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Abstract In this work, a series of novel formulations for a commercial territory
design problem motivated by a real-world case are proposed. The problem
consists on determining a partition of a set of units located in a territory that
meets multiple criteria such as compactness, connectivity, and balance in terms
of customers and product demand. Thus far, different versions of this problem
have been approached with heuristics due to its NP-completeness. The pro-
posed formulations are integer quadratic programming models that involve a
smaller number of variables than heretofore required. These models have also
enabled the development of an exact solution framework, the first ever derived
for this problem, that is based on branch and bound and a cut generation
strategy. The proposed method is empirically evaluated using several instances
of the new quadratic models as well as of the existing linear models. The results
show that the quadratic models allow solving larger instances than the linear
counterparts. The former were also observed to require fewer iterations of
the exact method to converge. Based on these results the combination of the
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quadratic formulation and the exact method are recommended to approach
problem instances associated with medium-sized cities.

Keywords Mixed-integer linear programming ·
Integer quadratic programming · Territory design ·
Location · Valid inequalities

1 Introduction

Territory design or districting consists of dividing a set of basic units into
subsets or groups according to specific planning criteria. In most applications,
these basic units are city blocks, zip codes or individual customers and the
resulting groups are known as territories or districts. A survey on general
territory design problems (TDPs) can be found in Kalcsics et al. (2005). Two
important applications of territory design are political districting (Bozkaya
et al. 2003; Fleischmann and Paraschis 1988; Garfinkel and Nemhauser 1970;
Hess et al. 1965; Hojati 1996; Mehrotra et al. 1998; Ricca and Simeone 2008;
Shirabe 2009) and sales territory design (Drexl and Haase 1999; Hess and
Samuels 1971; Marlin 1981; Zoltners and Sinha 2005). The characteristics of
the problem addressed in this paper as detailed later, make it different to those
studied in the work listed previously however.

In land use or site search problems, a set of compact territories is sought
subject to connectivity constraints. The main difference with our problem is
that the territories do not necessarily form a partition of the basic units. For
recent models and methods on this type of problems, the reader is referred to
the work of Aerts et al. (2003) and Xiao (2006).

The problem addressed in this work was motivated by the challenge faced
by a local distribution company for bottled beverages where the objective
was to create a specific number of territories given a set of city blocks
(basic units). The territories were required to be compact, contiguous, and
balanced in terms of number of customers and sales volume. Ríos-Mercado
and Fernández (2009) introduced this problem initially with an initial solu-
tion approach based on a reactive GRASP (Greedy Randomized Adaptive
Search Procedure), a metaheuristic procedure. Compactness in their initial
work was modeled through the objective function of the p-center problem
(pCP), which represents dispersion. Additionally, balanced territories in terms
number of customers, sales volume, and workload were seeked out. With this
set up, results were reported as better than those previously generated by the
company hosting the study in terms of dispersion and balance requirements.
Different versions of the problem have been studied by Segura-Ramiro et al.
(2007) and Caballero-Hernández et al. (2007). In each of these, heuristic
approaches were developed for large-sized instances that would be intractable
for exact optimization purposes. Indeed, to the best of our knowledge, no
exact scheme has been developed for neither of these models in the literature,
only heuristic approaches can be found. Small and medium-sized instances,
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however, are also frequent enough in real life and therefore, their solutions
are deemed important. The development of an exact optimization method
that effectively handles the exponential number of connectivity constraints in
small and medium-sized instances of the commercial territory design problem
is, then, one of the key contributions of the work presented here.

On the other hand, in territory design problems, models dealing with
connectivity constraints are usually approached through heuristics, as reviewed
in Kalcsics et al. (2005), although a few works do provide optimal solutions,
for example Garfinkel and Nemhauser (1970) and Shirabe (2009). The former
studied a districting problem with 39 BUs and seven territories, while the latter
proposed a solution method to a similar problem using 48 basic units to a
variable number of territories. The method proposed in Shirabe (2009) was
proved tractable only for a small number of territories.

Our work presents contribution in two directions regarding the commercial
territory design problem. The first direction consists of an exact optimization
procedure. The proposed algorithm is geared towards the solution of up
to medium-sized instances of around 200 basic units to form up to around
ten territories. The algorithm consists on the iterative solution of a mixed
integer linear programming problem (MILP) through the relaxation of the
connectivity constraints. The violated constraints are then identified through
the solution of a simple separation problem. After that, these constraints are
introduced as cuts to the model. The procedure continues until optimality is
reached.

In the second direction, a new integer quadratic programming (IQP) for-
mulation is proposed. This formulation greatly reduces the number of binary
variables allowing the solution of larger instances than those allowed by the
MILP counterpart. The exact optimization procedure is tested here with both,
the MILP and the IQP formulations.

An empirical study on territory compactness over a wide range of instances
is also presented to elucidate which kinds of measure have the potential to
provide the best solutions for the commercial territory design problem. In
general territory design, there is not a standard measure for compactness. One
can find different kind of measures depending on the specific application. In
the context of political districting, for instance, there have been some studies
on compactness measures in Altman (1998). This criterion is discussed by
Kalcsics et al. (2005) as well from a more general perspective, considering
a median-based measure and a function based on convex hulls specifically
tailored for their geometric approach. These works conclude that there is not
a rigorous definition of this concept. In the absence of a standard measure for
the case of commercial territory design, we carried out experimental work over
a wide range of instances in order to analyze the performance of center- and
median-based models.

The paper is organized as follows. Section 2 contains the description and
mathematical formulations for this problem. Section 3 describes the proposed
solution procedure. Experimental work is included in Section 4. Finally,
conclusions are drawn in Section 5.
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2 Problem description

Let G = (V, E), be a graph where V is the set of basic units (BUs)—blocks
in this case–and E is the set of edges representing adjacency between blocks.
Each node j in set V has a series of parameters such as geographical coordi-
nates (c1

j, c2
j), and two attributes or activities: number of customers and sales

volume. An Euclidean distance, dij can be computed between each pair of BUs
i and j. The set of BUs is to be partitioned into p territories, and it is required
that each node is assigned to only one territory (exclusive assignment). The
company seeks balanced territories with respect to the number of customers
and product demand.

Let the size of territory Vk ⊂ V with respect to activity a be defined as
w(a)(Vk) = ∑

i∈Vk
(w

(a)
i ), where k is a territory index, a ∈ A = {1, 2} and w

(a)
i

is the value associated to activity a in node i ∈ V. Due to the discrete structure
of the problem and to the unique assignment constraints, it is practically
impossible to have perfectly balanced territories, i.e., territories of exactly the
same size, with respect to each activity. Thus, in order to model balancing, a
tolerance parameter τ (a) for activity a is introduced. This parameter measures
the relative deviation from the average territory size with respect to activity
a ∈ A. This target average is given by µ(a) = w(a)(V)/p. Another important
constraint is connectivity, i.e., for each i and j assigned to the same territory
there must exist in G a path between them totally contained in the territory.
In addition, in order to pursue compactness, BUs of the same territory must
be as close as possible to each other. One way to achieve this requirement
is to minimize a dispersion measure. Several measures have been used in the
literature. In this work we study two different measures, one based on the p-
Center Problem (pCP) objective and the other based on the p-Median Prob-
lem (pMP) objective. This leads to two different models. Both are described
next.

Formally, the problem consists in finding a p-partition of V according to the
specified planning requirements of balancing and connectivity, that minimizes
a given dispersion measure.

2.1 Mixed integer linear models

For the mathematical model MTDP (Median-Based TDP), the following set
and decision variables are defined.

Set

Ni set of nodes adjacent to node i, where
Ni = { j ∈ V : (i, j) ∈ E ∨ ( j, i) ∈ E}, i ∈ V.

Decision variables

xij =
{

1 if basic unit j is assigned to territory with center in i; i, j ∈ V
0 otherwise.
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Note that xii = 1 implies i is a territory center.

(MTDP) minimizez =
∑

j∈V

∑

i∈V

dijxij (1)

subject to:

∑

i∈V

xii = p (2)

∑

i∈V

xij = 1 j ∈ V (3)

∑

j∈V

w
(a)
j xij ≥ (1 − τ (a))µ(a)xii i ∈ V; a ∈ A (4)

∑

j∈V

w
(a)
j xij ≤ (1 + τ (a))µ(a)xii i ∈ V; a ∈ A (5)

∑

j∈∪v∈S(Nv\S)

xij −
∑

j∈S

xij ≥ 1− | S | i ∈ V,

S ⊂ [V \ (Ni ∪ {i})] (6)

xij ∈ {0, 1} i, j ∈ V (7)

Objective (1) represents a dispersion measure based on the pMP objective.
In this sense minimizing dispersion is equivalent to maximizing compactness.
Constraint (2) assures the creation of exactly p territories. Constraints (3)
assure that each node is assigned to only one territory. Constraints (4) and (5)
represent the territory balance with respect to each activity measure as they
establish that the size of each territory must lie within a range (measured by
tolerance parameter τ (a)) around its average size. Constraints (6) guarantee
territory connectivity. They assure that for any given subset S of nodes
assigned to center i not containing node i there must be an arc between S and
the set containing i. They are similar to the subtour elimination constraints in
the Traveling Salesman Problem. Note that there are an exponential number
of such constraints so they cannot be explicitly written out. The proposed
solution procedure generates only those that are needed in an iterative way.
This model was used by Segura-Ramiro et al. (2007), and it can be viewed as
a pMP problem with multiple capacity constraints, and with additional side
constraints (4)–(6), respectively. Note that, when the pCP objective is used as
dispersion measure the objective (1) is replaced by (8). The resulting model
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is called CTDP (Center-Based TDP) and it was introduced by Ríos-Mercado
and Fernández (2009).

z = max
i, j∈V

{
dijxij

}
(8)

The NP-completeness of both MTDP and CTDP is well established (Segura-
Ramiro et al. 2007; Ríos-Mercado and Fernández 2009). NP-completeness
proof for similar models can be found in Altman (1997, 1998) in the context of
political districting. For instance, he proved, among others, that the problem of
creating equal population/size territories and the problem of redistricting are
both NP-complete.

Ríos-Mercado and Fernández (2009) proposed a reactive GRASP for
CTDP. Segura-Ramiro et al. (2007) proposed a location-allocation heuristic
for MTDP. However, to the best of our knowledge, no exact methods have
been developed so far. Although, in theory, the connectivity constraints could
be written out explicitly, this would not make any practical sense due to their
exponential number. In this work an exact solution procedure to solve both
MTDP and CTDP is proposed. In the modeling stage these constraints are
not explicitly written and these are generated in an iterative manner within
the proposed algorithm. Therefore, the procedure is easily implemented under
any algebraic modeler system and it can be solved by any off-the-shelf MILP
solver.

Let R_MTDP denote the relaxed model obtained by relaxing (6) from
MTDP. In a similar way the relaxed model R_CTDP is defined as the resulting
model obtained by relaxing (6) in CTDP. A summary of different MILP
relaxed models is displayed in Table 1.

2.2 Integer Quadratic Programming Models

The Integer Quadratic Programming (IQP) model introduced in this work
reduces the number of binary variables from n2 to 2np. This model is obtained
by applying the same technique already used in Domínguez and Muñoz
(2008) for a pMP problem and this is the first quadratic formulation for the
commercial TDP addressed in this paper. In order to describe the model,
a set Q = {1, 2, . . . , p} of territory indices is introduced and binary decision

Table 1 Summary of relaxed
models used for solving the
MILP and IQP formu-
lations, respectively

Model Objective Constraints
R_MTDP (1) (2)–(5)
R1_MTDP (1) (2)–(5) and (21)
R_CTDP (8) (2)–(5)
R1_CTDP (8) (2)–(5) and (21)
R_QMTDP (10) (11)–(13)
R1_QMTDP (10) (11)–(13) and (20)
R_QCTDP (19) (11)–(13)
R1_QCTDP (19) (11)–(13) and (20)
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variables yiq to indicate the territory centers and z jq to represent the assigning
of BUs to territories are defined. The parameters are the same as those used
in the linear model.

Decision variables for the IQP model

z jq =
{

1 if unit j is assigned to territory q; j ∈ V, q ∈ Q
0 otherwise

yiq =
{

1 if unit i is the center of territory q; i ∈ V, q ∈ Q
0 otherwise

According to this definition, the equivalence between the variables in the
linear model and the variables in the quadratic model is given by

xij =
∑

q∈Q

z jq yiq. (9)

The resulting IQP model is the following.

(QMTDP) minimize z =
∑

q∈Q

∑

j∈V

∑

i∈V

dijz jq yiq (10)

subject to:
∑

i∈V

yiq = 1 q ∈ Q (11)

∑

q∈Q

z jq = 1 j ∈ V (12)

z jq ≥ y jq q ∈ Q, j ∈ V (13)
∑

j∈V

w
(a)
j z jq ≥ (1 − τ (a))µ(a) q ∈ Q, a ∈ A (14)

∑

j∈V

w
(a)
j z jq ≤ (1 + τ (a))µ(a) q ∈ Q, a ∈ A (15)

∑

q∈Q

∑

j∈∪v∈S(Nv\S)

z jq yiq

−
∑

q∈Q

∑

j∈S

z jq yiq ≥ 1− | S | i ∈ V,

S ⊂ [V \ (Ni ∪ {i})] (16)

z jq ∈ {0, 1} q ∈ Q, j ∈ V (17)

yiq ∈ {0, 1} q ∈ Q, i ∈ V (18)
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The QMTDP (quadratic median-based territory design problem) model
uses an equivalent dispersion measure as that of MTDP. Constraints (11) are
to guarantee the location of only one center for each territory. Constraints (12)
are for exclusive node assignment. The set of constraints (14) and (15) assure
territory balance. Constraints (13) establish that BU j can not be the center of
q if j is not assigned to q. According to Proposition 2 in Domínguez and Muñoz
(2008), constraints (11) and (12) guarantee the assignment, and constraints
(13) are not needed. However, these are shown here for model completeness.
The last set of quadratic constraints (16) guarantees connectivity. Again there
is an exponential number of these constraints.

Under this quadratic formulation, a dispersion measure based on the pCP
objective is given by (19). Let QCTDP (quadratic center-based territory design
problem) be the resulting model when the objective function (10) is replaced
by the dispersion measure given by (19).

min z = max
i, j∈V




dij

∑

q∈Q

z jq yiq




 (19)

Note that these IQP formulations are new in the literature for commercial
territory design. QMTDP is hard to solve due to the quadratic objective and
quadratic connectivity constraints. Additionally, it is not possible to write these
explicitly due to its exponential number. If the connectivity constraints are
relaxed, the model may be solved using any MINLP method. Let R_QMTDP
be the relaxation of QMTDP with respect to the connectivity constraints (16).
Clearly, a solution to R_QMTDP provides a lower bound to QMTDP.

There are some special cases for which the model can be strengthened, for
example, when there are not feasible solutions containing territories of size
1. In other words, when each feasible solution has territories having at least
two basic units associated to it then the following is a valid inequality for
R_QMTDP:

∑

i∈N j

ziq ≥ z jq q ∈ Q; j ∈ V (20)

This condition is true if and only if wa
j < (1 − τ a)µa for each j ∈ V, a ∈

A. For our particular case, our data instances always satisfy this condition,
and therefore the model can make use of these valid inequalities. These
inequalities can be interpreted as follows. If j is assigned to territory q at
least one of its neighbors (i ∈ N j) must be assigned to the same territory.
In this sense, these constraints avoid the unconnected subsets S with |S| = 1.
The motivation for this stems from the fact that empirical work showed that
a very large proportion of (unconnected) optimal solutions to the relaxed
models R_MTDP, R_CTDP, R_QMTDP, or R_QCTDP come from subsets of
cardinality equal to 1. Given that there is a polynomial number of these kind
of subsets their related connectivity constraints can be easily incorporated into
the model.
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Note that, for MILP formulations the equivalent valid inequalities are
given by:

∑

l∈N j

xil ≥ xij i ∈ V, j ∈ V \ ({i} ∪ Ni) (21)

In contrast with valid inequalities (20) that are valid only when the condition
of no singleton territories hold, constraints (21) are valid for any instance.

Let R1_QMTDP be the relaxation defined by R_QMTDP plus the addi-
tional constraints (20). In a similar way we can define the relaxed models
for the QCTDP model. These are called R_QCTDP and R1_QCTDP, re-
spectively. Similarly, for both MTDP and CTDP models, new relaxed models
are obtained by adding (21) in the relaxed models R_MTDP and R_CTDP,
respectively. We called these R1_MTDP and R1_CTDP, respectively. For
better definition of these relaxed models see Table 1.

In the following section we outline a solution framework that can be used
to solve any of these models. This procedure can be used to solve the problem
using both MILP and IQP formulations. This procedure guarantees a global
optimal solution for MILP models and local or global optimal solutions for
IQPs, depending on what method is used for solving the relaxed subproblem.

3 Solution procedure

One of the main difficulties for obtaining exact solutions for any of these
models arise from the exponential number of connectivity constraints. The
explicit enumeration of these constraints results practically impossible. Thus,
to get optimal solutions we devise an iterative procedure that uses branch and
bound (B&B) and a cut generation scheme.

The idea is relatively simple. By relaxing the connectivity constraints, we
are left with a relaxed problem that is solved by B&B. Then, the solution
to this relaxed problem is checked for connectivity. The connectivity test
is done by solving a separation problem (Algorithm 2) that is polynomially
solvable throught the breadth first search (BFS) algorithm. The corresponding
identified violated valid inequalities (if any) are then added to the relaxed
model as cuts and the procedure continues until no more violated inequalities
are found. The Iterative Cut Generation Procedure for solving TDPs (ICGP-
TDP) is outlined in Algorithm 1. For solving the MILP relaxed models, the
SolveMILP method in ICGP-TDP uses any branch-and-bound method. In
contrast, the SolveIQP method may call either an exact or an approximate
method. In our case, we are attempting to come up with a way to find faster
solutions, so we make use of a local optimum method for finding attractive
feasible solutions for the IQP relaxed models. An issue to be investigated is
precisely the trade-off between time and solution quality. Assuming a finite
algorithm is used for solving the integer relaxed models (in SolveMILP() or
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Algorithm 1 ICGP-TDP(P, DispMeasure, ModelType)
Input:
P:=Instance of the TDP problem
DispMeasure:= pCP or pMP objective function
ModelType:= MILP or IQP
Output: X = (X1, X2, . . . , Xp):= A feasible p-partition of V
Cuts ← ∅ {Cut set}
Model ← GenerateRelaxedModel(P, DispMeasure, ModelType)
While(Cuts #= ∅)

If(ModelType = MILP)

X ← SolveMILP(Model)

Else

X ← SolveIQP(Model)

EndIf
Cuts ← SolveSeparationProblem(P,X)
AddCuts(Model, Cuts)

EndWhile
Return X

SolveIQP()), the convergence of the algorithm is guaranteed due to the fact
that the separation problem is solved exactly (in polynomial time) returning
either a set of violated connectivity constraints or an empty set. Because there
is a finite set of connectivity constraints the algorithm is guaranteed to stop.
When it stops, the last solution is feasible with respect to the connectivity
constraints, and therefore, an optimal solution to the problem.

3.1 The separation problem

Suppose we have a graph G(V, E) and a p-partition X = (X1, X2, . . . , Xp),
where each of these sets Xk, k = 1, ...p induces a subgraph Gk = (Xk, E(Xk))

of G and a center ck ∈ Xk. The separation problem consists of first identifying
all connected components of Gk. This can be done very efficiently by breadth-
first-search (BFS) in O(|E|) as follows. Starting from any node i BFS (Cormen
et al. 1990) is applied to find a node j adjacent or reachable from i. This is
repeated until no more nodes can be reached from the previously formed node
set. At this point, this node set is one connected component of G and we
proceed iteratively starting from any other non-visited node. The procedure
stops when all nodes have been visited. BFS assures that this is accomplished
in O(|E|). Then, for each k = 1, ..., p, each of the connected components



New Models for Commercial Territory Design 497

Algorithm 2 SolveSeparationProblem(P, X)
Input:
P:= Instance of the TDP problem
X = (X1, X2, . . . , Xp) := A p-partition of V
Output: Cuts := Set of violated connectivity constraints
Cuts ← ∅
For (k = 1, . . . , p)

Obtain connected components S1, S2, . . . , St of G(Xk, E(Xk))

For each St such that ck #∈ St generate the violated cut and add it to Cuts

EndFor
Return (Cuts)

of Gk that does not contains the center ck is used to generate a violated
connectivity constraint in our problem. In other words, each component St of
Gk plays the role of set S in constraints (6). Algorithm 2 describes the steps
to solve the separation problem. Note that in our implementation, the BFS
algorithm is used for obtaining the connected components. This algorithm runs
in polynomial time.

In order to illustrate the IGCP-TDP algorithm consider an example with
n = 11 nodes and p = 2 territories (see the graph in Fig. 1). Suppose that
the solution to the relaxed problem (without connectivity constraints) after
applying branch and bound is depicted in Fig. 1,where the dotted lines collect
BUs belonging to the same territory and the nodes 4 and 5 are the territory cen-
ters. This solution corresponds to the 2-partition given by X1 = {1, 4, 6, 7, 11}

Fig. 1 Example of an
unconnected territory design
for p=2 and n=11
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with center in c1 = 4 and X2 = {2, 3, 5, 8, 9, 10} with center in c2 = 5, then the
variables have the following values:

x41 = x44 = x46 = x47 = x411 = 1,

x42 = x43 = x45 = x48 = x49 = x410 = 0,

x52 = x53 = x55 = x58 = x59 = x510 = 1,

x51 = x54 = x56 = x57 = x511 = 0;
xij = 0, ∀i, j ∈ V, i #= {4, 5}.

Given this solution, the separation problem (Algorithm 2) is solved to
identify those connectivity constraints (6) that are violated by this solution.
Applying the BFS algorithm, the connected components S1, . . . , St are iden-
tified on each territory. As can be seen from X1 the connected component
S1 = {6, 7} is unconnected from c1 then it induces a violated constraint which
is generated as

x42 + x43 + x45 + x49 − x46 − x47 ≥ −1

Similarity, in X2 the connected component S1 = {2} is unconnected from c2
and the violated constraint is given by

x51 + x56 − x52 ≥ 0

Following the ICGP-TDP procedure, we add the cuts (violated constraints)
to the relaxed model and it is solved again. We proceed iteratively until the
final solution gives us a connected territory design or a feasible solution is not
found. The latter means that the original problem is infeasible.

Note that, in each iteration, the number of aggregated cuts is equal to the
total number of unconnected subsets identified from the given solution. Within
a given iteration this number of identified unconnected subsets is bounded
by n; however, in the worst case the total number of these identified subsets
during the execution of the algorithm could be exponential. Nonetheless, in
practice this number is found to be relatively low as it will be seen in the
following section.

4 Computational results

The proposed ICGP-TDP method was coded in C++ and compiled with the
Sun C++ 8.0 compiler. The MILP relaxations are solved through CPLEX
11.2 and the IQP relaxations are solved by DICOPT, one of the most
popular methods for solving non-linear mixed-integer programs developed
by J. Viswanathan and Ignacio E. Grossmann at the Engineering Design
Research Center (EDRC) at Carnegie Mellon University (see Kocis and
Grossmann (1989) and Viswanathan and Grossmann (1990) for more details).
Two stopping criteria were used: by optimality gap (gap ≤ 5 × 10−6) and by
time (7,200 s). In order to speed up convergence, priorities were used on
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Table 2 Results of ICGP-TDP when applied to CTDP under the R_CTDP relaxation

Size Solved at Iterations Solved Cuts/inst Time (s)
(n, p) 1st iter (%) Ave Max (%) Ave Max Ave Max
(60, 4) 20 5.3 26 100 12.1 82 381 1,446
(80, 5) 10 5.4 14 90 12.4 43 2,682 7,200
(100, 6) 10 2.3 11 40 3.5 32 5,812 7,200
(150, 8) 0 – – 0 – – 7,200 7,200

the binary variables to ensure that xii are branched before than xij, i != j,
i, j ∈ V. Randomly generated instances based on real-world data provided by
the industrial partner were used. Each instance topology was generated by
using the generator developed by Ríos-Mercado and Fernández (2009). In this
work, the authors used historical information from the firm and obtained the
data distribution associated to the number of customers and sales volume. The
firm uses Euclidean distances between basic units as computed from their GIS.
We considered a tolerance τ (a) = 0.05, a ∈ A, and generated three different
instance sets as (n, p) ∈ {(60, 4), (80, 5), (100, 6)}. For each of these sets, 20
different instances were generated. Additionally, ten different instances of two
larger sets were generated for (n, p) ∈ {(150, 8), (200, 11)}. The codes and data
sets are available at http://yalma.fime.uanl.mx/∼roger/ftp/tdp/.

4.1 Evaluation of MILP models

We first evaluate linear models CTDP and MTDP when the relaxed mod-
els R_CTDP and R_MTDP, respectively, are used within the ICGP-TDP
procedure.

Tables 2 and 3 show the results for CTDP and MTDP, respectively. The
first column indicates the instance size tested. The second column shows
the percentage of instances that were solved at the first iteration (out of 20
except for the set (150, 8)), that is, the percentage of instances for which a
connected partition was found at the first iteration. The third column contains
the average and the maximum number of iterations per instance required by
the algorithm to find the optimal solution. The fourth column displays the
percentage of instances solved within the specified time limit. The fifth column
shows the average and the maximum number of cuts added per instance solved.

Table 3 Results of ICGP-TDP when applied to MTDP under the R_MTDP relaxation

Size Solved at Iterations Solved Cuts/inst Time (s)
(n, p) 1st iter (%) Ave Max (%) Ave Max Ave Max
(60, 4) 80 1.4 6 100 0.5 5 7 33
(80, 5) 70 1.4 4 100 0.5 4 53 235
(100, 6) 75 1.4 4 100 0.5 4 95 438
(150, 8) 75 1.8 5 80 1.6 6 1,900 7,200
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Table 4 Size of unconnected
subsets for the R_CTDP
relaxation

Size Cuts % Cuts with
(n, p) identified |S| = 1 |S| = 2 |S| = 3 |S| ≥ 4
(60, 4) 44 72.7 18.3 4.5 4.5
(80, 5) 65 58.5 20 7.7 13.8
(100, 6) 103 67 11.6 7.8 13.6
(150, 8) – – – – –

Finally, the last column displays information about the CPU time (average and
maximum) used per instance.

For model CTDP, Table 2 indicates that a very small proportion of the
instances were solved at the first iteration. As many as 26 iterations and 82
cuts were needed in the worst case to solve the problems of size (60, 4). At the
end of the procedure, all instances of the (60, 4) were solved optimally. 90% of
the (80, 5) set were solved optimally. However, the procedure struggled with
the larger sets. For the two smaller sets, around five iterations and 12 cuts were
needed on average. Note that, for a specific iteration the separation problem
has the property to identify more than one unconnected subset and it generates
all violated connectivity constraints at the same iteration. Note that for the
(150, 8) set, the procedure was unable to terminate a single iteration within the
time limit.

These statistics improve significantly for the MTDP model (Table 2). Except
for a very few cases in the largest set, all other instances were solved optimally.
A large proportion of these were solved at the very first iteration. On average,
this required less than 2 iterations and a very few cuts for obtaining optimal
solutions. This suggests not only that the LP relaxation of the median-based
model is tighter that the one of the center-based model, but also that solutions
to the R_MTDP relaxation yield near-connected solutions. This has a positive
impact on the overall solution time.

Another issue to investigate is to whether or not the introduction of
constraints (21) has a positive effect on strengthening the model. Recall
that constraints (21) eliminate unconnected subsets of size 1. Thus, in this
experiment we solved the very first relaxation only for every instance and
tallied the cardinality of all unconnected subsets for both CTDP and MTDP.
A summary of this experiment is shown in Tables 4 and 5. As we can see
in Table 4, most of the identified cuts for CTDP correspond to unconnected
subsets of cardinality equal to 1. For the (60, 4), (80, 5), and (100, 6) sets, the

Table 5 Size of unconnected
subsets for the R_MTDP
relaxation

Size Cuts % Cuts with
(n, p) identified |S| = 1 |S| = 2 |S| ≥ 3
(60, 4) 4 100 0 0
(80, 5) 6 83 17 0
(100, 6) 5 80 20 0
(150, 8) 6 83 17 0
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Table 6 Comparison of
relaxations R_MTDP and
R1_MTDP

Size Solved at 1st Cuts added Solved (%)
(n, p) iteration (%)

R R1 R R1 R R1
(60, 4) 80 100 9 0 20 100
(80, 5) 70 95 9 1 20 100
(100, 6) 75 90 9 2 20 100
(150, 8) 5 45 6 3 80 90

proportion of unconnected subsets of cardinality 1 is 72.7, 58.5, and 67.0%,
respectively. This proportion is even more dramatic for MTDP (see Table 5).
One can see that the number of total unconnected subsets is considerable
smaller than that of the R_CTDP relaxation. This confirms that the MTDP
model not only has a better LP relaxation, but it also favors connectivity, which
is a very important issue. Hence, these results clearly justify and motivates the
introduction of the valid inequalities given by (21) into the relaxed models.

The following experiment clearly illustrates this issue. We now solve model
MTDP under two different relaxations: R_MTDP and R1_MTDP (incorpo-
rating the valid inequalities). We identify these as R and R1, respectively.
Table 6 displays the results. The second and third columns show the number
of instances (out of 20) that were solved optimally at the very first iteration,
that is, by solving the first relaxed models for R_MTDP and R1_MTDP,
respectively. The fourth and fifth columns display the total number of cuts
added during the execution of the algorithm. The last two columns show
the percentage of instances that were optimally solved. As can bee seen,
relaxation R1 provides a more attractive choice in all senses. Therefore, the
introduction of constraints (21) into the relaxed model provides a stronger LP
representation of model MTDP. This has indeed a positive impact in solution
times.

4.2 Evaluation of IQP models

We now consider the IQP formulations QCTDP and QMTDP under the
R_QCTDP and R_QMTDP relaxations, respectively. In a similar fashion as
carried out with the linear models, we investigate the distribution of the cardi-
nality of the unconnected subsets when only the very first relaxation is solved.
Tables 7 and 8 display the results for QCTDP and QMTDP, respectively.

Table 7 Size of unconnected
subsets for the R_QCTDP
relaxation

Size Cuts % Cuts with
(n, p) identified |S| = 1 |S| = 2 |S| = 3 |S| ≥ 4
(60, 4) 662 68 21 6 5
(80, 5) 956 73 17 6 4
(100, 6) 1,340 77 17 4 2
(150, 8) 1,088 82 14 3 1



502 M.A. Salazar-Aguilar et al.

Table 8 Size of unconnected
subsets for the R_QMTDP
relaxation

Size Cuts % Cuts with
(n, p) identified |S| = 1 |S| = 2 |S| ≥ 3
(60, 4) 3 100 0 0
(80, 5) 5 40 20 40
(100, 6) 6 67 33 0
(150, 8) 5 60 40 0

The description is similar to that of Table 4. It can be seen that most of the
unconnected subsets have cardinality 1, which is a behavior also observed in
the linear models. Another observation is that the relaxation of the median-
based model provides solutions with a higher degree of connectivity that the
one provided by the center-based model. Hence a considerable less amount
of effort will be needed to eventually solved a median-based model with
connectivity constraints. These results clearly motivate the introduction of
valid inequalities (20) into the relaxed models.

We now evaluate the effect of incorporating constraints (20) into the relaxed
R1_QMTDP model. Table 9 shows the results when QMTDP is solved under
the corresponding R1_QMTDP relaxation. The second column shows the
percentage of instances that were solved at the very first iteration. The third
column displays the total average number of cuts added. Columns 4 through 6
gives information on the number of iterations needed to reach optimality. As
it can be seen, the addition of constraints (20) gives very competitive results as
little additional effort was needed for cut generation, with a small number of
iterations.

When attempting to carry out a similar experiment for the QCTDP model
under the corresponding R1 relaxation, it was observed that the LP relaxation
was still extremely weak. The procedure could not terminate a single iteration
within the specified time limit. The effect of adding the cuts resulted in even
higher running times. Thus, clearly effort did not result in a satisfactory payoff.

4.3 Comparing MILP and IQP

Clearly, we have seen that solving the quadratic models is faster than solving
the linear models. However, solving the quadratic model with local-optimum
methods no longer assures global optimality. Therefore, an important issue
to be investigated is precisely the trade-off between solution quality and

Table 9 Solution of QMTDP
under the R1_QMTDP
relaxation

Size Solved at Cuts Iterations
(n, p) 1st iter (%) added Min Ave Max
(60, 4) 95 1 1 1.1 2
(80, 5) 85 4 1 1.2 2
(100, 6) 95 1 1 1.1 2
(150, 8) 100 0 1 1.0 1
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Table 10 Comparison of
MTDP and QMTDP models
for instances in the set (60, 4)

Inst Objective value Gap Time (s)
MTDP QMTDP (%) MTDP QMTDP

1 5,305.57 5,306.00 0.01 4 2
2 5,451.68 5,463.00 0.21 4 2
3 5,507.88 5,553.00 0.82 10 2
4 5,935.67 6,114.00 3.00 4 6
5 5,303.20 5,303.20 0.00 3 2
6 5,253.94 5,280.00 0.50 33 3
7 5,460.18 5,855.00 7.23 4 3
8 5,309.96 5,314.00 0.08 4 2
9 5,224.51 5,225.00 0.01 2 3
10 5,350.15 6,140.00 14.76 3 2
11 5,150.91 5,152.00 0.02 3 2
12 5,597.50 5,705.00 1.92 6 2
13 5,731.99 5,732.00 0.00 3 3
14 5,462.96 5,869.00 7.43 5 2
15 5,332.77 5,759.00 7.99 6 2
16 5,399.54 5,499.00 1.84 14 2
17 5,602.86 5,603.00 0.00 3 2
18 5,773.96 6,299.00 9.09 4 4
19 5,543.45 5,544.00 0.01 17 2
20 5,767.54 5,768.00 0.01 4 2

computational effort. We apply the solution procedure to models MTDP and
QMTDP on 20 instances of data sets {(60, 4), (80, 5), (100, 6)} and ten instances
of data set (150, 8). Detailed results for instances of (60, 4) and (150, 8) are
shown in Tables 10 and 11, respectively. The fourth column shows the relative
optimality gap of the solution found under the quadratic model (that is, with
respect to the optimal solution found by the linear model). For the instances
marked with a star, the MILP could not find an optimal solution within the
specified time limit so a best integer solution is used instead.

As can be seen from Table 10, for 19 out of 20 instances the solution
found with the quadratic model falls within 10% of the optimal solution, and
60% of the solutions lay within 1% of optimality. Time is not an issue in
these sets as can be seen in the last two columns. However, for the larger
instances (displayed in Table 11), time becomes important. We can see how

Table 11 Comparison of
MTDP and QMTDP models
for instances in the set (150, 8)

Inst Objective value Gap Time (s)
MTDP QMTDP (%) MTDP QMTDP

1 9,511.76 9,979 4.91 1,137 9
2 9,404.60 (*) 9,509 1.11 7,200 29
3 9,125.61 9,130 0.05 90 32
4 9,359.00 9,646 3.07 147 30
5 9,506.58 10,494 10.39 455 42
6 9,039.06 9,088 0.54 78 25
7 9,819.18 10,017 2.02 1,842 29
8 9,202.13 (*) 9,550 3.78 7,200 34
9 9,670.90 9,972 3.11 730 28
10 9,570.58 9,794 2.33 125 26
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Table 12 Time comparison
for QMTDP and MTDP
models

Size MTDP time (s) QMTDP time (s)
(n, p) Min Ave Max Min Ave Max
(60, 4) 2 6.8 33 2 2.5 6
(80, 5) 8 53.2 235 4 5.6 12
(100, 6) 18 94.8 438 7 8.8 23
(150, 8) 78 1,900.4 7,200 9 28.4 42

time significantly increases for the MILP model. There are two instances where
time limit was reached when using the MILP model. When using the quadratic
model, all instances were solved within 1 minute of CPU time, delivering
optimality gaps of less than 5% in 90% of the instances. Thus, this makes the
quadratic model a very attractive choice for relatively large instances.

A summary of the comparison between MTDP and QMTDP models are
displayed in Tables 12 and 13. The computational effort is shown in Table 12
and the solution quality over four different data sets is shown in Table 13. As
we can see from these tables, CPU time employed for solving the quadratic
model is relatively low compared with the time used by the linear model.
Furthermore, the average relative optimality gaps for the quadratic model
are less than 4%. In many cases the solution to the quadratic model was less
than 1%.

In addition, we attempted to solve ten instances of size (200, 11) by using
both MTDP and QMTDP models. The ICGP-TDP procedure was able to
produce the optimal solution for four instances (using the MTDP model). In
contrast, by using the QMTDP model, the ICGP-TDP procedure reported
locally optimal solutions for nine out of ten instances within the specified time
limit (7,200 s). Table 14 displays each one of these large instances, where mark
(*) is used to identify those cases in which the optimization stopped by time
limit. For those cases, the best integer solution found is used to make the
comparison. Observe that the percentage of relative optimality between the
MTDP and QMTDP solutions is in the worst case equal to 10.56% and in the
best case it is equal to 1.15%. That means, the IQP formulation proposed in
this paper allows to solve larger instances than the MILP formulation by using
shorter optimization time.

Additionally, an instance with τ (a) = 0.05, a ∈ A; n = 280 and p = 9 was
generated. This instance was tested using the MTDP formulation and in the
first relaxed model (R_MTDP), the branch and bound reported a percent-
age of relative optimality equal to 14.68%, after 2 hours. This percentage
of gap is computed by [(BestInt(R_MT DP) − BestLB(R_MT DP))/BestInt

Table 13 Solution quality for
QMTDP

Size Gap (%)
(n, p) Min Average Max
(60, 4) 0.00 2.75 14.80
(80, 5) 0.01 2.61 8.15
(100, 6) 0.06 3.14 7.56
(150, 8) 0.05 3.13 10.39
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Table 14 Comparison of
MTDP and QMTDP models
for instance set (200, 11)

Inst Objective value Gap Time (s)
MTDP QMTDP (%) MTDP QMTDP

1 10,422.01 11,523 10.56 1,116 28
2 10,646.14 (*) 11,425 7.32 7,200 966
3 10,846.77 11,443 5.50 1,468 7,200
4 11,122.03 (*) 11,443 2.89 7,200 3,618
5 10,878.12 (*) 11,097 2.01 7,200 1,193
6 10,499.29 (*) 10,746 2.35 7,200 1,871
7 11,061.00 (*) 11,686 5.65 7,200 1,088
8 10,659.51 11,205 5.12 2,641 592
9 11,470.29 (*) 11,648 1.55 7,200 1,263
10 11,043.82 11,780 6.67 1,211 2,349

(R_MT DP)] × 100). The same instance was tested by using R1_QMTDP
and ICGP-TDP reported a connected solution in less than 4 min. Comparing
the objective value for QMTDP with the best lower bound found by branch
and bound, we computed a relative optimality of 7.15%. The percentage
of gap (relative optimality) was computed by [(Best(QMT DP) − BestLB
(MT DP))/Best(QMT DP)] × 100.

Finally, even the ICGP-TDP procedure (with QMTDP model) was tested
for an instance with n = 500 and p = 12 resulting in a locally optimal solution
for QMTDP without reaching the time limit of 2 h (7,200 s). The objective
value associated to this connected solution is equal to 27,113.42. In contrast,
using the MTDP formulation within the ICGP-TDP procedure we observed
that it stopped by time during the optimization of the first relaxed model
(R_MTDP). The best integer solution reported by B&B has an objective value
equal to 38,905.19 with a gap equal to 42.90%. Note that this solution is the
best found solution for the problem without connectivity constraints.

We conclude that the QMTDP model is a fast and attractive alternative to
find relatively good solutions also for large instances because it offers a good
compromise between time and quality.

5 Conclusions

In this work we have proposed new IQP models for the commercial territory
design problem with connectivity and multiple balancing constraints. These
IQP formulations use a significantly smaller number of binary variables. In
addition, we have developed an exact solution procedure (ICGP-TDP) based
on branch and bound and a cut generation strategy. The method can be applied
to both MILP and IQP models. This is the first exact algorithm developed to
date for this problem. The models were strengthen by the introduction of valid
inequalities that eliminate unconnected subsets of size 1. We have observed
empirically that most of the unconnected subsets found in the relaxed models
(relaxing the connectivity constraints) have cardinality equal to 1, so this
motivates the introduction of these valid inequalities. We empirically proved
that the cut did in fact helped to find connected territories faster.
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When the solution method was applied to solve instances under the linear
and quadratic models, the proposed IQP models showed a balanced perfor-
mance between quality and effort. For the larger instances, execution times
under the quadratic models were significantly lower that those observed under
the linear models. The solution quality of those obtained by the quadratic
model over all instances was in the range of 0.0–14.8%, and in most cases,
less than 5%.

We observed that the pMP objective is more LP-friendly than the pCP
objective. During the branch and bound process the linear relaxation for pMP
objective showed better performance than the linear relaxation for the pCP
objective. Furthermore, it was also observed that solutions obtained from the
relaxation of the median-based models had a very high degree of connectivity.
This had a very good impact on computational efficiency since very few
iterations were needed to find connected solutions as opposed to the center-
based models. Therefore, in the absence of a standard dispersion measure, the
pMP objective may be a good choice for other territory design problems that
have compactness as performance measure.

In this work, we efficiently solved instances with up to 150 BUs and eight
territories using MILP models. Literature review in territory design shows that
the largest instance with connectivity constraints solved optimally had no more
than 50 BUs (Garfinkel and Nemhauser 1970). As far as this particular com-
mercial TDP is concerned, our proposed method is the first exact optimization
scheme developed for the problem. For IQPs models, we obtained locally
optimal solutions for instances with up to 500 BUs and 12 territories. This
instance size is intractable under MILP formulations. One of the advantages
of the proposed approach is that it can be implemented relatively easy with
off-the-shelf MILP and IQP solvers.

There are several extensions to this problem that deserve attention. For
instance, this work is based on using Euclidean distances to represent distances
between cities. While it is true that in location problems replacing Euclidean by
network or shortest path distances can be done without loss of generality, this
cannot be done in this type of territory design problems due to the presence of
the connectivity constraints. It turns out that shortest path distances between
units are solution dependent because this shortest path must belong entirely
to the same territory. This makes the problem a lot more difficult to solve.
As seen in literature, the compactness measures based on Euclidean distances
provide a relatively good choice in the design stage. It is clear, however, that
using network distances would become more relevant in a posterior routing
stage.
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