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Seopeand purpose-This study is part of a research on thesystem theory and operations research application to 
the public services. A research progmm on urban emergency services, especially referring to the tire 
department service of Rome, was begun in t97.5. 

In this paper we are dealing with the problem of determining the primary response areas of the individu~ 
stations or units in a certain region in order to improve the service ~~o~auce. 

After a brief review of the most relevant studies that have been reported within the past years[l, 2,4.51 
we propose a form~ation of the problem that minimizes the overall travel time within the region under 
consideration, takiig into account the spatial and temporal distribution of the calls. 

The mathematical model has been applied to the city of Rome. The results show that the distribution of 
the responsibility for first intervention among the various districts, obtained with the mathematical model, 
could permit a reduction in the overall travel time of about 26%. 

The essential aim of this work is fo suggest au approach to the dis~ctingproblem in terms of optimi~tion 
of the entire system, which may help the people in charge of emergency services. 

As a matter of fact, the proposed method could permit an improvement in emergency services, without 
chan~ng the available resources. 

Abstrae-In this paper a method is suggested for dealing with one of the main allocation problems often 
appearing in urban emergency services, that of districting. 

A mathematical model is developed in terms of constrained optimization with binary variables. 
An algorithm, derived from Balas’ filter-method, which seems to be quite efficient for this class of 

problems, has been utilized. 
The objective function, considered here, is the overall travel time in the region under consideration. 
The optimat travel time, in the case of the Rome fire service, turns out to be mean~~uliy lower than that 

derived from the actual situation. At the end is indicated a way of applying the method to the assignment of 
response areas to the different stations as a function of the current state of the system. 

1. INTRODUCTION 

The districting problem is one of the most important and recurring allocation problems in urban 
emergency services. It can be formulated as follows: “Given a region with a known spatial 
dist~bution of demands for service and given N response units, whose location is also known; 
how should the region be partitioned into areas of primary responsib~ity (districts), so that the 
quality service be the best possible?’ 

The approach generally followed is that of determining a response area for every unit. That is, 
each unit responds to all the alarms coming from its own area, unless it is already busy. 
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if it is, it is up to the other available units to respond on the basis of a predetermined 
dispatching policy. 

Traditionally, emergency services planning regarding the districting problem has been made 
by partitioning the region into regular areas (square or circular), according to the minimum 
distance criterion. This meets the requirements of a dispatching policy assigning to each call the 
closest available unit[l]. Such a districting policy does not reflect the true situation because: 

(a) it does not take into account the actual changes in travelling time along the different routes 
of a large city; 

(b) it does not take into account natural barriers (parks, rivers, railways etc.) and the actual 
street network that makes the route distribution discrete instead of continuous. 

For point (b), mathematica1 models, considering the actual situation have been developed [2]. 
As regards point (a), it is necessary to replace the “distance” concept with the “travel time” 

concept. This means that all points on the dividing line between two districts are at the same 
travel time from the respective units. 

Even interpreting “closest” in the sense of shortest travel time, the above mentioned criterion 
is not, all the same, fully satisfactory. Although the average travel time of each unit is made 
minimum, that does not necessarily imply that the average travel time of the whole system (that is 
the average response time) will be the minimum. As a matter of fact, operating in this way, due 
consideration is not given to the call rate, which is a basic parameter for minimizing the overall 
average travel time and balancing the workload among the units. Besides, if the mathematical 
model includes the call rate as well, the conclusion can be reached that dispatching the closest 
available units does not necessarily minimize the system average travel time[3]. Carter, Chaiken 
and Ignall[4] analysed the case of two fixed-position response units and rigorously derived the 
optimal districts, considering the stochastic behaviour of the system and assuming a simplified 
form of interdistrict cooperation. Furthermore, they considered two performance parameters: 
average travel time and workload balance between the units. 

This mathematics model is not utilizable when the units are more than two, but it provides 
useful insight into certain aspects of the districting problem for emergency services with fixed 
unit location. 

More recently Larson worked out a sophisticated model (valid both for fixed unit and mobile 
unit systems) based on the queuing theory, including probabilistic phenomena and interdistrict 
interactions as involved in an actual system[5]. This model investigates the system from various 
points of view. In fact, it defines and determines several system performance measures. 

However, the Larson approach is not an optimization model, because it is based on 
pre-established dispatching policies, which do not include an objective function optimization 
such as, for instance, the average response time. Furthermore computational difficulties arise 
when the whole number of units is more than 10s 12. 

In our paper we suggest coping with the districting problem in terms of constrained 
optimization. The objective function, considered here, is the system average travel time; the unit 
workload balance is expressed in the constrained equations. 

Z.MATHEMATICALMODEL 

In the districting problem the emergency units can be considered the system resources, while 
the various region points are the potential users because each of them can cause an emergency 
requiring the intervention of one or more units. The geographical description of the region under 
study and the resources location representation, valid for both fixed and mobile locations, 
constitute the main problem. In practice, the whole region can be subdivided into geographical 
atoms. The atoms (the system users) can be as small as necessary to avoid unreasonable 
quantization error, and they can assume any geometrical shape. Associated with each atom is the 
fraction of alarm-calls generated in the region under consideration. The geographical distribution 
of the units, on the other hand, can be described by specifying a location matrix L = (iii), where !, 
is the probability a generic unit i is located in an atom j, when available. The L matrix is required 
to be a stochastic one, so that F iii = 1 for all the indices i. 

In the case of ambulance or fire service, the units are concentrated in a number of fixed 
stations, thus Ii, = 1 for an atom j and lil; = 0 for every kf j. 
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In the following, for the sake of convenience, we shall keep on using the word “station” for 
mobile unit systems too, referring in such a case to the single unit. 

Therefore the problem is the assj~ment of the calls to the stations, taking care to give 
primary intervention res~ns~b~ity fo; a certain atom to only one station (that implies that if the 
generic term of the L matrix k f O,& = 0 for every j# i) and sharing the workload, on an average, 
equally among the units. 

For this purpose we define the following variables: 
tij = average travel time from the station i to the atom I ; 
xii = binary variable that represents the decision of assigning (Xii = 1) or not (Xii = 0) the atom j 

to the station i; 
h = average rate of calls for service (calls per hour) generated from within the entire region of 

interest; 
11~ = average service time per call; 

n, = number of the response unit belonging to the station i (tti = 1 in the case of mobile unit 
system) 

fj = fraction of calls generated from atom j( I: jj = 1); 
jGJ 

T = average percentage of time the unit is busy a day. 

So the problem can be formalized as an integer linear pro~amm~ng problem, as follows: 
~~nethetwosets~={l,2 ,..., N)andJ=(1,2 ,..., 1w) respectively associated with the 

stations located in the region considered and with the atoms into which it is petitioned. 
Find the vector 

x={xr, ,... ,XNI,X,2,...,~NZ,..~,X,M, 
minimizing 

subject to the cons~aints: 

CXij=l, VjEJ 
iEl 

Xij=O, 1, ViEI, ViEL 

In equation (2), without loss of generality, we may assume fi 2 fi 2 * - * fM. 
it is immediately clear that, with this formulation, travel time statistics play an important role. 
All mean travel times are computed from a travel time matrix, whose generic element is rki, 

that is, the mean travel time from atom k to atom j (in general Tkj# ?jk)s 

The knowledge of flji) makes it possible to express the objective function z c~~cients in the 
following way: 

fjj = 2 &?kj ViEI, VjEJ. f-5) 
k==l 

A vector x satisfying the constraints (3) and (4) is called “solution”, a vector x, satisfying the 
constraints (2), (3) and (4) is called “feasible solution” and eventually a feasible solution that 
minimizes (1) is called “optimal solution”. 

3. THE ALGORITHM 

For solving integer linear programming problems, several algo~thms are available. Some of 
them are based on traditional methods (for instance, Gomory’s algorithm and enMmerativ~ 
methods), others are based on a combinatory approach, to which, Balas especially has made a 
great contribution[6]. From a comparison of these methods, it seemed preferable to use an 
algorithm developed by De Maio and Roveda[7], some years ago, to solve a specific class of 
industrial problems. 
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This algorithm, in fact, follows in some aspects the filter method of Balas, but the second 
stage, which involves lengthy computations, is avoided by making use of equations (3) as a filter. 

This constraint causes some subvectors to be identi~ed in the vector x; for each subvector only 
one component may assume the value of 1, while the others are constrained to assume the value of 
0. 

Hence the solution number is not 2N’M, but NM which may be a much smaller number. The 
essential idea of the algorithm is that of generating a sequence of solutions {xk} such as to satisfy 
these conditions: 

(a) the sequence of the values zk associated with xk through the equation (1) is not decreasing; 
(b) when a solution x’ corresponding to z, is reached, all the solutions x’ such as 4 < z5 have 

been imp~citly or explicitly considered. 
So it is evident that the first feasible solution obtained is also an optimal one. The procedure 

for generating solutions starts from the initial solution x0, associated with a minimum absolute 
cost z0. 

This solution is determined in the following way: for every j E J determine the index ij E I 
such that ti,,j = mino,{trj} and when there is more than one index ii, satisfying the previous relation, 
choose & = min(i,). Then set Xiz,j = 1 and Xii = 0 for every i E I (i# ij). 

With the sequence of the subsequent solutions it is possible to construct a tree T, made up of 
nodes, representing the solutions xk associated with their cost zk generated step by step, and of 
branches connecting solutions generated in two subsequent iterations. The initial node is 
obviously x0. At a generic step s the partial tree T” consists of all the solutions generated up to 
the relative iteration. 

We may call active nodes, all the 2’” terminal nodes that have not been eliminated by 
feasibility test No. 2 (see below). At the generic step s two sets are defined: 

x” = fx’/x’ is an active node of T”} 

z’ = {.&(x* is an active node of T”}. 

The algorithm is applied to these two sets. The basic structure of the algorithm is the following: 
Starting phase. Compute, as before mentioned, the minimal cost solution x0 and form the sets 

x0 = {x3 
z” = (zo}. 

Iterative phase. The iterative phase is deveioped in the following steps: 
Choice step. At the s + 1 iteration, if z”# 4 choose: 

zk = min {.&} 
2tEZ 

(if some tie exists, choose one of the tied z’s, in an arbitrary way, for instance the one having the 
smallest index). Determine the corresponding soiution x* and cancei & from z” and x* from x”. 
If Z‘ = #, no feasible solution exists and the algorithm terminates. 

Feasibility step. Test No. 1. Compute 

If & I 0 V i E I, the test is passed, x* is optimal and the algorithm ends. 
If 6, > 0 for some i E 1, form the sets 

M’ = {i[L > 0) 

N’=={jlx$=l}, ViEMk 

and apply the next test. 
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Test No. 2. For every i E Mk and every j E N’, check if there is an index It”: i such that rli > tii 
and form the sets: .Z’ = {j/j E N’, i E Mk}3 If i such that lIi > tii or 3 I > i such that tlj = tii. 

Then compute 

If hi < $i even for only one i E Mk, the test is not passed: cancel the node k and go back to the 
choice step. 

If hi 2 gi V i E ML, compute 

and form the sets 
Li = {ZIS!i > 0 and I# i, S& = 0 and I > i} 

I’ = {tl&j = min Sij}. 
lELil 

Then go to the next step. 
Branching step. For every i”E ML, generate all the solutions x5 that satisfy the following 

conditions: 

(a) x$=x$, VjE(J-J’) and WiEZ 

(b) XT;= 1, VjEJ’ 

either for 1= i^ (no shifting of an 1 happens in the relative column) or for I equal to the element of 
I’ corresponding to the element j here considered. 

(d) Do not consider redundant solutions, that is, given two solutions xc and XL and defined the 
two sets 

both E/$_ E,’ and EJ$ E! must hold. 
The algorithm for generating nonredundant solutions is given in the Appendix. 
By making use of the solutions xc, previously generated, form all the solutions xka such that: 

x2= 
x2, WiEZ, VjE.Zh, VhEM’ 
xi, ViEZ, VjE(.Z- U 

hEh@ 
P). 

Then update the sets z” and X” with the solutions obtained and go back to the choice step. 
Of course, ail the solutions generated in this way, that are identical with an existing one, are 

deleted. The flow chart of the algorithm is shown in Fig. 1. 

4. APPLICATION TOTHEROMEFIREDEPARTMENT 

A vahdity proof of this kind of districting problem formulation has been made by applying the 
algorithm to the Rome department. 

The application required four subsequent steps: 
(1) choice of the region, data collection and analysis; 
(2) data processing in a form suitable to the particular algorithm; 
(3) computational program; 
(4) analysis of the results. 
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STARTING PHASE 

I 

DETERMINE x0 

ITERATIVE PHASE 

- 

I__-_______________t--_--A 

L____--_---_----_- _______I 

t 
I 

Fig. 1. Flow chart of the aigo~thm. 

(1) Choice of the region, 
We have chosen the 

- -t- 

data collection and analysis 

-I 

urban area of Rome, included inside the “Raccordo Anulare” (Ring 
Road) and those suburbs outside the “Raccordo Anulare”, whose service requirements weigh on 
the city fire stations. 

This region is not homogeneous as it includes strongly urbanized areas with high population 
density, industrialized and agricultural and woody areas. 

The stations in charge of the entire area are normally seven (eight, considering the training 
school located at “Capannelle”) approximately placed on concentric circles with the main station 
in the middle (see Fig. 2). 

The denomination of the stations and the unit distribution among the stations are shown in 
Table 1. It is easy to note that the main station, located in the town center, has a number of units 
clearly exceeding that of all other stations. Such a situation certainly affects the optimal 
districting. The necessary data for the algorithm implementation have been taken from filing 
cards filled in for every accident. There are recorded the emergency location, the type of unit 
employed and the time spent between the call and the units’ return home after ~rforming their 
duty. 

The analysis has been confined to a peak period of time (August 1974) and some system 
parameters such as average unit workload, their service mean rate, alarms mean rate (see Table 2) 
and spatial distribution of demands for service, have been computed through appropriate 
statistics. 
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Fig. 2. Atoms subdivision and station distribution. 

(2) Data processing 

Primarily, the region under study has been partitioned into atoms (each individualized by a 
known number of calls), with the aim of fitting the actual town POSTAL CODE (ZIP CODE in 
U.S.A.) subdivisions to the proposed method requirements. This partitioning and the number of 
alarm calls generated from within each atom, in the period considered, are shown in Fig. 2 and 
Table 2. 

Thus, the fi coefficients in equation (2) are straightforwardly obtained. 
The travel time matrix tij (see Table 3) has been found, by making use of a work performed by 

the Rome municipal department of urban transportation. 
In this work an extended succession of nodes and preferential routes connecting them in the 

town area, is illustrated. The routes average speeds are also provided. 

(3) Computer program 
The algorithm has been implemented on an UNIVAC 1110 in FORTRAN V. 
The computation time does not cause a problem, because the algorithm performs the optimal 

solution after only 56 iterations and it takes 26” of CPU to complete them. 

Table I. Unit distribution 

Stations 
Number of 

Code units Typical parameters 

Centrale C 6 
Ostiense 0 2 
Eur E I 7 = 0.6 
Prati P 2 c = 0.5 services/h 
Monte Mario M 1 A = 4. I calls/h 
Nomentano N 2 
Tuscolano T I 
School Capannelle S 2 
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We met more difficulties, on the other hand, dealing with the storage problem, because the 
algorithm solution is based on branch and bound techniques. 

So that it generates a number of solutions growing rapidly with the dimensions of the problem 
(that is, M and N). Although the algorithm quickly converges and the number of the solutions 
generated before the optimal is quite small, we had to turn each vector of 43 components into a 
vector of 4 components through a suitable conversion. 

In this way the memory area dimensions to be reserved, have been drastically cut down (see 
Table 4). 

Table 4. Computational results 

N M S S.A. tc ME ME0 

8 43 5785 56 26” 344,000 32,000 

N: number of the matrix rows; M: number of 
the matrix columns; S: number of the generated 
solutions; SA: number of analyzed solutions 
before finding the optimal; tc: time of CPU; 
ME: memory area for storing the solutions 
without the conversion; MEO: memory area 
reserved for storing the solutions with the 
conversion. 

(4) Analysis of the results 
The data, performed in the above mentioned way, were introduced as inputs in the computer 

program. The results of the computer run showed quite interesting results, as one can see by 
simply making a comparison between Fig. 3 and Fig. 4. They respectively show the current primary 
response area subdivision, empirically obtained, and the one derived from the proposed 
optimization method. 

Fig. 3. Current response areas. 
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Fii. 4. Optimi~d response areas. 

Table 5. Optimal assignments 

Stations Code Atoms of the relevant response areas 

Centrale z 1, 8, 12, 13, 14, 15, 18, 25, 26, 40 
Ostiense 3, 4, 5,6, 7, 23, 24 
Eur E 21,22, 32, 33 
Prati 2 9, 11, 27, 28 
Monte Mario 10,35 
Nomentano N 29, 30, 36, 37, 38 
Tuscolano T 2, 16, 17. 31, 39 
School 
Capanneile ’ 19, 20, 41, 42,43 

The associated vahres of t are 465 min in the former case and 343 min in the latter case. 
Therefore the system travel time, referring to the actual situation, is reduced by 26%, that is, by 
about 2 h. 

As was foreseeable the most significant changes concern above ah the main station, but 
Monte Mario, Nomentano and Tuscoiano stations also present considerable variations. 

It is obvious that if it were actually necessary to redistrict the primary response areas, phases 
(1) and (2) should be refined, by collecting a more extensive data series and keeping in mind the 
cooperation and coordination requirements with the provincial stations. 

However, in our opinion, the results of this work can also provide useful insight for a more 
elaborate approach directed towards obtaining an optimal districting for the Rome fire service. 

Besides, they give a good test of the efficiency of the proposed method. 
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5. CONCLUSION 

This approach to the districting problem makes it possible to find the optimal solution under 
the hypothesis that all units are available. In this way we solve a static problem. Nevertheless, in 
theory, the proposed method can also be utilized to make a dynamic assignment of the response 
areas, by considering the current state of the system. 

To do that, we need to apply the algorithm to all the possible states of the system, and to 
determine the optimal response areas for each state. 

The solutions obtained could be stored in a computer and then dealt with in such a way that, 
given a call from a certain atom and given the system state at that moment, it would be possible to 
determine at once the optimal station responsible for the atom in question. 
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APPENDIX 
The problem considered here is to determine all the binary nonredundant solutions of inequalities 

where D>O; d,rd2z...zd_; y,=O, 1. 
By nonredundant solutions, we mean those solutions y = (y,, y2,. . , y.) for which, having defined a set of indices 

E = { jlyr = 1). given two solutions y” and y’, the following conditions are satisfied 

Eke E’ and Ek$ Eh. 

To find the solutions we have to check if some dh 2 D exists; for such a d,, we find at once that the solution is defined by 
Ek = {h} in case (a), while in case (b) the associated variable must be at all times zero. 

Therefore, it is possible to cross out the variable y, in the inequalities and solve them with the remaining variables. 
Therefore we suppose d, CD. Besides we set 

If it is not so, we will have: 

(1) $d,=Q 
i-1 

only one solution with y, = 1 for j = 1, 2,. . , n; 

no solution in case (a) and only one solution in case (b) with y, = 1 for j = 1,2,. , n. 
The algorithm, here proposed for the solution is a search method based essentially on the concept of “partial solution” 

S’. We mean, by a partial solution, a binary assignment of the first h variables (with h < n). By a “solution” on the other 
hand, we mean a binary assignment of all variables y,. 

The method consists of generating a feasible solution of the problem, and then deriving some partial solutions; these are 
successively tested by a feasibility test to verify if a complete solution exists obtainable from them, which is feasible. 

The partial solutions that pass the test are called active, those that do not pass the test are eliminated together with all the 
other solutions derivable from them. Now let us show the algorithm structure in the two cases (a) and (b). 

Initialization. The algorithm starts on the active partial solutions S’, set T’ = {S’lS’ is an active partial solution}. 
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Iterative phase. Each iteration i includes the following steps: 
(1) Form the set 

T’ = {S”lS” are active partial solutions} 

when T’ = {d}, the process ends. 
(2) Choose at random any one partial solution in T’ and let it be Sk, eliminate it from T’ and then form a complete 

solution in the following way: 

case (a) 
for j = 1,2, . , k 

forj=ktl,...,h 

forj=h+I,...,n 

h=min[$d,yFt,$+,d,rD], ktl=l<n; 

case (b) 

for j = 1,2,. , k 

for j = k t 1,. . , h 

for j = h t 1,. . . , n 

where 

h=min[tl$,d,y:t 2 d,sD], ktlstsn. 
i-,+1 

(3) If h = n, no partial solution is generated from y’ and we pass to step (I) beginning again a new iteration starting on the 
residual T’. 

(4) If h < n the following partial solutions are made up: 

case (a) 

so= y:=y,’ Isjsh,j#r 

’ (yp=O j=r 

where r=ktl,...,h; 

case (b) 

lsjsh,j#r 

j=r 

where r=ktl,...,h. 
(5) Subject every Si”, constructed in this way, to the feasibility test: 

case (a) 

case (b) 

If the test is checked, S,” is an active partial solution. If the test is not checked, S,” is eliminated and with it also the derivable 
solutions. 

(6) Go back to step (I) updating set T’ with the active partial solutions determined at step (5). 


