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A Model of Contiguity for Spatial
Unit Allocation

Takeshi Shirabe

Institute for Geoinformation, Technical University of Vienna, Vienna, Austria

We consider a problem of allocating spatial units (SUs) to particular uses to form “re-
gions” according to specified criteria, which is here called “’spatial unit allocation.”
Contiguity—the quality of a single region being connected—is one of the most fre-
quently required criteria for this problem. This is also one that is difficult to model in
algebraic terms for algorithmic solution. The purpose of this article is to propose a new
exact formulation of contiguity that can be incorporated into any mixed integer pro-
gramming model for SU allocation. The resulting model guarantees to enforce
contiguity regardless of other included criteria such as compactness. Computational
results suggest that problems involving a single region and fewer than about 200 SUs
are optimally solved in fairly reasonable time, but that larger problems must rely on
heuristics for approximate solutions. It is also found that a problem of any size can be
formulated in a more tractable form when a fixed number of SUs are to be selected or
when a certain SU is selected in advance.

Introduction

A spatial unit (SU) allocation problem can be cast as one of selecting subsets—here
referred to as regions—of SUs such as census tracts, land parcels, and grid cells from
a given set of SUs according to specified criteria. The problems encompass various
applications ranging from political districting (Hess et al. 1965; Garfinkel and Ne-
mhauser 1970; Hojati 1996; Mehrotra, Johnson, and Nemhauser 1998) and school
districting (Yeates 1963; Belford and Ratliff 1972; Franklin and Koenigsberg 1973) to
sales territory alignment (Hess and Samuels 1971; Shanker, Turner, and Zoltners
1975; Segal and Weinberger 1977; Marlin 1981; Zoltners and Sinha 1983; Fleisch-
mann and Paraschis 1988) and timber harvest scheduling (Barahona, Weintraub, and
Epstein 1992; Snyder and ReVelle 1996; Murray 1999; McDill, Rebain, and Braze
2002) to land allocation (Wright, ReVelle, and Cohon 1983; Gilbert, Holmes, and
Rosenthal 1985; Diamond and Wright 1988; Tomlin and Johnston 1990; Benabd-
allah and Wright 1991, 1992; Crema 1996; Eastman, Jiang, and Toledano 1998;
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Cova and Church 2000; Aerts and Heuvelink 2002; Williams 2002, 2003; Aerts et al.
2003) and habitat reserve site selection (McDonnell et al. 2002; Onal and Briers
2002; Fischer and Church 2003; Nalle, Arthur, and Sessions 2003). Although re-
quired criteria highly vary from one application to another, they tend to relate to size,
shape, or spatial relation (Shirabe and Tomlin 2002). For example, political district-
ing has four essential criteria: equal population size, compact and contiguous shape,
and mutually exclusive districts. While some regions, such as voting districts, are
artificial and do not have any conspicuous physical existence, others may come to
exist in the form of housing developments, airports, landfills, and so on. The latter
type of region tends to have stricter shape requirements such as non-perforation,
convexity, rectangularity, and similarity to a specific letter like “’L’" or “O.”

Contiguity—the quality of a single region being connected—is one of the most
frequently required SU allocation criteria, as fragmentation often affects the via-
bility or influence of a region. It is also such a fundamental quality that many shapes
can be realized only when a region is contiguous. Although an exact formulation of
contiguity has repeatedly been called for in the literature (e.g., Wright, ReVelle, and
Cohon 1983; Eastman, Jiang, and Toledano 1998; Cova and Church 2000), it has
not been carried out until recently (Williams 2002) because of the complexity of
articulating and operationalizing a statement of contiguity. Instead, contiguity has
often been regarded as a property incidental to compactness—the quality of being
circle-/square-like or consolidated rather than spread, because ‘‘the compactness
driving force generally prevents noncontiguity’”” (Hess and Samuels 1971). Thus,
many efforts have focused on generating a compact region, for example, by min-
imizing the total distance between each SU and the center of the region (e.g., Hess
and Samuels 1971), by minimizing the boundary length of the region (Wright,
ReVelle, and Cohon 1983), or by maximizing the number of neighboring SUs of the
region (Aerts and Heuvelink 2002). A compact region, however, need not be con-
tiguous (Cova and Church 2000; Aerts et al. 2003; Williams 2003).

More recently, sophisticated heuristics, such as ‘‘region growing’’ (Brookes
1997), have been developed for the task of forming a strictly contiguous region with
other spatial criteria. One of the strongest advantages of such heuristics is their
ability to handle a large number of SUs. It is not rare for practical problems to select
a region from tens of thousands of SUs. Also, these problems tend to be ill-defined,
that is, not all selection criteria can be enumerated or articulated in advance. Thus,
finding many good solutions quickly is often of more practical value than finding
one theoretical optimum with a considerable amount of computing time and cost
(Crema 1996; Brookes 1997; Eastman, Jiang, and Toledano 1998; Aerts and He-
uvelink 2002). One shortcoming, however, is that it is usually not known how good
found solutions are. One may intuitively be able to tell if they are good, but cannot
defend it. In general, for heuristic solutions to be properly evaluated, problems need
to be formulated and solved exactly.

This article focuses on addressing the latter accuracy issue but without jeop-
ardizing tractability. More specifically, it proposes a new exact formulation of
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contiguity constraints in terms that can handle small problems (in a practical sense)
using current optimization algorithms. These constraints are not designed to ad-
dress any specific problem whose criteria vary depending on context, but to be
applied to a wide range of problems subject to contiguity requirements. The rest of
this article is organized as follows. First, existing contiguity constraints are re-
viewed. Next, a new exact contiguity constraint set and its reduced versions for
special cases are presented. Then the utility of the proposed constraints by ad-
dressing two sample problems is illustrated: one involving 179 irregular SUs and
the other involving 100 regular SUs. The final section concludes the article.

Existing contiguity constraints

There have been attempts to model contiguity explicitly (if not exactly), particularly
in the form of a mixed integer programming (MIP) model. Zoltners and Sinha (1983)
formulated a sufficient contiguity condition for a sales territory alignment problem
by utilizing what they called ““hierarchical adjacency trees.” A hierarchical adja-
cency tree is associated with an SU that is chosen as the center of a sales territory. It
consists of a set of shortest paths (including the second shortest, third shortest, etc.,
if necessary) from the central SU to all other SUs, and defines predecessor—
successor relationships along each shortest path. Contiguity is ensured if no SU is
allocated to a territory unless at least one of its immediate predecessors along a
shortest path is allocated to the same territory. This contiguity model is indeed in-
novative and useful, but is not without shortcomings. It is dependent on compact-
ness and a predetermined center. In other words, it guarantees each territory to be
contiguous, but at the same time it drives the territory to be compact around a
selected SU. This may not be problematic as both compactness and contiguity are
often desired properties for sales territories. However, this is not the case when one
is relatively tolerant of less compact territories or simply wants to create contiguous
territories regardless of the degree of compactness. More importantly, a central SU
may not be so apparent in other contexts.

Cova and Church (2000) have made another significant step toward exact
contiguity modeling by proposing a set of MIP constraints that guarantee to aggre-
gate SUs to a contiguous region when a specially designated SU, called a root, is
pre-assigned to that region. They found that every SU in a contiguous region has at
least one predecessor on a (not necessarily shortest) path that is one unit closer to
the root. They formulated this property in a way that associates each SU in a study
area with a number of variables, each of which decides whether the distance from
the root to that SU is a certain integer. Their contiguity model has enormous the-
oretical value as it proves that MIP formulation of contiguity is possible if a root is
given. As they pointed out, however, the model is not efficient, because to cope
with a fully general situation it might require as many binary (0-1) variables—a
factor in determining the tractability of an MIP problem—as the product of the
number of given SUs and the number of SUs to be selected. To remedy this draw-
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back, they reduced their original contiguity constraints to what they called “‘short-
est path contiguity-n (SPC-n) constraints,” which allow each SU to be reached from
the root only along one of its shortest n paths (n should be reasonably small). This
heuristic is similar to Zoltners and Sinha (1983) in that a region grows along per-
missible shortest paths from a root, but is more independent of compactness be-
cause distance is measured in terms of the number of SUs passed rather than in
travel time. SPC-n constraints are most tractable when they involve only first short-
est paths—in fact, Mehrotra, Johnson, and Nemhauser (1998) applied this special
version to a political districting problem. Unfortunately, tractability diminishes
quickly as more higher-order shortest paths are taken into account, and the de-
pendence on a fixed root and the bias toward a compact shape remain as long as
shortest paths are used.

Williams (2002) has recently succeeded in modeling an exact contiguity con-
dition in MIP format. His novelty is to consider in his contiguity model a (primal)
graph that corresponds to a given set of SUs, as well as its dual graph. The model is
formulated so as to search simultaneously for spanning trees of the two graphs
(Williams 2001) and trim the primal spanning tree to one of a desired size. The
resulting sub-tree represents a contiguous set of SUs. The model seems to have an
efficient structure as its binary variables are only twice as many as the number of
given SUs. His experiments imply, however, that the model may suffer from com-
putational difficulties in dealing with a problem involving more than about 100
(particularly, unequally sized) SUs. Nevertheless, it is important to note that Will-
iams’ contiguity model has set a standard for evaluating other exact contiguity
models that may follow.

In the next section, we present an alternative model of contiguity constraint. To
do so, we too view a set of SUs as a graph, but formulate contiguity based on a
theory of network flows rather than shortest paths or dual graphs.

Contiguity condition and its formulation

Contiguity can be defined in terms of a graph by equating each SU with a vertex
and representing adjacency with an edge connecting a pair of SUs. In this setting, a
set of SUs is said to be contiguous if there is at least one “/path’’ (Ahuja, Magnanti,
and Orlin 1993) between every pair of SUs in the set. Thus, contiguity is equivalent
to the graph-theoretic notion of “‘connectedness’” (Ahuja, Magnanti, and Orlin
1993). It follows that to check the contiguity (connectedness) of a set of SUs (a
graph), S, one only needs to verify the following condition.

Starting from an arbitrarily chosen SU (vertex) in S, one can reach every other
SU (vertex) in S by following a sequence of adjacency edges.

Path finding between every SU and one specific SU in a contiguous set is
analogous to fluid movement from multiple sources to a single sink in a connected
network. In such a network, if one pours fluid into every source, all of it will reach
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the sink. To formulate this analogy in the context of SU allocation, we regard a
given set of SUs as a network, in which each SU is represented by a node and each
adjacency relationship between a pair of SUs is represented by two opposite di-
rected arcs connecting that pair. A region is then defined as a sub-network (i.e., a
portion of the entire network), in which only one (any) node serves as a sink and
every other node provides one unit of supply. For a region to be contiguous, the
supply sent from every source must ultimately arrive at the sink, without passing
through the outside of the sub-network. Here, we are not concerned with how each
unit of supply travels in the network but with whether it can reach the sink at least
in one way (see Fig. 1). It is easy to see that a disconnected region violates the
contiguity condition as more than one sink—one for each connected component of
the disconnected region—is needed in order for all units of supply to be consumed.

Three sets of contiguity constraints are formulated below based on the conti-
guity condition described above.

General contiguity constraints

The first constraint set is general in that it guarantees to select a contiguous region
from a given set of SUs regardless of any other criteria that may be additionally
required. It is expressed as a set of linear equations as follows:

vi— > vizxi—Mw Viel (1)
Ll j)eA} {lGiieA}
icl
S oy <M-1)x Viel (3)
{1, j)eA}
xi€{0,1} Viel (4)
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|' S __) 44— Arc with flow

Figure 1. A network representation of a contiguous set of spatial units (SUs) (arcs without
flow are suppressed) and a possible flow pattern. The numbers associated with a source, a
sink, and an arc indicate the amounts of supply, demand, and flow, respectively.
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w; €{0,1} Viel (5)
yi =0 V(ij) €A (6)

where [ is the set of SUs, A the set of adjacent pairs of SUs, M a non-negative integer
indicating the maximum allowable number of SUs to be chosen for inclusion in a
region (set M to |/| (or larger) in case there is no limit on the number of SUs to be
chosen), x; a binary decision variable indicating whether SU i is chosen for inclusion
in a region (x;=1 if chosen, 0 otherwise), and w; a binary decision variable indi-
cating whether SU i is chosen as a sink (w; =1 if a sink, 0 otherwise), and yj; a non-
negative continuous decision variable indicating the amount of flow from SU i to
SU j.

Constraints (1) represent the net outflow from each SU. The two terms on the
left represent, respectively, the total outflow and total inflow of SU . If SU i is
included in a region but is not a sink, then we have x;=1, w;=0, and thus SU i
must have supply > 1. If SU i is included in a region and is a sink, then we have
x;=1, w;=1, and thus SU i can have demand (negative net outflow) < M—1. If
SU jis not included in a region and is not a sink, then we have x; =0, w;= 0, and
thus SU i must have supply > 0. If SU iis not included in a region but a sink, then
we have x;=0, w;=1, and the rest of x/s are forced to be 0, that is, no SUs are
selected. Constraint (2) requires that one and only one SU be a sink. Constraints (3)
ensure that there is no flow into any SU outside the region (where x; = 0), and that
the total inflow of any SU in the region (where x;= 1) does not exceed M — 1. This
implies that there may be flow from an SU outside the region to an SU in the region.
Even in such a case, although a sink may have to receive an extra amount of flow,
the supply from each SU in the region still must reach the sink and the contiguity
condition holds. Note that it is assumed that a solution such that x;= 0 for all i is
feasible, that is, the empty set of SUs is a contiguous region. If a ““region”’ is pre-
supposed to include at least one SU, the following minimum-size constraint may be

added:
ZX:' >1 (7)
iel
The present set of contiguity constraints has a fairly efficient structure in that
its size grows proportionally to |/| and |A|. More precisely, the numbers of binary
variables, continuous variables, and main constraints are, respectively, 2|l|, |A|,
and 2|/] + 1.

Reduced contiguity constraints with fixed number of SUs to be selected

In the general contiguity constraints, it is unknown how many SUs are to be se-
lected for a region until a solution is obtained. If it is known, however, they can be
made more efficient by replacing constraints (1) with:

Yij — Z Vi = Xi — MW,' Viel (8)
LG, j)eA} {lG, HeA}

where M is the exact number of SUs to be selected.
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These new constraints are interpreted in the same manner as constraints (1),
except that the net outflow of each source SU and the net inflow of a sink SU are
here fixed to one and M — 1, respectively. Note that equalities are always binding
constraints; thus, the actual number of variables, which includes slack variables for
inequalities, has been reduced by |l|.

Reduced contiguity constraints with fixed sink

The general contiguity constraints involve two types of binary variables: one for the
decision of whether to select a certain SU, and the other to designate a certain SU
as a sink. A sink in these constraints corresponds to a root or a center in traditional
shortest-path-based constraints (e.g., Zoltners and Sinha 1983; Cova and Church
2000). It is then obvious that, if a sink is fixed, the corresponding decision variables
(i.e., all wi's) will be unnecessary. Thus, given ras a sink, that is, x.= 1 and y,;= 0 for
all jsuch that (r, j)e A, the contiguity constraints can be reduced to the following form:

Vij — Z vi=xi Vi#r 9)
{l(i, j)eA} {lG, HeA}
S o< M-2)x Vitr (10)
{10, HeA}
YooM= (11)
{lG, reA}
xi€4{0,1} Vi#r (12)

where M is once again the maximum allowable number of SUs to be selected.

Constraints (9) ensure that all selected SUs excluding a sink SU have exactly
one unit of supply. Constraints (10) and (11) are interpreted in the same way as
constraints (6): non-selected SUs have no inflow, and selected SUs may have some
inflow. Note that if there is no upper limit on the number of SUs to be selected (i.e.,
M is greater than or equal to |I|), constraints (11) may be dropped.

Application

To illustrate how the contiguity constraints presented above are incorporated into
optimization models for particular applications, this section addresses two simple
SU allocation problems: one with an irregular set of SUs and the other with a reg-
ular set of SUs.

Irregular SUs

The first problem involves an irregular set of SUs, which is hypothetical but uses
actual data. The study area is a small neighborhood (approximately 1,200 x
1,800 m?) called “Griffith”” in Montgomery County, Maryland, and encompasses
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Figure 2. Study area.

179 land parcels (ranging in size from 392 to 116,226 m?) characterized by veg-
etation type (Fig. 2). Each parcel has been assigned a value of expected forest ben-
efit (ranging from 0 to 69,808) based on the amount of forest cover. The problem is
rather contrived so that one can analyze exclusively the model’s capacity to address
contiguity. For more realistic land-allocation problems, see, for example, Wright,
ReVelle, and Cohon (1983); Gilbert, Holmes, and Rosenthal (1985); Eastman, Jiang,
and Toledano (1998); and Aerts and Heuvelink (2002).

Problem 1. A planning commission plans to purchase land for a forest conser-
vation park. Therefore, select a contiguous region of land parcels in order to max-
imize derived benefit of specified total area to be acquired.

The problem is formulated as follows:

max Z fixi (14)
icl
subject to
Z aixi <b (15)
icl
and (1)-(6) where a; represents the area of parcel i, f; represents the forest benefit
value of parcel i, and b indicates the upper bound on the total acquired area spec-
ified by the commission.
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Model (1)-(6), (14), (15), which contains 358 binary variables, 654 continuous
variables, and 360 main constraints, was coded in GAMS and solved by an MIP
solver, CPLEX 7.5, on an HPJ5000 workstation. We tested it with 20 different values
of b ranging from 100,000 to 2,000,000 m?. M is set to [I| (=179) in order not to
rule out any possible selection. Note that the largest possible contiguous region
encompasses 2,086,095 m” of 175 parcels (thus depending on the value of b, some
parcels could be excluded in advance for reducing the problem size). Table 1 re-
ports the optimal objective value, the number of branch-and-bound (BB) nodes, the
central processing unit (CPU) time, and the number of iterations, for each value of
b. All solutions were contiguous regions. As an example, Fig. 3 shows an optimal
solution when b= 100,000.

The results indicate that all instances of Problem 1 are fairly tractable. Solution
times of a few hundred seconds on a typical workstation should be acceptable for
this scale (179 SUs) of SU allocation problem. It was also found that the model
tends to be harder to solve as b (limit on the region’s total area) increases until a
certain level is reached, and then this tendency reverses. This indicates that the
model is most computationally complex when a region is of a medium size—
slightly smaller than half of the study area—relative to the study area. If the region’s
size is not strictly predetermined, one might want to drop the constraint and add it
to the objective function with a certain weight to make the model more tractable.

Table 1 Computational Results for Problem 1

Value of Objective Number of CPU Number of
b (m?) value (m?) BB nodes time (s) iterations
100,000 81,866 2,629 19.20 44,132
200,000 149,600 4,216 35.38 83,576
300,000 198,135 11,418 185.94 379,518
400,000 277,614 7 459 54.00 149,734
500,000 339,560 24,168 161.55 420,924
600,000 384,689 17,242 129.74 397,366
700,000 438,576 20,794 117.80 421,428
800,000 477,302 37,206 536.33 833,651
900,000 525,415 16,613 232.32 480,342
1,000,000 574,440 7 688 35.08 137,352
1,100,000 610,944 6,740 34.59 115,873
1,200,000 641,343 3,940 15.48 48,258
1,300,000 663,900 2,404 11.33 38,968
1,400,000 678,908 2,635 12.55 42,706
1,500,000 683,029 3,440 931 30,620
1,600,000 684,059 0 0.34 637

Norte: Any b larger than 1,600,000 leads to the same objective value as for b= 1,600,000.
BB, branch-and-bound; CPU, central processing unit.

10
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Figure 3. An optimal solution to Problem 1 with the upper bound on the total acquired area,
b, equal to 100,000.

Now let us consider a special case where a fixed number of SUs are to be
selected from the study area, to assess the reduced contiguity constraints described
above. To do so, Problem 1 is modified such that the proposed forest conservation
park must encompass exactly M land parcels instead of b m? or less. The revised
problem is formulated as model (2)-(6), (8), (14), which appears similar in size to
the previous one as it contains 358 binary variables, 654 continuous variables (no
slack variables counted), and 359 main constraints. After testing it with 17 different
values of M ranging from 10 to 160, however, the model turned out to be more
tractable thanks partly to the binding nature of constraints (8). The improved trac-
tability is also explained by the fact that constraints (15), which are “integer-un-
friendly” in the sense of ReVelle (1993), were dropped. As seen in Table 2, the BB
process was much less extensive than in the previous example and all except one
solution were obtained within several seconds. Nevertheless, there is no guarantee
that the selected M irregular parcels are of a desired size (if any). Thus, it would not
normally be reasonable to use the present reduced constraints unless all SUs are of
the same size (see the next section for one such example).

Finally, we reconsider Problem 1 with the assumption that one parcel has been
pre-selected. This assumption makes useful the reduced contiguity constraints pre-
sented above. The resulting model (9), (10), (12-15) involves 178 binary variables,

1
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Table2 Computational Results for Problem 1 with a Fixed Number, M, of SUs to be
Selected

Value Objective Number of CpU Number of
of M value (m?) BB nodes time (s) iterations
10 233,693 836 4.25 12,792
20 410,173 1,319 8.16 25,722
30 498,855 2,840 13.88 40,558
40 570,703 893 6.20 20,478
50 618,072 496 4.45 16,528
60 648,322 435 4.74 17,159
70 666,051 371 3.50 10,767
80 675,789 266 3.28 9,721
90 680,896 204 3.50 9,552
100 683,184 120 1.72 3,600
110 683,957 0 0.20 277
120 684,059 0 0.37 304
130 684,059 13 1.21 639
140 684,059 10 1.22 640
150 684,059 2 1.07 618
160 684,059 2 0.99 663

Norte: SU, spatial unit; BB, branch-and-bound; CPU, central processing unit.

654 contiguous variables (no slack variables counted), and 357 main constraints.
We tested this model by re-solving Problem 1,179 times, once for each land parcel
designated as r. In these experiments, we set b = 800,000, because Problem 1 was
most difficult at this value (see Table 1), which makes it most forgivable to sacrifice
accuracy for tractability. Depending on r, CPU times varied from 0.07 to 24.93 s
with a median of 1.69s, a mean of 2.32s, and a sum of 414.95s. These results
suggest that fixing a sink significantly improves tractability. This is largely because
the number of binary variables has been halved and constraints (9) are binding.
Then, like Cova and Church (2000), it might be worthwhile to try this sink-
dependent model with every potential sink in search of a global optimum. For
the present example, this technique worked as it saved about 20% total CPU time—
536.33 versus 414.95s. Experiments with several different values for b, however,
have found that if the original problem is relatively easy (whose b is not close to
800,000), there is no benefit in solving 179 still easier sub-problems. Thus, the root-
fixing technique should be used only when a problem is sufficiently difficult or
when there are not many possible r’s.

Regular SUs
The second problem involves a regular set of SUs, which is reproduced from
Williams (2002). The problem takes place on a 10-by-10 grid, where each cell is

12
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Figure 4. Distribution of solution times (in central processing unit seconds) for Problem 2
with the 10-by-10 grid. M indicates the number of selected spatial units.

assigned a random number taken from a uniform distribution of values ranging from
0.2 to 1.8 with a step size of 0.1 (see Williams (2002) for an illustration).

Problem 2. Select M contiguous cells from the grid to minimize the sum of the
values of all selected cells.

The problem is formulated as follows:

min Z CiXi (16)
iel
subject to (2)—(6), (8), and (16), where ¢; indicates the value assigned to cell i.

We tested this model with 100 different values of M ranging from 1 to 100. All
instances were solved optimally in less than 30 s, except for one case where
M= 34, which took 39.3 s. The model’s difficulty steadily grew as M increases until
a first peak (M = 26) is reached. The model tends to be more difficult to solve when
M is between about 40 and 50 (although the single most difficult case was when
M= 34), but the solution becomes easy or trivial after M goes over this range (see
Fig. 4).

Although this particular problem was small enough to be solved with little
computational effort, it can easily become intractable as the number of SUs (or
cells) increases. In fact, we failed to solve optimally a problem of selecting a me-
dium-sized (160-cell) region from a similarly designed 20-by-20 grid. Five hours of
computation only found a feasible solution with 26.7% optimality gap.

Conclusion

We have presented a new exact contiguity condition and have formulated it
in terms of linear functions that can be incorporated into MIP models for SU
allocation. Although SU allocation typically involves various criteria other than

13
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contiguity, the intention of this article is to provide a basic MIP framework to han-
dle contiguity as such, which can then be extended to handle additional criteria.
We have proved that any MIP model embedded with the general contiguity model
guarantees to select a contiguous region from a given set of SUs regardless of any
other requirement. We have also shown that the general contiguity constraints can
be reduced to a significantly more efficient form, when a fixed number of SUs are
selected and/or when a certain SU is selected in advance. Computational exper-
iments suggest that MIP models using these constraints can handle small prob-
lems—such as one involving 100 regular grid cells or 179 irregular land parcels—in
reasonable time on a typical workstation or personal computer. However, they will
have computational difficulty solving larger problems. This is particularly true if
additional complicating criteria are included. One such criterion is non-perfora-
tion, which the proposed constraints do not enforce.
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