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Abstract

Facility location problems are frequent in OR literature. In districting problems, on the other hand, the aim is to partition a
territory into smaller units, called districts or zones, while an objective function is optimized and some constraints are satisfied,
such as balance, contiguity, and compactness. Although many location and districting problems have been treated by assuming the
region previously partitioned into a large number of elemental areas and further aggregating these units into districts with the aid of
a mathematical programming model, continuous approximation, on the other hand, is based on the spatial density of demand, rather
than on precise information on every elementary unit. Voronoi diagrams can be successfully used in association with continuous
approximation models to solve location—districting problems, specially transportation and logistics applications. We discuss in the
paper the context in which approximation algorithms can be used to solve this kind of problem.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Facility location problems are concerned with the location of one or more facilities such as to optimize a certain
objective function as, for example, minimize transportation cost, provide equitable service to customers, capture the
largest market share, etc. [1-3]. Facility location problems are often related to geometrical and combinatorial problems.
The literature shows a large number of facility location models and applications. Locating rapid transit stations, hospitals,
schools, retail outlets, warehouses, are classical examples. In a typical location problem a set of customers that are
spatially distributed over a geographical area originates demand for some kind of goods or services. Customer demand
must be supplied by one or more facilities. The optimization process must establish where to locate the facilities taking
into account users requirements and a number of constraints that can be of behavioral, economical, operational, or
geographical nature.

Location problems are called continuous when the underlying space, both for facility sites and demand points,
are determined by one or more variables (depending on the dimension of the problem) that will vary continuously.
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The corresponding models are mainly of geometrical nature and the optimal solution of such models is sought with
linear/non-linear programming and global optimization algorithms, as opposed to discrete, combinatorial and/or integer
programming. More recently, the use of computational geometry and computer graphics has opened the way for other
solution techniques, including approximate heuristics [4].

The aim of districting problems, on the other hand, is to get an optimized partition of a territory into smaller units,
called districts or zones, subject to some side constraints [5—7]. The constraints reflect a number of common sense
criteria. One of them is to balance demand among districts. Furthermore, the resulting districts must be contiguous and
geographically compact [8]. Logistics and transportation districting problems usually involve additional optimization
criteria and constraints. In general, apart from the basic balance, contiguity, and compactness principles, there is not a
set of general criteria that are common to all districting problems.

Districting problems are associated with a number of practical applications. Political districting, in which one
is interested in drawing of electoral district boundaries has received much attention in the literature [5—8]. School
districting [9] and police districting [10] are two other areas of research interest. In addition, the literature presents
articles on the design of sales territory [11,12], as well as emergency, health-care, and logistics districting. Among
the latter, we mention the districting approach to the planning of salt spreading operations on roads [13], the balanced
allocation of customers to distribution centers [14], and the design of multi-vehicle delivery tours [15-17].

Several heuristics have been proposed in the literature for the discrete districting problem. Generally, a binary linear
programming is formulated in order to assign a basic areal unit i to a “seed” district center j [6,7]. The cost function
to be minimized is related to the distance from i to j (the square of the distance is often used). A binary variable x;;
is set equal to 1 if and only if unit i is assigned to seed j, being zero otherwise. Constraints to guarantee that every
unit is included in exactly one of the selected districts are incorporated into the model. Although there is no uniformly
acceptable mathematical definition of compactness, a penalty cost constraint is usually introduced that penalizes the
“non-compactness” of the potential districts [6]. Contiguity is attained when it is possible to travel from any point in
the district to any other point in the same district without having to go through any other district. Although one could
add linear inequalities into the model to enforce contiguity precisely, this would require an exponential number of
constraints and would be very demanding computationally [6].

Discrete districting models are normally large and are based on diverse operations research techniques. The mathe-
matical representation of balance, compactness, and contiguity criteria also varies widely from case to case. Continuous
approximation, on the other hand, is based on the spatial density and distribution of the demand rather than on pre-
cise information on every demand unit. It allows for simple, yet robust models that are useful when planning a new
service or the expansion of an existing one [17-19]. The association of continuous approximation techniques with
Voronoi diagram districting opens the way to solve a number of real-life problems. In particular, the use of ordinary
and non-ordinary Voronoi diagrams to solve logistics and transportation problems has been reported in the literature
[20-22]. Boots and South [12] used a multiplicatively weighted Voronoi diagram approach for modeling retail trade
areas. Galvao et al. [22] defined a multiplicatively weighted Voronoi diagram model to solve an urban freight distri-
bution problem. The utilization of non-ordinary Voronoi diagrams in logistics and transportation location/districting
problems, associated with a continuous demand approach, also allows for the introduction of physical barriers into the
model [23]. This is an important property because it permits to treat problems with obstacles imposed by thoroughfares,
highways, rivers, reservoirs, hills, etc. (see Section 4.2).

The purpose of this paper is to develop two continuous location—districting models applied to transportation and
logistics problems, combining a Voronoi diagram approach with an optimization algorithm. The contributions are
threefold. First, the use of non-ordinary Voronoi diagram concepts in association with transportation and logistics
districting, which bypasses some difficulties encountered in discrete districting algorithms, such as problem size and
the mathematical representation of compactness and contiguity constraints. Second, the utilization of recent-developed
Voronoi diagram construction methods such as the plane-sweep and the quad-tree techniques, which have been reported
in the literature in relation to computer graphics, robotics, etc., but not yet used in conjunction with transportation and
logistics problems. And third, the extension of the Voronoi diagram methodology to solve logistics districting problems
with spatial barriers.

Section 2 presents a summary of the basic concepts and properties of Voronoi diagrams that are of interest to
solve transportation and logistics districting problems. Section 3 deals with computational aspects associated with the
solution of Voronoi diagrams. In Section 4, two applications involving Voronoi diagrams and locational optimization are
analyzed. The first is concerned with the location of stations over a rail-transit line in order to maximize rail patronage.
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The second is dedicated to analyze and discuss a Voronoi diagram application to a logistics distribution problem with
geographical barriers.

2. Voronoi diagrams

It is presented in this section a summary of the concepts, types, and properties of Voronoi diagrams that will further
be used to solve logistics and transportation problems. Voronoi diagrams comprise a vast subject, and the reader is
referred to Aurenhammer [24] and Okabe et al. [20] for more details. Voronoi diagrams are defined in RY, with d >2,
but our applications are limited to R”. Although Voronoi diagram generators can be points, lines, circles, or areas of
diverse shapes [20], our applications deal with point generators only. In fact, logistics and transportation problems
usually involve “point-like facilities” such as depots, subway stations, bus stops, etc.

Voronoi diagrams have been used extensively in a variety of disciplines, including Astronomy, Physics, Meteorol-
ogy, Urban Planning, and Engineering. Presently, Voronoi diagrams are extensively used in computational geometry,
computer graphics, robotics, pattern recognition, games, etc. [24,25]. The basic concept of Voronoi diagrams is quite
simple: given a finite set of distinct and isolated points in a continuous space, we associate all locations in that space
with the closest—in the sense of a given distance—member of the point set [20]. In mathematical terms, let m be an
integer such that2<m < oo, P = {Py, P2, ..., P, } be afinite set of m distinct points in the two-dimensional Cartesian
space R? and w={u, U, ..., U,} be afamily of continuous functions: y; : R* x R — R, fori € {1,...,m}. Pis
called a generator set, and, for each index i € {1, ..., m}, P; is a generator point. The symbol y; is usually referred
as the metric associated to P; or the distance to P;, although—in general—it may take negative values. Let the region
V (P;) be the set of locations X € R? such that

V(P) ={XeR|yX,P)<u;X,Pj), j=1,....,m}. ey

Region V (P;) is called the Voronoi region of P; associated to the family u. The dominance region of P; over P;
associated to the family p is given by

Dom(P;, Pj) ={X € R*|;;;(X, Pi) < (X, Pj)}. )

And the separator between P; and P is

sep(P;,P;) ={X € Rzmi(X, P)) =u;X,P))}. 3)
We have
sep(P;, P;) = Dom(P;, P;) N Dom(P;, P;), 4)
m m
V() =()Dom(P;.P;) and R*=[_JV@). 5)
j=1 i=1
Thus, the reunion of all the Voronoi regions covers R? and defines a partition of the space V. ={V(P}),..., V(Py,)},

which is called the Voronoi diagram generated by P and L.

A classical example of Voronoi diagrams is represented by u; (X, Y) = || X — Y|, where || e || is the Euclidean norm
of R?. In this case, the dominance region is called the ordinary Voronoi polygon associated with P;, and the partition
V is the planar ordinary Voronoi diagram generated by P. The edges of Voronoi polygons in R” are line segments.

Another classical example concerns the p-center problem, where we seek a set of facilities which minimizes the
maximum distance from a user to its nearest facility [21]. Associated with this type of problem is the farthest-point
Voronoi diagram, which corresponds to u; (X, Y) = — || X = Y|[.

If we are not interested in the whole space but only in a subregion R C R?, analogous definitions may be introduced
by replacing R? by R. For instance, when the planar Voronoi diagram is constrained to a bounded region, it becomes a
bounded planar Voronoi diagram, as shown in Fig. 1a.

There are situations where the Euclidean distance does not represent well the attracting process. For instance, suppose
that the six generator points exhibited in Fig. 1a are retail stores selling the same kind of product. Assume further that,
in addition to distance, the attraction of such stores depends on a set of features, leading to the weighting coefficients
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Fig. 1. Ordinary and multiplicatively weighted Voronoi diagrams: (a) ordinary Voronoi diagram; (b) multiplicatively weighted Vonoroi diagram.

shown in Fig. 1b. In order to take these elements into account, several kinds of weighted planar Voronoi diagrams have
been introduced. These diagrams use a family of weights w = (w1, wo, ..., wy,), such that the dominance region (2)
increases with the weight w;. For instance, multiplicatively weighted planar Voronoi diagrams correspond to

1
X, P) = —[X-P;, (6)
w;

where w is a family of strictly positive weights. In the case with only two generator points, the locus of the points X
satisfying (6) is the Apollonius circle [20], except if w| = w;, when the bisector becomes a straight line. Fig. 1b shows
an example of MW-Voronoi diagram for the weights there indicated. In general, a MW-Voronoi region is a non-empty
set and need not be convex, or connected; and it may have holes [20].

Analogously, the additively weighted Voronoi diagram is represented by

1 X, Py = [IX = Pi|| — w;. (N

Here, the sign of w; is not restricted. Taking two points P; and P, the bisector associated with the additively weighted
Voronoi diagram is either a branch of a hyperbolic curve with foci P; and P}, or a straight line segment [20].

The combination between additive and multiplicative weights leads to the compoundly weighted Voronoi diagram,
which is associated to

1
WX, P) = —|IX =P — wip. (8)
wi1

We recall that the sign of w;» is not restricted. In this case, the boundary of the dominance region is a fourth-order
polynomial function, and its shape is fairly complex [20].
The power Voronoi diagram corresponds to

1 (X, Py) = [IX = Pi||> — w;. ©)
In this case, only positive values of w; are usually used. The line segment connecting P; and P; is

[P;,,P;j]={XeR*: X=0P; + (1 — O)P;,0<0<1}. (10)
The bisector is a straight line perpendicular to the line segment P; — P; passing through the point Xl*/ given by [20]

IP; 1% — IP; 1> + w;
2|P; — P2

* —wj

X, = P; —P) (11)
and is well-behaving and regular. An important property of power Voronoi diagrams, useful in applications, is that
the resulting Voronoi polygons are always convex. Power Voronoi diagrams are specially useful to solve districting
problems with barriers, as in the case described in Section 4.2.
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Fig. 2. The shortest-path visibility graph.

When solving Voronoi diagram problems with obstacles, the Euclidean norm is not acceptable. If an obstacle lies on
the line linking an origin and a destination, it is not possible to traverse it straight. Instead, a detour around the obstacle
must be taken. Following [20], consider a generator set P and a set of ¢ closed regions O ={0O1, ..., O.} (1<c < 00).
The set O represents a set of obstacles that are not traversable. These obstacles are assumed not to overlap each other
and points of P are not allowed to lie within the obstacles (Fig. 2a). Furthermore, each obstacle is assumed to be
connected and with no holes. For computational convenience it is assumed that O; (i =1, ..., ¢) is a polygon, but it
is not assumed that O; is necessarily convex. Line segments are also accepted as obstacles.

The visibility-shortest-path distance between a generic point X and a generator point P;, expressed as dsp (X, P;),
is obtained considering all possible continuous paths connecting X and P; that do not traverse obstacles. A visibility
polygon with respect to P;, and denoted by Vis(P;), is the set of points that are visible from P;. Mathematically, Vis(P;)
is defined by

VistP) = {Xe R : (X, PN || Jo;|=0¢. (12)
j=1

An example is shown in Fig. 2a, where the visibility polygon with respect to the generator point Py is indicated by the
hatched area. To compute the visibility-shortest-path distance between a point X and a generator point P; one uses the
correspondent visibility graph, which is formed by all possible paths connecting X and P; (Fig. 2b). On the visibility
graph one solves the classical shortest-path problem with the aid of an appropriate algorithm such as, for example, the
well-known Dijstra method. For the example of Fig. 2b, the shortest-path between Py and X isP; - B — F — X.
When applying ordinary Voronoi diagrams to logistics and transportation problems, the computation is really simple
but, apart from some specific cases, the resulting model framework is not realistic enough. This leads to the employment
of non-ordinary Voronoi diagrams, such as multiplicatively weighted, addictively weighted, compound, power, and other
Voronoi diagram types. The utilization of multiplicatively weighted, additively weighted and compoundly weighted
Voronoi diagrams in logistics districting problems, for example, has some advantages [22]. One of them is that the
fitting process leads to more equalized load factors among the districts, meaning the vehicles assigned to the zones
will show more balanced utilization levels [22]. This happens because those Voronoi diagrams have more degrees of
freedom when searching for the district contours, as compared to the traditional, theoretical, wedge-shaped partitioning
scheme [17,22]. But, in some cases the Voronoi region is not convex, or connected, and it may have holes [20], and thus
special care must be taken when developing computational iterative models to solve this type of problem. Otherwise the
computing process may not converge or it may produce non-realistic results. In order to cope with this kind of problem
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Galvao et al. [22], for example, departed from a previous solution obtained via a traditional method. With this approach
drastic transitions in the iterative routine were avoided, thus maintaining a smooth and convergent computational
process.

The locational problems analyzed in this text are of the weighted and power Voronoi-diagram types, but other types
of Voronoi diagram problems reported in the literature can equally be solved with the computational approach described
in this text [20,21,26]. One of them is the Voronoi fitting problem [20,26], in which one is interested in determining
the divergences between cells of an existing tessellation and their corresponding Voronoi districts. This approach can
be used, for example, to identify the areas in which customers cannot be served by the nearest facility, say a school or
a hospital. Another case is the locational optimization of hierarchical facilities [20,26] in which facilities (as hospitals,
for example) are ranked according to the level of services they are allowed to provide.

3. Computational aspects associated with generalized Voronoi diagrams

Computational geometry has attracted enormous research interest in the last few years, covering diverse areas of com-
puter science, such as computer graphics, computer-aided design, robotics, pattern recognition, etc. In particular, readers
familiar with the literature on these subjects will have noticed an increasing interest in geometrical constructs repre-
sented by Voronoi diagrams [24]. The usual approaches for constructing generalized Voronoi-diagrams are combinato-
rial methods, incremental techniques, divide-and-conquer methods, and approximation algorithms [20,21,24,25,27,28].
In this section it is briefly described the utilization of two approximation algorithms associated with the construction
of generalized Voronoi diagrams, namely the plane-sweep technique [27,24] and the quadtree technique [28], which
were used in our applications to logistics and transportation problems.

3.1. The plane-sweep technique

Such a technique, due to Fortune [27], stands out by its conceptual and computational simplicity. Let P denote a
generator set of m distinct generator points in R? and let V be the corresponding planar Voronoi diagram. A continuous
deformation of V is performed in which the Euclidean distance function with respect to the generators points is
interpreted in the following way. With each generator point P; € P, a cone

KP)={X,2) e RZxR:X e R% z=|X—P;|} (13)

is associated [24]. K (P;) is an upwardly directed cone in R3 with vertical axis of revolution, with apex P;, and with an
interior angle of 7/2. Cones may be viewed as bivariate functions on R?. A lower envelope of UL, K (P;) is defined
as the point wise minimum of these functions or, equivalently, as the surface composed of that portion of each cone
that lies below all other cones. From the definition of K (P;) it is evident that the vertical projection of this lower
envelope—i.e., its projection onto R?>—is V.

However, according to Aurenhammer [24], it is more convenient to introduce a different projection: let us introduce
a mapping associating to each point X = (x1, x2) € V(P;) a new point X* = (x}, x}) € R?, given by

=xi, x=x+[X-P]. (14)

Clearly, generator points are invariant under the transformation: P = P;. Further, each separator sep(P;, P;) is trans-
formed into a hyperbola with bottommost point P;, if P; is below P}, and bottommost point P;, otherwise. This
hyperbola degenerates to a vertical linear segment if P; and P; have the same x;-coordinate. Consequently, the de-
formed region [V (P;)]* of P; is the intersection of hyperbolically bounded half planes of R2. It can be shown that
this transformation preserves the topological properties of a Voronoi diagram [24]. The algorithmic advantage of this
transformation is that the bottommost point of each region is its defining generator point.

The properties of V* = {[V(P)]*, [V(P2)]*, ..., [V(P,)]*} are utilized for the construction of V with the plane-
sweep technique. Generally, the technique proceeds as follows. A horizontal line L is swept across the region in
which the Voronoi diagram is being constructed from below, by keeping invariant that the portion of the object below
L is complete at any point of the computing process. During the plane sweeping, the cross section of L with this
object has to be updated at certain critical points. We thus have to handle a one-dimensional dynamic problem instead
of a two-dimensional static problem. A Voronoi diagram in the Euclidean plane with m generator points can be
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Fig. 3. Quad-tree technique applied to a districting problem.

constructed in time O (m logm) [24,29]. An interesting practical demonstration of Fortune’s method is encountered in
www.diku.dk/hjemmesider/studerende/duff/Fortune.

This simple construction method can be extended to other non-ordinary Voronoi diagrams. For instance, it can also
be applied to the additively weighted type since the correspondence to lower envelopes extends provided K (P;) is
translated downward by the weight w;, for each generator point P;. The intersection of K (P;) with R? is then a circle
with center P; and radius w;, and this situation may be interpreted as the Voronoi diagram with circles generators under
Euclidean distance. More details of the plane-sweep technique are encountered in [24]. Generalization to other norms
in the plane seems possible, but more general metrics have apparently not yet been investigated [24,29].

3.2. The quad-tree technique

The quad-tree technique [28] is an approach to image representation based on the successive subdivision of the image
into quadrants and following a hierarchical data structure. Suppose we want to define the Voronoi diagram bisector
which separates two adjacent districts, i and j, as shown in a simplified manner in Fig. 3a. Here the quadrants are
squares, but could be rectangles as well. At each stage of the process each node of a quadrant is examined to determine
the generator point closest to it (here the distance is measured according to a pre-defined norm). A simple function Fq
is defined as follows: (a) Fq =i, if the four nodes of the quadrant are related to the same generator point i; (b) Fo =0
if part of the nodes are related to a generator point i, and the other nodes are related to generator points different from i.

The quad-tree process (Fig. 3a) is represented by a tree of outdegree 4 in which the root represents a father and the
four sons represent in order the NW, NE, SW, and SE quadrants [28]. We start with the full image formed by the square
ACEGA in Fig. 3a. For quadrant NW (ABIH in Fig. 3a) one has Fo = 0 since nodes A, B, and H are related to the
generator point i, while node / is related to the generator point j. Quadrants NE and SW also have Fo =0, but Fo=j
for quadrant SE. We assume that each quadrant data is stored as a record containing six fields. The first five fields
contain the identification of the quadrant’s father and of its four sons. The sixth field contains the value of Fg for the
quadrant.

The following rules are established for the quad-tree process:

(a) The subdivision process of a quadrant terminates when Fg is of the Fo =k (k # 0) type. For example, quadrant
SE (square DEFT) in Fig. 3a.

(b) The subdivision process of a quadrant will continue as long as Fg = 0. The values of Fg are determined for the
four resulting quadrants and criterion (a) is applied again.

(c) When the quadrant subdivision reaches a predefined level of accuracy the quad-tree process stops.

Fig. 3b shows the encoding sequence of the quad-tree related to the north-western quadrant ABIHA of Fig. 3a. Blank
circular nodes represent quadrants of type F = 0. Black circular nodes indicate the final cells that form the bisector
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under search. In the example, only four levels were examined, and the resulting line representation is quite coarse,
requiring further subdivisions. Square nodes represent terminal quadrants of type Fo =k, with k # 0.

The quad-tree technique leads to substantial reduction in computing time. First, Voronoi diagram bisector points are
sparse over region R, and many quadrants will be of the Fo =k (k # 0) type at the various levels, thus shortening the
subdivision process. Second, after the Voronoi-diagram construction is completed, it is necessary to compute integrals
of some variables for each district (Section 3.3), and the resulting quadrants of different sizes facilitate this task.

The quad-tree technique was used to solve the transportation and logistics problems described in Section 4.2.

3.3. Continuous approximation

A number of discrete transportation and logistics problems can be converted into problems involving continuous
functions, with good practical results. Continuous demand approximation models are based on the spatial density
variables rather than on precise information on every servicing point [18,19]. A number of freight-distribution districting
problems have been solved with this approach [17,22,23,30-33]. Before using a specific technique to solve Voronoi
diagrams we represent the data in a continuous format, which will be summarized next.

Let us consider a set & formed by 7 servicing points of the region R

YD ={Zi =(xi,yi),i=1,...,n} CR. (15)
For each (x, y) € R? we define

T (x,y) ={Zi € D|x;<x and y; <y} (16)
Let U be a quantity associated with the servicing points. For instance, when computing the number of points,

U(Z)y=1 if Ze 9*(x,y), U(Z)=0 otherwise. (17)
We introduce a bi-dimensional cumulative function ¥ : R> — R such that

Y,y =Y UZ). (18)

ZieD*(x,y)

Considering Eq. (18), ¥ represents the number of servicing points having the coordinates limited by the upper bounds
(x, y):

P(x,y) =card Z*(x, y). (19)
In the framework of statistical description of data, a cumulative function ¥, is usually introduced and gives the relative
frequency (probability) of Z*(x, y). ¥ is analogous to ¥ ,, except that it gives the absolute number of servicing points
and not a frequency or a probability.

A density of probability Y, may be associated to the cumulative probability function ¥ ,: for a given subset A C R2,
the value of ¥, associated to A is given by

W, (A) = /A ¥, (x, y) dx dy. (20)

In an analogous way, a density iy may be associated to . Since set 2*(x, y) is discrete, ¥ is discontinuous and y is
a sum of Dirac measures: the value of ¥ associated to A is given by the sum of the values of U for the servicing points
of A:

v = [ pendray= 30 U@, @1

ZieA

In the sequel, we shall introduce a regular approxnnatlon ‘P of the function ¥ having suitable mathematical properties

of differentiability. Namely, the density xp associated to ‘P will be a continuous function such that

Yix, y) =3 ¥(x, y)/oxDy. (22)
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We approximate
W(A) ~ P(A) = / Y(x. y) dxdy. (23)
A

In the application analyzed in this paper, the variable (x, y) may represent the existence of a point at (x, y), the
demand level at point (x, y), or other attribute of interest. Methods for the construction of the regular approximations

¥ and yy may be found in the literature. In this work, the approximation is attained with a bi-quadratic spline [34]
combined with a finite element discretization [35] of the region R. Our choice is guided by our final objective: the
optimization procedures imply repeated evaluations of the quantities defined by Eq. (23). An useful situation adopted
in this paper is to consider quadrilateral finite elements with four nodes (Q finite elements), where each element £
is a rectangle Rqpcp with vertices A = (Xmin, Ymin)s B = (Xmin; Ymax); € = (¥max, Ymax); and D = (Xmax, Ymin), the
nodes being the vertices. For this case

W(E) = ¥(C) — ¥(B) — P(D) + ¥(A). (24)

Due to the simplicity of Eq. (24), the utilization of Q; finite elements saves computational time, and thus it is used
in our calculations, but actually the method may be implemented with any kind of finite element mesh, by using the

appropriate weights in order to evaluate ¥ (E). For more details, the reader is referred to [22].
4. Applications to transportation and logistics problems

Voronoi diagrams are useful for spatial analysis and locational optimization of diverse transportation problems. In
this section we describe and discuss two cases: (1) the problem of locating transit boarding points on an urban region,
and (2) an urban freight distribution problem with geographical barriers.

4.1. Defining transit station locations and respective patronage areas with Voronoi diagrams

Rapid transit projects are normally expensive, but they bring large benefits to the users and to the local community in
general. Two important aspects regarding rapid transit projects are the optimal location of boarding points or stations
and the public patronage attracted to each boarding point considering alternative choices of displacement, subway, bus,
walk, or others [36-38]. In this section we present a specific case in which commuters travel from their origin to a
CBD terminal, taking either a bus, the subway, or walking to their destinations. The problem is to seek the number of
subway stations and their best locations in order to optimize a specific objective function. In our case, the objective
is to maximize the subway patronage level. Other objective functions can be chosen as, for example, minimization of
average commuter travel time [20, Section 9.2.7], minimization of vehicle fleet size for a given demand level [38], etc.

4.1.1. Problem setting

Let us assume an urban region R (Fig. 4) that is presently served by a bus route converging to a CBD terminal. Apart
from the CBD terminal, there are seven bus stops (numbered 1, . .., 7) in the served region. A new subway line is under
analysis. It will follow a circumference path with radius » = 3.85 km, as shown in Fig. 4. With I' = {Po, Py, ..., Py}
representing all the boarding points (bus and subway alike), plus the CBD terminal, the following lexicographic
representation is adopted here: (a) i = 0 represents the CBD terminal (which attracts people walking directly to it); (b)
i=1,2,...,brepresenting the bus stops; (c)i =b+ 1,b+ 2, ..., b+ s, where s is the number of subway stations,
with 1 + b + s = m. Thus, the set I" of generating points splits in three disjoint subsets: I' = I'o U I', U I'y, where
Fo={Po}, I'n ={P1,....Pp}, I's = {Ppy1, ..., Ppys).

When adding a new station along a rail transit line, two contrary effects will influence the possibility of capturing
new commuters or loosing existing ones [36,37]. First, the train running time will be increased due to the additional
train acceleration and deceleration times, plus the additional stopping time at the new station. For some commuters this
additional time may change their modal choice (from subway to bus or to walking). Second, this situation may attract
to the rail transit new users located nearby the new station. Thus, changing the number of rail transit stations and their
locations, and consequently balancing those contrary effects, one searches for the optimal configuration represented
by the maximum subway commuter patronage [36-38].
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Fig. 4. An urban region served by a bus line and a new subway line.

Let y, and y,4 be the acceleration and deceleration rate of the transit train, and let V¢ be its posted speed limit [38].
During the acceleration and acceleration phases, the distances covered by the vehicle are, respectively,

V2 £
D@ — and DY = . (25)
zyd 2Vd

If D; ;41 is the rail distance between the adjacent stations i and i 4 1, the corresponding subway average vehicle speed
in that link is given by

(s
Vit = [(D‘” + D“”) +(Dyip1 = D@ — D(d))VC] / Diit1 (26)
if D@ + D@L D, ;11 and by

— 1 [2y,v4D; i
V{S_) == YaVd Vii+1 27)
b 2 7a + Yd

otherwise [38]. For each subway configuration, represented by a number of stations and their locations over the rail
line, the average train speed for each link is computed according to (26) or (27). Thus, the in-vehicle traveling time
between subway station i and the CBD is given by

i—1

=5 2L Djj+1 ZST (28)

Jj=0 ./../+1

where ST(s)is the average train stopping time at a station. For the bus service, since the number of stops and their
locations are assumed fixed in this problem, and since bus movement is affected by disruption of the traffic flow, we

—(b . . L . L .
assumed a constant average speed V( ), and the in-vehicle traveling time between boarding point i and the CBD is
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analogously given by

i—1

(b) _ j J+l1 (b)
nf =3k +Zsr (29)
j=0

<) . . . . .
where ST " is the average bus stopping time at any boarding point.
The commuter walking time from his (her) point of origin X to boarding point P; is given by

o_* v p 30
ty = HII ill, (30)

where Vy is the average walking speed and k is a corrective coefficient (route factor) reflecting the road network
impedance, since the structure of the street network determines walking distances often non-Euclidean in nature
[22,37].

The expected waiting time ty;” at the boarding point 7, on the other hand, is half the headway 7, observed on route
L containing i (L = s for subway and L = b for bus).

The total time spent by a generic commuter traveling from point X to the CBD, through boarding point i, is given
by the sum of these three elements

(L)

=" 41D 440 G=1,...,m). G1)
Thus, for every point X, the model searches for the boarding point i (i =1, ..., m) that makes 7) minimum. Making

substitutions in (31), 7; can be expressed as
Ti=c|X—=Pi|+w; (=1,2,...,m), (32)

where ¢ is a constant. Dividing both terms of (32) by c, the resulting districting process, at each stage of the location-
allocation model, can be represented by an additively-weighted Voronoi diagram associated to P = {P1, P2, ..., Py,}.

4.1.2. Model development

In the application, travel demand is assumed to follow a decaying density function around the CBD. The circular
curves in Fig. 4 indicate the density variation (in percentage) over the region. Assuming that the density attains its
maximum at the CBD point say a 100% 1evel the density drops to a 25% level at point 11 (Fig. 4). Furthermore we

assumed k = 1.35 [22], Vg = 4.4km/h, v® —20 km/h along the bus route, Vo = 60 km/h along the subway line,
vehicle stopping time constant and equal to 90s and 30 for the bus and the subway, respectively, headway of 5 min
for busses and 1.5 min for the subway.

Moreover, commuters are not willing to walk long distances to take the public transportation, preferring to walk,
take a taxi, or drive. On the other hand, surveys of public transportation riders have shown that commuters tend to walk
farther to reach a LRT or subway station than to a bus stop [39]. In addition, when directly walking to their places of
work without taking public transportation, commuters tend to walk even farther. Thus, walking distance restrictions
were introduced into the model. It was assumed a maximum walking time of 20 min for commuters going to a subway
station, 15 min for the ones going to a bus stop, and 30 min for the people who walk directly to the CBD.

Let V={V(Py),..., V(Py)} be the additively weighted Voronoi diagram generated by I'. As previously remarked,
UL, V(P;) covers all the region R. Let ¢(X) be the demand density function at X. The aim is to maximize the subway
patronage with two decision variables: (a) the number of subway stations; (b) their locations over the subway line.

Since the path of the subway line is previously designed, the points of Iy are restricted to a given curve (the subway
line), which may be parametrically described by a real variable 0, say, an angle or an arc length, such that any point
on the subway line corresponds to a value of 0 lying in the interval (Op;in, Omax). We introduce a parametric equation
P = P(0) describing the geometrical place of the subway line. Then, the elements of I'; are defined by a real vector
®=(0y,...,0s),i.e., there exists a bijective correspondence between the feasible subsets I’y and a subset A of the real
space R®, for convenient s and A: I'y = I1(®;), where I1 is a bijection. We have

Ppyi=P(l), 1(O)={P0;):1<i<s}, A={0O € R*|0njn<0; <Omax}. (33)
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Table 1
Optimization results as a function of the number of stations (case 4.2)

Number of subway Number of Mean distance between Subway patronage
stations (s) iterations & stations (m) (% of total travel demand)
1 29 2103 25.38

2 65 1402 44.04

3 205 1051 50.71

4 227 841 52.19

5 359 701 52.62°

6 441 601 52.32

7 443 526 51.61

#Maximum subway catchment due to contrary attracting effects on rail transit patronage.

Thus, the unknowns to be numerically determined are s and ®;. The objective function to be maximized is

b+s

GO)= > /V X dX. (34)

i=b+1

The numerical evaluation of G (®jy) involves the construction of the additively weighted Voronoi diagram defined by
the generator set I' = {P, P, ..., P, } =T oUIl', UI, suchthat I'y = I1(@;). Such a construction must be performed
by using an appropriate algorithm [24,27,28]. In the application, we used the plane-sweep technique (Section 3.1).

Moreover, a minimal average distance between stations must be respected. If A B is the total extension of the subway

line from the CBD terminal to station s, the following condition must be satisfied
AB >d 35
m = Amin> (35)

where dpi, is the minimum allowable mean distance between subway stations (dpyin = 800 m in our example). This
condition furnishes an upper bound spmax to the number of subway line stations, i.e., s < smax and the adequate value of s
can be chosen by comparison of the results for s =1, 2, ..., smax . Thus, we adopt the following method of resolution:

Step 1: Initialization: Set s <— 1.

Step 2: Determine the optimal solution @y, I'y = I1(®y) and the associated value G (0j): @; maximizes G for
the given value of s and I'y defines the regions associated to each station. This step involves the use of a convenient
optimization procedure. For instance, we may use a standard iterative optimization method which reads as:

2.1 Define a maximal iteration number &, @ minimal precision # > 0, and an initial guess ®§0> corresponding to a
set of subway stations I _50) =11 (®§0)) over the designed subway line. In the example, the initial set was defined

dividing the arc AAC (Fig. 4) into s + 1 equal segments. Set the optimization iteration number ¢ < 0 and compute
G =GOV

2.2 Determine a new point GEGI) € A, corresponding to I’ §’f+‘> =II (@Eé“)), such that G.ECVH) = G(®§5+1)) satisfies
A9 Z D _ 6O 5,

2.3 Increase the optimization iteration number & < & 4 1. If Ag) <nor &> then set @5 = Q@, G(Q) = Ggé)
and go to step 3. Otherwise, go to step 2.2.

Step 3: Increase the value of s: s <— s + | and check restriction (35). If satisfied, go to step 2. Otherwise go to step 4.

Step 4: Since s is a discrete variable, the choice of the adequate number of boarding subway stations is done by direct
inspection of the results, as shown in Table 1.

The optimization method to be used in step 2 has to be chosen by the user, but it must be taken into account that
G is continuous but not well behaving [20], and therefore may not satisfy convexity assumptions. Thus, one must
use global optimization methods. In order to illustrate the feasibility, we considered the classical Hooke—Jeeves direct
search method [40]. The model ran with £.,,, = 500 and # = 0.0001 of the interval (Oiin, Omax), i.€. §# = 38”. The
results are shown in Table 1.

Please cite this article as: Novaes AGN, et al. Solving continuous location—districting problems with Voronoi diagrams. Computers and Operations
Research (2007), doi: 10.1016/j.cor.2007.07.004



http://dx.doi.org/10.1016/j.cor.2007.07.004

A.G.N. Novaes et al. / Computers & Operations Research 111 (1111) III-111 13

Bus 7
Stop

37 4 5

N\

\
, Bus Line

/ Subway
4 Ling 11
Subway
Station
9
10
| I — bW
0 500m — ::, ¥
@zzrzre Walk or other

Fig. 5. Additively- weighted Voronoi diagram approach to solve a transit location—districting problem.

It can be seen from Table 1 that increasing the number of subway stations up to 5 the subway patronage increases,
decaying thereafter. But, due to operational and cost reasons, the mean distance between stations is restricted to a
minimum, which was assumed dpj, = 800 m in this application. Therefore, the optimum number of subway stations
is s = 4, and the optimum locations are the ones indicated in Fig. 5. The leftmost hatched area in Fig. 5 stands for the
situation in which the minimum travel time to the CBD, considering bus or subway, is greater than the direct walking
time to the CBD. This situation also includes the case in which all the traveling alternatives present walking time greater
than the maximum allowable limit, implying that the commuter would take another mode of transport (car, taxi, etc.).

Other optimization criteria may be adopted to get the best station locations as, for example, the minimum average
travel time to reach the CBD, etc. Additionally, the passenger catchment of each boarding point can be easily computed.

4.1.3. Remarks

Remark 1. This approach may be extended to the situation where the path of the subway line is set free in the designing
process. If the points Py4;,i =1, ..., s are free to take any place on the region R, then the real vector @ is formed by
the 2s coordinates of the points:

k=2s, Ppii=(02i-1,02), H(O)={(0_1,00):1<i<s}. (36)
For instance, when using Cartesian orthogonal coordinates, the odd and pair indexes may correspond to the horizontal
and vertical coordinates, respectively: a point is characterized by its coordinates (x; = 02;_1, y; = 02;). If the region R
is bounded by the rectangle (Xmin, Xmax) X (Vmins Ymax)> then

A C (O € RN xmin <02 -1 <Xmax and Yimin <02 < Ymax)- (37

In these cases, an appropriate curve setting must be externally adjusted to the station points in order to represent the
subway line contour, and the minimum distance between stations must be established accordingly.

Remark 2. Since the Hooke—Jeeves method [40] does not guarantee convergence to the global optimum, the results
may correspond to local minima (or maxima). In order to check this point and to ensure convergence to a global
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minimum (or maximum), stochastic perturbations of the basic method may be introduced as follows:

o we set ®§C’g— D — G)E,C%—the value furnished by the classical Hooke—Jeeves method;
e we generate nf supplementary trial sets of points G)E,Cfl) = G)ECS +o0Z;,i=1,...,n,wherec>0and (Z1, ..., Z,)

is a sample of nf variates of a given random variable Z.
e Then G)fF“) corresponds to the best value among all these points: @5(,5“) = Arg Max G(G)g.ﬂ)).

o<i<nr
The convergence of the perturbed method follows from classical results (see, for instance, [41,42] for the basic theorems).

Other developments may be found in [43—-49]. We have tested this approach and the results obtained are very close to
those given in Table 1. For instance, withm =5, n =0, nt = 10, 6 = 0.01 and Z as the restriction of a Gaussian vector
of R to the admissible set A, we got, for £=1101, the subway relative patronage of 52.69% (instead of 52.62%), what
corresponds to an improvement of only 0.07%. Thus, the use of perturbations should be regarded with caution, since
it may significantly increase the computational cost: nt x ¢ supplementary evaluations of the objective function must
be performed.

4.2. A parcel distribution problem with geographical barriers

Most logistics distribution and collecting problems involve spatial variables associated with operational and economic
elements, such as routing, vehicle capacity, vehicle costs, servicing times, etc. As pointed out by Muyldermans et al.
[13], districting associated with transportation and logistics problems should be performed at the strategic and tactical
level, whereas routing should be performed at the operational level. In other words, districting involves a more global
view and is often related to the managerial and administrative levels, while routing processes are more detailed and
linked to day-to-day operations.

In many applications, locations are characterized by Cartesian coordinates and distances are estimated by an L,
(Euclidean) metric, corrected by a routing factor [22]. Additionally, in one-to-many distribution and collecting problems
with multiple tours [33], an idealized dense ring-radial network pattern is frequently adopted as a theoretical modeling
basis [16,17,31,32]. In such cases, the ideal configuration of the districts should be wedge-shaped and elongated toward
the depot [31]. While interesting from a theoretical point of view, this approach is not readily applicable to real life
situations. For more generic metrics, in fact, the optimal orientation of the districts and its shape are not obvious. The
indefinition of the real local network metric makes the ideal shape of the zones unclear [45]. Furthermore, since the
real transportation infrastructure usually presents a coarse network of roads with varying velocity, the ideal orientation
of the districts is also unclear [50].

Some computational tests [22] have indicated that the adoption of a Voronoi diagram partitioning process changes the
resulting total distribution cost only marginally when compared with the corresponding ring-radial results, and therefore
the Voronoi formulation may be used as an adequate districting approximation in a variety of practical applications.
In this section we describe and discuss one application of a generalized Voronoi diagram to a logistics distribution
problem with barriers in order to illustrate the possibilities of the method.

4.2.1. Problem setting

The utilization of generalized Voronoi diagrams in logistics districting problems has some advantages. The fitting
process, for instance, leads to more equalized load factors among the districts, meaning the vehicles assigned to
the zones will show more balanced utilization levels. This happens because the generalized Voronoi diagrams have
more degrees of freedom when searching for the district contours when compared to the wedge-shaped, geometrical
partitioning scheme. Furthermore, as mentioned, the resulting total distribution cost is only marginally affected by
such an approximation [22]. Additionally, the utilization of an appropriate Voronoi diagram approach opens the way
to solve districting problems with geographical barriers imposed by thoroughfares, highways, rivers, reservoirs, parks,
steep hills, etc.

The problem concerns an urban distribution service covering part of the city of Sdo Paulo, Brazil. The objective is
to define the number of districts and their boundaries to be assigned to the delivery vehicles in order to: (a) minimize
total daily delivery costs; (b) balance the distribution effort among the vehicles, and (c) respect capacity constraints.
Additionally, the resulting districts must be contiguous and geographically compact [6]. A homogeneous fleet of m
delivery vehicles is assumed and each vehicle is allocated to a district, performing a complete cycle per working day
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from a central depot, in a one-to-many distribution scheme [33]. The served urban region R is of irregular shape and has
an area of approximately 670 sq km. The density of servicing points varies over R but is nearly constant and Poisson
distributed over distances comparable with a district size [31]. The demand is formed by a total of 6632 servicing
points, with an average of 5.76 kg of cargo delivered at each client’s location, and with a mean stopping time of 3 min
49 s per visiting point.

Galvio et al. [22] developed a multiplicatively weighted Voronoi diagram model to solve this problem with no
geographical barriers. That same problem is now extended to the situation in which geographical obstacles restrain
districting limits. Here, the obstacles are represented by two freeways located along the margins of two water courses,
the Tieté and the Pinheiros rivers [23]. Those rivers are traversed by a number of bridges, which are congested most
of the time. As a practical consequence, transportation operators do not design delivery districts covering both sides of
the freeways. This practical situation is handled, in the model, with the introduction of two obstacles represented by
the mentioned rivers (Fig. 4). The problem was solved with a power Voronoi diagram formulation associated with the
visibility-shortest-path metric (Section 2).

4.2.2. Partitioning criterion and constraints

The balancing criterion for this application is to equalize the distribution effort among vehicles. Each vehicle is
assigned to one district and performs one delivery tour, or a cycle, per day. The distribution service along a generic
route may be constrained by time or loading capacity. The cycle time is the sum of the line-haul time, the local travel
time within the district, and the stopping times at the delivery points. The expected value of the cycle time T;, for a
generic districti,i = 1,2, ..., mis [22]

2D K S A
=0 M oA G =1,2,...,m), (38)
v, ()]

where Dl.(L) is the expected Euclidean line-haul travel distance (one way) from the depot to the district i, vy, is the
average line-haul speed, vp is the average local speed, A; is the district area, n; is the number of delivery points in
district i, k and k" are route factors [17,22], and Wst(A;) is the integral of the stopping times spent in delivering the
cargo to the customers in district A; (Section 3.3). The number of servicing points in the district is given by the integral
of the density of points (J), represented by ¥5(A;), as generally indicated in Section 3.3.

If H is the maximum working time per day, the cycle time for any districti (i=1, 2, . .., m) must satisfy the constraint

T.<H @(=12,...,m). (39)

On the other hand, let Q; = F;(g) be the integral of the quantity of cargo delivered in a generic district i. If W is the
vehicle loading capacity, the following capacity constraint must be satisfied:

;i<W (i=1,2,...,m). (40)

In place of restrictions (39) and (40), two loading factors are used with the same objective, the first taking into account
time utilization and, the second, vehicle capacity utilization

T. .
(plf”:E’gl and (p§Q>=%<1 (=1,2,....,m). (41)

The load factor for district i is largest of q)ET) and q)EQ)

Q; = max{qo(T), gon)} (i=12,...,m). 42)

1
Thus, the balancing criterion is to equalize load factors among the m districts
lo; —@jl<e G, j=1,...,m), (43)

where ¢ > 0 is a small tolerance factor.

Please cite this article as: Novaes AGN, et al. Solving continuous location—districting problems with Voronoi diagrams. Computers and Operations
Research (2007), doi: 10.1016/j.cor.2007.07.004



http://dx.doi.org/10.1016/j.cor.2007.07.004

16 A.G.N. Novaes et al. / Computers & Operations Research 111 (1111) III-111

4.2.3. Defining the number of districts

The number m of districts is determined by trial and error. Assuming a value for m and applying the model, it will be
necessary to increase m if the resulting values of ¢; (i =1, 2, ..., m) are greater than one. Conversely, if the resulting
load factors are too low, the value of m should be reduced. This process continues until one gets a suitable solution
respecting (43). Since the computing process takes some time, it is recommended to choose a better estimate of m to
be initially used in the model.

Let QO be the total quantity of cargo carried per day in zone R. If W is the cargo capacity of a vehicle, a rough
estimate of m is

mo=Qr/W. (44)

Let Ag be the area of region R and N the total number of delivery points in R. The average area of a district and the
average number of delivery points per district are, respectively,

A=Agr/m and 7=Ng/m. (45)
The average vehicle cycle time can be estimated as

— L) e

—  2kD kK'v A

T= + L ywr=H, (46)
vl UD

where T is the average stopping time spent in one delivery. If the region R is approximately circular and the depot
is fairly centralized, the average distance Y may be assumed to be equal to %,/ A/m. In this application, however,

the region R is somewhat elongated and the depot is located to the south. So, we have made Y equal to the largest
Euclidean distance from the depot to the delivery points in R.
Substituting (45) into (46) and simplifying, one gets

(K'/ARNR/vp) + NRT
my = S ARNR/VD) + VKT 1)
H —2kD " /Jvr

and the largest of mq and mr is taken as the initial value of m. Applying the model and analyzing the resulting values
of ; (i =1,2,...,m), one may change the value of m as explained, running the model again until an acceptable
solution is obtained.

4.2.4. Selecting an initial set of generator points

In order to construct the Voronoi diagram embedded in the model, an initial set of m generator points P =
{P1, Py, ..., Py} must be defined. One possibility is to randomly generate such a set, selecting m points over R
with equal probability. Instead, we have adopted a more elaborated selecting process with the objective of reducing
computer time.

As seen in Section 2, the power Voronoi diagram polygons are always convex. Since the intersection of two convex
sets is a convex set, it is convenient that the external contour of region R be also convex. Otherwise, its intersections
with peripheral districts may not be convex polygons, thus requiring special treatment. For this reason, the convex
hull of the served points is determined beforehand and it is adopted in the model to represent region R throughout the
computing process. Therefore, when region R is hereafter mentioned in the text, we refer to the convex hull just defined
above.

A grid of about 10,000 cells of uniform size is set over region R. The demand of service on each cell is obtained
by integrating the demand density function over it (see Section 3.3). The cells are ordained according to some pre-
established rule and the corresponding cumulative distribution of demand is defined. A Monte Carlo procedure is
used to generate a sample of m generator points as follows. First, a cell is randomly generated from the cumulative
distribution of demand. The spatial distribution of demand affects the location of the district generators because their
distribution tends to be more compact as the density of demand increases. Second, there is a practical minimum limit to
the distance between two adjacent generator points. Roughly assuming that the generator points are Poisson distributed
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over R, the distance between a generator point to its closest neighbor is represented by a Rayleigh distribution, whose
cumulative distribution function is given by [51]

- 1

dg = W (48)
where dg is the expected distance from a generator point to its closest pair, and dg is the density of generator points
in R, equal to m/Ag. Thus, when the distance from the sampled cell to its closest neighbor is smaller than dg, the
randomly generated cell is discarded and another sample is taken. The Monte Carlo process follows until m generator
points are obtained. This Monte Carlo technique is only used to get an initial set of generator points. At the next
stages of the iterative process the generator points are made coincident with the centers of mass of the Voronoi
regions.

4.2.5. The iterative process
The districting problem with obstacles is solved with a power Voronoi diagram

WX, P) =[dspX. PP +w; (1=1,2,....m), (49)

where dsp(X, P;) is the visibility-shortest-path distance between point X and the generator point P; (Section 2). Let
k represent the stage of the iterative process. At each stage the weights wi(k) (wl.(k) >0,i =1,...,m) are modified
according to the following convergence rule:

wi(k) _ wi(k_l) n Ui(k_l)’ (50)
where vl.(k_l) is given by
(k=1 _ —(k—1)
N A ) (51)
d
where E(k_l) ={1/m)Y", gogk_l) and d is a control parameter. The value of d is changed empirically in order to

control the convergence of the model. Since d > 0, the weight wl.(k) of district i will increase if (pfk_l) is greater than the
mean E(k’l). Putting w; with a positive sign in (49), the dominance region of P; (the district area) will decrease [20],
tending to lead to a more balanced solution. If o*=1 is the standard deviation of the observed qolgk*]) (i=1,2,...,m),
the value of d is chosen as to guarantee a decreasing sequence of ¢(®:

oV >e? .5 6W, (52)

At stage k the iterative process may terminate, in accordance to (43), if

k k
Phiax — Phiin < (53)

where ¢ > 0 is a small tolerance factor. For k = 1, the weights wfl),
ordinary Voronoi diagram configuration.

At each stage of the process the power Voronoi diagram is constructed with the quad-tree technique, and the resulting
relevant attributes are computed, in special, the center of mass of each district. The center of mass is related here to
the concentration of delivery points within the district, since the number of stops is the prevailing variable when
dimensioning this kind of service. This is because neither the stop times, nor the delivered quantities vary substantially
from point to point. It may occur otherwise in other applications, and the centers of mass of the districts should be
determined accordingly. The centers of mass of the districts are then taken as the generator points of the Voronoi

diagram for the next stage of the iterative process.

i =1,...,m are set equal to zero, leading to an
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Fig. 6. Power Voronoi diagram logistics districting with barriers [23].

The model was implemented in a Pentium 4, 2.6 MHz computer, and the iterative process converged to a satisfactory
solution after 303 iterations. The resulting Voronoi tessellation is shown in Fig. 6.

5. Conclusions

Recent developments in computational geometry opened the way to compute large-scale and more complex Voronoi
diagrams applied to transportation and logistics. The utilization of non-ordinary Voronoi diagrams, such as additively
weighted and power diagrams, has some advantages when compared to the wedged-shape traditional way. For example,
the fitting process leads to more equalized load factors among the districts, meaning the vehicles assigned to the zones
will show more balanced utilization levels. The possibility of applications to real-life problems are ample, as shown in
the cases analyzed in the text.
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