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Abstract

A commercial territory design problem with compactness maximization criterion subject to territory bal-
ancing and connectivity is addressed. Four new heuristics based on Greedy Randomized Adaptive Search
Procedures within a location-allocation scheme for this NP-hard combinatorial optimization problem are
proposed. The first three (named GRLH1, GRLH2, and GRDL) build the territories simultaneously. Their
construction phase consists of two parts: a location phase wherep territory seeds are identified, and an
allocation phase where the remaining basic units are iteratively assigned to a territory. In contrast, the
other heuristic (named SLA) builds the territories one at a time. Empirical results reveals that GRLH1
and GRLH2 find near-optimal or optimal solutions to relatively small instances, where exact solutions
could be found. The proposed procedures are relatively fast. We carried out a comparison between the
proposed heuristic procedures and the existing method in larger instances. It was observed the proposed
heuristic GRLH1 produced competitive results with respect to the existing approach.
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J. Cano-Belmán et al.

1. Introduction

Territory design consists of grouping small geo-
graphic areas orbasic units(BUs) into larger geo-
graphic clusters calledterritories or zonesin such a
way that the latter are acceptable according to rel-
evant criteria. These criteria can be economically
motivated or have a demographic background. Fur-
thermore, spatial constraints like compactness and
contiguity are often required.

The problem has applications in many fields
such as political districting (Hess et al.10), district-
ing for schools and social facilities (Ferland and
Guénette8), sales territory design (Zoltners and
Sinha 16), territory design for winter service and
solid waste collection (Muyldermans et al.12), ter-
ritory design for emergency services (Bertolazzi,
Bianco, and Ricciardelli1), delivery zones for dis-
tribution centers (Haugland, Ho, and Laporte9), or
sales force deployment (Drexl and Haase3). Ex-
cellent and complete surveys on territory design
problems can be found in Kalcsics, Nickel, and
Schröder11, Duque, Ramos, and Suriñach4, and
Zoltners and Sinha16).

Firms with sales forces normally require to di-
vide the market into responsibility areas. Thus, ter-
ritory design must be done in order to obtain service
areas or to locate technical facilities. Several crite-
ria such as organizational criteria (number of territo-
ries, number of BUs, exclusive assignment, location
of sales representatives), geographical criteria (con-
tiguity, accessibility, compactness), and activity re-
lated criteria (balancing, maximizing profit) are of-
ten used in territory design.

We address the version of the territory design
problem with the following features. Each BU has
associated two attributes or activities: number of
customers and sales volume. Each BU must be as-
signed to only one territory. The size of each terri-
tory must be balanced with respect to each activity.
Given that it is not easy to find a perfectly balanced
solution, the balancing requirement is handled by a
user-specified tolerance that allows a relative devia-
tion from the target territory size. The requirement
of contiguity is also taken into account, which means
that, each pair of BUs belonging to the same terri-
tory must be joined by a path contained completely

in that territory. In order to get compact territories a
dispersion measure based on the objective function
of the well-knownp-center problem is minimized.

This problem was introduced by Rı́os-Mercado
and Fernández13. In their work (RF for short), they
consider three activity measures (number of cus-
tomers, sales volume, and workload). They pro-
pose a GRASP approach which incorporates reac-
tivity and filtering. During the construction phase
the territories are created one by one, in such a way
that a territory is started with a BU and iteratively
the assignment of BUs takes place. When the ter-
ritory size reaches its upper bound limit it is closed
and a new territory is started. The creation of territo-
ries in this manner does not necessarily produce the
number of territories required, thus an adjustment
phase is then carried out. Finally, an improvement
phase (post-processing) is performed. They consider
a neighborhood that consists of moving a specific
BU from its current territory to an adjacent territory.
They used a weighted merit function with two com-
ponents, the dispersion measure and violation of the
balancing constraints. An important limitation of
this approach is the high level of infeasibility with
respect to the balancing constraints reached in the
construction phase. A direct consequence of this is
that the local search spends a tremendous amount of
effort trying to reach feasibility.

In this work, we propose four different location-
allocation heuristics. Three of them are construc-
tive in nature and the other is destructive. Three
of our proposed heuristics (called GRLH1, GRLH2,
and GRDL) seek that all territories are growing uni-
formly. Their location-allocation scheme consist of
two phases: a location phase whose role is to locate
p BUs that would serve as initial seeds for the terri-
tory creation, and an allocation phase where the re-
maining BUs are assigned to these territories. Thus,
it is expected that this simultaneous creation ofp
territories yields lower levels of infeasibility with
respect to the balancing constraints than those ob-
tained in previous work13, where the territories are
built one by one. A fourth heuristic called SLA
builds the territories one at a time, in this heuristic
an active territory is “closed” when its size reaches
the upper limit allowed for any activity (number of
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New Heuristics for Commercial Territory Design

customers or sales volume).
A detailed design of experiments following the

guidelines of Coy et al.2 was first carried out for
parameter fine-tunning. Afterwards, the procedures
were evaluated over a data set of randomly generated
instances. Empirical results reveals that GRLH1 and
GRLH2 find near optimal or optimal solutions to rel-
atively small instances, where exact solutions could
be found. The proposed procedures are relatively
fast. We carried out a comparison between the pro-
posed heuristic procedures and the existing method
in larger instances. It was observed that GRLH1 pro-
duced very good competitive results with respect to
the existing approach.

This paper is organized as follows. In Section 2 a
detailed description and formulation of the problem
is given. In Section 3, the proposed heuristics are
described in detail. In Section 4 the empirical work
is presented. Conclusions of this work are drawn in
Section 5.

2. Problem Description

Let G= (V,E) be a planar undirected graph, where
V is the set of nodes (blocks or basic units), andE
the set of edges. For this particular application an
edge between nodesi and j exists if basic unitsi and
j are adjacent. Each basic unit (BU)i has associated
parameters such as coordinates(xi ,yi), and activity
valueswa

i , a∈ {1,2}. In our problem such activities
correspond to the number of customers (a=1) and
product demand (a=2). The number of territories
is fixed and represented byp. A territory is a sub-
set of nodesXk ⊂V (k = 1, . . . , p). In addition, the
problem solution requires that each BU is assigned
only to one territory. Hence, territories are defined
by a partition ofV. Furthermore, the territories must
be balanced according to the node activity measures
(number of customers and sales volume). The size
of a territoryXk with respect to activitya is defined
as follows:

wa(Xk) = ∑
i∈Xk

wa
i (1)

It is difficult to obtain a perfectly balanced solu-
tion due to the discrete problem structure and the ex-
clusive assignment requirement. One way to repre-

sent the balance requirement is by introducing a con-
straint that allows a relative deviation from the tar-
get activity value. It is given by a tolerance parame-
ter τa, specified by the user. The target average size
is computed simply asµa = wa(V)/p. The balanc-
ing constraint becomeswa(Xk) ∈ [(1− τa)µa,(1+
τa)µa]. The contiguity requirement means that for
any pair of BUsi and j in a given territory, there
must exist ani- j path totally contained in the ter-
ritory. In other words, territoryXk must induce a
connected subgraph ofG. A rigorous definition of
compactness does not exist; but a territory is said
to be compact if it is somewhat round-shaped and
undistorted. Thus, a dispersion function must give a
measure of how far a BU is from each other in each
territory. One way to measure the dispersion of a ter-
ritory Xk is using ap-center objective function. This
measure computes the distance from the farthest BU
to its corresponding territory center (given byc(k)),
k= 1, . . . , p.

f (Xk) = max
j∈Xk
{dc(k), j} (2)

wheredc(k), j is the Euclidean distance from nodej
to its territory center, denoted byc(k). We define a
territory centerc(k) of territory k as the node with
the smallest distance to its farthest node, that is:

c(k) = arg min
i∈Xk

{max
j∈Xk
{di j }} (3)

Let Π be the collection of allp-partitions ofV.
Then, the problem can be described as finding ap-
partition X = (X1, ...,Xp) of V satisfying the spec-
ified planning criteria of balancing and contiguity,
that minimizes the above distance-based dispersion
measure. The combinatorial description of the prob-
lem is the following:

Minimize
X∈Π

f (X) = max
k=1,...,p

j∈Xk

{dc(k), j} (4)

subject to

wa(Xk)/µa ∈ [1− τa,1+ τa] a∈ A (5)

G(Xk,E(Xk)) is connected. k= 1, . . . , p (6)

The objective function (4) minimizes the territory
dispersion. Constraints (5) represent the balance in
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J. Cano-Belmán et al.

each territory. Constraints (6) assure the connectiv-
ity of each territory. The problem is NP-hard13. Our
experience shows that one can optimally solve with
branch-and-bound methods instances of up to 150
BUs. The target instances have between 500 and
2000 BUs, so the choice of heuristics is clearly jus-
tified.

3. Solution Approach

The main goal of this work is to propose alterna-
tive constructive procedures that would generate bet-
ter or more diverse solutions than those obtained
in 13. Following the previous work, we also de-
rive GRASP-based algorithms but in a very different
way. GRASP7 is a multi-start meta-heuristic widely
used for solving many combinatorial problems.

procedure GRASP( )
Input: instance data.
Output: best solution foundS∗.
0 f ∗← ∞;
1 while (stopping criterion not satisfied)do
2 S← Greedy randomized construction;
3 S← Local search(S);
4 if ( f (S)< f ∗) then
5 f ∗← f (S);
6 S∗← S;
7 end if
8 end while
9 returnS∗;
end GRASP

Fig. 1. A GRASP pseudocode.

Basically, each GRASP iteration consists of two
phases: construction and local search (Figure 1). In
RF, a solution is built iteratively by creating one sin-
gle territory at a time. The criterion forclosing a
territory andopeninga new one is when the upper
bound of the balancing constraint reaches its limit.
At the end, this leads to obtaining a number of ter-
ritories different (and usually larger) thanp. An ad-
justment phase consisting of a merging operation is
then applied, but this produces a high degree of vio-
lation in the balancing constraints (5). In our work,
we attempt to overcome this limitation by building

thep territories simultaneously. Therefore, the basic
difference between our proposed procedures and the
previous work is the construction phase.

3.1. Constructive methods

Solutions are generated in two phases which we
henceforth calllocationandallocation. In the loca-
tion phase,p BUs are selected to be territoryseeds.
In the allocation phase, the unassigned BUs are allo-
cated to one of the territories initialized with aseed
basic unit, taking into account contiguity and bal-
ancing constraints. Thus,p territories are initialized,
one for each seed BU, where the seed basic unit is
not necessarily the territory centerc(k).

3.1.1. Location phase

The location phase consists of findingp BUs that
are used as seeds in the location phase. Given the
nature of the objective function, it is desired these
seed nodes are as disperse as possible. This can be
done by solving ap-dispersion problem. Given a set
of candidate points, thep-dispersion problem5 con-
sists of selecting a subset ofp points, such that the
minimum distance between any pair of these chosen
points is as large as possible. In this work, three lo-
cation heuristics are proposed. Two of them can be
seen as extensions from thep-dispersion heuristics
in Erkut, Ülküsal, and Yeniçerioğlu6, and the other
considers a 1-step look-ahead policy.
GRLH1: Greedy randomized constructive location
heuristic.The greedy randomized constructive loca-
tion heuristic (GRLH1) requires to find a setVc of p
disperse BUs. InitiallyVc = /0 (Figure 2). GRLH1
is started by choosing the two farthest points inV
(which is the optimal solution for a 2-dispersion
problem). Then, duringp−2 iterations, a new point
is added toVc. In step 4, distances from nodej to the
currentVc are measured asd( j,Vc) = mini∈Vc{di j }.

Then a restricted candidate list (RCL) is formed
with the best elements (step 5). The new pointj is
chosen to maximize the minimum distance fromj
to the elements already inVc. Once the new seed is
randomly selected from the RCL (step 6) and added
to the solution (step 7), a new RCL is built to se-
lect another BU, and so on. The restricted candi-
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New Heuristics for Commercial Territory Design

date list (RCL) follows the concept used normally
in the GRASP methodology. The RCL is restricted
by a quality parameterα . Theα value defines the
quality of the elements in the RCL, whenα = 0, the
construction is purely greedy location solution, and
if α = 1 the location is random.

procedure GRLH1 (α , p)
Input: α= GRASP RCL location quality pa-
rameter;p = number of territories.
Output: p-seed setVc.
0 Vc← /0;
1 Selecti∗ and j∗ in V, such that

d(i∗, j∗) = max{d(i,{ j}) : i, j ∈V};
2 Vc←Vc∪{i∗, j∗};
3 while (|Vc |< p) do
4 Computed( j,Vc), j ∈V \Vc;
5 Build RCL= { j :

d( j,Vc)> dmax−α(dmax−dmin)};
6 Choosej randomly, j ∈ RCL;
7 Vc←Vc∪{ j};
8 end while
9 return (Vc);
end GRLH1

Fig. 2. Location procedure GRLH1.

GRLH2: 1-step look-ahead greedy randomized con-
structive heuristic.The look-ahead greedy random-
ized constructive heuristic (GRLH2) proceeds like
the GRLH1 heuristic. The difference is that the
GRLH2 evaluates not only the next unit to be in-
cluded in the solution, but the next two simultane-
ously. The purpose of evaluating two basic units si-
multaneously is to reduce the greediness and, to fa-
vor the dispersion by searching in a different space
than the one used in GRLH1.

The greedy functionϕ used to measure the desir-
ability of adding both unitsi and j to setVc is defined
as follows:

ϕ(i, j) = min{d(i,Vc),d( j,Vc),di j } (7)

As usual ϕmax = maxi, j ϕ(i, j) and ϕmin =
mini, j ϕ(i, j). Note that the computation ofϕ is
more expensive than the computation of the greedy
function used in GRLH1. It is of particular interest
if this extra effort pays off in terms of solution qual-

ity. Also note that Steps 5-6 in Figure 3 reflect the
fact thatp might be odd.

procedure GRLH2 (α , p)
Input: α= GRASP RCL location quality pa-
rameter;p = number of territories.
Output: p-seed setVc.
0 Vc← /0;
1 if (p mod(2) = 0)then
2 Selecti∗ and j∗ such that

d(i∗,{ j∗}) = max{d(i,{ j}) : i, j ∈V};
3 Vc←Vc∪{i∗, j∗};
4 else
5 Selecti∗, j∗, k∗ such that

d(i∗,{ j∗,k∗}) =
max{d(i,{ j,k}) : i, j,k∈V};

6 Vc←Vc∪{i∗, j∗,k∗};
7 end if
8 while (|Vc |< p) do
9 Computeϕ(i, j), i, j ∈V \Vc;
10 Build RCL= {(i, j) :

ϕ(i, j)> ϕmax−α(ϕmax−ϕmin)};
11 Choose(i, j) ∈ RCLrandomly;
12 Vc←Vc∪ (i, j);
13 end while
14 return (Vc);
end GRLH2

Fig. 3. Location procedure GRLH2.

GRDL: Greedy randomized destructive location
heuristic. The idea behind this procedure is based
on the following observation. Given a set of nodes
in the space, if a pair of the nearest nodes is iden-
tified and one of these is eliminated, the remaining
nodes tend to be more disperse in terms of the dis-
persion measure.

Following this idea, the GRDL procedure (Fig-
ure 4) starts with all BUs in the solution, it is (Vc =
V). Iteratively, the procedure deletes one BU from
Vc until p BUs remain in the seeds set (Vc). Since it
is desirable to eliminate one of the nearest BUs, we
create an RCL such thatRCL= {(i, j) : di j 6 dmin+
α(dmax− dmin)}, wheredmax= maxi, j∈V c{di j } and
dmin = mini, j∈V c{di j }. Then, following the GRASP
scheme, a pair (i, j) is randomly chosen from the
RCL, and one of these is eliminated fromVc. The

Published by Atlantis Press 
      Copyright: the authors 
                   130

D
ow

nl
oa

de
d 

by
 [

R
og

er
 R

io
s]

 a
t 0

6:
49

 0
5 

A
pr

il 
20

12
 



J. Cano-Belmán et al.

BU to be eliminated is determined using an index
which relates the number of customers and product
demand in a basic unit (w1

i ∗w2
i ). This index is used

due to the interest in keeping inVc the basic units
with more sales and more customers.

procedure GRDL (α , p)
Input: α= GRASP RCL location quality pa-
rameter;p = number of territories.
Output: p-seed setVc.
0 Vc←V;
1 while (|Vc|> p) do
2 Build RCL= {(i, j) ∈Vc :

di, j 6 dmin+α(dmax−dmin)};
3 Select a pair(i, j) ∈ RCLrandomly;
4 Eliminate basic unit

i∗ = arg min{w1
i ∗w2

i ,w
1
j ∗w2

j};
5 Vc←Vc\{i∗};
6 end while
7 return (Vc);
end GRDL.

Fig. 4. Location procedure GRDL.

3.1.2. Allocation phase

Given the dispersion setVc = {v1, . . . ,vp} obtained
in the location phase, we initialize each territory as
Xk = {vk}, k= 1, . . . , p. LetVu =V \Vc be the set of
unassigned BUs, that is,|Vu|= |V|− p. Each unas-
signed BU j ∈ Vu must be allocated to only one of
thek territories. We define the neighbor setNk of ter-
ritory k as those unassigned BUs that are connected
by an edge with any BU in territoryXk, k= 1, . . . , p.
HenceNk = { j ∈Vu : Xk∪{ j} is connected}.

At a given iteration, a greedy function
φ( j,k), j ∈Vu,k= 1, . . . , p, given by

φ( j,k) = (|Nk|)e ·Φ( j,k) (8)

is computed, where

Φ( j,k) =

λ f (Xk∪{ j})+ (1−λ )g(Xk∪{ j})

k∈ K, j ∈Nk (9)

g(Xk∪{ j}) =

∑
a∈A

max{wa(Xk)+wa
j − (1+ τa)µa,0}

Here f (x) is the dispersion measure given by (2) and
g(Xk∪{ j}) corresponds to the total violation of the
balancing constraints, when basic BUj is added to
territory k. The user-specifiedλ parameter weighs
both dispersion and infeasibility.

Function (8) considers both the neighborhood
size of the territoryk and the assignment cost (in
dispersion and feasibility sense) of assigning BUj
to territory k. With these values the RCL is built
(Figure 5, step 2). This function is similar to the one
used in RF but here it takes into account the size of
the neighboring units of the territories. This greedy
function is motivated by the observation, in previ-
ous approaches, that some territories can not grow
because there are no available neighbors during the
last iterations of the process. By introducing this
function, small territories have more opportunity to
grow early in the process, avoiding the stalling dur-
ing the posterior phases.

procedure Allocation (Vc, β )
Input: Vc = set of disperse BUs;β = GRASP
RCL allocation quality parameter.
Output: a solutionX = (X1, . . . ,Xp).
0 Xk←{vk};Vu←V \Vc;
1 while (|Vu|> 0) do
2 Build theRCLas in (10);
3 Select( j,k) ∈ RCLrandomly;
4 Assign the basic unitj to a territoryk

Xk← Xk∪{ j};
5 UpdateVu←Vu\{ j};
6 Update centerc(k) in territory Xk

if needed;
7 end while
8 return (X);
end Allocation

Fig. 5. Allocation procedure.

According to the value ofΦ, a candidate list of
BUs is constructed as follows:

RCL= {( j,k) :

Φ( j,k) 6 Φmin+β (Φmax−Φmin)} (10)

As usualΦmax = maxk∈K,i∈Nk Φ(i,k), and Φmin =
mink∈K,i∈Nk Φ(i,k). The parameterβ determines the
quality of the elements in the RCL. In each iteration
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New Heuristics for Commercial Territory Design

the center of the territory must be updated. Initially,
the center is the seed basic unit obtained in the loca-
tion phase.

3.1.3. Sequential Location-Allocation

In our Location-Allocation constructive procedure
(SLA) a territory is started and constructed sequen-
tially by iteratively assigning BUs to the active ter-
ritory. When the territory size of any of the BU ac-
tivities reaches a predetermined upper limit (PUL) it
is closed and a new territory is started. Such PUL
can be equal or smaller than the right hand side of
expression (5), which is the maximum feasible size
that a territory can take for any activity. Proceed-
ing this way,p territories are constructed. Then, the
unassigned BUs can be allocated to some of thep
territories according to the greedy function (8).

Figure 6 shows the pseudo-code of the SLA pro-
cedure. The first territory is initialized in line 1 with
the elementj ∈ V with minimal degree. In line 2
j is removed from the set of unassigned BUs, and
the neighboring units of territoryXk are determined
in line 3. From lines 4-19,p territories are built
sequentially until they reach the PULa. Both, the
selection of aseedingBU and the selection of the
neighboring BU to be included in the current terri-
tory Xk is done within the GRASP scheme. Once a
territory has been initialized, the benefit of including
a BU j in territory Xk is computed in line 5, accord-
ing to expression (9). These values are used to build
a restricted candidate list in lines 6 and 7. A unit
j is randomly chosen from RCL in line 8, and in-
cluded in the territoryXk in line 9. If the territory
sizewa(Xk) reaches a PULa value, the current terri-
tory is closed, and a new one is initialized (line 11).
All the unassigned BUs inVu are evaluated accord-
ing to the distance measured( j,S) =mini∈S{di j }) in
line 12. A RCL is built in lines 13 and 14. A BUj is
randomly selected from RCL in line 15 and included
in the current territoryXk in line 16. In line 18 the
neighboring setNk is updated. In this point there are
p partial territories and a set of unassigned unitsVu,
which are evaluated to be incorporated in some of
the p territories (lines 20-26) in the same manner as
in Section 3.1.2.

procedure SLA(α , p, PULa)
Input: α= GRASP RCL location quality pa-
rameter;p = number of territories; PULa =
territory size upper limit for activitya.
Output: a solutionX = (X1, . . . ,Xp).
0 k← 1; Vu←V;
1 Xk←{ j}, where j ∈ arg min{|N j | : j ∈V};
2 Vu←Vu\{ j};
3 Nk← set of neighbors ofXk;
4 while (k6 p andNk 6= /0) do
5 Computeφ( j,k) in (9) for all j ∈ Nk;
6 Φmin←min j{φ( j,k)};

Φmax←maxj{φ( j,k)};
7 Build RCL←{ j ∈Nk :

φ( j,k) ∈ [Φmin,Φmin+α(Φmax−Φmin)]};
8 Choosej ∈ RCLrandomly;
9 Xk← Xk∪{ j}; Vu←Vu\{ j};
10 if (wa(Xk)> PULa for anya) then
11 k← k+1;
12 Computed( j,S), j ∈Vu;
13 dmin←min j{d( j,S)};

dmax←maxj{d( j,S)};
14 Build RCL= { j ∈Vu :

d( j,S) > dmax−α(dmax−dmin)};
15 Choosej ∈ RCLrandomly;
16 Xk←{ j}, Vu←Vu\{ j};
17 end if
18 UpdateNk;
19 end while
20 while (|Vu|> 0) do
21 Build aRCLas in (10);
22 Select( j,k) randomly, j,k∈ RCL;
23 Xk← Xk∪{ j};
24 UpdateVu =Vu\{ j};
25 Update centerc(k) in territory Xk;
26 end while
27 return (X);
end SLA

Fig. 6. Sequential location-allocation procedure.

3.2. Postprocessing Phase

As usual, a solution constructed by any of the con-
struction schemes is not necessarily a local opti-
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J. Cano-Belmán et al.

mum. In addition, feasibility with respect to the
balancing constraints may not be entirely satisfied.
Therefore, the local search procedure aims at both,
improving the dispersion (objective function) and
obtaining feasibility. A neighborhoodN(X) consists
of all solutions reachable fromX = (X1, . . . ,Xp) by
moving a basic uniti from its current territoryXt(i)

into a neighboring territoryXt( j) , where j is the cor-
responding BU in territoryXt( j) adjacent toi, to keep
the connectivity requirement. The move is denoted
by move(i, j). In our case we measure the cost of a
move by:

ψ(move(i, j)) = γ∆ fi j +(1− γ)∆gi j (11)

where ∆ fi j is the variation in the objective value
when themove(i, j) is performed. Similarly,∆gi j

is the variation in the value of the feasibility mea-
sure, aftermove(i, j). The user-defined parameter
γ is used to weigh both the objective and feasibility.
Thus, given a solutionX the objective and feasibility
values are obtained from (12) and (13), respectively.

f (X) =

(

1
dmax

)

max
k=1,...,p

{

max
i, j∈Xk

di j

}

(12)

g(X) =
p

∑
k=1

∑
a∈A

ga(Xk) (13)

The local search procedure starts with an initial
solutionX obtained in the construction phase. The
merit function value becomes the incumbent value
ψ(X′)← ψ(X). Iteratively, all the possiblemoves
in the neighborhoodN(X) of the current solutionX
are evaluated according to (11). If the merit function
valueψ(move(i, j)) of the best move obtained with
move(i, j) is better than the incumbent valueψ(X′),
the merit function value is updated to the incumbent
valueψ(X′)← ψ(move(o, j)). The algorithm con-
tinues until a stopping criterion is reached.

4. Empirical Work

The proposed solution procedures have been coded
in C++ and compiled with a Sun C++ compiler
workshop 8.0 under Solaris 9 operating system. The
tested instances were taken from the data set of13.

These are randomly generated instances. All in-
stances use a tolerance valueτa equal to 5%. We
used two instance sets with 1000 and 2000 BUs, and
each instance was evaluated withp= 40 andp= 60
territories.

4.1. Parameter Fine Tunning

In this section, the parameter setting procedure used
for SLA is described. This procedure has three pa-
rameters:α , λ , and γ which were fine-tunned by
using the methodology described in Coy et al.2. It
consists of four steps: i) selecting a subset of prob-
lems to analyze, ii) determining the variation range
for each parameter, iii) selecting the best value for
each parameter by carrying out an appropriate de-
sign and analysis of experiments, iv) combining the
settings obtained in step 3 for obtaining high-quality
parameter values. The details of these four steps are
the following.

Step i: First of all, we select representative sub-
sets of the available instances according to their
characteristics. Four sets are available, instances
with 1000 nodes and 40 territories, 1000 nodes and
60 territories, 2000 nodes and 40 territories, and
2000 nodes and 60 territories. A subset of three in-
stances from each group is selected for the parame-
ter setting experiment.

Table 1. Parameter values for the SLA parameter setting exper-
iment.

Parameter Lower value Center Upper value

α 0.2 0.3 0.4
λ 0.3 0.5 0.7
γ 1.0 -1.0 -3.0

Step ii: The second step consists of determin-
ing the parameter levels to carry out the experiments.
This is done with a preliminary test in order to find
out an approximation of the best parameter values
for the experiment. Thus, as a result of this pre-
liminary test, the center, the upper, and the lower
value for each parameter is determined (Table 1).
The change (∆) in the value for each parameter are
∆α=0.1, ∆λ =0.2, and∆γ=2. Recallα defines the
quality of the values contained in the RCL during the

Published by Atlantis Press 
      Copyright: the authors 
                   133

D
ow

nl
oa

de
d 

by
 [

R
og

er
 R

io
s]

 a
t 0

6:
49

 0
5 

A
pr

il 
20

12
 



New Heuristics for Commercial Territory Design

location phase,λ weights the dispersion and the fea-
sibility in the merit function used to build the RCL
in the allocation phase. In SLA procedure, the pa-
rameterγa defines an upper bound (PULa) for the
territory sizewa(Xk). Whenγa = 0 the upper limit

size for all territories regarding activitya is equals
to the target size (µa). Whenγa = 1 the upper limit
is (1+ τa)µa, andγa = −1 means the upper limit is
(1− τa)µa. This upper limit is defined in expression
PULa = µa+(γa∗µa ∗ τa).

Table 2. Average results for infeasibility values for each group.

Parameter values Instance categories
α λ γ n=1000,p=40 n=2000,p=40 n=1000,p=60 n=2000,p=60

0.2 0.3 1 0.02540 0.00000 0.09947 0.06237
0.2 0.3 -1 0.05220 0.00176 0.05993 0.03210
0.2 0.3 -3 0.04717 0.00073 0.05173 0.03395
0.2 0.5 1 0.01028 0.00622 0.06053 0.03983
0.2 0.5 -1 0.01470 0.00848 0.06403 0.01879
0.2 0.5 -3 0.03650 0.00429 0.04530 0.02630
0.2 0.7 1 0.03880 0.02180 0.12933 0.00988
0.2 0.7 -1 0.01084 0.00269 0.13300 0.03773
0.2 0.7 -3 0.00481 0.00348 0.07267 0.02953
0.3 0.3 1 0.05457 0.00453 0.10560 0.05376
0.3 0.3 -1 0.00392 0.00067 0.09163 0.03860
0.3 0.3 -3 0.00674 0.00436 0.11277 0.04477
0.3 0.5 1 0.00562 0.00770 0.15280 0.03137
0.3 0.5 -1 0.00776 0.00160 0.09320 0.01703
0.3 0.5 -3 0.02120 0.00347 0.20600 0.03883
0.4 0.7 1 0.01148 0.00516 0.09320 0.02593
0.4 0.7 -1 0.01093 0.00177 0.06760 0.03849
0.4 0.7 -3 0.00653 0.00557 0.09023 0.04449
0.4 0.3 1 0.01537 0.00217 0.11823 0.00674
0.4 0.3 -1 0.00731 0.00095 0.07667 0.05551
0.4 0.3 -3 0.00980 0.00530 0.06100 0.00973
0.4 0.5 1 0.02887 0.00334 0.07517 0.02326
0.4 0.5 -1 0.01656 0.00051 0.09003 0.03440
0.4 0.5 -3 0.03942 0.00494 0.09890 0.01745
0.4 0.7 1 0.03634 0.01523 0.12500 0.00962
0.4 0.7 -1 0.00799 0.00181 0.15600 0.04283
0.4 0.7 -3 0.00485 0.00120 0.06007 0.02080

Step iii: This step consists of generating an ex-
perimental design. Since there are only three param-
eters to fit, we use a full factorial experiment. Three
instances from each group are used in the experi-
ment. Thus, for each instance in the group and for
each combination of parameters, the SLA procedure
is applied 10 times. The best solution found for each
instance is kept for comparisons.

For example, three instances are selected from
the group with 1000 nodes and 40 territories, and
then these are solved with SLA using the follow-

ing parameters:α = 0.2, λ = 0.3, andγ = 1. Note
that, these values are the lower values shown in Ta-
ble 1. Then, we have the best solution found for each
one of these three instances in the group. This is re-
peated with all parameter combinations (27 combi-
nations). These 27 parameter combinations are used
to solved the other groups of instances. Once all in-
stances have been solved by applying SLA over the
27 parameter combinations, the average infeasibility
value obtained is computed for each instance group.
Such average values of infeasibility (In f eas) are de-
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J. Cano-Belmán et al.

tailed in Table 2. Our first goal is to obtain feasible
solutions before improving the dispersion measure.
Thus, the main objective of the parameter setting is
to find the best combination of parameters that yield
best balance in the territories. It means that, the rela-
tive deviation on each territory is within the allowed
tolerance (thenIn f eas= 0.0). For that reason in this
step of the parameter settings we try to find the best
parameter combination that minimizes the infeasi-
bility value.

After all chosen instances have been solved by
applying the SLA over the 27 combinations of pa-
rameters. The next step is to fit a linear model for
each instance category, using the 27 experimental
runs on each of them. The basic idea is to find a
linear approximation of the response surface. The
dependent variable in the models is the infeasibility
value in Table 2. The independent variables are the
parameters used in each experimental run (α , λ , and
γ). Table 3 shows the parameter coefficients in the
linear regression equation obtained for each group
of instances (see also Figures 7 and 8 that contain
the residual plots from the models). The statistical
significance of the parameter varies in each instance
category.

The following step in the parameter settings
process is to obtain the path of the steepest

descent(PSD). Given an estimated regression coeffi-
cientb= (bα ,bλ ,bγ ), thePSDis the negative gradi-
ent of the linear model (-b). Now we must travel
along the path by making small movements from
one initial point. In our case such point is the center
of the design (α = 0.3,λ = 0.5,γ = −1). To calcu-
late a full step size, the following procedure is used:
select the regression coefficient with maximum ab-
solute value (bmax), divide each parameters coeffi-
cient (b j ) by bmax, and multiply the resulting value
by the∆ value of the corresponding parameter. For
example, by using the information in Table 3, for
the group withn=1000 nodes andp=40 territories,
the maximum absolute coefficient value is the one
of α (bmax=0.0412). Then, the full step size forα is
bα/bmax∗∆α = (-0.0412 / 0.0412) * 0.1 = -0.1. Sim-
ilarly, for λ the full step size is (-0.0250 / 0.0412)
* 0.2 = -0.1214, and forγ is (0.00138 / 0.0412) * 2
= 0.067. Nevertheless, as suggested in Coy et al.2,
it is desirable to avoid stepping over potential good
local minima, so we make steps of 1/4 of the full
step (authors explain the compromise between per-
formance and complexity). The step size must be
obtained for all the parameters and all the instance
categories. All the step sizes are shown in Table 4
(1/4 of the full step size).

Table 3. Linear regression coefficients.

Group Intercept α λ γ F P Adj.R2

n=1000,p=40 0.04610 -0.0412 -0.0250 0.00138 1.20 0.331 2.3%
n=2000,p=40 0.00237 -0.0078 0.0106 0.00091 2.47 0.067 16.6%
n=1000,p=60 0.05540 0.0805 0.0417 0.00446 0.92 0.448 0.0%
n=2000,p=60 0.05370 -0.0389 -0.0217 -0.00009 0.94 0.438 0.0%
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New Heuristics for Commercial Territory Design

(a)n=1000,p=40

(b) n=2000,p=40

Fig. 7. Residual plots for infeasibility (Infeas) forp=40
instances.
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J. Cano-Belmán et al.

(a)n=1000,p=60

(b) n=2000,p=60

Fig. 8. Residual plots for infeasibility (Infeas) forp=60
instances.
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New Heuristics for Commercial Territory Design

Table 4. Step size along the path of steepest descent.

Group α λ γ

n=1000,p=40 -0.0250 -0.0300 0.0170
n=2000,p=40 0.0184 -0.03030 0.0167
n=1000,p=60 0.0250 0.02580 0.0227
n=3000,p=60 0.0250 0.02780 0.0011

As mentioned before, to start the moves along
the path of steepest descent, we start from the de-
sign center (step 0). We calculate steps forward and
backward. Forward steps are done subtracting the
step size value for each parameter from its previ-
ous value (at first, the previous value corresponds
to the center). In backward steps, step size values
are added. After a step has been calculated, we per-
form trials with the corresponding parameter values
in the current step. In our test, we run the trials with
the same 3 instances of each category, used in the
previous experimental design. Table 5 shows the pa-
rameter values and the average from the objective

function value, infeasibility, and CPU time obtained
for the 3 trial instances with n=1000 nodes and p=40
territories. Figure 9(a) displays the average values
obtained for each step when we used instances with
1000 nodes and 40 territories. The best infeasibil-
ity values are obtained in step 3, meanwhile the best
objective function values are obtained with step 5.
As mentioned before, it is our particular interest to
produce feasible solutions. Thus, for setting the fi-
nal values of parameters, only the infeasibility val-
ues are taken into account.

Step iv:After the steepest descent has been com-
puted for all instance groups, and the better val-
ues have been identified for each parameter on each
group, the final parameter values to perform the final
test of the heuristic are defined by averaging the bet-
ter parameter values from all instance groups. Thus,
after following the guidelines in2, the final parame-
ter values are the following:α=0.368,λ=0.527,γ=-
0.998.

Table 5. Average results for 3 instances withn=1000 andp=40.

Parameter values Average
Step α λ γ Objective Infeasibility Time (sec)

-4 0.200 0.379 -0.933 0.04433 0.00965 14.197
-3 0.225 0.401 -0.950 0.04733 0.01323 14.247
-2 0.250 0.439 -0.967 0.04466 0.01386 14.393
-1 0.275 0.470 -0.983 0.04466 0.01044 14.393
0 0.300 0.500 -1.000 0.04433 0.00776 14.437
1 0.325 0.530 -1.017 0.05266 0.02022 14.357
2 0.350 0.561 -1.033 0.05266 0.02118 14.447
3 0.375 0.591 -1.050 0.04033 0.00144 14.547
4 0.400 0.621 -1.067 0.04566 0.01028 14.647
5 0.425 0.652 -1.084 0.03666 0.00246 16.107
6 0.450 0.682 -1.100 0.06066 0.02835 14.593
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J. Cano-Belmán et al.

(a) n=1000,p=40

(b) n=2000,p=40

Fig. 9. Steepest descent average results for objective func-
tion and infeasibility values forp=40 instances.
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New Heuristics for Commercial Territory Design

(a) n=1000,p=60

(b) n=2000,p=60

Fig. 10. Steepest descent average results for objective func-
tion and infeasibility values forp=60 instances.

4.2. Comparison of Greedy Procedures

In this part of our experimental work, we compared
the four proposed procedures. The existing pro-
cedure RF13 is also included in the experiment.
It has been necessary to follow the parameter set-
ting procedure for each heuristic: GRLH1, GRLH2,
GRDL, and SLA. Table 6 shows the parameter val-
ues for each heuristic. The dash means that the pro-

cedure does not requires the corresponding parame-
ter. Since the goal of this experiment is to compare
the greedy nature of the procedures, then we used
α = 0. Table 7 displays the size and number of the
tested instances.

The infeasibility values are compared after the
construction and improvement phases. Recall we
are interested in obtaining better (feasible if possi-
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J. Cano-Belmán et al.

ble) solutions to make easier and more productive
the improvement phase than the existing RF proce-
dure. The relative deviation index (14) is used:

rel.dev. =
|best in f eas− in f eash|
(in f eash + ε)∗100%

(14)

wherebest in f easis the smaller infeasibility value
obtained with any of the 5 compared procedures,
in f eash is the infeasibility value obtained with pro-
cedureh, (h=GRLH1, GRLH2, GRDL, SLA, RF).
Since infeasibility can take a value equal to zero, ex-
pression (14) avoids division by zero.

Table 6. Parameter values used for comparing the greedy pro-
cedures.

Parameter GRLH1 GRLH2 GRDL SLA RF

α 0.00 0.00 0.00 0.00 0.00
λ 0.10 0.10 0.10 0.527 0.6
e 0.90 0.90 0.90 - -
γ - - - -0.998 -

Table 7. Size of test instances.

Instance group
n p No. of instances

1000 40 50
2000 40 50
1000 60 50
2000 60 50

Total 200

Table 8. Relative deviation for infeasibility results with greedy
constructive procedures.

Instance group Procedure
n p GRLH1 GRLH2 GRDL SLA RF

1000 40 15.31% 15.12% 36.28% 69.61% 58.57%
2000 40 10.58% 13.30% 23.53% 61.24% 57.15%
1000 60 23.19% 22.11% 40.08% 65.76% 32.20%
2000 60 19.86% 11.78% 33.71% 66.08% 60.30%

Average 17.23% 15.34% 33.54% 65.57% 52.05%

Table 9. Relative deviation for infeasibility results afterim-
provement.

Instance group Procedure
n p GRLH1 GRLH2 GRDL SLA RF

1000 40 50.73% 59.49% 77.81% 82.12% 70.00%
2000 40 48.12% 50.13% 65.73% 83,52% 80.31%
1000 60 51.62% 63.07% 67.30% 70.13% 36.54%
2000 60 50.69% 55.24% 71.96% 80.26% 66.64%

Average 50.29% 56.98% 70.70% 79.01% 63.37%
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New Heuristics for Commercial Territory Design

Average relative deviation results are shown in
Tables 8 and 9. In the greedy construction phase,
procedures GRLH1 and GRLH2 obtain similar aver-
age relative deviation values for all instance groups,
except for the group withn=2000 andp=60, where
GRLH1 has 19.86% and GRLH2 has 11.78%. Both
procedures improve the performance of GRDL,
SLA, and the existing procedure RF. The difference
between the average relative deviation from GRLH1
and GRLH2 is 1.89% in favor of GRLH2 which
uses 1-step look-ahead approach in the selection of
seed nodes for starting the territories, which requires
more computational effort. It was not possible to ob-
tain any feasible solutions in the greedy construction
phase.

After the improvement, relative deviation values
increase because infeasible values are smaller than
those in the construction phase. Even better, feasi-
ble solutions have been obtained. On average, the
local search phase in each procedure obtains the fol-
lowing improvement: 95.03% for GRLH1, 94.85%
in GRLH2, 94.07 in GRDL, 96.26% for SLA, and
94.60% for RF. Local search in GRDL improves
more than any other procedure, but solutions in the
construction phase are the worst regarding feasibil-
ity. Again, GRLH1 and GRLH2 outperform the re-
sults of GRDL, SLA, and RF. Regarding the global
average relative deviation results for infeasibility,
GRLH1 improves GRLH2 by 6.69%. GRLH1 finds

feasible solutions for 10.5% of the 200 instances,
GRLH2 for 9%, GRDL for 6%, SLA for 2.5%, and
RF for 4.5% (see Table 10). Doing the analysis by
groups, the ideal couples for group (n=1000,p=40)
is GRLH1, for instances with (n=2000, p=40) is
GRLH1, for (n=1000,p=60) is RF, and for (n=2000,
p=60) is GRLH1.

Table 11 shows the CPU time (in seconds) em-
ployed on each phase for each procedure. Each
phase is indicated by L (location), A (allocation),
and local search (LS). Observe that, the construc-
tion of territories in a sequential way, only requires
allocation and local search processes. Recall that,
in SLA each new seed node is selected by consid-
ering the farthest unallocated node from those al-
ready allocated to some territory. In RF, each new
seed node is selected by considering the grade of
the unassigned nodes. For these two procedures,
the time required for selecting the new seeding node
is included in the allocation phase (A), since it is
small. The time required in local search is in gen-
eral relatively small. Only in 2000-node instances
local search requires more than 1 second in average.
On the other hand, the location phase in GRLH1,
GRLH2, and GRDL requires more computational
effort, mainly in GRLH2. Except by the computa-
tional effort, GRLH1 produce better results, obtain-
ing more feasible solutions after local search.

Table 10. Number of feasible solutions found with greedy pro-
cedures after improvement.

Instance group Procedure
n p GRLH1 GRLH2 GRDL SLA RF

1000 40 7 4 1 2 4
2000 40 12 12 9 3 4
1000 60 0 0 1 0 0
2000 60 2 2 1 0 1

Total 21 18 12 5 9
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J. Cano-Belmán et al.

Table 11. Average time (sec) by phase.

Procedure

Instance group GRLH1 GRLH2 GRDL SLA RF

n p L A LS L A LS L A LS A LS A LS

1000 40 3.31 2.31 0.21 9.84 2.26 0.19 2.78 2.06 0.22 1.12 0.25 0.21 0.20
2000 40 17.89 8.47 1.75 54.73 7.91 0.88 15.79 7.63 0.99 5.05 1.23 1.12 1.0
1000 60 3.50 3.08 0.24 23.72 3.17 0.21 2.75 3.06 0.23 1.57 0.26 0.21 0.18
2000 60 17.89 1.17 1.17 137.51 11.10 0.82 15.38 10.81 0.92 6.99 1.09 0.97 0.87

4.3. Comparison of GRASP Procedures vs.
Exact Procedure

In this experiment we compare the proposed heuris-
tics GRLH1, GRLH2, GRDL, and SLA against an
exact procedure. For this experiment we use rela-
tively small instances with 60, 80, and 100 nodes
and 4, 5, and 6 territories, respectively. Five in-
stances of each set were generated according to the
previously described specifications. A total of 5 x 3
= 15 DT instances were generated.

The exact procedure is the one used in14, which
is an iterative algorithm that solves the relaxed prob-
lem of the corresponding MILP model (with no con-
nectivity constraints, recall there is an exponential
number of them), and then, it identifies and adds
violated connectivity constraints until optimality is
reached. This exact procedure uses the number of
iterations (10 iterations maximum) and time limit by
iteration (7200 sec.) as stopping criteria.

Regarding the heuristics, they were run for 100
iterations (construction and improvement). The
heuristics GRLH1, GRLH2, and GRDL were tested
using the following parameter values:α = 0.3,λ =
0.1 ande= 0.9. The parameters for SLA were those
obtained in Section 4.1. Parameter valuesλ ande

were also determined by following the procedure
proposed by Coy et al.2 which is based on an ex-
perimental design. Recall that, the parametere is
used to fit the number of the neighboring nodes for a
territory in the allocation phase. In the first column
of Table 12 the instance sets used are shown (DT60,
DT80 and DT100). This table shows the number of
optimal solutions found by applying each procedure
over each instance set, and the average of the rel-
ative optimality (gap). Table 13 displays the CPU
time in seconds. All those solutions obtained with
the heuristics were feasible solutions. The optimal
value with the exact method was found for all in-
stances. Table 14 shows objective function values,
and the CPU times in detail.

Heuristic procedures can find optima only for
instances with 60 nodes. Over all instance sets,
the average relative optimality (gap) computed for
GRLH1, GRLH2, and GRDL is 5.1566%, 1.22%,
and 6.0766%, respectively. GRLH1 is the fastest
heuristic (it requires on average 1.04 seconds).
GRLH2 and GRDL take longer than GRLH1, on av-
erage 2.57 and 47.01 sec., respectively. Due to the
previous results, in the next subsection we compared
only the heuristic GRLH1 against the existing pro-
cedure (RF).

Table 12. Summary of results for small instances.

No. of optimal solutions Av. relative gap (%)
Data set Exact GRLH1 GRLH2 GRDL GRSLA GRLH1 GRLH2 GRDL GRSLA
DT60 5 2 2 2 1 1.17 0.64 1.54 2.84
DT80 5 0 0 0 0 5.84 1.47 7.08 4.84
DT100 5 0 0 0 0 8.46 1.55 9.61 7.28
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Table 13. Average CPU times for small instances.

Procedure
Data set Exact GRLH1 GRLH2 GRDL GRLSA
DT60 190.8 0.6 1.0 10.4 0.4
DT80 2331.8 1.0 2.1 35.7 0.6
DT100 12179.0 1.5 4.7 94.9 1.0

Table 14. Results for small instances.

Exact GRLH1 GRLH2 GRDL GRSLA
Instance Sol. time Sol. time Sol. time Sol. time Sol. time
DT60-1 205.10 562 205.10 0.57 205.10 0.92 205.10 10.49 205.10 0.36
DT60-2 172.94 158 174.40 0.58 174.40 0.96 181.10 10.27 174.40 0.40
DT60-3 180.82 31 186.66 0.63 180.82 1.00 182.97 10.59 186.66 0.50
DT60-4 186.09 65 186.09 0.68 187.20 0.99 186.09 10.23 201.60 0.40
DT60-5 176.39 136 179.51 0.61 179.51 0.94 179.51 10.51 179.51 0.40
DT80-1 157.90 169 169.30 0.98 164.40 2.09 169.30 35.77 169.30 0.64
DT80-2 156.28 329 157.06 1.01 158.28 2.11 157.06 35.68 157.06 0.06
DT80-3 161.92 4693 176.05 1.00 162.12 1.99 177.39 35.65 164.94 0.80
DT80-4 148.56 2198 167.54 1.02 166.00 2.07 163.33 35.90 162.90 0.72
DT80-5 158.32 4270 158.32 1.04 170.74 2.00 171.25 35.69 166.19 0.69
DT100-1 144.06 10982 152.95 1.47 156.07 4.70 152.95 92.55 156.78 1.01
DT100-2 170.05 3493 182.29 1.56 170.53 4.68 184.62 94.04 174.01 1.08
DT100-3 147.21 8908 160.74 1.51 160.74 4.84 160.95 95.15 163.65 1.02
DT100-4 137.12 2743 157.03 1.51 147.18 4.68 162.03 98.88 152.75 0.99
DT100-5 159.99 34769 168.36 1.49 159.99 4.70 169.31 93.80 164.30 1.00

4.4. Comparison with existing approach

In this experiment the heuristic GRLH1 is compared
with the original procedure RF. We decided to com-
pare only the proposed heuristic GRLH1 because of
the results in the previous sections, related to qual-
ity in greedy procedures, and CPU time required.
The procedures are executed during 100 iterations
using the test bed of problem instances used in pre-
vious experiments with 1000 and 2000 nodes and
40 and 60 territories. In each iteration a construc-
tion and improvement phases are performed. The
parameters values used for the GRLH1 areα = 0.3,
λ = 0.1, ande= 0.9. Table 15 shows a compari-
son between GRLH1 and RF. Columnn f easrepre-
sents the number of feasible solutions found (out of
50) with each procedure GRLH1 and RF separated
by instance groups. The average relative improve-
ment of the local search with respect to phase 1 so-
lutions is denoted by ARLSI. One can see that even
though procedure RF produces slightly better results

(in terms of the number of feasible solutions), pro-
cedure GRLH1 is very competitive. In terms of the
average relative local search improvement, GRLH1
showed a slightly better improvement value for the
p = 40 instances. Both procedures report average lo-
cal search improvements of more than 92 %. With
this very good quality, it is strongly suggested that
both procedures can be used in a collaborative way.

Table 15. Comparison between GRLH1 and RF procedures

Instance group nfeas ARLSI (%)

n p GRLH1 RF GRLH1 RF

1000 40 44 50 96.4 94.7
2000 40 50 50 97.4 96.3
1000 60 1 2 92.4 93.7
2000 60 32 38 95.9 96.6

Finally, Figures 11(a) and 11(b) show the result-
ing designs when the firm’s method and the pro-
posed GRLH1 heuristic, respectively, are applied to
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a1000-BU, 10-territory real-world instance. For this
case, under the firm method the best resulting design
has an objective function value of 0.094, and it is
infeasible with respect to the balancing constraints
under a 0.05 tolerance. Our method obtains a signif-

icantly better design in terms of both objective func-
tion value and feasibility, with a dispersion function
value of 0.076 (a relative improvement of 24%), and
territory imbalances of less than 5%.

(a) Firm solution for a 1000-BU, 10-territory instance

(b) Heuristic solution for a 1000-BU, 10-territory instance

Fig. 11. Comparison between designs obtained by the firm
and proposed method.
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5. Conclusions

A version of a territory design problem motivated by
a real-world application is addressed in this work.
The problem planning requirements are compact-
ness, contiguity, and balancing with respect to two
activities (number of customers and sales volume).
A location-allocation heuristic framework is pro-
posed. In the location phase, threep-dispersion
based heuristics are proposed. Such heuristics ob-
tainedp disperse seeds (nodes) for starting the terri-
tories. In the allocation phase all unassigned nodes
are incorporated iteratively to some territory (build-
ing all the territories simultaneously). These proce-
dures were incorporated within a GRASP scheme,
including a local search phase. The empirical work
reveals that two of the proposed heuristics find near-
optimal or optimal solutions to relatively small in-
stances, where exact solutions could be found. The
heuristic solutions are found significantly faster.
When we compared with the existing method in
larger instances, it was found that the existing ap-
proach provides solutions with lower infeasibility
violations. However, one of the proposed proce-
dures found better solutions in terms of its disper-
sion measure than the ones found by the existing ap-
proach.

This means that the idea of building the territo-
ries simultaneously can in some cases provide solu-
tions with lower degree of infeasibility after the con-
struction phase, and therefore lead to better overall
solutions. As lines of future work, developing more
sophisticated local search procedures such as tabu
search and memory-based strategies such as adap-
tive programming can be worthwhile.
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