-

Investigacion Operativa Vol. 4 No.1 Abril1994 5

A Guide to Implementing Tabu Search

Manuel Laguna '

Key words
Tabu search, n-queens problem, local strategies.

Abstract

In recent years the number of tabu search (TS) users has dramatically increased, as reflected
by the number of TS-related publications appearing in scientific journals. However, the
literature offers little help to researchers and practitioners interested in applying the tabu
search framework for the first time. This paper is intended to be a guide for those newcomers
to the tabu search field. The TS elements are described using pseudo-code "modules” in the
context of the n-queens problem. This combinatorial problem has been widely used as testbed
to develop and benchmark search procedures in the artificial intelligence area. Alternative TS
designs are presented and their relative merits are discussed.

Resumen

Recientemente, el nimero de usuarios de la técnica de bisqueda tabu ha aumentado
considerablemente, lo cual se refleja en el nimero de publicaciones relacionadas con éste
tema. Sin embargo, la literatura no ofrece mucha ayuda a aquellos cientificos y practicantes
interesados en aplicar la técnica de bisqueda tabu por primera vez. Este articulo pretende ser
una guia para las personas que son nuevas en el campo. Los elementos de la busqueda tabu
son descritos usando modulos en forma de seudo-programas en el contexto del problema de
las n reinas. Este problema combinatorio ha sido usado como prueba para desarrollar y
calibrar procedimientos de busqueda en el area de inteligencia artificial. El articulo presenta
disefios alternativos de busqueda tabu y discute su relativa importancia.

Received April 1994, accepted April 1994.
1 Graduate School of Businéss and Administration, Campus Box 419, University of Colorado,
Boulder, CO 80309-0419, Estados Unidos, E-mail: manuel@mayan.colorado.edu.

6 M. Laguna A Guide to Implementing Tabu Search

1. Introduction

The term tabu search (TS) is now familiar to many researchers and practitioners in the fields
of operations research and artificial intelligence. This paper is written for those who are
interested in tabu search and would like to implement it effectively. We do not assume that the
reader is familiar with tabu search and its components, and therefore we include a basic
introduction to this methodology in section 3.

In order to discuss TS implmentation issues, a combinatorial problem with a simple and
regular structure is desirable as an example. The n-queens problem provides an excellent
context for our discussion. The n-queens is considered a classical combinatorial problem in
the artificial intelligenge (AI) literature and has been extensively used as a benchmark for Al
search problem-solving strategies. In fact, this problem has even found some practical
significance in the area of VLSI testing and traffic control (Sosic and Gu 1989).

2. The N-Queens Problem

In simple terms, the n-queens problem consists of placing » queens on a »xn chessboard in
such a way that no two queens capture each other. In order for this to happen, no two queens
should be placed on the same row, the same column, or the same diagonal. If two queens are
placed such that they are able to capture each other, it is said that a "collision" has occurred.
Therefore, from an optimizaltion point of view the problem is to find a configuration (i.e., a
set of n cells where to place the queens) that minimizes the total number of collisions. The
optimal solution to this problem is obviously zero, since it is known that there exists at least,
one configuration for which no collisions occur. Alternatively, the problem may be viewed as
maximizing the number of queens that can be placed on a nxn chessboard subject to the
restriction that no row, column, or diagonal may contain more than one queen. In this case
the optimal solution is n. These two interpretations of the n-queens problem may be used to
formulate altenative 0-1 integer programming models. However, for our purposes this is not
necessary, instead we will represent the n-queens as a permutation problem,

Let the queens be indexed by the letter i (for i = 1,...,n), and let queen i be placed always on
the i” row. If we let n(i) be the index of the column where queen i is placed, then a
configuration is given by the following permutation:

I ={x(1),n(2),...,n(n)}

which fully specifies the exact position of the n queens on the chessboard. This representation
guarantees that no two queens will attack each other on the same row or the same column.
The problem is then to minimize the total number of collisions on the diagonals. Figure 1
shows a 4 x 4 chessboard that corresponds to the permutation IT={3,4,2,1}. Note that this
configuration has a total of 2 collisions (i.e., queens 1 and 2 as well as queens 3 and 4 are
attacking each other).

Investigacién Operativa Vol. 4 No.1 Abril1984 7

Figure 1: A 4 x 4 queen configuration.

Q

A relevant piece of information during the search will be the number of queens that are placed
on the same diagonal on a given configuration. Since the chessboard in the n-queens problem
contains 2n—1 negative diagonals and 2n -1 positive diagonals, two arrays (referred as d,
and d,) of size 2n—-1 will be sufficient to store this information. In order to identify each
diagonal, we note that the sum of the row index and the column index is constant on any
negative diagonal, and that the difference of these indexes is constant on any positive
diagonal. For example, queens 1 and 2 are placed on the positive diagonal indexed -2 (i.e.,
1-n(1) =2-n(2) = -2). Likewise, queens 3 and 4 are placed on the negative diagonal with
index 5 (i.e., 3+n(3) =4 +n(4) =5). Therefore, the indexes for the positive diagonals range
from 1-n to n-1, while the range for the negative diagonal is 2 to 2n. The description of the
permutation problem and the notation presented above are consistent with those given by
Sosic and Gu (1989).

3. Basic Tabu Search

Webster's disctionary defines fabu or taboo as "set apart as charged with a dangerour
supernatural power and forbidden to profane use or contact ..." or "banned on grounds of
morality or taste or as constituting a risk ...". Tabu search scarcely involves reference to
supernatural or moral considerations, but instead is concerned with imposing restrictions to
guide a search process to negotiate otherwise difficult regions. These restrictions operate in
serveral forms, both by direct exclusion of search alternatives classed as "forbidden," and also
by translation into modified evaluations and probabilities of selection.

The philosophy of tabu search is to derive and exploit a collection of principles of intelligent
praoblem solving. A fundamental element underlying tabu search is the use of flexible
memory. From the standpoint of tabu search, flexible memory embodies the dual processes of
creating and exploiting structures for taking advantage of history (hence combining the
activities of acquiring and profiting from information).

Before presenting implmentation details, we focus on the 7-queens problem to introduce and
illustrate the basic components of tabu search. First we assume that an initial solution for this
problem can be constructed, ¢.g., randomly, although in most cases it will be preferred to do it

8 M. laguna A Guide to Implementing Tabu Search

in some intelligent fashion (i.e., by taking advantage of some problem-specific structure).
Suppose the initial solution to the problem is the one shown in Figure 2.

Figure 2: Initial Permutation.

Column Indexes

The oradering in Figure 2 specifies that there is a queen in row 1 column 4, another in row 2
column 5, etc. The resulting configuration has a total of four collisions (i.e., queens pairs
(1, 2), 4, 5), (6, 7), and (2, 6) are on the same diagonals). TS methods operate under the
assumption that a neighborhood can be constructed to identify adjacent solutions that can be
reached from any current solution. Pairwise exchanges (or swaps) are frequently used to
define neighborhoods in permutation problems, identifying moves that lead from one solution
to the next. In our problem, a swap exchanges the position of two queens as illustrated in
Figure 3. Therefore, the complete neighborhood of a given current solution consists of the 21
adjacent solutions that can be obtained by such swaps.

Associated with each swap is a move value, which represents the change on the objective
funtion value (i.¢., the total number of collisions) as a result of the proposed exchange. Move
values generally provide a fundamental basis for evaluating the quality of a move, although
other criteria can also be important, as indicated later. A chief mechanism for exploiting s
memory in tabu search is to classify a subset of the moves in a neighborhood as forbidden (or
tabu). The classification depends on the history of the search, particularly as manifested in the
recency or frequency that certain move or solution components, called attributes, have
participated in generating past solutions. For example, one attribute of a swap is the identity
of the pair of elements that change positions (in this case, the two queens exchanged).

Figure 3: Swap of Queens 2 and 6.

As a basis for preventing the search from repeating swap combinations tried in the recent
past, potentially reversing the effects of previous moves by interchanges that might return to
previous positions, we will classify as tabu all swaps composed of any of the most recent pairs
of such queens; in this case, for illustrative purposes, the three most recent pairs. This means
that a queen pair will be kept tabu for a duration (tenure) of 3 iterations. Since exchanging

Investigacién Operativa Vol. 4 No.1 Abril 1994 9

queens 2 and 6 is the same as exchanging queens 6 and 2, both may be represented by the pair
(2, 6). Thus, a data structure such as the one shown in Figure 4 may be used.

Figure 4: Tabu Data Structure for Attributes Consisting of Queen Pairs Exchanged.

* Remaining tabu tenure 4

for the queen pair (2, 6) 5

Each cell of the structure in Figure 4 contains the number of iterations remaining unit! the
corresponding queens are allowed to exchange positions again. Therefore, if the cell (3, 5) has
a value of zero, then queens 3 and 5 are free to exchange columns. On the other hand, if cell
(2, 4) has a value of 2, then queens 2 and 4 may not exchange column assignments for the
next two iterations (i.e., a swap that exchanges these queens is classified tabu).

The type of move attributes illustrated here for defining tabu restrictions are not the only ones
possible. For example, reference may be made to separate queens rather than queen pairs, or
to the column assignments of queens, and so forth. Some choices of attributes are better than
others, when considered in combination with the tabu restrictions being imposed. (Attributes
involving created and broken links between immediate predecessors and successors are often
among the more effective for many permutation problems, including the traveling salesman
and a variety of single machine scheduling problems.)

To implement tabu restriction such as those based on queen pairs, an important exception
must be taken into account. Tabu restrictions are not inviolable under all cirlcumstances.
When a tabu move would result in a solution better than any visited so far, its tabu
classification may be overriden. A condition that allows such an override to occur is called an
aspiration criterion. The following shows 5 iterations of the basic tabu procedure that
employs the paired queen tabu restriction and the best solution aspiration criterion.

The starting solution has a total of 4 collisions, and the tabu data structure is initially empty
(i.e., it is filled with zeros, indicating no moves are classified tabu at the beginning of the
search). After evaluating the candidate swap moves, the top five moves (in terms of move
- values) are shown in the table for iteration 0 above.

T R R e

10 M. Laguna A Guide to Implementing Tabu Search

Iteration 0 (Starting Point)

Current solution Tabu structure Top 5 candidates
513(6|17]11]2 2 3 4 5 6 7 Swap Value
1 1 7121 *

Number of collisions = 4 2 . 21 4| -2

3 2 6 | -2

4 5 6 | -2

5 1 5| -1

6

This information is provided by an independent evaluation subroutine designed to identify
move values for this particular problem. (Of course, it is not necessary for the subroutine to
sort and identify each of the 5 best moves, since we are interested only in the best). To locally
minimize the total number of collisions, we swap the column assignments of queens 1 and 7,
as indicated by the asterisk. The total gain of such a move equals 2 collisions. Notice that the
choice of the swap (1,7) was arbitrary since the same gain may be achieved by exchanging |,
queens 2 and 4, 2 and 6, or 5 and 6. In this case the selection rule is such that among moves
with the same value the one found first is selected as the best of its class. Other alternatives
are possiable specially if the concept of frequency is applied (as shown later).

Iteration 1
Current solution Tabu structure Top 5 candidates
21513161714 2 3 4 5 6 7 Swap Value
1 BE _3_ 214 -1 *

Number of collisions = 2 2 1le6 !l o

3 BEE 21510

4 BEE 112 1|1

5 11311

6

Investigacién Operativa Vol. 4 No.1 Abril 1994 1

The new current solution has 2 collisions (i.e., the previous number of collisions plus the
value of the selected move). The tabu structure now shows that swapping the positions of
queens 1 and 7 is forbidden for 3 iterations. The most improving move at this step is to swap
2 and 4 for a gain of 1. Note that performing the exchange (1,6) or (2,5) results in a new
configuration with the same number of collisions as the old one, since the value associated
with either of these moves is zero.

Iteration 2

Current solution Tabu structure Top 5 candidates
216 |3|517(1]4 2 3 4 5 6 7 Swap Value
1 2 1|30 *
Number of collisions = 1 2 3 N T _7— T T
3 21411 |T

4 4 5 1

5 6 | 7|1

6

The new current solution becomes the best solution found so far with 1 collision. At this
iteration, two exchanges are classified tabu, as indicated by the nozero entries in the tabu
structure. Note that entry (1, 7) has been decreased from 3 to 2, indicating that its original

Iteration 3
Current solution Tabu structure Top 5 candidates
316 (2(5]7(1]4 2 3 4 5 6 7 Swap Value
1 3 e T 11360
Number of collisions = 1 2 2 1 710 | T
3 BEE 51711] *
4 61711 1
5 11212
6

TR,

12 M. laguna A Guide to Implementing Tabu Search

tabu tenure of 3 now has 2 remaining iterations to go. This time, none of the candidates
(including the top 5 shown) has a negative move value. Therefore, a nonimproving move has
to be made. The most attractive nonimproving move is the swap of queens 1 and 3 for a value

of zero. In some implementations of tabu search, where a large proportion of moves in a
neighborhood have a value of zero, researchers have found convenient to forbid the selection
of moves with zero move value. If we had imposed that restriction in our example, the move
(4, 5) would have been selected since the second and third moves in the list are classified

tabu.

The new current solutions has the same number of collisions as the previous one, as a result of
executing a move with a zero move value. The tabu data structure now indicates that 3 moves
are classified tabu, with different remaining tabu tenures. At the top of the candidate list, we
find the swap of queens 1 and 3, which in effect represents the reversal of the previous move
performed, and is classified tabu. The second move in the list is also classified tabu, and
although it has become more attractive from iteration 2 to iteration 3, its selection does not
lead the search to a better solution than the best found so far, and therefore this move is
discarded. The next most attractive move is then to swap queens 5 and 7, which results in an
increase in the total number of collisions.

Iteration 4
Current solution Tabu structure Top 5 candidates
3162|5417 2 3 4 5 6 7 Swap Value
1 2 4 | 7 {-1] *
Number of collisions = 2 2 1 T sl71lalT
3 1 510
4 21510
5 3 2 142 | T
6

The neighborhood of the current solutions includes an improving move that is not classified
tabu. The exchange of column assignments for queens 4 and 7 results in a reduction of 1
collision, and therefore it is selected as the best move in the current iteration.

investigacién Operativa Vol. 4 No.1 Abril 1994 13

Iteration 5
Current solution Tabu structure Top 5 candidates
316127415 2 3 4 5 6 17 Swap Value
1 1 1T 1|13 (-1]T*
Number of collisions = 1 2 R 5161 -1
s [BEDE:
4 3 1|60
s|]2 BERE
6 | -

As in iteration 3, at the top of the list is the swap (1, 3), which still represents the reversal of
the moved performed at iteration 2. However this time, performing this move produces a
solution with an objective function value that is superior to any previous one found. Therefore,
we make use of the aspiration criterion to override the tabu classification of this move and
select it as the best on this iteration. The resulting solution becomes the incumbent new best
solution and the process may continue, however the new solution already represents a !
configuration with the minimum possible number of collisions (i.e., zero).

Note that the chosen tabu restriction and tabu tenure of 3 results in forbidding only 3 out of 21
possible swaps, since the queen pair with a residual tenure of 1 always drops to a residual
tenure of 0 each time a new pair with tenure 3 is introduced. (By recording the iteration to
determine the remaining tabu tenure, it is unnecessary to change these entries at each step as
we do here.)

In some situation, it may be desirable to increase the percentage of available moves that
receive a tabu classification. This may be achieved either by increasing the tabu tenure or by
changing the tabu restriction. For example, a tabu restriction that forbids swaps containing at
least one queen of a queen pair will prevent a larger number of moves from being executed,
even if the tenure remains the same. (In our case, this restriction would forbid 15 out of 21
swaps if the tabu tenure remains at 3) Such a restriction is based on single queen attributes
instead of paired queen attributes, and can be implemented with much less memory, i.e., by an
array that records a tabu tenure for each queen separately. Generally speaking, regardless of
the type of restriction selected, improved outocomes are often obtained by tabu tenures that
vary dynamically, as described later.

The accompaniment of recency based memory with frequency based memory adds a
component that typically operates obver a longer horizon. To illustrate one of the useful

14 M. lLaguna A Guide to implementing Tabu Search

longer term applications of frequency based memory, suppose that 25 TS iterations have been
performed, and that the number of times each queen pair has been exchanged is saved in an
expanded tabu data stratucture. The lower diagonal of this structure now cointains the
frequency counts.

Iteration 26

Current solution Tabu structure Top 5 candidates

Swap Value Penalized

1234567 Value
1362754;%,___1_ i1|l6|o|1]|T
e 13]|1]s
315 e
Number of collisions =1 4 [[3 1 5 1 3 | *
52:: 2 | 7|15
o 8 3171 |4
TI_1413
Frequency

At the current iteration (iterations 26), the recency memory indicates that the last three queen
pairs exchanged were (1, 6), (3, 6), and (4, 7). The frequency counts show the distribution of
moves throughout the first 25 iterations. We use these counts to diversify the search, driving it
into new regions. This diversifying influence is restricted to operate only on particular
occasions. In this case, we select those occasions where no admissible improving moves exist.
Our use of the frequency information will penalize nonimproving moves by assigning a larger
penalty to swaps of queen pairs with greater frequency counts. (Typically these counts would
be normalized, as by dividing by the total number of iterations or their maximum value.) We
illustrate this in the present example by simply adding a frequency count to the associated
move value.

The list of top candidates for iteration 26 shows that the most attractive move is the swap
(1, 6), but since this queen pair has a residual tabu tenure of 3, it is classified tabu. The move
(1, 3) has a value of 1, and it might otherwise be the one next preferred, except that its
associated queens have been exchanged frequently during the history of the search (in fact,
more frequently than any other quenn pair). Therefore, the move is heavily penalized and it
looses its attractiveness. The swap of queens 1 and 5 thus is selected as the best move on the
current iteration. (Note that in this case the frequency-based penalities helped to differentiate
among moves with the same move value.) The strategy of instituting penalties only under
particular conditions is used to preserve the aggressiveness of the search. In addition,

frequencies defined over different subsets of past solutions, particularly subsets of elite

solutions consisting of high quality local optima, give rise to complementary strategies called

Investigacién Operativa Vol. 4 No.1 Abril 1994 15

intensification strategies. Intensification and diversification strategies interact to provide
fundamental cornerstones of longer term memory in tabu search. (An example of
implementing an intensification strategy is presented at the end of section 4.)

Following the first tabu search proposal, which was implemented under the name of
oscillating assignment heuristic (Glover 1977), researchers have expanded the number of
mechanisms employed by TS methods to achieve a balanced interplay between intensification
and diversification. Some of these procedures were designed in the context of particular
problems, but in general they can be adapted to other situation. Regardless of the
sophistication of particular TS implementations, the short term memory function is often
considered the core of the methodology, due to its design for allowing the search to go beyond
locally optimal points (as illustrated in the previous example). Hence, we will start by
discussing the implementation of a simplistic TS procedure for the n-queens problem based on
this component. In general, TS users consider very simple forms of the TS methodlogy in
their first attempts to solve a new problem, and it is not until enhanced outcomes are ‘desired
that more elaborate schemes are added. The discussion will be organized in three different
modules: Initializaltion, Move Evaluation, and Execution and Updating. A good practice is to
program these modules as separate functions (or subroutines), thus facilitating future
additions or changes to the method. In the following subsection we discuss each of these
modules in detail, using an experimental TS code for the n-queens problem. The code is
written in ANSI C, and an electronic copy can be otained via e-mail from the author.

3.1 Initialization

The initialization module is used to generate a starting solution (that may be feasible or not),
to calculate the objective function value of this sollution, and to initialize all data structures
(tabu or otherwise). For the n-queens problem, we have selected a random permutation to start
the procedure. Constructive approaches are often used in place of random starts, because they
generally provide a "better” starting point (measured by the objective function value). The
random permutation in our example is found by first generating n random numbers r,, and
then by letting the array IT contain the ascending order of the elements 7, Since the the
elements of » are random, then the elments of IT are also random.
Before the objective function (i.e., the total number of collisions) can be evaluated, the data
structures d, and d, must be initialized. The number of queens on each diagonal is originally
set to zero, and then for each queen the counts on the corresponding negatrve and positive
diagonals are mcremented as follows:
for (i=2,...,2n) {
d, (i) 4— 0;
dy(i-n-1)«0;

for (i=1,...,n) {
d,(i + n(i)) « dy (i + n(i)) +1;
d, (i— 7(i)) & d,y (i — 7(i)) +1;

16 M. Laguna A Guide to Implementing Tabu Search

Once the arrays d, and d, have been initialized, the objective function may be calculated as
follows:

collisions « 0;
for (k=2,...,2n)
collisions <« collisions + max (0,d, (k) -1) + max (0,d,(k—-n-1)-1);

Note that the number of collisions on a particular diagonal is given by the maximum between
zero and the number of queens placed on the diagonal minus one.

Finally, the tabu data structure is initialized. As discussed earlier, the tabu data structure is
intimately linked to the choice of the move mechanism and the move attributes (for defining
tabu restrictions). To be consistent with our previous example, we choose swaps as the move
mechanism and gueen pairs as the move attrributes. A useful tabu data structure in this case
takes the form of a "time stamp” that indicates the interation number at which a move looses
its tabu status. Specifically, the two dimensional array tabu_time is created, where the (i,;)
element of this array contains the iteration number in which the queen pair (i,j) looses its
tabu status. Therefore, at the beginning of the search , fabu_time must be initialized to zero:

for (i=1,...,n-1)
for (j=i+l,...,n)
tabu_time (i,j) « 0.

Similar move attributes may be defined to create different tabu restrictions. In occasions the
same tabu data structure may be preserved, by changing the definition of its elements. An
example of this is given in section 4.

3.2 Best Move

One of the main differences between Monte Carlo methods, such as simulated annealing, and
tabu search is the aggressive orientation of TS. Tabu search methods are designed to select at
each step what is considered the best move available given the current search state. In basic - -
procedures the rule of selecting the "most improving" move or the "least nonimproving" move -
is generally followed (as we did in the first 5 iterations of our example). However, other
variants are possible that might lead to more powerful procedures. We will examine some of
these options in sections 4 and 5. ‘

The best move module is computationally more expensive than any other module in most TS
procedures. In our example, finding the best swap move as defined above requires O(n?)
time. Therefore, it is extremely important that a computationally efficient procedure is used to
evaluate the merit of each move. (This evaluation is commonly referred to as move value,
which as before, it represents the change on the objective function value.) In addition to
implementing efficient move evaluators, particular attention must be put to designing memory
structure that allow the evaluation of only a subset of moves (i.e., those whose value changes
as a result of executing the "best" move at any given iteration).

Investigacién Operativa Vol. 4 No.1 Abril 1994 17

Another functional characteristic of this module consists of checking the admissibility of
moves. A move is admissible if it is non-tabu or its tabu status is overridden by the aspiration
level criterion being used. The most simple form of this criterion (and also the one most
widely used) is the one employed in our example, i.e., the one that renders a tabu move
admissible if its execution leads to a solution that is better than the best found so far. The
search for the best admissible move is done by the following partial pseudo-code:

move_value < n+1
for (i=1,....,n-1) {
for (j=i+1,...,n) {
value « evaluate (i,j,I1,d,,d,),
if (tabu_time (i, j) <iter or ¢_curr + value < c_best) {
if (value < move_value) {
move_value « value;
move_i « i,
move_j « J,

}

In our implementation, the best move value found is originally set to n+1, which is the
maximum possible number of collisions (when each queen collides on both of its diagonals).
Then the value of each possible swap move is calculated by the evaluate function, which
requires the indexes of the queens that participate in the exchange, the current permutation,
and the number of queens on each diagonal. The evaluation of a move is an operation that
requires constant time (i.e., it does not depend on n), since only eight diagonals need to be
checked (i.e., four diagonals for each of the queens participating in the exchange). After a
move is evaluated, its tabu status is checked. The swap of queens i/ and j is tabu (under the
current tabu restriction) if its fabu_time is greater than or equal to the current iteration
number (iter). The candidate moves that become admissible are those that are not tabu, or the
aspiration criterion overrides their tabu status (i.e., when c_curr + value < c_best, where
c_curr and c_best are respectively the total number of collisions in the current and best
configurations). If an admissible move has a better value than the current best (i.e., value <
move_value), this move becomes the new best and is stored on the structure move that has the
elements i, j, and value. This structure contains all the information necessary to execute the
best move and update both the current configuration and the corresponding objective function
value.

Traditionally in the literature the notion of a best move corresponds to a move that yields the
best objective function change, and often the convention is relied on for convenience.
However, the TS philosophy more broadly views "best"to be a context, which encompasses a
variety of dimensions in addition to objective function change. For example, in some problems

18 M. Laguna A Guide to impiementing Tabu Search

the relative objective function change produced by a move is a poor indicator of its quality (in
terms of the likelihood that it will lead to an elite local optimum). For problem classes where
this is true, a move that yields any objective function improvement satisfying a reasonable
threshold may be considered equivalent to a best move. (A simple approximation is to rely on
a first improving move for such problems.) Greater sophistication, by differentiating the
relative contribution of different move attributes to the overall quality of a move (which is
made possible in TS by the use of attribute based memory), can lead to improved outcomes.
An example is provided in Laguna, et al. (1991).

3.3 Executing a Move and Updating

The execution of the best move modifies the current trial solution. In this module it is also
customary to update data structures that are directly affected by changes in the current
solution. For example, in single machine scheduling, it is useful to store the contribution
towards the objective function value of individual jobs. This contribution clearly depends on
the current schedule and must be updated after a move is performed. Similarly, in the context
of the n-queens problem, the number of collisions on each diagonal (d, and d,) must be
updated. The execute_move function in the appendix shows both the updating procedure for
the eight diagonals involved in the swap of the queen pair (i,) and the actual modification of

the current permutation IT.

The updating of the tabu structure is in this case a very simple operation. The attributes of the
swap move are stored on the structural variables move_i and move_j. Then, tabu_time must be
updated as follows in order to impose a tabu status on the exchange (i,;) for tabu_tenure
iterations:

tabu_time (move_i, move_j) « iter + tabu_tenure,

where iter is the current iteration number. Note that the tabu_tenure value used in our
example was 3, and it is often referred to as the "short term memory size." Also note that, the
update must be performed before executing the move (i.¢., before exchanging the positions of
move_i and move_j). Finally, the updating of the best solution found so far may be performed
by simply copying the vector IT onto the vector m* (which contains the best configuration
seen during the search), and the value ¢ curr onto c_best.

4. Additonal Tabu Search reatures

A popular way of increasing the power of a TS procedure is to devise different move
mechanisms that can be used either separately or simultaneously during a given search. One
possibility in the current context is to introduce the use of insert moves. Figure 5 illustrates
th'e effect of an insert move that modifies a permutation IT = {3, 4, 2, 1} into the permutation
IM1=¢4,2731}

Although the mechanisms and strategies in our implementation are based on a TS procedure
that employs swap moves, the general structure would be identical for a procedure based on
insert moves (or one that is based on both kinds of moves).

Investigacién Operativa Vol. 4 No.1 Abrit1994 19

Figure 5: Effect of an Insert Move that Transforms IT into IT.

1 2 3 4
3
I 4 | 2 |1 | .
2| | -
o | 4| 21|31 Q
3 | Q4=
4 | Q

Another possible modification to our basic procedure consists of redefining the tabu
restrictions. For example, a different tabu restriction could be such that it prevents a queen
from occupying a specific column. The tabu_time array previously defined can also be used to
impose this restriction. In this case, the (i,j) element of the tabu_time matrix contains the
iteration number at which queen i is allowed to return to column j. The initialization process
should then blank the entire tabu_time matrix (instead of only the upper diagonal as done in
the previous case). To enforce this new tabu restriction, the first if statement of the best move
function (see section 3.2) must be modified as follows:

if (tabu_time (i, 7(j)) and tabu_time (j, n(i)) <iter or c_curr + value < c_best)

This condition checks that both queens are allowed to be placed on the proposed columns. If
one of the positions is tabu, the whole move is classified tabu. Alternatively, the and operator
in the if statement may be changed to an or, in order to create a less restrictive tabu structure.
The updating procedure must be also modified , in order to record the appropriate move
attributes in the tabu data structure. The updates are performed as follows:

tabu_time (move_i, m (move_i)) « iter + tabu_tenure,
tabu_time (move_j, m (move_j)) « iter + tabu_tenure.

The tabu_time array now indicates that queen move_i is not allowed to be assigned to column
n(move_i) for tabu_tenure iterations, in the same way that queen move_j is not allowed to be
assigned to column n(move_j) for the same number of iterations.

Other mechanisms that may improve performance are related to an increase in search
diversification. One frequently used strategy to achieve this (i.e., to encourage the method to
search unexplored regions), is to implement a long term memory function via frequency
counts (as shown at the end of our example in section 3). A two-dimensional array
(freq_move) may be created to store the number of times a particular swap has been executed.
This array must be blanked by the initialization module, and after a swap of the queen pair
(move:_i, move_j), must be updated as follows:

20 M. Laguna A Guide to Implementing Tabu Search

Jreq_move (move_i, move j) « freq _move (move_i,move j)+ 1.

The information contained on the freg move array may be used to create a penalized move
evaluation function (as in iteration 26 of our example). A simple form of this function is:

penalized value « value + weight*freq_move (i, j);

where weight is a parameter that may be empirically adjusted (and it was set to 1 in the
example). The purpose of this function is to penalize frquently executed moves with the goal
of directing the search to configrations that have not been visited before. As mentioned
earlier, the penalized function may be only used in non-improving regions (i.e., search states
for which no improving admissible move is available). If saving computer memory is a
concern, the lower diagonal of the tabu_time array can be used to store frquency information.
When the exchange of columns between queen move_i and queen move j is selected, its
recency information is stored in the cell location tabu_time (move i, move j), while its
frequency inforamtion is stored in tabu_time (move_j,move_i).

An alternative form of frequency count may be otained by defining freq confg(i,j) to be the
number of times that queen i has been placed on column j throughout the search. This
information then is used to devise a re-starting procedure where the probability for queen i to
be placed on column j is inversely proportional to freq confg(i,j). The updating of
Jfreq_confg in this case is an O(n) procedure, since the position of each queen must be
recorded at every iteration.

The only search parameter of our basic tabu search implementation is the tabu_tenure. The
value of this parameter must be adjusted to prevent the search from cycling (i.e., from
indefinitely repeating the same sequence of moves) and to allow enough flexibility (as :
measured by the percentage of available moves at any given iteration). In an attempt to
decrease the probability of cycling and the dependency of TS methods on fixed values of
tabu_tenure, some researchers have incorporated what is known as dynamic tabu tenures.
This strategy has bee implemented both in a random fashion (Taillard 1991) and also using
deterministic patterns (Glover and Hubscher 1991). A random implementation, for example,
may be such that the tabu_tenure parameter is replaced by tabu_max and tabu_min. Then,
tabu_tenure is calculated as follows:

tabu_tenure < tabu_min + uniform (tabu_max — tabu_min),

where uniform(x) is a function that returns a random integer uniformly dis.ributed between
zero and x. The tabu_tenure value is changed every factor*tabu_tenure iterations, where
Jactor becomes an additional search parameter. Typical values for factor range between 2 and
3. Alternatively, a random fabu_tenure could be assigned to every move that is being
classified tabu. This option avoids the need for adjusting the factor parameter.

Another form of dynamic tabu tenures is such that the value of tabu_tenure is made
move_dependent. For example, suppose that queen i collides more times when placed on
column (/) than when placed on column n(j), also suppose that the opposite is true for queen
J. Then a move-dependent strategy may be to allow queen j to return to column n(y) faster than
queen / is allowed to comeback to column n(J). If the standard tenure is given by tabu_tenure,

Investigacién Operativa Vol. 4 No.1 Abril 1994 21

then one way of achieving the move-dependent strategy is to assign the tabu tenure values for
each move reversal as follows:

tabu_time (move_i, n (move_i)) « iter + tabu_ternure

tabu_time (move_j, & (move_j)) « iter + tabu_ternure/2.

More sophisticated forms of the move-dependent tabu tenure strategy are possible, for
example by making the percentage of tabu_tenure (which is fixed to 100% and 50% above) a
function of the move value.

For some applications it is not feasible to evaluate the entire neighborhood as defined by the
move mechanism. In this case, candidate list strategies are often employed as a way of
accelerating the best move selection. These strategies may be designed to take advantage of
special problem structures. For example, for scheduling problems with deadlines, the
candidate list of swaps moves may be reduced by considering only those pairs of jobs whose
absolute deadline difference is less than a given value. In the n-queens problem, a candidate
list of moves may be generated by considering exchanges of only those queens that participate
in collisions at a given iteration. Moves are then drawn from the list for a number of fixed
iterations at the end of which the list is rebuilt. For example, suppose that at the beginning of
the search in a 7-queen problem, queens 1, 5 and 7 are the only one participating in collisions.
Then for the next, say, three iterations, the candidate list of moves will consist only of those
exchanges that contain queens 1, 5 and 7. At the fourth iteration a search on the entire
neighborhood is performed to reconstruct the list of the queens that are participating in
collisions.

Another strategy that is also common (and easier to implement) consists of selecting the first
improving move available or the least non-improving one. In our example, this strategy
means that the best_move function would require O(n?) evaluations only in the worst case
(i.e., when no improving move is found). To implement this change, the following line must
be added at the end of each of the two for-loops in the pseudo-code of section 3.2:

if (move_value < 0) break;

where, as before, move_value contains the value of the best admissible move found so far. An
agressive version of the first improving strategy can be designed by extending the local search
once the first improving move has been detected. For example, suppose that the first
improving move consists of swapping queens / and j, then a more aggressive procedure would
select the most improving move that exchanges the positions of either queen i or /.

Finally, some TS methods also include additional forms of search intensification. This
strategy relates to intermediate memory functions. The general idea here is to identify solution
structures that result in "good" objective function values, where the sense of "goodness" may
change as the search progresses. Components of these structures may be encouraged tc
become part of the current solution by modifying evaluation criteria to favor their inclusion, or
may more forcibly be injected to "seed" the values of certain variables or location of certain
elements. When these component structures are present, then associated elements of the
solution may be "locked," and an intensified search performed on the free elements. For

22 M. laguna A Guide to Implementing Tabu Search

example, in production scheduling problems some job sequences may frequently appear as
part of good solutions (which could be defined as local optima with objective function values
that are only marginally different than the one corresponding to the best schedule found so
far). The set of jobs that belong to these sequences are placed on an intermediate memory that
prevents them from being moved, and the search continues on the set of "free" jobs. A
termination criterion, such as a fixed number of iterations, is set to finish the intensification
period.

Another form of intensification is possible in our examaple by using information from a
modified freq confg array (referred to as freq good confg). After a move is executed, the
frequency counts on this array are only updated when the current solution is percent away
from the best. The updating may be performed in the following way:

if (c_curr <= c_best* (1+ percent))
for (i=1,...,n)
Jreq_good_confg (i, n(i)) « freq good confg (i, n(i))+1

Then, while intensifying the search, the best move selection may be modified to forbid
exchanges of queens that are placed on columns with a "high" frequency count on the array
Jreq_good_confg (where "high" is defined in terms of the maximum frequency count on the
array).

In this section we have described some additional components that can be used to enhance the
performance of TS methods. It is important to note that these additional levels of
shophistication do not come "for free." They usually add to the computational complexity of
the method, and at the same time they generally increase the number of parameters that ?
require adjustment.

5. Hybrid Approaches

An intriguing approach to solving hard optimization problems is the development of hybrid
search heuristics. The main idea behind this approach is to combine two or more methods in
such a way that the resulting procedure is more effective than any of its components alone. In
addition to tabu search, methodologies such as genetic algorithms (GAs) and simulated
annealing (SA) are often candidates for the creation of hybrid procedures. Lin, Kao, and Hsu
(1991) integrate GAs and SA to solve traveling salesman problems; Whitley and Hanson
(1989) use a GA to optimize neural networks; Fox (1992) creates a hybrid approach by
combining GAs, SA, and TS; and Glover, Kelly, and Laguna (1992) study ways of exploiting
the similarities and differences between GAs and TS.

For illustration purposes, suppose that it is desired to create a search method that employs an
SA sampling procedure embedded in a TS framework. One way of implementing such hybrid
procedure within the context of the n-queens problem follows. We simply substitute the best
move module presented in section 3.2 by the following pseudo-code:

Investigacién Operativa Vol. 4 No.1 Abril 1984 23

accept_move « 0;
do {
(i,j) « pick_two (n);
value « evaluate (i,j,I1,d,,d,),
if (tabu_time (i, j) < iter or c_curr + value < c_best)
move_value « value,
move_i « i,
move_j « j,
accept_move « 1
3
} while (accept_move = 0),
r « uniform (1);
if (r> exp (-move_valuelt)
accept_move « 0
else :
tet*f,

First note that the indicator variable accept_move has been added to the memory structure
that contains the information related to the "best" move. The "do-loop" is performed until an
admissible move is found under our standard tabu restriction. (The if statement within the
loop may be replaced by the one presented at the beginning of section 4, in order to enforce an
alternative form of the tabu restriction.) The pick_two function is a simple procedure that
returns two integers randomly selected between 1 and n, such that j > i. Once an admissible
move is found, it is accepted with probability e-4/*, where A is the move value and ¢ is the
current temperature. The function wniform (x) returns a random real value uniformly
distributed between 0 and x. If the move is not accepted the indicator variable accept_move is
switched back to zero, otherwise its value remains as one, and the temperature is decrease by a
factor /. In this context, typical values for the starting temperature ¢ range from 1 to 2, while
the values for /' range between 0.9 and 0.99. The initial ¢ value and the f factor value define
what is known in the simulated annealing literature as the temperature schedule.

The hybrid approach presented above differs from the "pure” tabu search procedure in that an
iteration may or may not result in a move being executed. When a move is not accepted, the
main TS iteration is still performed (i.e., remaining tabu tenures for tabu moves are modified),
however the trial solution is not altered. Due to the sampling nature of the hybrid approach,
an iteration of this procedure genrally requires less computational effort than in the "pure” TS
case. Note that the hybrid procedure incorporates an additional diversification component by
means of randomness, but this approach lacks the aggressiveness typical to TS methods.

It is also appropriate to point out the differences between this hybrid procedure and a method
called probabilistic tabu search. In probabilistic TS, the neighborhood of a trial solution is
fully or partially (if a candidate list is used) explored, and moves are ranked according to a
given criterion (e.g., move value). Then, a move is selected as best using a probability
distribution that assigns higher probability of selection to those moves with higher rank.

24 M. Llaguna A Guide to Implementing Tabu Search

Therefore, an iteration of this method always results in a move being executed. Probabilistic
TS methods preserve the aggressive orientation of the tabu search framework, while
incorporating a random element for diversification purposes. For more details on this form of
tabu search see Glover (1989).

6. Conclusions

We have undertaken to illustrate and discuss implementation issues that relate to most tabu
search applications. For this purpose, we have presented a detailed description of a tabu
search implementation for the solution of the n-queens problem, showing how to incorporate
additional TS strageries into a basic mehtod, and discussing how much such strategies may
affect the performance of the resulting parocedures.

An interesting extension of the method presented here consists of allowing the search to
continue after finding the first queen configuration with zero collisions. In fact, many Al
search procedures are tested for their ability to find all solutions to the n-queens problem for a
given n. Long term memory functions and other advanced TS mechanisms may be expected to
be useful for solving this more challenging problem.

Acknowledgment

I would like to tank Fred Glover and Bill Stewart (who honored us by taking his sabbatical
year at the University of Colorado) for their valuable comments and criticisms.

References

(1] FOX, B, "Integrating and Accelerating Tabu Search, Simulated Annealing, and Genetic Algorithms,"
Annals of Operations Research, 41 (1992), 47-67.

[2] GLOVER, F., "Heuristics for Integer Programming Using Surrogate Constraints," Decision Sciences, 8
(1977), 156-166.

[3] GLOVER, F,, "Tabu Search - Part L," ORSA Journal on Computing, 1, 3 (1989), 190-206.

[41 GLOVER, F., "Tabu Search: A Tutorial," Interfaces, 20, 4 (1990) 74-94.

[5] GLOVER, F. and R. HUBSCHER, "Applying Tabu Search with Influential Diversification to
Multiprocessor Scheduling,” to appear in Computers and Operations Research, 1991.

[6] GLOVER, F, JP. KELLY, and M. LAGUNA, "Genetic Algorithms and Tabu Search: Hybrids for
Optimization,” to appear in Computers and Operations Research, 1992.

[71 LAGUNA, M, JP. KELLY, JL. GONZALEZ-VELARDE, and F. GLOVER, "Tabu Search for the
Multilevel Generalized Assignment Problem,” to appear in the European Journal of Operation Research,
1991.

[8] LIN, F-T, C-Y KAO, and C-C HSU, "Incorporating Genetic Algorithms into Simulated Annealing," Dept.
of Computer Science and Information Engineering, National Taiwan University, 1991.

[9]1 SOSIC, R. and J. GU, "A Polynomial Time Algorithm for the N-Queens Problem,"” SIGART Bulletin, 1, 3
(1990), 7-11.

~

Investigacién Operativa

Vol. 4 No.1 Abril 1994 25

(10] TAILLARD, E., "Robust Taboo Search for the Quadratic Assignment Problem," Parallel Computing, 17

(1991), 443.

[12] WHITLEY, D. and T. HANSON, "Optimizing Neural Networks Using Faster, More Accurate Genetic

Search," Computer Science Department, Colorado State University, 1989.

