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A Zero-One Programming Model for 
Contiguous Land Acquisition

The land acquisition problem is a spatial partitioning problem that involves selecting
multiple parcels to be acquired for a particular land use. Three selection criteria are
considered: total cost, total area, and spatial contiguity. Achieving contiguity or con-
nectivity has been problematic in previous exact methods for land acquisition. Here
we present a new zero-one programming model that enforces necessary and sufficient
conditions for achieving contiguity in discrete cell landscapes, independent of other
spatial attributes such as compactness. Computational experience with several
demonstration problems is reported, and results and extensions are discussed.

Spatial partitioning problems, in which the landscape is divided into distinct re-
gions or zones, are ubiquitous in geography and planning. They have appeared as
“regionalization” problems (Nutenko 1970), “region building” problems (Cliff and
Haggett 1970; Keane 1975), “districting” problems (Horn 1995; Williams 1995),
“clustering” problems (Rosing and ReVelle 1986), “land acquisition/ allocation” prob-
lems (Wright, ReVelle, and Cohon 1983; Gilbert et al. 1985; Diamond and Wright
1991; Cova and Church 2000), and “reserve design” problems (Williams and ReVelle
1996). In addition, facility siting problems such as the p-median problem (ReVelle
and Swain 1970), as well as the delineation of market areas in central place theory
(Dacey 1965), also involve partitioning space into a set of distinct regions.

In this paper we address a particular type of spatial partitioning problem, the land
acquisition problem, which can be described in the following way. We are given a
two-dimensional landscape that is represented as a set of n discrete parcels or cells.
The landscape is to be partitioned into two regions by assigning each cell to one re-
gion or the other. One of the regions contains those cells selected for acquisition (for
a particular land use, for example, green space) and the other region contains the re-
maining (unselected) cells.

The land acquisition problem was introduced as an optimization problem by
Wright, ReVelle, and Cohon (1983) who formulated a zero-one programming model
with three objectives: minimize the total cost of selected cells; maximize total area;
and maximize compactness. The last objective was achieved by minimizing the total
external border length of selected cells. The authors employed multiobjective linear
programming together with a branch- and-bound routine to find all pareto-optimal or
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noninferior solutions for the special case of a regular grid. Other researchers have
also developed mathematical programming approaches for land acquisition/ alloca-
tion problems.

Gilbert, Holmes, and Rosenthal (1985) considered four objectives: minimize total
cost; minimize the distance between the selected region and the nearest “amenity”
cell; maximize the distance between the selected region and the nearest “detractor”
cell; and minimize the value of the shape index (maximize compactness) of the se-
lected region. A regular grid landscape was used, and a requirement to select exactly
p cells served as a constraint on total area. The authors developed an implicit enu-
meration algorithm to generate and evaluate alternative contiguous regions. An inter-
active multiobjective method was used to identify noninferior solutions.

Diamond and Wright (1991) also developed an implicit enumeration algorithm,
but for a slightly different problem. They considered two objectives: minimize the
total cost of the selected region; and maximize the suitability of the selected cell least
suitable for the intended land use. This algorithm generated contiguous regions
whose total area and compactness were constrained by upper and lower bounds. The
method was applicable to irregular as well as regular grids.

Recently, Cova and Church (2000) developed a linear zero-one programming
model for delineating a single compact and contiguous region in a regular or an ir-
regular grid. This approach incorporated mathematical constraints that guarantee
contiguity of the region and also allow compactness (length of external border) to be
specified.

These land acquisition models follow earlier quantitative modeling approaches to
land use planning that created regions by allocating one of multiple possible land uses
to each parcel in the landscape (for example, Gordon and MacReynolds 1974; Hopkins
1977; Arad and Berechman 1978). Allocations were made in order to minimize interac-
tion costs between regions or maximize interaction benefits, or to achieve acceptable
land use compatibility. The problems were typically formulated as linear or quadratic
assignment models, depending on complexity and the chosen criteria, and were solved
using exact methods or, for large quadratic assignment problems, heuristics.

In this paper we present a new zero-one programming model for the land acquisi-
tion problem. The objective is to minimize the total cost of selecting a region of spec-
ified area. The primary focus of this paper, though, is on achieving spatial
connectivity, which in previous models has been a limiting factor in finding exact so-
lutions. Here we develop a model that guarantees contiguity in the set of selected
cells. The model is applied to the problem of creating two regions (cells selected for
acquisition; cells not selected). Computational experience with 25-cell and 100-cell
demonstration problems is reported, and results and extensions are discussed.

1. CONTIGUITY IN LAND ACQUISITION

A single contiguous region may be desirable or even necessary in land acquisition
for a number of reasons: facilitating communication, transportation, migration, con-
struction and/or maintenance functions within the region; and facilitating perimeter
enclosure, monitoring, and/or security operations for the region. In addition, contigu-
ous regions may have stronger visual, spatial, or conceptual coherence than uncon-
nected regions.

Spatial contiguity is fairly easy to define and there seems to be general agreement
in the geography and planning literature on what it means. Informally, a region in dis-
crete space is said to be contiguous if there exists, between every pair of cells in the
region, a path that is composed of only successively adjacent cells of the region. Two
cells are said to be adjacent if they share a common edge or boundary of positive
length; cells with only a common corner point are not adjacent under this rule
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(“nearest neighbor” rule). Hence, it is possible to travel from any cell to any other cell
in a contiguous region without leaving the region. As this definition implies, the ques-
tion of contiguity is a yes or no question–either a region is contiguous or it is not. (It
may also be useful to relax this yes/no definition by considering different degrees of
connectivity; this issue is addressed in section 4.3.)

In order to find an optimal contiguous region, any solution algorithm would need
to first distinguish between contiguous and noncontiguous regions, and then evaluate
all of the contiguous regions in terms of feasibility and optimality criteria. To this end
it would be useful to know how many contiguous regions exist in a given landscape.
Cliff and Haggett (1970) and Keane (1975) investigated this question for discrete
landscapes: in how many different ways (A) can a landscape of n cells be partitioned
into regions, where the number of regions, k, can take on every value from 1 to n?
These authors provide formulas for calculating bounds on A under alternative rules
for creating regions. An upper bound is based on the rule that allows any two cells to
be placed together in the same region (contiguity is not enforced under this rule). A
lower bound is derived from the restrictive assumption that the landscape is a line of
cells and regions must be contiguous line segments. Both the upper and the lower
bound on A grow exponentially with problem size n, although there is wide diver-
gence between these bounds.

In the land acquisition problem (where k � 2), the number of ways to select cells
for acquisition is 2n under no constraint on region size and no connectivity require-
ment. If we also say that exactly p cells must be selected, then the number of regions

is n-choose-p �n

p� under no connectivity requirement. The number of ways to select 

a contiguous p-cell region depends, additionally, on the shape and cell adjacency
structure of the landscape. Consider, for example, the problem of selecting a contigu-
ous region of two cells in a 100-cell landscape. If the 100 cells are arranged in a line,
then 99 different contiguous regions are possible (the left selected cell may be any
cell 1 through 99). Now, suppose that the 100-cell line is folded into a 10-by-10 grid
(Figure 2); 180 contiguous two-cell regions are now possible. If the region size were
increased to 25 cells, the line would admit only 76 contiguous regions, but the grid
would admit many more than 180 contiguous arrangements, although the exact num-
ber is difficult to determine. In general, counting the number of possible contiguous
regions is a difficult combinatorial exercise except in cases where the underlying
landscape is very restrictive (for example, a line of cells) or the region size (p) is very
small. There is evidently no general formula for determining the number of contigu-
ous regions in a landscape of arbitrary dimensions and cell adjacency structure (or for
deriving good bounds on this number). Methods have been developed for generating
all possible contiguous regions systematically (see, for example, March and Matela
1974; Mills, Sherwell, and Van Rooyan 1995), although such enumeration processes
become increasingly time consuming as p and n get larger.

Methods employed for enforcing contiguity in spatial partitioning problems in-
clude both heuristic (approximate) approaches and exact approaches. Effective and
flexible heuristics have been developed by many researchers; two recent examples
are the methods of Horn (1995) and Mehrotra, Johnson, and Nemhauser (1998) for
political districting. Heuristics can typically find good and sometimes optimal solu-
tions, but they can neither guarantee mathematical optimality nor determine the de-
viation from optimality in a solution.

Depending on the optimality criterion, the task of finding a mathematically optimal
contiguous region can be challenging even for small problems, and difficult or impos-
sible for medium-sized and large problems. Two successful approaches have been the
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implicit enumeration algorithms of Gilbert, Holmes, and Rosenthal (1985) and Dia-
mond and Wright (1991). These algorithms have been most effective when applied to
relatively small landscapes, or to larger landscapes in which the selected region is
small or must have a very compact shape.

Gilbert, Holmes, and Rosenthal (1985) successfully applied their method to a 900-
cell landscape but with a region size of only five cells. Diamond and Wright (1991)
used their method to solve a variety of problems in which the landscape size ranged
from 25 to 950 cells but the selected region was limited to ten or fewer cells. It is un-
clear how these approaches would perform in finding optimal regions larger than five
to ten cells; but the rapid growth in the number of possible contiguous regions as re-
gion size increases beyond several cells suggests large increases in computing time.
The two algorithms were also most effective under “min-max” or “max-min” (bottle-
neck) objectives. In contrast, under a “min-sum” objective, such as minimizing total
cost, the problem was found to be NP-hard (Gilbert, Holmes, and Rosenthal 1985).

In implicit enumeration algorithms, contiguity can be guaranteed because the al-
gorithm can be coded to generate only contiguous candidate regions. In some cases
(for example, under bottleneck objectives) a contiguity requirement may even im-
prove the algorithm’s performance. In mathematical programming models, however,
contiguity has been difficult to enforce. The difficulty lies in formulating constraints
(ideally, a small set of linear constraints) that enforce both necessary and sufficient
conditions for contiguity, that is, constraints that screen out all noncontiguous regions
but no contiguous region. A necessary condition for achieving contiguity is that each
cell in a multi-cell region must be adjacent to at least one other cell in the region. But
for p � 4, this condition is not sufficient to guarantee contiguity (one or more discon-
nected pairs of adjacent cells may result). A sufficient condition for contiguity is to re-
quire that a region have a suitably high level of compactness (for example, require
that the region be nearly circular or square in shape). But this requirement precludes
regions that are contiguous but not extremely compact.

In the mathematical programming model of Cova and Church (2000), a large num-
ber of linear contiguity constraints was needed for the most general case of admitting
any contiguous region as a possible solution. Their model became tractable only
when the selected region was required to satisfy certain types of compactness condi-
tions or when a “root” cell was preselected for the region. But these conditions ex-
cluded many contiguous regions from consideration.

Contiguity is often discussed together with compactness. As a result, there may be
some confusion between the two as well as the tendency to use compactness as a sub-
stitute for contiguity. Although compactness may be defined and measured in differ-
ent ways, a compact region can be thought of informally as a region whose cells are in
close proximity to each other. Austin (1984) and Young (1988) review alternative
measures of compactness. We note that contiguity and compactness are not equiva-
lent, nor does one imply the other. A region can be contiguous but not compact (for
example, a long line of cells), or compact but not contiguous (for example, two nearby
but disconnected squares). Hence, using compactness as a substitute for contiguity
may, on one hand, preclude what might otherwise be a desirable contiguous solution,
or, on the other hand, result in a noncontiguous solution.

To the author’s knowledge no general, practical mathematical programming
method exists for enforcing contiguity in land acquisition and other spatial partition-
ing problems. There is a “need for a tractable constraint form that captures all con-
tiguous site patterns regardless of spatial characteristics” (Cova and Church 2000, p.
328). The aim of this research is toward developing such a model. The model pre-
sented in the next sections enforces necessary and sufficient conditions for contiguity,
independent of other spatial attributes such as compactness.
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2. A GRAPH-THEORETICAL APPROACH TO LAND ACQUISITION WITH CONTIGUITY

In developing a model for land acquisition with contiguity, we make use of several
concepts from graph theory and network optimization. In a previous paper, the author
presented a zero-one programming model for finding minimum spanning trees (MST)
in planar graphs (Williams 2001). That model provides a theoretical basis for the land
acquisition model below. The basic idea is that the landscape, as a mosaic of cells, can
be represented as a planar graph with vertices and edges, G(V,E). A planar graph is a
graph that can be constructed in the Cartesian plane so that no two edges intersect ex-
cept at vertices (Chartrand and Oellermann 1993). Vertices in the graph represent
cells in the landscape, and edges represent cell adjacencies (Figures 1a and 1b). 

An important feature of planar graphs is that they have dual graphs. The edges and
vertices of a planar graph (the “primal” graph) partition the plane into a set r of zones,
all but one of which are enclosed or bounded. The dual graph is constructed by plac-
ing a dual vertex in each of the zones, including the unbounded zone, and then, for
each edge in the primal graph, drawing a dual edge that joins the two dual vertices
separated by the primal edge (Figure 1c). The dual of a planar graph is itself a planar
graph. Note that the edges of the primal and dual graphs form intersecting pairs, with
one primal edge and one dual edge in each pair.

In the MST model of Williams (2001), the special primal-dual structure of planar
graphs was used to enforce contiguity in spanning trees of the graph (a spanning tree
uses n�1 edges to connect all n vertices of a graph). The MST model generates both
a (minimum) spanning tree in the primal graph and a second spanning tree in the
dual graph. The two spanning trees are complementary in the sense that none of the
edges in the primal tree intersect any of the edges of the dual tree, and the two trees
together form a partition of the set of intersecting edge pairs (Figure 1d).

In formulating the MST model, the following further specifications were made in
the primal and dual graphs. In the primal graph, an arbitrary vertex was designated
the “terminal” vertex (vertex n, for convenience). In addition, each (undirected) edge
of the primal graph was represented by two directed arcs: one arc (i,j) directed from
vertex i to vertex j, and another arc (j,i) directed from j to i. Similarly in the dual
graph, vertex r was specified arbitrarily as the dual terminus and each dual edge was
represented by two directed arcs. For those edges incident to the terminal vertices,
only one arc, directed into the terminus, was used (Figure 1e). The directed arcs
were used to indicate the eligible (adjacent) successor vertices for each vertex.

The use of directed arcs and the complementary nature of the primal and dual
spanning trees were exploited to enforce contiguity in the formation of both spanning
trees. For each vertex in the primal graph, except the terminus, we required exactly
one arc directed from the vertex to an adjacent successor vertex to be selected for the
spanning tree (outflow requirement). This outflow requirement was also made for the
dual graph. Hence, n-1 arcs in the primal graph and r�1 arcs in the dual graph were
selected for the spanning trees, necessary conditions for trees with n and r arcs, re-
spectively. Furthermore, the “interwoven” structure of the primal and dual graphs
prevented cycles in both trees when this outflow requirement was satisfied. Any cycle
in the primal tree would force one or more vertices in the dual tree to be discon-
nected from the dual terminus and violate the outflow requirement for the dual. Sim-
ilarly, any cycle in the dual tree would disconnect the primal tree and violate the
outflow requirement for the primal.

This method of enforcing contiguity in spanning trees is applied to the land acqui-
sition problem in the following way. Suppose we have a spanning tree of an n-cell
landscape. This n-vertex spanning tree can serve as the backbone for a p-vertex sub-
set or “subtree” of the spanning tree, which represents a region of p cells in the land-
scape. The critical aspect is this: by requiring the subtree to contain p � 1 edges (a
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FIG. 1. Cellular Landscape and Corresponding Planar Graph. (a) A landscape of 7 cells. (b) A planar
graph representation of the landscape; vertices represent cells and edges represent cell adjacencies. (c)
Primal planar graph (circular vertices and bold edges) and its dual graph (square vertices and thin edges);
n � 7, r � 6. (d) Complementary spanning trees (bold edges) in the primal and dual graphs. (e) Primal and
dual graphs with edges drawn as directed arcs; “T” indicates the designated terminal vertices.



necessary condition for a p-vertex subtree), the subtree—and hence the cellular re-
gion it represents—is forced to be contiguous. The land acquisition problem, then,
can be stated as a problem of finding an optimal subtree of a spanning tree within a
planar graph.

In the model below, complementary spanning trees are created in both the primal
planar graph (the cellular landscape) and the dual graph. The actual spanning trees
formed depend on the optimality criterion, which seeks an optimal p-vertex subtree.
That is, selection of an optimal subtree drives the choice of the spanning tree back-
bone. Contiguity of the subtree is enforced by requiring the subtree to be a subset of
the spanning tree backbone in the primal graph, and by specifying that the difference
between the number of vertices and number of edges in the subtree must equal 1.
We note that a subtree representation of a contiguous p-cell region may not be
unique (it may be possible to represent a region by different subtrees).

3. A DECISION MODEL FOR LAND ACQUISITION WITH CONTIGUITY

A zero-one programming model is formulated for identifying a minimum-cost con-
tiguous region of specified area. The contiguity requirement is made only for the re-
gion of selected cells, and not for the remaining unselected cells. We assume that the
landscape itself is contiguous.  We first formulate the model for cellular landscapes
that conform to a regular rectangular grid (raster system). In regular grids, all cells
have equal area, which we specify as one unit. The total area of the region can then be
represented by the total number of selected cells (p). Modifications for adapting the
model to irregular grids, in which cells have varying sizes, shapes, and adjacencies,
are discussed in section 4.2. The cost (Ci) of a cell i indicates the purchase price of
the cell plus any improvement costs that would be needed. In the case of public-sec-
tor investment, cell cost might represent the opportunity cost of foregone land uses.
Alternatively, cost might represent the level of unsuitability of a cell for the intended
land use.

3.1 Model Notation

Indices, Sets, Parameters

i, j, I are the indices and set of primal vertices (cells), where i, j � 1, ..., n;
k, l, K are the indices and set of dual vertices, where k, l � 1, ..., r;
Di is the set of primal vertices (cells) j that are adjacent to primal vertex (cell) i;
Dk is the set of dual vertices l that are adjacent to dual vertex k;
Ci is the cost of primal vertex (cell) i;
p is the total number of vertices (cells) to select (1 � p � n);
q is the number of cell clusters specified for the selected region under a re-

laxed connectivity requirement (see section 4.3); and
q* is the number of cell clusters in a selected region with no connectivity re-

quirement (see section 4.3).

Decision Variables

Xij � 1, if directed arc (i,j) in the primal graph is selected for the primal span-
ning tree and is also selected for the subtree, and 

� 0, otherwise;
Yij � 1, if directed arc (i,j) in the primal graph is selected for the primal span-

ning tree but is not selected for the subtree, and
� 0, otherwise;
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Zkl � 1, if directed arc (k,l) in the dual graph is selected for the complemen-
tary dual spanning tree, and

� 0, otherwise;
Ui � 1, if primal vertex (cell) i is selected for acquisition, and

� 0, otherwise.

3.2 Formulation

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

3.3. Description of the Model

The objective function (1) minimizes the total cost (or average per-cell cost) of the
selected region, which is measured as the sum of the costs of selected cells. Con-
straints (2) stipulate that for each vertex (cell) i in the primal graph, except the termi-
nus n, exactly one primal arc directed from i to some adjacent vertex j must be
selected for the primal spanning tree (outflow requirement). Furthermore, the se-
lected primal arc must be either selected for the subtree (that is, the selected region),
in which case Xij � 1, or not selected for the region, in which case Ykl � 1. A sepa-
rate constraint is written for each primal vertex except vertex n. Constraints (3) are
similar to (2) in that they stipulate that for each vertex k in the dual graph, except the
dual terminus r, exactly one dual arc directed from k to some adjacent vertex l must
be selected for the dual spanning tree. A separate constraint is written for each dual
vertex except vertex r.

Constraints (4) force exactly one arc to be selected from each set of intersecting
primal and dual arcs. (These sets correspond to the pairs of intersecting primal and
dual edges.) These constraints guarantee the complementarity of the primal and dual
spanning trees by ensuring that their respective edges do not intersect. A separate
constraint is written for each set of intersecting primal and dual arcs. These con-
straints, in conjunction with (2) and (3), prevent cycles in the primal and dual trees.

Together, constraints (2), (3), and (4) create complementary spanning trees in the
primal and dual graphs. Constraints (5) through (8), in turn, create a connected sub-
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tree of the primal spanning tree that represents a p-cell contiguous region. Con-
straints (5) stipulate that if either of the primal arcs (i,j) or (j,i) is selected for the sub-
tree, then both of the incident vertices must also be selected for the subtree (that is,
cells i and j must be selected for the region). A separate pair of constraints is written
for each edge in the primal graph.

Constraints (6) stipulate that if any of the arcs directed out of vertex i are selected
for the subtree, then vertex i must be selected for the subtree (that is, cell i must be
selected for the region). A separate constraint is written for each primal vertex i ex-
cept terminus n. These constraints are not strictly necessary in that they enforce no
logical condition not already enforced by (2) and (5). However, they are included be-
cause they were found to be effective in improving the computational performance of
the model.

Constraint (7) requires the subtree to contain p vertices (that is, the selected re-
gion must contain p cells). Constraint (8) requires the subtree to contain p-1 edges.
The statements in (9) indicate that the decision variables are binary integer variables.
(We note that the variables Xij, Yij, and Zkl may be specified as non-negative contin-
uous variables and they will still take on binary values in an optimal solution in which
all of the Ui variables are zero or one)

4. COMPUTATIONAL EXPERIENCE

Three computational experiments were performed to demonstrate the above
model in applications to regular grids, irregular grids, and under conditions of relaxed
connectivity.

4.1 Experiment 1, Contiguous Regions on a Regular Grid

In the first experiment, the model (1) through (9) was applied to a hypothetical
landscape of 100 square cells arranged in a 10-by-10 grid. Cell costs were repre-
sented by random numbers taken from a uniform distribution with a range of [0.2,
1.8] and a step size of 0.1 (Figure 2). The problem was solved for 51 values of p, rang-
ing from 5 to 95 (selected results appear in Table 1). For each value of p a minimum-
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cost contiguous region was found (Figure 3). Computing was performed on a Silicon
Graphics workstation using CPLEX 3.0 mixed integer program solver.

Computational performance varied greatly, depending on the value of p. Run
times for finding integer-optimal solutions were relatively fast when p was less than
10 or greater than 50, and were slowest for values of p between 20 and 30 (Table 1,
columns D and F). The run times ranged from less than a second (p � 95) to a worst
case of about 38 minutes (p � 27). Similarly, the amount of branching and bounding
ranged from none (p � 85, 90, 95) to a worst case of 23,575 branch nodes (p � 27).
Such relatively long computing times resulted even though strategies were employed
to enhance computational performance. First, the constraints (6) proved to be effec-
tive in reducing the amount of branching and bounding (by up to 99 percent) relative
to parallel trials conducted without these constraints. Second, an upper bounding
strategy on the objective function (total cost) was used. The optimal objective func-
tion value for a particular value of p was used to derive an upper bound on the objec-
tive function for the next lower value of p.

For comparison, the model was applied to a larger problem (n � 144, 12-by-12
grid). For p � 7 in the 144-cell problem, the run time was roughly the same as for 
p � 11 in the 100-cell problem (about 24 seconds). However, for values of p between
14 and 69 in the larger problem, the run times exceeded the worst case time in the
smaller problem. These results are consistent with prior results (Gilbert, Holmes,
and Rosenthal1985; Diamond and Wright 1991), which indicate that computing time
depends on the value of p as well as the value of n. As n increases, the range of values
of p for which a problem remains tractable tends to decline.

We also had the opportunity to solve the 100-cell problem with newer software,
CPLEX 7.1, run on a Dell Optiplex personal computer. Both solution times and the
amount of branching and bounding declined significantly using this newer system
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TABLE 1
Experiment 1, Contiguous Region on Regular Grid (n � 100), Selected Results

(A) (B) (C) (D) (E) (F) (G)
p Obj-R Obj-I Time (3.0) Time (7.1) Nodes (3.0) Nodes (7.1)

95 85.10 85.10 0.81 0.83 0 0
90 76.80 76.80 1.19 0.19 0 0
85 69.20 69.20 1.18 0.27 0 0
80 62.20 62.20 2.25 0.21 3 0
75 55.42 55.50 2.05 1.21 16 0
70 48.92 49.00 3.66 0.66 18 0
65 42.65 42.80 3.43 0.81 24 3
60 36.93 37.10 5.12 2.30 29 21
55 31.93 32.40 12.11 8.06 101 97
50 27.43 28.00 58.04 16.50 447 313
45 23.35 24.00 69.47 18.69 686 593
40 19.51 20.30 293.93 86.85 2,606 2,335
35 16.01 16.80 224.74 37.53 2,531 1,301
30 12.75 13.90 1,044.62 95.45 11,669 4,013
25 9.91 11.30 1,258.95 67.02 13,262 3,499
20 7.52 8.90 629.79 99.81 7,155 3,722
15 5.39 6.60 617.32 78.99 4,715 3,251
10 3.46 4.00 20.88 9.79 211 274
5 1.60 1.60 1.66 0.12 0 0

Descriptions of Columns
(A) p is the number of cells (total area) selected for the contiguous region.
(B) Obj-R is the objective function value (cost) of the optimal solution to the relaxed linear program, that is, without the integer requirements

on the decision variables.
(C) Obj-I is the objective function value (cost) of the integer-optimal solution.
(D) Time (3.0) is the computing time to find the integer-optimal solution in CPU seconds using the CPLEX 3.0 solver.
(E) Time (7.1) is the computing time to find the integer-optimal solution in CPU seconds using the CPLEX 7.1 solver.
(F) Nodes (3.0) is the number of branch and bound nodes needed to find the integer-optimal solution using CPLEX 3.0.
(G) Nodes (7.1) is the number of branch and bound nodes needed to find the integer-optimal solution using CPLEX 7.1.



FIG. 3. Experiment 1, Least Cost Contiguous Regions. (a) 10 cells are selected for the region (p � 10),
cost � 4.0. (b) p � 20, cost � 8.9. (c) p � 30, cost � 13.9. (d) p � 40, cost � 20.3. (e) p � 50, cost � 28.0.
(f) p � 60, cost � 37.1.



TABLE 2
Experiment 2, Contiguous Region, Regular Grid versus Irregular Grid (n � 25)

(A) (B) (C) (D) (E) (F) (G)
p Time (a) Nodes (a) Time (b) Nodes (b) Time (c) Nodes (c)

16 0.81 6 0.72 0 0.78 0
14 0.02 0 0.17 0 0.33 15
12 0.11 1 0.15 14 0.11 0
10 0.14 6 0.37 25 0.40 20
8 0.17 5 0.57 73 1.43 132
6 0.19 7 0.27 3 0.21 0
4 0.07 2 0.70 77 0.51 36

Descriptions of Columns
(A) p is the total area specified for the selected region: it is the number of selected cells in the regular grid problem of part (a) and in the ir-

regular grid, equal area problem of part (b); and it is a lower bound on region’s area in the irregular grid, unequal area problem of part (c).
(B) Time (a) is the computing time to find the integer-optimal solution in CPU seconds for part (a), regular grid.
(C) Nodes (a) is the number of branch and bound nodes needed to find the integer-optimal solution for part (a), regular grid.
(D) Time (b) is the computing time to find the integer-optimal solution in CPU seconds for part (b), irregular grid, equal area.
(E) Nodes (b) is the number of branch and bound nodes needed to find the integer-optimal solution for part (b), irregular grid, equal area.
(F) Time (c) is the computing time to find the integer-optimal solution in CPU seconds for part (c), irregular grid, unequal area.
(G) Nodes (c) is the number of branch and bound nodes needed to find the integer-optimal solution for part (c), irregular grid, unequal area.

(Table 1, columns E and G). The worst solution time of the 19 trials reported in Table
1 was about 100 seconds (for p � 20).

4.2 Experiment 2, Regular and Irregular Grid Comparisons

In the second experiment, we sought to compare the model’s performance with re-
spect to regular and irregular grids of 25 cells. Computing was performed using
CPLEX 7.1 on the personal computer. In part (a) of this experiment, the model (1)
through (9) was applied to a 5-by-5 regular grid. Cells were assigned random costs on
the range [0.2, 1.8] (Figure 4a). The value of p was varied between 4 and 16. As
shown in Table 2, columns B and C, optimal solutions were found in less than one
second for each value of p (for example, Figure 4c).

In parts (b) and (c) of this experiment, we transformed the 5-by-5 regular grid into
a 25-cell irregular grid in which the cells had different shapes and adjacencies (Figure
4b). In part (b), each of the cells was assigned an area of one unit, as in the regular
grid. The primary difference between the two grids was in the structure of cell adja-
cencies. In applying models (1) through (9) to the irregular grid, computational per-
formance declined relative to the regular grid (Table 2, columns D and E; Figure 4d).
This indicates that problem tractability can be influenced by landscape configuration
(graph structure) independent of landscape size.

In part (c), we used the irregular grid from part (b) but assigned the cells different
areas, ranging from 0.5 to 1.5 (the total area of the grid remained 25 units). This fur-
ther change required modifying the model because the region’s specified area could
no longer be expressed as the number of selected cells. Constraints (7) and (8) were
replaced by a new constraint

(10)

to ensure the correct relationship between the number of vertices and number of
arcs in the selected subtree. We also added a lower bound constraint on the selected
region’s area,

(11)Σ
i I

AiUi p
∈
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FIG. 4. Experiment 2, Regular Grid and Irregular Grid, 25 Cells. (a) Cell costs for regular grid (b) Cell
costs for irregular grid. (c) Regular grid least cost contiguous region, p � 8, cost � 5.3. (d) Irregular grid,
equal area cells, least cost contiguous region, p � 8, cost � 5.1. (e) Irregular grid, unequal area cells, least
cost contiguous region, p � 8, area � 8.25, cost � 5.1.



where Ai is the area of cell (primal vertex) i. Overall, the computational performance
was similar to that of part (b), although the worst-case run time (1.43 seconds for p �
8) exceeded every run time in (b) (Table 2, columns F and G). Longer run times
tended to occur when the selected region’s area turned out to be larger than the
lower bound (p). For example, when the lower bound was specified as 8, the area of
the least-cost contiguous region turned out to be 8.25 (Figure 4e). We note that con-
straints such as (11) are recognized as being “integer unfriendly” and may add to the
computational burden of finding integer-optimal solutions (ReVelle 1993). One way
around this drawback is to restate (11) as an objective of maximizing the region’s area:

(12)

Multiobjective optimization methods (for example, Cohon 1978) could then be ap-
plied to objectives (1) and (12) in order to generate solutions that represent efficient
trade-offs between cost and area without using an area constraint.

4.3 Experiment 3, Relaxing Contiguity

Contiguity represents one extreme on a spectrum of connectivity. If a region con-
tains p cells, the number of clusters (q) in the region may range from one (contiguous
region) to p (every cell is disconnected from every other cell). We use the parameter
q as a measure of the level of connectivity achieved; low values of q imply high levels
of connectivity and vice versa (other measures of landscape connectivity are dis-
cussed by van Langevelde, van der Knaap, and Classen 1998). Because the cost of a
p-cell region may depend upon this aspect of its configuration, it may be useful to
consider the trade-off between the objectives of minimizing cost and maximizing the
level of connectivity achieved. In this experiment we show how the model can be ap-
plied to the problem of controlling the level of connectivity when strict contiguity is
not required.

If we wished to find a least-cost p-cell region under no requirement for connectiv-
ity, we would simply select the p least expensive cells. This solution would contain
some number of clusters, q*, where 1 � q* � p. We could also identify regions with
higher levels of connectivity (q � q*), although these regions would have a higher
total cost. In selecting a least-cost region, then, we would like to be able to control the
number of clusters (q) on the range 1 � q � q*.

Controlling the value of q in the model can be done in the following way. A p-cell
region containing q contiguous clusters is analogous to p vertices distributed among q
subtrees in a graph. As noted above, when q � 1 (contiguous region), the number of
edges in the (single) subtree is p�1, one less than the number of vertices. In general,
given q clusters, the total number of edges is p�q. Hence, in order to specify the
number of clusters in the optimal solution, we would change the right-hand side of
constraint (8) from p�1 to p�q, for regular grids. For irregular grids, we would
change the right-hand side of (10) from 1 to q. Holding the region’s area constant at
p, the number of clusters q can be traded off against total cost. (Note that the speci-
fied value of q represents an upper bound on the number of clusters; the actual num-
ber of clusters will be less than q if two or more clusters happen to be adjacent.)

In this experiment the model (1) through (9) was applied to the 100-cell regular
grid used in experiment 1. Computing was performed using CPLEX 7.1 on the per-
sonal computer. We sought to identify the trade-off between cost and connectivity,
holding the region’s total area (p) constant at 40. To begin the experiment, we im-
posed no connectivity requirement and simply selected the 40 least expensive cells;
this yielded 11 clusters (q* � 11) (Figure 6d). This solution was identified in less than
a second and required no branching and bounding. The value of q was then varied

Maximize: Σ
i I

AiUi
∈
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TABLE 3
Experiment 3, Regions with Varying Levels of Connectivity (n � 100, p � 40)

(A) (B) (C) (D) (E)
q Obj-R Obj-I Time Nodes

1 19.51 20.30 86.85 2,335
2 19.10 19.80 19.53 592
3 18.92 19.20 4.81 96
4 18.80 18.90 0.58 6
5 18.73 18.80 0.51 4
6 18.65 18.70 0.62 4
7 18.60 18.60 0.17 0
8 18.55 18.60 0.29 0
9 18.50 18.50 0.22 0
10 18.45 18.50 0.25 0
11 (q*) 18.40 18.40 0.17 0

Descriptions of Columns
(A) q is the number of clusters specified for the selected region.
(B) Obj-R is the objective function value (cost) of the optimal solution to the relaxed linear program, that is, without the integer require-

ments on the decision variables.
(C) Obj-I is the objective function value (cost) of the integer-optimal solution.
(D) Time is the computing time to find the integer-optimal solution in CPU seconds.
(E) Nodes is the number of branch and bound nodes needed to find the integer-optimal solution.

between 1 and q* � 11. In so doing, we identified eleven distinct least-cost regions,
each 40 units in size and containing the specified number of clusters (q) (the solution
for q � 1 was found in experiment 1). Solution times quickly declined as the connec-
tivity requirement was relaxed (Table 3). Figure 5 shows how both the shape and the
cost of the region change as the number of clusters comprising it increases from one
to eleven (see also Figures 3d and 6d).

With these cost data, the value of q* happened to be unique for p � 40, but q* was
not unique for other values of p. For p � 30, for example, 924 alternate regions ex-
isted, each having a (minimum) cost of 12.0 but a different number of clusters (q* val-
ues ranged from 6 to 13). In such cases, the minimum of the q* values (highest level of
connectivity) would likely be of greatest interest. The (minimum) values of q* for the
19 values of p in Table 1 are shown in Table 4. As p decreased from 95 to 5, the value
of q* increased to a maximum of 11 (at p � 40) and then fluctuated between 5 and 9.

5. DISCUSSION

Based on the above experiments, the computational burden for finding integer-op-
timal solutions (computing time, amount of branching and bounding) varied signifi-
cantly with the values of parameters p (region area) and q (number of clusters in the
region) for a given landscape size n. Computational burden was largest for q � 1 and
p � 0.2 n to 0.3 n. We suggest that this variation is the result of three spatial factors
and the interactions among these factors:

(a) The combinatorial factor. The number of possible ways to choose p cells from n
cells (n-choose-p) reaches a maximum when p � n/2. Based on this factor alone, we
might (erroneously) expect solution times to be highest when the value of p is near
n/2 because a maximum number of potential solutions would need to be evaluated.

(b) The number of clusters factor. When no requirement for connectivity is made,
the problem is trivial and can be solved by simply selecting the p least expensive cells
(yielding q* clusters). Except for relatively large values of p, this solution is unlikely to
be contiguous, and would need to be altered to achieve higher levels of connectivity.
When q* is close to 1, only a small modification may be needed to make the solution
contiguous. For example, two clusters might be turned into a single contiguous clus-
ter by exchanging a few selected cells for a few (costlier) unselected cells. The num-
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TABLE 4
Experiment 3, Regions with No Connectivity Requirement (n � 100), Selected Results

(A) (B) (C) (D) (E) (F)
p q* Obj-WoC Obj-C Obj-Gap Obj-Gap %

95 1 85.10 85.10 - 0 - - 0 -
90 1 76.80 76.80 - 0 - - 0 -
85 1 69.20 69.20 - 0 - - 0 -
80 2 62.10 62.20 0.1 0.16
75 3 55.20 55.50 0.3 0.54
70 3 48.70 49.00 0.3 0.62
65 3 42.40 42.80 0.4 0.94
60 5 36.50 37.10 0.6 1.64
55 5 31.30 32.40 1.1 3.51
50 6 26.70 28.00 1.3 4.87
45 8 22.40 24.00 1.6 7.14
40 11 18.40 20.30 1.9 10.33
35 8 15.00 16.80 1.8 12.00
30 6 12.00 13.90 1.9 15.83
25 8 9.00 11.30 2.3 25.56
20 7 6.40 8.90 2.5 45.31
15 9 4.30 6.60 2.3 53.49
10 8 2.50 4.00 1.5 60.00
5 5 1.00 1.60 0.6 60.00

Descriptions of Columns
(A) p is the number of cells (total area) selected for the region (n � 100).
(B) q* is the (minimum) number of clusters in an integer-optimal solution with no connectivity requirement.
(C) Obj-WoC is the objective function value (cost) of an integer-optimal solution with no connectivity requirement.
(D) Obj-C is the objective function value of the integer-optimal contiguous solution (from Table 1, column C).
(E) Obj-Gap is the difference between Obj-C and Obj-WoC.
(F) Obj-Gap % is the percentage increase in Obj-C over Obj-WoC.

FIG. 5. Experiment 3, Least Cost Regions with Varying Levels of Connectivity. (a) The selected region
contains 40 cells and 3 clusters (p � 40, q � 3), cost � 19.2. (b) p � 40, q � 5, cost � 18.8 (c) p � 40, q �
7, cost � 18.6. (d) p � 40, q � 9, cost � 18.5. For p � 40, q � 1 see Figure 3d. For p � 40, q � q* � 11,
see Figure 6d.



ber of computations needed to evaluate just a few exchanges would be relatively
small. When q* is large, however, more clusters would need to be joined, suggesting
a greater number of cell exchanges and a greater computational effort to evaluate the
different possible exchanges. Indicative of this factor is the difference between the
objective function value of the optimal contiguous solution and that of the solution
with no connectivity requirement (Obj-Gap in Table 4). In the demonstration prob-
lem, Obj-Gap tended to be widest when q* was relatively large, and narrowest when
q* was small.

(c) The distance between clusters factor. As the spatial distances that separate clus-
ters increase, the number of cell exchanges that would be needed to bridge these dis-
tances and achieve contiguity would probably increase, with a corresponding increase
in computing time. (We refer to the distance between the nearest edges of clusters.)
The average intercluster distance in the q* solutions tend to increase as the density of
selected cells declines, that is, as p decreases relative to n (Figure 6). Of course, aver-
age intercluster distance is highly dependent on the spatial distribution of cell costs,
especially at low values of p.

For large values of p (for example, p � 0.70 n) all three factors tend to promote
computational efficiency: the number of possible combinations is relatively low; the
value of q* tends to be close to 1; and, because most cells in the landscape are se-
lected, intercluster distances tend to be short. For values of p in the mid to high range
(for example, 0.45 n � p � 0.70 n), all three factors combine to drive up computing
times as p declines. The number of combinations, the number of clusters, and inter-
cluster distances are larger at the lower end of this range. For values of p in the low to
mid range (for example, 0.15 n � p � 0.45 n), the number of combinations starts to
decline; but this is more than offset by the relatively large number of clusters and rel-
atively large intercluster distances, which drive up computing time. For small values
of p (for example, p � 0.15 n), the relatively low number of combinations and rela-
tively low number of clusters promote computational efficiency, but this is partially
offset by relatively large intercluster distances.

In addition to these three factors, computing times were also influenced by whether
or not the landscape conformed to a regular grid. In experiments on a small landscape
(n � 25), less computing was needed to find integer-optimal solutions on regular grids
than irregular grids. Both the pattern of cell adjacencies (graph structure) and whether
irregular cells have equal or differing areas may impact computing time.

The shape attributes of solutions are also of interest. As indicated by Figure 3, the
minimum-cost contiguous regions may not be particularly compact. At lower values
of p the selected region may be sinuous, and at higher values of p it may be riddled
with inlets, peninsulas, and holes. These spatial characteristics may also remain pre-
sent when strict contiguity is relaxed to allow multiple clusters (Figures 5 and 6).
These characteristics result from the particular spatial distribution of cell costs to-
gether with an absence of any compactness-promoting objective or constraint in the
model.

Identifying an optimal contiguous region without regard for compactness may be
desirable in some land acquisition problems (for example, in selecting parcels for
stream corridor buffers)—and the model presented here would be appropriate for
such cases. In other cases, some level of compactness may be needed in addition to
achieving contiguity, and the ability to control compactness would be useful. Linear
constraints for controlling external border length (one measure of compactness)
were developed by Wright, ReVelle, and Cohon (1983), and could be added to the
model. This would allow compactness to be achieved to the desired extent, without
having to rely on it for contiguity. An exploration of this possibility is suggested as
further research.

In the model presented here, two regions are created, but contiguity is required
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FIG. 6. Experiment 3, Least Cost Regions with No Connectivity Requirement. (a) The selected region
contains 10 cells and 8 clusters, p � 10, q* � 8, cost � 2.5. (b) p � 20, q* � 7, cost � 6.4. (c) p � 30, 
q* � 6, cost � 12.0. (d) p � 40, q* � 11, cost � 18.4. (e) p � 50, q* � 6, cost � 26.7. (f) p � 60, q* � 5,
cost � 36.5.



only for the region of selected cells. (Contiguity of the selected region does not guar-
antee contiguity of the unselected cells, as indicated by Figures 3c-f.) We expect that
the model can be reformulated to enforce contiguity in both regions. A generalization
of this two-region problem involves partitioning the landscape into k contiguous re-
gions. It may also be possible to reformulate the model for the k-region problem—
another area for further research.

6. SUMMARY AND CONCLUSIONS

In this paper a new zero-one programming model is presented for the land acqui-
sition problem. The intent is to identify a contiguous region of discrete parcels or
cells under the objective of minimizing total land cost. This model provides necessary
and sufficient conditions for achieving contiguity in both regular and irregular parcel
systems, independent of other spatial attributes such as compactness. No contiguous
region is precluded a priori as a potential solution. The model also enables strict con-
tiguity to be relaxed so that varying levels of connectivity may be achieved. The size of
the model is “linear,” that is, the number of variables and constraints grows linearly
with the number of cells in the landscape (n). Computational experience indicates
that exact solutions can be found in reasonable amounts of time (100 seconds or less)
for medium-sized problems (n � 100) using commercially available software on a
personal computer. However, solution times appear to be sensitive to values specified
for the parameters n, p (number of cells in the selected region), and q (number of
clusters in the selected region), as well as to whether or not the landscape is a regular
grid. Possible extensions of the model include adding constraints to control compact-
ness, as well as reformulating the model to delineate k contiguous regions. Successful
solution of the 100-cell demonstration problem on a personal computer suggests that
in more-powerful computing environments the model may be applicable to larger
landscapes (for example, 1,000 or more cells). At this scale of application, GIS-based
planning and decision support systems are typically used for analysis, and the model
could potentially be included as part of such a system.
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