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Abstract

This paper presents an improved GRASP with path relinking for the commercial terri-

tory design problem. We face the problem of grouping basic commercial units into larger

geographic territories subject to dispersion, connectivity, and balance requirements. The

problem is motivated by a real-world application from the bottled beverage distribution

industry. For solving this particular territory design problem we propose an improved

GRASP that incorporates a novel construction procedure where territories are formed si-

multaneously in two main stages using different criteria. The GRASP is further enhanced

with two variants of forward-backward path relinking, namely static and dynamic. Both

path relinking strategies resulted very helpful for further improving solutions with respect

to those obtained with a former approach. The proposed algorithm, called GPR CTDP,

has been extensively evaluated over a wide set of data instances. Experimental results

revealed that the construction mechanism improves the corresponding procedure from pre-

vious work. Also the two variants of path relinking implemented in GPR CTDP allowed us

to obtain better solutions than those obtained when using straight local search. Compared

to previous work, it was also observed that the proposed method outperformed the existing

method in terms of solution quality. The ideas and component of the developed method

can be further extended to other districting problems under balancing and connectivity

constraints.
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========================================================

1 Introduction

The territory design problem (TDP) may be viewed as the problem of grouping small

geographic basic units (BUs) into larger geographic clusters, called territories, in a way that

the territories are acceptable (or optimal) according to relevant planning criteria. Territory

design or districting has a broad range of applications such as political districting [3, 4, 17,

25, 35], sales territory design [10, 42, 43], school districting [7, 40], power districting [1],

public services [2, 8, 26], to name a few. The reader can find in the works of Kalcsics,

Nickel, and Schröder [22] and Duque, Ramos, and Suriñach [11] state of the art surveys on

models, algorithms, and applications to districting problems.

The problem addressed in this paper is a commercial territory design problem (CTDP)

motivated by a real-world application from the bottled beverage distribution industry. The

problem, introduced by Rı́os-Mercado and Fernández [36], considers finding a design of

p territories with minimum dispersion subject to planning requirements such as exclusive

BU-to-territory assignment, territory connectivity, and territory balancing with respect to

three BU attributes: number of customers, product demand, and workload. Other works

in commercial territory design have focused on models with additional side constraints

such as joint-assignment [6], i.e., additional requirement that state that some specific pairs

of BUs must belong to the same territory, models that incorporate several optimization

criteria [38, 39].

In this work, we present an improved GRASP with Path Relinking for the CTDP

(GPR CTDP) with several features that enhances the previous work of [36]. In our proposed

GRASP we develop a procedure that builds exactly p territories at once simultaneously, that

is, we start with p node seeds and start associating nodes to the seeds until all of them are

assigned. By growing the territories simultaneously rather than one at a time as done previ-

ously, one expects that the violation of the balancing constraints be considerably lower. In

addition, we develop two path relinking strategies, one dynamic and one static, motivated

by the work of Resende et al. [28], who successfully applied it to the max-min diversity

problem. In our work, these PR strategies rely on finding a “path” between two different

territory designs. To this end, an associated assignment subproblem for finding the best

match between territory centers is solved. The solution to this problem provides a very

nice way of generating the trajectory between two given designs. This idea is novel in any

districting of territory design application to the best of our knowledge.

To assess its efficiency, the proposed proposed GPR CTDP has been extensively eval-

uated over a wide set of data instances. We found that that the proposed GPR CTDP

compares favorably in performance with respect to previous work. More specifically, we
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found that the construction procedure improves the corresponding procedure from previous

work. Hence growing territories simultaneously proved to be an effective mechanism for

obtaining very competitive solutions. The two PR variants implemented in GPR CTDP

allowed us to obtain better solutions than those obtained when using straight local search;

although, the dynamic strategy resulted more helpful. When compared to the previous

approach, it was also observed that the proposed method outperformed in solution quality

the existing technique. The main algorithmic ideas incorporated in the developed algorithm

can be extended so as to handle other districting problems with similar structure.

The paper organized as follows. In Section 2 we describe the problem in detail and

present a combinatorial optimization model. Section 3 gives an overview of relevant previous

related work. Section 4 describes in detail the components of the proposed heuristic, and

Section 5 presents the empirical evaluation of the method. We end the paper in Section 6,

with some conclusions and final remarks.

2 Problem Description

Let G = (V,E) denote a graph where V is the set of city blocks or basic units (BUs),

and E is the set of edges representing adjacency between blocks, that is, (i, j) ∈ E if and

only if BUs i and j are adjacent blocks. Let dij denote the Euclidean distance between

BUs i and j, with i, j ∈ V . For each BU i ∈ V there are three associated parameters.

Let wa
i be the value of activity a at node i, where a = 1 (number of customers), a =

2 (product demand), and a = 3 (workload). The number of territories is given by the

parameter p. A p-partition of V is denoted by X = (X1, . . . ,Xp), where Xk ⊂ V is

called a territory of V . Let wa(Xk) =
∑

i∈Xk
wa
i denote the size of territory Xk with

respect to activity a ∈ A = {1, 2, 3}. The balancing planning requirements are modeled

by introducing a user-specified tolerance parameter τa that measure the allowable relative

deviation from the target average size µa, given by µa = wa(V )/p, for each activity a ∈

A. Another planning requirement is that all of the nodes assigned to each territory are

connected by a path contained totally within the territory. In other words, each of the

territoriesXk must induce a connected subgraph ofG. Finally, we seek to maximize territory

compactness or, equivalently, minimize territory dispersion, where dispersion is given by

maxk=1,...,pmaxj∈Xk
{dc(k),j}, where c(k) denotes the index of the center of territory Xk,

and is determined by

c(k) = arg min
j∈Xk

min
i∈Xk

{dij}.

This is the same function used to measure dispersion in the p-Center Problem (pCP).

Let Π be the collection of all p-partitions of V . The combinatorial optimization model

is given as follows.
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Model (CTDP)

min
X∈Π

f(X) = max
k∈K

max
i∈Xk

{

dc(k),i
}

(1)

subject to
wa(Xk)

µa
∈ [1− τa, 1 + τa] k ∈ K, a ∈ A (2)

Gk = G(Vk, E(Vk)) is connected k ∈ K (3)

Objective (1) measures territory dispersion. Constraints (2) represent the territory balance

with respect to each activity measure as it establishes that the size of each territory must lie

within a range (measured by tolerance parameter τa) around its average size. Constraints

(3) guarantee the connectivity of the territories, where Gk is the graph induced in G by

the set of nodes Xk. Note that there is an exponential number of such constraints. An

equivalent MILP formulation is given in [36].

The model can be viewed as partitioning G (the contiguity graph representing the BUs)

into p connected componentes (contiguous districts) under the additional side constraints

on bakancing product demand, number of customers, and workload of each territory, and

minimizing a dispsersion measure of the BUs in a territory. The basic contiguity graph

model for the representation of a territory divided into elementary units has been adopted

in political districting [21, 27, 35]. This CTDP is NP-hard [36].

3 Related Work

Territory design or districting has a broad range of applications such as political district-

ing [4, 17, 3, 25, 35], sales territory design [10, 42, 43], school districting [7, 40], power

districting [1], public services [2, 8, 26], to name a few. The reader can find in the works

of Kalcsics, Nickel, and Schröder [22] and Duque, Ramos, and Suriñach [11] state of the

art surveys on models, algorithms, and applications to districting problems. Zoltners and

Sinha [43] present a survey focusing on sales districting.

Here we discuss the related work on commercial territory design which is mostly related

to our proposal. A first model was introduced by Vargas-Suárez et al. [41]. They consider

a CTDP with multiple balancing and connectivity requirements, aiming at maximizing

territory balancing. They did not consider the compactness issue. They used a variable

number of territories. They develop a GRASP for obtaining feasible designs for large

instances with relative success.

Later, Rı́os-Mercado and Fernández [36] extended this model by incorporating a terri-

tory compactness criterion, and a fixed number of territories p. They seek to maximize this

compactness criterion subject to planning requirements such as exclusive BU-to-territory

assignment, territory connectivity, and territory balancing with respect to three BU at-
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tributes: number of customers, product demand, and workload. In their work, the authors

consider as a minimization function a dispersion function based on the p-Center Prob-

lem [23] objective function. After establishing the NP-completeness of the problem, the

authors propose a Reactive GRASP for obtaining high-quality solutions to this problem.

The core of their GRASP is a three-phase iterative procedure composed by a construction

phase, an adjustment phase, and a local search phase. In the construction phase a solution

with q territories, where q is usually larger than p, satisfying the connectivity constraints

is built. Then an adjustment phase based on a pairwise merging mechanism is applied to

obtain a solution with p territories. Afterwards, a local search phase attempting both to

eliminate the infeasibility with respect to the balancing requirements and to improve the

dispersion objective function is applied. One interesting observation is that the construction

and adjustment phases produce solutions with very high degree of infeasibility. This is very

nicely repaired by the local search, at a very high computational cost though. The reason

for this is that attempting to merge two territories into one in the adjustment phase may

result in a high violation of the upper bound of the balancing constraints.

Caballero-Hernández et al. [6] study a similar CDTP with additional joint assignment

constraints, that is, a requirement that given pairs of customers must both be assigned to

the same territory. They develop a GRASP for instances of 500- and 1000-nodes based

on a preprocesing stage where a k-shortest path algorithm is used for assuring the joint

assignment constraints are met.

Aguilar-Salazar et al. [37] present an exact optimization framework for tackling relatively

small instances of several CDTP models. They studied two linear models that differ in the

way they measure dispersion, one model uses a dispersion function based on the objective of

the p-Median Problem (MPTDP) and the other is based on the p-Center Problem (CPTDP).

They can successfully solve instances of up to 100 BUs for the CPTDP and up to 150 BUs

for the MPTDP. This concludes that center-based dispersion measures yield more difficult

models as they have weaker LP relaxations that the median-based models.

More recently, CTDP has been addressed from a multiobjetive optimization perspective.

Salazar-Aguilar et al. [38] present an exact optimization method for obtaining Pareto fronts

for relatively small instances. Salazar-Aguilar et al. [39] develop heuristic methods for

addressing larger instances.

In this work, we address the CTDP model as presented by [36] and present an improved

GRASP with Path Relinking (GPR CTDP) with several features that enhances the previous

work obtaining designs of considerably better quality. The details of the proposed procedure

are discussed in Section 4.
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4 Proposed Heuristic

This section introduces the proposed GRASP heuristic with path relinking for the commer-

cial territory design problem (GPR CTDP). GRASP is a well known meta-heuristic based

on greedy search and random construction mechanisms [14]; it has been successfully used

for solving many combinatorial optimization problems [29], including CTDP [36]. We pro-

pose a GRASP improved with path relinking (PR) that compares favorably in performance

with respect to previous work. The improvements comprise a new construction procedure

and a very effective PR mechanism. The construction procedure improves considerably the

corresponding procedure from previous work, while the PR formulation allows us to obtain

better solutions than those obtained when using straight local search, see Section 5. The

rest of this section describes in detail the components of the GPR CTDP approach, which

receives as input an instance of the CTDP and a set of parameters as described below.

4.1 GRASP

A GRASP is an iterative process in which each major iteration consists of two phases:

construction and local search [14, 29]. The construction phase attempts to build a feasible

solution and the local search phase attempts to improve it. This process is repeated for a

fixed number of iterations and the best overall solution is returned as the result. GRASP

incorporates greedy search and randomization mechanisms that allow it to obtain high

quality solutions to combinatorial problems in acceptable times. Despite the simplicity of

this multi-start heuristic it has proved to be very effective in a wide range of problems

and applications. We refer the reader to the following references for complete surveys on

GRASP [15, 16, 29, 31]. Previous work on GRASP for the CTDP is presented in Section 3.

In this paper we propose procedure GPR CTDP, which is in essence a GRASP augmented

with PR mechanisms, accordingly, in this section we describe the particular construction and

local search procedures of the GRASP and the next subsection presents the PR strategies.

Construction phase

At a given iteration, the construction phase consists of building p territories, X1, . . . ,Xp,

simultaneously in such a way that connectivity is always satisfied while infeasibility in

terms of dispersion and balance is allowed to some extend. Each territory Xk is formed

by a subset of BUs or nodes such that ∪k=1,...,pXk = V and Xk ∩ Xl = ∅, for all k 6= l.

Under the proposed procedure each territory Xk is associated to a center, c(k). This is not

a requirement of the problem but a feature of the proposed formulation that was adopted

for convenience when measuring dispersion of territories.
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Procedure 1 grasp construction( δ, L, α )
Input: δ: fraction of nodes assigned by the distance criteria;

L: interval for updating centers;

α: RCL quality parameter;

Output: X: A p-partition of V ;

(c(1), . . . , c(p))← max disp( p ); {Compute p initial centers}

{Stage 1}

i← 0; V̄ ← V ;

while ( n− |V̄ | ≤ δn ) do

for all ( k ∈ {1, . . . , p} ) do

Nq(Xk) ← q nearest (unassigned) neighbors of Xk;

Xk ← Xk ∪Nq(Xk); V̄ ← V̄ \Nq(Xk);

end for

i← i+ 1;

if ( i module L = 0 ) then

c(k)← min(max dv,w), ∀v, w ∈ Xk, k = 1, . . . , p; {Update centers}

end if

end while

{Stage 2}

open(k)← TRUE, k = 1, . . . , p;

while ( |V̄ | > 0 and ∃k such that open(k) == TRUE ) do

for all ( k = 1, . . . , p ) do

if ( open(k) == TRUE ) then

N(Xk) ← Set of neighbors of of Xk;

Compute φk(v) in Eq. (4), ∀ v ∈ N(Xk);

Φmin ← min{φk(v)}; Φmax ← max{φk(v)};

RCL ← {h ∈ N(Xk) : φk(h) ≤ Φmin + α(Φmax − Φmin)};

Choose v ∈ RCL randomly;

Xk ← Xk ∪ {v}; V̄ ← V̄ \ {v};

if ( N(Xk) = ∅ or w
a(Xk) > (1 + τa) for any a ) then

open(k)← FALSE; {Close this territory}

end if

end if

end for

end while

{Postprocessing step}

if (|V̄ | > 0) then

for all ( v ∈ V̄ ) do

Xv ← Nearest territory to node v;

Xv ← Xv ∪ {v}; V̄ ← V̄ \ {v};

end for

end if

return X = {X1, . . . , Xp};

Procedure 1 presents the construction phase of the proposed GPR CTDP. V̄ denotes

the set of nodes that have not been assigned to any territory and n = |V | the number of
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BUs. The process starts by selecting p centers, c(1), . . . , c(p), which are the first nodes

assigned to each territory; that is, c(k) ∈ Xk, k ∈ {1, . . . , p}. Territories are then built

iteratively in two main stages followed by a postprocessing stage. In the first stage q BUs

are iteratively assigned to each territory Xk. For each territory Xk, we iteratively assign

the q (unassigned) nearest neighboring nodes of that territory, v ∈ Nq(Xk). The BUs in

Nq(Xk) that are assigned to Xk must be connected by an edge to a BU already assigned to

Xk. The latter process is iterated until a fraction (δ) of the total of BUs have been assigned

to one of the p territories, where the centers c(1), . . . , c(p) are updated every L iterations.

Figure 1 shows the BUs assigned after stage one of the construction phase for an in-

stance of the CTDP considered for experimentation. From this stage the p territories have

been simultaneously built by using a neighborhood criteria completely ignoring the balance

constraints. The rationale behind this proposal is that nodes that belong to the same terri-

tory must be close to each other, hence a portion of nodes can be assigned with a closeness

criterion. The remaining nodes will lie at boundaries among territories, therefore, balance

and dispersion information is taken into account for assigning those nodes.
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Figure 1: First stage of the proposed construction procedure for an instance of the CTDP.

A crucial aspect of stage one is that of selecting seed centers. Clearly, randomness

must be considered for this process as we want to generate fairly different centers at each

iteration of the GPR CTDP approach. Nevertheless, a purely random approach could lead

to obtain inappropriate seed centers (e.g., centers close to each other), as every node v ∈ V
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would have the same chances to be selected as center. To this end, we view the problem of

choosing an appropriate set of p initials seeds as a p-Dispersion Problem (Erkut et al. [12]),

which is a combinatorial optimization problem that places p points in the plane as far way

of each other as possible by using an appropriate measure for maximizing dispersion. In our

procedure, we used an approach that selects centers randomly with a maximum dispersion

criteria. The particular strategy starts with a randomly selected node as the center for

the first territory and the rest of centers are obtained by using a greedy heuristic for the

p−dispersion problem [12]. In our procedure, we used a particular strategy that starts with

a randomly chosen node as the center for the first territory and the rest of centers are

obtained by using a greedy heuristic for the p-Dispersion Problem.

The second stage of the construction phase consists of assigning the remaining n − δn

nodes that were not assigned in stage one. For this stage BUs are assigned to territories

using a greedy randomized adaptive procedure that takes into account both balance and

dispersion constraints. For each territory Xk, the cost of assigning every neighboring node

v ∈ N(Xk) to Xk is evaluated according to Equation (4). Then a restricted candidate list

(RCL) is formed, from which a single BU is randomly selected and assigned to the current

territory Xk. This RCL is restricted by a quality parameter α, that is, RCL is formed by

those BUs whose greedy function evaluation falls within α percent form the best evaluation.

Equation (4) determines the cost incurred when assigning node v to a territory Xk. This

cost is determined by a linear combination of the weights assigned to nodes in territory

Xk ∪{v}, as determined by the term Gk(v), and the dispersion of those nodes, as estimated

by the term Fk(v). With Gk(v) and Fk(v) are defined in Equations (5) and (6), respectively

φk(v) = λFk(v) + (1− λ)Gk(v), (4)

Gk(v) =
∑

a∈A

gak(v), (5)

Fk(v) =

(

1

dmax

)

f(Xk ∪ {v}) =

(

1

dmax

)

max

{

f(Xk),max
i∈Xk

dvi)

}

, (6)

where f(Xk) = maxi,j∈Xk
dij is the dispersion measure (as dictated by the objective func-

tion) and gak(v) =
1
µa max{wa(Xk ∪ {v}) − (1 + τa)µa, 0} accounts for the sum of relative

infeasibilities for the balancing constraints. Here dmax = maxi,j∈V {dij}, the maximum dis-

tance between any pair of nodes, is used for normalizing the objective function. One should

note that gak(v) represents the infeasibility with respect to the upper bound of the balance

constraint for activity a. Both factors dispersion and balancing are weighted by a parameter

λ in expression (4). The process is repeated for every territory k. If a territory exceeds

the expected average weight for a territory it is considered closed (i.e., open(j) = false)

and no further node can be assigned to it. The latter process iterates until either every

node has been assigned to a territory or every territory is considered closed. Since stage
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Figure 2: Second stage of the proposed construction procedure for an instance of the CTDP.

two does not guarantee that all nodes will be assigned to a territory, a postprocessing step

is applied in which unassigned nodes are assigned to their nearest territory. Figure 2 shows

the distribution of BUs for an instance of the CTDP after stage two of the construction

procedure.

Local search

After a solution is build a postprocessing phase consisting of local search is performed. The

goal in this phase is to improve the objective function value and recovering feasibility (if

violated) in the constructed solution, X. In this local search, a merit function that weights

both the infeasibility with respect to balancing constraints and the objective function value

is used. This function is indeed similar to the greedy function used in the construction phase

with the exception that now the sum of relative infeasibilities take into consideration lower

and upper bound violation of the balancing constraints. Specifically, the merit function for

a given territory design X = {X1, . . . ,Xp} is given by

ψ(X) = λF (X) + (1− λ)G(X) (7)

where

F (X) =

(

1

dmax

)

max
k=1,...,p

max
h,i∈Xk

{dhi}, (8)
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and

G(X) =

p
∑

k=1

∑

a∈A

ga(Xk), (9)

with ga(Xk) =
1
µa max{wa(Xk)− (1 + τa)µa, (1− τa)µa −wa(Xk), 0} being the sum of the

relative infeasibilities of the balancing constraints. The quality of solutions is then deter-

mined by Expression (7), we now describe the mechanism for exploring solutions around the

constructed territory design. Let t(i) denote the territory node i belongs to, i = 1, . . . , n.

A move move(i, j) is defined as moving a node i from its current territory to a territory

t(j), where t(j) 6= t(i). Only moves move(i, j) where (i, j) ∈ E and t(i) 6= t(j) are al-

lowed. Thus, move(i, j) transforms a solution X = (X1, . . . ,Xt(i), . . . ,Xt(j), . . . ,Xp) into

XT = (X1, . . . ,Xt(i) \{i}, . . . ,Xt(j)∪{i}, . . . ,Xp). If connectivity must be kept, only moves

where Xt(i) \ {i} remains connected are allowed. Note that in general move(i, j) is asym-

metric.

Procedure 2 local search( X )
Input: X: A solution to the CTDP;

Output: X: Improved solution to the CTDP;

nmoves← 0; local optima ← FALSE;

k ← 1; {starting territory}

while ( nmoves ≤ limit evals AND ¬local optima ) do

improvement ← FALSE;

while ( |N(Xk)| > 0 and ¬improvement) do

move(i, j)← Choose valid move from N(Xk);

N(Xk)← N(Xk) \ {(i, j)};

Evaluate ψ(XT ) using Expression (7);

if ( ψ(XT ) < ψ(X) ) then

X ← XT ; {perform move}

nmoves← nmoves+ 1;

improvement ← TRUE;

kend← k;

k ← (k + 1) mod p;

end if

end while

if ( ¬improvement ) then

k ← (k + 1) mod p;

end if

if ( k = kend ) then

local optima ← TRUE;

end if

end while

return X

The basic idea of the local search is to start the search with a given territory, say
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territory k, and then consider first the moves emanating from territory k, that is, if we let

N(Xk) denote the feasible moves move(i, j) with t(i) = k evaluate first all the moves in

N(Xk), and take the best that improves the current solution, if any. If none found, proceed

with territory (k + 1) mod p. As soon as a better move is found, perform the move, and

restart the search from this new solution XT but setting k + 1 as the starting territory,

where k was the last territory examined, that is, in a new move the starting territory is

k + 1 and the final territory to be examined is k. By using this cyclic strategy for starting

territory we avoid performing many unnecesary move evaluations. A move is performed

using a different territory each time until no improvements can be found. In practice an

additional stopping criterion: the maximum number of allowed evaluations of the fitness

function (limit evals), is added to avoid performing an extensive search for long periods of

time. Therefore, the postprocessing step stops when either a local optima is found or the

number of moves exceeds limit evals. The postprocessing phase is described in Procedure 2.

4.2 Path relinking

Path Relinking (PR) was originally proposed by Glover and colleagues as a way of incor-

porating intensification and diversification strategies in tabu search [18, 19]. PR consists of

exploring the path of intermediate solutions between two selected solutions called starting

(XS) and target (XT ) with the hypothesis that some of the intermediate solutions can be

either better than XS and XT (intensification) or comparable but different enough from XS

and XT (diversification). Intermediate solutions are generated by performing moves from

the starting solution in such a way that these moves introduce attributes that are present

in the target solution. Successful applications of PR in the context of Tabu and Scatter

Search are reported in [19, 20, 32].

Despite the fact that PR was originally proposed for Tabu and Scatter search, it has

been successfully used with GRASP as well [24, 30, 31, 28]. In the context of GRASP,

PR can be considered as a way of introducing memory into the search process. Different

variants have been proposed so far each having benefits and limitations in terms of efficiency

and efficacy. In this work we consider two variants of forward-backward PR, namely static

and dynamic, that have proved to be very effective in related problems [28]. For excellent

surveys on applications of GRASP with PR we refer the reader to the work of Resende and

Ribeiro [30, 31].

The so called, forward-backward PR strategies explore the paths between XS and XT

in two different ways (i.e., from XS to XT and viceversa) [30]. The main benefit of these

strategies is that more and different solutions can be generated, although it has been found

that there is little gain over one-way strategies [34]. This can be due to the greediness of

usual PR methods, which evaluate every possible solution that can be generated by making
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a move from a initial solution and choose the move that results in the best intermediate

solution [34, 28]. Thus, these methods explore a large number of solutions and, therefore,

forward-backward PR does not help to improve the quality of final solutions. In this work

we select moves in such a way that a single move is evaluated for generating intermediate

solutions. This form of PR is more efficient at the expense of sacrifying the benefit of

greedy strategies. Nevertheless, we believe that in the considered setting the use of a

forward-backward PR strategy is advantageous.

Besides the direction of the search, there are other aspects that make PR strategies

different [30, 31, 28]. For example, greedy-randomized PR methods form a RCL with can-

didate moves and select a move randomly as in GRASP [13]. Truncated PR techniques

explore partially the trajectory between XS and XT . Evolutionary PR consists of evolv-

ing a reference set of solutions in a similar way as the reference set is evolved in scatter

search [33]. In this work we developed static and dynamic PR strategies that resulted very

effective for the CTDP. Both strategies have been successfully used in other combinatorial

optimization problems [28]. The rest of this section describes the PR strategies incorporated

in GPR CTDP.

Recall each solution of the CTDP is an assignment of every node i ∈ V to one of p

territories X1, . . . ,Xp. Let t(X, i) ∈ {1, . . . , p} denote the index of the territory to which

node i is assigned according to solution X. Given two particular solutions XS and XT , PR

aims at generating intermediate solutions or p-partitions in the path starting at XS and

finishing at XT . In GPR CTDP intermediate solutions are created by changing t(XS , i),

the territory to which node i is assigned in solution XS into the corresponding territory

t(XT , i). Because both XS and XT solutions are created independently, and the territory

ordering may be arbitrary, it is not clear what territory in XS corresponds to what territory

in XT . Hence, a correspondence between territories must be obtained before starting the

search process. The problem of finding the bast match between territories can be set as an

Assignment Problem (AP) by considering the territory centeres only. Let C(X) the set of p

node centers corresponding to solution X. Then a complete bipartite graph is formed with

sets C(XS) and C(XT ), where the cost between node i ∈ C(XS) and j ∈ C(XT ) is given

by dij . The AP can be solved in polinomial time by using. We use one of the most recent

implementations of the Hungarian algorithm [5]. A solution to the AP represents a minimum

cost assignment between territory centers, and therefore a match between territories. Let

M be the solution to AP given by M = {(ii, j1), . . . , (ip, jp)}. The idea of the PR is then to

“transform” each territory Xt(ik) to territory Xt(ik) for each (ik, jk) ∈M . The rationale for

this matching stems from the fact that it is expected that relatively close territories (fron

different designs) will have many BUs in common. This scheme is illustarted in Figure 3.

Once that a correspondence between territories has been established it is possible to
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perform moves from one solution XS to another XT . As a consequence, in order to arrive

at solution XT starting from XS , every nodes in XS such that t(XS , i)) 6= t(XT , i) must be

moved to its associated territory in XT . We define a PR move, movePR(X
S ,XT , i), as a

function that moves or reassigns a node i from territory t(XS , i) to territory t(XT , i). The

move is valid as long as t(XS , i) 6= t(XT , i) and the resulting p-particition remains conected,

that is, if and only if Xt(XT ,i) ∪ {i} is connected and Xt(XS ,i)\{i} remains connected. One

should note that moves are always made between boundary nodes as it is not possible to

exchange a non-boundary node from one territory to another territory in a single move

because loss of connectivity.

AP subproblem

S

AP solution

Design X TDesign X

Figure 3: Illustration of how to set up a search trajectory from two given designs (top) by
solving an associated Assignment Problem (bottom).

Intermediate solutions between XS and XT are generated by making moves from XS

to XT and updating the solution XS accordingly. Clearly, the order in which nodes i are

selected may give rise to different trajectories between XS and XT . In this work we chose

nodes i in lexicographical order, we also tried a random node selection approach although

no difference in performance was obtained. After an intermediate solution is created it is

evaluated using Formula (8). The generation-evaluating process is repeated for every node

with t(XS , i) 6= t(XT , i) and the process stops when t(XS , i) = t(XT , i) for all i ∈ V . Thus,
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the PR procedure receives as input a pair of solutions XS and XT , generates and evaluates

all of the intermediate solutions from XS to XT and the best intermediate solution XR is

returned as output. In the following we denote with PR(XS ,XT ) the application of PR

starting at solution XS and finishing at solution XT .

Procedures 3 and 4 present the static and dynamic variants of PR implemented in

GPR CTDP, respectively. Both static and dynamic variants maintain a set of b elite so-

lutions B = {B1, . . . , Bb}. B is initialized by running the construction and local search

procedures for b times. Solutions in B are always kept sorted in ascending order of their

objective function value estimated with Equation (8).

Procedure 3 grasp pr static( imax )
Input: imax: number of global iterations;

Output: Xbest: A p-partition of V ;

for all ( i ∈ {1, . . . , b} ) do

X ← grasp construction();

Bi ← local search( X );

end for

Sort B from best to worst;

for all ( iter = 1, . . . , imax ) do

XS ← grasp construction();

XS ← local search( XS );

if ( (ψ(XS) < ψ(B1)) or (ψ(X
S) < ψ(Bb) and d

sol
µ (XS , B) > θ) ) then

Ej ← closest solution to XS in B with ψ(XS) < ψ(Bj);

Ej ← XS ;

Update B;

end if

end for

Xbest ← B1;

for all ( i ∈ {1, . . . , b− 1} ) do

for all ( j ∈ {i+ 1, . . . , b} ) do

Apply PR(Bi, Bj) and PR(Bj , Bi) and let XS ← best solution found;

XS ← local search( XS );

if ( ψ(XS) < ψ(Xbest) ) then

Xbest ← XS ;

end if

end for

end for

return Xbest;

4.2.1 Static GPR CTDP

In the static variant, PR is performed at the end of imax iterations of a typical GRASP.

In each iteration of the GRASP a solution is constructed and improved with local search,

XS . This solution is compared with the solutions in B. If XS is better than the best
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solution in B (i.e., B1) or if X
S is better than the worst solution in B (i.e., Bb) and is at a

distance larger than a given threshold θ from solutions in B, then the most similar solution

to XS in B is replaced by XS . Solutions in B are then sorted from best to worst. After

imax iterations the static PR starts. Every path between solutions in B is evaluated and

the best solution is returned. The distance between XS and solutions in B is estimated

as dsolµ (XS , B) = 1
b

∑b
i=1 g(X

S , Bi), where g(X
S , Bi) is the fraction of nodes in XS and Bi

that are assigned to corresponding territories; that is, dsolµ (XS , B) is the average number

of nodes assigned to common territories in XS and Bi. θ ∈ [0, 1] is a scalar that is set

empirically. The pseudocode is shown in Procedure 3.

4.2.2 Dynamic GPR CTDP

The dynamic PR variant differs from the static one in that in each iteration of the GRASP

the solution XS is compared to a randomly selected solution from B, say B′. The inter-

mediate solutions between XS and B′ are evaluated, and the best solution found in the

path is denoted XR. Then if XR is better than B1 or if XR is better than Bb and it is at

a distance of at most θ from the solutions in B, then the closest solution in B to XR is

replaced with XR. Then solutions in B are sorted from best to worst. After imax iterations

the best solution, namely B1, is returned. The pseudocode is shown in Procedure 4.

Procedure 4 grasp pr dynamic( imax )
Input: imax : number of global iterations;
Output: Xbest; A p-partition of V ;

for all ( i = {1, . . . , b} ) do
XS ← grasp construction();
Bi ← local search( XS );

end for
Sort B in ascending order;
for all ( iter = 1, . . . , imax ) do

XS ← grasp construction();
XS ← local search( XS );
Randomly select B′ from B;
Apply PR(XS, B′) and PR(B′, XS) and let XR ← best solution found;
if ( (ψ(XR) < ψ(B1)) or (ψ(X

R) < ψ(Bb) and d
sol
µ (XR, B) > θ) ) then

Bj ← closest solution to XR in B with ψ(XR) < ψ(Bj);
Bj ← XR;
Update B;

end if
end for
return Xbest ← B1;

A number of parameters are associated with GPR CTDP in both variants, namely δ

the fraction of nodes assigned with a distance criterion, k the number of neighbors that are

considered for building a territory, λ the tradeoff parameter of the objective function, α the

GRASP quality parameter for the RCL, limit evals the maximum number of evaluations for

the local search, b the number of solutions in the elite set B and θ the distance threshold in
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PR. In this work we have fixed all of these parameters based on preliminary experimentation.

The next section reports experimental results with the proposed GPR CTDP.

5 Computational experiments

This section reports experimental results obtained with GPR CTDP. The proposed method

was implemented in Matlab and the code is publicly available for research purposes at

http://yalma.fime.uanl.mx/∼hugojair/code/gpr-tdp/. All of the experiments were run in a

64-bit iMacR© computer with a CoreDuo processor at 3.06Ghz and 4 GB in RAM, with Mac

OS X 10.6.7 operating system.

5.1 Experimental setting

For the experiments we used the data base from [36]. These are randomly generated in-

stances based on real-world data. Data sets DS and DT are considered for experimentation

The former generate the BU weights from a uniform distribution and the latter uses a tri-

angular distribution. Data set DT more closely resembles of the real-world instances. The

data sets contains instances of many sizes as a function of n and p. These data sets are

fully described in [36].

For all of the instances in both DS and DT data sets we use a tolerance level τa = 0.05,

a ∈ A. Recall that τa measures the allowable relative deviation from the target average size

µa for activity a. Hence, a value of τa = 0.05 implies that instances are tightly constrained

in all activities and therefore the problem is more difficult to solve than instances that use a

larger value of τa. In previous work [36], experiments have been reported with other values

for τa ∈ [0.05, 0.30]. Here we focus on the more difficult instances.

The process of randomly generating an instance is affected by two sources of information.

One is the generation of the map (i.e., the graph topology), and the other one is the

generation of node attributes. Instances were generated in this way because of the following

reasons. On the one hand, as far as the topology is concerned, due to proprietary reasons

the beverage firm has not allowed us yet to use its city map. On the other hand, the

generation process allows us to test our method in a more general scenario and not making

it too problem specific. In addition, since our basic geographical units are city blocks and

given that one can argue that blocks are somewhat uniformly distributed over an urban

setting, the generation of city blocks by an uniform distribution is a reasonable assumption.

Regarding the node attribute generation, using an uniform distribution generates instances

with a larger variance, which reflects the expected variance in real scenarios, and, again,

this allows us to test the proposed method in a more general situation.

Both DS and DT data sets have been used in previous work [41, 36], hence the use of
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these data allows us to directly compare the performance of GPR CTDP to the Reactive

GRASP of Rı́os-Mercado and Fernández [36] (referred to as RF heuristic), which is the best

method developed for this problem to the best of our knowledge. For each of DS and DT

data sets, 20 different instances of size n = 500 and p = 10 were generated. Throughout the

evaluation, the GRASP is run with imax = 500. This number of iterations is half the number

of GRASP iterations considered in the RF heuristic. Based on preliminary experimentation

for fine-tuning the algorithmic parameters for GPR CTDP, we will use the values reported

in Table 1. Showing the fine-tuning of these parameters is out of the scope of this paper.

Table 1: Summary of values used for the algorithmic parameters of GPR CTDP.

Parameter Value Description

δ 0.5 Fraction of nodes assigned with a distance criterion.
k 3 Number of neighbors that are considered for growing a territory.
λ 0.7 Weight parameter in the meritfunction.
α 0.3 RCL quality parameter.
limit evals 1, 000 The maximum number of fitness function evaluations in the local search.
b 20 The number of solutions in the elite set E.
θ 0.6 The distance threshold in PR.
imax 500 Number of global iterations for GPR CTDP.

In the following sections we report the obtained experimental results. We have di-

vided experimental results in three sections that aim at assessing different aspects of the

GPR CTDP.

5.2 Construction strategy and local search (GRASP)

This section describes results of experiments designed to evaluate the effectiveness of the

proposed construction and local search mechanisms in GPR CTDP. Table 2 shows the

performance of these mechanisms for both DT and DS data sets. The table shows the

improvements of the local search over the construction procedure; for Ψ(S) and F (S) it

is shown the percentage of relative improvements while for G(S) we only show the actual

difference. From this table we can see that the average of the sum of relative infeasibilities

is maintained low in the construction procedure for both data sets. This result shows that

the proposed procedure is able to obtain acceptable solutions in terms of the degree of

satisfaction of the balance constraints despite the fact part of the construction procedure is

based on a purely distance-based criterion.

As expected, after applying local search to the constructed solutions, the three measures

Ψ(S), F (S) and G(S) are improved. For the DT data set the objective function is improved

by an average of 20.74%, while for the DS data set the improvement is of 94.90%. The

fact that lower improvements are obtained for the dispersion term (F (S)) in both data sets

gives evidence that the distance-based criterion of the construction mechanism resulted very

helpful for finding competitive solutions. Interestingly, for the DS data set some solutions
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Table 2: Evaluation of the construction and local search procedures of GPR CTDP.

Measure DT DS

Weighted objective Ψ(S) Best 8.04% 58.19%
Average 20.74% 94.90%
Worst 41.36% 154.20%

Objective (dispersion) F (S) Best 6.02% −8.95%
Average 14.12% 5.49%
Worst 31.22% 19.98%

Sum of relative infeasibilities G(S) Best 0.00E + 00 2.50E − 01
Average 2.69E − 02 4.18E − 01
Worst 6.12E − 02 6.30E − 01

are not improved in terms of F (S) after applying local search, showing that this procedure

sacrifyces dispersion to reduce balance infeasibilities for some solutions.

Table 3: Comparison of the proposed construction procedure in GPR CTDP with the one
in the RF heuristic.

Measure DT DS

Ψ(S) Best 62.05% −36.90%
Average 143.88% −12.41%
Worst 217.84% 12.81%

F (S) Best −10.01% −4.52%
Average 17.83% 17.87%
Worst 63.36% 48.16%

G(S) Best 3.78E − 01 4.26E − 01
Average 6.19E − 01 2.08E − 01
Worst 8.27E − 01 1.90E − 02

Table 4: Comparison of the proposed local search procedure in GPR CTDP with the one
in the RF heuristic.

Measure DT DS

Ψ(S) Best 2.17% −4.41%
Average 6.33% 3.41%
Worst 11.92% 24.50%

F (S) Best 2.17% −5.45%
Average 6.40% 3.57%
Worst 11.92% 24.50%

G(S) Best −2.52E − 03 −2.01E − 02
Average −2.71E − 04 −5.94E − 04
Worst 0.00E + 00 1.96E − 02

Tables 3 and 4 compare the performances of the construction and local search proce-

dures of GPR CTDP with those introduced in [36]. In these tables, we report the relative

improvement of our method over the RF heuristic. Table 3 shows that in DT, GPR CTDP

improves dramatically the construction procedure from previous work (an average of 143%

in terms of Ψ(S)). Although for DS the construction procedure in [36] outperforms that

of GPR CTDP (an average of −12.41% in terms of Ψ(S)); note that GPR CTDP outper-

forms previous work by an average of 17.87% in terms of dispersion, but it obtained larger

values of G(s). This result reflects again the suitability of the distance-based criterion in
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the construction mechanism, which reduces dispersion of solutions.

Table 4 compares the local search procedures in GPR CTDP with the RF heuristic.

Improvements of the proposed local search method are rather small. Again, larger improve-

ments are observed for the dispersion term, while there is a slight decrease in terms of the

sum of relative infeasibilities. This reduction in terms of balance constraints is alleviated

with the PR strategies incorporated in GPR CTDP.

5.3 GRASP vs. GPR PR

This section reports experimental results on the improvements of the PR strategies over the

straight GRASP implementation described in Section 4.1 and the RF heuristic [36]. Tables 5

and 6 show the performance of GPR CTDP under both static and dynamic PR strategies

for DT and DS data sets, respectively. In these tables, we compare the performance of

GPR CTDP when using PR and when only local search is adopted. We show the relative

deviation between the best solution obtained with each method and the best known solution

for each instance.

As we can see, for the DT data set (Table 5) the improvements obtained with PR

over local search are small yet non-negligible. We believe this result can be due to the

fact that we are approaching to the global optimum for this data set and since the local

search procedure provides very competitive solutions by itself the improvements due to PR

are rather small. However, it is important to emphasize that both PR strategies optimize

balance infeasibilities for all of the instances in the data set, whereas it also improves the

dispersion of territories. For this data set the dynamic PR strategy outperformed the static

one by about 1% in terms of the objective function.

Table 5: Improvement obtained by GPR CTDP with the static and dynamic PR variants
over the GRASP for the DT data set.

Measure Local-Search Static PR Dynamic PR

Ψ(S) Best 0% 0% 0%
Average 3.55% 1.48% 0.38%
Worst 13.97% 5.42% 2.5%

F (S) Best 0% 0% 0%
Average 3.4% 1.48% 0.38%
Worst 13.57% 5.42% 2.5%

G(S) Best 0.00E + 00 0.00E + 00 0.00E + 00
Average 5.78E − 04 0.00E + 00 0.00E + 00
Worst 5.05E − 03 0.00E + 00 0.00E + 00

For the DS data set (Table 6) the improvements due to PR are larger. GPR CTDP

with static PR outperforms the results of local search by an average of 10% in terms of the

objective function, whereas the dynamic strategy outperforms local search by 11%. Both,

static and dynamic PR achieve important improvements in terms of the dispersion objective

(F (S)), improvements in terms of balance infeasibility are small.
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Table 6: Improvement obtained by GPR CTDP with the static PR variant over the GRASP
for the DS data set.

Measure Local-Search Static PR Dynamic PR

Ψ(S) Best 1.19% 0% 0%
Average 13.83% 3.07% 2.35%
Worst 50.34% 10.98% 10.26%

F (S) Best 0% 0% 0%
Average 13.06% 2.51% 2.75%
Worst 41.92% 10.98% 10.26%

G(S) Best 0.00E + 00 0.00E + 00 0.00E + 00
Average 6.05E − 03 4.29E − 03 1.39E − 04
Worst 7.75E − 02 6.84E − 02 2.79E − 03

Figures 4, 5, and 6 show the territories obtained with local search, static GPR CTDP

and dynamic GPR CTDP, respectively, for an instance of the DT data set. These figures

illustrate the advantages of GPR CTDP over local search. It can be seen that territo-

ries generated with local search (Figure 4) are more disperse than those generated with

GPR CTDP. Two of the territories generated with local search are particularly disperse

(circle and down-facing triangle). Both versions of GPR CTDP improve the dispersion of

that territory, although dynamic GPR CTDP obtains territories that are better distributed.
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Figure 4: Solution for a particular instance of the DT data set. This is the best solution
generated with the construction + local search procedures of GPR PR.

Tables 7 and 8 compare the performance of GPR CTDP with static (GPR CTDP-

ST) and dynamic (GPR CTDP-DY) PR to that obtained by the RF heuristic (reactive
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Figure 5: Solution for a particular instance of the DT data set. This is the best solution
obtained after applying the static variant of GPR PR.

GRASP). These tables show the relative deviation between the best solution obtained with

each method and the best known solution for each instance. Table 7 shows the results

obtained for the DT data set. The improvements over previous work for DT are of 7.44%

and 8.54% for the static and dynamic PR strategies, respectively. The reactive GRASP from

previous work obtained solutions that violated feasibility in terms of balance constraints

(G(S)), while GPR CTDP obtained feasible solutions for all of the instances. Besides the

dispersion of solutions was reduced as well with GPR CTDP.

Table 7: Comparison of GPR CTDP with RF heuristic for the DT data set.

Measure RF GPR CTDP-ST GPR CTDP-DY

Ψ(S) Best 3.87% 0% 0%
Average 8.92% 1.48% 0.38%
Worst 14.54% 5.42% 2.5%

F (S) Best 3.87% 0% 0%
Average 8.91% 1.48% 0.38%
Worst 14.54% 5.42% 2.5%

G(S) Best 0.00E + 00 0.00E + 00 0.00E + 00
Average 1.84E − 05 0.00E + 00 0.00E + 00
Worst 3.67E − 04 5.05E − 03 0.00E + 00

Table 8 shows the results obtained for the DS data set. The improvements of GPR CTDP

over previous work are larger for this data set. The static variant of GPR CTDP outper-
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Figure 6: Solution for a particular instance of the DT data set. This is the best solution
obtained after applying the dynamic variant of GPR PR.

forms previous work by 8.98% while the dynamic strategy outperforms it by 9.70%. Static

GPR CTDP obtained better solutions than those obtained in previous work in terms of

dispersion, although the sum of relative infeasibilities was larger. On the other hand, the

dynamic GPR CTDP outperformed previous work in both terms F (S) and G(S).

Table 8: Comparison of GPR CTDP with RF heuristic for the DS data set.

Measure RF GPR CTDP-ST GPR CTDP-DY

Ψ(S) Best 1.15% 0% 0%
Average 12.05% 3.07% 2.35%
Worst 42.55% 10.98% 10.26%

F (S) Best 1.15% 0% 0%
Average 11.96% 2.51% 2.75%
Worst 42.55% 10.98% 10.26%

G(S) Best 0.00E + 00 0.00E + 00 0.00E + 00
Average 2.75E − 03 4.29E − 03 1.39E − 04
Worst 2.50E − 02 6.84E − 02 2.79E − 03

5.4 Static GPR PR vs. dynamic GPR PR

This section elaborates on the difference in performance between the static and dynamic PR

variants of GPR CTDP. From Tables 5 and 6 we can see that the improvements of static

and dynamic GPR CTDP over local search are of 2.07% and 3.17% for the DT data set and
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of 10.76% and 11.48% for the DS data set (in terms of the objective function). Thus, despite

the fact both strategies resulted effective, the use of the dynamic one is advantageous. We

think this can be due to the fact that in dynamic GPR CTDP each of the imax solutions are

subject to PR which increases the probability of finding effective solutions via PR. Static

GPR CTDP, on the other hand, explores the paths between elite solutions at the end of the

search process, exploring only a portion of the solutions that are explored in the dynamic

variant. This result is consistent with previous work with static and dynamic PR [28].

Figures 7 and 8 show the relative deviation of the solutions found with each tested

method and the best known solution for each instance for DT and DS data sets, respectively.

These figures give us more insight into the performance of the different methods across the

instances, it is rather clear that the dynamic PR strategy obtained the best solutions for

most of the instances (those instances for which the relative deviation is zero), followed by

the static PR approach. These plots also confirm that the improvements over the method

described in previous work [36] are considerable.
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Figure 7: Relative deviation in terms of the weighted objective Ψ(S) for the considered
methods and for each instance of the DT data set.

Table 9 reports the processing time for each variant of GPR CTDP and for each data

set. Since more PR evaluations are performed under dynamic GPR CTDP processing time

is higher for this strategy. While it is true that the results from the existing approach

were obtained in the order of 20-25 minutes on average (2000 GRASP iterations), it also
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Figure 8: Relative deviation in terms of the weighted objective Ψ(S) for the considered
methods and for each instance of the DS data set.

Table 9: CPU time (min) comparison for static and dynamic GPR CTDP.
DT DS

GPR CTDP-ST GPR CTDP-DY GPR CTDP-ST GPR CTDP-DY
Best 188.28 197.87 234.33 250.99
Average 194.14 203.35 265.60 275.94
Worst 204.30 210.61 299.68 301.97

true that that algorithm reports very small or no improvement afterwards. The results

obtained by either variant of our proposed method significantly improves the quality of the

previously obtained solutions, making this extra effort worthwhile indeed. Furthermore,

from the practcal standpoint, this decision is taken every 3-4 months, therefore one can

certainly afford to run a few more iterations of the proposed method for quality’s sake if

needed.

6 Conclusions

We have described an improved GRASP with path relinking for the commercial territory

design problem (GPR CTDP). The problem, motivated by a real-world application, consists

of grouping commercial units into geographic territories subject to dispersion, connectivity

and balance constraints. A novel construction procedure was developed and two variants
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of path relinking (PR) were explored in GPR CTDP, namely, static and dynamic PR. The

components of GPR CTDP were evaluated and compared extensively in instances that are

known to be very challenging from previous work.

Experimental results show that the proposed construction procedure is able to construct

very competitive solutions, mainly in terms of the dispersion criterion. The local search of

the GPR CTDP improves solutions in terms of both dispersion and balance requirements.

Both versions of PR improve the performance of the application of the construction and

local search mechanisms, confirming previous work on the combination of GRASP and PR.

In particular we found that with the dynamic PR variant better solutions can be obtained

for the TDP. This can be due to the fact that more solutions are subject to PR under

dynamic PR. A consequence of the latter feature of dynamic PR is that processing time is

larger for this strategy, although processing time lies in reasonable ranges. In any event the

proposed method signifcantly outperformed the best existing method for this problem.

We have identified several future work directions in the context of GPR CTDP. In par-

ticular we would like to explore other variants of PR that are known to be very effective,

for example, evolutionary PR. Further, we are interested in the development of an adaptive

filtering step that allows us to identify pairs of solutions that can be potentially improved

by applying PR. This is in addition to the rules used for updating the set of elite solutions.

We think that such a filtering strategy will have a very positive impact in the efficiency of

GPR CTDP. Since we found evidence that maintaining a set of elite solutions can be bene-

ficial for TDP, we would like to explore the use of other “population-based” metaheuristics

like scatter search.

It is important to note that the method developed in this work can also be extended

and applied to other districting problems under balancing and connectivity constraints. The

presence of the connectivity constraints make the path relinking process more challenging.

For instance, path relinking has been applied in a different manner in related partitioning

problems such as capacitated clustering [9]. In this particular work, we have successfully

exploited the problem structure by solving an associated Assignment Problem whose so-

lution will guide the relinking process in a more intelligent fashion. To the best of our

knowledge this PR idea is novel and worthwhile for further exploration in other districting

or clustering problems under connectivity constraints.
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