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ABSTRACT

Territorial aggregation is an important issue in many traditional applications, such as political dis-
tricting, plant location, health care zoning, and travel demand study. In particular, in travel demand
analysis one is interested in estimating travel Hows between origins and destinations. The number of
trips performed between origin ; and destination y is represented by the (/, j)-lh entry of an Origin-
Destination (OD) matrix. In order to define the OD matrix, a discrete set of origins and destinations
is needed, and territorial aggregation methods are used precisely to choose these origins and destina-
tions. Typically, a survey is performed to collect data on travel between the selected origins and des-
tinations. However, when tbe survey OD matrix is large and sparse, problems in the estimation of
travel demand may arise. This drawback can be avoided by further aggregating the origins and desti-
nations on which travel demand is evaluated and by obtaining a new and smaller OD matrix where
each cell entry carries a greater value. The corresponding map is then exploited to calibrate the sta-
tistical model used to estimate the original disaggregated travel ilows. In this work, we first suggest
a set of optimality criteria which ean be used to find "good" territorial aggregations and we adopt the
Old Bachelor Acceptance heuristic to identify them. In order to understand the trade-off belween
these criteria, we introduce appropriate optimality indexes and we minimize their weighted combi-
nations with several different sets of weights. Our application refers to the city of Rome and the
actual study, which involved statisticians, engineers and operations researchers, was supported by
the local government (Comune di Roma). Our experimental results on the city of Rome show that
the Old Bachelor Acceptance heuristic finds aggregations with low values for all the indexes simul-
taneously. In particular, our results lead to the conclusion that certain sets of weights must be
adopted if one wants to be sure to find "good" aggregations.

Keywords: Territorial aggregation, local search, multicriteria optimization, OD matrices.

RESUME

L'agrdgation territorial est une question importante dans de nombreuses applications telles que le
decoupage electoral, la localisation de structures industrielles, la repartition en zones du systeme
sanitaire, et I'etude de la demande de dcplacements. En particulier, en ce qui conceme l'analyse de la
demande de deplacements, nous voulons estimer les flux entre les origines et les destinations de
deplacements. Le nombre de deplacements entre une origine / et une destination^' est representee par
I'entree (/, j) d'une matrice Origine-Destination (OD). Afin de definir la matrice OD, il faut disposer
d'un ensemble discret d'origines et de destinations, et les methodes d'agregation territoriale sont
utilisees a eette fin. Habituellement, une enquete permettra de collecter des donnees sur les dcplaee-
ments entre les origines et les destinations choisies. Toutefois quand la matrice OD de I'enquete est
grande et creuse, des problemes dans I'estimation de la demande de deplacemenis peuvent se pro-
duire. Cet inconvenient peut etre evite en agregeant ulterieurement les origines et les destinations sur
lesquelles la demande est evaluee, en obtenant une nouvelle matrice OD plus petite ou les valeurs
des entrees sont plus grandes que dans la matrice initiale. La carte d'origines et destinations obtenue
est exploitde pour calibrer le modele statistique utilise pour estimer les flux de deplacements
desagreges originaux. Dans ce travail, nous suggerons premierement une se'rie de criteres qui peu-
vent etre utilises pour trouver de "bonnes" agregations territoriales et nous adoptons I'algorithme
heuristique Old Bachelor Acceptance pour les identifier. Afin de comprendre le trade-ojfcntrc ces
criteres. nous introduisons les index correspondants et nous minimisons ieurs combinaisons
ponderees avee plusieurs series diff^rentes de poids. La ville de Rome est I'objet de notre applica-
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tion, issue d'une etude qui a implique la collaboration de statisticiens, d'ing^nieurs et d'experts en
recherche operationnelle et a ete soutenue par !e gouvemement local {la commune de Rome). Nos
resultats experimentaux sur la ville de Rome montrent que les abrogations trouvees par ralgorithme
heuristiquc Old Bachelor Accepiance produisent des valeurs basses pour tous les index simultane-
ment. En particulier, nos resultats menent a la conclusion que certaines series de poids doivent etre
adoptees pour etre sur de trouver les "bonnes" agregations.

Mots-cles : agregation territoriale, recherche locale, optimisation multi-critere, matrices origines-
destinations.

1. INTRODUCTION

Territorial aggregation plays ati important role in many traditional applications, such as political
districting, plant location, health care zoning and travel demand study [2, 4, 8, 12]. Different ter-
ritorial aggregation algorithms have been suggested in literature, but recently the attention of
many authors has moved to local search algorithms, such as Tabu Search, Simulating Annealing,
and others [4, 9, 10, 11, 12, 18]. Following the results of a comparison between different local
search algorithms presented in [18], we suggest to use the heuristic known as the Old Bachelor
Acceptance algorithm [14] for travel demand models. In travel demand analysis one is interested
in estimating travel flows between origins and destinations. The number of trips performed
between origin / and destination / is represented by the (/, 7)-th entry of an Origin-Destination
(OD) matrix. In order to define the OD matrix, a discrete set of origins and destinations is
needed, and territorial aggregation methods are used precisely to choose these origins and desti-
nations. Typically, a survey is performed to collect data on travel between the selected origins
and destinations. However, when the survey OD matrix is large and sparse, problems in the esti-
matioti of travel demand tnay arise. This drawback can be avoided by further aggregating the
origins and destinations on which travel demand is evaluated and by obtaining a new and
smaller OD matrix where each cell entry carries a greater value. In general, when territorial
aggregation is needed, it is performed by one of the traditional cluster analysis techniques based
on a single criterion [IJ.

The use of local search techniques in this field is a new approach. To our knowledge, there is
not much experimental work on territorial aggregation for OD models, although the level of
aggregation is very important in trip distribution models estimation [3. 5]. Some interesting
remarks about this problem are given in |22].

One of the technical issues related to the analysis of travel demand is the definition of individ-
ual choice sets, representing the alternative destinations each person may choose to reach. Since
individuals cannot be taken into account one by one, the territory under study is partitioned into
small homogeneous areas, called "micro-zones", which represent the origins and destinations of
the flows. Territorial aggregation procedures are generally applied to identify these micro-zones.
Once the micro-zones are known, travel flows are estimated on the basis of an observed OD
matrix by the use of traditional techniques, such as the maximum likelihood method. We will
refer to this case as the "disaggregated estimation procedure". However, there are situations in
which territorial aggregation must be applied twice. In fact, when the survey OD matrix is large
and sparse, problems in the estimation of travel demand may arise. To solve these problems, one
may choose to increase the sample size, but this implies additional economic costs and may gen-
erate serious computational problems. The alternative is to adopt a territorial aggregation proce-
dure which merges the micro-zones into larger macro-zones [3, 8], This produces a new and
smaller OD matrix where the cell entries carry greater values, thus providing a less sparse sur-
vey OD matrix without increasing the sample size. The aggregated survey OD matrix is then
exploited to estimate the disaggregated travel tlows. We will call this procedure the "aggregated
estimation procedure". Figure I shows both the aggregated and disaggregated procedures used
to estimate travel flows.

When adopting an aggregated estimation procedure one must accept the disadvantages due to
the fact that the model looses some of its original explanatory power, given that the number of
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Figure 1 : Aggregated and disaggregated procedures for OD flows estimation
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observations available will be smaller and each observation will refer to a larger zone (which are
called "macro-zones"). However, the use of some "optimality" criteria while aggregating can
help in minimizing the loss of information between the original and new observations, thus
allowing for a better estimate of the model's parameters.

We suggest using the following three optimality criteria while performing the territorial
aggregations: compaclness, population equality and inner variance. Compactness and popula-
tion equality are typically adopted in territorial aggregation problems, such as political district-
ing [4, 18, 19]. In particular, compactness requires the aggregated macro-zones to be as round as
possible, while population equality aims at macro-zones as balanced as possible with respect to
their population. On the other hand, inner variance is introduced in order to guarantee that the
macro-zones are as homogeneous as possible, with respect to a given set of socio-economic
variables, such as the population, the number of schools, hospitals, shopping centers, etc. It is
well known that if the total inner variance of the macro-zones is equal to 0, then the explanatory
power of the aggregated estimates is the same as the one of the disaggregated estimates, what-
ever the actual aggregation adopted [3, 8]. Therefore, it is worth believing that minimizing inner
variance may help to reduce the loss of explanatory power due to the aggregated model.

In a recent work related to territorial aggregation for the estimation of travel demand in home-
to-work models [20], the authors compare the performance of the aggregated and disaggregated
estimation procedures when the survey OD matrix is sparse. The three above-mentioned criteria
are taken into account and the resulting aggregations are defined "good" or "bad" according to
their capability of leading to reliable parameters' estimates. The experimental results show that,
when the survey OD matrix is sparse, "good" aggregations correspond to case.s where the corre-
sponding optimality indexes are optimized simultaneously. In these cases the estimates obtained
by the aggregated estimation procedure are more reliable than those obtained by the traditional
disaggregated procedure. However, [20] does not suggest how these "good" territorial aggrega-
tions can be found.

This paper is aimed to provide a method to obtain "good" aggregations, with particular atten-
tion to the inner variance criterion. The objective function we consider is a convex combination
of three indexes measuring the lack of compactness, the lack of population equality and the inner
variance, respectively, with different sets of weights. It is worthy to note that the criteria adopted
are conflicting, i.e., it is difficult to reach the minimum value for all of them at the same time. Our
experimental results show that some sets of weights provide better solution.s than others.
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In this work, we adopt a graph model to represent the territory of the city of Rome on which
the experimentation is performed.

The remainder of this paper is organized as follows. Section 2 is devoted to the definition and
measurement of the optimality criteria. In Section 3 the graph theoretic model is described,
while in Section 4 the local search algorithm is introduced. Section 5 describes the experimental
plan, while Section 6 provides the experimental results. Finally, some conclusions are reported
in Section 7.

2. CRITERIA FOR THE TERRITORIAL AGGREGATION

There are two main groups of criteria which play different roles in the aggregation procedure.
The first group concerns the very nature of a macro-zone and comprises criteria such as integ-
rity, contiguity and absence of holes. Integrity guarantees that no micro-zone is split up between
two or more macro-zones. Contiguity requires that it is possible to walk from every point to
every other point in a macro-zone without leaving it. as if it were a single land parcel. Absence
of holes means that if one draws any closed curve C in a given macro-zone, all points within the
inner domain of C belong to the same macro-zone. In other words, no macro-zone can be fully
surrounded by another macro-zone. As we will see later (see Section 3), these constraints are
naturally satisfied when the territory is represented as a graph G and each macro-zone is seen as
a connected suhgraph of G.

The second group of criteria is concerned with compactness, population equality and inner
variance. As we already noticed, the first two are widely accepted as basic principles in tradi-
tional aggregation problems, while the third one is ad hoc for territorial aggregation in travel
demand models. Compactness is a key element in territorial aggregation. This intuitive concept
is difficult to define and to measure. Consider a graph model, where a macro-zone is a set of
adjacent nodes. The center of a given macro-zone is the node which minimizes the sum of the
distances from all other nodes of the same macro-zone. The distance between two macro-zones
is given by the distance between the corresponding centers. When macro-zones are perfectly
round (compact), the distance between pairs of micro-zones located in different macro-zones is
reasonably approximated by the distance between the centers of the corresponding macro-zones.
Therefore, finding the most compact possible macro-zones makes the spatial distribution of the
micro-zones change as little as possible. The population equality principle is guaranteed if each
macro-zone has the same population size. Finally, minimizing inner variance guarantees macro-
zones as homogeneous as possible with respect to a set of social, economic and demographic
variables. In the following subsections each criterion will be formalized through an appropriate
indicator.

2.1 Population Equality and Compactness
The most popular indexes of population equality are global measures of the distance between the
populations of the macro-zones and the mean population. Many different indicators of popula-
tion equality can be adopted [19]. Our index, which is based on the L| norm and normalized by
the average population, is defined as follows

(1)
kp

where Pj is the population of macro-zone_/, p is the mean population over all macro-zones and
k is the total number of macro-zones. This index measures the average deviation of population
of the macro-zones from the average population as a percentage of the average population
itself. Many other indexes of this kind can be built simply by replacing the l^ norm by other
norms. Index (1) is equal to 0 when there is perfect population equality, but its maximum
value is equal to 2{k — 1 )/k. In fact, when each macro-zone population is perfectly equal top.
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Figure 2: The circle centered in s and passing through u locates all the units that are no farther
from the center than u

the index value is 0. On the other hand, when one macro-zone contains the whole population
P — kp, and the other k — 1 macro-zones are empty, the index value is given by

\P-p

kp kp

The last is a very unusual case since it corresponds to extremely unbalanced zonings. In
practice, if the map is not grossly unbalanced, the index value is smaller than 1. However, a
normalized version of the index can be considered.

Intuitively, a macro-zone (or in general a tigure) is compact if it spans a round region, but
it is hard to say what compactness exactly means. The problem is that the criterion has such a
wide meaning that it cannot be completely formalized as an index. Many different definitions
have been proposed [13, 16, 17, 21, 24, 26] and each of them seems to be correct, but not
exhaustive. There are measures based on length versus width, others based on the perimeter
of the macro-zones, others which compare the area of each macro-zone with the area of a
•'canonical"' compact figure (generally a circle), others refer to the moment of inertia. In our
application we build a non-compactness index by extending the ideas suggested in [2], in order
to take into account both the geographic location of the micro-zones and their population.

Consider a macro-zone and its weighted center s which is calculated by weighting each
micro-zone with its population. Let u be the farthest territorial unit from s within the same
macro-zone. Among all the units that are no farther from the center than H, we calculate the
percentage of those that do not belong to the macro-zone, and the corresponding percentage
of population. The index is close to 0 for round macro-zones and il is close to I for elongate
or indented macro-zones. Figure 2 shows the index computation for macro-zoncD. where s is
assumed to be the weighted center of/).

With respect to macro-zone y we denote by Pj the sum of the population of the micro-zones
within the circle. Then, the index for macro-zoney is given by

(2)

A global index is obtained as the average of (py over the k macro-zones.
Notice that both compactness and population equality indexes are equal to 0 when the

corresponding criterion is perfectly satistied. These are, in fact, non-compactness and non-
population equality indexes, respectively, and our aim is to minimize them simultaneously.
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2.2 Inertia
In territorial aggregation particular attention must be paid to the inner variance criterion. In
this application it was measured by total inner inertia. Let {C|,C2,... ,Ci} be the set of the k
macro-zones in the map. Total inner inertia of the map is given by the sum of the inner inertia
of the single macro-zones. Let IJOT denote the total inner inertia and I(Cj) the inner inertia in
macro-zone Cj, then we get

Y^ (3)

where /(Cy) is defined as follows:

IiCj) = Y,\\^d-8(Cj)\\\ (4)
deCj

a n d w h e r e \\v\\^ — v^ + V2 + • • • + v~ is t h e s q u a r e d L2 n o r m o f t h e r - v e c t o r ( v j , V2.- • • . v ^ ) , -t^

is the vector of variables for each micro-zone d in C,, while g(Cj) is the center of gravity of
Cj. Denote by Q the number of variables and by Xd{i), i — l,2,...,Q,the i-th component of
a point x,i G R^, it follows that

^J^ =l,2 Q. (5)

Notice that when [Cy| is constant for ally, I(Cj) is proportional to the inner variance of macro-
zone Cj. Consider a map composed by only one macro-zone which includes all the micro-zones.
Let /(I) be the corresponding total inner inertia value. We obtain our total inner inertia index
as the ratio between ITOT and /(I). Since /(I) refers to the most heterogeneous map, it is equal
to the maximum possible total inner inertia value. Therefore, index ITOT/1(.U takes values in
the [0,1] interval.

In this application we consider a set of 24 socio-economic variables, including the population,
the number of schools, hospitals, public offices and shopping centers. Other variables related
to the transportation network, such as the number of underground and bus stations, or the
number of airports, and services in general, such as the number of trading licenses issued to
shopkeepers are considered, too.

The best result of territorial aggregation would be to have all criteria satisfied, but, in general,
this is impossible becau.se the different criteria are in conflict. In fact, we will never have a
map which is optimal with respect to all criteria simultaneously, but, rather, a set of solutions
which cannot be compared one to another. The best one can do is finding the set of aWPareto-
optimal solutions. However, in general, finding the Pare to-optimal solutions is computationally
difficult. Thus, we adopt a heuristic method in order to find solutions which provide a good
compromise between the values of the different indicators.

3. FORMALIZING A MODEL ON A GRAPH

Graph theory provides a simple and clear way to represent a territory and its characteristics. It
allows us to visualize the problem and to handle it efficiently. In fact, graph models provide a
very compact and simple way of coding the elements of a territory. This is especially useful
when working on a computer. Following [23], we formulate a graph model for the territorial
aggregation problem in the city of Rome. Each node / of the graph corresponds to a micro-zone
and an edge (/,_/) exists if and only if node ( and node; are neighboring micro-zones'. Assume

1 In this application two micro-zones are considered neighboring if Ihey share a ponion of border, bul they are nol if
they touch ihemselves in just one poini.
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Figure 3: The urban district map of the city Rome

Figure 4: The graph of the city Rome

that a micro-zone coincides with an urhan district, then the territory of the city of Rome is parti-
tioned as in Figure 3 and the corresponding graph model is the one in Figure 4~.

Actually, in this application the territory was subdivided into 458 micro-zones which are
much smaller than the urhan districts of Figure 3. In our graph model the weights of the edges
arc given hy the distances between pairs of micro-zones, calculated as the Euclidean distances

2 Notice ihal urban dislrici (node) 14 is missing. Il corresponds to the airport disirict which was not considered as part
of the cily in our application. In fact. traCfic flows from and towards ihis district were regarded to as part of the total
fliiw belween the city and the neighboring area which surrounds it.
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between the centers of the micro-zones. According to our graph representation, a macro-zone
can be defined as a subset of nodes such that for every pair of nodes there is a path joining them
in this subset and each node of the path belongs to the subset, too. Therefore, a macro-zone is a
subset of nodes of graph G which induces a connected subgraph on G. Consider, for example,
the graph in Figure 4: districts 5. 6. 7, 8 and 10 could form a macro-zone because they are
all connected to each other; on the contrary, districts 3, 4, 5, and 9 cannot be aggregated in
a macro-zone because district 9 is not geographically contiguous to any other district of that
group. To be more precise, consider a connected graph G(N,E). Let n = \N\, m — \E\, and
let k be an integer such that 1 <k<n.A partition 71 = {Ci, C2,.. . , C^] of V into k subsets
(briefly, a A'-partition) is said to be connected if, for each /i — 1,2,... ,fe, the subgraph G{Ch)
induced by C,, is connected. The set of all connected ^-partitions of G will be denoted by
UkiG). As mentioned above, if the graph G represents the territory and k is the number of
macro-zones, then each element 7t 6 WkiG) represents a possible aggregated map satisfying
the contiguity and the integrity constraints. We assign weights also to the nodes of the graph.
In particular, each node is associated to a weight vector given by the values of the variables
selected to describe each territorial unit. On the other hand, each edge {i,j) is characterized
by the distance between units / a n d / Using these elements, for each possible aggregation of
micro-zones into macro-zones we are able to calculate the corresponding values of the indexes
of non-population equality, non- compactness and inertia. Let/|(7c), / = 1,2,3, be the functions
of such indexes, then the territorial aggregation problem can be formulated as the following
minimization problem:

rnin /(7C) = w^f^ (71) + w-^2(j() + w^f^{Tt) (6)

where 0 < w, < 1, / ^ 1,2,3, and ^ vv/ = 1.
/

We are interested in minimizing the convex combination (6) of the three indexes and.
possibly, the value of each of them. Notice that by taking as objective the convex combination
not all Pareto-optimal solutions of the multiobjective problem are found.

4. APPLYING LOCAL SEARCH

Given an initial map of the territory, we can improve it locally by using a local search technique.
"Locally" means that the map is modified just on the borders of each macro-zone, in order to find
zonings with better values for the criteria considered. To start a local search algorithm, at least an
initial solution must be available. When such a solution is not at hand, it is necessary to generate
it and this is generally done by randomization. Moreover, the contiguity constraint must always
be taken into account. Thus, to apply local search, one needs an initial partition of the territory
into the prescribed number of clusters k such that each cluster is a connected subgraph of the
whole graph G. Generally, for aggregation problems, the set of possible solutions is so wide and
complicated that it is very recommendable to use an automatic procedure rather than solving the
problem by hand. By using a local search algorithm with a mixed objective function, it is possible
to find good solutions also in the multicriteria sense [2. 4, 18. 19]. We chose to apply a recent
local search algorithm called Old Bachelor Acceptance [ 14]. Basically. Old Bachelor Acceptance
is a threshold acceptance method with a special threshold adjusting mechanism. In fact, there is
a threshold value defining the maximum acceptable worsening of the objective function at each
iteration. This implies that the objective may improve, but it also may worsen up to a certain
extent. At each iteration, the threshold adjusts itself following a non-monotone schedule and
even negative threshold values can be reached. In particular, the threshold decreases each lime
the algorithm improves the current solution, while it increases when a disadvantageous step is
performed. This strategy allows avoiding bad premature local optima and it is also able to find
new descent directions when we are very far from a minimum. Someone may recognize that Old
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Bachelor Acceptance is very similar in spirit to the well known Simulated Annealing algorithm
[6, 15]. However, there are important differences between the two. First of all. Simulated Anneal-
ing is a hill-climbing method which escapes from local minima by probabilistically accepting a
worsening in the objective function. The probability of acceptance depends on both the size of
the worsening and the value of the lemperature parameter at the current iteration. In Old Bache-
lor Acceptance there are no probabilities because the accepting procedure is completely deter-
ministic. In addition, in Simulated Annealing the temperature parameter decreases at each
iteration. On the contrary, in Old Bachelor Acceptance the threshold increases at each failure of
the algorithm in finding a better solution, but it decreases when a better solution is reached. The
strategy of this algorithm consists in alternating dwindling expectation, in order to escape a local
minimum, to ambition, in order to explore the solution space and find new local minima. A
detailed description of Old Bachelor Acceptance and Simulated Annealing can be found in [14]
and [6, 15, 25], respectively. Here, we briefly describe only Old Bachelor Acceptance. By initial
solution we refer to the map from which the algorithm starts. A feasible solution is a map that
satisfies integrity, contiguity and absence of holes. A move brings a node (micro-zone) from its
macro-zone to an adjacent one Therefore, at each iteration the algorithm modifies the current
map locally, because only one micro-zone is involved in the move and only the borders of two
macro-zones are modified. In Old Bachelor Acceptance, the functions decr{T) and incriT) define
the threshold schedule and can be defined in different ways, according to the specific problem
under study. The main steps of Old Bachelor Acceptance are described in the following.

OLD BACHELOR ACCEPTANCE
1 Choose an initial solution n and an initial threshold T.
2 Until the stopping condition holds:
2.1 select a random feasible solution in the neighborhood ofn, say n'

(each feasible solution is generated by selecting a feasible move);
2.1.1 if 'f{K')<,f{n) + T,

set 71 = IT';

2.1.1.1 if M'XA^l
set T = T-decriT);

2.1.2 otheni'ise[fin')>f{n) + Tl
setT=T+incr{T);

3 return the best n found up to now.

We adopted a multiple stopping condition, setting the maximum number of iterations and an
upper bound on the number of consecutive moves which do not improve the objective function.
Obviously, the algorithm also stops when it is not able to escape from the last local minimum
found. In order to understand how Old Bachelor Acceptance works, the diagrams in Figure 5. 6
and 7 show the direction of search of the algorithm. The three figures refer to cases with a single
objective function: inertia is considered in the first case, compactness in the second case and
population equality in the third one.

In order to evaluate the general performance of Old Bachelor Acceptance for territorial aggre-
gation in trip distribution models we chose to test our procedure for several times, starting from
different initial solutions. The set of initial solutions was obtained by the following cutting strat-
egy: first, a random spanning tree of the graph is selected by using a breadth first search tech-
nique; secondly, the tree is cut into k sub-trees (the number of macro-zones) by randomly
selecting their roots. The use of breadth-first search instead of depth first search is due to the
fact that the former produces macro-zone maps more compact than the latter.

5. EXPERIMENTAL PLAN

In this section we briefly analyze the experimental plan and the methodological choices made
for the application of Old Bachelor Acceptance to the territorial aggregation of the city of Rome.
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Figure 5: The sequence of solutions Old Bachelor Acceptance finds when inertia is the
objective function
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Starting from different initial aggregated maps, we apply local search trying to generate a better
map in terms of population equality, compactness and, above all. inertia . According to our
graph model, the left and the right side of the Tiber are considered separately since we do not
want macro-zones to be disconnected by the river. On the right side of the city (Rome-Vatican)
we have to aggregate 126 territorial units (micro-zones) into 17 macro-zones; in the other side
(Rome-Capitol) there are 332 micro-zones and we have to draw 38 macro-zones (see (81). The
corresponding graphs are de.scribed in the following table.

Notice that the two graphs have the same density. Therefore, the main difference between our
two territories is given by their size, that is, the number of nodes of the corresponding graph. As
we will see in the next section, the size of the graphs affects the performance of the algorithm.

Different sets of weights are considered in the multi-objective function. The weights are cho-
sen considering the different importance of each criterion. Actually, we are not interested in the
complete set of solutions, since there is a preference order on the set of criteria. Inertia minimi-
zation is the main objective and compactness is generally preferred to population equality"*.

3 An inilial map for this problem was created for sampling purposes in a preliminary phase of the study, but it was pro-
duced only on the basis of maximizing population equality. This map would have been adopted for the estimation of
the trip distribulion model if the value of inertia had not been so bad. As we will show in the following pages, not only
it is easy to remarkably improve inertia, but it is also possible to improve compactness, with a worse but still accept-
able value for population equality.

4 This is the opinion expressed by ihe workgroup appointed by the City of Rome, where statisticians, transportation
engineers and operations researchers have co-operated in this project.
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Figure 6: The sequence of solutions Old Bachelor Acceptance finds when compactness is the
objective function

Therefore, the preference order, from left to right, is the following

inertia > compactness > (or =5) population equality.

Hence after, the first element of the set of weights will refer to inertia, the second to compactness
and the third to population equality. In total we have examined 12 different sets of weights. Three
of them represent extreme cases and they are considered in order to test how much each criterion
can be improved when optimized alone. The set (1, 0, 0) is therefore adopted to optimize inertia,
(0, 1, 0) to optimize compactness and (0, 0, 1) to optimize population equality. We also consider
the set (0.34, 0.33. 0.33) which distributes the total weight among the three objectives equally.
These four sets have been analyzed mainly for completeness and comparison purposes.

Table 2 shows all the different sets of weights considered. It should be noticed that in some
cases population equality is assigned a weight equal to 0. These sets of weights were considered
in order to understand the relation between inertia and population equality and to investigate
whether the elimination of population equality could turn out to be particularly profitable in
terms of inertia. In fact, inertia and population equality are very conflicting criteria, therefore,
we are inclined to ignore the latter if this can ensure small final values for the former.

We believe that these 12 cases are enough to analyze the region of the set of feasible solutions
which we are interested in. Notice that our intention is not to provide the formula for the defini-
tion of the set of weights in territorial aggregation for trip distribution models. In fact, there are
many uncontrollable factors which affect the probability of finding good solutions, such as the
number of nodes and the number of arcs, which make the problem at hand different each time.
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Figure 7; The sequence of solutions Old Bachelor Acceptance finds when population equality
is the objective function

We want to provide a method to obtain good macro-zone plans according to the three criteria,
even if the set of weights tnay change from case to case. As we will see in Section 6, it is impos-
sible to fix an optimal vector of weights, but some vectors definitively provide better solutions
than others.

The application consists of a total of 600 runs: for both territories. Rome-Capitol and Rome-
Vatican, 5 runs were performed in order to analyze the effect of randomization for each of the 12
preference or weight profiles and starting from 5 different initial maps. The evaluation of each
profile was made on the basis of the average case over these five runs.

6. RESULTS

This section is devoted to the analysis of the solution found with the different sets of weights.
Notice that, in general, we are not able to find the optimal value of the objective function, even
when a single criterion is considered. Actually, our heuristic approach was motivated by the fact
that aggregation probletiis similar to ours are generally difficult to solve. In particular, it can be
shown that the problem of finding a partition of a graph into k connected components which
minimizes the L]-norm (1) is NP-hard even if the graph is a tree with at most one vertex of
degree >3 and diameter <4 [7].

Moreover, as stated above, the structure of the territory affects the optimization procedure. In
fact, the final local minimum is reached after a small number of iterations (generally 3(M)() or
4000 iterations are sufficient) when Rome-Vatican is considered, while the whole procedure
(30000 iterations) is necessary for Rome-Capitol. This is mainly due to the different size of the
probletn since the first graph is about 3 times smaller than the second. A direct consequence is
that the running times related to Rome-Vatican are shorter than the ones observed for Rotne-
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Table 1: Parameters of tbe Rome-Vatican and
Rome-Capitol graphs

Rome-Vatican Rome-Capitol

Number of nodes
Number of arcs
Density

126
316
2.51

332
834
2.51

Table 2: Different combinations of weights adopted in the mixed
objective function.

Weights

Combinations

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10
Case 11
Case 12

Inertia

0
0
1
0.34
0.80
0.80
0.70
0.70
0.60
0.60
0.50
0.50

Compactness

0
1
0
0.33
0.10
0.20
0.20
0.30
0.30
0.40
0.25
0.40

Population Equality

1
0
0
0.33
0.10
0
0.10
0
0.10
0
0.25
0,10

Table 3:

Indexes

Inertia
Non-Compactness
Non-Population equality

Values

Solution

0.79
0.55
0.65

of the three indexes in the initial

1 Solution 2

0.81
0.52
0.72

Rome-Capitol

Solution 3

0.75
0.52
0.58

solutions.

Solution 4

0.79
0.58
0.64

Solution 5

0.83
0.46
0.88

Capitol. In any case, the running times are always very encouraging because they are about one
minute for Rome-Vatican and between five and six minutes for the other territory. In the follow-
ing discussion we refer only to Rome-Capitol which represents the most interesting case. Table
3 shows the values of the three indexes for the different initial solutions generated.

In Table 4 we report on the average improvement of the objective function over all runs per-
formed with a single index, starting from each initial solution. The table should be read by rows.
The three rows refer to the set of weights (1,0,0), (0. 1, 0) and (0,0, 1), respectively. The varia-
tions corresponding to indexes with weight equal to 0 are ignored. Since our objectives must be
minimized, the improvement of an index corresponds to a decrease of its value (negative sign).
Moreover, since the indicators are measured on non-homogeneous scales, per cent variations are
considered.

For example, when Solution I is considered, tninimizing inertia leads to an average improve-
ment about 57% with respect to the 5 repeated runs performed starting from this solution, while
minimizing compactness and population equality provides 74% and 85% average improve-
ments, respectively. We can observe that the average improvement of inertia is always smaller
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Table 4: Average per cent variations for runs with a singie objective, starting from the 5 different
initiai soiutions.

Indexes

Inertia
Non-Compactness
Non-Population equality

Table 5:

Indexes

Inertia
Non-Compactness
Non-Population equality

Solution

-57%
-74%
-85%

Average

Solution

-53%

-40%

1 Solution 2

-54%
-74%
-72%

variation in case

1 Solution 2

-39%
^ 5 %
^ 5 %

Rome-Capitol

Solution 3

-57%
-71%
-89%

Solution 4

-52%
-74%
-84%

of weights (0.34 0.33 0.33).

Rome-Capitol

Solution 3

-57%
-39%
-36%

Solution 4

-50%
^ 6 %
^ 2 %

Solution 5

-55%
-74%
-62%

Solution 5

-32%
-51%
^ 5 %

than the average improvement of compactness which is, in turn, generally smaller than or equal
to the improvement of population equality. This happens even if the initial value of inertia is
higher than the one of population equality. Population equality is easier to optimize than inertia
because it involves only one variahle (population) while inertia involves many variables (popu-
lation, number of schools, number of hospitals, etc.) which can be very differently distributed on
the territory. In particular, for Rome-Capitol inertia, compactness and population equality
improve on average about 55%, 73.6% and 78.4%, respectively when considered alone.

Table 5 illustrates the average per cent variation of each objective function in the case of
equally distributed weights (0.34, 0.33, 0.33), for all the initial maps. The improvement of the
indexes is generally smaller than in Table 4 because the improvement of one index is con-
strained by the others.

When equally distributed weights are considered, we observe the simultaneous decrease of all
three indicators in both the territories considered and in each of the repeated runs. For Rome-
Capitol there are substantial variations for all the indexes: population equality improvement is
between 36% and 45% (41.6% on average), compactness improves on average about 45.8%,
while the average improvement of inertia is 46.2%. Therefore, in this case inertia improvement
is considerable and we could be tempted to choose the set of equally distributed weights for our
mixed objective function. Unfortunately, when equally distributed weights are considered, no
criterion is preferred to the others and the search goes on depending only on the random choice
of the next neighboring solution. The high values of the variances associated with the average
improvements of Table 5 show the dangerous lack of stability in these results. In particular, the
coefficient of variation calculated with respect to inertia is too high (0.20). In order to reach
good and stable values for inertia, with small variability, the weight of this index must be
increased. However, in this case we have to check what happens for population equality and
compactness.

Consider the remaining sets of weights. Population equality worsens in all cases in which it has
weight equal to 0 and sometimes this worsening reaches values around 40-45%. Since popula-
tion equality values were very bad in the initial solutions, such worsening implies that the index
reaches values close to 1 in the final solution. For this reason, weights of Case 6, 8 and 10 were
dropped. Among the five remaining sets of weights. (0.50, 0.25. 0.25) and (0.50, 0.40, O.IO) can
be ignored since the runs performed do not always provide good results for inertia. Even if the
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Table 6.a: Average final values for inertia, non-compactness and non-population equality in
Rome-Capitol when the weights are (0,80, 0.10, 0.10).

Indexes

Inertia
Non-Compactness
Non-Population equality

Solution 1

0.35
0.40
0.55

Solution 2

0.37
0.36
0.62

Rome-Capitoi

Solution 3

0.37
0.41
0.55

Solution 4

0,38
0,40
0.61

Solution 5

0.37
0.33
0,74

Table 6.b: Average final values for inertia, non-compactness and non-population equality in
Rome-Capitol when the weights are (0.70. 0.20, 0.10).

Indexes

Inertia
Non -Com pactness
Non-Population equality

Solution 1

0.36
0,34
0.57

Solution 2

0,37
0.32
0.63

Rome-Capitol

Solution 3

0.37
0,36
0.54

Solution 4

0.38
0.37
0,56

Solution 5

0.40
0.25
0.77

Table 6.c: Average final values for inertia, non-compactness and non-population equality in
Rome-Capitol when the weights are (0.60, 0,30, 0.10),

Indexes

Inertia
Non-Compactness
Non-Population equality

Solution 1

0.38
0.30
0,58

Solution 2

0.39
0.28
0.6!

Rome-Capitol

Solution 3

0.38
0.31
0.60

Solution 4

0.41
0,32
0.61

Solution 5

0.41
0.22
0.83

improvement observed for compactness is remarkably high when weights (0.50, 0.40, 0.10) are
considered, it is preferable to assign a higher weight to inertia iti order to guarantee better and
more stable outcomes for the value of this index which remains our main objective.

The last three sets of weights are (0.80, O.lO. 0.10), (0.70, 0.20. 0.10) and (0.60, 0,30. 0.10).
All of them assign 0.10 to population equality, but this is not sufficient to guarantee that its value
improves. In fact, there are cases in which population equality worsens, even if the worsening is
negligible (3%). The residual weight is allocated differently between inertia and compactness.
In general we expect a positive relation between the weight assigned to an index and the value of
its improvement. This is what happens in our experiment, although changing the weight for iner-
tia from 0.60 to 0.80 does not create a big difference in its final value. For each initial solution in
Rome-Capitol, Table 6 reports on the average final values of our three indexes over the five
repeated runs for the last three sets of weights, respectively. The average absolute values of the
indexes in the final solution are shown rather than their average per cent variations in order to
keep an eye on the real final value of the indexes while making comparisons between solutions.

Notice that Solution 5 always provides better final values for compactness and worse final val-
ues for inertia and population equality when compared to the other four cases. This is a conse-
quence of the values of the indexes in the corresponding initial solution. In fact, as can be seen in
Table 3, Solution 5 has a very good value for compactness and bad values for the other two
indexes. However, in all the three tables the variability of the average final values obtained for
inertia is very low (the coefficient of variation is alvi'ays about 3^%), guaranteeing stability of
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our results. Obviously, the values of the other two indexes have higher coefficients of variation
(between 8% and 13% for compactness and between 11 % and 14% for population equality). If
we compare Table 6.a and Table 6.b, or Table 6.b and Table 6.c, there is a very slight difference
in the final values of the three indexes. However, the comparison between Table 6.a and Table 6.c
shows that inertia worsens on average from 0.37 to 0.39 (6%). For population equality there is an
average worsening of 5%. while for compactness there is a substantial improvement (about
25%), providing an average final value of 0.29. Therefore, compactness shows to be highly sen-
sitive to a difference of 0.20 in its weight, while the values obtained for inertia seem not to be
affected as much by changes in the weight assigned. This may also depend on the fact that a
change from 0.10 to 0.30 (for compactness) means that the weight assigned is three times greater,
while from 0.60 to 0.80 (inertia) it is only one third more. These three sets of weights seem to
provide good solutions for our problem. From a trade-off point of view, it could however be pref-
erable to choose (0.60, 0.30, 0.10) since tbe fmal values for compactness are the best, while
assigning a higher weight to inertia does not make it sensibly improve. Moreover, when (0.80,
0.10, 0.10) is considered, we must take into account a small loss in compactness witb respect to
the previous set of weights, but, in some cases, also a slight worsening of population equality
with respect to its initial values. This is acceptable only if inertia is considered so important that
we cannot renounce to an average 0.02 improvement with respect to the previous case. In such
cases it would be useful to intensify the experimentation on a specific subset of weights in order
to gain some more per cent points for inertia. For example, one may analyze vectors obtained by
small modification of (0.60, 0.30, 0.10), (0.70, 0.20, 0.10) and (0.80, 0.10, 0.10).

7. CONCLUSIONS

In travel demand models territorial aggregation usually concerns the preliminary phase of the
study, that is, when origin and destination zones must be designed. However, it is also necessary
when the survey OD matrix is sparse and reliable statistical estimates of the flows cannot be
guaranteed. In this application we suggested a multicriteria approach, where inertia is the main
criterion, but compactness and population equality are also taken into account. Tbe core of the
application is the analysis of different sets of weights to assign to the criteria in order to reach
solutions with good compromises between them. By applying a specific local search technique
called Old Bachelor Acceptance, we found aggregations with very low values for indexes which
measure inertia, non-compactness and non-population equality, even if it is well known that the
corresponding criteria are usually in contlict. Our main result was finding a set of good maps
with very low total inner inertia and, simultaneously, good values for the other indexes. In par-
ticular, our algorithm provides aggregated maps where micro-zones belonging to the same
macro-zone are very homogeneous under the socio-economic point of view. According to 120],
such aggregations are useful to fmd reliable estimates of OD flows when the OD survey matrix
is sparse. This application also provides results which show the stability of the outcome of the
Old Bachelor Acceptance algorithm for this particular kind of problem. We would like to see
more applications of this promising algorithm to diflerent combinatorial problems and we wish
it can progress at least as much as Tabu Search which is, at the moment, by far the most applied
and efficient local search heuristic.
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