representative points of the defined clusters shrunk by s, let vij, (i.e. points belong to the hyper-sphere 
centered at vij with stdev radius). Then the relative intra-cluster density with respect to the factor s is 
defined as follows: 

1c,
c

)s,(cl_Dens
)s,(dens_Intra >

⋅
=

stdev
CC  

where ��
= =

=
c

1i

r

1j
ij )v(ycardinalit

r
1

)s,(cl_Dens C  

 
 

Eq. 6 

The cardinality of a point vij is defined as ( ) ( ) i

in

l
ijlij nv,xfvycardinalit �

=
=

1

, where ni is the number of 

the points, xl, that belong to the cluster Ci, i.e. SCx il ⊆∈  and the function f is defined as in Eq. 
3. It represents the proportion of points in cluster Ci that belong to the neighbourhood of a 
representative vij ∀j (i.e. the representatives of Ci shrunk by a factor s). The neighbourhood of a data 
point, vij, is defined to be a hyper-sphere centered at vij with radius the average standard deviation of the 
considered clusters, stdev. �  

DEFINITION 7. The compactness of a clustering C in terms of density is defined by the equation: 

s
s

s n),( dens_Intra)( sCompactnes �= CC  
 
Eq. 7 

where ns denotes the number of different values considered for the factor, s, based on which the density 
at different areas within clusters is calculated. Usually, we consider that the values of the shrinking 
factor, s, is gradually increasing in [0.1, 0.8] (the cases that s = 0, and s ≥ 0.9 refer to the trivial case 
that the representative points correspond to the boundaries and the center of cluster respectively).  
Then considering that the representative points are shrunk by a factor 0.1≤ s ≤ 0.8, and si = si-1 + 0.1, 
we get from Eq. 7: ( )

[ ]
8s,Cdens_Intra)(sCompactnes

8.0,1.0s
�

∈
=C . In other words, the term 

Compactness(C) corresponds to the average density within a set of clusters, C, defined for a data set. 

3.4 Assessing the quality of a data clustering 
In the previous sections (Section 3.2 and Section 3.3) we introduce some measures based on which the 
compactness and separation of clusters are evaluated. However, none of these measures could lead to a 
reliable evaluation of clusters’ validity if they are taken into account separately. Thus the requirement 
for a global measure that assesses the quality of a dataset clustering in terms of its validity arises. 

3.4.1 Clusters’ Cohesion 
 Besides the compactness of clusters, another requirement of clusters’ quality is that the changes of 
density distribution within clusters should be significantly small. This implies that not only the average 
density within clusters (as measured by Compactness) has to be high but also the density changes as we 
move within the clusters should to be small. The above requirements are strictly related to the 
evaluation of clusters’ cohesion, i.e. the density-connectivity of objects belonging to the same clusters.  

DEFINITION 8. Intra-density changes, measures the changes of density within clusters. It is given by 
the equation: 

( )
( ) ( )

( )1n

s,dens_Intras,dens_Intra

change_Intra
s

sn,...,1i
1ii

−

−

=
�

=
−CC

C  

Eq. 8 

where ns is the number of different values that the factor s takes. Significant changes to the intra-cluster 
density indicate that there are areas of high density that followed by areas of low density and vice 
versa. � 
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DEFINITION  9. Cohesion measures the density within clusters with respect to the density changes 
observed within them.  It is defined as follows: 

( ) ( )
( )C

C
C

change_Intra1
sCompactnes

Cohesion
+

=  
Eq. 9 

3.4.2 Separation wrt Compactness 
The best partitioning (see Section 2 for a definition of the term) requires maximal compactness (i.e. 
intra-cluster density) in such a way that the clusters are well separated and vice versa. This implies that 
compactness and separation are closely related measures of clusters’ quality. Furthermore there are 
cases that the clusters’ separation tends to be meaningless with regard to the clusters’ quality, if it is 
considered independently of the clusters’ compactness. Then, it is evident that we need a measure that 
assists with evaluating the separation of clusters in conjunction with their compactness.  

DEFINITION 10. SC (Separation wrt Compactness) evaluates the clusters’ separation with respect to 
their compactness: 

( ) ( ) ( )CCC sCompactnesSepSC ⋅=  Eq. 10 
In other words, considering a data set and its clustering C, SC is defined as the product of the density 
between clusters (Sep(C)) and the density within the clusters defined in C (Compactness(C)).  

3.5 CDbw definition 
A reliable cluster validity index has to correspond to all the requirements of “good” clustering. This 
implies that it has to evaluate the cohesion of clusters as well as the separation of clusters in 
conjunction with their compactness. These requirements motivate the definition of the validity index 
CDbw. It is based on the terms defined in the equations Eq. 9 and Eq. 10 and is given by the following 
equation:  

( ) ( ) ( )CCC SCCohesionCDbw ⋅= , c > 1 Eq. 11 

The above definitions refer to the case that a data set possesses clustering tendency, i.e. the data vectors 
can be grouped into at least two clusters. The validity index is not defined for c = 1.  

Discussion. The definition of CDbw (Eq. 11) indicates that all the criteria of “good” clustering (i.e. 
cohesion of clusters, compactness and separation) are taken into account, enabling reliable evaluation 
of clustering results. A clustering with compact and well-separated clusters and low variation of the 
density distribution within clusters results in high values for both CDbw terms (i.e. Cohesion and 
Separation wrt. Compactness). Moreover, CDbw exhibits no monotonous trends with respect to the 
number of clusters. Thus in the plot of CDbw versus the number of clusters, we seek the maximum 
value of CDbw which corresponds to the best partitioning of a given data set. The absence of a clear 
local maximum in the plot is an indication that the data set possesses no clustering structure.  
In the trivial case that each point is considered to be a separate cluster, i.e. c = n, the standard deviation 
of the clusters is 0. Then Eq. 1 and Eq. 6 cannot be defined when c = n. However, this is not a serious 
problem. In real-world cases, if the data can be organized into compact and well-separated clusters (i.e. 
the data set possesses a clustering structure), its best partitioning will correspond to a set of clusters 
whose number ranges between 2 and n-1. 
 Nevertheless, considering the semantics of the terms Intra_dens and Inter_dens, which in the trivial 
case(c=n), cannot be defined based on  Eq. 1 and Eq. 6, we proceed with the following statement: 
In the trivial case that each point is a separate cluster, i.e. c = n, the standard deviation of clusters is 0. 
Then: 
- According to Eq. 2 the term ( )p

ijuycardinalit  is zero for any pair of the defined clusters. This implies 

that the density between clusters is also zero, i.e.  
Dens(Ci, Cj) = 0 ∀i, j ∈[1, n]� Inter_dens(C) =0, where C={Ci | i=1,…,n} 

- The intra-cluster density measures the average density in the neighbourhood of the clusters’ 
shrunken representatives. In case that c = n, there is only one point that belong to a cluster which is 
also considered to be the cluster’s representative. According to Eq. 3: ∀x, x ≠ vij and 
d(x,vij)=stdevi=0 � f(x,vij)=0. Therefore the density within clusters is : 

s,n)(cl_Dens)s,(cl_Dens ∀== 0CC and C={Ci | i=1,…,n}  
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Then, without loss of generality, we claim that Intra_dens (C, s) =0 ∀s, when c=n. As a 
consequence, we get from Eq. 7 that Compactness (C) = 0, when c = n. 

Hence, based on Eq. 11, CDbw(C) = 0 when c = n. 

3.6 Time Complexity 
The complexity of the cluster validity index CDbw, is based on the complexity of the terms Cohesion 
and Separation wrt. Compactness as defined in the equations Eq. 9 and Eq. 10, respectively. Let d be 
the number of attributes (data set dimension); c be the number of clusters; n be the number of the data 
points and r be the number of a cluster’s representatives. Then the complexity of selecting the closest 
representative points of c clusters is O(dc2r2). Based on their definitions, the computational complexity 
of SC depends on the complexity of clusters’ compactness (Compactness) and separation (Sep) that is 
O(ncrd) and O(ndc2) respectively. Then the complexity of SC is O(ndr2c2). Furthermore, based on Eq. 
9, the computational complexity of clusters’ cohesion (Cohesion) is O(ncrd). Then, we conclude that 
CDbw complexity is O(ndr2c2). Usually, c, d, r << n, therefore the complexity of the validity index for 
a specific clustering is O(n). The complexity of the whole cluster validity procedure which aims to find 
the best partitioning of a data set, S, among a set of k different partitionings defined by a clustering 
algorithm, will be O(kn). In the context of this paper, the clustering process is not considered as part of 
the cluster validity process. Given that k is significantly smaller than n (number of data points), the 
complexity of the clustering validity process will be O(n). 

4. EXPERIMENTAL EVALUATION 
In our experimental evaluation we focus mainly on evaluating the effectiveness of our approach to 
select the partitioning that best fits data among those defined for the concerned data set. We present 
results using different datasets and algorithms. The experimental section concludes with a comparison 
of CDbw to some of the most important validity indices proposed in the literature.  

4.1 Data sets and Methodology 
We conducted experiments using synthetic data sets in order to evaluate the performance of the 
proposed cluster validity approach in various cases of the data sets’ structure. In all cases we evaluate 

 
(a) the CLUTO algorithm 

 
(b)K-Means 

 
(c)CURE  

Figure 3: Synthetic data sets: a) DS1 and Partitioning of DS1 using CLUTO, b) K-Means, c) CURE 
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the effectiveness of our approach with respect to a pre-specified clustering that has been defined for the 
datasets used in experiments. The labelling of the synthetic datasets is defined at the stage of their 
generation while in case of real datasets an expert of domain has given the correct labelling of the data. 
This labelling represents the actual partitioning of the considered data. To measure the accuracy of the 
clustering selected of CDbw in relation to the actual partitioning of the considred data, we have used 
pair-wise F-measure [27]. Its definition is based on the traditional information measures (precision, 
recall), adapted for evaluating clustering by considering same-cluster pairs. 
We experimented with various data sets containing different numbers of clusters of various shapes. 
Due to space constraints we report only results for data sets containing less than 10 clusters. As regards 
the data dimensionality, it ranges between 2 and 120 dimensions. The rest of our results with data sets 
of higher dimensions  and  data  sets  containing  a larger number  of clusters  are  qualitatively  similar  
to those discussed below, thus they are omitted for brevity. Also, we have ignored the presence of noise 
in data so that the experimental study is independent of the efficiency of the clustering algorithms to 
handle noise.   

Determining the number of representatives r. To determine the value of r that we use for experiments 
we experimented with a representative sample of the datasets used for the experimental evaluation of 
the proposed approach. We varied the number of representatives, r, in the range from 1 (equivalent to 
the case where only the cluster center is used for representation) to 30. We observed that CDbw fail to 
select the best partitioning when r ≤ 5 while there were no significant changes to the efficiency of 
CDbw when r ≥ 10. Generally, we conclude that in the context of our experimental study a number of 
representatives around 10 (r ≥ 10) achieves to capture to a satisfactory degree the geometry of clusters. 
Thus CDbw gives reliable results with regard to the selection of the best partitioning of a data set.  

4.2 Selecting the best partitioning defined by a clustering algorithm 

Though any clustering algorithm can be used, for each dataset we select to report the experimental 
results using the algorithm that achieves to find at least one partitioning of the data under concern 
which approximates their actual partitioning with high accuracy. This assists with having a most 
accurate evaluation of the effectiveness of CDbw as regards its ability to select the best partitioning of a 
dataset.  

The initial set of experiments refers to a 2-dimensional data set, further referred to as DS1, 8 clusters 
(see Figure 3a). It is a synthetic data set generated based on the data set used in [16]. We used a 
clustering algorithm provided by the CLUTO toolkit2 to discover the clustering of DS1 with the 
number of clusters ranging in [4, 13]. For each of the partitionings obtained the CDbw value is 
computed and the respective graph of the validity index values vs. the number of clusters is created (see 
Figure 4). Based on this graph we observe that CDbw reaches its maximum at the partitioning of the 
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Figure 4.  CDbw as a function of number of 

clusters for DS1 (CLUTO) 

 

 
Figure 5:  Nd_Set CDbw vs  the number of 

clusters for a  120-dimensional data set 
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eight clusters. Then it is proposed as the best partitioning of DS1. We note that the selected set of 
partitions also corresponds to the real clusters of DS1 (see Figure 3(a)).  

Multi-dimensional data sets. The validity of clustering results (i.e. that the set has been well 
partitioned) can be visually verified only in 2D or 3D cases. In higher dimensions it is difficult to verify 
the resulting clusters. The proposed validity index tackles this problem giving an indication of the best 
clustering without visualization of the data set. We have experimented with various data sets but due to 
lack of space, we select to report the behaviour of CDbw using a representative dataset of 120 attributes 
containing four clusters (further referred to as Nd_Set). We ran the CURE algorithm (with a=0.3, r=10) 
on the data repeatedly, with the number of clusters c in the range 2 to 10. For each value of c, we 
obtained a partitioning of the data and calculated the respective value of CDbw. The plot of CDbw vs. 
the number of clusters (corresponding to the different partitionings of the data set) is depicted in Figure 
5. We observe that CDbw takes its maximum value when c = 4. Thus the partitioning of four clusters, 
as defined by CURE is proposed as the best partitioning of Nd_Set.  
Evaluating the accuracy of the selected partitioning in relation to the pre-specified clustering of 
Nd_Set, we get that it perfectly approximates the actual partitioning of the data set (specifically, F-
measure=1). 

Table 1: Best partitioning found by CDbw for different clustering algorithms 

 K-Means DBSCAN CURE 
r =10, a=0.3 

CLUTO 
(clmethod=graph -

sim=dist -
agglofrom=30 

No 
clusters 

ipvs CDbw 
Value 

ipvs CDbw 
Value 

ipvs CDbw 
Value 

ipvs CDbw 
Value 

9 9 6.134E-4 - - 9 8.491E-4 9 0.0024 
8 8 0.0011 Eps=13,MinPts=35 0.00366 8 9.849E-4 8 0.0037 
7 7 5.015E-4 Eps=12,MinPts=17 0.0027 7 0.00113 7 0.0028 
6 6 7.765E-4 Eps=13,MinPts=15 0.0023 6 4.7152E-4 6 0.00209 
5 5 5.604E-4 Eps=14,MinPts=15 0.0016 5 4.378E-4 5 0.00155 
4 4 7.613E-4 Eps=15,MinPts=15 0.0011 4 4.8914E-4 4 0.00113 
3 3 6.143E-4 Eps=16,MinPts=15 0.0018 3 6.5291E-4 3 0.00179 
2 2 8.078E-4 Eps=22,MinPts=15 0.0012 2 1.1606E-4 2 - 

(a) DS1 
 

 K-Means DBSCAN CURE 
r =10, a=0.3 

CLUTO 
(clmethod=graph, 

sim=dist, 
agglofrom=30) 

No 
clusters 

ipvs CDbw 
Value 

ipvs CDbw 
Value 

ipvs CDbw 
Value 

ipvs CDbw Value 

6 C=6 0.0542 - - C=6 0.01234 6 0.06737 
5 C=5 0.0440 - - C=5 0.0616 5 0.08407 
4 C=4 0.0307 Eps=1,MinPts=4 0.1057 C=4 0.0272 4 0.1026 
3 C=3 0.0175 Eps=2,MinPts=15 2.89E-06 C=3 0.0229 3 0.0518 
2 C=2 0.0494 Eps=2,MinPts=10 0.0749 C=2 0.0408 2 0.0749 

(b) DS2 

 K-Means DBSCAN CURE 
r =10, a=0.3 

CLUTO 
(clmethod=graph, 

sim=dist, 
agglofrom=30) 

No 
clusters 

ipvs CDbw 
Value 

ipvs CDbw 
Value 

ipvs CDbw 
Value 

ipvs CDbw 
Value 

6 C=6 0.01036 - - C=6 0.01149 6 0.0237 
5 C=5 0.02257 - - C=5 0.02768 5 0.0263 
4 C=4 0.02009 - - C=4 0.02432 4 0.0264 
3 C=3 0.01993 Eps=2,MinPts=4 0.032 C=3 0.02004 3 0.032 
2 C=2 0.02743 Eps=10,MinPts=4 0.02743 C=2 0.02743 2 - 

(c) DS3 
ipvs: input parameters’ value 
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4.3 Selecting clustering algorithm 
In previous sections, we performed 
experiments with different ipvs for 
clustering algorithms. In the sequel given 
a data set and a set of clustering 
algorithms, we show that CDbw enables 
the selection of the best partitioning 
among those defined by different 
clustering algorithms. Thus, the clustering algorithm that finds the best partitioning of a data set can be 
selected. 

We assume a data set S on which we ran different clustering algorithms { }m
1iiAA ==  using for each of 

them the best ipvs, IP

best, as defined by CDbw. Let ( )( ){ }m

1ibest
i

i IPAC =  be the clusterings of S resulting 
from the execution of the aforementioned algorithms with IP


���
 used as their ipvs. It is noteworthy that 
the values of CDbw are comparable for different clustering algorithms since the definition of the 
validity index only depends on the partitioning and not on the algorithm itself.  Then, we find the 
algorithm that results in the best partitioning of S by solving ( )( )( ){ }best

i
ibest

i

AiA
IPACCDbwmax

∈
. In other 

words, for each of the clustering algorithms Ai the best partitioning of S, C

best =C(A
(IP



���
)), is 

selected. Then C���
={C

���
, i=1,…m} is the set of best partitionings defined by the considered 

algorithms. The partitioning with the highest CDbw value in Cbest is selected as the overall best 
partitioning and the respective algorithm A! running with the IP!

best set of ipvs is considered to be the 
most appropriate algorithm for S. In the sequel, we present the results of the experimental study we 
carried out using four widely used algorithms, one from each of the popular clustering algorithm 
categories: K-Means (partitional), DBSCAN (density-based), CURE (hierarchical) and an algorithm 
provided by the CLUTO toolkit which is based on the two-phase clustering approach of the 
CHAMELEON [17] algorithm.  
The goal of the experimental results discussed below is not to evaluate the algorithms themselves and 
make inferences about their performance. Our approach is applied to the results of any clustering 
algorithm and achieves to select the partitioning that best fits the concerned data. Then the clustering 
algorithms in this experimental study are only considered to be the tools that assist with the definition 

Table 2. Accuracy of the clusterings presented in 
Figure 6 with respect to the expected partitioning of 
DS2.  

Algorithm F-Measure 
DBSCAN 1 
CLUTO 0.5235 
CURE 0.5037 

KMEANS 0.4842 
 

(a)  (b) 

(c) (d) 
Figure 6: Partitioning of DS2 into four clusters as defined by (a) K-Means, (b) CURE, (c) the 
CLUTO algorithm and (d) DBSCAN 
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of the clustering results to which our cluster validity approach is applied. Thus, in this work it is not 
important the algorithm and the values of its input parameters that we use but the clusterings that have 
been defined for the given data set.  
A data set containing clusters with non-standard geometries that we used was DS1 (see Figure 3). 
Specifically, we consider the clusterings defined by the algorithms mentioned above while their ipvs 
are depicted in Table 1(a).  In case of DS1, CDbw takes its maximum value for the partitioning of eight 
clusters as defined by the CLUTO algorithm. We note that these are the real eight clusters presented in 
the DS1 as Figure 3(a) also depicts. On the other hand, DBSCAN running with the set of ipvs, Eps=13, 
MinPts=35, discovers a set of eight clusters that approximates the real ones but it considers a part of the 
cluster 8 (in Figure 3(a)) as noise. This observation justifies the slight decrease of the CDbw value in 
relation to its values when the real eight clusters are defined. Also the partitionings of DS1 into eight 
clusters as defined by K-Means and CURE are depicted in Figure 3(b) and Figure 3(c) respectively. It 
is obvious that all algorithms except the CLUTO algorithm fail to partition it properly even in case that 
the correct number of clusters (i.e. c=8) is considered. 
Another example showing that an algorithm could cluster a data set finding the correct number of 
clusters but the wrong partitions is presented in Figure 6. CDbw is able to evaluate the results of 
different clustering algorithms and select the best partitioning among those defined by the 
aforementioned algorithms, i.e. to select the best algorithm for a data set. According to Table 1(b), in 
case of DS2 (see Figure 6), CDbw takes its maximum value for the partitioning of four clusters as 
defined by DBSCAN. Figure 6(d) presents the partitioning of DS2 into four clusters as defined by 
DBSCAN while its clustering into four clusters defined by K-Means, CURE and the CLUTO 
algorithm, are presented in Figure 6(a), Figure 6(b) and Figure 6(c) respectively. It is obvious that K-
Means, CURE (with a=0.3, r=10) and the CLUTO algorithm (clmethod=graph, sim=dist, 
agglofrom=30) failed to partition DS2 properly, even in case that the correct number of clusters (i.e. 
c=4) is defined. This is verified by the F-measure values presented in Table 2. The partitioning that is 
selected by CDbw as the best one results in the highest value of F-measure, i.e. approximates the actual 
partitioning with the highest accuracy. 
Similarly, we experimented with a data set containing ring shaped clusters. As Figure 7 depicts the real 
clusters in DS3 are three. However, the majority of clustering algorithms fail to partition it into a right 
way. Figure 7(a) and Figure 7(b) present the partitioning of DS3 into three clusters as defined by K-
Means and CURE respectively. Moreover, Figure 7 (c) presents the partitioning of DS3 into three 
clusters as defined by DBSCAN and the CLUTO clustering algorithm. We observe that DBSCAN and 
the CLUTO algorithm are the only algorithms that achieve to discover the real clusters of DS3. This is 
also verified by our cluster validity approach. Specifically, Table1(c) presents the values of CDbw for 
the clusterings defined by the aforementioned clustering algorithms. We observer that CDbw takes its 
maximum value for the clustering of three clusters as defined by DBSCAN and CLUTO, which also 
corresponds to the actual partitioning of DS3. It is also interesting that the values of CDbw 
corresponding to the best partitioning defined by DBSCAN and CLUTO are the same (0.32). This 
justifies our claim that CDbw values do not depend on the algorithms. 

(a) K-Means (b) CURE (c) DBSCAN, CLUTO 

Figure 7: Partitioning of DS3 into three clusters as defined by different clustering algorithms.  
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4.4 Comparison to other cluster 

validity indices 
In this Section we compare CDbw to 
four of the most important validity 
indices proposed in the literature3, such 
as RS-RMSSTD [29], DB [31], SD [13] 
and S_Dbw [14]. The definition of the 
above indices is presented in [11].  
RMSSTD and RS are representative 
examples of statistical validity indices 
and are jointly taken into account 
indicating the best number of clusters. The best partitioning of a data set corresponds to the number of 
clusters for which a significant local change in values of RS and RMSSTD occurs. As regards DB, SD 
and S_Dbw the clustering for which the validity indices take its minimum value is selected as the best 
partitioning.  
Table 3 summarizes the results of the validity indices (RS, RMSSDT, DB, SD, S_Dbw and CDbw), for 
different clusterings of the aforementioned data sets as defined by a clustering algorithm (K-Means, 
CURE or DBSCAN). The comparison of validity indices refers to the same clustering results for each 
of the considered data sets. Also, we assume that there is at least a partitioning of the data sets among 
the evaluated ones that corresponds to their real clusters. As regards Nd_Set, SD proposes three clusters 
as its best partitioning, while S_Dbw selects the partitioning of eight clusters. On the other hand, 
CDbw, RMSSDT&RS and DB propose fours clusters, which corresponds to the number of clusters in 
the actual partitioning of Nd_Set. 
In case of DS1, DS2 and DS3 (containing arbitrarily shaped clusters), we consider the results of 
DBSCAN and the CLUTO algorithm since they achieve to handle efficiently arbitrarily shaped 
clusters. CDbw selects the partitioning that contains the real eight clusters as the best one for DS1 
whereas RMSSDT&RS, DB, SD and S_Dbw fail, selecting the clusterings of three, four and ten clusters 
respectively. Similarly, CDbw finds the real four clusters as the best partitioning for DS2 (see Figure 
6(d)), on the contrary to RS&RMSSTD, S_Dbw and DB, which propose three clusters as the best 
partitioning and SD that selects the partitioning of two clusters. Moreover, only CDbw proposes the 
partitioning of DS3 into three clusters while all the others select the partitioning of two clusters as its 
best one.  Based on the above observations we conclude that CDbw achieves to find the clustering that 
best fits a data set, while other validity indices fail in some cases, especially when the data sets contain 
arbitrarily shaped clusters.  

5. RELATED WORK 
Since clustering algorithms discover clusters, which are not known a-priori, the final partitioning of a 
data set requires some sort of evaluation in most applications [17]. Requirements for the evaluation of 
clustering results are well known in the research community and a number of efforts have been made 
especially in the area of pattern recognition. However, the issue of cluster validity is rather under-
addressed in the area of databases and data mining applications, even though recognized as important. 
There are three approaches to investigate cluster validity [31]. The first is based on external criteria. 
This implies that we evaluate the results of a clustering algorithm based on a pre-specified structure, 
which is imposed on a data set and reflects our intuition about the clustering structure of the data set. 
The second approach is based on internal criteria, meaning that the results of a clustering algorithm are 
evaluated in terms of quantities that involve the vectors of the data set themselves (e.g. proximity 
matrix). The third approach is based on relative criteria. Here the basic idea is to choose the best 
clustering among a set of different clusterings defined according a pre-specified criterion. A number of 
validity indices appear in the literature for each of the above approaches [31]. A cluster validity index 
for crisp clustering that is proposed in [5], attempts to identify “compact and well−separated clusters”. 
Other validity indices for crisp clustering have been proposed in [4] and [14]. The implementation of 
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Table 3: Best partitioning proposed by validity indices 
compared with CDbw* 

 DS1 DS2 DS3 Nd_Set 
Actual 

partitioning 
88  44  33  44  

RS, RMSSTD 3 3 2 4 
DB 4 3 2 4 
SD 4 2 2 2 

S_Dbw 10 3 2 8 
CDbw 8 4 3 4 
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most of these indices is computationally expensive, especially when the number of clusters and number 
of objects in the data set grows a lot [30]. In [24] an evaluation study of thirty validity indices proposed 
in the literature is presented. The results of this study rate the indices Caliski and Harabasz (1974), 
Je(2)/Je(1) (1984), C-index (1976), Gamma and Beale among the six best indices. However, it is noted 
that although the results concerning these methods are encouraging they are likely to be data 
dependent, i.e. the characteristics of data can affect their performance in an unpredictable way. Thus 
there is no guarantee that they will be best for real data set. An overview of fuzzy cluster validity 
indices is presented in [31]. Some initial efforts in this field is the partition coefficient (1974) and the 
classification entropy (1984) proposed by Bezdek. Also Maulik et al [22] proposed a fuzzy clustering 
validity index that is defined based on i) the ratio of the whole dataset variance and the fuzzy variance 
of defined clusters and ii) the maximum separation between two clusters over all possible pairs of 
clusters. A cluster validity index for estimating the validity of the Fuzzy C-Means results is presented 
in [18]. The proposed validity index measures the degree of overlap between clusters estimating the 
inter-cluster proximity between fuzzy clusters.  Thus this index only evaluates the separation of clusters 
while it ignores their compactness as criterion of clusters validity.  Other fuzzy validity indices are 
proposed in [8, 32]. In general terms aforementioned indices due to their definition tend to favor 
convex clusters where the statistical measures such as variance and distances between points can give a 
good indication of clusters’ compactness and separation. 
A practical clustering algorithm based on Monte Carlo cross-validation is proposed in [30]. This 
approach differs significantly from the one we propose. While we evaluate clusterings based on widely 
recognized validity criteria of clustering, the evaluation approach proposed in [30] is based on density 
functions considered for the data set. Thus, it uses concepts related to probabilistic models in order to 
estimate the number of clusters, better fitting a data set, while we use concepts directly related to the 
data. 
Abul et al [1] propose three methods for evaluating the validity of clustering results. The first method 
validates the clustering results based on supervised classifiers. The idea on which this method is based 
is that if the labels generated by a clustering algorithm are valid then they can be used to build an 
accurate classifier. The rationale behind the second method is that if a clustering is valid then each of 
its subsets should be valid as well. The third method is similar to the second one, evaluating each 
cluster separately in terms of its stability and compactness. 
A cluster validity approach that is based on resampling and the evaluation of clustering solutions 
stability is introduced in [20]. The authors introduce the concept of figure of merit, which reflects the 
stability of cluster partition against resampling. Criteria related to the data distribution in clusters and 
the validity of clusters in terms of their compactness and separation are not used. Specifically, the 
figure of merit measures the extent to which the clustering assignment obtained from the resamples 
agrees with that of the full sample. Among different clustering solution the one which is more robust 
according to the figure of merit is considered to be the best solution.   
Another cluster validation approach based on stability is proposed in [21]. The authors introduce a 
stability measure that aims to quantify the reproducibility of clustering results on a second sample of 
data. According to this approach, we split the data set into two halves X, X´ and a clustering algorithm 
A! is applied to both. The clustering of X defined by A! (that is A!(X)) is used to train a classifier �. 
Then the dissimilarity of two solutions A!(X´) and �(X´) is calculated in terms of stability measure. 
The stability measure is estimated for different number of clusters. The number of clusters that 
corresponds to the smallest estimate of stability measure is chosen as the preferred partitioning of the 
given data. 
A validity approach for selecting the best parameter of kernel functions used in the context of Support 
Vector Clustering (SVC), is presented in [3]. The proposed measure is defined based on widely used 
cluster validity criteria regarding clusters’ compactness and separation. The compactness of clusters is 
evaluated based on the overall distance between the data points inside the clusters while the separation 
is defined as the minimum distance between the support vectors between clusters.   
The proposed approach aims to introduce some new criteria in the cluster validity so that we efficiently 
handle arbitrarily shaped clusters. It exploits measures that assess the density distribution in areas 
between and within the defined clusters.  We also introduce the idea of evaluating the density changes 
within clusters in order to estimate the clusters’ cohesion. The cohesion concept used in this work 
seems very close to the path-based clustering criteria proposed by Fred et al [7]. However these criteria 
are based on distances and measure the dissimilarity increments between clusters contrary to our 
cohesion criterion that estimates density changes within clusters. 
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6. CONCLUSIONS 
In this paper, we defined a new validity index, CDbw, and a methodology for finding the clustering 
among those defined by an algorithm or different clustering algorithms that best fits data. CDbw adjusts 
well to non-spherical and skewed cluster geometries, contrary to the validity indices proposed in the 
literature. It achieves this by considering multi-representative points per cluster. The proposed cluster 
validity index is fully implemented and experiments prove its efficiency for various data sets and 
algorithms.  
The proposed approach is defined in the context of crisp clustering corresponding to the results of the 
majority of clustering algorithms. One of our future work directions will be the definition of the cluster 
validity index so that both structural and fuzzy aspects of the data distribution are taken into account. 
Furthermore, we plan an extension of this effort to be directed towards an integrated algorithm for 
cluster analysis putting emphasis on the geometric features of clusters, using sets of representative 
points, or even multidimensional curves. Another interesting research direction that we consider for our 
future work is to adapt user constraints in the clustering and cluster validity process so as to overcome 
the possible limitation of the current approach in relation to the specific requirements of the application 
domains. 
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