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Redistricting, the redrawing of congressional district boundaries within the states, may occur
every 10 years on the basis of the population census. Many redistricting plans are designed
with partisan politics in mind, resulting in disputes and forcing judges to intervene. We address
this problem from a nonpolitical viewpoint and present an optimization based heuristic incor-
porating universally agreed upon characteristics. We model the problem as a constrained graph
partitioning problem and develop a specialized branch-and-price based solution methodology.
We demonstrate the feasibility of our methodology by showing how to satisfy the one-person,
one-vote principle with compact and contiguous districts for the state of South Carolina.
(Graph Partitioning; Branch-and-price; Column Generation; Clustering; Districting)

1. Introduction

Every 10 years, the results of a population census in the
U.S. may require a redistribution of the House seats
among the states. This process is known as reapportion-
ment. Following reapportionment, each state with more
than one representative may have to accommodate
these shifts in population by redrawing the political
boundaries between districts. This process, whether ne-
cessitated by a gain or loss of House seats, or by mere
shifts of population within the state, is known as redis-
tricting.

Historically, the Constitution contained provisions
for the reapportionment of the U.S. House seats but did
not specify how the members should be elected. While
most states formed districts with the purpose of electing
one representative from each district, some states al-
lowed the candidates to run at large, with voters able
to cast as many votes as there were seats to be filled. For
states partitioned into districts, the practice of drawing
district lines to maximize the advantage of a political
party became known as “gerrymandering.” The term
originated in 1812 from a salamander-shaped congres-
sional district created by the Massachusetts Legislature
when Elbridge Gerry was governor. Gerrymandering
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can be of various types. A partisan gerrymandering is
one in which a single party draws lines to its advantage.
A bipartisan gerrymandering is one in which the lines
are drawn to protect incumbents. A racial or ethnic ger-
rymandering attempts to dilute or preserve the strength
of minorities. Several constitutional amendments were
passed in the nineteenth century to prevent gerryman-
dering and ensure fairness of congressional district
lines.

There are three essential characteristics of districts:
the districts should have nearly equal populations to
adhere to the one-person, one-vote principle; the dis-
tricts should be contiguous; and the districts should be
geographically compact. We explain these characteris-
tics in the next section in detail.

Many states have constantly violated one or more of
the above characteristics in their plans. The courts can
intervene. In nearly half of the states that underwent
redistricting based on the 1990 reapportionment, federal
or state courts played a significant role in the redis-
tricting debate and judges actually issued new lines in
ten states. Population equality has been deemed by
the courts to be very important and states must prove
the legitimacy of deviations from precise population
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equality. To avoid this, states have gone to extremes to
ensure population equality at the expense of non-
contiguous and non-compact districts with little regard
to jurisdictional boundaries of counties and cities. Fol-
lowing some court rulings that forced states to redraw
district lines because of excessive population variance,
most states in the 1990s came very close to precise pop-
ulation equality (Preimesberger and Tarr 1993).

In many states, particularly in the South, the driving
force was the Justice Department demand that majority-
minority districts be drawn wherever possible. Several
states (including Georgia, Florida, North Carolina, and
South Carolina) went to extremes to form such districts
without regard to compactness. Most plans were chal-
lenged in court and after several, sometimes conflicting
court rulings, and several re-drawing of the districts, the
states of Georgia and Florida are still working on their
districting plans. In a recent ruling, the federal courts
have rejected districting plans that were deemed to have
districts that were gerrymandered to increase the
chances of electing a minority candidate. In every case,
the offending districts were deemed by the courts to be
gerrymandered because they were either not contiguous or
not compact. The courts never used a quantitative mea-
sure of compactness to declare the plans unsuitable. In-
stead, the courts have simply disallowed plans with
long and thin or snakelike districts. In other words it
appears that the courts have evaluated compactness
only visually.

There are some mathematical and computerized ap-
proaches in the literature. Such methods can eliminate
gerrymandering by providing clearly defined determin-
istic steps that do not permit user discretion. On the
other hand such methods can be used to provide alter-
native plans by adjusting parameters in the algorithm.
The latter alternative may be of greater interest to pol-
iticians and the courts who have to produce and eval-
uate plans.

Local search based methods were used in Kaiser
(1966) and in Nagel (1965) to improve an existing dis-
tricting plan by swapping population units that im-
proved some measure of fitness such as population
equality. An iterative facility location model that allo-
cates population units to legislative district centers was
developed in Weaver and Hess (1963). An implicit enu-
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meration technique was developed (Garfinkel and
Nemhauser 1970). The problem of determining New
Zealand's electoral districts has been studied in George
et al. (1993), in which a location-allocation based itera-
tive method is used in conjunction with a geographic
information system (GIS). A similar approach is used
in designing sales territories in Fleischmann and Par-
aschis (1988). The problem of school districting has
been studied in Ferland and Guénette (1990) and an
interactive decision support system has been devel-
oped. The primary objectives are to assign contiguous
sectors to a school and to ensure that the students attend
the same school from year to year while meeting the
capacity constraints of the school.

Our goal is to develop a districting method that pro-
vides population equality and contiguous and compact
districts while retaining jurisdictional boundaries of
counties or other political subunits insofar as possible.
Contiguity is achieved by treating it as a hard con-
straint. Population equality is considered in the opti-
mization phase and can be tightened, if necessary, in
the post-processing phase. The retention of subunit
boundaries results from the definition of population
units in the optimization phase and by minimizing the
number of units to be split in the postprocessing step.
Since the entire procedure ignores the political data, it
is free from possible accusations of gerrymandering.
However, it is possible to incorporate additional con-
straints that can achieve, for example, minority repre-
sentation. One can then evaluate the resulting degra-
dation in other desirable characteristics. Our contribu-
tions include development of appropriate mathematical
models that capture the essential features of a desirable
districting plan, and implementation of a branch-and-
price based method that helps determine a plan that
needs little or no subjective intervention to yield the fi-
nal set of compact, contiguous, and equally populated
districts.

In the next section, we develop a mathematical model
of the districting problem, which is similar to the model
used in Garfinkel and Nemhauser (1970), except for the
fact that our model is capable of considering many more
potential districts. In §3, we give details of how our
branch-and-price based methodology can be practically
implemented. We are not aware of any other studies
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that have applied branch-and-price to districting prob-
lems. In §4, we present results of using our methodol-
ogy to develop districting plans based on the 1990 cen-
sus for the state of South Carolina. We discuss the re-
sults and present some other features that can be
incorporated in our approach in §5.

2. A Mathematical Framework

DEFINITION. A districting plan is a partitioning of
indivisible population units (for example, counties) into
a predetermined number of districts such that the units
in each district are contiguous, each district is geograph-
ically compact and the sum of the populations of the
units in any district lies within a predetermined range.

The problem can be modeled as a graph partitioning
problem, see Mehrotra (1992) for example, by associat-
ing a node with every population unit and connecting
two nodes by an edge whenever the corresponding pop-
ulation units are geographical neighbors. The weight on
a node is equal to the population of the corresponding
unit. A plan is represented by a partitioning of the nodes
such that the nodes in any set of the partition induce a
connected subgraph (to ensure contiguity of the dis-
tricts) and the sum of the node weights lies within the
prespecified range (to satisfy the population require-
ments). A plan is good if each resulting district is geo-
graphically compact.

Suppose that we assign a penalty cost to every poten-
tial district that measures its “‘non-compactness” from
an ideal district (we will develop such a cost in the next
subsection). If all possible districts that satisfied the
population and contiguity requirements were enumer-
ated, the problem would reduce to determining a set of
K districts, where K is known, that satisfies an upper
bound on the total penalty cost while making sure that
every population unit is included in exactly one of the
selected districts. Since it is not obvious how to deter-
mine an acceptable upper bound, we choose to mini-
mize the total penalty cost; but it should be understood
that compactness is in reality a loose constraint rather
than an objective.

Let é; equal 1 if population unit i is contained in dis-
trict j, and 0 otherwise and let x; equal 1 when district j
is selected in the districting plan, and 0 otherwise. The
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districting problem can then be stated as the following
set partitioning problem with an additional cardinality
constraint:
minimize ), ¢x;
€I
subjectto 3, é;x; =1 fori=1,...,n,
i€l
2 x,— = K,
J€]

x€(0,1), Vjie], (1)

where ¢ is the cost of district j, n is the number of pop-
ulation units in the state, and ] is the set of all possible
districts that satisfy the contiguity and population re-
quirements. We will refer to this model as PLAN(J) in
the sequel.

An alternative objective function is the bottleneck
measure min max;¢;c;x;. We have chosen to evaluate the
overall compactness of a plan using the contribution of
each district rather than the compactness of the worst
district. However, it would not be difficult to use the
bottleneck objective instead of the sum in our method-

ology.

2.1. District Cost
Although most states impose some form of compactness
standard on their districting plans, there is no uniformly
acceptable definition of compactness. Eight different
measures of compactness are studied in Young (1988).
The study shows that each measure fails to give satis-
factory results on certain geographic configurations. It
suggests that any good measure of compactness must
apply both to the districting plan as a whole and to each
district individually, and that it should treat census
tracts as indivisible building blocks whose shape is ir-
relevant to the measure. Additionally, such a measure
should not discriminate between large rural and small
urban districts and that it should be conceptually simple
and should use easily collected and verifiable data.
Here, we develop a penalty cost that measures non-
compactness of a district. Our goal is to get a proxy for
the visual notion of non-compactness that is easy to use
in our optimization model. Noting that a district would
tend to be compact if the population units in the district
are not far from each other, we first considered using
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the pairwise sum of Euclidean distances between pop-
ulation units in a district as the penalty cost for the dis-
trict. Early experiments suggested that this measure
gives a high cost to districts comprising of several rural
population units as these sparsely populated areas are
spread over large geographic areas. To remove this bias,
we modified the distance between two units by multi-
plying it by the sum of the populations of the two units.
This tended to bias the measure against the densely
populated areas. Several experiments, including scaling
of the populations, indicated that the deficiency in this
measure continued because of Euclidean distances. This
happens because the actual distance between units A
and B might be lower than the distance between units
A and C even though A and C are geographic neighbors
while A and B are not. Hence, as detailed next, we fi-
nally selected a distance function that measures the
proximity in terms of how many other population units
one must go through to get from one population unit to
another. After making this adjustment, empirical results
suggested that it was unnecessary to include population
weights in the measure.

Let G(V, E) be a graph with V defined to be the set of
population units and E the pairs of units that share a
common border. A district is a node induced subgraph
G'(V', E') that is connected and satisfies population
bounds. We will measure the non-compactness of G’ by
how far units in the district are from a central unit. The
length of a path from i to j is defined to be the number
of edges in the path. Let s;; be the number of edges in a
shortest path from i to j in G. We define the center of G’
to be a node u € V' such that 2.y s,; is minimized.
Alternatively, we could use max;cy{s,;} to define the
center. Although the max criterion is the usual defini-
tion in graph theory, the sum criterion works better for
our methodology. We define the cost of the district to
be ;v s,; Where u is a center of the district. The smaller
the cost, the more compact a district is.

In §4, we demonstrate that this cost function yields
visually compact districts, that is, on the basis of exist-
ing court decisions, the plans it yields surely would be
acceptable with respect to contiguity and compactness.
Since we treat each population unit as a node in a graph
(that ignores the actual geographic shape and size) and
consider number of edges in a shortest path (rather than
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the actual distance), our measure also seems to be con-
sistent with the recommended principles in the study in
Young (1988).

2.2. District Generation

Since the number of possible districts, ], is exponentially
large in the number of population units, model
PLAN(J) has an exponential number of columns or vari-
ables. Thus it is not practical to enumerate all of the
districts. Instead, we generate them on an ““as needed”
basis. This methodology, called column generation is dis-
cussed in detail in Barnhart et al. (1998). A brief outline
of the methodology is presented here.

Begin with a subset | of feasible districts. Solve the
linear relaxation (replace the integrality constraints on
x; with 0 = x; = 1) of PLAN(J) restricted to j € J. The
optimal solution to the linear relaxation of PLAN(J), de-
noted by LP_PLAN(]) is a feasible solution for the un-
restricted linear program LP_PLAN(J) and provides a
dual value 7, for each constraint in LP_PLAN(J). Now,
determine if it would be useful to expand J, i.e. deter-
mine if the current solution to the LP relaxation is op-
timal or if there are columns in J\] that price out favor-
ably. This is done by solving the following subproblem
called SP: min,cy {S(u)}

where S(u) = — 71 — T, + min Y, (Su — ™Y
i€{V\u)
Pmin — pu = 2 piyi = Pmax — Pus

ie{V\u}
y satisfies contiguity constraints,

yi€(0,1), ie{V\uj, )

where p; is the population of the ith unit, puin and pmax
are the lower and upper bounds on the population of a
district, and y; = 1 if unit 7 is in the district and y; = 0,
otherwise. Let p = Z;cy p; / K be the mean population of
a district. Typically, pmin = (1 — a)p and prax = (1 + @)p
where «a is the maximum deviation allowed from the
mean in district population. Determining S(u) requires
solving a two-sided knapsack problem with additional
constraints, and SP is solved by finding S(u) for every
u € V. We will discuss the contiguity constraints in the
next subsection. If the optimal objective value of SP is
negative, then a district that yields the minimum value
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is added to the set ] and LP_PLAN(J) is re-solved; else
the current solution to LP_PLAN(]) is also an optimal
solution of LP_PLAN(J). In the latter case, if the solu-
tion is integral, then we have solved PLAN(J). If it is
not integral, we branch as explained in §3.6. More de-
tails on the column generation are given in §3.5.

2.3. Ensuring Contiguity

A district is contiguous if it is possible to travel from
any point in the district to any other point in the district
without having to go through any other district. In
graphical terms, G’ must be connected, i.e. there exists
a path from each node in the district to every other node
in the district. While the definition of ¢; in PLAN(J) tries
to ensure that the districts generated are contiguous, the
contiguity of a generated district can not be guaranteed
by cost alone. To ensure that a district is contiguous, we
need to add more restrictions.

We could add linear inequalities to (2) to enforce con-
tiguity precisely, i.e. exclude all subgraphs except those
that are connected and contain u. However, this re-
quires an exponential number of constraints and would
be very demanding computationally. Instead, we take a
simpler approach by requiring the district to be a sub-
tree of a shortest path tree rooted at u. This guarantees
contiguity but eliminates some contiguous districts.
However districts that are not subtrees of a shortest path
tree are unlikely to be compact. To enforce the shortest
subtree requirement, we add constraints that permit j to
be selected only if at least one of the nodes that is ad-
jacent to it and closer to u is also selected. Specifically,
if S; = {i € Vs, = s,; — 1 and (i, j) € E}, then we add
the contiguity constraint: y; = Z,csy;, ensuring that
node j is selected only if all nodes along some shortest
path from u to j are also selected.

2.4. Relationship with Other Models

We have modeled the districting problem as a con-
strained graph partitioning problem that is similar to
constrained facility location problems (see Mirchandani
and Francis 1990) in that the centers of the districts to
be generated can be viewed as facilities that are located
to serve the population units in the district. The popu-
lation restriction is similar to the capacity of each facil-
ity. The major differences are that all nodes in the net-
work are potential sites for the facilities, that the cost of
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serving a customer from a given facility is also depen-
dent on other customers served by the facility, that there
are no fixed costs of opening the facilities, the location
of a facility (or a center) is not necessarily unique for a
district and that the nodes served by a facility should
induce a connected subgraph. There are also some sim-
ilarities with other clustering and graph partitioning
models described in the literature (Mehrotra 1992).

3. Implementation Issues

In this section, we discuss a practical implementation of
the ideas presented in the previous sections. The meth-
odology consists of four phases as discussed in this sec-
tion.

The data required by our methodology consist of a
state map that shows the boundaries of the counties (or
other political units), the population of each unit, and
the number of districts to be generated. The preprocess-
ing phase determines the population units and their ad-
jacencies from this map. The start phase generates a
starting solution. The optimization phase (Figure 1)
uses a branch-and-price approach to determine an im-
proved, near optimal plan in which the districts formed
may differ slightly in population. Finally, the postpro-
cessing phase modifies the resulting plan to ensure pop-
ulation equality.

3.1. Basic Population Units
The models developed in the previous section use
basic population units that we assume are indivisible.

Figure 1 Optimization Phase

Any active nodes?
Jyes
l Select an active node (DFS) J

\
[&.lve cu;'rent EP j
v

Brice vars. (column generation) ]

no

no Update
@tcgral solution? > Y¢S | bounds
no and
node
list

no
Branch }; W
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Typically, we try to use counties as population units but
this is not always possible. For example, a county may
have more population than the target population of a
district. If a county’s population is more than p, then a
district (or districts) consisting of only part of the county
with population equal to p is extracted and the number
of districts to be formed from the remaining counties is
reduced by 1. Extracted districts are assumed to comprise
the central part of the county and hence do not require
modifying adjacencies in the graph. This simplifying as-
sumption is removed in the postprocessing step.

Population equality of districts may not be possible
to achieve unless counties are split into two or more
population units. We split counties with populations
greater than 0.25p and less than 7 so that the resulting
units have population equal to or less than 0.25p. Split-
ting of a county will typically require re-establishing
adjacencies between population units.

Sometimes, the geographic location of counties im-
plies that they need to be together in a district. For ex-
ample, if a county is adjacent to only one other county,
it must belong in the same district as the adjacent
county. In this case we coalesce them into a single pop-
ulation unit. This reduces the size of the graph G over
which the column generation problem is solved and
makes the problem easier to solve. We also combine
counties with very little population. Specifically, a
county with population less than 0.027 is combined
with the smallest county to which it is adjacent. As a
result of these steps, all units will have a population
between 2% and 25% of p.

3.2. District Population Range
If we were to restrict the population of a district to be
within extremely narrow limits, typically there would
be no feasible plan in which the population units are
not split and the districts are contiguous. Even if there
existed such a plan, it is very unlikely that the districts
would be compact. Moreover such a restrictive con-
straint would increase the computational burden of
solving the subproblems for generating improving dis-
tricts and make the method impractical.

There are two ways to overcome this difficulty: either
define the population units to be much smaller subdi-
vision of the counties, such as census block groups or
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census tracts, or have a postprocessing step to adjust the
populations in the districting plan generated with a
slightly relaxed population constraint. We choose the
latter method for two reasons: the idea of keeping larger
units together insofar as possible would otherwise be
defeated and the difficulty of the problems to be solved
would increase substantially by increasing the number
of population units. Postprocessing will attempt to min-
imize the number of units to be split in modifying the
plan to achieve population equality.

We initially set the district population to lie within
2% to 5% of p. The postprocessing procedure modifies
the resulting plan to ensure strict population equality if
necessary.

3.3. Preprocessing

Our procedure uses the adjacency graph and the pop-
ulations of the counties to coalesce two or more coun-
ties. Because of the odd shapes of population units, it is
not enough for two units to share a boundary to be
called adjacent units. Instead, we place an edge between
two nodes only if the convex hull of the two correspond-
ing units does not include a large portion of other pop-
ulation units.

The preprocessing step does the following,.

1. Coalesce the nodes corresponding to counties that
are fixed to be together due to geographic considera-
tions. These units are marked not to be split into smaller
units (even if the total population exceeds 0.25p). The
coalesced unit is adjacent to nodes that any of the orig-
inal nodes were adjacent to.

2. Ifp; > p,letp, =rp + pi, where p; < pandrisa
positive integer. Extract r districts of population p and
reduce the number of districts to be constructed by r.
This step does not require modifying the adjacencies in
the graph.

3. If p; < 0.02p, unit i is coalesced with the least pop-
ulated neighboring unit. The coalesced unit is adjacent to
any node that either of the two nodes were adjacent to.

4. If 0.25p < p; < p, unit i is split into k equally pop-
ulated units such that the population of each new unit
is at most 0.257. The adjacencies of these split units
needs to be reestablished by locating them geographi-
cally on the state map. This is done outside of our pro-
cedure.
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3.4. Initial Plan: A Clustering Heuristic

Our methodology typically performs much better when
it is initiated by a set of columns corresponding to a
good plan. When the number of districts to be formed
has not changed, past districting plans may provide a
good starting point. Alternatively, we can build plans
from scratch using heuristics.

A simple heuristic to generate a district starts at a
node and accumulates neighboring nodes until the pop-
ulation restrictions are met. This greedy approach of
growing a district usually generates a contiguous and
compact district. Then the nodes in the district are re-
moved from further consideration and the process is
repeated until K districts are formed. The difficulty with
this approach is similar to the difficulty with most
greedy heuristics where the initial clusters are good, but
they leave behind a set of nodes towards the end that
can not form a compact and contiguous district. To
overcome this difficulty, we start by choosing a refer-
ence node and then growing districts starting from
nodes that are far away from the reference node. The
idea is that the units left behind at the end, which are
all near the reference unit, will comprise a contiguous
and compact district. We describe this heuristic next.

Let u € V be the reference node. We apply the heuristic
once for every node serving as a reference node and then
select the best of the resulting solutions. Let L be a list of
nodes that have not been assigned to any district. Initially
L consists of all the nodes in V. Let deg;[i] be the number
of nodes in L that are adjacent to node i. The heuristic
has two steps: the first step is used to start the generation
of a new district by choosing a starting node. The second
step is used to grow the district being generated. These
two steps are used to generate K — 1 districts. The nodes
not assigned to these K — 1 districts correspond to the
units that comprise the Kth district.

1. Choose a starting node: Choose a node v € argmax;{p; :
j € argmax;e;{S.:}}.- Remove v from L. Let M be the list
of nodes in the district being generated. The first ele-
ment in M is v. Let degy[i] be the number of nodes in
M adjacent to node i € L. Let pop(M) = Zicm pi-

2. Complete the district started:

(a) Termination test: If pop(M) = Pmin, form a district
comprising of the units that correspond to the nodes in
M, calculate the cost ¢; of the district and stop.

1106

(b) Choose the next node to add: 1f possible, out of all
unassigned nodes, which can still be included in the
district being generated without exceeding the maxi-
mum population, choose a node that is closest to the
start node. If there is a tie, choose a node that is adjacent
to more nodes already included in the district (break
ties arbitrarily in this case). That is, let

w € argmax;{degy(j) : j € argmin;e
X (SIT' . pOP(M) + P. = pmaxr degM(i) > O}}

If there is no such node, form an (infeasible) district that
corresponds to the nodes already in M and let the cost
of this district be very high (to show infeasibility) and
stop.

(¢) Update Lists: Remove w from L and add w to M.
Update pop(M), degu, and deg;. Repeat 2.

We have experimented with replacing the termina-
tion condition pop(M) = Py, in Step 2 with the condi-
tion pop(M) = p, but the results are slightly inferior.

If the heuristic still fails to generate K districts that
meet the contiguity and the population requirements,
we assign a very high cost to the districts that do not
meet the population or contiguity requirements and go
on to the column generation procedure without a fea-
sible starting solution.

3.5. Column Generation

The integer programming subproblem SP to generate a
column for the master problem is both theoretically and
practically hard. Here we describe some techniques for
making this approach computationally efficient. We
have included all of these ideas in our implementation.

A district with units that are farther than distance 3
from the center of the district rarely gets generated. In
any case, such districts are usually not compact enough
to be selected in the final plan. Hence, to reduce the
difficulty of solving SP, while solving for S(u), we fix y;
= 0 whenever s,; > 3.

Typically, column generation procedures display a
tailing-off effect: as optimality is approached, columns
are generated that give very little or no improvement in
the objective value. Additionally, the subproblems to
generate a column get harder. Since it is not critical to
optimize LP_PLAN, we terminate the column genera-
tion using a prespecified tolerance. We stop the column
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generation procedure if the subproblem optimization
can not yield a column with reduced cost at most —0.01.
This target value (—0.01) helps in pruning the branch-
and-bound tree for solving (2).

Instead of solving SP to optimality, the first solution
that provides an improving column is used. After ob-
taining an improving column from S(u), the center of
the generated district is determined. If the center of this
district is different from u, then the real cost of this dis-
trict is even smaller than the cost determined from S(u).

While solving SP as (sub)subproblems S(u), we solve
for S(u) in order of nonincreasing values of the dual
variables 7,. Empirically, this helps in finding an im-
proving column after solving fewer (sub)subproblems.

3.6. Branching

3.6.1. Branching Rule. The usual branching
schemes are inappropriate for integer programs where
the entire set of columns is not explicitly available. Con-
sider, for instance, the rule of branching on a fractional
variable, where the variable is set to 1 in one subprob-
lem and set to 0 in the other. The former subproblem
causes no problem: setting a district variable to 1 cor-
responds to forming a district from the units corre-
sponding to that variable. Those units can therefore be
removed from further consideration. The other sub-
problem is more difficult. Setting a variable to 0 corre-
sponds to not permitting the use of that district. To pre-
vent this district from being regenerated involves find-
ing the second, third, and so on best solutions to the
already difficult subproblem (2). In the case of our
model, this difficulty is overcome by using the so called
Ryan-Foster branching (Ryan and Foster 1981), also see
Barnhart et al. (1998), Mehrotra and Trick (1996) and
Vance et al. (1993). Define the following operations:
SAME(S) requires that the population units in the set S
all belong to the same district and DIFFER(i, j) requires
that units 7 and j belong to different districts.

SAME(i, j) implies that y; = y; and DIFFER(, j) is
implemented by adding the constraint y; + y; = 1 to the
subproblem.

Consider a fractional solution to LP_PLAN(]). It is
easy to see (Barnhart et al. 1998, Mehrotra and Trick
1996, Vance et al. 1993) that there exist two districts S,
and S,, and units i, j, such that i € §; N S, and j
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€ 51\S,, and both x,, and x,, are fractional. Create the
subproblems: DIFFER(i, j) and SAME(S, j).

Any feasible districting plan must occur in exactly
one of the two sets. Furthermore, the current fractional
solution is not feasible for the two subproblems, since
x,, gets fixed equal to zero in DIFFER(, j) and x,, gets
fixed equal to zero in SAME(i, j). Like traditional
branching schemes, this approach creates only 2 sub-
problems. On the SAME branch, the subproblem is
slightly easier since we have eliminated a variable. On
the DIFFER branch, the subproblem is slightly harder
since we have added an additional constraint to (2).

3.6.2. Implementation. We use a depth-first-search
(DFS) strategy in choosing the node to evaluate. We
have also experimented with choosing the node with
the best bound and with switching from a DFS strategy
to the best bound strategy after updating the upper
bound (from the one provided by the initial solution).
The DFS strategy seems to work best, both from a point
of view of number of nodes explored and in CPU time
overall.

For implementing our branching, we first find the
most fractional column s,, that is, s, is a column in the
LP solution with value closest to 0.5. Then we find the
row i covered by this column that corresponds to the
most populated unit and choose the most fractional col-
umn (s;) in the LP solution out of the remaining col-
umns that cover row i. Then we find row j such that
only one of the columns s; or s, cover row j. We have
also experimented with choosing the first fractional col-
umn as s;. This tends to increase the overall effort. We
branch to create two sub (master) problems SAME(, /)
and DIFFER(, j). In the depth first search, we always
follow the branch SAME(i, j) before the branch DIF-
FER(i, j). This tends to reduce the number of nodes
searched.

We do not wait for the linear program at a node to be
optimized before branching. Rather, we optimize the
linear program only at the root node of the branch-and-
bound tree to obtain a lower bound. Then at any other
node of the branch-and-bound tree, we stop generating
columns as soon as the restricted linear programming
relaxation objective value goes below the lower bound
determined by rounding up the objective value at the
root node. This tends to reduce both the number of
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Figure 2 S.C. Actual Plan
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columns generated and the size of the tree. The resulting
decrease in overall computation time by not solving the
linear programming relaxation to optimality before
branching has also been experienced on other combi-
natorial problems (Barnhart et al. 1998, Mehrotra and
Trick 1996, Vance et al. 1993).

We have implemented our methodology on a DEC
ALPHA 3000 (Model 300) workstation using CPLEX

Table 1 Initial 5% South Carolina Plan
District Population Cost Units
1 567952 15 3567101117 2029 31 42
2 591982 7 1425373441
3 555670 8 812 16 23 24 48 50
4 596267 17 1518 19 30 32 33 35 38 39 44
5 572032 9 13 14 26 46 47 49 51
6 602797 13 292122283637 404345
1108

version 2.1 as the linear programming solver and
MINTO version 1.5 [13] as the integer programming
solver for the optimization phase.

3.7. Postprocessing

The districts generated by using the previous models
are not (exactly) equal in population. We suggest at-
taining a required balance in populations by shifting
district boundaries. Let each district be represented as
a node on a graph H with an edge between two nodes
i and j if districts i and j are neighboring districts in the
resulting plan, that is, i and j contain population units
that are adjacent nodes in G. We determine the popu-
lations to be shifted between districts by solving a trans-
shipment problem. Let P; be the population of district i.
District i is a source node if P; > p and its supply is P;
— p. District j is a sink if P; < p and its demand is p
— P,. If P; = p, then district i is neutral. Direct shipments
between i and j are possible only if i and j are adjacent

MANAGEMENT SCIENCE/ Vol. 44, No. 8, August 1998
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Figure 3 S.C. Five Percent Plan

in H. Because of adjacencies, some flow may be neces-
sary between pairs of overpopulated districts and /or
between pairs of underpopulated districts. But these
flows can then be minimized by using non-zero penalty
costs on arcs that connect two overpopulated or two
underpopulated districts. The costs on arcs that connect
an overpopulated district with an underpopulated dis-
trict are set to zero.

Table 2 5% South Carolina Plan

District Population Cost Units
1 567952 15 3567101117 20293142
2 572032 9 13 14 26 46 47 49 51
3 585379 9 812 16 24 30 48 50
4 591982 7 14252734 41
5 566558 15 1518 19 23 32 33 35 38 39 44
6 602797 13 292122283637 40 43 45

MANAGEMENT SCIENCE/ Vol. 44, No. 8, August 1998

The actual shifts of populations are accomplished by
moving part of population unit(s) between districts.
This can be accomplished by considering appropriate
sub-units of a unit and then shifting sub-units while
maintaining compactness and contiguity of the districts.
A more detailed study of this shift process can be
achieved by predividing the districts into small units
such as census tracts and then restricting the shifts only
to whole census tracts.

4. South Carolina Case Study

In this section, we present results for the state of South
Carolina which consists of 46 counties and six congres-
sional districts. The county map and the 1990 districting
plan are given in Figure 2. Note that 13 counties are
divided between two districts. More details about the
constitution of each district can be found in Preimes-
berger and Tarr (1993).
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Figure 4 Postprocessing for South Carolina
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Here we study the plans generated by using our
methodology. The optimization phase in each of the ex-
periments discussed here took less than 5 minutes of
CPU time.

4.1. Preprocessing

Some counties are combined and others are split for rea-
sons explained previously. In particular, Oconee and
Pickens were combined because of geographical consid-
erations to form unit Oconee. Edgefield and McCormick
were combined because of geographical considerations
to form unit Edgefield. Charleston and Greenville were
split to form 3 units each. Lexington, Richland and Spar-
tanburg were split to form 2 units each. Appendix A lists
the resulting population units and their populations. The
adjacency graph used is given in Appendix B.

4.2, Starting Solution and the Optimization Phase
We first generated plans where the population devia-
tion was limited to 2%. The clustering heuristic was un-
able to produce a feasible solution. The optimization
phase, however, generated a plan with objective value
71. The maximum deviation from p in this plan was
1.86%. A total of 1581 columns were generated and a
total of 61 nodes were explored in the branch-and-
bound tree. We omit other details of this plan and in-
stead describe the 5% deviation plans that are more
compact.

When the population deviation was permitted to be
up to 5%, the heuristic generated a plan with objective
value of 69. The maximum deviation from g in this so-
lution is for district 3 (4.37%). This plan is summarized
in Table 1.

Figure 3 and Table 2 show the plan generated in the
optimization phase with objective value 68. The maximum
deviation from p in this solution is for district 6 (3.73%).
A total of 802 columns were generated and a total of 25
nodes were explored in the branch-and-bound tree.

The districts generated are geographically contiguous
and compact. Additionally, in contrast with the existing
plan, very few counties are split between two or more
districts.

4.3. Postprocessing
Consider the 5% plan shown in Figure 3. The adjacency
graph H for the plan is shown in Figure 4 along with

MANAGEMENT SCIENCE/ Vol. 44, No. 8, August 1998

population shifts between districts that comprise a so-
lution to the transshipment problem as explained in Sec-
tion 3.7.

The final plan for South Carolina which additionally
satisfies the population equality constraint is shown in
Figure 5.

The following adjustments are made to get the final
suggested plan:

* Move Calhoun (12753) and part of Aiken (412) to
district 1.

¢ Move an additional part of Greenville (9085) to dis-
trict 2.

* Move part of Sumter (4262) to district 5.

* Move an additional part of Richland (10297) to dis-
trict 5.

* Move part of Laurens (1780) to district 6.

Only 3 new counties (for a total of 6) are split in the
final plan. The results indicate that it is not critical to
start with very strict population restrictions. Instead,
starting with slightly relaxed population restrictions, we
are able to obtain a plan that satisfies compactness and
contiguity requirements without splitting many coun-
ties. This plan, modified by postprocessing, yields a
plan that also satisfies the population requirement
strictly without splitting many additional counties.

5. Concluding Remarks

In the South Carolina case study, we have shown that
our optimization based methodology provides an effec-
tive way of generating high quality districting plans.
Our plans are superior to existing plans with respect to
compactness and splitting of counties. Additionally, our
plans are free of gerrymandering since they do not con-
sider any political, ethnic or racial data.

5.1. Other States

We have also used our methodology to generate dis-
tricting plans for the state of North Carolina (Mehrotra
et al. 1995). The results are very similar, but even
stronger since the North Carolina plan is extremely non-
compact and not contiguous. We have discussed with
officials of Georgia the development of a new plan
based upon our methodology. Georgia’s 1994 plan was
declared unconstitutional and after the state legislature
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could not agree on a plan, the court imposed its own  courts. For example, if we wanted to enforce at least h
plan for the 1996 election. districts to be a minority districts, we would add the con-
straint 2;¢; wix; = h to (1) where w; is 1 if district j is a
minority district and 0 otherwise. In the column genera-
tion procedure, we would add a constraint that ensures
the generation of some minority districts. For example, if
pi = pi + p?, where p} is the minority population in pop-
ulation unit i, we would add the constraint =,y ply;

5.2. Modifying Existing Plans

Although we concentrated on generating districting plans
without regard to existing district boundaries, our column
generation methodology can be used to produce districts
similar to existing districts by modifying the subproblem

that needs to be solved. For example, if the centers of the -5 P2y, to the subproblem (2) for column generation.
districts are fixed, we can restrict our attention to solving Other features also are easy to model. Consider, for
for improving columns for each of the centers. Preproc- example, the requirement that two incumbents can not
essing can be used to fix counties that are desired to be belong to the same district in the new plan. For every
together. Penalty costs for moving a population unit to 2 pair of counties i and j such that i and j are counties of

new district can be incorporated in the subproblem and  jncumbent candidates, the constraint DIFFER(, j) can
the distances between units that are in the same districtin =~ e forced in the column generation procedure.’

the existing plans can be scaled down.
' The first author was partially supported by the James W. McLamore

Research Award in Business and Social Sciences. The second and third

5.3. Incorporating Other Criteria )
Alth h basi del d litical authors were partially supported by NSF grant DDM-9115768 to Geor-
though, our basic model provides a non-politica gia Institute of Technology. We are grateful to three anonymous ref-

method for districting, it can be modified to incorporate erees and an associate editor for providing many suggestions for im-
some other criteria that are deemed important by the  proving the earlier drafts of this paper.

Appendix A. South Carolina data after preprocessing

1 Abbeville 23862 r 2 Aiken 120940 3 Allendale 11722
4 Anderson 145196 5 Bamberg 16902 6 Barnwell 20293

Beaufort 86425 8 Berkeley 128776 9 Calhoun 12753
10 Charleston 98346 14 Charleston 98346 12 Charleston 98346

1

13 Cherokee 44506 14 Chester 32170 15 Chesterfield 38577
16 Clarendon 28450 17 Colleton 34377 18 Darlington 61851
19 Dillon 29114 20 Dorchester 83060 21 Edgefield 27243
22 Fairfield 22295 23 Florence 114344 24 Georgetown 46302
25 Greenville 106722 26 Greenville 106722 27 Greenville 106722
28 Greenwood 59567 29 Hampton 18191 30 Horry 144053
31 Jasper 15487 32 Kershaw 43599 33 Lancaster 54516
34 Laurens 58092 35 Lee 18437 36 Lexington 83805
37 Lexington 83805 38 Marion 33899 39 Marlboro 29361
40 Newberry 33172 41 Oconee 151388 42 Orangeburg 84803
43 Richland 142860 44 Richland 142860 45 Saluda 16357
46 Spartanburg 113400 47 Spartanburg 113400 48 Sumter 102637
49 Union 30337 50 Williamsburg 36815 51 York 131497
1112 MANAGEMENT SCIENCE/ Vol. 44, No. 8, August 1998
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Appendix B. South Carolina adjacency graph after preprocessing

The first entry is the node number, the second entry is the number of adjacencies to nodes with a higher node number followed by the adjacent

nodes.

Node No Adjacencies Node No. Adjacencies
1 3 4 21 28 2 5 6:.21 36 13742
3 3 5146129 4 3 26 27 41
5 3 6 17 42 6 & 42
7 2 T3 8 6 1132 LH20 434:50
!} 5 16 37 42 44 48 10 3 113920

11 2 12 20 12 i 24

13 4 46 47 49 51 14 4 22 33: 49,53
15 < 1882 33 39 16 3 42 48 50

17 2 20 29 18 3 23 35839

19 2 3839 20 1 42

21 2 28 45 22 3 32 40 43

23 2 38 50 24 2 30 50

25 3 26 41 46 26 3 27 41 46

27 2 34 47 28 2 34 45

29 1 31 30 1 38

32 5 33 35 43 44 48 33 1 ok

34 3 40 47 49 35 | 48

36 3 37 43 45 37 ) 44

40 2 45 49 43 1 44

44 1 48 46 i 47
7 ¢ | 49
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