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Abstract: In this paper we present a method to optimize the configuration and operation of 

emergency medical systems on highways. Different from the approaches studied in the 

previous papers, the present method can support two combined configuration decisions: the 

location of ambulance bases along the highway and the districting of the response segments. 

For example, this method can be used to make decisions regarding the optimal location and 

coverage areas of ambulances in order to minimize mean user response time or remedy an 

imbalance in ambulance workloads within the system. The approach is based on embedding a 

well-known spatially distributed queueing model (hypercube model) into a hybrid genetic 

algorithm to optimize the decisions involved. To illustrate the application of the proposed 

method, we utilize two case studies on Brazilian highways and validate the findings via a 

discrete event simulation model.  

 
Keywords: location and dispatching of ambulances, hypercube model, genetic algorithm, 

spatially distributed queues, highways. 

 

 

1. Introduction 
 

The operation of many emergency medical systems (EMS) on Brazilian highways is 

under the management of private organizations as part of privatization contracts with the 
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Brazilian government. During the last years, new EMS have been installed along Brazilian 

highways, and the configuration and operation of the existing EMS have been revisited. In 

these highway EMS, an ambulance provides the first medical treatment to the individuals 

involved in an accident, transports them to the nearest hospital (if necessary), and then goes 

back to its home base on the highway. These systems are typically zero-line capacity, and 

they operate within particular ambulance dispatching policies, which stipulate that only 

specific vehicles can be dispatched to a given region on the highway (partial backup), mainly 

due to the limitations of travel distance or time. In addition, some policies involve multiple 

dispatching, as in some cases (depending on the type of call), it is necessary to dispatch more 

than one ambulance to the same call location.  

The mean user response time is considered the main performance measure. In general, 

the limitations for the response time specified in the privatization contract must be followed 

by the private organizations, which are responsible for managing the highway. Other 

performance measures to the EMS are: the balance of ambulance workloads, the fraction of 

calls not serviced by the EMS (loss probability), and the fraction of calls not serviced within a 

predetermined threshold (i.e., fraction of calls with response times exceeding T minutes). The 

former measure has especially been utilized by the EMS analysts. For example, the United 

States EMS Act of 1973 states that 95% of the emergency medical responses should be 

serviced within 10 minutes in urban areas and within 30 minutes in rural areas (Ball and Lin, 

1993). In some EMS on Brazilian highways, this statistic is also used to evaluate the system, 

and these regulations are specified in the privatization contract.  

Studies by Swersey (1994), Owen and Daskin (1998) and Brotcorne et al. (2003) 

present revisions of the classic location models to analyze the emergency systems developed 

during the last few decades. In particular, the hypercube model based on spatially distributed 

queueing theory and Markovian analysis approximations has been one of the most effective 

methods for analyzing these systems (Larson, 1974; Larson and Odoni, 1981). The model 

implies the solution of a linear system of O (2N) equations (N is the number of ambulances in 

the system), where the variables involved are the equilibrium state probabilities of the system. 

With these probabilities, a number of interesting and critical performance measures for 

managing the system can be estimated. Examples of applications of the hypercube model in 

urban EMS in the United States can be found in studies by Larson and Odoni (1981), Chelst 

and Barlach (1981), Brandeau and Larson (1986), Burwell et al. (1993) and Sacks and Grief 

(1994). More recently, the hypercube has been considered as a deployment model for 

response to terrorism attacks and other major emergencies (Larson, 2004). In Brazil, the 
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hypercube model has been applied to analyze urban EMS (Takeda et al., 2007) and EMS on 

highways (Mendonça and Morabito, 2001; Iannoni and Morabito, 2007). 

Some studies have extended the original hypercube model to remove its limiting 

assumptions for application to EMS on highways. For example, Mendonça and Morabito 

(2001) modified the model to consider dispatching with partial backup, Iannoni and Morabito 

(2007) extended that model to consider multiple dispatching of identical and distinct servers, 

and Atkinson et al. (2006, 2007) proposed heuristic methods based on the model in the 

Mendonça and Morabito (2001) study to estimate the loss probability for large-scale systems. 

Other studies have been focused on combining the hypercube model with optimization 

procedures, such as those conducted by Batta et al. (1989), Saydam and Aytug (2003), 

Chiyoshi et al. (2003), Galvao et al. (2005) and Rajagopalan et al. (2007). These studies 

present successful implementations of hypercube embedded metaheuristic search methods 

applied to ambulance location problems.  

Recently, Iannoni et al. (2008) integrated the hypercube model into a standard genetic 

algorithm in order to determine the optimal primary and secondary response areas for the 

ambulances (districting problem), considering their current location, while taking into account 

different conflicting objectives such as the mean user response time, the imbalance of 

ambulance workloads and the fraction of calls with response times exceeding a predetermined 

threshold. In that study it was shown that these different objectives could be better met by 

simply modifying the atom sizes of the system, without relocating ambulances and without 

requiring additional capacity investments. 

In this study, we extend the study conducted by Iannoni et al. (2008). First, we modify 

the districting GA/hypercube algorithm to optimize the location of ambulance bases along the 

highway (location problem), which we call location GA/hypercube algorithm. We assume 

ambulance bases can be located anywhere along the stretch of highway under study, which is 

quite different than locating ambulances on a set of previously determined candidate posts 

(nodes, points). In addition, the location GA/hypercube algorithm includes a local search 

procedure to evaluate the local neighborhood of each solution generated by the GA operators 

(hybrid GA algorithm).  We show that the location GA/hypercube algorithm provides better 

solutions for each objective than the districting GA/hypercube proposed in Iannoni et al. 

(2008). Then, we extend this algorithm to optimize the two combined decisions: the location 

of ambulance bases (the location problem) and the districting of ambulance response or 

coverage areas (the districting problem), which we call the location and districting hybrid 

GA/hypercube algorithm. This algorithm searches for the best ambulance locations and their 
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coverage areas, in order to minimize region-wide response times and/or ambulance workload 

imbalances in the system. In addition, we discuss how the algorithms can be adapted to 

generate trade-off curves among the conflicting performance measures. 

Computational results are analyzed by applying the algorithms to two case studies. 

The first case corresponds to an EMS operating on a portion of an interstate highway 

connecting the cities of Sao Paulo and Rio de Janeiro, which was initially studied by 

Mendonça and Morabito (2001). The second is an EMS operated by a private firm. It is based 

on two busy stretches of highway located in the state of Sao Paulo and recently studied by 

Iannoni et al. (2008) and Iannoni and Morabito (2007). To verify the quality of the solutions 

produced by the algorithms, we developed a simple procedure that incorporates the hypercube 

model into a simple enumerative algorithm and provides the optimal configuration for smaller 

problems (i.e., in terms of N number of ambulances). In order to validate the performance 

measures obtained by the hypercube model, we compare them with the results obtained via a 

discrete event simulation model of the system. 

This article is organized as follows: Section 2 presents a brief description of the EMS 

case studies, while section 3 discusses how the hypercube model can be adapted to analyze 

these EMS systems. Section 4 presents the location hybrid GA/hypercube algorithm (location 

problem), and in section 5, this algorithm is extended to support the combined decisions of 

regarding ambulance location and coverage area (the location and districting problem). 

Section 6 analyzes the outcomes from the application of the algorithm to the case studies. 

Finally, section 7 presents concluding remarks and perspectives for future research. 

 

2. EMS case studies on highways  
 

2.1 The first case study 

As described by Mendonça and Morabito (2001), this EMS provides emergency 

medical treatments on a portion of an interstate highway connecting the cities of Sao Paulo 

and Rio de Janeiro. It has six ambulances located in six fixed bases along the highway, and 

one ambulance is located in each base. The operations center, located in Rio de Janeiro, 

handles the calls, dispatches the ambulances and tracks the ambulances’ movements. This is a 

zero-line capacity system. In accordance with the dispatching policy, when a call arrives in 

the system, the nearest ambulance is dispatched to the call location. If the nearest ambulance 

is busy, the second nearest ambulance (called backup) is sent. When the two nearest 

ambulances are busy, the call is considered lost to the system (even if there are other 
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ambulances available) and transferred to another system such as a local hospital or a police 

station, which is usually unable to provide the same quality of service. Figure 1 illustrates the 

location of ambulance bases along the highway.  The distance between two adjacent bases is 

divided into two atoms. An atom corresponds to a segment of highway (district), where the 

calls arrive with a specific dispatch preference list. According to this list, and except for 

ambulances 1 and 6, each ambulance is dispatched as preferential to two atoms (immediately 

to the left and right of its base), and as backup to the set of two atoms adjacent to the 

preferential ones (right and left of the adjacent ambulances in its left and right, respectively.) 

For ambulances stationed in bases 1 and 6, the primary response atoms (districts) are atoms 1 

and 10, and the secondary (backup) response atoms are 2 and 9, respectively.  For example, 

for ambulance 4, atoms 6 and 7 are the primary response areas whereas atoms 5 and 8 are its 

backup atoms. The reader can find additional details related to this system in Mendonça and 

Morabito (2001)´s study. 

 

 

 

 

 

 

Figure 1 Ambulance bases and atoms along the highway 

 

2.2 The second case study 

This EMS has five fixed bases along the two busy highways which intersect, and each 

base has one ambulance. The ambulances are identical, and the operations center is located in 

one of the bases. When the operations center receives a call requiring only one ambulance 

(single dispatch), the nearest available ambulance is immediately dispatched to the call 

location. If the nearest ambulance is busy, then the next nearest ambulance (called backup) is 

dispatched. When the call requires double dispatch, the two nearest ambulances are 

dispatched. If one of them is busy, only the available ambulance is dispatched as a single 

dispatch. If the two closest servers are busy, the call (either a single or double dispatch) is 

transferred to another system (for example, the nearest local hospital) and the call is 

considered lost to the system. Figure 2 illustrates the configuration of this EMS on the 

stretches of highways in the state of Sao Paulo. More details related to this system can be 

found in Iannoni et al. (2008). 
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Figure 2. EMS on stretches of highways in Sao Paulo state. 

 
3. Hypercube model to EMS on highway  

 

As the case studies have some different characteristics, we describe how the 

hypercube model can be adapted to analyze EMS with single dispatch (model 1 – first case 

study) and single and double dispatch (model 2 – second case study). Model 2 corresponds to 

an extension of Chelst and Barlach (1981)´s multiple dispatch hypercube model that was 

developed for police deployment.  

 

3.1 Assumptions of models 1 and 2 

The main specific assumptions of the hypercube models 1 and 2 are: 

• In model 1, the calls arrive in each atom j  with arrival rate jλ , and all calls are of the 

same type (single dispatch). In model 2, the calls can be of two types: type 1 calls (with 

arrival rate ]1[
jλ ) require the dispatch of only one ambulance, whereas type 2 calls (with 

arrival rate ]2[
jλ ) require the simultaneous response of two ambulances. The arrival 

processes have a Poisson distribution. 

• For each atom, there is a dispatch preference list ranking the servers to be dispatched 

depending on the call type. According to this list, in the case of a type 1 call, the first 

ambulance (the nearest) is dispatched, and if it is busy, the second on the list is sent 

(backup). If the backup ambulance is also busy, the call is considered lost to the system, 

even if there are other ambulances available (partial backup). In model 2, in the case of a 

type 2 call, the two first ambulances of the list are dispatched, and if only one of them is 

available, it is assigned as a single dispatch (possibly with the help of other EMS). If both 
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ambulances are busy, then regardless of its type, the call is lost, since a third ambulance is 

never assigned. This is called partial backup system. 

• The models assume that the service times are exponentially distributed. As discussed in 

the Chelst and Barlach (1981) study, in model 2, type 1 calls are serviced by a single 

ambulance i  with mean service rate iµ , and type 2 calls are serviced by two ambulances 

i  and k , which operate independently with mean service rates iµ  and kµ , respectively. 

Note that the service times of two ambulances servicing a single type 2 call are treated the 

same as two ambulances servicing two separate type 1 calls. 

These particular dispatching policies for EMS on highways also require modifications 

to the equilibrium equations of the basic hypercube model (the solution of these equations 

result in the state equilibrium probabilities of the system). In that model, a transition can 

occur only when a single server changes its status, and a call is lost only when all servers are 

busy. However, in model 2, a transition can also occur when a type 2 call arrives in the system 

and consequently two servers become busy simultaneously. Moreover, in models 1 and 2, 

there can be calls lost by the system even when there are available servers in the system. 

Additional details about the equilibrium equations and the application of models 1 and 2 to 

analyze the two case studies can be found in Mendonça and Morabito (2001) and Iannoni et 

al. (2008).  

 

3.2 Performance measures for models 1 and 2 

After determining the state equilibrium probabilities of the system, a number of 

practical and important performance metrics can be estimated, such as mean user response 

times, loss probabilities, ambulance workloads, fraction of dispatches of each server to each 

atom and aggregated travel time measures, and the fraction of calls with response times 

exceeding a predetermined threshold. In model 2, we can obtain some additional measures 

considering the two types of calls, for example, loss probability to type 1 and 2 calls, mean 

region wide travel time (considering the two types of calls), mean travel times to type 1 and 

type 2 calls, mean travel time of the first and second ambulance arriving at a type 2 call 

location, mean fraction of dispatches of each server to each region according to the type of 

call and others.  

The mean user response time is simply the set-up time plus the mean system travel 

time (note that it does not include the mean queue waiting time, since the system does not 

allow queuing calls). Thus, in model 1 the mean system travel time is defined by: 
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workloads defined for the two models by: 
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the fraction of all dispatches of ambulance i to atom j to which the travel time exceeds 10 

minutes, and )10( >ijtp is the probability that the travel time of server i to atom j is greater 

than 10 minutes. In this study, as the travel time data is not available, we estimate )10( >ijtp  

by determining the portion of each atom j (call location) that ambulance i cannot reach under 

10 minutes (using geometric probability concepts). In model 2, this measure is defined by: 
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 is the fraction of all dispatches of ambulance i to atom j to 

which the travel time exceeds 10 minutes. More details related to the calculation of all of 

these measures and others can be found in Chelst and Barlach (1981) and Iannoni et al. 

(2008). 

 

4. A hybrid location GA/hypercube algorithm 
 

As mentioned previously, Iannoni et al. (2008) propose a standard genetic algorithm 

embedded with the hypercube model to search for near-optimal atom sizes for the system 

(districting problem) while considering different performance measures. Here we modify this 

districting GA/hypercube algorithm to determine the near-optimal ambulance locations along 

the highway segments (location problem) and also introduce a local search procedure. 

Therefore we call it the location hybrid GA/hypercube algorithm. Instead of considering only 

a discrete set of candidate locations for the ambulances along the highway, we assume that 

their location can be at any point on the highway deemed appropriate.  

We begin with a standard genetic algorithm as described in the classic literature of 

genetic and population algorithms, such as Holland (1975), Goldberg (1989), Michalewicz 

(1996) and Beasley (2002). When we reallocate the ambulance bases, the algorithm re-divides 

the highway in atoms (or regions) and recalculates the arrival rates in each atom in order to 

preserve the demand distribution along the highway. For simplicity, the algorithm divides the 

distance between two adjacent bases in two equal atoms (except the extremities). 

In systems similar to that in the second case study, which involves stretches of two 

different highways, it is necessary to consider some modifications in the algorithm. For 

example, the modified algorithm assumes that there are two linear stretches (or a set of linear 

stretches): a stretch with n1 ambulances and another with n2 ambulances. It also considers that 

the ambulances from a stretch can service calls in another stretch, as it is observed in the real 
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system. As the second case study’s dispatching policy involves multiple dispatching, and 

there are two different types of calls in the system (type 1 and type 2 calls), the algorithm re-

calculates the arrival rates in each atom, considering these two types of calls. Moreover, in 

calculating the distances between ambulance bases and the centroid of each atom and the 

dispatching preference lists, the algorithm takes into account that the ambulances from one 

stretch can travel to the other. The main components considered in the implementation of the 

location GA/hypercube algorithm are briefly presented in the following sections. 

 

4.1 Chromosome representation and generation 

The algorithm employs a decimal representation for the chromosomes. Each 

chromosome is represented as a vector y = (y1, y2, …, Ny ), where iy  corresponds to the 

fraction of the stretch being analyzed, and Nyyy << ,...21 . It utilizes a procedure to randomly 

generate the initial population, assuming that 0 ≤ iy  ≤ 1. To generate possible system 

configurations (chromosomes) for initial and subsequent populations, this approach simply 

adds to each stretch, increments ∆k , where � is fixed and k is an integer randomly sorted in 

the range [0, M = 1/�]. Therefore, there are 1+M  possible values for each yi. The same 

discrete vector was applied in the mutation procedure in order to randomly replace the gene. 

For example, consider a system similar to the first case study as shown in Figure 1. With N = 

6 ambulances, the total distance D = 100Km, and the chromosome y = (y1, y2, y3, y4, y5, y6) = 

(0.10; 0.25; 0.40; 0.60; 0.75; 0.90), then this configuration can be illustrated by Figure 3.  

 

 

 

 

 

Figure 3. Ambulance locations along the highway for a given chromosome  

 

We also introduced a restriction for the generation of new chromosomes, which is 

related to the minimum distance between two adjacent bases. Thus, the algorithm takes into 

account the additional restriction of the minimum distance mind  between two bases, 

depending on the operational condition of the system analyzed. If we consider the total length 

of the stretch of highway being analyzed as D , then: D
d

ii yy min1 ≤− − .  For example, if 

base   

0 km 100 km 10 km 25 km 40 km 60 km 75 km 90 km 

52 4 61 3

atom 
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mind = 20 km, in each generated configuration, the minimum distance between two adjacent 

bases 1−i  and i  must be at least 20 km. In the second case study, we need to consider the 

parameter mind  for each stretch, and the chromosome y is divided in pieces (each piece 

representing a stretch). For example, )....,.....(
2111 1,1 nnnn yyyyy ++=  where n1 is the number of 

ambulances in stretch 1 and n2 is the number of ambulances in stretch 2. 

 

4.2 Evaluation and fitness function, selection of chromosomes, crossover and mutation 

The evaluation procedure of the GA/hypercube utilizes the hypercube models outlined 

in section 3 to compute the performance measures for each configuration (represented by a 

chromosome). Similar to the study in Iannoni et al. (2008), we conducted different 

experiments to optimize three separate measures (fitness function )(yf  of chromosome y). 

The first objective is to minimize mean region wide travel time, that is, )()(min yTyf = . In 

other experiments, the objective is to minimize the imbalance of ambulance workloads 

(evaluated by the standard deviation), that is, )()(min yyf ρσ= , or the fraction of calls not 

serviced within 10 minutes, that is, )()(min 10 yPyf t>= . The expressions for calculating these 

measures are described in section 3.2.   

Similar to the algorithm proposed in Iannoni et al. (2008), the selection of parent 

chromosomes follows the roulette wheel method with probabilities based on the fitness 

function value (Goldberg, 1989; Michalewicz, 1996). After selecting two parents, with 

probability cp  we applied the well-known single-point crossover (and with probability cp−1 , 

the selected parents are preserved in the next generation). The mutation procedure is applied 

to each gene in the chromosome with a predefined probability mp . In order to randomly 

replace the gene, we use the same discrete initialization procedure described in section 4.1. 

For example, for each gene yi (with probability mp ) this value is mutated to yi = k�, where k  

is uniformly sorted in the interval ],...,0[ M . Given the constraint of minimum distance 

between two adjacent bases, there can be invalid chromosomes generated by crossover and 

mutation. For that reason, we replace a parent chromosome with a child chromosome y only if 

this child y is feasible, i.e., it assures D
d

ii yy min1 ≤− −  in the same linear stretch.  

Initially, we set the critical parameters of the standard GA/hypercube algorithm 

(without local search procedure) such as crossover and mutation probabilities ( cp  and mp ), 

number of generations (G) and population size ( Pop ). Then, we ran extensive tests varying 
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the values of these parameters within certain ranges. The set of values: cp = 0.7, mp = 0.1, G 

= 1000 generations and Pop  = 200 chromosomes yielded the best results in most of the tests. 

The intervals ∆  = 0.03 and ∆  = 0.01 (i.e., M  = 33 and M = 100, respectively) were tested in 

each of the three fitness functions. An additional parameter is the minimum distance between 

two adjacent bases mind . Therefore, we conducted different experiments for each of the fitness 

functions using mind = 20 km and mind  = 30 km, respectively. For example, in the original 

configuration of the first case study, the smallest distance between two bases is 21 km.  

 

4.3 Local search and GA/hypercube algorithm 

Several studies, such as those by Hertz and Kobler (2000), Jaszkiewicz (2002), 

Beasley (2002) and Arroyo and Armentano (2005) have pointed out the superior performance 

of hybrid genetic algorithms which includes a local search procedure. In the present study, 

this alternative was also adopted by evaluating a local neighborhood for each solution 

generated by the GA/hypercube algorithm in the first population and after crossover and 

mutation operators.  

For evaluating a local neighborhood to a given solution generated by the GA 

algorithm, we consider the following procedure. For all ambulances i = 1, 2, …, N of the 

system, we analyze two possible movements: to the left and the right of their current locations 

iy , i.e., modifying each location to yyi ∆+  and yyi ∆− , where y∆ is an input parameter (we 

tested different values for y∆ ; e.g., y∆ = 0.01 and 0.03). In this marginal analysis of each 

movement of each ambulance i we preserve the original location of the other ambulances in 

the system and we apply the hypercube model (model 1 or 2) to evaluate the changes in the 

fitness function value. If there are improvements, we update the incumbent solution with the 

best improvement and we repeat the above procedure; otherwise the procedure is finished.  

In order to avoid cycles during the iterations of the procedure, we keep in a simple 

tabu list of the two best movements achieved in the last two iterations. Before moving the 

next candidate, we not only verify that is does not appear on the tabu list but also check if the 

constraint of minimum distance ( D
d

ii yy min1 ≤− − ), and evaluate the movement (by the 

hypercube model) only if these two conditions are found. 

We set new parameters for the hybrid GA/hypercube algorithm such as number of 

generations (G) and population size ( Pop ). As discussed later in section 6, the hybrid 

GA/hypercube requires a much smaller population size and number of generations than the 
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location standard GA/hypercube algorithm (without local search) to find the same solutions: 

G = 10 generations and Pop  = 10 or 20 chromosomes. The others parameters are the same as 

discussed above. Figure 4 presents the general scheme of the location hybrid GA/hypercube 

algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 General structure of the hybrid GA/hypercube algorithm 

 

4.4 Trade-off curve generation 

Some performance measures may conflict due to the different interests of the parties 

involved in the EMS. For example, the mean user response time is an external performance 

      While number of generations ≤ G:  

4. Apply crossover (prob. pc), 
mutation (prob. pm), and verify 
minimum distance constraint. If it 
is satisfied, replace parents for 
children  

7. Update the best solution  

2.  Apply the hypercube model 
(models 1 or 2) to evaluate each 
chromosome in the population 

3. Select chromosomes 

1. Generate the initial population 
with Pop  chromosomes  (strings) 

3.  Apply the local search 
procedure to each chromosome in 
the population 

5.  Apply the hypercube model 
(models 1 or 2) to evaluate each 
chromosome in the population 

6.  Apply the local search 
procedure to each chromosome in 
the population 
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measure of the system, which is important to the users of the system. On the other hand, the 

balancing of the server workloads is an internal performance measure, which is of particular 

interest to the system managers. In some cases, when we reduce mean response time, we may 

worsen the workload imbalance, and vice-versa. We use the concept of domination criterion 

(called the Pareto domination) to analyze the compromise among these conflicting objectives. 

One simple method for generating Pareto-optimal solutions is the ε -constraint method 

(Cohon, 1978). It operates by optimizing one objective, while all others are constrained to a 

limiting valueε . For example, taking the objectives: )()(min 1 yTyf =  and 

)()(min 2 yyf ρσ=  as defined in section 3.2, we have the objective function: min Z = 

( )(1 yf , )(2 yf ) = ( )(yT , )(yρσ ). Using the ε -constraint method to optimize the mean region 

wide travel time, whereas the standard deviation of server workloads specifies the constraint, 

the problem is formulated as follows: 

Min )()(1 yTyfZ ==   

s.a εσ ρ ≤= )()(2 yyf  

     *Yy ∈ where y  corresponds to the solution vector, Z corresponds to the image of y (or 

objective space), Y* corresponds to the set of problem’s feasible solutions, and ε  corresponds 

to the superior limiting value to ρσ . Note that in the problem above we could also choose to 

optimize ρσ  (instead of T ) and limit T  (instead of ρσ ).  

 To solve this problem, the location hybrid GA/hypercube algorithm was modified as 

follows: During a simple run, we range the values of ε  for each set of G = 10 generations. 

Then, the algorithm saves (keeping in memory) the non-dominated solutions found until the 

last G generations to the next G generations and updates the optimal value of objective 

function T  for a correspondent value of ρσ . Furthermore, additional modifications are 

required during the process of generating the initial population, crossover and mutation, in 

order to allow the generation of only feasible solutions to the problem. For example, after the 

crossover and mutation procedure, we replace a parent chromosome with a child chromosome 

y if the child is feasible (satisfying εσ ρ ≤)(y ). Note that to verify if a chromosome y is 

feasible we apply the hypercube to evaluate T  and ρσ . After wide-ranging the different 

values of ε , the algorithm describes the approximate trade-off curve between T  and ρσ  (e.g., 

non-dominated solutions found throughout the run considering all possible values of ε ). 
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5. Location and districting GA/hypercube algorithm 
 

 We then modify the location GA/hypercube algorithm described in section 4 to 

consider two combined decisions: (i) locating the ambulances and (ii) determining their 

coverage areas (atom sizes for the system). The location and districting GA/hypercube 

algorithm basically has two steps. In step 1, the algorithm optimizes the location of 

ambulance bases y* applying the location GA/algorithm described in section 4. In step 2, 

starting from the solution of step 1, the algorithm optimizes the atoms’ sizes for this solution 

(configuration) applying the districting GA/hypercube algorithm proposed in Iannoni et al. 

(2008), modified in the present study to include the local search procedure.  

 In the districting hybrid GA/hypercube we consider the initial location of the 

ambulances determined by the location hybrid GA/hypercube (note that, in the final solution 

of the location algorithm, the distance between two adjacent bases is divided in two equal 

atoms). The sizes of the atoms are modified to produce different feasible configurations 

(chromosomes) for the system. Each chromosome is represented as a vector 

),...,,( 121 −= Nxxxx , where each ix  is the fraction of the distance between bases i and i+1. If 

the distance between these two adjacent bases is id , then the size of the preferential atom for 

server i is given by iidx . The remaining distance between the bases i and i+1 becomes the 

first preferred atom for base i+1 (i.e., iii dxd − ). As suggested by the system managers, we 

impose that 0.2 ≤ ix  ≤ 0.8, limiting the preferential area of each server i to between 20 and 80 

percent of the distance id . 

  For generating possible system configurations (chromosomes) in step 2 (districting 

GA/hypercube), we conducted computational experiments which favored a finite discrete 

approach over a continuous approach where each chromosome is populated by a sorted set of 

continuous random numbers between 0.2 and 0.8. The finite approach simply adds an 

increment ∆k  to 0.2 (the lower limit of the interval), where � is fixed and k is an integer 

randomly sorted in the range ]/)2.08.0(,0[ ∆−=M . Therefore, there are 1+M  possible 

values for each ix . As with the location GA/ hypercube, while searching for the optimal atom 

sizes, we preserve the arrival rate distribution along the entire highway by proportionally re-

distributing the initial arrival rates. The other components of the districting hybrid 

GA/hypercube algorithm such as the fitness function evaluation, selection of chromosomes, 
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crossover and mutation operators and the local search procedure are similar to the same 

components for the location hybrid GA/hypercube described in section 4. 

 Note that the two genetic algorithms (location and districting) are applied sequentially, 

one for each step of this approach. Alternatively, we could also apply the districting genetic 

algorithm (step 2) to each solution (generated chromosome) of the location genetic algorithm 

(step 1). However, this approach would result in high computational costs, as it can be 

verified by the results in section 6. 

In setting the parameters for the two hybrid genetic algorithms, such as crossover (pc1 

and pc2), mutation probabilities (pm1 and pm2), the number of generations (G1 and G2), 

population size (Pop1 and Pop2), and the intervals �1 and �2, we ran extensive tests varying 

the values of these parameters within certain ranges. The best results were obtained using: pc1 

= 0.7 and pc2 = 0.5; pm1 = 0.1 and pm2 = 0.06; G1 = 10 and G2 = 10. The combination of the 

two intervals �1= 0.01 and �1= 0.03, and �2 = 0.01 and �2 = 0.03 were tested for each case 

study. 

Additionally, we also investigated a small modification in the algorithm described 

above. In this new version, during step 1, the location GA/hypercube algorithm saves (keep in 

memory) the nc best solutions, instead of saving only the best solution (in terms of location). 

Moreover, in step 2, the districting GA/hypercube algorithm is applied for each nc solution 

from step 1, resulting in the best solution (in terms of location and districting). Note in the 

previous version the algorithm can be considered a particular case of the present version 

where nc = 1.  

 

6. Computational results: 
 

The location hybrid GA/hypercube algorithm (section 4) and the location and 

districting hybrid GA/hypercube algorithm (section 5) proposed in this paper were coded in 

Pascal and run on a 1.66 GHz Centrino Duo T2300 microcomputer. 

 

6.1 Results of the location hybrid GA/hypercube algorithm 
 

Results of the first case study: According to data reported in Mendonça and Morabito 

(2001), the original configuration of this system based on the bases location is represented by 

the chromosome y = (y1, y2, y3, y4, y5, y6) = (0.0, 0.2192, 0.3315, 0.4973, 0.7807, 1.0). The 

stretch of the highway in Figure 1 is 187 km in length. In this configuration, there are atoms 
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that are not equal to the half of the distance between two adjacent bases. The main 

performance measures result in: T = 7.912 min, ρσ = 0.0551 and 10>tP = 0.299.  

To verify the quality of the solutions produced by the location hybrid GA/hypercube 

algorithm, we developed a simple procedure that incorporates the hypercube models of 

section 3 into a simple enumerative algorithm. This exhaustive procedure determines the 

optimal configuration in terms of the ambulance bases location (under a precision ∆ ), testing 

all possible configurations to the system (considering also the minimum distance mind  

constraint). Note this enumerative algorithm is computationally treatable only for problems of 

moderate size, as for the EMS under consideration with only N = 6 ambulances and a 

precision of ∆  = 0.03 or ∆  = 0.01. 

Initially, we conducted experiments individually optimizing each of the fitness 

functions discussed in section 4.2: )()(min yTyf = , )()(min yyf ρσ=  or 

)()(min 10 yPyf t>= . The corresponding optimal values of )(yT , )(yρσ  and )(10 yPt>  

obtained by the hybrid GA/hypercube and enumerative algorithms in each experiment are 

presented in bold in Table 1 (where GA is the genetic algorithm and EA is the enumerative 

algorithm). In addition to the optimal values (in bold) for each objective, Table 1 also shows 

the values of the other two measures obtained by the algorithms in each experiment, as well as 

the relative deviation (percentage improved) to the original configuration. The additional 

parameters to obtain the results in Table 1 are: � = 0.01, y∆ = 0.01 and mind = 20km. 

 

Table 1. Results of the location hybrid GA/hypercube algorithm for three fitness functions 
       

Measu-
re 

Origin. 
Config

. 

 Objec-
tive  

)(min yT
 

% 
Impro-

ved 

Objective 
)(min yρσ

 

% 
Impro-

ved 

Objective 
)(min 10 yPt >

 

% 
Impro-

ved 

)(yT  7.912 GA 
EA 

6.2311 
6.2311 

21.25% 7.7026 
7.3445 

2.65% 6.4024 
6.4024 

19.08% 

)( yρσ  0.0551 GA 
EA 

0.0507 
0.0507 

7.98% 0.0218 
0.0216 

60.44% 0.0480 
0.0480 

12.88% 

)(10 yPt >  0.299 GA 
EA 

0.166 
0.166 

44.48% 0.268 
0.271 

10.36% 0.147 
0.147 

50.84% 

 

Note in Table 1 the three experiments, T , 10>tP  and ρσ  are all improved when 

compared to the original configuration of the system. These measures are better than the 

results obtained by applying the districting standard GA/hypercube algorithm proposed in 

Iannoni et al. (2008), which optimizes only the coverage areas of the ambulances given their 
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original locations (i.e., varying only the size of atoms). For example, the results for the 

objective function obtained by the districting GA/hypercube minimizing T , ρσ  and 10>tP  

are: 7.778 min, 0.0245 and 0.255, respectively, whereas for the location GA/hypercube these 

results are: 6.2311 min, 0.0218 and 0.147, respectively (Table 1).  

The location GA/hypercube finds the optimal solution obtained by the enumerative 

algorithm in the first and third experiments (Table 1). Note in the first experiment T (to be 

minimized) reduces 21.25%, and in the third experiment, 10>tP  (to be minimized) reduces 

50.84%. In the second experiment, ρσ  (to be minimized), the GA/hypercube algorithm finds 

a solution very close to the optimal solution of the enumerative algorithm (0.0218 and 0.0216, 

respectively). Regarding the computational time, a single run of the location standard 

GA/hypercube for these experiments took an average of 500 seconds (8.3 minutes) (using G = 

1000 and Pop  = 200), whereas the location hybrid GA/hypercube algorithm took an average 

of 11 seconds to find these results (using G = 10 and Pop  = 10), and the exhaustive 

procedure took more than 11 hours in order to test all possible configurations (for all of these 

algorithms, we use � = 0.01 and mind  = 20km). The configuration (with 12 atoms) that 

minimizes the mean region wide travel time ( )()(min yTyf = ) is represented by 

chromosome y = (y1, y2, y3, y4, y5, y6) = (0.07, 0.23, 0.37, 0.56, 0.74, 0.88).  

 

Simulation of the configuration that minimizes the mean region travel time: To validate 

the performance measures found in this optimal configuration, we developed a discrete event 

simulation model of the first case study using the software Arena. The procedures to calculate 

the transient period (warm up) and the simulation run length are described in detail in Iannoni 

and Morabito (2006). Table 2 presents the results for the mean travel time iTU  and the 

workload iρ  of each ambulance of the system. These results are also validated via analysis of 

the confidence interval (confidence level 05.0=α ). Note that all average values obtained by 

the hypercube are within the simulation confidence intervals, validating the model outputs. In 

particular, the mean region-wide travel time obtained by simulation is T  = 6.3058 min (Conf. 

interv. 6.1867 – 6.4248), whereas the result calculated by the hypercube model in Table 1 is 

T = 6.2311 min. 
 

 

 



 19 

Table 2.Travel time (minutes) and workload of each ambulance  

Ambulance 
i 

Model iTU  
 

iρ  

1 hypercube 
simulation  

(Conf. interv.) 

4.680 
4.687 

4.517 – 4.857 

0.148 
0.152 

0.145 – 0.166 
2 hypercube 

simulation  
(Conf. interv.) 

6.177 
6.402 

6.051  - 6.753 

0.206 
0.214 

0.198 – 0.229 
3 hypercube 

simulation  
(Conf. interv.) 

7.064 
7.145 

6.789 – 7.501 

0.164 
0.162 

0.148 – 0.176 
4 hypercube 

simulation  
(Conf. interv.) 

5.902 
5.806 

5.631 – 5.981 

0.295 
0.299 

0.280 – 0.318 
5 hypercube 

simulation  
(Conf. interv.) 

7.413 
7.653 

7.245 – 8.060 

0.147 
0.144 

0.134 – 0.154 
6 hypercube 

simulation  
(Conf. interv.) 

5.796 
5.812 

5.644 – 5.980 

0.191 
0.199 

0.183 – 0.215 
 

Trade-off curve: Figure 5 shows the graph of the trade-off frontier obtained by plotting the 

non-dominated (or efficient) solutions. These points are obtained by applying the location 

hybrid GA/hypercube algorithm which we modified to solve the bi-objective problem 

(objective )()(min 1 yTyf =  and constraint )(yρσ ), for different values of ε  varying from 

0.026 to 0.055 (using � = 0.01). According to the procedure described in section 4.4, we vary 

the values of restriction ρσ  to update the values of T  in each set of generations, obtaining 

the final values to non-dominated solutions showed in Figure 5. Note that the gap of 

optimality is relatively small: for example, for the interval ρσ  = 0.050 – 0.051, the mean 

region wide travel time T  is 6.231 (the best solution found by the enumerative algorithm).  
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Figure 5: Approximate trade-off frontier between T and ρσ  obtained by the location hybrid 
GA/hypercube algorithm 

 

Results of the second case study: According to Iannoni et al. (2008) the original 

configuration of the system is represented by the chromosome y = (y1, y2, y3, y4, y5) = (0.135, 

0.622, 0.368, 0.750, 0.924), where n1 = 2 and n2 = 3 (total of 5 ambulances). The stretch 1 is 

74 km in length and stretch 2 is 144 km in length. The location of the ambulance (km) along 

the two connected stretches according to y is: in stretch 1 (10 and 46km, bases 1 and 2, 

respectively), and in stretch 2 (53, 108 and 134km, bases 3, 4 and 5, respectively). In planning 

the configuration and operation of this EMS, the managers and operators consider two 

possible configurations for the system in terms of the ambulances coverage areas (i.e., the 

atoms size); see Figures 6 and 7. The first configuration was analyzed in Iannoni et al. (2008) 

by applying the districting standard GA/hypercube algorithm in order to determine the 

coverage areas of each ambulance. Note in Figure 6 that, in this configuration, there are 8 

atoms in the system (2 atoms in stretch 1 and 6 atoms in stretch 2.) The second configuration 

comprises 10 atoms in the system (the distance between two adjacent bases are divided into 

two equal atoms, except for the extremities). In this case, there is only one atom between the 

connection point and ambulance 3, while stretch 1 has 4 atoms and stretch 2 has 6 atoms (see 

Figure 7). In the present study, we apply the algorithms described only for the second 

configuration (Figure 7) which is both simpler and similar to the first case study. Applying the 

multiple dispatch hypercube model to analyze the second original configuration, we find the 

following performance measures: T = 7.1576 min, ρσ = 0.0151 and 10>tP = 0.228. 

 

 

 

ρσ

T  



 21 

 

 

 

 
 
 
 
 
 
 
 
Figure 6 – First original configuration of the second case study 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 – Second original configuration of the second case study 
 
 

To verify the quality of the solutions produced by the location GA/hypercube 

algorithm, we also applied the enumerative algorithm. However, using the exhaustive 

procedure, we were unable to test all possible configurations in fewer than 24 hours using the 

same previous parameters � = 0.01 and mind = 20km. It should be mentioned that, for the 

second case study, the number of possible combinations is much greater than the first case 

study, since the total region is larger and there is a smaller number of ambulances. Only the 

results of )(yT , )(yρσ  and )(10 yPt>  obtained by the hybrid GA/hypercube algorithm in each 

experiment are presented in Table 3. The location standard GA/hypercube (using G = 1000 

and Pop  = 200) took an average of 148 seconds of computational time, whereas the location 

hybrid GA/hypercube (using G = 10 and Pop  = 20) took an average of 19 seconds to find the 

results in Table 3. Applying the enumerative algorithm to a lesser precision � = 0.03, we 

obtain for each experiment )(yT  = 4.5182 min, )(yρσ  = 0.01019 and )(10 yPt>  = 0.1492, 

respectively. Note that these results are close to the values (in bold) in Table 3, confirming the 

74 

   144 

base 

   10    9 

  4 

  3 

   2 

   8    7   6    5 

   1 atom 

   2 

   1 

74 

   144 

   8    7 6    5    3    4 

base 

atom 



 22 

quality of the solutions produced by the GA/hypercube algorithm. The additional parameters 

to obtain the results in Table 3 are: � = 0.01, y∆ = 0.01 and mind = 20km. 

 

Table 3. Results of the location hybrid GA/hypercube algorithm for three fitness functions 
       

Measure 
Origin. 
Config. 

 Objective  
)(min xT  

% 
Improved 

Objective  
)(min xρσ  

% 
Improved 

Objective  
)(min 10 xPt>  

% 
Improved 

)(yT  7.1576 GA 4.5117 36..97% 10.2697 -43.48% 6.4837 9.41% 

)( yρσ  0.0151 GA 0.0315 -108.6% 0.0094 37.75% 0.0176 -16.56% 

)(10 yPt>  0.228 GA 0.205 10.09% 0.369 -61.84% 0.143 37.28% 

 

Note in Table 3 the three experiments, T , ρσ  e 10>tP are all improvements over the 

original configuration of the system. In the first experiment, T (to be minimized) improves by 

36.97% while workload imbalance ( ρσ ) degrades by 108.6%. Similarly, in the second 

experiment, ρσ (to be minimized) reduces by 37.75% while T and 10>tP  increases by 43.48% 

and 61.84%, respectively. In the third experiment 10>tP  (to be minimized) improves by 

37.28%, whereas ρσ  increases by 16.56% and T reduces by 9.41%. Note that the results of 

these analyses (applying each objective separately) show that these measures may be in 

conflict, since when we improve one of the measures, we may worsen other. For example, the 

best solution in terms of T results in the worst solution in terms of ρσ . 

As in the first case study, the results for the objective performance measures in Table 3 

are better than the results obtained by applying the districting standard GA/hypercube 

algorithm proposed in Iannoni et al. (2008) to this second configuration (Figure 7). For 

example, the results for the objective function obtained by the districting GA/hypercube 

minimizing T , ρσ  and 10>tP  are: 7.1353 min, 0.0144 and 0.221, respectively, whereas for 

the location GA/hypercube these results are: 4.5117 min, 0.0094 and 0.143, respectively 

(Table 3). Figure 8 illustrates the ambulance bases’ locations in the configuration that 

minimizes the mean region wide travel time ( )()(min yTyf = ) in Table 3, represented by 

chromosome y = (y1, y2, y3, y4, y5) = (0.59, 0.87, 0.0, 0.55, 0.87). Note that in this 

configuration y3 = 0.0 (the ambulance 3 is located in the border of stretch 2). However the 

distance between ambulance 1 and 3 is not divided into two equal atoms, and the division 

takes place between bases 1 (km 43.7) and 2 (km 64.4).   
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Figure 8. Configuration of the second case study that minimizes the mean region wide travel time. 

 

Simulation of the configuration that minimizes the mean region wide travel time: Similar 

to the previous case study, we validate the optimal solution in Figure 8 using a discrete event  

simulation model (implemented via the Arena software). As discussed in Iannoni et al. 

(2008), the assumption of exponential distribution for the service times was rejected for all 

servers in the system. Therefore, we performed statistical analysis using the Best-Fit software 

in order to obtain the best-adjusted statistical distributions representing the data (using 

goodness-of-fit tests) to the simulation model. The following distributions for the service time 

(in minutes), not including the travel time from the server’s base to the call location, were 

found for each ambulance in the system: ambulance 1 - Lognormal (41.10, 57.24); ambulance 

2 - Erlang (16.51, 3); ambulance 3 – Lognormal (69.46, 66.59); ambulance 4 - Erlang (9.59, 

5) and ambulance 5 – Lognormal (49.51, 39.13). Table 4 compares the results of type 1 call 

travel times and the workload for each ambulance obtained by the hypercube and the 

simulation models, including the 95% confidence intervals of the simulations results. Note 

that the results obtained by the hypercube model are within the corresponding intervals. In 

particular, the mean region wide travel time calculated by simulation is T  = 4.5604 min 

(Conf. interv. 4.4663 – 4.6545), and the result obtained by the hypercube model is T = 4.5117 

min 
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Table 4. Mean travel time of type 1 calls (minutes) and ambulance workloads. 
Ambulance 

i 
Model ]1[

iTU (min) iρ  

1 hypercube 
simulation  

(Conf. interv.) 

8.127 
8.090 

7.767 – 8.413 

0.0243 
0.0246 

0.0221 – 0.0267 
2 hypercube 

simulation  
(Conf. interv.) 

3.068 
3.123 

3.065  - 3.171 

0.0223 
0.0217 

0.0203 – 0.0231 
3 hypercube 

simulation  
(Conf. interv.) 

1.942 
1.974 

1.868 – 2.079 

0.1024 
0.1015 

0.0978 – 0.1052 
4 hypercube 

simulation  
(Conf. interv.) 

10.380 
10.357 

10.022 – 10.692 

0.0188 
0.0215 

0.0204 – 0.0226 
5 hypercube 

simulation  
(Conf. interv.) 

6.320 
6.325 

6.275 – 6.375 

0.0321 
0.0326 

0.0311 – 0.0341 
 

Trade-off curve: Similar to the multi-objective analysis for the first case study, Figure 9 

depicts the approximate trade-off curve between T and ρσ  obtained by the location hybrid 

GA/hypercube algorithm. In this case, we use different values of ε  varying from 0.032 to 

0.011, based on the results obtained in the previous experiments in Table 3 (using � = 0.01).  

 

 

 

 

 

 

 

 

 

Figure 9: Approximate trade-off frontier between T and ρσ  obtained by the location hybrid 

GA/hypercube algorithm. 
 

6.2 Results of the location and districting hybrid GA/hypercube algorithm   
 

Results of the first case study: The original configuration of the system is represented by 

chromosomes y = (y1, y2, y3, y4, y5, y6) = (0.0, 0.2192, 0.3315, 0.4973, 0.7807, 1.0) for the 

location of ambulance bases and x = (x1, x2, x3, x4, x5) = (0.50, 0.50, 0.50, 0.50, 0.22) for the 

districting (as illustrated in Figure 1). As discussed previously, the following results are found 

4,500
4,750
5,000
5,250
5,500
5,750
6,000
6,250
6,500
6,750

0,011 0,016 0,021 0,026 0,031

Standard deviation of workloads

M
ea

n 
re

gi
on

 w
id

e 
tr

av
el

 
tim

e

ρσ

T  



 25 

in the original configuration: T = 7.912 min and ρσ = 0.0551. Tables 5 and 6 present the 

results of the first and second solutions obtained by the location and districting hybrid 

GA/hypercube model. We performed 10 runs, minimizing T  and ρσ , respectively. The 

parameters utilized are: G1 = 10; G2 = 10; Pop1 = 10; Pop2 =10; �1 = 0.01, �2 = 0.01, y∆ = 

0.01 and mind = 20km. The solution in Table 5 is represented by the chromosomes: y = (y1, y2, 

y3, y4, y5, y6) = (0.07, 0.23, 0.37, 0.56, 0.74, 0.88) for the location of ambulance bases and x = 

(x1, x2, x3, x4, x5) = (0.45, 0.45, 0.59, 0.39, 0.50) for the districting. This solution is also better 

than the results obtained by applying the location and districting standard GA/hypercube 

algorithm (using G1 = 1000; G2 = 1000; Pop1 = 200; Pop2 =100). For example, the final 

solution obtained by that algorithm minimizing T  is 6.1616 min. 

 

Table 5. Results of the location and districting GA/hypercube algorithm minimizing T  
Solution of step 1: location 6.2311 min 

Solution of step 2: districting 6.1548 min 
% Improve to step 1 1.22% 

 

Table 6. Results of the location and districting GA/hypercube algorithm minimizing ρσ  
Solution of step 1: location 0.0218 

Solution of step 2: districting 0.0152 
% Improve to step 1 30.27% 

 

An additional experiment was performed to analyze the behavior of the variation of 

the location and districting GA/hypercube algorithm, which takes into account the best nc 

configurations from step 1 instead of only the best one (see section 5). We arbitrarily used nc 

= 10 configurations. Table 7 presents the 10 best solutions obtained in step 1 (location 

GA/hypercube algorithm), and the respective solutions obtained in step 2 (districting 

GA/hypercube algorithm), where the objective is to minimizeT . Note that, the ranking of the 

best solutions found in step 1 does not correspond to the ranking of the best solutions of step 

2. For example, the best solution of step 2 (solution 2 – 6.1375 min) is not a result of the best 

solution of step 1 (solution 1 – 6.2311 min), which shows that the variation of the location 

and districting GA/hypercube algorithm can be more effective, despite requiring higher 

computing time. Regarding the computing time, the hybrid GA/hypercube algorithm with nc 

= 1 took an average of 30 seconds while with nc = 10 took an average of 250 seconds. In 

comparison the standard GA/hypercube algorithm with nc = 1 took an average of 490 seconds 
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(8.17 minutes) and the algorithm with nc = 10 took an average of 2,250 seconds (37.5 

minutes) to find similar solutions.  

 

Table 7. Results of the variation of the location and districting hybrid GA/hypercube 
algorithm (with nc = 10 configurations in step 1), minimizing T .  
  Solution of step 1 

(min) 
Solution of step 2 

(min) 
1 6.2311 6.1548 
2 6.2328 6.1375 
3 6.2354 6.1492 
4 6.2395 6.1634 
5 6.2468 6.1802 
6 6.2512 6.1706 
7 6.2535 6.1813 
8 6.2635 6.1898 
9 6.2748 6.1580 
10 6.2851 6.2071 
 

Results of the second case study: The original configuration of the system is 

represented by chromosomes y = (y1, y2, y3, y4, y5) = (0.135, 0.622, 0.368, 0.750, 0.930) and x 

= (x1, x2, x3) = (0.5, 0.5, 0.5), where n1 = 2 and n2 = 3 (see Figure 7). Tables 8 and 9 present 

the results of the first and second step of the location and districting hybrid GA/hypercube 

algorithm. We performed 10 runs, minimizing T  and ρσ , respectively. The parameters 

utilized are: G1 = 10; G2 = 10; Pop1 = 20; Pop2 =20; �1 = 0.01, �2 = 0.01, y∆ = 0.01 and mind = 

20km. The chromosomes that represent the solution in Table 8 are: y = (y1, y2, y3, y4, y5) = 

(0.59, 0.87, 0.0, 0.55, 0.87) for the location of ambulance bases and x = (x1, x2, x3) = (0.51, 

0.43, 0.57) for the atoms size between two adjacent bases. 

We also conducted experiments with the variation of the location and districting 

GA/hypercube algorithm with nc = 10 solutions, minimizing T . The results obtained in step 1 

and 2 of the algorithm are presented in Table 10. Similar to the first case study, the best 

solution from step 2 (solution 2 – 4.4533) is not generated by the best solution from step 1 

(solution 1 – 4.5117). The hybrid GA/hypercube algorithm with nc = 1 took an average of 46 

seconds of computational time and the algorithm with nc = 10 took an average of 122 

seconds. The standard GA/hypercube algorithm with nc = 1 took an average of 158 seconds 

(2.6 minutes) of computational time and the algorithm with nc = 10 took an average of 680 

seconds (11.3 minutes). 
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Table 8. Results of the location and districting GA/hypercube algorithm minimizing T . 
Solution of step 1: location 4.5117 min 

Solution of step 2: districting 4.4561 min 
% Improve to step 1 1.23% 

 

Table 9. Results of the location and districting GA/hypercube algorithm minimizing ρσ . 
Solution of step 1: location 0.0094 

Solution of step 2: districting 0.0065 
% Improve to step 1 30.85% 

 

Table 10. Results of the variation of the location and districting GA/hypercube algorithm 
(with nc = 10 configurations in step 1), minimizing T .  
 Solution of step 1 

(min) 
Solution of step 2 

(min) 
1 4.5117 4.4561 
2 4.5131 4.4533 
3 4.5196 4.4666 
4 4.5198 4.4634 
5 4.5209 4.4604 
6 4.5210 4.4666 
7 4.5228 4.4673 
8 4.5231 4.4677 
9 4.5245 4.4649 
10 4.5252 4.4705 
 

6.3 Results of other problem instances  

Initially, we considered test problems with N = 3, 4, 5 and 6 ambulances (bases) and 

22 −= NN A  atoms. We generated 10 random instances for each problem size, based on the 

data set of the first EMS case study. For example, the arrival rate jλ  of each atom j was 

randomly generated sorting a value in the interval ( minλ , maxλ ), where minλ = 0.00008 and 

maxλ  = 0.00375 are the minimum and maximum arrival rates in the case study. Similarly, the 

service rate iµ  of each server i was randomly sorted in the interval ( minµ , maxµ ), where minµ  

= 0.0101 and maxµ  = 0.0241 are the minimum and maximum service rates in the case study. 

We applied both the enumerative and the location GA/hypercube algorithms to solve these 

data sets, optimizing the objective (fitness) function: )()(min xTxf = discussed in section 

4.2. 

Table 11 presents the results for the mean best solutions, runtimes and optimality 

percentages of each problem set (using ∆ = 0.01 and mind = 20km). For the location hybrid 

GA/hypercube, we used the parameters G = 10, Pop = 10. Note all problems of sizes N = 3 
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and 4, and 9 out of 10 problems of size N = 5 ambulances are optimally solved by the 

GA/hypercube algorithm, indicating that it is effective for solving problems of moderate size. 

For problems of size N = 6 or larger, the enumerative algorithm becomes too expensive 

computationally (see last row of the table). Since we are not aware of tight lower bounds for 

the optimal solution values of these examples, we are unable to provide the gaps of 

optimality.  

 

Table 11. Results for the mean best solutions, runtimes and optimality percentages of 10 random 

problem instances (using ∆  = 0.01). 

Enumerative algorithm         GA/hypercube algorithm 

Data set  Objective 
)(min xT  

Runtime 

(hours) 

Objective 
)(min xT  

Runtime 

(hours) 

 

Optimality 

percentage 

N = 3 4.8053 6.55 ×10-4 4.8053 7.22 ×10-5 10 / 10 

N = 4 5.3891 0.015 5.3891 2.08 ×10-4 10 / 10 

N = 5 5.8612 0.338 5.8679 9.89 ×10-4 9 / 10 

N = 6 - > 11 hours 6.2602 0.0040 - 

 

We also examined the performance of the location and districting hybrid 

GA/hypercube algorithm for other larger problem instances than the first case study. We 

considered test problems with N = 6, 8 and 10 ambulances (bases) and 22 −= NN A  atoms, 

randomly generated from the first case study in the same way as discussed previously. In 

these experiments we also optimize the objective (fitness): )()(min xTxf = . The parameters 

utilized by the hybrid GA/hypercube are: G1 = 10; G2 = 10; Pop1 = 10; Pop2 =10; �1 = 0.01, 

�2 = 0.01, y∆ = 0.01 and mind = 20km. We summarize our findings in Table 12.  

 

 

Table 12. Results of the GA/hypercube algorithm minimizing T  

Problem 
instance 

       
Measures 

Original 
Config. 

Step 1: 
location 

Percent 
Improved 

Runtime 
(hours) 

Step 2: 
districting 

Percent 
Improved 
to step 1 

Runtime 
(hours) 

)(xT  7.7549 6.2063 19.97% 6.1768 0.47% 

)(xρσ  0.0860 0.0457 46.86% 0.0438 4.16% 

N = 6 

)(10 xPt>  0.2791 0.1699 39.12% 

0.0038 

0.1704 -0.29% 

0.0034 
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)(xT  7.5307 6.5897 12.49% 6.5583 0.48% 

)(xρσ  0.0519 0.0347 33.14% 0.0397 -14.41% 

N = 8 

)(10 xPt>  0.2592 0.1831 29.36% 

0.0828 

0.1856 -1.36% 

0.156 

)(xT  7.6331 6.3428 16.90% 6.3218 0.33% 

)(xρσ  0.0751 0.0303 59.65% 0.0319 -5.28% 

N = 10 

)(10 xPt>  0.2700 0.1837 31.96% 

1.518 

0.1863 -1.41% 

2.120 

 

The results obtained by the hybrid GA/hypercube in step 1 and step 2 of Table 12 are 

better than the results obtained by applying the standard GA/hypercube in both steps (using 

G1 = 1000; G2 = 1000; Pop1 = 100; Pop2 =100). For example, the best results found by the 

standard GA/hypercube algorithm for the objective function in step 1 in the three experiments 

are: 6.2241, 6.6647 and 6.8499, respectively, whereas the results found by the hybrid 

GA/hypercube in step 1 are: 6.2063, 6.5897 and 6.3428, respectively (Table 12). Similarly, in 

step 2 the best solutions found by the standard GA/hypercube algorithm in step 2 (districting) 

in the three experiments are: 6.1882, 6.5721 and 6.8072, respectively, whereas the results 

found by the hybrid GA/hypercube in this step are: 6.1768, 6.5583 and 6.3218, respectively.  

Nevertheless, it is important to emphasize that the standard GA/hypercube algorithm 

requires significantly higher computational time than the hybrid GA/hypercube algorithm. For 

example, a single run of the standard GA algorithm including steps 1 and 2 in the three 

experiments took on average: 0.154, 2.84 and 42.3 hours, respectively.  

Note that, even when using an iterative method to solve the linear systems of the 

hypercube model, the computer storage and, perhaps more importantly, runtime requirements 

of the location and districting GA/hypercube algorithm increase significantly for N ≥ 10 

servers. For example, a single run of the location and districting hybrid GA algorithm for the 

problem instance with N = 10 servers took more than 3 hours. Nevertheless, there are few 

EMS on Brazilian highways with N ≥ 10 servers. Conversely, if this approach is used to 

support decisions at a strategic level, it seems reasonable that the decision maker(s) will spend 

more time studying it. The current version of the location and districting GA/hypercube is less 

promising if the EMS operators wish to dynamically reconfigure the system (atom sizes) in 

response to significant variations in the demand patterns by day of the week or even by hour 

of the day. 
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7. Conclusions 
 

In this study we combined extensions of the hypercube model with hybrid genetic 

algorithms to optimize the configuration and operation of EMS on highways. In our first 

approach (location GA/hypercube algorithm), we study the location of the ambulance bases 

along the highway, in order to minimize the mean user response time, the imbalance of the 

ambulances workloads and the fraction of calls not serviced within a predetermined threshold. 

Since these performance measures may be in conflict, we presented how to adapt the 

algorithm to carry out a trade-off analysis and generate an approximate Pareto efficient 

frontier between these measures. 

This approach was also extended to arrive at decisions regarding of the location of 

ambulance bases and the districting of coverage areas of ambulances along the highway 

(location and districting GA/hypercube algorithm). Computational results were analyzed 

applying the methods to two cases studies: The first case study (with single dispatch and 

partial backup) is an EMS operating on a highway linking the cities of Sao Paulo and Rio de 

Janeiro, which was initially studied by Mendonça and Morabito (2001). The second case 

study (with multiple dispatch and partial backup) is an EMS on stretches of highway in the 

state of Sao Paulo, which was recently studied by Iannoni et al. (2008) and Iannoni and 

Morabito (2007). 

Our study showed that the main performance measures (objectives), such as the mean 

user response time, imbalance of ambulance workloads, and the fraction of calls not serviced 

within a time limit could be improved by relocating the ambulance bases and simultaneously 

determining the district (atom) sizes of the system. The methods require reasonable 

computational time to solve problems of moderate size (e.g., with less than 10 ambulances). 

For larger problem instances, the approaches (in their current versions) would take a 

prohibitive amount of CPU time, since they require the solution of exact hypercube models 

(models 1 and 2) in order to evaluate each chromosome. Therefore, an interesting perspective 

for future research is the use of hypercube approximation algorithms methods (not based on 

systems of 2N linear equations), such as the methods proposed in Larson (1975), Jarvis 

(1985), Goldberg and Szidarovszky (1991) and recently, in Atkinson et al. (2006, 2007). 
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