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Abstract

The capacitated centred clustering problem (CCCP) consists of defining a set of clusters with limited capacity
and maximum proper similarity per cluster. Each cluster is composed of individuals from whom we can compute a
centre value and hence, determine a similarity measure. The clusters must cover the demands of their individuals.
This problem can be applied to the design of garbage collection zones, defining salesmen areas, etc. In this work,
we present two variations (p-CCCP and Generic CCCP) of this problem and their mathematical programming
formulations. We first focus our attention on the Generic CCCP, and then we create a new procedure forp-CCCP.
These problems being NP-HARD, we propose a two-phase polynomial heuristic algorithm. The first phase is a
constructive phase for which we will propose two variants: the first technique uses known cluster procedures
oriented by a log-polynomial geometric tree search, the other one uses unconstrained to constrained clustering.
The second phase is a refinement of the variable neighbourhood search (VNS). We also show the results we have
obtained for tests from the CCP literature, the design of garbage collection zones, and salesmen areas distribution
using the approach implemented for the SISROT� system.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Clustering analysis involves the grouping of data entities (points) in a way that maximises the homo-
geneity of points within a group and, at the same time, the heterogeneity of points between groups[1–4].
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Capacitated clustering problems (CCP) have arisen when Mulvey and Beck proposed the first model for
this problem. The main idea is based on a problem where we want to find capacitated clusters (each cluster
with a given capacity) centred by a median of its individuals (objects or customers) that minimises an
objective function that is described by the sum of the total dissimilarity between each individual and its
median[5]. The original formulation of the problem can be stated as follows (CCP):

(CCP) Min
∑
i∈I

∑
j∈J

dij xij (1.1)

such that,∑
j∈J

xij = 1, ∀i ∈ I, ∀j ∈ J, (1.2)

∑
j∈J

yj �p, ∀i ∈ I, (1.3)

xij �yj , ∀i ∈ I, ∀j ∈ J, (1.4)∑
i∈I

qixij �Qj, ∀j ∈ J, (1.5)

xij , yj ∈ {0,1}, ∀i ∈ I, ∀j ∈ J, (1.6)

wheren is the number of individuals,p the number of clusters,p�
⌈∑

i∈I qi/
∑

j∈J Qj

⌉
, ai[] are the

components of an individuali with an arrayi[] of its characteristics, inRl , ||I || ≡ n, ||J || ≡ p, dij =[∑l
k=1 (aik − ajk)2

]1/2
the dissimilarity measure betweeni and its medianj, xij is 1, if the individuali

is assigned to clusterj and 0 otherwise,yj is 1, if clusterj is used and 0 otherwise,I the set of individuals,
J the set of medians,Qj the maximum capacity of clusterj, qi the demand of the individuali.

In the CCP model, the total dissimilarity in the clusters must be minimised (1.1). The number of
clusters may not exceed the given number of clustersp (1.2). An individual is assigned to only one cluster
(1.3). Every individual is assigned to a cluster (1.4). The cluster capacity must cover the demands of its
individuals (1.5). Eq. (1.6) specifies the decision variables.

The above formulation is also known as the Capacitatedp-Median Problem whenQj is homogeneous,
and was considered by[6–10].

For the CCP, the centre of a given cluster is a particular individual of the cluster from which the sum of
the dissimilarities to all other individuals in the cluster is minimised (scatterof the cluster)[6]. In Fig. 1,
we have the visualisation of a solution of a CCP instance. This instance of CCP considers 25 individuals
with unit demand, where we wish to find 3 clusters with capacity limited to 9 individuals at most, with
minimum dissimilarity inR2 or as = (as1, as2), ∀s ∈ I or J. Note that the setJ is formed by the medians
(as the centres) of each cluster. The capacitatedp-median problem is a special version of the CCP where
the coefficients of the objective function are distances[9].

For large scale instances, which are found in many real life situations, it seems reasonable to use heuristic
approaches to solve this problem. The heuristics for this problem must be designed in consequence of
good strategies knowledge to find initial and improved solutions. Some authors consider, for solving CCP
instances (>1000 individuals), the use of procedures that are, in fact, very time consuming, either in the
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Fig. 1. CCP solution for an instance with 25 individuals andQj = 9, andqi = 1.

constructive phase interactively using Regret functions, simulated annealing or Lagrangean relaxation
using surrogate constraints or in the improvement phase, generally using tabu search metaheuristic and
more recently GRAMPS (GRASP with adaptative memory programming)[3,5–7,10–14].

The capacitated (geo) centred clustering problem (CCCP), or continuous capacitated clustering prob-
lem, can be viewed as the problem of defining a set of clusters with limited capacity and minimum
dissimilarity between the formed clusters, where each cluster has a centre located at the geometric centre
of its individuals and covers all the demands of a set of individuals. It is different from the CCP, the
clusters are centred at the centre of their individuals’ co-ordinates, where for the CCP, the clusters are
centred by their medians.

The CCCP has a wide range of applications such as: the design of garbage collection zones, sales force
territorial design, depot location in distribution systems, location of switching centres in communica-
tion networks, location of off-shore platforms for oil exploration, clustering of customers into different
marketing segments in marketing studies, taxation to municipalities, information systems design, rout-
ing newsboys to newspaper subscribers delivery, routing agents to dengue disease combat, and others
[6,15–17].

In this article, we are particularly interested in the case where the CCCP problem is inR2. We design
and adapt heuristic/metaheuristic techniques that are taken from the literature. This problem is applied to
the design of territories to sales force and garbage collection zones/circuits.

This article is organised as follows, in Section 2 we introduce the new problem and its formulation
considering two aspects, when the number (p) of clusters is given and when we want to find the appropriate
number of clusters to cover the individuals’ demands. In Section 3 we show two log-polynomial heuristic
algorithms for the generic capacitated clustering andp-CCCP. In Section 4, we show the results using
instances from the CCP literature, considering variations of the constructive phase. Some results in the
design of garbage collection zones, and sales force areas distribution using this approach implemented
for the system SisRot (FULL and TRANSLIX), are also reported.
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Fig. 2. Visualisation of thep-CCCP solution for the instance proposed inFig. 1.

2. Modelling the CCCP

The CCCP consists in defining a set of clusters with limited capacity and maximum proper similarity
per cluster. Each cluster is composed of individuals from whom we can compute a centre value and
hence, determine a dissimilarity measure between clusters. The clusters must cover the demands of their
individuals. InFig. 2, we can see the same solution of the above instance, from a CCCP point of view.

We consider two different formulations. In the first one (p-CCCP), the number of clusters is known in
advance and in the second one (g-CCCP), the number of clusters and the dissimilarities are minimised.
The first formulation (p-CCCP) can be stated as follows:

(p-CCCP) Min
∑
i∈I

∑
j∈J
||ai − xj ||2 yij (2.1)

such that,∑
j∈J

yij = 1, ∀i ∈ I, (2.2)

∑
j∈J

yij = nj , ∀j ∈ J, (2.3)

∑
i∈I

aiyij = njxj , ∀j ∈ J, (2.4)

∑
i∈I

qiyij �Qj, (2.5)

x̄j ∈ Rl , nj ∈ N, yij ∈ {0,1}, ∀i ∈ I, ∀j ∈ J, (2.6)

where,x̄j is the centroid of a clusterj, nj the number of individuals in clusterj, yij =1, if the individuali
is assined to clusterj, and 0 otherwise,ai the position of the individuali in theRl space,Qj the maximum
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load of the clusterj, qi the demand of the individuali, I the set of individuals = n, J the set of Clusters
= p.

In the above model, the objective function minimises the sum of dissimilarities in each clusters (2.1).
An individual is assigned to only one cluster (2.2). Eq. (2.3) gives the number of individuals in each
cluster. Eq. (2.4) locates the centre of each cluster at its geometric centre. Eq. (2.5) maintains the demand
of individuals limited to the capacity of each particular cluster (in our case,Qj =Q,∀j ∈ J ), and the
equations (2.6) define the decision variables, and the upper limits to the number of individuals per group.

Thep-CCCP is slightly different from the CCP. In thep-CCCP, the centre of a cluster is not necessarily
an individual, it is the centre value computed with respect to all the individuals of the same cluster.
This introduces non-linearity in the model, in the objective function and in some set of constraints. This
difference in the two models implies that for a given instance of a problem, the clusters found by a
solution of the CCP are not necessarily the same as the ones found by thep-CCCP. To illustrate this, in
Fig. 3(a)–(c) we have from the same set of points of the above instance, a resolution of an instance where
Q= 6, p = 5, qi = 1 (i = 1, . . . ,25).

The second formulation can be stated as follows (Generic CCCP):

(Generic CCCP) Min


F∑

j∈J
zj


+∑

j∈J
zj

(∑
i∈I
||ai − xj ||2yij

)
(2.7)

such that,∑
j∈J

yij = 1, ∀i ∈ I, (2.8)

∑
i∈I

aiyij = x̄j
(∑
i∈I

yij

)
, ∀j ∈ J, (2.9)

∑
i∈I

qiyij �Qjzj , ∀j ∈ J, (2.10)

x̄j ∈ Rl , zj , yij ∈ {0,1},∀i ∈ I,∀j ∈ J, (2.11)

wherex̄j the centroid of a clusterj, yij = 1, if the individuali is assigned to clusterj, and 0 otherwise,
zj = 1, if a clusterj is open, and 0 otherwise,ai the position of the individuali in theRl space,Qj the
capacity of the clusterj, qi the demand of the individuali, I the set of individual,||I || = n, J the set of
possible clusters, 1� ||J ||�n, F the fixed cost for opening a cluster.

In the model above, the objective function minimises the number of clusters and the sum of dissimilar-
ities of each of those clusters (2.7). An individual is assigned to only one cluster (2.8). Eq. (2.9) locates
the centre of each cluster at its geometric centre. Eq. (2.10) maintains the demand of individuals limited
to the capacity of each particular cluster (in our case,Qj =Q,∀j ∈ J ), and in Eq. (2.11) we specify the
decision variables.

The major difference in the second model is that we wish to find the number of clusters that covers,
with minimum dissimilarity, all the individuals, with a capacity constraint for each cluster. A bin packing
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Fig. 3. Comparative visions on the same set of groups and instance for CCP and CCCP. (a) CCP Optimum Solution,
fmin = 1216.622. (b) Solution 3(a) in CCCP,fmin = 1273.462. (c) Solution for the CCP,fmin = 1231.002. (d) CCCP best
known Solution,fmin = 1251.442.

constraint is included in the clustering, and this constraint changes drastically the problem. We call it a
generic centred capacitated clustering, since it has general purposes. The above formulations show how
difficult this problem is, and as a consequence it can be shown that the CCP, and similarly the CCCP, can
be polynomially reduced to a NP-Complete equivalent problem[18].
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3. Heuristics for CCCP

The key aspects of the CCCP use the geometric positioning of the individuals in their related clusters.
The problem of exchanging individuals from Neighbour clusters may be solved easily, if we find a good
approximation of the clusters centres within a refinement phase. Considering this, we propose a two-
phase algorithm where the first phase uses a constructive cluster procedure (Forgy algorithm,[19]). This
procedure builds an initial solution oriented by a log-polynomial algorithm using structured geometric
balancedq-trees. The second phase is a refinement of the variable neighbourhood search (VNS)[20,21].

For our method we also consider classic clustering methods from the literature. The unconstrained
clustering is in itself NP-Complete, exact methods were proposed for short instances and some heuristic
methods were also proposed to find feasible solutions with results of good quality[1,2,22–24]. All the
methods consider an initial partitiong0

1, . . . , g
0
p of E and then[4], try to improve the solution exchanging

the elements to its most promising group, for some criteria, and then recalculate the centre. The procedures
continue until no improvement is achieved. These procedures are called Procedures of Means, in essence
they have the same objective, but they differ by their strategies to find the final solution. The preliminary
method of means is the Forgy’s method (this method is also called H-Means),[19,21]:

3.1. The Forgy’s method

Step0: Setk = 0
Step1: If k = 0, defineg0

1, . . . , g
0
p of E;

Otherwise, build a newgk1, . . . , g
k
p of E, assigning each individual to a group

where its centre is closest. Setk = k + 1.
Step2: Calculate the centroids of these groups.
Step3: If f (gkm)= f (gk−1

m ), stop;
Otherwise, continue step 1.

An initial solution (partition) is given to the method as the centroids of this partition. In general, this
partition is chosen at random, but with a little extra work in this initial step the method finds better results.
The local minimum convergence is guaranteed, and the time required to achieve this result is O(n). The
problem of this method is the degeneracy, i.e. the number of final clusters formed may be different from
the p desired. To avoid this, Hansen and Mladenovic (2001) proposed a step to isolate in clusters of a
unique individual the difference between the number of achieved clusters (NAC) andp. The individuals
are taken from the most distant to its centre to the least, in decreasing order. This step is included as
follows (H-Means+).

3.2. The H-Means method

Step0: Setk = 0
Step1: If k = 0, defineg0

1, . . . , g
0
p of E;

Otherwise, build a newgk1, . . . , g
k
p of E, assigning each individual to a group

where its centre is closest. Setk = k + 1.
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Step2: Calculate the centroids of the groups formed
Step3: If NAC�p then

Order the elements accordingly to the decreasing distance to its cluster centre; Take and isolate
the firstp-NACgroups ordered. Make the centroids be these elements;
Reducef (gkm) from the distances taken

Step4: If f (gkm)= f (gk−1
m ), stop;

Otherwise, continue 1.

There is a difference between H-Means+ and the original Forgy’s method. But nevertheless, in this
text we will use the same denomination for the Forgy method and the non-degenerate Forgy, that is the
H-Means+ method proposed by Hansen and Mladenovic (2001).

A variation of the Forgy’s method is the well known KMeans method proposed by Jansen (1966) and
later by MacQueen (1967). In the MacQueen’s version we also have an initial given partition withp
centres but the evaluation of the centres is a little different from the Forgy’s method. In this method at
each allocation of an individual to its group centre, a new evaluation of the centroids is made. It introduces
a computational effort to the method as can be seen below.

3.3. The KMEANS method

Step0: Setk = 0
Step1: If k = 0, defineg0

1, . . . , g
0
p of E;

Step2: Take the objectkand attribute to a new groupgl , (l �= i), where the centroids would be obtained
by [2]

x̄l = nlx̄l − xj
nl − 1

and x̄i = nix̄i − xj
ni − 1

,

wherenl is the cardinality of the groupgl , ni the cardinality of the groupgi , x̄l the centroid of
the groupgl , x̄i the centroid of the groupCi , xj the individualj;

Step3: Letvji is the improvement achieved by the objective function (measure of dissimilarity):

vji ← ni

ni + 1
||x̄i − xj ||2− nl

nl − 1
||x̄l − xj ||2, xj ∈ gl, x̄i /∈ gl,

where

vji = improvement of the objective function by reallocatingj ;
Step4: If no improvement was obtained, terminate (a local optimum was achieved) Otherwise, imple-

ment the greatestvji , go to step 2.

As the above methods, the JMeans version, proposed by Hansen and Mladenovic (2001), starts with a
defined (random, p.ex.)p-partition. In this method, at each iteration, the individuals that are far from their
group’s centroid (with a toleranceε) are reallocated to other centres that further improve the objective
function. This strategy is much more elaborate than the others, although the method remains with the
KMEANS complexity, O(n2).
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3.4. The JMeans method

Step0: Setk = 0
Step1: If k = 0, defineg0

1, . . . , g
0
p of E;

Step2: Take objects of groupgi and attribute to a new groupgl , (l �= i). These objects must be far
from their centroids for a given toleranceε, mark them as non-occupied.

Step3: (Jump neighbourhood). // exploring the neighbourhood.
For eachj (j = 1, . . . , n) repeat the following steps:

(a) (Relocation). Add a new cluster centroidxM+1 at some unoccupied entity locationxj and the index
i of the best centroid deletion; denote withvij the change in the objective function value;

(b) (Keep the best). Keep the pair of indicesi
′
andj

′
, wherevij (defined in KMEANS) is minimum;

(Move) Replace centroidxi′ by xj ′ and update assignments accordingly to get the new partitionP ′M ;
setf ′ := fopt+ vi′j ′ .

Step4: If no improvement was obtained, terminate (a local optimum was achieved) Otherwise, imple-
ment the greatestpartition, go to step 2.

Many other methods are studied by the literature using other strategies or other techniques from neural
networks (Kohonen), fuzzy sets to alternativec-means. Major related literature in cluster methods and
applications can be viewed in IEEE Transactions in Pattern Analysis and Machine Intelligence, and in
Pattern Recognition. For a mathematical programming overview on clustering, refer to[4]. For a better
review of the state-of-the-art unconstrained methods, refer to[25–30].

3.5. Phase 1: Constructive step

In this phase, the coordinates of each individual are included in a balancedq-tree structure. As the
points (individuals) are included in the tree, the structure self-adjusts, to position all the roots of sub-
trees approximately as the 1-median of their sub-trees (points already included). Some rotations, based
on AVL-trees and extended to 2-dimentional data structures, are used to balance the sub-trees. This
algorithm is O(logn) for the insertion and for the deletion parts[20,31]. The purpose of this algorithm is
to define precisely the Neighbourhood of the individuals, and to map as accurately as possible the initial
cluster solution for a given constructive/improvement cluster algorithm such as the Forgy Algorithm or
the JMeans Algorithm[19,21].

The guided partitioning phase can be viewed inFig. 4. First, the individuals are positioned in theq-tree
according to their relative position (quadrants). As the individuals are placed, the tree is adjusted (rotated)
to balance its nodes. This process is similar to adjusting sons in the tree by the approximate median of
each internal node.

The two cluster methods (the Forgy method and the JMEANS method), described above in this sec-
tion, can be considered as improvement type algorithms, and encompass the idea of trying to relocate
individuals from their initial cluster to a new cluster, until the individuals’ positions “minimise” the total
dissimilarity [21]. All these types of methods can be used in cascade, Forgy and then JMeans or vice
versa, and they can give different results if we consider the initial partition given to any of them. To ob-
serve this phenomenon applied to our case, we decided to build the algorithms using our structuredq-tree
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Fig. 4. A view of theq-tree procedure.

procedure as the starting step of those algorithms. The procedures were tested for a set of instances where
the individuals are inR2, and are uniform randomly distributed in the space whereX ∈ [−50,4950] and
Y ∈ [−390,4610]. The results are shown inTable 1, which shows the objective function (dissimilarity
measure), the number of iterations and the time to find a local optimum solution.

In Table 1, the algorithms are named in the following way: Forgy—Forgy with a random starting
solution, JMeans—JMEANS with a random starting solution; Forgy A—Forgy with theq-tree solution
as the starting solution; JMeans A—JMeans with theq-tree solution as the initial solution.

When starting withq-tree solution, we divide the number of individuals by the number ofp-clusters
and distribute this result between thep-clusters. For the tests, we made 10 different instances (samples)
for each number of points(1000,2000, . . . ,5000). The clusters are built for the first three tests (with
1000, 2000 and 3000 points/individuals), we can see the best dissimilarity solution for the Forgy A in
almost all results. These methods are working in cascade, and it is only outperformed by another method
(JMeans) in the tests with 3000 and 5000 points/individuals, although the results from JMeans A and
Forgy A are very close.

Another important observation is the number of iterations. The Forgy method with an initial random
solution does not give good results. However, the Forgy method combined with the structuredq-tree
procedure quickly provides an initial solution for the other methods. The resulting solutions obtained are
very interesting in terms of time and dissimilarities. Hence, we can see, that for the majority of methods,
the results produced are much better in terms of time, number of iterations and total dissimilarity if used
with a Forgy method combined with the structuredq-tree procedure as an initial solution. We extend these
results for the capacitated centred clustering.

The unconstrained clustering methods can be modified to encompass the load constraint by including,
before the exchanging step, a check of the exchange feasibility. In this step, the load of the individual
is removed from the source cluster and relocated to the target cluster. If this is feasible and there is any
improvement in the objective function, the exchange is performed.

For the capacitated case, we initially process the geometric organisation and positioning of the in-
dividuals using aq-tree. We use two different strategies in building feasible initial clusters. In the first
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Table 1
Evaluation of the effect in better partitioning and cascading Means unconstrained min-sum-of-squares cluster methods (average
of 10 samples for each number of points)

Number of individuals Method Fobj Iter Time (s)

1000 Forgy 20477.89 24 0.27
Forgy A 20412.94 27 0.31
JMeans 20462.31 1191 74.57
JMeans A 20435.54 658 41.36

2000 Forgy 29006.09 35 0.76
Forgy A 28985.54 31 0.68
JMeans 28941.49 2682 649.14
JMeans A 29017.52 1353 327.64

3000 Forgy 35584.30 40 1.27
Forgy A 35624.22 32 1.04
JMeans 35575.93 3951 2116.03
JMeans A 35525.99 1871 1005.57

4000 Forgy 40942.23 45 1.90
Forgy A 40913.63 49 2.08
JMeans 40979.56 5614 5322.88
JMeans A 40979.02 2864 2720.84

5000 Forgy 45900.40 42 2.19
Forgy A 45898.12 47 2.51
JMeans 45891.85 7035 10370.62
JMeans A 45927.05 3462 5097.71

strategy (Next Fit), we consider a first cluster, insert the root in the actual cluster, and delete it from the
q-tree. We continue this step until the cluster capacity is reached. If the actual root overloads the present
cluster capacity, we open another cluster and proceed with the procedure until all individuals are clustered
(q-tree is empty). In the second (Best Fit), we start as in the first strategy, but once there are more than
one cluster and a root candidate to be inserted, the procedure searches for the closest feasible insertion
cluster (closest considering the root and theith cluster centre). All these strategies work like the classical
heuristics from the bin packing problem (Next Fit and Best Fit). The meaning of best here is the closest
centre[32].

After this step, once the cluster(s) is/are feasible, we execute the algorithms Forgy (H-Means+) and/or
JMEANS, both constrained in the exchange phase.

The procedure CAPCluster inFig. 6, does not take into account simultaneously the two proposed
problems,p-CCCP andg-CCCP. To consider this, we build another method based on the unconstrained
clustering initial solution. The major idea is: from a solution produced by the unconstrained clustering
step, if it is not feasible make it feasible and try to improve the feasible clusters found usingCAPMEANS().
Fig. 7shows the UCCAPCluster procedure which proceeds like this.
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1. Procedure NextFit ; 
2. // Building feasible clusters with the first strategy using q-tree 
3. // I (In) : Set of Individuals 
4. // Qmax : Maximum cluster demand  
5. // q (In) : demand vector of individuals 
6. // Q (Out) : load vector of clusters
7. // IC (Out) : Assignment vector of individual to a cluster
8. // NC (Out) : Final number of clusters 
9. for ∀ i ∈ I do
10. call q-tree_Insert(i); // Insert individual in the balanced q-tree 
11.  j:=1; Qj:=0; 
12. repeat  
13. i:=q-tree_root(); // Take the root from q-tree generated
14. If  Qj+qi ≤ Qmax Then
15. call insert_individual_in_cluster(j, i, ICj, Qj , qi);  
16. else 
17. begin // Open a new cluster 
18.  j:=j+1;
19. Qj:=0; 
20. end;
21. call q-tree_Delete(i); // Remove the actual root 
22. until  q-tree_empty(); // Check if the q-tree is empty 
23. NClusters:=j; // Final number of clusters 
24.  return (Q, IC,NC)
25. end NextFit 

1. Procedure BestFit ; 
2. // Building feasible clusters with the second strategy using

q-tree 
3. // I (In) : Set of Individuals 
4. // Qmax : Maximum cluster demand  
5. // q (In) : demand vector of individuals 
6. // Q (Out) : load vector of clusters
7. // IC (Out) : Assignment vector of individual to a cluster
8. // NC (Out) : Final number of clusters 
9. for ∀ i ∈ I do
10. call q-tree_Insert(i); // Insert in the balanced q-tree 
11.  j:=1; Qj:=0; 
12. repeat  
13. i:=q-tree_root(); // Take the root from q-tree generated
14.     // Find Closest feasible open cluster
15.     Feasible :=FindBestOpenCluster(j, qi);  
16. If  FeasibleThen
17. call insert_individual_in_cluster(j, i, ICj, Qj , qi);  
18. else 
19.   // Open a new cluster for the incoming individual 
20. begin
21.  j:=j+1;
22. Qj:=0; 
23.    call insert_individual_in_cluster(j, i, ICj, Qj , qi);  
24. end;
25. call q-tree_Delete(i); // Remove the actual root 
26. until  q-tree_empty(); // Check if the q-tree is empty 
27.  NClusters:=j; // Final number of clusters 
28.  return (Q, IC,NC)
29. end BestFit 

Fig. 5. Next Fit and Best Fit algorithms using a structured balanceq-tree.

1. Procedure GenericCAPCluster 
2. // A constructive procedure for the g-CCCP 
3. // Build initial feasible clusters 
4. call NextFit(); // or BestFit(); 
5.  // Improvement phase using methods of Means (Forgy, Jmeans) 
6. call Dissimilarity(IC,Objective_function); // Calculate centres and dissimilarity 
7. call CAPMEANS();  // Calculate avoid generating the initial partition  
8. end // GenericCAPCluster 

Fig. 6. A constructive procedure for theg-CCCP.

For simplicity our proposed method CAPCluster can be viewed below inFigs. 5and6:
The UCCAPCluster procedure inFig. 7 (UC-unconstrained to constrained), shows between lines

17–37 that the individual which overloads the cluster is relocated to a new feasible cluster, closest to this
individual. If no cluster can be used, a new one is opened. Line 9 creates a cluster vector with the lists of
their elements, from the solution generated by the unconstrained non-degenerate procedure, H-Means+.
In line 10, there is an ordering of all clusters by the decreasing demand of their individuals (vector of
lists, MatIC). In this ordering process, one can use the distance or the distance/demand criteria, instead
of the demand only, the use of these criteria can change the results, depending on the instance.
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1. Procedure UCCAPCluster; 
2. // A constructive procedure for the g-CCCP and p-CCCP 
3. if p is not given then
4.  g:=BestFit(); // Number of clusters produced by BestFit 
5. else
6.   g:=p; 
7. // Unconstrained Phase 
8. call Forgy(g); // Build clusters using H-Means+ with g-clusters 
9. call Build(MatIC);//Cluster vector with the list of its individuals and their demands
10. call Order(MatIC);//Order each cluster by the decreasing demand of its individuals
11. If Clusters are not feasibleThen
12.  for j := 1 tog do
13.   If MatIC[j].Qtotal ≤ QmaxThen // Reallocate the infeasible individuals 
14.   begin
15. Lj:=0; 
16.  for i:=1 to NIC[j] do
17.   If MatIC[j,i ].q + Lj ≤ QmaxThen
18.  begin
19. Feasible:=FindBestOpenCluster(k, qi);  
20. If  FeasibleThen
21. call insert_individual_in_cluster(k, i, ICj, Qj , qi);
22. else
23.  // Open a new cluster for the incoming individual 
24. begin
25. g :=g + 1; 
26. Qj := 0; 
27. call insert_individual_in_cluster(g, i, ICj, Qj , qi);  
28.   end
29. end; 
30.  else
31. Lj:=  Lj+ MatIC[j,i].q; 
32. end; // for j
33.  // Improvement phase using methods of Means (Forgy, Jmeans) 
34. call Dissimilarity(IC,Objective_function); // Calculate centres and dissimilarity
35. call CAPMEANS();  // Calculate avoid generating the initial partition
36. end // GenericCAPCluster 

Fig. 7. UCCapCluster algorithm forp/g-CCCP instances.

Line 4 finds the number of clusters at minimum or close to the minimum number, taking into account
theg-CCCP model. We found by experimentation that the Best Fit() procedure obtains least/equal number
of clusters than Next Fit(), see results below.

3.6. Phase 2: Metaheuristic step (VNS)

This step is processed independently, after analysing the clusters obtained in the first phase. We de-
fine the type of exchanges (number of individuals selected to proceed the exchange), and the time al-
lowed for each exchange in the VNS algorithm. We build a VNS procedure, that considers two major
strategies:

1. Closest centre: Randomly choosing the individuals, and trying to insert them in the closest cluster;
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1. Procedure VNS(Individuals, Groups,Initial_Objective_Value) 
2. Objective_function:=Initial_Objective_Value; 
3.  while time < selected_time do
4.  begin 
5.   call Select_Individuals(); 
6.   call Select_Clusters(); 
7.   call try_exchange(); 
8.   New_Objective:=evaluate_new_objective(); 
9.   If  New_Objective < Objective_FunctionThen
10.    begin 
11. call implement(“try_exchange()”);
12. Objective_Function:=New_Objective; 
13.  Gain:= Initial_Objective_Value - Objective_Function;
14.    end 
15.   else
16. call desimplement(“try_exchange()”); 
17.  end  
18. end // VNS 

(a)

(b)

(c)

Fig. 8. (a) VNS algorithm as the final improvement phase. (b,c) Evaluation of theq-tree+H-Means+ and then VNS with 1-ex-
change, 2-exchange and 3-exchange for an instance of 13,221 individuals and 30 groups.

2. Random centre: Randomly choosing the individuals, and trying to insert them in randomly selected
clusters.

The proposed VNS algorithm, can be written generically as follows (Fig.8):
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In the proposed VNS procedure, the following set of procedures does as follows:

1. Select_Individuals()—according to the type of exchanges, a specified number of random distinct
individual(s) is/are selected;

2. Select_Clusters()—according to the type of strategy, a specified number of clusters (equal to the
number of individuals but not necessarily distinct), are selected for each individual to be moved to;

3. Try_exchange()—exchange selected individuals between the clusters;
4. Evaluate_new_objective()—calculate new dissimilarity and store the exchanges (individuals to clus-

ters) if they are all feasible;
5. Implement()—proceed with the exchange, recalculating centres, and fixing the new solution proposed

by try_exchange();
6. Desimplement()—restore the solution as it was in the previous iteration proposed by try_exchange().

In essence it is the same algorithm proposed by Hansen and Mladnovic[33], the difference here is in
the implementation of lines 5–7. In our case, we fix the choice of the number of exchanges. According
to the appropriate strategy used, instead of selecting a randomk source individuals tok target clusters
at each iteration, we maintaink fixed for all iterations, we call this fixedk-exchange. The experimental
results obtained on the instances we have for this problem, suggested that fixingk was a good strategy. It
can also be implemented as the original VNS algorithm[21].

VNS is a type of Monte Carlo integrated to a Neighbour search algorithm that is very simple and
appropriate for this problem, since making and returning the exchangeable tries is easy to implement.
The evaluation time is in the order of O(1).

4. Results from literature and “real” applications

We developed a first set of instances (TA) and test some other kindly offered by Professor Luiz Antônio
Lorena, for the Capacitatedp-Median problem[9]. For our tests, we use the cost function (dissimilarity)
calculated for the CCP instances using the column generation program produced by Lorena and Senne[9].
We consider CCP costs, once its instances optimal/near optimal objective values are at the same order of
magnitude to the CCCP for the samep org. All the tests were made using a PC-AMD ATHLON 1.6 GHz
512 MB RAM, and all the instances are available athttp://www.lcc.uece.br/∼negreiro/artigos/cccp.

In Table 2, we can see a set of evaluations for the procedure UCCAPCluster, for a number of instances
TA specially generated for given demands (qi=1) and specific given capacitiesQ. The tests from Lorena
and Senne[9], are the set of instances initiated by SJC and P3038. Our results return theg value achieved
for each instance and strategy (Next Fit and Best Fit), we also see CCP related instance best feasible cost
known (g = p), and for the VNS (1+1) phase with 1-exchange and then fixed 2-exchange, each running
in 1 min. The percentage of improvement achieved between the construction phase and VNS phase are
reported (imp%).

The set of TA instances do not appear in the Next Fit tests, since the same results were obtained in Best
Fit. The Best Fit strategy shows how good it is in the sense of constructing the least number of clusters
between the two strategies. For the CCP× g-CCCP results (Gap%), for the samep, theg-CCCP objective
cost is[−0.48,28.96]% far from the results of CCP produced by the Lagrangean/surrogate method, for
the TA and SCJ instances, where the bounds were obtained using CPLEX[9,34].

http://www.lcc.uece.br/~negreiro/artigos/cccp
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Table 2
Results from UCCAPCluster× Lorena’s considering a set of instances from the literature, and built for our evaluation

Instance No points Q P CCP p-CCCP Time (s) VNS (1+1) Imp % GAP %

Next Fit
p3038_600 3038 321 600 122020.66 192575.70 20.81 192024.83 0.28 57.37
p3038_700 3038 273 700 108653.04 176731.07 16.07 176731.07 0.00 38.52
p3038_800 3038 238 800 98483.26 184502.38 17.15 184502.38 0.00 87.34
p3038_900 3038 216 900 90131.62 176781.51 26.93 176781.51 0.00 96.13
p3038_1000 3038 191 1000 83012.98 159139.89 23.34 159139.89 0.00 91.70

SJC1_dat 100 720 10 17288.99 19429.459 0.020 17696.53 8.91 2.30
SJC2_dat 200 840 15 33370.20 35322.476 0.020 33423.84 5.37 0.16
SJC3a_dat 300 740 25 45335.16 50254.310 0.078 47985.29 4.51 5.52
SJC4a_dat 402 840 30 62026.94 76352.451 0.078 66689.96 12.65 6.99

Best Fit
TA25 25 6 5 1216.03 1528.64 0.00 1257.51 17.73 3.30
TA50 50 11 5 4429.06 4605.03 0.00 4485.44 2.59 1.26
TA60 60 13 5 5357.36 5475.96 0.00 5391.47 1.54 0.63
TA70 70 17 5 6203.44 6292.06 0.00 6275.99 2.55 1.16
TA80 80 12 7 4153.64 5918.44 0.00 5846.94 1.20 28.96
TA90 90 23 4 9032.90 9646.38 0.00 9134.69 5.30 1.11
TA100 100 17 6 8181.04 8270.26 0.00 8141.70 1.55 −0.48

SJC2_12_dat 200 840 12 38796.80 49094.94 0.020 41949.56 14.55 7.52
SJC3a_16_dat 300 740 16 64129.20 96579.12 0.020 72545.49 24.88 11.60
SJC4a_21_dat 402 840 21 –xxx– 88981.33 0.047 87367.94 1.81 –xxx–

For all P3038, we do not have the results for theg-CCCP from Lorena’s program(p = g), the results
reported are from the paper[9]. The great difference between obtained results may be further investigated.

For the comparison Next Fit× Best Fit,Table 3, the difference between both methods in the number of
clusters formed can be noticed. For example, the difference for the instance P3038/Qmax= 191, where
Next Fit and Best Fit results differs in more the 10% in the number of clusters.

Considering the effect of time to obtain good solutions,Table 3, we have for UCCAPCluster heuristic
a performance that is less time consuming. Very high scale instances can be hold, and the method can
be used to obtain initial solutions that are 0–50% to the best known for the set of instances tested. For
CCP, pex., the instance SJC4a_dat, the method proposed by Lorena and Senne[9] takes 1.34 h to solve
the instance. For this particular instance, the difference between CCP cost andg-CCCP is 6,99%, with
2 min of VNS.

We also made our tests for instances from real meaning, garbage collection and sales force territorial
design. For this cases we develop a set of instances that are related to these two applications to evaluate
the progress of our algorithm.

The second set of instances (7), was formed from sub-sets of 13,221 customers of a food distributor
that operates in the metropolitan area of Fortaleza, capital of Ceará State in Brazil. The demand of an
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Table 3
Comparison between proposed methods forg-CCCP case

Lorena’s instances

SJC1 Next Fit Best Fit
NI: 100,Q= 720 G = 10 g = 9/10

Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)

q-Tree + Forgy 21782.34 0.00 19493.53 10.51% (9) 27462.61 0.00 20495.54 25.36%
UCCAPCluster 19429.45 0.00 17696.53 8.91% (10)19131.00 0.01 18005.17 5.88%

SJC2 Next Fit Best Fit
NI: 200,Q= 204 g = 12/13 g= 12
Method Obj func Time (s) VNS (1+1) Obj func Time (s) +VNS (1+1)
q-Tree + Forgy (12)49180.31 0.02 39576.09 19.52% 79414.83 0.00 41171.34 48.15%
UCCAPCluster (13)39110.14 0.02 36955.71 5.50% 49094.94 0.02 41949.56 14.55%

SJC3 Next Fit Best Fit
NI: 300,Q = 740 G = 17 g = 16
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 81567.71 0.03 62912.61 22.87% 108936.88 0.01 68354.34 37.25%
UCCAPCluster 61285.36 0.06 59266.17 3.29% 96579.12 0.02 72545.49 24.88%

SJC4 Next Fit Best Fit
NI:402,Q = 840 G= 21/23 g= 20/21
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy (21)98257.97 0.03 84165.56 14.34% (20)126763.14 0.04 97444.74 23.12%
UCCAPCluster (23)79580.77 0.04 77976.48 2.01% (21)88981.03 0.04 87367.94 1.18%

P3038_600 Next Fit Best Fit
NI: 3038,Q= 321 g = 538 g = 498
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 199648.18 7.95 198065.35 0.79% 541160.19 9.57 535613.70 10.24%
UCCAPCluster 193788.72 12.76 193788.72 0.00% 372170.64 12.21 371771.22 0.05%

P3038_700 Next Fit Best Fit
NI: 3038,Q= 273 g= 639 g= 582
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree+ Forgy 198309.60 7.90 196817.68 0.75% 508272.45 11.76 507966.93 0.00%
UCCAPCluster 178441.39 12.5 178441.39 0.00% 365525.68 11.50 363243.31 0.62%

P3038_800 Next Fit Best Fit
NI: 3038,Q = 238 g = 745 g = 669
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 174057.10 8.08 174057.10 0.00% 538082.35 10.23 535195.53 0.53%
UCCAPCluster 169633.94 13.09 169633.94 0.00% 354653.42 15.34 354653.42 0.00%
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Table 3 (continued)

Lorena’s instances

SJC1 Next Fit Best Fit
P3038_900 Next Fit Best Fit
NI: 3038,Q = 216 g = 853 g = 761
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 156165.36 7.14 156165.36 0.00% 421702.32 10.15 420789.82 0.21%
UCCAPCluster 144180.41 13.43 144180.41 0.00% 303916.41 16.28 303916.41 0.00%

P3038_1000 Next Fit Best Fit
NI: 3038,Q = 191 g = 966 g = 846/849
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 146585.25 9.98 146585.25 0.00% (846)445340.69 9.75 443726.45 0.36%
UCCAPCluster 131445.91 11.81 134396.99 0.00% (849)291294.55 18.93 291294.55 0.00%

TA instances

TA25 Next Fit Best Fit
NI: 25, Q = 6 g = 6 g = 5
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 2510.46 0.00 1256.62 49.99% 2341.42 0.00 1256.62 46.33%
UCCAPCluster 1717.05 0.00 1251.44 27.11% 1528.64 0.00 1257.51 17.73%

TA50 Next Fit Best Fit
NI: 50, Q = 11 g = 5 g = 5
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 6848.86 0.00 4493.09 34.39% 6848.86 0.00 4498.72 34.31%
UCCAPCluster 5324.71 0.00 4476.12 15.93% 4605.03 0.00 4485.44 2.59%

TA60 Next Fit Best Fit
NI: 60, Q = 13 g= 5 g= 5
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 7942.48 0.00 5386.74 32.17% 7942.48 0.00 5390.73 32.12%
UCCAPCluster 6179.57 0.01 5356.58 13.31% 5475.96 0.00 5391.47 1.54%

TA70 Next Fit Best Fit
NI: 70, Q= 17 g = 5 g= 5
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 8900.64 0.00 6241.55 29.87% 8900.64 0.00 6241.55 29.87%
UCCAPCluster 6463.82 0.00 6241.55 3.43% 6292.06 0.00 6275.99 2.55%

TA80 Next Fit Best Fit
NI: 80, Q = 12 g = 7 g = 7
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 10178.94 0.00 5730.28 43.70% 10178.94 0.00 5730.28 43.70%
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Table 3 (continued)

Lorena’s instances

UCCAPCluster 5913.44 0.00 5730.28 3.09% 5918.44 0.00 5846.94 1.20%

TA90 Next Fit Best Fit
NI: 23, Q = 23 g = 4 g= 4
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 11176.82 0.00 9103.21 18.55% 11176.82 0.00 9103.21 18.55%
UCCAPCluster 9979.46 0.00 9103.21 8.78% 9646.38 0.00 9134.69 5.30%

TA100 Next Fit Best Fit
NI: 100,Q = 17 g= 6 g= 6
Method Obj func Time (s) VNS (1+1) Obj func Time (s) VNS (1+1)
q-Tree + Forgy 13033.27 0.00 8128.38 37.63% 13033.27 0.00 8283.57 36.44%
UCCAPCluster 8533.86 0.00 8122.67 4.81% 8270.26 0.00 8141.70 1.55%

individual is one unit of service, and all individuals must be covered by a district. For this instance,
capacity means a number of visited customers per month.Fig. 8(a)–(c) show the evolution of the process
of calculating capacitated sales force districts in the Fortaleza’s area.

Table 4compares two methods, Forgy (q-tree+H-Means+) and UCCAPCluster. The VNS phase was
applied to test if any improvements were made (running for 5 min in a static 2-exchanges). The objective
function is the total dissimilarity as in the general CCCP model. Below the VNS title is the improvement
achieved by using the VNS for the same methods above. As we can see, the Forgy+VNS dominates in
the instances from DONI1 to DONI6. In DONI2 instance, Best Fit strategy for modified Forgy reaches
the least number of clusters possible for it (5).

In Table 4, the improvement achieved in large instances is very small as we maintain the time as the
other instances for the VNS step. For evaluating if VNS can obtain better results if we give more time, we
experimented for the instance DONI7 (13,221 customers) 20 min after the solution obtained by modified
Forgy with Best Fit. In the experiment, from the initial solution we proceed first the 1-exchange (running
for 5 min, 3.13% improvement, 175 success from 92,895 tries), 2-exchanges (10 min, 0.62% improvement
from theq-tree+Forgy solution, 35 success from 205,385 tries) and finally 3-exchanges (5 min, 0.06%
improvement from the last improved result, 3 success from 105,109 tries)–VNS (5+10+5). Note that even
for this time the solution is still far from the best known 23478.79,Table 4. Fig. 9shows the decreasing
steps of the objective function using VNS, note that inTable 4we find a better result. This experiment
shows that the VNS step may obtain very different results, and it is not stable for these type of instances.

In the third set of instances, we have a set of unoriented and oriented street segments from Fortaleza/CE,
where each segment demands a weight uniformly and randomly distributed between 0 and 100 kg per
segment. All segments are identified by their centroids, and the weights of the segments are assigned to
their centroid. The total load of the segments for these instances isQtotal= 190.001 kg (3780 centroids)
andQtotal= 2034.699 kg (40,919 centroids). We choose vehicles’ areas weighted with a maximum of
30.000 kg (local load packers can perform daily 3 trips of 10 t, or 4 trips of 7.5 t).
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Table 4
Set of instances from sales force districting

DONI1 Next Fit Best Fit
NI: 1000,Q = 200 g= 6 g= 6

Method Obj func Time (s) VNS 5 min Obj func Time (s) VNS 5 min

q-Tree + Forgy 3950.91 0.00 3072.80 22.22% 3577.04 0.00 3065.64 28.10%
UCCAPCluster 3590.91 0.07 3021.41 15.86% 3577.04 0.04 3026.27 15.40%

DONI2 Next Fit Best Fit
NI: 2000,Q = 400 g= 6 g = 5/6
Method Obj func Time (s) VNS 5 min Obj func Time (s) VNS 5 min
q-Tree + Forgy 7596.84 0.04 6080.70 19.95% (5) 9795.03 0.00 7596.91 22.44%
UCCAPCluster 7514.13 0.10 6449.11 14.18% (6) 8405.21 0.01 6412.13 23.71%

DONI3 Next Fit Best Fit
NI: 3000,Q= 400 g = 8 g= 8
Method Obj func Time (s) VNS 5 min Obj func Time (s) VNS 5 min
q-Tree + Forgy 9575.20 0.04 8786.60 8.23% 9575.20 0.03 8769.05 8.41%
UCCAPCluster 11587.71 0.18 8989.92 22.42% 11587.71 0.17 9000.74 22.33%

DONI4 Next Fit Best Fit
NI: 4000,Q= 400 g= 10 g= 10
Method Obj func Time (s) VNS 5 min Obj func Time (s) VNS 5 min
q-Tree + Forgy 18341.50 0.02 11639.93 36.53% 18341.50 0.02 11516.14 37.21%
UCCAPCluster 15934.29 0.54 14626.69 8.21% 15934.29 0.54 14633.45 8.16%

DONI5 Next Fit Best Fit
NI: 5000,Q = 450 g= 12 g= 12
Method Obj func Time (s) VNS 5 min Obj func Time (s) VNS 5 min
q-Tree + Forgy 11848.74 0.20 11635.18 1.80% 12603.80 0.14 11929.30 5.35%
UCCAPCluster 14459.60 0.60 12605.70 12.82% 12965.86 0.42 12254.97 5.48%

DONI6 Next Fit Best Fit
NI: 10000,Q = 450 g= 23 g= 23
Method Obj func Time (s) VNS 5 min Obj func Time (s) VNS 5 min
q-Tree + Forgy 20117.20 0.50 18443.50 8.31% 24672.55 0.31 20038.29 18.78%
UCCAPCluster 23449.39 2.21 23289.81 0.68% 23437.21 2.34 23121.46 1.35%

DONI7 Next Fit Best Fit
NI: 13221,Q = 450 g= 30 g= 30
Method Obj func Time (s) VNS (5+10) Obj func Time (s) VNS (5+10)
q-Tree + Forgy 30896.43 0.45 26447.37 14.39% 28636.09 0.84 25010.48 11.10%
UCCAPCluster 25341.22 3.09 24208.53 5.15% 24553.51 3.36 23478.79 4.37%
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VNS Decreasing - DONI7 with 13,221 customers - 
Modified Forgy as Starting Solution
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Fig. 9. VNS running for 20 min, and the value of the objective function using 1–3 exchanges—in shadow 1-exchange results, in
grey 2-exchange and in degrade 3-exchange.

Figs. 10(a) and (b) show the evaluation process of calculating capacitated garbage collection zones,
using UCCAPCluster approach for a sub-area of Fortaleza. In this evaluation, we can see what happens
with the initial feasible partition usingUCCAPClusteralgorithm (a), then the solution obtained by VNS,
after 60 min of 1-exchange, 60 min of 2-exchanges. In this instance, we havep = 7 for every case and
the load distribution can change between clusters. The achieved improvement is 0.28%.

Figs. 11(a) and (b) show another evaluation process for all the city’s street segments. In this evaluation,
we can also see what happens with the initial feasible solution using only the UCCAPCluster. We have
p= 68 clusters and the load distribution can be flexible between them. We avoid using VNS in this case.

In Table 5, we have the results for the proposed UCCAPCluster algorithm. For a better view, we include
the same elements proposed byTable 3, now, considering the instances fromFigs. 10and11.

We have also done, for these instances, tests to evaluate the most appropriate way of processing the
VNS phase. We also tried mixed exchanges, 1–4 exchanges, randomly selected (as the original VNS,
[21]), but the results obtained are much poorer than the ones reported here. Because of this, we think that
the best way to use VNS for these instances and approaches is in the sequential form, or exchanges one
at a time.

5. Conclusion

In this work we propose a new problem we call the capacitated centred clustering problem (CCCP), or
capacitated continuous clustering problem. We propose two different models for different views:p-CCCP,
where the number of clusters is given, and Generic CCCP, where we wish to find the best(p) number of
clusters while minimising the dissimilarity between clusters.

Since the problems are NP-Complete, we prepare a two phases heuristic method for the Generic
case, using a structuredq-tree and constrained Means (Forgy-HMeans+ and JMeans) method to generate
approximate solutions we call CAPCluster.We evaluate empirically the process of cascading improvement
clustering (Means) methods. We also propose a more general procedure UCCAPCluster that can hold the
p/g-CCCP, which is much more appropriate than the CAPCluster procedure for the instances tested.

Instances from the CCP literature, and very large instances from sales force districting of a food
distributor and design of garbage collection zones, in Fortaleza, were used to evaluate the method. We
compare the results using CCP costs obtained from Column Generation Antônio Lorena’s program, since
CCP values are close to CCCP, if in the instance, the number of medians(p) and the capacityQ is the
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Fig. 10. (a) Garbage collection great area and initial solution from the UCCAPClust algorithm; (b) Final solution after 120 min
of VNS and 0.27% of improvement.

same for both problems. We obtained in the majority of the instances tested that the objective function
values of the CCCP are greater than the ones obtained for CCP.

All the tests can be found athttp://www.lcc.uece.br/∼negreiro/artigos/cccp. The tests were done in the
SISROT� (Full and TRANSLIX) system, a software designed for solving related routing problems after
clustering.

http://www.lcc.uece.br/~negreiro/artigos/cccp
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Fig. 11. Solution from the constructive step using UCCAPCluster procedure.

Table 5
Set of instances related to garbage collection in Fortaleza-CE/Brazil

GC01 Next Fit/Best Fit
NI: 3872,Q = 30 t g= 7

Method Obj func Time (s) +VNS (60+60)

q-Tree+ Forgy 3095.10 0.09 3013.84 2.62%
UCCAPCluster 3007.35 0.24 2999.11 0.27%

GC02 Next Fit/Best Fit
NI: 40919,Q = 30 t g= 68
Method Obj func Time (s) +VNS
q-Tree+ Forgy 160022155.44 187.50 -XXX- -XX-
UCCAPCluster 34414277.03 9.84 -XXX- -XX-

Acknowledgements

We would like to thank Professor Philippe Michelon from the Université de Avignon/France for his
appointments in our models and comments, and Diane Béland for her English review of this text. Thanks to
Professor LuizAntônio Lorena, from the Instituto Nacional de Pesquisas Espaciais/LaboratórioAssociado
de Computação e Matemática Aplicada (INPE/LAC) for his kind support in the CCP results. We also
thank the anonymous referees for their suggestions to improve this work. This work is supported by



1662 M. Negreiros, A. Palhano / Computers & Operations Research 33 (2006) 1639–1663

FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico) by the grant for
the project “Otimização Combinatória em Grafos”, and GRAPHVS.

References

[1] Hartingan JA. Clustering algorithms. New York: Wiley; 1975.
[2] Späth H. Clustering algorithms for data reduction and classification of objects. Chichesten: Ellis Hornwood; 1980.
[3] KoskosidisY, PowellWB. Clustering algorithms for consolidation of customer orders into vehicle shipments.Transportation

Research B 1992;26B(5):365–79.
[4] Hansen P, Jaumard B. Cluster analysis and mathematical programming. Mathematical Programming 1997;79:191–215.
[5] Mulvey JM, Beck MP. Solving capacitated clustering problems. European Journal of Operations Research 1984;18:

339–48.
[6] Osman I, Christofides N. Capacitated clustering problems by hybrid simulated annealing and tabu search. International

Transactions in Operations Research 1994;1(3):317–36.
[7] França PM, Sosa NM, Pureza V. An adaptive tabu search algorithm for the capacitated clustering problem. International

Transactions in Operations Research 1999;6:665–78.
[8] Lorena LA, Senne ELF. Local search heuristic for the capacitatedp-median problem. Networks and Spatial Economics

2003;3:407–19.
[9] Lorena LA, Senne ELF. A column generation approach for the capacitatedp-median problems. Computers & Operations

Research 2004;31:863–76.
[10] Ahmadi S, Osman IH. Greedy random adaptive memory programming search for the capacitated clustering problem.

European Journal of Operational Research 2005;162(1):30–44.
[11] Lorena LA, Furtado JC. Constructive genetic algorithm for clustering problems. Evolutionary Computation 2001;9(3):

309–27.
[12] Glover F, Laguna M. Tabu search. Dordrecht: Kluwer Academic Publishers; 1997.
[13] Downsland KA. Simulated annealing. In: Reeves CR, editor. Modern heuristic techniques for combinatorial problems.

Oxford: Blackwell Scientific; 1993. p. 20–69.
[14] Collins NE, Eglease RW, Golden BL. Simulated annealing an annotated bibliography. American Journal of Mathematics

and Management Sciences 1988;9:209–307.
[15] Negreiros Gomes MJ, Palhano AWC. Uma Aplicação para o problema generalizado de percurso de veículos. Anais do

XXV SBPO–NATAL/RN, 2003.
[16] Kaufman L, Roussweuw P. Finding groups in data: an introductory to cluster analysis. New York: Wiley; 1990.
[17] Negreiros Gomes MJ, Almeida PG, Guarany A, Xavier AE. Análise de Agrupamentos para a Taxa de Resíduos Sólidos de

Fortaleza. Limpeza Urbana 2002;57:10–7.
[18] Garey MR, Johnson DS. Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman;

1979.
[19] Forgy EW. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics

1965;21(3):768.
[20] Farias B, Tito M, Quinderé M, Negreiros_Gomes M. Uma Avaliação de Algumas Técnicas de Pesquisa em Intervalos.

Anais do VIIICLAIO-XXVIII SBPO;Rio de Janeiro, Agosto;1996.
[21] Hansen P, Mladenovic N. JMeans: a new local search heuristic for minimum sum-of-squares clustering. Pattern Recognition

2001;34(2):405–13.
[22] Brucker J. On the complexity of clustering problem, Lecture notes in economics and mathematical systems, vol. 157;1978.

p. 45–54.
[23] Everitt BS, Landau SL, Leese M. Cluster analysis. fourth ed., Paris: Arnold; 2001.
[24] Diehr G. Evaluation of a branch-and-bound algorithm for clustering. SIAM Journal on Scientific and Statistical Computing

1985;6:266–84.
[25] Bouguettaya A, Le Vies Q. Data clustering analysis in a multidimensional space. Information Sciences 1998;112:267–95.
[26] Chiou Y-C, Lan LW. Genetic clustering algorithms. European Journal of Operations Research 2001;135:413–27.
[27] Jain AK, Dum RPW, Mao J. Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine

Intelligence 2000;22(1):4–37.



M. Negreiros, A. Palhano / Computers & Operations Research 33 (2006) 1639–1663 1663

[28] Josien J, Liao TW. Simultaneous grouping of parts and machines with integrated fuzzy clustering method. Fuzzy Sets and
Systems 1999;126:1–12.

[29] Kiang MY. Extending the Kohonen self-organizing map networks for clustering analysis. Computational Statistics & Data
Analysis 2001;38:161–80.

[30] Wu K-L, Yang M-S. Alternative c-means clustering algorithms. Pattern Recognition 2002;35:2267–78.
[31] Cormen TH, Leiserson CE, Rivest RL. Introduction to algorithms. Cambridge and NewYork: The MIT Press and McGraw-

Hill Book Company; 2000.
[32] Martello S, Toth P. Knapsacks problems, algorithms and computer implementations. New York: Wiley; 1990.
[33] Hansen P, Mladenovic N. Variable Neighborhood Search. Chapter 3.6.2. Handbook of Applied Optimisation. In: Panos M.

Pardalos, Mauricio GC, editors. New York, USA: Resendeby Oxford University Press, Inc.; 2002.
[34] CPLEX Optimization, Inc., Suite 279, 930 Tahoe Blvd. Bldg. 802. Incline Village. NV 89451-9436, e-mail: cplex.com


	The capacitated centred clustering problem
	Introduction
	Modelling the CCCP
	Heuristics for CCCP
	The Forgy's method
	The H-Means method
	The KMEANS method
	The JMeans method
	Phase 1: Constructive step
	Phase 2: Metaheuristic step (VNS)

	Results from literature and ``real'' applications
	Conclusion
	Acknowledgements
	References


