LN
™M
<
LN
v
O
=
—1

Donglei Du
Lu Han
Dachuan Xu (Eds.)

Combinatorial Optimization
and Applications

17th International Conference, COCOA 2024
Beijing, China, December 6-8, 2024
Proceedings, Part Il

@ Springer

Lecture Notes in Computer Science 15435

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, Purdue University, West Lafayette, IN, USA

Wen Gao, Peking University, Beijing, China

Bernhard Steffen@®, TU Dortmund University, Dortmund, Germany
Moti Yung®, Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Donglei Du - Lu Han - Dachuan Xu
Editors

Combinatorial Optimization
and Applications

17th International Conference, COCOA 2024
Beijing, China, December 6-8, 2024
Proceedings, Part II

@ Springer

Editors

Donglei Du Lu Han

University of New Brunswick Beijing University of Posts

New Brunswick, NB, Canada and Telecommunications
Beijing, China

Dachuan Xu

Beijing University of Technology

Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Computer Science

ISBN 978-981-96-4447-6 ISBN 978-981-96-4448-3 (eBook)

https://doi.org/10.1007/978-981-96-4448-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-981-96-4448-3

Preface

The 17th Annual International Conference on Combinatorial Optimization and Applica-
tions (COCOA 2024) took place in Beijing, China, during December 68, 2024. COCOA
2024 provided an excellent venue for researchers in the area of combinatorial opti-
mization and its applications, including algorithm design, theoretical and experimental
analysis, and applied research of general algorithmic interest. The Program Committee
received a total of 124 submissions, among which 53 were accepted for presentation
at the conference. Each contributed paper was subject to a rigorous peer review pro-
cess, receiving three double-blind reviews from reviewers selected from the Program
Committee. We would like to express our sincere appreciation to everyone who made
COCOA 2024 a success by volunteering their time and effort: the authors, the Program
Committee members, and the reviewers. We thank Springer for accepting the proceed-
ings of COCOA 2024 for publication in the Lecture Notes in Computer Science (LNCS)
series. Our special thanks also extend to the other chairs and the conference Organizing
Committee members for their excellent work.

Donglei Du
Lu Han
Dachuan Xu

Organization

General Chair

Du, Ding-Zhu University of Texas at Dallas, USA

Program Committee Co-chairs

Du, Donglei University of New Brunswick, Canada

Han, Lu Beijing University of Posts and
Telecommunications, China

Xu, Dachuan Beijing University of Technology, China

Web Co-chairs

Sai Ji Hebei University of Technology, China
Lili Mei Hangzhou Dianzi University, China

Publication Co-chairs

Chenchen Fu Southeast University, China
Ruiqi Yang Beijing University of Technology, China

Finance Chair

Yicheng Xu Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, China

Registration Chair

Jian Sun Nanjing Normal University, China

viii Organization

Local Chairs

Zhongzheng Tang

Chenchen Wu

Beijing University of Posts and
Telecommunications, China

Tianjin University of Technology, China

Program Committee Members

Bein, Wolfgang
Calinescu, Gruia
Chau, Vincent
Chen, Xujin

Chen, Yong
Cheng, Yukun
DasGupta, Bhaskar
De Bonis, Annalisa
Diao, Zhuo

Fan, Neng

Feng, Qilong
Guo, Longkun

Ji, Sai

Jiang, Shaofeng
Khachay, Michael

Lee, Joong-Lyul
Li, Xianyue

Li, Minming

Li, Jianping

Lin, Guohui

Liu, Bin

Mei, Lili

Nguyen, Viet Hung
Ogihara, Mitsunori
Satpute, Meghana
Tang, Zhongzheng

Tong, Weitian
‘Wu, Chenchen

University of Nevada, USA

Illinois Institute of Technology, USA

Southeast University, China

Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, China

Hangzhou Dianzi University, China

Jiangnan University, China

University of Illinois Chicago, USA

Universita degli Studi di Salerno, Italy

Central University of Finance and Economics,
China

University of Arizona, USA

Central South University, China

Fuzhou University, China

Hebei University of Technology, China

Peking University, China

Krasovsky Institute of Mathematics and
Mechanics, Russia

University of North Carolina at Pembroke, USA

Lanzhou University, China

City University of Hong Kong, China

Yunnan University, China

University of Alberta, Canada

Ocean University of China, China

Hangzhou Dianzi University, China

Clermont Auvergne University, France

University of Miami, USA

University of Texas at Dallas, USA

Beijing University of Posts and
Telecommunications, China

Eastern Michigan University, USA

Tianjin University of Technology, China

Xu, Yicheng

Yang, Ruiqi
Zhang, Ruilong
Zhang, Peng
Zhang, Zhao
Zhang, Xiaoyan
Zhang, Yong

Ziegler, Martin

Zissimopoulos, Vassilis

Additional Reviewers

Chen, Lin

Chen, Xianrun

Dai, Sijia

Duan, Chengcheng
Filippos, Mavropoulos
Guo, Xinru

Ju, Jiachen

Khachai, Daniil
Lazaropoulos, Nikos
Li, Mengzhen

Lian, Yuefang
Liang, Wei

Lou, Jianing

Luo, Junjie

Polevoy, Gleb

Organization

Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, China

Beijing University of Technology, China

Technical University of Munich, Germany

Shandong University, China

Zhejiang Normal University, China

Nanjing Normal University, China

Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, China

Korea Advanced Institute of Science and
Technology, South Korea

National and Kapodistrian University of Athens,
Greece

Popa, Alexandru
Sigalas, Ioannis
Wang, Guihao
Wang, Fengjuan
Wang, Changjun
Wang, Chenhao
Xia, Xinlan
Xiao, Hao

Ye, Qingjie

Yu, Wei

Zhang, Yubai
Zhang, An
Zhang, Yubo
Zhao, Lei
Zoros, Dimitris

ix

Contents — Part I1

Maximizing One-Way Trading Revenue in Photovoltaic Energy Generation 1
Xinru Guo, Yu Huang, Xinxin Han, Yicheng Xu, Keliang Duan,
and Qiancheng Xu

Parameterized Complexity of Shortest Path with Positive Disjunctive

CONSITAINLS .+ .+ttt ettt e 14
Susobhan Bandopadhyay, Suman Banerjee, Diptapriyo Majumdar,
and Fahad Panolan

An Approximation Algorithm for the (Metric) Clustered Path Traveling
Salesman Problem 26
Jiaxuan Zhang, Suogang Gao, Bo Hou, and Wen Liu

Dynamic Algorithms for Submodular Maximization with a p-Matchoid
CONSIIAINT .+« ettt et e e 36
Luying Ma, Yuanyuan Qiang, and Bin Liu

Generative Flow Networks with Symmetry Enhancement to Solve Vehicle

Routing Problems 50
Zizhen Zhang, Guoyao Rao, Deying Li, Yongcai Wang, Wenping Chen,
and Yuqing Zhu

Edge-Unfolding Polycubes with Orthogonally Convex Layers 63
Mirela Damian and Henk Meijer

B-Matching Interdiction Problem on Bipartite Graphs with Unit Weight
and Multi-dimensional Budgets i 75
Ruiging Sun and Weidong Li

Mechanism Design for Facility Location Games Under a Prelocated Facility ... 85
Genjie Qin, Qizhi Fang, and Wenjing Liu

Computing Approximate Mixed Nash Equilibria for Symmetric Weighted
Congestion GAMESo v vttt et ettt e e e e e e e 107
Chunying Ren, Zijun Wu, Xiaoguang Yang, and Guoqing Zhang

Dynamic Algorithms for Non-monotone Submodular Maximization 119
Yuanyang Liu and Wenguo Yang

xii Contents — Part IT

Broadcasting and Three List Subtraction i, 132
Hovhannes A. Harutyunyan and Narek Hovhannisyan

The Power of Second Chance: Personalized Submodular Maximization
with Two Candidatesttt e e 144
Jing Yuan and Shaojie Tang

(Independent) Roman Domination Parameterized by Distance to Cluster 157
Pradeesha Ashok, Gautam K. Das, Arti Pandey, Kaustav Paul,
and Subhabrata Paul

Fair Selection of Clearing Schemes for Kidney Exchange Markets 170

Robert D. Barish and Tetsuo Shibuya

Author Index e 187

Contents — Part I

An Optimization Strategy for Fresh Agricultural Product Supply Chain
with Altruistic Preference Under Blockchain Technology 1
Yi Zhao, Juan Gao, and Chunming Xu

Approximation Algorithms for the Capacitated Min-Max and Minimum
Graph Cover Problems ...ttt e 18
Jiafeng Xiong, Zhaohui Liu, and Wei Yu

A Simple Algorithm for Scheduling Unit Jobs with Unknown Number
of Machines i 31
Lishi Yu and Zhiyi Tan

Faster Algorithms for Grid and Layered Drawings of Plane 3-Trees 44
Ahmed Hossain, Md. Hasanul Islam, Debajyoti Mondal,
and Md. Saidur Rahman

Reinforcement Learning for Airline Continuous Dynamic Pricing 56
Zhicheng Yao and Wenguo Yang

Approximation Algorithms for the Combination of Prize-Collecting
Vertex Cover and Schedulinguuuiiiiiiiiiiiin. 69
Li Guan, Hongli Liu, and Xin Liu

Randomized Mechanisms for Improved Approximation Ratios
in Heterogeneous Two-Facility Locationoooiiiii.... 77
Meng Xu, Qian Liu, Min Li, and Yang Zhou

Comprehensive Multi-view Subspace Clustering with Global-and-Local
Representation Learninguuuuuuii i 88
Bin Xiao, Jipeng Guo, Juntao Hu, Yifan Dong, and Youging Wang

On the Twin-width of Outerplanar Graphs 100
Muhammad Anwarul Azim, Sk Ruhul Azgor, Sadia Sharmin,
and Md. Saidur Rahman

Maximize an Approximate k-submodular Function under a Knapsack
CONSLIANE .ot o ettt e ettt e e 113
Fanging Meng, Qingqin Nong, Suning Gong, and Xiaoying Qu

Xiv Contents — Part I

A Short Proof and Experimental Study of the Approximation Algorithm
forLabel s-f Cut 127
Peng Zhang

Risk-Embedded Scheduling Optimization for a Virtual Power Plant Under

Carbon Emission Trading Constraintsc.oeuuuuunnnnnnnnn.. 139
Jiaming Hu, Boon-Han Lim, Maowen Lu, Xiaoyun Tian,
Dongzhao Wang, and Wenqging Xu

On the Constrained Steiner Strong Connectivity Augmentation Problem 151
Junran Lichen, Shuwen Ge, Runtao Xie, and Ping Yang

Competitive Algorithms for Online Traveling Salesman Problem
onaSemi-line 163
Qian Liu, An Zhang, Kai Wang, Yong Chen, and Guangting Chen

On the Inapproximability of Two-machine Open Shop Scheduling

with Exact Delayso e 176
Shunzhang Lu, An Zhang, Mengyuan Hu, Yong Chen,
and Guangting Chen

Minimum Power Partial Cover with Fairness Constraint 190
Chensheng Ma and Zhao Zhang

Differentially Private Counting Queries on Approximate Shortest Paths 200
Jesse Campbell and Chunjiang Zhu

Semi-online Multiprocessor Scheduling with Known Largest Job
Processing Timeoo ottt e 213
Mingyang Gong, Guohui Lin, and Zhiyi Tan

Acyclically Edge Color Triangle-free Toroidal Graphs in A 42 Colors 226
Qiaojun Shu and Guohui Lin

An Equally-Split Bin Packing Problem 240
Ding Zou, Jiayi Lian, Wei Lu, Yichao Duan, Xingyu Lu, Jun Zhou,
Yuchen Mao, and Guochuan Zhang

The Location-routing Problem in the Pallet Pooling System Considering
Carbon Emissions 253
Xiaoting Shang, Bowen Miao, and Qingguo Bai

Scheduling Fully Parallel Jobs with Integer Units 267
Junyi Zhang, Juan Zou, and Mingyu Ma

Contents — Part I

UAV Target Tracking with Bandit-Based Data Fusion
Yang Lv, Guochao Fan, Mengzhen Li, Xiongjun Liu, Pengqing Liu,
and Yapu Zhang

Fair Maximization of Monotone Submodular Functions in Data Streams
Shugian Zhu, Longkun Guo, and Jiawei Lin

Tournament Transitivity of Graphs
Kamal Santra

Approximation Algorithm for Min-max Correlation Clustering Problem
with Penalties e
Yuebo Huang, Sai Ji, Xiaoyun Tian, and Kun Zhou

Improved Approximation Algorithm for Individual Fairness k-Median
Di Wu, Qilong Feng, Jinhui Xu, and Jianxin Wang

The Price of Fairness for Budget-Feasible EF1 Allocations
Tingwei Hu, Lili Mei, Zhen Wang, and Guochuan Zhang

On the Min-max Heterogeneous Weighted Delivery Problem
Jianping Li, Ping Yang, and Junran Lichen

Exact and Approximate Heuristics for the Multi-modal Stable Matching
with Applications in Industry Chains
Yang Yang and Yicheng Xu

Budget Feasible Mechanism for a k-submodular Function in the Clock
Auction Model
Hongyang Zhang and Wenchang Luo

Kernel for Proper Helly Circular-Arc Vertex Deletion: Smaller and Simpler
via Graph Isomorphism i
Hanchun Yuan and Zhen Zhang

Approximately Non-k-submodular Maximization Under p-System and £
Knapsack Constraints™ottt
Hanlu Ye, Heqing Li, Min Li, Yang Zhou, and Qian Liu

Alternating Lagrangian Decomposition Combining with Branch

and Pricing for Robust and Integrated Airline Aircraft Routing and Crew

Pairing
Cong Li, Suixiang Gao, Wenguo Yang, and Zhipeng Jiang

Xvi Contents — Part I

A Comparative Analysis of NFT-Based Insurance Claim Management

Systems Across EVM-Compatible Blockchain Platforms 426
Minh Nguyen Triet, Le Khanh Bang, Hong Vo Khanh, The Nguyen Anh,
Doan Minh Hieu, Pham Thanh Nghiem, Huynh Gia Khiem,
and Nam Tran Ba

Attaining Equilibria Using Control Sets, 439
Gleb Polevoy and Jonas Schweichhart

Scheduling on Parallel-batch Machines with Rejection and Resource
MatChingo 453
Wenhua Li, Liang Zhang, Ran Lin, and Shisheng Li

Some Combinatorial Algorithms on the Independent Number of k-Regular
Connected Hypergraphso e 465
Zhuo Diao and Haoyang Zou

Approximation Algorithms on k-Correlation Clustering of Uniform
Hypergraphs 477
Zhongzheng Tang, Yaxuan Li, and Zhuo Diao

Author Index e 487

®

Check for
updates

Maximizing One-Way Trading Revenue
in Photovoltaic Energy Generation

Xinru Guo'?, Yu Huang®*, Xinxin Han®®™) | Yicheng Xu'?, Keliang Duan®,

and Qiancheng Xu®

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, People’s Republic of China
{xr.guo,zhangyong,yc.xu}@siat.ac.cn
2 University of Chinese Academy of Sciences, Beijing, People’s Republic of China
3 Shenzhen University of Advanced Technology, Shenzhen, People’s Republic of
China
y.huangb@siat.ac.cn
4 College of Mathematics and Information Science, Hebei University, Baoding,
People’s Republic of China
5 School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen,
People’s Republic of China
hanxin@szpu.edu.cn
5 Beijing JH Eco-Energy Technology Co., LTD., Beijing 100160,
People’s Republic of China
{duankeliang,xuqiancheng}@jasolar.com

Abstract. Solar energy, particularly through photovoltaic (PV) power
generation, plays a crucial role in transitioning to renewable energy
sources, offering an inexhaustible and clean energy solution that sig-
nificantly reduces carbon dioxide emissions and supports global carbon
neutrality goals. Despite the rapid expansion of PV capacity worldwide,
optimizing economic returns remains challenging due to market volatil-
ity and storage inefficiencies. During PV generation, produced energy is
stored in batteries, waiting for favorable sale prices as the market fluc-
tuates. In our model, storage losses for the batteries are represented by
a constant, denoted as Coss, which means that the remaining energy in
the next period is reduced to (1—Cj,ss) times that of the previous period.
This paper proposes a novel online algorithm designed to maximize rev-
enue from selling PV power generated in each period. The algorithm
dynamically adjusts selling strategies to effectively balance market price
fluctuations and storage losses, achieving a competitive ratio of O(log h),
where h is the highest unit price. By strategically reserving log;;hﬂ of
energy for each expected electricity unit price, the algorithm ensures
greater profits at higher prices. Furthermore, the paper establishes that
the lower bound of the trading problem is Q(log k), demonstrating that
the algorithm is tight and performs optimally within the modeled con-
straints.

Keywords: One-way trading - Online algorithm - Competitive
analysis - Photovoltaic
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 1-13, 2025.
https://doi.org/10.1007/978-981-96-4448-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_1&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_1

2 X. Guo et al.

1 Introduction

Solar energy, as an inexhaustible and clean energy source, offers hope for solving
the energy crisis and significantly reduces environmental pollution, contributing
to the goal of achieving carbon neutrality as soon as possible. Several studies
have explored ways to improve the profitability of PV power generation and
efficient energy delivery mechanisms [11]. The economic benefits of PV power
generation vary among different user groups. Research by Grietus Mulder et
al. indicates that household users gain more benefits from storing PV-generated
electricity than from selling it and then repurchasing it [14]. Xin et al. designed a
new control strategy to increase PV sales revenue, ensuring more efficient power
output [18]. Furthermore, Ru et al. assessed the economic value of battery storage
systems compared to purchasing power from the grid by studying the size of the
batteries [15]. Therefore, this paper aims to design a mechanism that maximizes
PV energy selling profit.

However, there is still a lack of research on the design of online algorithms
for PV power sales. For such online pricing issues, Bansal et al. developed an
online pricing algorithm for impatient bidders to maximize revenue [3]. Briest
et al. demonstrated the non-approximability of polynomial-time algorithms for
the unit demand minimum purchase pricing problem and extended it to a prob-
abilistic consumer model [6]. Krysta et al. investigated the non-parametric unit
demand pricing problem based on consumer profiles, proving the approximation
difficulty of the minimum purchase model and exploring the maximum purchase
and rank purchase models [7]. Chen et al. studied the envy-free pricing problem
for revenue maximization in multi-item markets, proposing a polynomial-time
algorithm and proving its feasibility under certain conditions [8]. Balcan et al.
designed an online algorithm with an O(k) approximation for maximizing seller
revenue in the case of unlimited supply [2]. Bahram Alinia et al. designed an
online algorithm for scheduling electric vehicles in adaptive charging networks
to maximize social welfare under limited resources, proving that the online algo-
rithm has a competitive ratio of 2 in fractional mode [1]. Xie et al. proposed
that pre-sales could double the final revenue in their research on sales issues
[17]. Avrim et al. designed an online algorithm for market clearing, achieving
a competitive ratio of In(Pmax — Pmin) + 1 when bids are within the range of
[Pmin, Pmax] [5]- Kris Johnson Ferreira et al. developed dynamic pricing algo-
rithms to maximize revenue in price-based network revenue management [10].
Zhang et al. presented new scenarios for online time series search and one-way
trading problems, designing optimal deterministic online algorithms for these
issues [20]. Avrim Blum et al. explored revenue maximization in online auctions,
proposing a new online learning heuristic auction method that achieves a con-
stant competitive ratio compared to the optimal offline fixed price revenue in
digital goods auctions [4]. Ha et al. proposed an optimal intraday trading algo-
rithm that optimally segments large market orders into a series of consecutive
market orders to minimize overall trading costs, including liquidity and pro-
portional trading costs [12]. Tan et al., in their pursuit of solving the optimal
solution, designed an algorithm that determines whether to retain each element

Maximizing One-Way Trading Revenue in Photovoltaic Energy Generation 3

and also provides the quantity of retained elements [16]. Chin et al., in their
study of a one-way trading problem, where a seller has L units of a product
to sell to a series of buyers, designed an algorithm with a competitive ratio
of O(logr* - (log®r*) - ... - (log"=Vr*) - (logMr*)1+€) [9]. Han et al. proposed
an approximation algorithm with a competition ratio of 5.9672 to study the
PCKST problem [13]. Yang et al. proposed a threshold based BP flow maximiza-
tion algorithm when studying flow maximization problem [19]. Zhang et al., in
their research on minimizing bin packing costs, proposed an online bin packing
strategy with a competitive ratio of 5.155 [21]. Zhang et al. maximized seller
revenue in the sale of goods by setting the price and quantity for each item,
achieving an O(log h) level result [22]. These findings inspire us to consider the
application of online algorithms in PV power sales.

Problem Description. Energy generated by PV systems is sold to the grid
for revenue. However, the unit price of electricity fluctuates, and favorable prices
are expected. At the same time, energy stored in batteries incurs storage losses,
represented by a constant Clogs in this model. This means that the remaining
energy in the next period is reduced to (1 — Closs) times that of the previous
period. Consequently, waiting too long for potentially higher sale prices may
cost great storage losses. Therefore, decisions on the appropriate sale time must
consider the balance between sale prices and storage losses.

PV generation occurs continuously online. However, in this paper, it is
divided into discrete periods ¢ = 1,2,3,... for batch processing. It is assumed
that at the beginning of each period i, both the PV output P; and the unit elec-
tricity price R; can be revealed. These inform decisions regarding the amount of
electricity to sell immediately and the amount to reserve for subsequent periods.

The goal of this paper is to find a mechanism that maximizes the total PV
generation revenue Revr:

T
Objective function: Revy = max Z Rewv;, (1)
i=1

where T" denotes the latest online period, and Rev; represents the selling revenue
of energy produced in period 1.

This study addresses the challenge of maximizing profitability in photovoltaic
(PV) power generation by considering real-time market price fluctuations and
constant battery storage loss, denoted as Cjogs. In this model, PV generation
is divided into discrete periods, allowing for strategic management of energy
sales. The online algorithm designed to maximize revenue from selling PV power
produced in each period. The algorithm strategically reserves at least log++1 of
energy for each expected electricity unit price, optimizing revenue by ensuring
higher profits are captured at favorable price periods.

In this paper, Sect. 2 describes the notations and models the online trading
scenario. Section 3 reveals the One Way Trading algorithm, and Sect. 4 analyzes
the performance of the algorithm by computing its competitive ratio and also

4 X. Guo et al.

proving the lower bound of the trading problem. In Sect. 5, the paper is concluded
with a discussion of potential research directions in the future.

2 Preliminaries

The unit electricity selling prices differ among periods, fluctuating between the
lowest [and the highest h. We set [= 20 = 1 and h = 2'°2" and assume that
any unit price for period i satisfies R; € [2°,2!°8"]. For each period i, the PV
output P; is divided into log h + 1 shares, with each share containing logﬁ - P
shares of electricity, which can be sold in the current period or later.

Definition 1. For each share j in 0,--- /logh, an expected selling price is
defined as Rgxp = 27, which means that these 1og++1 - P; shares of electricity

in share j are expected to be sold at a unit price of at least 27.

The shares will be stored and wait to be sold until the unit price reaches the

expected price Rgxp, with a constant battery storage loss ratio Cjyss-

Definition 2. The battery storage loss ratio is defined as a constant Ci,ss €
(0,1), which continuously diminishes the stored energy over time. For example,
if the electricity has been stored for t periods, the remaining energy is diminished
to (1 — Closs)t of the original amount.

However, the unit selling prices R; are revealed online and can only be known
at the beginning of period i. It cannot be known in advance when the expected
price will occur, which may lead to significant battery storage loss if waiting too
many periods for the high price. Thus, a threshold matrix T' = ¢; ; is defined to
control the waiting time, indicating the maximum number of periods that could
be waited for the electricity share j in period i to reach the selling price Rgxp
(see Fig.1).

Since the battery storage loss Cj,ss is constant, and Rglp is well-defined,
T = t; ; can be computed in advance. This allows the threshold matrix to be
computed immediately upon the arrival of period i. ¢; ; is computed as follows:

i1 by, Y p_p._ L p
R, - (1= Cioss) ™ ogh 1 P, = R; Togh T 1 P; (2)
The left side of Eq.2 expresses the revenue for selling share j at some future
period when the unit price reaches ng, considering battery storage loss (1 —
Closs)ti7. The right side of Eq. 2 indicates the revenue for selling share j in the
current period i, when the electricity is just produced, without storage loss. The
goal of Eq. 2 is to find the period threshold ¢; ;, representing the maximum time
to wait for the expected price. Exceeding ¢; ; means the revenue from a high unit

price would be less than selling immediately.

t: . = loglfcloss (Rlz);)) ’ if Rgxp Z Ria (3)
! 07 if Rgxp < Rz

Maximizing One-Way Trading Revenue in Photovoltaic Energy Generation 5

Fig. 1. The threshold matrix T" stores values ¢;; for each share j in period ¢, indicating
the maximum number of periods that can be waited for the electricity share j in period
i to reach the selling price Rgxp. For shares j < log Ry in any period k, ty_; is set to zero,
as these shares are sold immediately without delay. For other shares, ¢; ; is computed
using formula 3.

Equation 3 computes the exact t; ; according to Eq. 2. This allows the threshold
matrix to be computed immediately upon the arrival of period i. (see Fig.1).
In this paper, revenue is analysed by periods:

max Rev; = max Z Rewv; ; 4)
J

where Rewv; ; indicates the selling revenue of electricity share j produced in period
i.

3 One Way Trading Algorithm

In this section, the Algorithm 1 for One Way Trading on the PV generation
is revealed. As illustrated in Fig.2, for each period i, the produced PV energy
is allocated and potentially sold across multiple periods. Shares are held until
either their expected selling price Rgxp is met or the maximum waiting time

defined by i 4 t; ; is reached. If a share j has not been sold by the time i + ¢; ;
arrives, it will be sold at that period’s price to avoid further battery storage loss.

Description of One Way Trading. Algorithm 1 takes the highest unit selling
price h and the constant battery storage loss ratio Closs as inputs, which are
assumed to be known in advance, and outputs the total revenue Rev; of period
i, which is the target to be maximized (see objective function 1). In initialization,
the threshold matrix T" is computed by formula 3. When period ¢ comes, the PV
output surplus P; and unit electricity price R; are revealed immediately. P; is
divided into logh + 1 shares, with each share j’s revenue Rev; ; initialized to
Zero.

Rewv; consists of two parts: the first is the part immediately sold in period 4,
which sells log R; shares of electricity, with revenue

1

Revi=R; ——— .
v logh+1

P [log R +1]. (5)

6 X. Guo et al.

Algorithm 1. One Way Trading

Input: The highest unit price h, the battery storage loss ratio Cioss;
Output: The total revenue Rev; of period i;

1: Initialize: Compute the threshold matrix T

2: Get P; and R; at the beginning of period i, set Rev; = 0;

3: Divide P; into log h + 1 shares, initialize each share j’s revenue Rev; ; = 0;
4: Revi = Ri - gy - Pi- ([log R] +1);

5: for j = |logR; +1],...,logh do

6: for period k=i +1,...,i+1;,; do

T if Ry > RI,, then

8: Sell share j, set Rev;; = Ry, - 1og++1 <Py (1 = Choss)F77;
9: break;

10: else if k =i+ t¢;; then

11: Sell share j at the current period k’s price;

12: Revi,j = Rk . 7log}z+1 - P - (1 - Closs)ti'j;

13: end if

14: end for

15: Rev; += Rewv; j;

16: end for

17: return The total revenue Rewv; of period i.

The second part is sold in the following periods k, whose revenue depends on
the unit price Rj. For each k, the corresponding revenue is

1

RGUZ"]’ = Rk . m .

P (1 — Closs)F70. (6)
In the first for loop, j traverses all the shares from [log R; + 1] to logh (as
the shares j < |log R; + 1] are already sold, they should not be traversed), to
compute each share j’s revenue Rev; ; and accumulate it to the current Rev;. In
the second for loop, period k traverses from i + 1 to ¢ + t; ;, to determine the
proper period to sell share j. If some period k’s unit price Ry reaches Rgxp, sell
the share j and the inner for loop breaks. As the share j is sold at that period
k, there is no longer a need to continue checking future periods for that share
since the decision has already been made. However, if share j is not sold until
the end of k’s traversal, it will be sold at period k = + t; ; with whatever the
current price Ry is, considering too much waiting might bring great loss caused
by Closs, and the revenue is

b
logh+1

At the end of Algorithm 1, Rev; is returned.

Reviy = R P (1= Ciows)'t7. (7)

4 Performance Analysis

In this section, we first analyze the competitive ratio of Algorithm 1, which
quantifies the algorithm’s performance relative to an optimal offline algorithm.

Maximizing One-Way Trading Revenue in Photovoltaic Energy Generation 7

, ~
It 1gh1+1 \
1 == sm & 1
I 1
: period i P :
| lgh+1 |
| : |
Igh
e 22 R Ry R s _
N P T S

I
N I
periods) I period k
Progresswely I k<it+ty, P
increase | Ry >2 j W
. =
I

1
—— ===

0 o1 Igh L
' 20 2 R R, REN [et
----------------------- counts from
o mm e e m—— - ghei” T T T 777 ~ the period i + 1
I L ‘ ¥
i)) ; p— 1
(. .
iperiod i+ t1g P |
1 |
lgh+1
: Rit), <h - :
lgh
\ 20 2! R; Rexp Re%cp ! -
“ 4

- o e e e e e e e = e o o =

Fig. 2. Periods are depicted by dashed boxes in the figure. Blue columns represent
energy shares sold in the current period, while orange columns indicate those held for
future sale; blank columns denote shares sold in past periods. The numbers under the
columns correspond to the expected unit prices. In period ¢, PV energy is allocated and
potentially sold across multiple periods. Shares indexed by j < log R; are sold within
period ¢ itself. For shares where j > log R;, they are designated to be sold in a future
period k where Ry > Rgxp, provided that k < i+t; ;. Any share j must be sold by the
threshold period ¢ + ¢; ;, ensuring no further battery storage loss occurs. (Color figure
online)

Subsequently, we explore the theoretical lower bound of the trading problem to
establish a baseline for comparison. It is demonstrated that Algorithm 1, referred
to as One Way Trading, achieves a competitive ratio that matches the problem’s
lower bound, establishing its optimality at log h.

4.1 Competitive Ratio

The competitive ratio of an online algorithm is defined as the worst-case ratio
of the revenue obtained by an optimal offline algorithm (OPT) to the revenue
obtained by the online algorithm. For Algorithm 1, this ratio is expressed as:
Revenue of OPT
o =
Revenue of Algorithm 1

®)

This measure reflects how closely the online algorithm’s performance approx-
imates the best possible outcome achievable by any algorithm with complete
future knowledge.

8 X. Guo et al.

Lemma 1. The OPT algorithm will sell all the P; electricity before period i +
tilog b, With Tevenue given by

Re’UiOpt =Riyopt- Pi-(1— Closs) ™",)

where opt denotes the periods interval between period i and the optimal selling
period i + opt, and opt < t;10gh-

Proof. Lemma 1 is proved by combining Propositions 1 and 2. The OPT algo-
rithm’s revenue is computed by formula 9, which naturally follows from these
propositions. O

Proposition 1. The OPT algorithm sells all the P; electricity at once at a
sufficiently high unit price.

Proof. To maximize the total revenue Rev;, the OPT algorithm sells all the elec-
tricity produced in period i at once. As an offline algorithm, OPT has complete
knowledge of future unit prices and can choose the optimal selling period that
balances unit price and waiting time to achieve maximal revenue. Once such a
period is chosen, there is no advantage in holding any electricity; therefore, all
of it should be sold immediately.

Consider a scenario with two possible selling periods: an earlier period with
a relatively low unit price and a later period with a relatively high unit price,
where the total revenue from both periods would be the same due to increased
battery storage loss in the latter. In this situation, OPT can choose either period
to sell all the P; electricity, as the revenue will be maximized in both scenarios.

Thus, OPT ensures that all electricity is sold at once in the period where the
expected revenue is highest. O

Proposition 2. The period i + opt chosen by OPT to sell P; is earlier than the
arrival of the mazimal waiting threshold i + t; 10g 1.

Proof. As indicated by formula 2, the threshold ¢; ; represents the maximum
number of periods that could be waited for a high unit price while avoiding
significant battery storage loss. The value t; o5 corresponds to the maximal
threshold, implying that any period after i +t; 105 5, With a high unit price (given
that the unit price cannot exceed h) results in less revenue than selling P; imme-
diately at period 7.

Since the OPT algorithm has full foresight of future prices, it selects period
i+ opt to sell P; before reaching i +t; 1o¢ 4, ensuring maximum revenue without
incurring excessive storage losses. Thus, the chosen period by OPT is guaranteed
to precede the maximal waiting threshold. O

Lemma 2. Algorithm 1 achieves a revenue Revflg such that

1
alg . opt 1
Rev™ > ogh 1 Rev;"”, (10)

where Rev™ denotes the revenue achieved by the algorithm, and Rev®" is the
revenue achieved by the OPT algorithm.

Maximizing One-Way Trading Revenue in Photovoltaic Energy Generation 9

Proof. Algorithm 1 reserves 1og++1 - P; of the electricity for each possible unit
price BRI € {2°,2',-.. 'h} in period i, until the corresponding threshold is

exp

reached. According to Proposition 2, the OPT algorithm will sell all of P; at
period ¢ + opt, which occurs before the maximal threshold period i + ¢; 10g -

Algorithm 1 will also evaluate period 7 4+ opt and sell at least 1og++1 - P; at
this period with a revenue of
1
R é'3‘1g>1%i0 ‘7'3'1_Cossopt
G’UZ = +opt 10gh+ 1 (1)
1
_ . Rev°Pt. 11
logh +1 i (11)

It is important to note that R; ., must have reached the expected unit
price RJ__ of the electricity shares j that Algorithm 1 sells at the i + opt period.

exp
Otherwise, the OPT algorithm would not choose this period, as it would be no
better than selling the electricity at period i. O

Theorem 1. Given the highest unit price h, Algorithm 1 achieves a competitive
ratio of o = O(log h) for the photovoltaic generation trading problem.

Proof. By Lemma 1 and Lemma 2, for each period i:

opt
Rev;

alg
Rev;,

= O(logh). (12)

Then, summing up the revenues from ¢ = 1 to ¢« = T and by local ratio lemma:

RepoPt T ReyoPt Rev?™*
= evja—‘l = Z?l 61}7’ 1 S ma‘X eval S O(log h)7 (13)
Revp® 305 Revy® b Rev

where Revy?" and Rev%lg denote the total revenue over all periods achieved by
the OPT and Algorithm 1, respectively. O

4.2 Lower Bound

In online algorithms, the lower bound of a problem refers to the best possible
performance that any algorithm can achieve under the given conditions. This
bound is derived from the inherent uncertainties in price fluctuations and storage
capabilities. Assume there is an adversary that creates a challenging environment
for any algorithm to perform well, leading to a situation where the solution to
the problem can never exceed this bound, known as the lower bound of the
problem. In this trading problem, an adversary is defined as follows:

Adversary. During trading, the unit price for each period is revealed online.
The adversary determines a price distribution R; across periods i’ as:
9t/ —i

Ry = —————, Ry € [l,h]. 14
(1 _ C]oss)l —1 [} ()

10 X. Guo et al.

Define a; ;» as the actual amount of electricity from period ¢ that is sold in period
i’, where ¢’ € [i,4,,,.]. In period 7', if a; ; satisfies the condition:

’ Ymax

Qi 1
: o > 'Pia
(1 - Closs)l/72 - logh +1

(15)

the adversary continues moving to the next period and offering prices. Otherwise,
the adversary stops the process.

Note that (1_51# computes the corresponding share from the original
period i, taking into account battery storage loss.

/
max-*

Lemma 3. The adversary will stop at the period i

Proof. For all i’ < i/ the condition in Eq. 15 holds. Since there is a total of

max?

P; electricity to be sold:

./
Tmax

Q5
Z (1 — C’loss)z/_z o (6)

)
there must be one period i/, such that

G 1 p (17)
(1 — Closs)imax—t ~logh+1 "

Thus, the adversary will stop at this point. O

OPT Performance on Adversary. The price offered by the adversary grows
faster than the rate of battery storage loss, making it optimal for the OPT
algorithm to sell all of P; at the last possible period, denoted as il . . The

revenue obtained by the OPT algorithm in this scenario Rev,y is given by:

v

Dlimax 1 " .
R 0’:%'1*00551[“‘“71']31'
CVopt! = (T Groma) a1~ (1~ Closs)
— 2iinax_7; . Pi’ (18)

Any Online Algorithm Performance on Adversary. Denote by Revyq
the revenue that any algorithm could achieve under the adversary:

./
Tmax — 1 i/

9i'—i i
Revggr = l,z_:l W “aiq + W “aig

Qlmax—1
=% W BRI (19)

Maximizing One-Way Trading Revenue in Photovoltaic Energy Generation 11

with , 4
(1 — ClOSS)ZmaX_l
i < . P 20
Finax = logh +1 (20)
Then the revenue satisfies:
2imax_i (1 — CIOSS)i;naX_i
Revggr < 2- — - - - P;
alg' = (1 - C(loss)l’““""‘_z IOgh +1
Dlimax %
=2.— . P, 21
logh+1 (21)

Theorem 2. The lower bound of the trading problem addressed by Algorithm 1,
is v = Q(log h).

Proof. By the algorithm performance analysis, it can be computed that the lower
bound:

S Revypy logh+1

v > Revoty 5 Qlogh). (22)

O

This matching of the competitive ratio and the lower bound confirms that
Algorithm 1 is tight within the modeled trading environments.

5 Conclusion and Discussion

This work focuses on one-way trading by considering the sale of energy produced
by PV generation for profit. The algorithm proposed in this study optimizes
the selling strategy to maximize revenue from PV power sales. However, this
approach does not consider the potential need for energy storage or the purchase
of electricity from the grid during periods of low PV output, such as rainy
days or at night. PV holders often face the decision of whether to store surplus
electricity for later use or sell it to the grid immediately to avoid storage losses.
This introduces the two-way trading, where both selling and buying decisions
are considered to optimize overall benefits. Future research could explore the
two-way trading problem, where the algorithm not only maximizes profits from
selling but also minimizes costs associated with purchasing electricity from the
grid.

Acknowledgments. This study was funded by National Key R&D Program of China
(No. 2022YFE0196100), Guangdong Basic and Applied Basic Research Foundation
2024A1515030197, NSFC 12071460, NSFC 12371321, Shenzhen Science and Technol-
ogy Program CJGJZD20210408092806017, Shenzhen Polytechnic Research Fund No.
6023310009K.

12

X. Guo et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Alinia, B., Hajiesmaili, M.H., Lee, Z.J., Crespi, N., Mallada, E.: Online ev schedul-
ing algorithms for adaptive charging networks with global peak constraints. IEEE
Trans. Sustain. Comput. 7(3), 537-548 (2022)

Balcan, M.F., Blum, A.: Approximation algorithms and online mechanisms for item
pricing. In: Proceedings of the 7th ACM Conference on Electronic Commerce, pp.
29-35 (2006)

Bansal, N.; Chen, N., Cherniavsky, N., Rurda, A., Schieber, B., Sviridenko, M.:
Dynamic pricing for impatient bidders. ACM Trans. Algor. (TALG) 6, 1-21 (2010)
Blum, A., Kumar, V., Rudra, A., Wu, F.: Online learning in online auctions. Theor.
Comput. Sci. 324(2-3), 137-146 (2004)

Blum, A., Sandholm, T., Zinkevich, M.: Online algorithms for market clearing. J.
ACM (JACM) 53(5), 845-879 (2006)

Briest, P.: Uniform budgets and the envy-free pricing problem. In: International
Colloquium on Automata, Languages, and Programming, pp. 808-819 (2008)
Briest, P., Krysta, P.: Buying cheap is expensive: hardness of non-parametric multi-
product pricing. In: SODA, pp. 716-725 (2007)

Chen, N.; Deng, X.: Envy-free pricing in multi-item markets. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 418-429. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14162-1 35

Chin, F.Y., et al.: Competitive algorithms for unbounded one-way trading. Theor.
Comput. Sci. 607, 35-48 (2015)

Ferreira, K.J., Simchi-Levi, D., Wang, H.: Online network revenue management
using Thompson sampling. Oper. Res. 66(6), 1586-1602 (2018)

Guo, X., Dai, S., Han, X., Shang, M., Xu, Y., Zhang, Y.: Trade-off between max-
imum flow time and energy intake in ev charging. In: To appear in International
Computing and Combinatorics Conference, COCOON 2024, Shanghai, China, 23—
25 August 2024 (2024)

Ha, Y., Zhang, H.: Algorithmic trading for online portfolio selection under limited
market liquidity. Eur. J. Oper. Res. 286(3), 1033-1051 (2020)

Han, L., Wang, C., Xu, D., Zhang, D.: Algorithms for the prize-collecting k-steiner
tree problem. Tsinghua Sci. Technol. 27(5), 785-792 (2022)

Mulder, G., Six, D., Claessens, B., Broes, T., Omar, N., Van Mierlo, J.: The dimen-
sioning of pv-battery systems depending on the incentive and selling price condi-
tions. Appl. Energy 111, 1126-1135 (2013)

Ru, Y., Kleissl, J., Martinez, S.: Storage size determination for grid-connected
photovoltaic systems. IEEE Trans. Sustain. Energy 4, 68-81 (2013)

Tan, J., Sun, Y., Xu, Y., Zou, J.: Streaming algorithms for non-submodular max-
imization on the integer lattice. Tsinghua Sci. Technol. 28(5), 888-895 (2023)
Xie, J., Shugan, S.M.: Electronic tickets, smart cards, and online prepayments:
when and how to advance sell. Mark. Sci. 20(3), 219-243 (2001)

Xin, H., Liu, Y., Wang, Z., Gan, D., Yang, T.: A new frequency regulation strategy
for photovoltaic systems without energy storage. IEEE Trans. Sustain. Energy 4,
985-993 (2013)

Yang, R., Gao, S., Han, L., Li, G., Zhao, Z.: Approximating (mp, mp)-monotone
bp maximization and extensions. Tsinghua Sci. Technol. 28(5), 906-915 (2023)
Zhang, W., Xu, Y., Zheng, F., Dong, Y.: Optimal algorithms for online time series
search and one-way trading with interrelated prices. J. Comb. Optim. 23(2), 159—
166 (2012)

https://doi.org/10.1007/978-3-642-14162-1_35
https://doi.org/10.1007/978-3-642-14162-1_35

Maximizing One-Way Trading Revenue in Photovoltaic Energy Generation 13

21. Zhang, Y., Chen, J., Chin, F., Han, X., Ting, H.-F., Tsin, Y.H.: Improved online
algorithms for 1-space bounded 2-dimensional bin packing. In: Cheong, O., Chwa,
K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6507, pp. 242-253. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-17514-5 21

22. Zhang, Y., Chin, F.Y., Ting, H.F.: Online pricing for bundles of multiple items. J.
Glob. Optim. 58, 377-387 (2014)

https://doi.org/10.1007/978-3-642-17514-5_21

q

Check for
updates

Parameterized Complexity of Shortest
Path with Positive Disjunctive Constraints

Susobhan Bandopadhyay!@®, Suman Banerjee?, Diptapriyo Majumdar® @,

and Fahad Panolan*

! National Institute of Science Education and Research, An OCC of Homi Bhabha
National Institute, Bhubaneswar, Odisha, India
susobhan.bandopadhyay@niser.ac.in
2 Department of Computer Science and Engineering, Indian Institute of Technology,
Jammu, India
suman.banerjee@iitjammu.ac.in
3 Indraprastha Institute of Information Technology Delhi, New Delhi, India
diptapriyo@iiitd.ac.in
4 School of Computer Science, University of Leeds, Leeds, UK

F.Panolan@leeds.ac.uk

Abstract. We study the SHORTEST PATH problem subject to positive
binary disjunctive constraints. In positive disjunctive constraints, there
are certain pairs of edges such that at least one edge from every pair must
be part of every feasible solution. We initiate the study of SHORTEST
PaTH with binary positive disjunctive constrains from the perspective
of parameterized complexity. Formally, the input instance is a simple
unidirected graph G = (V, E), a forcing graph Gy = (E, E’), two vertices
s,t € V(G) and an integer k. Note that the vertex set of Gy is the
same as the edge set of G. The goal is to find a set S of at most k
edges from G such that there is a path from s to ¢ in the subgraph
G = (V,S) and S is a vertex cover in Gy. In this paper, we consider
two different natural parameterizations for this problem. One natural
parameter is the solution size, i.e. k for which we provide FPT algorithms
and polynomial kernelization results. The other natural parameters are
structural parameterisations of Gy, i.e. the size of a modulator X C
E(G) = V(Gy) such that Gy — X belongs to some hereditary graph
class. We discuss the parameterized complexity of this problem under
some structural parameterizations.

Keywords: Shortest Path - Parameterized Complexity - Positive
Disjunctive Constraints - Kernelization - Planar Graph

1 Introduction

In the recent times several classical combinatorial optimization problems on
graphs including MAXIMUM MATCHING, SHORTEST PATH, STEINER TREE have

Research of Diptapriyo Majumdar has been supported by Science and Engineering
Research Board (SERB) grant SRG/2023/001592.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 14-25, 2025.
https://doi.org/10.1007/978-981-96-4448-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_2&domain=pdf
http://orcid.org/0000-0003-1073-2718
http://orcid.org/0000-0003-2677-4648
https://doi.org/10.1007/978-981-96-4448-3_2

Shortest Path with Positive Disjunctive Constraints 15

been studied along with some additional binary conjunctive and/or disjunctive
constraints [1,7]. Darmann et al. [7] have studied finding shortest paths, mini-
mum spanning trees, and maximum matching of graphs with binary disjunctive
constraints in the perspective of classical complexity. These positive or negative
binary constraints are defined with respect to pairs of edges. A negative disjunc-
tive constraint between an edge-pair e; and e; says that both e; and e; cannot be
present in a feasible solution. A positive disjunctive constraint between an edge
pair e; and e; says that either the edge e; or the edge e; or both must be present
in any feasible solution. The negative disjunctive constraints can be interpreted
as a conflict graph such that each vertex of the conflict graph corresponds to an
edge in the original graph. Furthermore, for every edge in the conflict graph, at
least one endpoint can be part of any feasible solution. Then, a feasible solution
must be an independent set in the conflict graph. The positive disjunctive con-
straints can be interpreted as a forcing graph such that each vertex of the forcing
graph corresponds to an edge in the original graph. In the forcing graph, each
edge must have at least one endpoint included in any feasible solution. There-
fore, in the case of positive disjunctive constraints, a feasible solution must be
a vertex cover in the forcing graph. Formally, an input to the Forcing-Version of
a classical combinatorial optimization problem I7, called as Forcing-Version IT
consists of an instance I of IT along with a forcing graph Gy; i.e.; (I,Gy). The
vertex set of the forcing graph is the edge set of the original graph. A solution
of Forcing-Version IT for the instance (I, Gy) is a solution of I for the original
problem along with the property that the solution forms a vertex cover for G.
To the best of our knowledge, none of the problems SHORTEST PATH, MAXI-
MUM MATCHING, MINIMUM SPANNING TREE have been explored with positive
disjunctive constraints in the perspective of parameterized complexity.

In this paper, we initiate the study of SHORTEST PATH problem with positive
disjunctive constraints from the perspective of parameterized complexity and
kernelization (see Sect. 2 for definitions etc.). Formally, in the SHORTEST PATH
WITH FORCING GRAPH (SPFG) problem, we are given a simple, unweighted
graph G(V, E), two vertices s and ¢, a positive integer k and a forcing graph
G f(E,E/). The decision version of this problem asks to check whether there
exists a set E* C E(G) of at most k edges such that the subgraph induced by
the vertex set V(E*) in G contains an s-t path and also E* forms a vertex cover
in Gy. As “solution size” is the most natural parameter, we formally state the
definition of the parameterized version of our problem as follows.

’

SHORTEST PATH WITH FORCING GRAPH (SPFG) Parameter: k
Input: A simple, undirected graph G(V, E), two distinct vertices s,t €
V(G), a positive integer k, and a forcing graph G (E, El).

Question: Is there a set E* of at most k edges from G such that the
subgraph G(V, E*) contains an s-t path in G, and E* forms a vertex
cover in G ¢?

In the above definition, the considered parameter is ‘solution size’. Darmann
et al. [7] have proved that the classical version of SHORTEST PATH WITH FORC-

16 S. Bandopadhyay et al.

ING GRAPH is NP-hard even when the forcing graph G is a graph of degree
at most one. So, it can be concluded that even when the forcing graph Gy is
very sparse, then also the classical version of SHORTEST PATH WITH FORCING
GRAPH is NP-hard. In the first part of our paper, we consider SHORTEST PATH
WITH FORCING GRAPH when parameterized by solution size. Additionally, it is
also natural to consider some parameters that are some structures of the input.
Observe that the solution size must be as large as the minimum vertex cover size
of the forcing graph. If we consider the ‘deletion distance of Gy to some hered-
itary graph class G’, then this deletion distance is a parameter that is provably
smaller than solution size whenever G contains a graph that has at least one
edge. In the second part of our paper, we also initiate the study of this problem
when the considered parameter is deletion distance of G ¢ to some special graph
class. Formally, the definition of this parameterized version is the following.

SPFG-G-DELETION Parameter: |X|
Input: A simple, undirected graph G(V, E), two distinct vertices s,t €
V(G), a positive integer k, a forcing graph G;(E, E'), aset X C E such
that Gy — X € G.

Question: Is there a subset £* of at most k edges from G such that
the subgraph G(V, E*) contains an s-t path in G, and E* forms a vertex
cover in Gy?

\.

Our Contributions: In this paper, we study the SHORTEST PATH WITH FORC-
ING GRAPH under the realm of parameterized complexity and kernelization (i.e.
polynomial-time preprocessing). We first consider both the original graph G and
the forcing graph Gy to be arbitrary graphs and provide FPT and kernelization
algorithms. Next, we initiate a systematic study on what happens to the ker-
nelization complexity when either G is a special graph class or G¢ is a special
graph class. Formally, we provide the following results for SHORTEST PATH WITH
FORCING GRAPH when the solution size (k) is considered as the parameter.

> First, we prove two preliminary results. One preliminary result is a polyno-
mial time algorithm for SPFG when G is 2Ks-free (see Lemma 2). Implication
of this result is a dichotomy that SPFG is polynomial-time solvable when G is
the class of all 2Ks-free and NP-hard otherwise (see Theorem 1). The other pre-
liminary result is a parameterized algorithm for SHORTEST PATH WITH FORCING
GRAPH that runs in O*(2%)-time® (see Theorem 2).

> Then, we prove our main result. In particular, we prove that SHORTEST
PATH WITH FORCING GRAPH admits a kernel with O(k%)-vertices when G and
Gy both are arbitrary graphs (see Theorem 3).

> After that, we consider the kernelization complexity of SHORTEST PATH
WITH FORCING GRAPH when G is a planar graph and G is an arbitrary graph.
In this condition, we provide a kernel with O(k3) vertices (see Theorem 4).

> Next, we consider when G is an arbitrary graph and G is a graph belong-
ing to a special hereditary graph class. In this paper, we focus on the condition

1 ©* hides polynomial factor in the input size.

Shortest Path with Positive Disjunctive Constraints 17

when G is a cluster graph (i.e. a disjoint union of cliques) or a bounded degree
graph. In both these conditions, we provide a kernel with O(k3) vertices for
SHORTEST PATH WITH FORCING GRAPH (see Theorem 5).

Finally, we consider the SPFG-G-DELETION problem. It follows from the
results of Darmann et al. [7] that even if X = () and Gy is a 2-ladder, i.e. a
graph of degree one, SPFG-G-DELETION is NP-hard. Therefore, it is unlikely to
expect the possibility that SPFG-G-DELETION would admit an FPT algorithm
even when G is a very sparse graph classes. We complement their NP-hardness
result by proving that SPFG-G-DELETION admits an FPT algorithm when G is
the class of all 2K5-free graphs (see Theorem 6).

Related Work: Recently, conflict free and forcing variant of several classical
combinatorial optimization problem including MaxiMmuM Frow [14], MAXIMUM
MATCHING [6], MINIMUM SPANNING TREE [6,7], SET COVER [10], SHORTEST
PATH [7] etc. have been studied extensively in both algorithmic and complex-
ity theoretic point of view. Recently, some of these problems also have been
studied in the realm of parameterized complexity as well [1,12]. Agrawal et al.
[1] have studied SHORTEST PATH and MAXIMUM MATCHING with conflict free
version and proved that both the problems are W[1]-hard when parameterized
by solution size. They also investigated the complexity of the problems when
the conflict graph has some topological structure. Darmann et al. [7] studied
both the problems along with both the constraints conflict graph and forcing
graph. they showed that the conflict free variant of maximum matching problem
is NP-hard even when the conflict graph is a collection of disjoint edges.

Organization of the Paper: We organize our paper as follows. In Sect.2, we
provide some notations related to graph theory, and parameterized complexity.
In the same section, we also prove our first two preliminary results (Theorem 1
and Theorem 2). After that, in Sect.3, we prove the main result (Theorem 3)
of our paper. Next, in Sect.4, we give a short illustration how we can improve
the size of our kernels of Sect. 3 when either the input graph G or G belongs to
some special graph classes. Additionally, in the same section, we provide a result
(Theorem 6) of SPFG on the structural parameterizations for SPFG. Finally, in
Sect. 5, we conclude with open problems and future research directions.

2 Preliminaries

In this section, we describe the notations and symbols used in this paper. Addi-
tionally, we also provide some preliminary results for our porblem in this section.

Graph Theory: All the graphs considered in this paper are simple, finite, undi-
rected and unweighted. The notations and terminologies used in this paper are
fairly standard and adopted from the Diestel’s book of graph theory [8]. In our
problem, we are dealing with two different graphs: original graph G and forc-
ing graph G¢. We denote the number of vertices and edges of G by n and m,

18 S. Bandopadhyay et al.

respectively. Similarly for Gy, it is m and m’ (since the edge set of G is same
as the vertex set of Gy). Given a graph G(V,E) and an edge e € E(G), Ve
denotes the set of two end vertices of e. For any subset of edges E* C E(G),
by V(E*) we denote the set of all the vertices that constitute the edge set; i.e.;

V(E*)= |J V.. Informally, V(E*) denote the set of all endpoints of the edges
ecE*
in F*. Given, any two vertices u and v, we denote its shortest path distance by

dist(u,v). For any graph G(V, E) a subset of its vertices S C V(G) is said to
be a vertex cover of G if every edge of G has at least one of its endpoints in
S. A subset of the vertices S is said to be an independent set of GG if between
any pair of vertices of .S, there does not exist any edge in G. For any subset of
vertices S of G, the subgraph induced by the vertex set in G is denoted by G[S].
Furthermore, for a set of edges F, the graph G[F] is the graph with G'(V, F).
Informally, given an edge set F C E(G), the graph G[F] has vertex set V(QG)
and the edge set F'. For any graph G and any vertex v € V(G), G — {v} denotes
the graph that can be obtained by deleting v and the edges incident on it from
G. This notion can be extended for a subset of vertices as well. Given a graph
G = (V,F) and a set X C V(G). A graph operation identification of the ver-
tex subset X into a new vertex wx is performed by constructing a graph G as
follows. First, delete the vertices of X from G and then add a new vertex ux.
Then, for every v € Ng(X), make vux an edge of G. This graph operation was
also defined in Majumdar et al. [13]. A graph is said to be a cluster graph if
every connected component is a clique. A graph is said to be a degree-n-graph if
every vertex has degree at most 7. A connected graph is said to be 2K5-free if it
does not contain any pair of edges that are nonadjacent to each other. A graph
is said to be a planar graph if it can be drawn in the surface of a sphere without
crossing edges. We use the following property of planar graph in our results.

Proposition 1 ([15]). If G is a simple planar graph with n vertices, then G
has at most 3n — 6 edges.

A graph is said to be a 2-ladder if every connected component is a path
of length one. Similarly, a graph is said to be a 3-ladder if every connected
component is a path of length two.

Parameterized Complexity and Kernelization: A parameterized problem II is
denoted as a subset ¥* x N. An instance to a parameterized problem is denoted
by (I,k) where (I,k) € ¥* x N where X is a finite set of alphabets and N is the
set of natural numbers. A parameterized problem IT C ¥* x N is said to be fized-
parameter tractable (or FPT in short) if there exists an algorithm A which runs
in O(f(k)-|I|°) time where f(k) is a function of k and independent of n and c is a
positive constant independent of n and k. We denote the running time O(f (k) -
|7]¢) by the shorthand notation O*(f(k)) where we suppress the polynomial
factors. We adopt the notations and symbols related to parameterized algorithms
form the books [4,9]. A parameterized problem IT admits a kernelization (or
kernel in short) if starting with any arbitrary instance (I, k) of the problem, there
exists a polynomial-time algorithm that constructs an equivalent instance (I ' kl)

Shortest Path with Positive Disjunctive Constraints 19

such that |I'| + k" < g(k) for some commutable function g(-). This function g(-)
denotes the size of the kernel. If g(k) is bounded by a function polynomial in
k, then II is said to admit a polynomial kernel. It has been shown by Cai et
al. [2] that a problem is in FPT if and only if there exists a kernalization. If a
parameterized problem I7 admits a kernelization algorithm, we also call that I
admits a kernel (in short). We describe the kernalization process by writing a
number of reduction rules. A reduction rule takes one instance (say Z) of IT and
generates the reduced instance (say II) of IT. We say a reduction rule is safe if the
following condition holds: “Z is a Yes-instance if and only if 7' is a Yes-instance."
The efficiency of a kernel (or kernelization algorithm) is determined by the size
of the kernel. There are many parameterized problems that are fixed-parameter
tractable but do not admit polynomial kernels unless NP C coNP/poly. So,
from the perspective of polynomial-time preprocessing, we look for kernels of
polynomial-size.

Graph Parameters: In parameterized complexity, though the natural parame-
terization is the solution size, however, several structural graph parameters have
also taken into account [11]. In our problem, the natural parameter is the vertex
cover of the forcing graph. As mentioned in [3], the vertex cover can be computed
in O*(1.2738%) time where k is the size of the vertex cover. Another important
graph parameter is the G-deletion set where G is a graph class. A subset of the
vertices S C V(@) is said to be a deletion set to graph class G if G — S € G.

Some Preliminary Algorithmic Results: In this section, we establish some clas-
sical complexity dichotomy result and some related parameterized complexity
results for this problem. The first part of this section gives a proof that the
problem is polynomial-time solvable when the forcing graph is a 2K5-free graph.
Towards this, we define the following annotated problem that would be useful
for both the classical and parameterized complexity results.

ExT-SPFG

Input: A simple undirected graph G(V, E), two distinct vertices s,t €
V(G), a forcing graph G¢(E, E) and a vertex cover S of G.

Goal: Find a subset F* C E with minimum number of edges such that
S C E*, i.e. E* extends S, and the induced subgraph in G by the edge
set F* contains an s-t path in G.

Our next lemma provides a polynomial-time algorithm for ExT-SPFG.
Lemma 1. (x)> EXT-SPFG can be solved in polynomial-time.

Using the above lemma, we can provide a polynomial-time algorithm for
SPFG the forcing graph is 2Ks-free.

2 Due to lack of space, the proofs that are omitted or marked * can be found in the
full version (https://arxiv.org/abs/2309.04346).

https://arxiv.org/abs/2309.04346

20 S. Bandopadhyay et al.

Lemma 2. (%) The SHORTEST PATH WITH FORCING GRAPH can be solved in
polynomial time if the forcing graph is 2Ks-free.

The above lemma illustrates that if the forcing graph is 2Ks-free, then the
optimization version of the SHORTEST PATH WITH FORCING GRAPH can be
solved in polynomial-time. Darman et al. [7] proved that SHORTEST PATH WITH
FORrRCING GRAPH is NP-Complete even when the forcing graph G is a 2-ladder,
i.e. graph of degree one. In particular, their construction ensures that there are
several 2Kss present in the forcing graph as subgraphs. So, we complete this
picture by the following dichotomy.

Theorem 1. SHORTEST PATH WITH FORCING GRAPH is polynomial-time solv-
able when the forcing graph is a 2Ks-free graph and NP-Complete otherwise.

After discussing the classical complexity of SHORTEST PATH WITH FORCING
GRAPH, we move on to discuss the parameterized complexity of the same. Since
solution size is the most natural parameter; i.e. the number of edges in an optimal
solution, we first prove that SHORTEST PATH WITH FORCING GRAPH is FPT
when parameterized by the solution size. For this purpose, we use the following
existing result by Damaschke et al. [5].

Proposition 2 [5]. Given a graph G and positive integer k, all the vertex cover
of G of size at most k can be enumerated in O(m + 2Fk2) time.

We prove the following result by using Proposition 2 and Lemma 1.

Theorem 2. (x) The SHORTEST PATH WITH FORCING GRAPH is fized-
parameter tractable and can be solved in O((m + 2Fk2)(m +n)) time.

3 Polynomial Kernels for SPFG

In the previous section, we have discussed that if SHORTEST PATH WITH FORC-
ING GRAPH is fixed-parameter tractable when there are no restrictions on the
original graph G and the forcing graph Gy, i.e., G and G are arbitrary graphs.
This section is devoted to the kernalization complexity of SHORTEST PATH WITH
FORCING GRAPH problem when solution size is considered as the parameter. Our
kernelization algorithm has intuitively two parts, “hitting the edges of G¢” and
“providing connectivity between s and ¢t in G”. As the edges of G are the vertices
of Gy, we define the following edge subsets of G.

> We put an edge e € E(G) in H if degg,(e) > k + 1.

> We put e € E(G) in L if Ng,(e) C H.

> R=F(G)\(HUL).

Notice for any edge e € E(G), if Ng,(e) C H, then e € L. Hence, we have the
following observation.

Observation 1. If e is an isolated vertex in Gy, then e € L.

Shortest Path with Positive Disjunctive Constraints 21

Now, we prove the following lemma that will be one of the important parts
in obtaining the kernel.

Lemma 3. If I(G,Gy,s,t, k) is a Yes-instance then |H| < k and G¢[R] has at
most k2 edges.

Proof. By Observation 1, an isolated vertex e of G is in L. So, every e € R
has at least one neighbor (with respect to Gy) in R. As any e € V(Gy) with
degree at least k 4+ 1 in G is put in the set H, any e € R must have at most
k neighbors in R. By our hypothesis, I(G, Gy, s, t, k) is a Yes-instance. Hence,
there is E* C E(G) such that |E*| < k for every (a,b) € E(Gy), at least one of
a and b must be in E*. If there is e € H\ E*, then at least k+ 1 edges have to be
in E* that is a contradiction to the fact that I(G, Gy, s,t, k) is a Yes-instance.
Hence, H C E* implying that |H| < k. Consider the set R. As every ¢ € R
at least one neighbor belongs to R in Gy and at most k neighbors belong to R
in G¢. Hence, the number of edges in Gy that are incident to R is at most k2.
Therefore the cardinality of V/(R) is at most 2k2. O

Observe that the edges in H are necessary for any solution of size at most
k that certainly “hits every edge of G;”. But, the role of the edges in L are
only to provide connectivity between s and t in G. Let E} be the set of edges
in Gy[H U R]. Recall, V(E;) = {u,v| e(u,v) € E}. For our convenience, we
also add s and t into V(Ey). More formally, V(Ey) = V(Ey) U {s,t} and let
Y = V(G)\V(FE%). We mark some additional vertices from Y using the following
marking scheme.

> For each pair (z,y) of vertices in V(E}) compute a shortest z-y path, P,
via the internal vertices of Y in G.

> If P, , has at most k edges, then mark the edges of P, ,.

> Else P, has more than £ edges. Then, do not mark any edge.

> Finally, for every pair z,y € V(FE}), mark the edges of a shortest path
Qz,y in G when |Q;,| < k.

Let B, = U (PryUQqy) be the set of marked edges of G after the
z,yeV (Ey)
completion of the above marking scheme. Consider Fy; = E; U H U R. Formally,
Ejr be the edges that are in HUR as well as in E;. We denote G[Ey] = G(V, Eyr)
be the subgraph of G induced by the set of edges in Fj; and consider the instance
as I(G[Ewm], G¢[Eum], s,t, k). Next, we prove the following lemma.

Lemma 4. The instance I(G,Gy,s,t, k) is a Yes-instance if and only if
I(G[Ewm],G¢[Em), s, t, k) is a Yes-instance.

Proof. Let us first give the backward direction (<) of the proof. First, assume
that the instance I(G[Eum], G¢[EM], s,t, k) is a Yes-instance. One can make a
note that edges present in G[E)] are also in G and in Gy[Ep]| as vertices.
Suppose that G[E)s] contains a set of edges E* such that G[E*| has an s-t path
and E* is a vertex cover in Gy. Then, H C E* and hence E* also forms a vertex
cover of Gy. Moreover, an s-t path passing through a (proper) subset of edges
in E* is also an s-t path in G. Hence, I(G, Gy, s,t, k) is a Yes-instance.

22 S. Bandopadhyay et al.

Next, we focus on proving the forward direction (=). Assume that
I(G,Gy,s,t,k) is a Yes-instance. Let E* be the solution to the instance
I(G,Gy,s,t, k) and let P be an s-t path contained inside the graph induced by
G(V,E*). As |E*| < kisasolutionto I(G,Gy, s, t, k), H C E*. If E* C Ejy, then
E* is a solution to I(G[En |, Gf[Ewm), s,t, k) and we are done. In case some edge
e € E* \ E)y does not belong to any s-t path in G(V, E*), then clearly such an
edge e € L. We just replace that edge e with é such that é € Ng, (e)NH. Consider
those edges that belong to some s-t path in G(V, E*). Consider those subpaths
(one at a time) P* C P that contains an edge e € E*\ Ejs. Observe that P* has
at most k edges and is an x-y path in G for some x,y € V(E;) U {s,t}. But, we
have marked a shortest path P* from z to i in G (either via the vertices of Y or in
G itself). We just replace the edges of P* by P*. As |P*| < |P*|, this constructs
an s-t walk. Similarly, for other subpaths also, we use the same replacement
procedure and eventually construct an s-t walk with at most k edges in G[Ejy].
As E* provides an s-t in G[Ey], E* is a solution to I(G[Ey], Gy, s, t, k). O

Observe that for every pair of vertices in V(E}), we have marked a shortest
path of length at most k in G. We are ready to prove our final theorem statement.

Theorem 3. The SHORTEST PATH WITH FORCING GRAPH admits a kernel
with O(k®) vertices and edges.

Proof. Our kernelization algorithm works as follows. First, we compute a par-
tition of V(Gy) = H W RW L as described. From Lemma 3, we have that
H U R has at most O(k?) edges in Gy. After that, we invoke the marking
scheme described. Observe that the marking scheme marks a shortest path
of length at most k for every pair of vertices z,y € V(Ey) and put them in
Ey. Hence, |Ey| is O(KP). From Lemma 4, I(G, Gy, s,t,k) is a Yes-instance
if and only if I(G[Ewm],G¢[Em],s,t, k) is a Yes-instance. Let W = V(Eu),
i.e. the vertices that are the endpoints of the edges of Ej; in G. We output
(GIW],G¢[Eum],s,t, k) as the output instance. As |Ep| is O(k®), |W| is also
O(k®). Therefore, SHORTEST PATH WITH FORCING GRAPH admits a kernel with
O(k®) vertices and edges. 0

4 Improved Kernels for Special Graph Classes
and Results on Structural Parameters

Consider an input instance I(G, Gy, s, t, k) to SHORTEST PATH WITH FORCING
GRAPH. This section is devoted to kernelization algorithms when either G' or G'¢
belongs to some special graph class. For both the results, we give a proof sketch
here and refer to appendix for more detailed proofs.

Theorem 4. SHORTEST PATH WITH FORCING GRAPH admits a kernel with
O(k®) vertices when G is a planar graph.

Shortest Path with Positive Disjunctive Constraints 23

Proof. (Sketch) The input graph G has a special property satisfying Euler’s
formula but the forcing graph Gy can be an arbitrary graph. If G is a simple
graph with n vertices, then G can have at most 3n — 6 edges. We partition
the vertices of Gy, i.e. the edges of E(G) into H, L and R as inn the previous
section. Put an edge e € E(G) into H if degg, (e) > k. Put e € E(G) into L if
Ng,(e) € H. Define R = E(G) \ (H U L). Our first step is to invoke Lemma 3,
that if I(G,Gy, s, t, k) is a Yes-instance, then |H| < k and G[R] has at most
k? edges. Since every vertex of G f[H U R] is incident to some edge, H U R has
O(k?) vertices that are edges of G. Let V;, C V(G) denote the vertices spanned
by the edges of G present in H U R and V; = V(G) \ V. For every pair {z,y}
of Vi, we define a boolean variable Ji, ,y) is true if there is a path from x to
y in G with internal vertices in Vi and J((,) is false otherwise. We prove a
structural characterization which says that “there are 3|V | — 6 distinct pairs of
vertices {x,y} in VL for which the boolean variable J(;, 1) is true”. We now
consider the a similar marking scheme MarkPlanar(G, Gy, s,t, k) as before. We
give a description of this for the sake of completeness and clarity. For each pair
(x,y) of vertices from V7, compute a shortest path P, , from z to y that uses
only the vertices of V; as internal vertices. If P, , has at most £ edges, then
mark the edges of P, ,. Otherwise do not mark any edge of P, ,. Finally, for
every pair (z,y) from Vi, mark the edges of a shortest path Q. , from x to y
in G if Q. has at most k edges. Consider E; C E(G), the set of all edges that
are marked and let Eyy = E; U H U R. After that, we prove that “the instance
I(G, Gy, s,t, k) is equivalent to I(G[Ewy|, G¢[Em], s, t, k). Using this, we prove
our result (Theorem 4) that SPFG admits a kernel with O(k3) vertices when G
is a planar graph. a

Theorem 5. SHORTEST PATH WITH FORCING GRAPH admits a kernel with
O(k3) vertices when Gy is either a cluster graph or a graph with bounded degree.

Proof. (Sketch) The input graph G is arbitrary here but the forcing graph Gy
can be either a cluster graph or a graph of bounded degree. In this situation, we
exploit some special properties of cluster graphs or bounded degree graphs as
follows. In particular, for the hitting part, we can ensure that O(k) vertices are
sufficient for the hitting part, i.e. to hit all the edges of G¢. An intuition behind
this is that if C is a clique in a graph Gy, then at least |C| — 1 vertices of C are
part of any vertex cover of G y. We first prove two statements. The first statement
says “if Gy is cluster graph and I(G,Gy,s,t, k) is a Yes-instance, then Gy has
at most 2k vertices that are not isolated in Gf”. The second statement says “G's
is a bounded degree graph with maximum degree at most n and I(G, Gy, s,t, k)
is a Yes-instance, then Gy has at most kn vertices that are not isolated in Gf”.
Let V/ C V(Gy) be the set of vertices that are not isolated in Gy and they are
edges in G and Vi, be the set of vertices of G that are the endpoints of these
edges of VLf . Consider Vi = V(G) \ Vi. We use a similar marking procedure as
before. For each pair (z,y) of vertices from Vi, compute a shortest path P, ,
from x to y in G that uses only the vertices of V; as internal vertices. If P,
has at most k& edges, then mark the edges of P, ,. Otherwise, when P, , has

24 S. Bandopadhyay et al.

more than k edges, do not mark any edge of P, ,. Finally, for each pair (z,y) of
vertices from Vi, compute a shortest path @, , from z to y in G when @, , has
at most k edges. Let E; be the set of all the edges that are marked by the above
mentioned marking scheme and let Ey; = E; U VLf . We consider G[Ey]| as the
output instance and prove that “I(G,Gy,s,t, k) is a Yes-instance if and only if
the output instance I(G[Enm], Gf[Ewm], s,t, k) is a Yes-instance”. Using this, we
can prove (Theorem 5) that SPFG admits a kernel with O(k?) vertices when G
is either a cluster graph or a graph of bounded degree. a

Results on Structural Parameterizations. Now, we provide a short summary of
our result the structural parameterization of SHORTEST PATH WITH FORCING
GRAPH. We primarily consider the case when the deletion distance (k) to 2K»-
free graph of Gy. Our first step here is prove the following lemma that enumerates
all minimal vertex covers of a 2Ks-free graph.

Lemma 5. (x) Given an instance (G,Gy,X,s,t,{) to the SPFG-2K,-FREE-
DELETION problem, the set of all minimal vertex covers of G can be enumerated
in 2X1n0MW time.

Using the above lemma, we can prove the following theorem saying that
SPFG-2K5-FREE-DELETION is fixed-parameter tractable.

Theorem 6. (x) SPFG-2K, -FREE-DELETION admits an algorithm that runs
in 21XInOW) time.

5 Conclusion and Open Problems

In this paper, we have initiated the study of SHORTEST PATH WITH FORCING
GRAPH under the realm of parameterized complexity. One natural open problem
is to see if our kernelization results for SHORTEST PATH WITH FORCING GRAPH
can be improved, i.e. can we get a kernel with O(k?*) vertices for SPFG when both
G and Gy are arbitrary graphs? We strongly believe that those results can be
improved but some other nontrivial techniques might be necessary. In. addition,
it would be useful to have a systematic study of this problem under positive
disjunctive constraints containing three (or some constant number of) variables.
From the perspective of kernelization complexity, we leave the following open
problems for future research directions.

> Can we get a kernel with O(k*) vertices for SPFG when the input graph
G is arbitrary graph but the forcing graph G is a graph of degeneracy 1?7 Our
results only show that if the forcing graph is of bounded degree, then we can
get a kernel with O(k?) vertices. In fact, even if G is a forest, then also it is
unclear if we can get a kernel with O(k®) or O(k*) vertices.

> What happens to the kernelization complexity when Gy is an interval
graph while G is an arbitrary graph? Can we get a kernel with O(k3) vertices
in such case?

> Finally, can we generalize our result of Theorem 4 when G is a graph of
bounded treewidth or graph of bounded degeneracy?

Shortest Path with Positive Disjunctive Constraints 25

References

10.

11.

12.

13.

14.

15.

Agrawal, A., Jain, P., Kanesh, L., Saurabh, S.: Parameterized complexity of
conflict-free matchings and paths. In: Algorithmica, pp. 1-27 (2020)

Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized
tractability. Ann. Pure Appl. Logic 84(1), 119-138 (1997)

Chen, J., Kanj, I.LA., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40-42), 3736-3756 (2010)

Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Heidelberg (2015)
Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction. Theor. Comput. Sci. 351(3), 337-350 (2006)

Darmann, A., Pferschy, U., Schauer, J.: Determining a minimum spanning tree
with disjunctive constraints. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS
(LNAI), vol. 5783, pp. 414-423. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04428-1 36

Darmann, A., Pferschy, U., Schauer, J., Woeginger, G.J.: Paths, trees and match-
ings under disjunctive constraints. Disc. Appl. Math. 159(16), 1726-1735 (2011)
Diestel, R.: Graph theory 3rd ed. Graduate texts in mathematics, vol. 173 (2005)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(2012)

Even, G., Halldérsson, M.M., Kaplan, L., Ron, D.: Scheduling with conflicts: online
and offline algorithms. J. Sched. 12(2), 199-224 (2009)

Guo, J., Hiiffner, F., Niedermeier, R.: A structural view on parameterizing prob-
lems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC
2004. LNCS, vol. 3162, pp. 162-173. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28639-4 15

Jain, P., Kanesh, L., Misra, P.: Conflict free version of covering problems on graphs:
classical and parameterized. Theory Comput. Syst. 64(6), 1067-1093 (2020)
Majumdar, D., Ramanujan, M.S., Saurabh, S.: On the approximate compressibility
of connected vertex cover. Algorithmica 82(10), 2902-2926 (2020)

Pferschy, U., Schauer, J.: The maximum flow problem with disjunctive constraints.
J. Comb. Optim. 26(1), 109-119 (2013)

West, D.B.: Introduction to Graph Theory. Pearson Education, Boston (2007)

https://doi.org/10.1007/978-3-642-04428-1_36
https://doi.org/10.1007/978-3-642-04428-1_36
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15

)

Check for
updates

An Approximation Algorithm for the (Metric)
Clustered Path Traveling Salesman Problem

Jiaxuan Zhangl, Suogang Gao!, Bo Hou!"2, and Wen Liu!-2®

' School of Mathematical Sciences, Hebei Normal University,
Shijiazhuang 050024, People’s Republic of China
2 Hebei Key Laboratory of Computational Mathematics and Applications,
Shijiazhuang 050024, People’s Republic of China
1liuwen1975@126.com

Abstract. We consider the (metric) clustered path traveling salesman problem.
In this problem, we are given a complete graph G = (V,E) along with a nonneg-
ative edge cost function satisfying the triangle inequality, where V is partitioned
into disjoint subsets V1,...,V; called clusters and s € Vi,t € V), are two given
vertices. The objective of the problem is to find a Hamiltonian path of G with
minimum cost from s to 7, satisfying that all vertices in each cluster are visited
consecutively by this path. In this paper, we consider the problem in the case
where endpoints of the subpath induced by the path on each cluster are both
specified and a 2-approximation algorithm is given.

Keywords: Approximation algorithm - Traveling salesman problem + Rural
postman problem - Path - Cluster

1 Introduction

The (metric) traveling salesman problem (TSP), as a classical optimization problem,
arises canonically in many applied settings and a vast number of its variations are stud-
ied both from a theoretical and an applied perspective [4,5,7,14,18,20,22] . In this
problem, we are given a complete graph G = (V, E) with edge cost w(e) € R for each
e € E satisfying triangle inequality. The task is to find a minimum-cost Hamiltonian
cycle in G. The TSP is a typical example of an NP-hard problem [11]. Heuristic algo-
rithms and approximation algorithms are given and the most-well known algorithm is
the 1.5-approximation algorithm independently designed by Christofides [7] and Serd-
jukov [23].

The path traveling salesman problem (PTSP) is an important variant of the TSP.
Instead of a cycle, the task of the PTSP is to find a minimum-cost Hamiltonian path. In
the early 1990s, Hoogeveen [16] presented a %-approximation algorithm. An et al. [1]

improved this result to HT‘E After successive improvements [13,21,25], Zenklusen
[27] developed the best known %-approximation algorithm. Sun et al. [24] designed

(© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 26-35, 2025.
https://doi.org/10.1007/978-981-96-4448-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_3&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_3

An Approximation Algorithm for the (Metric) Clustered Path 27

a 1+Tﬁ—approximation algorithm for the problem by combining linear programming

rounding strategy and a special structure for a more generalized path traveling salesman
problem.

Another important variant of the TSP called the clustered traveling salesman prob-
lem (CTSP) is posed when we consider distinct priorities of different vertices. In the
CTSP, in addition to the input for the TSP, the vertex set V is partitioned into nonempty
disjoint subsets Vi,...,V; called clusters. The task is to find a minimum Hamiltonian
cycle in G, where all vertices of each cluster are visited consecutively. Note that if k = 1
or k = |V|, the CTSP is exactly the TSP. So in the following we assume 1 < k < |V]|.
Chisman [6] first introduced the CTSP and described some applications about it. Jon-
gens and Volgenant [17] described an extensive adaptation of an existing traveling
salesman algorithm based on the 1-tree relaxation. Gendreau et al. [12] propose new
heuristics for the TSP with backhauls. Arkin et al. [3] developed a %-approximation
algorithm for the CTSP. Anily et al. [2] considered the ordered cluster traveling sales-
man problem and the ordered cluster traveling salesman path problem, and developed
a %-approximation algorithm. Guttmann-Beck et al. [15] designed approximation algo-
rithms for several cases of the CTSP by decomposing them into the PTSP together with
the stacker crane problem, or the PTSP with the rural postman problem. Kawasaki and
Takazawa [19] designed improved approximation algorithms by applying Zenklusen’s
recent result for the PTSP in [27].

The clustered path traveling salesman problem (CPTSP) is a combination of both
the PTSP and the CTSP. In the CPTSP, besides the input of the CTSP, we are given
two endpoints s € Vi,t € V.. The task is to find a minimum Hamiltonian path of G
from s to ¢, where all vertices in each cluster are visited consecutively by this path. As
mentioned above, s and ¢ are the start vertex and the end vertex of the Hamiltonian path
respectively, which implies that V; is the first and V4 is the last cluster to be visited. For
the remaining k — 2 clusters, we visit them in any order. Note that a Hamiltonian path of
the graph G induces a Hamiltonian subpath on each cluster and each induced subpath
also has its start vertex and end vertex.

For the CPTSP where the endpoints of the induced subpath on each cluster are
both specified, and moreover, even the start vertex and the end vertex of each induced
subpath are both specified, we designed an approximation algorithm by decomposing
it into the PTSP and the path version the stacker crane problem [28]. In this paper, we
consider the CPTSP where the endpoints of the induced subpath on each cluster are
both specified, but it is free to choose either of them as the start vertex except for V| and
Vi. By referencing the work of Anily et al. [2], Frederickson et al. [10], and Kawasaki
and Takazawa [19], we design an approximation algorithm with an approximation ratio
2 for the CPTSP by decomposing it into the PTSP and the path version of the rural
postman problem.

This remainder of this paper is organized as follows. In Sect. 2, we present some
basic terminology, notation and results. In Sect. 3, we design two approximation algo-
rithms for the PRPP. In Sect. 4, by combining these two algorithms given in Sect. 3,
we design an algorithm for the CPTSP. Besides, we analyze its approximation ratio. In
Sect. 5, we provide several problems for future research.

28 J. Zhang et al.

2 Preliminaries

In this section, we present some basic terminology, notation and results.

A graph G is a pair (V,E), where V is a set of objects called vertices and E is a set
of edges. Each edge is a pair {u,v} of vertices u,v € V. Multiple edges connected to the
same pair of vertices are called parallel edges. A graph is called a multigraph if it has
parallel edges.

Let S be a subset of E. If no two edges in S have common vertices, then we say that
S is a matching of G. A matching S of G is called a perfect matching if every vertex of
G is an endpoint of some edge in S.

A walk in a graph G from vertex v to v; is a sequence vi,{vi,v2},
V2, {Vz, V3}7 V3, ..., Vi1, {vl,l,vl}, Vi, in which all Vi§ are vertices and {Vifl y V,'} € E for
i=2,3,...,1. vy is called the start vertex and v; the end vertex and they are both called
endpoints of the walk. A path is a walk with no repeated vertices. A trail is a walk with
no repeated edges. An Eulerian trail is a walk passing through every edge of G exactly
once. If an Eulerian trail is closed (the start vertex is the same as the end vertex), it is
called an Eulerian tour. A Hamiltonian path/cycle of G is a path/cycle visiting every
vertex of G exactly once.

The Eulerian trail has the following important property.

Lemma 1 [8]. A connected (multi)graph has an Eulerian trail if and only if it has either
0 or 2 vertices of odd degree.

In the following we present the rural postman problem and the path version of the
rural postman problem. For any positive integer k, we use the notation [k] to denote
the set {1,2,...,k}. In the rural postman problem, we are given a multigraph G’ =
(V/,E'UD), where V' = {s;,t; | i € [k]}, (V',E’) is an undirected complete graph with
a nonnegative edge cost function w satisfying the triangle inequality and D = {{s;,#;} |
i € [k]}. The objective is to find a minimum-cost Hamiltonian cycle that traverses all
edges in D.

If the objective is to find a minimum-cost Hamiltonian path from s to #; that tra-
verses all edges in D, we obtain the path version of the rural postman problem, and we
call it the path rural postman problem (PRPP).

3 Approximation Algorithms for the Path Rural Postman Problem

In this section, we present two polynomial-time algorithms for the PRPP which will be
used when we design the algorithm for the CPTSP in next section.

Recall that in the PRPP, we are given a multigraph G’ = (V',E’ UD), where V' =
{si,t; | i € [k]}, (V',E') is an undirected complete graph with an edge cost function w
satisfying the triangle inequality, and D = {{s;,#;} | i € [k]}. The objective is to find a
minimum-cost Hamiltonian path from s to # that traverses all edges in D.

The first algorithm for the PRPP is as follows.

An Approximation Algorithm for the (Metric) Clustered Path 29

Algorithm 1

Input: A multigraph G’ = (V/,E’ UD), where V' = {s;,t; | i € [k]}, (V',E’) is an undirected
complete graph with a nonnegative edge cost function w satisfying the triangle inequality, and
D= {{s;,t;} | i € [k]}.

Output: Path Ppgrpp;.

Step 1: Except for s1,#, identify vertices in the graph G’ = (V/,E’ UD), and perform a minimum
perfect matching for them.

Step 2: Initialize £ to be empty. Insert all edges in the above matching into E;. (This results in
m > 1 disjoint connected components on E7 U D, and we denote these m connected components
by Ri i€ [m])

Step 3: Condense each R; into a single vertex n;. Define

d(nj,n;) = min{w{u,v} |u € R/ ,v €R}'},

where R;’ represents the set of all vertices in R;, except for s1,.

Step 4: Find a minimum spanning tree for the vertices in {n; | i € [m]}, where the minimum is
with respect to the distance function d defined at Step 3.

Step 5: Make two copies of each edge in the spanning tree, and insert these copied edges into E.
(This results in a graph G| = (V/,E; UD).)

Step 6: Find an Eulerian trail from sy to #; in G’l.

Step 7: Shortcut vertices visited more than once to get a Hamiltonian path Ppgrpp; from s; to #;
traversing all edges in D.

Assume OPT is the cost of an optimal solution of the PRPP and U = 25-(:1 w{si,t;}.

Lemma 2. Algorithm I outputs a Hamiltonian path Ppgpp; with cost at most 30PT’ —
2U.

Proof. We first show that Pprpp; is a Hamiltonian path from s; to f; that traverses all
edges in D. According to Step 2, we know that, except for s1,#;, the degree of each
vertex is even in these connected components. The edges of the spanning tree created
at Step 4 connect these disjoint connected components produced at Step 2 into one.
Since at Step 5 for each edge of the spanning tree, we make two copies, the degree of
each vertex is still even in the one connected component, except for sq,f;,. Step 1 and
Step 3 of the algorithm guarantee that the degrees of s; and #; are both 1. At Step 6,
by Lemma 1, we get the Eulerian trail from s; to # in G. At Step 7, using the triangle
inequality, we get a desired Hamiltonian path.

In the following, we consider the cost of Pprppi. Since an optimal path of this prob-
lem contains all edges in D and a perfect matching for all vertices, except for sy, #, its
cost can not be smaller than that of the minimum perfect matching obtained at Step 1
and the edges in D. For convenience, we denote the cost of the minimum perfect match-
ing by M. Then M +U < OPT'. Since the edges in the optimal path, except for the edges
in D, can connect these disjoint connected components into one and the spanning tree
created at Step 4 also connects these disjoint connected components into one, the cost
of the minimum spanning tree at Step 4 must be no greater than OPT’ — U. Therefore,
the cost of the Eulerian trail at Step 6 is at most M + U +2(OPT’ — U, and then is at
most 30PT’ —2U. Using the triangle inequality, we get the cost of the path Pprpp; is at
most the cost of the Eulerian trail. O

30 J. Zhang et al.

The following is the second algorithm for the PRPP.

Algorithm 2

Input: A multigraph G’ = (V',E’' UD), where V' = {s;,; | i € [k]}, (V',E’) is an undirected
complete graph with a nonnegative edge cost function w satisfying the triangle inequality, and
D= {{si,t;} | i € [k]}.

Output: Path Pprpp).

Step 1: Condense each edge in D into a vertex n;. For each pair i, j with i, j € [k], define

min{w{s,-.,Sj},w{si,lj},w{ti,sj},w{l,-,tj}}, if s1,1 ¢ {S,‘,Sj,l,’,tj},
min{w{t;,sj},w{t,-,tj}}, if s; = s;,
min{w{s;,7;},w{t;,;}}, if sy =3,

d(ni,;nj) = § min{w{s;,;},w{si,s;}}, ift, =1,
min{w{t,-,s_i},w{si,Sj}}, if 1 =1j,
W{li,sj'}, if s1 = 83,1 =1j,
W{Shtj}, if 51 =8Ik =1.

Step 2: Find a minimum spanning tree for the vertices in {n; | i € [k]}, where the minimum is
with respect to the distance function d defined at Step 1.

Step 3: Initialize E; to be empty. Insert all edges in the above spanning tree into E,. Restore the
vertex n; with the corresponding edge {s;,#;}, i € [k]. (This results in a graph with vertex set V’
and edge set £, UD.)

Step 4: Except for 51,1, identify vertices of odd degree in the graph obtained at Step 3, and find
a minimum perfect matching for them.

Step 5: Insert all edges in the above matching into E;. (This results in a graph G, = (V/,E; UD).
Note that this graph (V/, E; UD) got in this step is different with that in Step 3, because the set
E5 is updated.)

Step 6: Find an Eulerian trail from sy to #; in G’z.

Step 7: Shortcut vertices visited more than once to get a Hamiltonian path Pprpp; from s; to #;
traversing all edges in D.

Lemma 3. Algorithm 2 outputs a Hamiltonian path Pprpps with cost at most 20PT.

Proof. With a similar discussion with the proof of Lemma 2, after completion of Step
5, all vertices are of even degree, except for s,#. The degrees of s; and #; are both 1.
This is obtained by the definition of d(,) at Step 1 and by ignoring these two odd degree
vertices s, at Step 4. According to Lemma 1, we find an Eulerian trail from s to #;
in G,. At Step 7, using the triangle inequality, we get a desired Hamiltonian path.

In the following, we consider the cost of Pprppy. Since the edges in the optimal
path, except for the edges in D, can connect the vertices in {n; | i € [k]}, the cost of the
spanning tree at Step 2 is at most OPT’ — U. Then the cost of the graph obtained at Step
3 is at most OPT’. So the cost of the minimum perfect matching on these vertices of
odd degree, except for 51,1, is at most OPT’. Therefore the cost of the graph obtained at
Step 5 is at most 20PT’, and so the cost of the Eulerian trail at Step 6 is at most 20PT’.

An Approximation Algorithm for the (Metric) Clustered Path 31

Also using the triangle inequality, we get the cost of the Hamiltonian path Pprpp; is at
most 20PT’, as desired. O

Remark 1. Each of Algorithm 1 and Algorithm 2 is run, and the value U relative to
OPT’ will determine which algorithm we will choose. For specific, if U > %OPT’ , We
choose Algorithm 1 to run. Choose the other one instead.

Lemma 4. The time complexity of Algorithm 1 and Algorithm 2 is
0(max{|V’|2 |E'|,|E'|loglog |V'[}),
where V' and E' are the set of vertices and edge subset given in the PRPP.

Proof. The running time of Algorithm 1 and Algorithm 2 depends on the running time
of finding the minimum perfect matching and the minimum spanning tree. There is a
Blossom exact algorithm for computing minimum perfect matching by Edmonds [9].
The running time of the Blossom algorithm for finding the minimum perfect matching
is O(|V'|*|E'|). According to Yao [26], the running time of the minimum spanning tree
exact algorithm is O(|E’|loglog|V']). O

4 An Approximation Algorithm for the Clustered Path Traveling
Salesman Problem

In this section, we first design an approximation algorithm for the CPTSP, then we
analyze its approximation ratio.

Recall that in the CPTSP, the endpoints of cluster V; for each i € [k] are both speci-
fied, but we are free to choose either of them as the start vertex except for the clusters
V1, Vi. In order to apply the algorithms designed in Sect. 2 for the PRPP, we assume that
the endpoints are s;,; for each cluster V;, i € [k — 1]\ {1}, the start vertices are sy, s; and
the end vertices are t,#; for V1,V,, respectively. Obviously, s; coincides with s and #;
coincides with ¢. Our algorithm mainly consists of four steps. At Step 1, for each fixed
i € [k], we find the path;, a path between s; and ¢; that goes through all vertices in V;.
This is exactly the PTSP with given endpoints. At Step 2, we replace the path; by the
corresponding edge {s;,}, i € [k]. At Step 3, we apply Algorithm 1 and Algorithm 2
to find a Hamiltonian path Pprpp from s to #; traversing each edge in D. At Step 4, we
replace the edges in D by the path patrh; (i € [k]) obtained at Step 1.

Algorithm 3

Input: A complete graph G = (V,E) with an edge cost function w : E — R, clusters V1, ..., V,
endpoints s; and #;, for each V;, i € [k], start vertex s; € V|, and end vertex #; € V.

Output: Hamiltonian path 7.

Step 1: For each V;, i € [k], compute parh;, a Hamiltonian path with endpoints s; and #;.

Step 2: Replace the parh; by the corresponding edge {s;,;}, i € [k]. (This results in a multigraph
(V',E'"UD) with vertex set V' = {s;,1; | i € [k]}, V' and edge subset E’ form a complete graph
and D = {{s;,5;} | i € [k]}.)

Step 3: Apply Algorithm 1 and Algorithm 2 to find the solution Pprpp of PRPP with less cost in
the multigraph obtained above.

Step 4: In Pprpp, replace the edges in D by path;, i € [k], we get a Hamiltonian path 7 from s,
to f.

32 J. Zhang et al.

Remark 2. Although the start vertices and the end vertices of pathi,path; are both
determined, and we should replace them by the corresponding directed edges at Step 2,
we can ensure that the directed edges are correctly traversed by finding the solution of
PRPP because of the special positions of these two directed edges. Hence, Algorithm 1
and Algorithm 2 are simplified by replacing these two directed edges with undirected
ones, and at Step 4, this is also true when replace the edges with the corresponding
paths.

In this algorithm, we are involved in the PTSP and the PRPP that are both solvable
in polynomial time, so our algorithm runs in polynomial time.

Example 1. A sample execution of the algorithm.

S1 S1

§20 5 ° 52 /\

(a) (b)

(© (d)

Fig. 1. lustration of Algorithm 3

In this example, we are given three clusters (see Fig. 1(a)). We first compute path; with
specified endpoints in each cluster V;, i € [3] (see Fig. 1(b)). Then we replace the path;

An Approximation Algorithm for the (Metric) Clustered Path 33

with the edge {s;,#;} and solve the PRPP instance (see Fig. 1(c)). At last we replace the
edge {s;,t;} by the parh; in V;, i € [3] (see Fig. 1(d)).

Let OPT” denote the cost of an optimal solution of the PTSP. The following result
for the PTSP is useful for the analysis of Algorithm 3.

Lemma 5 [19]. For the PTSP with uy and uy being the two given endpoints, there
exists a polynomial-time approximation algorithm that finds Hamiltonian paths S| and
Sy between uy and uy such that w(S1) < 20PT" —w{uy,uz },w(S) < %OPT”.

Remark 3. We record the Hamiltonian path with lower cost as the output path of the
PTSP algorithm.

Let OPT denote both an optimal solution of the CPTSP and its total cost.
Theorem 1. Let T be the path output by Algorithm 3. Then w(T) < 20PT.

Proof. The algorithm consists of two subproblems: the PTSP and the PRPP. Let
P; denote the induced path of OPT on V;, i € [k]. Let L = Yci) Xeepnopr W(e)s
L' = OPT — L. Recall that U = Zé‘:l w{s;,t;}. By Lemma 5, we get Zlew(pathi) <
min(2L — U, 3L). Therefore, Y5, w(path;) < min(2L—U,3L) <2L—U.

Note that there exists a solution of PRPP with cost L' + U. Hence, by Lemmas 2
and 3, the costs of the two solutions returned by the PRPP algorithm are at most 3L’ + U
and 2L’ +2U, respectively. Therefore we get

w(Pprpp) < min(3L + U, 2L +2U)
<2L'+2U.

At Step 4 of Algorithm 3, replace the edge {s;,#;} in the solution of PRPP by parh;
for each i € [k]. Then we obtain an upper bound on the cost of the solution 7'

k
w(T) = Z w(path;) — U +w(Pprpp)
i=1

<(2L-U)-U+2L+2U
=2L+2L =20PT,

as desired. O

5 Discussions

In this paper, we first design two approximation algorithms for the path rural post-
man problem, then based on them we design a 2-approximation algorithm for the clus-
tered path traveling salesman problem in the case where the endpoints are specified in
each cluster but we are free to choose the start vertex except for Vi,V;. Other cases
including only the start vertex is given in each cluster, and neither of the endpoints is
given in each cluster, are also worth considering. Besides, to consider whether there
exists any inapproximability result for the PRPP and the CPTSP is also challenging and
interesting.

34

J. Zhang et al.

Acknowledgements. This work was supported by the NSF of China (No.11971146), the NSF of
Hebei Province of China (No. A2023205009), the Local Science and Technology Development
Funds Guided by the Central Government (No. 246Z7605G), and the Interdisciplinary Research
Foundation of Hebei Normal University (No. L2024J01).

Disclosure Interests. The authors have no competing interests to declare that are relevant to the
content of this article.

References

11.

12.

13.
14.

17.

18.

. An, H.C,, Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the s-t path

TSP. J. ACM 62(5), 1-28 (2015)

Anily, S., Bramel, J., Hertz, A.: A 5/3-approximation algorithm for the clustered traveling
salesman tour and path problems. Oper. Res. Lett. 24, 29-35 (1999)

Arkin, E.M., Hassin, R., Klein, L.: Restricted delivery problems on a network. Networks 29,
205-216 (1994)

Bland, R.G., Shallcross, D.F.: Large travelling salesman problems arising from experiments
in X-ray crystallography: a preliminary report on computation. Oper. Res. Lett. 8(3), 125—
128 (1989)

Blauth, J., Ndgele, M.: An improved approximation guarantee for prize-collecting TSP. In:
Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC), pp.
1848-1861. ACM, New York (2023)

Chisman, J.A.: The clustered traveling salesman problem. Comput. Oper. Res. 2, 115-119
(1975)

Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem.
Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon Uni-
versity (1976)

Diestel, R.: Graph Theory. Springer, New York (2017)

Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449-467 (1965)

Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing
problems. SIAM J. Comput. 7(2), 178-193 (1978)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, San Francisco (1979)

Gendreau, M., Hertz, A., Laporte, G.: The traveling salesman problem with backhauls. Com-
put. Oper. Res. 23, 501-508 (1996)

Gottschalk, C., Vygen, J.: Better s-t-tours by Gao trees. Math. Program. 172, 191-207 (2018)
Grotschel, M., Holland, O.: Solution of large-scale symmetric traveling salesman problems.
Math. Program. 51, 141-202 (1991)

. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation algorithms

with bounded performance guarantees for the clustered traveling salesman problem. Algo-
rithmica 28, 422-437 (2000)

. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: some paths are more difficult than

cycles. Oper. Res. Lett. 10, 291-295 (1991)

Jongens, K., Volgenant, T.: The symmetric clustered traveling salesman problem. Eur. J.
Oper. Res. 19, 68-75 (1985)

Karlin, A.R., Klein, N., Gharan, S.O.: An improved approximation algorithm for TSP in the
half integral case. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pp. 28-39. ACM, New York (2019)

20.

21.

22.

23.
24.

25.
26.

27.

28.

An Approximation Algorithm for the (Metric) Clustered Path 35

. Kawasaki, M., Takazawa, T.: Improving approximation ratios for the clustered travelling

salesman problem. J. Oper. Res. Soc. Jpn. 63(2), 60-70 (2020)

Plante, R.D., Lowe, T.J., Chandrasekaran, R.: The product matrix travelling salesman prob-
lem: an application and solution heuristics. Oper. Res. 35, 772-783 (1987)

Sebd, A., Zuylen, A.V.: The salesman’s improved paths: A 3/2+1/34 approximation. In: Pro-
ceedings of 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp- 118-127. IEEE, New Brunswick (2016)

Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp TSP bound: a monotonicity prop-
erty with application. Inf. Process. Lett. 35(6), 281-285 (1990)

Serdjukov, A.: Some extremal bypasses in graphs. Upr Sist 17, 76-79 (1978)

Sun, J., Gutin, G., Li, P, Shi, P,, Zhang, X.: An LP-based approximation algorithm for the
generalized traveling salesman path problem. Theor. Comput. Sci. 941, 180-190 (2023)
Traub, V., Vygen, J.: Approaching 3/2 for the s-r path TSP. J. ACM 66(2), 1-17 (2019)
Yao, A.: An O(|E|loglog|V|) algorithm for finding minimum spanning trees. Inf. Process.
Lett. 4, 21-23 (1975)

Zenklusen, R.: A 1.5-approximation for path TSP. In: Proceedings of the 30th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1539-1549. SIAM, San Diego (2019)
Zhang, J.X., Gao, S.G., Hou, B., Liu, W.: An approximation algorithm for the clustered path
traveling salesman problem. J. Comb. Optim. 45, 104 (2023)

l‘)

Check for
updates

Dynamic Algorithms for Submodular
Maximization with a p-Matchoid
Constraint

Luying Ma, Yuanyuan Qiang, and Bin Liu(®
School of Mathematical Sciences, Ocean University of China, Qingdao, China
binliu@ouc.edu.cn

Abstract. Submodular maximization has been increasingly used in
multiple applications of machine learning and data mining. Moreover,
there has been a growing interest in both submodular maximization
and dynamic algorithms. Previous work has considered dynamic algo-
rithms for submodular functions under the cardinality constraint and
the matroid constraint. In this paper, we consider the problem of maxi-
mizing a monotone submodular set function f : N L RT subject to the
p-matchoid constraint in the fully dynamic setting, where elements can
be both inserted and deleted in real-time. Our main result is a random-
ized algorithm that obtains a 4p-approximate solution and maintains an
efficient data structure with a O(kQ) amortized update time, where k is
an upper bound on the cardinality of the feasible solution.

Keywords: Submodular maximization - Dynamic algorithms -
p-matchoid constraint

1 Introduction

Submodular functions play a fundamental role in classical combinatorial opti-
mization. Many theoretical problems are instances of submodular functions, such
as rank functions of matroids, edge cuts and coverage [15,25]. More recently,
there is a large interest in constrained submodular function optimization driven
both by theoretical progress and a variety of applications in computer sci-
ence. Some of these include data summarization [12,21,27], influence maximiza-
tion in social networks [9,10,16,18,26], generalized assignment [6], mechanism
design [1], and network monitoring [20].

Given a collection N of items, also called the ground set, let f: 2V — R be
a set function on a ground set . f is non-negative if f(S) > 0 for any S C N,
monotone if f(S) < f(T) for any S CT C N and submodular if f(S) + f(T) >
F(SUT)+ f(SNT) for any S,T C N. Intuitively, a submodular function is
a function that obeys the property of diminishing returns, i.e., the marginal

This work was supported in part by the National Natural Science Foundation of China
(12471306), and the Fundamental Research Funds for the Central Universities.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 36-49, 2025.
https://doi.org/10.1007/978-981-96-4448-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_4&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_4

Dynamic Algorithms for Submodular Maximization 37

contribution of adding an element to a set diminishes as the set becomes larger
and larger. Given a submodular function f : 2V — RT and a family F C 2V
of subsets of A/, the submodular maximization problem consists in finding a set
S € F that maximizes f(S). A classic choice for F is the cardinality constraint
where every subset S of cardinality at most k is feasible. For the submodular
maximization problem under the cardinality constraint, the celebrated greedy
algorithm due to Nemhauser and Wolsey [24] achieves an approximation ratio of
1 —1/e, which is optimal assuming P # N P. However, this classic algorithm is
inefficient when applied to modern big data settings, given the unique challenges
of working with massive datasets. Motivated by these challenges, in recent years
there has been a surge of interest in considering the submodular maximization
problem under a variety of computational models such as streaming models |2,
17]. The streaming algorithms can process the data in a streaming fashion, where
only a small fraction of the data is kept in memory at any point.

Submodular Maximization in Dynamic Model. One fundamental limita-
tion of streaming algorithms is that they are not well-suited to handle highly
dynamic datasets, where elements are added and deleted continuously. Simi-
larly, TikTok processes millions of video uploads and deletions each day, while
also Snapchat processes millions of message uploads and deletions daily. For
these reasons, many problems have been studied in the dynamic setting, even if
it is notoriously difficult to obtain efficient algorithms. In the dynamic model,
we are given a stream of insertions and deletions of elements of the underlying
ground set A/ and we need to maintain a solution after every update. Thus, the
update time of the dynamic algorithm should be as fast as possible. The goal is
to maintain a good approximate set subject to the certain constraint after every
insertion and deletion, which uses a fast query complexity.

For dynamic monotone submodular maximization with the cardinality con-
straint, a (2 + €)-approximation algorithm with poly-logarithmic amortized
update time was designed by Lattanzi et al. [19]. Subsequently, this result has
been proved to be tight by Chen and Peng [11]. And they proved that devel-
oping a c-approximation dynamic algorithm for ¢ < 2 is not possible unless we
use a number of oracle queries polynomial in the size of ground set N. Mon-
emizadeh [23] achieved the same approximation guarantee with O(k?) amor-
tized update time, where k is the cardinality constraint. Then, Banihashem et
al. [3] also improved the algorithm of [23]| for monotone submodular maximiza-
tion subject to the cardinality constraint. For the non-monotone submodular
maximization problem, Banihashem et al. [4] studied the generalized version
of the problem and obtained a dynamic algorithm that maintains a (8 + ¢)-
approximate solution per update. Recently, Diitting et al. [13] proposed the first
fully dynamic algorithm for submodular maximization under the matroid con-
straint. And they obtained a randomized dynamic 4-approximation algorithm
with expected amortized time O(k’Q) per update.

38 L. Ma et al.

Maximizing Submodular Functions Under the p-Matchoid Constraint.
The study of submodular maximization in the streaming setting has been mostly
surveyed. Several works have considered maximization of both monotone and
non-monotone submodular functions subject to the p-matchoid constraint. And
p-matchoid generalizes many basic combinatorial constraints such as the cardi-
nality constraint, the intersection of p matroids, and matchings in graphs and
hyper-graphs. When the objective function is monotone, the work of Chakrabarti
and Kale [7] gave a 4p-approximation streaming algorithm for maximizing such
functions subject to the intersection of p matroids constraints. Then the results
were later extended by Chekuri et al. [8] to the p-matchoid constraint.

For non-monotone submodular objectives, the first streaming result was
obtained by Buchbinder et al. [5]. They described a randomized streaming
algorithm achieving a 11.197-approximation for the problem of maximizing a
non-monotone submodular function subject to the cardinality constraint. Then,
Chekuri et al. [8] described an algorithm of the same constraints achieving
(5p + 2+ 1/p)/(1 — e)-approximation for the problem of maximizing a non-
monotone submodular function subject to the p-matchoid constraint. Simultane-
ously, they gave a deterministic streaming algorithm achieving (9p+O(/p))/(1—
¢)-approximation for the problem. Mirzasoleiman et al. [22] came up with a
different deterministic algorithm for the same problem achieving an approx-
imation ratio of 4p + 4,/p + 1. Finally, Feldman et al. [14] described a new
randomized streaming algorithm for maximizing a submodular function subject
to the p-matchoid constraint and obtained an improved approximation ratio of
4p+2—o0(1). The randomized streaming algorithm only used O(k) memory and
O(km/p) value and independence oracle queries (in expectation) per element of
the stream, which is even less than the number of oracle queries used by the
state-of-the-art algorithm for monotone submodular objectives.

Our Contribution. In this paper, we design an efficient fully dynamic
algorithm for monotone submodular maximization under the p-matchoid con-
straint. Our randomized algorithm processes a stream of arbitrarily interleaved
insertions and deletions with an expected amortized time per update that is
O(qk?log k1log? Alogn), where ¢ is the number of matroids used to define the
p-matchoid, k is the size of the largest independent set of the same matroids,
and A is a parameter that depends on the values of the set function. Crucially,
it also continuously maintains a solution whose value is, after each update, at
least 4p of the optimum on the available elements.

2 Preliminaries

Given a set S and an element e, we denote by S + e and S — e the union SU {e}
and the expression S\ {e}, respectively. Additionally, the marginal contribution
of e to the set S under the set function f is written as fs(e) = f(S +e) — f(5).
Using this notation, we can now state the above mentioned equivalent definition
of submodularity, which is that a set function f is submodular if and only if

Dynamic Algorithms for Submodular Maximization 39

fs(e) > fr(e) for any two sets S C T C N and any element e € N\ T. Given
two sets S,T C N, we also refer to the marginal gain of S with respect to
T, fr(S), quantifies the change in value of adding S to T and is defined as

fr(S) = F(SUT) = f(T).

Matroids. A set system is a pair (N,Z), where N is the ground set of the set
system and Z C 2V is the set of independent sets of the set system. A matroid
M = (N,ZI) is a set system which obeys the following three properties.

(1) 0 e

(2) Downward-closure: if S CT C N and T € Z, then S € Z.

(3) Augmentation: it S,T € T with |S| < |T|, then there exists an element
e €T\ S such that S+e € 7.

The bases of M share a common cardinality, called the rank of the matroid M.
With the concept of matroids, we can generalize to define the p-matchoid.

Matchoids. Let N7, Ns, ..., N, be ¢ ground sets and My = (N, Z4),..., M, =
(Ng,Z,) be g matroids over overlapping ground sets. Let N' = N U---UN, and
I={SCN:SNN, €T, for all h}. The finite set system M? = (N,7) is a
p-matchoid if for every element e € N, e is a member of N}, for at most p indices
h € lg].

A simple example for a 2-matchoid is b-matching. Recall that a set E of edges
of a graph is a b-matching if and only if every vertex v of the graph is hit by at
most b(v) edges of E, where b is a vector function assigning integer values to the
vertices. The corresponding 2-matchoid M has the set of edges of the graph as
its ground set and a matroid for every vertex of the graph. Let M, = (N,,Z,)
be the matroid of a vertex v of the graph, and its ground set N, consists of
the edges hitting v and independent set is Z,, = {E, C N, : |E,| < b(v)}. Since
every edge hits only two vertices, it appears in the ground sets of only two vertex
matroids, thus M is a 2-matchoid. Moreover, one can verify that a set of edges
is independent in M if and only if it is a valid b-matching.

Incremental Value. Let A/ be a ground set, and let f : 2V — R* be a
submodular function over the ground set N. For a set S C N and an element
e € N, the incremental value of e in S, denoted f(e : S), is defined as

f(e:S) = fo(e) where S"={se S:s<e}.

Additionally, we denote by ey, ea,...,e, the elements of N in the order in
which they arrive. And S’ represents all the elements that were already in the
solution S before an element e arrived. For an element e € A" and a set S C N,
then f(S) = > cq f(e:S). Intuitively, f(e: S) is the marginal contribution of
e to the part of S that arrived before e itself.

40 L. Ma et al.

Notations for Dynamic Streams. Consider a stream of exactly n insertion
and deletion operations chosen by an oblivious adversary. Denote by N; the set
of all elements that have been inserted and not deleted up to the i-th operation.
Let O; be an optimum solution for A;, denote OPT; = f(O;). An algorithm
is a a-approximation of the best (dynamic) solution if OPT; < af(S;), for all
i =1,2,---,n, where S; C N; is a good feasible solution at the end of each
operation ¢. In our dynamic algorithm, we are interested in updating our data
structure efficiently. We say that an algorithm has amortized update time ¢ if its
total running time to process a worst-case sequence of n insertions and deletions
is at most nt in expectation.

Maximizing a Monotone Submodular Function Under the p-Matchoid
Constraint in Dynamic Model. Let A be a set of elements, f : 2V — R
be a non-negative monotone submodular function on A, and MP = (N, Z) be a
p-matchoid for some integer p. Consider a stream of insertions and deletions. Let
N be the set of all elements that have been inserted and not deleted up to the i-th
operation. That is, A; is the current ground set of elements, and M? = (N;,T)
is a p-matchoid for some integer p. Fix any operation ¢, the objective of our
dynamic algorithm is to maintain a set S; € Z which approximately maximizes
f at the end of the computation relative to operation 1.

fnax f(S:)
s.t. S, €T

Throughout the paper, we assume that f is normalized, i.e., f(#) = 0. We also
assume that f is given in terms of a value oracle that computes f(.5;) for given
S; C N;, and independence oracles for the matroids defining the p-matchoid
constraint. As usual in the field, we refer to running time as the total number of
submodular function evaluations (value oracle) and independent set evaluations
with respect to the p-matchoid (independence oracle). The number of non-oracle-
call operations we perform is within a polylog factor of the number of oracle calls.
We focus on the number of oracle calls performed during the computation and
on the quality of returned solutions. More specifically, we perform a sequence
of insertions and removals of elements, and after each operation i we output a
high-value set S; € Z.

Our main results for the dynamic setting are given by the following theorem.
Recall that & is the size of the largest independent set and ¢ is the number of
matroids used to define the p-matchoid constraint. Throughout this paper, we
assume value oracle to f and independence oracles for each of the ¢ matroids
defining the p-matchoid constraint.

We want to approximate OPT; = maxg, ez f(5;) at the end of each operation i.

Theorem 1. Algorithm /J yields a 4p-approximation to the fully dynamic mono-
tone submodular mazimization problem with the p-matchoid constraint. And it
exhibits an O(qk?log k log? Alog n) expected amortized running time.

Dynamic Algorithms for Submodular Maximization 41

3 The Algorithm

In this section we provide an overview of the main techniques and ideas used in
our dynamic algorithm. We start by noting that previous approaches either do
not support deletions altogether, or support only a limited number of deletions
and so they do not capture many real-world scenarios. In this work, we overcome
this barrier by designing a novel fully dynamic data structure that has only poly-
logarithmic amortized update time.

Our data structure contains L+ 1 levels, with L = logn, and n is the number
of insertions or deletions of elements. Each one of these levels is characterized
by three sets of elements: a partial solution .5}, a candidate elements set A; that
meets certain criteria and is considered a good addition to the solution, and a
buffer of still not processed elements B;.

Algorithm 1. Initialization
Input: n.
Output: O(log n) empty sets.

1: L+——1logn

2: Initialize empty sets S;, A;, By V0O<I<L

The structure of each level of A; is essentially the same. The main difference
is that different levels maintain different numbers of elements, i.e., level [main-
tains O(5r) many elements. Intuitively, and informally, levels with small [are
recomputed only after many updates. While levels with large [, such as | = L, are
sensitive to update and recompute more frequently. In particular, if we insert an
extremely valuable element, then the level [= L will guarantee that this newly
added valuable element will appear in the current solution S. We claim that the
solution of the last level, i.e., Sy, (that plays the role of S;), is consistently a
constant factor approximation of OPT;, at the end of each operation i.

Initialization. Consider a stream of exactly n insertion and deletion operations.
At the beginning of the stream, the routine Algorithm 1 is called. Specifically,
S;, A; and B; are set to empty sets, for all [=0,1,..., L.

Insert Elements. When a new element e is inserted, it gets immediately added
to all the buffers B, for 0 <[< L. Roughly speaking, our algorithm postpones
processing insertions into level [until there are g; many of them. This enables us
to obtain efficient amortized update time of the structure on level [. The buffer
set B; is used to store these insertions until they are processed. This addition
induces the call of another routine, Level-Construct, on the level [* with smallest
index such that the buffer B; exceeds a certain cardinality.

42 L. Ma et al.

Algorithm 2. Insertion(e)

Input: the element e to be inserted.
Output: a feasible solution S after the element e is inserted.
1: Bp«— B +e VO<Z<ILZL
N —N+e
if there exists an index [such that |Bi| > Z; then
Let I* be the smallest such index
Level-Construct(1*)
end if
S «— 5L

IR

Delete Elements. When an element e is deleted from the stream, then the
data structure is updated according to Algorithm 3. Element e is removed from
all the candidate elements sets A; and buffers B; (lines 1 and 2) and causes a
call of Level-Construct on the smallest-index level such that e € 5;.

Algorithm 3. Deletion(e)

Input: the element e to be deleted.
Output: a feasible solution S after the element e is deleted.

1:Al<—A17€ VOSZSL

2:Bl<—Bz—6 VOSZSL

3N —N-—-¢

4: if e € S; for some [then

5: Let [* be the smallest such index such that e € S;
6: Level-Construct(l™)

7: end if

8 S «— S

Level-Construct. We now describe the main routine of our data structure
Level-Construct(l). A call to this routine at level [triggers some operations
relevant to sets at level [, and it then recursively runs Level-Construct at level
I+ 1. Therefore, Level-Construct(l) is essentially responsible for reprocessing the
whole data structure at all levels I,1+1, ..., L. When it is called on some level [,
all the sets associated to that level S;, A; and B; are reinitialized: the candidate
elements set A; is initialized with the elements in A;_; and B;_1, the buffer B,
is erased, while .S; is copied from the previous level. And we want to ensure that
the subscripts of A; and B; are non-negative (lines 3-7 of Algorithm 4). Then,
while the cardinality of A; becomes larger or equal to 3, the following iterative
procedure is repeated.

For any element ¢’ € A;, we use a procedure called Swapping(S,e’) to select
a set Co. The set C. consists of elements whose removal from the current
solution maintained by the algorithm allows the addition of €’ to this solution. If

Dynamic Algorithms for Submodular Maximization 43

Algorithm 4. Level-Constrcut(l)

Input: two non-negative parameters «, 3, and a call to this routine at level [.
Output: a feasible solution Sg..
1: Bl «— @
2 S — S
if [> 0 then
A — A1UB
else
A — N
end if
while [4;| > 3 do
for any element e’ € A; do
10: Cyr +— Swapping(Si, €')
11: end for
120 Ae—{ €A fs(€) Zat 1+ AL oec, [le: S}
13: if |A;] > 57 then

©

14: Pop €’ from A; uniformly at random
15: S — 5 \ Cor +¢
16: end if

17: end while

18: if [< L then

19: Level-Construct(l + 1)
20: end if

Algorithm 5. Swapping(S, ¢')

Input: the current solution S, an element e’ € A;.
Output: C.
1: C+—10
2: for h=1,...,q do
if ¢ € M, and (S +¢€') NN, ¢ Iy, then
Sn,=SNN,
Xp—{s€Sh:(Sh—s+¢€)eTn}
cp «— argmingex, f(z:S)
C+—CH+acp
end if
end for

W

the marginal contribution of adding €’ to the solution is large enough compared
to the value of the elements of C./, then €’ is added to the solution and the
elements of C. are removed. All in all, Algorithm 4 maintains an independent
set S; € Z, for 0 < [< L. All the elements in A;, either discarded or added
to S; in exchange for a well-chosen subset of Sj, for 0 < [< L. The threshold
for exchanging is tuned by two non-negative parameters o and [(line 12 of
Algorithm 4). Then, if the cardinality of A; is still large enough (i.e., [A;| >)
an element e’ is added to S; and the elements of C,; are removed.

44 L. Ma et al.

4 Analysis of the Algorithm

In this section, we state the analysis of our dynamic algorithm. We consider
the approximation guarantee and the amortized running time of our algorithm,
respectively. Fix any operation i, we want to show that S; is a good approx-
imation of the best independent set O; (f(0;) = OPT;) in N at the end of
operation 1.

Some Notations for the Analysis

— S : the final output of Algorithm 4.

— For each element e € NV, S’ . denotes the set S just before e is processed on
level [, and S+ the set .S; Just after e is processed on level [. Note that if e is
rejected on level l, then Sl = Slt

— D denotes the set of all elements ever added to Sy, forall 0 <1< L.

— For e € N, C.(= Swapping(S, ,e) C 5) denotes the set of elements that
Level-Construct(l) considers exchanging for e. Observe that {Cy:d € D}
forms a partition of D\ Sy.

— Foree N, . = f(SJr)— f(S .) denotes the gain from processing e by Level-
Construct(l). Note that §, = —Oforallec N\ D, and } e = f(SL).

The first lemma derives a lower bound for this gain.

Lemma 1. Lete’ € D be added to S; when processed by Level-Construct(l). Then

S > a+B Y fle:Si,).

ceC,

To relate the final output Sy, to OPT, we consider D, the set of all elements
ever added to S, for all 0 < [< L. For d € D\ S, let ¢/(d) be the element
that d was exchanged for, that is, €’(d) appeared later than d in the stream
and d € Co/(q). For deleted elements d € D\ Sg, the exit value pu(d) of d is the
incremental value of d evaluated when d is removed from S, defined formally as

pld) = F(d: S, 0)-

The analysis proceeds in two steps. First, we bound f(D) in the following
lemma.

Lemma 2. Let D be the set of all elements ever added to Sy, for all0 <1 < L.
Then

F(D) < (1+ %) £(Sp) - SIpl.

B

Dynamic Algorithms for Submodular Maximization 45

Proof. For each element d € D\ Sy, that is, d is an element that was once in
the solution S; on some level [but has been replaced later. And €’(d) denotes
the element added in exchange of d. We have

f(D) = f(S) < fs, (D)= > fs,(d:D)

deD\SrL,

> p(d)

deD\SL

=> >)

e'eD deC,,

S Z%'((Se’_a)

e’eD

IN

1 o

= f(Sp)— =

B (5z) p

where the first inequality holds since the monotonicity of f, the second inequal-

ity holds since the submodularity of f and the definition of u(d) and the last
inequality follows by Lemma 1.

DI,

Second, we upper bound f(M U D). Let M € T be any feasible solution. To
relate the final output Sg, to OPT, we upper bound f(M U D). Here we use the
fact that 7 is a p-matchoid to frame an exchange argument between M and D.

Lemma 3. Let M € T be an any independent set. Then

(1+p8)*
g

Theorem 2. Let MP = (N, T) be a p-matchoid of rank k, and let f : oN Rt
be a non-negative monotone submodular function. For any operation i, it holds
that the solution S; output by Algorithm 4 at the end of the computation relative
to iteration i is a 4dp-approximation of OPT;, fora =0,8=1.

E[f(M UD)] < ka + p-E[f(S0)):

Proof. Consider the last time ¢ when Level-Construct(!) is called for some value
i. Let us start by analyzing f(S;). If f is monotone, then f(M) < f(M U D) for
any set M. Let « = 0,0 =1, S; be the solution of our algorithm and O; be the
optimal solution after i updates. By Lemma 3, we obtain the followings.

Mﬂ&nzi,MﬂMUD»

If we take M to be the set achieving O;, then

E[f(S)] > — -E[f(0; UD)] > % F(O) = i _OPT.

46 L. Ma et al.

Now we prove the amortized running time of Algorithm 4. OQur data structure
whose amortized running time depends poly-logarithmically on a parameter A
of the function f defined as

maXgeN f(il')

A= — ,
MINTCN, z¢To Jr(z)

where Ty denotes the set of all the elements with 0 marginal contribution with
respect to T'. Recall that, throughout this paper, we refer to running time as the
total number of the submodular function oracle evaluations plus the number of
the p-matchoid independent set oracle evaluations.

First, we show that it is possible to compute the candidate swap C/ in line 10
of Algorithm 4 in O(glog k) calls of the independence oracle of the p-matchoid.

Lemma 4. For any element € € Ay, it is possible to find the candidate swap
Cor by Swapping(S,e’) in O(qlogk) calls of the independence oracle of the p-
matchoid.

The computation of our dynamic algorithm is mainly carried out by
the Level-Construct function, which exhibits a recursive structure. While
Insertion(e) or Deletion(e) triggers Level-Construct(l), this induces a chain of
recursive calls of Level-Construct to higher levels. We construct a deterministic
upper bound on the computation induced by any new chain of Algorithm 4 calls
in Lemma 5.

Lemma 5. For any level | with 0 < | < L, the running time of Level-
Construct(l) is O(%ﬁlogk).

Then, we measure the number of times that Insertion(e) induce new chain of
Algorithm 4 calls by Lemma, 6.

Lemma 6. For any level | with 0 <1 < L, the number of invocations that the
Level-Construct(l) is called directly from Insertion(e) is at most 2'.

Next, we measure the number of times that Deletion(e) induce new chain of
Algorithm 4 calls by Lemma 7.

Lemma 7. For any level | with 0 < | < L, the expected number of invoca-
tions that the Level-Construct(l) is called directly from Deletion(e) is at most
2+3k log A.

Combining the upper bound of Algorithm 4 with the number of calls completes
the proof of Theorem 3.

Theorem 3. Algorithm j exhibits an O(qk?log klog® Alog n) expected amor-
tized running time.

Proof. The running time when an element is inserted or deleted is O(L) =
O(log n) beside the calls made to Level-Construct. By comparing Lemma 6 and

Dynamic Algorithms for Submodular Maximization 47

Lemma 7, it results that the number of calls induced by Deletion(e) dominates
those induced by Insertion(e). We bound the total expected running time by

nkqlog klog A
R

2 Z k23 1og A - (e)

0<I<L

=16c Y ngk’log klog® A
0<I<L

= 16¢ - (ngk®log klog® Alog n).

5 Conclusion

In this paper, we study monotone submodular maximization with the p-matchoid
constraint in the dynamic setting. And we construct a dynamic algorithm whose
guarantees are robust to any adversary that generates the stream of insertions
and deletions. Our main result is a randomized algorithm that obtains a 4p-
approximate solution with only poly-logarithmic amortized update time. Specifi-
cally, our dynamic algorithm exhibits an O(gk? log k log? Alog n) expected amor-
tized running time, where k is an upper bound on the cardinality of the feasible
solution. For future work, it would be interesting to extend the current result
to more general constraints. Another compelling direction for future work is to
reduce the amortized running to depend only poly-logarithmically in k.

References

1. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and
online mechanisms. In: Proceedings of the 18th Symposium on Discrete Algorithms,
pp. 434-443 (2007)

2. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming sub-
modular maximization: massive data summarization on the fly. In: Proceedings of
the 20th International Conference on Knowledge Discovery and Data Mining, pp.
671-680 (2014)

3. Banihashem, K., Biabani, L., Goudarzi, S., Hajiaghayi, M., Jabbarzade, P., Mone-
mizadeh, M.: Dynamic algorithms for matroid submodular maximization. In: Pro-
ceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, pp. 3485—
3533 (2024)

4. Banihashem, K., Biabani, L., Goudarzi, S., Hajiaghayi, M., Jabbarzade, P., Mone-
mizadeh, M.: Dynamic non-monotone submodular maximization. In: Proceedings
of the 36th Neural Information Processing Systems, pp. 17369-17382 (2023)

5. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with
preemption. ACM Trans. Algorithms 15(3), 1-31 (2019)

6. Calinescu, G., Chekuri, C., Pal, M., Vondrak, J.: Maximizing a submodular set
function subject to a matroid constraint. In: Proceedings of the 12th International
Conference on Integer Programming and Combinatorial Optimization, pp. 182—196
(2007)

48

7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. Ma et al.

. Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: matchings,
matroids, and more. Math. Program. 154, 225-247 (2015). https://doi.org/10.
1007/s10107-015-0900-7

. Chandra C., Shalmoli G., Kent Q.: Streaming algorithms for submodular function
maximization. In: Proceedings of the 42nd International Colloquium on Automata,
Languages and Programming, pp. 318-330 (2015)

. Chen, W., Wang, C. Wang, Y.: Scalable influence maximization for prevalent viral

marketing in large-scale social networks. In: Proceedings of the 16th International

Conference on Knowledge Discovery and Data Mining, pp. 1029-1038 (2010)

Chen, W., Wang,Y., Yang, S.: Efficient influence maximization in social networks.

In: Proceedings of the 15th International Conference on Knowledge Discovery and

Data Mining, pp. 199-208 (2009)

Chen, X., Peng, B.: On the complexity of dynamic submodular maximization.

In: Proceedings of the 54th Symposium on Theory of Computing, pp. 1685-1698

(2022)

Dasgupta, A., Kumar, R., Ravi, S.: Summarization through submodularity and

dispersion. In: Proceedings of the 51st Annual Meeting of the Association for Com-

putational Linguistics, pp. 1014-1022 (2013)

Diitting, P., Fusco, F., Lattanzi, S.: Fully dynamic submodular maximization over

matroids. In: Proceedings of the 40th International Conference on Machine Learn-

ing, pp. 8821-8835 (2023)

Feldman, M., Karbasi, A., Kazemi, E.: Do less, get more: streaming submodular

maximization with subsampling. In: Proceedings of the 31st Neural Information

Processing Systems, pp. 730-740 (2018)

Fujishige, S.: Submodular Functions and Optimization, vol. 58. Elsevier (2005)

Goyal, A., Bonchi, F., Lakshmanan, L.: A data-based approach to social influence

maximization. Proce. VLDB Endow. 5(1), 73-84 (2011)

Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi, A.: Sub-

modular streaming in all its glory: tight approximation, minimum memory and

low adaptive complexity. In: Proceedings of the 36th International Conference on

Machine Learning, pp. 3311-3320 (2019)

Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a

social network. In: Proceedings of the 9th International Conference on Knowledge

Discovery and Data Mining, pp. 137-146 (2003)

Lattanzi, S., Mitrovic, S., Norouzi-Fard, A., Tarnawski, J., Zadimoghaddam, M.:

Fully dynamic algorithm for constrained submodular optimization. In: Proceedings

of the 33rd Neural Information Processing Systems, pp. 12923-12933 (2020)

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:

Cost-effective outbreak detection in networks. In: Proceedings of the 13th Interna-

tional Conference on Knowledge Discovery and Data Mining, pp. 420-429 (2007)

Lin, H., Bilmes, J.: A class of submodular functions for document summarization.

In: Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, pp. 510-520 (2011)

Mirzasoleiman, B., Jegelka, S., Krause, A.: Streaming non-monotone submodular

maximization: personalized video summarization on the fly. In: Proceedings of the

AAAT Conference on Artificial Intelligence, vol. 32 (2018)

Monemizadeh M.: Dynamic submodular maximization. In: Proceedings of the 33rd

Neural Information Processing Systems, pp. 9806-9817 (2020)

Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum

of a submodular set function. Math. Oper. Res. 3(3), 177-188 (1978)

https://doi.org/10.1007/s10107-015-0900-7
https://doi.org/10.1007/s10107-015-0900-7

25.

26.

27.

Dynamic Algorithms for Submodular Maximization 49

Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24,
Springer (2003)

Seeman , L., Singer, Y.: Adaptive seeding in social networks. In: Proceedings of the
54th Annual IEEE Symposium on Foundations of Computer Science, pp. 459-468
(2013)

Sipos, R., Swaminathan, A., Shivaswamy, P., Joachims, T.: Temporal corpus sum-
marization using submodular word coverage. In: Proceedings of the 21st Interna-
tional Conference on Information and Knowledge Management, pp. 754-763 (2012)

l‘)

Check for
updates

Generative Flow Networks
with Symmetry Enhancement to Solve
Vehicle Routing Problems

Zizhen Zhang!, Guoyao Rao?, Deying Li'®™ Yongcai Wang!, Wenping Chen’,
and Yuging Zhu?

! Renmin University of China, Beijing, Beijing 100872, China
{zizhenzhang,deyingli,ycw,chenwenping}@ruc.edu.cn
2 Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
raogy@pcl.ac.cn
3 California State University, Los Angeles, USA
yuqing.zhu@calstatela.edu

Abstract. Vehicle Routing Problems (VRPs) have made significant
strides in accuracy and computational efficiency through the adoption
of Deep Learning (DL) techniques. However, previous studies have not
fully addressed the symmetries inherent in VRPs, such as rotation, trans-
lation, permutation, and scaling. This paper introduces a novel train-
ing approach, GSE-VRPs, which employs a regularizer-based method to
exploit universal symmetries present in various VRPs and their solu-
tions. By leveraging symmetries like rotational, reflectional, and uniform
scalability invariance, this approach substantially enhances the general-
ization capability of neural heuristic solvers. It enables learned solvers
to effectively utilize common symmetries within the same class of VRPs.
Our experiments demonstrate that GSE-VRPs significantly enhance the
performance of deep heuristic methods in two VRP tasks—the Traveling
Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem
(CVRP)—all without relying on problem-specific domain expertise.

Keywords: Vehicle Routing Problems + Symmetry + Neural Heuristic

1 Introduction

Combinatorial optimization problems (COPs), characterized by NP-hardness,
involve a discrete search space and computational challenges in finding the opti-
mal solution. One key example of a COP in logistics is the vehicle routing prob-
lem (VRP), which focuses on minimizing delivery costs by efficiently routing
vehicles from a depot to a set of geographically dispersed customers. The VRP
has been the subject of extensive research for decades and has found numerous

Dr. Li is supported in part by the National Natural Science Foundation of China Grant
No. 12071478.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 50-62, 2025.
https://doi.org/10.1007/978-981-96-4448-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_5&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_5

Generative Flow Networks with Symmetry Enhancement 51

real-world applications, including freight delivery [5], last-mile logistics [9], and
ride-hailing services [15].

In recent years, research on solving the VRP using deep reinforcement learn-
ing (DRL) has been gaining momentum. Unlike traditional approaches, this
emerging field focuses on automatically learning heuristic policies through neu-
ral networks, which can identify underlying patterns in problem instances. This
allows the discovery of more effective policies than those created manually [4].
Significant efforts have been made to develop various deep learning models aimed
at narrowing the performance gap between emerging methods and highly opti-
mized conventional heuristic solvers like Concorde [1] and LKH [6]. These deep
models target solving VRP variants, such as the traveling salesman problem
(TSP) and the capacitated vehicle routing problem (CVRP) [10,11,13,17].

Despite recent efforts to apply DRL to VRPs, these approaches have
largely overlooked an important characteristic: symmetry inherent in VRPs. For
instance, problems like the TSP, often depicted in 2D Euclidean space, require
solutions that remain unchanged under geometric transformations of city coor-
dinates, such as rotation, reflection, and translation. Moreover, DRL typically
neglects solution symmetry, where an optimal Hamiltonian cycle in TSP can
correspond to multiple equivalent sequences or trajectories in DRL’s sequential
decision-making framework. Utilizing symmetry in training neural networks is
essential, as it serves as an inductive bias that helps reduce the training space,
thereby enhancing the efficiency of the deep reinforcement learning (DRL) pro-
cess.

Recent studies have made efforts to tackle the challenges encountered by ear-
lier neural solvers for VRPs, but only from some specific angles. For instance,
some researchers have concentrated on adjusting their REINFORCE baseline by
incorporating terms that account for symmetry [8,11], while others have intro-
duced RL-based heuristic enhancements that capitalize on the cyclic properties
of the TSP [13]. Despite these efforts to address symmetry issues, they are often
tailored to specific problems and typically result in only incremental improve-
ments.

To overcome these challenges, we introduce a generative strategy based on
a new flow-matching learning paradigm [3], a decision-making framework aimed
at learning stochastic policies for sampling composite objects with probabili-
ties that align with a given terminal reward. The foundational elements of our
framework include a flow-match loss that reflects solution symmetry and a mean
square error loss that addresses problem symmetry. Specifically, we approach
VRPs as a sequential decision-making process, utilizing an autoregressive model
to sequentially select locations to visit. The autoregressive location selection pro-
cess is represented as a generation tree, with each potential route depicted as
a trajectory from the root to a leaf. The generative model manages the prob-
ability flow throughout the tree to ensure that the distribution of probabilities
across routes aligns with their respective utilities. Since the symmetric trans-
formation problem and the original problem have the identical generation tree,
we introduce a bias penalty term loss, which penalizes discrepancies between

52 Z. Zhang et al.

the flow values of original and symmetric transformed coordinate sets. We have
tested GSE-VRPs on two classical VRPs, including the TSP and the CVRP.
Our results demonstrate that GSE-VRPs delivers significant improvements over
neural solvers trained using standard RL paradigms. We also performed abla-
tion studies to validate the effectiveness of our approach. In summary, our main
contributions are as follows:

— We tackle the issue of problem symmetry in constructive methods for solving
vehicle routing problems, which often result in multiple optimal solutions.
These symmetries can be leveraged during neural network training through
symmetry alignment, enhancing the training process.

— We present an efficient learning algorithm, GFlowNet, designed to facilitate
rapid credit assignment for GFlowNet agents navigating symmetrical trajec-
tories commonly found in vehicle routing problems.

— We validate the efficiency of our model in the experiments which demonstrate
that our model achieves superior generalization and stability.

2 Related Work

Bello et al. [2] introduced one of the earliest deep reinforcement learning (DRL)
methods using a pointer network [16], trained through an actor-critic approach.
The Attention Model (AM) [10] extends this work by substituting the Pointer-
Net with a Transformer architecture, establishing itself as the standard for neural
solvers. Notably, AM showcases its versatility by effectively addressing various
classical routing problems and their practical extensions [5,7]. The multi-decoder
Attention Model (MDAM) [18] builds upon the Attention Model by integrat-
ing an ensemble of decoders. However, this extension is not ideally suited for
addressing stochastic routing problems. POMO [11] and Sym-NCO [8] enhance
the Attention Model by exploiting symmetry in the TSP and the CVRP. These
methods optimise in the direction of the best of the multiple trajectories gener-
ated by the neural solver, which can lead to a lack of exploration of the solution
space, arriving at a local optimum rather than a global one.

3 Preliminary

3.1 Problem Formulation

In this work, we focus on 2D Euclidean Vehicle Routing Problems (VRPs). In
this study, we concentrate on 2D Euclidean Vehicle Routing Problems (VRPs).
The constrained VRP can be formulated as follows:

Problem 1 (Vehicle Routing Problems (VRPs)). Given a set of city coordinates
X = {x1,%2,...,xy} C R2, the goal is to determine an optimal route 7 =

Generative Flow Networks with Symmetry Enhancement 53

{r(1),...,7(N)} that minimizes the total distance L traveled along the route.
The objective function for the VRPs can be expressed as follows:

mm L(7,X) Z l1%r(iy = Xty |2 (1)
i=

st. f(r,X) =0,
g9(m,X) <0.

where f(7,X) and g(r,X) denote the constraint functions. For different VRP
variants, the objective may be affected by various problem-specific constraints,
allowing for multiple sub-routes within a valid route 7. In accordance with recent
literature [10,11], we focus on two representative VRP variants: the Travel-
ing Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem
(CVRP). In the TSP, a valid route is a Hamiltonian cycle in which each node
is visited exactly once before returning to the starting point. In the CVRP, the
depot xq is part of the set X, and each customer node x; (¢ > 1) has an asso-
ciated demand &;. A feasible solution consists of multiple sub-routes, with each
vehicle departing from the depot, serving a subset of customers, and returning
to the depot. Each customer node x; (¢ > 1) must be visited exactly once, and
the total demand for each sub-route must not exceed the vehicle’s capacity A.

3.2 GFlowNets

In this section, we present the fundamental concepts of GFlowNets, a novel gen-
erative model designed for compositional objects denoted as x € X. We adhere
to the notation established in [3]. GFlowNets utilize a trajectory-based gener-
ative process, wherein discrete actions iteratively alter a state that represents
a partially constructed object. This process is illustrated by a directed acyclic
graph (DAG), G = (S, A), where S represents the finite set of all possible states,
and A denotes a subset of S x S, corresponding to the directed edges that con-
nect the states. The head of an edge corresponds to a state s, while the parents
of state s consist of the set of states connected by edges for which s acts as the
tail.

We define a complete trajectory as 7 = (sg — -+ — $,) € T, which pro-
gresses from the initial state sy to the terminal state s,, = x € X. The tra-
jectory flow F'(7) : T — Ry represents the unnormalized density function for
a given trajectory 7 € 7. The state flow is defined as the total unnormalized
probability that passes through a state s: F(s) = > ..., F(7). Similarly,
the edge flow signifies the total unnormalized probability passing through an
edge s — st F(s — 5') = X} cr.(s—se, F'(7). The trajectory reward R(r)
is defined as the reward associated with the terminal state of the trajectory,
expressed as R(7 = (sg — -+ — s, = x)) = R(x). The forward policy, Pr(s'|s),
models the transition probability from state s to its child state s’. Similarly,
the backward policy, Pg(s|s’), models the transition probability for the reverse
transition from s’ to its parent state s. The forward and backward policies,

54 Z. Zhang et al.

Pr and Ppg, are related to the Markovian flow F' through the following equa-

tions: Pp(s'|s) = F(;(_S))S/) and Pp(s|s’) = F;f(/s_,as). The marginal likelihood of

sampling x € X is defined as P/ (z) = Y. ..., Pp(7), where 7 — 2 indi-
cates a complete trajectory 7 that concludes at x. The primary objective of
GFlowNets is to align the marginal likelihood with the reward function, such
that P o R(z) = exp(—&(x)/T), where £ : X — R represents an energy
function, and T' > 0 is a temperature parameter.

Trajectory Balance (TB) [14]. The trajectory balance loss L7 operates by
training three components: a learnable scalar for the initial state flow Zy ~
F(so) = > ,c7 F(7), a forward policy Pr(s¢y1]s¢;0), and a backward policy
Pg(s¢|st+1;0). These models are trained to minimize the following objective:

Zo [1iy Pr(sisi]sii0))2
R(x) H?:_ol Pp(silsi+1;0)

Lrp(1;0) = (log (2)

4 Method

4.1 Learning Constructive Heuristics for VRPs

The goal of VRPs is generally to identify a feasible solution 7 = (a1, as, as, ...),
where each a; corresponds to the information of the ¢-th selection, such as a
location index for VRPs. While constructing the tour 7 step by step, our model
operates within a Markov Decision Process (MDP), described as follows:

— State. The state s; = (a1.1, X) represents the partially constructed solution
at step ¢, where a1.; indicates the locations that have been selected so far. The
initial state sg corresponds to an empty solution, while the terminal state sy
signifies the completed solution.

— Action. The action a; involves selecting a location from the set of unvisited
nodes (i.e., ar € A ={1,...,N}\{a1.t-1}).

— Reward. We define the log reward as the total length of a completed solution,
given by &(ay.,) = L(ay.p, X).

For instance, let’s consider solving the Traveling Salesman Problem (TSP)
with four cities (i.e., N = 4). The problem instance X includes the coordinates
of these four cities, represented as X = {x}%_,, which the salesman needs to
visit. The solution 7 = aq.y is a sequence of city indices. If a1.y = (1,3,2,4),
the salesman visits the cities in the order x; — X3 — X9 — x4 — X1, returning
to the first city to complete the route. The log reward of the TSP is given by
(Z?:l [Xariy = Xa, | + [[%as — Xaq[])-

Symmetries are intrinsic to many VRPs, and we hypothesize that leveraging
these symmetries in the neural solver can improve both its generalization ability
and sample efficiency. We define the two identified symmetries as follows (Fig. 1):

Definition 1 (Problem Symmetry). Problem X' and X’ are problem sym-
metric (X* &% X9) if for any feasible solution T, R(1;X?) = aR(1; X7), where
o € R+.

Generative Flow Networks with Symmetry Enhancement 55

Definition 2 (Solution Symmetry). Two solution T° and 77 are solution
symmetric (1t <% 79) on problem X if R(7%;X) = R(17; X).

Several notable problem symmetries are found in VRPs, including rotation,
reflection, and uniform scaling. In the two-dimensional coordinate plane, rotation
and reflection can be represented by orthogonal matrices. In contrast, uniform
scaling can be represented by diagonal matrices, with the diagonal elements
being the scaling factors a.

Proposition 1 (Orthogonal Symmetry). For any orthogonal matriz O, the
problem X and O(X) = {Ox;}Y_| are problem symmetric, i.e., X &% O(X).

Proposition 2 (Uniform Scaling Symmetry). For the uniform scaling
matric S = « - I, where a € R is the scaling factor, the problem X and
S(X) = {Sx;}N, are problem symmetric, i.e., X &% S(X).

Set O, to denote the rotation transformation matrix and O,.. to denote the
reflection transformation matrix. We can combine these transformation matrices
to get a composite transformation matrix. Assuming that we rotate, then reflect,
and finally uniform scale in that order, the composite transform matrix (M) is:

M®=5% 0, Oy (3)

Z(X)
} Lps
Z(T(X))

_ax)a

R(ry,X) R(t2,X) R(t3,X)
Pr(t1,X) Pr(t2,X) Pr(ts, X)

Lss

Fig. 1. The framework of GSE-VRPs.

4.2 GFlowNets with Symmetry Enhancement for VRPs

In this section, we present our proposed framework, the Generate Flow Network
with Symmetry Enhancement for Vehicle Routing Problems (GSE-VRPs).
GSE-VRPs learns the neural solver parameters 8 by minimizing the total loss
function:

56 Z. Zhang et al.

Fig. 2. Example of generation tree with N = 4 for TSP.

Etotal = Lss +)\1£ps (4)

The total loss, Liotal, comprises Ly, the loss term from Eq. (4) that incor-
porates solution symmetry regularization; and Lps, the loss term from Eq. (4)
that applies problem symmetry regularization. The weight coefficients A; range
from 0 to 1. In the following sections, we explain each loss term in detail.

4.3 Solution Symmetry L

Assuming the set of cities to be visited contains NN locations, the process of
sequentially adding these locations to the route creates a generation graph that
resembles a tree structure with a depth of N. In this tree, nodes represent
intermediate or final routes, while each edge corresponds to a selected location.
Figure 2 illustrates an example of a generation tree for the Traveling Salesman
Problem (TSP) with N = 4. In this tree graph, each node s; has a single par-
ent node s;_1, except for the root node, which has no parent. The number of
child nodes for a given node s; is proportional to |N| — ¢, except for leaf nodes,
which do not have any children. All leaf nodes are located at depth N, and the
total number of leaves (i.e., the route search space) is equivalent to the num-
ber of possible arrangements of the NV locations, which is N!. By sampling from
the auto-regressive location selection model Pg(s¢|s;—1,X), the generator cre-
ates a trajectory that leads to the output route 7 = aq,...,an. Each output
route (located at the leaf node) uniquely corresponds to its generation trajec-
tory. Thus, the generation probability of an output route is determined by the
sampling probability of its unique trajectory, conditioned on X:

N
Pp(rX) = [Pr(stlsi—1,X) (5)

Generative Flow Networks with Symmetry Enhancement 57

where the selection of node s; determines the next step of the output route,
i.e., Pp(s¢|si—1,X). Using the example in Fig. 2, the route {x1, %2, x3,%x4} has a
trajectory probability Pr(7]X) =0.25 x 0.4 x 0.9 x 1 = 0.09.

In contrast to the standard reward maximization objective typically seen in
most neural solvers, our goal is to learn a diverse policy that not only identifies
the highest reward but also fosters exploration by encouraging other high-reward
routes. Consequently, in line with Eq. (2), our objective is to learn a trajectory
distribution that is proportional to the route-wise rewards for a given VRP
instance X: P(7]|X) o R(7, X).

This approach encourages the model to align with the log-scaled rewards
of routes, decreasing the likelihood of getting trapped in local optima while
promoting the exploration of routes with slightly lower rewards.

Learning the Trajectory Probability: Building on the previous concepts,
for an observed training sample (7,X, R(7, X)), we can derive the trajectory
balance (TB) objective from Eq. (2):

Zo(X) I, PF9<st+1|st>>2
R(7,X)

Lss(130) = <1og (6)
The learnable parameters include the initial flow estimator Zy and the forward
probability function Pg,. It is important to note that the backward probability
is constant, given by Ppg(s;—1|s:) = 1, since route generation follows a tree
structure rather than a directed acyclic graph, meaning each node in the tree
has only one parent.

4.4 Problem Symmetry Ly

As defined in Definition 1 and Proposition 1, the symmetrical geometric transfor-
mation have the same generation tree graph. Thus we can obtain the relationship
between the initial state flow of problem X and the symmetric transformation
M(X) as follows.

Proposition 3. If X and M*(X) are Problem Symmetry, the initial state flow
of X is proportional to the initial state flow of M(X), i.e., Z(X) = L Z(M*(X)).

We introduce a bias penalty loss for penalizing the deviation between the
initial state flow prediction Z(X) for problem X and the initial state flow pre-
diction Z(M“(X)) for the symmetric problem M“(X), which is equipped with
problem symmetry.

Lys = Bt (Z0(X) — ~ 2T (0)) @

where M represents the distribution of random symmetry transformation matri-
ces, and M is a symmetry transformation matrix sampled from M.

58 Z. Zhang et al.

5 Experiments

5.1 Setup

We evaluate our proposed model against several baseline methods for both the
Traveling Salesman Problem (TSP) and the Capacitated Vehicle Routing Prob-
lem (CVRP). These include non-learnable baselines (heuristics) such as Con-
corde [1], LKH3 [6], and Gurobi [12], as well as recent neural constructive base-
lines: AM [10], POMO [11], MDAM [18], and Sym-NCO [8]. The performance
of our model is assessed against these baselines using three metrics: tour length
(Obj), optimality gap (Gap), and evaluation time (Time), with lower values
indicating better performance (Table 2).

Table 1. Comparison with various baselines on TSP.

Method TSP20 TSP50 TSP100
Len.|Gap TimeLen.|Gap |Time|Len.Gap |Time
Concorde 3.83 - 5m |5.69- 13m |7.76|- 1h
LKH3 3.83/0.00%(42s |5.69/0.00%/6 m |7.76|0.00%25 m
Gurobi 3.83/0.00%|7s [5.69/0.00%2m |7.76/0.00%(17 m
OR Tools 3.86/0.94%|1m |5.85/2.87%/5m |8.06|3.86%(23 m
AM(g.) 3.84|0.19%|/<1s 5.76/1.21%(1s 8.03|4.53% 2
AM(s.) 3.8310.07%|1m [5.71/0.39%5m |7.92/1.98%22 m
POMO(g.) 3.8310.12%|<1s |5.73]0.64%(1s |7.84|1.07%2s
POMO(s.) 3.8310.04%|<1s [5.70]0.21%2s |7.80|0.46%|11s
MDAM(g.) 3.8310.13%|5s [5.73]0.65%(15s [7.93|2.19%|36 s
MDAM(s.) 3.83/0.04%2m [5.70/0.23%|7Tm |7.80/0.48%20 m
Sym-NCO(g.) [3.83]0.12% <1s [5.72]0.52% 1s 7.84/0.94% 2s
Sym-NCO(s.) {3.83/0.03%|<1s 5.70/0.21%2s |7.79/0.39%)/13s
GSE-VRPs(g.)3.83/0.11%|<1s 5.71/0.49%|1s |7.84/0.91%2s
GSE-VRPs(s.)|3.83/0.03%|<1s 5.70/0.12%2s |7.77/0.21%)|11s

5.2 Results

Table 1 presents a comparison of GSE-VRPs’s performance on the TSP against
several baselines. The first group of baselines comprises results from Concorde,
along with other significant non-learning-based heuristic methods. We obtained
the optimal solutions by running Concorde independently, while the data for the
other solvers were sourced from Wu et al. [17] and Kool et al. [10]. The second
group of baselines consists of deep reinforcement learning (RL) construction-
based approaches documented in the literature [8,11,18]. In the third group,

Generative Flow Networks with Symmetry Enhancement 59

Table 2. Comparison with various baselines on CVRP.

Method CVRP20 CVRP50 CVRP100
Len.Gap |TimeLen. |Gap Time|Len. |Gap |Time
LKH3 6.12}- 2h [10.38- 7h [15.68- 12h
Gurobi 6.42/4.48%2m [11.22/8.12%12m (17.14/9.34%|1 h
AM(g.) 6.40(4.45%|<1s [10.935.34%(1s [16.73/6.72%|3 s
AM(s.) 6.2411.97%3m [10.59(2.11%|7m |16.16/3.09%/30 m
POMO(g.) 6.35(3.72%|<1s [10.743.52%(1s |16.153.00%|3 s
POMO(s.) 6.17/0.82%|1s |10.49(1.14%|4s [15.83/0.98%/19 s
MDAM(g.) 6.30(2.86%(7s |10.74/3.39%(16s |16.40/4.86%/45 s
MDAM(s.) 6.14/0.40%3m [10.50/1.19%9m |16.03/2.49%|1h
Sym-NCO(g.) 16.30(2.93%|<1s |10.753.48%|<1s |16.10(2.88%2s
Sym-NCO(s.) 16.221.69% 1s 10.481.00%6s |15.87|1.46%|16s

GSE-VRPs(g.)[6.30(2.85%|<1s |10.74/3.38%(1s |16.0112.09%|3 s
GSE-VRPs(s.)|6.14(0.41%|1s |10.47|0.91%7s |15.750.48% 18 s

we present results from the Attention Model (AM), which was trained using
our implementation of the generative flow network that incorporates symmetry
enhancement.

For 10,000 random instances of TSP20 and TSP50, GSE-VRPs finds near-
optimal solutions with optimality gaps of 0.03% in just a few seconds and 0.17%
in tens of seconds, respectively. For TSP100, GSE-VRPs achieves an optimality
gap of 0.21% within one minute, significantly surpassing all other learning-based
heuristics in terms of both solution quality and computation time. For CVRP,
our results closely match the ground-truth solutions, yielding average optimality
gaps of 0.41%, 0.91%, and 0.48% on instances with n = 20, n = 50, and n = 100,
respectively. The total runtime of our method remains competitive compared to
all other learning-based baselines.

S
LA

i

NPRVAN

(
7

I~

1 |
R

Fig. 3. Example TSP trajectories given by GSE-VRPs.

{

Figure3 and 4 shows some trajectories obtained from symmetric problem
instances on TSP100 and CVRP100 respectively. (a) is the original problem,

60 Z. Zhang et al.

g

Fig. 4. Example CVRP trajectories given by GSE-VRPs.

o o.

0.025 0.05

0.020 0.04

0.015

Optimal Gap
Optimal Gap

0.010 0.02

0.005 0.01

0.000 TSP125 TSP150 000 CVRP125 CVRP150

(a) TSP (b) CVRP

Fig. 5. Generalization test.

and (b), (c), and (d) are the rotation, reflection, and 0.5x uniform scaling of
(a), respectively. It can be shown that although each symmetric instance has
a different starting point and trajectory, it forms the same Hamiltonian circuit
for TSP. Compared to the TSP, the GSE-VRPs outputs the same trajectory
for different symmetric instances of the CVRP, except for instances of uniform
scaling transformations.

Although all baselines were trained on n = 100, they struggled to generalize
effectively to other problem sizes, particularly the AM model. This led to sig-
nificantly poorer performance, with optimality gaps ranging from 2.5% to 4%,
compared to the i.i.d. test results reported in their original papers. For exam-
ple, POMO achieves an optimality gap of only 0.46% compared to LKH3 on
TSP100 when both training and testing are conducted on n = 100. However,
in our cross-size experiments, this gap increased to 0.98%. In contrast, GSE-
VRPs demonstrated significantly improved generalization. For instance, GSE-
VRPs reduced the gap by 1.69% (0.19% vs. 1.88%) compared to AM. Figure 5(b)
shows that cross-size generalization is also challenging for neural baselines, with
gaps ranging from 1.97% to 4.51%. In contrast, our method consistently pro-
duces high-quality solutions with shorter tour lengths and demonstrates greater
robustness to size variations, achieving gaps as low as 1.47%. This enhancement
underscores the effectiveness of our approach in utilizing the inherent symmetry
of the problem.

6

Generative Flow Networks with Symmetry Enhancement 61

Conclusion

Our research addresses the challenges of tackling VRPs using unsupervised learn-
ing methodologies. We contribute to this field by introducing the principled GSE-
VRPs decision-making framework for VRPs. By integrating probabilistic infer-
ence with sequential decision-making, GSE-VRPs represent a promising app-
roach to discovering a diverse array of high-quality candidate solutions in VRPs.
Through extensive numerical experiments, we demonstrate the effectiveness and
efficiency of GSE-VRPs in solving NP-hard VRPs. Our results highlight the
ability of GSE-VRPs to generate a diverse range of high-quality solutions.

References

10.

11.

12.

13.

14.

15.

16.

Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)
Bello, 1., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)
Bengio, E., Jain, M., Korablyov, M., Precup, D., Bengio, Y.: Flow network based
generative models for non-iterative diverse candidate generation. Adv. Neural. Inf.
Process. Syst. 34, 27381-27394 (2021)

Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405-421 (2021)
Duan, L., et al.: Efficiently solving the practical vehicle routing problem: a novel
joint learning approach. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 3054-3063 (2020)
Helsgaun, K.: An extension of the lin-kernighan-helsgaun tsp solver for constrained
traveling salesman and vehicle routing problems. Roskilde Roskilde Univ. 12, 966—
980 (2017)

Kim, M., Park, J., et al.: Learning collaborative policies to solve np-hard routing
problems. Adv. Neural. Inf. Process. Syst. 34, 10418-10430 (2021)

Kim, M., Park, J., Park, J.: Sym-nco: leveraging symmetricity for neural combi-
natorial optimization. Adv. Neural. Inf. Process. Syst. 35, 1936-1949 (2022)
Konstantakopoulos, G.D., Gayialis, S.P., Kechagias, E.P.: Vehicle routing problem
and related algorithms for logistics distribution: a literature review and classifica-
tion. Oper. Res. Int. J. 22(3), 2033-2062 (2022)

Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475 (2018)

Kwon, Y.D., Choo, J., Kim, B., Yoon, I., Gwon, Y., Min, S.: Pomo: policy optimiza-
tion with multiple optima for reinforcement learning. Adv. Neural. Inf. Process.
Syst. 33, 21188-21198 (2020)

LLC Gurobi Optimization: Gurobi Optimizer Reference Manual (2021)

Ma, Y., et al.: Learning to iteratively solve routing problems with dual-aspect
collaborative transformer. Adv. Neural. Inf. Process. Syst. 34, 11096-11107 (2021)
Malkin, N., Jain, M., Bengio, E., Sun, C., Bengio, Y.: Trajectory balance: improved
credit assignment in gflownets. Adv. Neural. Inf. Process. Syst. 35, 5955-5967
(2022)

Qin, Z., et al.: Ride-hailing order dispatching at didi via reinforcement learning.
INFORMS J. Appl. Anal. 50(5), 272-286 (2020)

Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, vol. 28 (2015)

http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1803.08475

62

17.

18.

Z. Zhang et al.

Wu, Y., Song, W., Cao, Z., Zhang, J., Lim, A.: Learning improvement heuristics for
solving routing problems. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 5057-5069
(2021)

Xin, L., Song, W., Cao, Z., Zhang, J.: Multi-decoder attention model with embed-
ding glimpse for solving vehicle routing problems. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, pp. 12042-12049 (2021)

®

Check for
updates

Edge-Unfolding Polycubes
with Orthogonally Convex Layers

Mirela Damian!®) and Henk Meijer?

L Villanova University, Villanova, USA
mirela.damian@villanova.edu
2 University College Roosevelt, Middelburg, The Netherlands

Abstract. A polycube is an orthogonal polyhedron composed of unit
cubes glued together along entire faces, homeomorphic to a sphere. A
polycube layer is the section of the polycube that lies between two hor-
izontal cross-sections of the polycube at unit distance from each other.
An edge unfolding of a polycube involves cutting its surface along any of
the constituent cube edges and flattening it into a single, non-overlapping
planar piece. We show that any polycube with orthogonally convex layers
can be edge unfolded.

Keywords: Unfolding - polycube - orthostack - orthogonally convex

1 Introduction

An unfolding of a polyhedron involves cutting its surface and flattening it into
a single, non-overlapping planar piece called an unfolding net. Edge unfoldings
limit cuts to the edges of the polyhedron, whereas general unfoldings allow cuts
anywhere, including across face interiors.

The problem of unfolding polyhedra has been long studied. For non-convex
polyhedra, it has been shown that edge cuts alone are not sufficient to guarantee
an unfolding [1,2], and it remains unknown whether all non-convex polyhedra
have a general unfolding. In contrast, all convex polyhedra have a general unfold-
ing [13, Ch. 22|, but it remains unknown whether all convex polyhedra have an
edge unfolding.

Research on unfolding non-convex objects has predominantly focused on
orthogonal polyhedra, a class of polyhedra whose edges and faces meet at right
angles. Since edge unfoldings are not always possible for orthogonal polyhe-
dra [2], unfolding algorithms typically employ additional non-edge cuts, which
are limited to a refined grid structure on the surface. The surface is initially sub-
divided into rectangular grid faces by introducing new edges at the intersections
of the surface with axis-perpendicular planes passing through each vertex. This
subdivision can be further refined by dividing each grid face into a finer grid

Preliminary ideas explored in this work were first introduced in [11].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 63-74, 2025.
https://doi.org/10.1007/978-981-96-4448-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_6&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_6

64 M. Damian and H. Meijer

of a x b orthogonal subfaces, for positive integers a,b > 1. Cuts are then per-
mitted along any of these newly introduced grid lines, allowing for more flexible
unfolding strategies.

Progressive results have reduced the amount of refinement required
for unfolding orthogonal polyhedra homeomorphic to a sphere. The initial
method [10] used exponential refinement, later improved to quadratic [5],
then linear [4]. These techniques were further extended to unfold genus-2
orthogonal polyhedra using linear refinement [6]. Constant refinement has only
been achieved for specialized classes of orthogonal polyhedra. These include
orthostacks using 1 x 2 refinement [2]|, Manhattan Towers using 4 x 5 refine-
ment [9], and polycube trees using 4 x 4 refinement [7]. Unfolding techniques
with cuts restricted to grid edges exist for orthotubes [2,14], well-separated
orthotrees [8], orthostacks with rectangular faces [3], and orthostacks with rect-
angular slabs [18]. Also, single-layer polycubes with sparse cubic holes [16] and
general cubic holes [17] can be unfolded with cuts restricted to the cube edges.

This paper explores edge unfoldings of polycubes (problem 64 from The Open
Problems Project [15]). A polycube is an orthogonal polyhedron composed of unit
cubes! glued together along entire faces, homeomorphic to a sphere. In the case
of polycubes, all edges of the constituent cubes are available for cuts. This paper
considers polycubes with orthogonally convex layers, where each layer intersects
a line parallel to a coordinate axis in either a single line segment or not at all. We
show that any polycube with orthogonally convex layers has an edge unfolding.

2 Terminology

Throughout this paper, O refers to a polycube with orthogonally convex layers.
We use the term face to refer to a face of O and the term cell to specifically
mean one of the individual unit cube faces that make up the larger faces. Two
non-overlapping surface pieces of O are considered adjacent if their boundaries
share at least one cell edge.

In space we use the term wvertical to refer to the z-direction, and the term
horizontal to refer to the z- and y-directions. We categorize faces based on the
direction of their outward normals: right is +x; left is —z; front is +y; back is
—y; top is +z; and bottom is —z. Let zg, z1, . . ., z;, be the distinct z-coordinates
of the vertices of O. Let z = z; denote the i-plane. We define the i-band to be the
collection of vertical cells parallel to the z-axis that lie between the (i — 1)-plane
and the i-plane, for i = 1,2,...,m. Two i-band cells a and b are considered
opposite if they are parallel to each other and enclosed by two planes orthogonal
to a, passing through the vertical sides of a. By the definition of a polycube,
each i-band is the boundary of an extruded simple orthogonal polygon and is
therefore connected. The layer O; is the portion of O bounded by the i-band, the
(i — 1)-plane and the i-plane, which forms a prism with an orthogonal polygon
as its base. Thus, O can be viewed as a collection of orthogonally convex layers

1 If rectangular boxes are used in place of unit cubes, this is known as an orthostack.

Edge-Unfolding Polycubes 65

6-pointer = ccw

5-pointer = ccw

>

,,,,,,

3-pointer = cw

> —
S3
5 _ —
Ry—n : 2 e {on bt of O)
2
@ - e 2]
T
& A 2-face (on top of Oy) ‘
'
(a) (b)

Fig.1. (a) Polycube O with 7 orthogonally convex layers; visited i-band segments
are delimited by L; and R;, and i-bridges are highlighted in brown, for ¢ = 1,...,6.
(S-labels will be discussed in Sect.4.4.) (b) Top and bottom i-faces of O, for ¢ = 2.

01,04, ...,0,, stacked in this order along the positive z-axis. See Fig. 1a for an
example of a polycube with 7 orthogonally convex layers.

An i-face is a face of O that lies in the i-plane. If located on top of O;, f is
referred to as a top face. Otherwise, f is on the bottom of 0,41 and is referred
to a bottom face. Refer to Fig. 1b. Similar definitions apply to cells.

For any straight band segment S adjacent to an i-face along an edge segment
e, i-beam(S) is defined as the i-face piece illuminated by rays emitted from e
in the direction orthogonal to S. When talking about i-beam(a), for a single
band cell a, we refer to a as an anchor to suggest the possibility of fastening (or
“anchoring”) the beam to a during unfolding. We say that i-beam(a) is anchored
on a, or more broadly, on the band containing a. Note that i-beam(a) has two
parallel anchors: one is a, and the other is the band cell b that is parallel to a
and adjacent to i-beam(a). The cell b may lie on the i-band, opposite to a, or
it may be on the (i + 1)-band. In Fig. la for example, 3-beam(a) is anchored on
cells @ and b, which are on the 3-band and the 4-band, respectively. Two beams
are considered parallel if their anchors are parallel.

Lemma 1. (Reformulation of Lemma 2 from [3]to match our terminol-
ogy). The perimeter of any i-face is partitioned into two contiguous components,
one adjacent to the i-band and the other adjacent to the (i + 1)-band. Addition-
ally, the boundary of any i-face contains two opposite cell edges, one on the
i-band and the other on the (i + 1)-band.

66 M. Damian and H. Meijer

3 Band Segments and Bridges

The main idea of our unfolding algorithm is simple. For each i-band, we iden-
tify two band cells, L; and R; (representing the leftmost and rightmost band
cells in the unfolding net), and an unfolding direction i-pointer € {cw, ccw} to
guide the unfolding. Here, cw and ccw stand for clockwise and counterclockwise,
respectively, as viewed from +z.

Consider any two i-band cells, a and b. We use i-band]a, b] to denote the closed
i-band segment that stretches from a to b inclusively, in the direction of the i-
pointer. Similarly, i-band(a, b) represents the open i-band segment, excluding a
and b. By these definitions, the i-band is the union of i-band[a, b] and i-band(b, a).

The unfolding algorithm cuts along the perimeter of each i-band[L;, R;] and
unfolds it as a horizontal rectangular piece in the plane, with L; to the left and R;
to the right. Band segments i-band[L;, R;] and i-band[L; 41, R;+1] of consecutive
layers are selected such that R; and L;;; are parallel, and i-beam(R;) lies left
of (or coincides with) i-beam(L;4+1) in the unfolding. The i-beams delimited by
(and including) i-beam(R;) and i-beam(L;11) form the a connected component
connecting the two band segments, which we refer to as the i-bridge. The ¢-band
cells outside of i-band[R;, L;] are handled separately. With few exceptions, i-
beams are attached above and below appropriate anchors in the band unfoldings.

We introduce a few more definitions. For any i-
band cell a, if a is part of i-band[L;, R;], then a is
called wisited; otherwise, a is unuvisited.

For a fixed i-band cell r, i-clip(r) is defined as
follows. If i-beam(r) is empty, then i-clip(r) is also
empty. Otherwise, i-clip(r) is the portion of the i-face
delimited by (and including) i-beam(r) and extending
in the direction of the i-pointer from 7.

This definition is depicted in Fig.2. Note that -

) : Fig. 2. Top view of an i-
clip(r) is connected. face; i-clip(r) is the dark-
shaded piece.

3.1 Selecting Band Segments and Bridges

In this section, we show how to select L;, R;, the i-bridge, and the i-pointer, for
increasing ¢ > 1. We start by setting 1-pointer = ccw. Let F' be an arbitrary
top 1-face of O; and let e; and e; be two opposite grid edges of F' adjacent to
the 1-band and the 2-band, respectively. By Lemma 1, e; and ey exist. We set
R1 to be the 1-band cell adjacent to e, and L; to be the 1-band cell adjacent
to Ry in the direction of the 1-pointer (i.e., ccw). The 1-bridge is selected to be
1-beam(R7). We also set Ly to be the 2-band cell adjacent to ez, and set the
2-pointer to ccw. Refer to Fig. la.

For i > 1, we assume that both L; and the i-pointer for traversing the i-band
are fixed. This assumption holds as we handle i-bands sequentially, for increasing
i. We now show how the (i + 1)-pointer, R;, L;;1, and the i-bridge connecting
the two are selected by our unfolding approach.

Edge-Unfolding Polycubes 67

Definition 1 (R;, L;11, i-bridge, (i+1)-pointer). Starting at L;, walk around
the i-band in the direction of the i-pointer. Define R; to be the i-band cell last
encountered along this walk, such that i-clip(R;) is either empty or is adjacent
to an (i + 1)-band cell parallel to R;.

If i-clip(R;) is empty, then L;11 is the (i + 1)-band cell adjacent to R;, the i-
bridge is empty, and the (i + 1)-pointer is the same as the i-pointer. Otherwise,
imagine i-clip(R;) partitioned into beams parallel to i-beam(R;):

(a) Define L;y1 to be the (i + 1)-band cell parallel to R; and adjacent to i-
clip(R;), that minimizes the number of beams delimited by i-beam(R;) and
i-beam(Liy1). If mutiple such cells exist, select the one that minimizes the
Manhattan distance to R;.

(b) The i-bridge comprises i-beam(R;), i-beam(L;+1), and the in-between beams
(if any).

(¢) If R; and L;11 have the same normal, then the (i + 1)-pointer is the same
as the i-pointer; otherwise, the (i + 1)-pointer is opposite to the i-pointer.

In Fig. 1a for instance, all bridges are marked in brown. The following lemmas
establish some structural properties used to guide the unfolding process. Due to
space limitations, we direct the reader to [12] for the proofs.

Lemma 2. R; and L;41 exist and are uniquely defined.
Lemma 3. Any beam on the surface of O; has at least one anchor on the i-band.
Lemma 4. For every unvisited i-band cell r:

(a) i-clip(r) is non-empty and lies on top of O;, and
(b) i-clip(r) is not adjacent to an (i + 1)-band cell parallel to r

Similarly, (a) and (b) hold for i-beam(r).
Lemma 5. If the i-bridge is on a bottom face, it consists of a single beam.

Lemma 6. For every unvisited i-band cell u parallel to R;, i-beam(u) is non-
empty and is anchored on a visited i-band cell.

Lemma 7. Alli-band cells with normals opposite to that of R; are visited. Fur-
thermore L; may not lie opposite to R;.

4 Unfolding Algorithm

The unfolding algorithm is fairly simple, but proving its correctness requires
complex reasoning. In this paper, we present the algorithm itself. Its proof of
correctness can be found in [12].

Our unfolding procedure for O had four stages:

Stage 1: Unfolding visited band segments and bridges (Sect. 4.1)
Stage 2: Unfolding the top surface of O (Sect. 4.2)

Stage 3: Unfolding the bottom surface of O (Sect.4.3)

Stage 4: Unfolding remaining band pieces of O (Sect. 4.4)

We say that L; and R; are quasi-adjacent if they are orthogonal and connected by
a straight i-band segment. In Fig. 1a for example, Lo and Rs are quasi-adjacent,
whereas L3 and R3 are not, as they are parallel.

68 M. Damian and H. Meijer

4.1 Stage 1: Unfolding Visited Band Segments and Bridges

For each ¢ > 0, we cut out the entire visited segment i-band[L;, R;] and unfold
it horizontally in the plane, with L; to the left and R; to the right. The i-bridge,
delimited by i-beam(R;) and i-beam(L; 1) (cf. Definition 1b), unfolds as a single
piece connecting i-band[L;, R;] and (¢ + 1)-band[L;4+1, R;+1]. Refer to Fig.7.

4.2 Stage 2: Unfolding the Top Surface of O

Here we discuss the unfolding process for the top surface of O;, for each i. Assume,
without loss of generality, that i-pointer = ccw (the cw case is symmetric).

Unfolding Process. We partition the top faces of O; into beams parallel to -
beam(R;). Consider a beam 3 that is not part of the i-bridge. By Lemma 6, at
least one of §’s anchors, say r, is visited and on the i-band. If 3’s other anchor
q # T is not a visited i-band cell, we attach § above 7 in the unfolding net along
the shared side. If ¢ is an unvisited i-band cell, we also attach ¢ above § in the
unfolding net. If both of 8’s anchors are visited i-band cells, and one of them
is L;, we attach 0 above L;. Otherwise, we attach § above the second visited
anchor along their shared side. This strategy minimizes the need to relocate
beams later during the unfolding process.

At this point, the unfolding net includes the entire top surface of ©O; and all
i-band cells parallel to R;. Refer to Fig. 7 for an example.

4.3 Stage 3: Unfolding the Bottom Surface of O

Here we discuss the unfolding process for the bottom surface of O;, for each i.
As before, we assume that i-pointer = ccw (the cw case is symmetric).

Unfolding Process. We start by partitioning the bottom faces of O; as follows.
If R; and L; are quasi-adjacent, we partition the bottom faces of O; into beams
parallel to (i — 1)-beam(L;). Otherwise, we partition the bottom faces of O;
into beams parallel to (i — 1)-beam(R;). This strategy avoids situations where
a bottom beam in the partition is anchored on two unvisited i-band rectangles
orthogonal to R;.

Consider a beam § in this partition that is not part of the (i — 1)-bridge.
By Lemma 3, at least one of (3’s anchors is on the i-band. We determine where
to attach § to the unfolding net.

Unfolding the Bottom of O; When R; and L; are Quasi-adjacent. In this case, 3
is parallel to (i —1)-beam(L;). By Lemma 3, at least one of §’s anchors is on the
i-band. By the quasi-adjacency property of L; and R;, if both of 3’s anchors are
on the i-band, then at least one of them is visited. We attach 3 to the unfolding
net as follows:

— If both of #’s anchors are on the i-band, but only one of them — say, r — is
visited, we attach 8 below r, and 8’s unvisited anchor below j.

— If both of 8’s anchors are on the i-band and both are visited, we attach 3
below the second visited anchor (to minimize the potential need to relocate
0 later in the unfolding process).

Edge-Unfolding Polycubes 69

— Otherwise, 3 has one unvisited anchor r on the i-band, and its second anchor
q on the (i — 1)-band. By Lemma 4a, ¢ is visited and therefore part of the
unfolding net. In this case, we attach 3 to ¢, and r to (.

Furthermore, for each unvisited i-band cell u (which must be parallel to L;)
adjacent to an (¢ — 1)-band cell v (which, by Lemma 4, must be visited), we
attach u to v in the unfolding net. See, for example, the 2-band cell labeled u
in Fig.7, attached to the 1-band. At this point, the unfolding net includes the
entire surface of O;.

Unfolding the Bottom of O; when R; and L; are not Quasi-Adjacent. In this
case, [is parallel to (i — 1)-beam(R;), which runs parallel to the beams in the
top partition of O;. Recall that the (i — 1)-bridge comprises beams parallel to
(i—1)-beam(L;), so if L; is orthogonal to R;, then 3 may cross the (¢ —1)-bridge.
Assume first that § does not cross the (i—1)-bridge. Recall that, at this point,
any unvisited i-band cell r parallel to R; sits above i-beam(r) in the unfolding
net (see discussion in Sect.4.2). We attach § to the unfolding net as follows:

— If B is anchored on an unvisited i-band cell r, then r is parallel to R; and
is positioned on top of i-beam(r) in the unfolding net (see Sect.4.2). In this
case we attach 3 above r in the unfolding net, along the shared side.

— Otherwise, if only one of 3’s anchors r is on the i-band (which must be visited,
by case assumption), we attach 3 below r.

— Otherwise, both of 3’s anchors are visited i-band cells, in which case we attach
(3 below the second visited i-band anchor 7.

Assume now that 3 crosses the (i — 1)-
bridge. Refer to Fig.3. By Lemma 5, the
(i—1)-bridge consists of a single strip (since
it lies on a bottom face) and its intersection
with g is a single square piece. Let 8, and
(2 be the two sub-beams obtained after
removing from 3 the shared (i — 1)-bridge
section. If both sub-beams are empty, then
0 is entirely within the (¢ — 1)-bridge and
is already part of the unfolding net. Other- Fig.3. 8 = (i — 1)-beam(R;) crosses
wise, pick a non-empty sub-beam, say ;. the (i — 1)-bridge.

— If 51 is anchored on an é-band cell r (which may be visited or unvisited),
then r must be parallel to R; and thus already present in the unfolding net
(see Sect.4.2). In this case we attach (1 to r in the unfolding net (above r
if unvisited, and below r if visited). For example, in the scenario depicted
in Fig. 3, 01 would get attached below R;.

— Otherwise, 8; must be anchored on an (i — 1)-band cell ¢. Since [crosses the
(i — 1)-bridge, it is orthogonal to (i — 1)-beam(R;_1), so ¢ is orthogonal to
R;_1. By Lemma 4, ¢ is visited. In this case we attach g; to ¢ in the unfolding
net, along the shared side.

The sub-beam (s, if non-empty, is handled similarly.

70 M. Damian and H. Meijer

4.4 Stage 4: Unfolding the Remaining Band Pieces of O

At this stage, the unfolding net includes the top and bottom surface of O, along
with all visited band cells and all i-band cells parallel to R;, for each i. Moreover,
if L; and R; are quasi-adjacent, the net includes the entire surface of O;.

For the cases where L; and R; are not quasi-adjacent, we complete the unfold-
ing of O; incrementally, for increasing i. Since Ry and L; are adjacent, the entire
surface of Oy is part of the unfolding net (as discussed in Sect. 3.1).

Fix i > 1 and assume that the entire surface of Oq,...,O;_1 has been incor-
porated in the unfolding net. Assume without loss of generality that O is oriented
such that R; is a front cell (with normal +y) and i-pointer = ccw (the case i-
pointer = cw is symmetric). By Lemma 7, all i-band back cells are visited, so
the only surface pieces of O; left to unfold are the unvisited left and right i-band
cells, if any. If no such cells exist, the unfolding process for O; is finished.

Otherwise, consider a straight band segment S = i-band(a,b) containing
unvisited left or right cells, where both a and b are parallel to R;. Let S* C §
denote the unvisited portion of S. To unfold S*, we distinguish four cases: (1) a
unvisited, b unvisited, (2) a visited, b unvisited, (3) a visited, b visited, and (4)
a unvisited, b visited. Next we discuss each of these four cases in turn. Let a’
and b’ denote the i-band cells opposite a and b, respectively.

Case 1: a Unvisited, b Unvisited. In this case S* = S. By Lemma 7, a and
b must be front cells (since R; is a front cell, by assumption), and the opposite
back cells @’ and V' are both visited.

Unfolding Process. Let S’ = i-band(d',a’). Note that S’ is a straight band seg-
ment orthogonal to R;. Since a’ and o’ are both visited, S’ is entirely visited.
Since a is unvisited, i-beam(a) = i-beam(a’) lies on top of O; (cf. Lemma 4).
Similarly, i-beam(b) = i-beam(d’) lies on top of O;. This, along with our assump-
tion that the surface of O is a 2-manifold, implies that i-beam(S’) is non-empty
and lies on the top of O;.

Fig. 4. (a) Case 1, S longer than S’ (b) Case 2, S facing right (c) Case 2, S facing left.

Edge-Unfolding Polycubes 71

Recall that at this point @ and b are already in the unfolding net above
i-beam(a’) and i-beam(d’), respectively (see Sect.4.2). If S is no longer than
S’, we attach S to a (it could also be attached to b). Otherwise, we first cut
the unfolding net along the left side of a’. (The cut could be along any vertical
edge interior to S’, but for definiteness, we opt for the left edge of a’.) This cut
disconnects the unfolding net into two components, which we then reconnect by
attaching S to a and b (so S unrolls horizontally between b and a). This process
is depicted in Fig. 4a.

Case 2: @ Visited, b Unvisited. Given that a (which is parallel to R;) is visited
and b is unvisited, it must be that « = R; is a front cell. As b remains unvisited,
b is also a front cell (cf. Lemma 7), and S excludes L;. It follows that L; and R;
are not quasi-adjacent, and S* = S (i.e., the entire segment S is unvisited).

Since b is unvisited, i-clip(b) lies on top of O; and is not adjacent to L;yq
(cf. Lemma 4). Similarly, since S is unvisited, i-beam(.S) is non-empty and lies on
top of O;. These together imply that the i-bridge lies on top of O; and consists
of a single beam, namely i-beam(a). Consequently, the (¢4 1)-pointer is identical
to the i-pointer (ccw, by our assumption).

Unfolding Process. If S is a right segment, we attach S to the right side of i-
beam(a) in the unfolding net, along the shared side (see Fig. 4b). Otherwise, S
is a left segment, in which case we attach S to the right side of i-beam(b’) in the
unfolding net, along the shared side (see Fig. 4c).

Common Scenario. Before delving into the
specifics of the next two cases, we identify a sit-
uation shared between them. The setting for this
shared scenario is as follows (refer to Fig.5): L; is
adjacent to an unvisited i-band cell r, the interior
angle formed by L; with r is 7/2, and S = S* is
the maximal straight i-band segment S containing
r (orthogonal to L;). The process of unfolding S
requires a detailed case analysis, which we address
in [12] due to space limitations.

Fig. 5. Common scenario.

Case 3: a Visited, b Visited. Given that a (which is parallel to R;) is visited
and the segment S (orthogonal to R;) is not entirely visited, it follows that
a = R; is a front cell. Given that b is visited, either b = L; or S includes L;. If
L; € S, then L; and R; are quasi-adjacent, in which case S is already part of the
unfolding net (see Sect. 4.3.) Therefore, the discussion in this section is based on
the assumption that b = L;, in which case S* = S. By Lemma 7, L; cannot lie
opposite to R;, therefore L; is also a front cell.

Unfolding Process. The case where S is a left segment matches the setting for
the common scenario. If S is a right segment, we attach S to the right side of
i-beam(R;) in the unfolding net, along the shared side (see Fig. 6a).

72 M. Damian and H. Meijer

Fig. 6. (a) Case 3, S facing right (b) Case 4, S facing right (c) Case 4, S facing left.

Case 4: a Unvisited, b Visited. Given that a is unvisited and R; is a front
cell, @ must also be a front cell (cf. Lemma 7). Moreover, i-beam(a) lies on top
of O; and is anchored on the i-band only (cf. Lemma 4). Since b is visited, either
b= L; (in which case S* = S) or S includes L;.

Unfolding Process. Our unfolding procedure depends on whether b is a front or
a back cell, and S is a left or a right segment. Assume first that b is a front cell.
If S is a right segment, we attach S* to the left side of the i-beam(a’), as shown
in Fig.6b. If S is a left segment and b = L;, we have the common scenario. If
S is a left segment and b # L;, then S includes L;, so S* C S. In this case, we
will show that S* is adjacent to B = i-beam(b). Our unfolding procedure first
relocates B to sit on top of b in the unfolding net (if necessary), then attaches
S* to the left side of B, along the shared side. See Fig. 6c.

Assume now that b is a back cell. In this case «’ = b and S is a right segment.
If L; € S, we attach S* to the left side of B. If L; ¢ S, then b = L; (since b is
visited). This matches the setting for the common scenario.
Having exhausted all cases, the unfolding process is now complete.

4.5 Complete Unfolding Example

Figure 7 shows the final unfolding net for the polycube example from Fig. la.
Observe the following:

— From a point of view facing R3, the setup for S5 is a horizontal mirror reflec-
tion of the setup for Case 3.

— From a point of view facing Ry, Sy is a left segment that matches the setup
for Case 2, and S is a right segment that matches the setup for Case 1.

— From a point of view facing Rg, Sg is a left segment that matches the setup
for Case 4.

Edge-Unfolding Polycubes 73

[~

(relocated)

Fig. 7. Complete unfolding of the polycube from Fig. la: horizontal visited band seg-
ments are connected by orange bridges; top beams are marked in light gray, and above
some of them are unvisited band cells; bottom beams are marked in light purple; and
S-labeled segments represent unvisited band segments.

5 Conclusion

We show that every polycube with orthogonally convex layers can be edge
unfolded. A natural extension of this work would be to remove the orthogonal
convexity constraint, thereby addressing the general polycube edge unfolding
problem posed in [15].

Another potential extension would be to use rectangular boxes instead of
cubes as building blocks for the orthogonal polyhedron. Our unfolding algorithm
works as-is for rectangular boxes, provided their height does not exceed their
width and depth. Removing this height restriction would move us closer to the
goal of unfolding arbitrary orthostacks, a challenge that remains open.

74

M. Damian and H. Meijer

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Bern, M., Demaine, E., Eppstein, D., Kuo, E., Mantler, A., Snoeyink, J.: Unun-

foldable polyhedra with convex faces. Comput. Geom. Theory Appl. 24(2), 51-62
(2003)

Biedl, T., et al.: Unfolding some classes of orthogonal polyhedra. In: Proceedings
of the 10th Canadian Conference on Computational Geometry, Montréal, Canada
(1998)

Chambers, E.W., Sykes, K., Traub, C.M.: Unfolding rectangle-faced orthostacks.
In: Proceedings of the 24th Canadian Conference on Computational Geometry, pp.
23-28 (2012)

. Chang, Y.-J., Yen, H.-C.: Unfolding orthogonal polyhedra with linear refinement.

In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 415-425.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0 36
Damian, M., Demaine, E., Flatland, R.: Unfolding orthogonal polyhedra with
quadratic refinement: the Delta-unfolding algorithm. Graphs Comb. 30(1), 125—
140 (2014)

Damian, M., Demaine, E., Flatland, R., O’Rourke, J.: Unfolding genus-2 orthogo-
nal polyhedra with linear refinement. Graphs Comb. 33(5), 1357-1379 (2017)
Damian, M., Flatland, R.: Unfolding polycube trees with constant refinement.
Comput. Geom. 98, 101793 (2021)

Damian, M., Flatland, R., Meijer, H., O’Rourke, J.: Unfolding well-separated
orthotrees. In: Abstracts from the 15th Annual Fall Workshop on Computational
Geometry, Philadelphia, PA (2005)

Damian, M., Flatland, R., O’'Rourke, J.: Unfolding Manhattan towers. In: Pro-
ceedings of the 17th Canadian Conference on Computational Geometry, Windsor,
Canada, pp. 211-214 (2005)

Damian, M., Flatland, R., O’Rourke, J.: Epsilon-unfolding orthogonal polyhedra.
Graphs Comb. 23(1), 179-194 (2007)

Damian, M., Meijer, H.: Edge-unfolding orthostacks with orthogonally convex
slabs. In: Abstracts from the 14th Annual Fall Workshop on Computational Geom-
etry, Cambridge, MA, pp. 20-21 (2004)

Damian, M., Meijer, H.: Edge-unfolding polycubes with orthogonally convex layers
(2024). https://arxiv.org/abs/2407.01326

Demaine, E., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami.
Cambridge University Press (2007)

Demaine, E.D., Karntikoon, K.: Unfolding orthotubes with a dual hamiltonian
path. Thai J. Math. 21(4), 1011-1023 (2023)

Demaine, E.D., Mitchell, J.S.B., O’Rourke, J.: The Open Problems Project.
https://topp.openproblem.net

Liou, M.-H., Poon, S.-H., Wei, Y.-J.: On edge-unfolding one-layer lattice polyhedra
with cubic holes. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014.
LNCS, vol. 8591, pp. 251-262. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08783-2_ 22

Minaric, J.: Unfolding some classes of one-layer polycubes. In: Proceedings of the
34th Canadian Conference on Computational Geometry, Toronto, Canada, pp.
243-248 (2022)

Pernicova, K.: Grid-edge unfolding orthostacks with rectangular slabs. In: Pro-
ceedings of the 36th Canadian Conference on Computational Geometry, pp. 65-70
(2024)

https://doi.org/10.1007/978-3-662-48971-0_36
https://arxiv.org/abs/2407.01326
https://topp.openproblem.net
https://doi.org/10.1007/978-3-319-08783-2_22
https://doi.org/10.1007/978-3-319-08783-2_22

®

Check for
updates

B-Matching Interdiction Problem
on Bipartite Graphs with Unit Weight
and Multi-dimensional Budgets

Ruiqing Sun®) and Weidong Li

School of Mathematics and Statistics, Yunnan University, Kunming, China
ruiqing2020@126.com

Abstract. In this paper, we consider a network optimization interdic-
tion problem, called the b-matching interdiction problem on bipartite
graphs with unit weight and multi-dimensional budgets. Given an undi-
rected bipartite graph G, every edge of G has a multi-dimensional inter-
diction costs and budget. The goal is to remove a subset of the edges
constrained to a multi-dimensional budget, such that the maximum b-
matching in the resulting graph is minimized. Let d be the dimension of
the leader’s budget. We first show that b-matching interdiction problem
is W[1]-hard with respect to the budget for the number of interdicted
edges when d = 2 and graph contain only isolated edges. Then, we pro-
pose a (d + 1)-approximation algorithm on bipartite graphs via the iter-
ative rounding method. Finally, we also show that our iterative rounding
method is a 2-approximation algorithm when d is a constant.

Keywords: Interdiction + B-matching -+ Complexity + Approximation
algorithm - Bipartite graph

1 Introduction

In recent years, the Stackelberg game [20] theory has attracted more and more
attention, which includes two types of decision makers: one leader and one fol-
lower. Firstly, the leader executes a strategy. According to the leader’s strategy,
the follower chooses his own strategy. Interdiction problems is a special case of
Stackelberg game. In an optimization interdiction problem, leaders first employ
strategies to minimize the follower’s advantage and the follower next maximizes
the its advantage according to the leader’s strategies. The amount of interdic-
tion problems work has been studied on shortest path interdiction [8,10], max-
imum spanning tree interdiction [7,23], and maximum flow interdiction [1]. For
more interdiction problem results, please see the survey [19]. Our problem also
included generally in the area of bilevel optimization. Jeroslow [13] showed that
bilevel optimization problems are NP-hard even if when the objectives and the
constraints are linear. For more results on bilevel optimization, please see the
survey [2].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 75-84, 2025.
https://doi.org/10.1007/978-981-96-4448-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_7&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_7

76 R. Sun and W. Li

For results related to matching interdiction problem, Zenklusen [22] consid-
ered the edge/vertex interdiction problem, the edges/vertices can be removed
from graph. The goal is to find a edge/vertex set with cost is at most a given
threshold and minimize the weight of the maximum matching in residual graph
(not contain removed edge set and vertex set). Zenklusen [21] proved that the
edge interdiction problem is NP-complete on simple bipartite graphs with unit
edge weights and unit interdiction costs. Zenklusen [22] gave a 4-approximation
for the general graph when all edge weights are unit and a 2-approximation
for the bipartite graph case. They also showed that vertex interdiction problem
is polynomial time solvable for unweighted bipartite graphs and NP-hard for
bipartite graphs when edge weights are bounded by a constant. Finally, they
also proposed an FPTAS for bounded treewidth graphs. Subsequently, Dinitz et
al. [3] obtained an constant-factor approximation to the matching interdiction
problem without the unit weight assumption which is called packing interdiction
problem. They designed a O(log ¢ - min{q,log k})-approximation algorithm for
packing interdiction problem, where ¢ is the row-sparsity of the packing linger
programming and k is the column-sparsity.

The b-matching problem, in addition to being an extension of the classi-
cal matching problem, it has a wide range of practical applications in semi-
supervised learning, spectral clustering, graph embedding, and manifold learning
[11,12,18] and other fields. For more b-matching algorithm, please see the papers
[9,14]. Motivated by the studies in [9,22], this paper considers an optimization
interdiction problem called the b-matching interdiction problem with unit edge
weights and multi-dimensional budgets. In a b-matching network, the follower
wants to find a matching where each vertex matches a maximum of b times to
maximize the total weight, while the leader interdicts the edge under budget
(multi-dimensional) constraints to reduce the maximum profit of b-matching.
Let d be the dimension of the leader’s budget. Our problem is clearly NP-hard,
since when b, = 1 and d = 1, our problem is matching interdiction with unit
edge weight in [22]. In this paper, we show that b-matching interdiction problem
is W[1]-hard with respect to the budget for the number of interdicted edges when
d = 2. We also give a (d + 1)-approximation algorithm for this problem and it is
also a 2-approximation algorithm when d is a constant.

The remainder of this paper is structured as follows. In Sect. 2, we provide
the problem formulation of our problem. In Sect.3, we show that b-matching
interdiction problem is W|[1]-hard with respect to the budget for the number
of interdicted edges when d = 2. In Sect. 4, we design a (d + 1)-approximation
algorithm for edge interdiction problem by using iterative rounding technique
and also show that it is a 2-approximation algorithm when d is a constant. In
the last section, we present conclusions and future work.

2 Preliminaries and Problem Formulation

Matching theory is one of the classical and most important topics in combinato-
rial theory and optimization. Recall that a matching is a set of pairwise disjoint

B-Matching Interdiction Problem on Bipartite Graphs 7

edges. The maximum weight b-matching problem is a generalization of maxi-
mum weight matching, i.e. b, = 1 for each edge e and vertex v. In this paper,
we consider b-matching edge interdiction problem on bipartite graphs with unit
weights and multi-dimensional budgets. Let d be the dimension of the leader’s
budget. The problem can be described as follows:

Given a bipartite graph G = (V, E), an d-dimensional interdiction cost vector
c=(ct,---,c?) and an d-dimensional budget vector B = (By,--- , By), and a
value b, for v € V. The goal is to find a set R C F that minimizes the maximum
b-matching in G \ R with cost ¢/(R) = Y cp ¢t at most B;, for i = 1,2,--- ,d.
Without loss of generality, we assume that all parameters are positive integers.
Given an undirected graph G = (V, E) and a vertex v € V, we denote §(v) as the
set of edges which exactly one endpoint is v. By defining two integer variables

Ye, Te, the problem can be formulated as follows:
min z

st Y clye <Bji=12,---,d
eeFE

ye € {0,1}, Ve € E,
z= max{z Ze(l —ye) (1)
ecl
Y @ <by, WEV,
e€d(v)
Te € Zzo, Ve € E}

Note that the follower problem can be solved by the Edmonds-Karp algorithm
[5] in polynomial time. In the rest of the paper, we are more concerned with
the solution y, because the solution x can always be determined by using a
polynomial time algorithm to solve the follower problem on the residual graph.
However, if we split each vertex v into b,, the execution time of the iterative
rounding algorithm in [22] is polynomial in the number of vertexes, which are
very large in reality. Thus, we design a new polynomial time approximation
algorithm which is not dependent on the b, via the iterative rounding method.

3 Complexity

In this section, we show that the b-matching interdiction problem is W[1]-hard
with respect to the budget for the number of interdicted edges on graphs con-
sisting only of isolated edges and d = 2. There is a computational complexity
result for the matching interdiction problem.

Theorem 1 (|22], Theorem 1). The edge interdiction problem is NP-complete
on graphs consisting only of isolated edges and d =2 and b, =1 for each v € V.

Next, we analyze the interdiction problem from the point of parameterized
complexity view. Similarly to the reductions used to show NP-hardness of some

78 R. Sun and W. Li

(non-parameterized) problem, the standard technique for showing parameter-
ized hardness is through a parameterized reduction. For more parameterized
complexity theory, please see the book [4].

Definition 1. A parameterized reduction from a problem P2 to a problem P1 is
an algorithm mapping an instance Is of Py with parameter ko to an instance Iy
of Py with a parameter ki in time f(k2)|I2)O(1) such that k1 < f(k2) and I is
a yes-instance for Py if and only if Iy is a yes-instance for Ps.

Let k£ be the budget for the number of interdicted edge. We will show that
this interdiction problem is W|[1]-hard with respect to the budget of interdicted
edge k even if d = 2 and any edge interdiction cost equal to the edge weight.

Theorem 2. The edge interdiction problem with respect to k when d = 2, is
W/[1]-hard on graphs consisting only of isolated edges and b, =1 for each v € V
for parameter k, even if the any edge interdiction cost equal to the edge weight.

Proof. We use the k - Subset Sum problem for the reduction. It is known to be
W/1]-hard, parameterized by k (see Fellows et al. [6]).

k-Subset Sum: Given a set of n integers S = {a1,a2, - ,a,} and two values
B,k € N. The goal is to select a subset S; C S with k elements of the given
integers a; that sum up to B.

For a given instance of the k - Subset Sum, we construct an instance of the
decision version of edge interdiction problem as follows. Let R be a interdiction
edge set.

e |E| = n isolated edges, 2n vertexes and FE = {1,2,--- ,n}.
eci=w;=a; fori=1,2,--- n.

e |R|=k.

[]

The decision version asks whether there is a interdiction edge set R such that

ZciSBand Z wiSZai—B.

i€ER 1€EE\R 1€[n]

If the instance of k-Subset Sum is “yes”, then we construct an interdiction edge set
R in the following way: Select k edges ¢ with a; € S7 form a R. It can be seen that,
YicrCi = D ics, @ = B. It follows that ZiGE\Rwi =D B Wi — D icpWi =
2 ier G — 2ierCi = Xie[n % — B. We have proved that the instance of edge
interdiction problem with the number of interdicted edges is k is a “yes” instance.

Next, we assume there exists an interdiction edge set R with |R| = k such
that >, cpci = > ,cpwi < B and ZieE\R w; < Zie[n] a; — B. We will prove
that the instance of k-Subset Sum is a “yes” instance. Due to ZieE\R w; <
Zie[n] a; — B, it implies that), pw; > B. Since Zie[n] a; = Y icpWi =
ZieE\Rwi + D iepwi- Thus, we have), pw; = B, since ¢; = w; for i € E.
That is,) ,cpa; = B with |R| = k, i.e., there exist a subset R = 5; C S with
k elements that sum up to B.

B-Matching Interdiction Problem on Bipartite Graphs 79

4 Approximation Algorithms for B-Matching Interdiction
Problem

Since the edge interdiction problem is NP-complete even if on simple bipartite
graphs with unit edge weights and unit interdiction costs [22]. To design a more
efficient algorithm, we naturally consider weight partial vertex cover problem
as in Zenklusen [22] and Dinitz et al. [3]. Then, we can get the results of our
problem.

In the following, we consider the following problem and linear programming
relaxation, denoted as LP,,.. Assume that S C E is a set of some edges. Let
c(8) = D oecs cé be the total interdiction cost of S for i =1,2,---,d. In partic-
ular, we have ¢'(E) =) _pct fori=1,2,--- ,d.

min E by Ty

veV
s.t. va > Y., Vee F,

veEe

ZciyeZci(E)—Bi,i:1,2,~~-d
ecE
r, > 0.Yv ey,

0<y. <1, VeeF.

Lemma 1. The optimal value OPT of linear programming (3) satisfies OPT <
OPT*, where OPT* is the optimal value of original b-matching interdiction
problem with unit edge weight.

Proof. Our proof mimics closely proof from Lemma 3 in [22]. Let R* C F be an
optimal interdiction set and let a be a maximum b-matching value in G\ R*, i.e.,
follower problem optimal value in G \ R*. Let S be the optimal vertex cover set
in G\ R*. Let d be a minimum weight vertex cover value in G \ R* with vertex
weights b, for each v € V, i.e., minimum weight vertex cover optimal value in
G\ R*. Due to maximum b-matching and minimum vertex cover problem have an
integer optimal solution, we have a = d by the strong duality theorem. For more
details, see Chap. 18 of Schrijver’s book [17]. Let U C E be the set of all edges
that are adjacent to at least one vertex in S. Consider the following solution
(z,y) of (3) according to the set S. Let z, = 1, v € S, otherwise, x, = 0. Let
Ye = 1, e € U, otherwise, y. = 0. Since S is a vertex cover in G \ R*, we have
E\ R* C U and thus ¢/(U) > ¢/(E) — ¢/(R*) > ¢/(E) — B; for i = 1,2,--- ,d,
implying that z, y is a feasible solution to (3). Furthermore, the objective value
of (3) with the solution x, y is equal to d. Since z, = 1, v € S. Thus, we have
OPT <d=a=0PT*.

We first discuss the definition and properties of the linear programs extreme
point solution will be used in the rest of this paper. More comprehensive details
can be found in the book [15]. Then, we will give the algorithm for linear pro-
gramming (3).

80 R. Sun and W. Li

Definition 2. [15] Let P = {z : Az > b,z > 0} C R™. Then x € R" is
an extreme point solution of P if there does not exist a mon-zero vector
y € R™ such that x +y,x —y € P.

Lemma 2. [15] Let P = {x : Az > b,x > 0} and assume that the optimum
value min{c’z : x € P} is finite. Then for any feasible solution x € P, there
exists an extreme point solution x' € P with e <.

Lemma 3. (Rank Lemma) [15] Let P = {x : Az > b,z > 0} be a polytope
and let x = (x1,-+- ,) be an extreme point solution of P such that x; > 0
for each i = 1,--- ,n. Then any mazximal number of linearly independent tight
constraints of the form A;x = b; for some row i of A equals the number of
variables.

Theorem 3. [16] There is an algorithm which returns an optimal extreme point
solution to a linear program. Moreover, the running time of the algorithm is
polynomial in the size of the linear program.

In the following, we will give an algorithm for linear programming (3). We
first guess the vertex with the highest cost in the optimal solution, such as v
in the optimal solution. Then, we delete all vertexes with costs greater than v
and include v in the solution. Since there are at most n = |V| vertexes, we can
consider all these cases (vertexes) and return the algorithm’s solution in each
case, ultimately finding the best solution.

As we proceed with the iterative algorithm, we will work with a graph where
edges have only one vertex. For example, when we have a variable with x, =0,
we will remove v from all edges containing v. Such edges may contain only one
vertex, i.e., a loop.

The following lemma follows from a direct application of the Rank Lemma.

Lemma 4. Let x be an extreme point solution to the linear program LP,,. with
0 <z, <1 for each vertex v and 0 < y. < 1 for all e € E. Then there exist
FCEand JC{1,2,---,d} such that

D) Ty = Ye for each e € F and Aye = J(F) — Bj for each j € J.
veEe eckE “e J
(i) The constraints in {3 ,c, v =ye 1€ € F} and {3 cpclye = ¢/ (E) — B; :
Jj € J} are linearly independent.
(iti) [F|+|J| =[V]+|E|

The following is a specific iterative algorithm for linear programming (3).

Lemma 5. Let G be a graph with |[V(G)| > (d 4+ 1). Then at least one of the
following must hold.

(i) There exists a vertex v with z, € {0,1}.
(i) There exists an edge e with y. = 0.
(iti) There exists an edge e with y. = 1 and therefore x,, > 1/2 for some v € e.

B-Matching Interdiction Problem on Bipartite Graphs 81

Algorithm 1. Iterative algorithm

1: Initialization W « @

2: while F # () do

3: Find an optimal extreme point solution (z,y) to LPpyc.

4: (a) If there is an edge e € F with y. = 0, then remove e from G. If there is
a vertex v € V with z, = 0, then remove v from G and from all the edges
containing it, i.e, e < e\ {v} for all e € E.

5. (b) If there is a vertex v € V with z, > 1/2, then include v € W and remove
v and all the edges incident at v from G. Update c¢'(E) — B; « (¢'(E) — B;) —
D evee ¢ fori=1,2,---,d.

6: (c) If G contains at most d vertexes v1,--- ,vq, then include vy, -+ ,v4 € W and
remove v1, - -- ,vq and all the edges incident at vi,--- ,vq from G.

7: end while

8: return W

Proof. Suppose for contradiction that none of the above conditions hold. Then
we have 0 < x,, < 1 for all vertexes and 0 < y. < 1 for all edges. From Lemma 3.3
there exists a subset of edges F' such that |F|+|J| = |E|+ |V]. Since |F| < |E],
this implies that |V| < |J| < d, which is a contradiction.

Theorem 4. There is a (d + 1)-approxzimation algorithm for the weight partial
vertex cover problem.

Proof. Let (z,y) be an extreme optimal solution of the initial linear program-
ming (3). Let b(LP®)) be the linear programming (3) optimal value for the
residual graph at the end of k-th iteration of algorithm. Let b(W®*)) and
b(LP* 1) — b(LP®)) be the cost increase of the integral solution and decrease
of the fractional solution at the end of k-th iteration of algorithm, respectively.
Let b(LP(®) be the initial optimal value, i.e., b(LP(®)) = OPT, where OPT
is the optimal value of linear programming (3). Let (z*),y®*)) be the solu-
tion at the algorithm executes line 3 in k-th iteration. Assume that the algo-
rithm iterates N steps and will terminate. We have b(W) = Zivzl b(W*)) and
OPT = Y0 [b(LP* =) —p(LP®)]. Note that b(LP(N)) = 0, since at the end
of N-th of the algorithm, it will terminate and E =) in this case.

Next, we claim that at any iteration of the algorithm, the increase of the
integral solution is at most (d+ 1) times the decrease of the fractional solution in
each iteration. It follows by an inductive argument that the final integral solution
is at most (d+1) times the initial fractional solution. Thus, (W) < (d+1)OPT.

Consider an arbitrary iteration k. Note that the optimal objective value of
the linear programming (3) when executing algorithm line 3 is equal to the
optimal objective value of the linear programming (3) at the end of the previous
iteration.

If the algorithm executes 4(a), then

bWy =0,

since Wk = ()
b(LP*=Dy —p(LP™) > 0,

82 R. Sun and W. Li

since the problem at the end of k-th iteration is to find a covering in the graph
G' = G\ {v} and remove all edges incident at v from G or in the graph G’ =
G\{e}. The residual solution (xsﬁ)s, yy;g) () () restricted to G, is a feasible
solution to the linear programming relaxation of the residual problem. Then,
we have b(LP,gfs)) > b(LP™), where b(LRSQ) is the value of feasible solution
(%) 4%} in residual problem. Thus, b(LP*~D) — b(LP®)) > p(LP*-D) —
b(LPE)) = b(LPH=D)—b(LPM) = 0, where b(LP") is optimal objective value
of the linear programming (3) when executing algorithm line 3 in k-th iteration,
i.e. the optimal objective value of extreme optimal solution (x(’“),y(k)) in k-th
iteration. Since the optimal objective value of the linear programming (3) when
executing algorithm line 3 is equal to the optimal objective Value of the linear
programming (3) at the end of the previous iteration and 2 =0 or y(k) =0.
The claim holds.
If algorithm executes line 5(b), then

bWk =p,,
since we include v € W.
b(LP*=1)) —p(LP®)) > 2(Fp,,,

since the problem at the end of k-th iteration is to find a covering in the
graph G’ = G \ {v} and remove all edges incident at v from G. The resid-
ual solution (a:ﬁel,y,(’éi) (at(k),y(k)) restricted to G’, is a feasible solution to
the linear programming relaxation of the residual problem. Then, we have
b(LPr(fs)) > b(LP(k)), where b(LPr(fs)) is the value of feasible solution (xyé)s, yﬁg)
in residual problem. Thus, b(LP*=D) — s(LP®)) > p(LP*-D) — y(LPE)) =
b(LP*=D) — (b(LPF) = 2b,) = 27b,. The claim holds, since b, < 225b,
and xg,k) >1/2.

Finally, the Step 6(c) of the algorithm is executed in the last step, if possible.
If algorithm executes line 6(c) and we assume that there are d vertexes vy, - -, vq
in this case, then

b(W(N)) =by, + -+ by,

since we include vy, - ,vq € W.
b(LPWN=V) —p(LPN)) = y(LPN V) = oMb, 4. 42N,

since G contains d vertexes v, -+ ,vq.

Since the cost of d vertexes vy,- -+ ,vq are at most the cost of guessing the
highest vertex h* and the guessing highest vertex includes the optimal solution,
we have by, -+ by, < bp. Thus, bpe + by, + - + by, < (d+ 1)(bpe + by, 2SN +

-t bvd:r:q(ﬁ)), since :US,JIV), Sy de) > 0in optimal solution.

To sum up, the claim also holds.

Theorem 5. Based on the Lemma 3.1 and Theorem 3.5, the above algorithm is
a (d + 1)-approzimation for b-matching interdiction problem on bipartite graph
with unit weight and multi-dimensional budgets.

B-Matching Interdiction Problem on Bipartite Graphs 83

Proof. The interdiction set R = E \ W satisfies ¢/(R) < B; for i = 1,2, ,d,
since ¢!(W) > ¢'(E) — B; for i = 1,2,--- ,d. Assume that the value of output of
Algorithm 1 is OUT'. Then, due to the Lemma 3.1 and Theorem 3.5, we have
OUT < (d+1)OPT < (d+ 1)OPT*. The theorem holds.

Theorem 6. Based on the Lemma 3.1 and Theorem 3.5, the above algorithm
18 a 2-approximation for b-matching interdiction problem on bipartite graph with
unit weight and multi-dimensional budgets when d is a constant.

Proof. When d is a constant, we can guess d highest vertices h,---,h}; with
bvhT o ,bvh; and O(n?) enumerations.

The relationship between increase of the integral solution and decrease of the
fractional solution for algorithm executes line 4(a) and 5(b) does not change, i.e.,
increase of the integral solution is at most twice the decrease of the fractional
solution in each iteration for algorithm executes line 4(a) and 5(b).

Without loss of generality, we assume that b,, <--- <b,, if algorithm exe-
cutes line 6(c). Since the cost of d vertexes vy,---,vq are at most the cost
of the guessing highest vertex hj,---,h} with b,, < b,,, for ¢ = 1,---,d.
Meanwhile, the guessing highest vertex includes the optifrlal solution. Thus,
Dhs + - 4 by by o by < 2bps A+ by A by o b2,
since xq(}]lv), e ,xq(){:[) > 0 in optimal solution.

To sum up, the increase of the integral solution is at most twice the decrease
of the fractional solution in each iteration of the algorithm.

5 Conclusion

In this paper, we consider b-matching interdiction problem on bipartite graphs
with unit weight and multi-dimensional budgets. Let d be the dimension of the
leader’s budget. We show that b-matching interdiction problem is W[1]-hard with
respect to the budget for the number of interdicted edges when d = 2. Then, we
use iterative rounding method and propose a (d + 1)-approximation algorithm
for this problem. Finally, we also show that our iterative rounding method is a
2-approximation algorithm when d is a constant. Moreover, it is interesting to
consider the general graph case to design a approximation algorithm. Finally,
we want to extend this problem with linear or convex piecewise-linear costs in
the future.

References

1. Afshari Rad, M., Kakhki, H.T.: Two extended formulations for cardinality maxi-
mum flow network interdiction problem. Networks 69(4), 367-377 (2017)

2. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann.
Oper. Res. 153(1), 235-256 (2007)

3. Dinitz, M., Gupta, A.: Packing interdiction and partial covering problems. In:
Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 157-168. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9 14

https://doi.org/10.1007/978-3-642-36694-9_14

84

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

R. Sun and W. Li

Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (2012)
Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19(2), 248-264 (1972)

Fellows, M.R., Koblitz, N.: Fixed-parameter complexity and cryptography. In:
Cohen, G., Mora, T., Moreno, O. (eds.) AAECC 1993. LNCS, vol. 673, pp. 121-131.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56686-4 38
Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning
trees. In: SODA 1996, pp. 539-546 (1996)

Fulkerson, D.R., Harding, G.C.: Maximizing minimum source-sink path subject to
a budget constraint. Math. Program. 13, 116-118 (1977)

Huang, B., Jebara, T.: Fast b-matching via sufficient selection belief propagation.
In: Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pp. 361-369. JMLR Workshop and Conference Proceedings (2011)
Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40, 97-111
(2002)

Jebara, T., Shchogolev, V.: B-matching for spectral clustering. In: Fiirnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
679-686. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 67
Jebara, T., Wang, J., Chang, S. F.: Graph construction and b-matching for semi-
supervised learning. In: Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 441-448 (2009)

Jeroslow, R.G.: The polynomial hierarchy and a simple model for competitive
analysis. Math. Program. 32(2), 146-164 (1985)

Khan, A., et al.: Efficient approximation algorithms for weighted b-matching. STAM
J. Sci. Comput. 38(5), S593-S619 (2016)

Lau, L. C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization,
vol. 46. Cambridge University Press (2011)

Nemhauser, G.L., Wolsey L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience (1999)

Schrijver, A.: Combinatorial Optimization - Polyhedra and Effciency. Springer,
New York (2005)

Shaw, B., Jebara, T.: Minimum volume embedding. In: Artificial Intelligence and
Statistics, pp. 460-467. PMLR (2007)

Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms.
Eur. J. Oper. Res. 283(3), 797-811 (2020)

Stackelberg, H.: The Theory of the Market Economy. Oxford University Press
(1952)

Zenklusen, R., Ries, B., Picouleau, C., De Werra, D., Costa, M.C., Bentz, C.:
Blockers and transversals. Discret. Math. 309(13), 4306-4314 (2009)

Zenklusen, R.: Matching interdiction. Discrete Appl. Math. 158, 1676-1690 (2010)
Zenklusen, R.: An O(1)-approximation for minimum spanning tree interdiction. In:
IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 709-728
(2015)

https://doi.org/10.1007/3-540-56686-4_38
https://doi.org/10.1007/11871842_67

®

Check for
updates

Mechanism Design for Facility Location
Games Under a Prelocated Facility

Genjie Qin®, Qizhi Fang, and Wenjing Liu(®®
School of Mathematical Science, Ocean University of China, No. 238, Songling Road,
Qingdao 266100, Shandong, China
{qfang,liuwj}@ouc.edu.cn

Abstract. We study the problem of locating a new homogeneous facil-
ity under a prelocated facility. Here, a group of agents are located on the
real line, each of whom has her location as private information and her
cost is the (expected) distance from her location to the nearest facility.
Our goal is to design mechanisms which can approximately minimize the
maximum cost and the social cost while eliciting agents’ private infor-
mation truthfully (i.e. strategy-proof).

Based on the real-life scenarios, we consider the problem in two set-
tings: the general setting where each agent can be located at both sides
of the prelocated facility, and the special setting where all the agents are
located at the same side of the prelocated facility. In the general setting,
we design the best possible deterministic strategy-proof mechanism with
2-approximation and provide a lower bound of 1.5 — e(e > 0) for any
randomized strategy-proof mechanism under the maximum cost objec-
tive. For the social cost, we obtain an upper bound of n for deterministic
strategy-proof mechanisms, and lower bounds of 1.5 and 1.0425 for any
deterministic strategy-proof mechanism and any randomized strategy-
proof mechanism, respectively. In the special setting, we further provide
a randomized strategy-proof 5/3-approximate mechanism for the maxi-
mum cost and a deterministic strategy-proof (n — 1)-approximate mech-
anism for the social cost.

Keywords: Facility location game - Approximation + Prelocated
facility + Algorithmic mechanism design

1 Introduction

Facility location problem is an important problem in the field of optimization. Its
main goal is to select the best locations to place facilities under given constraints
to optimize certain objectives. Such problems usually involve engineering, oper-
ations research or urban planning, such as medical facility location, logistics
center location or communication base station location.

It is also the prototypical problem used by Procaccia and Tennenholtz [14]
when they introduced their highly successful agenda on approximate mechanism
design without money in 2009. In the basic setting of this problem, a social

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 85-106, 2025.
https://doi.org/10.1007/978-981-96-4448-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_8&domain=pdf
http://orcid.org/0009-0001-8102-5642
http://orcid.org/0000-0003-4826-2088
https://doi.org/10.1007/978-981-96-4448-3_8

86 G. Qin et al.

planner is tasked with locating a facility or two facilities on a real line based
on the location profile reported by agents to minimize the maximum cost or
the social cost, and each agent’s cost is the distance between her location and
the nearest facility. In order to benefit herself, the agent may misreport her
location to manipulate the outcome. Consequently, the social planner needs to
design a mechanism that outputs an (approximately) optimal outcome while
guaranteeing all the agents reporting truthfully. Since then, this problem has
been extensively studied in the literature of theoretical computer science and
artificial intelligence.

Most previous work focuses on the locating problem where existing facilities
are not taken into account. However, in many practical applications, existing
resources (such as facilities) should not be wasted. For instance, due to popu-
lation growth, the government needs to build a new primary school to ensure
adequate educational coverage in a city. Naturally, the government must deter-
mine the location of the new school based on not only where the school-age
children live but also the locations of the prelocated primary schools.

In addition, it is also ubiquitous in the real-world that all agents are located
at the same side of the prelocated facility. For example, residents in coastal cities
usually have a great demand for seafood, but fishermen tend to sell their seafood
at the seaside, which makes it inconvenient for the residents who live far from
the seaside to buy seafood. Therefore, the government decides to build a new
seafood market based on the location information of the residents. For another
example, the building manager in a skyscraper usually only sets up life service
facilities (such as takeaway cabinets) on the ground floor at the beginning. As the
number of residents increases, the demand for facilities increases. To facilitate
the residents, the manager considers to add a new service facility on a certain
floor based on the locations of the residents who need the service.

In order to capture such scenarios, we study how to locate a new homogeneous
facility on the basis of a prelocated facility in the following two settings:

— General setting: Each agent can be located at both sides of the prelocated
facility.

— Special setting: All the agents are located at the same side of the prelocated
facility.

Our objective is to design mechanisms that can elicit agents’ private information
truthfully and approximately optimize certain social objectives.

1.1 Related Work

Our work is grounded on a string of research for approximate mechanism design
without money, which was initiated by Procaccia and Tennenholtz [14]. They
provided upper and lower bounds on the achievable approximation ratio of
strategy-proof mechanisms for one facility and two-facility problems on the real
line under two types of social objectives. For the one facility game, they gave
the best possible deterministic and randomized mechanisms under each social

Mechanism Design for Facility Location Games Under a Prelocated Facility 87

objective. For the two-facility game under the maximum cost objective, they
provided a best possible deterministic mechanism and an upper bound of 5/3
and a lower bound of 1.5 for randomized strategy-proof mechanisms. In addition,
they gave an upper bound of n — 2 and a lower bound of 1.5 for deterministic
strategy-proof mechanisms under the social cost objective. Later, Lu et al. [13]
improved these results by a randomized strategy-proof 4-approximate mecha-
nism in general metric spaces and a lower bound of ”T’l for any deterministic
strategy-proof mechanism on a line. Fotakis and Tzamos [11] raised the lower
bound to n — 2, which ultimately eliminated the gap between the upper bound
and the lower bound on deterministic strategy-proof mechanisms in two-facility
games. Alon et al. [1] considered the problem of locating a facility on networks.
Much work further considers the situation where the agents have various pref-
erences for facilities. Cheng et al. [6] considered an obnoxious facility game on
the network where all agents try to be as far away from the facility as possible.
Ye et al. [20] studied the problem of locating an obnoxious facility on a real line
under the objectives of maximizing the sum of squares of distances (maxSOS)
and maximizing the sum of distances (maxSum). Serafino and Ventre [16,17]
considered building two heterogeneous facilities, where the cost of each agent
is the sum of the distances between her location and the facilities she is inter-
ested in. Yuan et al. [21] studied the two-facility games with min-variant and
max-variant, where each agent’s cost is the distance between her location and
the closer facility or the further facility respectively. Li et al. [12] improved the
upper bound for the min-variant. Anastasiadis and Deligkas [7] considered the
situation where each agent might want to be close to a facility, be away from a
facility, or be indifferent about its presence. Fong et al. [9] studied the facility
location game with fractional preference where the preference of each agent for
facilities is represented by a number between 0 and 1. So far, there are numerous
variations of the facility location game, such as other types of cost functions
[8,10], constraints on facility locations and facilities’ capacity [5,18,19,22], etc.
Interested readers may refer to a detailed survey by Chan et al. [2].

As far as we know, all the previous work except [3,4,15] does not take prelo-
cated facilities into account. Recently, Chan and Wang [4] considered modifying
the structure of regions by adding a costless shortcut edge based on a prelocated
facility on the real line. Chan et al. [3] further studied the problem of adding
a non-zero cost shortcut or two costless shortcuts. Qin et al. [15] extended the
model in [4] by building a bridge to connect two separated regions. Compared
with [3,4,15], we study how to locate a new homogeneous facility based on a
prelocated facility, which can be considered as another natural perspective of
utilizing the prelocated facility. It is worth mentioning that our model is equiva-
lent to the model in [4] when one endpoint of the costless shortcut edge in [4] is
fixed at the prelocated facility. Therefore, all the mechanisms in our work can be
used directly in [4] and the mechanism in [4] that outputs one endpoint exactly
at the prelocated facility can also apply to our model.

88 G. Qin et al.

1.2 Our Results

In this paper, we study the problem of locating a new homogeneous facility based
on a prelocated facility on the real line. We derive upper and lower bounds on the
achievable approximation ratio for strategy-proof mechanisms in two settings.
The results are summarized in Table 1.

In the general setting, we design the best possible deterministic strategy-
proof mechanism with 2-approximation for the maximum cost. We also prove
any randomized strategy-proof mechanism has an approximation ratio of at least
1.5 — € for the maximum cost. For the social cost, we only obtain a loose upper
bound of n for deterministic strategy-proof mechanisms. We derive lower bounds
of 1.5 and 1.0425 for any deterministic and randomized strategy-proof mecha-
nism, respectively.

In the special setting, we design a randomized strategy-proof g—approximate
mechanism for the maximum cost. We also derive an upper bound of (n — 1) for
deterministic strategy-proof mechanism under the social cost objective.

Table 1. A summary of our results.

Social Objective|General Setting Special Setting
DeterministiclRandomized | Deterministic Randomized

Maximum cost [UB: 2 UB: 2 UB: 2 UB: 5/3
LB: 2 LB:1.5—¢ [LB: 2 LB: 1.5 —¢

Social cost UB: n UB:6[4 |UB:n—1 |UB:6 [4]
LB: 1.5 LB: 1.0425 |LB: 1.0425 |LB: 1.0425

Remarks. Under the social cost objective, we only obtain a non-constant upper
bound for deterministic strategy-proof mechanisms in both settings. However,
Mechanism 3 in [4] provides an upper bound of 6 for randomized strategy-proof
mechanisms in our model since this mechanism always locates one endpoint of
the costless shortcut at the prelocated facility. On the other hand, Mechanism 1
in our work can be used in [4] to improve their upper bound from 3 to 2 under the
maximum cost objective. Further, the proof of Theorem 8 in this paper can also
be used in [4] to improve their lower bound of any randomized strategy-proof
mechanism from 1.02 to 1.0425 under the social cost objective.

2 Model

Suppose a facility has already been located on the real line, and its location is
publicly known. Without loss of generality, assume that the facility is located
at yo = 0. There is a set of agents N = {1,2,...,n} who need to receive service
from the facility. For each agent ¢ € NV, she has a private location z; € R and let

Mechanism Design for Facility Location Games Under a Prelocated Facility 89

x = (z1,x2,...,%,) be alocation profile or an instance. We want to construct a
new homogeneous facility on the real line and every agent can be served by the
nearest one.

A deterministic mechanism is a function f : R® — R which maps a loca-
tion profile to a facility location. If f(x) = y, the cost of agent i € N is
cost(x;, f(x)) = min {|z;|,|z; — y|}. A randomized mechanism is a function f
which maps a location profile to a probability distribution over facility loca-
tions. Formally, f can be defined as f : R® — A(R), where A(R) represents
the set of probability distributions over R and the cost of agent i € N is
cost(x;, f(x)) = By p(x) min {|z;], [2; — Y}

A mechanism is strategy-proof if no agent can benefit from misreporting
her location regardless of the locations reported by the others. Formally, Vx €
R™ Vi € N,Vx, € R, cost(z;, f(x)) < cost (x;, f(z;,x_;)) . Here, x_; represents
the location vector of the set of agents N\{i}.

The maximum cost and the social cost of a mechanism f with respect to a
location profile x are defined as the maximum cost among all n agents and the
total cost of all n agents, respectively:

MC(x, f) = max _i € Ncost(w;, f(x)), SC(x, f) = _ cost(x;, f(x))

ieN

Let the optimal solution for an instance x under the maximum cost objective
or the social cost objective be denoted as OPTyc(x) and OPTsc(x), respec-
tively. The subscript is omitted without confusion. A strategy-proof mechanism
f has an approximation ratio of v(> 1) under the maximum cost objective, if

L MO
T P MC(x,0PTyc)

The approximation ratio is defined similarly under the social cost objective. In
this paper, we will focus on anonymous' strategy-proof mechanisms with good
approximation ratios under the social objectives of either minimizing the maxi-
mum cost or minimizing the social cost. Henceforth, for simplicity, the instance
x is assumed to satisfy x; < z9 < ... < z,, without further comment.

Notations. For Vx € R", z; and z,, are the two endpoints. Define L(x) and S(x)
as the locations of the endpoints that are farther and closer to g, respectively.
Define

i > %} if L(x) >0
|z < Lg")},if L(x) <0

ax

I(x) = {{
max {a:l|xl < L(gx)} Jif L(x) >0
min {xl|xl > %}, if L(x) <0

1 A mechanism is anonymous if its outcome depends only on the agents’ locations,
not on their identities.

90 G. Qin et al.

3 General Setting

This section discusses how to locate a new (homogeneous) facility on the assump-
tion that each agent can be at both sides of the prelocated facility. We will study
deterministic and randomized strategy-proof mechanisms under the objectives
of minimizing the maximum cost and the social cost respectively.

3.1 Maximum Cost

For the maximum cost, we first present the optimal solution and the optimal
value. Then we design a deterministic strategy-proof 2-approximate mechanism
which is also the best possible deterministic mechanism. We also prove a lower
bound of 1.5 — € for any randomized strategy-proof mechanism.

Theorem 1. For Vx € R™, the optimal solution for minimizing the mazimum
cost is given by
l L
OPT(x) = M

The optimal value is

max {|S (%), [b(x)], LN i S(x) - L(x) < 0

M orD mae { b)), HEFEA L ifS(x) - L(x) 2 0

Note that the optimal mechanism is not strategy-proof. For example, consider
an instance x = (z1,x2) = (—3,4). Obviously, OPT(x) = 4, cost(x1, OPT(x)) =
3. However, if agent 1 misreports her location as —5, denoting x’ = (—5,4), we
have cost(x1, OPT(x')) = cost(x1,—5) = 2. Thus, agent 1 can decrease her cost
by misreporting.

Theorem 2. Any deterministic strategy-proof mechanism has an approximation
ratio of at least 2 for the maximum cost.

Mechanism 1. Given x = (1, ...,x,) € R", if |x,| > |x1|, the facility is located
at y as follows:
_ Tn f0<xz <z,
y {max {2|z1], zn} if 1 <0 < @y,

If |zn| < |21|, y is defined symmetrically.
Theorem 3. Mechanism 1 is strategy-proof.

Proof. Denote Mechanism 1 by f. Given any instance x = (z1, 3, ...,2,) € R,
we need to prove that every agent i € N cannot benefit by misreporting her
location z; as z; € R. Denote x’ = (x},x_;). The proof falls into the following
cases:

Case 1. 0 < x1 < z,,.

Mechanism Design for Facility Location Games Under a Prelocated Facility 91

Obviously, f(x) = z, and any agent ¢ with x; = x, has no incentive to
lie. Now consider agent ¢ with x; < x,. If 2} > z;, then f(x’) > f(x), which
implies that the facility is moving further away from agent i. If 2, < z;, then
f(x') = f(x) when zj > -5, f(x') = 2|zj| > f(x) when —z,, < 2} < —%¢
and f(x') <z} < —x, when z; < —x,, none of which can make agent i’s cost
decrease.

Case 2. 21 < 0 < z,, and 2|z1| < z,,.

In this case, f(x) = z,,. For agent ¢ with 2; > 0, the proof is similar to Case
1. Now consider agent 4 with x; < 0. Here, cost(xz;, f(x)) = |z;| < z1 < % Note
that f(x’) > f(x) when 2 > —z,, and f(x') < 2} when z} < —z,,. Both of them
keep agent ¢’s cost unchanged.

Case 3. 21 < 0 < z,, and 2|x1| > .

In this case, f(x) = 2|z1|. For agent ¢ with z; > 0, her cost will never decrease
by misreporting. For agent ¢ with z; < 0, cost(z;, f(x)) = |2 < |21| < . If
xf > —xy, then f(x') > z, > 0. Otherwise, f(x') = —max {2z, [z}|} < —2z,,
which implies |z; — f(x)| > z, > |z;]. In both cases, the cost of agent ¢ have
not changed.

Theorem 4. Mechanism 1 is 2-approzimate under the mazimum cost objective.

Proof. Denote Mechanism 1 by f. Without loss of generality, consider any
instance x = (x1, T2, ..., &,) With |z,| > |z1].
If 0 < zy < x,, then f(x) = x,,

MC(x, f) < max {b(x), z, — 1(x)}
MC(x,OPT) — max {b(x)7 xn—;(x)}

<2

Ifz; <0< $n72|x1| < x,, then f(X) = Tn,

MC(x, f) < max {|x1], b(x), z, — (%)} <
MC(X, OPT) - maX{|{E1|7b(X), w,,L—Zl(X)}

If 21 <0 < xp, 2|x1| > 24, then f(x) = 227,

T, —1(x)
Mo, max{lal =5 4]

MC(x,0PT) = max{|z1],[zal} max{|z1]|za]} ~

The proof is completed.

Theorem 5. Any randomized strategy-proof mechanism has an approximation
ratio of at least 1.5 — € for the maximum cost, € > 0.

Due to length limitation, part of the proofs are included in
Appendix.

92 G. Qin et al.

3.2 Social Cost

This subsection is dedicated to the discussion of the social cost objective. We
prove that Mechanism 1 is n-approximate for the social cost. We obtain lower
bounds of 1.5 and 1.0425 for any deterministic and randomized strategy-proof
mechanism, respectively.

Lemma 1. Denote Mechanism 1 by f. For any instance X = (21, ..., x,) with
0 S 1 S Ty
SC(x,f) < (n—1)-SC(x,0PT)

Theorem 6. Mechanism 1 is n-approrimate under the social cost objective.

Theorem 7. Any deterministic strategy-proof mechanism has an approximation
ratio of at least 1.5 for the social cost.

Before our proof of the lower bound for any randomized strategy-proof mech-
anism, recall that strategy-proofness is equivalent to partial group strategy-
proofness for facility location games where each agent has her location as private
information [13]. In other words, for any group of agents located at the same
location, no member can benefit if they misreport simultaneously.

Theorem 8. Any randomized strategy-proof mechanism has an approximation
ratio of at least 1.0425 for the social cost.

Proof. Assume there exists a randomized strategy-proof mechanism f with an
approximation ratio less than 1.0425. Let x be an instance with 7 agents, where 4
agents are located at z; = 0.7 and 3 agents are located at o = 2. It is clear that
OPT(x) =2 and SC(x,O0PT) = 2.8. Assume the mechanism f outputs ¥ > 1.4
with probability p. Since Ey . ¢x) [SC(x,Y)|Y < 1.4] > SC(x,0.7) = 3.9,

SC(x,f)>p-284+(1—p)-39=39-1.1-p
SC(x, f) 981

2P) 1049553911 p<1.0425 x 2.8 = p >
SC(x,0PT) b P~ 1100

Then the cost of agent 1 is

6867

0.62427
11000 ~

cost(zq, f(x)) >p-0.7+(1—p)-0>

Now consider another instance x’ with 7 agents, where 4 agents are located
at ©j =1 and 3 agents are located at zo = 2. It is clear that OPT(x’) =1 and
SC(x’,OPT) = 3. Suppose the mechanism f outputs Y’ € [0.17,1.23] with
probability ¢ for instance x'. Since Ey/_ ;o) [SC(X, Y)Y ¢ [0.17,1.23]] >
SC(x',1.23) = 4 x 0.23 + 3 x 0.77 = 3.23,

SC(x',f)>q-3+(1—q)-3.23=323-0.23- q

Mechanism Design for Facility Location Games Under a Prelocated Facility 93

Given that the approximation ratio of any randomized strategy-proof mech-
anism is less than 1.0425,
SC(x', f) 41

—— - < 1.0425 = 3.23 — 0.23 - 1.0425 x 3 = —
SC(x',0PT) ~ ¢< X2

5743
cost(xy, f(x')) < q-053+ (1—¢q)-0.7< 9200 < 0.62427

Thus,
cost(z1, f(x')) < cost(x1, f(x)),

which contradicts the strategy-proofness of the mechanism.

3.3 Discussion

For the social cost, there is a huge gap between the upper bound of n and the
lower bound of 1.5 for deterministic strategy-proof mechanisms. We conjecture
the deterministic lower bound is Q(n) just as in two-facility location games [11],
but failed to verify it.

It is noteworthy that Mechanism 3 in [4] outputs one endpoint of the shortcut
edge at point 0 and the other at xj with probability %, k € N, which is
proved to be strategy-proof and 6-approximate under the social cost objective.
This can be described in our model as follows.

Mechanism 2. [4] For Vx, for any agent k, the mechanism outputs zj with
probability %

ieN |%i
Theorem 9. [4] Mechanism 2 is a randomized group strategy-proof 6-

approximate mechanism for the social cost.

In addition, the instances and methods in the proof of Theorem 8 can be used
in [4] to improve the lower bound of any randomized strategy-proof mechanism
under the social cost objective from 1.02 to 1.0425.

4 Special Setting

This section considers the scenario where all the agents are located at the same
side of the prelocated facility. Without loss of generality, assume all of them
are on the right side of yo = 0, i.e., any instance x = (z1,2,...,%,) satisfies
0 <z <a9<..<ux, Then L(x) = z,,S5(x) = x1, the optimal solution for

I(x)+L(x
2

minimizing the maximum cost is OPT(x) =), and the optimal value is

MC(x,0PT) = max {b(x), |L(x)2—l(x)|} .

In this section, the impossibility results in Sect. 3 still hold, except for that
of the deterministic mechanism for the social cost. Mechanism 1 which outputs

94 G. Qin et al.

L(x) = z,, for any instance x in this setting, is still 2-approximate and the best
deterministic strategy-proof mechanism for the maximum cost. Furthermore,
we provide a randomized strategy-proof 5/3-approximate mechanism for the
maximum cost.

Mechanism 3. For an instance x = (x1,...,x,), the facility is located at y,
where y is defined as a random point according to the following cases:

Case 1. b(x) > L(x) — I(x). Let

L(x) — b(x) , with probability (w.p.) &

Y= 2L(X)2—b(X) w.p. %
L(x) ,wp. 3

Case 2. b(x) < L(x) — I(x). Let

max {l(x), QL?EX)} , with probability (w.p.) &
y = < max{i(x), 222} +L(x) 1
2 ’ p. ?
L(x) ,W.p. 5

Theorem 10. Mechanism 3 is a randomized strategy-proof %—appro:z:imate
mechanism under the mazximum cost objective.

For the social cost objective, according to Lemma 1, we have the following
theorem.

Theorem 11. Mechanism 1 is a deterministic strategy-proof (n — 1)-
approximate mechanism under the social cost objective.

5 Conclusions and Open Problems

In this paper, we studied locating a new homogeneous facility on the real line
based on the prelocated facility, where each agent has her location as private
information and can be served by the nearest facility. We derived upper and lower
bounds on the approximation ratio for deterministic and randomized strategy-
proof mechanisms in two settings: the general setting where each agent can be
located at both sides of the prelocated facility, and the special setting where all
the agents are located at the same side of the prelocated facility.

For the general setting, we provided the best possible deterministic strategy-
proof mechanism with 2-approximation and a lower bound of 1.5 — € for any
randomized strategy-proof mechanism under the maximum cost objective. Under
the social cost objective, we only obtained a non-constant upper bound of n for
deterministic strategy-proof mechanisms. In addition, we gave lower bounds of
1.5 and 1.0425 for any deterministic and randomized strategy-proof mechanism,
respectively. For the special setting, we further derived an upper bound of 5/3 for

Mechanism Design for Facility Location Games Under a Prelocated Facility 95

randomized strategy-proof mechanisms under the maximum cost objective, and
n—1 for deterministic strategy-proof mechanisms under the social cost objective.

For future work, a natural direction is to narrow down the gap between the
upper bound and the lower bound for strategy-proof mechanisms in our model.
Our model can also be extended to other settings with various facility prefer-
ences, such as obnoxious facilities, or where agents have different preferences
between the prelocated facility and the newly established one. It is also worth-
while to investigate locating new facilities under a certain constraint on facilities.

Acknowledgments. This research was supported in part by the National Natural
Science Foundation of China (12201590, 12171444).

Appendix

1 Proof of Theorem 1

Proof. Consider the case of S(x) - L(x) < 0. Without loss of generality, let
S(x) < 0 < L(x). Obviously, MC(x,0PT) > |S(x)|. If OPT(x) > 2L
then the cost of agent on b(x) is b(x). Furthermore, the maximum cost of the

L(x)=l(x)
2

agents on [(x) and L(x) is at least . Combining the above, we have

MC(x,0PT) > max{|5’(x)|, [b(x)], M} It is easy to see that l(x)++(x)

achieves a maximum cost of at most max {|S (x)],]b(x), M | }, which indi-

cates the optimality. The proof for the case of S(x) - L(x) > 0 is similar.

2 Proof of Theorem 2

Proof. Assume there exists a deterministic strategy-proof mechanism f with
approximation ratio less than 2. Consider an instance x = (z1,22) = (1,2). It
holds that MC(x, f) < 2- MC(x,0OPT) = 1. Therefore, f(x) € (1,2). Without
loss of generality, let f(x) = 1+ € where ¢ € (0,1]. Consider the instance
x' = (x1,25) = (1,14¢€), then f(x') € (1,1+¢€). Agent 2 can benefit by reporting
x4 to o, which contradicts the strategy-proofness of f.

3 Proof of Theorem 5

Proof. Let f be any randomized strategy-proof mechanism. Let M > 0 be suf-
ficiently large. Consider an instance x = (z1,22) = (M + 1, M + 2). Obviously,
Dic(1,2y cost(zi, (X)) = By [cost(z1,Y) + cost(z2,Y)] > 1. Without loss
of generality, assume that cost(z1, f(x)) > 3.

Now consider another instance x' = (zf,z}) = (M, M + 2). Note that
OPT(x') = M + 1 and MC(x',OPT) = 1. By strategy-proofness, we have
cost(M +1, f(x')) = cost(z1, f(x)) > cost(x1, f(x)) > 5. Otherwise, the agent
located at z; in x can benefit by misreporting her location as @} = M. The

96 G. Qin et al.

maximum cost of f w.r.t. x’ is

MC(X, f) = Eyr () Y
(1) = By gy | g cost(a, V)

=Pr{Y' <2M}- EY'Nf(x’) ng?};} cost(z, YY" < 2M}

+ Pr{Y’ >2M} - Eyr ¢ [max cost(x}, Y)Y > QM]

Note that max;cq 2y cost(z,Y') = 14 cost(M +1,Y") when Y’ < 2M and
max;e 1,2} cost(z,Y’) > M > cost(M +1,Y’) — 1 when Y’ > M. We analyze
MC(x/, f) according to the following cases.

Case 1. Pr{Y’ >2M} > 3.

/ ! 3 . 3
Y~ f(x7) rr{laué}cost(m“ NY' >2M| > 53 M="2

MC(', f) > Pr{Y' >2M}-E 5

Case 2. Pr{Y’ <2M} > 33
MCX, f) > Pr{Y’ <2M} - Eyr ¢ [L+ cost(M +1,Y")[Y" < 2M]
+ Pr{Y' > 2M} - By [L+ cost(M +1,Y") = 2]V > 2M]
=14 cost(M +1,Y") —2Pr{Y’ > 2M}

3 3
Z -
2 M
Therefore,
MC(K.f) 3 3
MC(x',OPT) =2 M
4 Proof of Lemma 1
\ P | | \ | |
yo =10 T on OPT(x) an Yo =0 x1 OPT(x) % Tn
(1) (2)
\ | : : | \ [
Yo =10 Lo OPT(x) % OPT(x) Ty Yo =10 “’*’;"fx) 1 3 OPT(x) T

2
3

4)

Fig. 1. An instance x = (21, %2, ..., Zn) with 0 < z1 < xp,

Proof. Note that z; < OPT(x) < x, and f(x) = x,. The proof is performed
according to the following cases:

Case 1. z1 > %= as shown in Fig. 1(1).

2 ?

Mechanism Design for Facility Location Games Under a Prelocated Facility 97

It is clear that OPT(x) = T ng1) and cost(x;, f(X)) = ©p — x4, Vi € N. We
have

SC(x,0PT) =Y

i€EN
SC(x, f) = Z cost(x;, f(x)) < i (zn — 1) < (n—1) - SC(x,OPT)

Case 2. 71 < 3.
Case 2.1. OPT(x) < %+, as shown in Fig. 1(2).
SC(x,0PT) > cost(xn, OPT(x)) = zn, — OPT(x) > %

SC(x,)= cost(wi, f(x)) = > wi+ Y (wn—mz)< (n—1)-SC(x,0PT)

iEN zzlng" i>Z

Case 2.2. OPT(x) > % and x; < O%(x), as shown in Fig. 1(3).
Partition N as follows:

Ny = {z € N‘xl < < ;OPT(X)} Ny = {z e N’%OPT(X) <z < ”32"}

Ny = {z e N’%" < < OPT(X)} Ny = {z e N’OPT(X) <z < a:n}
Thus, we have

SC(x,O0PT) > 3 cost(zi, f(x)) + (xn — OPT(x))
i€N1UNgUNg

SC(x, f) = Z cost(z;, OPT (x)) + Z cost(xq, f(x))

iEN] i€Ng

+ Z [cost(z;, OPT(x)) + x,, — OPT(x)] + Z cost(zi, f(x))

i€ENg i€Ny
< Z cost(z;, OPT(x)) + Z [m—n + cost(z;, OPT(x)) — OPT(x) + m"]
iEN] i€Ny 2 2

+ > [cost(z;, OPT (X)) + n — OPT(x)]+ > [&n — OPT(x)]
i1€N3 i€ENy—{xn}

cost(z;, OPT(x)) + |N2 U N3 U Ny — {z, }| - (z,, — OPT(x))

iEN7JUNgUN3
<SC(x,0PT) + (n —2) - (xn — OPT(x))
SC(x, f) _SC(x,OPT)+(n=2)-(zn — OPT(x)) _ N (n—2)- (zn — OPT(x)) _
SC(x,0PT) — SC(x,OPT) = z, — OPT(x) -

n—1
Case 2.3. OPT(x) > % and z; > %(x), as shown in Fig. 1(4).

SC(x,0PT) > cost(x1, OPT(x)) + cost(z,, OPT (X)) = x,, — 21 > %

It is trivial that
SC(x,f) <(n—1)-SC(x,0PT)

98 G. Qin et al.

5 Proof of Theorem 6

[] |] |
z1 OPT(x) yo=0 Ly a1 Y =0 OPT(x) % Ty

1 Yo =0 5 OPT(x) an 1 Yo =0 T 2|zq|

Fig. 2. An instance x = (21,22, ...,Zn) With 1 < 0 < z,

Proof. Without loss of generality, given any instance x = (z1, 22, ..., Z,) with
|xn| > |z1]|. Trivially, ;1 < OPT(x) < z,,. Denote Mechanism 1 by f, and our
analysis is as follows.

Case 1. 0 < z; < z,. By Lemma 1, we have

SC(x, f) < (n—1)- SC(x,OPT)

Case 2. 11 < 0 < 2, and |2241| < z,. We have f(x) = x,, and

x.f) = Yeost(ei)= 3 e+ Y (@a-z) ()

iEN Gy <Ep iy >0

Case 2.1. OPT(x) <0, as shown in Fig.2(1).
Note that SC(x, OPT) > cost(x,,, OPT(x)) = x,. Thus, by (x), we have

Ox, f) < (n—1)~%" < ”;1 - SC(x, OPT)

Case 2.2. 0 < OPT(x) < %+, as shown in Fig. 2(2).
Since SC(x, OPT') > cost(xy,, OPT(x)) > %, then by (%),

SC(x,f) < (n—1)-SC(x,0PT)

Case 2.3. OPT(x) > %*, as shown in Fig.2(3).
By a similar proof as Case 2.2 in Lemma 1, we can obtain

SC(x, f) < (n—1)- SC(x,0PT)

Case 3. 11 < 0 < x,,|221] > x,, as shown in Fig. 2(4).
In this case, f(x) = 2|z1|. Note that SC(x,OPT) > |z1|. We have

SC(x,)= cost(wi, f(x)) = > |ml+ D (21 —x)<n-la| <n-SC(x,0PT)

1eN EEIASES DS

Tight Example. Let x be an instance with n agents, where n — 1 agents
are located at 1 and one agent is located at —1. It is clear that OPT(x) =
1,SC(x,0OPT) = 1. Since f(x) = 2,5C(x,f) = n—1+1 = n, we have
SC(x,f)=n-SC(x,0PT).

Mechanism Design for Facility Location Games Under a Prelocated Facility 99

6 Proof of Theorem 7

Proof. Assume there exists a deterministic strategy-proof mechanism f with
approximation ratio less than 1.5. Consider an instance x = (z1,22) = (—1,1).
Without loss of generality, let f(x) = y < 0, we have cost(za,y) = 1. Consider
the instance x' = (z1,25) = (-1, 1. 5) and f(x') = ¢/, we have SC(x,y) <
1.5 SC(x/, OPT) = 1.5. It means y’ > 0, we have cost(z},y’) = SC(x',y') —
cost(x1,y') < 2. It can lead to the cost(xg, y') < 1. Agent 2 can benefit by
reporting xo to x%, which contradicts with the strategy-proofness of f.

7 Proof of Theorem 10

\ [P [[L P |
Yo =0 b(x) = b(x) U(x) T, Yo =0 b(x) z, — b(x) @, and I(x)

yo =0 b(x) 1(x) 2, — b(x) Ty yo =0 b(x) U(z) 2, — b(x) Tn
®) 4)

Fig. 3. An instance x = (z1, %2, ..., Tn) with 0 < z1 < zp,

Proof. Denote Mechanism 3 by f.

Strategy-Proofness. We need to prove that for any instance x, every agent
i € N cannot benefit by misreporting her location z; as z; € R. Denote x’ =
(},x_;) and the possible locations of f(x) as A, 442 B from left to right. Our
analysis falls into the following cases:

Case 1. b(x) > L(x) — I(x) and I(x) # L(x), as shown in Fig.3(1). Suppose
agent 4 reports her location z; to .

Case 1.1. z; < b(x). Agent i always choose the prelocated facility, then we have
cost(x;, f(x)) < cost(x;, f(al,x_;)).

Case 1.2. z; € [I(x), L(x)).

Case 1.2.1. z} < L(x). The possible locations of f(x},x_;) are denoted as
A" ASB B from left to right. We have A’ € [2 L) } tA=A—A >0,
then

1 1 A+ B 1
cost(xi,f(x))fgo(xifA)Jrg zi2‘+2o(B:cl),
1 1 A'+B| 1
. " N =2 p — A+ = |z — Z.(B-—
cost(i, (al,x) = 5 +es = A+ 3 R R
1 A+B| A 1
> = A+ A = — | - = - (B —
25 +4) 3[9” 2 ‘ 2}+2(73,

I
Q
S
%
IS

—~
8
S
~
e
%
Ra¥
=

100 G. Qin et al.

Case 1.2.2. z} > L(x). Let A =z} — L(x). We have L(x) = . It holds that
cost(x;, f(x)) < cost(x;, f(x},x_;)) when b(x) # b(x'). Now consider the case of
b(x) = b(x'). Let Ay = b(x) — [L(x) — I(x')] and Ay = 2 - [(x) — L(x), we have

[L(x) + Aq].

W =

L(x)+ A —I(x") =b(x') = b(x), L(x) + A2 — I(X') =

(1) A < A;. The possible locations of f(x},x_;) are denoted as Ay, %, B
from left to right. It is evident that b(x’) > L(x) + A — I(x’), we have

A=A+ A,B, =B+ A.

cost(i, f(x)) = ¢ + (o5 = A) + [z - A;B‘+%.(B,xi)
cost(xi,f(x;-,x_i)):é_ wi*A1|+% o A142rBl %'(Bl)
Zé'(%‘—A—AH% {xi—A;B‘—A} +%-(A+B—xi)
= cost(es, ()~ = - S+ 2

= cost(x;, f(x))

(2) A € (Ay,A2). The possible locations of f(x},x_;) are denoted as
Ay, 42582 By from left to right. It is known that b(x') < L(x) + A — I(x') <

3 1L(x) + 4],

AgZZ(X/):A+A1,B2:L(X)—|—A=B+A
1 1 A+ B 1
cost(zi,f(x))—g-(xzfA)Jrg it ‘Jrg-(fol)
1 1 A B 1
cost(wi, f(2h,x0) = 5 - i — Azl + £ [oi = Z2T22 4 2 (Ba — i)
1 1 A+ B A+ A 1
Zg'(xz_A_Al)"Fg Ti— ’— 3 :|+§'(A+B_l'i)

s
b
S

+
N

6 6 6
= cost(z;, f(x)) — % ?

> cost(x;, f(x))

(3) A > As. The possible locations of f(z],x_;) are denoted as Az, 42352 By
from left to right. It is known that b(x’) < % - [L(x) + 4] < L(x) + A — (%),
3
we have
2 2

Mechanism Design for Facility Location Games Under a Prelocated Facility 101

cost(xi,f(x)):é-(:pifA)+% T; — A;B‘+1-(foi)
1 1 A B 1
costl(es, f(h,x0) = 5 - i = Asl + < [o = BT 4 2 (By — i)
b o 1)
L[| A+B| A+Ai+2-(A-Ay] 1 ,
tal|r - ’f 5 +5-(A+Bfa:1)
' Ay A—Ay 1 A+Ai+2.(A-Ay) A
_cost(mz,f(x))—?— s "3 5 +5
> cost(ai, f60) + 5 + 5 a4y -
> cost(zi, f(x))
Case 1.3. z; = L(x). If 2 < (), the facility will move away from L(x), then
cost(x;, f(x)) < cost(x;, f(af,x_;)). If &7 > L(x), the proof is similar to that of

Case 1.2.2.

Case 2. b(x) > L(x) — I(x) and I(x) = L(x), as shown in Fig.3(2). Suppose
agent 4 reports her location z; to .

Case 2.1. z; < b(x). It is obvious that cost(z;, f(x)) < cost(x;, f(x;,x_;)).

Case 2.2. z; = L(x).

(1) Only agent 4 is located at L(x).

If z; < L(x), cost(x;, f(x)) < cost(zy, f(x],x_;)). If &) > L(x), let A =
x; — L(x) > 0, we have

cost(zs, f(x)) = £ -bx) + 1 - 22 4 T
b(x A
costan alyx-) = 5 1060 = A+ 3+ 750 = a4 3
> cost(ai, f()) ~ 5~ 5+ 5

(2) There are multiple agents at location L(x).

If 2 < L(x), The result can only be that the facility is farther from L(x). If
x; > L(x), the proof is similar to Case 1.2.2 shows agents located at L(x) will
not profit.
Case 3. b(x) < L(x) — I(x) and I(x) < 2 - L(x), as shown in Fig. 3(3). Suppose
agent ¢ reports her location z; to .

Case 3.1. z; < b(x). Obviously, cost(z;, f(x)) < cost(z;, f(z},x_;)).

Case 3.2. z; € [I(x), L(x)]. If 2}, < L(x), cost(z;, f(x)) < cost(x;, f(z),x_;)). If
x; > L(x), then L(x') = a}. Let A = L(x')— L(x) > 0. As A increases from zero,

102 G. Qin et al.

let A be A; when b(x) # b(x) is satisfied for the first time. It is characterized
by:

1
51069 + A1] = b(x)

Let Ay be the value of A when b(x’) > L(x') — I(x') is satisfied for the first time
after A > A;. Let Az be the value of A when b(x") < L(x)—1(x’) is satisfied for

the first time after A > A,. Let A4 be the value of A when L(x') —1(x') = L(?’:/)
is satisfied for the first time after A > As.

(1) A < Ay. If &; = I(x), it is obvious the possible facility is farther from
%(x), agents will not lie. If x; # I(x), the possible locations of f(z},x_;) are
denoted as Ay, AlJQFBl,Bl from left to right. It is evident that b(x') = b(x) <

!

x; — I(x'), and we have

2
A1:A+§-A7B1=B+A

1 1 A+ B 1
cost(aci,,f(x))z8-|xi—A|+§~aci,— 5 ’+§~(B—mi)
1 1 A+ By | 1
t(zi, f(zf,x—¢)) = = - |z;s — A - T — - (B1—z
cost(zq, f(wi, x-1)) = ¢+ | i+ gz 5 5 (Br—)
1 2 1 A+ B 5 1
= = - i— A - A - - i— - A — - (B A—zx;
i (+3)’er x (5 +6 >'+2 (B + x;)

1 5 1
> cost(ai, f(x) = 5 A= o At S A

> cost(ws, f(x))

(2) A € [A1,As). The possible locations of f(z},x_;) are denoted as
Ay, 22882 By from left to right. It is evident that b(x’) < L(x') — I(x'), and
we have

A2:A+§-A,B2:B+A.

According to the proof in (1), her cost will not decrease.

(3) A € [Ag, A3z), where b(x") > L(x') — I(x’). Let 6 = A — Ay > 0 and the
possible locations of f(x},x_;) are denoted as As, ASJZFBS , By from left to right.
We have

2
Ay=At 3 Ay+01,By =B+ Ay + 01,

cost(as, J0) = los = Al + - o = |+ (B - w0,
cost(i, f (&l x0)) = & -l — As| 4 1 - [mi = 22 4 2By —ay)
=%-wi7(A+§-A2+61) +é-xi—(A;B+§-A2+61)
5 (Bt Aa 61— m)
> cost(@i, f()) ~ g A2~z Aot Ay - - Lyl

> cost(zs, f(x))

Mechanism Design for Facility Location Games Under a Prelocated Facility 103

(4) A € [As, Ay), where b(x') < L(x') — I(x') and I(x) > 220D Tet 6, =
A—Asz > 0 and The possible locations of f(z},x_;) are denoted as A4, A4§B4 , By
from left to right. We have

A4—A+§ Ay + Az — Ay = A—%+A3,33—B+A3+62
cost(zi,f(x))z%-|mi—A\+é-xl—A;B‘—&—%-(B—azi)
cost(zi, f(wx-0)) = & - lwi — Adl + 5 - Jei = PP 2By -2y
=é~ 7(A7%+A3> +%- :ci—(A;BJrAg—Q'gAQJr%)'
+%~(B+A3+52—xi)
zcost(xi,f(x))+5'18A2+%2

> cost(z;, f(x))

(5) A > Ay. As A increases gradually from Ay, L(x")—1(x') > L(x) is always
satisfied before b(x’) changes. The possible locations of f(z},x_;) are denoted
as As, %7 Bs from left to right. We have

As = A+ -A,Bs = B+ A.

The proof is similar to Case 3.2(1).

When A continues to increase until b(x") changes for the first time, the output
facility location is far enough away from z;, and the cost of agent ¢ will not be
reduced.

Case 4. b(x) < L(x) — I(x) and I(x) > 2 - L(x). If [(x) = L(x). It is easy to
prove any agents can not benefit by misreporting their location; otherwise, as
shown in Fig. 3(4). Suppose agent ¢ reports her location z; to x}.

Case 4.1. z; < b(x). Obviously, cost(z;, f(x)) < cost(x;, f(z],x_;)).

Case 4.2. z; € [I(x), L(x)) If #} < L(x). The proof is similar to Case 1.2.1. If
xf = L(x)+A > L(x), it 1s clear that cost(x;, f(x)) < cost(x;, f(x},x_;)) when
b(x) # b(x'). If b(x) = b(x'), as A increases from 0, the proof is similar to Case
1.2.2.

Case 4.3. x; = L(x). If 2} < L(x), the facility will move away from L(x) and
agent ¢ can not benefit. If 2 > L(x), the proof is similar to the second part of
Case 4.2.

In conclusion, Mechanism 3 is a strategy-proof mechanism.

Approximation Ratio. Given any instance x = (x1, 2, ..., &), our analysis
proceeds as follows.

104 G. Qin et al.

Case 1. b(x) > L(x) — I(x), as shown in Fig.3(1) or Fig. 3(2).
In this case, we have M C(x,OPT) = b(x). For each output of f, the maxi-
mum cost is less than b(x), then it holds that
MO) b
MC(x,OPT) — MC(x,0PT)

Case 2. b(x) < L(x) — I(x) and I(x) < 2 - L(x).
Let I(x) = 6 + A < 252 A € (0, %2). We have

MC(x, 0P) = max (b0, L O e {0, £ - 2
MC(x, f) < é . % n % max {b(x),cost(z(x), 5Léx))} + % (L(x) - I(x))
_Lx) 1 L(x) Lx) A
- T+§'max{b(x)’T_A}+T_§

Case 2.1. b(x) > # —-Ae [%v LTX)>
b

L(x X L(x TL(x b(x L(x

M) M4BTt
MC(x,0PT) b(x) -3 b(x)

1 14L 18b(x) — 9L 1 1 5 5

_1 (x) + 18b(x) (X)§,+,+,:,

36b(x) 37276 3

Case 2.2. b(x) < =5~ — A.

L(x) L(x L(x) A
MC(x, f) <TJF%'(ﬂ—A)JFT—?:10L(x)—15A:§

2
MC(x,0PT) — Led 2 6L(x) —9A 3

Case 3. b(x) < L(x) — I(x) and I(x) > 2 - L(x). We have

MC(x,0PT) = max {b(x), L(X)21(X)} :

MC(x, f) = % -max {b(x), L(x) — I(x)} + é -MC(x,0PT)

MC(x, f) < 2 1 1 5
MC(x,OPT) =6 3 2 3
Tight Example. Consider an instance x = (4,6). It is clear that OPT(x) =5
and the optimal value is 1. Mechanism 3 outputs 4, 5 and 6 with probabilities
L L and %, respectively. Therefore,

673
MC(x, f) 5

MC(x,0PT) 3

Mechanism Design for Facility Location Games Under a Prelocated Facility 105

References

10.

11.

12.

13.

14.

15.

16.

17.

Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approxi-
mation mechanisms for location on networks. CoRR, abs/0907.2049 (2009)

Chan, H., Filos-Ratsikas, A., Li, B., Li, M., Wang, C.: Mechanism design for facility
location problems: a survey. In: 30th International Joint Conference on Artificial
Intelligence, pp. 4356—4365. International Joint Conferences on Artificial Intelli-
gence Organization (2021)

Chan, H., Fu, X., Li, M., Wang, C.: Mechanism design for reducing agent distances
to prelocated facilities. In: Proceedings of the 23rd International Conference on
Autonomous Agents and Multiagent Systems, pp. 2180-2182 (2024)

Chan, H., Wang, C.: Mechanism design for improving accessibility to public facili-
ties. In: Proceedings of the 2023 International Conference on Autonomous Agents
and Multiagent Systems, pp. 2116-2124 (2023)

Chen, X., Hu, X., Tang, Z., Wang, C.: Tight efficiency lower bounds for strategy-
proof mechanisms in two-opposite-facility location game. Inf. Process. Lett. 168,
106098 (2021)

Cheng, Y., Yu, W., Zhang, G.: Strategy-proof approximation mechanisms for an
obnoxious facility game on networks. Theoret. Comput. Sci. 497, 154-163 (2013)
Deligkas, A., Filos-Ratsikas, A., Voudouris, A.A.: Heterogeneous facility location
with limited resources. Games Econom. Behav. 139, 200-215 (2023)

Feldman, M., Wilf, Y.: Strategyproof facility location and the least squares objec-
tive. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce,
pp. 873-890 (2013)

Fong, C.K.K., Li, M., Lu, P., Todo, T., Yokoo, M.: Facility location games with
fractional preferences. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 32 (2018)

Fotakis, D., Tzamos, C.: Strategyproof facility location for concave cost functions.
In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, pp.
435-452 (2013)

Fotakis, D., Tzamos, C.: On the power of deterministic mechanisms for facility
location games. ACM Trans. Econ. Comput. (TEAC) 2(4), 1-37 (2014)

Li, M., Lu, P., Yao, Y., Zhang, J.: Strategyproof mechanism for two heterogeneous
facilities with constant approximation ratio. In: Proceedings of the Twenty-Ninth
International Conference on International Joint Conferences on Artificial Intelli-
gence, pp. 238-245 (2021)

Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on
Electronic Commerce, pp. 315-324 (2010)

Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
ACM Trans. Econ. Comput. (TEAC) 1(4), 1-26 (2013)

Qin, Z., Chan, H., Wang, C., Zhang, Y.: Mechanism design for building optimal
bridges between regions. In: Annual Conference on Theory and Applications of
Models of Computation, pp. 332-343. Springer, Singapore (2024)

Serafino, P., Ventre, C.: Truthful mechanisms without money for non-utilitarian
heterogeneous facility location. In: Proceedings of the AAATI Conference on Artifi-
cial Intelligence, vol. 29 (2015)

Serafino, P., Ventre, C.: Heterogeneous facility location without money. Theoret.
Comput. Sci. 636, 27-46 (2016)

106

18.

19.

20.

21.

22.

G. Qin et al.

Tang, Z., Wang, C., Zhang, M., Zhao, Y.: Mechanism design for facility location
games with candidate locations. In: Wu, W., Zhang, Z. (eds.) COCOA 2020. LNCS,
vol. 12577, pp. 440-452. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64843-5 30

Xu, X., Li, B., Li, M., Duan, L.: Two-facility location games with minimum distance
requirement. J. Artif. Intell. Res. 70, 719-756 (2021)

Ye, D., Mei, L., Zhang, Y.: Strategy-proof mechanism for obnoxious facility location
on a line. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp.
45-56. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21398-9 4
Yuan, H., Wang, K., Fong, K.C., Zhang, Y., Li, M.: Facility location games with
optional preference. In: ECAI 2016, pp. 1520-1527. IOS Press, Amsterdam (2016)
Zou, S., Li, M.: Facility location games with dual preference. In: Proceedings of
the 2015 International Conference on Autonomous Agents and Multiagent Systems,
pp. 615-623 (2015)

https://doi.org/10.1007/978-3-030-64843-5_30
https://doi.org/10.1007/978-3-030-64843-5_30
https://doi.org/10.1007/978-3-319-21398-9_4

®

Check for
updates

Computing Approximate Mixed Nash
Equilibria for Symmetric Weighted
Congestion Games

2() ' Xiaoguang Yang®, and Guoqing Zhang*

Chunying Ren', Zijun Wu
! Center for Combinatorics, Nankai University, Tianjin 300071, China
Rcy9820230019@nankai.edu.cn
2 School of Automotive and Transportation Engineering, Hefei University of
Technology, Anhui 230009, China
zijunwul984a@163.com
3 Academy of Mathematics and System Science, Chinese Academy of Sciences,
Beijing 100190, China
xgyangQiss.ac.cn
4 Supply Chain and Logistics Optimization Research Center, Department of
Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor,
ON N9B 3P4, Canada

gzhang@uwindsor.ca

Abstract. We concern the computation of approximate mixed Nash
equilibria in symmetric weighted congestion games, which has been
shown to be PPAD-complete. We focus our discussion only on affine lin-
ear latency functions, and propose an algorithm deriving from the best
response dynamics. Our algorithm efficiently computes an e-approximate
mixed Nash equilibrium within a polynomial runtime parameterized
mainly by the maximum player weight W, where ¢ € (0,1) is an arbi-
trary small constant. This then provides the first polynomial runtime
algorithm for computing an e-approximate mixed Nash equilibrium in a
weighted congestion game, though the players are programmed to have
the same strategy set, the latency functions are assumed to be affine
linear, and the polynomial runtime is still parametric.

Keywords: Weighted congestion game - Symmetric - Affine linear
latency function - Potential function - Best response dynamic

1 Introduction

Design efficient algorithms for computing Nash equilibria of congestion games
([1] and [2]) is an important research topic of algorithmic game theory [3,4].
While various fundamental properties of Nash equilibria in congestion games
have been obtained in recent years, see, e.g., [5—10], this problem is still open,
due to its extreme computational complexity.

Congestion games are non-cooperative games, in which selfish players com-
pete for finite sets of resources. We focus only on weighted congestion games. A

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 107-118, 2025.
https://doi.org/10.1007/978-981-96-4448-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_9&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_9

108 C. Ren et al.

prototype is a transportation network [11], in which players want to deliver
certain unsplitable commodities by quickest paths between specific origin-
destination pairs. Here, the arcs of the network are the resources, and the trans-
portation demands of these commodities are the weights of the players. As the
demands can not split, these games are essentially finite games, and so admit
mized Nash equilibria, see [12].

While weighted congestion games have much more explicit structure, the
computation of their mixed Nash equilibria is actually not easier than arbitrary
finite games. In fact, finding a mixed Nash equilibrium for a two-player game
has already been PPAD-complete, see [13]. Here, PPAD shorts for the term
“Polynomial Parity Argument on Directed Graphs”, which is a complexity class
introduced by [14]. So far, we only know that PPAD lies between FP and FNP.
As whether FP # FNP or not is unknown, we still do not have a polynomial
time exact algorithm for computing a mixed Nash equilibrium.

Due to the PPAD-completeness, we will not discuss an arbitrary symmetric
weighted congestion game, but these with affine linear latency functions, and
with players’ weights value in a bounded interval [1, W] for an arbitrary constant
W > 1. With such setting, we propose a simply algorithm based on best response
dynamics, which computes an e-approximate mized Nash equilibrium within a
polynomial runtime parameterized by the constant W.

1.1 Owur Contribution

We extend best-response dynamics to compute mixed Nash equilibria for sym-
metric weighted congestion games with affine linear latency functions. To apply
best response dynamics, we first discretize the mixed strategy space of each
player with a suitable parameter § € (0, 1), see Algorithm 2, which ensures that
the computation of a best response strategy of a player in the resulting discrete
strategy space has a polynomial time of %. This combining with the best response
dynamics then yields an e-approximate mixed Nash equilibrium algorithm for
weighted congestion games, see Algorithm 1.

To analyze the runtime of our algorithm, we generalize the Rosenthal’s
potential function [15] of pure strategy profiles to that of mixed strategy
profiles 7 for the symmetric weighted congestion with affine linear latency
functions, which then gives the time complexity of Algorithm 1. We prove
that Algorithm 1 outputs an e-approximate mixed Nash equilibrium within
ol %&'W‘Hl) 1og(N - Cpax)) iterations, where N is the number of players
and Cpax is the players’ maximum expected (latency) cost value. See Theorem 2
for a detailed result. Due to lack of space, we defer all proofs to the full version
of the paper.

1.2 Related Work

The existence of Nash equilibria in congestion games was obtained in e.g.,
[1,12,16,17], and others. [1] showed that every unweighted congestion game

Computing Approximate Mixed Nash Equilibria 109

admits pure Nash equilibria as it has a potential function, i.e., it is a poten-
tial game. [16] proved that weighted congestion games with affine linear latency
functions are also potential games, and so admit pure Nash equilibria. Besides,
[17] proved that it is NP-hard to decide if an arbitrary weighted congestion game
has a pure Nash equilibrium. Since weighted congestion games are finite games,
mixed Nash equilibria always exist, see [12]. However, computing equilibria for
congestion games is a very tough problem. [13] proved that computing a mixed
Nash equilibrium for a two-player game is PPAD-complete [14]. The computa-
tional complexity significantly questions the importance of Nash equilibria as
a solution concept for the behavior of rational players. This then leads to the
concept of approximate Nash equilibria, which replace exact Nash equilibria as
asymptotically stable solutions.

[18] proved that the best-response dynamics converge to %_e—approximate
pure Nash equilibria within finite iterations for symmetric unweighted congestion
games with latency functions fulfilling the so-called « bounded jump conditions,
where € > 0 is an arbitrary small constant. [19] proposed the first algorithm for
computing approximate pure Nash equilibria in unweighted congestion games
with polynomial latency functions of degree at most an integer d > 1. They
designed an algorithm that converges to a d°(®-approximate pure Nash equilib-
rium in a (parameterized) polynomial time. Then [20] generalized this result to
weighted congestion games, and obtained an efficient d°(@*)-approximate pure
Nash equilibrium algorithm. Moreover, [21] designed a random algorithm based
on the work of [20], which produces a d4+o(d_approximate pure Nash equilibrium
with a high probability. Along this direction, [22] gave the current state-of-the-
art results. They designed an efficient deterministic algorithm, which computes

a t2--approximate pure Nash equilibrium within a finite number of iterations,
_ 2W(d+1)
Where p = m

As a generalization of [22], we focus on the computation of approximate
mixed Nash equilibria for symmetric weighted congestion games, and propose an
e-approximate mixed Nash equilibrium algorithm, though under the constraints
of affine linear latency functions.

1.3 Outline of the Paper

The remaining of this paper is organized as follows. Section 2 defines the model.
Then we propose a potential function on mixed profile space, and design and
analyze an e-approximate mixed Nash equilibrium algorithm in Sect. 3. Finally,
a short summary is given in Sect. 4.

2 Model and Preliminaries

2.1 Weighted Congestion Games

Formally, a weighted congestion game T' is written as a tuple (N, &, (X)uen,
(Ce)ece, (Wy)uen). Here, N = {1,...,N} is a set of N players, and & =

110 C. Ren et al.

{1,...,E} is aset of E resources. Each player u € N has a traffic weight w, > 0
and a strategy set X, C 2¢. To facilitate our discussion, we assume, w.l.o.g.,
that w, > 1 for all u € N. Note that I is unweighted when w, = w,, and T is
symmeric when X, = X, for all u,v € N/. For each resource e, c. : Ry — R
denotes a non-decreasing (latency) cost function.

Every pure strategy of a player u € N induces a pure strategy subprofile
fu = (fs,)s,ex, fulfilling condition (2.1) below,

fsu = Wy * l(fuasu)v Vs, € 2y,
Z 1(fussu) =1, (2.1)

su€Xy

where 1(f,, s,,) is a {0, 1}-valued function, which indicates whether strategy s,
is used by player u, i.e., 1(fy, sy) = 1, or not, i.e., 1(fy, s,,) = 0. We denote by F,
the set of all pure strategy subprofiles of player u € N fulfilling condition (2.1).
A pure strategy profile (simply, pure profile) f of all players is then a vector
(fu)uen € Huej\/fu

A mized strategy of player u € N is a probability distribution m, =
(Tus,)suex, over F,, with which player u draws a random strategy s, from
X, and then sends its weight w,, along this random strategy. Hence, each mixed
strategy m, induces in a random subprofile f, = (f;,)s,ex, fulfilling condi-
tion (2.2) below,

fsu = Wy * l(fua Su)> Vsu c Zu;
> 1(fusa) =1,
SuE€EXy
P[fsu = wu] = Tu,5, E[fsu] = Wy * Ty, s, and
Var[f;]| = wi sy - (L — Tus,) Vs, € Xy. (2.2)

Clearly, f, has F, as its state space.

A mized strategy profile (simply, mized profile) is then the product = =
(T)uen of mixed strategies of all players, i.e., players draw their random strate-
gies mutually independently. Then f = (f,)uen is the random strategy profile
(simply, random profile) of 7, and fo = >>. -, 5 . .cs, s, is the random
weight value of resource e € £. Hence, player u € N has an expected (latency)
cost of

Cu(m) = EB[Cu(F)] =E[) £, -, (F)]

Sy EXy

= Z wy, - B[1(f,, s4) - Z ce(fe)]

Su€EXy e€E: e€sy

=Zwu- 1(f,,e) - ZE elu - Ce(fe) (2.3)

ec& ee€

Computing Approximate Mixed Nash Equilibria 111

w.r.t. a mixed profile . Similar to fe|y, foju = Zsuexu: ces, Is, 18 the restriction
of random resource weight f. to player u.

In the sequel, we view pure strategies and profiles as particular mixed strate-
gies and profiles with a variance of zero. Moreover, we do not distinguish a
random profile f with its mixed profile 7, unless there is an ambiguity.

2.2 Equilibria

A pure Nash equilibrium (PNE) is a pure profile f= (fu)uE N satisfying condi-
tion (2.4) below,

CU(fuaf—u) Scu(fuaf—u); Vfu € Fu, Yu e N. (2.4)

Clearly, condition (2.4) means that a unilateral change of pure strategy cannot
decrease the cost in a PNE profile.

Similarly, a mixed profile 7 is a mized Nash equilibrium (MINE), if it fulfills
the following condition (2.5),

Cou(7) = Co(Fu, 7)) = EB[Cy(Fu, £_0)] < Cu(5u, 7)) Vsy € Xy, YueN,
(2.5)
where f, and f_,, are random subprofiles induced by mixed strategy 7, of player
u and by mixed subprofile 7_,, of opponents of player u, respectively, and

CulSus) = B[Cy(fu,)] (2.6)

is the expected (latency) cost of player u when it uses pure strategy s, and the
others follow the mixed subprofile 7_,,, and f, is just the pure subprofile induced
by pure strategy s,,.

Clearly, Cy(sy,7—y) defined in (2.6) is the expected (latency) cost of strat-
egy S, € X, when the other players follow the mixed subprofile 7_,. Hence,
definition (2.5) shows that mixed strategy 7, = (Ty,s,)s,cx, IS a best-response
to the mixed subprofile T, = (Tu)wea\{u} = (Tu’ 5,0)s, €5, wen\{u} fOr each
u € N, since 7, concentrates only on strategies with minimum expected cost
w.r.t. mixed subprofile 7_,, i.e., its support set includes only strategies with
minimum expected (latency) cost.

3 Computing e-Approximate Mixed Nash Equilibria

We focus on weighted congestion games with affine linear latency functions ful-
filling Condition 1 below.

Condition 1. Each (latency) cost function c. : [0,00) — [0, 00) is affine linear,
and has a form of ce(xe) = ¢ - e + Pe for any z. € [0,00) and e € &, where
ae > 1 and Be > 1. Let Qupar = MaTecg Qe and Bae = MaZece Pe be the mazimum
values of slope and intercept, respectively.

112 C. Ren et al.

Formally, we call a function ¢ mapping each mixed profile 7 to a real value
&() a b-potential function of mized profiles for a constant b > 0 if

() — @(W;a) = D(Tu, Tou) — @(W;a) = b [Cou(mu, my) — Cu(ﬁq/lﬂrfu)]

for each mixed profile 7, each player u, and each mixed strategy m/, of player
u. We show below that weighted congestion games fulfilling Condition 1 have a
2-potential function.

3.1 Potential Functions

Given an arbitrary weighted congestion game I' fulfilling Condition 1. We
now consider an arbitrary player v € A, an arbitrary mixed strategy m, =
(s,)suex, of player u, and an arbitrary mixed subprofile 7_,, of his opponents.
We denote by 7y, ¢ 1= Zsu €5, ecs, M5, the probability of random event that
player u uses resource e, i.e., T, = P[1(f,,e) = 1], and by A(my,) := (Ty,e)ees
the resulting probability vector on resources. Let f be the random profile induced
by mixed profile m = (my, 7m_y).

As resource (latency) cost is affine linear, i.e. satisfying Condition 1, then
player u has a (latency) cost of Cy(7) = > ce Elfeju - ce(fe)] = D oo Wu - Tue -
Cu,e(T_u,e). Here, m_y ¢ := (Tur e)w e\ {u}> AN Cy e(T_y,ce) is a player-dependent
(latency) cost for resource e € £, which is defined as

Cu,e(ﬂ-—u,e) = E[Ce(fe) | 1(fua 6) = 1] = Qg * (wu + Z E[fe|u’]) + ﬂe
u eN\{u}

= Q¢ * (wu + Z Tyl e * wu’) + ﬂe~ (31)
uw eN\{u}

Clearly, the player-dependent (latency) cost cye(m—_y,e) is the expected
(latency) cost of resource e conditioned on the event that player u uses resource

This, combined with inequality (2.5), yield that a mixed profile 7 is a MINE
if and only if for each player u, and each strategy s, € X,

Zﬁu,e : Cu,e(ﬁ—fu,e) - Z 7wru,s; : Z Cu,e(ﬁ-fu,e) S Z Cu,e(ﬁ-fu,e)v (32)
ecé s, EXy e€s’, eESsy
which is, in turn, equivalent to the condition that
Z 7?u,e : cu,e(ﬁ-—u,e) S Z 71-;75 : Cu,e(ﬁ-—u,e) (33)
ec& ee&

for an arbitrary mixed strategy 7, of player u with 7, _ for all e € £ and u € N.
For pure strategies of weighted congestion games satisfying Condition 1, [15]
constructed a Rosenthal’s potential function defined in (3.4) below,

o(f) = Z(Ce(fe) “fe+ Z Ce(Wu) - wy - 1(fu,€))

eel ueEN

= Z(Ce(fe) “fet Z Ce(felu)) fe\u)v (3.4)

ee€ ueN

Computing Approximate Mixed Nash Equilibria 113

for each pure profile f = (fu)uen- Here, we note that f., = wy - 1(fu,e) for
each resource e € £ and each player u € N.

We extend this potential function (3.4) of pure strategies to that of mixed
profile 7 as below,

b(r) == E[O(f)] = Y _[E(ce(fe) - £) + Y Blee(fop) - fopu)]s (3.5)

eel ueN

where f is random profile induced by mixed profile .

Equation (3.5) actually defines a potential function on the mixed profile space
of weighted congestion games satisfying Condition 1, since &(-) is a potential
function for pure profiles.

Theorem 1. Equation (3.5) defines a 2-potential function for mized profiles of
symmetric weighted congestion games fulfilling Condition 1.

3.2 An e-Best Response Dynamic on the Game

With the 2-potential function of mixed profiles, we are now ready to design an
e-approximate MINE (see Definition 1 below) algorithm for symmetric weighted
congestion games fulfilling Condition 1.

Definition 1. (e-approximate MINE) For an arbitrary constant ¢ € (0,1), a
mixed profile m of a symmetric weighted congestion game is an e-approximate
MINE if, for each player u and any deviation mixed strategy .,

Cou(ml,m_0) > (1 =€) Coulmu, m_0). (3.6)

Algorithm 1 below shows an e-best response dynamic of a symmetric weighted
congestion game fulfilling Conditions 1 for an arbitrary constant ¢ € (0,1). It

starts with an arbitrary initial mixed profile 7(0) = (m&o))ue N, and then evolves
the mixed profile by iterating the following four steps over the time horizon ¢ € N
until an e-approximate MINE of the game is met. Here, to ensure our algorithm
converges within finite iterations, we impose an additional assumption on the
initial mixed profile below.

Assumption 1. The initial mized profile (9 fulfills the condition that =(©) =
(W&O))ueN = (Sfﬁu)ueN}suegu is a multiple of 6. Here, & is an arbitrary constant

such that 0 < § < 1.

Note that the constant 1/ must be an integer, as >, .y m(fgu =1 for all
u € N and each component of the initial profile is a multiple of §.

Here, we note that the strategy s, can be computed efficiently by a polyno-
mial time shortest path algorithm, e.g., Dijkstra’s algorithm in [23]. Moreover,
Algorithm 2 terminates within at most 1/§ iterations for each player u € N;.
Hence, the runtime complexity of Algorithm 1 depends essentially on the total
number of iterations of Algorithm 1.

114 C. Ren et al.

Algorithm 1. An e-best response dynamic of symmetric weighted congestion
game

Input: A symmetric weighted congestion game I'" and two constants €,d with 0 <
€01

Output: An e-approximate MINE

1: choose a feasible mixed profile 7(® = (7)) uen = (T2 Juensues, St. md, is a
multiple of §, and put t =0

2: for each u € N do

3 compute s, = argming, e, Cu,s, (Su, 7o @)

4: end for

5: Ny ={ueN: Culsu,7)) < (1—e) - Cu(x®)}

6: if Ny # 0 then

7: for each u € N} do

8 run Algorithm 2, output 7,

9 end for

0

10: pick an arbitrary player u; from N fulfilling condition that

Cur (1) = Cuy (mh,, 70)) > Cu(m®) — Culmly, 7)) Yu e N (3.7)

11: 7t = (z, ,W(tlt) andt=1t+1
12: return to step 2

13: else

14: return 7®

15: end if

Define T.(7(9)) := argmin {t € N: 7(!) is an e-approximate MINE of T'} and
define T, := max,oycr Te(7(?). Then T, (7(?)) is the runtimes of Algorithm 1
w.r.t. initial mixed profile 7(%) (i.e., the number of iterations Algorithm 1 takes
for finding an e-approximate MINE of I' when the initial mixed profile is 7(?)),
and T, is the corresponding maximum runtime. Section 3.3 below inspects the
upper bound of T, with the potential function @(-) defined in equation (3.5).

3.3 Runtime Analysis of Algorithm 1

We first show that Algorithm 2 terminates within 5 iterations, and does not fall
into an infinite loop. Moreover, it indeed outputs a mixed strategy = fulfilling
the condition that C,, (7 7t 1) < (1—¢)-Cu(n®). Here, u is an arbitrary player
in NV}

Lemma 1. Consider a mized profile 7 with N # 0 and consider a player
u € N, Let € and 6 be two arbitrary small constants, where 0 < €,0 <1 and
S satisfies Assumption 1. Then, Algorithm 2 terminates within 5 iterations and

outputs a mized strategy w of the player u such that Cy(m (t)) <(l—c¢e)-
Cyu(r®).

Computing Approximate Mixed Nash Equilibria 115

We then bound the potential function @(r) of an arbitrary mixed profile 7
from about by 2 - cost(7). While this is trivial, it will be very helpful when we
derive the detailed runtime of Algorithm 1.

Lemma 2. Consider an arbitrary symmetric weighted congestion game T ful-
filling Conditions 1. Let &(-) be the potential function of T' as given in equa-
tion (3.5). Then, for every mized profile m, 1 < ®(n) < 2 - cost(m) = 2 -

Zue./\/ Cu (77) .

This naturally leads to the Lemma 3 below.

Algorithm 2. Local improvement

Input: A mixed profile 7(¥ with N;* # 0, a player u € A and two constants €, § with
0<edk 1.

Output: A mixed strategy subprofile 7, of the player u such that C, (m‘j,ﬂfi) <
(1 =€) - Cu(nD).
1: Initially, let A = 0, 7{0® = 7"
2: for each s, € X, do
3: pick an arbitrary s, = argmaxshezu and w;t=5*,’>00“’sh (W(t”\)), and put
7 — 6, if s, = 5,
7T1(1,t,75>;+1) = 7‘-'195,’5):‘) +0, if su = Su,
773;-’\”) , otherwise.
4: end for
5:if Cy (7MY 7)) < (1 =€) - Cu(n®), then
6: ot = ﬂ_q(j,)d»l)
T break
8: else
9: A= X+1 and go back to Step 2
10: end if
0 - -)\ > =)
Lemma 3. In every outcome w'\"), there is a player u with C,(7'") > =75=.

Proof. Note that cost(7") = 3= - C,,(r®). This together with Lemma 2 yield
that
cost(m®) - o(r®)

)y —)y >
Cm, (m') = max,enCy (') > N 25N

Here, m; € N is a player with a maximum cost C,,, (7®)) = max,cp Cy(7®).
When C,, (7®) = C,,, (™) in each iteration t < T,(7(?)), we have

- p(r®)

(1) —p(rHD) = 2.(Cp, (1) = O, (D)) > 2-€-Clpy, (7)) > GT’

t

116 C. Ren et al.

and the potential function value decreases at a constant ratio of at least £ in

this case. This would yield a tighter upper bound O(g log(N-Crax)) of Tt by a
similar proof to that of Theorem 2 below, where Cyax = max,er max,en Cy, ()
is the player’s maximum expected (latency) cost value. However, in general, the
selected player u; may have a (latency) cost Cy, (7)) < Cp,,(7®). Then the
above analysis does not apply. Nevertheless, Lemma 4 below shows a similar

result that .

t 1
@(Tf()) - Qj(’ﬂ'(t+)) > W

- B(nV) (3.8)

for each t < T, (7(®).

Lemma 4. Consider an arbitrary symmetric weighted congestion game I' ful-
filling Condition 1. We have

€

2.-W?2

Cy, (7®) = Cy, (D)) > - Cy(m®) (3.9)

for every player uw € N and for each t < Te(w(o)), where W is the common upper
bound of players’ weights. Moreover, Lemma 3 and equality (3.9) together yield

€

t t+1
@(’ﬂ'())—é(ﬂ'())> W

. gs(ﬁ(t))

for each t < T.(7®) and for each initial mized profile w(®).

Lemma 4 implies that Algorithm 1 computes an e-approximate MINE of the
2 2
game I' within O(NE'_?/ Jog(N-Cax)) iterations when X, = X, for all u,v € N.
We summarize this result in Theorem 2 below.

Theorem 2. Consider a symmetric weighted congestion game U fulfilling Con-
dition 1. Algorithm 1 computes an e-approximate MINE of T' within O(Ni',gv2 .
log(N - Chax)) iterations, where N = |N| is the number of players, €,0 €
(0,1) are small constants with 0 satisfying Assumption 1, and Chphax =

maxXrer maxyen Cou(m) is the player’s mazimum expected (latency) cost value.

Theorem 2 and Lemma 4 together imply that Algorithm 1 produces an e-

2 2
approximate MINE of I" within O(Ne'_?/ -log(N - Cpnax)) iterations in this par-
ticular case. We can see that this runtime is polynomial in input size when it is

parameterized by W. Here, we note that € and § are arbitrary small constants.

4 Summary

We focus on the computation of approximate mixed Nash equilibria in symmetric
weighted congestion games with affine linear latency functions. We design an
algorithm based on best response dynamics. This algorithm is similar to that of
[18]. We prove that this algorithm computes e-approximate mixed Nash equilibria
in a polynomial runtime parameterized by the constant W.

Computing Approximate Mixed Nash Equilibria 117

To the best of our knowledge, this gives the first result for computing e-
approximate mixed Nash equilibria for symmetric weighted congestion games,
albeit under the constraints of affine linear latency functions. Nevertheless, sym-
metry and affine linear latency functions are still too restrictive. Thus, an inter-
esting follow-up work is to consider weighted congestion games with more general
latency functions.

Acknowledgement. The first author acknowledges support from the Project funded
by China Postdoctoral Science Foundation No. 2024M751511. The second author
acknowledges support from the National Natural Science Foundation of China with
grants No. 72271085 and 61906062, and support from the Natural Science Foun-
dation of Anhui Education Department for Excellent Young Scientisits with grant
No. 2022AH020095. The third author acknowledges support from the National Natural
Science Foundation of China with grant No. 72192800. The fourth author acknowledges
the support from the Natural Sciences and Engineering Research Council of Canada
Discovery Grant (RGPIN-2019-07115).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Inter-
nat. J. Game Theory 2(1), 65-67 (1973)

2. Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general net-
work. J. Res. U.S. Natl. Bureau Stand. 73(2), 91-118 (1969)

3. Nisan, N., Roughgarden, T., Tardos, E‘., Vazirani, V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

4. Song, X., Jiang, W., Liu, X., Lu, H., Tian, Z., Du, X.: A survey of game theory as
applied to social networks. Tsinghua Sci. Technol. 25(6), 734-742 (2020)

5. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49(2), 236-259
(2002)

6. Correa, J.R., Schulz, A.S., Moses, N.: Selfish routing in capacitated networks.
Math. Oper. Res. 29(4), 961-976 (2004)

7. Colini-Baldeschi, R., Cominetti, R., Mertikopoulos, P., Scarsini, M.: When is selfish
routing bad? the price of anarchy in light and heavy traffic. Oper. Res. 68(2), 411—
434 (2020)

8. Wu, Z., Mohring, R., Chen, Y., Xu, D.: Selfishness need not be bad. Oper. Res.
69(2), 410-435 (2021)

9. Wu, Z., Méhring, R.: A sensitivity analysis of the price of anarchy in non-atomic
congestion games. Math. Oper. Res. 48(3), 1364-1392 (2023)

10. Wu, Z., Mohring, R., Ren, C.,; Xu, D.: A convergence analysis of the price of
anarchy in atomic congestion games. Math. Program. 199(1), 937-993 (2023)

11. Lu, H., Shi, Y.: Complexity of public transport networks. Tsinghua Sci. Technol.
12(2), 204-213 (2007)

12. Nash, J.F.: Equilibrium points in n-person games. In: Proceedings of the National
Academy of Sciences, vol. 36, pp. 4849 (1950)

13. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player
nash equilibria. J. ACM (JACM) 56(3), 1-57 (2009)

118

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. Ren et al.

Papadimitriou, C.H.: On inefficient proofs of existence and complexity classes. In:
Proceedings of the 4th Czechoslovakian Symposium on Combinatorics (1991)
Fotakis, D., Kontogiannis, S., Spirakis, P.G.: Selfish unsplittable flows. Theoret.
Comput. Sci. 348(2-3), 226-239 (2005)

Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure nash equi-
libria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 604-612. ACM (2004)

Dunkel, J., Schulz, A.S.: On the complexity of pure-strategy nash equilibria in
congestion and local effect games. Math. Oper. Res. 33(4), 851-868 (2008)
Chien, S., Sinclair, A.: Convergence to approximate nash equilibria in congestion
games. Games Econom. Behav. 71(2), 315-327 (2011)

Caragiannis, I., Fanelli, A., Gravi, N., Skopalik, A.: Efficient computation of
approximate pure nash equilibria in congestion games. In: Proceedings of the 52nd
Annual Symposium on Foundations of Computer Science (FOCS), pp. 532-541
(2011)

Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure nash equi-
libria in weighted congestion games: existence, efficient computation, and structure.
ACM Trans. Econ. Comput. (TEAC) 3(1), 1-32 (2015)

Feldotto, M., Gairing, M., Kotsialou, G., Skopalik, A.: Computing approximate
pure nash equilibria in shapley value weighted congestion games. In: Proceedings
of the 13th International Conference on Web and Internet Economics (WINE), pp.
191-204 (2017)

Ren, C., Wu, Z., Xu, D., Yang, X.: %--approximate pure nash equilibria algorithms
for weighted congestion games and their runtimes, arXiv preprint arXiv:2208.11309
Dijkstra, E:W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269-271 (1959)

http://arxiv.org/abs/2208.11309

®

Check for
updates

Dynamic Algorithms for Non-monotone
Submodular Maximization

Yuanyang Liu and Wenguo Yang®™)

School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China
liuyuanyang22@mails.ucas.ac.cn, yangwgQucas.ac.cn

Abstract. Submodular maximization is a classical problem with many
applications of machine learning, combinatorial optimization and so on.
In recent years, there is an increasing concern on the submodular max-
imization problem in the dynamic setting. After the first dynamic algo-
rithms for the submodular maximization problem was developed in 2020,
Chen and Peng [3] raised an open question in 2022, asking for the possi-
bility to extend some results from dynamic monotone submodular maxi-
mization to non-monotone cases. In this paper, we consider the problems
of dynamic non-monotone non-negative submodular maximization under
the cardinality and matroid constraints. We answer the open question by
developing the first algorithm for non-monotone submodular maximiza-
tion under the matroid constraint. We derived a randomized algorithm
maintaining an (1—¢)/(8+e)-approximate of the solution. The algorithm
requires O(k*e~* log(k) log®(k/€)) amortized oracle queries. As a byprod-
uct, we also improved the algorithm for non-monotone submodular maxi-
mization under the cardinality constraint, maintaining an approximation
guarantee of 1/(6 + €) and requiring O(k?¢ ' log?(k)) amortized oracle
queries which was originally developed by K. Banihashem et al. [5].

Keywords: Dynamic algorithm - Non-monotone function -
Submodular maximization

1 Introduction

Submodularity is a significant property of a set function with various applica-
tions in the area of combinatorial optimization where the rank of matroids, edge
cuts, coverage and so on are all instances of submodular functions. It is also
widely used in the area of data summarization, information gathering and social
networks. A function is called submodular if for all A C B C V and e ¢ B,
f(Au{e}) — f(A) > f(BU{e}) — f(B), which intuitively implies that the same
element not in the current set will bring less marginal value as the current set
containing more elements.

Given a submodular function f defined over a ground set V, in the submodular
mazimization problem, we need to compute an optimal solution S C V, which
maximizes the value f(S).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 119-131, 2025.
https://doi.org/10.1007/978-981-96-4448-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_10&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_10

120 Y. Liu and W. Yang

The celebrated work given by Fisher et al. [9] in the 1970s, was the first
study considering the submodular maximization problem in the offline model.
They analyzed a greedy heuristic for the problem and obtained an approximation
ratio of 1 — 1/e as a result.

However, because of the rapid development of the computer science tech-
nology, the algorithm has to be able to deal with massive datasets which vary
constantly. As a result, recent researches have developed several big data models
to solve the problem. These include streaming models, dynamic models, parallel
models, online models and so on.

In the fully dynamic model, there is a sequence of updates of the ground
set V denoted by =. Each update causes an insertion or deletion of an element
e to the previous ground set V. The goal of the algorithms is to update the
optimal solution after each insertion or deletion, and maintain the approximation
guarantee in the entire process. The update time is measured by the amortized
query complexity, which counts the average number of queries required by the
algorithm during each update.

1.1 Related Work

The study of the dynamic submodular maximization was initiated in 2020 based
on two works by Lattanzi et al. [10] and Monemizadeh [4]. They both provided an
algorithm for the dynamic monotone submodular maximization problem under
the cardinality constraint k£ with an approximation of 1/(2+ ¢€). Their amortized
query complexity are respectively O(e~ 1 log®(k)log?(n)) and O(k2e3log®(n)).
In 2023 Banihashem et al. [1] developed an algorithm for the same problem,
improving the amortized query complexity to O(ke~!log®(k)), which is the first
one to be independent of n (the size of the ground set V).

Considering the problem of dynamic monotone submodular maximiza-
tion under the matroid constraint, Banihashem et al [1] and Diitting
et al. [6] both developed algorithms with an approximation guarantee of
1/(4 + €). Their amortized query complexity are O(klog(k)log®(k/e)) and
O(k%e'log(k) log?(n) log® (k/e€)), respectively.

For non-monotone cases, Banihashemet al. [5] demonstrated a reduction from
the monotone problem under the cardinality constraint to the non-monotone
problem under the same constraint. By exploiting the algorithm in [1], they
obtained an approximation guarantee of 1/(8 4 ¢) with an amortized query com-
plexity of O(k?¢~2log®(k)) per update.

1.2 Owur Contribution

In this paper, we consider the dynamic non-monotone submodular maximization
problem under cardinality and matroid constraints. In the model, we have a
universal ground set V. At the beginning of the algorithm, the ground set is
denoted by V. The ground set is going to have a sequence of updates in the
dynamic model, each of which cause an insertion or deletion of a single element.

Dynamic Algorithms for Non-monotone Submodular Maximization 121

At time ¢, we denote V; as the current ground set which contains the elements
that are inserted but not deleted from the set V till time ¢.

We assume that there is a non-monotone non-negative submodular function
f defined on the set V. Then the goal of our algorithm is to compute a subset
of V; under some constraints, the submodular value of which is the maximum of
all those subsets under the constraint.

Calculating such a subset is known to be NP-hard even in the offline set-
ting [8], so our focus comes to developing approximate algorithms with a fast
update time, which is measured by the property of query complexity. As many
existing results are for monotone submodular maximization, it becomes more
challenging to deal with non-monotone cases as adding a new element to the
current set may decrease the submodular value.

Inspired by the works of Banihashem et al. [1,5], we extend their algorithm
from monotone to non-monotone cases. Using the idea of Gupta et al., we create
two parallel instances of the algorithm. Let Z; and Zs denote the two instances.
First, with input V', we run the algorithm, which is regulated from those in the
monotone cases, in Z; to obtain a solution S;. Then, we delete the elements of
S1 in the instance Zp. That is, we run the algorithm in Zo with V' \ S; as the
input to obtain S,. Intuitively, the set S; might be a better solution if S; N S*
behaves bad, where S* denotes the accurate optimal solution. At this time, we
can run offline algorithms on S to obtain a subset S3, which bounds the value
f(S1N S*). Finally, we let S = argmaxceyg,,s,,5,} f(C) be the output of our
algorithm.

In this paper, we present our algorithms for both cardinality and matroid
constraints. For the cardinality case, we improved the result of [5], reaching an
approximation guarantee of 1/(6 + €) rather than 1/(8 + €). For the matroid
case, we developed the first algorithm for the problem using the idea of leveling
algorithm, reaching an approximation guarantee of (1 —¢€)/(8 + e).

In Sect.2, we outline the basics of the problem of dynamic non-monotone
submodular maximization under cardinality and matroid constraints. Section 3
shows the algorithms we used in our reduction. In Sect. 4, we analyze the approx-
imation guarantee and the amortized query complexity of our algorithms.

2 Preliminaries

Submodular Function. Let V be a set of elements called ground set. We
call a function f : 2V — R=2% submodular if for all A, B C V, f(A) + f(B) >
f(ANB)+ f(AU B). Equivalently, for any subsets A C B C V and any element
e V\B, f(AU{e}) — f(4) > f(BU{e}) — f(B). Function f is monotone if
f(A) < f(B)holds for everyA C B, otherwise it is called non-monotone. In this
paper, we assume that the submodular function is non-negative, which requires
the value f(S) >0, forall SC V.

Matroid. A matroid M(V,Z) consists of a ground set V and a nonempty
downward-closed set system Z C 2 (which means A € Z can be inferred from

122 Y. Liu and W. Yang

BeZIif AC B CV)known as the independent sets. The system is required
to satisfy the exchange aziom: if A, B are independent sets and |A| < |B|, there
exists an element x € B\ A such that AU{z} is an independent set. A subset of
V is called dependent if it is not an independent set. An independent set which
becomes dependent when adding any other element in V is called a basis for
the matroid. A dependent set which becomes independent when deleting any
element inside is called a circuit for the matroid. Let A be a subset of V, then
the rank of A, denoted by rank(A), is defined as the maximum cardinality of an
independent subset of A.

Access Model. In this paper, we assume that the access to a submodular
function is given by an oracle. The oracle allows set queries such that for every
subset A C V, one can query the value f(A). Since the marginal value Ay (e|A)
is defined as f(AU {e}) — f(A), it requires two queries, f(AU {e}) and f(A).

Dynamic Submodular Maximization Under Cardinality and Matroid
Constraints. Let f be a submodular set function. The purpose of the submod-
ular maximization is to compute a subset S* of the ground set V' as the optimal
solution to maximize the value f(S) under some constraints. In the dynamic
model, we assume that the ground set has a sequence of updates. We denote it
as & = {Z}, 59, ...}, each of which refers to an insertion or deletion of a single
element in the ground set V. We define V; as the set of elements of V' and those
have been inserted but not deleted from V after the t** update. To make it clear,
we denote the universal ground set as V), which includes all the elements involved
in the sequence = and V. The purpose of the dynamic submodular maximization
problem is to find the optimal solution after every update, i.e., to find a subset
Sy that f(S;) = maxgev, f(S), where S; is restricted by some constraints. For
the cardinality constraint, there is an integer k and |S;| < k is required. For the
matroid constraint, there is a matroid defined on the set V, and |S;| needs to be
an independent set, that is, S; € Z is required by the constraint.

Approximation Guarantee. An algorithm of the problem of submodular
maximization is an a-approximation algorithm, if the solution S is guaranteed
to satisfy f(S) > «- OPT. In the dynamic model, the inequality needs to hold
at any time t. For randomized algorithms, a-approximation algorithm is defined
as those satisfying E[f(S)] > a - OPT, where E[f(S)] denotes the expectation
of the random variable f(S).

Query Complexity. The query complexity is the number of the oracle queries
required by the algorithm to compute the solution. For the matroid constraint,
the oracle queries include the submodular oracle and the independent oracle. The
amortized query is defined as the average number of oracle queries required for
each update. This property helps to measure the time complexity of a dynamic
algorithm.

Dynamic Algorithms for Non-monotone Submodular Maximization 123

3 Dynamic Algorithms

In this section, we introduce the leveling algorithm we use to deal with the prob-
lems of dynamic submodular maximization under the cardinality and matroid
constraints. The algorithm is inspired by the works of [1] and [5]. However, the
original algorithms were developed for the monotone cases, so we regulated some
parts to apply to the non-monotone occasions.

The leveling algorithms are based on random permutations of the elements.
In a random order, we take each element into consideration. The useful elements
are defined as promoting elements which will be formally discussed later. As soon
as we find a promoting element, we build a new level and continue iterating the
elements until all the elements in V' have been considered. In the end, we will
obtain a set S, which consists of some (or all) of the promoting elements as the
result of the algorithm. After each update of the ground set, we make several
regulations to our data structure, in order to maintain the approximation ratio
at any time t.

However, in the preceding descriptions, we assume that we have known the
optimal value f(S*) = OPT in advance, while in fact the value tend to be
unknown for us and may change after each update. In order to relax the assump-
tion, we prepare several parallel runs of the algorithm, with a different guess of
the optimal value in each one of the runs. During an update, we only need to
consider those runs in a range of guesses depending on the properties of the
element e involved in the update.

3.1 The Leveling Algorithm Under the Cardinality Constraint

In this subsection, we introduce a leveling algorithm regulated from the works of
Banihashem et al. [1] which was developed for monotone situations. In the case of
the cardinality constraint, the algorithm constructs a set of levels Lg, L1, ..., L7,
where T is the number of the nonempty levels. Every L; consists of two sets Ry,
I; and an element e;. They satisfy the following properties:

1. Ro=V,Ig =10
2. R02R1D...DRTDRT+1:®
3. For 1 <1 <T,wehave I, =I;_1 U{e;}

In this algorithm, Iy is the solution. During the construction of each level,
the key concept is the notion of promoting elements.

Definition 1. (Promoting elements) Let 7 > 0 be a parameter and k be the
cardinality constraint. For a set I;,1 < | < T, an element e is a promoting
element, if f(I;U{e}) — f(I;) > 7 and |I;| < k.

Here, 7 is a threshold parameter to guarantee the lower bound of the sub-
modular value of the function. Now the levels can be constructed as follows: Let
I =1,and Ry = {e € Ry : f(e) > 7}. Then, we permute the elements of Ry
in a random order and let the first element be e; and the set {e;} be I;. We

124 Y. Liu and W. Yang

iterate through the elements for the permutation and for every element e € Ry,
we check whether e is a promoting element of the set I;.

If e is a promoting element, we let ¢; be e and I; be I;_; U {e;}. Then, we
create the next level L;,q by setting R;11 = () and let [iterate to [+ 1.

If e is not a promoting element, we need to find the smallest z such that e
is not a promoting element of I,. According to submodularity, there must be a
smallest z such that e is not a promoting element of I, and e is not a promoting
element of all I>.. Once we find such z, we add e to all the sets R, for 2 <r < 2.

During updates, we need to invoke the insertion and deletion subroutines. If
we delete an element v, we first delete v in the set Ry, and check if the element
v was in the previous I7. In other words, to check if there exists 7,1 < ¢ < T,
such that e; = v.

If not, it is simple that we only need to delete the element in each level. That
is, to delete v from those sets R; which includes the element v.

However, if there exists 7,1 < ¢ < T such that e; = v, this means that
the leveling data structure has been broken. Then we need to rebuild all the
levels L;<j<7r. We do this by invoking the level construction function of the
level L;, which permutes R; randomly and calculates new I;, R;, e; and so on to
reconstruct the levels.

For the case of insertion, the update works similarly. When we insert an
element v, we need to check each level L; if the element v is a promoting element
of the set I;. If so, we add v into the set R;1; with probability 1/ |R;|.

3.2 Non-monotone Cases Under the Cardinality Constraint

In the non-monotone cases, letting 7 = OPT/((4 + 1/a)k), we create two inde-
pendent instances Z; and Zs. The solutions given by the algorithm in each
instance are denoted by S; and Ss respectively.

At the beginning of the algorithm, we run the algorithm in Z; with the ground
set V as the input. The algorithm returns a set S as the solution. Then, we run
the algorithm in Zo with the ground set V'\ S as the input, obtaining a set Sy
which satisfies S; N Sz = @. Next, we run unconstrained offline algorithms on
Sp to obtain a set S3 C 1. Finally, we let S = argmaxc¢yg, s,,5,1 /(C) be the
solution.

Consider the subroutines of insertions deletions. Let INSERTz,(v) and
DELETEz, (v) denote the subroutines in the preceding subsection. Let
EXTRACTZ, denote the process of returning an optimal solution \S; in the instance
7;. When we insert an element v, we first run the insertion subroutine in 77 to
obtain an updated S;. Let S; denote the previous S; before the update. To
update Z,, we first insert (or delete) v in (the ground set of) Z,, then insert the
elements of S7 \ S one by one into Zs. Next, we delete the elements of Sy \ ST
in Z,. Note that S; NSy = () holds after every update, which is useful in our
analysis. After this, we still run unconstrained offline algorithms on S; to obtain
aset S3 C S1 and let S = argmaxceyg, s,.5,3 f(C) be the solution.

For the offline algorithm, we can use the method developed by Buchbinder
et al. |7]. In this algorithm, we start with two sets,) and S;, and consider the

Dynamic Algorithms for Non-monotone Submodular Maximization 125

elements of S; one at a time. For each element, we decide to delete it from the
second set or insert it to the first set randomly, with the probability associated
with the submodular value of the set. Then, we can obtain a 1/2-approximate
solution, which means letting a@ = 1/2. Another method chooses every element
randomly with a probability of 1/2, obtaining a 1/4-approximate solution, which
means letting o = 1/4.

In our assumption, the parameter 7 depends on the value O PT'. But in reality,
the value OPT is unknown in most of the situations. Using the technique in [10],
we can run parallel instances of our algorithm. First we make some parallel
guesses of the value OPT. Let the guesses be (1 + ¢)® where i € Z. For an
element e, we can ignore the guesses in which the OPT satisfies either f(e) < 7
(where e will never be a promoting element) or f(e) > OPT (where the guess is
conflicted with e).

3.3 The Leveling Algorithm Under the Matroid Constraint

The problems under the matroid constraint are similar to those under the car-
dinality constraint. However, it is more complicated. Unlike the occasions under
the cardinality constraint, we are not able to add elements freely into the current
set as it may break the independence of the set.

We also introduce a leveling algorithm under the matroid constraint. The
algorithm constructs a set of levels Lg, L1, ..., L1, where T is the number of the
nonempty levels. Every L, consists of sets Ry, I;, I] and an element ¢;. They
satisfy the following properties:

R():V,IQ:(Z)
R():_DRlD...:)RTDRT_A,_l:@
For 1 <1 <T, wehave I, = I;_1 U{e;}

I, €T, Izl = UjSin

Ll e

In this algorithm, I7 is the solution. The key concept in the matroid case is
still promoting elements. Compared to the cardinality case, the concept is more
complicated, since an element e cannot be added into the current set freely.
Before the definition, we define the weight of an element e in I’., which is denoted
as w(e). We let w(e) = f(I] +e) — f(I]) when e is added into I;.

Definition 2. (Promoting elements) For a level L;,1 <1 <T, an element e is
a promoting element for the level, if property 1 and either 2 or 8 hold.

Property 1: f(I] +e) — f(I]) > 7.

Property 2: I} + e is independent.

Property 3: I +e is not independent, and there exists an element é, such that
I} + e — é is independent and w(é) < 1/2-(f(I]+e)— f(I})).

The idea of the algorithm was affected by the swap algorithm, which allows
an element in the current solution to swap the new element to keep the property
of independent set. The level construction and update algorithms are similar to
that of the cardinality case, refer to [1] for more details.

126 Y. Liu and W. Yang

3.4 Non-monotone Cases Under the Matroid Constraint

In this section, we extend the algorithm in the last subsection to non-monotone
cases.

Different from the cardinality cases, the sets I7 and I’ are both significant to
the analysis for the algorithm, so the situation becomes more complicated when
it comes to the matroid constraint. Still, we create two independent instances,
7, and Z,. However, the set I, I} given by the algorithm in each instance are
denoted by Sy, S| and S, S5 respectively. Note that S; and Ss are independent
sets while S} and S} are not necessarily independent.

As we did to deal with cardinality cases, we run the algorithm in Z; with the
ground set V' as the input. The algorithm returns S; and S]. Then, we run the
algorithm in 7, with the ground set V' \ S] as the input, obtaining S and S}
which satisfies S1 NS5 = 0. Next, we run offline algorithms on S to obtain a set
S3 C S]. Finally, we let S = argmaxceyg, s,.5,3 f(C) be the solution.

The update process is the same as the cardinality case, so we skip the intro-
duction. However, the offline on the set S} is not as simple as the cardinality
case since the set S7 is probably not an independent set. Fortunately, the size
can be upper-bounded by the rank of the matroid %k instead of the size of the
ground set n. So we use the offline continuous greedy algorithm developed by
Feldman et al. with an approximation guarantee of 1/e.

4 Analysis of the Algorithms

4.1 Approximation Guarantee

In this subsection, we prove the approximation guarantees of our algorithms.

Cardinality Case. We first consider the solution given by the leveling algo-
rithm. In fact, the algorithm stops only when there is no promoting elements
available in the candidates. Recall the definition of the promoting elements, one
of these properties must hold:

L |Ir] = k.
2. Foralle e Ry C {eT}7 f(IT U {6}) — f(IT) <T.

So we can obtain the following theorem:

Theorem 1. The solution given by the cardinality leveling algorithm satisfies
exactly one of the two properties:

1. |Ir| =k and f(Ir) > k.
2. |Ir| <k and for alle e V\ Ip, f(Ir U{e}) — f(IT) < T.

Dynamic Algorithms for Non-monotone Submodular Maximization 127

Proof. As the preceding analysis, we know that the algorithm only stops when
there are no promoting elements. In the first case, |I7| = k. According to the
algorithm, we have f(I;) — f([_1) > 7 for T = 2,...,T and f(I;) > 7. After
adding all the equations together, we obtain that f(Ir) > Tk.

In the second case where |Ir| < k, for all e € Ry \{er}, f(IrU{e})—f(Ir) <
7. According to the algorithm, f(Ir U {e}) — f(Ir) > 7 means that e is a
promoting element of I, so it must be included in the set Rp. As there is no
such element in Ry, we prove that the property hold for all the elements in V.

Using this property, we obtain the following result:

Theorem 2. Suppose the optimal value OPT* € [?—i?OPT], When applying

the cardinality algorithm to the non-monotone cases, letting T = OPT/((4 +
1/a)k), the expected submodular value of the solution is E[f(S)] > (1-0(e))/(4+
1/a) - OPT*. a=1/2 or 1/4 depending on the offline algorithm we choose.

Proof. Using Jensen’s inequality, we have

E[max(f(51), f(S2), f(S53))] = max(E[f(S1)], E[f(S2)], E[f(S5)]) (1)

Thus, we just need to prove

max(E[f(S1)], E[f(S2)], E[f(S5)]) = (1 = O())/(4 + 1/e) - OPT (2)
Then, let S* denote the optimal solution. We consider two cases: (i) f(S1 N
S*) > 1k/a (i) f(S1NS*) < Tk/a.

If (i) is true, we have
EL/(S5)] > o max(/(C))

> af(S1NS*)
> atk/a (3)
=7k=1/(44+1/a)-OPT
>1/(4+1/a)-OPT*
If (ii) is true, we consider whether one of the sets S; and S has the cardinality
k. Let |S;| = k, we have
f(S))>7k=1/(4+1/a)-OPT >1/(44+ 1/a) - OPT* (4)

Otherwise, we can assume that |S1],|S2| < k. Then, according to the previous
theorem, for all e € V'\ Sy, f(S1U{e})— f(S1) < 7. Especially, for all e € S*\ S,
f(S1u{e}) — f(S1) < 7. According to submodularity, we have

FSLUS) = f(S1) < Y (f(S1U{e}) = £(S1))

e€S*\S1
<|S*\ ST
<7k

128 Y. Liu and W. Yang

That is, f(S1) > f(S1 U S*) — 7k. Similarly, we have f(S2) > f(S2 U (S*\
S1)) — k.
1 Thus,
J(51) 4+ f(S2) 2 f(S1US™) + f(S2 U (57\ 51)) — 27k
> f(S1US*USy) + f(S*\ S1) — 27k (6)
> (S°\ S1) — 27k

According to submodularity,
FOSTNS) + (510 8) = f(57) = OPT” (7)

So we have

fF(S1) + f(S2) = f(S*\ S1) — 27k
> OPT* — f(51NS*) — 27k
> OPT" —1k/a — 27k
>1-(1+e)(/(4+1/a)/a+2/(4+1/a))) - OPT*
>(2—-€2+4+1/a))/(44+1/a) - OPT*
=2(1-0(e)/(4+1/a) - OPT™

(®)

Therefore,

f(S1) + £(S2)

max(f(81), /(52)) = 22

This leads to

max(E[f(S1)], E[f(S2)], E[f(S3)]) = (1 = O(€))/(4 + 1/e) - OPT™ (10)

> (1-0(e)/(4+1/a)-OPT* (9)

So we have
E[f(S)] = (1 - O()/(4+ 1/a) - OPT" (1)

Thus, if we use the local search method as the offline algorithm where o =
1/2, we obtain a randomized (1 — O(¢))/6-approximate algorithm for the non-
monotone maximization under the cardinality constraint.

Matroid Case. The problem is much more intricate under the matroid con-
straint as we cannot directly separate the solution into two kinds as we did in the
cardinality constraint considering the complexity of the matroids. As a result,
we need more detailed properties of the sets Ip and I given by the leveling
algorithm.

Definition 3. For each element e € V, we define z(e) = max{i : e € R;}. If
€x(e) = €, then in the algorithm w(e) = f(I . _, +€) = f(I},_,). For other
e €V, define w(e) = f(I) +e) — f(I). Foraset ECV, define w(E) =
5o (o)

Dynamic Algorithms for Non-monotone Submodular Maximization 129

After the definition of z(e) and w(e), we have made the preparations to prove
the following theorem:

Theorem 3. Let E CV be an arbitrary independent set, S, S’ be an output of
the leveling algorithm, we have

F(EUS") <4f(S)+ Tk (12)

With the boundary given by this theorem, we can easily give an approxi-
mation guarantee of our algorithm. The proof of the theorems involves three
lemmas and are similar to those in [1]. The lemmas are as follows:

Lemma 1. In the leveling algorithm, we have
F(8) = w(S') < 2w(S) < 2f(9) (13)

Lemma 2. Let E € V be an arbitrary independent set, S, S’ be an output of
the leveling algorithm, we have

F(EUS) <2w(S)+w(E) (14)

Lemma 3. Let E € V be an arbitrary independent set, S be an output of the
leveling algorithm, we have

w(E) < 2w(S) + 7k (15)
Similar to the analysis of Theorem 2, we obtain the following result:

Theorem 4. Suppose the optimal value OPT* € [%_%?OPT], When applying
the matroid algorithm to the non-monotone cases, letting T = e3/(2k) - OPT, the
expected submodular value of the solution is E[f(S)] > (1 — O(e1) — O(ea))/(8 +
1/a)- OPT*.

This means that our randomized algorithm has an approximation of (1 —
€)/(8 + 1/a). Using the continuous greedy algorithm [2] where a@ = 1/e, we
obtain an (1 — €)/(8 + e)-approximate algorithm.

4.2 Query Complexity

The query complexity is the property to measure the update time of an algo-
rithm. In this subsection, we compute the query complexity of our algorithms
for the problems under cardinality and matroid constraints respectively.

Cardinality Case. According to the work of [1], in an update, the expected
queries required by the cardinality leveling algorithm is O(klog(k)). In our algo-
rithm, an update causes one update in the instance Z;, and causes at most
(T4 151\ ST |+ 1|57 \ S1|) updates in Zo, which is bounded by 2k + 1. There-
fore, counting the queries of the two instances, we obtain an amortized query

130 Y. Liu and W. Yang

complexity of O(k?log(k)). Since the query complexity of the offline algorithm
is O(k), the sum of them is still O(k?log(k)).

Now we relax the OPT assumption. As discussed, we only need to update
the guesses where f(e) < OPT < (44 1/a)kf(e). Thus, the factor here is
O(e tog(k)).

Then we obtain the result that the amortized query complexity of the algo-
rithm is O(k%e~* log?(k)).

Matroid Case. First, we bound the size of T. As 7 = e3/(2k) - OPT and
maxeecy f(e) < OPT, we have

maxcer; f(¢) _ OPT _ 2k

mineer; f(e) T e

(16)

During the leveling algorithm, each element e in I; is replaced at most once by
another element whose weight is at least 2w(e). So if we consider the chain formed
by swapping, the length of the chain ¢ is at most O(log(k/ez)) since 2¢ < 2k/es.
As the elements in I is at most k, each forming a chain whose length is at most
O(log(k/e2)), the number of the elements in I(T) is O(klog(k/e2)).

Using the analysis in [1], given a specified OPT, the expected number of
queries is at most O(k log(k) log®(k/e5)). During the update of our non-monotone
algorithm, for the same reason as the cardinality case, an update will cause at
most O(k) insertion or deletions in Z; and Z,, and the amortized query com-
plexity is O(k?log(k) log®(k/e2)).

Finally, we relax the OPT assumption. We make some parallel guesses of
the value OPT. Let the guesses be (1 + ¢;)* where i € Z. This will add a factor
O(eq log(k/e2)) to our complexity. Considering all the queries, the amortized
query complexity is O(k?e; * log(k) log® (k/e2)).

5 Conclusion

In this paper, we studied the dynamic algorithms for the problem of non-
monotone submodular maximization under cardinality and matroid constraints
by demonstrating a reduction from the monotone cases. As a result, we obtained
two algorithms, respectively for the problem of non-monotone submodular max-
imization under cardinality and matroid constraints, with an approximation of
1/(6+¢€) and (1 —€)/(8 + €). The amortized query complexity of the algorithms
are O(k?e 1 log?(k)) and O(k?e " log(k)log®(k/e)).

References

1. Banihashem, K., Biabani, L., Goudarzi, S., Hajiaghayi, M., Jabbarzade, P., Mone-
mizadeh, M.: Dynamic algorithms for matroid submodular maximization. In: Pro-
ceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024
(2024)

10.

Dynamic Algorithms for Non-monotone Submodular Maximization 131

Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for sub-
modular maximization. In: Proceedings of 52nd Annual IEEE Symposium Foun-
dations of Computer Science (FOCS), pp. 570-579 (2011)

Chen, X., Peng, B.: On the complexity of dynamic submodular maximization. In:
STOC 2022: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, pp. 1685-1698 (2022)

Monemizadeh, M.: Dynamic submodular maximization. In: Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems (2020)

Banihashem, K., Biabani, L., Goudarzi, S., Hajiaghayi, M., Jabbarzade, P., Mon-
emizadeh, M.: Dynamic non-monotone submodular maximization. In: Thirty-
Seventh Conference on Neural Information Processing Systems (2023)

Diitting, P., Fusco, F., Lattanzi, S., Norouzi-Fard, A., Zadimoghaddam, M.: Fully
dynamic submodular maximization over matroids (2023)

Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput.
44(5), 1384-1402 (2015)

Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular
functions. STAM J. Comput. 40(4), 1133-1153 (2011)

Nembhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions - I. Math. Program. 14(1), 265-294 (1978)
Lattanzi, S., Mitrovic, S., Norouzi-Fard, A., Tarnawski, J., Zadimoghaddam, M.:
Fully dynamic algorithm for constrained submodular optimization. In: Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020 (2020)

l‘)

Check for
updates

Broadcasting and Three List Subtraction

Hovhannes A. Harutyunyan and Narek Hovhannisyan®)

Department of Computer Science and Software Engineering, Concordia University,
Montreal, QC H3G 1M8, Canada
haruty@cs.concordia.ca, narekh980@gmail.com

Abstract. Broadcasting is an information dissemination primitive
where a message is passed from one node (called originator) to all other
nodes in the network. In the scope of this paper, we will mainly focus on
determining the broadcast time and the optimal broadcasting scheme for
graphs. Determination of the broadcast time of a node in an arbitrary
network is known to be NP-hard. Polynomial time solutions are known
only for a few classes of networks. In this paper, we will consider networks
that can be represented as k-path graphs. We will pose a new problem,
called 3 list subtraction, and discuss its relation to the broadcast time
problem on k-path graphs.

Keywords: Interconnection networks - Information dissemination -
Broadcasting - List subtraction

1 Introduction

Broadcasting is one of the most important information dissemination processes
in an interconnected network. Over the last four decades, a large amount of
research work has been published concerning broadcasting in networks under
different models. Models can have different numbers of originators, numbers of
receivers at each time unit, distances of each call, numbers of destinations, and
other characteristics of the network such as the knowledge of the neighborhood
available to each node. In the context of this paper, we are going to focus on
the classical model of broadcasting. The network is modeled as an undirected
connected graph G = (V, E), where V(G) and E(G) denote the vertex set and
the edge set of G, respectively. The classical model follows the below-mentioned
basic assumptions.

(1) The broadcasting process is split into discrete time units.

(2) The only vertex that has the message (is informed) at the first time unit is
called originator.

(3) In each time unit, an informed vertex (sender) can call at most one of its
uninformed neighbors (receiver).

(4) During each unit, all calls are performed in parallel.

(5) The process halts as soon as all the vertices in the graph are informed.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 132-143, 2025.
https://doi.org/10.1007/978-981-96-4448-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_11&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_11

Broadcasting and Three List Subtraction 133

We can represent each call in this process as an ordered pair of two vertices
(u,v), where u is the sender and v is the receiver. The broadcast scheme is the
order of calls made by each vertex during a broadcasting process and can be
represented as a sequence (Cq, Ca, ..., C}), where C; is the set of calls performed
in time unit ¢. An informed vertex v is idle in time unit ¢ if v does not make any
call in time ¢. A broadcast scheme is called busy if any informed vertex sends a
message to one of its uninformed neighbors during each round. These schedules
guarantee that as long as there remains an uninformed neighbor, vertices are
never idle.

Any broadcast scheme forms a directed spanning tree (broadcast tree) rooted
at the originator. We are also free to omit the direction of each call in the
broadcast tree.

The broadcast time of a vertex v in a given graph G is the minimum number
of time units required to broadcast in G if v is the originator and is denoted by
b(v, G). The broadcast time of a given graph G, is the maximum broadcast time
from any originator in G, formally b(G) = maz,cy(c){b(v,G)}. A broadcast
scheme for an originator v that uses b(v,G) time units is called an optimal
broadcast scheme. Obviously, by the assumption (3), the number of informed
vertices after each time unit can at most be doubled. Meaning, in general, the
number of informed vertices after time unit 4 is upper bounded by 2¢. Therefore,
it is easy to see that b(v, G) > [logn], where n is the number of vertices in G,
which implies that b(G) > [logn].

The general broadcast time decision problem is formally defined as follows.
Given a graph G = (V, E) with a subset V; C V, and a positive integer k. Can a
message be “broadcast” from the base set V[to all other vertices in time k, i.e.,
is there a sequence Vy, F1, Vi, Es, Vo, - | Ex, Vi such that each V; C V, each
E;CE(1<i<k),Vyz=V,and, for 1 <i <k, (1) each edge in E; has exactly
one endpoint in V;_1, (2) no two edges in E; share a common endpoint, and (3)
Vi = Vi1 U{v : {u,v} € E;}? Here k is the total broadcast time, V; is the set of
informed vertices at round 7, and E; is the set of edges used for placing calls at
round i. It is obvious that when |V5| = 1 then this problem becomes the single
source broadcast problem of determining b(v, G) for an arbitrary vertex v in an
arbitrary graph G.

Generally, the broadcast time decision problem in an arbitrary graph is NP-
complete [8,21]. Moreover, the minimum broadcast time problem was proved
to be NP-complete even for some restricted graph families, such as 3-regular
planar graphs [19], and series-parallel graphs [22]. The study of the parameter-
ized complexity of the broadcast time problem was initiated in [6]. There is a
very limited number of graph families, for which an exact algorithm with poly-
nomial time complexity is known for the broadcast time problem. Exact linear
time algorithms are available for the broadcast time problem in trees [20,21],
in connected graphs with only one cycle (unicyclic graphs) [13,14], in necklace
graphs (chain of rings) [11], in k-restricted cactus graphs [23], in fully connected
trees [9], and in Harary-like graphs [2,3]. For a more detailed introduction to
broadcasting and related problems, we refer the reader to [7,12,15,16].

134 H. A. Harutyunyan and N. Hovhannisyan

In this paper, we pose a new problem of finding an optimal permutation of
two given lists, such that an element-wise subtraction of the two from a third
list minimizes the maximum element of the resulting list. We also discuss its
application to solving the broadcast time problem on k-path graphs, which are
a subfamily of 2-connected series-parallel graphs.

The rest of this paper is organized as follows. In Sect.2, we discuss some
previous results on broadcasting in k-path graphs. Further, in Sect. 3, we define
3-LisT-SUB problem and prove some properties of the problem and some of
its variations. In Sect.4, We demonstrate a close connection between the pro-
posed problem and broadcasting in k-path graphs, enabling us to devise an
exact polynomial-time algorithm on a subfamily of k-path graphs. Finally, we
will conclude the paper in Sect. 5.

2 k-Path Graphs

In this section, we discuss a simple subfamily of 2-connected series-parallel graphs
that are usually referred to as k-path graphs or melon graphs. A k-path graph
G = (P, Py, ..., P;) is obtained from a pair of vertices u and v, by adding k > 2
internally vertex-disjoint paths Py, Ps, ..., Py between u and v. Vertices v and v
are called junctions of G (Fig.1).

Fig. 1. Example of a k-path graph.

We assume that paths are indexed in a non-increasing order of their lengths.
Formally, I; > Iy > ... > [, where [; is the number of vertices on path P,
(excluding u and v) for all 1 < ¢ < k. Note that since we consider all input
graphs to be simple, only I can be 0.

To have more understanding of the broadcast time problem in general graphs,
it is rather important to understand the properties of graphs that make this
problem difficult. One such property is the existence of intersecting cycles. Since
k-path graphs are one of the simplest graphs that contain intersecting cycles,
they are very interesting to research in terms of the broadcast time problem.
Moreover, we believe that k-path graphs are a boundary family between graphs
where broadcasting is computationally easy and where it is difficult.

Broadcasting and Three List Subtraction 135

The broadcast time problem was researched for general series-parallel graphs
as well as for subclasses of series-parallel graphs [17,18,22]. In [22], the authors
show that the minimum broadcast time problem restricted to graphs with
treewidth 2 is NP-complete (for an introduction to treewidth we refer the reader
to [4,5]). As series-parallel graphs have a treewidth of 2, the result also applies
to series-parallel graphs.

In [1], the authors introduce a (4 — ¢)-approximation algorithm for the broad-
cast time problem in general k-path graphs. Additionally, for some particular
subclasses of k-path graphs, the authors give better approximations or optimal
algorithms. The complete set of results introduced in [1] is presented in Table 1.
Later, a 2-approximation algorithm for the broadcast time problem in general
k-path graphs was introduced in [10].

Table 1. Summary of known results for k-path graphs [1,10]

Case Algorithm Result

General k-path [10] 2-approximation

lj >l +2and k<l +1 Spath [1] |optimal

lj=lyiand k<l +1 Spath [1] |optimal
lj=lt1+land k<[l +1 Spatn [1] (5 — €)-approximation
lj =li+14+ 1, k <lp+1 and u is the originator Apa:n [1] |(Z — €)-approximation

In [1], the authors also presented several lower bounds and other auxiliary
results for the broadcast time problem.
Given a k-path graph G and junction vertex u authors proved the following.

Lemma 1 [1]. There exists a minimum broadcast scheme from the originator u
in Gy in which the shortest path Py is informed in the first time unit.

Similarly, given an internal vertex w authors proved the following.

Lemma 2 [1]. There exists a minimum broadcast scheme from the originator w
in Gy in which w first sends the message along a shorter path towards a junction
vertex.

3 3-Li1ST-SUB Problem

For a list A, we refer to the i** element of A as A[i] or A;. Unless otherwise stated,
in the context of this section, we assume that indexing of lists starts from 1. Given
3 lists of integers A, X, and Y of the same size n, let list subtraction LS(A, X,Y)
denote a list of integers Z, such that Z; = A;— X;—Y;. Also, let MLS(A, X,Y) =
max{Z;|1 <4 <n}, where MLS stands for mazimum list subtraction. The goal
of the 3 lists subtraction problem (3-LisT-SUB) is to find permutations X’ and
Y’ of X and Y, respectively, that minimize M LS(A, X', Y").

We formally define the general 3 list subtraction decision problem as follows:

136 H. A. Harutyunyan and N. Hovhannisyan

3 List Subtraction Problem (3-List-Sub): Let A, X, and Y be lists
of integers of the same size n, and k be a positive integer. Do there exist
permutations X' and Y' of X and Y, respectively, that meet the following
condition?
A= X! -V} <
lrélia‘gxn{ g) 1} — k
An example of 3-LIST-SUB problem instance and its optimal solution are
provided in Fig. 2.

Index 1 2 3 4 5 1 2 3 4 5
A 6 9 4 5 6 6 9 4 5 6
X 2 4 5 6 1 5 1 4 2 6
Y 1 10 3 4 1 3 10 1 4 1
Z =7 | =% | =il [=i | =il

Fig. 2. Example of a 3-LIST-SUB instance and its solution.

For lists A, X, and Y, we denote by M (A, X,Y") the minimum value of k, for
which 3-LiST-SUB can be solved on A, X, and Y. In other words, M (4, X,Y)
is the value of minimum M LS out of all permutations of X and Y.

It is easy to see that, regardless of the selected permutations of X and Y, the
sum of the elements in the list subtraction is the same. Moreover, the theoretical
minimum is achieved if all elements in the list subtraction are equal (which may
not always be possible). Hence, the following lemma is trivial.

Lemma 3. For any lists A, X, and Y of size n,

> Zlgign(Ai - Xi— Yz‘)
B n

M(A,X,Y)

Moreover, if all the elements in the list subtraction are equal then the solution
s optimal.

Particularly, we are interested in a variation of 3-Li1ST-SUB, referred to as
3-C-LisT-SuB, where both X and Y comprise consecutive numbers, i.e. X; =
Xi14+landY; =Y, 1+ 1, forall 2<i<n.

3.1 Equivalency of 3-LIST-SUB instances

We will denote with IT : {1,2,...,n} — {1,2,...,n}, a mapping function
defining the relation between the indices of a list and its permutation. We will
sometimes use the notation IT(X) to refer to the list that results after IT is
applied on the indices of X. We say that a pair of permutation functions (17, IT5)
is an optimal solution to a 3-LI1ST-SUB problem on lists A, X, and Y, if applying
II1 and II5 on X and Y, respectively, results in permutation lists with minimum
MLS.

Broadcasting and Three List Subtraction 137

Lemma 4. Let A, X, Y, B, and C be lists of n integers, where X, Y, B and
C consist of consecutive integers and By = C1 = 1. If a pair of permutation
functions (II1, II2) is an optimal solution to the 3-LIST-SUB instance on A, X,
and Y, then (I11, II2) is also an optimal solution to the 3-LIST-SUB instance on
A, B, and C.

Proof. Let X’ and B’ denote the lists that result when II; is applied on X and B,
respectively. More formally, X = X; and B} = B;, when j = II1(i), 1 <4 < n.
Similarly, let Y’ and C” denote the lists that result when IT5 is applied on Y and
C, respectively. Consider the lists Z = LS(A, X', Y’) and D = LS(A, B',C").
Since, X, Y, B, and C all comprise consecutive integers and B; = C; = 1, the
following is easy to see for any 1 < ¢ < n.

- X! - B! :XifBl:(X1+271)72:X171, Wherejzﬂl(i).
Y O =V G = (Vi +i—1) =i = Vi — 1, where j = IT5(i).
- Dj—Zj=(A;—-B;—=C))—(A; - X;-Y]) = X] - B/ +Y/ - C} = X; +Y; -2
In other words, all elements in Z and D with the same index differ by a constant.
Assuming M LS(A, X', Y’) is met at some index h, MLS(A, B’,C") should also
be met at index h. Otherwise, it would contradict the constant difference. Thus,
z—d=X1+Y, —1, where z = MLS(A,X",Y’) and d = MLS(A, B’,C").
Assume, by contradiction, that (11, IT2) is not an optimal solution to the 3-
LisT-SUB instance on A, B, and C. Let (II{, IT}) be an optimal solution to the
same instance, meaning M LS (A, II{(B), I15(C)) = M(A,B,C) = d' < d. Let
2zl = MLS(A,II{(X),ITI5(Y)) be the outcome when (II7, IT}) is applied to the
instance on A, X, and Y. Based on the above observations, 2’ —d' = X; +Y; —1,
which results in the following contradiction;

Z/:d/+X1+Y17].<d+X1+Y1*].<Z

3.2 Optimal Solution to Restricted 3-C-LIST-SUB

Given an instance of 3-C-L1ST-SUB on lists A, X, and Y of size n, where all the
lists consist of consecutive integers, we are going to design optimal permutation
functions. By Lemma 4, we can assume that X; = Y; = 1, since the permutation
functions will also apply to other cases. We will give the optimal permutations
based on the parity of n.

Odd n Let p = %71 Consider the following permutations X’ and Y’ of X and
Y, respectively.

X]’-:ij:2j where 1 < j <p (1)
Xi+p+j:X2j+1:2j+1 Where()gjgp

}/j/:Yp_j_‘rl:p—j—'—l Wherelgjgp
Y/ipj=Ynj=n—j where0<j<p

138 H. A. Harutyunyan and N. Hovhannisyan

Theorem 1. X’ and Y' are optimal permutations for the 3-C-LisT-SUB
instance on A, X, and'Y of odd size n, and M(A,X,Y)=A; —p—2.

Proof. Following the definitions of the permutations, we are going to calculate
Z = LS(A,X')Y’), considering each half of the list Z separately.

—For1<j53<p
Zy= Ay =X, =Y = (A1 +j-1) =)~ (p—j+1) = A —p—2 (3)
—For0<j<p,i=1+p+j

Zi= A= XY= (Wt 1p iD= =)
:A1+p*n71:A1+p*(2p+1)*1:A17p72

Since all elements in Z are equal, by Lemma 3, X’ and Y’ are opti-
mal permutations for the 3-C-LiST-SUB instance on A, X, and Y. Moreover,
MA,X)Y)=4 —p—2. O

Even n Let p = 5. Consider the following permutations X’ and Y of X and
Y, respectively.

X! = Xo5 =2j where 1 < j <p (5)
Xijprj =Xojr1=2j+1 where0<j<p
Y/=Y) jy1=p—j+1 wherel <j<p (6)
Y{H)H:Yn—j:”*j where 0 < j <p

Theorem 2. X' and Y' are optimal permutations for the 3-C-LisT-SUB
instance on A, X, and'Y of even size n, and M(A, X, Y)=A; —p—2.

Proof. Following the definitions of the permutations, we are going to calculate
Z =LS(A,X')Y’), considering each half of the list Z separately.

—For1<j3<p
Zy=Aj=X,=Y = (A +j-1) =)~ (p—j+1) = A —p—2 (7)
—For0<j<p,i=1+p+y

Zi= A= X =Y = (A +14p+j—1) =2 +1) — (n—)

8
=A1+p—-n—-1=A1+p—(2p+1)—-1=A;—p—-2 ®)

Since all elements in Z are equal, by Lemma 3, X’ and Y’ are opti-
mal permutations for the 3-C-LIST-SUB instance on A, X, and Y. Moreover,
MAX,)Y)=A1 —p—2. O

Broadcasting and Three List Subtraction 139

4 Reducing Broadcast Time Problem on k-Path Graphs

Let G = (Py, Pa, ..., Py) be a k-path graph with junction vertices u and v. Recall
that we assume paths are sorted in a non-increasing order of their lengths, i.e.
l12l222lk20

Theorem 3. Consider the case when u is the originator. We reduce the mini-
mum broadcast time problem on k-path graphs to 3-C-LIST-SUB on the following
lists: A = {lkfl,lkfgw.wlg,ll}, X = {1,2,3,...,k—1}, Y = {172,3,...,k—1}
If b(u,G) >l + k, the permutation functions of X and Y that optimally solve
3-C-L1sT-SUB instance on A, X, and Y, also induce optimal broadcasting order
of junctions u and v in graph G.

Proof. By Lemma 1, u passes the message along the path P, to v in the first
time unit. Hence, v will be informed in time unit ¢, = I + 1. Consider the time
unit ¢, + k — 1.

— Since v can start informing its neighbors from time unit ¢, + 1, by time unit
ty, +k —1, all of its k — 1 uninformed neighbors (other than on path Py) can
potentially be informed. Moreover, the path that was informed on time ¢, + 4
can have k — ¢ informed vertices, for any 1 < i < k — 1. This means v can
contribute to informing {1,2,...,k — 1} vertices on some paths, depending
on the order of calls placed by v.

— Similarly, v starts informing its neighbors from time unit 2 (excluding path
Py). Hence, by time unit ¢, + k& — 1, the path that was informed by u on time
1+4+icanhavet,+k—1—1i, for any 1 <1i < k — 1. Meaning u can contribute
to informing {¢,,¢, +1,...,t, + k — 1} vertices on some paths, depending on
the order of calls placed by v.

Starting from time unit ¢, +k, neither u nor v can affect the broadcasting process.
In each time unit after that, one or two vertices on each path can be informed,
until the broadcasting is finished. Hence, the decisive factor of the broadcast
time is the order of calls placed by u and v.

Consider the instance of 3-C-LisT-SUB on lists A, B, and C, where A =
{l1,l2, e ,lk_g,lk_l}, B= {1,2,3, .. .,k‘—l}, C= {tv,tU—Fl, S ,tv+k—2}. Let
B’ and C’ be any permutations of B and C, respectively. Let D = LS(A, B',C")
and d = MLS(A, B’,C"). Note that permutations B’ and C’ uniquely define the
order of calls (broadcast scheme S) placed by v and wu, respectively. Whereas
D;, for any 1 < i < k — 1, corresponds to the number of uninformed vertices on
path P; in time unit ¢, + k, if v and u followed the broadcast order defined by
B’ and C’. Meaning d is the highest number of uninformed vertices on any path.
Assume, WLOG, d = D; for some 1 < j < k — 1. Since path P; has the highest
number of uninformed vertices d, there are two possible cases.

— If d > 0: In this case, starting from the time unit ¢, + k, up to two vertices
can be informed on path P;. This means that the broadcasting will be over
after [¢] time units, hence, the following broadcast time will be achieved.

) =tk 1+ 2] <t a1 ®

140 H. A. Harutyunyan and N. Hovhannisyan

— If d < 0: This case implies that by time unit ¢, + k& — 1, none of the paths had
any uninformed vertices, i.e. broadcast was finished and b(S) < I +1+k—1 =
li + k. Which makes this case inapplicable to this theorem. However, we can
note that P(7 was fully informed

o at least %W time units before t,, + k — 1, if it was informed by both u and
U7

o and at most d time units before t, + k — 1, if it was informed by only one
of u and v.

Thus, by Eq. (9), to minimize B(S), d should be equal to M (A, B,C).

(10)

b(u, G) = Iy + I + WAQBOW

On the other hand, by Lemma 4, the 3-C-L1sT-SUB instance on A, B, and C
has the same optimal permutations as the instance on A, X, and Y. a

Corollary 1

b(u, G) = U + k+ [MAEO] if b(u, G) > U + k
e+ ki M(A, B, C) < b(u, G) < i+ ko | MEBDTif b(u,6) <l + &

Another case is when a vertex w on path P, is the originator. Let d be the
length of the path wu, and hence, I, + 1 — d be the length of the path wwv.
Assume, WLOG, that d < l,,, + 1 —d. Also, let 7(m) = l,,, + 2 — 2d. Recall that
when 7(m) < I + 2, the vertex v will be informed via the direct path from w,
and hence, t, = d + 7(m). We reduce the minimum broadcast time problem on
k-path graphs to 3-C-LisST-SUB on the following lists.

1. A:{lkvlkfla"'7lm+27lm+lalmfl7lm72w"712711}7
2. X =1{1,2,3,...,k—1}, Y ={1,2,3,... k — 1},
3. B={1,2,3,...,k—1},C={r(m)+ 1,7(m) + 2,...,7(m) + k — 1}.

Let h = d+ 7(m) + k — 1. The below claims are proved analogous to Theorem
3 and Corollary 1.

Theorem 4. If b(w,G) > h, the permutation functions of X and Y that opti-
mally solve 3-C-L1ST-SUB instance on A, X, and Y, also induce optimal broad-
casting order of junctions u and v in graph G.

Corollary 2

b(w,G) = h + [%Bc)] if b(w, G) > h
h+M(A,B,C) < bw,G) < h+ [MAED] i p(w,G) < h

4.1 Exact Broadcasting on Restricted k-Path Graphs

Let G = (Py, Ps,..., Py) be a k-path graph, where [; = ;11 + 1 for any 1 <14 <
k — 2. The length of path I, is arbitrary. According to Table 1, the problem of

Broadcasting and Three List Subtraction 141

finding an exact broadcasting algorithm for such k-path graphs remains open.
However, combining the contributions of Sects.3.2 and 4 results in an exact
broadcast algorithm. By Theorem 3, the exact order of calls placed by u and v
corresponds to the optimal permutations in the reduced 3-C-Li1ST-SUB instance.
This means that, in the induced algorithm, both u and v should follow the reverse
order of permutation lists described in Egs. (1), (2), (5), and (6). An example
visualizing this behavior is portrayed in Fig.3. Algorithm 1 formally presents
the broadcasting order.

Fig. 3. Example of the broadcast scheme in Algorithm 1.

Algorithm 1. Broadcasting in restricted k-path graphs

Input A k-path graph G = (P1, Ps, ..., Px), vertices u and v, and an originator u
Output Exact broadcast scheme for graph G and the originator w

1: procedure EXACTBROADCASTING
2 In the first time, unit u passes the message along the path Py
3 n«—k—1
4 if n is odd then
5: p— nT_l
6 for 1 <j<pdo
7 u informs its neighbor on path Py_j;, on time n —p +j
8: v informs path P;_;, n — 2j + 1 time units after being informed
9: end for
10: for 0 <j<pdo
11: u informs its neighbor on path Py_;_p—1, on time j +1
12: v informs path Py_;_p—1, » — 27 time units after being informed
13: end for
14: else
15: pe—3
16: for 1 <j<pdo
17: u informs its neighbor on path P,_;, on time n —p +j
18: v informs path Pr_;, n — 2j + 1 time units after being informed
19: end for
20: for 0 <j<pdo
21: u informs its neighbor on path Py_;_p,—1, on time j + 1
22: v informs path Py_;_p—1, » — 2j time units after being informed
23: end for
24: end if

25: end procedure

142 H. A. Harutyunyan and N. Hovhannisyan

5 Conclusion and Future Work

In this paper, we introduced a new problem that we refer to as the 3 List Subtrac-
tion Problem (3-LisT-SUB). The goal of the problem is to find permutations of
two of the three given lists, such that element-wise subtraction of these two lists
from the first list results in a list with the lowest maximum element value. We
devised an optimal solution to a restricted subproblem to 3-LisT-SUB, helping
us to find an exact broadcasting algorithm on restricted k-path graphs with con-
secutive path lengths. Additionally, for k-path graphs with significantly larger
broadcast times of the junctions, we showed that the length of the shortest path
does not affect the broadcast order of the junctions. To the best of our knowledge,
3-Li1SsT-SUB problem and its potential generalizations (e.g. to k different paths)
were not previously studied. Hence, we believe that it can be important and
interesting to study the NP-hardness of 3-LIST-SUB problem. When it comes
to broadcasting on k-path graphs, the problem of designing a polynomial-time
exact broadcasting algorithm for arbitrary k-path graphs remains open.

References

1. Bhabak, P., Harutyunyan, H.A.: Approximation algorithm for the broadcast time
in k-path graph. J. Interconnection Netw. 19(04), 1950006 (2019)

2. Bhabak, P., Harutyunyan, H.A., Kropf, P.: Efficient broadcasting algorithm in
Harary-like networks. In: 2017 46th International Conference on Parallel Processing
Workshops (ICPPW), pp. 162-170 (2017)

3. Bhabak, P., Harutyunyan, H.A., Tanna, S.: Broadcasting in Harary-like graphs.
In: 2014 IEEE 17th International Conference on Computational Science and Engi-
neering (CSE), pp. 1269-1276 (2014)

4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(1-2), 1-45 (1998)

5. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51(3), 255-269 (2008)

6. Fomin, F.V., Fraigniaud, P., Golovach, P.A.: Parameterized complexity of broad-
casting in graphs. Theor. Comput. Sci. 997, 114508 (2024)

7. Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual net-
works. Discret. Appl. Math. 53(1), 79-133 (1994)

8. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory
of NP-Completeness (1983)

9. Gholami, S., Harutyunyan, H.A., Maraachlian, E.: Optimal broadcasting in fully
connected trees. J. Interconnection Netw. 23(01), 2150037 (2023)

10. Harutyunyan, H.A., Hovhannisyan, N.: Improved approximation for broadcasting
in k-path graphs. In: International Conference on Combinatorial Optimization and
Applications (COCOA), pp. 111-122. Springer, Cham (2023)

11. Harutyunyan, H.A., Hovhannisyan, N., Maraachlian, E.: Broadcasting in chains
of rings. In: 2023 Fourteenth International Conference on Ubiquitous and Future
Networks (ICUFN), pp. 506-511. IEEE (2023)

12. Harutyunyan, H.A.) Liestman, A.L., Peters, J.G., Richards, D.: Broadcasting and
gossiping. In: Handbook of Graph Theory, pp. 1477-1494 (2013)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Broadcasting and Three List Subtraction 143

Harutyunyan, H.A., Maraachlian, E.: Linear algorithm for broadcasting in unicyclic
graphs. In: International Computing and Combinatorics Conference (COCOON),
pp. 372-382. Springer, Cham (2007)

Harutyunyan, H.A., Maraachlian, E.: On broadcasting in unicyclic graphs. J.
Comb. Optim. 16(3), 307-322 (2008)

Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319-349 (1988)
Hromkovic, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in
interconnection networks (broadcasting & gossiping). In: Combinatorial Network
Theory, pp. 125-212. Springer, Cham (1996)

Kortsarz, G., Peleg, D.: Approximation algorithms for minimum-time broadcast.
SIAM J. Discret. Math. 8(3), 401-427 (1995)

Marathe, M.V.; Ravi, R., Sundaram, R., Ravi, S., Rosenkrantz, D.J., Hunt, H.B.,
IIL.: Bicriteria network design problems. J. Algorithms 28(1), 142-171 (1998)
Middendorf, M.: Minimum broadcast time is NP-Complete for 3-regular planar
graphs and deadline 2. Inf. Process. Lett. 46(6), 281-287 (1993)

Proskurowski: Minimum broadcast trees. IEEE Trans. Comput. C-30(5), 363-366
(1981)

Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees.
SIAM J. Comput. 10(4), 692-701 (1981)

Tale, P.: Double exponential lower bound for telephone broadcast. CoRR
abs/2403.03501 (2024)

Cevnik, M., Zerovnik, J.: Broadcasting on cactus graphs. J. Comb. Optim. 33(1),
292-316 (2017)

l‘)

Check for
updates

The Power of Second Chance:
Personalized Submodular Maximization
with Two Candidates

Jing Yuan! and Shaojie Tang?(®)

! Department of Computer Science and Engineering, University of North Texas,
Denton, USA
2 Center for Al Business Innovation, Department of Management Science
and Systems, University at Buffalo, Buffalo, USA
tangshaojie@gmail.com

Abstract. Most of existing studies on submodular maximization focus
on selecting a subset of items that maximizes a single submodular func-
tion. However, in many real-world scenarios, we might have multiple
user-specific functions, each of which models the utility of a particular
type of user. In these settings, our goal would be to choose a set of
items that performs well across all the user-specific functions. One way
to tackle this problem is to select a single subset that maximizes the sum
of all of the user-specific functions. Although this aggregate approach is
efficient in the sense that it avoids computation of sets for individual
functions, it really misses the power of personalization - for it does not
allow to choose different sets for different functions. In this paper, we
introduce the problem of personalized submodular maximization with
two candidate solutions. For any two candidate solutions, the utility of
each user-specific function is defined as the better of these two candi-
dates. Our objective is, therefore, to select the best set of two candidates
that maximize the sum of utilities of all the user-specific functions. We
have designed effective algorithms for this problem. We also discuss how
our approach generalizes to multiple candidate solutions, increasing flex-
ibility and personalization in our solution.

1 Introduction

A submodular function is defined by its intuitive diminishing returns property:
adding an item to a smaller set will increase the return more in comparison
with when this happens from a larger set. Such a function is extremely common
in various combinatorial optimization problems naturally arising from machine
learning, graph theory, economics, and game theory. Most of the work in sub-
modular optimization focuses on selecting a subset of items from a ground
set that maximizes a single submodular function. However, in many real-world
scenarios, we are confronted with multiple user-specific functions denoted as
fis o fm 2 22 — Rsg. Each of these functions, such as f;, captures the utility
corresponding to some user type indexed by i. Our main goal will be to maximize

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 144-156, 2025.
https://doi.org/10.1007/978-981-96-4448-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_12&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_12

Personalized Submodular Maximization with Two Candidates 145

the aggregate utility of all the m functions. One trivial way to achieve this would
be to compute a solution individually for every single function f;. Unfortunately,
this would require to compute and store m solutions, which is infeasible or at
least very inefficient if the number of user-specific functions is large. Another
way is to look for a single feasible solution, denoted as S C {2, that maximizes
the summation of these m functions, i.e., maxscp Eie[m] fi(S). This problem,
also known as the maximization of decomposable submodular functions [8], has
been well-studied in the literature and efficient algorithms have been designed
for the same. Nevertheless, such an aggregate approach, despite being efficient, is
unable to harness the power of personalization. Specifically, it does not provide
the flexibility in offering a personalized set for each function.

In our research, we introduce the innovative concept of personalized submod-
ular maximization. Consider a pair of sets {S7, S2}, for each user-specific func-
tion f;, we determine its utility based on the better-performing solution among
these two candidates, represented as max{f;(S1), fi(S2)}. Mathematically, our
problem can be expressed as follows:

Gmax Z max{ f;(S1), fi(S2)}
,S52C iem]

subject to |S1| <k, |S2] <k,

where k is the size constraint of a feasible solution. In essence, our primary
objective is to maximize the combined utility of user-specific functions while
maintaining a personalized approach to item selection. An important and prac-
tical application of our study is in the context of two-stage optimization. Here,
we consider that f1,--- , f;, represent training examples of functions drawn from
an unknown distribution, we aim to choose a pair of candidate solutions based
on these m functions, ensuring that one of the chosen candidates performs well
when faced with a new function from the same distribution.

In this paper, we also discuss the possibility of expanding our approach
to accommodate multiple (more than two) candidate solutions. This poten-
tial extension would further enhance the flexibility and personalization options
within our solution.

1.1 Related Work

The problem of submodular maximization has received considerable attention
in the literature [3,4,10,11,13]. For example, one of the most well-established
results is that a simple greedy algorithm achieves a tight approximation ratio of
(1—1/e) for maximizing a single monotone submodular function subject to car-
dinality constraints [7]. Since most datasets are so big nowadays, several works
were devoted to reducing the running time to maximize a submodular func-
tion. Examples include the development of accelerated greedy algorithms [5] and
streaming algorithms [1]. All of these works, however, focus on finding a single set
that maximizes a submodular function. In contrast, our goal is to identify a pair
of candidates that maximizes the sum of the better-performing solution between

146 J. Yuan and S. Tang

them. This presents a unique challenge, as the resulting objective function is no
longer submodular. Consequently, existing results on submodular optimization
cannot be directly applied to our study.

Our work is closely related to the field of two-stage submodular optimiza-
tion [2,6,9,12], in which the key objective is to find a smaller ground set from
a large one. This reduction should be designed in such a way that choosing the
items from the small set guarantees approximately the same performance as
choosing items from the original large set for a variety of submodular functions.
This aligns with our objective of seeking two initial solutions that cut down
on computational effort in optimization with a new function. However, problem
formulations between our studies are largely different despite sharing the same
objective. Thereby, new methodologies should be developed to cope with the
distinctive challenges presented in our research. Moreover, note that in the tra-
ditional framework of two-stage submodular optimization, once a reduced ground
set is computed, further optimization based on this reduced set usually involves
algorithms with possibly high time complexity, such as the greedy algorithm.
In contrast, our personalized optimization model requires only a comparison
between the performance of two candidate solutions, significantly reducing the
computational burden in the second stage.

2 Problem Formulation

Our problem involves an input set of n items denoted as 2, and a collection of m
submodular functions, namely, fi,--- , fm : 2? — R>g. To clarify, the notation
A;(z, A) denotes the marginal gain of adding item z to set A with respect to the
function f;. That is, A;(z, A) = f;({z} U A) — fi(A). Specifically, a function f;
is considered submodular if and only if A;(x, A) > A;(z, A’) holds for any two
sets A and A’ where A C A’ C (2 and for any item x € §2 such that = ¢ A’.

Our aim is to select a pair of candidate solutions, S; and Ss, and the util-
ity of each user-specific function is determined by the superior solution among
these two candidates. These subsets should provide good performance across all
m functions when we are limited to choosing solutions from either S; or Ss.
Formally,

P.0 maxs, 5,2 Y ¢ max{fi(51), fi(S2)}
subject to |S1] < k, |S2| < k,

where k is the size constraint of a feasible solution.

A straightforward approach to solving P.0 is to transform it into a standard
set selection problem. Specifically, we can introduce a ground set U = {(4,7) |
i € 2,5 € {1,2}}. Here, selecting an element (4,j) € U corresponds to placing
item ¢ in set .S; in our original problem. Let x;; be a binary decision variable
representing the selection of (4,j), such that z;; = 1 if and only if (4,5) is
selected. Then P.0 is reduced to finding a set of elements from U such that
Vi € 2,251 +xp = 1 and V5 € {1,2},> ..o 2i; < k, which represents the

Personalized Submodular Maximization with Two Candidates 147

intersection of two matroid constraints. Unfortunately, it is straightforward to
verify that the utility function defined over U is not necessarily submodular,
even if each individual function f; is submodular. Hence, existing solutions for
submodular maximization subject to two matroid constraints are not directly
applicable to our problem.

3 Algorithm Design for Constant m

We first study the case if the number of functions m is a constant. Before present-
ing our algorithm, we introduce a new optimization problem P.1. The objective
of this problem is to partition the m functions into two groups such that the
sum of the optimal solutions for these two groups is maximized. Formally,

P.1

B2 (BB L5 o, 2 59

i€A i€

subject to B = [m] \ A.

We next show that the optimal solution of P.1 serves as an upper bound for
our original problem.

Lemma 1. Let OPT; (resp. OPTy) denote the value of the optimal solution of
P.1 (resp. our original problem P.0), we have

OPT, > OPTy. (1)

Proof: Assume ST and S5 is the optimal solution of P.0, we can partition m
functions to two groups A’ and B’ such that every function in A’ favors ST and
every function in B’ favors S5. That is,

A" ={iem]| fi(ST) > f:i(S5)}

and
B'={ie[m]| fi(S7) < fi(S5)}.

Hence,

OPTy = Y max{f;(S), fi(S3)}

i€[m]
= 3 max{£i(SD), £} + 3 ma{£(SD), (55}
€A i€B’
= Z fi(ST) + Z fi(53)
ieA! ieB’

where the first inequality is by the definition of O PT}, the second equality is by
the observation that A’ and B’ is a partition of [m] and the third equality is by
the definitions of A’ and B’.

148 J. Yuan and S. Tang

Moreover, it is easy to verify that
max i(S)+ max
sgz:\S\gkg;, £i(9) SCIS|<k ; Z 1S

> Z fi(ST) + Z fi(53).

i€A’ i€B’

This is because |S7| < k and |S5| < k. It follows that

OPTy =Y fi(S1) + > fi(S3)

ic A icB’
< G AX XA;, fi(S) + o ZE; fi(S).
Therefore,
OPT, =
w2 (s 2 S+ o, 2 A()
2 sg%ﬁgki;, fiS)+ Sg?zl:?g‘(lgkiezB, fi(8)
> fi(SH) + > fi(S5) = OPTy,.
ic A i€B’
This finishes the proof of this lemma. O

Now, we present our algorithm, called Enumeration-based Algorithm, which is
listed in Algorithm 1. Our approach involves enumerating all possible partitions
of [m]. For each partition, denoted as A and B, we utilize a state-of-the-art
algorithm to solve two subproblems:

Sgrfrz{?;ﬁgk;‘fi(s)

and

ng(g{%gkgﬁ(s)

This results in obtaining two sets, C; and Cy, respectively. Finally, we return
the best pair of sets as the solution for our original problem P.0.

Since the number of functions m is a constant, the maximum number of
possible partitions we must enumerate is at most O(2™), which is also a con-
stant. As long as maxgc o:s|<k ;e [i(S) and maxgco:isj<k D_;cp fi(S) can
be solved in polynomial time, the Enumeration-based Algorithm is a polynomial
time algorithm. Next we provide an approximation ratio of Algorithm 1.

Lemma 2. Assuming the existence of a-approximation algorithms for

Sg%?é(‘ﬁ’%ezfxfiw)

Personalized Submodular Maximization with Two Candidates 149

Algorithm 1. Enumeration-based Algorithm
1: 51 — @7 SQ — @

2: for A C[m] do

3: B—[m]\A

4: (4 < a-approximation solution of
Sgg{?gjgk;ﬂ(s)
5: (3 <+ a-approximation solution of
Sgg{?gclgki;ﬂ(s)
6 if
> max{fi(Ch), fi(C2)} > > max{fi(S1), fi(S2)}
i€[m] i€[m]
then
7 (S1,82) < (C1,C%)

8: return S, 5>

for any A C [m], our Enumeration-based Algorithm (Algorithm 1) provides an
a-approzimation solution for P.0.

Proof: Assuming that A* and B* represent the optimal solution for P.1, let us
consider the round of our algorithm where it enumerates the partition of A*
and B*. In this round, we denote the solutions obtained as C'; and Cs. Given
that there exist a-approximation algorithms for maxgc o:\sj<k D_;ca fi(S) for
any A C [m], by adopting this algorithm as a subroutine, we have

Y HO)ze w3 HS)

1€A™
and
. > .
Z filCa) 2 @ sci8i<h Z fi(S)
i€ B* i€B*
Hence,

> max{fi(C1), fi(C2)} = D fi(Cr) + Y fi(Ca)

1€[m] 1EA* i€B*
> (S
=a Scrfrzl%ﬁ@ Z filS + Sgrfrzlz?g\gki;* il))
= OéOPTl

where the equality is by the assumption that A* and B* represent the optimal
solution for P.1.

150 J. Yuan and S. Tang

This, together with Lemma 1, implies that

Z max{fi(C'l), fZ(CQ)} Z aOPTl Z OéOPTo. (2)

1€[m]

This lemma is a consequence of the above inequality and the fact
that the final solution obtained by our algorithm is at least as good as

> iem max{fi(C1), fi(C2)}. U

Observe that if all f; are monotone and submodular functions, then there
exists (1 — 1/e)-approximation algorithms for maxgc o:|s1<k ;e fi(S) for any
A C [m]. Therefore, by substituting & = 1 — 1/e into Lemma 2, we obtain the
following theorem.

Theorem 1. Assume all f; are monotone and submodular functions,
Enumeration-based Algorithm (Algorithm 1) provides an (1 — 1/e)-approzimation
solution for P.0.

4 Algorithm Design for Large m

When dealing with a large value of m, relying on an enumeration-based approach
can become impractical. In this section, we introduce a Sampling-based Algorithm,
outlined in Algorithm 2, that provides provable performance bounds. Instead of
exhaustively enumerating all possible partitions of [m], we examine T random
partitions. For each partition, we follow the same procedure as in Algorithm 1
to compute two candidate solutions. Specifically, for each sampled partition, we
employ a state-of-the-art a-approximation algorithm to solve two subproblems.
Ultimately, we return the best pair of sets as the final solution.

In the following two lemmas, we provide two performance bounds for Algo-
rithm 2. The first bound is independent of the number of samples T’; thus, it
holds even if T'= 1. The second bound depends on T, increasing as 1" increases.

Lemma 3. Assuming the existence of a-approximation algorithms for

Sg%?gﬁngfi(S)

i€EA

for any A C [m], our Sampling-based Algorithm (Algorithm 2) provides an «/2-
approzimation solution for P.0.

Proof: We first recall some notations form the proof of Lemma 1. Assume S7 and
S5 is the optimal solution of P.0, we partition all m functions to two groups A’
and B’ such that every function in A’ favors ST and every function in B’ favors
S5. That is,

A ={ie[m]] fi(ST) > fi(S3)}
and

B' = {ie[m]] fi(S7) < fi(S3)}.

Personalized Submodular Maximization with Two Candidates 151

Algorithm 2. Sampling-based Algorithm

1: 51<—®7S2<—@,T

2: for t e [T] do

3: Randomly sample a subset of functions A C [m)]
4: B<—[m]\A

5. (C7 «+ a-approximation solution of

sl 2 (O
6: (3 <« a-approximation solution of
Sgg{%{lgki;}gﬁ(s)
7 if
D max{fi(Ch), fi(C2)} = Y max{fi(S1), fi(S2)}
i€[m] i€[m]
then
8: (S1,82) « (C1,C%)

9: return 51,52

Without loss of generality, we assume that » ;. ,, fi(ST) > D_,cp fi(S5), imply-
ing that) .4 fi(S7) > OP1Ty/2. Now, let us consider any arbitrary partition
sample denoted as A and B, generated by our algorithm, we have

SCi5]<k iEZA Lil9) + SC5<k ;B £i(9)
> A+ fi(ST) =D fi(ST) = OPTy /2

i€A i€B i€ A’

where the first inequality is by the observation that |ST| < k, the second inequal-
ity is by the observation that A” C AU B and the third inequality is by the
observation that). 4, fi(ST) > OPTy/2. Because there exist a-approximation
algorithms for maxgc o sj<k Y _ic 4 fi(S) for any A C [m], by adopting this algo-
rithm as a subroutine to compute C; and Cs, we have

Zfi(Cl) >a max Zf,(S)
€A

SC2:|S|<k
i€A SEEIS

and

> filC) =a max Y fi(9).
i€B

SC2:|S|<Lk
i€B SEEE

152 J. Yuan and S. Tang

Hence,

> max{fi(C1), fi(Ca)} = Y fi(C1) + D fi(Ch)

i€[m] i€A i€B

> a max Zf’(+ max Zfl > (a/2)OPTy

SC2:|S|<k “ SC2: \S|<k
€A

where the third inequality is by inequality (3). This finishes the proof of this
lemma. a

Lemma 4. Assuming the existence of a-approximation algorithms for
max (S
SC0:15]<k Z 1i(9)
i€EA

for any A C [m], our Sampling-based Algorithm (Algorithm 2), after T rounds,
provides an a’y(T)(% + \/Em)-approm'mation solution for P.0 in expectation where

W) =1=(F+eo)T.

Proof: Consider an arbitrary round of our algorithm, and let A and B denote
the sampled partition, and let (C,Cs) denote the solution returned from this
round. Observe that

> max{f;(Ch), i(Ca)} = > fi(Cr) + D fi(Ch).

i1€[m] 1CA i€B

Hence, the expected value of ., max{fi(C1), fi(C2)}, where the expec-
tation is taken over A, B, is at least EA,B[ZzeA fi(C1) + > g fi(C2)]. Recall
that our algorithm runs T rounds and returns the best (Cy,C3) as the final

solution, to prove this lemma, it suffices to show that the expected value of
Dicm max{fi(C1), fi(C2)} is at least oy (T)(5+ \/%)OPTO. To achieve this, we

will focus on proving Ea p[3";c 4 fi(C1)+ X e fi(C2)] = ay(T) (5 + \/%)OPTO.
The rest of the proof is devoted to proving this inequality.
First,

EA,B[Z fi(Ch) + Z fi(Ca)]

i€A i€EB

>E (S
4.8 chl?s}ﬁqu scrfrzlz?;ﬁgk;gfz()]

=oEap[max Y fi(S)+ max Y fi(9)]
cA €B

SC:|S|<k ¢ SC:|S|<h 4

=aF4[max Zf’ |+ aEp[max Zf

SCL2:|S|<k ! SCQ:|S|<k !

> aBa[)_ fi(SD]+ eEp[>_ £i(S3)]. (3)

i€A i€B

Personalized Submodular Maximization with Two Candidates 153

Next, we provide lower bounds for E4[) ;. 4 fi(ST)] and Eg[) ;. fi(S5)].
Recall that we defined A" = {i € [m] | fi(S7) > fi(S3)} and B’ = {i € [m] |
fi(ST) < fi(S3)}. Now, for some 8 € [0, 1], let us denote the event as E, which
occurs when the following condition holds for at least one partition (A, B) that

is enumerated by our algorithm: |A‘2f“/‘ > (. Because each item of A’ is included

in A independently with a probability of 1/2, for any 8 € [0, 1], we have the
following:

Eal)_ fi(SD] 2 Prllg =1]-8) fi(S7). (4)

i€A i€ A’

Consider a random sample A from [m] and observe that each item of A’ is
included in A independently with a probability of 1/2, by an “anti-concentration”
result on binomial distributions (Lemma 22.2 in [14]), we have

Al 1
Pr[|[AnA'| > |2 | +e/|A] > 3 — el

This implies that

P[|A0A’|>l+ €]>1 e
|A’| 2 [AT] 2 o
Given that |A’| < m, we further have
|[ANA| _ 1 € 1 e
P > o] > — e
il | A] _2+ m]_2 T

If we set 0 = %Jr \/%, then we can establish a lower bound on the probability
of event F occurring after T rounds as follows:
|[AN A S 1 €
A — 2 m

Pr[lg=1]>1-(1-Pr|

This, together with inequalities (4), implies that
* 1
Eal)_ fi(SD] 2 Prlle =1-8) filS)) 2 (1= (5 +e=)) -) 2 (s
i€A €A T icA

Following the same argument, we can prove that

Es(Y- £(55)] > (1= (5 + €57 (54 ==) 3 £i(S5) (5)

i€B i€B’

154 J. Yuan and S. Tang

Let y(T) =1 —(%—i—e%)T. The above two inequalities, together with inequality
(3), imply that

Eas[3 £i(C) + 3 fi(Co)] = aBA[S Fi(SD)] + aEs[3 £i(S3)

i€A i€B iEA i€EB

ZMmQ J—Zﬂ&+w(=) 3 (S5)
€A’ i€B’
= ay(T) Zfz (51) +Zfz (53))

i€ A’ i€ B’

! JOPT,.

€
2t Um
This finishes the proof of this lemma. a

By selecting a tighter bound derived from Lemma 3 and Lemma 4, we can
establish the following corollary.

= an (1)

Corollary 1. Assuming the existence of a-approximation algorithms for
max (S
SC0:18]<k iEZA 1i(9)

for any A C [m], our Sampling-based algorithm (Algorithm 2), after T rounds,
provides an max{1/2,y(T)(3+ \;ﬁ)}u-approximation solution for P.0 in expec-

tation where v(T) =1 — (5 +€<)7.

Observe that if all f; are monotone and submodular functions, then there
exists (1 — 1/e)-approximation algorithms for maxgc :(s1<k ;e 4 fi(S) for any
A C [m]. Therefore, substituting @« = 1 — 1/e into Corollary 1, we derive the
following theorem.

Theorem 2. Assume all f; are monotone and submodular functions, Sampling-
based algorithm (Algorithm 2), after T rounds, provides an max{1/2,~(T)(5 +

€

\/ﬁ)} - (1 = 1/e)-approxzimation solution for P.0 in expectation where v(T) =
ST

5 Discussion on Scenarios with More Than Two
Candidates

We next discuss the case if we are allowed to keep [> 2 candidate solutions.
In this extension, our aim is to select [candidate solutions, Si,---,S;, and the
utility of each user-specific function is determined by the superior solution among
these candidates. Hence, our problem can be formulated as

Personalized Submodular Maximization with Two Candidates 155

subject to [S1] < k,---,|Si] < k where k is the size constraint of a feasible
solution. To tackle this challenge, we can utilize our enumeration-based partition
algorithm (Algorithm 1) to find an approximate solution. The procedure involves
enumerating all possible ways to partition the set [m] into [groups. For each
partition, we employ a state-of-the-art (1—1/e)-approximation algorithm to solve
the maximization problem within each group. This process generates [sets, and
we then choose the best [sets among all partitions as the final solution. By
following the same argument used to prove Theorem 1, we can show that this
approach guarantees an (1 — 1/e)-approximation solution.

References

10.

11.

. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submod-

ular maximization: massive data summarization on the fly. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 671-680 (2014)

Balkanski, E., Mirzasoleiman, B., Krause, A., Singer, Y.: Learning sparse combi-
natorial representations via two-stage submodular maximization. In: International
Conference on Machine Learning, pp. 2207-2216. PMLR (2016)

Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: Submodular maximization
with cardinality constraints. In: Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1433-1452. STAM (2014)

Gharan, S.0O., Vondrék, J.: Submodular maximization by simulated annealing. In:
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1098-1116. SIAM (2011)

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrak, J., Krause, A.: Lazier
than lazy greedy. In: Twenty-Ninth AAAI Conference on Artificial Intelligence
(2015)

Mitrovic, M., Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Data summariza-
tion at scale: a two-stage submodular approach. In: International Conference on
Machine Learning, pp. 3596-3605. PMLR (2018)

Nembhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-I1. Math. Program. 14(1), 265-294 (1978)
Schwartzman, G.: Mini-batch submodular maximization. arXiv preprint
arXiv:2401.12478 (2024)

Stan, S., Zadimoghaddam, M., Krause, A., Karbasi, A.: Probabilistic submodular
maximization in sub-linear time. In: International Conference on Machine Learn-
ing, pp. 3241-3250. PMLR (2017)

Tang, S.: Beyond pointwise submodularity: non-monotone adaptive submodular
maximization in linear time. Theor. Comput. Sci. 850, 249-261 (2021)

Tang, S.: Beyond pointwise submodularity: non-monotone adaptive submodu-
lar maximization subject to knapsack and k-system constraints. Theor. Comput.
Sci. 936, 139-147 (2022). https://doi.org/10.1016/j.tcs.2022.09.022. https://www.
sciencedirect.com/science/article/pii/S0304397522005643

http://arxiv.org/abs/2401.12478
https://doi.org/10.1016/j.tcs.2022.09.022
https://www.sciencedirect.com/science/article/pii/S0304397522005643
https://www.sciencedirect.com/science/article/pii/S0304397522005643

156

12.

13.

14.

J. Yuan and S. Tang

Tang, S.: Data summarization beyond monotonicity: non-monotone two-stage sub-
modular maximization. In: International Conference on Combinatorial Optimiza-
tion and Applications, pp. 277-286. Springer, Cham (2023)

Tang, S., Yuan, J.: Group equality in adaptive submodular maximization. arXiv
preprint arXiv:2207.03364 (2022)

Thomas Kesselheim: Lecture notes (2021). https://tcs.cs.uni-bonn.de/lib/exe/
fetch.php?media=teaching:ss21:vl-aau:lecture22.pdf

http://arxiv.org/abs/2207.03364
https://tcs.cs.uni-bonn.de/lib/exe/fetch.php?media=teaching:ss21:vl-aau:lecture22.pdf
https://tcs.cs.uni-bonn.de/lib/exe/fetch.php?media=teaching:ss21:vl-aau:lecture22.pdf

®

Check for
updates

(Independent) Roman Domination
Parameterized by Distance to Cluster

Pradeesha Ashok!, Gautam K. Das?, Arti Pandey®, Kaustav Paul3(®,
and Subhabrata Paul*

! International Institute of Information Technology Bangalore, Bengaluru, India
pradeesha@iiitb.ac.in
2 Department of Mathematics, Indian Institute of Technology Guwahati,
Guwahati, India
gkd@iitg.ac.in
3 Department of Mathematics, Indian Institute of Technology Ropar,
Rupnagar, India
{arti,kaustav.20maz0010}@iitrpr.ac.in
4 Department of Mathematics, Indian Institute of Technology Patna,
Daulatpur, India
subhabrata@iitp.ac.in

Abstract. Given a graph G = (V, E), a function f : V — {0,1,2}
is said to be a Roman Dominating function (RDF) if for every v € V
with f(v) = 0, there exists a vertex u € N(v) such that f(u) = 2.
A Roman Dominating function f is said to be an Independent Roman
Dominating function (IRDF), if V1 UV, forms an independent set, where
Vi={veV | f(v) =i}, for i € {0,1,2}. The total weight of f is equal
to >,y f(v), and is denoted as w(f). The Roman Domination Number
(resp. Independent Roman Domination Number) of G, denoted by vr(G)
(resp. ir(@)), is defined as min{w(f) | f is an RDF (resp. IRDF) of G}.
For a given graph G, the problem of computing yr(G) (resp. ir(G)) is
defined as the Roman Domination problem (resp. Independent Roman
Domination problem).

In this paper, we examine structural parameterizations of the (Inde-
pendent) Roman Domination problem. We propose fixed-parameter
tractable (FPT) algorithms for the (Independent) Roman Domination
problem in graphs that are k vertices away from a cluster graph. These
graphs have a set of k vertices whose removal results in a cluster graph.
We refer to k as the distance to the cluster graph. Specifically, we prove
the following results when parameterized by the deletion distance k to
cluster graphs: we can find the Roman Domination Number (and Inde-
pendent Roman Domination Number) in time 4*2°™)_ In terms of lower
bounds, we show that the Roman Domination number can not be com-
puted in time 261“710(1)7 for any 0 < € < 1 unless a well-known conjecture,
SETH fails. In addition, we also show that the Roman Domination prob-
lem, parameterized by distance to cluster, does not admit a polynomial
kernel unless NP C coNP /poly.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 157-169, 2025.
https://doi.org/10.1007/978-981-96-4448-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_13&domain=pdf
https://doi.org/10.1007/978-981-96-4448-3_13

158 P. Ashok et al.

Keywords: Roman Domination - Independent Roman Domination -
FPT - Distance to Cluster + Kernel

1 Introduction

The concept of Roman Dominating function originated in an paper by lan Stew-
art, titled “Defend the Roman Empire!” [12], published in Scientific American.
Given a graph, where every vertex corresponds to a distinct geographical region
within the historical narrative of the Roman Empire, the characterization of a
location as secured or unsecured is delineated by the Roman Dominating func-
tion, denoted as f.

Specifically, a vertex v is said to be unsecured if it lacks stationed legions,
expressed as f(v) = 0. Conversely, a secured location is one where one or two
legions are stationed, denoted by f(v) € {1,2}. The strategic methodology for
securing an unsecured area involves the deployment of a legion from a neighbor-
ing location. In the fourth century A.D., Emperor Constantine the Great enacted
an edict precluding the transfer of a legion from a fortified position to an unfor-
tified one if such an action would leave the latter unsecured. Therefore, it is
necessary to first have two legions at a given location (f(v) = 2) before sending
one legion to a neighbouring location. Considering the substantial costs associ-
ated with legion deployment in specific areas, the Emperor aimed to strategically
minimize the number of legions required to safeguard the Roman Empire.

Given a graph G = (V, E), a Roman Dominating function (RDF) is defined
as a function f: V — {0, 1,2}, where every vertex v, for which f(v) = 0 must
be adjacent to at least one vertex u with f(u) = 2. The weight of an RDF is
defined as w(f) = >_,cy f(v). The Roman Domination Number is defined as
vr(G) = min{w(f) | f is an RDF of G}. While the context is clear, if f(v) =1
for some RDF f, then we say that v has label i.

Given a graph G = (V,E), a set S C V is defined as independent set if
any two vertices of S are non-adjacent. A function f is referred to as an Inde-
pendent Roman Dominating function (IRDF) if f is an RDF and V3 U V; is
an independent set. The Independent Roman Domination Number is defined as
ir(G) = min{w(f) | f is an IRDF of G}. An IRDF f of G with w(f) = ir(G)
is denoted as an ig(G)-function of G. Given a graph G = (V, E), the problem of
computing iz (G) is known as Independent Roman Domination problem.

One of the objectives of parameterized complexity is to identify parame-
ters that render NP-hard problems fixed-parameter tractable (FPT). This is of
practical significance because there are often small parameters, aside from solu-
tion size, that capture important practical inputs. Hence, it only makes sense to
explore problems under a multitude of parameters. There has recently been a lot
of research in this area. A key research direction involves identifying a parameter
as small as possible, under which a problem becomes fixed-parameter tractable or
admits a polynomial-sized kernel. Structural parameterization involves a param-
eter that is a function of the input structure rather than the standard solution
size. A continuing trend in structural parameterization is to study problems

(Independent) Roman Domination Parameterized by Distance to Cluster 159

parameterized by the deletion distance to various graph classes where the prob-
lem is efficiently solvable.

Our parameter of interest is the ‘distance’ of the graph from a natural class of
graphs. Here, ‘distance’ refers to the number of vertices that must be deleted from
the graph to belong to the specified class. This paper focuses on one such special
class of graphs: cluster graphs, where each connected component of the graph is a
clique. Note that both Roman Domination and Independent Roman Domination
problems can be easily solved in cluster graphs. Given a graph G = (V| E), the
minimum number of vertices that need to be deleted from the graph so that
the remaining graph becomes a cluster graph is called distance to cluster of G
(denoted by CVD size of G).

2 Preliminaries

2.1 Graph Theoretic Notations

This paper only considers simple, undirected, finite and nontrivial graphs. Let
G = (V, E) be a graph. n and m will be used to denote the cardinalities of V
and E, respectively. N(v) stands for the set of neighbors of a vertex v in V' and
N[v] = N(v) U{v}. For aset S CV, we define N(S) = UpesN(v). The number
of neighbors of a vertex v € V defines its degree, which is represented by the
symbol deg(v). The maximum degree of the graph will be denoted by A. For a
set U C V, the notation degy (v) is used to represent the number of neighbors
that a vertex v has within the subset U. Additionally, we use Ny (v) to refer to
the set of neighbors of vertex v within U. Given a set S C V, G\ S is defined as
the graph induced on V' \ S, that is G[V \ S].

A vertex of degree one is known as a pendant vertex. A set S C V is said to
be a dominating set if every vertex of V' \ S is adjacent to some vertex of S. A
graph G is said to be a complete graph if any two vertices of G are adjacent. A
set S C V is said to be a clique if the subgraph of G induced on S is a complete
graph. A graph is said to be a cluster graph if every component of the graph is
a clique. For every positive integer n, [n] denotes the set {1,2,...,n}.

Given a graph G = (V, E) and a function f : V — {0,1,2}, fg : V(H) —
{0,1,2} is defined to be the function f restricted on H, where H is an induced
subgraph of G.

For a graph G = (V, E) and a function f : V — {0,1,2}; we define V; = {v €
V| f(v) = i} for i € {0,1,2}. The partition (Vp, Vi, V2) is said to be ordered
partition of V induced by f. Note that the function f : V — {0,1,2} and the
ordered partition (Vp, V1, V2) of V have a one-to-one correspondence. So, when
the context is clear, we write f = (V, V1, Va). Given an RDF f = (V4, V4, V3),
(V1,V2) is said to be Roman Dominating pair corresponding to f. When the
context is clear, we write Roman Dominating pair (omitting the notion of f).

160 P. Ashok et al.

2.2 Problem Definitions

Before presenting our results, we formalize the problems considered in the paper
as follows:
SET-COVER

Input: An universe U and a collection of subsets of U, F' = {S1,...,Sn}
and a non-negative integer k.
Question: Does there exists k sets S, , ..., S;, in F, such that U§:1 S, =U7

RD-CVD

Input: A graph G = (V, E), a cluster vertex deletion set S and a non-negative
integer /.

Parameter: |S| = k.

Question: Does there exists an RDF f on G, with weight at most £7

RD-VC

Input: A graph G = (V, E), a vertex cover S and a non-negative integer /.
Parameter: |S| = k.
Question: Does there exists an RDF f on G, with weight at most £7

IRD-CVD

Input: A graph G = (V, E), a cluster vertex deletion set .S and a non-negative
integer /.

Parameter: |S| = k.

Question: Does there exists an IRDF f on G, with weight at most ¢7

d-HITTING SET

Input: An universe U and a collection of subsets of U, F' = {S1,...,Sn}
such that |S;| < d, for all 7 € [m] and a non-negative integer k.

Question: Does there exists a subset U’ C U, such that |U’| < k and U'NS; #
0, for every i € [m|?

2.3 Parameterized Complexity Notations and Definitions

Congecture 1. [9] (Strong Exponential Time Hypothesis (SETH)) There is no
€ > 0 such that Vg > 3, ¢-CNFSAT can be solved in (2 — €)"n®®) time where n
is the number of variables in input formula.

Theorem 1. [7] The SET-COVER problem can be solved in 2" (m+n)°™M) time
where n is the size of the universe and m is the size of the family of subsets of
the universe.

Due to space constraints, the other definitions and theorems are omitted from
the manuscript.

(Independent) Roman Domination Parameterized by Distance to Cluster 161

2.4 Related Works

From the parameterized complexity point of view, it is surprising that there does
not exist much literature on the Roman Domination problem (except [6,10]),
while the classical dominating set problem is very well studied. Some related
literature about the parameterized complexity of the domination problem can be
found in [1,5,11]. One recent work about the domination problem parameterized
by several structural parameters like distance to cluster and distance to split can
be found in [8]. The techniques we designed in this paper are adaptations of the
technique used in [8], with appropriate modifications to fit our problem.

In [6], Fernau proved that the Roman Domination parameterized by the
solution size is W[2]-hard in general graphs, but FPT for planar graphs. He
also showed that the same problem parameterized by treewidth is FPT. In [10],
Mohannapriya et al. showed that a more generalized problem, that is k-Roman
Domination problem parameterized by solution size is W[1]-hard, even for split
graphs. To the best of our knowledge, no other parameterized complexity results
exist for the Roman Domination problem.

2.5 Our Results
The main contribution of the paper is the following:

— In Sect.3.1 (resp. Sect.3.2), we show that the RD-CVD (resp. IRD-CVD)
problem is FPT.

— In Sect.4, we show that the RD-CVD problem cannot be solved in time
2¢knO0) (where 0 < € < 1) unless SETH (refer to Conjecture 1) fails, neither
it admits a polynomial kernel unless NP C coNP /poly.

— In Sect. 5, we conclude the paper with some future research directions.

3 Variants of Roman Domination Parameterized by CVD
Size

In this section, we assume that a cluster vertex deletion set S of size k is given
with the input graph G = (V, E). If not, the algorithm mentioned in [2] can be
used, which runs in 1.92¥2°() time and outputs a cluster vertex deletion set of
size at most k or concludes that there does not any cluster vertex deletion set
of size at most k.

3.1 Roman Domination

In this section, we propose an FPT algorithm for the Roman Domination prob-
lem when the parameter is CVD size.

We consider a CVD set S as a part of the input, where |S| = k. Our algorithm
starts with making a guess for S; = V4 NS and Sy = Vo N S, where (V1, V2) is an
optimal Roman Dominating pair. At first, a guess of Sy is made from S. Then,

162 P. Ashok et al.

the vertices of N[S2]N S are deleted from the graph. Then we guess S; from the
remaining S and delete S7 from S.

Note that S is a CVD set, hence G \ S is disjoint union of cliques. Let
G\ S =CLUCyU...Cq4, where every C; is a clique and |C;| = ¢;, for i € [q],
Note that ¢ < n — k. After the selection of S; and Ss, every clique belongs to
exactly one of the following three types:

Type 0 (Tp) cliques: C; is a Ty clique if every vertex of C; is adjacent to at
least one vertex of Ss.

Type 1 (T1) cliques: C; is a T; clique if exactly one vertex of C; is not adjacent
to any vertex of Ss.

Type 2 (T3) cliques: C; is a Ty clique if C; contains at least two vertices which
are not adjacent to any vertex of Ss.

We define an order p; on the vertices of the clique C; as follows: if C; is a
Ty or Ty clique, then we order them arbitrarily; if C; is a T clique, then the set
C; \ N[S2] contains exactly one vertex. We make that vertex the first vertex of
p; and order the rest of the vertices of C; arbitrarily. Now we define an order p
on the vertex set of G'\ S as follows: p = v1,v2,...,vg\s|, where first £; vertices
of p are vertices of C'; and follows the order p;, then the next /s vertices of
p are vertices of Cy and follows the order ps and so on. Now, here comes an
observation.

Observation 1. Given a Ty clique C;, any Roman Dominating pair (V1,Va)
extended from (S1,S2) has one of the following properties:

1. C;inVa #0.
2. A Roman Dominating pair (V{,V3) can be extended from (Si,Ss), which has
same or less weight than (V1,V2) and VN C; #

The proof of this observation is omitted due to space constraints. From the
above observation, we can rephrase the remaining problem as follows:

RD-DisJOoINTCLUSTER problem

Input: A graph G = (V, E), a subset S C V such that every component of

G\ S is a clique, a (0,1,2)-flag vector f = (f1, f2,..., fy) corresponding to

the cliques (Cy,Ca,...,Cy) and £ € Z7.

Parameter: |S|.

Question: Does there exists a subset T C G\ S which satisfies all of the

following conditions?

(a) For every C; with f; =2, T NC; # 0.

(b) 2|T| 4 g(T) < ¢, where g(T') = number of cliques with flag 1, which have
empty intersection with 7.

For an instance (G, S,¥) of the RD-CVD problem, with cliques Cy,...,Cy
and the guesses of Si,S2, we build an instance (G,S,f,¢) of the RD-
Di1sJoINTCLUSTER problem as follows:

- G =G\ ((N[S2]NS)US).

(Independent) Roman Domination Parameterized by Distance to Cluster 163

- §=S\((N[S2]nS)uSy).
i =02\~ |Sy].
— For all i € [q], f; = 4, if C; is a T} clique, j € {0,1,2}.

It is not hard to observe that the instance (G, S, ¢) of the RD-CVD problem
and the instance (G’, S, 1, 2) of the RD-Di1sJOINTCLUSTER problem are equiva-
lent instances. This means (G, S,¢) is a YES instance if and only if (G, S, f, E)
is a YES instance.

Formulation of the Problem as a Variant of Set Cover: We define a
variant of the set cover problem. Given an instance of the RD-DI1SJOINTCLUSTER
problem, we construct an instance of the set cover problem. Let (G, S, f,£) be an
instance of the RD-DI1sJOINTCLUSTER problem and p = (v1,vz,...,vg\s|) be
an ordering of the vertex set of G\ S, as defined earlier. We take the universe U =
Sand F' = {S1,5%,...,8c\s)}, where S; = N(v;)NS for every i € [|G\S|]. Now,
we modify the usual SET-COVER problem to suit our problem. The modified
SET-COVER problem is defined below:

SET-COVERWITHPARTITION problem (SCP)

Input: Universe U, a family of sets F = {S1,S2,...,Sn}, a partition of

B=(61,...,04) of F, a(0,1,2) flag vector f = (f1, f2,..., fq) corresponding

to each block in the partition § and a non-negative integer £.

Parameter: |U]|.

Question: Does there exists a subset F/ C F which satisfies all of the fol-

lowing conditions?

(a) For every 3; with f; =2, F' N 3; # 0.

(b) 2|F'|+g(F") < ¢, where g(A) = number of blocks with flag 1, which have
empty intersection with A, for A C F'.

Given an instance (G, S, f,£) of the RD-DI1SJOINTCLUSTER problem, we define
an instance (U, F, 3, f',¢’) of the SCP problem as follows:

-U=>5.
7F:{Si:N(Ui)ﬂS|’UiEG\S}.
- ﬁi:{Sj|Uj€C7;}, fOF’L‘Q[q}.
r=1

— 0=

It is not hard to show that the RD-DisJOINTCLUSTER and SCP are equivalent
problems.

Observation 2. (G, S, f,{) is a YES instance of the RD-DI1SJOINTCLUSTER
problem if and only if (U, F, B, f',¢') is a YES instance of the SCP problem.

Now, we propose an algorithm to solve the SCP problem.

Theorem 2. The SET-COVERWITHPARTITION problem can be solved in
21O (m - |U]) time.

164 P. Ashok et al.

Proof. We propose a dynamic programming algorithm to solve the problem. For
every W C U, j € [m] and b € {0, 1,2}, we define OPT[W, 4,b] := minx {2|X|+
g;(X)}, where X satisfies the following properties:

1. X C{51,...,5;}

2. X covers W.

3. Let 3, be the block that contains S;. We redefine f, = b, where f, is the flag
associated with .. From every block §8; (i <) with f; = 2, at least one set
from B; is in X.

4. The function g; is defined as follows. g;(X) := number of blocks §; (i < z)
with f; =1, which have empty intersection with X.

Now, coming to the base case, for every W C U, with W # @ and b € {0, 1,2};
OPT[W,1,b] =2 it W C S;, OPT[W,1,b] = oo, otherwise.

It W =0, OPT[W,1,b] = b, for b € {0,1,2}. To compute all the values of
OPT|[W, j,b], we initially set all the remaining values to be co. We construct the
following recursive formulation for OPT[W, j + 1,b], for j > 1:

Case 1: Sj; is not the first set of the block 3,.

Note that two possibilities appear here. First, we pick S;y1 in the solution
X. Hence, we are left with the problem of covering W \ S;11 with some subset
of {S1,...,5;} and since S;;1 from the partition (3, is already taken in solution,
so the flag of 8, can be reset to 0. Hence, in this case OPT[W,j + 1,b] =
24+ OPT[W \ S;41,74,0].

In the latter case, we do not pick S; 41 in X; hence nothing is changed except
the fact that now we need to cover W with a subset of {S1,...,5;} and the flag
of (B, remains unchanged as b. Hence, OPT[W, j + 1,b] = OPT[W, j, b].

So, OPT[W, j + 1,b] = min{2 + OPT[W \ S;;1,j,0], OPT[W, j,b]}.

Case 2: S is the first set of the block 3,. Here, three scenarios can appear:

Case 2.1: b= 2.

In this case, there is no option but to include S;i; in the solution as b = 2.
Hence, we take S;j;1 in the solution and shift to the previous block. Now we
need to cover W'\ S;j;1 with a subset of {S1,...,5;}. Hence, OPT[W,j+1,b] =
2+ OPT[W\ Sji1, 4, fa-1l:

Case 2.2: b= 0.

In this case, there are two choices, to include S;41 in the solution or not. If we
include S 1 in the solution, then OPT[W, j+1,b] = 2+OPT[W\ Sj41, j, fz—1].
If we do not, then OPT[W, j+1,b] = OPT[W, j, fz—1]. Hence OPT[W, j+1,b] =
mln{2 + OPT[W \ S_H‘hj? fw—1]7 OPT[VV?ja fw—l]}

Case 2.3: b=1.

Similarly, in this case, there are two choices. If S is included in the solution
then OPT[W, j+1,b] = 2+OPT[W\Sj41, j, fz—1], by similar argument as above.
If not, then S;44 has to contribute 1 in OPT[W, j+1,b], as at least one set from
the block 3, has to contribute 1 to OPT[W, j+1,b] and S;41 is the only set left

(Independent) Roman Domination Parameterized by Distance to Cluster 165

in 3, at this moment. So, in this case, OPT[W,j + 1,b] = 1+ OPT[W, j, fz—1].
Hence, OPT[VV,]—FL b] = mln{2—|—OPT[W\SJ+1,], f;c—l]a 1—|—OPT[VV,], fx—l]}~
We compute OPT|[W, j,b] in the increasing order of size of W, j,b. Hence,
there are 3 - 2!Vl . m subproblems. It takes |U| time to compute set differences
(like W\ Sj11). Hence, the time-complexity of our algorithm is 2!V1O(m - |U]).
O

Hence, the following corollary can be concluded.

Corollary 1. The RD-DISJOINTCLUSTER problem can be solved in time
2lS1p0M)

Theorem 3. The RD-CVD problem can be solved in time 4¥n°1).

Proof. Given an instance (G,S,¢) of the RD-CVD problem and for every
guess of 51,8, C S (with |Si] = 41 and |S5 = i2), we can
construct an instance (G,S, f,¢) of the RD-DisJOINTCLUSTER problem,
which can be solved in time 2k—11—-12y0(1) " Hence, total time taken is
o () TEA (2R 2))n0 = 4Fn0), 0
In the next section, using a similar approach, we show that the IRD-CVD prob-
lem is also FPT.

3.2 Independent Roman Domination

In this section, we propose an FPT algorithm for the Independent Roman Dom-
ination problem when the parameter is the CVD size.

Similarly, like the case of Roman Domination, a guess for S; = V3 NS and
Sy = Vo NS is made, where (V3,V5) is an optimal independent Roman Domi-
nating pair. At first, we guess an independent set Sy from S and then delete all
the vertices of N[Ss] from the graph, as if our choice of S is right, then all the
vertices in N (S2)\ Sz should have label 0. Then, we choose another independent
set Sp from the remaining S and delete all the vertices of S; and N[S1]N(G\ S)
from the remaining graph. Note that if there exists a clique C; C N[S1] U N[S2]
such that C; has a vertex v, that is not adjacent to any vertex of Ss, but it is
adjacent to some vertex in S, then our choices of S, Sy are incorrect, and we
do not move further with these choices of S; and S5.

Note that S is a CVD set, hence G \ S is disjoint union of cliques. Let
G\ S =CLUCyU...Cqy where every C; is a clique and |C;| = ¢;, for i € [q].
Note that ¢ < n— k. Note that, after the selection of S; and S5 and the deletion
process, every clique belongs to exactly one of the following two types:

Type 1 (T1) cliques: C; is a Ty clique if C; has exactly one vertex.

Type 2 (T») cliques: C; is a Ty clique if C; has at least two vertices.

Observation 3. Given a Ty cligue C;, any independent Roman Dominating
pair (V1,Va) extended from (S1,S2) has the following property: C; N Va # 0.

166 P. Ashok et al.

Proof. C; is a Ty clique, hence there exist at least two vertices vy, vo in C;. Note
that both of them can not have non zero labels; at least one of them must have
label 0. Without loss of generality, let v; have label 0, but v; does not have any
neighbor in S, which has label 2, which implies a vertex in C; must have label
2. Hence, the result follows. O

Hence the remaining problem can be rephrased as follows:

IRD-DisJOINTCLUSTER problem

Input: A graph G = (V, E), a subset S C V such that every component of

G\ S is a clique, a (1,2)-flag vector f = (f1, fa,..., fq) corresponding to the

cliques (Cy,Cs,...,C,) and £ € ZT.

Parameter: |S|.

Question: Does there exists a subset T C G\ S which satisfies all of the

following conditions?

(a) For every C; with f; =2, |[TNC;| = 1.

(b) 2|T| 4 ¢g(T) < ¢, where g(T) = number of cliques with flag 1, which have
empty intersection with 7.

For an instance (G, S,) of the IRD-CVD problem, with cliques Ci,...,C, and
the guesses of S, S2, we build an instance (é, S, f, E) of the
IRD-DisJOoINTCLUSTER problem as follows:

- G =G\ (S1UN[S:]U(N(S1)N(G\ 9)).

- 5=5\(N[S2]U S51).

— L=1=2]5]—[5]

— fi=7,if C;is a Tj clique, i € [¢] and j € {1,2}.

Formulation of the problem as a variant of set cover: We define a variant
of the set cover problem similarly to the Roman Domination problem. Given an
instance of the IRD-DI1sJOINTCLUSTER problem, we construct an instance of the
set cover problem. Let (G, S, ¢, f) be an instance of the IRD-D1sJOINTCLUSTER
problem and p be any arbitrary order of the vertex set G\S. We take the universe
U= Sand F = {51,52,...,5¢\s|}, where S; = N(v;)NS for every i € [|G'\ S]].
Now, we modify the usual set cover problem to suit our problem. The modified
set cover problem is defined below:

INDEPENDENT-SET-COVERWITHPARTITION problem (ISCP)

Input: Universe U, a family of sets F = {S1,953,...,5n,}, a partition of

B = (P1,...,Bq) of F, a (1,2) flag vector f = (fi, fa,..., fq) corresponding

to each block in the partition 8 and a non-negative integer /.

Parameter: |U]|.

Question: Does there exists a subset F’/ C F which satisfies all of the fol-

lowing conditions?

(a) For every f; with f; =2, |[F' N ;| = 1.

(b) 2|F'|+g(F") < ¢, where g(A) = number of blocks with flag 1, which have
empty intersection with A; for A C F'.

(Independent) Roman Domination Parameterized by Distance to Cluster 167

Given an instance (G, S, f,¢) of the IRD-DisJOINTCLUSTER problem, we
define an instance (U, F, 8, f', ') of the ISCP problem as follows:

-U==5.
7F:{Si:N(Ui)r\IS|UiEG\S}.
- ﬁiZ{Sj|Uj€CZ‘}, fOI‘Z'G[q}.

- f=r

— V=1

Observation 4. (G, S, f,£) is a YES instance of the IRD-DI1SJOINTCLUSTER
problem if and only if (U, F, (3, f',¢') is a YES instance of the ISCP problem.

Next, we propose an algorithm to solve the ISCP problem.

Theorem 4. The INDEPENDENT-SET-COVERWITHPARTITION problem can be
solved in 21V10(m - |U|) time.

Proof. The proof is omitted due to space constraints. a
Hence, the following corollary can be concluded.

Corollary 2. The IRD-DI1SJOINTCLUSTER problem can be solved in time
2181,0(1)

Theorem 5. The IRD-CVD problem can be solved in time 4*n®),

Proof. The proof is analogous to the proof of Theorem 3. O

4 Lower Bounds

In this section, we propose a lower bound on the time-complexity of the RD-
CVD problem. We also show that the RD-CVD (resp. RD-VC) problem does
not admit a polynomial kernel (recall that RD-VC is the Roman Domination
problem parameterized by vertex cover number).

First, we provide the lower bound for the RD-CVD problem. Below, we state
a necessary result from the existing literature (refer to Theorem 1.1 in [3]).

Theorem 6. [3] The following statement is equivalent to SETH: For every e <
1, there exists d € Z*, such that the d-HITTING SET problem for set systems
over [n] can not be solved in time O(2™).

Now, we show a reduction from the d-HITTING SET problem to the RD-CVD
problem to show a similar lower bound like Theorem 6 for the RD-CVD problem.

Theorem 7. There exists a polynomial time algorithm that takes an instance
(U, F,t) of the d-HITTING SET problem and outputs an instance (G,2t) of the
RD-CVD problem (and the RD-VC problem), where G has a cluster vertex dele-
tion set (and vertex cover) of size |U|; and (U, F) has a d-HITTING SET of size
at most t if and only if G has a Roman Dominating function of size at most 2t.

168 P. Ashok et al.

Proof. The proof is omitted due to space constraints. a
Hence, by Theorem 6 and 7, we can prove the following theorem.

Theorem 8. The RD-CVD (and RD-VC) problem can not be solved in time
2¢knOW) | for any 0 < € < 1, unless SETH fails.

Proof. Let the RD-CVD (or RD-VC) problem be solved in time 2¢*n°(), Then
by Theorem 7, we can solve the d-HITTING SET problem with |U| = k in 2¢¥n,0(1)
time. Hence, by Theorem 6, this contradicts the SETH. Hence, the RD-CVD (and
RD-VC) problem can not be solved in time 26k OM) unless the SETH fails. O

We state another theorem to show that the RD-CVD (and RD-VC) problem
is unlikely to admit a polynomial kernel.

Theorem 9. [/ The d-HITTING SET problem parameterized by the universe
size does not admit any polynomial kernel unless NP C coNP/poly.

Hence combining the above discussion with Theorem 9, the following theorem
can be concluded.

Theorem 10. The RD-CVD (and RD-VC) problem does not admit a polyno-
mial kernel unless NP C coNP/poly.

Proof. By Theorem 9, the d-HITTING SET problem parameterized by universe
size does not admit a polynomial kernel unless NP C coNP /poly. Since the reduc-
tion provided in Theorem 7 is a polynomial parameter transformation (PPT), the
RD-CVD and RD-VC do not admit a polynomial kernel unless NP C coNP/poly.

O

5 Conclusion

In this work, we have extended the study on the parameterized complexity of the
Roman Domination problem and one of its variants. There are other interesting
structural parameters, such as neighborhood diversity and cliquewidth, for which
it would be interesting to determine whether the problem parameterized by these
parameters is fixed parameter tractable (FPT).

Another promising research direction is to develop an algorithm to solve the
RD-CVD problem with better time-complexity than 4*n°M) . Given that the
lower bound on time-complexity mentioned in Theorem 8, it might be possible
to achieve an improved algorithm.

Acknowledgement. Research of Arti Pandey is supported by CRG project, Grant
Number-CRG/2022/008333, Science and Engineering Research Board (SERB), India.

(Independent) Roman Domination Parameterized by Distance to Cluster 169

References

10.

11.

12.

Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. J. ACM 51(3), 363-384 (2004)

Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm
for cluster vertex deletion. Theory Comput. Syst. 58(2), 357-376 (2016)

Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Algorithms
(2016)

Dom, M., Lokshtanov, D.; Saurabh, S.: Kernelization lower bounds through colors
and ids. ACM Trans. Algorithms 11 (2014)

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
on completeness for W. Theor. Comput. Sci. 141(1&2), 109-131 (1995)

Fernau, H.: Roman domination: a parameterized perspective. Int. J. Comput.
Math. 85(1), 25-38 (2008)

Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, Cham (2010)

Goyal, D., Jacob, A., Kumar, K., Majumdar, D., Raman, V.: Parameterized com-
plexity of dominating set variants in almost cluster and split graphs. CoRR,
abs/2405.10556 (2024)

Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512-530 (2001)

Mohanapriya, A., Renjith, P., Sadagopan, N.: Roman k-domination: hardness,
approximation and parameterized results. In Lin, C.-C., Lin, B.M.T., Liotta, G.
(eds.) WALCOM: Algorithms and Computation - 17th International Conference
and Workshops, WALCOM 2023, Hsinchu, Taiwan, 22-24 March 2023, Proceed-
ings. Lecture Notes in Computer Science, vol. 13973, pp. 343-355. Springer, Cham
(2023)

Philip, G., Raman, V., Sikdar, S.: Polynomial kernels for dominating set in graphs
of bounded degeneracy and beyond. ACM Trans. Algorithms 9(1), 11:1-11:23
(2012)

Stewart, I.: Defend the roman empire! Sci. Am. 281, 136-138 (1999)

l‘)

Check for
updates

Fair Selection of Clearing Schemes
for Kidney Exchange Markets

Robert D. Barish®)@® and Tetsuo Shibuya

Division of Medical Data Informatics, Human Genome Center, Institute of Medical
Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
rbarish@ims.u-tokyo.ac. jp, tshibuya@hgc. jp

Abstract. For the Kidney Exchange Problem (KEP), one has a barter
exchange market represented by a digraph with vertices corresponding to
either immunologically incompatible donor-acceptor pairs, non-directed
donors, cadavers, or unpaired recipients, and directed edges correspond-
ing to possible kidney exchanges. The objective is then to solve the asso-
ciated clearing problem of finding an above threshold weight partition
of the network into vertex-disjoint transplant cycles and/or paths. In
this work — with a primary motivation being the broad applicability of
the KEP model to barter exchange markets of indivisible goods — we
conduct a theoretical investigation of the problem of uniformly, and in
this sense “fairly”, sampling witnesses for a formalization of the KEP
we denote KEP-(L., Lp,Y"), where we have cycle and path vertex-wise
length constraints L. and L,, respectively, and where we require that
the sum of all edge weights in a partition is at least " € Ny. Here,
for KEP-(o0, 0, 0), we provide an O (49 -nt. m) time uniform sampling
scheme (assuming access to an idealized coin flipping oracle) for net-
works on n vertices and m edges admitting bimodal embeddings (i.e.,
embeddings where each set of edges oriented away from a given vertex
occur contiguously in a rotational ordering of edges incident to the ver-
tex) on genus < g surfaces, as well as a Fully Polynomial-time Almost
Uniform Sampling (FPAUS) scheme for arbitrary genus digraphs. Sub-
sequently, taking inspiration from recent rapid experimental advances in
using boson sampling (respectively, Guassian boson sampling) to approx-
imate the permanents (respectively, hafnians) of complex matrices, we
reduce the uniform sampling problem for KEP-(L., L,,T") to calculating
permanents of hollow Hermitian {—1,0,1} matrices. However, we also
moderate this latter finding by showing that no Fully Polynomial-time
Randomized Approximation Scheme (FPRAS) for the permanent of such
matrices unless NP = RP.

Keywords: kidney exchange problem - clearing problem - barter
exchange market - algorithmic fairness + matrix permanent - FPAUS -
FPRAS

This work was supported by JSPS Kakenhi grants {20K21827, 20H05967, 21H04871},
and JST CREST Grant JPMJCR1402JST.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 170-185, 2025.
https://doi.org/10.1007/978-981-96-4448-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4448-3_14&domain=pdf
http://orcid.org/0000-0001-5207-0375
http://orcid.org/0000-0003-1514-5766
https://doi.org/10.1007/978-981-96-4448-3_14

Approximately Counting Proper Connected Colorings 171

1 Introduction

Shortages of critical resources coupled with trust deficits and liquidity constraints
(whether actual or imposed by legal and ethical barriers), can necessitate a
return to the barter system from antiquity, wherein non-monetary goods and
services are pairwise exchanged between two or more parties. This was most
recently evidenced by the swapping of scarce medical supplies between hospitals
during the COVID-19 pandemic [5], as well as the reciprocal exchange of vaccines
between nations [65]. The economy for human organs (e.g., kidneys, hearts,
livers, and corneas) is a well-known limit case of this phenomena, as there is
an extreme excess of demand relative to supply, no contract can reasonably
compel the later donation of an organ in return for one received, and the laws of
nearly every nation on earth (with the exception of Iran [28]) prohibit monetary
compensation in exchange for human organs. This supply-demand discrepancy
has been most pronounced for human kidneys, where in 2020 in the United States
alone, 91,099 patients were on a waiting list to receive a kidney and only 22, 817
kidney transplants were performed [35].

While the majority of transplanted kidneys are derived from cadavers, the
lack of suitable kidneys and the relative safety of renal transplantation has given
rise to kidney exchange schemes with living donors. Here, these schemes corre-
spond to barter exchange markets consisting of multiple (typically) blood-type
(ABO) or Human Leukocyte Antigen (HLA) incompatible donor-acceptor pairs
who cooperate to form cycles, and provided the existence of an appropriate live
or cadaver donor, chains of feasible kidney donations [3,4,9,10,20,42,49-53].
This has, in turn, led to significant interest in algorithms and other heuristics
for solving the clearing problem for kidney exchanges.

To formalize these notions, we can consider the following graph theoretic
interpretation of barter exchange markets:

Definition 1: Barter exchange market. We say that a barter exchange market
corresponds to a digraph G, in which vertices represent agents with at most a
single instance of an indivisible good, where directed edges correspond to feasible
transfers of goods between agents, and where weights on directed edges can be
used to specify the utility increase for the beneficiary of a transfer.

We can next formalize the Kidney Ezchange Problem (KEP) as follows:

Problem: Kidney Exzchange Problem with Cycle Length Constraint L., Path
Length Constraint Ly, and minimum weight requirement T; KEP-(L., L,,T)
Input: A barter exchange market corresponding to a digraph G with vertex
set Vo = Vx UVy UV, edge set Eg, and a set W of integer weights, where
Vx C Vg corresponds to immunologically incompatible donor-acceptor pairs,
Vy C Vg corresponds to live or cadaver donors, V; C Vg corresponds to pure
acceptors, Eo corresponds to possible kidney exchanges between compatible
donors and recipients, and each edge e; € E has a corresponding positive integer
weight w; € W¢; parameters L., L, T € Ny.

Objective: Find a set of edges that partitions G by inducing a set of directed

172 R. D. Barish and T. Shibuya

cycles and paths — where cycles and paths have at most L. and L, vertices,
respectively — spanning all vertices in Vi, and where a sum over the edge weights
in the partition is at least 7.

For an illustrative example, in Fig. 1(a) we show a barter exchange market
that could serve as input for KEP-(L., L,,,T"), where half-filled nodes correspond
to incompatible donor-acceptor pairs and highlighted edges indicate a possible
witness for the clearing problem. In Fig. 1(b) we show a variation on this example
with a non-directed donor (white node) and pure acceptor (black node). In both
cases, edges can be weighted by any number of criterion, ranging from ABO and
HLA compatibility issues to quantized value judgments [22,30].

(b)

Fig. 1. Illustrations of example barter exchange markets; (a) example barter exchange
market where half-filled nodes correspond to incompatible donor-acceptor pairs,
weighted directed edges correspond to possible exchanges between these pairs, and
highlighted edges show an example solution to the clearing problem; (b) variation on
(a) with a non-directed donor (white node) and pure acceptor (black node).

In this work, we conduct a theoretical investigation of the problem of fairly
choosing clearing schemes for the notion of barter exchange markets from Defi-
nition 1 — with “fairness” defined in roughly the same sense as [26,27|, where the
authors rely on Integer Linear Programming (ILP) and Constraint Programming
(CP) brute force techniques — by sampling as uniformly as possible from max-
imum weight or above threshold weight sets of witnesses for KEP-(L., L,,T).
Consider that the use of an algorithm to choose a particular clearing scheme,
potentially among multiple optimal or near optimal solutions, can lead to cer-
tain individuals or groups having a higher or lower chance of receiving a kidney,
or perhaps even their exclusion from the exchange. Accordingly, common sense
dictates that such a decision must not be subject to the particularities of an
algorithm’s implementation (e.g., where the order in which network edges are
specified has bearing on the choice of a witness), or other sources of incidental
bias among healthcare practitioners. We can also refer the reader to [21,45,57]

Approximately Counting Proper Connected Colorings 173

for other fairness considerations, and to [24] for a differential-privacy-like for-
malization of individual fairness.

However, in conducting this analysis, our objective is also to look beyond
the practical restrictions for the KEP, or more specifically, the requirement that
transplant cycles and chains be as small as possible (e.g., involving < 3 individ-
uals [3]) to minimize the complexity and risks of simultaneous surgeries. This
is primarily because the KEP serves as a simplified model for barter exchange
markets of indivisible goods in scenarios where much longer cycles and chains of
exchanges are permissible. Consider, for example, that the KEP-(L., L,,,T") prob-
lem applies equally well to situations where the agents in our barter exchange
are amputees or people with different sized feet looking to satisfy coincidences
of wants by exchanging shoes [15,47]. Likewise, we can consider the applicability
of the KEP-(L,, L,,7) model to exchanges where agents pairwise swap books
to save on costs or perhaps access out-of-print materials [12,31].

We begin by considering the KEP-(c0, 00,7") problem, and by introducing
the notion of In-component Out-component split (I0-split) genus for digraphs:

Definition 2: In-component Out-component split (I0-split) genus. We say that
a digraph has IO-split genus g if and only if each of its vertices v; can be replaced
with a pair of vertices, v(; o) and v(; p), such that reattaching all edges formerly
oriented towards v; (resp. oriented away from v;) to v(; q) (resp. v(;p)) yields a
genus g digraph.

In Sect. 3, letting G be an 10-split genus g digraph with n vertices and m
edges, and assuming access to an idealized coin flipping oracle, we first show
that an O (49 - n* - m) time (or O (n* - m) time if g = 0) uniform random sam-
pler exists for the witness set of KEP-(c0,00,0) (Theorem 1 and Corollary 1).
Next, in the case where g is unbounded but edge weights are restricted to be
non-negative integers, we show that an O (¥ -n-m) time Fully Polynomial-
time Almost Uniform Sampler (FPAUS) exists, where ¥ ~ O (n7-1n4 (n))
[46] is the time complexity of the Jerrum-Sinclair-Vigoda Fully Polynomial-
time Randomized Approximation Scheme (FPRAS) [37] for the non-negative
matrix permanent (Corollary 2). With regard to the search problem for KEP-

(00,00,7), we also show that a witness can be found in O (n% -m-Iln(n- C))

and O (n% -In?(n) -In (n - C)) time for arbitrary and IO-split genus 0 barter
exchange markets, respectively, where C' is the maximum absolute value of an
edge weight (Corollary 3).

In the proceeding Sect.4, we detail a method of constructing a uniform
random sampler for general KEP-(L., L,,Y") instances provided a set of pre-
enumerated cycles and paths, though one relying on a computationally diffi-
cult subroutine of computing a hollow Hermitian {—1,0,1} matrix permanent
(Theorem 2). We then proceed to moderate this result by proving that, unless
NP = RP, no FPRAS can exist for approximating permanents of such matrices
(Theorem 3).

Despite the challenges inherent in evaluating {—1,0, 1} matrix permanents,
a key motivation for Sect.4 is the substantial amount of work over the past

174 R. D. Barish and T. Shibuya

decade on both the theory and practical implementation of non-adaptive quan-
tum computing schemes (i.e., quantum computing without incremental adjust-
ments or fine-tuning using previous results) based on boson sampling [1,2,43]
and Gaussian boson sampling [34]. This has included surprisingly impressive
experimental demonstrations [7,13,19,44,56,63,64,66], including some directly
concerning the use of boson sampling and related schemes to solve graph the-
oretic problems [6,19]. We remark that Bradler et al. [13] has also provided an
explicit method of using Gaussian boson sampling to approximate the number
of perfect matchings in a graph. Here, as the means of demonstrating quantum
supremacy via either boson sampling or Gaussian boson sampling fundamentally
concerns faster-than-classically-possible approximation of the permanent (in the
case of boson sampling) and hafnian (in the case of Gaussian boson sampling)
for complex matrices, either method provides a direct means of approximating
the matrix permanents that arise in the context of the Theorem 2 sampler. In
this context, we can also pose the question as to how much of a speedup can
be obtained for approximating the non-negative matrix permanent via quan-
tum methods — in particular, via boson sampling or Gaussian boson sampling —
relative, say, to using the Jerrum-Sinclair-Vigoda FPRAS [37].

2 Clarifications and Preliminaries

2.1 Graph Theoretic Concepts and Terminology

We will generally follow terminology from Diestel [23], or where appropriate,
Bondy and Murty [11]. All graphs and digraphs in this work should be assumed
to be simple (i.e., free of multiedges, loops, and parallel directed edges), though
antiparallel directed edges between the same pair of vertices is allowed. To briefly
cover some less common terminology, we say that a digraph has bimodal genus
g — or when g = 0, that a digraph is bimodal planar — if it is embeddable on
a genus ¢ surface without edge crossings, vertex-edge crossings, or vertex-edge
overlaps, and where all edges oriented away from each vertex occur contiguously
in a rotational ordering of the edges incident to the vertex. Also, a partition of a
graph or digraph G into a specified set of graphs s1, so,...,s, € S corresponds
to a set of vertex disjoint subgraphs of G, each isomorphic to an instance of a
graph in S, covering all vertices of G.

2.2 Complexity of Approximate Counting

Letting ¢ be an arbitrary instance of a counting or optimization problem #X,
letting f (¢) be a function which returns an optimal solution for ¢, and let-
ting f((ﬁ) be a Polynomial Time Approxzimation Scheme (PTAS) for #X, it
must hold that (1 —€) f(¢) < f(qﬁ) < (1+4¢€) f(¢), where f(gﬁ) must also run
in time polynomial in |¢| for every fixed error parameter ¢ > 0. A Random-
ized Approximation Scheme (RAS) is defined similarly, where letting ¢ and
#X be defined as before, and letting]?(gi)) be a RAS for #X, we have that

Approximately Counting Proper Connected Colorings 175

)
o

(¢g> < ef} > 1 — 6 for some error parameter € > 0 and accuracy

|

Prob {e‘f < (
parameter 0 < § < 1 (where we typically set 6 = i) We call the aforemen-
tioned RAS a Polynomial-time Randomized Approximation Scheme (PRAS) if
its runtime is polynomial in |x| (but not necessarily €). If a PTAS (resp. PRAS)
runs in time polynomial in |¢| and €~!, then we refer to the algorithm as a Fully
Polynomial Time Approzimation Scheme (FPTAS) (resp. Fully Polynomial-time
Randomized Approzimation Scheme (FPRAS)).

In this work we will make use of what are known as Approzimating Preserving
(AP) reductions, which are a powerful tool for establishing the existence or non-
existence of a FPRAS for a given counting or optimization problem. Following
Dyer et al. [25], an AP reduction from an integer counting problem #Y to an
integer counting problem #X consists of a probabilistic oracle Turing machine
M satistying the following three conditions: (condition 1) all inputs to M are
of the form (z,€), where z is an instance of #X and 0 < € < 1 is an error
parameter; (condition 2) M is a RAS for #Y whenever the oracle is a RAS for
#X; and (condition 3) M runs in time polynomial in both |z| and e~!. Here,
if #Y is AP-reducible to #X and vice versa, then we call #X and #Y AP-
interreducible, and write #X =4p #Y. We can now note that if a FPRAS exists
for an integer counting problem #X, and if #Y is AP-reducible to #X, then
a FPRAS likewise exists for #Y. On the other hand, if #SAT or any problem
AP-interreducible with #SAT (note that #SAT is trivially polynomial time
reducible to any problem in #P) is AP-reducible to a given problem #Y', then
it is known that #Y cannot admit a FPRAS unless NP = RP [25].

2.3 Uniform and Almost Uniform Sampling

Following [36], we define the total variation distance between a pair of distribu-
tions P and Q on a countable set Q as [|P— Ql|ry =1 > o |P(z) - Q(z)| =
maxacq |P (A) — Q(A)|. Here, we call a randomised algorithm a almost uni-
form sampler if it accepts a string x € X* and a sampling tolerance § > 0,
then outputs witnesses wy, ws,... € W C S (z) from a solution set S (z), such
that the total variation distance between the distribution for W and a uniform
distribution on S (z) is < §%. We call such an almost uniform sampler a Fully
Polynomial-time Almost Uniform Sampler (FPAUS) if its run time is a polyno-
mial function of |z| and In (671). In this work (e.g., in Theorem 1), we will also
refer to a uniform sampler defined in the same manner as an almost uniform
sampler, with the exception that it is able to make constant time calls to an
idealized coin flipping oracle, thus allowing the total variation distance between
the distribution for W and a uniform distribution on S (z) to be equal to zero.

3 Uniform and Almost Uniform Sampling Schemes
for KEP-(o0, 00, 0) Witnesses

Theorem 1. Letting G be an 10-split genus 0 digraph with n vertices and m
edges, and assuming access to an idealized coin flipping oracle, an O (n4 -m)
time uniform sampler exists for KEP-(00,00,0) witnesses.

176 R. D. Barish and T. Shibuya

Proof. Let G be an edge-weighted bimodal planar or IO-splittable genus 0
digraph serving as input for an instance of KEP-(00,00,7"), having vertex set
Vi where n = |Vg|, edge set Eg where m = |Eg|, and a set of integer edge
weights wq, ws, ... € W where weight w; € W corresponds to edge e; € Eg. Let
Vo = Vx UVy UVyz, where Vx corresponds to immunologically incompatible
donor-acceptor pairs, V3 corresponds to live or cadaver donors, and V; corre-
sponds to pure acceptors. We will proceed by first detailing a folklore result that
partitioning G into a set of directed cycles and/or directed paths, where the sum
of all edge weights is > T, can be reduced in linear time to the problem of finding
a 1-factor of a bipartite undirected graph H where the sum of all edge weights
in the 1-factor is > 1 (see, e.g., [3] for previous application of this observation
to kidney exchanges).

To begin, we construct a graph H from G via the following four steps: (step
1) for each vertex v; € Vx we generate a pair of vertices v(; ;) and v(; ou1); (step
2) for every vertex v; € Vy we generate a vertex V(i,out) 10 H; (step 3) for every
vertex v; € Vz we generate a vertex v(; ;) in H; (step 4) for every edge e; € Eg
with weight w; € W, where e; corresponds to v, — v, for some vy, v, € Vg, we
add an edge v(q,out) < V(b,in) Of Weight w; to H. Here, we can observe that H
will be a bipartite graph regardless of whether G is bipartite, and moreover, a
planar graph if G is an 10-split genus 0 digraph.

To now see that 1-factors of H are in bijection with witnesses for KEP-
(00,00,7) with G as input, we make the following observations: (obs. 1) edges
in a 1-factor of H will be the form v ,us) < v(jin); (0bs. 2) edges of the
form v(; out) <> v(j,in) have a direct correspondence to (and the same weight
as) directed edges in G of the form v; — vj; (obs. 3) identifying the pairs of ver-
tices generated in (step 1) will cause any 1-factor of H to become a set of cycles
and/or paths, where one endpoint of any path will be a vertex generated in (step
2), corresponding to a vertex v; € Vi, and one endpoint of any path will be a
vertex generated in (step 3), corresponding to a vertex v; € V. Accordingly, we
have that identifying the pairs of vertices generated in (step 1) will transform a
1-factor of H into a set of cycles and/or paths having a direct correspondence
to (and the same total weight as) a set of directed cycles and/or directed paths
in G serving as a witness for KEP-(c0, 00, 7).

We next observe that the search problem of finding a perfect matching for H
is well-known to be self-reducible in the strong sense of Schnorr [54,55], allowing
us to choose a perfect matching for H uniformly at random provided access to
an idealized coin flipping oracle. To do so we simply select an edge in H with a
probability proportional to the number of perfect matchings that it participates
in, delete the edge as well as its endpoints, and recurse the process until the set of
deleted edges constitutes a perfect matching. Here, if H is planar, we can exactly
count the number of unweighted perfect matchings in H using the O (n3) Fisher-
Kasteleyn-Temperley (FKT) algorithm [38-40,58], can moreover determine the
number of perfect matchings each edge participates in using m € O (n) calls to
the FKT algorithm, and once again provided access to an idealized coin flipping
oracle, can construct a uniform sampler for unweighted perfect matchings via the

Approximately Counting Proper Connected Colorings 177

aforementioned recursive procedure. Putting everything together, as we specify
T = 0 and can therefore treat all edge weights in H as being equal to 1, this
yields a uniform sampler for KEP-(co, 00,0) witnesses having the stated time
complexity of O (n4 . m).

The proof argument for Theorem 1 now yields the following corollaries:

Corollary 1. Letting G be an IO-split genus g digraph with n vertices and m
edges, and assuming access to an idealized coin flipping oracle, an O (49 -nt. m)
time uniform sampler exists for KEP-(0o,00,0) witnesses.

Proof. Observe that the number of perfect matchings in a graph of genus g can
be expressed as a linear combination of 49 Pfaffians [33,48,59], or alternatively,
determined by running the FKT algorithm [38-40,58] on 49 instances of planar
graphs [18]. It now suffices to observe that the pre-processing steps in each of
these approaches will not affect the asymptotic time complexity for the uniform
sampler from Theorem 1, and that we may need to make O (n - m) calls to this
modified version of the FKT algorithm.

Corollary 2. Letting G be a digraph with n vertices and m edges, and letting
U be the time complexity of the Jerrum-Sinclair-Vigoda FPRAS [37] for the
non-negative matriz permanent, an O (¥ -n-m) time FPAUS exists for KEP-
(00, 00,0) witnesses.

Proof. Observe that the graph H in the Theorem 1 proof argument is guar-
anteed to be bipartite, and recall that the permanent of a biadjacency matrix
for a bipartite graph corresponds to a weighted sum over its perfect matchings.
Accordingly, provided that we specify 7 = 0, we can again modify the edges of
H to have weight 1 and simply replace calls to the FKT algorithm [38-40,58] in
the Theorem 1 proof argument with calls to the Jerrum-Sinclair-Vigoda FPRAS
[37] for the non-negative matrix permanent. It remains to observe that, as G is
not necessarily planar in this context, we need to make at most O (n-m) calls
to this FPRAS.

Corollary 3. Assuming a I0-split genus g digraph G with n vertices, m edges,
and integer edge weights of absolute value < C, Vg > 0 and for g = 0 KEP-

(00,00,7) can be solved in O(n% -m-In(n - C)) and O(n% In® (n)-1n (n - C’))

time, respectively.

Proof. Construct the graph H from G via (steps 1-4) of the Theorem 1 proof
argument. Observe that we can utilize the algorithm of Gabow and Tarjan [32],
which improves upon the standard Hungarian algorithm [41] modified to use
Fibonacci heaps [29], to find a maximum total weight 1-factor of H in time

@) (n% -m-In(n-C)). Here, the correspondence between G and H allows us to

use this 1-factor to recover a witness for the original instance of KEP-(o0, 00, 7))
without an increase in the asymptotic time complexity. Furthermore, as we have

178 R. D. Barish and T. Shibuya

that H will be planar if G is bimodal planar, we accordingly have that instances
of KEP-(00,00,7) for I0-split genus 0 barter exchange markets can be solved

in O (n% In?(n) -In (n - C’)) time via a recent algorithm of Asathulla et al. [8].

It now suffices to observe that the construction of H will take at most O (m)
time, and if G is planar, at most O (n) time (as a planar graph can have at most
3n — 6 edges), and that this will not affect the overall time complexities of the
aforementioned maximum weight 1-factor algorithms.

4 Sampling Algorithms for KEP-(L., L,,Y) Witnesses
Based on Evaluating a {—1,0,1} Matrix Permanent

For the purposes of this section, we introduce the concept of a k-terminal match-
gate [14,16,60-62] which, in this context, we define as follows:

Definition 3: k-Terminal matchgate. Let ¢ be an edge-weighted undirected
graph with a specified ordered set of k degree one terminal vertices
(1,72, - --,Vk)- Let P be the set of perfect matchings for ¢. Let f be a func-
tion which accepts a binary vector v € {0, 1}* and returns the subset of perfect
matchings P, C P, where we have that the edge adjacent to the terminal vertex
~; belongs to each perfect matching in the set if and only if the ith position in
v is 1, and let h be a function which sums over the products of the edge weights
in each perfect matching p; € P,. Here, letting S be a set of length k£ binary
vectors, we call ¢ a k-terminal matchgate with signature S if and only if Vv € S
we have that h (P,) =1 and Vv ¢ S we have that h (P,) = 0.

We also define the following special type of k-terminal matchgate:

Definition 4: k-Terminal equality matchgate. A k-terminal matchgate (is a k-
terminal equality matchgate if and only if its signature S consists of only length
k all-0 and all-1 binary vectors.

In Fig. 2(a) we show an instance of a non-bipartite 4-terminal equality match-
gate due to Curticapean [16], and in Fig. 2(b) we show our equivalent bipartite
realization of the matchgate, where in both cases (thin black), (thick black),
and (thick dashed) edges indicate edge weights of 1, —1, and %, respectively.
Abstracting the Fig.2(b) matchgate in the manner shown in Fig.2(c), we can
then make use of the scheme shown in Fig.2(d) (due to Curticapean [16]) to
connect an arbitrary number of copies of this matchgate to generate a bipartite
k-terminal equality matchgate for any k € 2N (e.g., see Fig. 2(e)).

We can now proceed to establish the following theorems:

Theorem 2. Assuming access to an idealized coin flipping oracle and letting
- (1) G be a digraph with n vertices and m edges; (2) q1,q2,... € Q be an
enumerated set of cycles and paths in G of vertez-wise lengths at most L. and
L, respectively, where each q; € Q has an associated weight w; € Ng; (3) Wq

Approximately Counting Proper Connected Colorings 179

be the sum of all such weights for elements in Q; (4) A be the time complex-
ity of an algorithm to calculate the permanent of a {—1,0,1} square matriz
with O (n - Q|+ Wg) columns and rows — an O (A - |Q|?) time uniform sam-
pler exists for KEP-(L., L,,T) witnesses.

Proof. We will proceed as in the case of the Theorem 1 uniform sampler, though
in this context selecting subgraphs in Q (as opposed to edges in G) according
to the number of partitions of total weight > 7" that they participate in. We
will then require the selected subgraph to occur in all partitions (as opposed
to simply deleting an edge in the case of the Theorem 1 sampler), and recurse
this procedure until the set of fixed subgraphs constitutes a partition of G.
Accordingly, we require a method of counting the number of partitions of the
digraph G into subgraphs from Q, where the sum of the weights of the subgraphs
in each partition is > 7", and do so by expressing this count as a {—1,0, 1} matrix
permanent of a graph H.

Here, for every ¢; € @ with n; vertices, we construct bipartite (2 (n; + w;))-
terminal instances of the equality matchgate shown in Fig. 2(d), where the under-
lying 4-terminal matchgate is shown in Fig.2(b). Then, for every vertex v; in
G, we construct a pair of vertices {x(m), SC(,L"Q)}, and ensuring that the resulting
graph is bipartite, connect these vertices to distinct terminals of the equality
matchgates corresponding to the subgraphs ¢; € Q containing v;. Subsequently,
again ensuring that the resulting graph is bipartite, for each k € [1, Wg], we
construct a pair of vertices {y(k,l),y(k’z)}, and whenever k£ > 7", add an edge
between y(x,1) and yx 2). Lastly, we connect each y, 1) and y() vertex to all
equality matchgate terminals in the first and second partite set, respectively,
whenever we have that these terminals are not connected to vertices of the form
T(i,1) Or T(;2)- Observe now that we are simulating the selection of a given sub-
graph ¢; € Q by treating the subgraph as a k-terminal equality gadget where all
terminal vertices are adjacent to an edge in a given perfect matching. This will
cover all vertices of the form z(;) corresponding to the vertices in the original
barter exchange market G covered by ¢;, ensure that no overlapping subgraphs
¢i,q; € Q can be selected simultaneously, and require a selection of a subset of Q
covering all vertices in . Additionally, observe that vertices of the form y, ..)
will ensure that the sum of the weights for this subset of Q is at least 1. For an
explicit example of this construction, we refer the reader to Fig. 3.

Next, we compute an adjacency matrix {2 for H, where we can observe that
Q will have at most O (n - |Q| + Wg) columns and rows, respectively. Finally, we
compute and return the square root of the permanent of 2, which will correspond
to a sum over the number of perfect matchings for H. The result will be a count
for the number of partitions of the digraph G into subgraphs from Q, where the
sum of the weights of the subgraphs in each partition is > 7.

180 R. D. Barish and T. Shibuya

(¢) o3 49
¢
4-Terminal
Equality
Matchgate
(EQy)
b
®1 20
(d) (e)
e O = mm == o)
2n-Terminal Equality
EQ, EQ, EQ, Matchgate (EQ3)
ai b4 ap b, ap bn a; by a, by a, by
(f) be (9) (h)
————— Monotone MC,M
2-SAT Clause
Matchgate

1ate)

l I | EQen, EQ(2n,)
(] o Variable 'v,' Variable 'v,’

Xa Xp Ya Yb

Xa Xb
Fig. 2. Illustrations of matchgates used in this work and elsewhere: (a) non-planar
non-bipartite 4-terminal equality (FQ4) matchgate due to Curticapean [16], where
(thin black), (thick black), and (thick dashed) edges indicate edge weights of 1, —1,
and é7 respectively; (b) novel bipartite 4-terminal equality (EQ4) matchgate where
edge colorations have the same meaning as in (a); (c) abstraction of the bipartite
EQ4 matchgate from (b); (d) scheme to create a 2n-terminal matchgate FQ2, for
any n € Nsg (identical to one given by Curticapean [16]); (e) abstraction of the FQ2y,
matchgate from (d); (f) planar bipartite Monotone 2-SAT Clause Matchgate (M C2M),
where edge colorations have the same meaning as in (a); (g) abstraction of the MCy M
matchgate from (f); (h) partial illustration of the reduction from #Monotone-2-SAT
to computing a hollow Hermitian {—1,0,1} matrix permanent.

Approximately Counting Proper Connected Colorings 181

e
@

<

Fig. 3. Example of the construction used in Theorem 2 to reduce the problem of count-
ing the number of partitions of a barter exchange market G into weighted subgraphs
from a set Q, where a sum over the weights of the subgraphs must be at least equal
to T = 6 (enforced by the top row of vertices); here, Q corresponds to the subgraphs
“A” “B” “C”, “D”, and “E”, which are assigned weights 3, 2, 1, 2, and 1, respectively.

Noting that A will dominate the time complexity of constructing H, and
observing that we need to iterate the subgraph selection procedure at most
O (|Q]) times — each time computing O (|Q|) permanents to randomly select a
subgraph ¢; € Q, then deleting vertices to force ¢; to have only the signature of
the all-1 vector — we achieve a uniform random sampler (assuming access to an
idealized coin flipping oracle) with the time complexity as stated.

Theorem 3. No FPRAS can exist for computing permanents of hollow Hermi-
tian {—1,0,1} matrices unless NP = RP.

Proof. We proceed by giving an AP-reduction from the problem of
approximately counting witnesses for instances of Monotone 2-Satisfiability
(#Monotone-2-SAT), where #Monotone-2-SAT does not admit an FPRAS
unless NP = RP [25], to the problem of computing the permanent of a hol-
low (i.e., all-0 diagonal) Hermitian {—1,0,1} matrix. Here, we accomplish this
by using a bipartite k-terminal equality matchgate to encode variables for any
instance of #Monotone-2-SAT, and by realizing the bipartite matchgate shown
in Fig. 2(f,g), which when connected to the bipartite k-input equality gadget in
the manner shown in Fig. 2(h), will mimic a 2-SAT clause by requiring at least
one of its two pairs of outgoing edges to participate in a perfect matching. We
then remove the % weights via the scheme detailed in “Remark 1.30” of [16]
or “Lemma 77 of [17], which will be of no consequence for our AP-reduction.
It remains to observe that the square root of the permanent of the adjacency
matrix for any bipartite graph (which will necessarily be a hollow Hermitian
matrix) encodes the number of perfect matchings for the graph.

182

R. D. Barish and T. Shibuya

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Pro-

ceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC),
pp- 333-342. Association for Computing Machinery, New York (2011)

. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. Theory

Comput. 9(Article 4), 143-252 (2013)

Abraham, D.J., Blum, A., Sandholm, T.: Clearing algorithms for barter exchange
markets: enabling nationwide kidney exchanges. In: Proceedings of the 8th ACM
conference on Electronic Commerce (EC), pp. 295-304. Association for Computing
Machinery, New York (2007)

Anderson, R., Ashlagi, I., Gamarnik, D., Roth, A.E.: Finding long chains in kid-
ney exchange using the traveling salesman problem. Proc. Natl. Acad. Sci. U.S.A.
112(3), 663668 (2015)

AP: Hospitals turn to online matchmakers to swap supplies. Modern Healthcare
(2020)

Arrazola, J.M., Bromley, T.R.: Using Gaussian boson sampling to find dense sub-
graphs. Phys. Rev. Lett. 121, 030503:1-030503:6 (2018)

Arrazola, J.M., et al.: Quantum circuits with many photons on a programmable
nanophotonic chip. Nature 591(7848), 54-60 (2021)

Asathulla, M.K., Khanna, S., Lahn, N.; Raghvendra, S.: A faster algorithm for
minimum-cost bipartite perfect matching in planar graphs. ACM Trans. Algo-
rithms 16(1), 2.1-2.30 (2020)

Ashlagi, I., Gamarnik, D., Rees, M.A., Roth, A.E.: The need for (long) chains in
kidney exchange. Technical report 18202, National Bureau of Economic Research
(NBER), Cambridge, MA (2012)

Ashlagi, 1., Roth, A.E.: Kidney exchange: an operations perspective. Technical
report UTMD-005, University of Tokyo Market Design Center (UTMD), Tokyo,
JP (2020)

Bondy, J.A., Murty, U.: Graph Theory with Applications, 1st edn. Macmillan
Press, New York (1976)

BookMooch: (2024). http://bookmooch.com/

Bréadler, K., Dallaire-Demers, P.L., Rebentrost, P., Su, D., Weedbrook, C.: Gaus-
sian boson sampling for perfect matchings of arbitrary graphs. Phys. Rev. A 98,
032310:1-032310:15 (2018)

Cai, J.Y., Lu, P.: Holographic algorithms: from art to science. J. Comput. Syst.
Sci. 77(1), 41-61 (2011)

Coalition, A.: Shoe exchanges (2020). https://www.amputee-coalition.org/
resources/shoe-exchanges/

Curticapean, R.: The simple, little and slow things count: on parameterized count-
ing complexity. Ph.D. thesis, Saarland University, Saarbrucken, Germany (2015)
Curticapean, R.: Parity separation: a scientifically proven method for permanent
weight loss. In: Proceedings of the 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), pp. 47:1-47:14 (2016)

Curticapean, R., Xia, M.: Parameterizing the permanent: genus, apices, minors,
evaluation mod 2k. In: Proceedings of the 56th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 994-1009. IEEE Computer Society,
Washington, DC (2015)

Deng, Y.H., et al.: Solving graph problems using Gaussian boson sampling. Phys.
Rev. Lett. 130(19), 190601:1-190601:7 (2023)

http://bookmooch.com/
https://www.amputee-coalition.org/resources/shoe-exchanges/
https://www.amputee-coalition.org/resources/shoe-exchanges/

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Approximately Counting Proper Connected Colorings 183

Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Optimizing kidney exchange with
transplant chains: theory and reality. In: Proceedings of the 11th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 711-
718 (2012)

Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Price of fairness in kidney
exchange. In: Proceedings of the 13th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pp. 1013-1020 (2014)

Dickerson, J.P., Sandholm, T.: FutureMatch: combining human value judgments
and machine learning to match in dynamic environments. In: Proceedings of the
29th AAAT Conference on Artificial Intelligence (AAAI), pp. 622-628 (2015)
Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2017)

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science con-
ference (ITCS), pp. 214-226 (2012)

Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: The relative complexity of
approximate counting problems. Algorithmica 38(3), 471-500 (2004)

Farnadi, G., Babaki, B., Carvalho, M.: Fairness in kidney exchange programs
through optimal solutions enumeration. In: AI for Social Good Workshop, pp. 1-5
(2020)

Farnadi, G., St-Arnaud, W., Babaki, B., Carvalho, M.: Individual fairness in kidney
exchange programs. In: Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAT), pp. 11496-11505 (2021)

Fatemi, F.: The regulated market for kidneys in Iran. In: Auctions, Market Mech-
anisms and their Applications: 2nd international ICST conference (AMMA), pp.
62-75 (2011)

Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596-615 (1987)

Freedman, R., Borg, J.S., Sinnott-Armstrong, W., Dickerson, J.P., Conitzer, V.:
Adapting a kidney exchange algorithm to align with human values. Artif. Intell.
283(103261), 1-14 (2020)

Fresco, A.: Chapter and verse of online book swaps. The Times (2006)

Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM
J. Comput. 18(5), 1013-1036 (1989)

Galluccio, A., Loebl, M.: On the theory of Pfaffian orientations. I. Perfect match-
ings and permanents. Electron. J. Combin. 6(R6), 1-18 (1999)

Hamilton, C.S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: Gaus-
sian boson sampling. Phys. Rev. Lett. 119, 170501:1-170501:5 (2017)

HRSA: Detailed description of data; Figure 1: Patients on the waiting list vs. trans-
plants performed by organ (2020) (2021). https://www.organdonor.gov/learn/
organ-donation-statistics /detailed-description

Jerrum, M.: Counting, sampling and integrating: algorithms and complexity, chap.
Sampling and counting. Lectures in Mathematics, ETH Zuerich, Birkhauser Verlag,
Basel, Switzerland (2013)

Jerrum, M., Sinclair, A.] Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671-697
(2004)

Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer
arrangements on a quadratic lattice. Physica 27(12), 1209-1225 (1961)
Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4(2), 287—
293 (1963)

https://www.organdonor.gov/learn/organ-donation-statistics/detailed-description
https://www.organdonor.gov/learn/organ-donation-statistics/detailed-description

184

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

R. D. Barish and T. Shibuya

Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph
Theory and Theoretical Physics, pp. 43-110. Academic Press, London (1967)
Kuhn, H-W.: The Hungarian method for the assignment problem. Nav. Res. Logist.
Q. 2(1-2), 83-97 (1955)

Kwak, J.Y., Kwon, O.J., Lee, K.S., Kang, C.M., Park, H.Y., Kim, J.H.: Exchange-
donor program in renal transplantation: a single-center experience. Transplant.
Proc. 31(1-2), 344-345 (1999)

Lund, A.P., Laing, A., Rahimi-Keshari, S., Rudolph, T., O’Brien, J.L., Ralph, T.C.:
Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502:1-100502:5
(2014)

Madsen, L.S., et al.: Quantum computational advantage with a programmable
photonic processor. Nature 606(7912), 75-81 (2022)

Mattei, N., Saffidine, A., Walsh, T.: Fairness in deceased organ matching. In: Pro-
ceedings of the 2018 AAAI/ACM conference on Al, Ethics, and Society (AIES),
pp. 236-242 (2018)

Newman, J.E., Vardi, M.Y.: FPRAS approximation of the matrix permanent in
practice, 38 p. (2020). https://arxiv.org/abs/2012.03367

(N.O.S.E.), N.O.S.E.: (2024). http://www.oddshoe.org/

Regge, T., Zecchina, R.: Combinatorial and topological approach to the 3D Ising
model. J. Phys. A: Math. Gen. 33(4), 741-761 (2000)

Roth, A.E., Sonmez, T., Unver, M.U.: Kidney exchange. Q. J. Econ. 119(2), 457
488 (2004)

Roth, A.E., Sonmez, T., Unver, M.U.: Pairwise kidney exchange. J. Econ. Theory
125(2), 151-188 (2005)

Roth, A.E., Sonmez, T., Unver, M.U.: Efficient kidney exchange: coincidence of
wants in markets with compatibility-based preferences. Am. Econ. Rev. 97(3),
828-851 (2007)

Roth, A.E., Sonmez, T., Unver, M.U., Delmonico, F.L., Saidman, S.L.: Utilizing
list exchange and nondirected donation through ‘chain’ paired kidney donations.
Am. J. Transplant. 6(11), 2694-2705 (2006)

Saidman, S.L., Roth, A.E., Sonmez, T., Unver, M.U., Delmonico, F.L.: Increas-
ing the opportunity of live kidney donation by matching for two- and three-way
exchanges. Transplantation 81(5), 773-782 (2006)

Schnorr, C.P.: Optimal algorithms for self-reducible problems. In: Proceedings of
the 3rd International Colloquium on Automata, Languages, and Programming
(ICALP), pp. 322-337 (1976)

Schnorr, C.P.: On self-transformable combinatorial problems. In: Konig, H., Korte,
B., Ritter, K. (eds.) Mathematical Programming at Oberwolfach. Mathematical
Programming Studies, vol. 14, pp. 225-243. Springer, Heidelberg (1981)
Sempere-Llagostera, S., Patel, R.B., Walmsley, I.A., Kolthammer, W.S.: Experi-
mentally finding dense subgraphs using a time-bin encoded Gaussian boson sam-
pling device. Phys. Rev. X 12, 031045:1-031045:12 (2022)

St-Arnaud, W., Carvalho, M., Farnadi, G.: Adaptation, comparison and practical
implementation of fairness schemes in kidney exchange programs (2022). https://
arxiv.org/abs/2207.00241

Temperley, H., Fisher, M.E.: Dimer problem in statistical mechanics - an exact
result. Philos. Mag. 6(68), 1061-1063 (1961)

Tesler, G.: Matchings in graphs on non-orientable surfaces. J. Comb. Theory. Ser.
B 78(2), 198-231 (2000)

Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial
time. SIAM J. Comput. 31(4), 1229-1254 (2002)

https://arxiv.org/abs/2012.03367
http://www.oddshoe.org/
https://arxiv.org/abs/2207.00241
https://arxiv.org/abs/2207.00241

61.

62.

63.

64.

65.

66.

Approximately Counting Proper Connected Colorings 185

Valiant, L.G.: Holographic algorithms (extended abstract). In: Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
306-315. IEEE Computer Society, Washington, DC (2004)

Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565-1594 (2008)
Wang, H., et al.: Boson sampling with 20 input photons and a 60-mode interferom-
eter in a 10'*-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503:1-250503:7
(2019)

Wang, X.W., et al.: Experimental boson sampling enabling cryptographic one-way
function. Phys. Rev. Lett. 130, 060802:1-060802:6 (2023)

Yoon, D., Lieber, D.: World’s first Covid-19 vaccine swap sends Israel’s expiring
supply to South Korea. Wall Street J. (2021)

Zhong, H.S., et al.: Quantum computational advantage using photons. Science
370(6523), 1460-1463 (2020)

Author Index

A Guan, Li 1-69
Anh, The Nguyen 1-426 Guo, Jipeng 1-89
Anwarul Azim, Muhammad 1-101 Guo, Longkun [-287
Ashok, Pradeesha II-157 Guo, Xinru 1II-1
Azgor, Sk Ruhul 1-101

H
B Han, Xinxin 1I-1
Ba, Nam Tran 1-426 Harutyunyan, Hovhannes A. 1I-132
Bai, Qingguo 1-253 Hieu, Doan Minh 1-426
Bandopadhyay, Susobhan II-14 Hossain, Ahmed 1-44
Banerjee, Suman 1I-14 Hou, Bo 1I-26
Bang, Le Khanh 1-426 Hovhannisyan, Narek 11-132
Barish, Robert D. 11-170 Hu, Jiaming 1-139

Hu, Juntao 1-89
C Hu, Mengyuan 1-176
Campbell, Jesse 1-200 Hu, Tingwei 1-338
Chen, Guangting 1-163, I-176 Huang, Yu 1II-1
Chen, Wenping 1I-50 Huang, Yuebo 1-311
Chen, Yong 1-163,1-176

|
D Islam, Md. Hasanul 1-44
Damian, Mirela 11-63
Das, Gautam K. II-157 J
Diao, Zhuo 1-465, 1-477 Ji, Sai I-311
Dong, Yifan -89 Jiang, Zhipeng 1-413
Duan, Keliang 1I-1
Duan, Yichao 1-240 K

Khanh, Hong Vo 1-426
F Khiem, Huynh Gia 1-426
Fan, Guochao 1-278
Fang, Qizhi 1I-85 L
Feng, Qilong 1-324 Li, Cong 1413

Li, Deying 1I-50
G Li, Heging 1-401
Gao, Juan I-1 Li, Jianping 1-352
Gao, Suixiang 1-413 Li, Mengzhen 1-278
Gao, Suogang II-26 Li, Min 1-77,1-401
Ge, Shuwen I-151 Li, Shisheng 1-453
Gong, Mingyang 1-213 Li, Weidong 1II-75
Gong, Suning 1-113 Li, Wenhua [-453

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2025

D. Du et al. (Eds.): COCOA 2024, LNCS 15435, pp. 187-189, 2025.
https://doi.org/10.1007/978-981-96-4448-3

https://doi.org/10.1007/978-981-96-4448-3

188

Li, Yaxuan 1-477

Lian, Jiayi 1-240
Lichen, Junran 1-151, I-352
Lim, Boon-Han 1-139
Lin, Guohui 1-213,1-226
Lin, Jiawei 1-287

Lin, Ran 1-453

Liu, Bin 1II-36

Liu, Hongli 1-69

Liu, Pengqging 1-278
Liu, Qian 1-77,1-163, I-401
Liu, Wen 1I-26

Liu, Wenjing 1I-85
Liu, Xin 1-69

Liu, Xiongjun 1-278
Liu, Yuanyang II-119
Liu, Zhaohui 1I-18

Lu, Maowen 1-139

Lu, Shunzhang 1-176
Lu, Wei 1-240

Lu, Xingyu [-240

Luo, Wenchang 1-376
Lv, Yang 1-278

M

Ma, Chensheng 1-190
Ma, Luying 1I-36

Ma, Mingyu 1-267
Majumdar, Diptapriyo 1I-14
Mao, Yuchen 1-240
Mei, Lili 1-338

Meijer, Henk 1I-63
Meng, Fanqing 1-113
Miao, Bowen 1-253
Mondal, Debajyoti 1-44

N
Nghiem, Pham Thanh 1-426
Nong, Qingqgin I[-113

P

Pandey, Arti 11-157
Panolan, Fahad 1I-14
Paul, Kaustav 1I-157
Paul, Subhabrata II-157
Polevoy, Gleb 1-439

Q
Qiang, Yuanyuan II-36

Qin, Genjie 1I-85
Qu, Xiaoying I-113

R

Rahman, Md. Saidur 1-44, I-101

Rao, Guoyao 1I-50
Ren, Chunying 1I-107

S

Santra, Kamal 1-299
Schweichhart, Jonas 1-439
Shang, Xiaoting 1-253
Sharmin, Sadia 1-101
Shibuya, Tetsuo II-170
Shu, Qiaojun 1-226

Sun, Ruiqing II-75

T

Tan, Zhiyi 1-31,1-213
Tang, Shaojie 1I-144
Tang, Zhongzheng 1-477
Tian, Xiaoyun [-139,1-311
Triet, Minh Nguyen 1-426

W

Wang, Dongzhao 1-139
Wang, Jianxin 1-324
Wang, Kai 1-163
Wang, Yongcai 1I-50
Wang, Youqing 1-89
Wang, Zhen 1-338
Wu, Di 1-324

Wu, Zijun 1I-107

X

Xiao, Bin 1-89

Xie, Runtao 1-151
Xiong, Jiafeng 1-18
Xu, Chunming 1-1

Xu, Jinhui 1-324

Xu, Meng 1-77

Xu, Qiancheng 1I-1

Xu, Wenqing 1-139

Xu, Yicheng 1-364, II-1

Author Index

Y

Yang, Ping 1-151, I-352
Yang, Wenguo 1-56, 1-413, II-119
Yang, Xiaoguang II-107
Yang, Yang 1-364

Yao, Zhicheng 1-56

Ye, Hanlu 1-401

Yu, Lishi I-31

Yu, Wei I-18

Yuan, Hanchun 1-388
Yuan, Jing 1I-144

V/

Zhang, An 1-163,1-176
Zhang, Guochuan 1-240, I-338
Zhang, Guoging II-107
Zhang, Hongyang 1-376

Zhang, Jiaxuan II-26
Zhang, Junyi 1-267
Zhang, Liang 1-453
Zhang, Peng 1-127
Zhang, Yapu 1-278
Zhang, Zhao 1-190
Zhang, Zhen 1-388
Zhang, Zizhen 1II-50
Zhao, Yi I-1

Zhou, Jun 1-240
Zhou, Kun I-311
Zhou, Yang 1-77,1-401
Zhu, Chunjiang 1-200
Zhu, Shugian 1-287
Zhu, Yuqing 1II-50
Zou, Ding 1-240

Zou, Haoyang 1-465
Zou, Juan 1-267

189

	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Maximizing One-Way Trading Revenue in Photovoltaic Energy Generation
	1 Introduction
	2 Preliminaries
	3 One Way Trading Algorithm
	4 Performance Analysis
	4.1 Competitive Ratio
	4.2 Lower Bound

	5 Conclusion and Discussion
	References

	Parameterized Complexity of Shortest Path with Positive Disjunctive Constraints
	1 Introduction
	2 Preliminaries
	3 Polynomial Kernels for SPFG
	4 Improved Kernels for Special Graph Classes and Results on Structural Parameters
	5 Conclusion and Open Problems
	References

	An Approximation Algorithm for the (Metric) Clustered Path Traveling Salesman Problem
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithms for the Path Rural Postman Problem
	4 An Approximation Algorithm for the Clustered Path Traveling Salesman Problem
	5 Discussions
	References

	Dynamic Algorithms for Submodular Maximization with a p-Matchoid Constraint
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Analysis of the Algorithm
	5 Conclusion
	References

	Generative Flow Networks with Symmetry Enhancement to Solve Vehicle Routing Problems
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Problem Formulation
	3.2 GFlowNets

	4 Method
	4.1 Learning Constructive Heuristics for VRPs
	4.2 GFlowNets with Symmetry Enhancement for VRPs
	4.3 Solution Symmetry Lss
	4.4 Problem Symmetry Lps

	5 Experiments
	5.1 Setup
	5.2 Results

	6 Conclusion
	References

	Edge-Unfolding Polycubes with Orthogonally Convex Layers
	1 Introduction
	2 Terminology
	3 Band Segments and Bridges
	3.1 Selecting Band Segments and Bridges

	4 Unfolding Algorithm
	4.1 Stage 1: Unfolding Visited Band Segments and Bridges
	4.2 Stage 2: Unfolding the Top Surface of O
	4.3 Stage 3: Unfolding the Bottom Surface of O
	4.4 Stage 4: Unfolding the Remaining Band Pieces of O
	4.5 Complete Unfolding Example

	5 Conclusion
	References

	B-Matching Interdiction Problem on Bipartite Graphs with Unit Weight and Multi-dimensional Budgets
	1 Introduction
	2 Preliminaries and Problem Formulation
	3 Complexity
	4 Approximation Algorithms for B-Matching Interdiction Problem
	5 Conclusion
	References

	Mechanism Design for Facility Location Games Under a Prelocated Facility
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Model
	3 General Setting
	3.1 Maximum Cost
	3.2 Social Cost
	3.3 Discussion

	4 Special Setting
	5 Conclusions and Open Problems
	References

	Computing Approximate Mixed Nash Equilibria for Symmetric Weighted Congestion Games
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Outline of the Paper

	2 Model and Preliminaries
	2.1 Weighted Congestion Games
	2.2 Equilibria

	3 Computing -Approximate Mixed Nash Equilibria
	3.1 Potential Functions
	3.2 An -Best Response Dynamic on the Game
	3.3 Runtime Analysis of Algorithm 1

	4 Summary
	References

	Dynamic Algorithms for Non-monotone Submodular Maximization
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Dynamic Algorithms
	3.1 The Leveling Algorithm Under the Cardinality Constraint
	3.2 Non-monotone Cases Under the Cardinality Constraint
	3.3 The Leveling Algorithm Under the Matroid Constraint
	3.4 Non-monotone Cases Under the Matroid Constraint

	4 Analysis of the Algorithms
	4.1 Approximation Guarantee
	4.2 Query Complexity

	5 Conclusion
	References

	Broadcasting and Three List Subtraction
	1 Introduction
	2 k-Path Graphs
	3 3-List-Sub Problem
	3.1 Equivalency of 3-List-Sub instances
	3.2 Optimal Solution to Restricted 3-C-List-Sub

	4 Reducing Broadcast Time Problem on k-Path Graphs
	4.1 Exact Broadcasting on Restricted k-Path Graphs

	5 Conclusion and Future Work
	References

	The Power of Second Chance: Personalized Submodular Maximization with Two Candidates
	1 Introduction
	1.1 Related Work

	2 Problem Formulation
	3 Algorithm Design for Constant m
	4 Algorithm Design for Large m
	5 Discussion on Scenarios with More Than Two Candidates
	References

	(Independent) Roman Domination Parameterized by Distance to Cluster
	1 Introduction
	2 Preliminaries
	2.1 Graph Theoretic Notations
	2.2 Problem Definitions
	2.3 Parameterized Complexity Notations and Definitions
	2.4 Related Works
	2.5 Our Results

	3 Variants of Roman Domination Parameterized by CVD Size
	3.1 Roman Domination
	3.2 Independent Roman Domination

	4 Lower Bounds
	5 Conclusion
	References

	Fair Selection of Clearing Schemes for Kidney Exchange Markets
	1 Introduction
	2 Clarifications and Preliminaries
	2.1 Graph Theoretic Concepts and Terminology
	2.2 Complexity of Approximate Counting
	2.3 Uniform and Almost Uniform Sampling

	3 Uniform and Almost Uniform Sampling Schemes for KEP-(,,0) Witnesses
	4 Sampling Algorithms for KEP-(Lc,Lp,) Witnesses Based on Evaluating a {-1,0,1} Matrix Permanent
	References

	Author Index

