Available online at www.sciencedirect.com

: . S IOURNAL.
ScienceDirect S OF OPERATIONAL
RESEARCH

i

e vnelies
ELSEVIER European Journal of Operational Research 180 (2007) 997-1010

www.elsevier.com/locate/ejor

Discrete Optimization

Designing delivery districts for the vehicle routing problem
with stochastic demands

Dag Haugland ?, Sin C. Ho ?, Gilbert Laporte ®*

* Department of Informatics, University of Bergen, N-5020 Bergen, Norway
Y Distribution Management, HEC Montréal, 3000 chemin de la, Cote-Sainte-Catherine, Montréal, Que., Canada H3T 2A7

Received 9 January 2004; accepted 9 November 2005
Available online 30 June 2006

Abstract

This paper considers the problem of designing districts for vehicle routing problems with stochastic demands. In par-
ticular, demands are assumed to be uncertain at the time when the districts are made, and these are revealed only after the
districting decisions are determined. Tabu search and multistart heuristics for this stochastic districting problem are devel-
oped and compared. Computational results show that tabu search is superior over multistart.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Districting; Vehicle routing; Tabu search; Stochastic programming

1. Introduction

Districting involves partitioning customer locations into districts according to some criteria. In general,
these criteria include contiguity and balance constraints. Each district is independently responsible for the
operations performed within its borders. One possible operation is the determination of vehicle routes. From
a planning perspective, there is a fundamental difference between districting and routing. While districting
decisions are made at a strategic or tactical management level, routing decisions are operational and made
on a regular basis. It is possible to achieve long-term savings when designing districts because of the impact
of this decision on routing. Some typical applications of districting include the design of political constituen-
cies (Bozkaya et al., 2003), of sales territories (Fleischmann and Paraschis, 1988; Skiera and Albers, 1998;
Drexl and Haase, 1999), of emergency and health care zones (Pezzella et al., 1981; Blais et al., 2003), of school
boards (Ferland and Guénette, 1990), of police districts (D’Amico et al., 2002), etc. In this paper, we focus on
the design of delivery districts for the vehicle routing problem with stochastic demands.

The vehicle routing problem (VRP) is defined on a complete graph ¥ = (77, .o/), where ¥~ = {0, 1, ..., n}is the
set of vertices with 1,. . .,n representing customers, and 0 denoting the depot, and .o/ = {(i,j) : i,j € ¥ ,i # j} is

* Corresponding author. Address: Centre de recherche sur les transports, Campus de I’Université de Montréal, Pavillon André-
Aisenstadt, Suite 3520, Montreal, Que., Canada H3T 1JA. Tel.: +1 5143436143; fax: +1 5143437121.
E-mail addresses: dag@ii.uib.no (D. Haugland), sin@ii.uib.no (S.C. Ho), gilbert@crt.umontreal.ca (G. Laporte).

0377-2217/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2005.11.070

mailto:dag@ii.uib.no
mailto:sin@ii.uib.no
mailto:gilbert@crt.umontreal.ca
roger
Sticky Note
No 3

998 D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010

the arc set. With every vertex i > 0 is associated a nonnegative demand D,. With each arc (,) is associated a least
travel cost ¢;; so that (c;) satisfies the triangle inequality. A fleet of m homogenous vehicles of capacity ¢ is sta-
tioned at the depot. The classical VRP consists of designing m delivery routes such that (i) every route starts and
ends at the depot; (ii) every customer is visited exactly once; and (iii) the total demand of any vehicle route does
not exceed g. An overview of the VRP can be found at Laporte and Semet (2002) and Gendreau et al. (2002).

In this article we consider the stochastic vehicle routing problem (SVRP), in which demands D; are random
variables. (Other classes of stochastic VRPs, namely with random travel times or customer presence are
described in Gendreau et al. (1996).) In the SVRP, vehicle routes are planned in the first stage, and demands
are only revealed later. As a result, some vehicle routes may violate the capacity constraints, i.e. route failures
may occur. There exist different recourse policies to handle these situations. One possible policy is to follow the
planned route until the vehicle is emptied, return to the depot to replenish, and then continue with the deliv-
eries at the customer on the planned route where the failure occurred. Other policies, producing lower second
stage costs, consist of planning preventive breaks (returns to the depot) in anticipation of future higher
demands or of reoptimizing the remaining portion of the planned route after each customer visit (see, e.g.,
Dror et al., 1989).

We consider the problem of partitioning a set of customers into at most m contiguous districts such that all
customers within the same district are serviced by the same vehicle. The allocation of customers to districts is
fixed, even if a different district solution could prove more cost effective if a different demand pattern
occurred. The actual demand is observed only after the districts have been defined, and a travel plan must
be produced within each district. This approach makes sense from a managerial point of view since district
boundaries tend to remain the same over time while customer demand varies from day to day. Such situa-
tions arise commonly in contexts where delivery districts are fixed and defined by grouping together smaller
units such as postal code areas. The idea of having districts is usually motivated by the drivers’ need to be
acquainted with their area and customer base. Parcel and furniture delivery districts are prime examples of
this type of arrangement.

Since we assume that routing decisions are not fixed until the demand is observed, the VRP to be solved in
the route planning phase is deterministic. Demands are revealed before the vehicles leave the depot, and our
recourse policy is to plan breaks so as to minimize the routing cost. The breaks must be positioned such that
the total demand realized in each subtour does not exceed the vehicle capacity. In the first stage, however,
demand must be considered as a stochastic variable, and the goal is to define the districts in such a way that
the expected total travel cost is minimized. A formal description of the problem is provided in Section 2.

Solutions fulfilling this goal typically consist of districts leaving a fair amount of flexibility in the routing
decisions, that is an ability to adjust to the actual demand. The most flexible partition of the customers is obvi-
ously obtained by defining one all-inclusive district and leave the others empty. This would however lead to
extreme expected travel cost for one district, while there would be no cost associated with the others. In order
to balance the districts more evenly, we impose the constraint that the districts have to be constructed in such a
way that the actual travel cost within each district never exceeds a given upper bound. Without such a con-
straint the planned solution would always consist of a single district, which does not make much practical
sense.

The remainder of the paper is organized as follows. Section 2 provides a formulation of the model. The
approach of approximating the expected cost is described in Section 3. A tabu search heuristic and a multistart
heuristic are presented in Sections 4 and 5, respectively. This is followed by computational results in Section 6,
and by the conclusion in Section 7.

2. Model formulation

The problem just described can be modeled as a two-stage stochastic program with recourse. In the first
stage, the districting decisions are made, while in the second stage one VRP is solved for each district. The
constraint relative to the composition of a district is that the travel cost is no larger than a given number.

Assure that the demands D,...,D, are independent stochastic variables. For S C #"\ {0}, let A(S,D)
denote the stochastic routing cost function associated with the demand vector D = (Dy,...,D,), let Q2 be the
set of all realizations of D, and for d € Q let f{S,d) denote the routing cost given the realization d. Also let

D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010 999

E[X] be the expected value of a random variable X, and P(&) the probability of an event &. Given an upper

bound ¢ on the travel cost in each district, we seek a partition {S,...,S,,} of 7"\ {0} into districts (some of
which may be empty) of least expected routing cost, i.e., we solve
min Elf(S;,D 1
i, DS D) (1)
s.t. f(S;,d)y<t j=1,...,m, deQ. (2)

Note that the removal of (2) makes {Sy,...,S,} = {7\ {0},0,...,0} an optimal solution (see Section 1). It
can be argued that (2) could be relaxed to either a probabilistic constraint stating that P(f{:S;, D) < ¢) is to be
above some lower bound, or to the constraint E[f{(.S;, D)] < t. However, complying with the conventional format
of two-stage recourse problems, we introduce neither probabilistic constraints nor constraints involving
expectations.

A two-stage stochastic program is said to have complete recourse if the second stage problem is feasible
regardless of the first stage decisions and the outcome of the random variables (Kall and Wallace, 1994). If
this is true under the condition that the first stage decisions are feasible, we have relatively complete recourse.
Even in the weaker of these cases, feasibility of the recourse can be disregarded when solving the first stage
problem. For our model, problem (1) and (2) is said to have (k, £)-complete recourse if for all S C 7"\ {0}
the condition), _¢E[D,] < kq implies that there exists a set of r < ¢ feasible vehicle routes over S. Recourse
completeness is formally defined as follows.

Definition 1. Given k and ¢, problem (1) and (2) is said to have (k,¢)-complete recourse when VS C 7"\ {0}
the condition

> ED)] <kg (3)
veS
implies that there exists a permutation g = (vy,...,vs) of S, an integer r € {1,...,£}, and integers 0 = iy <

iy <---<i.=S| such that the following inequalities hold:

Y dy<q Vh=1,....r VdeQ (4)
J=ip—1+1
r ip—1
g(TCSv ilv [ERE) l.rfl) = Z <C0L>,-hl+1 + COL‘ih + Z CQ/P/+I> <t (5)
=1 J=ip g+
Note that g(ns,iy,...,i,—1) is the total travel cost of the r routes (vo,vi,...,0i,00), (Vo,Vij11y---30irs00)s - -
(v, V1,415 - -+, Vs, Up), Where vy = 0 denotes the depot.

In other words, (k, £)-completeness implies that if the customers are partitioned such that the total expected
demand in each district is no greater than the capacity of k vehicles, feasibility is guaranteed. Furthermore,
regardless of the outcome of the demand, inequalities (4) and (5) imply that the routing problem in each dis-
trict can be solved by no more than ¢ non-empty routes. Given a partition {Sy,...,S,,} of "\ {0}, where all of
S1,...,S,, satisfy (3), the completeness property means that only travel plans with this few routes need to be
considered when computing the expected recourse cost. In practice checking whether for given k and ¢ a ten-
tative districting plan satisfying (3) will also satisfy (4) and (5) is A4 "2-complete. Our algorithm tests this con-
dition heuristically. Whenever the test is negative the corresponding solution is deemed infeasible.

3. Approximation of the expected cost

Since computing the expected cost of a given district S requires the solution of a number of routing prob-
lems, this is in its own right a resource demanding operation. By relying on an approximate solution to the
subproblems, the heuristic can be guided by upper bounds rather than the expected cost itself. In Section
3.1 we show how to compute such bounds.

1000 D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010
3.1. Approximating the expected recourse cost

Consider a district § C 7"\ {0} satisfying (3), and let 75 = (v,...,v)5)) be a permutation of its customers.
For a given d € Q, we define:

g*(n.ﬁd)_ ml]fll g(nS7lla"-7ir—l) (6>
st. 0=ip<ij<---<i =I5 (7)
re{l,... 0 (8)
in
S dy<q Vh=1,r ©)
J=ip-1+1

which is computable in ¢(]S|""") time.
Since the set of routes {(0,v;,_,+1,--.,v;,0)},_, constitutes a feasible solution to VRP(S,d), it follows that
AS,d) < g'(ns,d). By (k,£)-completeness, we also have f{S,d) < ¢, and hence the upper bound:

EIf(S, D)) < Blrs) = 3 P(D = d)min{r,g (zs,d)}.

deQ

Similarly, for u € Sand v € 7"\ {0} \ S, we define ng — u and s + v to be the permutations of S\{u} and
S U {v}, respectively, where the order in ng is preserved, and where g + v is formed by inserting v in a position
in g such that B(wg + v) is minimized.

3.2. The case of (1,2)-complete recourse

Assuming that the recourse is (1,2)-complete, the upper bound on E[f(S;,D)] can be written as
B(ms) = P(Y,csDi < q)Z‘hS'Olcw,,+1 Z‘S‘ 'P(&))g(ns, i), where & denotes the event that v; is the feasible
return point on mg minimizing the saving 6; = co,;, + Cov,,, — Cuyy,- Note that & = &5, and that this event is
identical to) ,.¢D; < ¢g. The computation of B(mg) states that the sequence vy,...,v5 can be followed as
planned if the demand of S does not exceed ¢; otherwise this sequence will have to be broken at suitable inter-
mediate points i, each defining the last customer of a feasible vehicle route. For simplicity, we assume distinct
savings on route mg (a consistent ordering can be 1ntroduced to break ties). A customer v; € S is a feasible

return point for the demand dif > ,d,, < g and Z/ i1dy < q.

In order to compute B(mg), we der1ve explicit formulae for P(&;) for all i=1,..., |S| — 1. For
ip € {1,...,]|S|}, define the integers o, f € {1,...,|S|} and 0=1i_, <i_ o <---<i_;<ip<i3<---<ig=|S]
such that {z wree bty iy igt ={i =0, |S| 0; < d;}. Let & and & denote the events Z 1Dy, < q
and Z‘S ‘l 1Dy, < g, respectively, and &, and 6"+ their complements

Proposition 1. P(éa,-o) =P(6,)P(65) —P(6F Né&L) — P&, NEL)+P(ES NE).

Proof. Since g: C é’: yand & €&, (j=—u,....f—1), we have:

B B
P =Pl e netn () (5, 08) —P(é”‘ mé"*mﬂﬁ ﬂ)—P(&Omg;mg;ng;)

(é” Né&Né) ((g’;m@@jlmglfl)

L]

p(s,)P(et) - P(6,n6r) —P(s,nel) +P(6f,06,). D

D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010 1001

Note that if ; = min{d;:j=1,...,[S| — 1}, that is, v; is the best return point in g apart from vg, then Prop-
osition 1 states that P(&;) = P(&;)P(&) — P(3_,cDi < q).

4. Tabu search heuristic

Tabu search is a memory-based search strategy, originally proposed by Glover (1986), that guides the local
search process beyond a local optimum. One way of achieving this is to keep track of recent moves or solutions
made in the past. A tabu list records recently performed moves or visited solutions. Whenever the algorithm
attempts to move to a solution forbidden by the tabu list, the move is banned. This rule forces other solutions
to be explored. However, this feature is not strict, as it can be overridden when some aspiration criterion is sat-
isfied. A common criterion is that the target function value be the best ever seen. If this is the case, it is obvious
that this solution has never been encountered before.

4.1. Preprocessing

Typical districting problems usually consist of partitioning a large territory (composed of a number of
units) into districts. In a standard political districting problem, it is rather straightforward to determine
the adjacent units of a unit. However, our problem is not that simple, as we are partitioning customer loca-
tions (which are associated with points in the plane) into districts and the notion of adjacency is not well
defined. As opposed to routing problems where any vertex of a route can be moved to another route, we will
only move a vertex from a district to another if it lies close to the border between the two districts. The intent
is to avoid creating disconnected districts or enclaves (i.e. districts within districts), which are unlikely to be
optimal. Thus, vertices centrally located within a district should not be moved at all. In order to define vertex
adjacency we construct a graph ¢’ = (77, /') and declare vertex j adjacent to vertex i if (i,) € «/'. The arc
set .o/’ is constructed by comparing pairs of arcs in .7, and if they intersect, the most costly one is removed
from the set. This process is described in Algorithm 1.

Algorithm 1. Adjacency graph
Require: ¥ = (7, o)
Set /' = o/.
for V(i,j) € &/ :i> 0,7 >0 do
if (i,j) € </’ then
for V(u,v) € o'\ {(i,j)} :u>0,v>0 do
if (u,v) intersects (7,j) and c,, > c;; then
Set /' = .o/ \ {(u,v)}.
Set ¥' = (v, o).
return %'

The resulting graph ¢’ is a planar graph. An example of ¢’ for a 50 vertex instance is provided in Fig. 1. The
circles represent customer locations, and a district is composed of a number of these locations and is a con-
nected component of 4. We refer to vertex j as a neighbor of vertex i if (i, /) € /.

Since ¢’ is planar, a vertex with several neighbors in both district S; and district S, indicates that it lies close
to the border between S; and S,. Furthermore, if all neighbors u € Sy of a vertex i € S| have at least two neigh-
bors in S7\{i}, which are themselves connected, it indicates that i can leave S; without disconnecting the dis-
trict. These criteria are used to restrict the set of valid moves (see Section 4.4).

4.2. Testing feasibility

The definition of (k,£)-complete recourse and the approximation for the cost of expected recourse, pre-
sented in Sections 2 and 3, are embedded within our algorithms to test the feasibility of a solution. Definition

1002 D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010

Fig. 1. An adjacency graph.

1 is general and applies to k vehicles and ¢ routes. In our implementation, we only make use of (1,2)-complete
recourse, i.e., only one vehicle is assigned to each district and each vehicle is allowed to at most one return trip
to the depot. A permutation ng of a district is feasible if

(i) condition (3) is satisfied, i.e., >, sE[D;] < ¢, and _

(i) for all d € Q either), (d; < ¢, or there exists some i; € S such that Z}‘:]d,,, < q,Zﬂil+1dv/ < ¢ and
g(ms, i) < 1.

The computation of E[f(S;, D)] relies on the approximation discussed in Section 3.

4.3. Initial solution

When designing the initial solution (see Algorithm 2), we use the adjacency graph ¥’ = (77, .o7").

Algorithm 2. Initial solution

Set j=0and k=1.
While j <n do
i=seed(k)
Assign vertex i to district k.
Setj=j+1, 2= and ok = 1.
While j <7 and ok =1 do
Identify the excluded neighbors of vertex i, and denote this set as ;.
Set # =2 U 2,.
if 2 # () then
Extract a vertex i = from (2)
if assigning vertex i to district k violates the capacity or travel length constraints then
Set ok = 0.
else
Assign vertex i to district k, and set j =+ 1.
else
Set ok = 0.
Set k=k+ 1.

D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010 1003
The criteria for choosing the seed vertex of each district are as follows:

e If it is the first district, then the seed is chosen to be i € argmax;e,{co;}.

e Otherwise, if a district cannot be expanded further due to capacity or maximum travel length restrictions,
then the next district is initialized by a vertex determined as follows: consider the excluded neighbors of the
last inserted vertex of the latest district, and choose the one with the least number of arcs to other excluded
neighbors. If there is a tie, choose the one closest to the last inserted vertex.

e Otherwise, if the last inserted vertex has no excluded neighbors, select among all excluded vertices the vertex
closest in Euclidean distance to the last inserted vertex.

A neighbor vertex to be included in a district is chosen as follows:

e If there is some vertex in £ with no excluded neighbors, let i be the closest one to the last inserted vertex.
e Otherwise choose i € 2 with max{¢;},_,; break ties by choosing the one with the least number of excluded
neighbors; in case of a tie, choose the one closest to the last inserted vertex.

In some cases the expansion of a district stops not because of capacity or maximum travel length restric-
tions, but because of the non-existence of excluded neighbors available for inclusion. Hence, these districts
may be rather small in size. Thus, if the number of vertices in a district is at most three, the algorithm
tries to eliminate this district by relocating each of its vertices to another district. See Section 4.9 for more
details.

4.4. Neighborhoods

The neighborhoods of solution x are given by ./"(x) and A4",(x). In 4" (x), solutions are obtained by mov-
ing a vertex i from its current district S, to another district S;,, and the corresponding move is denoted by
(i: Ila 12)

The move (i,/;,5) is valid if the following two conditions are satisfied:

1. Border condition: There exist arcs (i,j,) € /' and (i, j,) € /' where j, € S,,, j, € S;, and j; # j>.
2. Connectivity condition: Let ¢ = {j € Sy, : (i,j) € </'}. For all u € ¢ there exist vertices v;,v; € S, \ {i}
where vy # vy and (u,v;), (u, v2), (v1,02) € .

By planarity of ¢’, the border condition ensures that the move (i,/;,) is valid only if i is located on the
boundary of the plane embedding of the subgraph of ¢’ induced by S;,. Furthermore, i has to be located clo-
sely to Sy, in the sense that §;,, must have two vertices adjacent to i. The connectivity condition prohibits all
moves that will leave some vertex with no more than one neighbor in §,,.

The second neighborhood ./,(x) consists of solutions obtained by swapping vertices i and j between their
respective districts S;, and S,,. This move is denoted by (i,/,/;, /). The move is valid only if both moves (i,/;,15)
and (j, b, 1) are valid.

All valid moves are considered, and the best is chosen. The reason for using two neighborhoods is that relo-
cation moves do not, in general, provide very good solutions (being limited to the feasible part of the solution
space and being so restrictive as in our case). Swap moves are more powerful, and can identify solutions where
relocation moves fail due to limitations induced by the constraints.

4.5. Recency-based memory and tabu tenure

To avoid cycling, whenever a move (i,/;,5) or (i,j, 11,) is performed, any move that transfers vertex i back
into district /; or vertex j back into district /5, is declared tabu for 6 iterations, where 0 is a user-defined param-
eter. A forbidden move may still be chosen if it yields the best solution encountered so far (i.e., aspiration
criterion).

1004 D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010

The tabu list is represented by a double-index-array with the first index representing districts and the second
representing vertices. The value stored in the location given by the couple of indices describes when the tabu
status for a given pair of district and vertex is over (i.e., the iteration numbers).

4.6. Frequency-based memory

A simple way of achieving diversification in search is to penalize frequently made moves by adding a pen-
alty term to the objective function value. This will induce the search to explore a wider part of the solution
space. Let E[C(x)] be the expected cost of solution x. For any solution x € A" (x) U A4"5(x), whenever
E[C(X)] = E[C(x)], a penalty is added to E[C(x)]. We only penalize non-improving moves since improving
ones have to be encouraged. The penalty /(%) is defined as AE[C(X)]v/nm’¢. The factor ¢ is the most important
one as it represents the frequency of a move made in the previous iterations. For relocation moves, the fre-
quency factor ¢(i,) is the number of times vertex i has been moved to district /, from some other district.
For exchange moves, the frequency factor ¢(i,J, 1}, 1) is defined as [(¢(i, 1) + ¢(j,11))/2], where [y]is the nearest
integer to y. The factor 4 is a user-defined parameter which controls the intensity of diversification, and m’
denotes the number of non-empty districts in solution ¥. The third factor v/nm' is related to the size of the
problem; using a square-root factor seems to somehow compensate for the problem size. The use of such a
factor was first suggested by Taillard (1993), and has since been employed in other work (see, e.g., Cordeau
et al., 1997, 2001; Ho and Gendreau, 2006).

4.7. Search process

The tabu search heuristic starts with the initial solution described in Section 4.3. The district optimization
procedure (see Section 4.8) and the district elimination procedure (see Section 4.9) are applied to this solution.
At each iteration, it selects a solution X € 4"} (x) U A" (x) minimizing E[C(X)] + y(X), which is non-tabu or sat-
isfies the aspiration criterion which is the best solution encountered so far. At every « iterations the district
optimization procedure is performed, followed by the district elimination procedure. The tabu search process
terminates after y iterations and the best solution found during the search is the final solution. This process is
summarized in Algorithm 3.

4.8. District optimization

Since E[C(x)] is computed with respect to the current ordering of vertices in the districts, it is essential that
this ordering be as good as possible. When a vertex is removed from a district or inserted into a district, no
local reoptimization of the sequence of vertices is made. Hence, every « iterations, 2-opt is performed for each
district. This procedure consists of replacing two arcs (i,i + 1) and (j,j + 1) with the two other arcs (i,/) and
(i + 1,7+ 1). All valid combinations of replacements are considered, and the best improving one among those
is chosen. This is repeated until no improvement can be achieved.

4.9. District elimination

As mentioned in Section 4.3 some districts may be rather small in size, and an attempt will be made to
eliminate these. Hence, every « iterations, for districts of size at most three, relocation moves are performed.
Every vertex vy,...,0s) is removed from its current district S;, and reinserted into a new district S;,, if v; has
at least two neighbors belonging to district S;, and the capacity and travel length constraints are not
violated.

Algorithm 3. TABU SEARCH heuristic

Require: x
Set x* = x.
fori=1,...,ydo

D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010 1005

Select a solution X € A" (x) U A"2(x) that minimizes E[C(X)] + (X) and is non-tabu or satisfies the
aspiration criterion.
if no solution found then
return x*
if E[C(X)] < E[C(x*)] then
Set x* =Xx.
Set the reverse move tabu for 6 iterations.
Set x = x.
if mod(i,x) =0 then
r=DistrictElimination(x)
r=DistrictOptimization(r)
if E[C(r)] < E[C(x™)] then

Set x* =r.
Set x =r.
return x*

5. Multistart heuristic

In this section, we introduce a multistart heuristic and apply it to the districting problem. This approach is a
two-phase method, where in each iteration a randomized initial solution is constructed before local search is
applied to it. The best solution obtained from all of the iterations is returned as the best overall solution. The
multistart heuristic terminates after t iterations. Its description is given in Algorithm 4.

Algorithm 4. MULTISTART heuristic
Set E[C(x™)] = oco.
fori=1,...,7do

x = RandomizedBuild()

x =LocalSearch(x)

if E[C(x)] < E[C(x")] then
Set x* = x.
return x”

5.1. Randomized heuristic

This heuristic follows the guidelines provided in Section 4.3. The only difference lies in choosing the seed
vertex of the first district. Instead of choosing the seed vertex farthest away from the depot, we employ some
randomness when making the decision: randomly select v vertices, narrow the selection down to the p vertices
farthest away from the depot, and choose the seed vertex at random.

5.2. Local search

The local search phase works by steepest descent and is based on relocating and swapping border vertices
between their respective districts. All valid relocations and swaps are considered, and the best among those is
chosen. Its outline is given in Algorithm 5. It is run until it reaches a local optimum. The procedures of opti-
mizing the district and elimination of small districts are also performed every « iterations.

Algorithm 5. Local search

Require: x
Set x* = x.

1006 D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010

Set improvement =1 and i = 1.
While improvement =1 do
Select a solution ¥ € A7} (x) U A"»(x) that minimizes E[C(X)].
if E[C(%)] < E[C(x*)] then
Set x* =x and x = Xx.
if mod(i,x) =0 then
r=DistrictElimination(x)
r=DistrictOptimization(r)
if E[C(7)] < E[C(x")] then
Set x* =r.
Set x =r.
Seti=i+1.
else
Set improvement = 0.
return x*

6. Computational experiments

To our knowledge, no benchmark instances exist for our problem. We have therefore used some of the
benchmark instances designed for the vehicle routing problem by Christofides and Eilon (1969) and Christo-
fides et al. (1979), as well as some of the benchmark instances designed for the vehicle routing problem with
time windows (VRPTW) by Solomon (1987). However, only the depot and customer locations are used. A
lower bound a, and an upper bound b, are first given as fractions of the vehicle capacity for the demands.
For customer v, a lower bound d, is chosen in the interval [ag, bg], and an upper bound d,, is chosen in the
interval [d,, bq], where a = 0.05 and b = 0.1. The characteristics of the instances used in this experimentation
are given in Table 1. For each problem instance, the table indicates the number of customers (n), the number
of districts (m), the vehicle capacity (¢) and the route maximum length (¢). The table also gives for each prob-
lem instance the reference (Ref.) to where the coordinates of customer locations can be found (e.g., prl (VRP)
refers to VRP problem instance 1, while r101.50 (VRPTW) refers to the 50 first customers of VRPTW bench-
mark instance r101).

Table 1

Characteristics of the benchmark instances used for computational experiments

Problem n m q t Ref.

prla 50 5 160 150 prl (VRP)

prib 50 5 160 200 prl (VRP)

prlc 50 5 160 250 prl (VRP)

pr2a 75 8 140 150 pr2 (VRP)

pr2b 75 8 140 200 pr2 (VRP)

prac 75 8 140 250 pr2 (VRP)

pr3a 100 12 160 150 pr3 (VRP)

pr3b 100 12 160 200 pr3 (VRP)

pr3c 100 12 160 250 pr3 (VRP)

prda 50 6 160 150 r101.50 (VRPTW)
prdb 50 6 160 200 r101.50 (VRPTW)
préc 50 6 160 250 r101.50 (VRPTW)
prSa 75 8 140 150 rl101.75 (VRPTW)
pr5b 75 8 140 200 r101.75 (VRPTW)
pric 75 8 140 250 r101.75 (VRPTW)

D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010 1007

In our experiments we assume that for all v =1,...,n, D, — d, has a binomial distribution B(d, —d,,p). This

is true when the demand is composed of a set of at most d, identical items, d, of which are always demanded,
and each of the remaining are demanded independently with probability p. We thus have P(D, =d) =

P (1 - p)y ! (i;_j” > where p € [0,1].

6.1. Sensitivity analyses

In this section we present sensitivity analyses on the various parameters of the two algorithms. The heuris-
tics were coded in C++ and all experiments were carried out on a Pentium 4, 2.53 GHz computer.

6.1.1. Tabu search

Based on results from the literature (see, e.g., Cordeau and Laporte, 2003), we have first set k = 10 and
A =0.015. Preliminary testing indicated that good results are usually obtained early in the search, thus, the
value of y was set equal to 1000. Running the algorithm for more iterations does not seem to produce better
solutions. Sensitivity analyses on the parameters were performed sequentially, leaving the remaining param-
eters unchanged, and using the following order: 6, /, k. We believe the tabu tenure 60 is the most sensitive and
difficult parameter to analyze, therefore it has the highest priority.

Parameter 0: We fixed the value of the other parameters, and ran tests on all problem instances using dif-
ferent values of 0 in the intervals [1,m], [llog;on, 10log;on] and [1log|om, 10log;om]. The results
show that setting 0 equal to m produces good results. Similar observations are also obtained
with values of 6 in the intervals [3logon, 5.510gon] and [8logom, 10log;om]. We have also per-
formed experiments on random values of 0. Moderate results were obtained using tabu tenures
randomly chosen in the intervals [2.5log;o#, Slog on] and [Slog;om, 7.510g;om]. In our case, the
results do not seem to favor the use of random values of 0. The most appropriate value seems to
be m, thus the value of 0 has been set equal to m.

Parameter /. Having set 0 equal to m, we then let parameter A vary in the interval [0.001,0.05]. The average
cost of the solutions seems insensitive to modifications of / in the interval [0.004,0.02], which
also produced the best average results, thus we let the value of 4 be equal to 0.015 (the original
value).

Parameter k: We let this parameter vary in the interval [1,50]. Using too small a value of x seems to overdo
the intensification process, whereas using a too large value seems to loose the desired intensifi-
cation effect. Results indicate that setting x equal to values in the interval [10,20] yields prom-
ising results, with 10 being the most appropriate value.

The results for TABU SEARCH were obtained with x =10, y = 1000, § = m and 2 = 0.015.

6.1.2. Multistart

As local search will terminate much earlier than tabu search, x is set relatively small compared to the x of
tabu search, thus x is set equal to 5. Sensitivity analyses on the parameters were performed sequentially, leav-
ing the remaining parameters unchanged, and using the following order: (v,u), x. The first two parameters
were tested jointly.

Parameters v and ;. The choice of the seed vertex of the first district of Section 5.1 obviously depends on the
values of parameters v and u. We let parameter v vary in the interval [0.1%,0.3x#] and
parameter u [0.3v,0.5v]. It seems that giving the algorithm too much freedom of choosing
the seed vertex does not always yield good solutions. We noticed promising results are
obtained by setting v equal to 0.1z and u equal to 0.3v.

Parameter k: We let this parameter vary in the interval [1, 10]. Using values from the lower half of the
interval yields good results. The most appropriate value for k seems to be 5.

1008 D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010

Table 2
TABU SEARCH heuristic
Problem Initial solution Final solution

E[C(x)] m' E[C(x")] m' Return CPU itr
prla 542.01 5 525.30 (0.00) 5 0 6.08 1000
prlb 536.79 5 522.98 (0.00) 5 0 10.01 1000
prlc 536.79 5 522.98 (0.00) 5 0 10.30 1000
pr2a 834.27 8 705.76 (0.00) 7 0 0.89 213
pr2b 820.47 8 675.55 (0.00) 7 2 8.66 1000
pr2c 820.47 8 675.55 (0.00) 7 2 8.76 1000
pr3a 1153.45 12 913.57 (0.00) 10 2 5.31 621
pr3b 1032.81 10 904.55 (0.00) 10 2 11.37 1000
pr3c 1031.55 9 923.42 (0.00) 9 3 1.03 88
prda 692.12 6 567.24 (0.00) 6 0 3.70 1000
prdb 611.57 5 526.79 (0.00) 5 1 2.18 504
prédc 611.57 5 526.79 (0.00) 5 1 2.49 504
pria 870.95 8 787.28 (0.94) 8 0 7.63 1000
prsb 891.16 8 726.65 (0.00) 7 4 4.73 607
pr5c 853.24 7 708.64 (0.00) 7 1 10.10 1000
Avg. 789.28 7.27 680.87 (0.06) 6.87 1.20 6.22 769.13

For MULTISTART the parameters were k = 5, v = [0.1n] (where [y] is the nearest integer to y), u =[0.3v] and t
determined such that the heuristics consume an approximately equal amount of computing time (see column
“CPU” in Table 2).

6.2. Results

Table 2 shows the results of both the initial and final solutions of TABU sEaRCH. The percentage deviation
from the best (i.e., the best result of any of the two heuristics) is given within the parentheses of each heuristic.
Since no optimal solutions are known for any of these problem instances, using the best solutions obtained by
the two proposed methods as benchmarks seems reasonable. The columns labeled m' are the numbers of non-
empty districts created for the initial and the final solutions, respectively. The column labeled “return’ is the
number of districts that require a return trip to the depot. The next column labeled “CPU” is the total com-
puting time in minutes needed to perform the search. Sometimes it is difficult to find a feasible solution, thus
there may be situations where the search terminates before the total number of iterations reaches y. The right-
most column labeled ““itr”” gives the number of iterations performed by TABU SEARCH.

Fixing all other data, it is expected that the optimal cost decreases with increasing value of 7. Within each
case set (prla—prlc, pr2a—pr2c, etc.), ¢ is the only unfixed input parameter, and the results are as expected for
all sets but pr3a—pr3c. The reason for this may be that the search is restrictive in the sense that it is hard to
move vertices around without violating the constraints.

Table 3 shows the final results obtained by the second method, MULTISTART. The rightmost column labeled t
is the number of iterations made by the heuristic during the time provided by TABU SEARCH. This number pro-
vides us with the number of local minima encountered. As with Table 2 and Table 3 also shows that results
improve with an increasing value of ¢, but this is not the case for instances pr3a—pr3c. Solutions to instances
pr3b and pr3c have the same number of districts, but the former one has a lower expected cost. The reason for
this might be that not many local minima were created in the case of pr3c.

TABU SEARCH produces better results than MULTISTART in every problem instance, except for pr5a. Solutions
by TABU SEARCH have a smaller expected cost and a smaller number of planned returned trips to the depot than
MULTISTART, while MULTISTART creates solutions with fewer districts. The superiority of TABU SEARCH is also sta-
tistically significant. The Wilcoxon signed-rank test has been applied to compare the two heuristics. Following
the guidelines provided by Golden and Stewart (1985), the null hypothesis is that both heuristics are equally
good, while the alternative hypothesis is that TABUSEARCH is better than MULTISTART. Using a Wilcoxon signed-
rank test, the null hypothesis can be rejected at a significance level as low as 0.001.

D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010 1009

Table 3
MULTISTART heuristic
Problem Final solution

E[C(x")] m' Return CPU T
prla 526.83 (0.29) 5 1 6.10 125
prlb 526.02 (0.58) 5 1 10.04 162
prlc 526.02 (0.58) 5 1 10.31 161
pr2a 764.64 (8.34) 8 0 0.92 9
pr2b 733.27 (8.54) 7 3 8.78 75
pr2c 720.38 (6.64) 7 1 8.79 80
pr3a 947.83 (3.75) 10 1 5.37 23
pr3b 917.72 (1.46) 9 3 11.48 59
pric 942.98 (2.12) 9 4 1.36 7
prda 574.18 (1.22) 5 0 3.72 108
prdb 564.97 (7.25) 5 1 2.24 33
préc 564.97 (7.25) 5 1 2.59 36
pria 779.91 (0.00) 8 1 7.70 75
prsb 752.83 (3.60) 7 4 4.80 34
prsc 752.83 (6.24) 7 4 10.17 74
Avg. 706.36 (3.86) 6.80 1.73 6.29 70.73

Fig. 2. Solution to problem prlb (TABUsEARCH). The dotted lines correspond to the initial solution and the full lines correspond to the final
solution.

Both algorithms use diversification mechanisms in the search, but these are employed in different ways. In
TABU SEARCH, diversification is achieved by penalizing frequently made moves, which is a long-term memory
strategy for TABU SEARCH, while in MULTISTART, different starting points are constructed to explore the solution
space more extensively. The results of our experiments indicate that a search process that remembers its past
history is capable of generating better solutions than in a search with no memory.

Fig. 2 shows the district boundaries before and after performing TABU SEARCH for problem instance prlb.

7. Conclusion
We have introduced and formulated the problem of designing districts for vehicle routing problems with

stochastic demands. We have also developed a tabu search heuristic and a multistart heuristic for the problem.
Computational results show that tabu search performs better than multistart.

1010 D. Haugland et al. | European Journal of Operational Research 180 (2007) 997-1010
Acknowledgements

This work was supported by the Research Council of Norway under grant 127533/432 and by the Canadian
Natural Sciences and Engineering Research Council under grant OGP0039682. This support is gratefully
acknowledged. Thanks are also due to the three anonymous referees for their valuable comments.

References

Blais, M., Lapierre, S.D., Laporte, G., 2003. Solving a home care districting problem in an urban setting. Journal of the Operational
Research Society 54 (11), 1141-1147.

Bozkaya, B., Erkut, E., Laporte, G., 2003. A tabu search heuristic and adaptive memory procedure for political districting. European
Journal of Operational Research 144 (1), 12-26.

Christofides, N., Eilon, S., 1969. An algorithm for the vehicle dispatching problem. Operational Research Quarterly 20 (3), 309-318.

Christofides, N., Mingozzi, A., Toth, P., 1979. The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (Eds.),
Combinatorial Optimization. Wiley, Chichester, pp. 315-338.

Cordeau, J.-F., Laporte, G., 2003. A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research B 37
(6), 579-594.

Cordeau, J.-F., Gendreau, M., Laporte, G., 1997. A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks
30 (2), 105-119.

Cordeau, J.-F., Laporte, G., Mercier, A., 2001. A unified tabu search heuristic for vehicle routing problems with time windows. Journal of
the Operational Research Society 52 (8), 928-936.

D’Amico, S.J., Wang, S.-J., Batta, R., Rump, C.M., 2002. A simulated annealing approach to police district design. Computers &
Operations Research 29 (6), 667-684.

Drexl, A., Haase, K., 1999. Fast approximation methods for sales force deployment. Management Science 45 (10), 1307-1323.

Dror, M., Laporte, G., Trudeau, P., 1989. Vehicle routing with stochastic demands: Properties and solution frameworks. Transportation
Science 23 (3), 166-176.

Ferland, J.A., Guénette, G., 1990. Decision support system for a school districting problem. Operations Research 38 (1), 15-21.

Fleischmann, B., Paraschis, J., 1988. Solving a large scale districting problem: A case report. Computers & Operations Research 15 (6),
521-533.

Gendreau, M., Laporte, G., Séguin, R., 1996. Stochastic vehicle routing. European Journal of Operational Research 88 (1), 3—-12.

Gendreau, M., Laporte, G., Potvin, J.-Y., 2002. Metaheuristics for the capacitated VRP. In: Toth, P., Vigo, D. (Eds.), The Vehicle
Routing Problem. SIAM Society for Industrial and Applied Mathematics, Philadelphia, pp. 129-154.

Glover, F., 1986. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13 (5), 533—
549.

Golden, B.L., Stewart, W.R., 1985. Empirical analysis of heuristics. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.
(Eds.), The Traveling Salesman Problem. Wiley, Chichester, pp. 207-249.

Ho, S.C., Gendreau, M., 2006. Path relinking for the vehicle routing problem. Journal of Heuristics 12 (1-2), 55-72.

Kall, P., Wallace, S., 1994. Stochastic Programming. Wiley, Chichester.

Laporte, G., Semet, F., 2002. Classical heuristics for the capacitated VRP. In: Toth, P., Vigo, D. (Eds.), The Vehicle Routing Problem.
SIAM Society for Industrial and Applied Mathematics, pp. 109-128.

Pezzella, F., Bonanno, R., Nicoletti, B., 1981. A system approach to the optimal health care districting. European Journal of Operational
Research 8 (2), 139-146.

Skiera, B., Albers, S., 1998. Costa: Contribution optimizing sales territory alignment. Marketing Science 17 (3), 196-213.

Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35
(2), 254-265.

Taillard, E.D., 1993. Parallel iterative search methods for vehicle routing problems. Networks 23 (8), 661-673.

	Designing delivery districts for the vehicle routing problem with stochastic demands
	Introduction
	Model formulation
	Approximation of the expected cost
	Approximating the expected recourse cost
	The case of (1,2)-complete recourse

	Tabu search heuristic
	Preprocessing
	Testing feasibility
	Initial solution
	Neighborhoods
	Recency-based memory and tabu tenure
	Frequency-based memory
	Search process
	District optimization
	District elimination

	Multistart heuristic
	Randomized heuristic
	Local search

	Computational experiments
	Sensitivity analyses
	Tabu search
	Multistart

	Results

	Conclusion
	Acknowledgements
	References

