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Scope and Purpose-The districting problem which consists in grouping basic geographical units into 
larger clusters, the “districts”, occurs in various contexts: design of political districts, “Turling” in 
telecommunications and design of sales territories. The last case is considered in this paper. The problem 
which arose in a German company for consumer goods is outlined and formulated as a mathematical 
programming model. A practicable procedure is developed based on the classical location-allocation 
approach where the optimal location of the centers of the districts and the allocation of the basic units 
to the districts alternate. 

Abstract-The paper deals with the problem of defining the territories for I68 sales agents of a German 
manufacturer of consumer goods. About 1400 postal areas constitute the basic geographical units. The 
problem is solved by means of a location-allocation approach involving a standard code of a primal 
network algorithm as well as a new heuristic for resolving split areas. Numerical results and the 
implementation of the procedure as a planning tool are presented. 

I INTRODUCTION 

The present paper deals with the definition of territories for a number of sales agents, a problem 
that arose in a major German company which manufactures consumer goods. The problem is 
presented in detail in the next section. Districting problems of this type have been a subject of the 
Operations Research literature for a long time, and various models and methods have been 
suggested. Section 3 briefly reviews the literature relevant to our problem. In Section 4 we propose 
a procedure for solving it, which is partly based on a classical location-allocation approach [l]. 
However, in view of the large size of the problem and the ill-conditioned data, we had to develop 
a new heuristic algorithm for eliminating the “split areas” resulting from the linear allocation 
model. This algorithm is outlined in Section 5. Section 6 reports on the numerical results and their 
practical use. 

2. PROBLEM SETTING AND DATA 

The problem concerns one division of the above mentioned company which delivers products 
to about 8000 wholesalers all over the Federal Republic of Germany. Sales promotion and 
advertising amongst the 70,000 retailers is very important in the considered business. This is the 
task of 168 agents who visit the retailers regularly, take care of product displays in the stores etc. 
but do not sell anything themselves. Nevertheless, for simplicity, we will refer to these agents as 
salesmen and to the retailers as customers. 

Each salesman has a certain territory. The borders of the territories were fixed 8 years ago and 
are considered to be inappropriate for today’s business, mainly because the distribution of workload 
is quite uneven. The workload caused by a single customer is expressed by an internal score taking 
into account the sales value and the frequency of visits. It is specified in the customer data tile. 
The firm has postponed the necessary reorganization of territories several times, fearing the very 
expensive procedure which was required for the last reorganisation. 

The firm was therefore looking for a new procedure for dividing the territory of the Federal 
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Republic of Germany into a given number of sates territories, where the following aims - which 
could not be formulated more precisely by management - should be pursued: 

1. The size of the territories, measured by the sum of the scores of the customers included in 
them, should be as uniform as possible. This aim can be expressed by upper and lower limits 
for the size of a territory, defined as the mean size plus or minus a tolerance, which is a 
strategic parameter. With the present structure, the tolerance is as large as 25%. This needs 
to be considerably reduced. 

2. The territories may not overlap and should be of compact shape. This aim reflects the driving 
cost for visiting customers, which is difficult to express exactly, as well as the need for a clear 
organization. The term “compact” is not to be understood in a strict mathematical sense. 

3. The procedure should be automatic, as far as possible. The effort required for subsequent 
manual adaptations of the results should be kept to a minimum. In particular, the dehnition 
of territories should allow for simple automatic allocation of the customers. Moreover, the 
procedure should be generally applicable to the other divisions, where the number of salesmen 
is quite different. 

Due to the last requirement, we first decided to aggregate the customers into postal areas, which 
can be identified from the customer’s address. The German postal code consists of four digits and, 
in addition for some towns, a two digit code for the town district. Area codes with the last digit 
unequal to zero refer to rural areas, some of which do not have a compact shape but surround 
other locations. Therefore, a further aggregation of these areas was carried out resulting in 
combinations of a small number of areas with consecutive codes. The smallest of the included 
codes is used as the code for the combined area. On the other hand, town districts are considered 
as separate areas for all towns with more than l~,O~ inhabitants. 

For the resulting areas, the scores of the customers could be easily aggregated from the existing 
customer files. The sum of the scores within an area is referred to as its size. As the absolute value 
of the scores is not of interest here, we will assume the mean size of the territories to be 100 and 
specify all other sizes as a percentage of this quantity in the following discussion. Table 1 summarizes 
the number and sizes of the areas. 

The disadvantage of postal areas is that they are of very unequal size and not sufficiently fine 
in the urban regions. In particular, there are 25 cities of more than 100,000 habitants which have 
no postal districts. Thus, some of the areas have a size even larger than the mean territory size. It 
is expected that such cases will require a further manual subdivision of areas depending on the 
results of the automatic procedure. Also, the mean number of areas per territory, i402/168 = 8.3, 
is rather small, in comparison with similar studies in the literature (cf. Section 3). Refinements in 
the rural areas, however, are of little importance, as the table shows. 

Finally, the present residences of the salesmen are available data, which can also be expressed 
by area code. However, management did not want these residences to influence the definition of 
the new territories heavily, because addresses can change frequently. 

3. RELATED INVESTIGATIONS 

The grouping of small geographic units or areas into larger geographic clusters according to 
some criteria is referred to in the literature as “districting”. Many authors have investigated 
districting problems and provided models for applications in various contexts: design of political 
districts [Z-4], “Turting” in telecommunications [S], design of sales territories [6,7 p. 175, 
1,8,9] etc. The main purpose of most districting models is the design of a predetermined 
number of territories or districts with contiguous and compact shapes [3, p. 4961 which are balanced 

Table 1. Number and size of areas 

Number of areas 
Mean size of an area 
Maximal size of an area 
Minimal size of an area 

Rural areas Urban areas 

734 428 
6.1 18.0 

25.6 100.2 
0.2 0.9 

Town districts 

240 
19.2 

112.8 
0.6 

Ail areas 

1402 
12.0 

112.8 
0.2 
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according to some activity measure and optimized using an objective function. Moreover, most 
formulations assume that an area may not be split between different territories (single source 
condition). 

Political districting models use the area population as an activity measure to solve the “one man 
one vote” problem. In marketing applications, the sales potential and/or the anticipated workload 
in each area are used for the design of balanced sales territories. Similar to our case, the activity 
measure is usually predefined and calculated for each area. However, some authors [S, lo] integrate 
the ideas of’territory design and sales resource allocation to maximize profit by applying a model 
hierarchy. First, a sales resource allocation model derives the profit m~imizing workload for each 
area. Sales territories are then designed to balance these workloads. Zoltners and Sinha [9] point 
out that the employment of a single activity criterion may be a shortcoming for many applications 
and introduce a model for sales territories balanced according to multiple activity measures. 

Spatial considerations are taken into account by minimizing a weighted distance between the 
areas and the territorial centers in order to design compact sales territories. Hess and Samuels [l] 
and Hess et al. [4] use squared Euclidean distances to enforce compactness. However, Cloonan 
[11] and Marlin [12] point out that travel costs in a territory are more proportional to simple 
straight line distances. 

In [l, 4, 123 distances are calculated by using the coordinates of the area centers. In contrast, 
[S] and [9] represent the distances between the different areas by constructing an adjacency graph 
for every territorial center and by using a real road network. This approach can be very cumbersome 
for large-scale problems. Profit maximization fo~ulations [8,10,13-161 usually do not treat 
spatial considerations directly but optimize the profitability of the territories. This is taken to be 
proportional to the total time spent by a salesman in each area. Distances can be expressed here 
as travel times from the salesmen’s residences to the sales areas. 

In general, the methods for solving districting problems employ a sequence of exact optimization 
routines and/or heuristics and exhibit the following pattern: 

(a) Definition of one or several activity measures; 
(b) Definition of n areas and calculation of the activity demand of each area; 
(c) Selection of m points as territorial centers and the specification of their activity supply; 
(d) Assignment of areas to territories in order to minimize (or maximize) some objective function. 

The approaches to solving the assignment problem in step (d) can be divided into those that 
depend entirely upon heuristics and those that utilize more formalized mathematical programming 
techniques. Managerial heuristics have been provided in [6, lo]. Easingwood [6] recommends that 
sales management successively adjust the boundaries until workload is uniformly allocated. In 
Lodish’s alignment procedure [lo] management successively add and subtract areas from territories 
to reach equally distributed marginal profitability between the territories. In [2], a given territorial 
structure is improved stepwise by switching single areas between the territories. 

Integer programming techniques have been applied in [3,8,9, 151. In [3, 151, set-partitioning 
approaches are used to solve small districting problems. In a first step, feasible districts are 
constructed according to the activity constraints and, in a second step, districts are selected to 
optimize the objective function, Garfinkel and Nemhauser [3] present numerical results for problems 
with up to 55 population units. In [S, 9] general assignment fo~ulations are applied. Zoltners 
[8] proposes the Ross and Soland approach as a possible way of solving his model without 
providing any numerical tests. Zoltners and Sinha [9] use a subgradient technique based on the 
Lagrangean Relaxation of the territory size constraints. Numerical results are reported for three 
examples with 13 territories and 204-280 areas. It should be emphasized that integer programming 
approaches ensure that every area is assigned to a unique territory but do not necessarily produce 
well balanced territories. In case of tight activity constraints, a feasible solution may not even exist 
(cf. Section 2). Another disadvantage of integer programming approaches is the computational 
effort required for large problems. 

In Cl, 4,5, 123, linear transportation algorithms are used to solve the assignment problem. These 
algorithms, which are very suitable for large scale problems, yield optimal solutions which satisfy 
the activity constraints but can assign portions of the activity in one area to more than one territory. 
At most m - 1 split areas can arise in an optimal basic solution. These must then be resolved in 
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a further step: 

(e) Resolution of the split areas. 

Marlin [12] points out that in particular cases splits may be retained, especially when the split 
area contains a large amount of activity. He suggests assigning the smaller areas without significantly 
violating the constraints and then solving the entire problem again. However, this procedure does 
not reduce the number of splits in general. Hess and Samuels [X] use a simple “tie breaking” 
heuristic which assigns an area to the territory with the maximum of the area’s activity. In their 
applications they found, that a rate of n/m 2 20 “is more than adequate to provide territories whose 
activity is within If: 10% of average”. Finally, Segal and Weinberger [SJ offer an elaborate routine 
which uses total enumeration and considers three different objectives, the minimization of either 
the maximum absolute deviation, the second worst deviation or the sum of the absolute deviation 
from the average territorial activity. They point out that their procedure works well “if the number 
of splits is less than 15 or so”, However, they do not provide any numerical results. 

Most of the procedures assume fixed territorial centers (e.g. residences of the salesmen). In 
contrast Cl] and [4] permit variable center locations in order to optimize the total territorial 
structure. The center locations are determined by improving the initial values in the following steps: 

(f) Redefinition of the territorial centers according to the current assignment; 
(g) Repeat of steps (d)-(f) until no significant improvement is noted. 

A main advantage of squared Euclidean distances [ 1,4] is that in step (f) optimal centers can 
be very easily calculated as the centers of gravity of every territory. Hess and Samuels [43 
report on many successful real life applications of this location-allocation approach known as 
“GEOLINE”. 

4. MODEL FORMULATION AND SOLUTION PROCEDURE 

According to the management requirements as outlined in Section 2, we formulate the problem 
as a planar transportation-location model [17]. The condition that every area is to be assigned 
to a unique territory is considered by an additional single source constraint. To enforce compactness 
of the territories we use weighted squared Euclidean distances as a minimization criterion, similar 
to the GEGLINE procedure of Hess and Samuels [I]. To consider the geographical interrelation 
of the large number of areas and to calculate the distances, we use ~eo~r~~~~~~~ ~~or~in~~es, which, 
in the case of rural areas, refer to the center or to the main location. 

We solve the problem by applying a location-allocation procedure. The “single source” 
transportation problem in the allocation part could be solved exactly by an algorithm similar to 
that of Nagelhout and Thompson [l&J However, the dimensions of our problem and the data 
structure, which does not ensure a feasible solution in the single source case (cf. Section Z), motivated 
us to apply a linear transportation algorithm and to resolve the splits in a final step. 

Using the following notation: 

Data m: number of territories 
n. number of areas 
I: set of territories 
J: set of areas 
nj: north coordinate of area j 
ej: east coordinate of area j 
$: size (scores) of area j 
A = Cj bj/VZ: mean size Of territory 
t: tolerance for the territory size 
A min = A - t; A,,, = A+ t: lower and upper limit for the territory size 

Variables 
Xii: amount of scores in area j assigned to territory i 
A$: north coordinate of the center of territory i 
El: east coordinate of the center of territory i 
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we formulate the model as follows: 

minimize 

subject to 

C C Xij[(Ni - ftj)2 + (Ei - ej)2] 

id jd 
(4.1) 

Amin d C X;j g Amax (iE1) (4.2) 

~~~j=b, IjEf) (4.3) 

-%jE(O, bj) (iE1,jE.q. (4.4) 

For given center locations (@, &) and relaxed conditions (4.4) the above model reduces to the 
transportation problem 

minimize z z xiJdii 

subject to (4.2), (4.3) (4.5) 

and Xij~O 1 

where 
d, = E(Ei - tlj)2 + (pi - ej)‘] (4.6) 

To solve (4.1)-(4.4) we applied the following location-allocation procedure. The superscript k 
denotes the iteration counter, k,,,,, the maximal number of iterations. 

Step 1: Initialize; set k,,,; k = 1; set (rJ!, E,! ) equal to the present salesmen residences. 
Step 2: Calculate the distances d~j according to (4.6) and solve (4.5). The optimal solution is (xf,). 
Step 3: Determine the new coordinates for the centers of the territories by 

Step 4: Test: If the territory centers have changed and k < k,,,, set k = k + 1 and go to step 2; 
otherwise, go to step 5. 

Step 5: Resolve the splits of the last solution (xt); stop. 

Problem (4.5) in step 2 was solved by the primal network code NET [19], which is suitable 
for large capacitated transportation problems. For this purpose the following network formulation 
of (4.5) was used (Fig. 1): 

--one source node for every territory with supply A,,, 

-one destination node for every area i with demand bj 

Dummy desrinatlon node @ Demand = mt 

cost - 0 

A\ 

Capacity * 2t 

m source nodes 0 
(territories) 

~“~~;;~~~paci+y 

1 
n destination 0 0 0 0 - . . - . . . . -0 Demand -6, 
nodes foreos) 

Fig. 1. Network formulation of the capacitated t~ns~rtation problem (4.5). 
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-one dummy destination node (z) for the surplus supply with demand m.t 

-one arc from every source node i to every destination node j, if Jdii < d,,,, with cost dij and 
infinite capacity 

-one arc from every source node to z with cost 0 and capacity 2t. 

In order to reduce the number of arcs, different values of the maximal feasible distance d,,, were 
tested. Finally, 80 kilometers were chosen as an appropriate measure, which yields approximately 
20,000 arcs. Procedures for the solution of split areas in step 5 are described in the next section. 

5. RESOLVING THE SPLITS 

5.1. Problem formulation 

The procedure described so far yields an optimal basic solution (Xij) of (4.5) with at most m - 1 
split areas j, i.e. such that Xii > 0 for more than one territory i. When resolving the splits, we will 
preserve the main goal reached in the previous steps, the compact shape of the territories, by the 
following condition: a split area may only be assigned to a territory i if lij > 0. In this case we call 
i and j adjacent. Moreover, the territory sizes are restricted again by (4.2). The objective is now, 
according to the original aim no. 3 (cf. Section 2) to resolve as many splits as possible, thus 
minimizing the number of manual corrections. A perfect resolution of all splits is not possible under 
the above constraints. With the notation 

J’: set of split areas, 
I. 1. set of territories adjacent to any split area, 

F: the non-oriented graph with the vertex set I’ u J’ and the above adjacency (a forest, since 
(Xij) is a basic solution), 

u,: set of vertices adjacent to vertex u of F, 
U(V) set of vertices adjacent to any vertex u E V, 

ai: = 1 jl,, 
j,Jb’ 

size of territory i without split areas; 

we have to solve the problem: 

Maximize the number of edges (i, j) such that xij = bj, subject to 

iz,xij=bj O'EJ') 

I 

xij > 0 (iel’, jE J’). 
1 

Note that (~ij) is a feasible solution of (5.1). 

&infai+ 1 Xij<Amax 

NJi 
(i E Z’) (5.1) 

The simple tie breaking heuristic [l] (cf. Section 3), which was first tried, gave very poor results: 
for about 50% of the territories the size restriction (5.1) was violated, in many cases heavily. We 
then used a heuristic involving the transportation problem (4.5) outlined in Section 5.2, but too 
many splits remained unresolved (cf. Section 6). Finally, we developed a new heuristic using the 
tree structure of F for performing single feasible assignments. This will be presented in Section 5.3. 

5.2. A heuristic based on the transportation problem 

This heuristic simply consists of solving the transportation problem (4.5) repeatedly with the 
final centre locations fixed, and increasing the tolerance t stepwise by an increment A, starting 
from t = 0 up to a given limit. Each iteration includes the steps: 

(4 

@I 

(c) 

Cancel all edges in the network of Fig. 1, which are non-basic in the current solution, except 
those ending in the dummy destination. These edges correspond to non-adjacent territories 
and areas. 
Set Amin := Amin - A, A,,, I= A,,, + A. Thus, the supply in each source increases by A, the 
demand in z by mA and the capacity of each edge (i, z) by 2A. Hence the current solution 
is no longer feasible nor basic since the saturated edges (i, z) lose this property. 
Solve (4.5) again. 
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As the number B of basic edges (i,j) (j # z) can only decrease in step (c), the number of splits which 
equals B - n, can only decrease. 

We increase single variables xii (i E I’,j E J’) stepwise, starting from xii = 0, in either of two ways: 

(a) An obligatory partial assignment takes place, if for some (i,j) 

6, =: max(S,, 6,) > 0, 
where 

@I 

6, = bj - 1 (A,,, - ah) (5.2) 
heUj,h # i 

6, = Amin -ai- C b, 
koUi,k # j 

i 

because (5.1) implies xij Z 8, for any feasible solution. 
An arbitrary full assignment of area j, to territory i, takes place, if it proves to be feasible, 
i.e. leads to a feasible solution or to a solution which can be made feasible by further increases 
of variables. An obvious sufficient condition for this is 

5.3. A loea~ assignment heuristic 

ai, + C bj G-L+, 
jELli 

and (5.3) 
ai > Amin (ikz U,, i # iO). 

However, this condition is very strong and generally allows only a few assignments. The 
following theorem states a sufficient and necessary condition, assuming that all necessary 
partial assignments have been made. 

Theorem 

If (5.1) has a solution and Sij < 0 for any iEI’, ~EJ’, then there exists a solution (Xii) of (5.1) 
such that xioj, = b, if and only if 

a,, + bja < A,, (5.4) 

Proof: The necessity of (5.4) is obvious. From the theorem of Gale on the feasibility of the 
network model in Fig. 1, it follows that (5.1) is feasible if and only if 

C bj g C (A,,, - ai) (5.5) 
i=Jz idI 

for any J, c .I’ such that .Z, u U(J,) is connected in F, and 

(5.6) 

for any I, c I’ such that I, u U(2,) is connected in F, because (5.5) expresses that the demand does 
not exceed the supply in the set f, u U&Z,) with no entering edges, and (5.6) expresses that the 
supply minus the capacity of the outgoing edges (i, z) does not exceed the demand in f, u U(Z,), 
all other connected sets of vertices having entering and outgoing edges of infinite capacity. 

The additional condition Xiojo = b, reduces both the supply in i,, and the demand in j0 by bj,. 
Hence it preserves the feasibility if there is a slack of at least bj, in (5.5) for any .Z, such that j&J1 
and ie~ U(J,), and in (5.6) for any I, such that &,$I, and joe U(Z,). Let I,, J, be such sets and 
q0 the immediate successor of a vertex UEZ, uf, on the unique path in F from u to i,. Then, (cf. 
Fig. 2) the right hand side of (5.5) is equal to 

jIE, JI, (Amax - ai) + Am, - ai, 3 2: bj + bjo 
&J I 

i# qj 



528 BERNHARD FLEISCHMANN and JANNIS N. PARASCHIS 

0 Split area 

o Adjacent territory 

Fig. 2. Illustration of the proof. The dotted lines surround the vertex sets {i E Uj : i # qj} forjE J, and { js Ui : j # qi} for i E I,. 

as dqjj < 0 and (5.4), and the left hand side of (5.6) is equal to 

1 1 bj + bjo 2 C (&in - ai) + bj,, 
id* j&i id I 

j# 4i 

as diqi < 0 and (5.4). 

The idea of the procedure is first to perform partial assignments for any adjacent i, j with LSij > 0, 
and as soon as all 6ij < 0, full assignments using the theorem. Each assignment increases the size 
ai of the territory i and reduces the quantity 

~j: scores of area j, which are not yet assigned. 

Replacing bj by ~j in (5.4), the theorem can be applied recursively to any (io, j,) such that 

FjO > 0 and xiOj, + b”jj, = bjo (5.7) 

i.e. there has not yet been an assignment of area j, to any i # i,. Using the variables 

ai=ai+ 1 Fj (iel’) 
j&i 

Pj= 1 (Amax-ai)-Ej O’E J’) 
kLJj 

the calculation of aij is simplified as follows: 

6ij = max(a, - Ej - F&i,, /?j + Ui - A,,,). 

Then, each partial or full assignment between j and i includes the operations, with 6 = 6, or 6 = gjO, 
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respectively 

xij := xij + 6, Ui := Ui + 6, aj:=Kj-6, 

a,:=Cr,-6 (hEUj,h#i), /?k:=&-h (kEUi,k#j). 

(5.8) 

Unfortunately, these operations may again violate the condition a,,, < 0 for h E Ui or k E Uj. Hence 
it is necessary to check 6, for all edges (i,j) of F not only once, but in repeated runs. A full 
assignment according to the theorem is only possible after a complete run through all edges where 
no assignment has occurred. 

The efficiency of the procedure can be improved by the following organisation: 

1. Introduce an orientation of F such that each component is a rooted tree, and introduce a 
topological ordering of the vertices, excluding the roots, i.e. such that a vertex u is positioned 
before its unique successor qv, and process the edges (0, q”) in each run according to this order. 

2. At each assignment (5.8), label the immediate predecessors h of j and k of i. At the second 
and all further runs, check only edges (u, qJ where q, is labeled; for it is easy to see that the 
violation of 6ij < 0 cannot propagate downstream again. 

3. Even if bij < 0 has not yet been established for all i, j, the condition (5.3) for a full assignment 
can be weakened, observing that the scores gjO are disposable for any assignment in the current 
run, as soon as i = qj, has been reached. Then, the full assignment of j, to i, is feasible, if 
(5.7) holds and if 

b”jo + ai + Eqi < A,,,, for i, = i 

Ejo + ai, G Amax and ai 2 Ami,, for i, proceeding j,. I 

(5.9) 

Thus, the procedure consists of three phases: 

Phase I: A first run through all edges with partial assignments and full assignments according 
to (5.9). 

Phase 2: Further runs with only partial assignments according to point 2 above, until 6ij Q 0 
for all i, j. 

Phase 3: Check the edges for a full assignment according to the theorem. If none is possible, 
the procedure stops. After each assignment return to phase 2. 

This procedure can be implemented with a complexity of O(m*) as the following arguments show: 
let M be the number of edges of F, then M < 2m - 2. In phase 1, M edges are checked and at 
most M assignments (5.8) occur, each with at most M operations. In phase 3, at most M assignments 
occur, each requiring at most M preceeding checks. Every assignment in phase 1 or 3 entails at 
most one operation for every upstream edge in phase 2, either labeling its initial vertex in (5.8) or 
checking it, when the terminal vertex is labeled. 

6. RESULTS 

The solution procedure was programmed in FORTRAN 77 and tested on a SIEMENS 7882 
mainframe computer (12 MIPS) at the University of Hamburg. 

The time for the solution of the transportation problems varies between 10 s for the first iteration 
and approximately 6 s for all other iterations of the location-allocation procedure (cf. Section 4). 
The split resolving heuristic described in Section 5.3 needs only 1 s CPU-time. 

In order to verify compactness and to facilitate the presentation of the results the solutions were 
plotted in a frame of 140 cm x 85 cm, where each territory is represented by a star with a straight 
line between the center and each adjacent area, which can be identified by its postal code (cf. Fig. 
3). Regions with a high area density were additionally plotted on a larger scale. 

A first run with fixed territorial centers according to the present salesmen residences, showed 
the inappropriate geographical distribution of the salesmen in comparison with workload in the 
present structure. The plotted figures resembled comets with their tails in the south rather than 
stars (cf. Fig. 4), due to the large number of salesmen in the north and the large amount of scores 
in the south. This structure changes essentially after the first redefinition of the territorial centers. 
The solution of the second transportation problem already shows a good star structure. The 
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i~prQYemeRts itli the additional ~~atioR-a~l~ati~~ steps are r&H% rna~~~~a~~ so we decided to 
terminate the procedure after at in~st 9 iterations even w~tb~~t reaching a stationary sotuticra, 
Figures 4 aad 5 show the igeneral structttre of the ter~~to~~es after r~so~~~~g the splits, with fixed 
centers and after 9 iterations, respectively. An entire run needs approximately 270 s CPU-time, the 
main part of which is required by network generation taking 20 s in each allocation s&p- However, 
the darner of ite~tio~s could be reduced ta up to 4 without s~g~~ca~t changes in the solution 
structure, when CPU-time is a problem. 

The results of both of the split resohing heuristics are &Ited by tke parameters of the p~e~~o~s 
dfocation p~o~d~re~ i-e, the limits Ami,tt A,,, in (4.15) and the R~rn~r k,,, of location ite~a~o~s: 
tbe best results are obtained, if the tolerance in the previous step was 0, Le. Amin I- A,,, = A” in 
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Fig. 5. Territories after 9 iterations (splits resolved). 

(4.5). Otherwise the allocation procedure uses up the tolerance for globally compensating customer 
distribution, resulting in territory sizes which are all at the lower limit in the north and at the 
upper limit in the south, and leaving no free scope for resolving the splits. Also, the splits are easier 
to resolve after several location iterations than after the first allocation with the initial center 
locations, as Table 2 shows. We therefore used the tolerance 0 in the location-allocation stage and 
then increased the tolerance step by step, even for the local assignment heuristic. The advantage 
of this procedure is that firstly the splits are resolved as far as possible under tighter restrictions 
and the larger tolerances are used only in a small number of the cases, and secondly management 
sees the trade-off between the tolerance and the number of unresolved splits. 

In all cases, the local assignment heuristic gave better results than the heuristic based on the 
transportation problem. We also tried to apply the former after the latter. The result was nearly 
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Table 2. Number of unresolved splits 
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Tolerance (%) 

Initial allocation 9 location iterations 

Heuristic of section Heuristic of section 
5.2 5.3 5.2 5.3 

0 161 161 156 156 
2 122 96 105 85 
4 100 75 88 56 
6 86 61 66 33 
8 77 49 56 29 

10 69 40 48 26 

the same as for the local assignment heuristic alone, with the same number of splits left and 
differences in two territories only. 

A refinement of the model, suggested by the analysis of the first results, was the consideration 
of geographical obstacles, such as the lower course of the rivers Elbe and Weser without bridges. 
But instead of modifying the calculation of the distances as usually, we rather chose a simpler way 
for involving obstacles: the user may define a list of forbidden assignments between certain areas 
and initial territorial centers, very short in our case, which causes the corresponding edges to be 
suppressed when the network of (4.5) is generated. 

The ease of the total procedure and the final result satisfied management perfectly. The remaining 
manual work is less than expected and extremely light compared with previous experience. The 
26 final splits consist of 23 areas with 2 adjacent territories, 1 area with 3 adjacent territories and 
1 chain of 2 areas and 3 territories. Hence, the split areas, whose size ranges between 18.5 and 
112.8 with a mean of 59, are nearly independent and can be subdivided easily. 

The above calculations have served as a successful test of the whole system. However, they also 
revealed shortcomings in customer data, in particular wrong or missing postal codes. In the 
meantime, the data have been revised and the system has been used for fixing new territories 
definitively. 
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