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Abstract:  Consider N entities to be classifie~ with given weights, and a matrix 
of dissimilarities between pairs of them. The split of a cluster is the smallest dis- 
similarity between an entity in that cluster and an entity outside it. The single- 
linkage algorithm provides partitions into M clusters for which the smallest split 
is maximum. We consider the problems of finding maximum split partitions 
with exactly M clusters and with at most M clusters subject to the additional con- 
straint that the stun of  the weights of the entities in each cluster never exceeds a 
given bound. These two problems are shown to be NP-hard and reducible to a 
sequence of bin-packing problems. A 0(/7 2) algorithm for the particular case 
M = N of the second problem is also presented. Computational experience is 
reported. 

R6sum6: Soient N objets ~ classifier, ave, des poids donn6s, et une matrice de 
dissimilarit6s entre paires de ces objets. L'6cart d'une classe est la plus petite 
dissimilarit6 entre un objet de cette classe et un objet en dehors d'elle. 
L'algorithme du fien simple fournit des partitions en M classes dont le plus petit 
6cart est maximum. Nous 6tudions comment obtenir des partitions d'6cart maxi- 
mum en exactement M classes ou en an plus M classes sous la contrainte addi- 
tionnelle clue ta somme des poids des objets de chaque classe ne d6pesse jamais 
one borne dorm6e. Nous montrons que ces deux probl~mes sont NP-diff~ciles et 
r6ductibles h une s6quence de probl~mes de mise-en-boites (bin-packing). Nous 
proposons aussi un algorithme en O(N z) pour le cas particulier M = N du 
second probl~me. Enfin, nous pr6sentons des r6sultats de calcul. 

Keywords: Partition; Single-linkage; Split; Cluster weight; Consu-ained clus- 
tering. 

1. Introduction 

Many cluster analysis algorithms (Hartigan 1975; Sp~ith 1980; Gordon 
1981) partition the entities of a given set into homogeneous and/or well 
separated classes, called clusters. In some applications it is desirable for 
operational reasons to impose additional constraints on these clusters. Con- 
strained clustering has been reviewed by Murtagh (1985). The constraints 
most often considered are bounds on the cardinality of the clusters, and con- 
nectivity constraints when regions in the plane are clustered. The former type 
of constraints are easily taken into account in heuristic algorithms of the 
exchange type (e.g., Diday et al. 1979); constraints of the latter type may be 
implemented in agglomerative hierarchical methods by allowing only fusion 
of regions having a common frontier, as proposed by many authors. This pro- 
cedure severely restricts the set of feasible fusions, probably more than is 
required for most partitions. 

Cardinality or weight constraints appear naturally in many applications. 
These include grouping machines into cells or jobs into families in production 
planning (King and Nakornchai 1982; Waghodekar and Sahu 1983; Kusiak, 
Vannelli and Kumar 1986), assigning files to storage devices in data 
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management (Flory, Gunther and Kouloumdjian 1978; Bell 1984; Bell, 
McErlean, Stewart and Arbuckle 1988) and locating obnoxious facilities (Hsu 
and Nemhauser 1979). 

In this paper we consider the criterion (implicitly) optimized by the 
single-linkage algorithm, i.e., the split of a partition, and study its maximiza- 
tion subject to a constraint on the sum of the weights of the entities in each 
cluster. This approach includes, as a particular case, maximum-split cluster- 
ing with cardinality constraints on the clusters. We study both partitions into 
exactly M clusters and into at most M clusters; the particular case M = N of 
the latter problem, where N denotes the number of entities of the given set, is 
shown to be solvable in O (N 2) time by a variant of the single-linkage algo- 
rithm. 

The weight-constrained-maximum-split clustering problem is closely 
related to the bin-packing problem. The latter consists of fitting a set of enti- 
ties of known size into the smallest possible number of identical bins of a 
given size. In fact, our algorithm involves solving a sequence of bin-packing 
problems. 

The paper is organized as follows. Section 2 gives definitions and 
mathematical statement of the problem. Its complexity is analyzed in Section 
3. A general algorithm is presented in Section 4. The way to solve the bin- 
packing problems, which arise as subproblems, is studied in Section 5. A 
polynomial algorithm is proposed for solving the bin-packing problems aris- 
ing in the case of cardinality constraints on the clusters. An example is 
presented in Section 6. Computational experience is reported in Section 7, 
and conclusions are drawn in Section 8. 

As the algorithms of this paper focus on the split of the partitions, i.e., 
on a measure of separation, the optimal partitions obtained should not be 
expected to be very homogeneous. They may also have clusters with non- 
contiguous sets of entities (assuming these entities are regions in the plane). 
The more so as several clusters obtained by the single-linkage method (which 
will be shown to be building blocks for the optimal constrained partitions) 
may be joined in a single weight-constrained cluster, which may be even less 
homogeneous than they are. Ways to take homogeneity and/or contiguity 
constraints into account in constrained clustering, possibly together with 
separation, are now under study. 

The algorithms of this paper do provide one optimal weight- 
constrained partition into M or at most M clusters, and not all such optimal 
partitions. While it is possible to obtain them all with a much larger amount 
of work (i.e., considering all minimum spanning trees of the graph G associ- 
ated with the given set of entities, and all optimal solutions of the bin-packing 
problems solved as subproblems, etc) this does not seem to be desirable. 
Indeed, when threshold type criteria, i.e., criteria whose value depends on a 
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single dissimilarity, are used in clustering the number of optimal solutions 
can be, and often is, so large that enumerating all of them would be prohibi- 
five. 

2. Definitions and Problem Statement 

Let O =  {01,O2 . . . . .  O#} denote a set of N =  IOI entities and 
D = (dkt) an N x N  matrix of dissimilarities between pairs of entities. Dis- 
similarities are real numbers satisfying the usual conditions dta-> 0, dkk = 0 
and die = dtk for k,l = 1,2 . . . . .  N. A partition PM = {Cl,C2 . . . . .  CM} of 0 

M 
into M clusters satisfies the conditions u Cj = O, Cj ~ 0 and Ci c~ Cj = 0 

j=l  
for i,j = 1,2 . . . . .  M and i ~ j .  Let l-I M denote the set of all partitions PM of O 
into M dusters. A positive real number wt, called weight, is associated with 
each entity Ok of O. Let ~ be a positive real number, larger than wt, for 
k = 1,2 . . . . .  N. A weight-constrained partition P u  of 0 is a partition PM of 
FI M such that: 

Ic l O~G C~ 

N 

for j = 1,2 . . . . .  M. Let FIM denote the set of all weight-constrained partitions 
PM of 0 into M clusters. The split s(Cj) of a cluster Cj is the smallest dis- 
similarity between an entity of O within it and one outside it: 

s(Cj) = min dkt, 
~l l O,~ C~,O,~ Cj 

and the split $(PM) of a partition PM is the minimum split of its clusters: 

S(PM) = m'.m s(Cj) . 
l 

Let G = (V,E) denote a complete graph associated with the dissimilarity 
matrix D: vertices vk e V correspond to entities Ok e 0 and edges 
{vk,vt} ~ E are weighted by the dissimilarities dn for k,1 = 1,2 . . . . .  N. A 
result of Rosenstiehl (1967) implies that the split of any cluster, and hence of 
any partition, is equal to the weight of an edge of any minimum spanning tree 
of G. This result implies in turn, as noted by Delattre and Hansen (1980), that 
the single-linkage algorithm maximizes the split of the partitions obtained at 
all levels of the hierarchy (see also Zahn 1971, Leclerc 1977, and Hubert 
1977 for related results). 
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The weight-constrained-maximum-split clustering problem, called 
Problem P1 in the sequel, may be formulated: 

Determine P~t ~ ~ 

such that s(PM) is maximum for a given M between 2 and N. 
We call Problem P2 the variant in which the constraint on the number 

of clusters is weakened: 

Determine Pt, E ~t. 

such that s(PD is maximum and L e {2,3 . . . .  ,M } for a given M between 2 
and N. It follows from_the result of Rosen_stiehl (19_67) cited above that the 
values ofs(PM) and s(Pt,), if the partitions PM and Pt. exist, are equal to dis- 
similarities associated with edges of a mir~_'mum spanning tree T of G. In fact, 
it will be shown later that the clusters of PM or Pt, can be obtained by consid- 
ering some of the single-linkage algorithm ones and unions of them. 

3. Complexity 

We study in this section the complexity of problems P1 and P2 defined 
in Section 2. We first review the main aims and definitions of that theory. 

Complexity theory studies the number of computations taken by an 
algorithm for a given problem to solve an instance of that problem, as a func- 
tion of the size of this instance. (Technically, one considers an abstract 
model of a computer, the Deterministic Turing Machine and evaluates the 
size of a problem instance by the length of a binary encoding of its data.) 
Usually, complexity results are expressed as bounds on the number of compu- 
tations in the worst case. The average ease is sometimes also studied but is 
more difficult both to define in a realistic way and to analyze. Results are 
expressed in terms of order of magnitude. This renders them independent of 
the computer language or machine used (except for parallel computers which 
require a different theory). 

Recall that a function f(n) is of the order of a function g(n), which is 
noted O(q(n)), if there exists a constant c such that lf(n) l < c Ig(n) l for all 
n > 0. A polynomial time algorithm is an algorithm whose number of com- 
putations, or time complexity function, is in O(p(n)) where n denotes the 
size of the problem and p(n) is a polynomial in n. The class of problems 
which can be solved by a polynomial algorithm is denoted by P. Several 
problems of cluster analysis, such as maximum split clustering and max- 
imum sum-of-splits clustering, belong to this class. (Note that using a poly- 
nomial algorithm does not imply one solves a problem which is in P as: (i) the 
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algorithm may be approximate, i.e., not always find an optimal solution, or 
guarantee optimality when one is found, and (ii) the problem may be ill 
defined, i.e., have no explicit objective function.) 

When a problem belongs to P, one is interested in finding an implemen- 
tation of it with the lowest possible complexity, i.e., such that the polynomial 
p(n) be of lowest possible order. To do this, each step of the algorithm must 
be analyzed, in terms of elementary operations such as INSERT, DELETE, 
FIND, MINIMUM, and the data structure which best allows to implement it 
chosen. Many sophisticated data structures, with known time and space com- 
plexities for each elementary operation are now available (see, e.g., Aho, 
Hopcroft and Ullman (1974) for an introduction to that subject). Lowering 
complexity by finding better algorithms or better implementations of known 
algorithm often allows to solve much larger problems than before. A well- 
known example of the former case in cluster analysis is Gower and Ross's 
(1969) discovery of an O(N 2) algorithm for single-linkage (or maximum 
split) clustering exploiting properties of the minimum spanning tree of the 
graph G associated with O. Another example is Benz6cri's (1982) use of 
chains of nearest neighbors to obtain O(N 2) hierarchical agglomerative algo- 
rithms for the variance and other criteria when entities are objects in low- 
dimensional space and Euclidean distance is used as dissimilarity. An exam- 
ple of the latter case is the reduction of the complexity of the hierarchical 
agglomerative scheme from O(N 3) to O(N 2 logN) through the introduction 
of priority queues, by Day and Edelsbmnner (1984). One may also consider 
lower bounds on the complexity of any algorithm which solves a given prob- 
lem belonging to P. A problem is said to be in D(q(n)) if the complexity of 
afiy algorithm to solve it must be at least in O(q(n)). For instance, 
dissimilarities-based clustering problems are in f2(N 2) as it is necessary to 
read or compute the dissimilarities between all pairs of entities. If the com- 
plexity O(p(n)) of an algorithm for a given problem is of the same order as 
the lower bound D,(q(n)), this algorithm is best possible, i.e., it uses a number 
of computations which is lowest possible up to a constant factor. The algo- 
rithm is then said to be in O(p(n)). The algorithms of Gower and Ross (1969) 
and of Benz6cri (1982) cited above as well as the algorithm of Hansen, Jan- 
mard and Frank (1989) for maximum sum-of-splits clustering are in O(N2). 

Many problems which are not known to be in P, i.e., for which no poly- 
nomial algorithm has been found, can be solved by some algorithm in 
exponential time. It is equivalent to say that they can be solved in polyno- 
mial time by an hypothetical computer which can simultaneously carry out 
any number of computations in parallel. (Technically, they can be solved in 
polynomial time by a Nondeterministie Turing Machine). The class of 
problems admitting such exponential time algorithms is denoted by NP. It 
follows from the definitions that P c NP. Whether the reverse relation 
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P D NP is true or not is the famous P = NP conjecture. A main reason for 
interest in this conjecture is that a very large collection of problems (more 
than I0000 of them) are: (i) known to be in NP; (ii) not known to be in P; and 
(iii) polynomially reducible one to the other. The latter condition means that 
an instance of one of them can be transformed into an instance of any other in 
such a way that its size is not increased more than polynomially by this 
operation. Such problems are said to be NP-complete. Therefore, the 
existence of a polynomial algorithm for an NP-complete problem would 
imply the existence of polynomial algorithms for all of them. Despite many 
efforts, no polynomial algorithm for an NP-complete problem has yet been 
found and the P = NP conjecture remains open. 

Note that not all known problems are in NP, as it has been proved that 
there exists no algorithm to solve some of them (as for instance polynomial 
equations in integers, i.e., Hilbert's tenth problem, see Matiasevitch 1973). 

Determining whether a new problem is NP-complete or not is very use- 
ful to direct efforts. If it can be shown to be in NP, it seems very unlikely that 
a polynomial algorithm can be found to solve it and building an exponential 
time algorithm (e.g., a branch-and-bound method) is a reasonable approach. 
Otherwise it is worth trying to find a polynomial algorithm to solve it and if 
one is found to lower its complexity as much as possible. Many techniques 
for proving that a problem is NP-complete have been devised. A very clear 
exposition of the main approaches is given in Garey and Johnson (1979). 
Probably the easiest technique is reduction. To show by reduction that a 
problem is in NP it suffices to express it as a particular case of another one 
known to be in NP. For instance, many clustering problems can be expressed 
as integer programs (see, e.g., Vinod 1969, and Rao I971) and INTEGER 
PROGRAMMING is known to belong to NP. Then to show that a problem is 
NP-complete it is enough to express another problem known to be NP- 
complete in the form of the original one. Such techniques will be used below. 

In complexity theory, problems are usually expressed in a way which 
allows to answer them by YES or NO, i.e., as decision problems. If an 
objective function is involved, i.e., if one considers an optimization prob- 
lem, asking for the existence of a solution with a value less than a given 
number yields a decision problem. If the latter problem is NP-complete, the 
optimization one is said to be NP-hard. One may also be interested in the 
number of computations needed to find an approximate solution, with a value 
within e% of the optimal one. It can be shown that if the problem remains 
NP-complete for instances in which all data are of a magnitude polynomially 
bounded in the length of the input (in which case it is said not to be a number  
problem) then finding a polynomial algorithm which guarantees to obtain an 
e optimal solution would imply P = NP. Such problems are said to be 
strongly NP-complete (or NP-complete in the strong sense). 
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Finally, an NP-complete problem may or may not remain so when 
further restrictions are imposed on some parameters defining it. The most fre- 
quent such restriction is to assume that some parameter is fixed, i.e., does not 
depend on the size of the problem. For instance, we will show in the sequel 
of this Section and in Section 5 respectively that CAPd~INALITY CON- 
STRAINED MAXIMUM SPLIT CLUSTERING is NP-eomplete for M unres- 
tricted and polynomial for M fixed. It  is equivalent, and more common in 
complexity theory terminology, to say that M depends on N (a characteristic 
of problem size) in the former case and is independent of N in the latter. 

We now study the complexity of problems P 1 and P2 of Section 2. We 
first express P1 as a decision problem. 

Weight-Constrained-Maximum-Split Clustering (WCMSC): 

Instance: Set 0={01 ,02  . . . . .  0~} of N =  IOi entities; positive real 
numbers wl ,w2 . . . . .  w~; N x N matrix D = (dkt)gl=l,2 . . . . .  N of dissimilarities 
associated with the pairs of entities {Ok,Ol } belonging to O; positive integer 
M; positive real numbers ~ and s'. 

Question: Is there a partition PM = {C1,C2 . . . .  ,C~} of O into M clusters 
suchthat ~ wk<wands(Cj)>'sforj = 1,2 . . . . .  M? 

~o~Gc~ 

We then have: 

Theorem 1. Weight-Constrained-Maximum-Split Clustering is NP-complete. 

Proof As WCMSC can easily be expressed as a linear program in 0-1 vari- 
ables, it is in NP. To show it is NP-complete, we use reduction to the NP- 
complete problem PARTITION (Garey and Johnson 1979, pp. 223): 

Instance: N positive real numbers rl,r2, . . . .  rN. 

Question: Is there asubsetloflN = {1,2 . . . . .  N} suchthat ~ rk = ~ rk? 
k~ l k~ lN~l 

1 iv 
Taking M = 2, s = 0, wk = rk for k = 1,2 . . . . .  N, w = ~- ~ wk and any 

k=l 
D reduces the weight-constrained-maximum-split clustering problem to the 
problem PARTITION. • 

Note that this proof is also valid if Problem P2 is considered instead of 
Problem P 1. 
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The particular case where Wk = 1 for all k corresponds to cardinality 
constraints on the clusters. We now express P 1 as a decision problem in that 
case: 

Cardinali ty-Constrained-Maximum-Spli t  Clustering (CCMSC): 

Instance:  Set O = {Oi,Oz . . . . .  ON} of N = I01 entities; N × N  matrix 
D = (dkt)k,t=l,2,... ~v of dissimilarities associated with the pairs of entities 
{Ok,Ol} belonging to O; positive integers M, ~; positive real number s. 

• o • Question. Is there a partition P~t = {C1,C2 . . . .  C~t} of  0 into M clusters 
such that I Cj I < ~ and s(Cj) >'s for j = 1,2 . . . . .  M? 

In this case, problems P 1 and P2 are solvable in polynomial time for fixed M. 
Indeed, polynomial algorithms for that case are presented in Section 5. If, 
however, M depends on N, problems P 1 and P2 are again NP-complete, as 
we now show: 

Theorem 2. Cardinality-Constrained-Maximum-Split Clustering is strongly 
NP-complete. 

Proof: As Cardinality-Constrained-Maximum-Split Clustering is a particular 
case of  WCMSC, it is in NP. To show that it is NP-complete, we use reduc- 
tion to the problem 3-PARTITION (Garey and Johnson 1979, pp. 224) which 
is NP-complete in the strong sense, i.e., which remains NP-complete even 
when the largest coefficient is bounded by a polynomial in the input length. 

Instance: Set A of 3m elements, a bound B e 77-- + and a size s(a) e ZZ + for 
B B 

each a e A such that -~- < s(a) < --~ and ~_. s(a) = mB. 
aEA 

Question: Can A be partitioned into m disjoints sets A 1 ,A2 . . . . .  Am such that 
for 1 < i < m, ~ s(a) = B (note that each Ai must therefore contain exactly 

a¢ A~ 

three elements from A)? 

Consider a set 0 of mB entities and the vertex set V of  the correspond- 
ing graph. Partition V arbitrarily into subsets of size s(a) for all a ¢ A. Build 
a spanning tree arbitrarily on the vertex set of each subset. The union of 
these trees forms a forest, possibly with trees reduced to a single vertex. 
Associate dissimilarities equal to 0 to all edges of these trees. Add edges 
with dissimilarities equal to 1 until a complete graph is obtained. Set wj = 1 
for all j, ~ = B, M = m, s = 1. The CCMSC problem so defined admits a 
constrained partition with a split of  1 if and only if the 3-PARTITION prob- 
lem has a solution. Moreover, (i) a solution to the CCMSC problem can be 
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obtained in time polynomial in its size (by the algorithm of Section 5), which 
is in turn polynomial in the length of the input of the 3-PARTITION problem 
for instances with coefficients s(a) polynomially bounded by this input 
length; (ii) the length of the CCMSC problem input is longer than that of the 
3-PARTITION problem and (iii) the maximum size of a coefficient in the 
CCMSC problem is polynomially bounded in the length and size of 3- 
PARTITION. So all conditions (see Garey and Johnson 1979, pp. 101) for a 
pseudo-polynomial transformation of the former problem into the latter are 
satisfied. This result implies that Cardinality-Constrained-Maximum-Split 
Clustering is strongly NP-complete. • 

Again, the proof remains valid if Problem P2 is considered instead of Prob- 
lem P 1. 

4. General Algorithm 

We now describe an algorithm for weight-constrained-maximum-split 
clustering, e.g., Problem P1, which involves the resolution of a sequence of 
bin-packing problems. In the next section, we discuss how to solve these 
latter problems when maximum weight constraints and when cardinality con- 
straints are imposed. 

The algorithm makes use of the minimum spanning tree T of G, and of 
spanning forests E(s) obtained by deleting from T all edges associated with 
dissimilarities larger than or equal to a given value s (i.e., the current candi- 
date value for the maximum split). Let V(T) denote the set of vertices of the 
tree T. A spanning forest F of G is 

V(Ti) n V(Tj) = ~ ,  for i,j = 1,2,. 

allow I V(Ti) I = 1, i.e., the forest F 

thus a set of trees TI,fT2 . . . . .  T$ such that 

. .  , f  and i ~:j, and u V(Ti) = V(G); we 
i=1 

may contain isolated vertices. Each span- 
ning forest F(s) corresponds to a partition of O obtained with the single- 
linkage algorithm, where each tree of the forest corresponds to a duster. 
Weight-constrained clusters will be obtained by joining clusters associated 
with trees Tj,Tk.. ofF(s). (In other words, the partition corresponding to F(s) 
is that one defined by cutting the single-linkage dendrogram at level s + e 
where e is a small positive number, and weight-constrained clusters are 
obtained by joining clusters from this partition.) 

The principle of the algorithm is to first find a set of candidate values 
for the maximum split, i.e., the dissimilarities associated with the edges of a 
minimum spanning tree T of G, (steps (a) and (b) below) and then to search 
systematically for the maximum feasible value s* of the split (step (c)). This 
is done by testing values s within a dichotomous search procedure (governed 
by steps (el) and (c2)). For each tentative value, after F(s) is built (step (c3)) 
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one considers several necessary conditions for feasibility and proceeds to the 
next value of s if one of them is violated: (i) F(s) should not have too few 
components, i.e., less than M (step (c4)); (ii) no component of F(s) should 
have too large a weight, i.e., a weight larger than ~ (step (c5)); (iii) the 
minimum number of clusters of weight not larger than w needed to group all 
clusters corresponding to F(s) should not exceed M (step (c6)). If these con- 
ditions are satisfied and possibly after modifying the partition into clusters of 
weight not larger than ~, if there are less than M of them (steps (c7) and (c9)), 
one computes the value of the split of the current feasible partition, updates 
the best value known for the split and the best known solution and proceeds 
to the next tentative value. 

We now state formally the rules of the algorithm, which we call algo- 
rithm WCMSCI: 

(a) Minimum Spanning Tree 
Determine a minimum spanning tree T of G using, e.g., Prim's (1957) 
algorithm. 

(b) Candidate values for the maximum split 
Rank the N - 1 dissimilarities associated with the edges of T by order 
of non-decreasing values. Scan the list thus obtained and eliminate 
all repeated values. Let dl  <d2  <...<dl denote the remaining 
values. 

(c) Dichotomous search for the maximum split 
(el) Initialization 

Set HIGH to l, i to 0 ,  s* to 0 and BOOL to true. 
(c2) Current  candidate value 

If BOOL is true, set LOW to i + 1 otherwise set HIGH to i - 1. 
If HIGH < LOW,.s* is the maximum split value: stop. Set i to 

LOW + HIGH (where [a] denotes the largest integer not 
2 

larger than a) and s to di. 
(c3) Spanning forest 

Build the spanning forest F(s ) - {T1 ,T2  . . . . .  Tf(s)}. Let 
W i = w(Tj) = ~., w~: denote the weight of tree Tj, i.e., the 

uv~ vcr~) 
sum of the weights of its vertices. (In case of cardinality con- 
straints W) = I V(Tj) I.) 

(c4) First feasibility test 
Iff(s) < M set BOOL to false and return to (c2). 

(c5) Second feasibility test 
If for some j = 1,2 . . . .  ,f(s), Wj > w, set BOOL to false and 
return to (c2). 
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(c6) Bin-packing problem 
Solve the bin-packing problem: 

f(s) 
minimize z = ~ Yt 

1=1 
f (s) 
E Wjxjt < ~v'yt l = 1,2 . . . . .  f (s )  
:=I 

subject to: 

"(0 
Z xjt = 1 j = 1 ,2 , . . .  , f (s)  
l = l  

xjt ~ {0,1 } j,1 = 1,2 . . . .  , f (s)  

Yl ~ {0,1} I = 1,2 . . . . .  f (s) .  

(c7) 

(c8) 

(c9) 

where xjz = I if entity j (here tree Tj) goes into bin 1 (here clus- 
ter / )  and xfl = 0 otherwise, Yl = 1 if bin l is used and Yt = 0 
otherwise. If the optimum value z , x.e., number of bins used, 
does exceed M, set BOOL to false and retum to (c2). 
Test on the number  of bins 
If z* < M, go to (c9). 
Split of the current  partition Determine the clusters of the 
partition P* corresponding to the optimal solution of the bin- 
packing problem, i.e., 

CI= u {Oklvk~Tj}, / = 1 , 2  . . . . .  f ( s ) f o ry t=  l .  
j/xp=l 

(There are at most M non-empty clusters.) Compute the split 
s* = s(P*) of the partition, i.e., s* = rain s(CD, and store the 

llyl=l 
partition P* as the incumbent one. Let i denote the index such 
that s* = di, set BOOL to true and return to (c2). 
Modification of the current partition to obtain M clusters 
Let F* denote the forest obtained from T by deleting all edges 
of T whose endpoints belong to different clusters of P*. Then 
consider the clusters of P* which contain more than one con- 
netted component of F*. Assign connected components one at 
a time to new clusters until a new partition P* with M clusters 
is obtained, if possible. If the number of clusters z* of P* is 
still smaller than M when each cluster contains a single con- 
nected component of F*, consider the edges of T joining two 
trees of F(s) which belong to the same cluster. Rank them by 
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order of non-increasing dissimilarities. Cut the M - z* edges 
with largest dissimilarities, thus obtaining a partition P* into M 
clusters. Set s* to the split s(P*) of this partition and store it as 
the incumbent one. Let i denote the index such that s* = di, 
set BOOL to true and retum to (c2). 

Note that the absence of any feasible partition of O into M clusters is 
indicated by an optimal value s* = 0. If Problem P2 is considered instead of 
P1, algorithm WCMSC1 can readily be used, after deletion of the tests (c4), 
(c7) and (c9). We then call it algorithm WCMSC2. Algorithm WCMSC1 is 
illustrated with an example in Section 6. 

We then have: 

Theorem 3. Algorithm WCMSC1 (resp. WCMSC2) solves Problem P1 (resp. 
Problem P2) in a finite time. 

Proof: Correctness follows from that, as shown above, there are at most 
N - 1 candidate values for the split of the optimal partition, which are all con- 
sidered implicitly in the dichotomous search. Then for each candidate value 
explicitly considered either a partition into M clusters (resp. at most M clus- 
ters) is shown not to exist as a necessary condition for its existence does not 
hold, or one is found and evaluated. The best solution found being updated, 
an optimal partition for Problem P 1 (resp. Problem P2) is found when the 
algorithm stops. Finiteness follows from that all tests except (c6) take poly- 
nomial time, the bin packing problem of test (c6) can be solved by a non- 
polynomial but finite algorithm and all tests are performed in sequence unless 
one proceeds to examine the next candidate value for the optimum sprit. • 

Algorithm WCMSCI determines a weight-constrained-maximum-split 
partition P* after solving at most Iog2N bin-packing problems. This upper 
bound is not necessarily reached since the answer to the current problem 
allows us to eliminate one candidate value at each iteration in addition to cut- 
ting the range in two, and because the split s(P*) of the partition P* obtained 
in Step (c6) or Step (c9) may be larger than the current candidate value, thus 
allowing us to eliminate all candidate values between these two. 

Note also that it is not necessary to compare s(P*) with the value of the 
incumbent partition as, because of the rifles of dichotomous search, the 
current value of s is not smaller than any previously examined one which led 
to a feasible partition, and, as explained above, s(P*) >_. s. 

In the particular case when M = N, Problem P2 reduces to maximum- 
split partitioning subject to weight constraints only. Again algorithm 
WCMSCI can be used, this time after deletion of tests (c4), and (c6) to (c9), 
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leading to algorithm WCMSC3. This algorithm uses O(N 2) operations and, 
as the computation of the minimum spanning tree T requires [2(N 2) opera- 
tions, it is in O(N2). The number of computations of algorithm WCMSC3 is 
thus minimum, up to a constant factor. 

5. Solving the Bin-packing Problem 

Recall that the bin-packing problem consists of fitting a set of entities 
of known size into the smallest possible number of bins of a given size. The 
two algorithms of the previous section involve solving a sequence of bin- 
packing problems (expressed as decision problems, i.e., for given M), with 
real data in the case of weight constraints and with bounded integer data in 
the case of cardinality constraints. The bin-packing problem is NP-hard in 
the former case, as well as in the latter one except for fixed bin capacity 
(Garey and Johnson 1979, p. 226) or for fixed M, as discussed below. How- 
ever, for small values of M, many instances of the bin-packing problem are 
easy to solve, as solutions with 

wk 
k=l  

14: 

bins (where [a] denotes the smallest integer not smaller than a) are often easy 
to find. If this last number is greater than M, the bin packing problem has no 

N 
solution. Otherwise, if ~ wk is substantially smaller than M ~, a heuristic 

k=l  
N 

often suffices to find a feasible solution, but if ~ wk is only slightly smaller 
k=l  

than M ~, the bin-packing problem becomes a difficult combinatorial one. 
Many heuristic algorithms for the bin-packing problem have been dev- 

ised. Their behavior in the worst case and in the average case has been 
extensively studied. Coffman, Garey and Johnson (1984) give a detailed sur- 
vey of this work. An easy-to-use and efficient heuristic is "First-Fit Decreas- 
ing" which works as follows: "Rank the entities (here the trees of the forest 
F(s)) by order of non-increasing weights. Introduce each entity in the first 
bin in which it fits." 

Should such a heuristic be unable to provide a feasible solution with M 
dusters (or with at most M clusters), an exact branch-and-bound algorithm 
can be used. MarteHo and Toth (1989, 1990) have derived sharp bounds and 
reduction procedures for the bin-packing problem. They have used them to 
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design an efficient branch-and-bound algorithm and the corresponding pro- 
gram, which we have used in our computational experiments. 

In the case of cardinality constraints, a polynomial algorithm may be 
used to solve the bin-packing problems, for small values of M. Let us call 
profile of a partition the list of the weights of its clusters, ranked in order of 
non-increasing values. The following algorithm proceeds to an enumeration 
of all feasible profiles, for partitions of sets of k trees, k = 1,2 . . . .  ,f(s), of the 
current forest F(s). 

Algorithm CCBP (Cardinality-Constrained Bin-Packing) 

(a) Ranking of trees 
Rank the trees T 1 ,T2 . . . . .  Tf(s) of the current forest in order of non- 
increasing weights. Reindex them according to this order. 

(b) Initial profile 
Let L denote the current list of profiles. Initialize L to P1 where 
P 1 (J) = 0, j = 1,2 . . . . .  M. Set k to 1. 

(c) Profiles of the partitions 
(el) New profiles from old ones 

Set L" to 6 .  Consider in turn each profile Pt of L. Con- 
sider in turn each distinct value Pt(J) of Pl: if 
Pl(J) + w(Tk) < w: (i) define a new profile Pr by adding 
w(Tk) to Pl(J) and by reordering the components if neces- 
sary; (ii) insert profile Pr into L" unless P2 is identical to a 
profile already in L'. 

(c2) Feasibility test 
If L" = 6 ,  end: the bin-packing problem has no solution. 

(c3) New iteration 
If k < f(s), set L to L', increase k by 1 and return to (el). 

(d) Optimality tests 
(dl) Absence of empty dusters 

Check if L" contains a profile Pr such that PRO'):/:0, 
j = 1,2 . . . .  ,M. If it is not the case, stop: the bin-packing 
problem has no feasible solution with M non-empty bins. 

(d2) Optimal partition 
Otherwise, an optimal profile has been found and a parti- 
tion can be deduced by retracing any sequence of addi- 
tions perfomaed at step (cl) and leading to it. 

Step (d2) is easily done if a graph G l is built with vertices associated 
with profiles generated by algorithm CCBP and arcs joining pairs of vertices 
corresponding to profiles before and after the addition of a tree. 
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Figure 1. Minimum Spanning Tree T. 

If Problem P2 is considered, the previous algorithm readily applies 
after deletion of step (dl). 

The number of profiles is bounded by N M and the number of additions 
by MN M. After each addition, reordering of components can be done in 
O(logM) time (assuming the ranking is described by double chaining) and 
checking whether the profile is already in the list L" can be done in 
O(M logN) time, using an AVL-tree (Knuth 1973, pp. 451-469). Hence the 
overall complexity of algorithm CCBP is O(M 2 N M log N). Clearly, while 
CCBP is a polynomial algorithm, it may require a large amount of computing 
time for large N and M > 3. 

Note that algorithm CCBP remains polynomial if the weights wi of the 
entities are polynomially bounded in the input length; however its complex- 
ity, which is already large in the case of unit weights, then drastically 
increases. 

6.  E x a m p l e  

_We consider a set O with 24 entities and seek a maximum-split parti- 
tion P3 of O into 3 clusters with a weight not exceeding 10 ff'roblem P1). 
The vector of weights of the entities is w = (2, 1.5, 1, 2, 1, 1.5, 1.5, I, 1, 0.5, 
0.5, 2, 0.5, 1.5, 2, 1, 0.5, 1, 1.5, 0.5, 2, 0.5, 0.5, 1.5). A minimum spanning 
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tree T of the graph G = (V,E) associated with 0 is represented in Figure 1 (it 
may not be unique but its choice, should there be several, does not affect the 
results). Dissimilarities which are candidate values for the maximum split are 
indicated in this figure along the edges of T. Weights of the entities are given 
between parentheses. The distinct candidate values for the maximum split 
are 8, 7, 6, 5, 3, 2, and 1. 

Applying dichotomous search, we first consider the tentative value 5. 
The spanning forest F(5) is represented in Figure 2. It contains 10 trees with 
a weight vector (5, 3, 3.5, 3.5, 3, 2.5, 2, 1, 2.5, 2.5). The First Fit Decreasing 
heuristic (Johnson 1974) yields a partition into the three clusters 
CI={O(TI), O(T3), O(Ts)}, C2={0(T4), O(T2), O(Ts)} and 
C3 = {O(T6), O(T7), O(Tg), O(Tlo)} where O(Ti)= {Ojlvj  e V(Ti)}. The 
split of this partition is equal to 5. The next tentative value for the maximum 
split is 7. The forest F(7) is represented in Figure 3 in full and dotted lines. 

As this forest contains a tree T1 with a weight of 15 > 10, the tentative 
value 7 is too high. We then consider the tentative value 6. The forest F(6) is 
represented in Figure 3 in full lines. It contains 8 trees with a weight vector 
(5.5, 5, 3.5, 3.5, 3.5, 3, 2.5, 2). The First Fit Decreasing heuristic gives a solu- 
tion with 4 bins, which is infeasible. We therefore consider the bin-packing 
problem: 

8 
rain ~ Yt 

l=l 

subject to: 

5.5Xlt + 5x2/+ 3.5x3t + 3.5x4t + 3.5x5/+ 3x6t+2.5x7t + 2xst < lOyt 
l = 1,2 . . . . .  8 

xjl + xi2 + xj3 + xj4 + xj5 + xj6 + xj7 + xjs = 1 j =1,2 . . . . .  8 

x.i t e {0,1} j , l  = 1,2 . . . . .  8 

Yt e {0,1} l = 1,2 . . . . .  8, 

and solve it using the branch-and-bound algorithm of Martello and Toth 
(1989, 1990). An optimal solution is Yl = Y2 = Y3 = 1, Y4 = Y5 = Y6 = Y7 = 
Y8 = 0, Xll = X71 = X81 = X32 = X42 = X62 = X23 = X53 = 1 and all other 
x~l = 0. There is thus a partition into 3 clusters C1 = {O(TI), O(TT), O(T8)} 
= {09, 014, Ols, O19, 020, O21, 022, 023, 024} of weight 10, 
C 2  = { O ( T 3 ) , O ( T 4 ) , O ( T 6 ) }  = { 0 3 , 0 4 , 0  10,O 11,O 12,O 13,0 15,O 16,O 17 } 
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of weight 10 and C3 = {O(T2), O(T5)} = {01, 02, 05,  06, 07, Og} of 
weight 8.5, with a split of 6. As there are no more tentative values for the 
maximum split, this partition is optimal. 

To illustrate the use of the enumerative algorithm for bin-packing of 
Section 5, we consider the same example as above, but with cardinality con- 
straints instead of weight constraints. We bound the number of entities in any 
cluster by 8. Applying the First Fit Decreasing heuristic to the trees in the 
forest F(5) again yields an infeasible solution using 4 bins. So we proceed to 
the enumeration of feasible profiles, after ranking the trees by order of 
decreasing cardinalities. Thisenumeration is summarized in Figure 4. 

As a profile equal to is obtained, the bin-packing problem admits 

38bins. solutions [~fing 

through theprofilesrs~ t /I t I /I /Ig/I l/ t between [0] and i~] goes The partition co riding..to.^~q ̂  .highesL .pa~ 

to} t0J toJ t0} t0J t0J tzJ tnJ 
and . It consists of the clusters Cl = {O(T2), O(T3), O(T4)} - {01,02, 

0 5, 016, 017, 02o, 02 , 0221, c2 = {o(rl) ,  o(r5), o(r6)} = {03, o4, 
05, 06, 07, 08, 09, O19} and Ca = {O(TT), O(Ts), O(Tg), O(Tlo)} 
= { 0 1 0 , 0 1 1 , 0 1 2 , 0 1 3 , 0 1 4 , 0 1 S , 0 2 3 , 0 2 4  }. 

The next tentative value for the split is 7 but F(7) contains a tree T1 
with IV(T1)I = 14 > 8, thus the cardinality constraint cannot be satisfied. 
We consider the last tentative value for the maximum split, i.e., 6. The forest 
F(6) contains 8 trees with cardinalities 5, 4, 4, 3, 2, 2, 2 and 2 (See Figure 3). 
The First Fit Decreasing heuristic provides a solution with 3 bins. The 
corresponding partition consists of the clusters C1 = {O(T1),O(T4)} = {09, 
O15, O16, O17, O19, 020, O21,022}, C2 = {O(T2), O(T3)} = {05, 06, 07, 
08, O10, Oll, O12, O13} and C 3 = {O(T5), O(T6), O(T7), O(T8) } = {O1, 
02, 0~, 04,014, Ols, 023,024} and has a split of 6. As this value is the 
last candidate, it is optimal. 

7. Computational results 

The algorithms WCMSC1 and WCMSC2 have been implemented in 
Fortran 77 on a SUN 3/50 system. The example of Section 6 was first solved, 
with general and with unit weights, in a few hundredths of a second of CPU 
time in both cases. We then considered data due to Sp~th (1980, pp. 91-92) 
on 89 postal zones in Germany. It is easy to think of various technical or 
administrative reasons why it might be desirable to cluster them, while taking 
into account a constraint on the total workload in each cluster. Measures of 
the workload in each zone not being available, the corresponding weights 
were randomly generated from a uniform distribution on [ 1,500]. The results 
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Table 1 

Bound o h M  M* 
3000 M ~  7 - - 0.30 

M ~  8 8 15.46 0.24 
M_<9 8 15.46 0.20 

4000 M ~  5 - - 0.30 
M ~  6 6 21.73 0.28 
M ~  7 6 21.73 0.26 

8000 M ~  2 - - 0.32 
M ~  3 3 39.20 0.28 
M ~  4 3 39.20 0.26 
M ~  5 3 39.20 0.24 

M <  15 3 39.20 0.28 

s(P*) cpu time Fixed M s(P*) cpu t i m e  
7 - 0.28 
8 15.46 0.20 
9 15.46 0.22 
5 - 0.30 
6 21.73 0.30 
7 21.73 0.24 
2 - 0.32 
3 39.20 0.22 
4 39.20 0.24 
5 39.20 0.26 
15 33.88 0.26 

W 

10000 

20000 

30000 

40000 

50000 

Table 2 

Bound on M M* s(P*) cpu t ime 

M < 25 - - 5.66 

M < 26 26 3.40 4.98 

M < 12 - - 5.58 
M < 15 13 4.17 5.16 

M < 7 - - 5.76 
M _ < 8  - - 5.64 
M < 9 9 4.57 5.20 

M < 10 9 4.57 5.10 

M < 7 7 4.57 5.10 

M < 8 7 4.57 5.14 

M < 5 - - 5.58 

M <_ 6 6 5.46 4.78 
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are summarized in Table 1. It appears that: (i) computation times are about 
1/3 of  a second of CPU time for values of w and M leading to a feasible prob- 
lem, and slightly less than twice that time for values leading to an infeasible 
problem; (ii) when an upper bound on M is given, the best value for the split 
is obtained for the smallest number of clusters for which the problem is feasi- 
ble; (iii) when M is fixed and the problem is feasible the split is equal to that 
obtained for the smallest number of dusters leading to a feasible solution, 
urdess M is much larger than that number. 

Finally, we generated a problem with 500 entities, drawing dissimilari- 
ties and weights randomly from uniform distributions, the latter one on 
[1,1000]. Results ere summarized in Table 2 and lead to conclusions similar 
to those resulting from the analysis of  Sp[ith's (1980) data. Note in particular 
that computation times remain very moderate. 

8. Conclusions 

Constraints on the weight or the cardinality of the clusters appear to be 
natural ones in several applications of cluster analysis. We have studied how 
to maximize the split of  a partition of  the given set of  entities into exactly M 
or at most M clusters, as done by the single-linkage algorithm in the uncon- 
strained case, subject to such constraints. We have shown that these prob- 
lems are NP-hard, except for fixed M with cardinality constraints or for 
M = N with weight constraints. This worst case analysis implies that in 
some, possibly rare, cases computational times could be large. However, the 
exact branch-and-bound algorithms which we propose, appear to be very 
efficient. Large problems with 500 entities have been solved in a few seconds 
on a small computer, i.e., in time comparable to that of the single-linkage 
algorithm. This excellent empirical behaviour shows that many, and probably 
most, instances of  weight or cardinality constrained maximum split clustering 
problems are amenable to exact solution. 
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