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Abstract

In political districting problems, the aim is to partition a territory into electoral constituencies, subject to some side

constraints. The most common side constraints include contiguity, population equality, compactness, and socio-eco-

nomic homogeneity. We propose a formulation in which the various constraints are integrated into a single multicriteria

function. We solve the problem by means of a tabu search and adaptive memory heuristic. The procedure is illustrated

on real data from the city of Edmonton.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In districting problems, the aim is to partition a
territory into districts, subject to some side con-
straints. Typical districting problems include the
drawing of political constituencies, school board
boundaries, sales or delivery regions. Here we
focus our attention on political districting. This
problem is particularly important in democracies
where each district elects a single member to a
parliamentary assembly. One important issue at

stake is equity (or population equality), i.e., all
districts should have approximately the same
number of voters in order to respect the ‘‘one-man,
one-vote’’ principle. Furthermore, political dis-
tricts must not be seen as favoring a particular
political party. A famous case arose in Massa-
chusetts in the early 19th century when the state
legislature proposed a salamander-shaped district
in order to gain electoral advantage. The governor
of the state at that time was Elbridge Gerry and
this practice became known as gerrymandering.
Interesting accounts of gerrymandering cases are
provided by Cain (1984) and Lewyn (1993). For a
recent book on political districting the reader is
referred to Grilli di Cortona et al. (1999).
To prevent political interference in the district-

ing process, several states have set up a neutral
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commission whose functions include the drawing
up of political boundaries satisfying a number of
legislative and common sense criteria. Some crite-
ria define the feasibility of a solution. For example,
several legislatures impose that districts should be
contiguous and that their (voting) population
should fall within some interval. Other criteria help
to assess the quality of a solution. An important
criterion is that districts should be compact, the
idea being to prevent the formation of odd-shaped
districts that raise suspicions of gerrymandering.
Other commonly used criteria are:

• the respect of natural boundaries, such as major
bodies of water;

• the respect of some existing administrative or po-
litical subdivisions, like census tracts, townships;

• socio-economic homogeneity to ensure a better
representation of residents who share common
concerns or views;

• similarity to the existing plan so that an incum-
bent runs again in a similar district;

• the respect of integrity of communities, i.e.,
avoiding splitting some communities between
several districts;

• equal probability of representation to ensure
that some important minority groups have their
fair share of representatives.

Some of these criteria can be disputed. For ex-
ample, it may be argued that it is just as desirable
to achieve socio-economic heterogeneity as it is
important to reach homogeneity. Also the last
criterion, and the reverse consisting of diluting the
strength of any particular group, is itself a form of
gerrymandering and should be handled with care.
Similarly, any criterion aimed at providing a fair
representation of political parties or at protecting
safe seats may also be perceived as suspicious. For
this reason, it may be argued that political data
should not be used when designing districts. In the
same spirit, more confidence is likely to be put in
the process if it is computer-based, but even then
some human intervention is required for the se-
lection of criteria and for the determination of
their relative weights.
The scientific literature on districting shows that

there is no consensus on which criteria are legiti-

mate and on how these should be measured (Wil-
liams, 1995). In this study, we will consider some
of the most commonly accepted criteria: respect of
major natural boundaries, contiguity, population
equality, compactness, socio-economic homoge-
neity, similarity with the existing plan, and integ-
rity of communities. This list should not, however,
be viewed as limitative since our method can in
principle work with any number of criteria as long
as these can be measured. We propose a model
that assigns weights to the various criteria, and a
flexible solution methodology capable of produc-
ing high quality districting plans with respect to a
set of weights. By altering weights or making
several runs of the algorithm, decision makers
should be able to generate a variety of solutions
that will appeal to diverse interests.
Since the early 1960s, several heuristics have been

proposed for the districting problem. All attempt to
combine indivisible basic units such as census tracts
or enumeration areas into feasible districts. These
methods are based on one of the two integer linear
programming formulations of the problem.
The first mathematical programming approach

was proposed by Hess et al. (1965). It formulates
the problem as an assignment problem with side
constraints. Let I be the set of all basic units, and
let J be the set of basic units used as potential
district ‘‘seeds’’. The cost cij of assigning unit i to
seed j is a function of the Euclidean distance be-
tween the center of j and the center of i (typically
cij is the square of that distance). The number of
districts to be created is given and equal to m. The
population of unit i is equal to pi and the popu-
lation of any district must lie within an interval
½a; b�. Let xij be a binary variable equal to 1 if and
only if unit i is assigned to seed j. The problem is
then modeled as a capacitated m-median problem
as follows:

ðF1Þ minimize
X
i2I

X
j2J

cijxij

subject to
X
j2J

xij ¼ 1 ði 2 IÞ; ð1Þ

X
j2J

xjj ¼ m; ð2Þ

xij 6 xjj ði 2 I ; j 2 JÞ; ð3Þ
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a6
X
i2I

pixij 6 b ðj 2 JÞ; ð4Þ

xij ¼ 0 or 1 ði 2 I ; j 2 JÞ: ð5Þ

In this formulation, the objective function
measures compactness, while population equity is
taken into account by constraints (4). Constraints
(1) ensure that each basic unit is assigned to one
district, and the number of districts is equal to m
by constraint (2). By constraints (3), no basic unit
can be assigned to an unselected seed. Note that
these constraints are left out of the Hess et al.
model. There is no guarantee that this formulation
will produce contiguous districts, although this
will be favored by the objective function. Thus
solving (F1) to optimality does not in general yield
a suitable solution to the districting problem, but it
can produce an embryonic infeasible solution that
can then be patched through local search.
This formulation can also serve as a guide for a

heuristic. Given a reasonable set of m seed units,
the remaining units can be iteratively assigned to
these in a greedy fashion while ensuring that con-
straints (4) are satisfied. Again, it may be impos-
sible to achieve contiguity. Since this type of
approach does not require a linear objective, it is
relatively easy to incorporate several terms into the
objective, including constraints (4), each corre-
sponding to a criterion to be satisfied. This is es-
sentially the approach taken by most authors in the
field, with various degrees of sophistication and a
large number of variants (see, e.g., Vickrey, 1961;
Weaver and Hess, 1963; Hess et al., 1965; Kaiser,
1966; Nagel, 1965, 1972; Thoreson and Liittsch-
wager, 1967; Morrill, 1973, 1976; Bourjolly et al.,
1981; Plane, 1982; Fleischmann and Paraschis,
1988; Browdy, 1990; Macmillan and Pierce, 1992).
Several of these methods include a local search
post-optimization phase consisting of moving basic
units to adjacent districts, or swapping units be-
tween adjacent districts. The most sophisticated of
these schemes, by Browdy (1990) and Macmillan
and Pierce (1992), is based on simulated annealing.
Local search is not only useful for improving the
objective function, but it may also help the process
move from an infeasible to a feasible solution.
In the second mathematical programming for-

mulation, I is again the set of basic units and J is

the set of all feasible districts. A binary coefficient
aij is equal to 1 if and only if unit i belongs to
district j. A cost cj is assigned to district j and the
number of districts is again equal to m. Binary
variable xj takes the value 1 if and only if district
j is selected. The formulation, first proposed by
Garfinkel and Nemhauser (1970) is

ðF2Þ minimize
X
j2J

cjxj

subject to
X
j2J

aijxj ¼ 1 ði 2 IÞ; ð6ÞX
j2J

xj ¼ m; ð7Þ

xj ¼ 0 or 1 ðj 2 JÞ: ð8Þ

Since the number of potential districts is as-
tronomical in most situations, Garfinkel and
Nemhauser (1970) propose obtaining a good so-
lution to (F2) by means of a truncated branch-
and-bound tree. Recently, Mehrotra et al. (1998)
have developed a column generation algorithm for
this model. Their method remains a heuristic since
the subproblem in which new columns are gener-
ated is NP-hard and is not solved optimally.
The purpose of this paper is to develop a tabu

search (TS) algorithm for the political districting
problem, an approach that has been highly suc-
cessful for the solution of a host of combinatorial
optimization problems (see, e.g., Glover and La-
guna, 1997). Tabu search is advantageous in that it
does not require a sophisticated integer linear
programming apparatus, which makes its adop-
tion by end-users easier. In addition to the stan-
dard TS methodology, we embed our algorithm
within an adaptive memory procedure by Rochat
and Taillard (1995).
The rest of this paper is organized as follows. In

Section 2 the various criteria constituting the ob-
jective function of the model are formalized and
cast in mathematical terms. The TS algorithm it-
self is described in Section 3. This is followed by
computational results in Section 4, and by the
conclusions in Section 5.

2. Political districting criteria

The political districting problem falls in the
class of multicriteria optimization for which sev-
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eral approaches are possible (see, e.g., Buchanan
and Daellenbach, 1987; Roy, 1985; Vincke, 1992;
Yu, 1989). A common approach is to treat some
criteria as hard constraints and others as soft re-
quirements or as terms in an objective function
(Eiselt and Laporte, 1987). In this study, we treat
contiguity as a hard constraint and all other cri-
teria through the minimization of a weighted ad-
ditive multicriteria function F ðxÞ ¼

P
r arfrðxÞ,

where ar is a weight and frðxÞ is the value of a
function assigning a value for criterion r to any
given solution x. Several methods have been pro-
posed by various authors to define the measure-
ments fr. We now describe how this was done in
our study.

2.1. Population equality

There are several way to define population
equality. In this study, we proceed as follows.
Denoting by J the set of all districts in solution x
(feasible or not), and by PjðxÞ the population of
district j, the average district population is equal to
�PP ¼

P
j2J PjðxÞ=m. We require the population of

each district to lie within some interval ½ð1� bÞ�PP ;
ð1þ bÞ�PP �, where 06 b < 1. We then define the
population equality function as

fpopðxÞ ¼
X
j2J

max PjðxÞ
n 

� ð1þ bÞ�PP ;

ð1� bÞ�PP � PjðxÞ; 0
o!,

�PP : ð9Þ

This function will take a value equal to zero if each
district population lies between ð1� bÞ�PP and
ð1þ bÞ�PP . Otherwise it will take a positive value
equal to the sum of infeasibilities.

2.2. Compactness

As observed by Young (1988) and Niemi et al.
(1990), several measures can be used to assess the
compactness of a district, none of which is perfect.
Within a local search algorithm such as ours, it
makes sense to use a measure that can be easily
computed, but we do not require a linear measure
as in a number of mathematical models. After

some experimentation, we have opted for two
possible compactness measures associated with a
solution x. The first, fcomp1ðxÞ, is based on the total
length of the all boundary lengths between dis-
tricts, excluding the outside boundary of the ter-
ritory. The divisor R is used for scaling purposes.
The second, fcomp2ðxÞ, compares the perimeter of
each district to that of a circle having the same
area. Formally, we define in the first case

fcomp1ðxÞ ¼
X
j2J

RjðxÞ
 

� R

!,
2R; ð10Þ

where RjðxÞ is the perimeter of district j in the
solution x, and R is the perimeter of the entire
territory. In the second case, the compactness
measure is defined as

fcomp2ðxÞ ¼
X
j2J

1

 
� 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AjðxÞ=p

p
RjðxÞ

!,
m: ð11Þ

2.3. Socio-economic homogeneity

Socio-economic homogeneity can be measured
indirectly by personal income, as suggested by
Bourjolly et al. (1981). A reasonable objective is to
minimize the sum, over all districts j, of the stan-
dard deviation SjðxÞ of income. To obtain a di-
mensionless measure, this sum is divided by the
average income �SS to yield

fsocðxÞ ¼
X
j2J

SjðxÞ=�SS: ð12Þ

The standard deviation is approximated by
working with the average income of each basic
unit in the district.

2.4. Similarity to the existing plan

We have developed a new measure in order to
compare the similarity of a proposed solution x
with the existing plan. It computes for each district
j of the existing plan, the largest overlay OjðxÞ with
a district contained in a new solution x. Formally,
the similarity index is defined as

fsimðxÞ ¼ 1�
X
j2J

OjðxÞ=A; ð13Þ
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where A is the entire area. This index always takes
a value between 0 and 1 and can be used even if the
old and new plans do not contain the same number
of districts.
To illustrate, consider the example depicted in

Fig. 1. In Fig. 1(a), the existing district boundaries
are shown in bold lines while the new district
boundaries are represented by dashed lines. The
largest overlaying areas correspond to the shaded
regions of Fig. 1(b).

2.5. Integrity of communities

To measure the integrity of communities we
again use an overlay concept, as for the similarity
index. This can be done as long as databases allow
a representation of communities as geographical
areas. We minimize the function

fintðxÞ ¼ 1�
X
j2J

GjðxÞ
,X

j2J
PjðxÞ; ð14Þ

where GjðxÞ is the largest population of a given
community in district j of solution x.

3. Tabu search and adaptive memory algorithm

We describe in this section the tabu search (TS)
algorithm we have developed for the districting
problem, and how this method was embedded
within a broader search engine called the adaptive
memory procedure (AMP). We start with the de-
scription of the main components of the TS heu-
ristics, followed by that of the AMP.
Tabu search is an iterative optimization method

now commonly used in combinatorial optimiza-

tion. Since it was first proposed by Glover (1977),
it has been applied with a striking degree of success
to a host of problems (see, e.g., Osman and La-
porte, 1996; Aarts and Lenstra, 1997; Glover and
Laguna, 1997). Starting from an initial solution x0,
the method moves at each iteration t from a so-
lution xt�1 to the best solution in its neighbour-
hood Nðxt�1Þ, even if this causes a deterioration in
the value of the objective function. To avoid cy-
cling, some solutions possessing particular attri-
butes are declared forbidden, or tabu for a given
number of iterations. The search stops whenever a
given stopping rule is satisfied. The method can be
enhanced through the incorporation of several
features, some of which exploit the characteristics
of the application at hand. Here is how we have
applied TS to the districting problem.

3.1. Objective function

The objective function minimized throughout
the search is

F ðxÞ ¼apopfpopðxÞ þ acompfcompðxÞ þ asocfsocðxÞ
þ asimfsimðxÞ þ aintfintðxÞ; ð15Þ

where fcomp is either fcomp1 or fcomp2, and apop; acomp;
asoc; asim; aint are multipliers. All these, except apop,
are user-defined input values. The apop multiplier is
initially set equal to 1 and allowed to vary during the
search to account for the fact that any given solution
x may be infeasible with respect to population
equality. This will be explained in Section 3.7.

3.2. Preprocessing

Given a set I of basic units and attributes, it is
straightforward to draw an adjacency list and to
declare as non-adjacent any two units separated by
a natural frontier. Also, two neighboring units that
only have a finite number of points in common, as
opposed to an edge, are considered to be non-
adjacent. At this stage, any two units that must be
part of the same district in the final solution are
merged, and any basic unit enclaved within an-
other unit is merged with its neighbor unless it has
a large enough population to constitute a district
by itself.

Fig. 1. Illustration of the similarity index: (a) old and new

boundaries; (b) overlaying regions.
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3.3. Initial solution

To create an initial solution, we proceed as in
Vickrey (1961). We first select a seed unit to ini-
tialize a district. We then gradually extend this
district by adjoining to it one of its adjacent units.
The district is complete whenever its population
attains �PP for the first time or when no adjacent
units are available. If the number of districts cre-
ated in this fashion is larger than m, we reduce it
by iteratively merging the least populated unit with
its least populated neighbor. If the number of
districts is less than m, we gradually increase it by
iteratively splitting the most populated district into
two, while preserving contiguity. At the end of this
process, the initial solution x0 is made up of m
contiguous districts, some of which may be infea-
sible with respect to population equality.

3.4. Neighborhoods

We use two neighborhoods N1ðxÞ and N2ðxÞ.
The first, N1ðxÞ, is made up of all solutions
reachable from x by moving a basic unit i from its
current district j to a neighbor district l without
creating a non-contiguous solution. Such a move is
said to be of Type I and denoted by (i; j; l) and is
illustrated in Fig. 2. Here, moving unit i1 from
district j to district l would disconnect unit i2 from
the remainder of district j and such a move would
not be allowed. The second neighborhood, N2ðxÞ,
is made up of all solutions that can be reached
from x by swapping two border units i and k be-
tween their respective districts j and l, again
without creating discontiguities. Such a move is
said to be of Type II and denoted by (i; k; j; l). The

reason for using two neighborhoods is that Type I
moves are not, as a rule, powerful enough to
identify good quality solutions. Type II moves
work much better but are computationally more
expensive. Thus, in the algorithm, two passes are
made. In the first pass, only Type I moves are used.
In the second pass, both types of moves are ap-
plied.

3.5. Recency-based memory and tabu tenure

To help prevent cycling, whenever a move
(i; j; l) or (i; k; j; l) is performed, any move that
puts unit i back into district j or unit k back into
district l (e.g., ði; l; jÞ; ði; l0; jÞ; ði; k; l; jÞ, etc.) is de-
clared tabu for h iterations, where h is randomly
selected in some interval [hmin; hmax]. The idea of
using random tabu tenures was first proposed by
Taillard (1991) in the context of the quadratic as-
signment problem and has since been used by
several authors. As opposed to a fixed tabu tenure,
it virtually removes the probability of cycling
provided hmin and hmax are sufficiently large.
However, using too large values may impair the
search as most potential moves will soon became
tabu. Some problem related calibration is there-
fore recommended. The only circumstance where
the algorithm will perform a tabu move is when
this would yield a better incumbent.

3.6. Frequency-based memory

A good way to diversify the search and to help
it explore a wider part of the solution space is to
add a penalty term to the objective function value
corresponding to frequently performed moves. In
practice, this is applied to non-improving moves
since it makes little sense to penalize improving
solutions. This term is the product of four factors:
(1) the past frequency of the move, (2) the problem
size measured by

ffiffiffiffi
m

p
, (3) the largest change d

observed so far in the objective function from one
iteration to the next, and (4) a scaling constant q.
The first factor is the driving force among the

four. It has two components that keep track of two
different attributes of a move: git, the average
number of times unit i was moved over the previ-
ous t � 1 iterations, and #jt, the average number ofFig. 2. Move creating a non-contiguous solution.
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times district j has been involved in a move in the
previous t � 1 iterations. In (i; k; j; l) moves, both
districts j and l are involved twice. The frequency
factor is defined as

/ði; j; lÞ ¼ ð1þ gitÞ 1



þ #jt þ #lt

2

�
� 1 ð16Þ

for Type I moves and as

/ði; k; j; lÞ ¼ 1
�

þ git þ gkt

2



1



þ #jt þ #lt

2

�
� 1

ð17Þ

for Type II moves.
The second factor

ffiffiffiffi
m

p
in the penalty term is

related to problem size. Choosing
ffiffiffiffi
m

p
, rather than

m for example, is common to several TS imple-
mentations (see, e.g., Taillard, 1991; Gendreau
et al., 1994; Cordeau et al., 1997). The idea is to
use a multiplier that reflects problem size. It was
observed empirically that m overemphasizes
problem size whereas

ffiffiffiffi
m

p
produces a smoother

search. The third factor d is used to scale the
magnitude of the penalty term relative to the ob-
jective function. The last factor q allows an overall
scaling of the penalty term and is user-controlled.
The four factors multiplied together are added

to F ðxÞ to produce a penalized objective:

F 0ðxÞ ¼ F ðxÞ þ /dq
ffiffiffiffi
m

p
ð18Þ

with potential non-improving Type I or Type II
moves.

3.7. Self-adjusting parameter apop

Parameter apop in the objective function is ini-
tially set equal to 1, and adjusted every l itera-
tions, where l is a user-controlled multiplier. If all
previous �ll solutions were infeasible, then apop :¼
2apop; if they were all feasible, then apop :¼ apop=2;
otherwise apop remains unchanged. The parameter
�ll is also user-controlled and takes a value in the
interval ½l=2; l�. This way of operating, introduced
by Gendreau et al. (1994) in the context of the
vehicle routing problem, helps to produce a good
mix of feasible and infeasible solutions with re-
spect to the population equality criterion.

3.8. Stopping rules

The algorithm records F �
1 , the value of the best-

known feasible solution, and F �
2 the value of the

best-known (feasible or infeasible) solution. The
search stops whenever no improvement in F �

1 or F
�
2

has been observed for s1 consecutive iterations, or
if a total of s2 iterations have been performed,
where s2 is user-controlled and equal to 30,000 in
our implementation.

3.9. Summary of the tabu search algorithm

The step by step description of the TS algorithm
is now provided.

Step 1 (Initialization). Construct a starting solu-
tion x0. Set x� :¼ x0. Set apop :¼ 1; F �

2 :¼ F ðx0Þ;
F �
1 :¼ F ðx0Þ if x0 is feasible, and F �

1 :¼ 1 other-
wise. Set the iteration count t :¼ 0. Set d :¼ 0,
and all git and #jt values equal to 0.
Step 2 (Neighborhood search, pass 1). Repeat
this step as long as the stopping criterion has
not been met:
• Set t :¼ t þ 1.
• If t ¼ 0 ðmod lÞ, update apop.
• Identify all neighbors xijl of xt�1 with re-
spect to Type I moves and compute F ðxijlÞ
in each case. Whenever F ðxijlÞP F ðxt�1Þ, set
F 0ðxijlÞ :¼ F ðxijlÞ þ /ði; j; lÞdq

ffiffiffiffi
m

p
. Otherwise,

set F 0ðxijlÞ :¼ F ðxijlÞ. Sort all F 0ðxijlÞ values in
non-decreasing order and implement the first
non-tabu move, or the first tabu move that
improves upon F �

1 or F
�
2 .

• Set the appropriate moves tabu for h itera-
tions, where h 2 ½hmin; hmax�.

• Update x�; F �
1 ; F

�
2 ; d, all git and #jt values.

Step 3 (Neighborhood search, pass 2). This step
is identical to Step 2, except that the neighbors
of xt�1 now include all solutions xijl that can
be reached through Type I moves, as well as
all solutions xikjl that can be reached through
Type II moves.

3.10. Adaptive memory procedure

As mentioned, the TS algorithm is embedded
within an adaptive memory procedure (AMP),
also referred to as ‘‘probabilistic diversification
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and intensification’’, which was first proposed by
Rochat and Taillard (1995) in the context of the
vehicle routing problem. The AMP is based on
the idea that the components of high quality so-
lutions can be used to construct other high quality
solutions, similar to what is done in genetic al-
gorithms. In the vehicle routing context, compo-
nents of a solution are vehicle routes. In our
problem, they are political districts. The method
therefore stores in a constantly updated pool a set
of districts belonging to some of the best-known
solutions. Then, disjoint districts can be extracted
from the pool to serve as a basis for a new so-
lution. Each district of the pool, or adaptive
memory, is given a larger probability of being
selected if it belongs to a better solution. More
specifically, if there are c districts in the pool,
ranked in non-decreasing order of the objective
value F of the solution to which they belong, then
the hth district from the top of the list is extracted
with probability 2ðc � hþ 1Þ=ðc2 þ cÞ. Districts
are therefore extracted from the pool until it be-
comes impossible to extract more without creating
overlaps. The selected districts do not as a rule
constitute a full districting solution. The TS pro-
cess just described is then applied to construct
a full districting plan from a partial solution.
Whenever a new solution is thus created, its dis-
tricts are candidates to become members of the
pool. The size of the pool is kept constant at c,
meaning that its worst elements are regularly re-
placed by better ones. The number of times TS is
called within the AMP is equal to a user-con-
trolled value s3.

4. Computational results

The algorithm just described was coded in C
and run on a Pentium 233MMX PC with 64 MB
RAM. Tests were conducted on the City of Ed-
monton, Canada. For the sake of brevity, we only
report some of our experiments. Detailed test re-
sults are provided in Bozkaya (1999). We first
discuss the data requirements. We then explain
how the values of the various parameters of the
algorithm were set. Finally, we illustrate some
scenarios.

4.1. Data requirements

All necessary data were obtained through Sta-
tistics Canada’s databases. Enumeration areas
(EAs) were selected as basic units. For each unit,
all population data and geographical information
are available. All input and output information
were handled and visualized using the ArcView
Geographical Information System. An ArcView
sample screen showing the city of Edmonton
partitioned into basic units and political districts is
displayed in Fig. 3.
The Edmonton data were extracted from the

1996 census results and the current districting
plan was obtained from Government of Alberta
(1996). The database is made up of 828 EAs from
which 19 districts have to be created. The rele-
vant population data used in our study includes
population size, ethnic composition, and income
level. Also, we used ArcView’s scripting language
Avenue to extract additional geographical infor-
mation such as the adjacency of basic units, and
the length of the border between any pair of basic
units.

4.2. Parameter tuning

In any TS algorithm, it is necessary to properly
calibrate the various parameters of the algorithm.
Barr et al. (1995) suggest using statistical design.
Accordingly, we conducted a study of the follow-
ing parameters:

The setting of hmin and hmax was done indirec-
tly by using two auxiliary parameters �hh ¼
ðhmin þ hmaxÞ=2 and h0 ¼ hmax � hmin. All parameters

½hmin; hmax� tabu tenure range
a starting value for apop
l frequency of updating a
�ll maximum number of feasible/infeasible

solutions needed to update a
q scaling factor for the frequency

based memory
s1 number of successive TS iterations

without improvement
c size of adaptive memory
s3 number of AMP iterations
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of this list, apart from the last two, are related to
the TS algorithm per se. The last two are used
within the AMP procedure. Our analysis follows
this classification.
Since it is unrealistic to test all combinations of

all candidate values for all seven TS parameters,
we employed a fractional factorial design (FFD)
technique of the type described by Moen et al.
(1991). Each parameter was assigned a low and a
high value, identified by ‘‘�’’ and ‘‘+’’, respec-
tively, but instead of considering all 27 combina-
tions, only eight were selected. Each of them was
tested using five different starting solutions, using
only the population criterion with b ¼ 0:25, and
the first compactness criterion with a weight
acomp1 ¼ 1. This means that a total of 40 runs were

made. The eight combinations of parameter values
are displayed in Table 1.
In FFD, the aim is to determine which param-

eters have the most impact on the solution value.
To this end, the objective function value is re-
corded for each run. For each parameter, the dif-
ference between the sum of the objective values for
the tests with minus sign and the sum for the tests
with plus sign is computed. This difference is fur-
ther divided by 4, the number of pluses (or mi-
nuses) in each column. The resulting value
indicates the relative influence of the parameter on
the solution quality with respect to the other pa-
rameters. This analysis ignores the inter-depen-
dence of the parameters (e.g., one parameter
setting consistently performing well with a partic-

Fig. 3. ArcView sample screen showing the city of Edmonton.
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ular setting of another parameter), but it provides
a quick way of identifying the most influential
parameters. Once the fractional factorial experi-
ments are completed, a subset of the parameters
are identified as the most critical ones and are
subject to further detailed testing. In our case, two
parameters were chosen. These two parameters
were then assigned several settings and the best
objective values reported by the TS algorithm for
these settings were recorded in a two-dimensional
table, with rows corresponding to the settings of
one parameter and the columns corresponding to
those of the other parameters. This step was re-
peated for 20 random starting solutions. The best
parameter combination was then used in tests with
the AMP. The average of the 20 objective function
values was computed for each combination. From
the resulting two-dimensional table of averages,
the following four groups of combination were
included in the set of combinations tested with the
AMP:

1. The combination yielding the minimum value in
the table of averages.

2. The combination yielding the minimum objec-
tive value across all 20 runs.

3. The combination yielding the best of the row
minima and the best of column minima.

4. Compute, for each row (column), the number of
times the parameter setting for that row (col-
umn) has yielded the column (row) minimum.
Then, include the combination associated with
the row and column having the highest such
score.

In case of ties, all tied combinations were selected
for the AMP tests. For the parameter tuning ex-
periments, we fixed apop at 10 and we successively
used acomp1 ¼ 1 and acomp2 ¼ 1. In the population
equity function, we successively used b ¼ 0:25;
0:10 and 0.05. Each of these combinations was
then run with c ¼ 10 and 20, and with s3 ¼ 5; 10;
and 20, using each of the best combinations of
parameters of the TS algorithm.
Our analysis showed that the two most critical

parameters were �hh and l, and that the others could
safely be set at the following values: h0 ¼ 10, a ¼ 1,
�ll ¼ l, q ¼ 0:1 and s1 ¼ d230 ffiffiffiffi

m
p e. Further tests

were conducted on �hh and l for b ¼ 0:05; 0:10 and
0.25, for each of the two compactness measures,
on the Edmonton data. The best tabu tenure
ranges and l values resulting from these experi-
ments are given in Table 2 and all were used in our
scenario analysis.
We observed that the use of an adaptive mem-

ory procedure produces an average 4% improve-
ment in the objective function. However, the larger
the value of b, the wider the range of improve-
ments. For example, the largest improvement was
10.29% for b ¼ 0:25, 7.40% for b ¼ 0:10, and
4.77% for b ¼ 0:05. Improvements also tended to
be smaller in instances where the population equal-
ity constraint was smaller.

4.3. Scenario analysis

Using the parameter values determined in Sec-
tion 4.2, we then analyzed several scenarios (for

Table 1

Eight combinations of the TS parameter values in the factorial design technique

Parameter �hh h0 a l �ll q s1

Low (�) 15 0 0.5 15 0.6l 0.05 [115
ffiffiffiffi
m

p
]

High (+) 95 20 2 150 l 0.2 [230
ffiffiffiffi
m

p
]

Run 1 � � � + + + �
Run 2 + � � � � + +

Run 3 � + � � + � +

Run 4 + + � + � � �
Run 5 � � + + � � +

Run 6 + � + � + � �
Run 7 � + + � � + �
Run 8 + + + + + + +
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the Edmonton data), using four criteria with the
weights shown in Table 3. These scenarios were
repeated with b ¼ 0:05, 0.10 and 0.25.
The districting map corresponding to each ex-

periment was drawn, enabling a visual apprecia-
tion of each solution. It is impossible to report
here all tests and analyses that were performed.
The following example illustrates the type of con-
clusion that can be drawn by comparing solutions
and maps obtained under different conditions.
Using the weights of Scenario 5, one can visualize
the impact of b if the first compactness measure is
used and all remaining parameters and weights
remain constant. Figs. 4 and 5 depict the solutions
obtained with b ¼ 0:25 and b ¼ 0:05, respectively.
It can be seen that reducing the allowable popu-
lation deviation from 25% to 5% has some adverse
impact on compactness, but does not result in an
unacceptable solution.
The test results for the scenario runs also in-

dicate that the TS algorithm can produce dis-
tricting maps that are as much as 27% more
compact than the existing plan in use (with b ¼
25%). Even with b ¼ 5%, one can construct a
map that is 16% more compact than the current
plan using the algorithm. Very tight constraints

on population deviation (as low as 1%) are also
within the algorithm’s reach.
The tabu search algorithm can produce solu-

tions that maintain the integrity of communities
better than the existing plan. The districting map
in Fig. 4 is superior to the existing plan: its
compactness score (using measure 1) is 8% better
and the integrity of communities measure is 13%
better. As for the similarity to the existing plan
(Scenarios 2–4), the algorithm produces maps
that are up to 12% more compact than the ex-
isting plan, and at the same time are fairly similar
to it.
We should note here that the time it takes the

algorithm to complete a single run (without AMP)
is about 3.5 minutes, based on the experiment
parameters described earlier. When integrated
with AMP, the algorithm executes a fixed number
of such runs, therefore the total run length is
roughly an integer multiple of 3.5 minutes. It is
also possible to use a smaller (and less detailed) set
of basic units (e.g. counties) to reduce the execu-
tion time. In this case, it could also be possible to
implement the algorithm on-line, facilitating a
client-server communication system. This would
allow users to run multiple scenarios simulta-
neously and generate districting maps ‘‘on the
fly’’.
Countless other analyses are of course possible.

We believe one of the main benefits of the inter-
active tool we have developed is to enable decision
makers to quickly produce alternative scenarios,
visualize them, determine how to weigh various
criteria and eliminate from consideration criteria
that do not seem to significantly affect the shape of
the solution.

Table 3

Weights used for the various scenarios

Scenario Population equity Compactness Similarity to the existing plan Integrity of communities

1 10 1 0 0

2 10 1 1 0

3 10 1 5 0

4 10 1 10 0

5 10 1 0 1

6 10 1 0 5

7 10 1 0 10

Table 2

Best tabu ranges and l values

Compactness measure 1 Compactness measure 2

b ½hmin; hmax� l ½hmin; hmax� l

0.05 ½90; 100� 15 ½70; 80� 75

0.10 ½80; 90� 15 ½90; 100� 90

0.25 ½80; 90� 15 ½90; 100� 15
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5. Conclusions

We have formulated the districting problem as
a multicriteria problem and we have developed a
tabu search heuristic for its solution. An interac-
tive system was developed to visualize the solu-
tions produced by the algorithm, and hence enable

users to produce and compare various scenarios.
With respect to first generation heuristics, the
proposed method is robust and powerful: it can
easily encompass a large number of criteria and it
produces feasible and high quality solutions. It
requires no sophisticated integer linear program-
ming capabilities and can be easily implemented

Fig. 4. Edmonton districting plan for scenario 5, compactness measure 1, and b ¼ 0:025.
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on almost any system. Our test results indicate
that the algorithm can produce maps that domi-
nate the existing districting map of Edmonton
with respect to compactness and integrity of
communities. It can also reduce the amount of
deviation around the average district population
from the current 25% to much lower levels (such as
1%), improving on the equality of representation.

Finally, by changing the weights of the objective
function terms, one can quickly generate multiple
districting maps that appeal to different interests.
It is this feature of our multicriteria approach,
powered by intelligent problem solving, that we
believe is going to be the key element of the new
generation of algorithms for computer-aided po-
litical districting.

Fig. 5. Edmonton districting plan for scenario 5, compactness measure 1, and b ¼ 0:05.
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