
UNCORRECTED P
ROOF

School redistricting: embedding GIS tools with
integer programming
F Caro1, T Shirabe2, M Guignard3 and A Weintraub1*
1Universidad de Chile, Santiago, Chile; 2Technical University of Vienna, Austria; and 3University of Pennsylvania,
PA, USA

The paper deals with a school redistricting problem in which blocks of a city must be assigned to schools according to
diverse criteria. Previous approaches are reviewed and some desired properties of a good school districting plan are
established. An optimization model together with a geographic information system environment are then proposed for
finding a solution that satisfies these properties. A prototype of the system is described, some implementation issues are
discussed, and two real-life examples from the city of Philadelphia are studied, one corresponding to a relatively easy to
solve problem, and the other to a much harder one. The trade-offs in the solutions are analysed and feasibility questions
are discussed. The results of the study strongly suggest that ill-defined spatial problems, such as school redistricting, can
be addressed effectively by an interaction between objective analysis and subjective judgement.
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Introduction

School redistricting is the process of adjusting the bound-

aries of schools within a given school system. School

redistricting may be done annually in response to over-

crowded classrooms, projected growth and decline of

enrolments, opening and closing of schools, modification

of school capacities, etc. Countless hours are spent by school

administrators, boards, and parents to create various

redistricting alternatives, to examine their effects, and to

agree (or at least compromise) on the final redistricting plan

to implement.

A revision of school districts is often torn between two

kinds of motivations that can contradict each other: overall

efficiency and individual convenience. One type of efficient

districting pattern is to have each student attend his/her

nearest school. If school capacities do not permit this,

overall efficiency could be achieved by minimizing the total

distance travelled by all students. No matter how much

administrative cost would be saved, however, this alternative

does not necessarily satisfy every single individual. Those

allocated to a school ‘unfairly’ distant may be unlikely to

accept such an ‘efficient’ plan.

Geographic constraints also play an important role in

school redistricting. First, contiguous districts are strongly

preferred, if not required. Second, physical obstacles such as

roads, rails, and bodies of water may prohibit some

redistricting options; also, parents do not want to send their

children across major streets with heavy traffic or hazardous

sites. Third, various scales of geographic units need to be

taken into account. In many instances, blocks—generally

defined by streets—are the finest unit of granulation allowed

during redistricting. Yet larger but more ambiguous units

such as communities or neighbourhoods should be given

some attention. A redistricting plan with careless division of

neighbourhoods would be strongly opposed by the people

living there.

There are other factors that are peculiar to American

school systems. First, grade levels vary from one school to

another. For instance, a single school system may have

K(indergarten)-4(th grade) schools, K-8 schools, 5-8 schools,

etc. As a consequence, some students are forced to transfer

to other schools as they advance to higher grades. Second,

students are racially diverse. Some local governments

mandate or recommend that schools achieve a certain racial

balance to eliminate potential educational disadvantages

particular racial groups might have.

As many factors are involved, school redistricting is a

technically as well as politically complex problem. Some of

the technical complexity is, however, relieved by recent

digital technological advances, such as geographic informa-

tion systems (GIS). GIS generally facilitate preparation,

interpretation, and presentation of spatial data. Each entity

of spatial data has attribute(s), location, and possibly

geometric and topological properties. Some school admin-

istrators may use a GIS simply to produce a paper map, on

which they visually analyse the locations of schools and the

distribution of students, and draw possible districting

patterns. Others make a more intensive use, doing most of
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their analysis within the framework of a GIS since many

commercial GIS applications are nowadays furnished with

various tools for editing and analysing spatial data.

Certain optimization tools are even included as standard

functions of commercial GIS packages. For example, the

Arc/Info (ESRI) Network module adopts Dijkstra’s algo-

rithm for the shortest path problem with all arc costs non-

negative. A school redistricting problem requires a much

more complex mathematical programming formulation than

the shortest path problem, however, and solution techniques

that are well beyond the capabilities of standard GIS tools.

Nevertheless, integrating GIS tools with custom-made

mathematical programming techniques can facilitate such

solutions.

The application of mathematical programming to school

redistricting problems certainly helps to understand the

problem and generate rational solutions, but does not make

the final decision. One reason for this is that a school

redistricting problem is almost always ill-defined. While

some districting criteria are relatively well suited for

numerical treatment, others are too elusive to be quantified

and may be overlooked (if not intentionally ignored). Thus,

no matter how elegantly a school redistricting problem is

formulated or solved as an optimization model, the

generated solution usually cannot avoid objection or

modification. If this modification cannot be done smoothly,

the overall value of the school redistricting system may

degrade significantly.

Accordingly, the purpose of this study is two-fold:

(1) to model a school districting problem so that it explicitly

addresses many of the common school redistricting

objectives and is simple enough to be solved by existing

optimization algorithms; and

(2) to implement the model with an intuitive interface that

allows the user to easily formulate and revise the model,

and evaluate and modify the solution. We expect that

such an interactive system will make the school

redistricting process more efficient.

The remainder of the paper is organized as follows. The

next section reviews the relevant literature and summarizes

typical properties of good school redistricting patterns. Then

we introduce a school redistricting model that explicitly

accounts for those criteria. Our results are presented in the

fourth section, where we describe the implementation of the

model in a GIS environment and test it with actual data sets

from the city of Philadelphia. The last section provides our

concluding remarks.

Literature review and desired school districting properties

The school (re)districting problem can be seen as grouping

small geographic units into clusters or districts, minimizing

some distance measure or cost, and eventually complying

with additional criteria. The problem is an old topic in the

Operations Research/Management Science (OR/MS) com-

munity. Starting in the early 1960s, many linear program-

ming (LP) approaches and solution methods have been

proposed. Sutcliffe et al1 summarizes, in a schematic way,

most of the work published up to 1982. Papers that consider

a single attribute objective function are, among others, by

Clarke and Surkis,2 Koenigsberg,3 Heckman and Taylor,4

Belford and Ratliff,5 Franklin and Koenigsberg,6 Liggett,7

Holloway et al,8 McDaniel,9 McKeown and Workman,10

Jennergren et al,11 Bovet,12 and Bruno et al.13 After 1982,

fewer attempts have been reported in the OR/MS literature,

among them were Schoepfle and Church,14 Ferland and

Guénette,15 Taylor et al,16 and Lemberg and Church.17 We

refer the reader to the latter for further references.

The two features that are common to all school districting

models are: first, the geographic units where students live

must be assigned to schools; second, the students assigned to

a school cannot exceed the available space. Most models

minimize an objective function that represents an aggregate

block–school distance measure, and many also consider

minimum capacity usage, racial balance and/or other

attribute equilibrium issues.

Among previous school districting studies, only Liggett7

and extensions to his model17 consider explicit integer

(binary) variables, for requiring that each geographic unit

be assigned as a whole to the same school. Ferland and

Guénette15 also deal with binary assignment decisions even

though they do not present a formal optimization model.

The other approaches work with continuous decision

variables and geographic units can be ‘split’ into different

schools. Splits are generally undesirable because they oppose

the sense of neighbourhood and because they create the

additional problem of deciding which students of the split

unit must go to which school. Most authors are aware of this

fact, but either they argue that in their case studies splits

were ‘quite few’, or they apply post-optimal heuristics or

hand adjustments to fix it. Taylor et al16 proposes a

nonlinear penalization function to encourage zero–one

results, however did not use it because a re-definition of

the units was preferred.

Until now, few LP studies have accounted for individual

grades separately. In most cases, school assignments are

done ignoring the students’ grade. This would be reasonable

if all schools had the same grade structure and if the ‘grade

blend’ were homogeneous among the geographic units.

When these assumptions are not satisfied, more attention

should be placed on the grade attribute. In Belford and

Ratliff5 and Taylor et al,16 schools are classified as

elementary school (kindergarten through fifth grade), middle

school (sixth through eighth grades), or high school (ninth

through 12th grades) and different model runs were done for

each category. But again, within each category, there is a

grade homogeneity assumption, and further problems could

also arise if there was a school with, for example,
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kindergarten through seventh grade. McKeown and Work-

man10 are more drastic and develop an individual model for

each grade. In this way, there is no grade homogeneity

assumption but a post-optimal heuristic is needed to fix the

geographic units that are ‘split by grade’ (ie when students

living in the same block but of different grades are assigned

to different schools). The model proposed by Franklin and

Koenigsberg6 is more comprehensive than any other as its

decision variables account for both grade and racial types.

They were, however, unable to solve it given the computa-

tional resources available at the time.

Many authors declare contiguity as a desirable property

but, to our knowledge, none of the previous studies add

district contiguity as an explicit constraint. At most, in some

cases, like in Franklin and Koenigsberg6 or Holloway et al,8

the objective function is made up of squared block–school

distances in order to emphasize the creation of compact

districts. However, neither this goal nor contiguity is

guaranteed. It is true that, due to geographic segregation,

contiguity may conflict with other desired properties (for

example racial balance), but models are useful for providing

insight into the tradeoffs.

From an optimality point of view, most school districting

papers that solve a continuous LP or a derived transporta-

tion problem get optimal or near-optimal solutions (usually

with ‘splits’). But again, due to computational limitations,

the case studies are rather small (and many are not real).

Belford and Ratliff5 solve the biggest instance with

approximately 300 geographic units and 11 schools. Liggett7

applies an implicit enumeration algorithm to a real problem

with 140 geographic units and 11 schools, but there is no

discussion about the optimality of the final solution.

The school districting problem is closely related to other

general districting problems treated extensively in the OR/

MS literature, including sales territory alignment or creation

of political voting tracts. In these problems, the objective is

also to group small units into larger districts, but they have

more degrees of freedom because usually there are no

geographic points equivalent to the schools with the role of

natural centres.

For the sales districting problem, previous work includes

that of Hess and Samuels,18 Segal and Weinberger,19

Zoltners and Sinha,20 and Fleischmann and Parachis.21

Works of Zoltners and Sinha20 is particularly interesting

because it provides a good review and defines four reason-

able properties that identify a good sales territory alignment.

Based on these properties, they propose a methodology and

an integer (binary) model that incorporates explicit con-

tiguity, workload balancing constraints, and compatibility

with geographic considerations. They apply their procedure

to three real cases (the biggest with 280 sales units to be

assigned) and obtain solutions that violate the workload

balance. They accept violations below 5%. To solve the

model, they use a Lagrangean relaxation procedure, and

because their sub-problems have the integrality property22

the objective value obtained is the same as the LP relaxation

value.

For the political districting problem, many mathematical

programming approaches can be found in the OR/MS

literature. Here, the use of mathematical tools is even more

important because it gives an objective procedure for

generating voting districts (free of partisan influence).

Hess et al23 are among the first in using a facility location

model to address this problem. Garfinkel and Nemhauser24

report a two-stage enumerative procedure that minimizes

the maximum deviation from the desired district average

size. In the first stage, they generate a certain amount of

feasible districts and, in the second stage, they propose a tree

search algorithm to solve the optimization problem. Con-

tiguity is considered as one of the district feasibility

conditions. However, the procedure fails to solve an

instance with 55 voting units to be allocated in five districts.

Hojati25 also proposes a two-stage approach, he first uses

Lagrangean relaxation to determine district centres (again

the sub-problems have the integrality property), and then

voting unit assignment is carried out with a transportation

model. Other network optimization models can be found in

George et al26 and the references therein. Mehrotra et al27

present a promising Branch & Price approach. Their model

is quite similar to that of Garfinkel and Nemhauser, but the

feasible districts are generated through an optimization sub-

problem instead of through enumeration. The complete

procedure has pre- and post-processing, and a real case

study with 46 voting units and six desired districts is

described.

We proceed in a way similar to that of Zoltners and

Sinha20 for the sales territory alignment problem. Based on

the above literature review and personal conversations with

representatives of the School District of Philadelphia, we

identified seven desirable properties that a ‘good’ school

districting should satisfy:

(P1) Each block (for each grade) is assigned to exactly one

school.

(P2) School assignments must not exceed each grade’s

capacity and may need to be balanced relative to other

attributes.

(P3) Each school district must be contiguous. We define a

district to be contiguous if any pair of blocks that

belong to the district can be linked with a ‘path’ of

blocks that are also part of the district.

(P4) No school boundary can cut across such geographic

obstacles as railroads, rivers, or streets with heavy

traffic.

(P5) The total distance travelled by all students is

minimized, but no student should travel more than a

specified maximum distance.

(P6) All students in a block must go to the same school

unless that school has no classrooms for the corre-

sponding grades. This property makes the redistricting
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plan more rational and also decreases each student’s

chance of future school transfer.

(P7) A new districting pattern must maintain a certain

degree of similarity to the existing one. This property

is relevant when the school redistricting is visualized in

a longer time frame since it is unrealistic and

impractical to think of creating whole new school

districts every year.

From a modelling perspective, properties (P1)–(P7) have

never been treated simultaneously, at least to our knowledge.

A multi-objective or a goal-programming model such as

those proposed by Knutson et al28 or Sutcliffe et al1 go a

long way, but still the problem of setting appropriate weights

for different attributes remains. Based on the conversations

with the School District of Philadelphia, our approach is

therefore to minimize a single attribute objective function

(total travelled distance) subject to properties (P1)–(P7).

To partially justify the selection of these seven properties

and the modelling contribution of our study, we present (in

Table 1) a summary of all the school districting papers

mentioned here in the literature review (which is by no

means exhaustive). They are sorted by year of appearance

and a mark is placed if that paper somehow considers the

respective property. We are not interested in implementation

details, but rather concentrate on whether the authors

considered the property to be relevant. A few comments

must be made:

(i) We stated properties (P1)–(P7) in terms of city blocks,

but many papers allocate other units, for example,

census tracks, grid blocks, bus stops, etc. The choice of

the appropriate unit depends on the available infor-

mation and the desired level of aggregation.

(ii) In the case of (P2), we only checked if the paper

considered school capacities and/or race balance.

Few papers go beyond these two attributes due to

lack of data or model complexity. Taylor et al16

mention some exceptions where socio-economic and

busing burden balance is also required. Another

example is Sutcliffe et al1’s goal-programming model,

that also tries to minimize total travel difficulty and

PPL_JORS_2601729

Table 1 Presence of (P1)–(P7) in previous school districting papers

(P1), assign
one-to-one

(P2), attribute
constraint

(P3),
contiguity

(P4),
Geo.

feasibility

(P5), Min. total dist. and
restrict worse case

(P6), No
grade-split

(P7),
limited

reassignment
School
districting
papers

Year Cap. Race Min. Max.

Clarke and
Surkis2

1968 Y Y/S Y

Koenigsberg3 1968 Y Y/S Y
Heckman and
Taylor4

1969 Y Y Y

Belford and
Ratliff5

1972 Y Y/S D Y Y

Franklin and
Koenigsberg6

1973 Y Y/S Y D

Liggett7 1973 Y Y Y D Y D Y
Holloway et al8 1975 Y Y D Y Y Y Y
McDaniel9 1975 Y Y/S Y
McKeown and
Workman10

1976 Y Y Y Y

Jennergren and
Obel11

1980 D Y Y Y D D D

Knutson et al28 1980 Y Y/S Y
Bovet12 1982 Y Y Y Y Y
Bruno and
Anderson13

1982 Y Y Y

Sutcliffe et all 1984 Y Y/S Y Y
Schopfle and
Church14

1989 Y Y/S Y

Ferland and
Guénette15

1990 Y Y D Y Y

Taylor et al16 1999 Y Y Y Y D
Lemberg and
Church17

2000 Y Y Y D Y Y Y

Abbreviations: Y—the property is considered explicitly in the model; S—race-splits are allowed; D—the property is mentioned as ‘desirable’ but is not
explicitly considered in the model.
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deviations from the average sex and reading-age

retarded proportions.

(iii) In the case of (P5), we checked if some distance metric

is minimized (Euclidean distance, network distance,

squared Euclidean distance, etc), and if fairness is

considered via an imposed worst case bound, that is, a

maximum allowed distance for a block assigned to a

specific school

(iv) We regard these properties as necessary conditions for

a good school districting plan. They are far from being

sufficient since there are also subjective criteria

involved.

To conclude this section, it is important to state that

previous interactive decision support systems (DSS) based

on mathematical programming techniques for the afore-

mentioned districting problems have been reported in the

OR/MS literature. Among them, in the school districting

case, Ferland and Guénette15 document a successful attempt.

They programmed a menu-driven DSS that runs on a PC.

Capacities per grades and district contiguity are considered.

The DSS generates a starting solution based on a heuristic

that assigns street segments to schools. The proposed

allocation can be graphically displayed and modified by

the user. In a different way, Taylor et al16 also take

advantage of up-to-date graphical tools. In their integrated

planning system, geographic units are created through an

interactive computer interface and several GIS-based output

maps are generated to illustrate districting solutions or

demographic statistics.

School redistricting model

A general redistricting model is presented below. Indices i, k,

and n represent blocks, grades, and schools, respectively.

The binary variable xikn equals 1 if grade k students of block

i are assigned to school n, and 0 otherwise. Sik is the number

of grade k students in block i, Din is the distance from block i

to school n, Akn is the k-th grade capacity of school n, N(i, n)

is the set of blocks adjacent to block i that are closer to

school n, and C(i) is the closest school to block i. Bn is the

maximum walking distance allowed for students assigned to

school n. For each grade k, R(k) is the set of (i, n) pairs

representing the current block–school allocations, and

(1�P)% of these pairs must be kept.

ðMSDÞ min z ¼
X

i

X

k

X

n

Sik Din xikn

subject to :

ð1Þ

X

n

xikn ¼ 1 8i; k ð2Þ

X

i

SikxiknpAkn 8n; k ð3Þ

xiknpxiðkþ 1Þn 8i; k; n s:t: Aðkþ 1Þna0 ð4Þ

xiknp
X

j2Nði;nÞ
xjkn 8i; k; n s:t: Nði; nÞaf ð5Þ

xikn ¼ 0 8i; k; n s:t: Nði; nÞ ¼ f and naCðiÞ ð6Þ

Din xiknpBn 8i; k; n ð7Þ

X

ði;nÞ2RðkÞ
xiknXð1� PÞ � RðkÞj j 8k ð8Þ

xikn 2 f0; 1g 8i; k; n ð9Þ

The objective function (1) represents to the total walking

distance (or equivalently the average walking distance).

Constraint (2), together with the integrality condition (9),

guarantees that each block–grade pair is assigned to exactly

one school, eliminating ‘splits’. Constraint (3) ensures that

no school violates its capacity by grade. If necessary, a

minimum capacity usage can be expressed in the same

manner. Constraint (4) says that if the k-th graders of block i

are assigned to school n, then the (kþ 1)-th graders of that
block must be assigned to the same school, unless school n

does not provide grade (kþ 1). Finally, constraints (5) and
(6) deal with contiguity. In a recursive way, constraint (5)

says that, for each grade, in order to assign block i to school

n, there must be a ‘path’ of blocks also assigned to the same

school that connects block i with school n. On the other

hand, if there is no way of building such a connecting path,

then constraint (6) prohibits the assignment of block i to

school n, unless n is the closest school to block i (ie C(i)¼ n).

Note that the effectiveness of constraints (5) and (6) depends

on how the sets N(i,n) and the parameters C(i) are

calculated. This can be done in several ways with different

consequences, as will be seen later.

As the objective function reflects the average walked

distance, in order to encourage individual equity a maximum

walked distance is added in constraints (7). This constraint

also helps to build more compact districts, as in this form the

resulting patterns will be consolidated rather than spread

out.

In a redistricting case, as stated in property (P7), only a

certain proportion of blocks should be reallocated. This can

be done by imposing constraints (8), which say that, for each

grade, at least a proportion (1�P) of blocks must remain

assigned to their current school. If P¼ 1 then the new
districts are established from scratch. In contrast, if P¼ 0,
the actual school division is preserved.

If some other attribute balance is desired (as those

mentioned in Taylor et al16 and Sutcliffe et al1), then the

PPL_JORS_2601729
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following additional constraints can be added:

ml

X

i

X

k

Sikxiknp
X

i

X

k

Tlikxikn

pMl

X

i

X

k

Sikxikn 8l; n
ð10Þ

where Tlik is the number of grade k students of block i that

have attribute l (for example, are females).Ml and ml are the

maximum and minimum desired proportions, respectively,

of students with attribute l.

The optimal solution of model (MSD) plus the interaction

with the GIS interface to be presented below yield a school

districting plan that satisfies properties (P1)–(P7). Solving

model (MSD) can be difficult, but many cases are easy. The

next section shows the results for two real instances. Due to

population, geographic, and school structure considerations,

one is easy and the other is very complicated.

System implementation and computational results

We built a system aimed at supporting school redistricting

by coupling the optimization models described in the

preceding section with a commercial GIS package (ArcView

3.2, from ESRI). In this system, the optimization model and

GIS software do not share a common data structure, but are

loosely coupled29,30 through the transfer of input/output

data as ASCII files. Since this data transfer is conducted

behind the scene, users do not notice that different

applications are being used. We have chosen this form of

linkage based on our conversations with the School District

of Philadelphia in order to maintain the GIS functionality

and interface familiar to potential users. To check the

usefulness of the system, we tested it with actual data

provided by the School District of Philadelphia.

Interface of the system

As stated earlier, the value of the system does not lie only in

the underlying ‘optimization’ model but also in the interface

through which the user interacts with the model. Since

school redistricting is a trial-and-error process rather than a

well-defined problem, smooth interaction between the user

and the model is crucial. It is very likely that during a

redistricting process, existing criteria are modified and new

criteria emerge. To streamline the process, the user can

interact with the model in five different manners as follows.

Each mode of interaction is associated with one or two items

of a menu called ‘Redistricting’ (Figure 1), which is the only

control added to the original GIS application.

School and block maps selection. The first task the user
performs is the selection of an area (cluster) to redistrict. To

do so, after loading maps of schools and blocks encom-

passed by the area of interest, the user clicks on the first

item of the menu called ‘Select School Theme’ and selects

the school map. Then the user clicks on the second item

called ‘Select Block Theme’ and selects the block map.

Constraint parameters specification. The user specifies in
a table the right-hand-side parameters of the model’s

constraints (ie lower and upper limits on the enrolment

number of each grade for each school, maximal allowable

travel distance for each school, upper limits on the

percentage of reallocated blocks, etc). Clicking the third

item called ‘Start Editing Constraints’ of the menu calls the

constraint table and makes it editable. Upon finishing

editing, the user needs to click again on the same item that

has been renamed ‘Stop Editing Constraints’.

Pre-allocation. If the user knows, before running the
redistricting model, which blocks are promised or prohib-

ited to be allocated to particular schools for any reason

other than defined constraints, (s)he can pre-determine

where to (or not to) allocate particular blocks. To do so,

the user selects blocks graphically using existing functions

of the GIS program, and selects the fourth item called

‘Promise Allocation’ or the fifth item called ‘Prohibit

Allocation.’ Then, a dialog box appears and requests the

user to select a school where to (or not to) allocate the

selected blocks. This pre-allocation function is useful when

there are criteria that are difficult to explicitly formulate or

would complicate computation. For example, this function

may be used to prevent students from crossing rails. This

tool also helps to reduce the size of the optimization model.

Allocation. Once the right-hand-side values of the con-
straints are specified and pre-allocation is done (if

necessary), the redistricting process can proceed. By

selecting the sixth item called ‘Redistricting’, an external

optimization routine is called to solve the model. Then the

results are transferred back to the GIS application to be

summarized in tabular form (ie the number of students of

each grade, gender, and race for each school; total, average,

and maximal distance travelled for each school; number

PPL_JORS_2601729
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and percentage of blocks reallocated) and are visualized in

cartographic form.

Post-allocation. After solving the model, if the user finds
any school district unacceptable, s(he) can modify it at their

discretion. To do so, the user selects blocks graphically,

using an existing function of the GIS, and selects the

seventh item called ‘Modify Allocation’. Then, a dialog box

appears and urges the user to select a school to which the

selected blocks are reallocated. An updated summary table

and a redistricting map follow. This post-allocation

function is useful since the model cannot enumerate all

criteria in advance. For example, if a school district does

not have smooth boundaries, this can be fixed by

reallocating the blocks that caused rough boundaries. Of

course, such a post-allocation may lead to a sub-optimal or

even an infeasible solution to the model, but such trade-offs

between objective criteria and subjective judgement should

be justified in practice.

Data

The City of Philadelphia is divided into 22 regions called

clusters for school administrative purposes. We applied the

system to two of these clusters, namely, the Fels cluster

encompassing six schools (one K-5 school and five K-8

schools) and 487 blocks (Figure 2(a)), and the Olney cluster

encompassing 12 schools (six K-4 schools, one K-7 school,

two K-8 school, three 5-8 schools) and 617 blocks (Figure

2(b)). We have chosen the Fels cluster as an example because

it is one of the most homogeneous in terms of grade

structure, and the Olney cluster for the opposite reason.

Considering the larger number of blocks encompassed by

the Olney cluster and its more complicated grade structure,

we anticipated that this cluster would provide a computa-

tionally harder problem than the Fels cluster.

The student data include four attributes: block of

residence, grade, gender, and race. The block of residence

is a key value for linking attribute and location data. The

data of individual students were then aggregated to block

level to compute the number of students by grade, gender, or

race in each block. These tasks were done using existing

functions of the GIS package and concretely give values for

parameters Sik and Tlik of the model.

The school data include 10 attributes: street address and

capacity of each grade, kindergarten through eighth grade

(see Tables 2 and 3). According to section 206 of the School

District of Philadelphia Board of Education Policies,

although a student should, in principle, ‘attend the school

within whose boundary lines the legal residence of the parent

or local guardian is located’, (s)he is allowed to ‘attend any

school in which there is room regardless of boundary lines,

provided (s)he can meet the entrance requirements, if any,

and provided established procedures are followed’. As a

result, a significant number of students (nearly 20 and 12%

of the students who live in the Fels and Olney clusters,

respectively) attend schools outside the cluster where they

live. Following the original spirit of school districting (ie that

each student attends a school that is in the same cluster as

where (s)he lives), we did the computational experiments

based on the assumption that all schools from Cluster X are

filled only with the students that live in Cluster X. This way

each cluster can be solved as a separate instance. We defined

the capacity per grade to be the current enrolment numbers

PPL_JORS_2601729

Figure 2 Schools and blocks for both instances: (a) Fels cluster, (b) Olney cluster.

F Caro et al—School redistricting 7
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of each grade regardless of where students come from.

Therefore, capacity values are by no means definite or rigid.

Rather, their determination or modification is left to the

planners’ discretion.

After recording the locations of schools on a street map,

the distance from each block to each school was calculated

in the following way. First, for each block i, a geographic

centroid was determined. The centroid was then ‘projected’

to the closest street, and finally, the network distance from

that point to each school n was established as Din (the

distance from block i to school n). Once all the Din values

were measured, the elements of each set N(j, n) were

identified as all those blocks i that share a boundary

segment with block j such that DinpDjn. Then we have

C(i)¼ argminn {Din}, and again, the described tasks were

done using existing functions of the GIS package.

It is important to note the approximations implicit in the

previous calculations. The Din values may somewhat mis-

represent the true student travel distance when the centroid of

a block is projected away from where the majority of the

block’s students are actually located. It is not hard to think of

more adequate measures, for example, the distance from

block i to school n could be defined as the average of the

individual distances of each student that lives there, but this

would require intense computations with limited payoffs.

What is really crucial is the fact that the sets N(i,n) were

constructed based on the Din values. The computation is

simple but the desired contiguity of the districts can be

affected in a minor way. In fact, consider Figure 3, which is a

small example extracted from the Olney cluster.

Points s1 and s2 represent two different schools. Blocks V,

U, and Z are ‘neighbours’ with centroids cv, cu, and cz,

respectively. Points pv, pu, and pz are the projections of the

controids to their closest street. Hence, the distance from

PPL_JORS_2601729

Table 2 Capacity per grade of schools in Fels cluster

School k g01 g02 g03 g04 g05 g06 g07 g08

722 167 181 122 137 142 149 137 136 136
724 94 89 98 101 92 110 112 106 112
727 89 128 158 127 151 117 140 138 142
728 101 119 92 109 98 77 108 90 89
735 193 216 249 208 193 198 0 0 0
746 34 40 38 35 35 32 45 35 45

Note: 0 indicates the corresponding grade is not available.

Table 3 Capacity per grade of schools in Olney cluster

School k g01 g02 g03 g04 g05 g06 g07 g08

549 126 136 88 100 90 0 0 0 0
550 93 119 85 84 80 84 95 78 0
710 0 0 0 0 0 152 214 227 284
720 150 178 177 175 164 0 0 0 0
721 165 190 214 183 165 0 0 0 0
731 101 110 108 107 112 0 0 0 0
738 183 140 139 155 126 0 0 0 0
739 98 115 132 142 115 102 92 61 94
740 116 101 77 99 74 75 73 59 62
744 141 157 43 129 119 0 0 0 0
750 0 0 0 0 0 256 252 260 218
773 0 0 0 0 0 279 318 301 333

Note: 0 indicates that the corresponding grade is not available.

Figure 3 Din calculation example.
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block V to school s1 is the network distance from point pv to

point s1. Since the network distance pvs1 is shorter than pzs1,

as well as pus1, then by definition, block V has no

neighbouring block closer to school s1 (ie N(V, s1)¼f).
However, since school s1 is the closest school to block V (ie

C(V)¼ s1) then, according to constraints (5) and (6), it is
possible to assign block V to school s1 and all its

surrounding neighbours to school s2, which in our model

(MSD) would correspond to a feasible non-contiguous

district for school s1. Therefore, given the ‘block to school’

distances described here, constraints (5) and (6) are not

sufficient to rule out non-contiguous districts. In the

appendices, we briefly discuss when constraints (5) and (6)

are sufficient to ensure contiguous districts.

Test of the system

The system was tested on the following five scenarios with

the aforementioned two cluster data sets:

Scenario (0): base scenario that duplicates the current

districting pattern.

Scenario (1): redistrict so that the capacities per grade

are not violated.

Scenario (2): for the Olney cluster, add a maximum

walking distance constraint.

Scenario (3): redistrict so that the proportion of race

‘type 1’ students in each school is within a

pre-specified range of the cluster’s ratio.

Scenario (4): redistrict assuming that all schools are

K-8.

The numerical results for the Fels and Olney clusters are

summarized in Tables 4 and 5, and each scenario is analysed

in the following subsections.

It should be noted that the figures shown below illustrate

the districting patterns only for grades K-4 since in the

School District of Philadelphia the school boundaries are

defined only for these lower grades. For the same reason,

and in order to have a fair comparison with the current

situation, we did not impose the contiguity constraints (5)

and (6) for the higher grades 5–8.

Regarding the parameter P of constraint (8), it was set to

1 in all the runs, except for the base scenario (0). Also, if the
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Table 4 Numerical results for the Fels cluster

Scenario (0) Scenario (1) Scenario (3) Scenario (4)

Average travelled distance (ft) 2067 2040 2250 2040
Number of overcrowded schools 0 0 0 0
Worst travelled distance (ft) 6115 6115 7441 6115

% Students that travel 0–0.5 miles 70.4% 71.7% 69.1% 71.7%
% Students that travel 0.5–1 mile 28.9% 28.1% 26.0% 28.1%
% Students that travel 1–1.5 miles 0.7% 0.2% 4.9% 0.2%
% Students that travel 1.5þmiles 0.0% 0.0% 0.0% 0.0%

% Students that go to closest school 93.6% 97.6% 89.1% 97.4%
% Students that go to closest or second closest school 100.0% 100.0% 96.0% 100.0%

% Blocks reallocated — 6.6% 11.9% 9.0%
CPU time (s) — 100 515 7

Note: 1 mile¼ 5280 ft.

Table 5 Numerical results for the Olney cluster

Scenario (0) Scenario (1) Scenario (2) Scenario (3) Scenario (4)

Average travelled distance (ft) 2037 2145 2045 2259 1666
Number of overcrowded schools 4 0 2 5 0
Worst travelled distance (ft) 5810 8791 5984 10 845 4630

% Students that travel 0–0.5 miles 76.2% 75.4% 76.5% 70.9% 83.4%
% Students that travel 0.5–1 mile 21.3% 18.7% 19.8% 22.9% 16.6%
% Students that travel 1–1.5 miles 2.5% 5.9% 3.7% 5.9% 0.0%
% Students that travel 1.5þmiles 0.0% 0.0% 0.0% 0.3% 0.0%

% Students that go to closest school 59.0% 59.2% 63.5% 54.5% 76.0%
% Students that go to closest or 2nd closest school 83.7% 82.9% 85.2% 78.6% 93.5%

% Blocks reallocated — 15.2% 17.3% 34.0% 42.6%
CPU time (s) — 2901 604 36 012 402

F Caro et al—School redistricting 9
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grade capacities made the problem integer-infeasible, given

that there is some flexibility in defining these capacities (refer

to the end of the previous section) they were all increased by

a small amount (for example, room for five more students)

and the model was resolved. We defined a school to be

‘overcrowded’ if the final number of students allocated

exceeded the initial capacity by more than 5%.

The test runs were done on a dual 866MHz Pentium III

PC with 256MB of RAM. The model was written in GAMS

and solved using parallel Cplex 6.6. Basic model reductions

were applied, for example, given that all schools that have

grade K also have grades 1–4, constraint (4) implies that

only one binary variable xikn was needed for all grades k

from K to 4. In the end, the Olney instance was modelled

with 18236 equations and 25491 binary variables. In the

Fels case, there were 10525 equations and 8541 binary

variables. Owing to the precedence arising from constraint

(4), in the Branch & Bound process lower-grade variables

were assigned a higher branching priority. In general, the

running times are reasonable (in this paper we did not

concentrate on algorithmic efficiency). The only exception is

Scenario (3) in the Olney case, which will be further

discussed.

Scenario (0): replicate each cluster’s current districting
pattern. Scenario (0) is obtained by setting P¼ 0. It does
not involve any optimization and can be considered as a

benchmark. Note that in reality, as previously mentioned,

students do not necessarily attend schools of their

residence. This explains why in our framework the current

districts of the Olney cluster cannot be followed, unless

four overcrowded schools are allowed (with two of them

exceeding the original capacity by more than 10%). The

corresponding districting maps are the same as those seen

in Figure 2.

Scenario (1): redistrict so that the capacities per grade
are not violated. As can be seen from Tables 4 and 5, in
Scenario (1) there is a small decrease in average travelled

distance for the Fels cluster and a small increase for the

Olney cluster. In the last case, this was the price paid for

eliminating the capacity violations.

Scenario (2): redistrict the Olney cluster with a
maximum walking distance constraint. From Table 5 it

can be seen that, when redistricting the Olney cluster

subject to no capacity violation (Scenario (1)), the worst

travelled distance increases by more than 50%. Therefore,

we added a maximum distance constraint saying that no

student should walk more thatM ft (Bn¼M for all n). The

results shown in Table 5 (for Scenario (2)) correspond to

M¼ 6000 and Table 6 reports results for other values ofM.

From Table 5, it can be seen that lower values of the worst

travelled distance are only possible if some overcrowded

schools are allowed (recall that the grade capacities are

increased only if the model is integer-infeasible). The last two

lines confirm this trade-off, but in both cases only one of the

schools exceeds the original capacities by more than 10%;

therefore, it can be argued that they still represent better

solutions than the base Scenario (0).

Figure 4(a) shows the districting map for the last run of

Table 6. We observed that these districts were more compact

compared to those generated under Scenario (1). Compact-

ness is a property that is hard to define and measure in an

explicit manner, but is often in the planners’ mind.6,8,17

Limiting the maximum distance is an alternative to achieve

this property. Another elusive yet highly desired character-

istic of school boundary is smoothness. Smooth boundaries

generally make school districts clearer and seemingly less

biased. Figure 4(a) does not have this property, but its

smoothness can be improved by using the post-allocation

tool mentioned at the beginning of this section. Figure 4(b)

shows the same solution as Figure 4(a) but after manually

reallocating 14 blocks. Six of these blocks had no students;

therefore, the impact of the post-allocation on the feasibility

and/or objective value was relatively insignificant. In general,

there are many blocks where no students reside and the

planner using the post-allocation tool can trivially reallocate

them at his convenience.

Notice that this scenario was not considered in the Fels

case because, from Table 4, Scenario (1) achieves the best

maximum walking distance (in fact, there is a block whose

closest school is 6115 ft away).

Scenario (3): racial balance. The objective of this
scenario is to redistrict each cluster so that the percentage

of students of race ‘type 1’ in each school is within the

range [R1–p1, R1þ p2] where p1, p2A[0, 1] are parameters
and R1 is the cluster’s ratio (ie number of students of race

‘type 1’ divided by the total number of students in the
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Table 6 Scenario (2) tested with different values of M

Max. distance (M) in ft Worst travelled distance (ft) Average travelled distance (ft) Overcrowded schools

None 8791 2145 0
7500 7350 2172 0
6000 5984 2045 2
5000* 6691 1999 3

*The maximum distance constraint was imposed only to a sub-set of schools.
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cluster). The results for this scenario shown in Tables 4 and

5 (for Fels and Olney, respectively) consider p1¼ p2¼ 15%.
For the Fels cluster, an additional maximum walking

distance constraint (of 7500 ft) was imposed in order to

avoid overly spread out districts. The average travelled

distance increased by 10% (see Table 4) and the resulting

districts have some irregular borders, but again this could be

fixed using the post-allocation tool as explained in the

previous section. Note that the running time still has the

same order of magnitude.

Finding an optimal solution for this scenario in the Olney

case turned out to be relatively hard. The running time

reported in Table 5 is above 10h. To deal with this difficulty,

we used the pre-allocation tool. Basically, all the blocks that

were clearly closer to one particular school (relative to other

schools) were a priori assigned (fixed) to that school. For

example, all the blocks in the extreme northeast or southwest

corners of Olney cluster were treated in this manner. We

then fixed approximately 28% of the blocks, and the total

running time decreased by almost 80% (to nearly 2 h). In

further research, it would be interesting to analyse the

structure of the model in order to improve the solution time,

but at the moment we are mostly interested in the

application rather than developing efficient algorithms for

the more difficult cases.

The difficulty in solving Scenario (3) for the Olney cluster

can be explained by the racial distribution of the students.

Even though the percentage of race ‘type 1’ students is high

(R1¼ 47%), they are not uniformly distributed. Hence, a
feasible pattern is hard to find; moreover, the existing

solutions have districts with extremely irregular shapes.

Figure 5(a) shows the districting map where the proportion

of race ‘type 1’ students must be in the range [0.25, 0.75]. In

addition, a maximum traveled distance constraint of 5000 ft

was imposed (only for some schools), and the solution has

three overcrowded schools (with two exceeding the original

capacity by more than 10%). It can be seen that the districts

of Figure 5(a) and 4(a) have similar shapes. This similarity is

clearly lost in Figure 5(b), where the range of race ‘type 1’

students was narrowed to [0.32, 0.62]. This last figure has no

maximum distance constraint; otherwise, the problem was

integer-infeasible (regardless of the school capacities).

In addition to the extremely elongated shape of some

districts in Figure 5(b), there is one particular district that is

not contiguous (it is split in two). This is a direct

consequence of how the Din parameters and the N(i,n) sets

were calculated, as discussed before.

Scenario (4): redistricting assuming all schools are K-
8. This scenario represents an interesting ‘what ify’
question and shows the potentiality of the system. The total

capacity of every school was divided proportionally for

each grade according to the cluster’s student-per-grade

ratios (ie the total number of students per grade divided by

the total number of students in the cluster), and then a 5%

surplus was added. We included an additional constraint

expressing that the total number of students allocated to a

school should be no more than the original total capacity

(before the surpluses per grade were added).

PPL_JORS_2601729

Figure 4 Redistricting Olney cluster with a maximum walking distance constraint: (a) before post-allocation, (b) after post-
allocation.
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Since seven of the eight schools in the Fels cluster were K-

8, the solution barely changed (see Table 4). This grade

restructuring, however, improved the Olney cluster substan-

tially, as the average travelled distance was decreased by

20% and there were no overcrowded schools (see Table 5).

Conclusions

This paper has presented an interactive school redistricting

system coupling a commercial GIS with an exact optimiza-

tion model to solve the school redistricting problem. The

model explicitly considers common quantitative properties

of a good school redistricting plan as found in the literature,

and other qualitative desirable properties are covered

through the GIS interactive interface. The solutions found

with this system improve on existing solutions, and even

more importantly, provide insight into the trade-offs

involved. The results are intuitively clear: for example, as

the capacities per grade become more stringent, the walking

distance increases; if the students are not uniformly

distributed by race (which is usually the case), there is a

clear trade-off between achieving certain racial balance and

keeping contiguous (and compact) districts. The model, in

an iterative procedure, can help find an adequate equili-

brium. The capability for analysing multiple scenarios is

evident; this was done for answering the question ‘what if all

the schools had the same grade structure?’ Clearly, this is a

theoretical answer. Such a modification would involve many

other issues not considered in the model. To mention a few,

there is no cost analysis, teachers’ availability and opinion

are not considered, nor is the parents’ point of view taken

into account. Nevertheless, the solution provided by the

model would help set any further discussion on a solid

ground. Similarly, the system could be extremely helpful for

locating new schools and/or analysing the impact of a school

shutdown.

In general, school redistricting criteria, whether quantita-

tive or qualitative, cannot be enumerated in advance, but

rather are established and modified during a trial-and-error

redistricting process. Therefore, the major implication of this

study is that GIS can be an effective tool connecting a

mathematical model’s ability to handle complexity and

human’s intuition and experience to solve highly subjective

ill-defined spatial problems. The results obtained seem to

indicate that the presented approach could be a valuable tool

for school planners.

Future research could concentrate in studying multiple

periods with enrolment forecasts and the combinatorial

structure of the model in order to reduce its computational

time.
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in the paper.

Appendix: Ensuring contiguous districts

Considering again the example in Figure 3, the problem is

that, given the ‘block to school’ distance measure described

in the implementation section, constraints (5) and (6) are not

PPL_JORS_2601729

Figure 5 Redistricting Olney cluster with racial balance: (a) racial range¼ [0.25, 0.75], (b) racial range¼ [0.32, 0.62].
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sufficient to rule out non-contiguous districts. Note that this

problem remains if instead we define the ‘block to school’

distance to be the Euclidean distance from the centroid of

the block to the point that represents the school. Note also

that if we define C(i)¼NULL for every block i except those

that are directly next to a school (where NULL represents a

value different from any of the existing schools), then this

problem would be fixed. However, this condition is

excessively strict and would rule out not only non-

contiguous districts but also many contiguous ones. For

instance, in the example of Figure 3, if we set C(V)¼NULL

then constraints (6) would dictate that block V could never

be assigned to school s1.

One approach to overcome this problem is to measure the

distance between a school and the nearest part of a block

rather than the block’s centroid. More formally, regarding

block V as a set of points, the canonical distance L between a

school s and block V can be defined as follows:

Lðs;VÞ ¼ minfEuclðs; qÞ=q 2 Vg

where s is a point representing a school, V is a set of points

representing a block, and Eucl(i, j) is the Euclidean distance

between points i and j.

Given this distance measure, if every block can be

connected to its closest school by a straight line contained

in the area (cluster) being studied, then constraints (5) and

(6) ensure contiguous districts. A sketch of the proof for this

claim would be as follows. Let p¼ argminqAV {Eucl(s,q)}. If

pas, thenN(V, s)af, that is, V has an adjacent block that is
closer to s (because the line that connects p and s is part of

the cluster). Therefore, constraints (5) ensure that there is a

path from any point of block V to school s. If p¼ s, then
C(V)¼ s, that is, block V and school s are next to each other.
Therefore, neither constraint (5) nor (6) applies so that block

V can be assigned to school s without any further

requirement.

Calculating the canonical distance from a set to a point is

often computationally intensive. However, since the GIS

works with the block information in vector format, that is,

each block is typically represented by a polygon consisting of

a finite set of point (rarely more than 20), a surrogate

distance measure would be

Lðs;VÞ ¼ minfEuclðs; qÞ=q 2 GISðVÞg

where GIS(V) is the set of points that represent block V in a

GIS vector format.
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