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Sales force deployment involves the simultaneous resolution of four interrelated subprob-
lems: sales force sizing, salesman location, sales territory alignment, and sales resource

allocation. The first subproblem deals with selecting the appropriate number of salesman. The
salesman location aspect of the problem involves determining the location of each salesman
in one sales coverage unit. Sales territory alignment may be viewed as the problem of
grouping sales coverage units into larger geographic clusters called sales territories. Sales
resource allocation refers to the problem of allocating scarce salesman time to the aligned sales
coverage units. All four subproblems have to be resolved in order to maximize profit of the
selling organization. In this paper a novel nonlinear mixed-integer programming model is
formulated which covers all four subproblems simultaneously. For the solution of the model
we present approximation methods capable of solving large-scale, real-world instances. The
methods, which provide lower bounds for the optimal objective function value, are bench-
marked against upper bounds. On average the solution gap, i.e., the difference between upper
and lower bounds, is about 3%. Furthermore, we show how the methods can be used to
analyze various problem settings of practical relevance. Finally, an application in the beverage
industry is presented.
(Marketing Models; Sales Force Sizing; Salesman Location; Sales Territory Alignment; Sales Resource
Allocation; Application/Distribution of Beverages)

1. Introduction
In many selling organizations, sales force deployment
is a key instrument in allowing sales management to
improve profit. In general, sales force deployment is
complicated and has attracted much analytical study.
It involves the concurrent resolution of four interre-
lated subproblems: Sizing the sales force calls for
selecting the appropriate number of salesmen. The
salesman location aspect of the problem involves
determining the location of each salesman in one of
the available sales coverage units (SCUs). Sales terri-
tory alignment may be viewed as the problem of
grouping SCUs into larger geographic clusters called
sales territories. Sales resource allocation refers to the
problem of allocating salesman time to the assigned

SCUs. Research has yielded several models and meth-
ods that can be helpful to sales managers.

This paper tackles all four subproblems simulta-
neously to maximize the profits of the selling organi-
zation. To do so, we develop a novel nonlinear mixed-
integer programming model. For the solution of the
model we present approximation methods capable of
solving large-scale, real-world instances.

The paper is structured as follows: In §2 we review
previous research. In §3 the problem setting is de-
scribed in terms of a nonlinear mixed-integer pro-
gramming model. A fast method for approximately
solving large-scale problem instances is presented in
§4. The results of an in-depth experimental study are
covered in §5. Section 6 discusses insights for market-
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ing management. In §7 we describe the results of an
application to a practical case arising in the beverage
industry. A summary and conclusions are given in §8.
In Appendix A we provide a mixed-integer linear
programming model for computing upper bounds. In
Appendix B the procedures are described formally.
Appendix C covers special cases and extensions.

2. Background and Previous
Research

The selection of the SCUs depends upon the specific
application. SCUs are usually defined in terms of a
sales force planning unit for which the required data
can be obtained. Counties, zip codes, and company
trading areas are some examples of SCUs (cp., e.g.,
Zoltners and Sinha 1983, Churchill et al. 1993). Note
that it is beneficial to work with aggregated sales
response functions on the level of SCUs rather than
with individual accounts, because substantially fewer
response functions need to be estimated and the
model size does not explode (cp., e.g., Skiera and
Albers 1996).

Sales resource allocation models consist of several
basic components, i.e., sales resources, sales entities,
and sales response functions. Specific definitions for
these components yield specific sales resource alloca-
tion models; cp. Zoltners and Sinha (1980) and Albers
(1989).

The sales force sizing subproblem has been ad-
dressed, for example, by Lodish (1980). However, the
salesman location subproblem has not been the subject
of research in the context of sales force deployment so
far; our work closes this gap. Among the four interre-
lated subproblems, the alignment subproblem has
attracted the most attention so far. Several approaches
concerning this problem have been published. They
can be divided into those that depend upon heuristics
and those that utilize a mathematical programming
model. Heuristics have been proposed by Heschel
(1977), among others. Two types of mathematical
programming approaches have been developed.
Shanker et al. (1975) formulated a set-partitioning
model. Alternatively, the models proposed by Segal
and Weinberger (1977) as well as those of Zoltners and
Sinha (1983) are SCU-assignment models. The sales

resource allocation subproblem has been analyzed by
Beswick (1977) and Zoltners et al. (1979).

Some of the papers published so far on the align-
ment subproblem have been aimed at aligning sales
territories in an attempt to balance one or several
attributes. The most popular balancing attributes are
sales potential or the workload of the salesmen. A
detailed discussion of the shortcomings of the balanc-
ing approaches can be found in Skiera and Albers
(1996, 1998).

Glaze and Weinberg (1979) address the three sub-
problems of locating the salesmen, aligning accounts,
and allocating calling time. More specifically, they
present the procedure TAPS, which seeks to maximize
sales for a given salesforce size while also attempting
to achieve equal workload between salespersons and,
in addition, minimize total travel time.

Recently, Skiera and Albers (1994, 1996) formulated
a model that addresses the sales territory alignment
and the sales resource allocation problem simulta-
neously. For the solution of their model they propose
a simulated annealing heuristic. The objective of their
model is to align SCUs and to allocate resources in
such a way that sales are maximized. Yet, their model
only addresses two of the subproblems covered by our
model; hence, it is a special case. While both ap-
proaches allow the computation of feasible solutions,
i.e. lower bounds, an additional advantage of our
approach is that it also allows the determination of
upper bounds. In our opinion, it is theoretically more
sound to compare lower with upper bounds than to
compare lower bounds with each other.

3. Nonlinear Mixed-Integer
Programming Model

The greater the size of the sales force, the more
customers can be visited, which in turn has a positive
impact on sales. On the other hand, increasing the size
of sales force tends to increase the operational costs
per period. In addition, the number of possible calls to
customers, the operational costs, and the salesmen’s
resource (time) that might be allocated to customers is
affected by the location of the salesmen, too. To make
things even more complicated, the alignment decision
is very important for all these issues as well. Clearly,
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we have to take care of all the mutual interactions of
the different factors affecting the quality of the overall
sales force deployment. The aim of the following is to
provide a formal model which relates all the issues to
each other.

Let us assume that the overall sales territory has
already been partitioned into a set of J SCUs. The
SCUs have to be grouped into mutually disjointed
sales territories (clusters), such that each SCU j � J is
assigned to exactly one cluster and the SCUs of each
cluster are connected. In each cluster a salesman has to
be located in one of the assigned SCUs, called sales
territory center. Note that connected means that we can
“walk” from a location to each assigned SCU without
crossing another sales territory. I � J denotes the
subset of SCUs that are potential sales territory cen-
ters. To simplify notation, i � I denotes both the sales
territory center i and the salesman located in SCU i.

In practice, selling time consists of both calling time
and travel time. For notational purposes, let z i, j denote
the calling time per period that is spent by salesman i
to visit customers in SCU j. Further, assume b j � [0,
1] to denote the calling time elasticity of SCU j and g j

� 0 a scaling parameter. Then

Si,j � gj�zi,j�
bj (1)

defines expected sales S i, j, i � I, j � J, as a function
of the time to visit customers. More precisely, Equa-
tion (1) relates z i, j to S i, j for all sales territories i � I
and SCUs j � J. Hence, via b j it is possible to take care
of the fact that a firm’s competitive edge might be
different in different SCUs. Note that expected sales
are defined via concave rather than s-shaped func-
tions, as is assumed to be the case with individual
accounts (cp. Mantrala et al. 1992).

Let t i, j denote the selling time of salesman i � I in
SCU j � J. Note that t i, j includes the time to travel
from SCU i to SCU j, the time to travel to customers in
SCU j, and the customer calling time, respectively.
Then, p i, j � z i, j/t i, j relates the calling time z i, j to the
selling time t i, j. Substituting z i, j in Equation (1) for
p i, jt i, j yields

Si,j � gj�pi,jt i,j�
bj � ci,j�ti,j�

bj. (2)

Note that Equation (2) was first proposed by Skiera
and Albers (1994). In Equation (2), the parameter

ci,j � gj�pi,j�
bj (3)

is introduced. The symbol c i, j measures the sales
contribution when SCU j is part of sales territory i
where c i, j is a function of p i, j. This is best illustrated as
follows: Suppose that for salesman i the travel times to
customers in SCUs j and k are different. Then, in
general, p i, j and p i,k will also be different. Clearly, this
produces different parameters c i, j and c i,k—and puts
emphasis on the location decision.

Equations (2) and (3) introduce the idea that selling
time is a constant proportion of the travel time within
an SCU, and this proportion is independent of the
amount of effort allocated to an SCU. Conditions
under which this is likely to be met are a relatively
homogeneous customer base within an SCU, not too
many nontraversible barriers within an SCU, etc.

Now we are ready to state the model formally. We
summarize the model parameters

J: set of SCUs, indexed by j;
I: set of SCUs (I � J) for locating salesmen, indexed

by i;
� j: set of SCUs which are adjacent to SCU j;
f i: per period fixed cost for locating a salesman in

SCU i;
c i, j: expected contribution if SCU j is covered by the

salesman located in i;
b j: calling time elasticity of SCU j;
T i: total selling time available per period for sales-

man i;
introduce the decision variables

x i, j: �1, if SCU j is assigned to the salesman located
in SCU i ( x i, j � 0, otherwise);

t i, j: selling time allocated by the salesman located in
SCU i to SCU j (t i, j � 0);
and formulate a nonlinear mixed-integer program-
ming (NLP) model as follows:

maximize ZNLP�x, t� � �
i�I

�
j�J

ci,j�ti,j�
bj � �

i�I

f ixi,i (4)

subject to

ti,j � Tixi,j �i � I, j � J�, (5)

�
j�J

ti,j � Tixi,i �i � I�, (6)
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�
i�I

xi,j � 1 �j � J�, (7)

�
j��v�V�v�V

xi,j � �
k�V

xi,k � 1 � �V� (8)

�i � I, V � J � � i � i�,

xi,j � �0, 1� �i � I, j � J�, (9)

ti,j � 0 �i � I, j � J�. (10)

Objective (4) maximizes sales while taking the fixed
cost of the salesman locations into account—and
hence maximizes profit contribution or profit for
short. The salesman i is allowed to allocate selling time
to SCU j only when SCU j is assigned to him (cp.
Equation (5)). Equation (6) guarantees that the maxi-
mum workload per period (consisting of travel and
call time) and per salesman is regarded. Equation (7)
assigns each SCU to exactly one of the salesmen.
Equation (8) guarantees that all the SCUs assigned to
one sales territory are connected to each other. Equa-
tions (9) and (10) define the decision variables appro-
priately.

The model (4) to (10) has linear constraints, but a
nonlinear objective. Furthermore, we have continuous
and binary decision variables. Therefore, there is no
chance of solving this model with standard solvers. In
Appendix A it is shown how the objective function
can be linearized in order to make the model accessi-
ble to mixed-integer programming (MIP) solvers.
This makes it possible to compute upper bounds for
medium-sized problem instances that in turn facilitates
the evaluation of the performance of the heuristics.

As already mentioned, Equation (8) guarantees that
all the SCUs assigned to one sales territory are con-
nected with each other. These equations work simi-
larly to constraints destroying short cycles in traveling
salesman model formulations. Unfortunately, their
number is exponential in the worst case; hence, we
proceed as follows: Start with all constraints except
(8). Solve the model and check the solution as to
whether some of the constraints (8) are violated. Add
them to the constraint set, reoptimize, and so on until
no constraint is violated. Consider, for instance, the
following situation where SCUs 2 to 4 are adjacent to

SCU 5, but SCU 1 is not. Now assume that SCUs 1 and
5 are assigned to salesman (SCU) 5 in the current
solution, for example. Then the constraint x 5,2 � x 5,3

� x 5,4 � x 5,1 � 0 enforces (for V � {1}) that at least
one of the neighbors 2, 3, or 4 of SCU 5 has to be
assigned to salesman 5. Adding this constraint to the
preexisting constraint set then probably generates a
feasible solution via reoptimization. In general, only a
couple of iterations are necessary in order to come up
with a solution where all adjacency constraints (8) are
fulfilled. Clearly, it would be sufficient to take care of
connected subsets V � J � � i � i, i � I, of SCUs
only. Obviously, this procedure is only practical when
applied to the MIP-approximation presented in Ap-
pendix A. When solving NLP with approximation
methods Equation (8) is satisfied “directly.”

Adjacency of SCUs “physically” has the following
meaning. Without loss of generality assume that the
shape of the SCUs is described by polygon lines. Then,
two SCUs are adjacent if they share at least one line of
the polygon. Practically, this implies that two such
SCUs can be assigned to the same salesman. In §5.1,
where we describe the instance generator used in this
study, “adjacency” is formally defined. Moreover, in
§7 we provide insight into what adjacency means in
practice with respect to nontraversible obstacles, for
example.

So far we have not mentioned the following as-
sumption covered by our model: x i,i � 1 means that
SCU i is assigned to the salesman located in sales
territory i. In other words, x i,i � 1 does not only tell us
where to locate salesman i, it also defines how to align
SCU i. This assumption is justified with respect to
practice. Moreover, we assume by definition of the
binary alignment variables x i, j � {0, 1} that accounts
are exclusively assigned to individual salesmen. Note
that this is an assumption in marketing science and
marketing management for several appealing reasons.

Clearly, all the parameters of the sales response
function (1) have to be estimated. This can be done as
follows if a sales territory alignment has already
existed for several periods, i.e., if our concern is to
rearrange an already existing sales territory align-
ment. Then data for each SCU about the sales, the time
to travel to customers, as well as the time to visit the
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customers are already available. Usually, this data can
be extracted from sales reports. In this situation b j and
g j can be estimated as follows. Transform Equation (1)
to Equation (11):

ln�Si,j� � ln�gj� � bj ln�zi,j�, (11)

and then calculate estimates of b j and g j via linear
regression. Finally, for the computation of c i, j we need
estimates of p i, j. In this regard, the time to travel from
SCU i to SCU j and the time to visit the customers
within SCU j are required. If salesman i has already
covered SCU j in the past we just have to look at his
sales reports. Otherwise, we assume that the time to
travel within an SCU is independent of the salesman.
Then the only data required for a salesman k 	 i is the
time to travel from k to i. This is easily available, e.g.,
from commercial databases or simply by assuming
that the travel time is proportional to the travel
distance. In the case of the sales territory having to be
designed from scratch, more effort is necessary. Un-
fortunately, going into detail is beyond the scope of
this paper.

Our model addresses a medium-term problem.
On a short-term basis, changes of specific salesper-
sons probably occur frequently. In this situation,
marketing management in general will not resize,
relocate, realign, or reallocate the overall sales ter-
ritory after each change. Hence, sales force deploy-
ment has to be done with respect to salespersons
whose effectiveness is “average.” Having deployed
the sales force by means of our medium-term
model, then operationally some further issues need
to be addressed by each salesman periodically. He
has, for instance, to decide upon the routing and
scheduling when visiting his customers. Rush-
hours, etc. must be taken into account. Also, the
total selling time may vary from period to period,
having the agency theorists view this to be a sales-
mans choice variable. Clearly, the outcome of such
operational decisions will, in some cases, question
the input parameters of the medium-term model.
Nevertheless, the deployment of the sales force
while taking average data into account is justified.
Note that in §6 we will show that the results are

very robust with respect to incorrect estimates of
parameters (cp. Table 3).

The four interrelated subproblems are addressed in
our model by the decision variables x i, j and t i, j. Let x*i, j

and t*i, j denote an optimal solution for a given problem
instance. Then we can make the following statements:
(i) The optimal size of the sales force ��� which
corresponds to the optimal number of sales territories
(clusters) is given by the cardinality of the set �
� {i�x*i,i � 1}. (ii) For each of the sales territories in the
set � the SCU i with x*i,i � 1 is the optimal location of
the salesman, i.e. the optimal sales territory center. (iii)
For each sales territory i � � the optimal set � i of
aligned sales territories or SCUs is given by � i � { j�x*i, j

� 1}. (iv) Finally, t*i, j � 0 is the optimal sales resource
allocation for i � � and j � � i. This interpretation of
an optimal solution x*i, j and t*i, j illustrates that the
model is “lean” in the sense that two types of decision
variables cover all the four subproblems of interest.
This suggests that the model is in fact a suitable
representation of the overall decision problem. More-
over, it comprises the first step towards a solution of
the problem.

The aim of the following section is to present
heuristic methods which balance computational trac-
tability with optimality.

4. Approximation Methods
This section discusses a solution approach which has
been developed specifically for the model. Two rea-
sons led to this development. First, standard methods
of mixed-integer programming seem to lend them-
selves to solving the linearized version of the model.
However, even for modestly sized problems the for-
mulation translates into very large mixed-integer pro-
grams which in turn result in prohibitive running
times. In fact it is conjectured that, except for smaller
problem sizes, no exact algorithm will generally pro-
duce optimal solutions in a reasonable amount of
time. Second, apart from exact methods, no heuristic is
available for solving the model so far. The simulated
annealing procedure of Skiera and Albers (1994, 1996)
solves two of our subproblems, i.e. the sales territory
alignment and the sales resource allocation. Unfortu-
nately, it does not tackle the sales force sizing and the
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salesman location subproblems. In addition, although
dealing only with two of the four subproblems, in
general the running times of the simulated annealing
procedure do not allow the solution of large-scale
problem instances in a reasonable amount of time.

The basic idea of our heuristic is very simple and
can be summarized as follows: For a given sales force
size, start with an initial location for each salesman.
Try alternate sales locations to obtain improved loca-
tions. For each set of salesman locations align the sales
territory in a greedy manner with an SCU going to the
salesman based on the resulting marginal increase in
the objective function. This procedure is repeated for
different sales force sizes (exploiting the fact that the
objective function is concave). Once an initial feasible
solution is obtained, it is improved by testing feasible
exchanges for territory alignment. The heuristic may
be characterized as a construction and improvement
approach. It consists of the Procedure Construct and
the Procedure Improve. The Procedure construct de-
termines the sales force size and hence the number of
salesmen. In addition, it calls two other procedures:
The Procedure Locate which computes the SCU in
which each salesman has to be located and the Proce-
dure Align which aligns the SCUs to the already
existing sales territory centers. The Procedure Im-
prove systematically interchanges adjacent SCUs of
two different clusters. This way it improves the feasi-
ble solution, which is the outcome of the Procedure
Construct.

Note that the sales resource allocation subproblem
can be solved by Equation (13) or by Equation (14) as
soon as all sales territories are aligned. Now, we
describe the procedures designed to generate feasible
solutions followed by the description of Equations (13)
and (14). Then the improvement procedure will be
presented.

4.1. Compute Feasible Solution
Recall that J denotes the set of SCUs, I � {i 1, . . . , i �I�}
is the set of SCUs that are potential locations, and � j

denotes the set of SCUs that are adjacent to SCU j,
respectively. In addition, let denote

S: the minimum number of sales territory centers
that might be established (S � 0);

S� : the maximum number of sales territory centers
that might be established (S� � �I�);

s: the “current” number of sales territory centers (S
� s � S� );

I 1: the set of selected locations (�I 1� � s, I 1

� {i 1, . . . , i s});
I 0: the set of nonselected locations (I 0 � I 1 � A, I 0

� I 1 � I);
L(I 1): the locations (i.e. SCUs) of the sales territory

centers i � I 1;
j(i): the SCU j where sales territory center i � I 1 is

located;
i( j): sales territory center i to which SCU j is

assigned;
J 0: the set of SCUs that are not yet aligned (initially

J 0 � J�� i�I1
j(i));

J i: the set of SCUs that are aligned to sales territory
center i � I 1;

C i: sum of sales contributions of location i � I 1 (C i

� ¥ j�J i
c i, j);

LB: a lower bound on the optimal objective function
value.
Based on these definitions, the set � i of SCUs, which
might be aligned to sales territory center i, may be
formalized according to Equation (12):

� i � � k�Ji �k � J0. (12)

Note that the number of sales territory centers equals
the number of salesmen (i.e. the sales force size),
which in turn equals the number of locations. There-
fore, some of the newly introduced parameters are
superfluous, but this redundancy will be helpful for
the description of the procedures.

In the following, Z will denote the objective
function value of a feasible solution at hand.
Clearly, Z is a function of the decision variables x i, j

and t i, j. The algorithms do not operate on the set of
x i, j variables, only the t i, j variables will be used
directly. Subsequently, it will be more convenient to
express the x i, j decisions also partly in terms of the
number of salesman s and in terms of L(I 1), respec-
tively. Redundancy will simplify the formal descrip-
tion and ease understanding substantially. With
respect to this redundancy, Z(. . .) will be used in
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different variants, but from the local context it will
be evident what it stands for.

We introduce a global variable lose[h, i], h � I, i
� I, which is used for locating the salesmen in the set
of potential locations. More precisely, this variable
counts the number of times the best current nonse-
lected “loser” location does not succeed in pushing
away the selected “winner” location. That is, alternate
locations are selected based on the function lose[h, i]
for obtaining improved locations. The current “best”
loser i is defined as the nonselected location i � I 0,
which so far has lost the least number of times against
the winner i k � I 1. Loser i is supposed to have the best
chances of pushing i k away. In other words, i acts as a
“challenger” to i k. If i does not succeed in pushing i k

away then the global variable is incremented and,
hence, the chance of i being reselected as a challenger
decreases. The global variable lose[h, i] is used in the
Procedure Locate as in tournament selection. The
tournament is finished when the best nonselected
“player” does not win against any other “player” i k

� I 1. This is an effective means of selecting some
elements of a probably large set quickly.

A formal description of the Procedure Construct is
given in Table 6 (cp. Appendix B). It consists of an
overall loop which updates the current number s of
salesmen under consideration. Then it passes calls to
Procedure Locate and to Procedure Align and after-
wards evaluates the resource allocation by Equation
(13) or (14). Finally, the objective function values Z(s,
x, t) and Z(s � 1, x, t) are compared with the
best-known lower bound LB which is updated when-
ever possible. Note, the number of salesmen s for
which a search is performed is, without loss of gener-
ality, restricted to the interval S � S� . Note that for
“reasonable” parameters c i, j and f i the objective func-
tion is concave with respect to the sales force size.
Therefore, “gradient search” within the interval S � s
� S� is implemented in the Procedure Construct.

When a call to Procedure Locate (cp. Table 7) is
passed, we start with �I 1� � s, I 0 � I�I 1, which implies
I 1 � I 0 � A and I 1 � I 0 � I and initializes L(I 1). Note
that the Procedure Locate uses only the current num-
ber s of locations as a calling parameter. The for-loop
tells us that, as starting locations L(I 1), the “first” �I 1�

elements of the set I of potential locations are chosen.
Recall that i k � I 1 denotes the winner location that the
best loser tries to push away. The set I 1 � (I 1�i k) � h
temporarily changes the role of the winner i k and of
the loser h. If h has no success, this operation has to be
reversed. The procedure stops when no further im-
provement of the set of locations can be found within
the for-loop. As an outcome we know the locations
L(I 1) of the current number s of salesmen.

Capitalizing on the definitions given above a com-
pact description of the Procedure Align is given in
Table 8. Within the while-loop one of the not yet
aligned SCUs is chosen and aligned to one of the
already existing sales territory centers. The Procedure
Align is greedy in the sense that the steepest ascent of
the objective function is used as the criterion for the
choice of the next SCU to be aligned. More precisely,
the choice depends on the ratios c h,i/C i, i.e., the
rationale is to take care of the relative weights of the
expected sales contributions.

Clearly, as a final step of the overall Procedure
Construct, the sales resource allocation subproblem
has to be solved. This is done by evaluating Equation
(13) or (14).

ti,j �
�ci,jxi,j�

a

¥h�Ji �ci,h�
a � Ti �i � I, j � J�. (13)

In the case of b j � b @j � J where a � 1/(1 � b),
Beckmann and Golob (1972) have shown that Equa-
tion (13) provides the optimal resource allocation
respecting a given total selling time T i (cp. Einbu 1981
also). In the general case where b h 	 b j, h � J, j � J,
h 	 j, allocation is done by Equation (14). The symbols
a j � 1/(1 � b j) and � i � 1/(1 � � i) are used for
short, where � i is the “average” elasticity which has to
be calculated by bisection search (for details, cp. Skiera
and Albers 1994).

ti,j � � �ci,jbj�
�i

¥h�Ji �ci,hbh�
ah

� Ti� �aj/� i�

�i � I, j � J�. (14)

4.2. Improve Feasible Solution
In general, feasible solutions at hand can easily be
improved by the following simple Procedure Im-
prove. For a compact description of the procedure, we
define two boolean parameters:
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add�Ji, j� � � TRUE if Ji � j is connected,
FALSE otherwise,

drop�Ji, j�

� � TRUE if Ji�j is connected and j 	 j�i�,
FALSE otherwise.

The function add( J i, j) defines only those alignments
as feasible where we add SCU j to the sales territory J i,
such that the newly derived sales territory consists of
connected SCUs only. Similarly, the function drop( J i,
j) only permits alignments to be feasible when we drop
SCU j 	 j(i) from sales territory J i without running
into disconnectedness. In other words, both functions
define those moves of an SCU j to/from a sales
territory J i as feasible where the outcome does not
violate the connectivity requirement. As a conse-
quence, only those SCUs are suspected move candi-
dates that are located on the border of each of the sales
territories. In this respect the functions add( J i, j) and
drop( J i, j) are complementary. As a consequence, the
Procedure Improve might be characterized as an in-
terchange method, too. Clearly, the resource allocation
t i, j has to be updated with respect to each move by
evaluating Equation (13) or (14).

A formal description of the Procedure Improve is
given in Table 9. For the sake of compactness, the
calling parameter J � ( J 1, . . . , J s) denotes the vector
of sales territory alignments currently under investi-
gation, and Z( J) the corresponding objective function
value, respectively. Z( J�J i( j)�j, J i � j) tells us that the
objective function value has to be computed with
respect to the current alignment under investigation
where SCU j is subtracted from sales territory J i( j),
while sales territory J i is augmented by SCU j. Clearly,
the computation of the objective function also requires
an update of the resource allocation t i, j via Equation
(13) or (14).

Apparently, the Procedure Improve belongs to the
variety of local search methods. To keep our explana-
tions as simple as possible, we distract our attention
from the resource allocation t i, j for the moment. Then,
starting with an incumbent sales territory alignment x
� ( x i, j), we search all its neighbors x̂ � �( x), where
�( x) equals the set of feasible solutions that are
properly defined by the functions add( J i, j) and

drop( J i, j). �( x) is called neighborhood of x. Search-
ing over all neighbors x̂ � �( x) in a steepest ascent
manner may be characterized as a “best fit strategy.”
By contrast, a “first fit strategy” might be less time
consuming while presumably producing inferior re-
sults.

5. Experimental Evaluation
The outline of this section is as follows: First, we
elaborate on the instances used in our computational
study. Second, we describe how to compute bench-
mark solutions to judge the performance of the meth-
ods presented in the preceeding section. Third, nu-
merical results will be presented.

Even in current literature, the systematic generation
of test instances does not receive much attention.
Generally, two possible approaches adopted in litera-
ture can be found when having to come up with test
instances. First, consider practical cases. Their strength
is their high practical relevance while the obvious
drawback is the absence of any systematic structure
allowing the inference of any general properties. Thus,
even if an algorithm performs well in some practice
cases, it is not guaranteed that it will continue to do so
in other instances as well. Second, consider artificial
instances. Since they are generated randomly accord-
ing to predefined specifications, their advantage lies in
the fact that fitting them to certain requirements such
as given probability distributions poses no problems.
However, they may reflect situations with little or no
resemblance to any problem setting of practical inter-
est. Hence, an algorithm performing well on several
such artificial instances may or may not perform
satisfactorily in practice. Therefore, we decided to
devise a combination of both approaches, thereby
attempting to keep the strengths of both approaches
while avoiding their drawbacks. More precisely, first
we evaluated the methods on a set of instances which
had been generated at random (cp. §5.1 to §5.3).
Second, we applied the systematically evaluated
methods to a practical case (cp. §7).

5.1. Generation of Instances
We assumed that only two instance-related factors
have a major impact on the performance of the algo-
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rithms, viz. the cardinality of the set I of potential sales
territory centers and the cardinality of the set J of
SCUs, respectively. Both factors relate to the “size” of
a problem, hence (I, J) denotes the size of an instance.

When generating instances at random a critical part
is the specification of a connected sales territory. To do
so, we employ the Procedure Generate, which is able
to generate a wide range of potential sales territories
while preserving connectivity. The basic idea is to
define a set K � {1, . . . , 2 � Q} 
 {1, . . . , 2 � Q} with
K � J of unit squares located on a grid. For every unit
square (�, �) � K, the set of adjacent unit squares
�(�,�) or neighbors is defined as follows:

� ��,�� � ����̃, �̃� � K���̃ � ��

� 1, ��̃ � �� � 1����, ���.

The Procedure Generate is formally described in Table
10. The set of sales territory centers I and the set of
SCUs J are used as calling parameters. Note that,
starting with the “central” unit square � � {(Q, Q)},
the set � is incremented until it equals the set of SCUs
J, which have to be generated while preserving the
connectivity of the sales territory. Similarly to the
Procedure Align, � denotes the set of those unit
squares of the grid which are candidates for the
alignment to the already generated sales territory. In a
last step, the set of sales territories I is chosen at
random.

It is easy to verify that the Procedure Generate is
capable of producing a large range of sales territories
shaped quite differently. Nevertheless, the question is
whether this construction process, which basically
relies on unit squares and hence on SCUs of equal size,
produces instances which are meaningful to the meth-
ods to be evaluated. The answer is “yes” because the
grouping, i.e. building of larger units, is just what the
Procedure Align does.

A summary of the instances treated in the compu-
tational study can be given as follows.1 (i) The set of
SCUs J is given by {50, 100, 250, 500}. (ii) The set of
potential sales territory centers I is given by {10, 25,
50}. (iii) The scaling parameter g j is chosen at random

from the interval [10, 210]. (iv) The expected sales c i, j

are equal to g j( p i, j)
b where p i, j is computed as follows:

pi,j � max�0, 0.4 �
�� i � � j� � �� i � � j�

100 � ;

b was set to 0.3 with respect to empirical findings of
Albers and Krafft (1992). (v) The fixed costs f i of sales
territory centers are drawn at random from the inter-
val [750, 1,250]. (vi) The maximum workload T i per
period and salesman is set to 1,300 for all i � I. This
is an estimate of the annual average time salesmen in
Germany have to work (cp. Skiera and Albers 1994).
(vii) The lower bound S for the number of sales
territory centers is set to 0 while the upper bound S�

equals �I�.
The adjacency structures generated by our proce-

dure can be summarized as follows: The instances
with J � 500 (1,000) SCUs have 6.81 (6.94) neighbors
on average. An evaluation of the adjacency structure
for 1,144 pharmaceutical SCUs in Germany reveals
only 5.541 neighbors on average, while the application
presented in §7 shows 5.73 neighbors. Hence, the
problems generated have a high level of connectivity.

Note that to calculate the scaling parameter g j at
random as described above might not be the best
choice if the data is spatially autocorrelated. While it is
certainly not that difficult to generalize the generator
such that autocorrelation is also covered we do not
follow these lines here for the following reason: The
practical case described in §7 has spatially autocorre-
lated data. Solving the practical case with our proce-
dures is by no means more difficult than solving the
artificial instances (details are provided below).
Hence, we refrain from introducing more parameters
to attain a more “realistic” instance generator.

Clearly, only “reasonable” combinations of J and I
are taken into account (details are provided below). In
addition, because of the computational effort required
to attempt all the sizes, only ten instances for each
instance class ( J, I) were considered in the experi-
ment.

5.2. Computation of Benchmarks
Unfortunately, it is not possible to solve the NLP-
model (4) to (10) by the use of a “standard” solver.
Hence, even for small-sized problem instances there is

1 Available via ftp://www.wiso.uni-kiel/pub/operations-research/
salesforce.
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no “direct” way to obtain benchmarks. In Appendix
A, the model (4) to (10) is reformulated as a mixed-
integer linear programming (MIP-) model, such that
upper bounds of the optimal objective of the NLP-
model and, hence, benchmarks can be computed. The
MIP-model can be solved directly by the use of one of
the commercially available MIP-solvers. This way it is
possible to compute upper bounds for problems hav-
ing up to J � 500 SCUs and I � 50 sales territories in
a reasonable amount of time.

5.3. Computational Results
The algorithms have been coded in C and imple-
mented on a 133 Mhz Pentium machine under the
operating system Linux. The parameter K of the
Procedure Generate is defined as K � FAC 
 �J�
where FAC � 1.5 has been used. Note that FAC � 1
serves to generate sales territories where not all units
form part of the overall sales region, i.e. lakes and
other “nonselling” regions can be included also.

Table 1 provides a comparison of lower and upper
bounds. Columns 1 and 2 characterize the instance class,
i.e. problem size under consideration in each row in
terms of �J� and �I�, respectively. Columns 3 and 4 report
the results which have been obtained using the LP-solver
of CPLEX (cp. Bixby and Boyd 1996). More specifically,
Column 3 provides the average upper bound UB, which
has been obtained by solving the LP-relaxation of the
linearized version. Column 4 shows the average CPU-
time in seconds required to compute UB. Recall that
averages over ten instances for each row, i.e. instance
class ( J, I), are provided. Columns 5 to 7 with the header

CONIMP present the results of the Procedures Construct
and Improve. More specifically, LB cites the average best
feasible solution, i.e., lower bound computed. CPU de-
notes the average CPU-time in seconds required by the
algorithms to compute LB. 
1 denotes that the average
is only an � above zero seconds. Finally, GAP � (UB
� LB)/UP � 100 measures the average percentage devi-
ation between upper and lower bound, i.e., the solution
gap. Note that GAP covers both the tightness of the
LP-relaxation and the deviations of the lower bounds
obtained from the (unknown) optimal objective function
values. On average, the solution gap roughly equals 3%.
Hence, the feasible solution computed indeed must be
very close to the optimal one.

Now the question shall be answered as to which of
the Procedures—Construct or Improve—contributes
to what extent to the fact that the lower bounds are
very close to the optimum. Table 2 provides an
answer. The header CON groups the data provided
with respect to the Procedure Construct while the
header IMP does so for the Procedure Improve. In the
former case LB denotes the lower bound obtained,
while in the latter case it shows the additional im-
provement. In both cases CPU denotes the required
CPU-time in seconds. API provides the average per-
centage improvement.

Some important facts should be emphasized regard-
ing the results reported in Tables 1 and 2: (i) Roughly
speaking, the solution gap decreases from 4% to 2%
while the size of the instance increases because of two
reasons. First, relaxing the connectivity requirements
makes the LP-bounds for small problem instances

Table 1 Comparison of Lower and Upper Bounds

�J� �I�

CPLEX CONIMP

UB CPU LB CPU GAP

50 10 12,043.39 3.20 11,508.89 
1 4.46
25 12,793.16 14.50 12,217.26 0.90 4.50
50 13,271.83 49.20 12,736.17 2.60 4.04

100 10 26,119.68 10.30 25,610.99 0.50 1.95
25 28,332.57 47.10 27,619.47 4.10 2.54
50 29,583.04 172.60 28,464.76 13.50 3.73

250 50 71,185.04 720.68 69,774.65 142.50 1.99
500 50 133,702.41 3,424.34 130,962.26 626.70 2.05

Table 2 Comparison of the Procedures Construct and Improve

�J� �I�

CON IMP

LB CPU LB CPU API

50 10 11,454.97 
1 11,508.89 
1 0.47
25 12,190.75 0.90 12,217.26 
1 0.22
50 12,724.97 2.60 12,736.17 
1 0.09

100 10 25,173.43 
1 25,610.99 0.50 1.73
25 27,528.56 4.00 27,619.47 0.10 0.33
50 28,416.35 13.40 28,464.76 0.10 0.17

250 50 69,454.64 132.50 69,774.65 10.00 0.46
500 50 129,746.85 544.70 130,962.26 82.00 0.94

DREXL AND HAASE
Fast Approximation Methods

1316 Management Science/Vol. 45, No. 10, October 1999

Copyright © 1999. All rights reserved.



weak compared to large ones. Second, the quality of
the piecewise linear approximation increases with
increasing problem size and, hence, makes the LP-
bounds tighter. (ii) The larger the cardinality of the set
I the more time has to be spent in evaluating the size
and the location of the sales force. Clearly, this takes
more CPU-time the larger I is in relation to J. From
another point of view, if there is no degree of freedom
with respect to the size of the sales force and the
location of the salesmen, i.e., S � S� , then the align-
ment and the allocation subproblems are also solved
very effectively and very efficiently by our algorithms.
(iii) In general, the quality of the solutions computed
by the Procedure Construct is already so good that
only minor improvements can be obtained subse-
quently. In other words, exploiting the degree of
freedom on the level of the sizing and the locating
decisions appropriately already gives an overall sales
force deployment that can hardly be improved by
realigning some of the SCUs.

The scope of the experiment conducted so far was to
show how well our algorithms work. This can only be
done seriously with respect to the optimal objective
function or at least an upper bound. Therefore, the
experiment was limited to include only instances of
the size for which the LP-relaxation of the MIP-model
can be solved in reasonable time. Clearly, there is no
obstacle to prevent the use of the algorithms on larger
instances which might become relevant e.g. in a global
marketing context. The CPU-times required by our
procedure show that for really huge instances com-
prised of thousands of SCUs it is possible to compute
near-optimal solutions within a few hours of compu-
tation.

6. Insights for Marketing
Management

In what follows we will discuss managerial implica-
tions of our findings. More precisely, we will state
some insights and subsequently assess their validity
on the basis of experiments.

Insight 1. The results are robust with respect to Incor-
rect Parameter estimates. To evaluate Insight 1, we took
one of the instances with �J� � 250 SCUs and �I� � 50

potential locations. Now assume that b j � 0.3 and the
c i, j, which are generated along the lines described in
§4.2, @j � J and i � I are the unknown, but “true”
values of the parameters of the sales response func-
tion. The parameters b̂ and ĉ i, j, which are used in the
experiment, are then generated via data perturbation
as follows: Calculate b̂ � b � �b and choose ĉ i, j

� [c i, j(1 � �c), c i, j(1 � c i, j)] at random where �c and
�b are perturbation control parameters. Table 3 pre-
sents the results of this study. Across rows and
columns we provide the percentage decrease DEC
� (OPT � ACT)/OPT � 100 of profit where OPT
denotes the “optimal” objective value which has been
calculated based upon the “true” parameter values,
while ACT is the one which has been computed with
respect to the perturbed parameters. The results show
that even in the case when the parameters are esti-
mated very “badly” (i.e. all of them are under- or
overestimated drastically) the percentage decrease of
profit hardly exceeds 3%.

Insight 2. Profit is not that sensitive with respect to
sales force size. To evaluate Insight 2, once more we
took the instance with �J� � 250 SCUs and �I� � 50
potential locations. Then, the size of the sales force
was set to the levels 29, 30, 31, 32, 33 by fixing S � s
� S� , accordingly. Table 4 provides the results of this
experiment. OFV(s) denotes the objective function
value (normalized to the interval [0, 1]), which has
been computed by our methods with respect to the
size s. The results, which are typical for various other
experiments not documented here, support Insight 2.
This means that the objective function is fairly flat near
the optimum number of salesmen. Hence, the “flat
maximum principle” (cp. Chintagunta 1993) is valid
also in this context.

Table 3 Robustness of the Model

b̂ 0.20 0.25 0.30 0.35 0.40

�b �0.10 �0.05 0.00 0.05 0.10

�c � 0.00 1.89 1.67 0.00 0.17 0.25
�c � 0.05 2.25 1.92 0.36 0.87 1.25
�c � 0.10 2.87 3.06 1.58 1.97 2.07
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Insight 3. Profit is sensitive with respect to the location
of the salesmen. Once more we relate to the instance
already used twice. Table 5 provides part of the
protocol of a run. More precisely, the outcome of some
typical iterations of the Procedure Locate where po-
tential locations are evaluated systematically is given
in terms of normalized objective function values
OFV(s). Similarly to Table 4, the size of the sales force
is fixed in each row. Clearly, the process converges to
the best found objective function value (hence, OFV(s)
� 1 in Column seven), but the values go up and down
depending on the specific old and new locations
under investigation. Hence, the “flat maximum prin-
ciple” is not valid with respect to the location of the
salesmen.

The insights evaluated in Tables 3, 4, and 5 can be
summarized as follows: (i) For reasonable problem
parameters, the size of the sales force does not affect a
firm’s profit that much. (ii) The location of the sales-
men will, in general, affect a firm’s profit drastically.
Consequently, existing alternatives must be evaluated.
(iii) Fortunately, the model is very robust with respect
to the estimation of the parameters of the sales re-
sponse function. Even in the case when there is a
systematic estimation bias (over or underestimation of
all the parameters) the decision is not that bad in terms

of a firm’s profit. Usually, there is no systematic bias,
hence, the sales force deployment evaluated by the
algorithms will be superb.

7. Application
The methods presented in this paper have been used
to redesign the sales force deployment of the company
“FAXE Getränke–Vertriebs GmbH,” a major distribu-
tor of beverages, especially beer. FAXE is part of the
Danish distributor of beverages “Bryggerigroupen
Danmark AS.”

In recent years, FAXE has intensified the sales of
beverages via large discount stores, while at the same
time decreasing its presence in small stores. Because of
the changed distribution policy, the management de-
cided to redesign the sales force deployment. More
specifically, the aim was to reduce the sales force size
while increasing the selling time of each salesman,
which apparently can only be achieved by relocating
the salesmen. Previous efforts to increase profits were
mainly concerned with realigning SCUs.

The purpose of the application was to redesign the
sales force deployment of FAXE in Schleswig–
Holstein (northern part of Germany). Some character-
istics of the application are as follows: FAXE has a
turnover of 15 million DM per year from beer.
Schleswig-Holstein has 2.7 million inhabitants. Fur-
thermore, there are 1,219 SCUs (statistical districts). In
total, Schleswig-Holstein has 4,000 stores that sell
beverages. Only those 650 of the stores located in
SCUs that have at least 4,000 inhabitants are served by
FAXE. Currently, FAXE employs five salesmen in
Schleswig-Holstein, each of which costs the company
DM 120,000 per year on average (salary and car). Each
salesman works from 7 a.m. to 5 p.m. (10 hours selling
time per day) where on average 50% is effective
calling time.

The sales territory under concern, i.e., the 1,219
SCUs, are represented by polygon lines. Two SCUs are
adjacent if they share at least one line of the polygon.
The adjacency structure of the application is pretty
much the same as the one reflected by the data
generator; it reveals 5.73 neighbors on average. Travel
times are estimated on the basis of the total road
network of Schleswig-Holstein, despite inner-city

Table 4 Profit as Function of Sales
Force Size

s OFV(s)

29 0.99577
30 0.99919
31 1.00000
32 0.99996
33 0.99941

Table 5 Profit as Function of Location of Salesmen

s OFV(s)—Selected Iterations

29 0.934 0.960 0.947 0.973 0.986 1.000
30 0.938 0.927 0.957 0.934 0.977 1.000
31 0.928 0.921 0.952 0.950 0.949 1.000
32 0.933 0.924 0.965 0.967 0.962 1.000
33 0.917 0.945 0.933 0.948 0.978 1.000

DREXL AND HAASE
Fast Approximation Methods

1318 Management Science/Vol. 45, No. 10, October 1999

Copyright © 1999. All rights reserved.



streets. Geographic barriers between adjacent SCUs
result in high travel times. Consider, for instance, the
canal which links the Baltic and the North Sea. Sur-
mounting this barrier, e.g. by ferry, takes quite a long
time although the Euclidean distance between two
SCUs is very small. Obviously, high travel times
decrease the probability that two such SCUs are
assigned to the same sales territory center. Finally, it
should be noted that the assumptions mentioned in §3
with regard to Equations (2) and (3) are satisfied to a
very large extent in this case.

A summary of the parameters in terms of what
has been presented in the previous sections can be
given as follows: �I� � 125, S � 3, S� � 8, �J� �
1,219, T i � 1,300, b � 0.285, c i, j � 0.205 � H j � (4.6
� d i, j)

b where H j denotes the number of inhabitants
of SCU j, and d i, j estimates the time to drive from
SCU i to SCU j. 2

The methods described previously have been ap-
plied to the FAXE case. The approximation methods
run 170 sec on a 133 MHz Pentium machine. The
results can be summarized as follows: Staying with
the current number of five salesmen, decrease of profit
can be stopped to some extent only by relocating three
of them. The solution computed by means of our
approximation methods, however, demands, that the
sales force size be decreased from 5 to 4, where each of
the salesmen has to be relocated. More specifically, we
have Z(3) � 1,222,694, Z(4) � 1,245,021, and Z(5)
� 1,198,821, respectively; that is, the sales contribu-
tion as a function of the sales force size 3, 4, and 5 is
concave. The result is displayed graphically in Figure
1 where the four sales territories are put in shading.
The new sales territory centers have to be located in
SCUs � � {50, 56, 74, 521}, indicated by “•”. Note that
SCU j � 50 (56, 74, 521) has 11,793 (8,254, 28,524,
8,211) inhabitants. We also let our upper bounding
procedure run where the number of sales territory
centers was fixed in advance (S � S� � 3, 4, and 5),
thus keeping the MIP-model of Appendix A manage-
able. We obtained upper bounds, which are in the
percent range presented in §5, and they are UB(3)


 UB(4) � UB(5); i.e., the upper bounding function is
concave also. Hence, our proposal of four sales terri-
tory centers is supported with regard to upper
bounds, as well, although the optimal solution is
unavailable. Currently, the management of FAXE is
going to implement the new sales territory deploy-
ment. It is expected that the profits will increase in the
years to come.

8. Summary and Conclusions
In this paper we show how four interrelated sales
force deployment subproblems can be modelled and
solved simultaneously. These subproblems are sizing
the sales force, salesman location, sales territory align-
ment, and sales resource allocation. More specifically,
an integrated nonlinear mixed-integer programming
model is formulated. For the solution of the model we
present a newly developed effective and efficient
approximation method.

The methods are evaluated on two sets of instances.
The first one stems from a systematic generation of a
representative set of problem instances covering all
problem parameters at hand. The second one is an
application in the distribution of beverages. Bench-
marking the results with the help of upper bounds
shows that the method allows very fast solution of
large-scale instances close to optimality.

The methods which provide lower bounds for the
optimal objective function value are benchmarked
against upper bounds. On average the solution gap,
i.e. difference between upper and lower bound, is
roughly 3%. Furthermore, it is shown, how the meth-
ods can be used to analyze various problem settings
which are of high practical relevance.3

3 This work has been inspired by the research of Sönke Albers and
Bernd Skiera. Moreover, the support of Harald Behre, Distribution
Manager of FAXE, is gratefully acknowledged. Finally, the critical
comments of three anonymous reviewers and the associate editor
helped to improve the presentation.

Appendix A: Mixed-Integer Linear Programming
Model
The purpose of the following is to show how the nonlinear objective
function (4) can be approximated by a piecewise linear curve in
order to get a model formulation which is accessible to general

2 Some of the data are biased because FAXE views our work with
them as proprietary. They do not want their competitors to know all
the details.
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purpose MIP-solvers. Practically, this is done as follows (cp. Haase
1997 also): Approximate each nonlinear term by a piecewise linear
curve, as pictured in Figure 2, which provides the functional
relationship between t i, j and S i, j (solid line). In Figure 2 the function
S i, j is approximated by three segments. The constraints 0 � t i, j � T i

imply that we need not extend the approximation beyond these
bounds on the variables. The dashed approximation curves are
determined by linear approximations between breakpoints. At time
instant t̃ i, j,� the sales response function S i, j equals G i, j,�, which is
defined by Equation (15):

Gi,j,� � � i,j,� � � i,j,�ti,j. (15)

The definition of G i, j,� is based on the observation that the tangent
and the sales response function have identical gradients at time
instant t̃ i, j,�. The constant term � i, j,� and the gradient � i, j,� are defined
by Equations (16) and (17):

� i,j,� � ci,j� t̃ i,j,��
bj � � i,j,�t̃ i,j,�, (16)

� i,j,� � ci,jbj� t̃ i,j,��
bj�1. (17)

Note that only t̃ i, j,� has to be predefined in order to calculate � i, j,�

and � i, j,�. To fully describe the approximation, the intersection
points (t� i, j,�, s� i, j,�) have to be calculated. At time instant t� i, j,� we
observe G i, j,��1 � G i, j,�, hence Equation (18) is valid:

t� i,j,� �
� i,j,��1 � � i,j,�

� i,j,� � � i,j,��1
, (18)

and s� i, j,� is calculated similarly. Now, the interval [t� i, j,�, t� i, j,��1]
describes the relevant part of the time axis for which the curve G i, j,�

must be defined.
Let 
 i, j,� � [0, 1] denote a weight for the point (t� i, j,�, s� i, j,�). Then

the curve G i, j,� corresponds to a linear combination of the points
(t� i, j,�, s� i, j,�) and (t� i, j,��1, s� i, j,��1) where the weights 
 i, j,� and 
 i, j,��1

satisfy 
 i, j,� � 
 i, j,��1 � 1. At time instant 
 i, j,�t� i, j,� � 
 i, j,��1t� i, j,��1 an
approximation of the expected sales is given by 
 i, j,�s� i, j,�

� 
 i, j,��1s� i, j,��1.

Figure 1 Redesigned Sales Territory for Schleswig—Holstein
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The weights 
 i, j,� must satisfy the following neighborhood adjacency
restriction (cp. Bradley et al. 1977): At most two 
 i, j,� weights are
positive. If two weights are positive, then they are adjacent, i.e. of
the form 
 i, j,� and 
 i, j,��1. It is essential to note that, for concave
objective functions, the adjacency condition will always be enforced
by the maximization and hence can be ignored. As a consequence
the approximation of the objective function can be done without any
additional integer variables.

We summarize the newly introduced parameters
t� i, j,�: �-th time instant for subdividing the maximal workload T i of

salesman i for SCU j, i.e. the selling time;
s� i, j,�: approximation of the expected sales when SCU j is aligned to

sales territory i and the selling time is t� i, j,�;
P i, j: ordered set (0, . . . , �P i, j� � 1) used to index the �-th time

instant t� i, j,� and the �-th sales contribution s� i, j,�.
We use the already defined variables x i, j, define the variables


 i,j,�: weight of the point �t� i,j,�, s� i,j,��,

and get the following mixed-integer linear programming model
(MP):

maximize ZMP�x, 
� � �
i�I

�
j�J

�
��Pi,j

s� i,j,�
 i,j,� � �
i�I

f ixi,i (19)

subject to (7), (8), (9) and

�
��Pi,j


 i,j,� � xi,j �i � I, j � J�, (20)

�
j�J

�
��Pi,j

t� i,j,�
 i,j,� � Tixi,i �i � I�, (21)


 i,j,� � 0 �i � I, j � J, � � Pi,j�. (22)

The linear term (19) maximizes sales while taking the fixed cost of the
salesman locations into account and hence maximizes profit, similarly
to its nonlinear counterpart (4). Equation (20) aligns SCU j to sales
territory i if the salesman i visits SCU j. Similarly to Equation (6),
Equation (21) guarantees that the maximum workload per period and
salesman is regarded. Having “�” instead of “�” in Equation (21)
would be fine, too. Equations (9) and (22) define the decision variables
appropriately. Apparently, MP is a mixed-integer linear programming
model which can be solved by general purpose MIP-solvers.

Finally, some remarks shall be given: (i) Apparently, for time
instants t i, j � 
 i, j,�t� i, j,� � 
 i, j,��1t� i, j,��1 expected sales are overesti-
mated. For time instant t̃ i, j,� both curves coincide. As a consequence,
the inequality Z*

NLP � Z*
MP holds where Z*

NLP defines the optimum
objective function value of the model NLP and Z*

MP is the optimum
objective function value of the model MP, respectively. (ii) The
relationship between an optimal resource allocation t�*i,j,� of the model
MP and a feasible resource allocation ti,j of the model NLP is defined by

Figure 2 Linearization of the Objective Function
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the equation ti,j � ¥��Pi,j

i,j,�t�*i,j,�. (iii) On the other hand, if we express an

optimum solution of MP in terms of NLP the former produces a lower
bound LB of the optimum objective function value for the latter. More
formally, this is expressed by the inequality LB � Z*

NLP. (iv) The quality
of the approximation is affected by the number and the location of the
tangents. Clearly, it is not necessary that the intervals [t�i,j,�, t�i,j,��1] are
equidistant. They can be chosen with respect to the maximum tolerated
approximation error.

Appendix B: Formal Description of the Algorithms
A formal description of the procedures provided in §§4 and 5 can be
found in Tables 6 thru 10.

Appendix C: Special Cases and Extensions
The problem setting investigated in this paper is already very
general. In the following we will point to some special cases covered
by the model formulation MP in a formal way. In addition, an
extension will be given.

(i) A lower bound S and an upper bound S� on the number of
salesmen (i.e. the sales force size) will be respected by adding the
constraints (23) and (24):

�
i�I

xi,i � S, (23)

�
i�I

xi,i � S� . (24)

Clearly, our model reduces to the special case considered by Skiera
and Albers (1994, 1996) for S � S� .

(ii) In some applications it might be necessary to demand a
minimum and/or a maximum selling time of salesman i with
respect to SCU j. Predefining t� i, j,0 and t� i, j,�Pi, j ��1 appropriately allows
taking care of such requirements easily. If t� i, j,0 is relatively large @i
� I then it might be appropriate to assign SCU j to none of the sales
territories. In this situation we replace the equality “�” in Equation
(7) by the inequality “�”.

(iii) If the number of SCUs which might be aligned to salesman i
should be bounded from above then we add the constraint

�
j�J

xi,j � Ui (25)

to the already existing constraint set where U i defines the maximum
number of SCUs.

(iv) As already mentioned balancing sales territories with respect to
some attributes has been the scope of interest of several researchers. Let
uj denote the sales potential, i.e. weight of SCU j. Further assume that
�I� locations have already been established, i.e. xi,i � 1 @i � I. If we have
to come up with a balanced sales force deployment then we have to
replace the constraints (20) and (21) by constraint (26):

Table 6 Procedure Construct

Initialize s � S, s� � S� , LB � ��, lose[h, i ] � 0, h � I, i � I
WHILE s � s� DO

s �  (s � s� )/2
set �I 1� � s, I 1 � {i 1, . . . , i s}
call Procedure Locate (s)
call Procedure Align (L(I 1))
evaluate resources allocation by Equation (13) or (14)
IF Z(s � 1, x, t ) � Z(s, x, t ) THEN

s � s � 2
ELSE

s� � s � 1
ENDIF
IF Z(s � 1, x, t ) � LB THEN

LB � Z(s � 1, x, t )
��� � s � 1

ENDIF
IF Z(s, x, t ) � LB THEN

LB � Z(s, x, t )
��� � s

ENDIF
ENDWHILE

Table 7 Procedure Locate (s)

Initialize �I 1� � s, I 0 � I �I 1, L(I 1), improve � TRUE
WHILE improve DO

improve � FALSE
FOR k � 1 TO �I 1� DO

h � min{i � I 0�lose[i k, i] � lose[i k, g] � g � I 0}
I 1 � I 1�i k � h
update I 0 and L(I 1)
IF Z(L(I 1)) � LB THEN

improve � TRUE
LB � Z(L(I 1))

ELSE
I 1 � I 1 � i k�h
update I 0 and L(I 1)
lose[i k, h] � lose[i k, h] � 1

ENDIF
ENDFOR

ENDWHILE

Table 8 Procedure Align (L(I 1))

Initialize J 0, J i, C i and � i

WHILE J 0 	 A DO
compute (h, i) such that c h,i/C i � c k,j/C j � i � I 1, � j � I 1, � h

� � i, � k � � j

J 0 � J 0�h
J i � J i � h
C i � C i � c h,i

update � i

ENDWHILE
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�
j�J

ujxi,j � � i
� � � i

� �
1
�I� �

j�J

uj �i � I�. (26)

Furthermore, the objective (19) has to be replaced by

minimize �
i�I

� i
� � � i

� (27)

and the nonnegativity constraints (28) have to be added to the
constraint set

� i
�, � i

� � 0 �i � I�. (28)

The variables � i
� and � i

� achieve a balance of sales territory i with
respect to the average weight (1/�I�) ¥ j�J u j.

Notice that modifying the set of equations of MP implies that the
MIP-solution methodology remains applicable in all four cases.
Furthermore, case (i) is already covered by our approximation
methods while cases (ii) and (iii) only need minor modifications. To
solve case (iv) heuristically also would require substantial changes
of the methods presented in this paper.
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Table 10 Procedure Generate (I, J )

Initialize � � {(Q, Q)} and � � � (Q,Q)

WHILE ��� � �J� DO
Choose (�, �) � � at random
� � � � (�, �)
� � � � � (�,�) � �

ENDWHILE
� (�,�) � � (�,�) � � @(�, �) � �

choose I � J sales territories at random

Table 9 Procedure Improve ( J )

Initialize improve � TRUE, LB � Z(J )
WHILE improve DO

improve � FALSE
FOR j � 1 TO ��� DO

FOR i � 1 TO �I 1� DO
IF add(J i, j ) � drop(J i, j ) � LB � Z(J�J i(j )�j, J i � j ) THEN

LB � Z(J�J i(j )�j, J i � j )
J i(j ) � J i(j )�j
J i � J i � j
improve � TRUE

ENDIF
ENDFOR

ENDFOR
ENDWHILE
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