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OPTIMAL POLITICAL DISTRICTING BY IMPLICIT
ENUMERATION TECHNIQUES*{

R. S. GARFINKEL} anp G. L. NEMHAUSERS$

An algorithm is given which finds all optimal solutions, for a given set of criteria,
to political redistricting problems. Using ‘“population units’ as indivisible elements,
the first phase generates all feasible districts, where feasibility indicates contiguity,
compactness and limited population deviation. The second phase finds that set of M
feasible districts which ““covers’ each population unit exactly once, and minimizes
the maximum deviation of any district population from the mean district population.
Computational results indicate that states with 40 counties or fewer can be solved in
less than 10 minutes on an IBM 7094. However, our attempt to solve a 55 county state
was unsuccessful.

1. Introduction

Political districling' is the process by which an area (e.g., a state) is partitioned into
smaller areas (districts) each of which is assigned an (integral) number of representa-
tives. Historically, the state has been partitioned into population units (e.g., counties
or census tracts) each of which must be assigned to one and only one district. The
resulting districting scheme is called a plan.

‘We shall assume that each district is assigned one representative and that there are
to be M districts. Our objective will be to determine all optimal plans. This is done in
two phases. In Phase I, we generate districts from the population units, that satisfy
specified criteria on population, compactness and contiguity. In Phase II, we combine
these districts to determine those plans that minimize maximum population deviation.
After presenting the algorithms, we will give results for some real problems.

2. The Basic Model

Population

The vast majority of districting plans which have been ruled unconstitutionul failed
on the grounds that there existed some district which had a disproportionately large
or small population. As a result of these rulings, it is generally possible to get an in-
dication of the maximum deviation allowed by the courts from the mean district
population. Consequently a constraint may be determined which says that no district
population may deviate from the mean by more than a given number.

Specifically, let p;, ¢ = 1, - -- , N be the population of unit 7. The mean population
isp = Diapi/M. Let P(j) = D ¥ a:ip: be the population of district j, where
a;; = 1if population unit ¢ ¢ district j and 0 otherwise. District j is feasible only if

m | PG) — P < ap,

where 100 ¢, (0 < a < 1), is the maximum allowable percentage deviation of the popu-
lation of a district from the mean district population.
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! An excellent legal study of redistricting is McKay [12].
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The Apportionment Act of 1911, besides requiring nearly equal population in con-
gressional districts, also stated that districts must be of contiguous and compact terri-
tory. Since then, contiguity and compactness have often been included as desirable
features of districts.?

Contiguity

Loosely speaking, a district is contiguous if it is possible to walk from every point
in the district to every other point without crossing another district.

Contiguity ean rigorously be defined as follows: Let B = {bu} be a symmetric N X
N matrix with

b =1 if units 7 and k have a common boundary greater than a point (are
contiguous),
=0 otherwise.

Consider a district to be an undirected graph, whose vertices are the units of the
district, and an arc exists between vertices ¢ and k if and only if bs = 1. The district
is contiguous if and only if the graph is connected (a path exists between every pair
of vertices).

2) A district is feasible only if it is contiguous.

Compactness

There are many possible definitions of compactness, but they can essentially be
divided into geographical compactness and population compactness. In essence, a
district is said to be geographically compact if it is somewhat circular or square in
shape rather than long and thin. The main desirability of compactness is that the
possibility of gerrymandering is reduced. In fact, compactness has recently [13] been
defined as simply the absence of gerrymandering. The importance of compactness,
however, is generally agreed to be less than that of other criteria [8]. This is especially
true because gerrymandering is not a problem when an algorithm does not use political
data. Hess [9] argues that 2 more reasonable measure of compactness is one which takes
into account the distance of the population from the center of the district. He has
developed a solution technique [11] which uses such a measure.

Here we only consider geographical compactness and divide it into *‘distance” com-
pactness and “‘shape’” compactness. As we shall see judicious use of distance compact-
ness is eritieal in any large (N > 30) problem.

Let the distance between the centers of units ¢ and % be d(z, k). For each pair of
units an “exelusion distance” e(z, k) is determined. District j is feasible only if

3) d(i, k) > e(i, k) — a;5oa; = 0.
For district j, d; = xr}ix {d(Z, k) a:isari}, i, k6 = 1, --- , N, is defined to be the dis-

tance between the units of § which are farthest apart.? (d; = 0 if district j contains
only one unit).

Let A(7) be the area of district 7. Then ¢’; = d*/A(j) is a dimensionless measure of
the shape compactness of district j. As ¢’; decreases district  is said to be more com-
pact.

* The act was repealed in 1929.

¥ Note that d(z, k) is not measured within district j. We could get the maximum distance within
j by letting d’(z, k) be the length of a shortest path from 1 to k£ within j, and then define d’'; =
max;.x d'(i, k) ai; ar; . Our measure of shape compactness would, most likely, be improved by
using d’, and this extension is being included in the computer program.
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District 7 is feasible only if
) ¢;<B, 0LB<L w.

A distriet is feasible if and only if it satisfies (1)-(4).

It seems desirable for reasons of voter equity to strive to minimize the maximum
deviation of any district population from . Let ¢; = | P(j) ~ 7 |/p and assume that
the (N X 8) matrix A of feasible districts hasbeen determined. The objective is to find

those plans (binary S-vectors X) which:
8

(5) minimize max c¢z;
=1
subject to
(6) 2 ez =1 i=1,---,N
Q) 2imzi=M
(8) z; =0,1 j=1,---,8

where z, = 11if district jisin a plan and z; = 0 otherwise.

Deleting (7) and replacing (5) with the more conventional min sum objective func-
tion yields a version of the set-covering problem (the partitioning problem) which has
received a good deal of attention in the operations research literature; see [1], [2],
[6] and [14]. The min-max objective function (5) is sometimes referred to as a “bottle-
neck” problem; see [4] for a more general discussion.

Other Criteria

A criterion which is thought [8] to be more important than compactness is that
districts shall cross the boundaries of counties (or some other political subdivision)
as infrequently as possible. A constraint of this kind is developed as an extension.

In addition to the above there are a number of other criteria which could be con-
sidered. In general these either lead to highly partisan considerations or else their
desirability has been the subject of heated debate. For example, one could strive to:
maximize the number of safe (or “swing”) districts, attain homogeneity (or hetero-
geneity) of interests within each district, minimize the number of incumbents who will
lose their present seats, guarantee one political party a victory in the election, or
guarantee a close election. Some of these criteria are considered later.

Other Approaches

Brief reviews of some of the previous approaches to the problem are found in [11]
and [15). These techniques share the advantage of being fast and of being able to
handle large problems. However, they also share the disadvantage of being inexact,
they provide no guarantee of satisfying constraints nor do they optimize an objective
function. In addition to these, Thoreson and Liitschwager [15] and Castellan [3] have
developed heuristic techniques and Wagner [16] uses integer programming to minimize
total population deviation.

3. Phase I—District Generation

In Phase I we find all binary column vectors a; which satisfy (1)-(4). This is accom-
plished using a “tree search’ algorithm. A general description of this type of algorithm
is given by Geoffrion [7]. Briefly, the procedure is to start at an arbitrary unit and
adjoin contiguous units until the combined population becomes feasible. If the district
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is compact we record it. When combined population exceeds the upper limit we
“backtrack” on the enumeration tree. Checks are made periodically for enclaves
(small groups of units isolated from the rest of the state by the proposed district). By
applying some tests to the matrix A = {a;;} as it is being generated, it is frequently
possible to eliminate a substantial number of rows and columns. These tests are called
reductions and are generally quite important for efficient execution of the algorithm.
However, because the reductions are not a central part of the algorithm they are given
in the Appendix. Reductions are attempted every time we backtrack to the point where
there are no units left in the proposed district.
The algorithm is desecribed in detail below.

Terminology
After the numbers (7, M have been determined we create the (N X N) symmetric
“exclusion” matrix Z where
zge = 0 ifd(i, k) >.e(i, k) (iand k may not be in the same distriet),
=1 otherwise.
The matrix Z may be modified in the course of the algorithm. (See Step VI in the
Appendix.)
A **partial solution” to Phase I is a binary N-vector a, which satisfies
P(5) < (1 + &)3,
the units for which a;; = 1 are contiguous and z4 = 0 — a;a¢; = 0. At any given
time in the first phase we are able to partition the units into the following classes:
(1) Included units: units included in the current partial solution.
(2) Excluded units: units excluded from the current partial solution.
(3) Free units: units under consideration for inclusion with the units of the cur-
rent partial solution.
As we test units for inclusion in the current partial solution, we represent the tested
units by a vector V, with units appearing in order of testing. If unit k is included it is
written as , if excluded it is written as —k.
The units may now be further partitioned into:
(a) Non-tested units: units not appearing in V.
(b) Once-tested units:if V = (a, b, --- , ¢, k, - - +), s0 that & is included, then the
vector V. = (a, b, --- , ¢, —k, ---) still remams to be tried.
(e) Twice-tested units: if V = (a,b,--+, ¢, k,---) and V = (a, y & —k,
- ++) has already been tried, we will write V as (e,b, -+ ,¢, k ) S1m1]a.rly
ifV=(,b:,¢ —k, ---), then the possibility of V = (a, y oty G Ky
- +) no longer exists.
As the algomthm progresses we need the following:

I: the set of included units, with P(I) = D iz p:.
E: the set of exeluded units.

S;: the set of units in district j.

F: the set of free units.

B(z):  the set of units such that by =

Z(i):  the set of units such that z; = 0

B(S) = U;.s B(3), where S is an arbitrary set.

Z(8S) = U;s Z(3).

C: the set of free units contiguous to the included units* (C = B(I) N F).

N lists in which to file the generated distriets. District 7 is filed in list 7 if 7 is the

4 With one exception, see Step VI, in the Appendix.
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lowest numbered unit such that a;; = 1. The districts are filed in order of increas-
ing cost with ties broken arbitrarily.
Once V is given, all sets described above are determined.

Enclaves

A set of contiguous units § C I forms an enclave if P(S) < (1 — «)p and there
do not exist unitsze S and ke (I N S) such thatbs = 1 (le. BO) NI NS = F)s
As an input to the algorithm we use an integer EN which indicates how often an enclave
check is performed. Clearly any district which causes an enclave cannot be in a plan.

Algorithm

Step 1 (Initialization). Set V = (1), j = 0 (j counts the districts generated), e = 0
(when e = EN an enclave check is performed), D = & (the set of “fixed”’ districts),
U = & (the units of D).

Step II (Unit annexation). If ¢ > EN go to Step IV. Otherwise find the lowest
numbered unit 7 such that ¢ ¢ ¢ and P(I) 4+ p: < (1 + a)p. If no such unit exists go
to Step V. Otherwise set V = (V, 1), e = e + 1. If P(I) > (1 — )P go to Step III.
Otherwise repeat Step II.

Step III (File distriet). Compute ¢’ for the units of 1. If ¢/ > B go to Step II. Other-
wise, let 7 = j + 1. We have created feasible district j. Let ¢; = | P(I) — 7 |/ap
(note thai 0 < ¢; < 1). Let 7 be the lowest numbered unit of 7. File district j in list ¢
in order of nondecreasing cost (¢;). Go to Step II.

Step IV (Enclave check). Check to see if an enclave exists (as described above). If
there is no enclaved set S, set ¢ = 0 and go to Step II. If set S forms an enclave and if
there exists a unit ¢ such that Z ¢ (S N E), or if any unit of S is excluded from any
other unit of S or if P(I) 4+ P(8) > (1 + )P, setf ¢ = EN — 1 and go to Step V.
Otherwise sete = 0,1et S = (51,82, -+ ,8,) andset V = (V, 8,8, + -+, 8p). Then,
if P(I) > (1 — a)p go to Step III, but if P(I)< (1 — )7 go to Step II.

Step V (Backtrack). Let 7 be the rightmost unit of V -which is not underlined.
Replace 7 by —% and remove all entries to the right of 7. If V' contains N underlined
entries terminate. Otherwise, set ¢ = ¢ + 1. If any entries of V are not underlined go
to Step II. Otherwise go to Step VI. Step VI searches for reductions and because it is
rather long it is given in the Appendix.

Ezample. Consider the fictional state having nine population units (N = 9) and
four representatives (M = 4) in Figure 1. The circled number within each unit is its

population.
The exclusion matrix has (somehow) been calculated as
1 2 3 4 5 6 7 8 9
if- 1 1 1 1 1 0 0 07
21t — 1 1 1 0 0 0 1
31 1. - 1 1 1 1 0 O
41 1 1 - 1 1 1 1 1
Z=51 1 1 1 — 0 1 1 1
6j1 0 1 1 0 — 1 1 O
79 0 1 1 1 1 —-— 1 O
8o 0 ¢ 1 1 1 1 — 1
9,0 1. 0 1. 1 0 0 1 -—|

s The set X denotes the complement, of the set X.
¢ Having just found an enclave, it is likely that more enclaves will occur in this part of the
state. Setting e = EN — 1 allows for another enclave check to be done at the next step.
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Here 5 = 120/4 = 30. Assume that @ = 0.1, so that the feasible district population
range is (27, 33). Assume that g is very large (say 1000) so that shape compactness is
not a factor. Let EN = 5 and

1 2 3 4 5 6 7 8 9

1if— 1 1t 1 0 0 0 0 0]
2t - 0 1 1 0 0 0 1
31 0 — 1 0 1 1 0 O
41 1 1 — 1 0 1 1 O
B=5'0 1.0 1 — 0 0 1 1
6flo 0 1 0 0 — 1 0 0
710 0 1. 1 0 1 — 1 O
g8flo 0 0 1 1 0 1t — 1
9Jo0 1 0 0 1 0 0 1 ~—|

The districts generated,” along with their costs, and positions in appropriate lists are
given in Table 1. In order to clarify the enclave concept, we note that if a check is done
atV = (-1, -2,3, —4, —6,7), the set (6) is an enclave and backtracking occurs.

4. Phase II—Optimization

In the second phase we find every optimal solution to the problem (5) —(8). This
algorithm is also of the tree search variety. It is very fast, chiefly because the or-
ganization of the districts into lists allows STEP II below to be very effective. Spe-
cifically, it permits large numbers of districts to be dropped from consideration simply
because they are not in the lists of interest. The algorithm is described in detail below.

Terminology
A “partial solution” in Phase II is a vector X satisfying:

Z?=laﬁmi$l) 7:=17"':N
>z < M,
;= 0, 1.

At any given time in the second phase we will be able to partition the variables z; into
the following classes:?

(1) fixed variables: those districts which must be in any plan (see Theorem 2 in the
Appendix),

(2) trial positive variables: districts which are included in the current partial solu-
tion but which are not required to remain in later solutions,

(3) trial zero variables: districts which are excluded from the current partial solu-
tion but which may appear in later solutions,

(4) free variables: districts which are under consideration for inclusion in the current
partial solution.

7 The details of the example are given by Garfinkel [5].
8 We could add a fifth class, nhmely districts which may not appear in any plan (see Theorems
2-4 in the Appendix), but these.columns are simply deleted.
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®

Ficure 1. Example

TABLE 1
District # | Units Cost | Fildin | In
1 1,2 1.00 1 3
2 1,3 .33 1 2
3 1,4 .33 1 1
4 2,4 0.00 2 1
5 2,5,9 .33 2 2
6 3,6 1.00 3 1
7 4,5,9 .33 4 3
8 4,7 0.00 4 1
9 4,8 .33 4 2
10 58,9 0.00 5 1
11 6,7 .33 6 1
12 7,8 .33 7 1

At the completion of Phase I, S districts (column vectors) have been generated. In
addition each district j has been placed in one of N lists, where distriet 7 is in list 7 if the
lowest numbered unit in the distriet is unit <. The districts have been filed in each list
in order of nondecreasing cost (c;) with ties broken arbitrarily. Some districts may
also have been fixed to be in the plan by reduction techniques in Phase I. We call the
set of fixed districts D and the set of units covered by these districts U. The number of
districts in D is N(D), and we must find M — N(D) districts which cover the units of
U. Of course if N(D) = M Phase IT would not have been entered.
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As the algorithin progresses we need the following:

f: 0<f< M — N(D), the number of trial positive districts in the current partial
solutlon

Y: the set of districts in the current partial solution,

T: the units in the districts of ¥,

S;: the set of units in district 5.

Algorithm

Siep I (Initialization). Setf=0,Y = Dand T = U. Go to Step IL.

Step II (Choose next list). Find the lowest numbered unit ¢ such that ¢ & T. If there
does not exist such a unit then we have covered all the units with fewer than A7 dis-
tricts and go to Step IV. If we find a unit uncovered, set an indicator which tells us to
begin at the “top” (lowest cost distriet) of list Z and go to Step III.

Step IIT (District annexation). Begin at the indicated position in list 7 and examine
in order of increasing cost the districts of the list. If we find a district 7 such that?
TNS; =F thenset Y =Y U @G, T= TUS, and go to Step V. If no such
district is found go to Step IV.

Step IV (Backtrack). There are no other plans containing the districts in the current
partial solution (the districts whose units make up the set 7). If f = 0 there are no
other solutions and we terminate. Otherwise set f = f — 1. Subtract the units of the
last trial positive district j in the partial solution from 7'. Set ¥ = ¥ — (j). Set an
indieator at the position in the list from which this last trial positive district was taken.
Go to Step III.

Step V (Test for plan). Set f = f + 1. If f = M — N(D) and the districts in the
solution cover all the units, go to Step VI. If f = M — N(D) and the districts in the
solution do not cover all the units go to Step IV. If f ¢ M — N(D) go to Step II.

Step VI (Plan is found). A plan has been found whose districts make up the set ¥
and whose value V is the largest ¢; of the distriets 7 in ¥. Delete from each list any
distriet n for which ¢, > V. If no distriets are discarded go to Step IV. However, if
any districts are discarded go to Step VII (given in the Appendix).

Lzample.”® Continuing with the Phase I example, assume the given districts are as
shown in Table 1. The A matrix is

1 3 11 12

[y
(=]

OO O OO =O WU
COO0OROOROO O
HOOQOOKMMOOO I
OCOFHOOHOOO ™
OHOOOROQOQO ©
H OO HROOOO
OO R~ OOOOO
o»—u—aooooool

OO U W=
COCOOO RO N
COCOO RO

,OOOOOOOMH
COOCOOHOO M

Two optimal plans are found each with cost = .33. They are (2, 4, 10, 11) and (2,
5,9,11).

¢ This test and other logical tests are easily done using binary ““AND"’-“OR”’ operations.
10 See Garfinkel [5] for the details of the example.
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5. Extensions

None of the extensions given in this chapter have been implemented, although this
would be easy to do for each of them.

Objective Funclion

There is no reason to restrict ourselves in Phase II to minimizing max; c;z; . Any of
the following could easily be minimized:

(1) X_; c;x;—simply amend Step III in Phase II to stop the search of list  when a
distriet is found which causes Y ; ¢;z; to exceed the current lower bound (value of the
best solution found to date). In Step VIwelet V.= >_;¢,z;.

(2) max ¢’ jx;—the extension is trivial. Just keep track of ¢’;instead of c; .

(3) 2.j¢'szi—identical to 1.

Note that if a summation objective function is used, the power of Step VI in Phase
II is lost.

County Boundaries

We may wish to limit the crossing of county (or other political subdivision) bound-
aries by districts. Define @; to be the number of counties partly, but not completely,
in distriet 5. In Phase I we use the constraint

) Q; < v

Constraint (9) is implemented by simply keeping track of Q; for the partial solution.
If it exceeds v we backtrack.

Political Viclory

We may hope to guarantee one or more political parties (or any other segment of
the population) at least a given number of representatives. Let p; be the number of
voters of population unit Z who are in the desired segment of the population. Let

ti=1 if 2Zimaup’s > P(3)/2

0 otherwise

be an indicator of whether or not the given segment controls district 7. We use the
constraint

(10) itz 28  0<8< M
We implement constraint (10) by caleulating ¢;for every district j in Phase I. At Step V
in Phase II we would then reject any tentative plan which violated (10). Of course,
any number of constraints of this type could be invoked simultaneously, for different
segments of the population.

6. Results

Three real problems! of varying degree of difficulty were attempted; Sussex County,
Delaware with N = 26 (census traets) and six districts required, the state of Washing-
ton with N = 39 counties and seven districts and West Virginia with N = 55 counties

1t Problems suggested and data supplied by CROND, Inc.
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TABLE 2
Sussex Counly

RUN 1 2 3
o .1 d .1
B » 1.5 1.25
EN 3 3 3
Districts Generated 536 204 128
Phase I Time 21.5 sec. 17.8 sec 16.3 sec.
Phase II Time 3.1 sec. 1.3 see 0.0 sec.
Maximum Population Deviation 034 .069 No solution
Worst ¢’; 1.92 1.44

DIST]RICT 3

Fieure 2. Washington, present plan

and five districts. Details of the results can be found in {5], and only a summary will
be given here. The computer runs were on the IBM 7094.

Sussex County was very easy to district and no exclusion distances were needed.
Some typical results are given in Table 2.

No successful runs were achieved in West Virginia. Phase I was either excessively
long (with large exclusion distances) or terminated with no feasible solution (with small
exclusion distances).

Washington proved to be the most interesting case and we will elaborate a bit on
the results. The mean population 7 is 407,602. However, the population of county 38
(King County) is 935,014, so a single-member, seven district solution which maintains
counties as population units is clearly infeasible. Since we restrict ourselves to single-
member districts and since we wished to use counties as units we noted that County 39
(Pierce County) which is contiguous to 38 has a population of 321,590. Together the
two counties have 1,256,604. If we make 3 districts out of these two counties, the mean
population of each of the three would be 418,868 or about a 4% deviation from 5. We
could then solve the remaining 37 county problem to obtain 4 districts.

Figure 2 shows the present plan, which does not preserve county boundaries. Its
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TABLE 3
Washington
Run 1 2 3 4
@ .03 .006 04 .1
8 % © 2.0 1.5
EN 5 5 5 5
Districts Generated 1648 862 2766* 1466
Phase 1 Time 3.1 min, 5.5 min. 7.3 min. 9.0 min.
Phase II Time 14.0 sec. 5.5 sec. 38.2 sec. —**
Max. Population Devia- 02 (G =4) .003 (j = 3) 038 (F = 3) —
tion

Worst ¢'; 3.38 (j =3) 2.62(G =2) 1.90 (G =1) —
Alternative optima None None None None

* Only the best 2495 of these were saved for Phase II.
** Termination occurred in Phase I as a unit was uncovered.

F1GUrE 3. Washington,« = 03,8 = =, e(i, k) = 300 km.

worst district (#7) has a deviation of 25% from p. Its worst district (#4) in shape
compactness has value 1.79.

Results are given in Table 3. Exclusion distances are needed for computational
feasibility. The drastic improvement in population equality of any of the computed
plans over the present plan is clear. In run 3 we are able to achieve 3.8% population
deviation with little loss in compactness from the present plan.

Finally, in Washington there exists a natural boundary, namely the Cascade moun-
tains, which separates the present districts 4 and 5 from the rest of the state. The
partition created by these mountains is more than just a geographical partition. On
opposite sides of the mountain there are distinct social, political, industrial and other
differences. Because of these considerations it may be politically realistic to consider
this boundary inviolate. If we do so, the problem becomes computationally simpler.
In fact, we can solve it as two problems, one with N = 20, M = 2 the other with
N = 17, M = 2. In general, any additional constraints of this sort can only make
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Phase I easier since it makes the contiguity matrix, B, less dense. Figure 3 shows a
solution (run 1) which coincidentally preserves this boundary.

7. Conclusions

Although 3 (the number of districts) and the contiguity affect solution time, N (the
number of population units) seems to be the most significant factor. It appears that
problems with N < 30 can be solved very quickly. Somewhat larger problems 30 <
N < 40 can be solved with a moderate amount of computer time, but exclusion dis-
tances are required to keep Phase I manageable. Somewhere about at N = 50, prob-
lems become very difficult and require more computer time than we could afford. (A
one-hour run failed in West Virginia.) Although computation time increases steeply
with &V, in the range of problem size we considered, eventually the growth will become
approximately linear. This is true because the exclusions make a set of smaller problems
out of very large ones. For very large problems storage of the A matrix in core will also
become impossible. This should not be a major factor, however, with the availability
of high speed external storage devices.

Finally, in light of the recent Supreme Court decisions, proportional representation
must be achieved. In most states this will mean redistricting in 1970 (after the next
census) and then not until 1980. Traditional redistricting methods having proved
unacceptable, it seems clear that one should be willing to expend substantial computer
funds every ten years to arrive at solutions. With the availability of such funds, prob-
lems much larger than those solved here will become feasible.

Appendix—Reductions

Theorems
Let the column partition of A be a,, -- - , as and the row partition 7, -+, 7x . Let
g=0,--,0and g, =(,---,1,---,0) a unit vector with a 1 in the nth posi-

tion. In giving the theorems we assume that the entire A matrix has been generated,
but as indieated in the algorithms the theorems can be applied to a submatrix as well.

TrEOREM 1.2 If 7; = & for any 1, (6) cannot be satisfied, and there does not exist a
plan.

THEOREM 2. If 1. = p, for any k and for any n then =, = 1. Furthermore, any row &
for which a, = 1 may be deleted, and any column p for which ai, = 1 may also be
deleted, in order not to * overcover” row t.

THEOREM 3. If 1 2 ¢ for any k and t, then row k may be deleted as well as any column
n for which axn = 1 and a4, = 0.
00

0

l_1 10
Lo 10J'
100011

Were it not for column 3, row 2 would be greater than row 1 and eolumns 1, 2 and 5
could be deleted. If district (column) 3 is in the plan we must cover unit (row) 2 with

Consider the A matrix

-0
- O
QO bt

12 Proofs for the theorems in this section may be found in [5] and [6].
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district 1, 2 or 5. But districts 2 and 5 both have units in common with district 3.
Therefore, whether district 3 is in the plan or not, districts 2 and 5 may be deleted.
Stating this concept generally, we have Theorem 4.

THEOREM 4. Assume for any k and t thal it is not true thal 1 > reor that 7¢ > i .
Let K be the index set assoctated with the columns n such that ar. > @ , and T be the set
corresponding to agm > Qin . If there exisls a row s with s = 1 for alln e K and a,; = 1
for some j ¢ T, column j may be deleted.

Phase I Algorithm—Step VI

Let ¢t denote the rightmost element of ¥V and do the following four tests. If any
columns are deleted during these tests start Step VI over again letting each element of
V in succession be {. After the tests have been completed on all units of V, find the
lowest numbered unit < not in V. Let C = (7). Go to Step II.

Test 1 (Application of Theorem 1). If r, = terminate, since no feasible solution
exists.

Test 2 (Application of Theorem 2). If there exists a unit £ such that r, = p., set
D=DU@)and U = U U 8, . For every unit ¢ such that 7 ¢ S, and 7 is not in V,
let V = (V, —i). Also delete any column j, j 3 7, such that a;; = 1,7¢ S, . If any
columns are deleted, return to the beginning of Step VI.

Test 3 (Application of Theorem 3). If there exist units k, and ¢, such that r, < i,
delete any column 7 for which ax, = 1 and @, = 0. If unit kisnot in ¥, set ¥V =
(V, —k). If any eolumns are deleted, return to the beginning of Step VI.

Test 4 (Application of Theorem 4).12 For each unit %, k& 3< ¢, find those columns »
such that a;; = 1 and ax, = 0. Call the index set of all such eolumns G. Let W =
NueS.. If G >x & and if W x (f), let Q be the index set of columns p such that
@i = 0 and aip, = 1. Any p £ Q such that S, N W > & may be deleted. For any unit
7 & W we may set zz = 0. If any columns are deleted, return to the beginning of
Step VI.

Phase 11 Algorithm—Step VII (Application of Theorem 2)

We may now be able to apply some of the reduction theorems, since the A matrix
has been altered by the deletion of some columns. If any unit is covered only once, by
Theorem 2, we fix the district 7 which covers it, and delete any district which has a unit
in common with the fixed district. We may also delete the units of district j. Set
D=DU{,U=UUS;,f=f—1,N(D) = N(D) + 1 and note that T remains
unchanged. If any reduction is found repeat Step VII. Otherwise go to Step VIII.

Step VIIT (Application of Theorem 3). See if there are two rows, & and ¢, such that
ri > 7. If there are, by Theorem 3, we may delete all districts which contain unit &
and not unit . Also delete unit k. If any reduction is found go to Step VII. Otherwise
go to Step IV.H4
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