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Abstract

This paper considers the problem of redistricting or redrawing police command boundaries. We model
this problem as a constrained graph-partitioning problem involving the partitioning of a police jurisdiction
into command districts subject to constraints of contiguity, compactness, convexity and size. Since the
districting a4ects urban emergency services, there also exist quality-of-service constraints, which limit
the response time (queue time plus travel time) to calls for service. Confronted with the combinatorial
challenge of the districting problem, we propose a simulated annealing algorithm to search for a “good”
partitioning of the police jurisdiction. At each iteration of the algorithm, we employ a variant of the
well-known PCAM model to optimally assign the patrol cars and assess the “goodness” of a particular
district design with respect to some prescribed performance measures. This approach di4ers from the
well-known Hypercube queuing model, which simply evaluates the performance of a user-speci;ed dis-
trict design and allocation. A computational case study using data from the Bu4alo, New York, Police
Department reveals the merits of this approach.

Scope and purpose

Two of the primary concerns of urban police departments are the e4ective use of patrol cars and
the workload balance between o>cers in di4erent geographical districts. In recent years, a well known,
public domain software package based on the Patrol Car Allocation Model (PCAM) has been developed.
PCAM was designed to help police management specify the number of patrol cars that should be on
duty at various times of the day on each day of the week in each district. For long-term planning, police
management also faces the thorny problem of designing these districts. To address this problem, we
employ a simulated annealing search method to determine the geographic boundaries between the police
districts. PCAM is used to evaluate the “goodness” of each district design encountered in this search,
where “goodness” involves minimizing the disparity between the maximum workload and the minimum
workload of the police o>cers. Working with the Bu4alo, New York, Police Department, we were
able to signi;cantly reduce o>cer workload disparity while maintaining current levels of response time.
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1. Introduction

Operations Research plays an important role in the optimal deployment of scarce urban
resources. Emergency services such as police, ;re and ambulance services are highly labor
intensive, with personnel costs accounting for more than 90% of operating costs [1]. In addition,
for urban police departments, typically over half of all these personnel resources are used for
patrol car operations [2]. Therefore, a major goal of police management is to ;nd an equitable
and e>cient distribution of these patrol resources across their city or jurisdiction.

To make this distribution more manageable, police departments face the mammoth task of
partitioning their jurisdiction into command districts or precincts. Each command district usually
has a headquarters and commanding o>cer to oversee its police operations. Districts are further
subdivided into patrol sectors or beats, with at least one patrol car assigned to each beat. On an
even smaller scale, sectors are composed of reporting districts, the smallest geographical area
for which police statistics are kept and reported to interested parties. These atomic elements,
which for many cities coincide to census block groups, are the geographical building blocks
from which sectors and districts are de;ned [3]. Viewing each of these so-called R-districts as
a node connected to adjacent R-districts via arcs, we can build a graph to represent the police
jurisdiction. The districting problem then takes the form of a graph-partitioning problem, which
is known to be NP-complete [4].

Despite its complexity, the districting problem must be solved in a variety of contexts, such as
in deciding sales territories, school districts, political districts and, in our case, police command
districts. Hence, there exists much literature on districting problems, particularly in the political
realm. Williams [5] provides a review of this vast literature on political redistricting problems.
Escaping review, George et al. [6] describes an iterative location=allocation method applied
within a geographic information system (GIS) to electoral districting in New Zealand. More
recently, Mehrotra et al. [7], building on the earlier work of Gar;nkel and Nemhauser [8], use
a column generation approach to select political districts. Similar methods have also been used
in designing school districts [9] and sales territories [10].

This article, an outgrowth of preliminary work done by one author for a Master’s thesis [11],
develops a new approach to police districting. Our methodology, like some political studies
(e.g., Nagel [12]), attempts to improve an existing district design by using local search tech-
niques that involve swapping population units—in our case R-districts—from one district to
a neighboring district. However, we employ the more recently developed search technique of
simulated annealing (cf., e.g., Reeves [13]). Simulated annealing, like other metaheuristics such
as tabu search and genetic algorithms, has been successful in ;nding reasonably good solutions
for many combinatorial optimization problems. In fact, upon completion of this work, we found
a recent paper by Bozkaya, Erkut, and Laporte [14] that applies tabu search to the political
districting problem.
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Districting problems all share similar concerns for geographical compactness, contiguity,
and some measure of equal “size”, whether size is measured in terms of area, population or
customers. A combination of these measures determines the overall e4ectiveness of a particular
districting design. For example, Kaiser [15] measures compactness with a moment of inertia of
the area of a district. Horn [16] minimizes the total length of district perimeters to ;nd the most
compact partitioning. Mehrotra et al. [7] employs a branch-and-price methodology to evaluate
the “non-compactness” cost of a proposed political district.

What distinguishes the police districting problems from these other applications is an addi-
tional consideration for patrol o>cer workloads and response times to calls for service (CFS).
These considerations require incorporating queueing measures; o>cer workloads constitute the
utilization of servers, and response times constitute customer waiting times. These average
queueing measures are highly non-linear functions of call rates and service times and therefore
yield a di>cult non-linear optimization problem. We search for a geographic partitioning that
addresses these queueing-related concerns, with common districting constraints on geographical
contiguity, compactness, convexity, and size.

The remainder of this paper is organized as follows. The next section explains how we
exploit well-known patrol car allocation models to address the queueing concerns. Section 3
discusses the implementation of our simulated annealing approach. In particular, we de;ne
feasibility rules for neighboring solutions that ensure some amount of geographical contiguity,
compactness, convexity, and uniform size. In Section 4, we present the results of a case study
of this methodology on data collected from the Bu4alo, New York, Police Department. The
;nal section o4ers conclusions and suggestions for future work.

2. Patrol car allocation

A traditional approach for allocating patrol cars involves splitting car resources in direct
proportion to the total calls for service, giving equal weight to all priorities. A pitfall of this
so-called hazard method is that it ignores queueing e4ects [1]. Fewer o>cers may be required
to serve an area with a large call volume, simply because the service time (including travel)
for those calls is smaller than in other low-call-volume areas.

Recognizing the need to account for queueing e4ects, we turned to well-known queueing
models that have been developed in the past 25 years for deployment of police resources. Lar-
son’s [17] seminal Hypercube Queueing Model has been widely used to design police patrol
beats and sectors. Its early computer implementation [18] has been migrated to the PC environ-
ment in what is called the Desktop Hypercube (DH). The DH software developed by Sacks has
enabled the Orlando Police Department to balance o>cer workloads and response times across
patrol beats while maintaining neighborhood boundaries [19]. The Hypercube model has been
implemented in several other cities as well. Dizengo4 [20] used a prototype version of the DH
in an analysis of the Chapel Hill, North Carolina Police Department.

Treating each patrol car as a distinguishable entity, the Hypercube model is able to generate,
for each car, performance statistics such as the travel time to incidents, workload, and proportion
of dispatches outside its assigned beat. Two weaknesses of the Hypercube model are its inability
to handle call priorities or to use time-dependent rather than steady-state input data.
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A competing model is the PCAM model developed by Chaiken and Dormont [21,22]. The
PCAM model is capable of prescribing the number of patrol cars to allocate to each command
district for any particular hour of the week. The model handles priority calls-for-service (CFS)
data and time-dependent input. It is also Uexible enough to be implemented by police depart-
ments that have a wide variety of command area con;gurations, shift schedule constraints and
dispatching policies.

The public domain PC software implementation of PCAM [23] is a modi;ed version of the
original [24]. The PCAM software does not require user expertise in a particular computer
programming language for its implementation. PCAM users are able to specify a performance
objective, performance constraints, or a combination of performance constraints and a perfor-
mance objective. Performance objectives include minimizing average response time to a call,
average queue time for a call or the fraction of calls delayed in queue. Constraints allow for
imposing upper bounds on such performance measures as workload percentage, fraction of calls
delayed in queue, average travel time, as well as response time or queuing delay for lower
priority calls.

There are practical drawbacks to using either PCAM or DH for district design. The drawback
to a practical use of the DH is that it is a descriptive tool rather than a prescriptive (optimizing)
tool. The DH requires that the user specify the sector or beat for each patrol car, in essence,
the partition. The DH then evaluates the performance of that design. It is up to the user
to then decide whether or not the performance is good enough. Likewise, although it is an
optimizing tool, PCAM only prescribes an optimal allocation of cars to a de;ned region, not
what the region should look like. Thus, although these tools provide a quick performance
evaluation of a particular partition of the city, the combinatorial challenge of ;nding an optimal
partition still exists. It is with this in mind that we turned to a simulated annealing search
routine.

3. Simulated annealing approach

Our police-districting problem—like all districting problems—is a combinatorial challenge.
Due to concerns for queueing performance the objectives and constraints on our problem are
highly non-linear. Thus, to search for a “good” solution of this problem, we propose a simulated
annealing heuristic approach. At each iteration of the simulated annealing algorithm, PCAM is
applied to ;nd an optimal allocation of patrol cars to a given partition.

The simulated annealing algorithm starts with an initial solution, for instance the current
district partitioning. At each iteration, a prospective solution is generated from the current
partition by reassigning an atom (R-district) located on the border between two adjacent districts.
If the prospective solution’s objective value is better than that of the best solution, then the
prospective solution is saved as the best solution and becomes the current solution. If the
prospective solution is not better than the best solution, then it may become the current solution
regardless with an acceptance probability determined by the so-called temperature parameter
(cf., e.g., [13]). In a simulated annealing algorithm, the temperature gradually decreases as the
algorithm progresses, thereby decreasing the acceptance probability. Thus, the e4ect is to reject
inferior solutions at greater frequency as the algorithm progresses.
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The probability of inferior solution acceptance, p, at each iteration of the simulated annealing
algorithm is given by

p= exp
(
−v(s) − v(s0)

t

)
;

where v(s) = objective value of the prospective solution, s; v(s0) = objective value of the current
solution, s0; t= temperature.

Eventually, it is desired that the algorithm stop with an optimal or near-optimal solution. The
overall e4ect of the simulated annealing algorithm is to begin searching the solution space in a
highly random manner, often replacing the current solution with inferior solutions. This random
solution-replacement process provides the algorithm freedom to explore possible solutions and
prevents con;nement to a local minimum.

However, as the algorithm progresses, the chance that an inferior solution displaces the current
one gradually decreases. If the algorithm was provided enough chances to explore all possible
solutions, then this decrease is analogous to keeping increasingly superior solutions. As the
probability of accepting an inferior solution decreases further, the algorithm tends to avoid
drastic moves among possible solutions, and begins searching locally for a superior solution in
the “neighborhood” of the current solution.

The neighborhood of a solution is de;ned as follows. Given a particular current solution and
its associated value, the simulated annealing algorithm requires a systematic method for choosing
another solution in the next iteration. The process of choosing the next solution is managed by
de;ning a neighboring solution. In this application, a neighbor of a current solution is a partition
that is identical to the current solution except that one atom (R-district) is reassigned from a
district to an adjacent district. The neighbor de;nition will result in one atom, on the border
between two adjacent districts, being swapped from one district to the other district at each
iteration. With a neighbor de;ned, the algorithm has the means for moving from one solution
to the next. However, to keep the algorithm from favoring particular neighbors and possibly
precluding the best solution from being visited, all the neighbors of a particular current solution
must be given an equal chance of being visited. This requires that we randomly select which
neighbor to visit next. The set of all neighbors adjacent to the current solution is referred to as
its neighborhood.

At each iteration, the current solution is assumed to be feasible. To insure that the next
solution chosen is also feasible (i.e., whether or not it is eligible to replace the current solution),
it must be clear what conditions constitute feasibility. In this application, feasibility depends on
both a quality-of-service constraint as well as several desirable physical attributes for each
geographical district. In particular we describe the constraints as follows:

1. Response Time—The average response time in each district during all weekly time blocks
in the week should not exceed a speci;ed upper bound.

2. Size—The ratio of the areas of the largest and smallest districts should not exceed a
speci;ed upper bound.

3. Contiguity—Each district should remain connected.
4. Compactness—The ratio of the longest Euclidean path and the square root of the area

should not exceed a speci;ed upper bound.
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Fig. 1. Examples of convexity violations.

5. Convexity—The atom added should not create a protrusion out of the new district, and
the atom removed should not create an indentation in the old district.

The response time constraint is needed to ensure that the solution suggested at the end of
the procedure is implementable—we do want to obtain a better workload distribution at the
expense of very poor quality of service. The size constraint avoids the possibility of producing,
for example, one large district and several small ones. The contiguity constraint is necessary
to keep patrol o>cers from crossing district boundaries. The compactness constraint avoids
gerrymandering, ensuring that a district will have a relatively round rather than long and slender
shape. Aside from practicality and aesthetics, a technical reason to require compactness is that
the PCAM algorithm uses the square root law to estimate travel time. This estimation technique
is accurate only for compact areas [25].

Of the ;ve constraints, the convexity constraint is the only one that is somewhat unclear. We
have to clarify the terms “protrusion” or “indentation”. The following three transfer situations
(each illustrated separately in Fig. 1) are considered infeasible situations that violate convexity:

(i) an exchange which causes an atom to be too far away from the closest atom in its district;
(ii) an exchange which causes an atom to be adjacent to only one other atom in its district;

(iii) if A is the exchanged atom and B is an atom adjacent to A in the receiving district, then
B must be adjacent to at least four atoms (including A) in its district.

To avoid severe indentations, we also developed the following procedure to check convexity.
First, we determined a direction vector’s head by averaging the coordinates of the atoms in the
giving district that are adjacent to the exchanged atom. Similarly, to obtain the coordinates of
the direction vector’s tail we averaged the coordinates the atoms in the receiving district that
are adjacent to the exchanged atom. With the direction vector and the exchanged atom, we
formed a new coordinate system as shown in Fig. 2. We considered the exchange infeasible if
both Quadrants 2 and 3 had atoms from the giving command district.
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Fig. 2. Coordinate transformation to check convexity.

With these feasibility constraints in place, the simulated annealing algorithm can be performed.
Dowsland [26] o4ers a generic statement of the algorithm, in the form for our application. The
performance of the simulated annealing algorithm, however, depends heavily on several algo-
rithmic parameters. These parameters include the temperature, the rate at which the temperature
decreases (and hence p decreases), and the termination conditions such as a pre-speci;ed total
number of iterations. These parameters must be adjusted in order to improve the e>ciency of
the algorithm. To aid in this task, experimentation on a trial-and-error basis is applied in most
applications. White [25], however, describes a more re;ned technique involving computing the
standard deviation of the changes in the objective value.

4. Bu�alo police case study

Bu4alo is the second-largest city in the State of New York with a population of about 330,000.
The City of Bu4alo is located on the shores of Lake Erie and comprises approximately 40 square
miles. The Bu4alo Police Department (BPD) consists of 533 police o>cers and deploys between
33 and 54 police cars at any point of time. In 1997, there were about 350,000 CFS.

Prior to 1996, the BPD had eight geographical command districts. Through a planning process
that involved police chiefs and legislatures in the city government, BPD reorganized into ;ve
command districts named A–E. Each of the districts is divided into four sectors or patrol beats
numbered 1–4, which are the designated areas in which particular patrol cars are assigned. The
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BPD has further divided the City of Bu4alo into 409 so-called R-districts, for data tracking
purposes. (Each dot in the adjacency graph depicted in Fig. 3 represents the geographic center
of an R-district.) These R-districts are relatively small (on the order of a census block group)
and form the atoms upon which the sectors and districts are de;ned [3].

Historically, the BPD has determined command district boundaries from experience. Typically,
boundaries lie along major streets and are drawn so that the CFS volumes are approximately
the same across the various geographical commands. Since this method ignores di4erences in
service times and non-patrol duties, it fails to balance the workload of geographical commands.

The problem we faced is that of partitioning the City of Bu4alo into ;ve contiguous districts,
each comprised of R-districts, and deciding how many patrol cars should be allocated to each
time block of the ;ve districts.

4.1. Objectives

The chief concern of the BPD administrators was the current disparity in o>cer workloads,
de;ned to be the percentage of on-duty time spent responding to calls (as opposed to time spent
on patrol or non-emergency calls). Fig. 4 shows the reason for their concern. This ;gure displays
the distribution of workload for the BPD’s nearly 6,500 weekly carhours, which translates into
about 38 patrol cars on an average shift. Particularly disturbing is that over 25% of the time
during a week, o>cers are under-utilized with workloads below 26% (the left tail of the ;gure).
Likewise, nearly 18% of the time, o>cers are overworked with workloads above 42% (the right
tail of the ;gure).

These results show great variability among o>cer workloads. From a standpoint of o>cer
morale, it is certainly undesirable for some patrol o>cers to be responding to emergencies only
20% of the time, whilst their fellow o>cers, perhaps in a di4erent district or assigned to a
di4erent shift, being utilized for emergencies in excess of 50% of their time.

Therefore, the objective of this study, as directed by BPD management, was to minimize
the disparity between the maximum and minimum workloads of patrol o>cers, their inter-
nal customers. A secondary concern was to constrain the maximum average response time to
calls from their external customers. Unfortunately, PCAM is not able to minimize workload
disparity directly. However, since it is possible to constrain workload we chose to impose a
maximum workload constraint while minimizing average response time. By successively lower-
ing the workload bound as far as possible, we were, in essence, able to minimize the maximum
workload. We deemed this a suitable surrogate to minimizing workload disparity.

4.2. Data manipulation and model validation

According to the current allocation of the BPD, the ;ve districts have the same time block
structure. There are four time blocks: 07:00–16:00, 16:00–21:00, 21:00–02:00, and 02:00–
07:00. During a time block, the number of patrol cars scheduled for duty does not change.
PCAM allows the user to de;ne any number of days to represent a cycle. To account for
variations in the call rate and allocations for a given time of day during the week (e.g., weekend
days typically yield higher call rates), seven days was chosen as a cycle. For convenience,
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Fig. 3. Adjacency graph induced by R-districts.
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Fig. 4. Workload distribution: current partition with current allocation.

Sunday was chosen to be the ;rst day of the weekly cycle. Therefore, the PCAM cycle began
Sunday morning at 07:00 and ended the following Sunday morning at 07:00.

Data for the model was made available to us by the BPD. The analysis is based upon data
for the 6-month period from February 1, 1997 through July 31, 1997. We ;rst needed to verify
that PCAM was a good predictor of the workload performance measure. Applying PCAM to
the data set provided by the BPD and comparing its workload predictions for the 140 time
blocks (4 blocks per day ∗ 7 days per week ∗ 5 districts) to the BPD actual workload statistics
revealed only a 0.5% deviation, on average. Compared with the current workload disparity of
64:2− 12:5 = 51:7%, this is a very small error. We therefore concluded that PCAM’s workload
calculations were very accurate. (The implementation of PCAM is not trivial. This accuracy
was a result of prior tailoring and ;ne tuning of PCAM at the BPD prior to this district design
study.)

4.3. Simulated annealing parameters

In keeping with the current BPD district design, we de;ned the following feasibility param-
eters. The average response time in any given time block was constrained to be no more than
29 min. Also, no district was allowed to be more than 2.5 times the size of any other district.
For compactness, the square root of a district’s area to its longest Euclidean path was kept
below 1.5. For convexity, each atom was required to be within 0.3 miles of its nearest neigh-
boring atom within its own district. Any exchanges that violated any one of these restrictions
were not considered feasible “moves” in the simulated annealing algorithm.
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Fig. 5. Annealing curve.

A critical issue in running a simulated annealing algorithm is to determine the initial and
the ending temperatures. In our experiments, we ;rst kept the temperature constant and ran
the procedure for a large number of iterations. The average energy (objective value) for each
constant temperature was then calculated. From the annealing curve depicted in Fig. 5 we can
see that when keeping the temperature higher than 0.1 over a large number of iterations, the
average energy remains about 37%. Therefore, we considered temperatures over 0.1 extremely
high. Under such high temperatures the procedure moves to feasible neighbors randomly even
though the neighbors have high energy. Also, 37% can be interpreted to be the average energy
of all the possible solutions. The energy for temperatures 0.05, 0.02, 0.017, and 0.016 is 36%,
36%, 33%, and 26%, respectively. Based on this observation, we conclude that in our case
temperatures between 0.017 and 0.1 are reasonable choices for the initial temperature.

Starting from such an initial temperature, we then employed a temperature reduction function
�(t) = at; 0¡a¡ 1, over time t. As the temperature dropped, the average energy decreased.
This phenomenon is expected since now we are forcing the method gradually to seek better
solutions. Notice that as the temperature drops to 0.0001, the average energy values start to
increase again. This is due to the rarity of available states at the low tail of the energy distri-
bution and the propensity of the algorithm to get stuck at a local minimum at low temperature.
We concluded that 0.0001 is a suitable ending temperature.

4.4. Experimental results

Using the initial temperatures between 0.01 and 0.12, and ending temperature 0.0001, several
trials consisting of n= 400 K iterations were executed with the current geographical commands
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Fig. 6. Current geographical patrol district con;guration.

as the initial partition. Upon execution, workload disparities between 0.1413 and 0.1504 were
achieved. The best solution with the minimum achieved disparity of 0.1413 occurred with an
initial temperature of 0.1. It took a 450 MHz personal computer about 2 h to implement each
simulated annealing procedure.

Figs. 6 and 7 depict the current and this best partition, respectively. The R-districts are shaded
by district, with lines partitioning the city according to the current partition. Notice that the best
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Fig. 7. Best geographical patrol district con;guration.

partition has evolved from the current partition primarily by a westward evolution (towards the
left of Fig. 7) of the R-districts currently residing in District C of Fig. 6. As a result, many of
the darkly shaded R-districts currently in District B have pushed south into current District A.

Notice also that the current partition appears more geographically compact, with a less signif-
icant disparity in district size. Despite the current similarity in size, most time blocks in current
Districts B and C have a higher workload than time blocks in the other districts. This is due
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in part to the fact that current District B (West=Downtown Bu4alo) has the highest CFS rates,
followed by current District C (East Bu4alo). In contrast, currently both Districts D and E
(North Bu4alo) have smaller CFS rates. In these districts, some time blocks have very low
workloads even though only one patrol car is assigned to them. The partition suggested by our
algorithm allows Districts A (South Bu4alo), D, and E to share the workload of Districts B
and C. Even though the resulting con;guration does not look as geographically compact as the
current BPD command con;guration, it does improve the workload disparity.

These improvements in workload disparity can also be seen in terms of the workload dis-
tribution, when compared to the current situation depicted in Fig. 4. When the patrol cars are
optimally allocated to the BPD’s current districts (Fig. 8(a)), the high tail of the workload
distribution from Fig. 4 is eliminated, and the low tail is reduced signi;cantly. However, some
time blocks still have a workload as low as 12%. These low workloads result from the fact
that one of the districts has a relatively small CFS rate, yet must be patrolled by a minimum
number of cars in order to meet the imposed response time constraint.

By repartitioning the city, our algorithm does improve the workload disparity by raising the
lowest workload from around 12% to 26% (see Fig. 8(b)), while lowering the highest workload
from under 44% to under 42%. The maximum workload disparity thus improved from about
30% to about 14%. At ;rst glance, it is perhaps discouraging that the maximum workload did
not drop more than it did. However, our improved workload disparity apparently must come at
the expense of aggregating some R-districts having high CFS rates with other districts having
low CFS rates.

4.5. Model robustness

To avoid initial bias induced by always starting the algorithm at the current partition, some
random partitions were used to initialize our algorithm. The ;nal results di4ered by less than 1%.

Alternative possibilities for moving from one solution to the next were considered as well.
In addition to the swaps of one R-district atoms at each iteration, we also performed swaps
of size k atoms, for k= 2; 5; 10; 15. Here, feasibility is checked in two stages. In the ;rst
stage, k individual atoms were swapped one at a time, with a check for geographic feasibility
(as discussed in Section 3) before each swap. In the second and more time-consuming stage,
PCAM was used to check for response time feasibility for the new con;guration resulting from
these k swaps. The motivation of multiple swaps is to save on the total number of iterations
each containing a time-consuming PCAM call. Trials at k= 2 and 5 yielded solutions close to
(and often identical to) the solutions found for k= 1. The swaps at k= 10 and 15 performed
gradually worse.

Also, there was some concern that if the feasibility constraints described in Section 3:3 were
too strict, the algorithm would not be very “active” in moving around, possibly trapping itself
at a local minimum near the initial solution. To alleviate this concern, we ran the algorithm
while ignoring all of the geographic feasibility constraints except for contiguity. The empirical
lower bound we obtained was approximately 13%, which does not improve our current objective
value by more than 1%. Therefore, we conclude that the strict feasibility constraints and initial
solutions are not critical to the objective value in this situation and the current objective is
relatively close to the empirical lower bound.
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Fig. 8. Workload distribution: current vs. best partitions.

5. Conclusions and suggestions for further work

We proposed a simulated annealing search methodology for police command districting. At
each iteration of the simulated annealing heuristic, we utilized a variant of the well-known
PCAM to allocate patrol resources to the current district partition and thereby evaluate the
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expected performance of that design. A case study on data collected from the BPD established
the merits of this approach.

Using PCAM to allocate cars optimally to the current BPD districts goes a long way towards
minimizing disparity in o>cer workloads—time spent answering calls for service—across dis-
tricts with work shifts. Our experience suggests that the current maximum workload disparity
of over 50% (some o>cer workloads are higher than 60%, others however near 10%) can
be drastically improved by reallocating cars more e4ectively. As shown in Fig. 8(a), a proper
allocation greatly reduces the variance in workload.

This is not to say our search for improved district boundaries is without merit. Under optimal
car allocations, we were able to ;nd an improved district design that lowered the disparity
among o>cer workloads from 30% to only 14%. Also, the proportion of small workloads under
36% was greatly reduced. Hence, o>cer workloads were more uniformly balanced (primarily
between 36% and 42%) across all districts and work shifts. At the same time, our response
time feasibility constraints ensured no increase in the maximum response time of 29 min under
current BPD operations. Management at BPD is currently reviewing this redistricting proposal
for their long-range planning.

A side bene;t of the proposed districts is that they help alleviate an annoying dispatching
quirk present in the current district con;guration. Currently, any calls for service (primarily auto
accidents) on the Bu4alo Skyway heading south along Lake Erie on the western edge of District
A are dispatched to o>cers from District B. This is due to the fact that the entrance ramp to
the Skyway is located in District B just a few blocks from BPD Headquarters in downtown
Bu4alo. The proposed con;guration alleviates this problem by covering the Skyway with one
district.

A suggestion for possible improvement of the algorithm is to start with a partition that
minimizes the average boundary of each geographical command. This is to make the command
shape “round” and is expected to decrease response time by reducing travel time. Further
improvements could be achieved by introducing some geographical information system (GIS)
software to help estimate the statistics needed in applying PCAM. For example, PCAM estimates
the travel time to the incident by square root laws. GIS software could provide more accurate
information about the streets and district areas, thereby o4ering better estimates of travel time.
The authors are presently engaged in this activity.
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