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a b s t r a c t

In this paper, we address a territory design problem arising from a bottled beverage distri-
bution company. We propose a bi-objective programming model where dispersion and
balancing with respect to the number of customers are used as performance criteria. Con-
straints such as connectivity and balancing with respect to sales volume are considered in
the model. Most of the work in territory design has been developed for single-objective
models. To the best of our knowledge, this is the first multi-objective approach for this
commercial territory design problem, and in particular, for territory design with connectiv-
ity constraints. We propose an improved e-constraint method for generating the optimal
Pareto front. Empirical evidence over a variety of instances shows that the improved
method is well suited for finding optimal Pareto fronts with no more computational effort
than the traditional method. Instances of up to 150 units and 6 territories are solved in rel-
atively short amount of time. For this problem, the improved method finds practically the
same fronts than those found by the traditional e-constraint method. In addition, we
observe that when the firm reduces the tolerance in the imbalance of sales volume the effi-
cient fronts change and when the number of territories increases, the balance with respect
to the number of customers becomes harder to achieve.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In general, distribution firms have complex product distribution networks which are formed by thousands of sales points.
In this industry there are many interesting problems from the logistic point of view that may appear in different stages of the
decision process. For instance, when a firm is starting, a first problem could be where to locate the warehouses and/or
distribution centers. After that, in order to provide efficient service and to reduce the total costs (i.e., production, stock,
and distribution costs) some questions such as how many products need to be produced, and how to deliver the products
to the final customer, need to be answered. This work is focused on the study of a problem that arises in a stage previous
to the product routing and is motivated by a real-world application from a beverage distribution firm in the city of
Monterrey, Mexico. The firm wants to divide the total number of city blocks into a specific number of groups according
to some planning criteria. This partition has the objective of giving support to the decision maker when she or he designs
the distribution routes and when she or he makes the workload distribution. In addition, the partition permits a more effi-
cient management of marketing offers as it reduces the number of unsatisfied customers by applying special offers in each
territory. This means that we are contributing to better route design during the routing process due to the compactness
(minimum dispersion) of the territories. In addition, we provide support to the decision maker for elaborating the marketing
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plan and for making the best workload and resource distribution. The latter is possible because the territories are balanced
with respect to both number of customers and sales volume.

This problem belongs to the family of districting problems. There has been a significant amount of work in the territory
design literature addressing many different kinds of applications such as political, sales, school, services, and commercial
districting, to name the most significant. Among the most relevant works one can find Hess et al. (1965), Fleischmann
and Paraschis (1988), Hojati (1996), Garfinkel and Nemhauser (1970), Mehrotra et al. (1998), Bozkaya et al. (2003), and
Kalcsics et al. (2005). In practically all of these works, the authors consider single-objective models. Among the very few
works dealing with multi-objective districting problems we find Bowerman et al. (1995), Scott et al. (1996), Guo et al.
(2000), Wei and Chai (2004), Tavares-Pereira et al. (2007), and Ricca and Simeone (2008).

Bowerman et al. (1995) present a multi-objective approach for solving a school bus routing problem. They proposed a
heuristic technique that first groups students into clustering using a multi-objective districting algorithm. After that, a school
bus route and the bus stops for each cluster are generated by using a combination of a set covering procedure and a traveling
salesman problem procedure. They report experimental results for a real-world instance in Wellington County, Ontario. The
districting algorithm considers four objectives: minimizing the number of routes, minimizing the length of the routes, load
balancing, and compactness of the routes. The three last criteria are placed in a weighted objective function where the num-
ber of routes is the dominant objective, i.e., a solution with fewer routes is always favored over a solution with more. Dif-
ferent plans were designed using different sets of weights over the optimization criteria.

Scott et al. (1996) make a multi-objective analysis of school districting in a case study from Connecticut, USA. They pro-
pose a mixed-integer goal programming model where the goal constraints are to minimize disparities in: minority enroll-
ments, grand-list/student ratios, student–teacher ratios, and overall enrollment. The number of districts is not fixed and
the contiguity criterion is not formulated in an explicit way. Experimental work using different weighting scenarios reveals
that the traditional distance-minimizing or transportation-minimizing objectives are in conflict with all other aims of equity
and quality of educational opportunities.

Guo et al. (2000) propose a multi-objective zoning and aggregation tool (MOZART). MOZART is an integration of a graph
partitioning engine with a Geographic Information System (GIS) through a graphical user interface. They illustrate the per-
formance of MOZART by solving two zoning problems from three government local areas in Victoria: Kingston, Bayside, and
Glen Eira. The first part of their experimental work is done by taking into account a single objective of equality in population
size. In contrast, in the second part of their experimental work, both equity in population and compactness are treated as
objective functions. They report a case with 577 census collection districts and 20 zones. The inclusion of compactness as
the second zoning objective yields zones with better shapes.

Wei and Chai (2004) present a multi-objective hybrid metaheuristic approach for a GIS-based spatial zoning model. Their
heuristic procedure is a combination of tabu search and scatter search. They show the procedure performance by solving a
political districting problem with 55 basic units and 3 districts. Equity in population, compactness, and socio-economic
homogeneity are treated as objectives.

Tavares-Pereira et al. (2007) study a multi-objective public service districting problem. They consider multiple criteria
such as location of the zone with respect to the network, mobility structure within a zone, zone corresponding to adminis-
trative structures, centers of attraction in the zone, social nature and geographical nature. They propose an evolutionary
algorithm with local search and apply it to a real-world case of the Paris region public transportation. They discuss results
for bi-objective cases considering different criteria combinations.

Ricca and Simeone (2008) address a multiple criteria political districting problem. Such criteria are connectivity,
population equality, compactness and conformity to administrative boundaries. They transform the multi-objective model
into a single-objective model using a convex combination of three objective functions (inequality, noncompactness, and
nonconformity to administrative boundaries); connectivity is considered as a constraint. They compare the behavior of
four local search metaheuristics: descent, tabu search, simulated annealing, and old bachelor acceptance. The application
is performed over a sample of five Italian regions where old bachelor acceptance produces the best results in most of the
cases.

The state of the art on territory design reveals the following facts. Very few works address multi-objective models and all
of these are basically heuristic techniques for obtaining approximate Pareto fronts. To the best of our knowledge our work is
the first to provide a method for obtaining efficient fronts to bi-objective territory design problems. Single-objective versions
of the commercial territory design problem addressed in this work are due to Ríos-Mercado and Fernández (2009),
Caballero-Hernández et al. (2007), and Segura-Ramiro et al. (2007). In particular, our work can be seen as the bi-objective
extension to the model developed in Segura-Ramiro et al. (2007).

Our work comprises both the development of a bi-objective optimization model and an exact optimization procedure for
finding efficient solutions in the sense of Pareto. The solution procedure is based on one of the most important scalarization
techniques in multi-objective programming, the e-constraint method. We implement two alternatives of this method: the
traditional e-constraint method (eCM) which guarantees obtaining weakly efficient solutions and a modified version of
the e-constraint method (IeCM) in which we include slack variables to guarantee efficient solutions. The last technique
was recently proposed by Ehrgott and Ruzika (2008) in the improved e-constraint method. Our computational work reveals
the effectiveness of the proposed approach as it was able to obtain Pareto fronts to a large class of problem instances in a
relatively small computational effort. This is, to the best of our knowledge, the first exact method for a multi-objective
territory design problem with connectivity constraints.
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The rest of the paper is organized as follows. Section 2 provides a detailed description of the problem. In Section 3, the
bi-objective programming model is introduced. Section 4 describes the solution method. Experimental work is discussed
in Section 5 and conclusions are drawn in Section 6.

2. Problem description

Given a set V of city blocks (basic units, BUs), the firm wishes to partition this set into a fixed number (p) of disjoint ter-
ritories that are suitable according to some planning criteria. The territories need to be balanced with respect to two different
activity measures, number of customers and sales volume. Additionally, each territory has to be connected, such that the set
of BUs belonging to the same territory should induce a connected subgraph. Territory compactness is required to guarantee
that customers within a territory are relatively close to each other. Compactness and balance with respect to the number of
customers are the most important criteria identified by the firm. In our optimization model these criteria are considered as
objective functions and the remaining criteria are treated as constraints.

Let G = (V,E), where V is the set of nodes (BUs) and E is the set of edges that represent adjacency between BUs. An arc
connecting nodes i and j exists if i and j are adjacent BUs. Multiple attributes such as geographical coordinates (cx,cy), number
of customers and sales volume are associated with each node j 2 V. In particular, the firm wishes perfect balance among ter-
ritories, which means each territory needs to have the same number of customers and the same quantity of sales volume.
Due to the discrete nature of this problem, it is practically impossible to have perfectly balanced territories. Let A = {1,2}
be the set of node activities, where 1 refers to the number of customers and 2 refers to sales volume. We define the size

of territory Vk with respect to activity a as wðaÞðVkÞ ¼
P

i2Vk
ðwðaÞi Þ, where a 2 A and wðaÞi is the value associated to activity a

at node i 2 V. Hence, the target value is given by lðaÞ ¼
P

j2V

wðaÞ
j

p .

There are two ways to address balancing. In this work, we treat balancing with respect to the number of customers as an
optimization criterion and balancing with respect to product demand as a constraint. This is motivated by the fact that the
former criterion is directly related with the number of stops that a vehicle makes during the product distribution and the
firm pays special attention to this.

Another important constraint is that of territory connectivity. That is, it is desired that each individual territory be a con-
nected subgraph of G. A good territory design is one in which compactness and balancing with respect to the number of cus-
tomers are optimized. In order to obtain an optimization model that includes all considerations given by the firm, we
propose a bi-objective programming model in which two objective functions are minimized. The first objective f1 is related
to a dispersion measure, because minimizing dispersion is equivalent to maximizing compactness. The second objective f2 is
associated with the maximum deviation with respect to the target value (l(1)) in the number of customers. Minimizing the
maximum deviation allows that the number of customers be closer to the average size. In this work, we use the objective of
the p-median problem (p-MP) as a dispersion measure (f1).

The problem consists of finding a p-partition of V subject to the specified planning criteria of balance with respect to the
sales volume and connectivity, in such a way that both performance measures dispersion (f1) and the maximum deviation
with respect to the target number of customers in each territory (f2) are minimized. We assume all parameters are known
with certainty.

3. Bi-objective programming model

Indices and sets

n number of blocks
p number of territories
i, j block indices; i, j 2 V = {1,2, . . . ,n}
a activity index: a 2 A = {1,2}
Ni ={j 2 V: (i, j) 2 E _ (j, i) 2 E} set of adjacent nodes to node i; i 2 V

Parameters

wðaÞi
value of activity a in node i; i 2 V, a 2 A

dji Euclidean distance between j and i; i, j 2 V
s(2) relative tolerance with respect to activity 2; s(2) 2 [0,1]

Decision variables

xji ¼
1 if a basic unit j is assigned to territory with center in i; i; j 2 V
0 otherwise

�
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With this definition, xii = 1 implies that i is a territory center.
Suppose Q i ¼

P
j2V wð1Þj xji � lð1Þxii represents the imbalance with respect to the number of customers in a territory with

center in i, i 2 V. So, the relative deviation in a territory with center in i 2 V is given by

Q i

lð1Þ

�����
����� ð1Þ

This expression given as an absolute value can be decomposed into a positive DWþ
i and a negative DW�

i part as follows
j Qi

lð1Þ j ¼ DWþ
i þ DW�

i where Qi

lð1Þ ¼ DWþ
i � DW�

i and DWþ
i DW�

i ¼ 0; i 2 V . Based on this, we have the following bi-objective
territory design problem (BOTDP) model.

ðBOTDPÞ Min f 1 ¼
X
j2V

X
i2V

djixji ð2Þ

Min f 2 ¼max
i2V

DWþ
i þ DW�

i

� �
ð3Þ

Subject to :

DWþ
i DW�

i ¼ 0 i 2 V ð4Þ

DWþ
i � DW�

i ¼

P
j2V

wð1Þj xji � lð1Þxii

lð1Þ
i 2 V ð5Þ

X
i2V

xii ¼ p ð6Þ
X
i2V

xji ¼ 1 j 2 V ð7Þ
X
j2V

wð2Þj xji P ð1� sð2ÞÞlð2Þxii i 2 V ð8Þ

X
j2V

wð2Þj xji 6 ð1þ sð2ÞÞlð2Þxii i 2 V ð9Þ

X
j2[v2SðNvnSÞ

xji �
X
j2S

xji P 1� jSj i 2 V ;

S � ½V n ðNi [ figÞ� ð10Þ
xji ¼ f0;1g i; j 2 V ð11Þ
DWþ

i ; DW�
i P 0 i 2 V ð12Þ

Objective (2) represents the dispersion measure. In this sense, minimizing dispersion is equivalent to maximizing compact-
ness. The second objective (3) represents the maximum deviation with respect to the target value of number of customers.
Thus, balanced territories should have small deviation from the average number of customers. Constraints (4) and (5) estab-
lish the relationship of DWþ

i and DW�
i with the absolute value of Qi

lð1Þ. Constraint (6) guarantees the creation of exactly p ter-
ritories. Constraints (7) guarantee that each node j is assigned to only one territory. Constraints (8) and (9) represent the
territory balance with respect to sales volume as it establishes that the size of each territory must lie within a range (mea-
sured by tolerance parameter s(2)) around its average size. Constraints (10) guarantee the connectivity of the territories. Note
that there is an exponential number of such constraints.

Note that objective (3) is a piece-wise linear function. Therefore, BOTDP can be linearized by replacing (3) by (13) and
introducing constraints given by (14). In addition, it can be shown (see Lemma 3.1) that the nonlinear constraints (4) are
redundant.

Min f 2 ¼ c ð13Þ
c P DWþ

i þ DW�
i ; 8i 2 V ð14Þ

The resulting bi-objective MILP is called LBOTDP. Model LBOTDP does not include the set of nonlinear constraints (4) be-
cause, when a feasible solution to LBOTDP is obtained, those indices l in which both DWþ

l and DW�
l take value different from

zero can be easily identified. When this happens, it is always possible to get a feasible solution in which at least one of these
DWþ

l or DW�
l takes a value equal to zero (see Lemma 3.1) and the new c value, which will be equal or better than the current

c value, is recomputed.

Lemma 3.1. For any feasible solution (X,DW) of LBOTDP such that DWþ
l > 0 and DW�

l > 0 there exists a feasible solution
ðX;DWÞ for LBOTDP such that X ¼ �X and DWþ

l DW�
l ¼ 0, l 2 V, where f1ðXÞ ¼ f1ðXÞ and f2ðDWÞP f2ðDWÞ.

Proof. Let (X,DW) be a feasible solution to LBOTDP with corresponding objective function values given by (f1, f2). This will
focus especially in constraints (5) and (14). For each l 2 L, where L ¼ fl 2 V : DWþ

l > 0 and DW�
l > 0g, there are two cases.

888 M.A. Salazar-Aguilar et al. / Transportation Research Part C 19 (2011) 885–895



Author's personal copy

� Suppose DWþ
l P DW�

l . Let DWþ
l ¼ DWþ

l � DW�
l and DW�

l ¼ 0. Clearly, DWþ
l � DW�

l ¼ DWþ
l � DW�

l . Then, the new values
DWþ

l and DW�
l satisfy the constraints (14) as well, and DW�

l DWþ
l ¼ 0

� Similarly if DWþ
l < DW�

l . Let DW�
l ¼ DW�

l � DWþ
l and DWþ

l ¼ 0. Again, (DWþ
l ;DW�

l ) is feasible.

Since, DWþ
i þ DW�

i 6 DWþ
i þ DW�

i , "i, it follows that X is equal to X and DW is less than DW . It implies that,
f2ðDWÞ 6 f2ðDWÞ and the proof is completed. h

From a practical point of view, it has been clearly established that both f1 and f2 are in conflict. It has been observed
empirically that when attempting to reach the best possible dispersion measure the maximum deviation with respect to
the target number of customers increases and viceversa. This justifies the bi-objective model.

4. Solution procedure

Multiple techniques have appeared in the literature for solving multi-objective problems. One of the most important
techniques used in multi-objective programming is the e-constraint method. The e-constraint method seems best suited
for nonconvex problems such as the problem addressed here. In addition, a current mono-objective approach (Salazar-Agu-
ilar et al., 2009) to this particular problem can be efficiently exploited within an e-constraint frame. The e-constraint method
is based on a scalarization where one of the objective functions is minimized while all the other objective functions are
bounded from above by means of additional constraints (Ehrgott and Ruzika, 2008).

4.1. The e-constraint model

In our implementation of the e-constraint method we select the objective function given by (13) as the function to be
bounded by an e value (see LBOTPDe). We made this decision, because the firm has precisely defined the range of variation
(associated with the maximum deviation c) in which a solution is attractive to them. In addition, the resulting model has a
better structure because it can be seen as a p-median problem with some additional constraints (capacity and connectivity).
It is well known that p-median models have a relatively good LP relaxation and this is true for our model as well. Finally, we
tried to solve a model using f2 as an objective and f1 as a constraint and found a very bad LP relaxation and considerable
higher run times. In general, those solutions with relative deviation (c) less than or equal to 5% are attractive to the company.
Hence, different values around this value can be swept in an easy way. The model

ðLBOTDPeÞ Min f 1

Subject to :

ð5Þ—ð12Þ; ð14Þ
c 6 e ð15Þ

corresponds to the traditional e-constraint (eCM) formulation for the LBOTDP model. The objective function f1 is given explic-
itly by (2) and (15) is an upper bound of c.

It is well known that the e-constraint method guarantees to find weakly efficient solutions that can be efficient. However,
when we have an optimal solution to LBOTDPe it is not easy to verify if this solution is an efficient solution or not. In order to
eliminate this weakness, Ehrgott and Ruzika (2008) introduced a modification of the traditional formulation. They incorpo-
rate nonnegative slack variables and with this modification the new e-constraint method guarantees obtaining efficient solu-
tions. Let LBPTDPþe be the modified e-constraint formulation in our problem, where k is a nonnegative weight.

ðLBOTDPþe Þ Min f 1 � ks ð16Þ
Subject to :

ð5Þ—ð12Þ; ð14Þ
cþ s 6 e ð17Þ
s P 0 ð18Þ

The slack variables introduced in LBOTDPþe provide information about efficiency of a solution (Ehrgott and Ruzika, 2008). The
main difference between LBOTDPe and LBOTDPþe is that the e-constraint in LBOTDPþe is always active at optimality.

4.2. Description of the e-constraint procedures

In this work, our goal is to find both weakly efficient solutions and efficient solutions. The LBOTDPe and LBOTDPþe formu-
lations allow us to obtain these fronts by using different e values. For each fixed value of e we solve a single-objective prob-
lem LBOTDPe or LBOTDPþe . Note that each of these single-objective problems (LBOTDPe and LBOTDPþe ) is NP-hard. In addition
constraints (10) can not be written explicitly as there is an exponential number of them. There are few works that solve the
single-objective districting problem with connectivity constraints. For instance, Garfinkel and Nemhauser (1970) solve
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political districting problems by implicit enumeration techniques, they reported successful solution for instances with up to
39 BUs and 7 territories. On the other hand, Mehrotra et al. (1998) propose a column generation procedure for the political
districting problem and they report solutions for up to 46 basic units and 6 territories. The iterative cut generation procedure
for territory design problems (ICGP-TDP) is an exact solution procedure developed for the single-objective commercial ter-
ritory design problem (Salazar-Aguilar et al., 2009). Empirical work shows that this procedure allows to solve instances with
up to 200 basic units and 11 territories. The ICGP-TDP algorithm consists of iteratively solving a relaxed MILP model (relax-
ing the connectivity constraints), and then finding and adding violated constraints by solving an easy separation problem.
When violated cuts are identified these are added to the model and the process continues with the next iteration. The iter-
ative procedure continues until an optimal solution is obtained or when the relaxed problem is proved infeasible. Full details
can be found in Salazar-Aguilar et al. (2009). We adapted ICGP-TDP for both LBOTDPe and LBOTDPþe formulations and we
called it e-ICGP.

There are a few multi-objective districting applications with connectivity constraints and these have been addressed by
heuristic procedures (Guo et al., 2000; Scott et al., 1996; Ricca and Simeone, 2008). To the best of our knowledge there are no
references in the literature on multi-objective districting that provide exact efficient solutions. In our case, we can find
weakly efficient and efficient solutions through e-ICGP using LBOTDPe and LBOTDPþe formulations, respectively. For each
fixed value of e, ICGP-TDP is called to obtain an optimal solution to the problem if it is feasible. At the end, the e-ICGP pro-
cedure reports a set of efficient solutions.

The iterative solution procedure is described in Algorithm 1. The parameter k, an initial e value (e0), and a step length d to
compute different e values are the input. Note that when k = 0 is passed as argument to e-ICGP, the associated solution meth-
od is the traditional eCM (see model LBOTDPe). However, when k > 0 then the associated solution method is the IeCM (see
model LBOTDPþe ). Algorithm e-ICGP was coded in C++ and compiled with the Sun C++ 8.0 compiler under Solaris 9 Operating
System. The ICGP-TDP procedure, that optimally solves the single-objective model for a fixed value of epsilon, makes use of
the CPLEX 11.2 callable libraries (see Salazar-Aguilar et al. (2009) for more details).

Algorithm 1. Solution procedure e-ICGP(k,e0,d)

Input:
k := Weight parameter
e0 := Initial e value for bounding the objective given by f2

d := Step size for computing the next e value
Output:
Deff := Efficient solution set
Deff ;, e e0

while (e > 0)
1. S ICGP-TDP(k,e)
2. if(S is optimal)

Deff Deff [ S
e e � d

3. else
return Deff

4. end if
end while
return Deff

While it is true that LBOTDPþe is more attractive than LBOTDPe as it guarantees efficient solutions, we are interested on
evaluating the computational effort of each model to properly assess the trade-off between solution quality and time.

5. Experimental work

In the experimental work, randomly generated instances based on real-world data provided by the industrial partner
were used. Each instance topology was generated by using the generator developed by Ríos-Mercado and Fernández
(2009). In this work, the authors used historical information from the firm and obtained the data distribution associated
to the number of customers and sales volume. A tolerance s(2) = 0.05 with respect to sales volume was considered. Three
different instance sets defined by (n,p) 2 {(60,4), (80,5), (100,6)} were used. For each of these sets, 10 different instances
were generated. Additionally, another set with five instances for (150,6) was generated. The time limit for e-ICGP was set
to 4 h, k was set to 3, and the step size was d = 0.001 for all instances. As it was mentioned before, solutions with a maximum
deviation less than or equal to 5% from the average number of customers are attractive to the firm. Therefore, this value was
used as the initial value of e to bound the objective f2. The procedure described in Algorithm 1 was used to optimize both the
traditional and the improved formulations (LBOTDPe and LBOTDPþe , respectively).
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The time required for both LBOTDPe and LBOTDPþe formulations is first addressed. All instance sets were tested using both
formulations. It was observed that there was not a significant difference between these formulations with respect to the time
and in most of the cases the set of solutions found through LBOTDPe and LBOTDPþe optimization was the same. In other
words, the stronger structure given by LBOTDPþe model takes about the same amount of computational effort. Note that
the optimization process over all instances tested stopped by time limit (4 h). It is possible to find more efficient points if
the time limit increases. So, when the time is relatively large, the algorithm continues until e reaches the smallest value such
that the problem has no feasible solutions.

Figs. 1–5 show instances where the fronts obtained by the traditional eCM (LBOTDPe) and the IeCM (LBOTDPþe ) are prac-
tically the same.

Ehrgott and Ruzika (2008) show in their work that the traditional e-constraint method (eCM) (in this case LBOTDPe) does
not guarantee efficient solutions while the improved e-constraint (IeCM) always guarantees this property. In this experimen-
tal work, the Pareto fronts reported by eCM and IeCM methods did not present significant variation, due to the fact that the
constrained function (f2) is a maximum relative deviation measure that tends to be more robust, e.g. less sensitive to
changes, than, for instance, a function that measures imbalance as the sum of all deviations. In conclusion, the improved
method takes about the same amount of time as the traditional method. Even though it found the same fronts than the ones
found by the traditional method for these particular instances, it should be preferred as solution method.

The second part of this experimental work was carried out to analyze two situations that frequently take place in the firm.
The first situation occurs when the number of vehicles in the fleet changes. Sometimes, economical resources decrease in a
dramatic way such that the firm needs to reduce the number of vehicles (and employees) used for the distribution of the
product. As a consequence the firm needs to modify the current territory design. On the other hand, when the firm

Fig. 1. Comparison of LBOTDPe and LBOTDPþe on an instance with 80 BUs and 5 territories.

Fig. 2. Comparison of LBOTDPe and LBOTDPþe on an instance with 100 BUs and 6 territories.
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Fig. 3. Comparison of LBOTDPe and LBOTDPþe on an instance with 150 BUs and 6 territories.

Fig. 4. Comparison of LBOTDPe and LBOTDPþe on an instance with 60 BUs and 4 territories, instance du60-01.

Fig. 5. Comparison of LBOTDPe and LBOTDPþe on an instance with 60 BUs and 4 territories, instance du60-08.
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Fig. 6. Changes in the efficient solutions when p changes.

Fig. 7. Map for n = 80 and p = 5.

Fig. 8. Map for n = 80 and p = 6.
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experiments an expansion, it could make new employee contracts and introduce more vehicles in its fleet. This in turn means
that the workload distribution will be affected and a new alignment of territories will be required. These situations were
analyzed using the set of instances with 80 BUs and varying the number of territories. Fig. 6 shows the set of efficient solu-
tions obtained for an instance with 80 BUs and the number of territories p 2 {5,6,7}. Obviously, the dispersion measure (f2)
decreases when the number of territories increases. This fact can be seen in Figs. 7–9. These figures show examples of the
maps corresponding to the efficient points with the lowest dispersion measure in the fronts showed in Fig. 6. However, it
was observed that when p increases, the imbalance with respect to the number of customers is higher than when p de-
creases. This is because a few combinations of BUs allow to hold the connectivity constraints satisfied on each territory. Thus,
the distribution of workload has more imbalance for large values of p. The decision maker needs to analyze these alterna-
tives. She or he needs to determine what kind of territory design is better for the economical interests to the company.
All instances tested with 80 BUs and p 2 {5,6,7} have the same behavior as the one shown in Fig. 6. The results were obtained
using the LBOTDPþe model, that is, they are efficient solutions.

The second part of this last experiment was carried out to analyze the change in the Pareto front, when the tolerance (s(2))
changes. The (60,4) instances for (s(2) 2 {0.05,0.03,0.015,0.01}) using LBOTDPþe model were tested. For instance, Fig. 10
shows different Pareto fronts obtained by optimizing the same instance using different s(2) values with the time limit set
to 4 h. It was observed that the Pareto front is the same for s(2) 2 {0.05,0.03}. In contrast, the front changes when
s(2) = 0.015, observe that some points from the front of s(2) = 0.05 remain in the front for s(2) = 0.015 and additional efficient
solutions are found within the time limit (4 h).

Fig. 9. Map for n = 80 and p = 7.

Fig. 10. Comparison among Pareto fronts for different values of s(2).
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The Pareto front for s(2) = 0.01 (Fig. 10) shows the largest change with respect to the Pareto front obtained for s(2) = 0.05.
Observe for instance, the last three solutions with smallest f2 (maximum deviation) in this front are really far from the fronts
given by s(2) 2 {0.05,0.015}. This illustrates how the front deteriorates as s(2) gets smaller.

6. Conclusions

In this paper we have presented a procedure for solving a bi-objective territory design problem with connectivity and
balancing constraints. The problem is motivated by a real-world problem from a beverage distribution company. This is
the first time in which the bi-objective version of this problem is addressed, to the best of our knowledge. Our solution pro-
cedure is based on the well known e-constraint method and a cut generation procedure.

In the implementation of the exact solution procedure, two variants of the e-constraint method are developed: (i) the tra-
ditional method which guarantees to find weakly efficient solutions, and (ii) the first modification proposed by Ehrgott and
Ruzika (2008) (in the improved e-constraint method) which guarantees to find efficient solutions. In our computational
work, it was observed that there is no significant difference between the time required by both LBOTDPe and LBOTDPþe mod-
els. Moreover, both e-constraint methods converged to practically the same Pareto fronts. The last is due to the fact that the
function f2 bounded by e is a robust measure that corresponds to the relative deviation with respect to the average number of
customers. Thus, even though the slack variable s takes a value different from zero, this value is so small such that the change
in the objective value is not evident.

The performance of the proposed procedure was evaluated over a set of instances. It was observed that instances with up
to 150 BUs and 6 territories are solved in a reasonable time. This is a significant result because in the general territory design
literature exact solutions have been reported for instances of no more than 50 BUs for single-objective models. As far as mul-
ti-objective territory design with connectivity constraints is concerned, there are no exact methods to the best of our
knowledge.
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