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In this paper we address the problem of district design for the organisation of arc-routing activities. In particular, the
focus is on operations like winter gritting and road maintenance. The problem involves how to allocate the road
network edges to a set of depots with given locations. The collection of edges assigned to a facility forms a district in
which routes have to be designed that start and end at the facility. Apart from the ability to support good arc routing,
well-designed districts for road-maintenance operations should have the road network to be serviced connected and
should define clear geographical boundaries. We present three districting heuristics and evaluate the quality of the
partitions by solving capacitated arc routing problems in the districts, and by comparing the solution values with a
multi-depot CARP cutting plane lower bound. Our experiments reveal that based on global information about the
distribution system (ie the number of facilities or districts, the average edge demand and the vehicle capacity) and by
using simple guidelines, an adequate districting policy may be selected.
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Introduction

Districting involves the partitioning of a large geographical

region (or network) into smaller subareas (subnetworks) for

organisational and/or administrative purposes. The applica-

tions of district design are manifold and include political

districting,1 the design of territories for salesmen,2 health-

care districting,3 school district design,4 police districting,5

etc. Nearly all districting approaches in the literature are of

the agglomeration type.6,7 This means that the region to be

subdivided is pre-partitioned into a large number of small

basic areas (or units) that are aggregated into districts

afterwards. Often, the aggregation phase consists of specify-

ing (sometimes fictitious) district centres, followed by

allocating the units to the centres while an objective is

optimised and subject to side constraints. Usually, these

constraints ensure the contiguity, the ‘compactness’ and the

workload balance of the districts, and prevent a unit from

splitting among several territories.

In this paper, we address the problem of district design for

the organisation of arc-routing activities; in particular, for

operations like salt spreading and road maintenance. Most

naturally, the routing of gritters8,9 is modelled as a

capacitated arc routing problem (CARP)10,11 — a routing

problem where the demand for service occurs along the

edges of a network and where the vehicles have a finite

capacity. The districting problem involves how to allocate

the network edges to a set of facilities with given locations.

The collection of edges assigned to a centre is called a

district, and each facility is independently responsible for the

organisation of the routing within its district borders.

The primary goal in this article is to identify a number of

district design guidelines that have an important influence on

the routing efficiency — the total deadheading distance and

the number of vehicles used — of the CARPs to be

organised within the district borders. These guidelines relate

to the definition of suitable units to build districts as well as

to the selection of the appropriate objective(s) to guide the

aggregation process. Three districting heuristics, either

making use in the aggregation phase of individual edges or

of groupings of edges into small cycles, are presented and

evaluated. The units are assigned to the nearest facility in a

rather greedy manner, or through the solution of an integer

linear programming model (minimising a lower bound on

the number of vehicles to be used). In both cases, we also

ensure that the road network to be serviced in each district

is connected. We test the procedures on large graphs

constructed from the road network in Flanders (Belgium)

and evaluate the quality of the partitions by solving CARPs

in the districts and by comparing the solution values with a

multi-depot CARP cutting plane lower bound. Depending

on the size of the vehicle capacity, different districting

policies are recommended.

In the sections that follow, we first describe the role of

districting in the planning of (winter) road maintenance

activities. We then derive several guidelines for district

design — among these an approach for pre-clustering edges

into small cycles, which intend to account for the local
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routing cost. Next, we present the three heuristics and report

the results of our computational experiments. Some

recommendations for improving the gritting operations in

Flanders are given and conclusions are drawn.

District design for road-maintenance activities

The partitioning of the road network into districts is a real,

distinct stage in the planning and the organisation of

(winter) road-maintenance activities.12 Typically, districting

is performed after the location of the facilities has been

determined and before the routes are fixed. From a planning

point of view, the difference between district design and

routing is fundamental: whereas routing is performed at the

operational level, districting (like location) is of a non-

operational nature and more related to the managerial level.

Apart from being a frame for routing, districts also serve

administrative purposes. It is at the depot of the district that,

over many years, useful, inter-related data are collected and

that the road surface condition is monitored so as to make

pertinent decisions about where, when and how much salt to

be spread. Since modifying the district boundaries usually

results in a lot of operational and administrative adjust-

ments, the borders should not be changed too frequently,

but only when major improvements in carrying out the

operations can be reached or when important changes in the

distribution system and/or activities take place, such as

closing a facility, the introduction of a new task or the

construction of an important new road. Furthermore,

possibly, the same districts should support different types

of arc routing or facilitate the organisation of other

operations. For instance, in Flanders, both preventive and

curative interventions (requiring different amounts of salt)

are carried out within the same districts. Hence, whereas

routes are more sensitive to specific constraints (capacity,

time, distance, etc), districts should be more robust and not

influenced by minor changes in the operational character-

istics. Therefore, different guidelines should be used for

districting and routing, while keeping the interactions

between the two levels in mind.

In the literature, the problem of district design for (arc)

routing applications receives very limited attention or is

assumed to be solved a priori. Often, however, long-term

savings can be achieved if more careful attention is devoted

to the drawing of the district boundaries.13 One approach in

the literature is to assume that the districts are mainly

determined by the location of the facilities and that the

partition is obtained by assigning the customers to the

nearest depot. In a probabilistic node routing context with

split deliveries in the Euclidean plane,14 it is shown that the

average distribution cost behaves asymptotically as the cost

of the classical p-median problem, so that the nearest depot

services each customer. Another approach is to perform

multi-depot routing and define the districts by the routes

emanating from each depot. However, procedures based on

the first approach may over-emphasise the importance of the

radial travel cost (ie the distance from the facility to a

demand entity and back); while districts based on the second

approach may be too sensitive to specific routing constraints

and lack a more global view.

In contrast to the clear objectives in pure location or

routing problems, it appears to be more difficult to define

exact criteria for designing good districts for (arc) routing.

Instead, a number of more intuitive characteristics of a good

district partition are formulated. It is clear that districts

should not be too small in order to keep the fixed costs

reasonable (depot infrastructure, administrative staff, etc)

and on the other hand, they should not be too large since

otherwise the organisation of the services becomes too

complex. Since the routes in a district all start and end at the

distribution centre, odd-shaped districts with the depot

located near a boundary result probably in long, inefficient

tours. A better partition would have the demand entities

within each district near to each other and near the service

centre. Thus, good districts will very likely be compact in

shape and have centrally located facilities. In order to

facilitate the planning and to delineate the responsibilities

between neighbouring districts, districts for salt-spreading

operations should define clear geographical borders (no

overlap), have the road network to be serviced connected

and, preferably, be somewhat balanced in workload. In

order to reach partitions with these ‘desirable’ character-

istics, a districting procedure for salt-spreading operations

was proposed15 earlier. This procedure applied similar units

(ie. based on cycles) as the Cmin_ratio and CILP procedures in

this paper, but a two-phase allocation heuristic was used for

the aggregation. In every phase one iteration, the least-

workload district was expanded with the largest-weight

adjacent unit. In phase two, the remaining units were

assigned by a multi-criteria approach, taking into account a

measure for compactness, an estimate on the number of

vehicles to be used and an indication for the imbalance in

workload. The eligible units in both phases were determined

by a threshold value for a proximity measure based on the

radial distances for reaching a unit’s edges from each of the

facilities. On a small, real-life sample network, the districts

obtained by this procedure were shown (for a curative

intervention) to incur about 14% less deadheading com-

pared with an improved routing within the actual district

borders. Nevertheless, no strong argument was provided as

to why and when a district design based on cycles might lead

to an improved routing. Especially, this last consideration is

studied in this article. We will derive and focus on a number

of guidelines for district design that substantially influence

the routing efficiency, so that based on global information

about the distribution system only (the number of facilities,

the vehicle capacity, the average customer demand), a more

adequate districting policy can be selected.

1210 Journal of the Operational Research Society Vol. 54, No. 11



Guidelines for district design

We assume a connected, undirected, planar graph G(V, E)

with vertex set V and edge set E. All the edges ers¼ (vr, vs)

have a positive length crs and a positive demand for service

qrs. Additionally, a set of facilities X¼ {v1,y, vi,y, vp}CV
is given, each facility housing identical vehicles with a finite

capacity Q. In our districting problem, we are interested in a

partition of the edges of G such that each district Gi(Ei, Vi)

makes up a connected subgraph in G with viAVi and so that

the edges can be serviced efficiently. The edges in Ei may be

serviced by trucks from depot vi only, and two aspects

related to efficient routing will be considered: the total

deadheading distance (ie the distance driven by the vehicles

while they are not servicing) and the number of vehicles to be

scheduled.

As the procedures in this paper are of the agglomeration

type, the first step deals with the definition of suitable basic

units in G (or groups of edges) to be aggregated into districts

subsequently. In the following subsection, we analyse two

extreme situations where ‘optimal’ district design turns out

to be easy if the only concern is to minimise the total

deadheading. In general, by transformation from the NP-

complete ‘partition problem’, it can be shown that finding a

district partition that incurs minimal deadheading is NP-

hard.6 The two extreme situations offer, however, useful

information concerning the definition of the units (individual

edges or units based on cycles) as well as regarding to some

objective(s) to guide the aggregation process. We elaborate

the approach for pre-clustering of the edges into cycles in

the next subsection and explain afterwards when it might

be meaningful to address the minimisation of the number

of vehicles as an objective in district design for capacitated

routing.

Two extreme situations

Let us first consider the situation where a vehicle can service

in a tour one edge only. In this case, an optimal partition

(minimum deadheading) is found by allocating individual

edges to the nearest facility, the distance from facility vi to an

edge ers¼ (vr, vs) being measured as the sum of the shortest

path distances to reach vr and vs, from vi. Hence, when the

vehicle capacity Q is (very) small compared with the average

edge demand, the radial distances to every edge are

important and it is probably a good idea in district design

to focus on the centrality of the facilities and on district

compactness.

Another extreme occurs when a vehicle can service in a

single tour all the edges of E. The minimum deadheading in

this giant tour—basically an undirected Chinese postman

tour16 or a minimum-length tour traversing the edges of E at

least once — is found by solving a minimum-cost perfect

matching problem16 between the vertices of odd degree in G.

This involves duplicating some edges in the original graph G

in order to create a Eulerian graph G0 (ie a graph whose

vertices all have an even degree and that can be covered in a

closed walk by traversing every edge exactly once) at

minimum cost. Consequently, any division of the augmented

graph G0 into connected Eulerian subgraphs, each subgraph

containing one facility, creates a district partition incurring

minimum deadheading (Figure 1).

It is clear from Figure 1 that — for large Q — the local

routing cost, that is grouping the edges in a way so that

low-cost Eulerian districts can be formed, is more important

than assigning individual edges to the nearest facility than

focussing on the centrality of the depots. In order to

facilitate the construction of low-cost Eulerian districts, we

propose decomposing the augmented graph G0 into small,

non-overlapping cycles, from which the basic units in G

are subsequently derived. A potential for good arc routing

is then easily maintained by ensuring that each district is

composed of a collection of connected cycles.

A cycle decomposition of a planar Eulerian graph

Any Eulerian graph can be partitioned into edge disjoint

cycles. It is important, however, to note that we work in the

specific, planar representation of a connected, Eulerian

Figure 1 G0 and an optimal district partition for Q¼N.
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graph that corresponds to the geographical layout of the

road network G. This is accounted for in the vertex-edge

incidence list of G, where the edges incident to a vertex

appear in a cyclic order (eg counterclockwise ordering),

agreeable with the planar representation in mind. The graph

G is made Eulerian at minimum cost and the matching edges

are inserted at proper positions in the vertex-edge incidence

lists to preserve the structure of the planar representation.

The matching edges have zero demand. The cycle decom-

position of the augmented graph G0 relies on the property

that a planar graph is 2-face-colourable (ie its faces can be

coloured in two colours without any two adjacent faces

having the same colour) if and only if it is Eulerian (Theorem

III. 68)17 and this property has been exploited earlier for

constructing vehicle tours in an arc-routing context.8,18 In

the example in Figure 2, the faces one to 12 are the bounded

faces and face 13, with the contour e1–e2–e3–e4–e5–e6–e7–e8–

e9–e10–e11 and coloured in white, is the unbounded face (the

entire area outside the graph). It is readily observed that the

contours of the faces that do not belong to the colour class

of the unbounded face, partition G0 into spatially non-

overlapping cycles with every edge of G0 contained in exactly

one of them.

An initial partition of the edges of the original graph G

into basic units is given by the collections of non-matching

edges on each of the cycles selected in G0. The augmented

graph G0 contains, however, pairs of parallel edges; in each

pair, one edge being the original (required) edge in G, the

other one its duplicate due to the matching. When the edges

in a pair belong to the contours of two different selected

faces of G0, interchanging their role produces other units in

G. Therefore, we call the edges in such a pair exchangeable.

In Figure 2, for example, the faces five and seven (with the

contours e14–e3–e18 and e15–e19–e20) currently define the

units e14–e3–e18 and e15–e20, but if e18 refers to the matching

edge and e19 to the required edge, the units e14–e3 and e15–

e19–e20 are obtained. The possibility to exchange some of the

edges in G0 is exploited in a heuristic6 that we have not

described in detail here. Its main purpose is the creation of

units uj, whose edges induce connected subgraphs in G and

thus facilitate the construction of contiguous districts.

Additionally, we prefer the creation of (many) units with a

small demand and (few) units with a large demand above the

averaging of the loads, since small weight units are likely to

be more useful for adjusting a district partition when the

objective of minimising the number of vehicles is considered

or when load-balancing constraints are to be taken into

account.

In order to express the adjacency relations between the

units and the facilities in G, we define a unit-adjacency graph

H(W, F). The vertex setW has a vertex wj for each unit and

for each facility in G. The edge set F contains an edge fij
between wi and wj if the corresponding units ui and uj in G

have a vertex in common or, if the facility associated with wi,

is located on the unit represented by wj. The vertex subsets

corresponding to units and facilities are WU and WF, and

with every vertex wjAW, we associate a weight q(wj), equal to

the total demand on unit uj if wjAWU and zero otherwise.

Finally, we introduce a distance indicator Rij — the ratio

— that measures the proximity between the facility viAX
(wiAWF) and the edges of unit uj in G (wjAWU). Let D(vi, uj)

denote the sum of shortest deadheading distances in G for

servicing each edge ers of unit uj separately from facility vi,

that is,

Dðvi; ujÞ ¼
X

ers2uj
ðdðvi; vrÞ þ dðvi; vsÞÞ ð1Þ

with d(vi, vr) being the shortest path distance between vi and

vr. The ratio Rij compares the radial distances to the edges of

unit uj from the facility vi, and from the facility vk (avi)
being closest to uj:

Rij ¼ Dðvi; ujÞ=minfDðvk; ujÞjvk 2 X ; vk 6¼ vig ð2Þ

It follows immediately from the definition that there is for

each unit uj at most one facility vi with Rijo1.

Minimising the number of vehicles as an objective

Apart from a small portion of deadheading, efficient routing

for salt spreading also means that the number of vehicles to

be scheduled should remain limited. This is because the

gritting in Flanders is mostly performed by private

subcontractors, whose remuneration typically includes a

fixed fee for being on standby in wintertime (with their own

truck) and a variable part depending on the number of

interventions and the total mileage. While the precise

number of vehicles K (or subcontractors) to be used is

known only after the routes have been determined, it is easily

observed that an uncareful partitioning of the road network

(or the total workload) — due to rounding — can lead to an

increase in the number of vehicles required and possibly, also

to an increase in the mileage. Indeed, the continuous lower

Figure 2 A cycle decomposition of a planar Eulerian graph.
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bounds on the number of vehicles to be used prior to and

after partitioning the network into p districts are, respec-

tively, Klb ¼ qðEÞ=Qd e and Kpart;lb ¼
P
i qðEiÞ=Qd e,

with q(E) (q(Ei)) being the total demand in G (serviced

by facility vi). It can be easily shown6 that by partitioning

G into p districts, in the worst case Kpart,lb can grow to

Kpart-wc,lb¼Klbþ p
1.

The ratio (p
1)/Klb can thus be used as an indicator for

the importance of minimising the number of vehicles as an

objective in districting: the larger (p
1)/Klb or the lower the

average number of vehicles needed in each district, the more

attention to be paid to the possible increase in the number of

vehicles required caused by the partitioning. Owing to the

bin-packing aspect in capacitated routing problems, there is,

however, no guarantee that district partitions with a low

Kpart,lb value allow the construction of good routings using

only Kpart,lb (or slightly more) vehicles. Apart from the

condition of (p
1)/Klb being large, the objective of minimis-

ing the number of vehicles might therefore turn out to be

effective only in case of the vehicle capacity Q being rather

large compared with the average demand on the edges.

Three heuristics

The first two procedures differ only in the definition of the

units, while the way of aggregation is similar. Either

individual edges (procedure Emin_ratio) or units defined by

the cycle approach (procedure Cmin_ratio) are allocated to the

nearest facility. In the third procedure, (CILP) units obtained

by the cycle decomposition are allocated to the facilities

through the solution of an integer linear programming (ILP)

model, minimising a lower bound (Kpart,lb) on the number of

vehicles required. In each of the three heuristics, we ensure

that the network to be serviced within each district is

connected and we measure the proximity between a unit uj
and facility vi by the ratio Rij. The unit-adjacency graph

H(W, F) is used instead of the original graph G, although

this is not necessary for the Emin_ratio procedure. Recall that

the vertex set W is partitioned into WU and WF

corresponding, respectively, to the units and the facilities.

The Cmin_ratio and Emin_ratio procedure

In the following algorithmic description, Step 10 replaces

Step 1 in order to obtain the Emin_ratio version from the

Cmin_ratio procedure.

Step 1 (Cmin_ratio): Define the units uj in G by the cycle

decomposition approach (see Figure 2) and the

edge exchange heuristic.6

Step 10 (Emin_ratio): Define the units uj in G by taking every

edge ersAE as a unit.

Step 2 Construct the unit-adjacency graph H and cal-

culate the ratios Rij. Initially all units wjAWU are

unassigned.

Step 3 If all units wjAWU are allocated, go to Step 5.

Step 4 For each facility wiAWF, select the unassigned unit

wjAWU with the lowest ratio value Rij, adjacent to

wi or to a unit wk already assigned to facility wi.

Among these candidate facility-unit assignments

(wi, wj), allocate the unit to the facility in the pair

with the lowest Rij value. Go to Step 3.

Step 5 Translate the unit allocations in H into a district

partition in G.

Emin_ratio focuses only on the radial distances to reach

every edge; Cmin_ratio tries to take into account local routing

aspects as well. Both procedures operate independent of the

vehicle capacity Q, so that the generated partitions can be

termed robust. The two heuristics run in polynomial time

and consume, even for relative large graphs, at most a few

seconds of CPU-time on a modest PC, the majority of the

computation time being spent on solving the matching

problem (Cmin_ratio) or on calculating shortest path distances

for the ratio computations (Emin_ratio). As an example, we

show in Figure 3 the regional road network in the province

of Antwerp and the Cmin_ratio partition. The road network

edges (342 in total) are pre-clustered into 143 units. Each

unit is then allocated to one of the six depots involved.

An integer linear programming approach

Prior to solving the ILP model, the unit-adjacency graph H

is reduced in size. The idea is to allocate immediately the

units that are considered as very near the depots and further

to merge some units by exploiting structural properties in H.

In order to accomplish the first goal, we introduce a

parameter Rlim (X1) — a limit value for the ratios — by

which the units are partitioned into three classes with respect

to each facility wiAWF: the units wj that are prohibited from

allocation to facility wi (Rij4Rlim), the units wj that are

immediately assigned to wi (Rijo1/Rlim) and the units wj that

will be possibly assigned to wi through the ILP model

(1/RlimpRijpRlim). The effect of the Rlim parameter is

illustrated in Figure 4 for a bounded region in the Euclidean

plane P. Figure 4(a) shows the zones defined around three

facilities for Rlim¼ 1: the points in the region are partitioned

according to the classical Voronoi diagram,19 each point x

being assigned to the nearest facility. In Figure 4(b)

(Rlim¼ 2), each straight line bisector of Figure 4(a) is

replaced by two circles (Apollonius circles), indicating the

dominance regions with respect to the two facilities; for

example, circle C2.1¼ {xAP|dEucl(2, x)/dEucl(1, x)pRlim}. In

each zone defined by the circles, the facilities to which the

points can be allocated are indicated.

Similarly in a network, a low Rlim value limits the number

of units and the possible allocations in the ILP model and

forces the solution towards a compact district partition.

Setting Rlim too low, however (eg o1.25), may prevent

solutions from being found with a low Kpart,lb value or
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prevent the road network within each district from being

connected. The latter is usually a local effect and is by-passed

in the graph reduction procedure by the possibility to make

Rlim facility-dependent (ie defining Rlim,i values instead of

Rlim) and by adapting some Rlim,i parameters whenever

necessary.

The first step in reducing H involves successively merging

a (vertex) unit wj and a facility wi if the unit can be

immediately assigned to wi (Rijo1/Rlim,i) and provided

that wj and wi are adjacent. Next, we investigate H for

cut-vertices. The removal of a cut-vertex from H disconnects

H into several components (Figure 5). If such a component

contains no vertex that corresponds to a facility, all the

vertices on that component are merged with the cut-vertex

(due to the connectivity). Finally, the reduced graph H is

checked whether it still allows a feasible district partition to

be constructed: for each facility wi, the subgraph Hi induced

by wi and the units wj that can be assigned to wi should be

connected. If this is not the case, some units are further

disregarded for assignment to wi. When it then becomes

Figure 3 Road network and the Cmin_ratio partition in the province of Antwerp.

1214 Journal of the Operational Research Society Vol. 54, No. 11



impossible to allocate a unit wj to any facility, we increase

the Rlim,i value of the two facilities nearest to wj and restart

the reduction procedure from scratch.

The adjacency graph reduction can be summarised as

follows.

Step 1 Set Rlim,i :¼Rlim 8wiAWF (eg Rlim¼ 1.5) and mark

all facilities as unexamined.

Step 2 If all the facilities are investigated, go to Step 4; else

select an unexamined facility wi.

Step 3 If there exists a unit wj inH, adjacent to wi and such

that Rijo1/Rlim,i, merge wj and wi into a single

vertex (denoted by wi), set q(wi):¼ q(wi)þ q(wj) and

go to Step 3; else, mark wi examined and go to Step

2. (Merging wj into wi requires that new edges are

added from wi to the vertices wk (awi) adjacent to

wj and not already adjacent to wi, followed by

deleting wj from H.)

Step 4 Make a list Lcut that contains the cut-vertices in H.

Step 5 If Lcut is empty, go to Step 6; else select the first

vertex wcut from Lcut and determine the compo-

nents in H\{wcut}. Select the components

(H\{wcut})k that do not contain a facility wiAWF.

Merge all the vertices wj on these components into

wcut and adapt the weight of wcut by adding the

total weight on the vertices in these components.

Remove from Lcut the vertices that were merged

with wcut and also appeared in the list Lcut. Remove

wcut from Lcut. If wcuteWF, recalculate the ratios Rij
for wcut with respect to every facility as if all the

edges of G that are now represented by wcut in H,

would define a single unit. Go to Step 5.

Step 6 For each facility wi, check if the subgraph Hi
induced by wi and the units wj that can be assigned

to wi (RijpRlim,i) is connected. IfHi is disconnected,

ignore the vertices wj on the components different

from the one containing wi, for possible allocation

to wi, (eg set Rij4Rlim,i for these units).

Step 7 Check if there are units wjAWU that cannot be

allocated. These units have, with respect to every

facility, a ratio Rij4Rlim,i. If none are found, stop;

else, for each of these units identify the two nearest

facilities. For the selected facilities wi, set

Rlim,i :¼Rlim,iþ 0.1. Label all facilities unexamined

and restart the reduction procedure (with the

original graph H) from Step 2.

With the reduced unit-adjacency graph H as the input, we

formulate the following ILP model. Three types of variables

are defined: a general integer variable yi for each facility

wiAWF, corresponding to the continuous lower bound on

the number of vehicles scheduled from wi ; binary xij
allocation variables denoting whether unit wiAWU is

assigned to facility wiAWF or not, and a continuous Rmax,i

variable for each facility wiAWF denoting the maximum Rij
value among the units assigned to wi. We further apply the

following notations: Wi, for the set of units that can be

allocated to facility wi (ie the vertices of Hi, wi excluded);Wj,

to denote the facilities wi that can receive unit wj (RijpRlim,i)
and,Wij, denoting a subset of the vertices inHi to express the

Figure 4 Regions defined by Rlim in the Euclidean plane. A: the nearest point Voronoi diagram (Rlim¼ 1). B: the zones defined by
Rlim¼ 2.

Figure 5 Investigation of a cut-vertex during the reduction ofH.
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district connectivity when unit wjAWi is assigned to wi. The

formulation is then:

Minimise
X

wi2WF

yi þ a
X

wi2WF

Rmax;i ð3Þ

Subject to
X

wi2Wj

xij ¼ 1 8wj 2WU ð4Þ

X

wj2Wi

qðwjÞxij þ qðwiÞpQyi 8wi 2WF ð5Þ

xijp
X

wk2Wij

xik 8Wij 6¼ +;wi 2WF;wj 2Wi ð6Þ

RijxijpRmax;i 8wi 2WF;wj 2Wi ð7Þ

xij 2 f0; 1g 8wi 2WF;wj 2Wi ð8Þ

yi integer 8wi 2WF ð9Þ

Rmax;iX0 8wi 2WF ð10Þ
The first summation in objective (3) is the continuous lower

bound Kpart,lb, on the number of vehicles to be used.

Additionally, we penalise the ‘non-compactness’ of a district

partition by taking into account the ratio of the most distant

unit that is assigned to each facility. Formulation (3)–(10)

may thus be considered as a multiple objective problem, yet

the scale factor a is chosen suitably small, for example, ao1/

(p�max{Rlim,i|wiAWF}), in order to make the contribution

of the second part in (3) less than one so that it does not

affect the minimum value of the first term. Constraints (4)

express that every unit must be assigned to exactly one

facility. Constraints (5) express that the total capacity of

the vehicles needed in a facility should cover at least the

total demand assigned to it. Constraints (6) ensure the

network connectivity within a district. They are explained

as follows. For each facility wiAWF, the units wjAWi

are partially ordered according to the minimum number of

edges ni(wj) needed for reaching wj from wi in Hi(Wi,{wi},

Fi). We require that at least one unit of the set

Wij¼ {wkAWi|ni(wj)¼ ni(wk)þ 1 and (wk, wj) AFi} is allo-

cated to wi, before wj can be assigned to wi. Several other

ways exist to express district connectivity. Set (6) has the

advantage of being polynomial in size and using only the xij
variables, while the drawback is that possibly some feasible

solutions are not considered. The number of excluded

solutions however, remains limited in the case of Rlim,i
being rather low. Constraints (7) select the maximum ratio

value within each district and constraints (8)–(10) express

integrality and non-negativity conditions.

Apart from formulation (3)–(10) (CILP_3), two other

models are explored. In the first version, only the first

summation in (3) is taken into account and constraints (7)

and (10) are removed (CILP_1). In the second version

(CILP_2), a single variable Rmax is used (instead of a Rmax,i

variable for each facility) and we penalise for ‘non-

compactness’ by the maximum Rij value over all unit-

allocations (with ao1/max{Rlim,i|wiAWF}).

Computational experiments

Test instances

In order to explore the quality of the district partitions, we

constructed five, planar, undirected graphs (A, B, L, O, W),

each of them corresponding to the (simplified) inter-city road

network in a province of Flanders (Antwerpen, Vlaams-

Brabant, Limburg, Oost-Vlaanderen and West-Vlaanderen).

The networks in adjacent provinces were then combined into

larger instances (AB,y, WOABL), giving 22 graphs in total.

These networks are also relevant for the organisation of salt-

spreading activities on regional roads by the Flemish

Administration. The average edge length equals 32.8 (or

about 3.3 km), and the demand on an edge was set equal to

its length. The location of the facilities in the graphs matches

the location of the depots from where the gritting is

organised in reality. Simplifying the road networks involved

that we considered only the secondary regional roads, while

the highways were not taken into account as these are

serviced in practice by separate tours. The selected roads

make up nearly planar graphs. The (very) rare occasions

where bridges actually take one road over another were

replaced by road intersections. In this study, every road is

modelled as an undirected edge, which is a suitable

representation for the majority of them ((1� 1) roads that

can be gritted in one pass, servicing both directions

together). Although few in number, there are in reality some

larger (2� 2) roads for which the two directions have to be

gritted separately. It would be more appropriate to model

these by pairs of arcs with opposite direction, so that

the road network graph would be mixed. The cycle

decomposition approach however, remains applicable for

these networks as the resulting mixed graphs are of a special

type.15

The characteristics of the test problems are summarised in

Table 1. The column headings show the problem, the

number of facilities p, the number of (required) edges |E|, the

total demand, the continuous lower bound Klb on the

number of vehicles for Q¼ 225, the number of vertices |W|

in the unit-adjacency graph H defined by the cycle

decomposition and the number of remaining units |W|1,5

after reducing H with Rlim,i¼ 1.5.

The average reduction in problem size by the cycle

decomposition (|E|/|W|) is 2.55. Using the H-reduction with

Rlim,i¼ 1.5 as well, the average reduction factor (|E|/|W|1.5)

increases to 8.04.

Experiments

Three types of experiments are performed. First, we compare

the quality of the partitions generated by Cmin_ratio and
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Emin_ratio. Note that both procedures do not take the vehicle

capacity Q into account. The quality of a partition is

measured by the sum of the CARP deadheading distances in

each district of a partition. Furthermore, six values of Q are

explored: Q¼ 225, 300, 375, 450, 600 and 900. An upper

bound on the CARP deadheading is calculated by a local

search heuristic20 and, to obtain a lower bound, we have

implemented a cutting plane approach, based on the so-

called supersparse formulation for the CARP.21 We remark

that in the calculation of these bounds, the vehicles can

cross the district borders for deadheading. A second set

of experiments involves the comparison of Cmin_ratio and

the three CILP variants. We investigate the integer linear

programming approach in 17 instances (A–WOB in Table 1)

for Q¼ 600 and 900, and for three values of Rlim,i : 1.3, 1.4

and 1.5. Some valid inequalities6 are added to the initial

formulations and the models are then solved by the standard

branch and bound algorithm of CPLEX 6.5 (after tuning the

parameters). Both the deadheading distance and the number

of scheduled vehicles are used to evaluate the partitions.

Finally, we compare the upper bounds on the routing cost

for problems A–WOB and the six values of Q, with a multi-

depot CARP cutting plane lower bound,6 the latter

approach being adapted from the single depot CARP lower

bound procedure.21 All the algorithms are coded in

C\Cþ þ and run on a personal computer (Pentium II,

500 MHz).

Table 2 evaluates Cmin_ratio and Emin_ratio partitions for

Q¼ 450. For every graph, we report the lower and upper

bound on the deadheading (lb, ub) and the gap (ub
lb)/lb.
The last three columns compare the results of both

districting procedures and contain the percentage difference

Table 1 Characteristics of the test problems

Problem p |E| Total
demand

Klb (Q¼ 225) |W| |W|1.5

A 6 342 11 340 51 143 29
B 4 259 8170 37 122 35
L 6 369 10 185 46 148 51
O 5 344 12 565 56 152 39
W 6 378 13 180 59 142 48
AB 10 601 19 510 87 244 68
AL 12 711 21 525 96 284 85
BL 10 628 18 355 82 256 96
OA 11 686 23 905 107 280 74
OB 9 603 20 735 93 247 70
WO 11 722 25 745 115 271 97
ABL 16 970 29 695 132 371 130
OAB 15 945 32 075 143 361 121
OAL 17 1055 34 090 152 422 130
OBL 15 972 30 920 138 381 131
WOA 17 1064 37 085 165 399 132
WOB 15 981 33 915 151 365 127
OABL 21 1314 42 260 188 483 165
WOAB 21 1323 45 255 202 480 179
WOAL 23 1433 47 270 211 542 188
WOBL 21 1350 44 100 196 498 188
WOABL 27 1692 55 440 247 598 216

Table 2 Evaluation of the Cmin_ratio and Emin_ratio partitions for Q¼ 450

Cmin_ratio Emin_ratio D

Problem lbC ubC gap (%) lbE ubE gap (%) (lbE
lbC)/lbC (ubE
ubC)/ubC (lbE
ubC)/ubC

A 5000 5160 3.20 5890 5990 1.70 17.80 16.09 14.15
B 4800 4865 1.35 5395 5515 2.22 12.40 13.36 10.89
L 4595 4750 3.37 5125 5190 1.27 11.53 9.26 7.89
O 6050 6215 2.73 6215 6270 0.88 2.73 0.88 0.00
W 5190 5305 2.22 5950 6000 0.84 14.64 13.10 12.16
AB 8880 9130 2.82 10 795 10 960 1.53 21.57 20.04 18.24
AL 8945 9370 4.75 10 835 11 015 1.66 21.13 17.56 15.64
BL 9010 9260 2.77 10 130 10 245 1.14 12.43 10.64 9.40
OA 10 965 11 150 1.69 12 050 12 190 1.16 9.90 9.33 8.07
OB 9800 10 035 2.40 11 120 11 285 1.48 13.47 12.46 10.81
WO 10 160 10 545 3.79 12 275 12 390 0.94 20.82 17.50 16.41
ABL 12 515 12 930 3.32 15 190 15 420 1.51 21.37 19.26 17.48
OAB 14 410 14 640 1.60 16 440 16 640 1.22 14.09 13.66 12.30
OAL 14 910 15 370 3.09 16 995 17 225 1.35 13.98 12.07 10.57
OBL 14 015 14 425 2.93 15 855 16 040 1.17 13.13 11.20 9.91
WOA 15 075 15 480 2.69 18 110 18 310 1.10 20.13 18.28 16.99
WOB 14 280 14 685 2.84 17 180 17 405 1.31 20.31 18.52 16.99
OABL 17 335 17 885 3.17 20 835 21 100 1.27 20.19 17.98 16.49
WOAB 18 520 18 980 2.48 22 500 22 760 1.16 21.49 19.92 18.55
WOAL 19 020 19 705 3.60 23 055 23 345 1.26 21.21 18.47 17.00
WOBL 18 490 19 075 3.16 21 915 22 160 1.12 18.52 16.17 14.89
WOABL 21 990 22 795 3.66 26 895 27 220 1.21 22.31 19.41 17.99

Average 2.89 1.30 16.60 14.78 13.31
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in deadheading between Emin_ratio and Cmin_ratio, based,

respectively, on the lower bounds (lbE
lbC)/lbC, on the

upper bounds (ubE
ubC)/ubC and on the lower bound in

Emin_ratio and the upper bound in Cmin_ratio districts

(lbE
ubC)/ubC.

Quite accurate solutions are obtained for the CARP in the

districts within each graph, the average gaps counting 2.89

and 1.30% in partitions generated by Cmin_ratio and

Emin_ratio. The Cmin_ratio districts definitely allow a better

routing than those constructed by Emin_ratio: on average, the

lower bound on the deadheading in an Emin_ratio partition is

16.60% higher than in a Cmin_ratio partition, the upper

bounds are 14.78% higher and by comparing the lower

bound in Emin_ratio partitions with the upper bound in

Cmin_ratio partitions, we observe that on average, at least

13.31% can be saved in deadheading by applying the cycle

approach. Table 3 presents the average results for the six

values of Q. We report the average gaps and the average

differences in deadheading, in percent.

Clearly, the CARPs are solved more accurately for large

Q. More importantly, observe that the Cmin_ratio partitions

systematically allow a better routing than the Emin_ratio

partitions. The larger Q, the more Cmin_ratio outperforms

Emin_ratio. For Q¼ 900, up to 28% less deadheading is

obtained in the partitions based on the cycles. For Q¼ 225,

the routing is still slightly better in Cmin_ratio districts, but it is

clear that both procedures start competing with each other.

This performance is easily explained from the observations

made in a previous section: When Q is (very) small, only a

few edges can be serviced in a vehicle tour and the radial

travel distance will dominate in the routing cost. It is,

therefore, a good policy to focus on the construction of

compact districts by assigning individual edges to the nearest

facility. For larger Q on the other hand, the distances for

travelling from one edge to another gain in importance and

these local routing cost aspects seem, for arc routing, well

accounted for by pre-clustering the edges into cycles.

Table 4 presents the upper bounds on the deadheading

(ub) and the actual number of vehicles K used for Q¼ 900, in

districts obtained by Cmin_ratio and CILP_2, Rlim,i¼ 1.5. We

show the differences in the upper bound (in percent) and in

the number of scheduled vehicles. Klb/Kpart-wc,lb refers to the

continuous lower bound on the number of vehicles before

partitioning and after partitioning in the worst case.

Notice that the number of vehicles dispatched (Q¼ 900) in

Cmin_ratio partitions always lies in the range [Klb, Kpart-wc,lb]

— most of the time somewhat in the middle. A similar

performance, although not reported, has been observed for

the other Q values and with respect to the number of

vehicles, there was on average no significant difference

between Cmin_ratio and Emin_ratio partitions. Table 4 shows

that designing districts according to the ILP approach

reduces the number of scheduled vehicles considerably.

In fact, with CILP_2, we find for each problem a partition

where the routing can be carried out with slightly more

than Klb vehicles. Moreover, compared with the routing in

Cmin_ratio districts, for all but one of the instances the upper

bound on the deadheading is also lower. On average, for

Q¼ 900, the Cmin_ratio partitions incur 2.74% more dead-

heading than those found by CILP_2, Rlim,i¼ 1.5. The

performance of the three ILP versions is presented in

Table 5. We compare with Cmin_ratio and report the average

percentage difference in the upper bound and the sum of the

number of vehicles used in the 17 instances (
P
K).

Considering the number of vehicles, significant savings are

obtained compared with Cmin_ratio even when only few units

remain to be allocated in the ILP models (Rlim,i¼ 1.3). By

increasing Rlim,i, more combinations are explored and

(slightly) better partitions are found. With respect to the

upper bound on deadheading, we observe that for Q¼ 900,

the three CILP versions improve upon Cmin_ratio, while this is

not the case any more for Q¼ 600 — the differences in

deadheading however being small. Based on the dead-

heading, it is more difficult to select the best approach

among the three ILPs, although in general, it is better to

penalise for non-compactness in the objective function

instead of minimising the number of vehicles (CILP_1) only.

This shows that having the edges near the facilities from

where they are serviced remains rather important even for

large Q. The entry ‘best’ CILP in Table 5 reports the

performance if for each instance the best partition (lowest

ub) among the nine trials is selected.

The ILPs have also been tested for small Q values. Most

of the time, the models do find partitions with Kpart,lb close

Table 3 Evaluation of the Cmin_ratio and Emin_ratio partitions for different Q values

Cmin_ratio Emin_ratio

D

Q gap (%) gap (%) (lbE
lbC)/lbC (ubE
ubC)/ubC (lbE
ubC)/ubC

225 5.18 4.02 2.30 1.17 
2.74
300 4.11 2.27 6.36 4.48 2.16
375 3.63 2.00 11.68 9.92 7.77
450 2.89 1.30 16.60 14.78 13.31
600 1.87 0.45 22.29 20.58 20.04
900 1.43 0.39 29.33 27.99 27.49
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to Klb. Since the majority of these districts however, have a

total demand equal (or almost equal) to an integer multiple

of Q (involving 6–12 vehicles), good routing schemes

with only Kpart,lb vehicles are rarely obtained. Moreover,

we usually end up with partitions performing worse

in the number of vehicles used and in deadheading than

the Cmin_ratio partitions. As could be expected, the ILPs

are therefore most suited when Q is relatively large.

With respect to the computation times, we note that

CILP_1 solves faster than CILP_2, while solving CILP_2 requires

less time than CILP_3. The computation times increase for

increasing problem size (a larger network or a larger Rlim,i)

and for decreasing Q. Networks spanning one province are

solved almost immediately or within a few seconds; two and

three provinces mostly require several seconds to a few

minutes to solve. In three of the 306 ILP problems, the

solution time exceeded one hour to reach and prove

optimality.

Finally, Table 6 evaluates the quality of the routing in the

Cmin_ratio partitions by comparison with a multi-depot

CARP cutting plane lower bound. We report the average,

worst and best gap over 17 instances (A–WOB) for the six

Table 4 Evaluation of the Cmin_ratio and CILP_2, Rlim,i¼ 1.5 partitions for Q¼ 900

Cmin_ratio CILP_2,1.5 D

Problem Klb/Kpart-wc,lb ubC KC ubILP KILP (ubC
ubILP)/ubILP KC
KILP

A 13/18 3685 17 3515 14 4.84 3
B 10/13 3025 11 3050 10 
0.82 1
L 12/17 3105 14 3035 12 2.31 2
O 14/18 3995 17 3825 15 4.44 2
W 15/20 3510 19 3440 15 2.03 4
AB 22/31 5955 28 5905 23 0.85 5
AL 24/35 6520 31 6275 25 3.90 6
BL 21/30 5800 25 5615 22 3.29 3
OA 27/37 7510 34 7320 28 2.60 6
OB 24/32 6220 27 6020 25 3.32 2
WO 29/39 6635 33 6365 32 4.24 1
ABL 33/48 8350 42 8310 35 0.48 7
OAB 36/50 9145 45 8750 38 4.51 7
OAL 38/54 10 345 48 10 030 40 3.14 8
OBL 35/49 8995 41 8615 37 4.41 4
WOA 42/58 10 150 50 10 035 44 1.15 6
WOB 38/52 9010 44 8840 39 1.92 5

S433/601 S526 S454 Average 2.74

Table 5 Evaluation of the CILP partitions for Q¼ 600 and 900

Q¼ 600 Q¼ 900

Procedure Rlim,i (ubC
ubILP)/ubILP SK (ubC
ubILP)/ubILP SK

Cmin_ratio — — 725 — 526
ClLP_1 1.3 
0.58 683 1.78 463

1.4 
1.30 679 1.60 460
1.5 
2.54 673 1.27 452

ClLP_2 1.3 0.21 683 1.93 458
1.4 
0.32 675 2.68 458
1.5 
0.60 673 2.74 454

ClLP_3 1.3 0.14 684 1.66 463
1.4 
0.25 673 1.88 455
1.5 
0.81 671 1.66 454

‘best’ ClLP 1.92 674 3.64 457

Table 6 Gaps between the routing in Cmin_ratio partitions and
a multi-depot CARP lower bound

Q

Gap (%) 225 300 375 450 600 900

Average 33.49 34.35 32.57 28.17 23.32 16.92
Worst 38.20 41.05 42.04 34.00 33.58 22.81
Best 19.43 18.55 25.42 12.49 15.55 9.60
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values of Q. As in the other tables, the gaps are based on the

deadheading only, acknowledging that the length on the

required edges is a constant. If we include the length on these

edges, the average gaps for Q¼ 225 and 900 would read

14.76 and 3.42%, instead of 33.49 and 16.92%.

Table 6 shows that the degree of suboptimisation due to

the districting remains rather limited. Indeed, the multi-

depot CARP does not impose any restriction (connectivity,

no overlap) on the subgraphs induced by the edges that are

serviced from the same facility. The gaps between the

routing in the Cmin_ratio partitions and the multi-depot

CARP lower bound are, therefore, fairly reasonable, but

undoubtedly, good multi-depot CARP algorithms can

improve upon the routing in the district partitions.

Comparing their performance with the lower bound would

allow a finer evaluation of the quality of the lower bound

and of the routing within the partitions.

Recommendations for practice

The need for districting models and for more insight into the

interaction between districting and routing are evident, as

the Flemish Administration has hired a consultancy firm in

the past for reconfiguring the district boundaries and the

routes. These new routes and districts are partly based on

climatical considerations and on thermal characteristics of

the roads so that when the ground temperature fluctuates

around the freezing point, no gritting must be performed in

the warmer zones and some routes can be excluded. Apart

from these thermal data, no other aspects related to efficient

routing were considered in the new design and the current

district borders coincide to a large extent with irrelevant

province and commune boundaries. From the experiments

in the previous section and by taking the operational

characteristics for preventive and curative gritting into

account (a truck can spread about 70 and 35 km in a

preventive and curative intervention, and the average edge

length equals 3.3 km), districting based on cycles would

almost surely incur much less deadheading. For preventive

and curative operations, the Cmin_ratio partitions are

estimated to incur 23–25 and 8–10% less deadheading

compared to Emin_ratio partitions. Alternatively, the ILP

approach can be used, for instance with the operational

settings for preventive gritting (Q¼ 700) and rather low

Rlim,i values. The resulting districts would perform for

preventive operations similarly in routing quality as

Cmin_ratio districts, although fewer vehicles would be

required. For low Rlim,i values, the districts are compact in

shape so that good curative tours can be constructed as well.

Furthermore, important savings can be achieved by looking

across the province borders: for Q¼ 450 (see Table 2),

applying Cmin_ratio on the road network of each province

separately (AþyþW) and on the entire network in

Flanders (WOABL), yields upper bounds on the dead-

heading of 26 295 and 22 795, ie a difference of 15.35%. For

preventive and curative interventions (Q¼ 700 and 350), the

additional savings in deadheading are estimated to be

around 22 and 12%, respectively. Nevertheless, it might be

recommended to adapt the procedures and to address

climatical considerations as well. The network edges and/

or the units can be subdivided into classes according to their

thermal characteristics. This information can then be

exploited in the edge exchange heuristic6 or in the districting

procedures in order to determine more thermally homo-

geneous cycles or districts and to reach a superior district

partition eventually.

Conclusions

In this paper, we have addressed the problem of district

design for the organisation of arc-routing activities. Dis-

tricting is viewed as an intermediate step between the

location of the facilities and the determination of the routes.

Since well-designed districts should be able to support

efficient routing, it is recommended to include, along with

other criteria, routing aspects in a districting procedure. We

propose and test three heuristics for district design, each

procedure being inspired by a number of guidelines in order

to perform well in a certain value range for the vehicle

capacity Q. When Q is very small, only a few edges are

serviced in a tour and the radial travel cost will dominate. It

is, therefore, a good policy to allocate individual edges to the

nearest facility (Emin_ratio). For larger Q, we pre-cluster the

edges into small cycles, recognising that the local routing

cost becomes important. In Cmin_ratio, cycles are assigned to

the closest facility. Thus, aspects related to both the radial

and the local travel costs are taken into account, and the

procedure performs well for average Q values. In CILP, the

focus is mainly on the local routing cost and the cycles are

aggregated into districts through the solution of an ILP

model, minimising a lower bound on the number of

scheduled vehicles. This last approach is particularly suited

when Q is large.

The performance of the three procedures is validated

through extensive computational experiments and by

comparison with a multi-depot CARP lower bound, the

latter showing that the degree of suboptimisation due to

districting remains rather limited. Finally, some recommen-

dations for improving the efficiency of the gritting opera-

tions in Flanders are given.
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