IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

877

Dynamic Cluster Formation Using
Level Set Methods

Andy M. Yip, Chris Ding, and Tony F. Chan

Abstract—Density-based clustering has the advantages for 1) allowing arbitrary shape of cluster and 2) not requiring the number of
clusters as input. However, when clusters touch each other, both the cluster centers and cluster boundaries (as the peaks and valleys
of the density distribution) become fuzzy and difficult to determine. We introduce the notion of cluster intensity function (CIF) which
captures the important characteristics of clusters. When clusters are well-separated, CIFs are similar to density functions. But, when
clusters become closed to each other, CIFs still clearly reveal cluster centers, cluster boundaries, and degree of membership of each
data point to the cluster that it belongs. Clustering through bump hunting and valley seeking based on these functions are more robust
than that based on density functions obtained by kernel density estimation, which are often oscillatory or oversmoothed. These
problems of kernel density estimation are resolved using Level Set Methods and related techniques. Comparisons with two existing
density-based methods, valley seeking and DBSCAN, are presented which illustrate the advantages of our approach.

Index Terms—Dynamic clustering, level set methods, cluster intensity functions, kernel density estimation, cluster contours, partial

differential equations.

1 INTRODUCTION

RECENT computer, Internet, and hardware advances
produce massive data which are accumulated rapidly.
Applications include sky surveys, genomics, remote sensing,
pharmacy, network security, and Web analysis. Undoubt-
edly, knowledge acquisition and discovery from such data
become an important issue. One common technique to
analyze data is clustering, which aims at grouping entities
with similar characteristics together so that main trends or
unusual patterns may be discovered. Clustering is an
example of unsupervised learning. There is no provision of
any training examples to guide the grouping of the data. In
other words, cluster analysis can be applied without a priori
knowledge of the class distribution. We refer the reader to [1],
[2] for more detailed examples of the usage of clustering
techniques in a variety of context.

A successful clustering task depends on a number of
factors: collection of data, selection of variables, cleaning of
data, choice of similarity measures, choice of a clustering
algorithm, and interpretation of clustering results. In this
paper, we focus on proposing a general-purpose clustering
algorithm. We assume that we are given a set of data in an
Euclidean space, i.e., each object is described by a set of
numerical attributes and pairwise dissimilarity is measured
by Euclidean distance. We also assume that preprocessing

e A.M. Yip is with the Department of Mathematics, National University of
Singapore, 2, Science Drive 2, Singapore 117543, Singapore.

E-mail: matymha@nus.edu.sg.

e C. Ding is with the Computational Research Division, Lawrence Berkeley
National Laboratory, Building 50F, Room 1608, 1 Cyclotron Road,
Berkeley, CA 94720. E-mail: chqding@Ibl.gov.

e T.F. Chan is with the Department of Mathematics, University of
California, Los Angeles, Box 951438, 2300 Murphy Hall, Los Angeles,
CA 90095-1555. E-mail: chan@college.ucla.edu.

Manuscript received 4 Apr. 2005; revised 11 Nov. 2005; accepted 11 Nowv.
2005; published online 13 Apr. 2006.

Recommended for acceptance by G. Sapiro.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0181-0405.

0162-8828/06/$20.00 © 2006 IEEE

steps such as variable selection, data cleaning, and missing
value imputation are treated separately. However, the
proposed algorithm is robust to noise and outliers. Thus, it
can tolerate certain amount of imperfection in data cleaning,.

There are a number of paradigms to define clusters. Our
approach is density-based. The idea is that clusters are high-
density regions separated by low density regions. While this
approach has a number of desirable properties (detailed in
Section 2), a potential drawback common to all algorithms of
this type is overfitting of density. For example, density
estimated from a set of samples drawn from a uniformly
distribution is generally not uniform. A density-based
clustering method must take this effect into account.
Otherwise, the clustering results could be disastrous. We
show experimentally that several well-known density-based
methods fail to comply with such a robustness requirement.
As a result, natural clusters are split into pieces due to the
artifactitious differential densities.

To remedy such a problem, we propose a partial
differential equation model to detect high-density regions.
The model has a built-in mechanism, which can be thought of
adding surface tension to cluster boundaries, to overcome the
localized roughness of the density landscape. To implement
the dynamical evolution of cluster boundaries, we employ
the Level Set Methods which allow moving boundaries to
split or merge easily. We further introduce the concept of
cluster intensity functions which clearly reveals cluster
structures. Partitioning data according valleys of such
functions provides an extra degree of robustness.

The organization of the rest of the paper is as follows: In
the next section, we give a brief review of clustering
algorithms. Then, we highlight some characteristics of
density-based methods and some related concepts in
Section 2. In Section 3, we outline the main steps of our
methodologies. The initialization steps of our method are
presented in Section 4. Following next, in Section 5, is the
major step, which is to advance cluster boundaries robustly.
A novel concept, clustering intensity function, for finalizing

Published by the IEEE Computer Society

878 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

the clusters is introduced in Section 6. Experimental results
are then presented in Section 7. Finally, some concluding
remarks are given in Section 8.

1.1 A Review of Clustering Algorithms

To facilitate a better understanding of our density-based
method, we include a brief summary of various classes of
clustering algorithms so as to contrast the different
assumptions underlying each class of algorithms. Pointers
to the literature are also given. A more thorough discussion
of density-based methods and relevant concepts is pre-
sented in the next section. For more detailed reviews of
clustering techniques, we refer the reader to [1], [2], [3], [4].

1. Optimization-Based Methods. They seek for a parti-
tion of the data set so as to optimize an objective.
Usually, a measure of within-cluster similarity is
maximized and/or a measure of between-cluster
dissimilarity is maximized. Constraints such as
number of clusters or minimum separation between
clusters may be incorporated [5]. Perhaps the most
well-known algorithm of this type is the Lloyd’s
algorithm [6] for optimizing the k-means objective [7].
A generalization of the k-means objective and Lloyd’s
algorithm to Bregman Divergence can be found in [8].
Algorithms for optimizing the k-medoids objective, a
variant of k-means which is more robust to outliers,
include PAM [3], CLARA [3], and CLARANS [9].

2. Hierarchical Methods. They aim at producing a
hierarchical tree (dendrogram) which depicts the
successive merging (agglomerative methods) or split-
ting (divisive methods) of clusters. Examples of
hierarchical methods include DIANA, Single Linkage,
Average Linkage, Complete Linkage, Centroid, and
Ward’s methods [3]. Differentagglomerative methods
differ by the way that the similarity between two
clusters is updated. If the linkage satisfies a cluster
aggregate inequality, then the algorithm can be
implemented efficiently at a time complexity of
O(N?) only [10]. A more recent method CHAME-
LEON [11] uses a sophisticated merging criterion
which takes the clusters’ internal structure into
account as well.

3. Density-Based Methods. They are based on the idea
that clusters are high-density regions separated by
low density regions. Methods of this type include
Valley Seeking [12], DBSCAN [13], GDBSCAN [14],
CLIQUE [15], DENCLUE [16], and OPTICS [17]. Our
approach is density-based. We will further elaborate
the pros and cons of this paradigm in the next section.

4. Grid-Based Methods. The feature space is projected
onto a regular grid. Presumably, most nonempty
grid cells are highly populated. Thus, by using a few
representatives or summary statistics for each grid
cell, a form of data compression is obtained. Such an
approach is usually used for large databases. STING
[18] and WaveCluster [19] fall into this category.

5. Graph-Based Methods. Data points are represented
by nodes and pairwise similarity are depicted by the
edge weights. Once a graph is constructed, graph
partitioning methods can be used to obtain clusters of
data points. Examples of graph-based methods are

Spectral Min-Max Cut [20] and Shared Nearest
Neighbors [21].

6. Model-Based Methods. They are application-speci-
fic. They assume the knowledge of a model which
prescribes the nature of the data. CLICK [22] uses a
finite mixture model [23] to model pairwise similarity
between points in the same cluster and points in
different clusters.

2 DENSITY-BASED APPROACHES AND LEVEL SET
METHODS

2.1 Density-Based Approaches
Among various classes of clustering algorithms, density-
based methods are of special interest for their connections to
statistical models which are very useful in many applications.
Density-based clustering has the advantages for 1) allowing
arbitrary shape of cluster and 2) not requiring the number of
clusters as input, which is usually difficult to determine.
There are several basic approaches for density-based
clustering:

Al. A common approach is so-called bump-hunting:
first find the density peaks or “hot spots” and then
expand the cluster boundaries outward until they
meet somewhere, presumably in the valley regions
(local minimums) of density contours. The CLIQUE
algorithm [15] adopted this methodology.

A2. Another direction is to start from valley regions and
gradually work uphill to connect data points in low-
density regions to clusters defined by density peaks.
This approach has been used in Valley Seeking [12]
(see below) and DENCLUE [16].

A3. A recent approach, DBSCAN [13], is to compute
reachability from some seed data and then connect
those “reachable” points to their corresponding seed.
Here, a point pis reachable from a point ¢ (with respect
to MinPts and Eps) if there is a chain of points p; =
¢,D2, - .,pn = p such that, for each ¢, the Eps-neigh-
borhood of p; contains at least MinPts points and
contains p;,1. A variant, called OPTICS, has been
proposed in [17] which orders the data in such a way
that clusterings at different density parameters are
efficiently obtained.

When clusters are well-separated, density-based meth-
ods work well because the peak and valley regions are well-
defined and easy to detect. When clusters are closed to each
other, which is often the case in real situations, both the
cluster centers and cluster boundaries (as the peaks and
valleys of the density distribution) become fuzzy and
difficult to determine. In higher dimension, the boundaries
become wiggly and overfitting often occurs.

In this paper, we adopt the framework of bump-hunting
but with several new ingredients incorporated to overcome
problems that many density-based algorithms share. The
major steps of our method are as follows:

1. Obtain a probability density function (PDF) by
Kernel Density Estimation.

2. Identify peak regions of the density function using a
surface evolution equation implemented by the Level
Set Methods (LSM).

YIP ET AL.: DYNAMIC CLUSTER FORMATION USING LEVEL SET METHODS

3. Construct a distance-based function called Cluster
Intensity Function (CIF).
4. Apply Valley Seeking on the CIF.

In the next sections, we describe each of the above four
notions.

2.2 Kernel Density Estimation (KDE)

In density-based approaches, one must need to estimate the
density of data. We particularly consider the use of kernel
density estimation [24], [25], a nonparametric technique to
estimate the underlying probability density from samples.
More precisely, given a set of data {x;}, C IR?, the
probability density function (PDF) is defined to be

1 Y

169 = i 2 K) o

=1

where K (x) is a positive kernel and h is a scale parameter.
Clusters may then be obtained according to the partition
defined by the valleys of f. An efficient valley seeking
algorithm is reviewed below.

There are a number of important advantages of kernel
density approach. Identifying high-density regions is inde-
pendent of the shape of the regions. Smoothing effects of
kernels make density estimations robust to noise. Kernels are
localized in space so that outliers do not affect the majority of
the data. The number of clusters is automatically determined
from the estimated density function, but one needs to adjust
the scale parameter h to obtain a good estimate. When £ is
chosen too large, f will be oversmoothed and will become
unimodal eventually as i — co. On the other hand, when £ is
chosen too small, f may contain many spurious peaks and
will eventually contain one peak for each data pointas h — 0.
Theoretically, an optimal £ is the one which minimizes the
integrated squared error (ISE) [.(f(x) — fire(x))?dx or the
expected value of ISE where f;,, is the (unknown) underlying
true density. A common practice is to apply heuristics such as
cross-validation to obtain a reasonably good estimate of the
optimal h [26].

Despite the numerous advantages of kernel density
methods, there are some fundamental drawbacks which
deteriorate the quality of the resulting clusterings. PDFs
obtained through KDE are very often oscillatory (uneven)
since they are constructed by adding many kernels together.
Such an oscillatory nature may lead to the problem of
overfitting, whereas a smooth cluster boundary between the
clusters are usually preferred than an oscillatory one. Last,
but not least, valleys and peaks of PDFs are often very
vague especially when clusters are closed together.

2.3 Level Set Methods (LSM)

We recognize that the key issue in density-based approach is
how to advance the boundary either from peak regions
outward towards valley regions, or the other way around. In
this paper, we employ LSM, which are effective tools for
computing boundaries in motion, to resolve the boundary
advancing problem. LSM have well-established mathema-
tical foundations and have been successfully applied to solve
a variety of problems in image processing, computer vision,
computational fluid dynamics, and optimal design. LSM use
implicit functions to represent complicated boundaries
conveniently. While implicit representation of static surfaces
have been widely used in computer graphics, LSM move one

879

step further allowing the surfaces to dynamically evolve in an
elegant and highly controllable way, see [27], [28] for details.

Advantages of LSM include: 1) the boundaries in motion
can be made smooth conveniently and smoothness can be
easily controlled by a parameter that characterizes surface
tension and 2) merging and splitting of boundaries can be
easily done in a systematical way. Property 2 is very
important in data clustering as clusters can be merged or
split in an automatic fashion. Furthermore, the advancing of
boundaries is achieved naturally within the framework of
partial differential equation (PDE) which governs the
dynamics of the boundaries.

In LSM, a surface I'(¢) at time ¢ is represented by the zero
level set of a Lipschitz function ¢ = ¢(x.,t), i.e., I'(t) = {x:
¢(x,t) = 0}. The value of ¢ at nonzero level sets can be
arbitrary, buta common practice is to choose ¢ to be the signed
distance function 1p(;)(x) for numerical accuracy reasons [27].
Ourconventionisthat¢ < OinsideI'(t)and ¢ > OoutsideI'(¢).

In general, the signed distance function with respect to a
set of surfaces I' is defined by

if x lies inside I

_ [—minyer [x =y,
Yr(x) = { minger [|[x =y, if x lies outside T', (2)
where | - ||, denotes the Euclidean norm. To evolve T'(t)

(where T'(0) is the initial data) with speed § = ((x,t), the
equation is given by

(3)

which is known as the level set equation [28]. Our PDE also
takes this form. The art is to design the speed function
effectively to achieve one’s goal.

dp

2.4 Cluster Intensity Functions (CIF)

We may use LSM strictly as an effective mechanism for
advancing boundaries. For example, in the above approach
(A1), once the density peaks are detected, we may advance
cluster boundaries toward low-density regions using LSM.
This would be a LSM-based bump hunting approach.

However, it turns out that utilizing LSM we can further
develop a new and useful concept of cluster intensity function.
A suitably modified version of LSM becomes an effective
mechanism to formulate CIFs in a dynamic fashion. Therefore
our approach goes beyond the three approaches (A1)-(A3)
described earlier.

CIFs are effective to capture important characteristics of
clusters. When clusters are well-separated, CIFs become
similar to density functions. But, when clusters become
closed to each other, CIFs still clearly describe the cluster
structure whereas density functions and, hence, cluster
structure become blurred. In this sense, CIFs are a better
representation of clusters than density functions.

CIFs resolve the problems of PDFs while advantages of
PDFs are inherited. Although CIFs are also built on the top of
PDFs, they are cluster-oriented so that only information
contained in PDFs that is useful for clustering is kept while
other irrelevant information is filtered out. We have shown
that such a filtering process is very important in clustering
especially when the clusters touch each other. On the other
hand, it is well-known that when the clusters are well-
separated, then valley seeking on PDFs results in very good
clusterings. Since the valleys of CIFs and PDFs are very
similar, if not identical, when the clusters are well-separated,

880 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

clustering based on CIFs is as good as that based on PDFs.
However, advantages of CIFs over PDFs become very
significant when the clusters are closed together.

2.5 Valley Seeking

In a graph-based version described in [12], the idea is to
connect each point to another point nearby having a higher
density. In this way, we obtain a forest where each tree is a
cluster. Presumably, the root node of each tree is located in a
density peak whereas most leaf nodes are in valley regions.

This method starts off with a density estimation evaluated
at each data point. The density can be obtained using the PDF
described in (1) or using the k-nearest neighbor method [25].
In the experiments below, we use the PDF f. For each point x;,
denote by N,(x;) the set of neighboring points of x; within a
distance of r, excluding x; itself. For each x; € N,(x;), the
directional derivative of f at x; along x; — x; is estimated by
5:) = [F05) — Fx)]/ 1% — Xillg- Let fipas = arg mavx; s:(j).
Next, if $;(Jmax) <0, then ¢ is set to be a root node. If
i (Jmax) > 0, then the point x; that maximizes s; () is set to be
the parent node of x;. If s;(jmax) = 0 and if x; is connected to a
root node, then the root node is assigned to be the parent of x;;
otherwise, x; becomes a root node. When all the points are
visited, a forest will be constructed and each connected
component (a tree) is a cluster.

In our method, once the CIF is obtained, cluster labels
can be easily assigned by applying the above algorithm, but
with the density function replaced the distance-based CIF.

3 AN OUTLINE OF OUR CLUSTER FORMATION
STRATEGIES

Our clustering method consists of several major compo-
nents. We here give a high-level description of the method
in order to provide a global picture.

We start by introducing some terminologies. A cluster
core contour (CCC) is a closed surface surrounding the core
part/density peak of a cluster at which density is relatively
high. A cluster boundary refers to the interface between two
clusters, ie., a surface separating two clusters. A CCC is
usually located near a density peak while a cluster
boundary is located at the valley regions of a density
distribution. Here, a point x is said to belong to a valley
region of f if there exists a direction along which f is a local
minimum. The gradient and the Laplacian of a function g
are denoted by Vg and Ag, respectively.

Our method consists of the following main steps which
will be elaborated in detail in the next sections:

1. Initialize CCCs to surround high-density regions.

2. Advance the CCCs using LSM to find density peaks.

3. Apply valley seeking algorithm on the CIF con-
structed from the final CCCs to obtain clusters.

4 INITIALIZATION OF CLUSTER CORE CONTOURS
(CCC)

We now describe how to construct an initial cluster core
contours Iy effectively. The basic idea is to locate the
contours at which f has a relatively large (norm of)
gradient. In this way, regions inside I'; would contain most
of the data points—we refer these regions as cluster regions.
Similarly, regions outside I'y would contain no data point at

all and we refer them as noncluster regions. Such an interface
I'y is constructed as follows:

Definition 1. An initial set of CCCs I'y is the set of zero
crossings of Af, the Laplacian of f. Here, a point x is a zero
crossing if Af(x) =0 and within any arbitrarily small
neighborhood of x, there exist x* and x~ such that Af(x*) >
0and Af(x™) <0.

We note that T'y often contains several closed surfaces,
denoted by {I'y;}. The idea of using zero crossings of Af is
that it outlines the shape of data sets very well and that for
many commonly used kernels (e.g., Gaussian and cubic
B-spline) the sign of Af(x) indicates whether x is inside
(Af(x) < 0) or outside (Af(x) > 0) I'y.

Complete reasons for using zero crossings of Af to
outline the shape of data sets are several folds:

1. The solution is a set of surfaces at which ||V f]], is
relatively large.

2. The resulting I'y is a set of closed surfaces.

3. Ty captures well the shape of clusters.

4. The Laplacian operator is an isotropic operator
which does not bias towards certain directions.

5. The equation is simple and easy to solve.

6. It coincides with the “definition” of edges in the case
of image processing. In fact, a particular application
of zero crossings of Laplacian in image processing is
to detect edges to outline objects [29].

7. The sign of Af(x) indicate whether x is inside
(negative) or outside (positive) of a cluster region.

Analytic formula for Af is often available. In case of

Gaussian kernels, we have
X —X;
()

Z I — i[5
i=1 th+4 27T 17/2

InFigs. 1aand 1b, we show a data set drawn from a mixture
of three Gaussian components and the PDF f obtained by
KDE, respectively. The data set is generated so that the three
clusters are closed to each other while the Gaussian mixture
still has three distinct peaks theoretically. Such a data set is
expected to be tough for most clustering algorithms. We
observe that the valleys and peaks correspond to the two
smaller large clusters of the PDF are very vague or may even
notexist. Thus, the performance of PDF-based bump-hunting
and/or valley seeking could be poor. In Fig. 1c, we show the
initial CCCsjuxtaposed with the data set. We observe that the
CCCs capture the shape of the data set very well.

5 ADVANCING CLUSTER CORE CONTOURS

Next, we discuss how to advance the initial CCCs to obtain
peak regions through hill climbing in a smooth way. We
found that this is a key issue in density-based approaches
and is also how ideas from LSM come into play. More
precisely, we employ PDE techniques to advance contours
in an elegant way.

5.1 Evolution Equation

Since each initial CCCT'; inI'y changes its shape as evolution
goes on, we parameterize such a family of CCCs by a time
variable ¢, i.e., the ith CCC at time ¢ is denoted by T';(¢).
Moreover, I'(0) = Ty.

YIP ET AL.: DYNAMIC CLUSTER FORMATION USING LEVEL SET METHODS

wg

-6 -4 -2 0 2 4 6

(@)

881

0.04 4~
0.03 4.
- 002

0.01 4~

=21

-4}

sttty
!ll "x,'I
he

, !
s, st
gy i

-6 -4 -2

(©

Fig. 1. (a) A mixture of three Gaussian distributions. (b) The PDF f using Gaussian kernel with window size h = 1. (c) The initial CCC. In (b), peaks
and valleys corresponding to the two smaller large clusters are very vague that the performance of applying bump-hunting and/or valley seeking
algorithm based on the PDF is expected to be poor. Clusters obtained from our method are shown in Fig. 3. In (c), we observe that the initial CCCs
capture the shape of the data set and that the resulting boundaries capture the hot spots of the data set very well.

Using a level set representation, the mean curvature x =
k(x,t) (see [28]) of T'(¢) at x is given by

Vo(x,t))
[Vo(x,)./

Roughly speaking, the value of x at x indicates how curve the
surface {x: ¢(x,t) =0} is at x. Moreover, if the surface is
convex (respectively, concave) at x, then x > 0 (respectively,
K < 0).

Given the initial CCCs I'(0) represented by the zero level
set of ¢(x,0) (which is chosen to be the signed distance
function 1p(g)(x)), the time dependent PDE that we employ
for hill climbing on density functions is given by

%,< !
ot \1+[V/l

#(x,0) = Pr()(x).

This equation is solved independently for each cluster
region defined according to I'(t). During evolution, each
contour and, hence, each cluster region may split. For
example, if an initial CCC encloses two density peaks, then

/@(X,t):V-(

O

the CCC will eventually split into two as it climbs uphill.
Evolution is stopped when no further splitting occurs.

The aim of the factor 1/(1+ ||V f],) is to perform hill
climbing to look for density peaks. Moreover, the factor also
adjusts the speed of each point on the CCCs in such a way that
the speed is lower if ||V f||, is larger. Thus, the CCCs stay in
steep regions of f where peak regions are defined better. In
the limiting case where f has a sharp jump (||V f||, — o), the
CCCs actually stop moving at the jump. We remark that in
traditional steepest descent methods for solving minimiza-
tion problems, the speed (step size) is usually higher if |V f|,
if larger, which is opposite to what we do. This is because our
goalis tolocate steep regions of f rather thanlocal minimums.

The curvature « exerts surface tension to smooth out the
CCCs [30]. In contrast, without exerting surface tension, the
CCCs could become wiggly which may lead to the common
problem of overfitting of PDFs. Therefore, we employ the
term & to resolve such a problem. In fact, if ¢ is kept to be a
signed distance function for all ¢, i.e.,, ||V¢|, =1, then x =
Ag so that ¢ is smoothed out by Gaussian filtering. In the
variational point of view, the curvature term exactly
corresponds to the steepest descent of the length (in

882 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

two-dimensional case) and surface area (in n-dimensional
case where n > 3) of the CCCs. More precisely, under the
level set representation, the length/surface area of the CCCs
at time ¢ can be expressed as (see [31]):

/ |[VH(p(x,t))]dx,
where H(z) is the Heaviside function defined by

1 ife>0
H(‘”)_{o if 2 < 0.

Then, the derivative of the length/surface area with respect
to ¢ gives the curvature of ¢.

5.2 Dynamic Adjustment of «

The scalar o > 0 controls the amount of tension added to
the surface and will be adjusted dynamically during the
course of evolution. At the beginning of evolution of each
I';(0), we set & =0 in order to prevent smoothing out of
important features. After a CCC is split into pieces, tension
is added and is gradually decreased to 0. In this way,
spurious oscillations can be removed without destroying
other useful features. Such a mechanism is similar to
cooling in simulated annealing. In our implementation, the
PDE (4) is solved at discrete time ¢, = kAt. The « for each
component contour I'; is dynamically adjusted as follows:

e Set o =0 for each I'; initially.

e At each time point ¢, and for each component I';, if
I'; is split into two contours I';, and I';,, then set the «
for both I';, and I';, to be .. Otherwise, replace the
a for I'; by ya where 0 < v < 1 is a fixed constant.

In our experiments, we fix . = 1 and v = 0.99. Empiri-
cally, we found that the evolution is quite robust to the
choice of . For example, one may set v to be any number
between 0.8 and 1.0. The parameter a should be chosen to
be small so that the dominated motion is hill climbing. The
purpose of the curvature term is to regularize the way that
the contours climb up the hill. If « is set to be too large, then
the motion of the contours will have nothing to do with the
PDF f at all.

5.3 Termination of Evolution

If we do not stop the evolution, then the contours will reach
the peak regions, presumably one contour for each peak.
Eventually, since ||V f|| is never infinity in practice (and hence
the speed of the contours is never 0), each contour will shrink
into a point and disappear in finite time. Ideally, we want to
stop the evolution when each contour encloses one density
peak. In this case, there will be no further splitting of the
contours. However, it is generally difficult to determine in
advance whether the contours will split at a later time or not.
Our strategy is to let the contours evolve until they
disappear. But, we keep in record the contours right after
each splitting. More precisely, if I'; is split into two contours
I';, and I';,, then we store I';, and I';, and delete I'; from our
record. In this way, we can retain the earliest contours
which will not be split any further. Let ¢’ be the earliest time
so that no splitting will occur at a later time and let ¢t” be the
time where all contours disappear. In most situations, we
have ¢ > t" — t’ so that the computation spent on the time
interval [t/,t"] is small compared with that on [0, ¢'].

5.4 A Summary of the Evolution Equation
In summary, the PDE simply 1) moves the initial CCCs
uphill in order to locate peak regions, 2) adjusts the speed
according to the slope of the PDF, and 3) removes small
oscillations of the CCCs by adding tension so that hill
climbing is more robust to the unevenness of the PDF (cf.
Examples 1 and 2 in Section 7). In addition to these, the use
of LSM allows the CCCs to change their topology easily.

In Figs. 3a, 3b, and 3c, we show the CCCs during the
course of evolution governed by (4). We observe that the
contours are attracted to density peaks. When a contour is
split into several contours, the pieces are not very smooth
near the splitting points. Since tension is added in such
cases, the contours are straightened quickly.

Numerical implementation of our method is given in the

appendix.

5.5 Some Remarks

Remark 1. Our evolution (4) resembles some features of the
geometric active contours for image segmentation [32]:

Ad(x,t)
ot

= 9(IVu)llp)le + £ OIIVo(x, t),-

Here, c is a nonnegative constant, u(x) is the given image
and g(||Vu(x)||,) is an edge-detector which is a decreasing
function of || Vu(x)||, and is zeroatan edge. If we define gby

1

g(IVu(x)|ly) = W’

then we have

0p(x,8) _ ! c+ Kk(x x
ot 71+||VU(X)H2[+ (715)]HV¢)(at)HZ'

This equation is similar to our PDE (4) except for the
coefficient of k. Presumably, contours will stop at the
edges of the objects in the image. The curvature term is
used to regularize the motion so that it is robust to the
noise in the image.

Remark 2. While our approach dynamically evolves a set of
contours to detect density peaks, another approach
called support vector clustering [33] obtains a set of static
surfaces where each of them encloses one cluster. The
idea is to first use kernel methods to map the data to a
high-dimensional feature space. Then, find the sphere
with the smallest radius which encloses most of the data
points in the feature space (a few outliers are allowed).
Finally, apply the inverse mapping to map the sphere
back to the original space. The sphere in the original
space becomes a set of surfaces where each of them
encloses one cluster. In this method, there is no control
over the smoothness of the back transformed surfaces in
the original space. Thus, it can be clearly seen from their
experiments that the surfaces are very wiggly (for
example, see Fig. 3 in [33]).

6 CLUSTER INTENSITY FUNCTIONS

In nonparametric modeling, one may obtain clusters by
employing valley seeking on PDFs. However, as mentioned
above, such methods perform well only when the clusters

YIP ET AL.: DYNAMIC CLUSTER FORMATION USING LEVEL SET METHODS

(a)

883

(b)

Fig. 2. (a) Two “C” shape clusters juxtaposed with the zero crossings of A f and the valleys of the CIF. (b) The CIF constructed from the zero crossings
of Af. In (a), the valleys of the CIF clearly separate the two clusters. This cannot be done effectively by distance-based methods such as k-means.

are well-separated and of approximately the same density
in which case peaks and valleys of the PDF are clearly
defined. On the other hand, even though we use the density
peaks identified by our PDE (4) as a starting point, if we
expand the CCCs outward according to the PDF, we still
have to face the problems of the PDF; we may still get stuck
in local optimum due to its oscillatory nature.

In this section, we further explore cluster intensity
functions which are a better representation of clusters than
that by PDFs. Due to the advantages of CIFs, we propose to
perform valley seeking on CIFs to construct clusters, rather
than on PDFs. Here, CIFs are constructed based on the final
CCCs obtained by solving the PDE (4).

CIFs capture the essential features of clusters and inherit
advantages of PDFs while information irrelevant to cluster-
ing contained in PDFs is filtered out. Moreover, peaks and
valleys of CIFs stand out clearly which is not the case for
PDFs. The principle behind is that clustering should not be
done solely based on density. Instead, it is better done based
on both density and distance. For example, it is well-known
that the density-based algorithm DBSCAN [13] cannot
separate clusters that are closed together even though their
densities are different and the density-based algorithm
OPTICS [17] cannot separate the clusters when they have
similar densities.

CIFs, however, are constructed by calculating signed
distance from CCCs (which are constructed based on
density). Thus, CIFs combine both density and distance
information about the data set. This is a form of regulariza-
tion to avoid overspecification of density peaks.

The definition of a CIF is as follows:

Definition 2. Given a set of closed hypersurfaces I' (the final
CCCs), the CIF ¢ with respect to I' is defined to be

p(x) = —¢r(x),

where Yy is the signed distance function in (2).

The value of a CIF at x is simply the distance between x
and I' with its sign being positive if x lies inside I" and
negative if x lies outside I'. Roughly speaking, a large
positive (respectively, negative) value indicates that the
point is deep inside (respectively, outside) I' while a small

absolute value indicates that the point lies close to the
interface I'. To illustrate the expressive power of CIFs, an
example based on the “C”-shape clusters is shown in Fig. 2.

In Fig. 3d, the CIF constructed from the CCCs in Fig. 3c is
shown. The peaks correspond to the three large clusters can
be clearly seen which shows that our PDE is able to find
cluster cores effectively.

Based on the CIF, valley seeking (cf., Section 2) can be easily
done in a very robust way. In Fig. 3e, we show the valleys of
the CIF juxtaposed with the data set and the final CCCs.

We remark that the use of signed distance as CIFs has a
property that their valleys are nothing but the equidistant
surfaces between the CCCs. Moreover, cluster core contours
play a similar role as cluster centers in the k-means algorithm
[7]. Thus, our method may be treated as a generalization of the
k-means algorithm in the sense that a “cluster center” may be
of arbitrary shape instead of just a point.

Under LSM framework, valleys and peaks are easily
obtained. The valleys are just the singularities of the level
set function (i.e., CIF) having negative values. On the other
hand, the singularities of the level set function having
positive values are the peaks or ridges of the CIF (also
known as skeleton).

7 EXPERIMENTS

In addition to the examples shown in Figs. 1, 2, and 3, we
give more examples to further illustrate the usefulness of
the concepts introduced. Comparisons with valley seeking
[12] and DBSCAN [13] algorithms (cf., Section 2) are given
in Examples 1 and 2. Clustering results of two real data sets
are also presented. For visualization of CIFs which is one
dimension higher than the data sets, two-dimensional data
sets are used while the theories presented above apply to
any number of dimensions.

When applying DBSCAN, the parameter MinPts is fixed
at 4 as suggested by Ester et al. in [13].

Example 1. We illustrate how the problem of overfitting (or
under-fitting) of PDFs is resolved using our method. In
Fig. 4, we compare the clustering results of valley
seeking using the scale parameter h = 0.6,0.7 and the
DBSCAN algorithm using Eps = 0.28,0.29. The best

884 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

8 8f q
ol o, ol |
t ‘ '
. .
3
4- x'““xm"'l 4k ll""nn"ll
& 2F & 2F B
o of * —
-2} 2t |
.
i}] il .
. . ! . . , . . ,
-6 -4 -2 0 2 4 6 -6 -4 =2 0 2 . 6
X, X,
1 1
(a) (b)
8F
Al - q‘"ml“"”"l!
.
l,,‘-
4} S gt
& 2F
ok
ot i
.
gt
. \
5 -4 -2 0 2 4 6
X,
1
(c) (d)

Fig. 3. Evolution of cluster core contours (CCC) using the bump hunting PDEs (4). The data set is the one used in Fig. 1. (a) Initial CCC.
(b) Intermediate CCCs. (c) Final CCCs. (d) CIF constructed from the contours in (c). Peaks corresponding to the three large clusters are clearly seen.
(e) Valleys of the CIF. In (e), the three cluster cores are well-discovered.

result is observed in Fig. 4a, but it still contains several 1) outlining the shape of the data set well by keeping the
small clusters due to the spurious oscillations of the PDF. CCCs smooth and 2) using curvature motion to smooth
For other cases, a mixture of many small clusters and out oscillations due to unevenness of PDFs.

some oversized clusters are present. In contrast, our Example 2. A data set with 4,000 uniformly distributed
method (shown in Fig. 3) resolves these problems by points lying in two touching circles is considered. The

YIP ET AL.: DYNAMIC CLUSTER FORMATION USING LEVEL SET METHODS

885

-2}

-4+

=21

-4t =

-6 -4 -2 0 2 4 6

-8 -4 -2 0 2 4 6

-2t

-4}

5l st RS o VT |

-4}

-6 -4 =2 0 2 4 6

(©

=] -4 =% 0 2 4 6

(©)

Fig. 4. Clusters obtained from applying valley seeking and DBSCAN to the data set in Fig. 1. (a) Valley seeking with 1 = 0.6. (b) Valley seeking with
h = 0.7. (c) DBSCAN with Eps = 0.28. (d) DBSCAN with Eps = 0.29. In (a) and (c), many small clusters are present due to unevenness of the density
functions. These results are not as good as the results using our method as shown in Fig. 3.

data set together with the zero crossings of A f are shown
in Fig. 5a. The result of our method is in Fig. 5b. We
observe that the final CCCs adapt to the size of the
clusters suitably. The results of valley seeking on PDFs
(h = 0.05,0.06) are shown in Figs. 5¢ and 5d where the
unevenness of the PDFs result in either two or four large
clusters. The results of DBSCAN with Eps = 0.010,0.011
are in Figs. 5e and 5f which contain many small clusters.
In addition, this example also makes it clear that density
functions must be regularized which is done implicitly
by adding surface tension in our method.

Example 3. This example uses a data set constructed from
the coexpression patterns of the genes in yeast during
cell cycle [34]. Clusters of the data are expected to reflect
functional modules. The results are shown in Fig. 6. We
observe that the valleys of the CIF in Fig. 6c are right on
the low density regions and, thus, a reasonable clustering
is obtained. We also notice that the clusters are very
close, if not overlapped, to each other, especially the two
clusters at the bottom.

Example 4. Our next example uses a real data set from text
documents in three newsgroups. For the ease of

visualization, the data set is first projected to a 2D space
using principle component analysis [35]. The results in
Fig. 7 show that the clustering results agree with the true
clustering very well.

8 CONCLUDING REMARKS

In the paper, we introduced level set methods to identify
density peaks and valleys in density landscape for data
clustering. The method relies on advancing contours to
form cluster cores. One key point is that during contour
advancement, smoothness is enforced via LSM. Another
point is that important features of clusters are captured by
cluster intensity functions which serve as a form of
regularization. The usual problem of roughness of density
functions is overcome. The method is shown to be more
robust and reliable than traditional methods that perform
bump hunting or valley seeking on density functions.

Our method can also identify outliers effectively. After
the initial cluster core contours are constructed, outliers are
clearly revealed and can be easily identified. In this method,
different contours evolve independently. Thus, outliers do

886 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

08 T

0.7

06F

~ 041

0.31

0.2F

01

0.8 T

071

0.6

0.3r

0.21-

0.8 T

0.71

0.31

02r

0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09

Fig. 5. Comparisons of our method with valley seeking and DBSCAN. (a) Data set with the zero crossing of A f superimposed. (b) Final CCCs (the
closed curves in red and blue) and the valleys of the CIF (the line in black). (c) Valley seeking with h = 0.05. (d) Valley seeking with A = 0.06.
(e) DBSCAN with Eps = 0.010. (f) DBSCAN with Eps = 0.011. The CCCs are able to capture the cluster shape while valley seeking and DBSCAN
seem to suffer from overfitting and result in many small spurious clusters.

not affect normal cluster formation via contour advancing. Our method for contour advancement given by (4) is
Such a nice property does not hold for clustering algorithms based on the dynamics of interface propagation in LSM. A
such as the k-means where several outliers could skew the more elegant approach is to recast the cluster core
clustering. formation as a minimization problem where the boundary

YIP ET AL.: DYNAMIC CLUSTER FORMATION USING LEVEL SET METHODS

0.6

0.4r

(c)

887

(b)

(@)

Fig. 6. (a) DNA gene expression data set. (b) Zero crossings of A f. (c) The final CCCs and the valleys of the CIF. (d) The CIF. The cluster cores are
well-retrieved and the valleys successfully separate the data into clusters of relatively high density.

advancement can be derived from first principles which
will be presented in a later paper.

APPENDIX

NUMERICAL IMPLEMENTATIONS

To solve the PDE (4) numerically, we apply standard
finite difference schemes for level set equations. We refer
the readers to [27], [28], [36] for excellent overviews of
level set methods, evolutionary equations, and numerical
implementations.

Consider a grid (i1 Az, isAz, . .., i,Ax), where i1, s, ..., 7,
are integers, Ax is the spatial step size. We recall that p is the
dimensionality of the data. The time variable is discretized to
kAt, where kis an integer and At is the temporal step size. Let
i=(i1,%2,...,4). The sample of ¢(x,t) at the grid point
(i1Az,i2Ax, ..., i,Az) at time kAt is denoted by ¢F.

To obtain the initial data ¢(x,0) in (4), we need to
compute the signed distance from the initial cluster core
contours. This requires solving the Eikonal equation

IVl =1

with boundary conditions (x) = 0 on I'(0) which can be
done fast by the Fast Marching Method [27] or Fast Sweeping
Method [37]. Since the implementation is straightforward
and has been detailed in [27], we omit the details.

Let e; be the vector (0,...,0,1,0,...,0) whose jth entry
is an 1 and the other entries are 0. Define the forward
difference operator in the jth spatial dimension D by:

¢>.k+ — ¢k
Drok .= "1
;9 Az
Similarity, define the backward difference operator in the
Jjth spatial dimension D; by:

k_ gk
D_¢k — ¢i - ¢i—ej
AL Az
A first order accurate upwind scheme for the level set
equation

Ap(x,t
P80 _ i, 196 D)l
is given by
¢k+l _ ¢A
e [max(—AF,0)V* + min(—4f,0)V],

888 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28,

(©

NO. 6, JUNE 2006

()

Fig. 7. (a) A data set of three internet newsgroups with 100 news items in each group (news items in the same group are displayed with the same
symbol). (b) The zero crossings of Af. (c) Clustering results (lines are valleys of the final CIF and closed curves are the cluster cores). (d) The CIF.

where

see [36, p. 80] and also [27, p. 65]. In our PDE (4), the speed is
given by

1
=~ _ tak
L+ IV £l

1 Vo)
- 4aV- ,
v, e (nwm

which is approximated by central difference to obtain jF.

For higher order accurate schemes, see [27, pp. 66-67].
In level set methods, we are often only interested in the

evolving contours, which are located at the zero-level set of ¢.
Thus, there is no need to solve the PDE on the whole grid. We
apply the Narrow Band Level Set Method [27] which updates
the grid points near the moving contours. In this way,
computational costs are greatly reduced.

Bx,1)

Sparse grids techniques [38], [39] may be used to further
reduce the computational complexity. In the original full grid,
suppose each dimension has n grid points, then the number of
grid points (in space) is n?. Using sparse grids, which are
optimally chosen subsets of grid points, we can reduce the
number of grid points to O(n(log n)’~") with a fairly small loss
in accuracy. Indeed, sparse grids techniques have already
been successfully applied to a number of data mining
problems [40], [41], [42]. We have yet to explore this direction.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
the detailed, valuable suggestions and for bringing into our
attention the support vector clustering algorithm. This work
has been partially supported by grants from the US
Department of Energy under contract DE-ACO03-
76SF00098, US National Science Foundation under contracts
DMS-9973341, ACI-0072112, and INT-0072863, US Office of
Naval Research under contract N00014-03-1-0888, US
National Institutes of Health under contract P20
MH65166, and the NIH Roadmap Initiative for Bioinfor-
matics and Computational Biology U54 RR021813 funded
by the NCRR, NCBC, and NIGMS.

YIP ET AL.: DYNAMIC CLUSTER FORMATION USING LEVEL SET METHODS

REFERENCES

(1]
(2]
B3]
(4]
(5]
(o]
(]

8]

&)

(10]

(1]

(12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

[20]

(21]

(22]

[23]

[24]

(23]

[26]

(27]
(28]

[29]

J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufman, 2001.

AK. Jain, M\N. Murty, and PJ. Flyn, “Data Clustering: A
Review,” ACM Computer Surveys, vol. 31, no. 3, pp. 264-323, 1999.
L. Kaufman and P. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley and Sons, 1990.

P. Berkhin, “Survey of Clustering Data Mining Techniques,”
technical report, Accrue Software, 2002.

P. Hansen and B. Jaumard, “Cluster Analysis and Mathematical
Programming,” Math. Programming, vol. 79, pp. 191-215, 1997.
S.P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans.
Information Theory, vol. 28, no. 2, pp. 129-137, 1982.

J. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistics and Probability, vol. I: Statistics, pp. 281-297, 1967.

A. Banerjee, S. Merugu, 1. Dhillon, and J. Ghosh, “Clustering with
Bregman Divergences,” Proc. Fourth SIAM Int’l Conf. Data Mining,
pp. 234-245, 2004.

R.T. Ng and J. Han, “Efficient and Effective Clustering Methods
for Spatial Data Mining,” Proc. 20th Int’l Conf. Very Large Data
Bases, pp. 144-155, 1994.

C. Ding and X. He, “Cluster Aggregate Inequality and Multi-Level
Hierarchical Clustering,” Proc. Ninth European Conf. Principles of
Data Mining and Knowledge Discovery, pp. 71-83, 2005.

G. Karypis, E. Han, and V. Kumar, “"CHAMELEON: A Hierarch-
ical Clustering Algorithm Using Dynamic Modeling,” Computer,
vol. 32, pp. 68-75, 1999.

K. Fukunaga, Introduction to Statistical Pattern Recognition, second
ed. Boston Academic Press, 1990.

M. Ester, H. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise,” Proc. Int’l Conf. Knowledge Discovery and Data Mining,
pp- 226-231, 1996.

J. Sander, M. Ester, H. Kriegel, and X. Xu, “Density-Based
Clustering in Spatial Databases: The Algorithm GDBSCAN and
Its Applications,” Data Mining and Knowledge Discovery, vol. 2,
no. 2, pp. 169-194, 1998.

R. Agrawal,]J. Gehrke, D. Gunopulos, and P. Raghavan,
“Automatic Subspace Clustering of High Dimensional Data for
Data Mining Applications,” Proc. ACM-SIGMOD Int’l Conf.
Management of Data, pp. 94-105, 1998.

A. Hinneburg and D.A. Keim, “An Efficient Approach to
Clustering in Large Multimedia Databases with Noise,” Proc. Int’]
Conf. Knowledge Discovery and Data Mining, pp. 58-65, 1998.

M. Ankerst, M. Breunig, H.P. Kriegel, and]. Sander, “OPTICS:
Ordering Points to Identify the Clustering Structure,” Proc. ACM-
SIGMOD Int’l Conf. Management of Data, pp. 49-60, 1999.

W. Wang, J. Yang, and R. Muntz, “STING: A Statistical
Information Grid Approach to Spatial Data Mining,” Proc. 23rd
Very Large Data Bases Conf., pp. 186-195, 1997.

G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A
Wavelet-Based Clustering Approach for Spatial Data in Very Large
Databases,” The Very Large Databases |., vol. 8, pp. 289-304, 2000.
C. Ding, X. He, H. Zha, M. Gu, and H. Simon, “Spectral Min-Max
Cut for Graph Partitioning and Data Clustering,” Proc. First IEEE
Int’l Conf. Data Mining, pp. 107-114, 2001.

L. Ertoz, M. Steinbach, and V. Kumar, “Finding Clusters of
Different Sizes, Shapes, and Densities in Noisy, High Dimensional
Data,” Proc. Third SIAM Int’l Conf. Data Mining, pp. 47-58, 2003.
R. Sharan and R. Shamir, “CLICK: A Clustering Algorithm with
Applications to Gene Expression Analysis,” Proc. Int'l Conf.
Intelligent Systems for Molecular Biology, pp. 307-316, 2000.

G.J. McLachlan and D. Peel, Finite Mixture Models. Wiley, 2001.
E. Parzen, “On Estimation of a Probability Density Function and
Mode,” Ann. Math. Statistics, vol. 33, pp. 1065-1076, 1962.

R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed.
Wiley-Interscience, 2001.

S.R. Sain, K.A. Baggerly, and D.W. Scott, “Cross-Validation of
Multivariate Densities,” J. Am. Statisitcal Assoc., vol. 89, pp. 807-817,
1992.

J.A. Sethian, Level Set Methods and Fast Marching Methods, second
ed. New York: Cambridge Univ. Press, 1999.

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. New York: Spring Verlag, 2003.

A K. Jain, Fundamentals of Digital Image Processing. Prentice Hall,
1988.

(30]

(31]

(32]

(33]

(34]

(35]

[30]

(371

(38]
(39]

(40]

(41]

(42]

4¥h

sor.

889

S. Osher and J.A. Sethian, “Fronts Propagating with Curvature-
Dependent Speed: Algorithms Based on Hamiton-Jacobi Formula-
tions,” J. Computational Physics, vol. 79, pp. 12-49, 1988.

H.K. Zhao, T. Chan, B. Merriman, and S. Osher, “A Variational
Level Set Approach to Multiphase Motion,” . Compuational
Physics, vol. 127, pp. 179-195, 1996.

V. Caselles, F. Catté, T. Coll, and F. Dibos, “A Geometric Model for
Active Contours in Image Processing,” Numerische Mathematik,
vol. 66, pp. 1-31, 1993.

A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik, “Support
Vector Clustering,”]. Machine Learning Research, vol. 2, pp. 125-
137, 2001.

P. Spellman, G. Sherlock, M. Zhang, V. lyer, and K. Anders,
“Comprehensive Identification of Cell Cycle-Regulated Genes of
the Yeast Saccharomyces Cerevisiae by Microarray Hybridiza-
tion,” Molecular Biology Cell, vol. 9, no. 12, pp. 3273-3297, 1998.
LT. Jolliffe, Principal Component Analysis, second ed. Springer,
2002.

G. Sapiro, Geometric Partial Differential Equations. New York:
Cambridge Univ. Press, 2001.

Y.R. Tsai, L. Cheng, S. Osher, and H. Zhao, “Fast Sweeping
Algorithms for a Class of Hamilton-Jacobi Equations,” SIAM J.
Numerical Analysis, vol. 41, no. 2, pp. 673-694, 2003.

C. Zenger, “Sparse Grids,” Parallel Algorithms for Partial Differntial
Equations, vol. 31, 1991.

H. Bungartz and M. Griebel, “Sparse Grids,” Acta Numerica,
pp. 147-269, 2004.

J. Garcke and M. Griebel, “Classification with Sparse Grids Using
Simplicial Basis Functions,” Proc. Seventh ACM SIGKDD, pp. 87-
96, 2001.

J. Garcke, M. Griebel, and M. Thess, “Data Mining with Sparse
Grids,” Computing, vol. 67, no. 3, pp. 225-253, Mar. 2001.

J. Garcke, M. Hegland, and O. Nielsen, “Parallelisation of Sparse
Grids for Large Scale Data Analysis,” Proc. Int’l Conf. Computa-
tional Science, pp. 683-692, 2003.

Andy M. Yip received the Bachelor's degree in
mathematics in 1998 from the Chinese Univer-
sity of Hong Kong. Two years later, he received

2 the Master's degree in mathematics from the
g University of Hong Kong. He then went on to
pursue the PhD degree in mathematics at
University of California, Los Angeles, and
graduated in 2005. He joined the Department
of Mathematics at the National University of
Singapore in July 2005 as an assistant profes-
His research interests include variational and PDE methods in

image processing and data mining algorithms.

Chris Ding is a staff computer scientist at
Lawrence Berkeley National Laboratory. His
research includes data mining, machine learn-
ing, link analysis, bioinformatics, and stochastic
modeling. He serves on program committees of
data mining conferences and gives tutorials on
spectral clustering and matrix models. He is an
associate editor of the journal Data Mining and
Bioinformatics and is writing a book on spectral
clustering to be published by Springer.

Tony F. Chan received the BS and the
MS degree, both in 1973, from Caltech, and
the PhD degree in computer science from
Stanford University in 1978. He is currently the
Dean of Physical Sciences, University of
California, Los Angeles, where he has been a
professor of mathematics since 1986. His
research interests include mathematical and
computational models for image processing,
computer vision, optimization in VLSI design,

and geometric methods for brain mapping.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

