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Abstract
Kidney transplantation is vital for treating end-stage renal disease, impacting roughly one in a thousand Europeans. The

search for a suitable deceased donor often leads to prolonged and uncertain wait times, making living donor transplants a

viable alternative. However, approximately 40% of living donors are incompatible with their intended recipients.

Therefore, many countries have established kidney exchange programs, allowing patients with incompatible donors to

participate in ‘‘swap’’ arrangements, exchanging donors with other patients in similar situations. Several variants of the

vertex-disjoint cycle cover problem model the above problem, which deals with different aspects of kidney exchange as

required. This paper discusses several specific vertex-disjoint cycle cover variants and deals with finding the exact solution.

We employ the dataless neural networks framework to establish single differentiable functions for each variant. Recent

research highlights the framework’s effectiveness in representing several combinatorial optimization problems. Inspired by

these findings, we propose customized dataless neural networks for vertex-disjoint cycle cover variants. We derive a

differentiable function for each variant and prove that the function will attain its minimum value if an exact solution is

found for the corresponding problem variant. We also provide proof of the correctness of our approach.

Keywords Combinatorial optimization � Operations research � Non-convex optimization � Kidney exchange �
Discrete optimization � Dataless neural networks

1 Introduction

The Kidney Exchange Problem (KEP) can be defined as

the challenge of identifying the most optimal kidney

exchanges, where optimality is often measured by maxi-

mizing the total weight within a pool of donor-patient

pairs. To approach this problem, we introduce a directed

graph known as the ‘‘compatibility graph,’’ denoted as

G ¼ ðV ¼ P [ N;AÞ, which includes a weight function

w on its arcs, with w : A ! Rþ. In this graph, the set of

vertices P represents incompatible pairs of donors and

patients, while the set of vertices N represents altruistic

donors. Weighted arcs are introduced between vertices

u and v if donor u can provide their kidney to patient v,

with the weight w(uv) representing the medical benefit of

the transplant. As such, a solution to the KEP entails

identifying a collection of disjoint walks, which include

cycles and chains, each having the maximum possible

weight within graph G. These walks must be disjoint

because each donor can contribute their kidney only once,

and each patient should receive only one kidney. In prac-

tical terms, it is essential to limit the size of a cycle,

denoted as k, since it involves coordinating 2 � k simulta-

neous surgical operations. Similarly, the size of a chain can

also be limited, although there is no universally agreed-

upon parameter for this limitation. Therefore, addressing

the KEP is essentially equivalent to tackling a Maximum

Weighted � k-cycle and � ‘-chain Packing Problem. This

involves finding a solution that identifies disjoint cycles,

each with a size no greater than k, and disjoint chains, each

with a size no greater than ‘, all while maximizing their
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combined weight. Note that the KEP is an optimization

problem, and solving the KEP is NP-hard for k� 3 [1, 14].

Optimization problems that are NP-hard have tradi-

tionally been addressed through the use of approximation

algorithms and heuristics, with a heavy emphasis on con-

vex relaxations for many years. Nevertheless, the utiliza-

tion of non-convex optimization made possible by the

incorporation of loss functions in modern neural networks

and their accompanying backpropagation training methods

introduces new opportunities for more efficiently tackling

discrete optimization problems. This innovative approach

suggests the potential to replicate the remarkable

achievements observed in neural networks, as demon-

strated by systems such as Chat-GPT and AlphaGo within

the domain of combinatorial optimization. The conven-

tional approach to incorporating neural networks into

solving combinatorial optimization problems in the past

relied on extensive datasets to extract relevant patterns.

However, a more recent methodology has surfaced, one

that operates entirely without the need for any data. In a

notable study conducted by Alkhouri et al. [3], they inge-

niously redefined the Maximum Independent Set problem

as a single differentiable function. This formulation enables

the utilization of neural networks and backpropagation to

address these problems, with only the input instance being

required and no additional data. This unconventional

approach challenges the standard machine learning para-

digm, which assumes the necessity of datasets to fine-tune

model parameters, such as neural network weights, to

enhance predictive accuracy.

In contrast, dataless neural networks adapt their

parameters based on the network’s internal structure or

other factors independent of external ground truth data. To

illustrate this, consider a conventional neural network

represented as f with parameters denoted by h, trained on a

dataset comprising pairs fðxi; yiÞg. Here, xi could represent

an instance of a discrete optimization problem; while, yi

contains the values of the optimal solutions. The parame-

ters h are conventionally updated via backpropagation,

minimizing a differentiable loss function Lðxi; f ðxi; hÞÞ to

bring the network’s output f ðxi; hÞ as close as possible to yi.

Backpropagation adjusts the parameters according to

h :¼ h� a � oLðxi; f ðxi; hÞÞ=oh, where a controls the

learning rate. The concept underlying dataless neural net-

works challenges the very existence of training data. In this

context, the output of the neural network is simplified to

f ðen; hÞ ¼ f ðhÞ, with en representing an all-one vector,

essentially serving as a trivial input to the neural network.

Consequently, instead of attempting to extract patterns

from datasets, dataless neural networks aim to identify

optimal solutions for specific discrete optimization prob-

lems by imposing a specific structure on f and h.

The rest of this paper is organized as follows: In Sect. 2,

we formally define the problems and the notations con-

sidered in the paper. Section 3 describes related work in the

literature. In Sect. 4, we design dataless neural networks

(dNNs) for the variants of Kidney Exchange. Finally, we

conclude in Sect. 5 by summarizing our results and dis-

cussing avenues for future work.

2 Statement of problems

In this section, we define the problems and some of the

notations considered in this paper.

Definition 1 Vertex-Disjoint Cycle Cover (VDCC):

Given a graph G ¼ ðV ;EÞ, find a set of disjoint cycles,

which are subgraphs of G and contain all vertices of G.

Example 1 The set of cycles C ¼
ffv1; v2; v3g; fv4; v5; v6gg is a VDCC in the graph in Fig. 1.

We call the VDCC, where the cycle length is at most k

the VDk�CC.

Definition 2 VD k�CC: Given a graph G ¼ ðV ;EÞ and an

integer k, find a set of disjoint cycles of length at most k,

which are subgraphs of G and contain all vertices of G.

Example 2 For k ¼ 3, the set of cycles C ¼
ffv1; v2; v3g; fv4; v5; v6gg is a VDk�CC in the graph in

Fig. 1.

VDk�CC in directed graphs is known as VDk�CCD.

Definition 3 VD k�CCD: Given a directed graph G ¼
ðV;EÞ and an integer k, find a set of disjoint cycles of

length at most k, which are subgraphs of G and contain all

vertices of G.

Example 3 For k ¼ 3, the set of cycles C ¼
ffv1; v2; v3g; fv4; v6; v5gg is a VDk�CCD in the graph in

Fig. 2a.

We call the optimization version of VDk�CCD the

VDk�CCDO.

Fig. 1 Example of an instance of the VDCC in a graph G
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Definition 4 VD k�CCDO: Given a directed graph

G ¼ ðV;EÞ, find a set of disjoint cycles of length at most

k which are subgraphs of G and contain the maximum

number of vertices of G.

Example 4 For k ¼ 3, the set of cycles C ¼
ffv1; v2; v3g; fv4; v6; v5gg in Fig. 2b covers six out of seven

vertices.

Along with the cycles of length at most k, if we allow

chains of length at most k to cover the vertices, the problem

is known as a variant of the Kidney Exchange problem. We

call the problem as VDk�CCCDO.

Definition 5 VD k�CCCDO: Given a directed graph

G ¼ ðV;EÞ, find a set of disjoint cycles and chains of

length at most k, which are subgraphs of G and contain the

maximum number of vertices of G.

Example 5 For k ¼ 3 in Fig. 3a, if we select a chain P ¼
fv7; v6; v5g along with a cycle C ¼ fv1; v2; v3g (see

Fig. 3b), then they cover six out of seven vertices of the

graph.

An activation function in a neural network transforms

the summed weighted input from the node into the node’s

activation or output for that input. In our design of dataless

neural networks, we use a rectified linear activation func-

tion, also known as the ReLU activation function. It is a

piecewise linear function that outputs the input directly if it

is positive; otherwise, it outputs zero, i.e.,

rðxÞ ¼ maxð0; xÞ. For any positive integer n,

½n� :¼ f1; 2; . . .; ng. Unless mentioned otherwise, j � j rep-

resents the absolute value or modulus.

The principal contributions of this paper are as follows:

1. A differential approach for VDk�CCD.

2. A differential approach for VDk�CCDO.

3. A differential approach for VDk�CCCDO.

3 Related work

This section briefly discusses Kidney Exchange and its

closely related variants of Cycle Cover. The theoretical

underpinnings of kidney exchange were substantially laid

by Roth et al. in a series of seminal publications [29–31].

These seminal works delved into the intricate dynamics of

efficient pairings within a steady-state kidney exchange.

Fig. 2 Instances of VDk�CCD and VDk�CCDO in a graph G

Fig. 3 Example of an instance of the VDk�CCCDO in a graph G
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Building upon this foundation, subsequent investigations

by Ashlagi et al. [5], Ashlagi and Roth [6], and Ding et al.

[15] addressed critical limitations inherent in these theo-

retical models, which became apparent as kidney exchange

initiatives materialized into practical reality. Game-theo-

retic models of kidney exchange, which portray transplant

centers as agents with private types derived from their

internal pools, were introduced and extensively explored

by Ashlagi and Roth [6], Toulis and Parkes [34], and

Ashlagi et al. [4]. These models shed light on the strategic

interactions among stakeholders within the kidney

exchange ecosystem.

A VDCC of an undirected graph (if it exists) can be

found in polynomial time by transforming the problem into

a problem of finding a perfect matching in a larger graph

[35]. Finding a VDCC of a directed graph can also be

performed in polynomial time by a reduction to perfect

matching [9]. It is known that minimal VDCC is NP-hard

[7]. The problem does not belong to the complexity class

APX [7]. The problem in directed graphs is also not in

APX. For the cycle length 3, the vertex-disjoint cycle cover

problem in graphs is polynomial-time solvable [35]. The

problem is also in P when the cycle length is 4 [22]. The

complexity status of the problem is not known when the

cycle length is fixed to 5. However, David Hartvigsen has

some positive results on special cases of this problem [23].

The problem is NP-complete when the cycle length is at

least 6 [12]. However, in directed graphs, the problem is

NP-complete when the cycle length is at least 3 [20].

Next, we discuss the state-of-the-art results related to the

neural network (NN) and dataless neural network (dNN)

available in the literature. Our discussion for NN and dNN

is mainly based on many combinatorial optimization

problems (COPs). The most interesting COPs are NP-

hard. It is well-known that such problems do not have

polynomial-time efficient algorithms unless some estab-

lished complexity-theoretic conjectures fail. Although

these problems cannot be solved efficiently, they have

applications in almost every domain, such as scheduling,

routing, telecommunications, planning, transportation, and

decision-making processes [8, 17]. Researchers have

attempted to address NP-hard problems with different

efficient, approximate solvers [25]. Broadly, these solvers

are categorized into heuristic algorithms [2], approximation

algorithms [10], and conventional branch-and-bound

methods [32]. Such approaches may produce suboptimal

solutions. Some of the other well-studied approaches to

dealing with NP-hard problems use parameterized

[13, 18, 28] and exact exponential algorithmic techniques

[19, 21].

Another approach to tackle the Combinatorial Opti-

mization Problems (COPs) involves the utilization of

machine learning techniques, as exemplified by studies

such as Bengio et al. [8] and Wilder et al. [36]. In the realm

of COPs, reinforcement learning has been explored as a

means to automate the discovery of heuristics, a concept

extensively examined in the works of Drori et al. [16] and

Mazyavkina et al. [27]. These models necessitate training

based on specific problem instances. They rely on super-

vised learning, using datasets comprising combinatorial

structures of interest sampled from a problem instance

distribution. In a pioneering effort, Alkhouri et al. [3]

introduced dataless Neural Networks (dNNs) that do not

necessitate any data for training. Their approach involves

crafting a single differentiable function capable of repre-

senting well-known COPs, such as the Maximum Inde-

pendent Set (MIS) problem. They also devised a similar

dNN architecture for addressing the Maximum Clique

(MC) and Minimum Vertex Cover (MVC) problems, which

are closely linked to the MIS problem. To demonstrate the

efficacy of their dNN models in terms of solution quality,

they conducted comprehensive experiments on both real-

world and synthetic large-scale graphs. In [11], we devel-

oped dNNs tailored for solving the Maximum Dissociation

Set, k-Coloring, and Maximum Cardinality Distance

Matching problems. Additionally, [24] developed the

dNNs specifically designed to solve the MAXCUT,

MAXkSAT, and MAXNAE2SAT problems.

The existing literature explores various powerful

heuristic solvers to address the Maximum Independent Set

(MIS) problem. One notable heuristic solver in this context

is ReduMIS, as presented by Lamm et al. [25]. ReduMIS

comprises two primary components: The first involves an

iterative application of graph reduction techniques, while

the second employs an evolutionary algorithm. Typically,

these approaches entail training neural networks (NNs)

using extensive datasets of large graphs for which known

solutions exist. In a parallel vein to the dNN method for the

MIS problem discussed in [3], another MIS-solving tech-

nique was introduced by Schuetz et al. [33]. Notably, the

method proposed in [33] dispenses with the requirement for

training data, opting instead to utilize a graph neural net-

work. More specifically, its output represents the proba-

bility of each node’s inclusion in the solution. Unlike the

approach presented in [3], Schuetz’s method incorporates a

loss function to refine its parameterization, capturing the

characteristics of the target graph. Furthermore, the

Alkhouri et al. [3] approach employs n trainable parame-

ters, where n signifies the number of vertices within the

input graph. In contrast, the approach outlined in [33]

employs many parameters but confines them to the last

layer, utilizing n parameters exclusively in this layer. In the

context in [3], the authors presented experimental results

and compared them against the most proficient heuristics in

the existing literature. They evaluated their success using

the solution size obtained by ReduMIS as a benchmark.
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Moreover, their experimental findings indicated that their

approach performed comparably to or surpassed the state-

of-the-art learning-based methods detailed in [26].

4 Kidney exchange variants

In this section, we design dataless neural networks for

some of the variants of the Kidney Exchange problem.

4.1 VDk - CCD

This section discusses a dNN for VDk�CCD. Let G ¼
ðV;EÞ be a directed graph with n vertices over m edges. Let

‘1 be the total number of two edges (say (u, v) and (x, v))

toward any vertex v present in G. Let ‘2 be the total number

of two edges (say (v, w) and (v, y)) from any vertex v

present in G. Furthermore, ‘ ¼ ‘1 þ ‘2. We construct a

dNN f with trainable parameters h 2 ½0; 1�m with respect to

G. That means for each edge ðu; vÞ 2 E, there is a corre-

sponding trainable parameter huv in f. The input to the dNN

is an all-one vector em, which does not depend upon any

data. The output of the dNN is f ðem; hÞ ¼ f ðhÞ 2 R. There

are four layers in the dNN for VDk�CCD. The four layers

are categorized as one input layer, two hidden layers, and

one output layer (see the block diagram in Fig. 4 for the

proposed network).

The input layer em is connected with the first hidden

layer through an element-wise product of the trainable

parameters h. The first hidden layer is connected to the

second hidden layer by a binary matrix W 2 f0; 1gn�ð2�nÞ
.

The binary matrix is only dependent on G. At the second

hidden layer, there exists a bias vector

b 2 f�1;�1;�kg‘1þ‘2þn
. There is a fully connected weight

matrix w 2 fn; n;mg‘1þ‘2þn
in the second hidden layer to

the output layer. Note that all the parameters are defined as

a function of G. The output of f is given as follows:

f ðem; hÞ ¼ f ðhÞ ¼ wT � rððWT � ðem � hÞÞ þ bÞ: ð1Þ

Here, � denotes the element-wise Hadamard product,

which signifies the operation performed by the first hidden

layer of the constructed network. The second hidden layer

is a fully connected layer composed of a constant matrix

denoted as W and a bias vector represented as b, both

subjected to a ReLU activation function defined as

Fig. 4 Block diagram of dNN

Fig. 5 Representation of a binary matrix W corresponding to G
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rðxÞ ¼ maxð0; xÞ. The final layer of the network is another

fully connected layer, and it is described by the vector w.

On the other hand, we prove that when a VDk�CCD

solution C ¼ fC1; � � � ;Cpg in G is found, f ðhÞ attains its

minimum value. Therefore, f ðh) is an equivalent differen-

tiable function of VDk�CCD solution generated in G.

Moreover, C can be constructed from h as follows. Let

h	 ¼ argminh2½0;1�m f ðhÞ be an optimal solution to f. Let I :

½0; 1�m ! 2E be a VDk�CCD solution corresponding to h
such that IðhÞ ¼ fðu; vÞ 2 E j h	uv � ag, for a[ 0. We

show that jIðh	Þj ¼ jC0j such that C0 consists of edges

ðu; vÞ 2 Ci for each Ci 2 C. We choose the edges selected

in each Ci 2 C in the VDk�CCD solution in G corre-

sponding to the indices of h whose value exceeds a

threshold (say a).

From an input graph G ¼ ðV ;EÞ, the fixed parameters of

f can be constructed as follows: In the binary matrix W, the

first n� n submatrix represents the vertices V of G. Its

weights are set equal to the identity matrix In (see the 5 � 5

submatrix in Fig. 5b corresponding to the 5 vertices of G in

Fig. 5a). Furthermore, the remaining n columns of W rep-

resent the edges of G and for each edge ðu; vÞ 2 E, the

value of v ¼ 1 in the column (see the columns v1 to v5 in

Fig. 5b corresponding to the 6 edges of G in Fig. 5a). For

each vertex of G, the corresponding entry of n nodes is �k

in the biased vector b. For ‘1 number of two edges toward

any vertex, the corresponding value in the bias vector is set

to �1. Furthermore, for ‘2 number of two edges going out

from any vertex, the corresponding value in the bias vector

is set to �1. Finally, the value of m is assigned in the

entries corresponding to the nodes of G in vector w. For ‘1

and ‘2 entries corresponding to the number of two edges

toward any vertex and going out of any vertex v in G, the

value is set to n in w. Hence, the parameters W, b, and w are

defined as follows:

Wði; iÞ ¼ 1; vi 2 V ; i 2 ½n�;

Wði; nþ jÞ ¼ 1; 8ðvi; vjÞ 2 E;
ð2Þ

bðiÞ ¼ �k;wðiÞ ¼ m; vi 2 V ; i 2 ½n�;

bðnþ s1Þ ¼ �1;wðnþ s1Þ ¼ n; s1 2 ½‘2�

bðnþ s1 þ s2Þ ¼ �1;wðnþ s1 þ s2Þ ¼ n; s2 2 ½‘1�:

ð3Þ

So, the function in (1) can be rewritten as follows:

f ðhÞ ¼ n �
X

ðu; vÞ 2 E

ðx; vÞ 2 E

r huv þ hxv � 1ð Þ

þ n �
X

ðv;wÞ 2 E

ðv; yÞ 2 E

r hvw þ hvy � 1
� �

þ m �
X

v 2 V

hi � 1

r hvx þ hxy þ � � � þ hzv � k
� �

ð4Þ

An example of the above-discussed dNN construction is

presented in Fig. 6.

The following theorem establishes the relation between

a VDk�CCD solution and the minimum value of f in the

constructed dNN with respect to a given graph G.

Theorem 1 Let G ¼ ðV;EÞ be a directed graph and its

corresponding dNN be f. For k� 3, G has a VDk�CCD
solution C ¼ fC1; � � � ;Cpg, if and only if the minimum

value of f is 0.

Proof Let C ¼ fC1; � � � ;Cpg be a VDk�CCD solution in

G. For each ðu; vÞ 2 E, set the value of huv as follows: For

each Ci 2 C, if ðu; vÞ 2 Ci, then set huv ¼ 1. Otherwise, set

Fig. 6 Construction of dNN f corresponding to the graph in Fig. 5 (a) for VDk�CCD, when k ¼ 5 and

C ¼ fC1 ¼ fðv1; v2Þ; ðv2; v3Þ; ðv3; v5Þ; ðv5; v4Þ; ðv4; v1Þgg
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huv ¼ 0. Consider the output f for an arbitrary cycle Ci 2 C

and any set of two edges toward and going from a common

vertex. As per the definition of VDk�CCD, each cycle is of

length at most k. So, the part of the function m �

P
v 2 V
hi � 1

rðhvx þ hxy þ � � � þ hzv � kÞ will always be 0.

Moreover, each cycle Ci 2 C is disjoint. So, there are at

most two edges associated with any vertex (one edge

toward the vertex and another edge from the vertex) that

can be 1. Thus, the other two parts of the function n �

P
ðu; vÞ 2 E
ðx; vÞ 2 E

rðhuv þ hxv � 1Þ and n �

P
ðv;wÞ 2 E
ðv; yÞ 2 E

rðhvw þ hvy � 1Þ are always 0. Hence, the

minimum value of f ðhÞ ¼ 0.

Conversely, assume that the minimum value of the

output function f is f ðhÞ ¼ 0. We construct a VDk�CCD

solution C in G from f as follows: From the construction of

the dNN, it is clear that, for each set of two edges (u, v) and

(x, v) toward a common vertex v, huv þ hxv � 1. Further-

more, for each set of two edges (v, w) and (v, y) from a

common vertex v, hvw þ hvy � 1. Otherwise, f does not

achieve its minimum value. To prove this, assume that

huv þ hxv [ 1 and/or hvw þ hvy [ 1. It follows that the

function contributes n � ðhuv þ hxv � 1Þ[ 0 and/or n �
ðhvw þ hvy � 1Þ[ 0 to the output f ðhÞ. This is a contra-

diction to the fact that f achieves its minimum value. We

can simply assign the value of huv or hxv and/or hvw or hvy as

zero and reduce the value of f further. So, it is clear that for

any two edges (u, v) and (x, v) toward v and two edges

(v, w) and (v, y) going out of v in G, the h value of at most

one of the two such edges can be 1. Each such edge, which

h value is one, is a part of a cycle Ci as each vertex is a part

of a cycle. Furthermore, the length of any such cycle Ci

formed by using edges of h value 1 is at most k. Otherwise,

the function contributes m � rðhvx þ hxy þ � � � þ hzv �
kÞ[ 0 to the output f ðhÞ. For each entry of h with value

1, consider the corresponding edge and put the cycle Ci in

the VDk�CCD solution C in which the edge is a part. It is

clear that C is a VDk�CCD solution in G. h

4.2 VDk - CCDO

In this section, we discuss a dNN for the optimization

version of VDk�CCD, which we call VDk�CCDO. Let

G ¼ ðV;EÞ be a directed graph with n vertices over m

edges. Let ‘1 be the total number of two edges (say (u, v)

and (x, v)) toward any vertex v present in G. Let ‘2 be the

total number of two edges (say (v, w) and (v, y)) going out

of any vertex v present in G. Furthermore, ‘ ¼ ‘1 þ ‘2. We

construct a dNN f with trainable parameters h 2 ½0; 1�nþm

with respect to G. That means for each vertex v 2 V , there

is a corresponding trainable parameter hv and for each edge

ðu; vÞ 2 E, there is a corresponding trainable parameter huv
in f. The input to the dNN is an all-one vector enþm, which

does not depend upon any data. The output of the dNN is

f ðenþm; hÞ ¼ f ðhÞ 2 R. There are four layers in the dNN for

VDk�CCDO. The four layers are categorized as one input

layer, two hidden layers, and one output layer (see the

block diagram in Fig. 4 for the proposed network).

The input layer enþm is connected with the first hidden

layer through an element-wise product of the trainable

parameters h. The first hidden layer is connected to the

second hidden layer by the binary matrix W 2 f0; 1gn�ð2�nÞ
.

The binary matrix is only dependent on G. At the second

hidden layer, there exists a bias vector

b 2 f� 3
4
;�1;�1;�kgnþ‘1þ‘2þn

. There is a fully connected

weight matrix w 2 f�1; n; n;mgnþ‘1þ‘2þn
in the second

hidden layer to the output layer. Note that all the param-

eters are defined as a function of G. The output of f is given

as follows:

f ðhÞ ¼ �
X

v2V rðhv �
3

4
Þ þ n �

X
ðu; vÞ 2 E

ðx; vÞ 2 E

rðhuv þ hxv � 1Þ

þ n �
X

ðv;wÞ 2 E

ðv; yÞ 2 E

rðhvw þ hvy � 1Þ þ m�

X
v 2 V : hv ¼ 1

hi � 1

rðhvx þ hxy þ � � � þ hzv � kÞ

ð5Þ

On the other hand, we prove that when a VDk�CCDO

solution C ¼ fC1; � � � ;Cpg in G is found, f ðhÞ attains its

minimum value. Therefore, f ðh) is an equivalent differen-

tiable function of VDk�CCDO solution generated in G.

Moreover, C can be constructed from h as follows. Let

h	 ¼ argminh2½0;1�nþm f ðhÞ be an optimal solution to f. Let

I : ½0; 1�m ! 2E be a VDk�CCDO solution corresponding

to h such that IðhÞ ¼ fðu; vÞ 2 E j h	uv � ag, for a[ 0. We

show that jIðh	Þj ¼ jC0j such that C0 consists of edges

ðu; vÞ 2 Ci for each Ci 2 C. We choose the edges selected

in each Ci 2 C in the VDk�CCDO solution in G corre-

sponding to the indices of h whose value exceeds a

threshold (say a). From an input graph G ¼ ðV;EÞ, the

fixed parameters of f can be constructed as follows: In the

binary matrix W, the first n� n submatrix represents the

vertices V of G. Its weights are set equal to the identity
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matrix In. Furthermore, the remaining n columns of W

represent the edges of G and for each edge ðu; vÞ 2 E, the

value of v ¼ 1 in the column (see Fig. 5). For each vertex

of G, the corresponding entry of n nodes is �k in the biased

vector b. For ‘1 number of two edges toward any vertex,

the corresponding value in the bias vector is set to �1. For

‘2 number of two edges going out of any vertex, the cor-

responding value in the bias vector is set to �1. Further-

more, for each vertex of G, the corresponding entry of n

nodes is � 3
4

in the biased vector b. Finally, the value of m

is assigned in the entries corresponding to the nodes of G in

vector w. For ‘1 and ‘2 entries corresponding to the number

of two edges toward any vertex and going out of any vertex

v in G, the value is set to n in w. For each vertex of G, the

corresponding entry of n nodes is �1 in the vector w.

The following theorem establishes the relation between

a VDk�CCDO solution and the minimum value of f in the

constructed dNN with respect to a given graph G.

Lemma 1 Let G ¼ ðV ;EÞ be a directed graph having n

vertices over m edges and its corresponding dNN be f. For

k� 3, G has a VDk�CCDO solution C ¼ fC1; � � � ;Cpg
which covers g vertices of G, if and only if the minimum

value of f is � g
4
.

Proof Let C ¼ fC1; � � � ;Cpg be a VDk�CCDO solution in

G, which covers g vertices in G. For each ðu; vÞ 2 E, set the

value of huv as follows: For each Ci 2 C, if ðu; vÞ 2 Ci, then

set huv ¼ 1. Otherwise, set huv ¼ 0. Moreover, for each

vertex v 2 V which is a part of the cycle cover C, we have

hv ¼ 1; otherwise, hv ¼ 0. Consider the output f for an

arbitrary cycle Ci 2 C and any set of two edges toward and

going out of a common vertex. As per the definition of

VDk�CCDO, each cycle is of length at most k. So, the part

of the function m �
P

v 2 V
hi � 1

rðhvx þ hxy þ � � � þ hzv � kÞ

will always be 0. Moreover, each cycle Ci 2 C is disjoint.

So, there are at most two edges associated with any vertex

(one edge toward the vertex and another edge going out of

the vertex) that can be 1. Thus, the other two parts of the

function n �
P

ðu; vÞ 2 E
ðx; vÞ 2 E

rðhuv þ hxv � 1Þ and n �

P
ðv;wÞ 2 E
ðv; yÞ 2 E

rðhvw þ hvy � 1Þ are always 0. Furthermore,

there are g vertices covered in the cycle cover C. So, for

each vertex in the cycle cover, f ðhÞ contributes � 1
4
.

Therefore, the minimum value of f ðhÞ ¼ � g
4
.

Conversely, assume that the minimum value of the

output function f is f ðhÞ ¼ � g
4
. Then, it is clear that the h

value of g number of vertices is 1. We construct a

VDk�CCDO solution C in G from f as follows: From the

construction of the dNN, it is clear that, for each set of two

edges (u, v) and (x, v) toward a common vertex v,

huv þ hxv � 1. Furthermore, for each set of two edges

(v, w) and (v, y) going out of a common vertex v,

hvw þ hvy � 1. Otherwise, f does not achieve its minimum

value. To prove this, assume that huv þ hxv [ 1 and/or

hvw þ hvy [ 1. It follows that the function contributes n �
ðhuv þ hxv � 1Þ[ 0 and/or n � ðhvw þ hvy � 1Þ[ 0 to the

output f ðhÞ. This is a contradiction to the fact that f

achieves its minimum value. We can simply assign the

value of huv or hxv and/or hvw or hvy as zero and reduce the

value of f further. So, it is clear that for any two edges

(u, v) and (x, v) toward v and two edges (v, w) and (v, y)

going out of v in G, the h value of at most one of the two

such edges can be 1. Each such edge, which h value is one,

is a part of a cycle Ci. Furthermore, the length of any such

cycle Ci formed by using edges of h value 1 is at most k.

Otherwise, the function contributes m � rðhvx þ hxy þ � � � þ
hzv � kÞ[ 0 to the output f ðhÞ. For each entry of h with

value 1, consider the corresponding edge and put the cycle

Ci in the VDk�CCDO solution C in which the edge is a

part. It is clear that C is a VDk�CCDO solution, which

covers g number of vertices in G. h

4.3 VDk - CCCDO

In this section, we discuss a dNN for a variant of Kidney

Exchange called VDk�CCCDO. Let G ¼ ðV;EÞ be a

directed graph with n vertices over m edges. Let ‘1 be the

total number of two edges (say (u, v) and (x, v)) toward any

vertex v present in G. Let ‘2 be the total number of two

edges (say (v, w) and (v, y)) going out of any vertex v

present in G. Furthermore, ‘ ¼ ‘1 þ ‘2. We construct a

dNN f with trainable parameters h 2 ½0; 1�nþm
with respect

to G. That means for each vertex v 2 V , there is a corre-

sponding trainable parameter hv and for each edge

ðu; vÞ 2 E, there is a corresponding trainable parameter huv
in f. The input to the dNN is an all-one vector enþm, which

does not depend upon any data. The output of the dNN is

f ðenþm; hÞ ¼ f ðhÞ 2 R. There are four layers in the dNN for

VDk�CCCDO. The four layers are categorized as one input

layer, two hidden layers, and one output layer (see the

block diagram in Fig. 4 for the proposed network).

The input layer enþm is connected with the first hidden

layer through an element-wise product of the trainable

parameters h. The first hidden layer is connected to the

second hidden layer by the binary matrix W 2 f0; 1gn�ð2�nÞ
.

The binary matrix is only dependent on G. At the second

hidden layer, there exists a bias vector

b 2 f� 3
4
;�1;�1;�k;�kgnþ‘1þ‘2þnþn

. There is a fully

connected weight matrix w 2 f�1; n; n;m;mgnþ‘1þ‘2þnþn

in the second hidden layer to the output layer. Note that all
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the parameters are defined as a function of G. The output of

f is given as follows:

f ðhÞ ¼ �
X

v2V
rðhv �

3

4
Þ þ n �

X

ðu; vÞ 2 E

ðx; vÞ 2 E

rðhuv þ hxv � 1Þ

þ n �
X

ðv;wÞ 2 E

ðv; yÞ 2 E

rðhvw þ hvy � 1Þ

þ m �
X

u 2 V : hu ¼ 1

hi � 1

rðhuv þ � � � þ hzu � kÞ þ m�

X

u 2 V : hu ¼ 1

hi � 1

rðhuv þ � � � þ hyz � kÞ

ð6Þ

On the other hand, we prove that when a VDk�CCCDO

solution C in G is found, f ðhÞ attains its minimum value.

Therefore, f ðh) is an equivalent differentiable function of

VDk�CCCDO solution generated in G. Moreover, C can be

constructed from h as follows. Let h	 ¼
argminh2½0;1�nþm f ðhÞ be an optimal solution to f. Let I :

½0; 1�m ! 2E be a VDk�CCCDO solution corresponding to

h such that IðhÞ ¼ fðu; vÞ 2 E j h	uv � ag, for a[ 0. We

show that jIðh	Þj ¼ jC0j such that C0 consists of edges

ðu; vÞ 2 Ci for each Ci 2 C. We choose the edges selected

in each Ci 2 C in the VDk�CCCDO solution in G corre-

sponding to the indices of h whose value exceeds a

threshold (say a). From an input graph G ¼ ðV;EÞ, the

fixed parameters of f can be constructed as follows: In the

binary matrix W, the first n� n submatrix represents the

vertices V of G. Its weights are set equal to the identity

matrix In. Furthermore, the remaining n columns of W

represent the edges of G and for each edge ðu; vÞ 2 E, the

value of v ¼ 1 in the column (see Fig. 5). For each vertex

of G, the corresponding entry of n nodes is �k in both the

parts of the biased vector b. For ‘1 number of two edges

toward any vertex, the corresponding value in the bias

vector is set to �1. For ‘2 number of two edges going out

from any vertex, the corresponding value in the bias vector

is set to �1. Furthermore, for each vertex of G, the cor-

responding entry of n nodes is � 3
4

in the biased vector b.

Finally, the value of m is assigned in the entries

corresponding to the nodes of G in both the parts of the

vector w. For ‘1 and ‘2 entries corresponding to the number

of two edges toward any vertex and going out of any vertex

v in G, the value is set to n in w. For each vertex of G, the

corresponding entry of n nodes is �1 in the vector w.

The following theorem establishes the relation between

a VDk�CCCDO solution and the minimum value of f in the

constructed dNN with respect to a given graph G.

Lemma 2 Let G ¼ ðV ;EÞ be a directed graph having n

vertices over m edges and its corresponding dNN be f. For

k� 3, G has a VDk�CCCDO solution C ¼ fC1; � � � ;Cpg
which covers g vertices of G, if and only if the minimum

value of f is � g
4
.

Proof Let C ¼ fC1; � � � ;Cpg be a VDk�CCCDO solution

in G, which covers g vertices in G. For each ðu; vÞ 2 E, set

the value of huv as follows: For each Ci 2 C, if ðu; vÞ 2 Ci,

then set huv ¼ 1. Otherwise, set huv ¼ 0. Moreover, for

each vertex v 2 V , which is a part of the cycle or chain

cover C, we have hv ¼ 1; otherwise, hv ¼ 0. Consider the

output f for an arbitrary cycle or chain Ci 2 C and any set

of two edges toward and going out of a common vertex. As

per the definition of VDk�CCCDO, each cycle is of length

at most k. So, the part of the function m �

P
u 2 V : hu ¼ 1

hi � 1

rðhuv þ � � � þ hzu � kÞ will always be 0.

Moreover, each chain is of length at most k. So, the part of

the function m �
P

u 2 V : hu ¼ 1

hi � 1

rðhuv þ � � � þ hyz � kÞ

will always be 0. Furthermore, each cycle/chain Ci 2 C is

disjoint. So, at most, two edges are associated with any

vertex in the cover (one edge toward the vertex and another

edge from the vertex) that can be 1. Thus, the other two

parts of the function n �
P

ðu; vÞ 2 E
ðx; vÞ 2 E

rðhuv þ hxv � 1Þ and

n �
P

ðv;wÞ 2 E
ðv; yÞ 2 E

rðhvw þ hvy � 1Þ are always 0. Further-

more, there are g vertices covered in the cycle cover C. So,

for each vertex in the cycle cover, f ðhÞ contributes � 1
4
.

Therefore, the minimum value of f ðhÞ ¼ � g
4
.

Conversely, assume that the minimum value of the

output function f is f ðhÞ ¼ � g
4
. Then, it is clear that the h

value of g vertices is 1. We construct a VDk�CCCDO

solution C in G from f as follows: From the construction of

the dNN, it is clear that, for each set of two edges (u, v) and

(x, v) toward a common vertex v, huv þ hxv � 1. Further-

more, for each set of two edges (v, w) and (v, y) going out

of a common vertex v, hvw þ hvy � 1. Otherwise, f does not

achieve its minimum value. To prove this, assume that

huv þ hxv [ 1 and/or hvw þ hvy [ 1. It follows that the
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function contributes n � ðhuv þ hxv � 1Þ[ 0 and/or n �
ðhvw þ hvy � 1Þ[ 0 to the output f ðhÞ. This is a contra-

diction to the fact that f achieves its minimum value. We

can simply assign the value of huv or hxv and/or hvw or hvy as

zero and reduce the value of f further. So, it is clear that for

any two edges (u, v) and (x, v) toward v and two edges

(v, w) and (v, y) going out of v in G, the h value of at most

one of the two such edges can be 1. Each such edge, which

h value is one, is a part of a cycle/chain Ci. Furthermore,

the length of any such cycle/chain Ci formed by using

edges of h value 1 is at most k. Otherwise, the function

contributes m � rðhuv þ � � � þ hzu � kÞ[ 0 or m � rðhuv þ
� � � þ hyz � kÞ[ 0 to the output f ðhÞ. For each entry of h
with value 1, consider the corresponding edge and put the

cycle/chain Ci in the VDk�CCCDO solution C in which the

edge is a part. It is clear that C is a VDk�CCCDO solution

in G. h

5 Conclusion

In this paper, we have explored various aspects of the

Kidney Exchange problem as vertex-disjoint cycle cover

variants, specifically VDk�CCD, VDk�CCDO, and

VDk�CCCDO. We devised differentiable functions tai-

lored to these problem instances and established their

correctness by demonstrating that these functions reach

their minimum value when an exact solution is found. The

derivation of these differentiable functions is based on the

framework of dataless neural networks. For future work,

we aim to conduct implementation-based experiments to

test the effectiveness of our proposed approach, employing

a diverse range of dataless neural networks. A crucial

research direction involves devising a transformation pro-

cedure to convert arbitrary integer programs into dataless

neural networks.
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