
Commercial Territory Design Planning with Realignment

and Disjoint Assignment Requirements

Roger Z. Rı́os-Mercado1

Graduate Program in Systems Engineering

Universidad Autónoma de Nuevo León, Mexico

E-mail: roger.rios@uanl.edu.mx

J. Fabián López-Pérez
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Abstract

A territory design problem motivated by a bottled beverage distribution company is

addressed. The problem consists of finding a partition of the entire set of city blocks or

basic units into a given number of territories subject to several planning criteria. Each

unit has three measurable activities associated to it, namely, number of customers, product

demand, and workload. The plan must satisfy planning criteria such as territory compact-

ness, territory balancing with respect to each of the block activity measures, and territory

connectivity, meaning there must exist a path between any pair of units in a territory totally

contained in it. In addition, there are some disjoint assignment requirements establishing

that some specified units must be assigned to different territories, and a similarity with

existing plan requirement. An optimal design is one that minimizes a measure of territory

dispersion and similarity with existing design. A mixed-integer linear programming model

is presented. This model is unique in the commercial territory design literature as it incor-

porates the disjoint assignment requirements and similarity with existing plan. Previous

methods developed for related commercial districting problems are not applicable. A so-

lution procedure based on an iterative cut generation strategy within a branch-and-bound

framework is proposed. The procedure aims at solving large-scale instances by incorporating

several algorithmic strategies. These strategies are evaluated and tested on some real-world

instances of 5000, and 10000 basic units. The empircal results show the effectiveness of the

proposed method in finding good quality solutions to these very large instances.

Keywords: Bottled beverage distribution; Commercial districting; Mixed-integer program-

ming model; Branch-and-bound method; Heuristics



1 Introduction

Commercial TDP may be viewed as the problem of grouping basic units (i.e. city blocks,

zip codes, or individual customers) into subsets according to specific planning criteria.

These subsets are known as territories. There are some other spatial constraints as part

of the geographic definition of the problem. Depending on the context of the problem,

the concept “territory design” may be used as equivalence to “districting”. Districting is a

truly multidisciplinary research which includes several fields like geography, political science,

public administration and operations research. However, all these problems have in common

the task of subdividing the region under planning into a number of territories, subject to

some capacity constraints. Indeed, territory design problems emerge from different type of

real world applications. We can mention pick up and delivery applications, waste collection,

school districting, sales workforce territory design and even some others related to geo-

political concerns. Most public services including hospitals, schools, postal delivery, etc., are

administered along territorial boundaries. We can mention either economic or demographic

issues that may be taken in consideration for setup a balanced territory.

The problem addressed in this work is motivated by a real-world application in the

bottled beverage distribution industry. As each territory is to be served by a single resource,

it makes sense to use some planning criteria to balance the quantity of customers, product

demand, and workload required by the dispatchers or truck drivers to cover each territory.

Moreover, it is often required to balance the demand among the territories in order to

delegate responsibility fairly. To this end, the firm wishes to partition the city area into

disjoint territories that are suitable for their commercial purposes. In particular, given

a set of city blocks or basic units (BUs), the firm wants to create a specific number of

territories according to some planning criteria such as (i) compactness: customers as close

to each other as possible, (ii) balancing with respect to each of the three activity measures

(number of customers, product demand, and workload), (iii) territory connectivity: such

that a truck assigned to a territory can deliver the goods without leaving the territory, (iv)

disjoint BU assignment: that avoids assigning a specific subset of customers to the same

territory, and (v) similarity with existing plan for a subset of BUs. In other words, the

main objective of TDP is to group the customers into manageable sized territories in order

to guarantee that BUs assigned to a territory are relatively close to each other and meeting

the aforementioned planning criteria.

From the technical perspective, this combinatorial optimization problem is NP-hard [21].

To the best of our knowledge, the TDP version studied in this problem has not been

tackled bafore. Related versions have been studied, though. State-of-the-art exact methods

can solve instances of some simplified models of around 100-150 BUs. Typical real-world
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instances are very large and intractable by exact methods. There has been some heuristic

appoaches for commercial TDPs. For instance, Rı́os-Mercado and Fernández [20] developed

a Reactive GRASP for a problem similar to ours; however, they measure territory dispersion

based on the objective function of a p-Center Problem, and they do not consider the disjoint

assignment constraints nor similarity with exiting plan. In our case, we are measuring

dispersion by means of a function from a p-Median Problem. This of course leads to a

different structure and make previuos approaches inapplicable. In addition, one of the main

goals of our work is to develop a tool that can be relatively easy to implement in commercial

off-the-shelve modeling languages and optimizers. This is of great value to the company.

Now, when this TDP is modeled as a mixed-integer programming problem, one of the

main difficulties is that of the exponential number of connectivity constraints. These simply

cannot be written out explicitly. On the other hand, this decision problem can be viewed as

a two-level decison problem where at the top level one has to decide where to place territory

centers (called location level) and at a second level one has to assign BUs to centers (called

allocation level). Location-allocation approaches to TDP have been applied before. In our

case, from a practical perspective there is a relatively fair knowledge of reasonable sites to

act as territory centers. Therefore, by assuming we have a good representation of these

centers and fix them in advance, we focus on the allocation problem.

In this paper, we present a heuristic solution approach based on the iterative resolution

of an associated mixed-integer programming model for the TDP aimed at obtaining high

quality solutions to large-scale instances. The algorithm consists of iteratively solving a

relaxed MILP model (relaxing the connectivity constraints), identifying violated constraints

by solving an easy separation problem, and adding these violated cuts to the model. The

procedure continues until no more connectivity constraints are needed. This is similar to

the exact approach developed by Salazar-Aguilar et al. [21], except that they apply it to

the complete model solving instances of up to 100-150 BUs. In our case, we apply this

technique to the relaxed model which is solved considerable faster allowing the solution

of larger instances. In addition, we have implemented some strategies that allow to fix

some binary variables in advance. The solution method and algorithmic strategies were

evaluated on a case study from industry. We found that this procedure is successful in

finding good quality solutions for large-scale instances (i.e., 5000 BUs) in reasonable times.

The results show the effectiveness of the proposed approach as it was able to obtain good

quality solutions in terms of compactness and balancing.

The paper is structured as follows. In Section 2 we describe the problem. In Section 3

we present an overview of the most relevant work on models and algorithms for territory

design. This is followed by Section 4, where the mathematical framework is presented

in detail. The proposed solution approach is fully described in Section 5. In Section 6
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we present the empirical evaluation of the proposed approach. We wrap up the paper in

Section 7, with some conclusions and final remarks.

2 Problem Description

The territory design problem can be defined as the process of grouping small geographic

areas, i.e. basic areas, into clusters or territories. called territories. As it is required, we

define that every basic area should be contained in exactly one territory. Moreover, we

require compactness and connectivity for the territories constructed. Indeed, connectivity

means that the basic areas that conform a territory have to be geographically connected. It

is easy to understand that in order to obtain contiguous territories, explicit neighborhood

information for the basic areas is required. Our problem definition includes three measurable

attributes or activities for each basic unit: (i) number of customers, (ii) product demand,

and (iii) workload. The activity measure of a territory is the total sum of the activity

measure of its indvividual basic units. As defined before, all territories should be balanced

with respect to the three activity measures. Indeed, this balancing procedure takes into

account each activity measure individually and simultaneously. It is interesting to point

out that only a few authors consider more than one criterion simultaneously for designing

balanced territories (e.g, Deckro [7], Zoltners [25], Zoltners and Sinha [27]).

The number of territories p to be constructed is fixed in advance. Our problem definition

includes some prescribed and/or forbidden territories. That means that from the beginning

we already have some basic areas which are required to be assigned to a specific territory.

Furthermore, there are other basic areas which are not allowed to be assigned to the same

territory. As can be verified, all these features could be easily extended to consider some

territories that may already exist at the beginning of the planning process. That means

that our method should be prepared to take the already existing territories into account

and then add additional basic areas to them. This modeling feature could be applied to

take into account geographical obstacles, e.g., rivers and mountains. We can generalize

that the territory design problem is common to all applications that operate with a group

of resources that need to be assigned in order to subdivide the work area into balanced

regions of responsibility. The problem can be summarized as follows: partition the set V

of basic areas into p territories which satisfy the specified planning criteria such as balance,

compactness, connectivity, disjoint assignment, and similarity with existing BU assignment.

The problem specifications can be summarized as follows:

• Given a set of BUs (city blocks) for delivering bottled beverages, we need to partition

this set into a given number p of disjoint territories.
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• Each BU must be fully assigned to a single territory. It is not allowed to split BUs.

That is, for each BU, the route that delivers product type 1, for instance, should be

the same as the one that is responsible for delivering product type 2.

• For each BU, the following information is known with certainty: location coordinates

(from the firm GIS), number of customers, product demand or sales volume measured

by the number of 12-bottle boxes, and workload measured in time (min).

• The firm wants to design territories that are balanced (similar in size) with respect

to each of the the three different activity measures in every BU. That is, the total

number of customers, product demand, and workload assigned to each territory should

be fairly distributed among the territories.

• Territories must be connected, that is, for any two BUs belonging to the same territory

there must be a path connecting them totally contained in the territory.

• There is some pre-defined pairs of BUs that are required to be assigned to the same

territory as much as possible. This is called similarity with existing plan. In a similar

fashion, there are some predefined pairs of BUs that must be assigned to different

territories. We called these disjoint assigment constraints.

• The goal of the design is to obtain territories that are as compact as possible, that

is, the BUs in a given territory must be as close to each other as possible, and whose

assigment includes as much as possible the similarity with existing subset of BUs.

3 Overview of Models and Solution Approaches

Depending on the context of the problem, Territory Design may be used as equivalent to

Districting which is a truly multidisciplinary research field which includes several areas

such as geography, political science, public administration, and operations research, as well.

We can generalize that TDP is common to all applications that operate within a group of

resources that need to be assigned in an optimal way in order to subdivide the work area

into balanced regions of responsibility. We can mention pick up and delivery applications,

waste collection, school districting, sales workforce territory design, and even some others

related to geopolitical concerns. Most public services including hospitals, schools, and so on,

are managed along territorial boundaries. We can mention either economic or demographic

issues that may be considered for setting-up a well balanced territory.

In Operations Research the first work about districting can be traced back to Forrest [12].

The recent paper by Kalcsics, Nickel, and Schröder [17] is an extensive survey on approaches

to TDP that gives an up to date state of the art and unifying approach to the topic. For
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a more extensive review related to sales districting see Zoltners and Sinha [28]. Another

recent survey on districting models is the one by Duque, Ramos, and Suriñach [9].

One of the first mathematical programming approaches was proposed by Hess et al. [15].

The approach they applied was to decompose the location and allocation procedures into two

independent phases. In the location phase the centers of the territories are chosen. For that

purpose they use a capacitated p-median facility location method. Afterwards, on the second

allocation phase the basic areas are assigned to these centers. Taking in mind the capacity

of the locations selected, the objective is to assign each basic area to a unique location

among the candidates, such that the demands of the basic areas are satisfied efficiently.

The balancing requirement was modeled as a side constraint. Compactness and contiguity

were tried to be obtained by minimizing the sum of distances between basic areas and

territory centers. Due to its combinatorial complexity, the computational implementation

of this model was limited.

In general for solving large scale problems, the allocation phase can be tackled by relax-

ing the integrality constraints on the assignment variables. However, this procedure usually

assigns portions of basic areas to more than one territory center which is not desired. Hess

and Samuels. [14] proposed a simple rule, which exclusively assigns the so called split areas

to the territory center which “owns” the largest share of the split area. Fleischmann and

Paraschis [10] report poor results with this heuristic. For about 50% of the resulting territo-

ries the activity measure of the territories was violated. Moreover, Zoltners and Sinha [27]

model the allocation problem assigning basic areas to the closest territory center. This

procedure yields compact and often connected territories, however, usually not well bal-

anced. There are other types of methods named as “Divisional”. The idea of these types of

methods is to iteratively partition the region under consideration into smaller and smaller

subproblems. The iteration stops if a level has been reached where each subproblem can be

solved.

Marlin [18] observes that using squared Euclidean instead of straight line distances

produces compact but disconnected territories. Hojati [16] shows that a good selection for

territory centers may impact on the resulting territories. We can mention another procedure

named as “Multi-kernel growth”. This method starts by selecting a certain number of basic

areas as “seeds” (centers) for the territories. Furthermore, one territory after the other

is extended at its boundary through successively adding yet unassigned, adjacent basic

areas to the territory. Here the procedure could check for minimal distance and/or better

balance. This procedure stops until the territory constructed satisfies the activity measures

constraints. See, e.g. Mehrotra, Johnson, and Nemhauser [19]. develop a column-generation

method for districting where a decision binary variable is associated to a complete design.

They are able to solve instances of relatively small- to medium-size.
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Algorithms based on simulated annealing are proposed by Browdy [4], and D’Amico et

al. [6]. Tabu search has been successfully applied in the recent papers of Bozkaya et al. [3]

and Blais et al. [2]. Genetic algorithms for solving territory design problems have been

introduced recently by Forman and Yue [11] and Bergey, Ragsadale, and Hoskote [1]. They

encode the solution as it used to solve Traveling Salesman Problems. The encoding is a

path representation through each basic area. As the basic areas are traversed, territories

are formed by this sequence. Haugland, Ho, and Laporte [13] work with stochastic data

which they argue is frequently present in territory design decisions, e.g., uncertain demand

for basic areas.

There have been some studies on territory realignment that consists of developing ter-

ritory designs subject to some constraints that attempt to keep an existing plan to the

best possible extent. This issue have been studied in the context of political districting [4],

school districting [5], and sales territory design [26]. In our problem, there is an interest on

having a similarity, at least partially, not with an entire existing design, but with a given

set of BUs. To the best of our knowledge, our model is the first to consider this issue within

commercial districting.

As far as commercial territory design is concerned, Vargas-Suarez, Rı́os-Mercado, and

López [24] address a related commercial TDP with a variable number of territories, using as

an objective a weighted function of the activity deviations from a given goal. No compact-

ness criterion was considered. A basic GRASP was developed and tested in a few instances

obtaining relatively good results. Rı́os-Mercado and Fernández [20] studied the problem by

considering compactness and contiguity but without joint assignment constrains. They used

the objective function of the p-Center Problem for modeling territory dispersion. In that

work, the authors proposed and developed a reactive GRASP algorithm for handling large

instances. They evaluated their algorithm on 500- and 1000-node instances with very good

results. More recently, Salazar-Aguilar et al. [21] develop an exact optimization scheme

for solving the TDP with double balancing and connectivity constraints. They used their

framework for solving models with both types of dispersion functions: the one based on

the p-Center Problem (pCP) and the one based on the p-Median Problem (pMP). They

observed that models with a pMP objective function were solved faster than the ones using

a pCP objective. Furthermore, they also observed that solutions obtained from the relax-

ation of the pMP based models had a very high degree of connectivity. Still, the largest

instance they could solve for the pMP based models was about 150 BUs. Our idea is to use

a similar framework than the one they used in their work, except that we will be focusing

in the allocation phase aiming at large instances. More recently, several approaches have

been developed for multiobjective versions of the commercial TDP, including both exact

optimization approaches [22] and metaheuristic methods [23].
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4 Modeling Framework

The problem is modeled by a graph G = (V,E), where a city block or basic unit (BU) i is

associated with a node, and an edge connecting nodes i and j exists in E if blocks i and j

are adjacent to each other. Now each node i ∈ V has several associated parameters such as

geographical coordinates (cxi , c
y
i ), and three measurable activities. Let wa

i be the value of

activity a ∈ A = {1, 2, 3} at node i, where a = 1, 2, and 3, referes to number of customers,

product demand, and workload, respectively. A territory is a subset of nodes Vk ⊂ V . The

number of territories is given by the parameter p. It is required that each node is assigned to

only one territory. Thus, the territories define a partition of V . One of the properties sought

in a solution is that the territories are balanced with respect to each of the activity measures.

Thus, let us define the size of territory Vk with respect to activity a as: wa(Vk) =
∑

i∈Vk
wa
i ,

a ∈ A. Due to the discrete structure of the problem and to the unique assignment constraint,

it is practically impossible to have perfectly balanced territories with respect to each activity

measure. To account for this, we measure the balance degree by computing the relative

deviation of each territory from its average size µa, given by µa = wa(V )/p, a ∈ A. Another

important feature is that all of the nodes assigned to each territory are connected by a path

contained totally within the territory. In other words, each of the territories Vk must induce

a connected subgraph of G. As mentioned before, due to strategic or political reasons,

there are some BUs that are required to be assigned to different territories. Let Hd be

set that contains all pairs of units that must be assigned to different territories, that is,

Hd = {(j1, j2) | j1 and j2 must be assigned to different territories}. This set will be used

to represent these disjoint assignment constraints.

The company is also interested in keeping certain similarity with a subset of BUs from

an existing plan. The concept of territory realignment [4, 5, 26] considers somehow either

as a constraint or a term in the objective function a measure of dissimilarity with respect

to previous plan. In this particular case, the company wishes to keep a similarity not with

an entire existing design but with a subset of BUs. Let F i denote the pre-specified subset

of BUs associated to center i from an existing plan. Then the firm wishes that the new

plan assigns to the new territory with center in i a significant proportion of the BUs from

set F i taking into account of course the corresponding distance measure. For instance, if

two given units, say i and j belong to F k, preference for assigning either of this to the new

territory with center in k should be given to the unit nearest to k. This may be achieved

by introducing a penalty term in the objective function qij. In addition, it is required

that at least certain number of these BUs meet this assignment. This can be achieved by

introducing a corresponding constraint. These can be seen in the model below.

Finally, industry demands that in each of the territories, blocks must be relatively close
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to each other. One way to achieve this is for each territory to select an appropriate node

to be its center, and then to define a distance measure such as D =
∑p

k=1

∑

j∈Vk
dc(k),j

where c(k) denotes the index of the center of territory k so dc(k),j represents the Euclidean

distance from node j to center of territory k. So maximizing compactness is equivalent

to minimizing this dispersion function D. All parameters are assumed to be known with

certainty. The problem can be thus described as finding a p-partition of V satisfying the

specified planning criteria of balancing, connectivity, and disjoint assigment, that minimizes

the above distance-based dispersion measure and partial similarity with existing set of BUs.

4.1 MILP Formulation

Indices and sets

n number of blocks (BUs)

p number of territories

i, j block indices; i, j ∈ V = {1, 2, . . . , n}

a activity index; a ∈ A = {1, 2, 3}

k territory index; k ∈ K = {1, 2, . . . , p}

E edge set of adjacent blocks

Hd set of pairs of BUs that must be assigned to different territories

F i set of BUs that are assigned to territory with center in i under a current design

N i (= {j ∈ V : (i, j) ∈ E ∨ (j, i) ∈ E}) set of nodes which are adjacent to node i;

i ∈ V

Parameters

wa
i value of activity a in node i; i ∈ V , a ∈ A

dij Euclidean distance between i and j; i, j ∈ V

qij Weight of assigning unit j to center i equal to 0.5dij if j ∈ F i; 0, otherwise; i, j ∈ V

τa relative tolerance with respect to activity a; a ∈ A, τa ∈ [0, 1]

Computed parameters

wa(Xk) (=
∑

j∈Xk
wa
j ) size of set Xk with respect to a; a ∈ A, Xk ⊂ V

µa (= wa(V )/p) average (target) value of activity a; a ∈ A

Decision variables
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In the original problem we are not concerned with territory centers; however, we

introduce binary variables based on centers for modeling the dispersion measure.

xij =







1 if unit j is assigned to territory with center in i; i, j ∈ V

0 otherwise

Note that xii = 1 implies that unit i is a territory center.

Model

(TDP) min
∑

i,j∈V

dijxij +
∑

i∈V

j∈Fi

qij(1− xij) = f(x) (1)

subject to
∑

i∈V

xij = 1 j ∈ V (2)

∑

i∈V

xii = p (3)

∑

j∈V

wa
jxij ≤ (1 + τa)µaxii i ∈ V, a ∈ A (4)

∑

j∈V

wa
jxij ≥ (1− τa)µaxii i ∈ V, a ∈ A (5)

∑

j∈∪v∈SNv\S

xij −
∑

j∈S

xij ≥ 1− |S| i ∈ V

S ⊂ V \ (N i ∪ {i}) (6)

xij + xih ≤ 1 i ∈ V, (j, h) ∈ Hd (7)

∑

i∈V

∑

j∈F i

xij ≥ α| ∪i F
i| (8)

xij ∈ {0, 1} i, j ∈ V (9)

Objective (1) incorporates a term that measures territory dispersion and a term that favors

the assignment of a subset of units from existing plan. Constraints (2) guarantee that each

node j is assigned to a territory. Constraint (3) sets the number of territories. Constraints

(4)-(5) represent the territory balance with respect to each activity measure as it establishes

that the size of each territory must lie within a range (measured by tolerance parameter τa)

around its average size. In particular, the upper bound balancing constraints (4) also assure

that if no center is placed at i, no customer can be assigned to it. Constraints (6) guarantee

the connectivity of the territories. These constraints, proposed by Drexl and Haase [8],

are similar to the constraints used in routing problems to guarantee the connectivity of the

routes. Note that, as usual, there is an exponential number of such constraints. The disjoint

assignment is represented by constraints (7). Constraints (8) assure that at least a minimum

number of BUs from existing plan is assigned, where α is a user-specified parameter usually

set to 0.10 to 0.20 in practice.
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Computational complexity: This TDP is NP-hard. It can be reduced from the commercial

TDP as follows. It is clear that a given solution can be checked for feasibility in polinomial

time. Now, if we consider a special case where F = ∅, for all i ∈ V , and Hd = ∅, we are

left with the commercial TDP which is known to be NP-hard [21]. It follows our TDP is

NP-hard too.

Allocation Model

Now, we have attempted to solve Model A with a branch-and-bound method with very

limited success. While instances of up to 150-nodes are somewhat tractable, it is no longer

possible to solve larger instances within a few hours of CPU. The model has n2 binary

variables and a very weak LP relaxation.

The problem can be decomposed into a two-stage hierarchy problem. One can see a location

phase, which has to do with placing the territory centers, and then an allocation phase, which

has to do with assigning nodes to centers. Since our aim is to provide solutions to very large

instances (in the order of 2,000-5,000 nodes), we make the assumption that the set of centers

is given and focus our effort in the allocation phase. Let Vc be the set of centers. This set

can be approximately obtained by means of previous knowldege, a heuristic, or a truncated

branch and bound. The allocation phase model becomes.

(AM) min
∑

i∈Vc
j∈V

dijxij +
∑

i∈Vc

j∈Fi

qij(1− xij) = f(x) (10)

subject to
∑

i∈Vc

xij = 1 j ∈ V (11)

∑

j∈V

wa
jxij ≤ (1 + τa)µa i ∈ Vc, a ∈ A (12)

∑

j∈V

wa
jxij ≥ (1− τa)µa i ∈ Vc, a ∈ A (13)

∑

j∈∪v∈SNv\S

xij −
∑

j∈S

xij ≥ 1− |S| i ∈ Vc

S ⊂ V \ (N i ∪ {i}) (14)

xij + xih ≤ 1 i ∈ Vc, (j, h) ∈ Hd (15)

∑

i∈V

∑

j∈F i

xij ≥ α| ∪i F
i| (16)

xij ∈ {0, 1} i ∈ Vc, j ∈ V (17)

Model AM has pn binary variables. In typical location-allocation methods (Hess et al. [15]

Kalcsics, Nickel and Schröder [17]), the allocation model to be addressed has single balancing

constraints, no contiguity constraints and no disjoint assignment constraints. The way this
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allocation problem is solved is by replacing the single balancing constraints by a single

equation (i.e., making the tolerance parameter equal to zero) and relaxing the integrality

restriction of the binary variables. The result is a transportation problem that is solved

relatively efficiently. In this solution, which of course has perfect balance, there might

fractional variables, i.e, a variable may be partially assigned to two or more centers. This

new problem is named the split reslution problem and need to be solved according to certain

criteria depending on the specific context. After the split resolution has been solved, the

solution obtained may no longer necesarily satisfy the balancing constraints.

In our allocation model, we must deal simultaneously with multiple balancing con-

straints, connectivity constraints, and disjoint assignment constarints, which makes typical

location-allocation procedures not applicable. So instead, our goal is to deal directly with

the allocation model by developing several strategies within a branch-and-bound frame-

work that would allow us to solve relatively large instances. By relaxing the connectivity

constraints (14) from Model AM, we are left with the following relaxed model.

(AMR) min
∑

i∈Vc
j∈V

dijxij +
∑

i∈Vc

j∈Fi

qij(1− xij) = f(x) (18)

subject to
∑

i∈Vc

xij = 1 j ∈ V (19)

∑

j∈V

wa
jxij ≤ (1 + τa)µa i ∈ Vc, a ∈ A (20)

∑

j∈V

wa
jxij ≥ (1− τa)µa i ∈ Vc, a ∈ A (21)

xij + xih ≤ 1 i ∈ Vc, (j, h) ∈ Hd (22)

∑

i∈V

∑

j∈F i

xij ≥ α| ∪i F
i| (23)

xij ∈ {0, 1} i ∈ Vc, j ∈ V (24)

In the following section we describe in detail the solution procedure.

5 Solution Approach

In this section we present a solution strategy for solving the Allocation Model (AM) given

by (10)-(17). One main difficulty in the exponential number of connectivity constraints (14),

which implies it is practically impossible to write them out explictly. Therefore, we consider

instead the relaxation AMR of AM that consists of relaxing these connectivity constraints.

The basic idea of our method is to solve model AMR and then check if the solutions obtained

satisfy the connectivity constraints. To determine the violated connectivity constraints, a
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relatively easy separation problem is solved, and these cuts are added to model AMR.

This procedure iterates until no additional connectivity constraints are found and therefore

an optimal solution to model AM is obtained. This is guaranteed because the separation

problem for identifying violated cuts is solved exactly. A general overview of the method is

depicted in Figure 1.

function method( )

Input: An instance of the TDP problem.

Output: A feasible solution X.

1 Solve model AMR and obtain solution X;

2 Identify a set C of violated constraints of model AM for solution X;

3 If |C| > 0, add these constraints to model AMR and go to Step 1;

4 Return X;

end method

Figure 1: A pseudocode of solution procedure.

In Step 1, a branch-and-bound method is used (since we are not relaxing the integrality

requirements of the binary variables). This approach is motivated by the fact that model

AMR can be solved optimally by current branch-and-bound methods relatively fast for

relatively large instances. For instance, 2000-node instances can be solved in a few seconds

of CPU time in a PC. In addition, identifying and generating the violated cuts in Step 2

can also be done in polynomial time, so the overall procedure may be suitable as long as the

number of iterations needed to reach optimality is not too large. The algorithm delivers an

optimal solution to model AM. Several issues are of particular interest. We would like to

investigate the empirical behavior of the method in terms of the number of iterations/cuts

required to reach optimality. In addition, the fact we are assuming a fixed set of centers can

be further exploited to develop several algorithmic strategies like variable fixing in Step 1.

These are further ellaborated below.

Algorithmic strategies for speeding up convergence

• Variable fixing: Eliminating assignments of relatively far units. We proceed now to

reduce the complexity of our problem by eliminating some unncessary binary variables

xij . This idea is based upon the fact that in an optimal solution, from a practical

standpoint it makes no sense to assign a BU that is very far away from a given territory

center. Making this assignment will have a very negative impact in the objective

function. It is clear that theoretically one can build a pathological instance where this

might be the case; however, given the particular data distribution for this problem this
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never happens in practice. Thus, for each BU i we determine a reduced feasible subset

Ri, such that we fix xij = 0 for all j ∈ R̄i. For each i we have reduced the number of

binary variables from n to |Ri|. This is done as follows. First, for each center i ∈ Vc

we sort all the remaining nodes by nondecreasing order of dij . Let (j) denote the

j-th nearest BU to i breaking ties arbitrarilyy, that is di(j) denote the distance from

BU i to the j-th nearest BU. Then, given a user specified parameter β ∈ (0,∞) the

set Ri is given by Ri = {(j) ∈ V :
∑j

k=1w
a
i(j) ≤ βµa for at least one a ∈ A}. That

is Ri is formed by the nearest BUs to i such that their accumulated sum of weights

with respect to all activities do not exceed this threshold for at least one activity. A

very large value of β implies Ri = V so no reduction takes place. As β gets smaller,

the number of variables fixed at 0 grows. A relatively small value of β means only a

few binary variables will be considered (as many will be fixed at 0) overcompromising

the optimality of the solution. An issue to investigate is precisely the sensibility and

trade-off between solution quality and computing time as a function of β.

• Variable fixing: Preassigning relatively close units. Applying a similar rationale as in

the previous point, it is possible to find a set of relative close units to a given center

i such that in any optimal solution, all the units belonging to this set are always

assigned to i. Again, while one can build an example where this might not happen, in

practice we always see a considerable portion of relative close BUs being assigned to

a center i. To this end, we determine a set Ki such that xij = 1 for all j ∈ Ki. Given

a user-specified parameter γ the set Ki is given by Ki = {(j) ∈ V :
∑j

k=1w
a
i(j) ≤

γµa for all a ∈ A}. That is Ki is formed by the nearest BUs to i such that their

accumulated sum of weights with respect to all activities do not exceed this threshold

for all activities. Here a value of γ = 0 implies Ki = ∅ and no reduction is applied.

The larger γ the larger the numer of binary variables will be fixed at 1. So again, it is

important to investigate the trade-off between solution quality and time as a function

of γ.

• Strengthening of connectivity constraints. One way to strength the formulation of the

relaxed model is by introducing the following constraints

xij ≤
∑

q∈Nj

xiq, i ∈ Vc, j ∈ V (25)

These valid inequalities can be interpreted as follows. If BU j is assigned to territory

with center in i at least one of its neighbors (q ∈ N j) needs to be assigned to the same

territory as that of BU j. These constraints avoid territories with just a single BU

unconnected. The motivation for this stems from the fact that previous research [21]

has shown that optimal solutions of the relaxed model contain most of the unconnected
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subsets S with cardinality equal to 1, that is |S| = 1. As can be seen, there is a

polynomial number of these new constraints (25), so these can be easily added to the

model without imposing a considerable computational burden. Of course, Step 2 of

the algorithm still checks for violated constraints with subsets of cardinality |S| > 1.

• Finding violated inequalities. Step 2 of the method can be efficiently done in polyno-

mial time. Let X = (X1, . . . ,Xp) be a design found in Step 1. For each territory k,

there is associated subgraph induced by Xk given by Gk(Xk, E(Xk)). It is well known

that finding all connected components of a graph can be donde by breadth first search

(BFS) in O(|E(Xk)|). So we apply BFS to graph Gk and find its r connected com-

ponents (G1
k, . . . , G

r
k), with corresponding node sets (X1

k , . . . ,X
r
k). It is clear that

r = 1 implies Gk is connected; otherwise let us assume without loss of generality that

the BU center of Xk, named c(k) belongs to G1
k. Clearly, each of remaining subsets

X2
k , . . . ,X

r
k is disconnected from the center. Each of these corresponds to a violated

constraint (14) where set Xq
k plays the role of set S in (14). By repeating this proce-

dure for every set Xk one can efficiently solve this separation problem optimally and

add all found violated cuts to set C in Step 3.

• Forced connectivity strategy for faster convergence. Step 2 is key for the effciency of the

proposed methods. It has been observed that the number of iterations needed to find

a connected solution in instances of up to 5000 BUs is very reasonable. However, for

larger instances up to 10,000 BUs the computational effort grows considerable. The

main cause for this is that it takes a significant large amount of iterations to converge.

This stems from the fact the combinatorial nature of all possible unconnected subsets

make the algorithm find and add a large number of different cuts. Therefore, we have

implemented a heuristic strategy that can be employed as part of the method when

faced with large-scale instances.

To motivate this strategy, it is important to note that if we keep track of a single

BU throughout the execution of the algorithm, it can happen that this node may or

may not belong to an unconnected subset in the following iteration. In many cases,

an oscillating behavior between being part of an unconnected subset and being part

of the connected territory is followed by many of these nodes. Therefore to avoid

this nasty behavior, instead of solving the AMR model we add a penalty term to the

objective function that would favor the assignment of BUs that are already found to

belong to a connected territory. The basic idea of this strategy is to take advantage of

the connectivity information from a given iteration to attempt to avoid the oscillating

behavior expecting to reduce at every iteration the number of BUs that belong to

unconnnected subsets.
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Let us define Zt as the number of BUs that are disconnected at iteration t. This

parameter is dynamic because the number of disconnected BUs changes at each iter-

ation. In fact, it is expected that this parameter Zt will tend to zero as the number

of iterations grow. Let U t
i the set of BUs that are connected to territory with center

in i at iteration t. Then we add a term to the objective function (18) as follows.

Minimize g(x) = f(x) + δ
∑

i∈Vc

∑

j∈U t
i

rij(1− xij)/(Zt + 1) (26)

In this added term, a penalty rij = d̄ − dij , where dmax = maxij{dij} implies closer

assignments are preferred, dividing by Zt + 1 avoids division by zero and makes the

preference fo the assignemt of already connected units stronger as the number of

iterations grow, and parameter δ allows the user to control the weight of this added

term with respect to the original objective function. Naturally, setting δ = 0 implies

deactivation of this strategy.

6 Empirical Evaluation

We implement our model on X-PRESS MIP Solver from FICOTM (Fair Isaac, Dash Op-

timization before). The method was executed on a PC with 2 Intel Cores at 1.4GHz and

Win X64 operating system. For evaluation the proposed method, we use some real-world

instances of 2000, 5000 and 1000 BUs and 50 territories. In all experiments we set τa = 0.10

for all a ∈ A and a relative optimality gap of 0.1 % as stopping criterion. These instances

are available at [ PEDIR A FABIAN ].

Table 1 shows the effect on problem reduction by using different values of parameters β

and γ, discussed in Section 5. The first two column reflect the size of the original instance in

terms of its number of BUs, number of territories and number of binary variables. The third

and fourth column display values of parameters β and γ, respectively. The fifth column

(RNBV) displays the number of binary variables after the reduction, and the last column

the relative reduction with respect to the original size given by 100 (NBV - RNBV)/NBV. It

can be seen how the number of binary variables in the reduced problem grows as β increases

and γ decreases. Note that the case β = 50.0 and γ = 0.0 implies no reduction is applied.

In summary, the strategy we adopt is to decrease the feasible solution space to deal with a

reduced problem that can be solved more efficiently without a significant loss on optimality.

This trade-off on optimality is evaluated next.

We now apply the proposed method to instances of 2000 and 5000 BUs with 50 terri-

tories. In this experiment we set δ = 0.0, that is no forced connectivity strategy applied.

The goal of this experiment is to assess the trade-off between solution quality and execution

time for different values of β and γ.
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Table 1: Problem reduction effect

Size (n, p) NBV (np) β γ RNBV Reduction (%)

(5000, 50) 250,000 3.0 0.50 7,191 97.1

3.0 0.25 10,501 95.8

3.0 0.10 12,428 95.0

3.0 0.00 13,542 94.6

4.0 0.50 9,702 96.1

4.0 0.25 14,612 94.1

4.0 0.10 17,545 93.0

4.0 0.00 19,400 92.2

8.0 0.50 20,484 91.8

8.0 0.25 30,365 87.8

8.0 0.10 36,253 85.5

8.0 0.00 39,755 84.1

50.0 0.00 250,000 0.0

(10000, 50) 500,000 3.0 0.50 14,615 97.1

3.0 0.25 21,227 95.8

3.0 0.10 25,027 95.0

3.0 0.00 30,202 94.0

4.0 0.50 19,968 96.0

4.0 0.25 29,609 94.1

4.0 0.10 35,352 92.9

4.0 0.00 39,244 92.1

8.0 0.50 41,531 91.7

8.0 0.25 60,810 87.8

8.0 0.10 72,214 85.5

8.0 0.00 79,693 84.1

50.0 0.00 500,000 0.0

Table 2 and displays the results for the 5000-BU instance. The first two columns display

the values of β and γ used. The third and fourth column show the number of iterations

(NI) and CPU time (sec.). The fifth column shows the optimal solution (OptSol) and the

last column displays the relative optimality gap between this solution and the best known

solution (corresponding to the row β = 8.0 and γ = 0.0).

As can be seen the quality of the results is very good reporting gaps of less than 0.02 %

in less than 6 minutes in all cases.

In the following experiment we assess the effect of implementing the forced connectivity

strategy for the solution of large instances. So we apply the method for different values of

the parameters, to an instance with 10000 BUs and 50 territories, fixiing β = 3.0. Table 3

and displays the results for the 10000-BU instance. As can be seen the introduction of

this strategy speeds up the algorithm considerably. The quality of the solution is not over-
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Table 2: Results for instance (5000, 50).

β γ NI Time OptSol Gap (%)

3.0 0.50 25 58 62.5027 0.011

0.25 38 118 62.5056 0.016

0.10 46 158 62.4972 0.003

0.00 50 186 62.4978 0.004

4.0 0.50 44 146 62.5011 0.009

0.25 60 262 62.4986 0.005

0.10 48 223 62.4972 0.003

0.00 54 264 62.4957 0.000

8.0 0.50 48 330 62.5101 0.023

0.25 63 457 62.5002 0.007

0.10 37 305 62.4976 0.003

0.00 61 576 62.4956 0.000

compromised. In fact, sometimes a better solution was found in less computational effort.

For instance, for the (γ = 0) case it was observed how the soution improved from 124.150

to 124.142 when switching from δ = 0 (no forced-connectivit strategy in action) to δ = 1.0.

This better solution was obtained in almost 50 % of the time employed by the δ = 0 case. As

we penalize more, moving from δ = 1.0 to δ = 5.0 we can see that the solution deteriorates

sligthly (less than 0.01 %) but it is 90% faster. A similar behavior is observed when we look

at the γ = 0.1 and γ = 0.25 cases separately. Here, the best solution 124.122 is obtained

when activating the forced-connectivity strategy with δ = 1.0. Finally, in the γ = 0.50 case,

it was not even possible to find a feasible solution when δ = 0, so activating the strategy

with δ ≥ 1.0 helped obtain feasible designs. Overall the best solution was obtained when

using δ = 1.0 and γ = 0.1 or 0.25.

In order to show the behavior of the solution method in terms of solution quality versus

computational time we plot the following measures: (i) number of unconnected BUs, (ii)

number of unconnected territories, (iii) number of cuts added, and (iv) objective function

value as a function of the iterations for several configurations of the parameters. Figures 2

to 5 display these results for (β, γ, δ) values of (3.0, 0.25, 50.0), (3.0, 0.25, 35.0), (3.0, 0.25,

25.0), and (3.0, 0.10, 7.0), respectively.

As it can be verified in Figures 2 and 3, the first two runs with a very high value

on parameter δ have a similar behavior. The number of unconnected BUs, unconnected

territories, and cuts added to the model decrease with the number of iterations. Something

similar happens with the objective function value but in the opposite direction. On the

other two cases (Figures 4 and 5) with a lower value of parameter δ, we have a very

different behavior. Particularly, the objective function value moves slowly as the time
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Table 3: Results for instance (10000, 50).

β γ δ NI Time OptSol Gap (%)

3.0 0.50 50.0 305 947 124.732 0.49

0.50 10.0 76 243 124.443 0.26

0.50 5.0 97 404 124.373 0.20

0.50 1.0 120 1062 124.296 0.14

0.50 0.0 (*) (*) (*) xx

0.25 50.0 139 139 124.688 0.46

0.25 10.0 114 114 124.248 0.10

0.25 5.0 233 233 124.185 0.05

0.25 1.0 1965 1965 124.122 0.00

0.25 0.0 7442 7442 124.185 0.05

0.10 50.0 46 161 124.670 0.44

0.10 10.0 33 110 124.225 0.08

0.10 5.0 47 203 124.171 0.04

0.10 1.0 106 1026 124.122 0.00

0.10 0.0 140 4132 124.168 0.04

0.00 50.0 87 257 124.467 0.28

0.00 10.0 41 145 124.244 0.10

0.00 5.0 52 193 124.165 0.03

0.00 1.0 136 1516 124.142 0.02

0.00 0.0 94 3040 124.150 0.02

grows. Indeed, this is the reason why lower objective function values are obtained. Either

way, it is important to point out that our methodology presents a MIP model that ensures

integral assignments at each iteration. Thus, it is interesting to verify how rapidly our

heuristic implemented on the allocation MIP model can evolve and converge on solutions

with very high degree of connectivity.
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Figure 2: Algorithm performance for a (10000,50) instance with β = 3.0, γ = 0.25, δ = 50.0.

Figure 3: Algorithm performance for a (10000,50) instance with β = 3.0, γ = 0.25, δ = 35.0.
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Figure 4: Algorithm performance for a (10000,50) instance with β = 3.0, γ = 0.25, δ = 25.0.

Figure 5: Algorithm performance for a (10000,50) instance with β = 3.0, γ = 0.10, δ = 7.0.
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We now evaluate the method efficiency when applied to the solution of a 10000-BU

instance with a smaller territory balance tolerance. For this case, we set τa = 0.05. This

new value for parameter significantly lower than the previous one of 0.10. Thus, we have a

very large scale instance with a very narrow tolerance for territory balancing. This makes

the problem extraordinarily difficult to solve. Our results are presented on Table 4

Table 4: Results for instance (10000, 50) with τa = 0.05.

β γ δ NI Time OptSol Gap (%)

3.0 0.25 15.0 55 424 127.633 0.079

0.25 10.0 54 689 127.770 0.187

0.25 7.0 45 800 127.595 0.049

0.25 5.0 35 615 127.587 0.043

0.25 3.0 54 874 127.626 0.073

0.10 15.0 478 1697 127.929 0.311

0.10 10.0 154 812 127.698 0.130

0.10 7.0 100 545 127.626 0.074

0.10 5.0 61 694 127.532 0.000

0.10 3.0 75 2261 127.543 0.009

As can be seen, even in this more difficult case it was possible to obtain feasible design

in very competitive times. The best solution was found under the γ = 5.0 and δ = 5.0

settings showing the success of the introduced strategies for speeding up convergence, and

improving solution quality.

Finally, Figure 6 displays the graphical solution of a 5000-BU, 50-territory instance under

tolerances of 0.05. This is a feasible solution satsifying all of the planning constraints. The

legend besides the graph indicates teh number of BUs contained in each territory.

7 Conclusions

In this paper we have addressed a commercial territory design problem motivated by a real-

world aplication in the bottled beverage distribution industry. Planning criteria includes

territory compactness, territory balancing with respect to three activity measures, and

territory connectivity. In addition, our model incorporates new issues such as disjoint

assignment requirements and partial similarity with existing plan. We present a new MILP

model in literature that consideres all these issues. A solution framework based on a cut

generation strategy within a branch-and-bound algorithm for solving the allocation stage

for a fixed set of territory centers is developed. This method is intended for solving large-

scale instances. The method is enhanced through several algrithmic strategies that help

reduce the size of the problem and search space. One added value is a very effective tool
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Figure 6: Visual results of an optimal territory design in Monterrey with 5000 BUs.

can be relatively easily implemented with off-the-self optimization modeling software such

as X-PRESS, GAMS, AMPL. The method and its algorithmic strategies were assessed on

large-scale real-world instances. Previous work on heuristics for some related commercual

territory design models had reported empirical evidence on instances of up to 2000 BUs

in some simplified models. We found the proposed method very successfull on handling

instance of 5000-, and 10000-BUs, obtaining solutions of very good quality.

There are naturally opportunities for future research. For instance, in this work we

focused on solving the allocation problem; however, the results obtained in our research

can be used to extend this work to a location-allocation approach where the centers are

dynamically updated in an iterative way. This has been done in other similar simpler models.

Deriving models and methods for problems with both territory design and routing decisions

simultaneously is another very challenging research area. In fact, when one looks at the

districting literature in general, one can barely find a very few applications addressing this

issue. Finally, in this work we are assuming a deterministic model; therefore the introduction

of stochastic models to deal with some parameters such as the product demand becomes a

natural extension worthile exploring.
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