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Abstract

In the Capacitated Clustering Problem, a given set of customers with distinct demands must be
partitioned into p clusters with limited capacities. The objective is to ®nd p customers, called medians,
from which the sum of the distances to all other customers in the cluster is minimized. In this article, a
new adaptive tabu search approach is applied to solve the problem. Initial solutions are obtained by
four constructive heuristics that use weights and distances as optimization criteria. Two neighborhood
generation mechanisms are used by the local search heuristic: pairwise interchange and insertion.
Computational results from 20 instances found in the literature indicate that the proposed method
outperforms alternative metaheuristics developed for solving this problem. # 1999 IFORS. Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the Capacitated Clustering Problem (CCP), a given set of customers with corresponding
weights or demands must be partitioned into p clusters with limited capacities. Each customer
must be assigned to exactly one cluster. The objective is to ®nd p customers, called medians,
from which the sum of the distances to all other customers in the cluster is minimized.
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The CCP can be viewed as a special case of the Capacitated Facility Location Problem with
a single source constraint, as well as the Capacitated p-Median Problem. Such clustering
problems arise in many practical situations including the following:

. Consolidation of customer orders for vehicle shipment (Koskosidis and Powell, 1992; Bramel
and Simchi-Levi, 1995).

. Assignment of customers to vehicles for multi-vehicle Dial-A-Ride transit systems (Jaw et
al., 1986).

. Grouping of constituencies to de®ne boundaries of political districts (Bourjolly et al., 1981).

. Design of sales force territories (Mulvey and Beck, 1984).

Comprehensive surveys of clustering models and their applications can be found in Refs.
(Kaufman and Rousseeuw, 1990; Everitt, 1993).
The CCP is a complex combinatorial problem which has been proved to be NP-complete

(Garey and Johnson, 1979). Due to its complexity, exact algorithms are not expected to be able
to handle problems of the dimensions found in real-world applications, and most methods
proposed to solve it are heuristic-based. These can be broadly classi®ed into constructive
heuristics and improvement heuristics. In constructive methods, a feasible solution is
constructed through the successive addition of new elements according to some criterion. The
well known greedy algorithms are examples of this class of heuristics. In improvement
heuristics, a mechanism that iteratively interchanges elements of a solution is used to improve
the objective function. Local search or neighborhood search are examples of improvement
methods. The main disadvantage in using a local search method is that it may result in
unsatisfactory local optima.
Metaheuristics are global optimization procedures that are superimposed on local search

methods so that local optima can be overcome. In the past decade, a number of metaheuristics
have been proposed and successfully applied in solving a variety of combinatorial problems.
The most relevant are Tabu Search, TS (Glover and Laguna, 1997), Simulated Annealing, SA
(Kirkpatrick et al., 1983; Cerny, 1985), GRASP (Feo and Resende, 1989) and Genetic
Algorithms (Holland, 1975). Most metaheuristics are provided with a mechanism that allows
the objective function to deteriorate, so they are capable of escaping from local optima.
TS starts from an initial solution and moves to the next solution by selecting the best of its

neighbors. If the current solution is a local minimum, this means accepting a non-improving
movement. However, since the search always looks for the best movement it may return to the
local minimum from which it has just emerged. To prevent such cycling, the reversal of a move
that has just been performed is inserted in a constantly updated tabu list and is forbidden
(tabu) during a certain number of iterations. In practice, such restrictions are applied to move
constituents or attributes rather than the move itself. A move will then be forbidden if some
(or all) current tabu conditions of its attributes are satis®ed. In this case, we say the tabu rule
has been activated.
Various other elements and strategies are included in the TS methodology. Two of the most

popular and powerful of these TS strategies for enhancing the performance of the method are
diversi®cation and intensi®cation. Intensi®cation modi®es rules related to choice of movements
so that historically good solutions are favored, while diversi®cation modi®es rules in order to
incorporate features which have not been encountered in the solutions up to that time.
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Diversi®cation aims to direct the search to as yet unexplored regions. A vast literature has
been devoted to successful TS applications for solving a variety of combinatorial optimization
problems (Osman and Christo®des, 1994; Gendreau et al., 1994; Franc° a et al., 1995; Franc° a et
al., 1996; Glover et al., 1999); for an annotated bibliography on metaheuristics, the reader may
refer to Laporte and Osman (1994) or to the book of Aarts and Lenstra (1997).
The present paper proposes a TS-based heuristic to solve the CCP. Our TS implementation

incorporates a new adaptive scheme, which allows the search to integrate automatically the
diversi®cation and intensi®cation phases. Another feature of this adaptive TS approach is its
ability to attain high quality solutions using simple neighborhood structures. Moreover, the
proposed method reduces considerably the tedious computational tests necessary to set
adequate TS parameters such as tabu tenure, or the number of iterations during which a recent
movement will be considered tabu. This paper is organized as follows. In Section 2, the CCP is
de®ned and the most relevant methods of solution which have been proposed are surveyed.
Constructive methods to generate feasible initial solutions are presented in Section 3 and the
local search heuristic and adaptive TS approach are described in Section 4. Section 5 reports
the results obtained with computational tests of a set of 20 instances from the literature, and a
comparison of these results with those obtained with two other approaches. Concluding
remarks are presented in Section 6.

2. The CCP formulation

A CCP mixed-integer formulation very similar to the one given by Mulvey and Beck (1984)
will be adopted. Consider a set of customers, I � f1,2, . . . ,ng, with an n� n symmetric matrix
�dij � representing the Euclidean distances between pairs of customers. Assume that dij > 0 and
dii � 0, 8i,j 2 I. A positive weight wi is assigned to each customer i. Let J � f1,2, . . . ,mg denote
the set of clusters and Wj their capacities. A median of cluster j is de®ned as the customer
from which the sum of the distances to all other customers in cluster j is minimised. For the
sake of simplicity in notation, the capacity of each cluster, W, is assumed to be identical.
The binary variable yj assumes the value 1 if customer j is assigned as the median for cluster

jEJ; otherwise, its value is zero. The binary variable xij indicates whether or not customer i is
assigned to cluster j. If it is, this variable equals 1; otherwise, it equals zero.
Constraint set (2) guarantees that only p clusters will be selected. The constraints de®ned in

Eq. (3) ensure that all customers are assigned, while the constraints in (4) prevent assignments
to customers that have not been selected as medians. The constraints (5) ensure that the sum of
the weights assigned to a cluster does not violate its capacity.

F�P� � Min
X
i2I

X
j2J

dijx ij �1�

subject toX
j2J

yj � p �2�
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X
j2J

xij � 1 i 2 I �3�

xijRyj i 2 I, j 2 J �4�

X
i2I

wixijRW j 2 J �5�

xij,yj 2 f1,0g i 2 I, j 2 J �6�
Many heuristic methods have been proposed to solve the CCP. Mulvey and Beck (1984)
present two algorithms. The ®rst proposes a primal heuristic based on the greedy assignment of
customers to prespeci®ed seeds. In this approach, a random set of p medians is chosen and
customers are assigned to the nearest median such that the cluster capacity constraints (5) are
not exceeded. This assignment is made in decreasing order of the regret value, de®ned as the
absolute value of the di�erence in distance between a customer's ®rst and second nearest
median. This strategy guarantees that the possibility of assignment of a customer to a very
distant median is minimized. After all assignments, the median of each cluster is re-computed.
If new medians are found, the assignment process is repeated. When the ®nal set of medians is
found, a pairwise interchange procedure is adopted to improve the solution. A new random set
of seeds is then generated, and the entire process is repeated for a predetermined number of
steps. These authors also propose a hybrid heuristic-subgradient method where the primal
heuristic is embedded within a subgradient algorithm. Computational results of 18 randomly
generated problems of up to 100 customers and 20 medians show that the method is capable of
®nding solution values with a relative deviation from the lower bound of the subgradient
ranging from 0.37 to 3.6%.
The method proposed by Koskosidis and Powell (1992) is an improvement on the algorithm

of Mulvey and Beck. They suggest various algorithms to ®nd initial solutions based on the
Lagrangian relaxation of the assignment constraints (3), which leads to the decomposition of a
single CCP problem into a series of knapsack problems. Bramel and Simchi-Levi (1995) also
use Lagrangian relaxation to decompose the problem into knapsack problems and then
calculate a lower bound through a subgradient procedure. Their problem considers that a ®xed
cost is incurred for locating a median at site j, j � 1, . . . ,m, and do not specify a ®xed number
of medians to be located. As the solution provided by the subgradient method may be
infeasible, they propose a heuristic procedure to ®nd a feasible solution (upper bound). The
heuristic is based on the observation that the knapsack solutions can be used for ordering the
medians according to the bene®t of setting up a median at a site. At each iteration of the
subgradient method, a sequence of the optimal solution values found in each knapsack
problem is constructed in a non-decreasing order. Then, a bin packing problem which seeks for
the minimum possible number of medians is solved using W as bin capacities. A bin packing
solution is found by taking the ®rst median of the sequence and assigning the customers in its
optimal knapsack to this median. The next median is taken and the process follows until the
minimum number of medians is found. If some customers remain unconnected, they are
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assigned to medians where they ®t with minimum additional cost. If the relative error between
the best upper bound and the best lower bound is less than a threshold value, the method
applies a local improvement heuristic and terminates. Otherwise, a branch-and-bound
algorithm is used to reduce the gap.
The method presented by Osman and Christo®des (1994) applies a hybrid SA and TS

algorithm, which utilizes a three stage procedure to obtain an initial feasible solution. In the
®rst stage, a set of initial seeds is determined such that a good seed spread is guaranteed; the
two farthest customers are chosen and assigned as medians; the next median is selected to
maximize the product of the distances from this median to the medians already selected. In the
second stage, the non-medians customers are assigned to their nearest medians as long as the
capacities of the clusters allow this. Whenever an assignment causes a capacity over¯ow, the
corresponding customer is assigned to the immediately available nearest median. Finally, in the
third stage, the median of each cluster is re-computed according to the ®nal assignments. If
new medians are found, the assignment process is repeated. This initial solution is then
improved by a metaheuristic. They propose a hybrid SA/TS scheme which employs a shift and
a pairwise interchange neighborhoods. Osman and Christo®des report computational results of
20 problems with deviations from the best known solutions in the range of 0.0±2.94%.
Another heuristic approach was developed by Fisher and Jaikumar (1981) to solve the

Generalized Assignment Problem (GAP), which is closely related to the CCP, except that the
cluster seeds are given and ®xed. The method was applied to solve a version of the vehicle
routing problem.

3. Initial solution

Tabu search implementations require an initial feasible solution to initiate the search process.
Such a feasible solution can be obtained by many algorithms. We chose the iterative three-
stage procedure proposed by Osman and Christo®des (1994) and described in the Section 2.
The procedure may fail to produce a feasible solution, however, the implantation proposed
here introduces minor modi®cations in the ®rst and second stages in order to minimise this
occurrence. The improvement in the ®rst stage of Osman and Christo®des' algorithm involves
the choice of the last median that should be the customer that minimizes the product of the
distances between this customer and all the other pÿ 1 medians. The original criterion used in
the second stage is to assign customers to its nearest medians, with this assignment being made
in increasing order of distance. In our second-stage implementation, four di�erent criteria are
used: (1) identical to Osman and Christo®des' criterion; (2) assign customers as a function of
the quotient dij=wi, with the non-medians customers being assigned in increasing order of this
quotient; (3) regret function is the third way to assign customers to medians, with non-medians
customers being ordered in decreasing order of regret; (4) simply uses a sequence of customers
arranged in decreasing order of weight.

P.M. Franc° a et al. / Intl. Trans. in Op. Res. 6 (1999) 665±678 669



4. TS implementation

Some of the key features that are responsible for e�ective TS implementation are the
following:

. neighborhood generation mechanism;

. de®nition of the tabu activation rule;

. tabu tenure, i.e., length of time in which a previous move will be maintained tabu-active.

In this TS approach for the CCP, two neighborhood generation mechanisms are considered.
Given that P is the current solution, the ®rst neighborhood N1(P ), called pairwise interchange,
consists of all solutions generated by interchanging any two customers that belong to di�erent
clusters. The second neighborhood N2(P ) is called insertion or shift and consists in inserting
any customer that belongs to one cluster into another.
A local search step will be performed when a move to one of the neighbors of N1(P ) or

N2(P ) yields an improvement in the objective function. For any given pair of clusters, the
customers are ®rst searched sequentially and systematically by pairwise interchange; only
afterwards does the search look for improving solutions in the insertion neighborhood. The
next solution P ' can be either the neighbor that results in the best improvement or the one that
®rst causes an improvement. Whenever a movement is performed, the medians of the clusters
involved in it have to be recalculated.
The central idea underlying TS is the use of a ¯exible memory to guide the search process.

Once a movement is performed, its reverse is prohibited for a certain number of iterations y.
This means that at a certain iteration, the e�ective neighborhood used to select the next
solution will be a subset of N1(P )[N2(P ). Characterized in this way, TS may be viewed as a
dynamic neighborhood search. Since the method allows non-improving movements, the
prohibition of the reversal of the most recent movements is the way TS prevents cycles with a
length less than or equal to jyj from occurring in the search trajectory. Actually TS does not
store the complete solutions of the previous y movements, since such a practice would be space
and time-consuming. A more elegant and equally e�ective procedure is to store solution
attributes that have changed during the recent past. This kind of memory is called attributive
recency-based memory. Selected attributes that occur in recently visited solutions are labeled
tabu-active. When a move attempts to reach some solution which contains or exceeds a pre-
speci®ed number of tabu-active elements, it will be declared tabu, and prohibited to be
performed.
Regarding a pairwise interchange movement, the attributes chosen to control the search are

the four edges involved when two customers from di�erent clusters are exchanged. To perform
a movement observe that two edges have to be deleted and two others added. After every
move, four y numbers are randomly chosen within a tabu tenure range de®ned by parameters
ymin and ymax and assigned to each edge. These de®ne the number of iterations for which the
edges should remain tabu-active. During the next y iterations, any candidate move comprising
one or more of these edges may be subject to restrictions. The status of a move involving one
or more of these tabu-active edges is determined by the tolerance parameter T1. This tolerance
expresses the tabu activation rule by de®ning the maximum number of tabu-active edges which
can be present in a move. Hence, T1 can assume the values 0, 1, 2, 3 or 4. If T1, is set to zero,
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the search will be limited to moves that do not involve any tabu-active edge, whereas if T1 � 4,
any candidate move will be accepted, regardless of the status of the edges involved.
The same concepts are used to manipulate insertion movements. Observe that when a

customer is inserted into a cluster, only two edges are involved. In this case, the tabu
activation rule depends on the de®nition of a new tolerance parameter T2, which can assume
the values 0, 1 or 2. The present TS implementation also considers an aspiration criterion,
which states that the tabu activation rule is to be overridden if the move yields a solution
better than the best obtained so far (incumbent solution).

4.1. Adaptive TS algorithm

This adaptive TS version also incorporates a speci®c feature which gives the search the
ability to set proper values to T1, and T2 for intensi®cation and diversi®cation purposes
automatically. Such a TS approach has been proposed by Pureza and Franc° a (1996), and it has
been successfully applied to solve other combinatorial problems. The main goal of the adaptive
TS approach is to alter restrictiveness levels in order to intensify the exploration when
indicators identify promising regions, and promote diversi®cation, if improvements seem to be
minimal. Many recent TS implementations aiming the integration of intensi®cation and
diversi®cation strategies have been proposed. The concept of moving gaps (HuÈ bscher and
Glover, 1992), where the tabu list consists of both a static and a dynamic part, is one of these
attempts. Chakrapani and Skorin-Kapov (1993) utilize a similar concept for the quadratic
assignment problem by dynamically varying the tabu list size through eight con®gurations.
The level of restrictiveness of the search can be governed by controlling the values assigned

to T1 and T2, as well as the range of the tabu tenures. When the search process encounters

Fig. 1. Identi®cation of trajectories.
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high restrictiveness levels (T1 � T2 � 0, for instance), it is likely to fail in ®nding high quality
solutions because the most attractive moves of the current neighborhood will be forbidden.
Under these circumstances, a search diversi®cation should occur. Analogously, the opposite
situation Ð low restrictiveness levels Ð should promote search intensi®cation.
The control mechanism which determines when to shift from diversi®cation to intensi®cation

phases, or vice versa, is based on trajectory patterns, i.e., the behavior of the objective function
value over the last h iterations. This h parameter indicates the length of the horizon used to
compute and evaluate the trajectories. Three di�erent cost behaviors have been investigated:
stagnation, ascent trajectories and descent trajectories. When search stagnation is observed, the
adaptive mechanism responds by imposing increasing restrictiveness levels aiming at promoting
a diversi®cation phase. Under an ascent trajectory, the method relaxes tabu restrictions to stop
diversi®cation. If the solution sequence describes a descent cost trajectory, the adaptive
approach establishes mild restrictiveness levels in order to stimulate a more extensive
exploration of the current region.
The identi®cation of these three trajectory patterns involves calculating the average of the

objective function costs observed during the last two search stages, de®ned as the current stage
and previous stage. In both stages, the average costs are computed over h iterations. Fig. 1
illustrates the trajectory identi®cation process. Assume that c�xi � is the objective function value
calculated at iteration ti.
The relation between the values of the previous and current averages is used as a means of

identifying the trajectory pattern. If the average values are approximately the same, we say that
a stagnation has taken place, but if the current average is greater than the previous one, the
search is describing an ascent trajectory. Since the use of these simple statistics to infer search
behaviors faces certain limitations, a suitable choice of h is mandatory to minimize possible
misinterpretations.
In addition to its role in search pattern identi®cation, h also de®nes the period during which

the perturbation selected in the previous analysis or evaluation is to be applied. The horizon
should be long enough to ensure that improvement possibilities are not overlooked during
promising stages and to overcome stagnation. However, excessively long horizons generally
result in an excessive increase of solution costs during the application of high restrictiveness
levels, which may direct the search to lower quality local optima and delay further
improvement.
Preliminary computational experiments suggested the adoption of random dynamic horizons.

Hence, for every evaluation, a random integer h is generated within the range [hmin,hmax].
Despite the fact that the search process can be controlled not only by the parameters T1 and
T2 but also by the tabu tenure y, in this implementation only the parameters T1 and T2 are
considered, since the search response is much slower to alterations in the y parameter, when
compared to changes in T1 or T2. The use of parameter y for control purposes would require a
more complex control system, such as the determination of the period during which a
perturbation remains in¯uential on the search process.
The perturbation of T1 and T2 is performed at predetermined intervals, so that the iteration

of the next evaluation is de®ned in advance. This iteration is calculated by adding k � h to the
current iteration, where k can assume any real value. Actually, the k value is a tuning factor to
adjust the period during which a perturbation is applied. A perturbation intended to lead the

P.M. Franc° a et al. / Intl. Trans. in Op. Res. 6 (1999) 665±678672



search to a high restrictiveness level Ð T1 � T2 � 0, for instance Ð requires small k values,
generally lower than 0, so that the diversi®cation phase period will be limited. Descent
trajectories, on the other hand, impose k values greater than 1 so that the search time lasts
long enough to bene®t from the promising possibilities of the region. Another important
element adopted in this implementation is an aspiration criterion, which keeps the search
operating under standard parameter values when an improvement is veri®ed during the last
search stage, regardless of the trajectory patterns. In this case k, is also greater than 1. Based
on previous computations, standard values of T1 � 3 and T2 � 1 were selected.

4.2. Adaptive TS algorithm steps

Step 1. Let t be the current iteration. Set t � 0. From a starting solution, set T1 � 3, T2 � 1
and proceed with the heuristic search until the ®rst local optimum is found. Meanwhile,
store the costs of the generated solutions in a list. Until the stopping criterion is not
satis®ed, repeat the following steps.
Step 2. Make previousmean equal to the mean of the costs stored in the list and reset the list.
Draw a random evaluation horizon h within the adopted range [hmin,hmax], and resume the
search under the same operating conditions for h iterations. The next evaluation (nexteval)
will occur at iteration t� h. Meanwhile, complete the cost list. When t � nexteval, make
currentmean equal to the mean of the costs in the list. Select a new h.
Step 3. If the search succeeds in improving the best solution, set T1 � 3, T2 � 1 and
maintain the search under these conditions for h iterations (nexteval � t� h) and go to Step
5. Otherwise, go to Step 4.
Step 4. Compute diff � �previousmean ÿ currentmean�=previousmean.

4.1. If abs�diff �R0:01 then the search is stagnated. Apply maximum restrictiveness levels
�T1 � T2 � 0�, and maintain the search under these conditions for h=2 iterations
(�nexteval � t� h=2�.
4.2. Otherwise, and if diff<ÿ 0:01, an ascent trajectory has been identi®ed; in this case,
restrictiveness levels are altered as a function of this di�erence, according to the additional
set of rules presented below. Maintain the search under these operational conditions for
2 � h iterations (nexteval � t� 2 � h) if T1 � 4 and T2 � 2, or for h iterations if other T1

and T2 values have been used (nexteval � t� h).
4.3. Otherwise, and if diff > 0:01, an descent trajectory has been veri®ed. If T1 � 4 and
T2 � 2, set T1 � 3 and T2 � 1 in order to increase restrictiveness, and maintain the search
under these operational conditions for h iterations (nexteval � t� h).

Step 5. When t � nexteval, go to Step 3.

4.3. Additional rules for ascent trajectories

In Step 4.2, new tolerance values are selected through a set of rules, where each rule
comprises a speci®c range of di� values:

1. If ÿ0:035Rdiff, then set T1 � 4 and T2 � 1. The purpose of this choice is to reach a new
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valley. High restrictiveness levels reduce the chances to return to the previous valley, which
would imply null restrictiveness.

2. If ÿ0:035RdiffRÿ 0:025 then set T1 � 3 and T2 � 1. When less diversi®cation is veri®ed,
higher restrictiveness levels should be applied to prevent the return to the valley from which
the search has emerged, while exploring the possibilities of the current region.

3. If ÿ0:025<diffRÿ 0:015, then set T1 � 2 and T2 � 0.
4. If ÿ0:015<diffRÿ 0:01, then set T1 � 1 and T2 � 0.

5. Computational experiments

The e�ectiveness of the adaptive TS approach in solving the CCP has been tested with 20
problems found in the literature (Beasley, 1990). Two sets of problems with n 2 f50,100g and
p 2 f5,10g were used. Each set contains ten di�erent instances of size 50� 5 and ten of
100� 10. It is assumed that the customers are located on the plane and that their coordinates
are randomly generated from a uniform distribution in the range [1, 100]. The Euclidean
distances dij are rounded down to the nearest integer. The weights wi are generated from the
uniform distribution [1, 20]. The generation of cluster capacity is controlled by the tightness
factor de®ned as

t �
X
i2I

wi

m:W

The tightness values adopted in the experiments vary in the range [0.82, 0.96], which are the
same used by Osman and Christo®des.
Two strategies for selecting a new neighbor were tested: the best-improve strategy, which

examines all solutions within the neighborhood and selects the one which results in the best
objective function improvement, and the ®rst-improve strategy, which accepts the ®rst solution
that improves the objective function. Results have shown that in general the best-improve
strategy performs better when n � 50, whereas the ®rst-improve yields the best results when
n � 100.
Regarding the constructive heuristics proposed to ®nd an initial feasible solution, all foul

heuristics succeed in achieving feasible solutions. The only exception is the heuristic which uses
the ®rst criterion that assigns customers to the nearest medians, which failed in one instance of
the problem set. The experiments indicated that the best choice is the heuristic using the
quotient dij=wi as the assignment criterion, followed by the one using the regret function
criterion.
A well known result reported by various authors (Glover and Laguna, 1997) is that the

number of iterations y for which a move is declared tabu-active should not be a constant, but
rather a random variable uniformly distributed in an interval. Computational experiments
showed that the interval [n/4, n/2] provided the best results. The values adopted for the interval
[hmax,hmax] were [5, 10] and [10, 20] for problems with n � 50 and n � 100, respectively. The
stopping criterion adopted was the number of iterations during which no improvement in the
incumbent solution is observed. It was set 2000 iterations for problems with 50 customers and
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5000 iterations for problems with 100 customers. Tests were performed on a SUN Sparc20
workstation using the C language to code the algorithm.
In the ®rst computational experiment, we compare the performance of the proposed method

relative to the optimal solutions obtained by a branch and bound procedure (Maniezzo et al.,
1998). Table 1 shows the results obtained in di�erent stages of the solution process. The second
column shows the values of the tightness factor t. The third column shows the relative percent
deviation from the optimal solution attained by the local search stage (LS). The next column
shows the deviations obtained by the tabu search implementation without the adaptive
mechanism (TS) followed by the results attained by the adaptive TS algorithm (ATS). In all TS
implementations, the initial feasible solution was obtained by the heuristic that uses the
quotient dij=wi as the assignment criterion. The ®nal column shows the deviations obtained by
the previous adaptive TS algorithm when the search is re-started from a new initial solution
obtained now by the heuristic that uses the regret function as the assignment criterion (ATS+).
The results presented in Table 1 show that the simple TS implementation improves

considerably over the solutions obtained by local search, leading to an average cost reduction
of 52%. The cost reduction observed by the adaptive TS algorithm compared to its non-
adaptive version averages 98.6%. The adaptive TS implementation with a re-start feature was
capable of achieving optimal solutions for all but one of the 20 test problems.

Table 1
Comparisons to optimal solutions

Problem t LS TS ATS ATS+

1 0.82 5.18 0 0 0
2 0.84 0 0 0 0
3 0.85 3.72 3.20 0 0

4 0.86 5.22 0 0 0
5 0.90 4.75 0.30 0 0
6 0.92 8.89 0.26 0 0
7 0.92 2.43 2.92 0 0

8 0.92 0.41 0.61 0 0
9 0.93 1.93 5.45 0 0
10 0.96 12.80 0.97 0 0

11 0.85 7.05 0.70 0 0
12 0.85 8.69 0.41 0 0
13 0.86 10.33 10.33 0 0

14 0.88 2.64 4.68 0.30 0
15 0.88 12.64 7.97 0.27 0
16 0.88 18.97 4.93 0 0

17 0.89 7.35 1.35 0 0
18 0.89 5.36 6.04 0.19 0
19 0.90 2.61 3.49 0.19 0.09
20 0.94 7.01 11.94 0 0

Average 6.89 3.27 0.047 0.004
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Our second computational experiment compares the proposed metaheuristic approach with
two others also proposed to solve the CCP: the hybrid simulated annealing/tabu search
algorithm (OC) with the non-monotonic cooling schedule presented by Osman and Christo®des
(1994), and the simulated annealing approach (CO) proposed by Connolly (1990), (1992).
Table 2 shows the comparisons in terms of the relative percent deviation (RPD) from the
optimal solutions and also the objective function values attained by each algorithm (F(P )),
with Fopt representing the objective function values of the optimal solutions. The results from
Connolly's algorithm were extracted from Ref. (Osman and Christo®des, 1994). The analysis of
the results in Table 2 shows that our method outperformed the two other metaheuristics.
Table 3 shows the average CPU time in seconds to run the 10 instances with 50 customers

and 100 customers, respectively. It is worth mentioning that the results due to Connolly and
Osman/Christo®des was obtained with a VAX 8600 and their algorithms were coded in
FORTRAN 77. From Tables 2 and 3, it can be seen that the ATS algorithm performs slightly
better than the OC algorithm at a savings of almost 50% in CPU time. The ATS+

implementation ranks ®rst when compared to all other methods, although at the expense of
more computational e�ort.

Table 2
Comparisons with other metaheuristics

Problem

Fopt OC CO ATS ATS+

F(P ) RPD F(P ) RPD F(P ) RPD F(P ) RPD

1 713 713 0 734 2.95 713 0 713 0
2 740 740 0 740 0 740 0 740 0
3 751 751 0 751 0 751 0 751 0

4 651 651 0 651 0 651 0 651 0
5 664 664 0 664 0 664 0 664 0
6 778 778 0 778 0 778 0 778 0
7 787 787 0 805 2.29 787 0 787 0

8 820 820 0 820 0 820 0 820 0
9 715 715 0 715 0 715 0 715 0
10 829 829 0 829 0 829 0 829 0

11 1006 1006 0 1006 0 1006 0 1006 0
12 966 966 0 966 0 966 0 966 0
13 1026 1026 0 1026 0 1026 0 1026 0

14 982 985 0.30 982 0 985 0.30 982 0
15 1091 1091 0 1091 0 1094 0.27 1091 0
16 954 954 0 954 0 954 0 954 0

17 1034 1039 0.48 1037 0.29 1034 0 1034 0
18 1043 1045 0.19 1045 0.19 1045 0.19 1043 0
19 1031 1031 0 1032 0.10 1033 0.19 1032 0.09
20 1005 1005 0 1019 1.39 1005 0 1005 0

Average 0.049 0.360 0.047 0.004
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6. Concluding remarks

In this article a new adaptive tabu search-based heuristic approach for solving the CCP was
presented. Four constructive heuristics based on weight and/or distance criteria were proposed
for ascertaining initial feasible solutions. A local search scheme makes use of two
neighborhood generation mechanisms (pairwise interchange and insertion) for the selection of a
new improving solution. Two di�erent versions of a basic tabu search algorithm incorporating
an adaptive mechanism for systematically perturbing selected tabu elements were developed.
The main idea underlying this adaptive TS approach is controlling the restrictiveness of the
search in order to promote intensi®cation of the search when some indicators identify
promising regions, and diversi®cation if improvements seem to be minimal. The main
advantage of this adaptive TS approach is its ability to attain high quality solutions using
simple neighborhood structures.
Computational tests of 20 problems obtained from the literature of sizes varying from 50 to

100 customers have shown that the new method out-performs two other metaheuristic
approaches recently proposed for solving the CCP. When compared to optimal solutions, the
new approach was able to attain the optimum for all but one of the problems.
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