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Abstract

Conventional cluster validity techniques usually represent all the validity information available about a particular

clustering by a single number. The display method introduced here uses images generated from the results of any

prototype generator clustering algorithm to do cluster validation.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Clustering attempts to partition a dataset into

self-similar groups (clusters). In this study we
consider clustering methods based on the hard

(Tou and Gonzalez, 1974), fuzzy (Bezdek, 1981)

and possibilistic (Krishnapuram and Keller, 1993)

c-means algorithms. Those methods and their

various generalizations simultaneously attempt to

partition the data and describe the geometric

structure of the clusters using prototypical cluster

shapes such as: volumetric clouds; hyper-spherical

shells; hyper-dimensional lines, planes or regres-

sion models; etc. We refer to this large class of

methodologies as prototype generator clustering

methods.
An essential fact about prototype generator

clustering methods is that they always produce

clusters (after all, that is their job, and they do it),

even if the number of clusters assumed is ‘‘incor-

rect’’, or the prototypes are inconsistent with the

geometry of the clusters, or worst of all, there really

are not any clusters in the data, even though every

algorithm will find some. This disturbing property
justifies the study of cluster validity techniques,

which attempt to assess the ‘‘correctness’’ of a

particular set of clusters in a given dataset.

Cluster validity is a widely studied problem.

Nearly 20 years ago, Hubert and Arabie (1985)

asserted that a comprehensive review of the liter-

ature would require a monograph––now, it would
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require a polygraph! The vast majority of valida-

tion methods attempt to assess the degree of va-

lidity with a scalar measure of ‘‘partition quality’’,

or ‘‘natural validity’’, and so on. One problem

inherent with this approach is that representing the

correctness of a particular cluster analysis by a
single real number invariably loses much infor-

mation. We take the opposite tack, proposing here

a visual display of the fit to the n data by the

clustering model via an n� n intensity image that

uses all of the information produced by the clus-

tering method. This method essentially follows the

SHADE approach introduced in (Ling, 1973),

adapting it for use with all prototype generator
clustering methods. Our visual cluster validity

(VCV) approach retains and organizes the infor-

mation that is lost through the massive aggrega-

tion of information by scalar validity measures.

Section 2 gives a brief description of prototype

generator clustering methods. Section 3 describes

the VCV approach and describes its connections to

its nearest relatives. Three numerical examples
using two prototype generator clustering methods

are given in Section 4. Section 5 contains a short

discussion and conclusions.

2. Prototype clustering methods

Most prototype generator clustering methods

partition a dataset X ¼ fx1; . . . ; xng � Rs by (ap-

proximately) minimizing a member of the family

of functionals

JmðU ; V Þ ¼
Xc

i¼1

Xn

k¼1
Um

ik dðvi; xkÞ
2 þ PmðUÞ; ð1Þ

where n ¼ jX j, m 2 ½1;þ1Þ is a user-defined

fuzzification constant, c is the number of clusters

assumed, U is a c� n matrix of memberships

ðUik ¼ degree of association of xk with cluster iÞ,
V ¼ fv1; . . . ; vcg is a set of prototype parameters,
dðvi; xkÞ measures the distance between xk and

prototype i, and PmðUÞ is a penalty term (possibi-

listic only).

The hard and fuzzy approaches (where

PmðUÞ 
 0) are discussed in (Bezdek, 1981), and

the possibilistic approach is introduced in (Krish-

napuram and Keller, 1993). A more recent dis-

cussion of this general approach and some of its

most important instances are given in (Bezdek

et al., 1999).

The three most important points about proto-

type generator clustering are that: (1) prototype

generator clustering has established itself as a use-
ful, and therefore widely used, clustering method-

ology in both pattern recognition and control; (2)

no completely satisfactory method exists for de-

termining the validity of clusters produced by any

clustering algorithm (see, for example, the cri-

tique of Bezdek et al. (1997)); they compare 23

scalar indices of cluster validity and conclude that

none of them are exceptionally reliable across a
wide range of datasets); and (3) prototype gener-

ator clustering terminates with a set of datum

to prototype distances fdðvi; xkÞg. The distances

fdðvi; xkÞg are an important key to our new VCV

method, as they can be used to calculate pairwise

dissimilarities between each pair of data points,

and these ‘‘distances’’ are the basis for VCV dis-

play.

3. Validity displays

The earliest published reference we can find to a

visual display technique similar to our VCV

method is Ling (1973). Ling�s approach, known as

SHADE, gives a display of clusters having the
structure of volumetric clouds. (An important

point is that SHADE seems appropriate only for

volumetric cloud clusters.) SHADE relies on the

output of a clustering technique (such as an hier-

archical technique) to produce a ‘‘cluster order-

ing’’ of the data. Then SHADE approximates an

intensity image representation of the clusters using

a crude (well, it seems crude in 2002; but in 1973,
this was the method du jour for making images!)

fifteen level halftone scheme created by overstrik-

ing standard printed characters. The halftone (in-

tensity) level for each pair of data is based on the

Euclidean distance between the points, where dark

corresponds to near and light to distant. SHADE

displays only the lower triangular part of the

complete square display.
Closely related to SHADE, but presented more

in the spirit of finding clusters (i.e., as a visual
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clustering algorithm) rather than displaying clus-

ters found with an outsourced algorithm is the

‘‘graphical method of shading’’ described on p. 577

of Johnson and Wichern (1992). This method be-

gins with a matrix of inter-datum Euclidean dis-

tances R ¼ ½rij�:

Rij ¼ jxi � xjjE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs

k¼1
ðxik � xjkÞ2

s
: ð2Þ

Johnson and Wichern give their method as a
four step procedure: (i) arrange the inter-data

distances from (2) into several classes of 15 or

fewer, based on their magnitudes; (ii) replace all

distances in each class by a common symbol with a

certain shade of gray; (iii) reorganize the distance

matrix R so that items with common symbols

appear in contiguous locations along the main

diagonal (darker symbols correspond to smaller
distances); (iv) extract groups of similar items

correspond to patches of dark shadings.

Recently, the method of shading was updated

by Bezdek and Hathaway (2002) as a procedure

called VAT, which stands for Visual Assessment of

(Cluster) Tendency. VAT uses a digital intensity

image to represent R rather than a halftone scheme

with only 15 shades. Additionally, VAT uses an
efficient reorganization scheme (corresponding to

(iii) above) based on a modification of Prim�s al-
gorithm for computing minimal spanning trees. In

this case, dark blocks along the diagonal of the

digital representation of the reorganized distance

matrix can be used to identify volumetric cloud

clusters. We illustrate VAT with a simple example.

Fig. 1(a) is a scatter plot of a 2-D dataset con-
sisting of two volumetric cloud clusters.

Let R and R� denote the original and reorga-

nized distance matrices, and IðRÞ and IðR�Þ be

their corresponding VAT images. IðRÞ and IðR�Þ
derived from the data in Fig. 1(a) are shown in

Fig. 1(b) and (c). The reorganized representation

IðR�Þ clearly indicates two clusters in the data. Of
course, the power of this technique lies in its ap-

plicability to cases where the data occur in di-

mensions greater than three, so that a scatterplot

revealing the cluster structure is not possible.

How is our new VCV approach related to

SHADE and VAT? VCV is similar to VAT in that

a digital image (rather than a halftone scheme) is

used to display the various inter-datum distances.
VCV is similar to SHADE in that it is a tool to

display (rather than find) the clusters produced by

an outsourced clustering algorithm. In particular,

the outsourced algorithm assumed for VCV is

any member of the prototype generator clustering

family described in Section 2. VCV specification

requires details about two issues: ‘‘cluster order-

ing’’ and inter-datum distances.
Reordering of the data for VCV display is done

in two steps: (s1) the clusters themselves are (pos-

sibly) reordered; and then (s2) the data in each

cluster are reordered. For VCV display, we define

the distance between clusters as the Euclidean dis-

tance between the parameters defining the cluster

prototypes. Cluster reordering is done by (arbi-

trarily) keeping the original first cluster as the first
reordered cluster, and then (possibly) reordering

the remaining clusters so that (new) cluster iþ 1 is

the ‘‘nearest’’ of the remaining clusters to (newly

indexed) cluster i. For example, (new) cluster 2 is

picked from old clusters f2; 3; . . . ; cg by finding the

Fig. 1. (a) Data for VAT, (b) IðRÞ and (c) IðR�Þ.
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old cluster nearest to cluster 1; then (new) cluster 3

is picked from old clusters f3; 4; . . . ; cg by finding

the old cluster nearest to (new) cluster 2; and so on.

In our implementation, we calculated inter-cluster

distances to be the Euclidean distances between the

parameters defining the cluster prototypes. (For
example, the parameters for FCM consist of the

cluster mean vectors.) This ‘‘greedy’’ reordering

prevents a cluster from appearing more than once

as a diagonal element in the visual display.

After the clusters are reordered, the ordering

of the data in each cluster is considered. Recall

that the prototype generator clustering family in

Section 2 includes hard, fuzzy and possibilistic
methods. If the algorithm used generates a hard

partitioning, then no further reordering of the data

in each cluster is done. If the clustering is a fuzzy

or possibilistic (i.e., soft) partitioning, then each

datum is assigned to the (crisp) cluster corre-

sponding to its largest membership value. In other

words, we assign datum xk to cluster i if the ter-

minal Uik P fU1k; . . . ;Uckg. A tie-breaking strategy
can be used when this does not uniquely specify

the assignment. (This procedure finds the crisp

labeling Umm of X , commonly called the maximum

membership hardening of the soft partition U ).

Finally, for the fuzzy and possibilistic schemes, the

data in each (crisp) cluster of Umm are reordered in

accordance with decreasing membership values in

U . In other words, the (reordered) first datum in a
cluster has the highest membership value for that

cluster; the (reordered) second datum has the sec-

ond highest membership value for that cluster;

etc. This intra-cluster reordering roughly orders

‘‘nearby’’ data points so that they are close to each

other. This imparts a smoother appearance to the

video displays.

The second important issue in VCV is the
measurement of inter-datum distances. The use of

pairwise Euclidean distances only makes sense if

the clusters are extremely well separated or if they

consist of volumetric clouds. We need a measure

of dissimilarity Rjk between data xj and xk that is
small if they both fit well into the same cluster and

that is large otherwise. We want to generate this

dissimilarity measure in a computationally efficient
manner, ideally using the ½dik ¼ dðvi; xkÞ� values

produced in the process of clustering via a member

of (1). We define a pairwise dissimilarity R�
ik for

VCV as:

R�
ik ¼ min

16 j6 c
fdji þ djkg ð3Þ

This choice gives a measure of dissimilarity that is

symmetric and satisfies the triangle inequality, but
it is not a metric since generally R�

jj > 0, and

R�
jk ¼ 0 does not, in general, imply that xj ¼ xk.
Example calculations using (3) are shown in

Fig. 2, where the distances ½dðvi; xkÞ� are measured
vertically from the datum to the line prototypes.

Note that this approach (correctly) indicates less

dissimilarity between x3 and x5 (which are both

close to prototype v1), than between x5 and x7, even
though the Euclidean distance between x5 and x7 is
smaller than the distance between x3 and x5. Thus
R�
35¼ dðv1;x3Þþdðv1;x5Þ<R�

57¼ dðv2;x5Þþdðv2;x7Þ.
After the matrix R� of reordered pairwise dis-

similarity values is found, the information is dis-

played as an intensity image IðR�Þ, where small

dissimilarities are represented by dark shades

and large dissimilarities are represented by light
shades. Roughly speaking, (darkly shaded) diag-

onal blocks in the IðR�Þ correspond to clusters in

the data.

4. Numerical examples

Fig. 3(a) and (b) are sets of c ¼ 3 visually ap-
parent clusters of n ¼ 150 points each in s ¼ 2

dimensions. We test the VCV approach to dis-

Fig. 2. Dissimilarity calculations via (3).
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covering what seems to be true (i.e., that c ¼ 3) for

these two data sets by applying VCV to clustering

outputs gotten for several values of c, and exam-

ining the images fIðR�Þg associated with each test.
The fuzzy c-means (FCM, Bezdek, 1981) algo-

rithm was used on the cloud data; and the fuzzy c-

regression models (FCRM, Hathaway and Bezdek,

1993) algorithm was used on the linear data. In

all experiments, the norm in (1) was Euclidean,

the fuzzification parameter was set at m ¼ 2, and

iteration was terminated when the (absolute)

maximum of change of each membership value
Uik 6 0:0001. For c ¼ 2, 3, 4 and 10, the algorithms

were initialized by assigning 150=c data to each

cluster (for c ¼ 4, two of the four clusters had 37

points, and two had 38). The datum to prototype

distances needed to construct the reordering in (3)

were: for FCM, dik ¼ ððvi1 � xk1Þ2 þ ðvi2 � xk2Þ2Þ0:5;
and for FCRM, dik ¼ jxk2 � ðvi1xk1 þ vi2Þj. The

distances in R� were linearly scaled so that the
minimum distance corresponded to black and

the maximum distance corresponded to white in

IðR�Þ.
Fig. 4(a)–(d) give the results for the cloud data

and consist of intensity image representations of

the reordered pairwise dissimilarities calculated

using (3). Notice that c ¼ 2 fails to produce a clear

diagonal structure, while the images for c ¼ 3, 4,
and 10 give a clear indication of three clusters. A

very important feature of this approach is that the

actual number of clusters can be indicated even

when a larger number of clusters assumed c is

used. This suggests that the correct value of c can
sometimes be found by running the algorithm with

a large value of c, and then ascertaining its correct
value from the visual evidence in the VCV image.

Fig. 5(a)–(d) give the VCV results for the linear

data. Three diagonal blocks dominate in this case

also, although the images are not nearly as clean as

those for the cloud data. The reason for this is that

FCRM has difficulty in making strong member-

ship assignments in the overlap regions, where

some data fit more than one of the linear proto-
types extremely well. Severe overlap is indicated in

the images by dark pixels in off-diagonal blocks. In

this case there appears to be some deterioration of

the clear indication of three clusters as c gets large
(i.e., at c ¼ 10).

As a final example, we demonstrate the VCV

approach using the famous Iris data. Iris is a set of

n ¼ 150 points in s ¼ 4 dimensions with three
physical subspecies of Iris plants each represented

by 50 vectors. Iris was collected by Anderson

(1935), first published and used in a computational

setting by Fisher (1936), and subsequently used

(and misused) by just about every cluster analyzer

on the planet. We used the data as listed in (Fisher,

1936). The fuzzy c-means algorithm was used with

Fig. 4. (a) Three clouds, FCM @ c ¼ 2, (b) three clouds, FCM

@ c ¼ 3, (c) three clouds, FCM @ c ¼ 4 and (d) three clouds,

FCM @ c ¼ 10.

Fig. 3. (a) Three clouds data and (b) three lines data.
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parameters as given for the three clouds examples
to cluster Iris at c ¼ 2, 3, 4 and 10. The results are

given in Fig. 6. While the Iris data has three dif-

ferent physically labeled classes, the images clearly

indicate two clusters. Is this a reasonable result?

We think so. It is clear from visual examination of

sections of the 4D data in two dimensions that

there are but two geometric clusters in Iris. For

computational evidence, see Bezdek and Pal
(1998), who tested a total of 21 validity indexes,

for c ¼ 2; . . . ; 10, on the Iris data. In their experi-

ment, two indices indicated three clusters, two

indices indicated four clusters, and 17 indices in-

dicated two clusters. Note that the use of these

indices requires multiple runs of a prototype

clustering algorithm for c ¼ 2; 3; . . . ; while VCV

requires only a single run of the prototype clus-
tering algorithm for a single overestimate of the

true number of clusters. Virtually indistinguishable

images were obtained for the Iris data using the

possibilistic c-means algorithm, where the values

for the PCM parameters g1; . . . ; gc were calculated

using the FCM output in Eq. (9) of Krishnapuram

and Keller (1993).

5. Discussion and conclusions

We introduced a new visual display approach to
cluster validity for prototype generator clustering

algorithms which we call the VCV method. Our

new approach is similar to the original SHADE

display of Ling (1973), but uses an inter-datum

dissimilarity that gives (relatively) large values for

data belonging to different clusters. A reordered

matrix of dissimilarities is displayed as an intensity

image, and the number of dark diagonal blocks in
the image presumably indicates the ‘‘actual’’

number of clusters in the data. The reordering is

based on dissimilarities which are available di-

rectly from any prototype generator clustering al-

gorithm, and therefore, the VCV method does not

have a high (additional) computational cost. Ex-

periments using cloud and linear data indicate that

the method is a promising addition to current
cluster validity methodology. Much more testing,

on datasets in high dimensions, is, of course, both

necessary and desirable before a large amount of

confidence can be placed in the VCV method.

Since scalar measures of cluster validity are fa-

mously unreliable, it will be interesting to see

Fig. 6. (a) Iris, FCM @ c ¼ 2, (b) Iris, FCM @ c ¼ 3, (c) Iris,

FCM @ c ¼ 4 and (d) Iris, FCM @ c ¼ 10.

Fig. 5. (a) Three lines, FCRM @ c ¼ 2, (b) three lines, FCRM

@ c ¼ 3, (c) three lines, FCRM @ c ¼ 4 and (d) three lines,

FCRM @ c ¼ 10.
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whether this visual method is more reliable across

a wide range of data types and parameter values

than the standard validity functional approach.
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