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Abstract

Electoral district planning plays an important role in a political election, especially when a majority voting rule is
adopted, because it interferes in the translation of votes into seats. The practice of gerrymandering can easily take place
if the shape of electoral districts is not controlled.

In this paper we consider the following formulation of the political districting problem: given a connected graph (ter-
ritory) with # nodes (territorial units), partition its set of nodes into k classes such that the subgraph induced by each class
(district) is connected and a given vector of functions of the partition is minimized. The nonlinearity of such functions and
the connectivity constraints make this network optimization problem a very hard one. Thus, the use of local search heu-
ristics is justified. Experimentation on a sample of medium-large real-life instances has been carried out in order to com-
pare the performance of four local search metaheuristics, i.e., Descent, Tabu Search, Simulated Annealing, and Old
Bachelor Acceptance. Our experiments with Italian political districting provided strong evidence in favor of the use of
automatic procedures. Actually, except for Descent, all local search algorithms showed a very good performance for this
problem. In particular, in our sample of regions, Old Bachelor Acceptance produced the best results in the majority of the
cases, especially when the objective function was compactness. Moreover, the district maps generated by this heuristic
dominate the institutional district plan with respect to all the districting criteria under consideration. When properly
designed, automatic procedures tend to be impartial and yield good districting alternatives. Moreover, they are remarkably
fast, and thus they allow for the exploration of a large number of scenarios.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The present work concerns an application of
local search techniques to a graph—theoretic formu-
lation of the political districting problem. As we
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shall see, the ensuing network optimization model
is computationally very hard to solve; thus it makes
sense to look at heuristics, in particular local search
ones, in order to find “good” feasible solutions with
a modest computational effort. Our main objective
is the comparison of different local search tech-
niques, both in terms of “quality” of the solution
found and computation time. Different districting
alternatives were evaluated according to three

0377-2217/$ - see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2006.08.065

Please cite this article in press as: Ricca, F., Simeone, B., Local search algorithms for political districting, European
Journal of Operational Research (2007), doi:10.1016/j.€jor.2006.08.065



mailto:federica.ricca@uniroma1.it
mailto:bruno.simeone@uniroma1.it

2 F. Ricca, B. Simeone | European Journal of Operational Research xxx (2007) xxx—xxx

commonly accepted criteria and our experimental
results allowed us to obtain interesting insights on
the actual trade-offs that exist between conflicting
criteria.

In the last 40 years political districting has
attracted the attention of many researchers who
proposed a variety of models and algorithms. In
the seminal paper (Hess et al., 1965), the districting
problem is formulated as a discrete location prob-
lem, with binary variables and with linear con-
straints and objective function. Hess et al. propose
a heuristic districting method based on traditional
transportation and location/allocation techniques.
Districting models are often integer linear programs
(ILP’s), or integer nonlinear programs (INLP’s),
according to the objective function under consider-
ation. Garfinkel and Nemhauser (1970) adopt this
kind of models and suggest an algorithm based on
a set partitioning technique. Starting from these
two pioneering papers, many authors got interested
in the districting problem and in combinatorial
models and algorithms for its formulation and solu-
tion, respectively. Generally speaking, districting
methods follow either a divisive strategy or an
agglomerative one. Several authors (Vickery, 1961;
Liitschwager, 1973; Bodin, 1973; Arcese et al.,
1992) use a multikernel growth approach, while oth-
ers (Mills, 1967; Robertson, 1982; Hojati, 1996)
adopt location techniques. Merhotra et al. (1998)
propose a branch and price algorithm embodying
column generation and heuristic search. In a num-
ber of papers (Bourjolly et al., 1981; Browdy,
1990; Arcese et al., 1992; Bussamra et al., 1996; Boz-
kaya et al., 2003) local search algorithms are also
considered as a tool for political districting. For a
detailed description of the main algorithms and
models, see (Grilli di Cortona et al., 1999).

The present paper is a follow-up of the algorith-
mic work on political districting that was started in
the early 1990s by a research group led by Mario
Lucertini and one of us. The resulting districting
procedure ADEN (Arcese et al., 1992; see also Grilli
di Cortona et al., 1999) consists of four integrated
algorithmic modules, the last of which is a basic
Descent procedure. One aim of the present paper
was to obtain a fully automatic procedure that
would prove to be superior (with respect to the cri-
teria adopted) to the institutional districting plan
used in the Italian 1994, 1996 and 2001 political
elections. We felt (and the results of this paper cor-
roborate this idea) that this goal could be achieved
if within ADEN the final Descent module were

replaced by a more powerful local search heuristic.
At the same time, we wanted to undertake a system-
atic experimental comparison of the performance of
some main local search heuristics when applied to
real-life political districting problems — a compari-
son which, as far as we know, was lacking in the
literature.

The plan of the paper is as follows. In Section 2
we present the multicriteria connected graph parti-
tioning model for political districting. In Section 3
four basic metaheuristics (Descent, Tabu Search,
Simulated Annealing, Old Bachelor Acceptance)
are recalled, and details about their implementation
for the above model are provided. Section 4
describes the experimental plan we have chosen,
and in Section 5 the results of our computational
experiments are discussed. Final conclusions are
presented in Section 6.

2. The mathematical model

Some of the authors mentioned above adopt a
graph-theoretic model for political districting. In
fact, if a territory is divided into n elementary units
(counties, townships, wards, ...), it can be always
represented as a connected n-node graph, where
an edge between two nodes exists if and only if
the two corresponding units are neighboring. The
nodes of the graph can be weighted with the popu-
lation of the associated territorial units, while arc-
weights represent distances between two units.
These distances are assumed to be road distances,
so as to take into account orography and other geo-
graphical barriers. In political districting the terri-
tory must be subdivided into a fixed number k,
k <n, of parts (called districts) such that each ele-
mentary territorial unit belongs to only one district
and it cannot be split between two different districts
(integrity constraint). A district satisfies the contigu-
ity constraint if it is formed by a set of geographi-
cally contiguous units. Formally, a district is a
connected subset of nodes and a district map is a
connected partition of the graph. This means that
each class of the partition induces a connected sub-
graph. For example, in Italy each regional territory
is divided into townships and each township corre-
sponds to a territorial unit, except for large town-
ships, such as the city of Rome, which must be
further divided into wards. In our application we
consider five territories corresponding to different
Italian Regions. In the input data, each Region is
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divided into a number of elementary units corre-
sponding to census tracts.

2.1. Criteria

Let k be the number of districts and » the number
of territorial units. Let p; be the population of unit i,
i=1, 2,...,n. Suppose that the electoral district
plan must be drawn for an election where a majority
rule is adopted. In this case, the most important cri-
terion is population equality. Population equality
holds when each district has exactly the same popu-
lation as any other district, that is, each district pop-
ulation is equal to the average district population p.
Let P; denote the population of district j, j=1,
2,...,k, and P the total population (w.r.t. the whole
territory). Obviously, we have P=3" p, and,
therefore, p can be easily obtained as p =£.

Generally, population equality measures are
computed as normalized norms of the vector
(P, —p,P» —p,...,P, — p). For example, index U,
is given by the L; norm divided by kp (Arcese
et al., 1992):

SilP; = pl
U =—"— (1)
kp

and it takes values in the interval [O,

2k—1)
— |-

On the other hand, one may adopt the following
index U, based on the L, norm:
Z_f:l (Pj _p)z

kp '

In our application we consider index (1). Actually,
although in general indicators taking values in the
interval [0, 1] are preferred, index U; has the advan-
tage of being particularly sensitive to small differ-
ences in population equality between two maps.
This index has also an interesting interpretation as
the average percent deviation of the district popula-
tions from p. Finally, it must be noticed that it is
quite rare that U, takes values greater than 1. How-
ever, in order to obtain an index which varies be-
tween 0 and 1, we can always refer to the
normalized version of Uj:

SlP; = pl
2(k—1)p
Notice that, unless the district map is extremely out
of balance, that is, there are many small districts
formed by a single territorial unit and just a
few big districts collecting the remaining ones, U;

Uz = (2)

Us = (3)

always takes values smaller than 1. On the other
hand, U, distinguishes between couples of balanced
maps better than Us, providing a sound indicator
for the evaluation of the alternative maps under
the population equality point of view.

Consider the total number of seats S and the
total population P, the ratio I' = P/S gives a rough
evaluation of the population per seat and, ideally,
each seat should correspond to I' votes. Actually,
when a single-member district map satisfies popula-
tion equality perfectly (P; = p, V) the ratio between
the number of voters and the number of seats in
each district perfectly coincides with I'(P;/S; = p/
1 = P/S). The same can be required in multi-mem-
ber district maps. In fact, fair apportionment can be
considered just as an extension of population equal-
ity. A district map satisfies the fair apportionment
criterion if each district population size is a multiple
of I' (see Grilli di Cortona et al., 1999, Section 10.2).
Thus, the population equality and fair apportion-
ment criteria embody the principle of one-man-
one-vote in the single- and multi-member district
case, respectively.

Even when the principle one-man-one-vote is
reasonably satisfied, still manipulation of the dis-
trict shape (gerrymandering) may occur. One of
the most powerful criteria for preventing such mal-
practice is compactness, which forces the districts to
have regular geometric shapes, so as to avoid octo-
pus or banana shaped districts to be drawn. In our
application we adopt a compactness measure which
is quite complex and highly nonlinear (Arcese et al.,
1992; Grilli di Cortona et al., 1999, Paragraph 10.3).
This index is given by the sum of compactness indi-
ces computed over each district separately. For a
given district C it can be briefly described as follows.
Let d;; be the distance between unit 7 and unit j. For
each unit i € C compute its eccentricity

and set
0 =d(s) = mind(i).
ieC

By definition, s is the center of district C and the
compactness in district C is measured by:

> iccPi
3
2 jenP
where D = {j € Vid;; < 6}.
The last criterion is conformity to administrative
boundaries (or simply administrative conformity),

/I =

Please cite this article in press as: Ricca, F., Simeone, B., Local search algorithms for political districting, European
Journal of Operational Research (2007), doi:10.1016/j.€jor.2006.08.065




4 F. Ricca, B. Simeone | European Journal of Operational Research xxx (2007) xxx—xxx

which requires district maps to take into account
administrative boundaries that already exist, such
as Regions, Provinces, Counties, and health-care
districts. In this application, we adopt the adminis-
trative conformity index proposed in (Arcese
et al., 1992). It is defined on the basis of the number
of those territorial units that produce discrepancies
between the administrative districts and the elec-
toral ones. These units are called misplaced units.
The more the units of this type, the worst the result-
ing value of the administrative conformity index.
Consider a given type of administrative areas. If
an electoral district is completely included into an
administrative one, then it is ignored. On the other
hand, consider an electoral district that shares por-
tions of its land with different administrative areas
of a given type. In this case, among all the units in
the district, we compute the percentage of those that
have at least one adjacent unit belonging to the
same electoral district, but to a different administra-
tive area (misplaced units). The global index, which
varies between 0 and 1, is obtained by averaging
over all types of administrative boundaries and over
all the electoral districts in the map. A detailed
description of the index is reported in (Grilli di Cor-
tona et al., 1999) and in (Ricca and Simeone, 1997).
Notice that conformity to administrative bound-
aries is a very important criterion in view of the
advantages brought forth in terms of organization
and management of the election over the territory:
respecting administrative boundaries can be useful
to simplify electoral procedures, such as the identifi-
cation of the electoral body and other organization
issues.

2.2. The network optimization model and its
computational challenges

In this paper we shall consider the criteria dis-
cussed in the previous section as objectives. Unfor-
tunately, these criteria are often in conflict;
therefore, optimizing a certain objective generally
results in a degradation of at least one of the others.
Since it is impossible to reach the best for all the
objectives simultaneously, in practice, one must be
satisfied with a good compromise between the
objectives’ values in the final solution which, in
the best case, corresponds to a Pareto-optimal solu-
tion. Given p objectives, a solution s is Pareto-opti-
mal if any other solution s’, which is better than s
for some objective, is necessarily worse than s for
at least one other objective.

We are now in position to state a precise mathe-
matical formulation of the network optimization
model under consideration.

Given:

— a connected (usually planar) graph G=(V,E)
with n nodes (the contiguity graph),
— an integer k, 1 < k < n (the number of districts),

a connected k-partition of G is a partition 7 of ¥ into
k subsets Cj,. .., Cy such that each C, (h=1, ... k)
induces a connected subgraph of G. These subsets
are called districts. The collection of all connected
k-partitions of G will be denoted by I1; (G).

One wants to solve the following vector-minimi-
zation problem:

min {fl(ﬂ)a<f2(n)af3(n)}v (4)

nell;(G)

where fi(n), f>(n), f3(7) measure population inequal-
ity, noncompactess, and nonconformity to adminis-
trative boundaries, respectively, as discussed in the
previous section. Solving (4) consists in finding
some Pareto-optimal connected k-partition of G: it
is a very difficult and challenging computational
task, due to the following aspects:

1. Connectivity constraints
Such constraints make the problem much more
difficult than other partitioning problems in
combinatorial optimization, such as coloring or
frequency assignment. A clustering problem with
connectivity constraints was investigated by
Hansen et al. (2003). They provide a binary lin-
ear programming model with exponentially
many constraints and a row generation exact
algorithm for instances up to about 600 nodes.
However, their model, unlike ours, has a single
and linear objective function. In the special case
of trees, a binary linear programming formula-
tion with polynomial size is available and its
continuous relaxation turns out to be remark-
ably tight (Lari et al., 1998). Mehrotra et al.
(1998) use column generation for the exact solu-
tion of a political districting instance with 50
nodes, but they do not take into account admin-
istrative conformity and use a much simpler
compactness indicator.

2. Presence of multiple (conflicting) objective func-
tions
Dell’ Amico and Maffioli (1996) exhibit examples
showing that maximizing a weighted average of
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two objective functions is NP-hard even when
one can separately maximize both objective func-
tions in polynomial time.

3. Nonlinearity of all the objective functions.
All the criteria fi(n), f>(n), f3(7) are nonlinear
functions of the variables x; representing the
presence/absence of node i in district A; one of
them, the noncompactness f>(n), is not even given
by an explicit analytical expression, but, rather,
by an oracle, i.e., a subroutine that returns the
value f>(n) for each n € IT;(G).

4. Size of the graph
In real-life applications, the size of contiguity
graphs may reach one thousand nodes and more.

Finding Pareto-optimal solutions for the three
above criteria is computationally hard. In fact, even
minimizing the simplest one among the three crite-
ria, namely, the population inequality f(n), turns
out to be an NP-complete problem already when
the graph G is a spider, i.e., a tree with at most
one node with degree 3 or more (De Simone et al.,
1990).

2.3. Pareto optimality and local search

Local search algorithms generally are able to
produce only ‘“locally Pareto-optimal” solutions.
Given a multiobjective program with p objective
functions, a solution is locally Pareto-optimal if
there is no local perturbation that makes an objec-
tive improve without worsening some other objec-
tive. Local Pareto-optimality depends on the
topology of the space of feasible solutions and in
particular on the specific structure of the
neighborhood.

Even if local search algorithms are generally used
with a single objective, they can be adjusted for the
multiobjective case as follows. Suppose a minimiza-
tion problem with p objectives (z1,25,. . .,2,) is given
and consider z; as the “target” objective function. A
percentage o; > 0 of the maximum acceptable wors-
ening for each objective z;, i # 1 must be fixed. If
during an iteration a solution n changes into a
new solution 7/, then for each z;, i # 1 the following
must hold:

Z = (1 — o)z

or, equivalently

(Zi - Z:) < oz,

where z}, i # 1 are the new values (corresponding to
solution ©') for the p — 1 objectives which are not
directly optimized. This means that, except for the
target z;, each other objective can worsen up to its
percentage o;. Notice that the value o;, i # 1, is stra-
tegically important because it determines how much
‘control’ one has on the complete set of objectives.
In general, when the size of the problem is very
large, local search heuristics produce a final solution
that rarely is (even locally) Pareto-optimal. In any
case, when the size of the neighborhood is “small”,
it is easy to verify if a solution is locally Pareto-opti-
mal or not by enumerating all the neighboring alter-
natives. Given an instance of size L of problem P,
let S be the set of solutions to such an instance
and let N(s) be the set of solutions in the neighbor-
hood of s € S. A neighborhood structure can be de-
fined good if, for some polynomial p, one has

IN(s)| < p(L), Vs €S,

that is, the size of the neighborhood of any solution
is smaller than a polynomial in the variable L.
Clearly, if the neighborhood structure is good, ver-
ifying if a solution is locally Pareto-optimal or not
can be done in polynomial time. The computational
complexity of local search has been investigated in
(Johnson et al., 1988).

Another way to transform the multiobjective
model into a single objective one is to consider a
convex combination of all the objective functions,
weighted by appropriate weights. In our application
we follow this approach because the other method
turned out to be not effective within local search.
Typically, local search needs to pass through bad
points in order to reach good local optima. Using
fixed thresholds prevents from excessive deteriora-
tion of the objectives, however, in many cases, a
strong worsening of an objective could be very use-
ful in order to find good search directions for the
other objectives. We observed that adopting thresh-
olds for all the objectives generally reduces the
power of local search techniques, providing poor
final solutions. Actually, the multiobjective
approach discussed above cannot be combined with
local search algorithms if the thresholds are kept
constant. On the other hand, a good knowledge of
the topology of the space of the solutions can be
exploited to design threshold updating procedures.
In this case it would be necessary to study appropri-
ate (probably nonmonotone) updating schemes for
each o; to enhance the search of good points for
more than one objective simultanecously. In this
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context, the knowledge of the relations that intrinsi-
cally exist between two criteria (trade-off analysis)
can be very useful to inspect the different regions
of the solution space.

3. Local search algorithms
3.1. Generalities

We consider four different local search
approaches and we are interested in evaluating their
performance for the districting problem and in com-
paring them in order to understand if one is actually
better than the others for this specific application.
The algorithms considered are: a basic Descent
algorithm, Tabu Search (Glover, 1989; Glover,
1990), Simulated Annealing (Kirkpatrick et al.,
1983; Cerny, 1985) and the Old Bachelor Accep-
tance algorithm (Hu et al., 1995). The last procedure
belongs to the class of threshold algorithms. We were
particularly interested in its performance and in the
comparison with Tabu Search and Simulated
Annealing, which are generally known as good heu-
ristic methods for many combinatorial problems.
The Descent algorithm has been considered as a
benchmark for the evaluation of the performance
of the others.

Our purpose was not to single out a best possible
heuristic for the problem under consideration.
Rather, we wanted to compare the different meta-
heuristic approaches in their quintessential form,
because we were interested in basic patterns of
behaviour of the different approaches, in order to
understand which ones have the greatest potential
in solving the problem. For this comparison to be
fair, we have chosen to implement streamlined ver-
sions of all these algorithms, removing as far as pos-
sible, common enhancements that would have
marred our conclusions. Notice that sophisticated
implementations tend to be hybrid and might not
lead to robust results. A fair analysis should take
into account not only the quality of the solutions
obtained by the different algorithms, but also the
amount of computational resources (especially pro-
cessing time) spent for getting such solutions. For
this reason, we have compared the best solutions
produced by the four algorithms after 20,000,
40,000, 60,000, and 80,000 iterations. We have
added a multistart feature to Descent, which tends
to be easily trapped in local optima. When this algo-
rithm stops prematurely, it is restarted from another
initial feasible solution, and so on, until the desired

number of iterations is obtained. Also one of our
implementations of Tabu Search makes use,
although much less frequently, of the same feature.
As we shall see later, also this algorithm makes use
of exact neighborhoods, a feature that is likely to
lead to local optima. In this case, extreme diversifi-
cation tactics such as multistart may help finding
improved solutions at a later stage.

3.2. Common implementation features

As customary, the input contiguity graph
G = (N, E) is given through its adjacency list. When
a local search algorithm must be implemented, the
topology of the neighborhood of a given solution
s is particularly important. More precisely, the def-
inition of a neighboring solution of s and the rule
used for generating neighboring solutions must be
specified. For our districting problem on a graph
G = (N, E) consider two solutions (connected parti-
tions) s and s’. Each solution consists of k subsets of
nodes in N, so that s={C;,Cs,...,C;} and
s'=1{C, C,,...,C,}. Solutions s and s’ are neigh-
boring if there exist two subsets, C;, C,, and a node
x € C; such that

Ch=C,, Yh=12,....k, h#l.q
and
C,=C\{x}, C,=C,U{x}.

In other words, s’ is a neighbor of s if either one can
be obtained from the other by a single node migra-
tion. Notice that this neighborhood is good accord-
ing to the definition given in Section 2.2. In fact,
given that k is the number of districts and # the
number of nodes, in order to generate all the solu-
tions in N(s) at most nk migrations are necessary.
Moreover, only those nodes belonging to the
boundary of a district can move from the district
to another; therefore, the actual number of neces-
sary moves is generally much smaller than nk.

We shall call feasible solution any connected k-
partition of G. A move generates a feasible solution
(and, therefore, it will be called a feasible move) if it
does not disconnect any district. In particular, since
a move involves only two districts, the feasibility
condition means that both the origin-district and
the destination-district must not be disconnected
by the move. Equivalently, the migrating node:

(a) must be adjacent to some node of the destina-
tion-district;
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(b) must not be a cut-node for the origin-district.

For a given district C;, the boundary of the district
is given by the subset of nodes that are adjacent to
some node belonging to a different district, while
its cocycle is the set of those edges having an end-
point in Cj, and the other outside Cj,. In order to test
condition (a) efficiently, both the boundary and the
cocycle of the districts are stored and dynamically
maintained after each move. In order to test condi-
tion (b) efficiently, all the nodes adjacent to the
migrating one, say, x, are previously marked and
a breadth-first search is started from one of them.
Clearly, x is not a cut-node iff every marked node
is reached during the search. As soon as this condi-
tion is satisfied, the search stops. Since G is planar,
this usually happens at an early stage of the search,
resulting in considerable time savings.

The origin-district is always chosen at random.
The choice of the migrating node within the
boundary of the origin-district depends on the heu-
ristic at hand. In our implementation, the Descent
algorithm and the first of our Tabu Search imple-
mentations make use of exact neighborhoods, that
is, they look at all the feasible solutions in the
neighborhood (equivalently, all the nodes in the
boundary) in order to find the best one. As we
shall see, this is not the case for our second imple-
mentation of Tabu Search, and for Old Bachelor
Acceptance and Simulated Annealing, which rather
choose random solutions in the neighborhood of
the current one.

When exact neighborhoods are adopted, there is
the possibility that the algorithms stop in a local
optimum before the stopping condition is met.
Therefore, whenever a local optimum has been
attained for this reason, the algorithms are re-
started from a random initial feasible solution.

In order to get one such feasible solution, the fol-
lowing procedure is used:

1. a spanning tree 7 of G is randomly generated;

2. k centers (one per district) are randomly chosen
among 2k candidate centers (usually, these are
the most populous towns);

3. k-1 randomly chosen edges of T are cut, in such a
way that each of the resulting k subtrees contains
exactly one center. This is accomplished as fol-
lows: starting from 7, and as long as there are
two (or more) centers in some current subtree,
cut a randomly chosen edge along the unique
path connecting them in T

4. the k initial districts are the node-sets of the k
subtrees obtained in this way.

3.3. The metaheuristics

In this section we briefly outline the four local
search metaheuristics examined in this work, giving
a schematic description for each of them.

Consider a problem in which the objective func-
tion f must be minimized and let s be a feasible solu-
tion. Let N(s) be the set of solutions in the
neighborhood of s and A(¢) =f{r) — f(s), t € N(s)
the variation of the objective function when going
from s to t. We will call s* a best solution in N(s)
if we have A(s*) = minA(¢), the minimum being
taken among all feasible solutions 7 € N(s). Starting
from an initial feasible solution, at each iteration the
Descent algorithm searches for a best solution in
the neighborhood of the current solution. Clearly,
the Descent algorithm stops when there are no more
feasible moves that make the objective function
improve, and this means that the algorithm often
remains entrapped in bad local optima. This kind
of problem is generally alleviated by a multiple start
approach (Multistart Descent algorithm) according
to which the search is re-started from a new initial
(random) solution. Many restarts produce many
new possible directions for the search, but do not
guarantee that those directions are good. Let M
denote the total number of iterations which was
fixed to define the stopping condition. In general,
when M is increased, the performance of the Des-
cent algorithm improves, due to the fact that, in this
case, many additional solutions are evaluated.
Indeed, if M is very large, the Descent algorithm
can occasionally perform even better than other,
more sophisticated, local search algorithms.
According to our approach, we adopt a multistart
Descent algorithm, in order to guarantee that the
fixed total number of iterations (M = 80,000) is per-
formed even in this case.

We consider the Descent algorithm as a bench-
mark in order to compare the performance of the
other local search algorithms, namely, Tabu Search,
Simulated Annealing and Old Bachelor Acceptance.

First of all, we consider the well known Tabu
Search algorithm. The basic steps of Tabu Search
are described below.

We provide two alternative implementations of
the Tabu Search algorithm, basically differing in
the choice (best vs. random) of the move from the
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current solution. In both cases we consider a fixed
length tabu list. For the stopping condition, besides
the total number of iterations, we fix a maximum
tolerable number of successive disadvantageous
moves. When either stopping condition is met the
algorithms stop. Although both implementations
are streamlined versions of Tabu Search, we also
implemented some particular features which make
provision for some special (particularly advanta-
geous) conditions, such as the possibility of per-
forming a forbidden move (aspiration criterion).
Actually, in our algorithms, a tabu move can be per-
formed when it generates a new solution that is
strictly better than the best solution found up to
the current iteration. Since the tabu status of a move
may produce premature stops of the algorithm, in
our first implementation we basically follow the
procedure described in Fig. 1, but we adopt a mul-
tistart approach as a search diversification tool
(Exact Tabu Search). On the other hand, in our sec-
ond version of Tabu Search, given a current solu-
tion s, we implement the random choice of a
solution in the neighborhood of s (Random Tabu
Search).

We implemented a basic version of Simulating
Annealing. Let ¢ and T, be two fixed positive
thresholds. The Simulated Annealing algorithm
can be briefly described as in Fig. 2.

Old Bachelor Acceptance is a heuristic which
belongs to the class of threshold algorithms, but it
is characterized by a special procedure for updating
the threshold. At each step the threshold value spec-
ifies the maximum acceptable change in the objec-
tive function. When the algorithm goes from a
solution s to a new solution s’ in the neighborhood
of s, the objective function may improve, otherwise
it may worsen within the threshold limit. Each time
the threshold is automatically updated in a nonmon-

otonic way, with even the possibility that it reaches
negative values. In particular, the threshold
decreases after an improvement in the objective
function and increases when the objective function
worsens. Such an updating strategy has been shown
to be an efficient way to avoid premature arrests in
bad local optima (Hu et al., 1995). Actually, when
the threshold changes, the search has the possibility
of finding new promising Descent directions, espe-
cially when the current solution is far from a local
optimum. In practice, the algorithm becomes pre-
tentious when improving moves are easily found,
while it has no pretensions in the neighborhood of
locally optimal solutions, where it is hard to find
improving moves. In the latter case, the algorithm
has the ability to escape from bad local minima by
increasing the threshold value, while, during the
ambitious phase, successive threshold decreases
cause the algorithm to accelerate along steep Des-
cents towards a local minimum point. In Fig. 3,
the main steps of Old Bachelor Acceptance are
reported. Functions 47(i) and 47(i) are both posi-
tive and they are involved in the threshold updating,
while the stopping condition is established on the
basis of a fixed number of total iterations.

In our application A¥(i) and A7(i) are linear
functions of the quantity (1 — ), where i denotes
the current iteration. More precisely, when the last
steps of the algorithm are performed — that means
a low value for (1 — i/M) — both A" (i) and 4 (i)
become small. This corresponds to a strategy of
maximum exploitation of the last iterations in order
to find some additional local optima. Notice that
the updating of the thresholds 4™(i) and 47(i) is
symmetric in order to avoid undesired unbalanced
threshold adjustments. Moreover, one must take
into account that an extremely high threshold
prevents from any move and may provoke the

repeat:

update the tabu-list

1. Select an initial feasible solution s

generate the set of all feasible moves producing the corresponding
set of feasible solutions in the neighborhood N(s) of the current solution s
2.1. if there is at least a feasible non-tabu move
select a feasible non-tabu move leading to a best solution s'e N(s)

2.2. else [all possible moves are either infeasible or tabu]
STOP (a local optimum is found)

2.3. end if

3. until the stopping condition is met

4. The final solution is the best local optimum found s *

Fig. 1. Tabu Search.
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Simulated Annealing [Kirkpatrick et al., 1983; Cerny, 1985]

1 Select an initial feasible solution §
2 Let T =T, be the initial temperature
3. while 7 > ¢, do the following steps
3.1. for L times do the following steps
select at random a feasible move producing a
neighborhood feasible solution s' of the current solution s
3.1.1. if A=A(s") <0 (downhill move)

the move is performed

3.1.3. end if

3.2. end for
4. end while
5

3.1.2. else [A=A(s") > 0] (uphill move)

the move is performed with probability p=e~

update the temperature T

The final solution is the best local optimum found s *

AT

Fig. 2. Simulated Annealing.

. Define an initial threshold T,
3. repeat

Old Bachelor Acceptance [Hu et al., 1995]

1. Select an initial feasible solution s

select at random a feasible move producing a neighborhood
feasible solution s' of the current solution s

3.1 if A(s')<T;
perform the move
3.1.1. if A(s")<0 decrease the threshold: 7;,,:= T, — A™ (i)
3.2. otherwise [A(s') >T; ]
increase the threshold: T;,;:= T, + A" (i)
3.3. end if
4. until the stopping condition is met
5. The final solution is the best local optimum found s *

Fig. 3. Old Bachelor Acceptance.

algorithm to find bad local optima. On the other
hand, a threshold which decreases too fast tends
to become negative, thus producing a premature
stop of the algorithm. This is similar to what hap-
pens with the Descent algorithm, since in this case
it becomes very difficult to find good moves. We cal-
ibrated A™(i) and A4(i) in order to allow a long and
diversified search, increasing the chance of finding
many different local optima. If the final set of
encountered local optima is large, the final solution
is likely to be a good one.

4. Experimental plan

The performance of the local search techniques
for political districting was studied over a sample

of five Italian Regions, namely, Abruzzi, Latium,
Marches, Trentino—Upper Adige (for the sake of
brevity, we will refer to this Region as Trentino)
and Piedmont. In order to make such sample as rep-
resentative as possible, the territories were chosen so
as to be very different in extension, characteristics
and shape. The main features of the corresponding
graphs are summarized in Table 1.

Notice that they are all planar graphs, since they
are contiguity graphs. The density of a planar graph
with n nodes varies from a minimum of % (this is
the case of a tree) to a maximum of % (triangu-
lated graphs). In Table 1 for each region the maxi-
mum density values are reported. All our graphs
have high densities (greater than 2), but Piedmont
nearly reaches its maximum.

Please cite this article in press as: Ricca, F., Simeone, B., Local search algorithms for political districting, European
Journal of Operational Research (2007), doi:10.1016/j.€jor.2006.08.065




10 F. Ricca, B. Simeone | European Journal of Operational Research xxx (2007) xxx—xxx

Table 1 Table 2
Graphs of Italian regions Parameter’s values for local search
Region Nodes Edges Density (3n—6)/n Districts Algorithm Parameters’ values
Abruzzi 305 847 2.78 2.980 11 Tabu Search Tabu list length 24
Latium 374 1006 2.69 2.983 19 Maximum number of successive 208
Marches 246 674 2.74 2.975 12 disadvantageous moves
Piedmont 1208 3527 292 2995 28 Simulated Initial temperature T 1
: 0
Trentino 3% 938 278 2.982 8 Annealing Final threshold & for the temperature 107>
Cooling rate 0.998
The number of nodes varies from a minimum of Old Bachelor Granularity value for population 1078
246 (Marches) to a maximum of 1208 (Piedmont) Acceptance equality R
. Granularity value for compactness 107
and also the number of edges and the number of dis- : R 5
K X X Granularity value for administrative 10
tricts to be drawn are very different from region to conformity

region. Notice that the number of districts is related
to the number of nodes of the graph very loosely.
For example, Trentino has about one hundred
nodes more than Marches and, however, the num-
ber of its districts is smaller (only 8 for Trentino
and 12 for Marches). The number of districts in
each region was fixed according to the Italian elec-
toral law of 1992.

Granularity value for target mixture 107°

All the algorithms start from a random initial
solution which is generated by selecting a spanning
tree for the graph G at random and obtaining k sub-
trees by the random selection of their roots. The
trees are explored in breadth-first search order.

Table 3
Target values at iterations 20,000, 40,000, 60,000 and 80,000 for Abruzzi
ABRUZZI 0 Algorithm 20,000 40,000 60,000 80,000
iterations iterations iterations iterations iterations
Population equality 0.752 Descent (4619) 0.310 0.310 0.310 0.310
Exact Tabu Search 0.574 0.456 0.456 0.399
(2332)
Random Tabu Search  0.046 0.013 0.013 0.013
Old Bachelor 0.042 0.030 0.030 0.030
Acceptance
Simulated Annealing 0.201 0.044 0.013 0.013
Compactness 0.766 Descent (2805) 0.345 0.236 0.236 0.176
Exact Tabu Search 0.128 0.128 0.097 0.097
(2401)
Random Tabu Search ~ 0.455 0.405 0.405 0.405
Old Bachelor 0.135 0.092 0.092 0.089
Acceptance
Simulated Annealing 0.553 0.384 0.382 0.382
Administrative 0.338 Descent (1900) 0.127 0.053 0.053 0.053
conformity Exact Tabu Search 0.045 0.045 0.045 0.045
(2459)
Random Tabu Search  0.081 0.081 0.081 0.081
Old Bachelor 0.079 0.054 0.054 0.048
Acceptance
Simulated Annealing 0.200 0.135 0.059 0.059
Target mixture 0.674 Descent (2487) 0.474 0.474 0.474 0.392
(0.5;0.3;0.2) Exact Tabu Search 0.478 0.478 0.478 0.461
(2408)
Random Tabu Search  0.275 0.273 0.252 0.252
Old Bachelor 0.309 0.285 0.285 0.285
Acceptance
Simulated Annealing 0.434 0.329 0.320 0.320

For Descent and Exact Tabu Search the number of repeated restarts is specified in brackets.
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The possible objective functions are population
equality, compactness and conformity to adminis-
trative boundaries, but a mixture of the three is also
considered. In this case the objective function is
given by a convex combination of the objectives
with weights equal to 0.5 for population equality,
0.3 for compactness and 0.2 for conformity to
administrative boundaries, according to the relative
importance accounted by a panel of experts to the
tree objectives in political districting problems.
From now on we will refer to this mixed objective
function as target mixture.

As stated above, the total number of iterations
was fixed to 80,000 for all the heuristics. This num-
ber of iterations has shown to be sufficient to guar-
antee that all the heuristic achieve their best
solution.

Excluding Descent, all the algorithms considered
are characterized by their own typical parameters
which are strategic for the efficiency of the search

(see Table 2). Therefore, a careful tuning of these
parameters is extremely important in order to find
good local optima.

For Tabu Search we set the length of the tabu list
equal to 24 and we fixed a maximum number of suc-
cessive disadvantageous moves equal to 208.

Simulated Annealing depends on the initial tem-
perature, the cooling rate and a final threshold ¢ for
the temperature. We fixed the initial temperature
equal to 1 and experimentally calibrated the cooling
rate (0.998) and the final value of the temperature
(¢ = 107°). The values adopted for these parameters
are seen to guarantee the convergence of Simulated
Annealing. In addition, these values allowed Simu-
lated Annealing to perform a total number of itera-
tions approximately equal to M, making possible
the comparison between the performances of all
the metaheuristics at the same breakpoints.

Old Bachelor Acceptance is characterized by
a parameter — called granularity — which is

Table 4
Target values at iterations 20,000, 40,000, 60,000 and 80,000 for Latium
LATIUM 0 Algorithm 20,000 40,000 60,000 80,000
iterations iterations iterations iterations iterations
Population Equality 0.897 Descent (6511) 0.489 0.489 0.489 0.489
Exact Tabu Search 0.736 0.736 0.736 0.736
(3920)
Random Tabu Search  0.257 0.237 0.197 0.197
Old Bachelor 0.123 0.123 0.123 0.123
Acceptance
Simulated Annealing 0.253 0.179 0.179 0.179
Compactness 0.744 Descent (3898) 0.368 0.368 0.368 0.368
Exact Tabu Search 0.172 0.172 0.172 0.172
(3693)
Random Tabu Search  0.463 0.463 0.463 0.463
Old Bachelor 0.129 0.101 0.087 0.083
Acceptance
Simulated Annealing 0.406 0.356 0.356 0.356
Administrative 0.356 Descent (3251) 0.100 0.100 0.100 0.100
Conformity Exact Tabu Search 0.048 0.048 0.048 0.048
(3641)
Random Tabu Search  0.109 0.093 0.074 0.071
Old Bachelor 0.061 0.042 0.040 0.037
Acceptance
Simulated Annealing 0.206 0.079 0.079 0.079
Target Mixture 0.743 Descent (3818) 0.520 0.520 0.520 0.520
(0.5;0.3;0.2) Exact Tabu Search 0.602 0.602 0.602 0.602
(3665)
Random Tabu Search  0.429 0.410 0.390 0.350
Old Bachelor 0.374 0.342 0.329 0.329
Acceptance
Simulated Annealing 0.387 0.337 0.337 0.337

For Descent and Exact Tabu Search the number of repeated restarts is specified in brackets.

Please cite this article in press as: Ricca, F., Simeone, B., Local search algorithms for political districting, European
Journal of Operational Research (2007), doi:10.1016/j.€jor.2006.08.065




12 F. Ricca, B. Simeone | European Journal of Operational Research xxx (2007) xxx—xxx

fundamental for threshold updating when the objec-
tive function improves or worsens (functions A7(i)
and 47 (i) actually depend on granularity). For the
granularity parameter, we observed that very low
values are necessary in order to guarantee a good
performance of Old Bachelor Acceptance. On the
basis of our experimental analysis, granularity
seems to be sensitive to the target objective formu-
lated in the model. Notice that this does not mean
that our choice for the granularity parameter is
instance-dependent, since, in fact, different objective
functions define different problems. If the target is
compactness, granularity takes values of magnitude
1072 or 1073, When conformity to administrative
boundaries is considered, granularity becomes much
smaller (1077), but it reaches the smallest value
when population equality is the target criterion
(107®). For the target mixture we obtain the best
performance with a granularity value of magnitude
107°. In general, if the granularity value is too high,

Old Bachelor Acceptance produces bad effects. In
particular, according to the threshold schedule, the
algorithms pass from too permissive values of the
threshold to very small (even negative) ones. In
the first case, all moves are acceptable, while no
move is sufficiently good to be accepted in the sec-
ond case. At any extent, since the threshold is
strictly related to which objective function is consid-
ered in the model, granularity values must be accu-
rately calibrated with respect to the specific model at
hand.

5. Results

In this section we discuss the experimental results
of our application. First of all we show (Tables 3-7)
the results obtained in a single run of each metaheu-
ristic in each region and with each possible target,
starting from an initial random solution. Notice
that the performance of those algorithms that adopt

Table 5
Target values at iterations 20,000, 40,000, 60,000 and 80,000 for Marches
MARCHES 0 Algorithm 20,000 40,000 60,000 80,000
iterations iterations iterations iterations iterations
Population Equality 0.757 Descent (5422) 0.288 0.288 0.288 0.288
Exact Tabu Search 0.419 0.419 0.419 0.419
(2029)
Random Tabu Search  0.003 0.003 0.003 0.002
Old Bachelor 0.010 0.010 0.010 0.010
Acceptance
Simulated Annealing 0.160 0.014 0.014 0.014
Compactness 0.795 Descent (2974) 0.353 0.353 0.353 0.261
Exact Tabu Search 0.303 0.195 0.195 0.091
(1961)
Random Tabu Search  0.460 0.384 0.384 0.384
Old Bachelor 0.155 0.108 0.108 0.108
Acceptance
Simulated Annealing 0.465 0.346 0.346 0.346
Administrative 0.399 Descent (2098) 0.112 0.112 0.097 0.097
Conformity Exact Tabu Search 0.026 0.026 0.026 0.026
(2101)
Random Tabu Search  0.095 0.090 0.070 0.068
Old Bachelor 0.077 0.066 0.054 0.054
Acceptance
Simulated Annealing 0.151 0.073 0.073 0.073
Target Mixture 0.697 Descent (2565) 0.456 0.456 0.456 0.401
(0.5;0.3;0.2) Exact Tabu Search 0.453 0.435 0.435 0.435
(2008)
Random Tabu Search  0.252 0.238 0.229 0.226
Old Bachelor 0.249 0.232 0.232 0.232
Acceptance
Simulated Annealing 0.352 0.243 0.243 0.243

For Descent and Exact Tabu Search the number of repeated restarts is specified in brackets.
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Table 6
Target values at iterations 20,000, 40,000, 60,000 and 80,000 for Trentino
TRENTINO 0 Algorithm 20,000 40,000 60,000 80,000
iterations iterations iterations iterations iterations
Population Equality 0.896 Descent (3565) 0.348 0.348 0.348 0.348
Exact Tabu Search 0.541 0.536 0.536 0.536
(870)
Random Tabu Search  0.167 0.037 0.036 0.036
Old Bachelor 0.135 0.065 0.065 0.065
Acceptance
Simulated Annealing  0.149 0.047 0.017 0.001
Compactness 0.821 Descent (1494) 0.363 0.363 0.234 0.234
Exact Tabu Search 0.182 0.182 0.182 0.182
(774)
Random Tabu Search  0.584 0.584 0.584 0.584
Old Bachelor 0.125 0.103 0.098 0.096
Acceptance
Simulated Annealing  0.590 0.480 0.475 0.475
Administrative 0.319 Descent (789) 0.067 0.067 0.067 0.065
Conformity Exact Tabu Search 0.032 0.032 0.013 0.013
(908)
Random Tabu Search  0.052 0.029 0.027 0.023
Old Bachelor 0.056 0.056 0.056 0.056
Acceptance
Simulated Annealing  0.229 0.198 0.188 0.164
Target Mixture 0.758 Descent (1385) 0.464 0.464 0.464 0.457
(0.5;0.3;0.2) Exact Tabu Search 0.535 0.535 0.492 0.492
(817)
Random Tabu Search  0.362 0.337 0.313 0.216
Old Bachelor 0.330 0.324 0.323 0.260
Acceptance
Simulated Annealing  0.393 0.269 0.233 0.233

For Descent and Exact Tabu Search the number of repeated restarts is specified in brackets.

a multistart approach does not depend on the initial
solution. On the other hand, this may be the case for
the other heuristics. As we will see going on in this
section, when a number of repeated runs is per-
formed with any of these algorithms the variability
of the objective function value is very small, hence
leading to the conclusion that the initial solution
does not affect the performance of any of our com-
pared algorithms. Moreover, since the algorithms
are very fast (few seconds), the running times are
omitted.'

We consider all the possible combinations of a
region and an objective function. We run the five
algorithms and record the value of the best solution
produced by each of them after 20,000, 40,000,
60,000, and 80,000 iterations (breakpoints) in order

' Our experiments were performed on a Pentium IV —
2.00 GHz.

to have a deeper insight into the search behaviour
of our heuristics. For each different objective, we
report its value in the initial solution and the results
obtained by the five local search algorithms. With
respect to each breakpoint, the best value obtained
for the objective function is shown in bold.

In order to compare the experimental results
obtained by the five heuristics, with respect to both
the quality of the solution and the amount of com-
putational resources spent for getting such solu-
tions, we provide three different types of indices
which are able to measure different aspects of the
performance of the algorithms.

First of all, we consider the set of test problems
given by the combination of a region, an objective
function and a breakpoint. Then, we rank the five
algorithms from the best to the worst, according to
the quality of the solution found in each of these
tests and we assign a score (the so called Borda count)
equal to 4, 3, 2, 1 and O to the first, the second, the
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Table 7
Target values at iterations 20,000, 40,000, 60,000 and 80,000 for Piedmont
PIEDMONT 0 Algorithm 20,000 40,000 60,000 80,000
iterations iterations iterations iterations iterations
Population Equality 0.870 Descent (3158) 0.684 0.684 0.656 0.624
Exact Tabu Search 0.761 0.749 0.749 0.749
(844)
Random Tabu Search ~ 0.142 0.107 0.084 0.077
Old Bachelor 0.142 0.077 0.063 0.062
Acceptance
Simulated Annealing  0.397 0.284 0.094 0.026
Compactness 0.918 Descent (1285) 0.562 0.562 0.562 0.562
Exact Tabu Search 0.564 0.564 0.564 0.540
(804)
Random Tabu Search  0.796 0.768 0.745 0.745
Old Bachelor 0.669 0.408 0.372 0.266
Acceptance
Simulated Annealing  0.857 0.767 0.679 0.632
Administrative 0.339 Descent (778) 0.200 0.177 0.177 0.177
Conformity Exact Tabu Search 0.167 0.118 0.118 0.118
(784)
Random Tabu Search  0.163 0.134 0.131 0.130
Old Bachelor 0.128 0.120 0.102 0.092
Acceptance
Simulated Annealing  0.301 0.301 0.301 0.105
Target Mixture 0.778 Descent (1237) 0.643 0.643 0.631 0.627
(0.5;0.3;0.2) Exact Tabu Search 0.658 0.655 0.655 0.655
(827)
Random Tabu Search ~ 0.459 0.419 0.403 0.398
Old Bachelor 0.456 0.420 0.420 0.406
Acceptance
Simulated Annealing  0.560 0.478 0.424 0.373

For Descent and Exact Tabu Search the number of repeated restarts is specified in brackets.

third, the fourth, and the fifth algorithm, respec-
tively. On the basis of these scores, we compute a
ranking score given by the sum of the scores over
all the regions. Tables 8-11 show the ranking scores
of our algorithms with respect to each objective. In
the last column we report the sum of the scores over
the four different breakpoints, while in Table 12 we
compute the sum of all the scores obtained by an
algorithm over all the possible cases. This total rank-

Table 8

ing score can be used for an initial gross comparison
between the five algorithms.
In order to understand more deeply how the

algorithms work, we suggest two additional indices
of performance: the first is related to the progression
of the search, while the second measures the total
gain obtained by each algorithm in terms of objec-
tive function value. Denote by ¢ the generic break-
point, t =1, 2, 3, 4, and by 4 a generic algorithm.

Total ranking scores w.r.t. popoulation equality (the same score was assigned to ex aequo cases)

Algorithm Ranking score — population equality

20,000 iterations 40,000 iterations 60,000 iterations 80,000 iterations Sum
Descent 6 5 6 6 23
Exact Tabu Search 1 0 1 1 3
Random Tabu Search 15 17 16 15 63
Old Bachelor Acceptance 19 16 16 15 66
Simulated Annealing 13 12 15 17 57
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Table 9
Total ranking scores w.r.t. compactness

Algorithm Ranking score — compactness

20,000 iterations 40,000 iterations 60,000 iterations 80,000 iterations Sum
Descent 12 9 9 7 37
Exact Tabu Search 16 14 14 15 59
Random Tabu Search 4 0 0 1 5
Old Bachelor Acceptance 17 20 20 19 76
Simulated Annealing 1 7 7 8 23
Table 10
Total ranking scores w.r.t. conformity to administrative boundaries
Algorithm Ranking score — conformity to administrative boundaries

20,000 iterations 40,000 iterations 60,000 iterations 80,000 iterations Sum
Descent 6 5 5 3 19
Exact Tabu Search 18 18 18 17 71
Random Tabu Search 11 9 9 8 37
Old Bachelor Acceptance 15 14 15 16 60
Simulated Annealing 0 4 3 6 13
Table 11
Total ranking scores w.r.t. target mixture
Algorithm Ranking score — target mixture (0.5;0.3;0.2)

20,000 iterations 40,000 iterations 60,000 iterations 80,000 iterations Sum
Descent 4 4 4 5 17
Exact Tabu Search 1 1 1 0 3
Random Tabu Search 15 15 17 17 64
Old Bachelor Acceptance 19 16 15 14 64
Simulated Annealing 11 14 13 14 52
Table 12

Total ranking score

Algorithm Total ranking score
Descent 96
Exact Tabu Search 136
Random Tabu Search 169
Old Bachelor Acceptance 266
Simulated Annealing 145

For each t=2,3,4, define the following score
function:

1 if the value of the best solution found by
A at tis better than the one found at r — 1
0 otherwise

s4(t) =

Then, for each algorithm 4, we can compute a pro-
gression score as the sum of the scores s 4(¢) obtained
for t =2, 3, 4. Notice that a high progression score
means that the algorithm is able to exploit the avail-

ability of additional iterations to improve the solu-
tion, even when many iterations have already
elapsed. On the contrary, low values for this index
suggest the tendency to fall into local optima. Table
13 reports the average progression scores for each
algorithm and each objective, computed over the
five different regions. The same table shows infor-
mation about the quality of the solutions found.
In order to understand if an algorithm with high
progression is also very effective in terms of the
quality of the solution produced, we compute the
gain which is given by the percent difference between
the values of the best solutions found after 80,000
and 20,000 iterations.

Table 14 shows the average progression scores
computed with respect to all the different objective
functions considered.

Notice that, when an algorithm works well dur-
ing the first 20,000 iterations, the corresponding
improvement in the objective function is not
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Table 13
Average progression score and average percent gain from 20,000 to 80,000 (over 5 tests — regions)
Algorithm Objective
Population equality Compactness Administrative conformity Target mixture (0.5;0.3;0.2)
Progression Gain (%) Progression Gain (%) Progression  Gain (%) Progression Gain (%)
Descent 0.40 -2 0.80 =22 0.80 -17 1.00 -7
Exact Tabu Search 0.80 -7 0.80 -20 0.40 —18 0.80 -3
Random Tabu Search 1.80 —51 0.80 -7 2.40 —28 2.80 —18
Old Bachelor Acceptance 1.00 -27 2.40 -37 2.00 =27 1.80 -12
Simulated Annealing 2.00 —81 1.80 —23% 1.60 —-55 1.80 -29

Table 14
Average progression score (over 20 tests — criterion/region)

Algorithm Average progression score
Descent 0.75

Exact Tabu Search 0.7

Random Tabu Search 1.95

Old Bachelor Acceptance 1.8

Simulated Annealing 1.8

detected by the previous indices. Therefore, in order
to measure the global quality of the solution pro-
duced by each algorithm, we need to compute the
gain reached after 80,000 iterations with respect to
the initial objective function value. For each algo-
rithm, Table 15 reports the average global gain with
respect to each objective function.

To conclude our analysis, we show some results
related to the application of local search techniques

to political districting with real-life data. With
respect to our selected five regions, Table 16 shows
the results obtained when Old Bachelor Acceptance
was applied to the Italian case. For this purpose, the
Italian institutional district plan was chosen as ini-
tial solution. These results are on average over 50
repeated runs. Actually, we run the algorithm
repeatedly in order to evaluate the effect of random-
ization. In fact, even if the initial solution is the
same, each time Old Bachelor Acceptance starts
again, the direction of the search may change, since
it depends on the first moves performed. This
implies the possibility of obtaining very different
final solutions. To guarantee the robustness of these
results, one must ensure a good quality of the final
solution not only in a single (lucky) run, but in a
large percentage of cases. In this sense, the robust-
ness of the results is guaranteed by the fact that

Table 15
Average percent global gain
Algorithm Objective
Population equality Compactness Administrative conformity Target mixture (0.5;0.3;0.2)
Descent —51% —61% —72% —35%
Exact Tabu Search —33% —74% —86% —28%
Random Tabu Search —93% —37% —79% —61%
Old Bachelor Acceptance -93% —85% —83% —59%
Simulated Annealing —95% —46% —72% —59%%

Table 16
Old Bachelor Acceptance improvements w.r.t. the institutional district plan
Region Objective
Population equality Compactness Administrative conformity Target mixture (0.5;0.3;0.2)
Initial value % variation  Initial value % variation  Initial value % variation  Initial value % variation
Abruzzi 0.08 —82 0.63 -76 0.21 —65 0.27 -12
Latium 0.06 —86 0.68 —43 0.20 -53 0.27 =30
Marches 0.05 —94 0.67 -75 0.17 —65 0.26 -12
Trentino  0.04 —94 0.70 -52 0.07 —18 0.24 —16
Piemonte  0.10 -90 0.88 =51 0.14 -35 0.34 -7
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all the variances associated with these repeated runs
are always very small (order of 107%).

Our results show that the Italian district map can
be improved with respect to different important
aspects. Indeed, in our Old Bachelor Acceptance
experiments we observed the simultaneous decrease
of all three objectives. This also occurs with other
local search algorithms, such as Tabu Search. This
means that several maps providing better values
for the three criteria taken into account can be easily
built with the help of an automatic procedure.

6. Conclusions

In this study we compared the performance of
five local search techniques for the political district-
ing problem. The algorithms considered are Des-
cent, Tabu Search (exact or random), Simulated
Annealing and Old Bachelor Acceptance, Descent
being considered as a benchmark for the evaluation
of the performance of the others. The districting
problem was formulated as a multicriteria graph
partitioning problem under connectivity constraints
and the application was performed over a sample of
five medium-large Italian regions. The results
showed a good performance for Old Bachelor
Acceptance which produced the best results in the
majority of the cases, especially when the objective
function is compactness. We do not have, at the
moment, a full explanation of the superior behav-
iour of such heuristic in this case. One partial expla-
nation might be that all the three heuristics
employing a random choice of the migrating node
perform better than the remaining two, which make
use of exact neighborhoods. Another reason might
be the uncanny ability of Old Bachelor Acceptance
to escape from local minima with its “learning”
threshold adjusting procedure. On the other hand,
the two implementations of Tabu Search have
shown a complementary behaviour: Random Tabu
Search behaves well when the objective function is
population equality, while the Exact Tabu Search
performs well for the other criteria. With respect
to Simulated Annealing, we observed a very good
performance when the objective function is popula-
tion equality, while it seems that, within the
observed range of iterations, Simulated Annealing
is not able to reach a good local optimum for com-
pactness. Finally, it can be noticed that, as one
could expect, the Descent Algorithm has a poor per-
formance, even if it is frequently restarted from dif-
ferent initial feasible solutions.

In conclusion, with respect to the political dis-
tricting application, our experiments provided
strong evidence in favor of the use of automatic pro-
cedures for this problem. In particular, we observed
a very good performance of Old Bachelor Accep-
tance, the more so for larger regions, but we were
able to obtain very good solutions for political dis-
tricting with all the local search algorithms consid-
ered (except Descent). Moreover, by Old Bachelor
Acceptance, we obtained significant improvements
on institutional (manual) district plans related to
real-life data. As a matter of fact, if properly
designed, such procedures tend to be impartial and
yield good — as measured by appropriate indicators
— districting alternatives. Moreover, they are
remarkably fast, and thus they allow for the explo-
ration of a large number of scenarios. This does not
mean that we advocate the use of fully automated
procedures for political districting: we rather believe
that in any case they need to be integrated by
human judgment and common sense.
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